

ibm.com/redbooks

WebSphere Application
Server V6.1:
System Management and Configuration

Carla Sadtler, Fabio Albertoni,
Bernardo Fagalde, Thiago

Kleinubing, Henrik Sjostrand, Ken
Worland, Lars Bek Laursen, Martin

Phillips, Martin Smithson,
Kwan-Ming Wan

Learn about WebSphere Application
Server

Configure and administer a
WebSphere system

Deploy applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V6.1:
System Management and Configuration

November 2006

International Technical Support Organization

SG24-7304-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2006)

This edition applies to IBM WebSphere Application Server V6.1, IBM WebSphere Application
Server Network Deployment V6.1, and IBM WebSphere Application Server for z/OS V6.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Contents

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xxi
Comments welcome. xxii

Part 1. The basics . 1

Chapter 1. WebSphere Application Server . 3
1.1 Product overview. 4
1.2 WebSphere Application Server . 5
1.3 Packaging . 7
1.4 Supported platforms and software . 10

1.4.1 Operating systems . 10
1.4.2 Web servers . 11
1.4.3 Database servers . 12
1.4.4 Directory servers . 12

Chapter 2. System management: A technical overview 15
2.1 System management overview . 16

2.1.1 System management in a stand-alone server environment 16
2.1.2 System management in a distributed server environment 17

2.2 Java Management Extensions (JMX) . 19
2.2.1 JMX architecture . 19
2.2.2 JMX distributed administration . 22
2.2.3 JMX MBeans. 24
2.2.4 JMX usage scenarios . 24
2.2.5 J2EE management . 25

2.3 Distributed administration . 26
2.3.1 Distributed process discovery . 28
2.3.2 Centralized changes to configuration and application data. 31
2.3.3 File synchronization . 32

2.4 Configuration and application data repository . 39
2.4.1 Repository directory structure . 39
2.4.2 Variable scoped files . 42
2.4.3 Application data files . 42
© Copyright IBM Corp. 2006. All rights reserved. iii

Chapter 3. Getting started with profiles . 47
3.1 Understanding profiles . 48

3.1.1 Types of profiles . 50
3.1.2 Directory structure and default profiles . 51

3.2 Building a system using profiles . 54
3.2.1 Stand-alone server environment . 55
3.2.2 Distributed server environment . 55

3.3 Creating profiles on distributed systems (non z/OS) 57
3.3.1 Creating a deployment manager profile . 59
3.3.2 Creating an application server profile . 67
3.3.3 Creating a cell profile . 78
3.3.4 Creating a custom profile . 79
3.3.5 Federating a custom node to a cell . 86
3.3.6 Creating a new application server on an existing node. 88
3.3.7 Federating an application server profile to a cell. 91

3.4 Creating profiles on z/OS systems . 95
3.5 Managing profiles . 123

3.5.1 Using the manageprofiles command. 123
3.5.2 Creating a profile. 124
3.5.3 Deleting profiles . 126

3.6 Managing the processes . 127
3.6.1 Starting a distributed server environment . 128
3.6.2 Stopping the distributed server environment. 129
3.6.3 Enabling process restart on failure . 130

Chapter 4. Administration basics . 137
4.1 Introducing the WebSphere administrative console 138

4.1.1 Starting the administrative console . 138
4.1.2 Logging in to the administrative console . 140
4.1.3 Changing the administrative console session timeout 142
4.1.4 The graphical interface . 143
4.1.5 Finding an item in the console . 147
4.1.6 Updating existing items . 151
4.1.7 Adding new items . 153
4.1.8 Removing items . 154
4.1.9 Starting and stopping items. 154
4.1.10 Using variables . 156
4.1.11 Saving work. 157
4.1.12 Getting help. 158

4.2 Securing the administrative console . 159
4.3 Working with the deployment manager . 162

4.3.1 Deployment manager configuration settings. 162
4.3.2 Starting and stopping the deployment manager 166
iv WebSphere Application Server V6.1: System Management and Configuration

4.4 Working with application servers. 170
4.4.1 Creating an application server . 171
4.4.2 Viewing the status of an application server. 175
4.4.3 Starting an application server . 178
4.4.4 Stopping an application server . 181
4.4.5 Viewing run time attributes of an application server 185
4.4.6 Customizing application servers . 188

4.5 Working with nodes . 201
4.5.1 Adding (federating) a node . 201
4.5.2 Removing a node . 209
4.5.3 Renaming a node . 212
4.5.4 Node agent synchronization . 213
4.5.5 Starting and stopping nodes . 215
4.5.6 Node groups . 219

4.6 Working with clusters . 222
4.6.1 Creating clusters . 222
4.6.2 Viewing cluster topology . 226
4.6.3 Managing clusters . 226

4.7 Working with virtual hosts . 227
4.7.1 Creating a virtual host . 228

4.8 Managing applications. 229
4.8.1 Using the administrative console to manage applications 230
4.8.2 Installing an enterprise application . 231
4.8.3 Uninstalling an enterprise application . 233
4.8.4 Exporting an enterprise application. 233
4.8.5 Starting an enterprise application . 234
4.8.6 Stopping an enterprise application . 234
4.8.7 Preventing an enterprise application from starting on a server 234
4.8.8 Viewing application details . 235
4.8.9 Finding a URL for a servlet or JSP . 238

4.9 Managing your configuration files . 242
4.9.1 Backing up a profile. 243
4.9.2 Restoring a profile . 244
4.9.3 Exporting and importing profiles . 246

Chapter 5. Administration with scripting . 249
5.1 Overview of WebSphere scripting . 250
5.2 Using wsadmin . 250

5.2.1 Jacl versus Jython. 250
5.2.2 Launching wsadmin . 251
5.2.3 Configuring wsadmin. 252
5.2.4 Command and script invocation . 254
5.2.5 Overview of wsadmin objects . 257
 Contents v

5.2.6 Management using wsadmin objects . 259
5.3 Common operational tasks using wsadmin. 278

5.3.1 General approach for operational tasks . 278
5.3.2 Examples of common administrative tasks 279
5.3.3 Managing the deployment manager . 279
5.3.4 Managing nodes . 280
5.3.5 Managing application servers . 281
5.3.6 Managing enterprise applications . 283
5.3.7 Managing clusters . 285
5.3.8 Generating the Web server plug-in configuration 286
5.3.9 Enabling tracing for WebSphere components. 286

5.4 Common configuration tasks. 288
5.4.1 General approach for configuration tasks . 288
5.4.2 Specific examples of WebSphere configuration tasks 288

5.5 Help creating wsadmin scripts. 300
5.6 Using Java for administration . 301
Online resources . 302

Chapter 6. Configuring WebSphere resources. 303
6.1 WebSphere resources. 304
6.2 JDBC resources . 305

6.2.1 What are JDBC providers and data sources?. 306
6.2.2 WebSphere support for data sources . 307
6.2.3 Creating a data source . 311
6.2.4 Creating a JDBC provider . 311
6.2.5 Creating JDBC data source . 317

6.3 JCA resources. 329
6.3.1 WebSphere Application Server JCA support 331
6.3.2 Installing and configuring resource adapters 333
6.3.3 Configuring J2C connection factories . 337
6.3.4 Using resource adapters from an application 340

6.4 JavaMail resources . 342
6.4.1 JavaMail sessions . 343
6.4.2 Configuring the mail provider . 343
6.4.3 Configuring JavaMail sessions . 347
6.4.4 Example code . 350

6.5 URL providers . 351
6.5.1 Configuring URL providers . 351
6.5.2 Configuring URLs . 353
6.5.3 URL provider sample . 354

6.6 Resource environment providers . 355
6.6.1 Resource environment references . 356
6.6.2 Configuring the resource environment provider 357
vi WebSphere Application Server V6.1: System Management and Configuration

6.7 Resource authentication . 361
6.8 More information . 363

Chapter 7. Managing Web servers . 365
7.1 Web server support overview . 366

7.1.1 Request routing using the plug-in . 366
7.1.2 Web server and plug-in management . 367

7.2 Working with Web servers. 371
7.2.1 Defining nodes and Web servers . 371
7.2.2 Viewing the status of a Web server. 376
7.2.3 Starting and stopping a Web server . 376
7.2.4 IBM HTTP Server remote administration . 378
7.2.5 Mapping modules to servers . 383

7.3 Working with the plug-in configuration file. 385
7.3.1 Regenerating the plug-in configuration file 386
7.3.2 Propagating the plug-in configuration file . 392
7.3.3 Modifying the plug-in request routing options 393

Part 2. Messaging with WebSphere. 397

Chapter 8. Asynchronous messaging . 399
8.1 Messaging concepts . 400

8.1.1 Loose coupling . 400
8.1.2 Messaging types . 401
8.1.3 Destinations . 401
8.1.4 Messaging models . 402
8.1.5 Messaging patterns. 404

8.2 Java Message Service . 406
8.2.1 JMS API history. 406
8.2.2 JMS providers . 407
8.2.3 JMS domains . 407
8.2.4 JMS administered objects . 408
8.2.5 JMS and JNDI . 409
8.2.6 JMS Connections . 411
8.2.7 JMS sessions . 412
8.2.8 JMS messages . 413
8.2.9 JMS message producers . 415
8.2.10 JMS message consumers. 415
8.2.11 JMS exception handling . 419
8.2.12 Application Server Facilities . 421
8.2.13 JMS and J2EE . 422

8.3 Messaging in the J2EE Connector Architecture 422
8.3.1 Message endpoints . 425
8.3.2 MessageEndpointFactory . 425
 Contents vii

8.3.3 Resource adapters . 425
8.3.4 JMS ActivationSpec JavaBean . 428
8.3.5 Message endpoint deployment . 430
8.3.6 Message endpoint activation. 431
8.3.7 Message delivery . 432
8.3.8 Administered objects. 433

8.4 Message-driven beans . 434
8.4.1 Message-driven bean types . 434
8.4.2 Client view of a message-driven bean . 435
8.4.3 Message-driven bean implementation . 435
8.4.4 Message-driven bean life cycle. 437
8.4.5 Message-driven beans and transactions . 439
8.4.6 Message-driven bean activation configuration properties. 443
8.4.7 Associating a message-driven bean with a destination 445
8.4.8 Message-driven bean best practices . 448

8.5 Managing WebSphere JMS providers. 451
8.5.1 Managing the default messaging JMS provider 451
8.5.2 Managing the WebSphere MQ JMS provider 455
8.5.3 Managing a generic JMS provider . 457

8.6 Configuring WebSphere JMS administered objects 461
8.6.1 Common administration properties . 462
8.6.2 Configuring the default messaging JMS provider 462
8.6.3 Configuring the WebSphere MQ JMS provider 491
8.6.4 Configuring listener ports . 511
8.6.5 Configuring a generic JMS provider . 515

8.7 Connecting to a service integration bus . 520
8.7.1 JMS client run time environment. 521
8.7.2 Controlling messaging engine selection . 524
8.7.3 Load balancing bootstrapped clients. 534

8.8 References and resources . 536

Chapter 9. Default messaging provider. 539
9.1 Concepts and architecture . 540

9.1.1 Buses . 540
9.1.2 Bus members . 541
9.1.3 Messaging engines . 541
9.1.4 Message stores. 547
9.1.5 Destinations . 549
9.1.6 Mediations. 555
9.1.7 Foreign buses . 555

9.2 Run time components . 561
9.2.1 SIB service . 561
9.2.2 Service integration bus transport chains . 563
viii WebSphere Application Server V6.1: System Management and Configuration

9.2.3 Message stores. 568
9.2.4 Exception destinations . 579
9.2.5 Service integration bus links . 580
9.2.6 WebSphere MQ links . 584
9.2.7 WebSphere MQ Servers . 592

9.3 High availability and workload management . 594
9.3.1 Cluster bus members for high availability . 594
9.3.2 Cluster bus members for workload management 594
9.3.3 Partitioned queues . 595
9.3.4 JMS clients connecting into a cluster of messaging engines 596
9.3.5 Preferred servers and core group policies 597
9.3.6 Best practices . 600

9.4 Service integration bus topologies . 601
9.4.1 One server in the cell is a member of one bus 601
9.4.2 Every server in the cell is a member of the same bus 602
9.4.3 A single cluster bus member and one messaging engine. 602
9.4.4 A cluster bus member with multiple messaging engines 603
9.4.5 Mixture of cluster and server bus members 603
9.4.6 Multiple buses in a cell . 604

9.5 Service integration bus and message-driven beans 605
9.5.1 Message-driven beans connecting to the bus. 605
9.5.2 MDBs and clusters . 607

9.6 Service integration bus security . 608
9.7 Problem determination . 610
9.8 Configuration and management . 612

9.8.1 SIB service configuration . 613
9.8.2 Creating a bus. 616
9.8.3 Configuring bus properties . 616
9.8.4 Enabling bus security . 618
9.8.5 Adding a bus member . 622
9.8.6 Creating a queue destination . 637
9.8.7 Creating a topic space destination . 639
9.8.8 Creating an alias destination. 640
9.8.9 Adding messaging engines to a cluster . 642
9.8.10 Setting up preferred servers . 643
9.8.11 Setting up a foreign bus link to a service integration bus 650
9.8.12 Setting up a foreign bus link to an MQ queue manager 656
9.8.13 Creating a foreign destination . 666

Part 3. Working with applications . 669

Chapter 10. Session management . 671
10.1 HTTP session management . 672
 Contents ix

10.2 Session manager configuration. 672
10.2.1 Session management properties . 672
10.2.2 Accessing session management properties 673

10.3 Session scope . 674
10.4 Session identifiers . 676

10.4.1 Choosing a session tracking mechanism 676
10.4.2 SSL ID tracking . 678
10.4.3 Cookies . 679
10.4.4 URL rewriting . 682

10.5 Local sessions. 683
10.6 General properties for session management . 685
10.7 Session affinity . 688

10.7.1 Session affinity and failover . 690
10.8 Persistent session management . 692

10.8.1 Enabling database persistence . 694
10.8.2 Memory-to-memory replication . 698
10.8.3 Session management tuning. 708
10.8.4 Persistent sessions and non-serializable J2EE objects 715
10.8.5 Larger DB2 page sizes and database persistence 716
10.8.6 Single and multi-row schemas (database persistence). 717
10.8.7 Contents written to the persistent store using a database 719

10.9 Invalidating sessions . 723
10.9.1 Session listeners . 723

10.10 Session security . 725
10.11 Session performance considerations . 726

10.11.1 Session size . 727
10.11.2 Reducing persistent store I/O . 730
10.11.3 Multirow persistent sessions: Database persistence 731
10.11.4 Managing your session database connection pool 732
10.11.5 Session database tuning. 733

10.12 Stateful session bean failover . 734
10.12.1 Enabling stateful session bean failover. 734
10.12.2 Stateful session bean failover considerations 737

Chapter 11. WebSphere naming implementation 741
11.1 Features . 742
11.2 WebSphere naming architecture. 743

11.2.1 Components . 743
11.2.2 JNDI support . 744
11.2.3 JNDI bindings . 745
11.2.4 Federated name space . 746
11.2.5 Local name space structure . 749

11.3 Interoperable Naming Service (INS) . 757
x WebSphere Application Server V6.1: System Management and Configuration

11.3.1 Bootstrap ports . 757
11.3.2 CORBA URLs . 757

11.4 Distributed CosNaming . 759
11.5 Configured bindings . 760

11.5.1 Types of objects . 761
11.5.2 Types of binding references . 762

11.6 Initial contexts . 763
11.6.1 Setting initial root context . 766

11.7 Federation of name spaces. 769
11.8 Foreign cell bindings . 770
11.9 Interoperability. 771

11.9.1 WebSphere V4.0 EJB clients . 772
11.9.2 WebSphere V4.0 server . 773
11.9.3 EJB clients hosted by non-WebSphere environment 773

11.10 Examples. 774
11.10.1 Single server . 775
11.10.2 Two single servers on the same box. 776
11.10.3 Network Deployment application servers on the same box 778
11.10.4 WebSphere Application Server V4 client 780

11.11 Naming tools . 782
11.11.1 dumpNameSpace . 782

11.12 Configuration . 784
11.12.1 Name space bindings . 785
11.12.2 Foreign cell bindings . 788
11.12.3 CORBA naming service users and groups 789

Chapter 12. Understanding class loaders . 795
12.1 A brief introduction to Java class loaders . 796
12.2 WebSphere class loaders overview . 800

12.2.1 WebSphere extensions class loader. 801
12.2.2 Application and Web module class loaders 802
12.2.3 Handling JNI code. 803

12.3 Configuring WebSphere for class loaders. 804
12.3.1 Class loader policies . 804
12.3.2 Class loading/delegation mode . 807
12.3.3 Shared libraries . 809

12.4 Class loader viewer . 810
12.5 Learning class loaders by example . 811

12.5.1 Step 1: Simple Web module packaging . 812
12.5.2 Step 2: Adding an EJB module and Utility jar 817
12.5.3 Step 3: Changing the WAR class loader delegation mode 818
12.5.4 Step 4: Sharing utility JARs using shared libraries 820

12.6 Additional class loader diagnostics . 827
 Contents xi

Chapter 13. Packaging applications . 829
13.1 Plants by WebSphere sample application. 830

13.1.1 Plants by WebSphere resources used . 831
13.2 Packaging using the Application Server Toolkit 832

13.2.1 Import source code . 832
13.2.2 Working with deployment descriptors . 838

13.3 Setting application bindings. 842
13.3.1 Defining EJB JNDI names. 842
13.3.2 Binding EJB and resource references. 844
13.3.3 Defining data sources for entity beans . 846
13.3.4 Setting the context root for Web modules 853

13.4 IBM EJB extensions: EJB caching options . 854
13.4.1 EJB container caching option for entity beans 854
13.4.2 EJB container caching option for stateful session beans 858
13.4.3 Stateful EJB timeout option. 859

13.5 IBM EJB extensions: EJB access intents . 860
13.5.1 Transaction isolation levels overview . 860
13.5.2 Concurrency control . 862
13.5.3 Using EJB 2.x access intents . 863
13.5.4 Using read-ahead hints . 868
13.5.5 Tracing access intents behavior . 871

13.6 IBM EJB extensions: inheritance relationships 871
13.7 IBM Web module extensions. 872

13.7.1 File serving servlet . 872
13.7.2 Web application auto reload . 873
13.7.3 Serve servlets by class name . 873
13.7.4 Default error page . 874
13.7.5 Directory browsing . 874
13.7.6 JSP attributes . 874
13.7.7 Automatic HTTP request and response encoding 875

13.8 IBM EAR extensions: Sharing session context 876
13.9 Exporting the PlantsByWebSphere EAR file . 877
13.10 WebSphere Enhanced EAR . 877

13.10.1 Configuring a WebSphere Enhanced EAR 879
13.11 Packaging recommendations . 891

Chapter 14. Deploying applications. 893
14.1 Preparing the environment . 894

14.1.1 Creating the Plants by WebSphere DB2 database 894
14.1.2 Creating an environment variable . 895
14.1.3 Creating the Plants by WebSphere application server 896
14.1.4 Defining the Plants by WebSphere virtual host 901
14.1.5 Creating the virtual host for IBM HTTP Server and Apache 902
xii WebSphere Application Server V6.1: System Management and Configuration

14.1.6 Creating a DB2 JDBC provider and data source 904
14.2 Generating deployment code . 911

14.2.1 Using EJBDeploy command-line tool . 911
14.3 Deploying the application . 913

14.3.1 Using a bindings file . 919
14.4 Deploying application clients . 920

14.4.1 Defining application client bindings . 924
14.4.2 Launching the J2EE client. 925

14.5 Updating applications . 928
14.5.1 Replacing an entire application EAR file . 928
14.5.2 Replacing or adding an application module 929
14.5.3 Replacing or adding single files in an application or module 930
14.5.4 Removing application content . 931
14.5.5 Performing multiple updates to an application or module 931
14.5.6 Rolling out application updates to a cluster. 934
14.5.7 Hot deployment and dynamic reloading . 938

Related publications . 941
IBM Redbooks . 941
Other publications . 942
Online resources . 942
How to get IBM Redbooks . 944
Help from IBM . 944

Index . 945
 Contents xiii

xiv WebSphere Application Server V6.1: System Management and Configuration

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
alphaWorks®
Cloudscape™
CICS®
Domino®
DB2 Connect™
DB2 Universal Database™
DB2®
e-business on demand®
i5/OS®

ibm.com®
IBM®
IMS™
Informix®
iSeries™
Lotus®
MVS™
MVS/ESA™
OS/400®
Power PC®
Rational®

Redbooks™
Redbooks (logo) ™
RACF®
SupportPac™
System z™
Tivoli®
WebSphere®
Workplace™
z/OS®
zSeries®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

iPlanet, Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, Javadoc, JavaBeans,
JavaMail, JavaServer, JavaServer Pages, JDBC, JDK, JMX, JRE, JSP, JVM, J2EE, J2SE, Solaris,
Streamline, Sun, Sun Java, Sun Microsystems, Sun ONE, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, ActiveX, Microsoft, Visual Basic, Windows NT, Windows Server, Windows, and the
Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xvi WebSphere Application Server V6.1: System Management and Configuration

Preface

This IBM® Redbook provides system administrators, developers, and architects
with the knowledge to configure a WebSphere Application Server V6.1 run time
environment, to package and deploy Web applications, and to perform ongoing
management of the WebSphere® environment.

One in a series of handbooks, the entire series is designed to give you in-depth
information about the entire range of WebSphere Application Server products. In
this IBM Redbook, we provide a detailed exploration of the WebSphere
Application Server V6.1 run time environments and administration process.

The IBM Redbook includes configuration and administration information for
WebSphere Application Server V6.1 and WebSphere Application Server Network
Deployment V6.1 on distributed platforms (excluding iSeries™) and WebSphere
Application Server for z/OS® V6.1.

The following are considered companion pieces to this IBM Redbook:

� WebSphere Application Server V6.1: Technical Overview, REDP-4191 at:

http://www.redbooks.ibm.com/redpieces/abstracts/redp4191.html

� WebSphere Application Server V6.1: Planning and Design, SG24-7305 at:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247305.html

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Carla Sadtler is a certified IT Specialist at the ITSO, Raleigh Center. She writes
extensively about the WebSphere and Patterns for e-business areas. Before
joining the ITSO in 1985, Carla worked in the Raleigh branch office as a Program
Support Representative. She holds a degree in mathematics from the University
of North Carolina at Greensboro.
© Copyright IBM Corp. 2006. All rights reserved. xvii

http://www.redbooks.ibm.com/redpieces/abstracts/redp4191.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg247305.html

Fabio Albertoni is a Senior IT Specialist working from Integrated Technology
Delivery SSO, on Hortolandia, Brazil. He has nine years of experience work in IT
Industry and Banks, he has spent last five years developing and implementing
integrated solutions using WebSphere Application Server and MQ-Series. He
hold a degree in Data Process from FATEC University of Ourinhos and a Master
degree on Computer Engineer from Instituto de Pesquisas Tecnologicas of Sao
Paulo, Brazil.

Bernardo Fagalde is an IT Architect at IBM Uruguay, working for IBM since
2000. During his time at IBM, he has had many positions, including database
administrator, system administrator, developer, designer, application server
administrator, and as a technical lead for e-business projects. He has been
working with WebSphere Application Server since V3.5 and mostly designs
e-business solutions focused on using the WebSphere product family. He is
currently the lead IT Architect on a large J2EE™ project. Bernardo holds a
Computing Engineer degree from the Uruguayan main University (Universidad
de la República Oriental del Uruguay).

Thiago Kleinubing is an IT Specialist in Brazil and has over nine years of
experience in the IT field. He has been working at IBM for the last six years and
is currently a Team Leader for the IBM Global Business Services Organization -
Total Workplace™ Experience Center of Excellence. His areas of expertise
include the architecture, design, and development of J2EE applications. He is
also an expert in IBM WebSphere Application Server, performance tuning, and
problem determination. Thiago holds a degree in computer science and is
certified in Rational® Application Developer and WebSphere Studio V5.

Henrik Sjostrand is a Senior IT Specialist and has worked for IBM Sweden for
12 years. He is currently working as a technical consultant for the Nordic IBM
Software Services for WebSphere team. For the last six years, he has focused on
J2EE application development and WebSphere Application Server architecture,
deployment, performance tuning, and troubleshooting. He is certified in
WebSphere Application Server V4, V5, and V6, WebSphere Studio V5, and
Rational Application Developer V6. Henrik holds a Master of Science in Electrical
Engineering from Chalmers University of Technology in Gothenburg, Sweden,
where he lives.

Ken Worland is a senior IT Specialist based in Melbourne, Australia. He
specializes in Web services and messaging solutions and has over 15 years of
experience in the IT field. HIs areas of expertise include WebSphere Application
Server, WebSphere MQ, DB2®, Oracle, and much more, having worked as a
UNIX® system administrator and database administrator on occasion. Ken holds
a Bachelors degree in Computer Science from LaTrobe University in Melbourne.
xviii WebSphere Application Server V6.1: System Management and Configuration

Special thanks to the authors of the previous book, WebSphere Application
Server V6 System Management & Configuration Handbook, SG24-6451:

Lars Bek Laursen was an Advisory IT Specialist at the Integrated Technology
Services division of IBM Global Services in Lyngby, Denmark while working on
this project. He has eight years of Java™ experience, from developing
Java-based systems management solutions to designing and implementing
enterprise application server environments. For the last five years, Lars has
worked extensively as a WebSphere Application Server consultant, advising on
problem solving, tuning, and implementation of fail-safe run time environments.
Lars holds a Master of Science in Engineering degree from the Technical
University of Denmark. Lars has since left IBM.

Martin Phillips is a tester for the WebSphere Messaging and Transaction
Technology team in the Hursley Laboratories in the UK. He has worked for IBM
UK for five years as a tester for WebSphere Application Server. His areas of
expertise include the service integration bus, about which he writes extensively
in this book. Martin holds a Master of Science in Information Technology
specializing in Software and Systems from the University of Glasgow.

Martin Smithson is a Senior IT Specialist working for IBM Software Group in
Hursley, England. He has nine years of experience working in the IT Industry and
has spent the last four years working as a technical consultant for the EMEA IBM
Software Services for WebSphere team. He is certified in WebSphere
Application Server V3.5, V4 and V5 and WebSphere Studio Application
Developer V4.0.3 and V5. His areas of expertise include the architecture, design,
and development of J2EE applications. He is also an expert on IBM WebSphere
Application Server. He has written extensively on asynchronous messaging and
the service integration bus. He holds a degree in Software Engineering from City
University in London, UK.

Kwan-Ming Wan is a Consulting IT Specialist working for the IBM Software
Group in London, England. He has over fifteen years of experience in the IT
industry and has been working as a consulting professional throughout his
career. For the past five years, he has been working as a WebSphere consultant
with a focus on performance tuning, problem determination, and architecture
design. He holds a Master of Science degree in Information Technology from the
University of Nottingham, England.

Thanks to the following people for their contributions to this project:

Margaret Ticknor
International Technical Support Organization, Raleigh Center

Rich Conway
International Technical Support Organization, Poughkeepsie Center
 Preface xix

Mollie Tucker
IBM Intern from North Carolina State University

Daniel Tishman
IBM Intern from Penn State University

Sam Cleveland
WebSphere Application Server Samples Development

The following members of the WebSphere Messaging and Transaction
Technologies Team, IBM Hursley:

Malcolm Ayres
David Currie
Sarah Hemmings
Graham Hopkins
Geraint Jones
Adrian Preston
Anne Redwood
Matthew Vaughton
Graham Wallis
xx WebSphere Application Server V6.1: System Management and Configuration

Figure 1 Authors: (from left to right) Fabio Albertoni, Carla Sadtler, Thiago Kleinubing, Bernardo Fagalde,
Ken Worland, Henrik Sjostrand

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.
 Preface xxi

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xxii WebSphere Application Server V6.1: System Management and Configuration

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 The basics

This part introduces you to WebSphere Application Server V6.1. It includes
information about the run time architecture, administration tools, and the basics
of configuring and managing the run time environment.

This part includes the following:

� Chapter 1, “WebSphere Application Server” on page 3

� Chapter 2, “System management: A technical overview” on page 15

� Chapter 3, “Getting started with profiles” on page 47

� Chapter 4, “Administration basics” on page 137

� Chapter 5, “Administration with scripting” on page 249

� Chapter 6, “Configuring WebSphere resources” on page 303

� Chapter 7, “Managing Web servers” on page 365

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

2 WebSphere Application Server V6.1: System Management and Configuration

Chapter 1. WebSphere Application
Server

IBM WebSphere is the leading software platform for e-business on demand®.
Providing comprehensive e-business leadership, WebSphere is evolving to meet
the demands of companies faced with challenging business requirements, such
as the need for increasing operational efficiencies, strengthening client loyalty,
and integrating disparate systems. WebSphere provides answers in today’s
challenging business environments.

IBM WebSphere is architected to enable you to build business-critical
applications for the Web. WebSphere includes a wide range of products that help
you develop and serve Web applications. They are designed to make it easier for
clients to build, deploy, and manage dynamic Web sites more productively.

In this chapter, we take a look at the new WebSphere Application Server V6.1 for
distributed platforms and WebSphere Application Server for z/OS.

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Product overview
WebSphere is the IBM brand of software products designed to work together to
help deliver dynamic e-business quickly. It provides solutions for connecting
people, systems, and applications with internal and external resources.
WebSphere is based on infrastructure software, or middleware, designed for
dynamic e-business. It delivers a proven, secure, and reliable software portfolio
that can provide an excellent return on investment.

The technology that powers WebSphere products is Java. Over the years, many
software vendors have collaborated on a set of server-side application
programming technologies that help build Web accessible, distributed, and
platform-neutral applications. These technologies are collectively branded as the
Java 2 Platform, Enterprise Edition (J2EE) platform. This contrasts with the Java
2 Standard Edition (J2SE™) platform, with which most clients are familiar. J2SE
supports the development of client-side applications with rich graphical user
interfaces (GUIs). The J2EE platform is built on top of the J2SE platform. J2EE
consists of application technologies for defining business logic and accessing
enterprise resources, such as databases, Enterprise Resource Planning (ERP)
systems, messaging systems, e-mail servers, and so forth.

The potential value of J2EE to clients is tremendous. Among the benefits of J2EE
are:

� An architecture-driven approach to application development helps reduce
maintenance costs and allows for construction of an information technology
(IT) infrastructure that can grow to accommodate new services.

� Application development is focused on unique business requirements and
rules, such as security and transaction support. This improves productivity
and shortens development cycles.

� Industry standard technologies allow clients to choose among platforms,
development tools, and middleware to power their applications.

� Embedded support for Internet and Web technologies allows for a new breed
of applications that can bring services and content to a wider range of
customers, suppliers, and others, without creating the need for proprietary
integration.

Another exciting opportunity for IT is Web services. Web services allow for the
definition of functions or services within an enterprise that can be accessed using
industry standard protocols that most businesses already use today, such as
HTTP and XML. This allows for easy integration of both intra- and inter-business
applications that can lead to increased productivity, expense reduction, and
quicker time to market.
4 WebSphere Application Server V6.1: System Management and Configuration

1.2 WebSphere Application Server
WebSphere Application Server provides the environment to run your
Web-enabled e-business applications. An application server functions as Web
middleware or a middle tier in a three-tier e-business environment. The first tier
is the HTTP server that handles requests from the browser client. The third tier is
the business database (for example, DB2 UDB for iSeries) and the business
logic (for example, traditional business applications, such as order processing).
The middle tier is WebSphere Application Server, which provides a framework for
a consistent and architected link between the HTTP requests and the business
data and logic.

WebSphere Application Server is available on a wide range of platforms and in
multiple packages to meet specific business needs. It also serves as the base for
other WebSphere products, such as WebSphere Enterprise Service Bus and
WebSphere Process Server, by providing the application server that is required
to run these specialized applications.

Figure 1-1 illustrates a product overview of WebSphere Application Server.

Figure 1-1 WebSphere Application Server product overview

The application server is the key component of WebSphere Application Server,
providing the run time environment for applications that conform to the J2EE 1.2,
1.3, and 1.4 specifications. Clients access these applications through standard
interfaces and APIs. The applications, in turn, have access to a wide variety of
external sources, such as existing systems, databases, Web services, and

IBM HTTP
Server

WebSphere
Application

Server
Existing
Systems

(CICS, IMS,
DB2, SAP,
and so on)J2EE

Applications

Clients

Msg
Queue Messaging

Networks

Portlet
Applications

SIP
Applications

Service
Providers

Edge
Components

IBM HTTP
Server

Enterprise
Application
Developer

Application Server Toolkit
Rational Application Developer
Rational Web Developer

Tivoli Access Manager

Application
Server

Application
Server
 Chapter 1. WebSphere Application Server 5

messaging resources that can be used to process the client requests. V6.1
extends the application server to allow it to run JSR 168 compliant portlets and
Session Initiation Protocol (SIP) applications written to the JSR 116 specification.

With the Base and Express packages, you are limited to single application server
environments. The Network Deployment package allows you to extend this
environment to include multiple application servers that are administered from a
single point of control and can be clustered to provide scalability and high
availability environments.

WebSphere Application Server supports asynchronous messaging through the
use of a JMS provider and its related messaging system. WebSphere Application
Server includes a fully integrated JMS 1.1 provider called the default messaging
provider. This messaging provider complements and extends WebSphere MQ
and application server. It is suitable for messaging among application servers
and for providing messaging capability between WebSphere Application Server
and an existing WebSphere MQ backbone.

WebSphere Application Server provides authentication and authorization
capabilities to secure administrative functions and applications. Your choice of
user registries include the operating system user registry, an LDAP registry (for
example, Tivoli® Directory Server), custom registries, file-based registries, or
federated repositories. In addition to the default authentication and authorization
capabilities, you have the option of using an external Java Authorization Contract
for Containers (JACC) compliant authorization provider for application security.
The IBM Tivoli Access Manager client embedded in WebSphere Application
Server is JACC-compliant and can be used to secure your WebSphere
Application Server-managed resources. This client technology is designed to be
used with the Tivoli Access Manager Server (shipped with Network Deployment).

WebSphere Application Server works with a Web server (such as the IBM HTTP
Server) to route requests from browsers to the applications that run in
WebSphere Application Server. Web server plug-ins are provided for installation
with supported Web browsers. The plug-ins direct requests to the appropriate
application server and perform workload balancing among servers in a cluster.

WebSphere Application Server Network Deployment includes the Caching Proxy
and Load Balancer components of Edge Component for use in highly available,
high volume environments. Using these components can reduce Web server
congestion, increase content availability, and improve Web server performance.
6 WebSphere Application Server V6.1: System Management and Configuration

1.3 Packaging

Because varying e-business application scenarios require different levels of
application server capabilities, WebSphere Application Server is available in
multiple packaging options. Although they share a common foundation, each
provides unique benefits to meet the needs of applications and the infrastructure
that supports them. At least one WebSphere Application Server product fulfills
the requirements of any particular project and its supporting infrastructure. As
your business grows, the WebSphere Application Server family provides a
migration path to more complex configurations.

WebSphere Application Server - Express V6.0
The Express package is geared to those who need to get started quickly with
e-business. It is specifically targeted at medium-sized businesses or
departments of a large corporation, and is focused on providing ease of use and
ease of application development. It contains full J2EE 1.4 support but is limited to
a single-server environment.

WebSphere Application Server - Express is unique from the other packages in
that it is bundled with an application development tool. Although there are
WebSphere Studio and Rational Developer products designed to support each
WebSphere Application Server package, normally they are ordered independent
of the server. WebSphere Application Server - Express includes the Rational
Web Developer application development tool. It provides a development
environment geared toward Web developers and includes support for most J2EE
1.4 features with the exception of Enterprise JavaBeans™ (EJB™) and J2EE
Connector Architecture (JCA) development environments. However, keep in
mind that WebSphere Application Server - Express V6 does contain full support
for EJB and JCA, so you can deploy applications that use these technologies.

WebSphere Application Server V6.1
The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Though the
WebSphere Application Server is functionally equivalent to that shipped with
Express, this package differs slightly in packaging and licensing.

This package includes two tools for application development and assembly:

� The Application Server Toolkit, which has been expanded in V6.1 to include a
full set of development tools. The toolkit is suitable for J2EE 1.4 application
development as well as the assembly and deployment of J2EE applications. It
also supports Java 5 development.

In addition, the toolkit provides tools for the development, assembly, and
deployment of JSR 116 SIP and JSR 168 portlet applications.
 Chapter 1. WebSphere Application Server 7

� This package also includes a trial version of Rational Application Developer,
which supports the development, assembly, and deployment of J2EE 1.4
applications.

To avoid confusion with the Express package in this IBM Redbook, we refer to
this as the Base package.

WebSphere Application Server Network Deployment V6
WebSphere Application Server Network Deployment is an even higher level of
server infrastructure in the WebSphere Application Server family. It extends the
WebSphere Application Server base package to include clustering capabilities,
Edge components, and high availability for distributed configurations. These
features become more important at larger enterprises, where applications tend to
service a larger client base, and more elaborate performance and availability
requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A
Web server plug-in installed in the Web server can distribute work among
clustered application servers. In turn, Web containers running servlets and Java
ServerPages (JSPs) can distribute requests for EJBs among EJB containers in a
cluster.

The addition of Edge components provides high performance and high
availability features. For example:

� The Caching Proxy intercepts data requests from a client, retrieves the
requested information from the application servers, and delivers that content
back to the client. It stores cachable content in a local cache before delivering
it to the client. Subsequent requests for the same content are served from the
local cache, which is much faster and reduces the network and application
server load.

� The Load Balancer provides horizontal scalability by dispatching HTTP
requests among several, identically configured Web server or application
server nodes.

WebSphere Application Server V6.1 for z/OS
IBM WebSphere Application Server for z/OS is a full-function version of the
Network Deployment product. WebSphere Application Server for z/OS can
support e-business on any scale.

Packaging summary
Table 1-1 shows the features included with each WebSphere Application Server
packaging option.
8 WebSphere Application Server V6.1: System Management and Configuration

Table 1-1 WebSphere Application Server packaging

Features
included

Express V6.01 Base V6.1 Network
Deployment V6.1

V6.1 for z/OS

WebSphere
Application Server

Yes Yes Yes Yes

Deployment
manager

No No Yes Yes

Web server
plug-ins

Yes Yes Yes Yes

IBM HTTP Server Yes Yes Yes Yes

Application Client
(not available on
Linux® for
zSeries®)

Yes Yes Yes Yes

Application Server
Toolkit

Yes Yes Yes Yes

DataDirect
Technologies
JDBC™ Drivers
for WebSphere
Application Server

Yes Yes Yes Yes (for
Windows® only)

Rational
Development
tools

Rational Web
Developer (single
use license)

Rational
Application
Developer Trial

Rational
Application
Developer Trial

Rational
Application
Developer Trial
(non-z/OS
platforms)

Database IBM DB2
Universal
Database™
Express V8.2

IBM DB2
Universal
Database Express
V8.2
(development use
only)

IBM DB2 UDB
Enterprise Server
Edition V8.2 for
WebSphere
Application Server
Network
Deployment

No

Production ready
applications

IBM Business
Solutions

No No No

Tivoli Directory
Server for
WebSphere
Application Server
(LDAP server)

No No Yes No
 Chapter 1. WebSphere Application Server 9

1.4 Supported platforms and software

The following tables illustrate the platforms, software, and versions that
WebSphere Application Server V6 supports at the time of the writing of this
document. For the most up-to-date operating system levels and requirements,
refer to the WebSphere Application Server system requirements at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.1 Operating systems
Table 1-2 shows the supported operating systems and versions for WebSphere
Application Server V6.1.

Table 1-2 Supported operating systems and versions

Tivoli Access
Manager Servers
for WebSphere
Application Server

No No Yes Yes (non-z/OS
platforms)

Edge
Components

No No Yes Yes (non-z/OS
platforms)

1. Express is limited to a maximum of two CPUs.

Features
included

Express V6.01 Base V6.1 Network
Deployment V6.1

V6.1 for z/OS

Note: Not all features are available on all platforms. See the System
Requirements Web page for each WebSphere Application Server package for
more information.

Operating Systems Versions

Windows � Windows 2000 Advanced Server with SP4
� Windows 2000 Server with SP4
� Windows 2000 Professional Server with SP4
� Microsoft® Windows Server® 2003 (Datacenter with SP1)
� Microsoft Windows Server 2003 (Enterprise with SP1)
� Microsoft Windows Server 2003 (Standard with SP1)
� Microsoft Windows XP Professional with SP2
� Microsoft Windows Server 2003 x64 Editions

AIX® � AIX 5L™ V5.2 Maintenance Level 5200-07
� AIX 5L V5.3 with Service Pack 5300-04-01
10 WebSphere Application Server V6.1: System Management and Configuration

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.2 Web servers
The following Web servers are supported by WebSphere Application Server V6.1
on all available platforms:

� Apache HTTP Server 2.0.54

� IBM HTTP Server for WebSphere Application Server V6.0.2

� IBM HTTP Server for WebSphere Application Server V6.1

� Internet Information Services 5.0

� Internet Information Services 6.0

� Lotus® Domino® Enterprise Server 6.5.4 or 7.0

� Sun Java™ System Web Server 6.0 SP9

� Sun Java System Web Server 6.1 SP3

Sun™ Solaris™ � Solaris 9 with the latest patch Cluster
� Solaris 10 with the latest patch Cluster

HP-UX � HP-UX 11iv2 (11.23) with the latest Quality Pack

Linux (Intel®) � Red Hat Linux Enterprise AS, ES, WS V3 with Update 5 or 6
� Red Hat Linux Enterprise AS, ES, WS V4 with Update 2
� SUSE Linux Enterprise Server, V9 with SP2 or 3

Linux (Power PC®) � Red Hat Enterprise Linux AS V3 with Update 5 or 6
� Red Hat Enterprise Linux AS V4 with Update 2
� SUSE Linux Enterprise Server V9 with SP2 or 3

Linux on IBM System z™
(Supported for WebSphere
Application Server Network
Deployment only)

� Red Hat Enterprise Linux AS V3 with Update 5 or 6
� Red Hat Enterprise Linux AS V4 with Update 2
� SUSE Linux Enterprise Server V9 with SP2 or 3

i5/OS® and OS/400® � i5/OS and OS/400, V5R3
� i5/OS V5R4

z/OS
(Supported for WebSphere
Application Server Network
Deployment only)

� z/OS 1.6 or later
� z/OS.e 1.6 or later

Operating Systems Versions
 Chapter 1. WebSphere Application Server 11

1.4.3 Database servers
Table 1-3 shows the database servers that WebSphere Application Server V6.1
supports.

Table 1-3 Supported database servers and versions

1.4.4 Directory servers
Table 1-4 shows the LDAP servers that WebSphere Application Server V6.1
supports.

Table 1-4 Supported Directory servers and versions

Databases Versions

IBM DB2 DB2 for iSeries 5.2, 5.3, or 5.4
DB2 for z/OS V7 or V8
DB2 Enterprise Server Edition 8.2 FP4
DB2 Express 8.2 FP4
DB2 Workgroup Server Edition 8.2 FP4

Cloudscape™ Cloudscape 10.1

Oracle Oracle 9i Standard/Enterprise Release 2 - 9.2.0.7
Oracle 10g Standard/Enterprise Release 1 - 10.1.0.4
Oracle 10g Standard/Enterprise Release 2 - 10.2.0.1
or 10.2.0.2

Sybase Sybase Adaptive Server Enterprise 12.5.2 or 15.0

Microsoft SQL Server Microsoft SQL Server Enterprise 2000 SP4
Microsoft SQL Server Enterprise 2005

Informix® Informix Dynamic Server 9.4C7W1 or 10.00C4

IMS™ IMS V8 or V9

WebSphere
Information Integrator

WebSphere Information Integrator 8.2 FP4

Directory Server Versions

IBM Tivoli Directory Server 5.2 and 6.0

z/OS Security Server 1.6 and 1.7

z/OS.e Security Server 1.6 and 1.7

Lotus Domino Enterprise Server 6.5.4 and 7.0

Sun ONE™ Directory Server 5.1 SP4 and 5.2
12 WebSphere Application Server V6.1: System Management and Configuration

Windows Active Directory® 2003 and 2000

Novell eDirectory 8.7.3 and 8.8

Directory Server Versions
 Chapter 1. WebSphere Application Server 13

14 WebSphere Application Server V6.1: System Management and Configuration

Chapter 2. System management: A
technical overview

This chapter describes in detail the system management functionality of
WebSphere Application Server. This information will help you understand how
system administration occurs. It is particularly useful in a multi-server
environment to understand the distributed administration and synchronization
topics.

This chapter includes the following topics:

� System management overview
� Java Management Extensions (JMX)
� Distributed administration
� Configuration and application data repository

2

© Copyright IBM Corp. 2006. All rights reserved. 15

2.1 System management overview
At first glance, system management concepts in WebSphere Application Server
might seem complex. However, the fact that the system management
architecture is based on JMX™, and the fact that WebSphere Application Server
provides easy-to-use administration tools makes it fairly simple to use and
understand.

2.1.1 System management in a stand-alone server environment
Each managed process has an administrative service that interacts with
administration clients. In a stand-alone server environment, both the
administrative console application and the administrative service runs on the
application server. The configuration repository consists of one set of
configuration files managed by the administrative service. System management
is simplified in the sense that the changes made by the administrator are applied
directly to the configuration files used by the server.

Figure 2-1 on page 17 shows the management of a single-server installation.

Terminology: There are differences in how WebSphere Application Server
handles administration depending on the environment you have set up. You
will see us refer to the following when explaining these differences:

� Stand-alone server environment refers to a single stand-alone server that is
not managed as part of a cell. With the Base and Express packages, this is
your only option. You can also create a stand-alone server with the
Network Deployment package.

� Distributed server environment refers to the situation where you have
multiple servers managed from a single deployment manager in the cell.
We also refer to these as managed servers. This is only valid with the
Network Deployment package.

� Managed processes refer to the deployment manager, nodes (node
agents), and application servers.
16 WebSphere Application Server V6.1: System Management and Configuration

Figure 2-1 Managing a single-server installation

The administrative console will contain a subset of options that you see in the
administrative console for a distributed server environment. The options you will
not see are related to the workload management and high availability features.

2.1.2 System management in a distributed server environment
In a distributed server environment, administration tasks and configuration files
are distributed among the nodes, reducing the reliance on a central repository or
administration server for basic functions and bring-up. The administrative
services and the administrative console are hosted on the deployment manager.

Managed application servers are installed on nodes. Each node has a node
agent that interacts with the deployment manager to maintain and manage the
processes on that node.

Multiple sets of the configuration files exist. The master configuration is
maintained on the deployment manager node and pushed out, synchronized, to
the nodes. Each managed process starts with its own configuration file.

Application Server

User
Enterprise
Application

Configuration
(XML files)

Stand-alone Single Server

Web
browser

HTML

SOAP/HTTP or
RMI-IIOP

Load, Save,
Edit

Web
container

wsadmin

Custom Java
admin client

Admin
console

Application

Admin services

EAR
files

EAR
files

EAR
files
 Chapter 2. System management: A technical overview 17

Figure 2-2 shows manager a multi-server installation.

Figure 2-2 Managing a multi-server installation

Configuration should always be done at the deployment manager and
synchronized out to the nodes. Although it is theoretically possible to configure
nodes locally using wsadmin, it is not recommended and any changes made will
be overwritten at the next synchronization.

However, operational commands can be directed at the deployment manager,
node agent, or server.

Commands
Configuration

Node Agent

Server D cfg

Server C cfg

Node B cfg

Cell cfg

Node B

Server C Server
D EAR files

Deployment Mgr

Process B cfg

Process A cfg

Node A cfg

Cell cfg

EAR files

MASTER

Process D cfg

Process C cfg

Node B cfg

Publish/Activate

Admin
console

Application

Node A

Server
B

Node Agent

Cell cfg

Server B cfg

Server A cfg

Node A cfg

EAR files
Server

A

admin services

admin services

Web browser

HTML

wsadmin

Custom Java
admin client

SOAP/HTTP or
RMI-IIOP

Web container

admin services
18 WebSphere Application Server V6.1: System Management and Configuration

2.2 Java Management Extensions (JMX)
The system management functionality of WebSphere Application Server is
based on the use of Java Management Extensions (JMX). JMX is a framework
that provides a standard way of exposing Java resources, for example application
servers, to a system management infrastructure. The JMX framework allows a
provider to implement functions, such as listing the configuration settings, and
allows users to edit the settings. It also includes a notification layer that can be
used by management applications to monitor events, such as the startup of an
application server.

The use of JMX opens the door to third-party management tool providers. Users
of WebSphere are no longer restricted to IBM-supplied management tools.

JMX is a Java specification (JSR-003) that is part of J2SE 1.5. A separate
specification defines the J2EE management API (JSR-77) for managing a J2EE
conforming application server. The J2EE 1.4 specification requires that all J2EE
products support the Enterprise Edition management API. WebSphere
Application Server provides managed objects (MOs) as defined in the JSR-77
specification and hence is manageable from third-party management products
that delivers J2EE management capabilities.

IBM WebSphere Application Server V6.x implements JMX 1.2, while Version 5.x
implements JMX 1.1. Due to the evolution of the JMX specification, the
serialization format for JMX objects, such as javax.management.ObjectName,
differs between the two specifications.

The WebSphere Application Server V6.1 JMX run time has been enhanced to be
aware of the version of the client with which it is communicating. It makes
appropriate transformations on these incompatible serialized formats so as to
allow the different version run times to communicate with each other. This makes
it possible for a V5.x administrative client to call a V6.1 deployment manager,
node, or server. Similarly, a V6.1 administrative client can call a V5.x node or
server.

2.2.1 JMX architecture
The JMX architecture is structured into three layers:

� Instrumentation layer

The instrumentation layer dictates how resources can be wrapped within
special Java beans called Management Beans (MBeans).
 Chapter 2. System management: A technical overview 19

� Agent layer

The agent layer consists of the MBean server and agents, which provide a
management infrastructure. Services implemented include:

– Monitoring
– Event notification
– Timers

� Management layer

The management layer defines how external management applications can
interact with the underlying layers in terms of protocols, APIs, and so on.

The layered architecture of JMX is summarized in Figure 2-3.

Figure 2-3 JMX architecture

How does JMX work?
Resources are managed by JMX MBeans. These are not EJBs, but simple Java
beans that need to conform to certain design patterns outlined in the JMX
specification.

Providers that want to instrument their systems with JMX need to provide a
series of MBeans. Each MBean is meant to wrap, or represent, a certain run time
resource. For example, in order to expose an application server as a manageable
resource, WebSphere needs to provide an application server MBean.

MBean Server

Managed Resources

Agent Services
(as MBeans)

Agent
Services

Agent
Services

Resource 1

Manages

Resource 2

Manages

JVM

Management Application

Instrumentation Layer

Agent Layer

Resource 1
MBean

Resource 2
MBean

Connector Adapter
20 WebSphere Application Server V6.1: System Management and Configuration

External applications can interact with the MBeans through the use of JMX
connectors and protocol adapters. Connectors are used to connect an agent with
a remote JMX-enabled management application. This form of communication
involves a connector in the JMX agent and a connector client in the management
application.

The key features of JMX connectors are:

� Connectors are oriented to the transport mechanism. For example, a provider
can provide an RMI connector that allows Java applications to interact
remotely with the MBeans.

� The connector translates Java beans calls to a protocol stream.

� There is a 1:1 mapping between client method invocations and MBean
operations.

� This is the low-level API for accessing MBeans.

Protocol adapters
Protocol adapters provide a management view of the JMX agent through a given
protocol. Management applications that connect to a protocol adapter are usually
specific to the given protocol.

The key features of JMX protocol adapters are:

� Protocol adapters adapt operations of MBeans and the MBean server into a
representation in the given protocol, and possibly into a different information
model, for example, SNMP or HTTP.

� There is not a 1:1 mapping between client method invocations and MBean
operations.

� This is the high-level API for accessing MBeans.

MBean server
Each JMX enabled JVM™ contains an MBean server that registers all the
MBeans in the system. It is the MBean server that provides access to all of its
registered MBeans. There is only one MBean server per JVM.
 Chapter 2. System management: A technical overview 21

Both connectors and protocol adapters use the services of the MBean server in
order to apply the management operation they receive to the MBeans, and in
order to forward notifications to the management system. Connector and protocol
adapter communication is summarized in Figure 2-4.

Figure 2-4 JMX connectors and adapters

2.2.2 JMX distributed administration
Figure 2-5 on page 23 shows how the JMX architecture fits into the overall
distributed administration topology of a distributed server environment.

Connector Adapter

Managed Resources

Agent Services
(as MBeans)

Agent
Services

Agent
Services

Resource 1

Manages Manages

JVM

ConnectorClient

 Management
Application with a

view of the JMX
agent

JMX-enabled
Management
Application

JVM

Management
Applications

Resource 2

Resource 1
MBean

Resource 2
MBean

MBean Server
22 WebSphere Application Server V6.1: System Management and Configuration

Figure 2-5 JMX distributed administration

The key points of this distributed administration architecture are:

� Internal MBeans local to the JVM register with the local MBean server.

� External MBeans have a local proxy to their MBean server. The proxy
registers with the local MBean server. The MBean proxy allows the local
MBean server to pass the message to an external MBean server located on:

– Another server
– Node agent
– Deployment manager

� A node agent has an MBean proxy for all servers within its node. However,
MBean proxies for other nodes are not used.

� The deployment manager has MBean proxies for all node agents in the cell.

Node Agent

MBean
Server

Clients, Multi-cell
mgmt, & other EMS

(Tivoli, BMC)

Application Server

MBean
Server

MBeans
MBeans

JMX
Connector

EAR files

Config
files

MBeans
MBeans

JMX
Connector

MBean
Server

JMX
Connector

MBeans
MBeans

Deployment Manager

Config Distribution
Service

Config Repository
Service

To Other App
Servers

To Other
Nodes

Master
files

Master
files

Master
files

MBean
Proxy

MBean
Proxy

MBean
Proxy

MBean
Proxy
 Chapter 2. System management: A technical overview 23

The configuration of MBean proxies is shown in Figure 2-6 on page 24.

Figure 2-6 JMX architecture

2.2.3 JMX MBeans
WebSphere Application Server provides a number of MBeans, each of which can
have different functions and operations available. For example:

� An application server MBean might expose operations such as start and stop.
� An application MBean might expose operations such as install and uninstall.

2.2.4 JMX usage scenarios
Some of the more common JMX usage scenarios you will encounter are:

� Internal product usage:

All WebSphere Application Server administration clients use JMX:

– WebSphere administrative console

– wsadmin scripting client

– Admin client Java API

WebSphere Application
Server Process

MBean
Server

MBean
Proxy

MBean
Proxy

HTTP
JMX

Adapter

MBeans
MBeans

SNMP
JMX

Adapter RMI/IIOP
JMX

ConnectorSOAP
JMX

Connector

internal
runtime
objects

External MBeanServer

External tools and programs

Internal MBeans register with local
MBeanServer.
External MBeans have local proxy to their
MBeanServer. Proxy registers with local
MBeanServer.Illustrates possibilities or future plans
24 WebSphere Application Server V6.1: System Management and Configuration

� External programmatic administration

In general, most external users will not be exposed to the use of JMX.
Instead, they will access administration functions through the standard
WebSphere Application Server administration clients.

However, external users would need to access JMX in the following
scenarios:

– External programs written to control the WebSphere Application Server
run time and its resources by programmatically accessing the JMX API.

– Third-party applications that include custom JMX MBeans as part of their
deployed code, allowing the applications components and resources to be
managed through the JMX API.

2.2.5 J2EE management
The J2EE management specification dictates the existence of certain Managed
Objects (MOs) that can be used to manage the available application server
resources. The specification does not require that managed objects be
implemented by means of JMX MBeans, but the required interface makes
MBeans a natural choice for MOs.

In WebSphere Application Server, the management standard MOs are
essentially provided by mappings to existing WebSphere JMX MBeans. For
example, the specification requires a J2EEServer managed object that is
equivalent to the Server MBean in WebSphere. The management standard
introduces a set of required key properties, part of a new ObjectName method, a
number of attributes, and three optional interfaces: EventProvider,
StateManageable, and StatisticsProvider. These required and optional parts
have all been added to the relevant WebSphere MBeans (see the Information
Center section Administrative programs for multiple Java 2 Platform, Enterprise
Edition application servers for a detailed description of the available objects and
attributes).

A major requirement by the standard that does not easily map into the existing
WebSphere architecture is the ability to interoperate with management objects
representing resources that have not been started in the WebSphere run time
environment. Consequently, a proxy mechanism has been introduced that runs
in every application server in a stand-alone server environment, or as part of the
deployment manager in a distributed server environment. With this proxy
implementation, all the required managed objects, methods, and attributes can
be interfaced regardless of whether the WebSphere JMX MBean is running or
not.
 Chapter 2. System management: A technical overview 25

Be aware that the J2EE management standard defines a common set of objects
and operations for J2EE application servers and hence does not provide
management capabilities for specific WebSphere Application Server features.

We recommend that WebSphere-only management clients operate directly on
the WebSphere JMX MBeans to avoid the overhead of the proxy object and to
take advantage of the full management capabilities of the WebSphere product.

2.3 Distributed administration
Administration in a distributed server environment is by necessity more complex
than administration in a stand-alone server environment. In a distributed server
environment, multiple WebSphere Application Server nodes are managed from a
single central location. This distributed administration of components is brought
about by three tiers, or layers, of administration services, as shown in Figure 2-7.

Figure 2-7 Layers of distributed administration services

Between these tiers, communication is used to distribute configuration and
application data updates from the deployment manager to the node agent, and in
turn to the server instances.

The routing of administration messages between components makes use of the
JMX ObjectName that identifies the target managed resource within the

Process Discovery and
Enrollment Functions

Message Routing and File
Transfer

Node and Cell Level
Administration

Includes support for WebSphere
processes to discover each other and
establish communication links
Open one or more JMX Connector
channels between processes to be used
by other services to accomplish their
functions

Publishing configuration data
Synchronize configuration data
Launch managed processes
Support other services, such as naming,
security, and RAS

Inter-process message routing
Inter-node file transfer using its own
communication channel for file stream
transfer between nodes
26 WebSphere Application Server V6.1: System Management and Configuration

administrative cell. The ObjectName contains all of the information necessary to
route a request targeted at the resource, to the appropriate node where the
resource is executing.

An example is shown in Figure 2-8, where an operation on Node Y invokes a
management method on a management bean (MBean) located on another node,
Node X.

Figure 2-8 Distributed administration message routing

Where:

1. An object running on server A of Node Y sends an operation request to the
deployment manager AdminService located on the same machine.

2. The deployment manager AdminService determines which node hosts the
requested service (Node X) and passes the request to the MBean acting as
the proxy of the node’s node agent.

3. The proxy MBean forwards the request to the AdminService of the Node X
node agent.

4. On Node X, the node agent AdminService receives the request and
determines which managed server (process) the requested service is hosted
on (process A).

Forward

Node X
AppServer
Process

Forward

Node = X
Process = A
type = EJB
Name=TestBean

MBean

AdminService

MBeanServer

AdminService

Node = X
Process = A
type = Process
Name=ProcBAdmin

MBean
matchProcess

Proxy to
Process A

Node = x
Process = B
type = Process
Name=ProcBAdmin

MBean

NodeAgent
Process

ObjectName
Node = X
Process = A
type = EJB
Name = testbean

AdminService

Node = Y
Process = 21
type = EJB
Name=Accountbean

MBeanDeployment
Mgr

Node = X
Process = C
type = NodeAgent
Name=NodeXAdmin

MBean

Node Y

Invoke

matchNode

Proxy to
NodeX
 Chapter 2. System management: A technical overview 27

5. The AdminService passes the request to the MBean acting as the proxy of
the managed server.

6. The proxy MBean forwards the request to the AdminService of the managed
server.

7. The managed server AdminService invokes the requested service via the
local MBeanServer, which is responsible for all direct communication with
MBeans hosted in that JVM.

2.3.1 Distributed process discovery
When a managed server begins its startup, it sends a discovery request
message that allows other processes to discover its existence and establish
communication channels with the process.

Figure 2-9 shows an example of the distributed discovery process for a topology
containing two nodes that are located on different machines. Note that both node
agents in the figure use ports 7272 and 5000. This assumes they reside on
separate physical machines. If nodes are located on the same machine, they
must be configured to use non-conflicting IP ports.

Figure 2-9 Distributed discovery process

Deployment Manager

serverindex.xml
serverType="Deployment_Manager"
 ... CELL_DISCOVERY_ADDRESS .. port:7277

serverType="Node_Agent"
 NODE_DISCOVERY_ADDRESS.. port 7272
 NODE_MULTICAST_DISCOVERY_ADDRESS .. port 5000

Node Agent

Managed
Process

Managed
Process

7272

5000

7277

Node Agent

Managed
Process

Managed
Process

7272

5000
28 WebSphere Application Server V6.1: System Management and Configuration

Each node agent and deployment manager maintains status and configuration
information by using discovery addresses, or ports. On startup, processes
discover other running components, and create communication channels
between them, through the discovery addresses:

� The master repository located on the deployment manager installation
contains the serverindex.xml file for each node. The deployment manager
reads this file on startup to determine the host name and IP port of each node
agent’s NODE_DISCOVERY_ADDRESS.

The default port for the NODE_DISCOVERY_ADDRESS is 7272. You can
verify this by looking at the NODE_AGENT stanza in the serverindex.xml file
of each node located at:

<dmgr_profile_home>/config/cells/<cell>/nodes/<node>/serverindex.xml

You can also display this port from the administrative console by selecting
System Administration → Node agents. Select each node agent and
expand Ports under the Additional Properties section.

� The copy of the configuration repository located on each node contains the
serverindex.xml file for the deployment manager. The node agent reads this
file on startup to determine the host name and IP port of the deployment
manager’s CELL_DISCOVERY_ADDRESS.

The default port for the CELL_DISCOVERY_ADDRESS is port 7277. You
can verify this by looking at the DEPLOYMENT_MANAGER stanza in the
serverindex.xml file for the deployment manager node located at:

<profile_home>/config/cells/<cell>/nodes/<DM_node>/serverindex.xml

You can also display this port from the administrative console by selecting
System Administration → Deployment manager. Expand Ports under the
Additional Properties section.

� The copy of the configuration repository located on each node also contains
the serverindex.xml file for the node. Each managed server reads this file on
startup to determine the host name and IP port of the node agent’s
NODE_MULTICAST_DISCOVERY_ADDRESS.

A multicast address is used to prevent the usage of a large number of IP ports
for managed server to node agent discovery requests. Using multicast, a
node agent can listen on a single IP port for any number of local servers.

The default port for the NODE_MULTICAST_DISCOVERY_ADDRESS is
5000. You can verify this by looking at the NODE_AGENT stanza in the
serverindex.xml file of the node located at:

<profile_home>/config/cells/<cell>/nodes/<node>/serverindex.xml
 Chapter 2. System management: A technical overview 29

You can also display this port from the administrative console by selecting
System Administration → Node agents. Select the node agent and
expand Ports under the Additional Properties section.

Each server has its own copy of the configuration and application data necessary
for startup of the run time and the installed applications.

Rules for process startup
The order of process startup needs to adhere to the following rules:

� A node agent can be running while the deployment manager is not, and vice
versa. When the stopped process is started, discovery will occur
automatically.

� The deployment manager can be running while a managed server is not, and
vice versa. The execution of a managed server is not dependent on the
presence of a running deployment manager. The deployment manager is only
required for permanent configuration changes written to the master
repository.

� The node agent should be started before any application servers on that
node. The node agent contains the Location Service Daemon (LSD) in which
each application server registers on startup.

� The node agent is purely an administrative agent and is not involved in
application serving functions. Each managed server has the data necessary
to start itself.

Important: Keep the following in mind:

� The discovery service uses the InetAddress.getLocalHost() call to
retrieve the IP address for the local machine's host name. The network
configuration of each machine must be configured so that
getLocalHost() does not return the loopback address (127.0.0.1). It
must return the real IP address of the correctly chosen NIC.

� A multicast address is a logical address. Therefore, it is not bound to a
real, physical network interface, and will not be the same as the host
name (or IP address) of the host on which the node agent is executed.

� Multicast host addresses must be within a special range (224.0.0.0 to
239.255.255.255) defined by the IP standards and must never be a
host name value. The default for WebSphere node agents is
232.133.104.73.
30 WebSphere Application Server V6.1: System Management and Configuration

Example discovery scenarios
Situation: The node agent is not running and the deployment manager starts:

1. The deployment manager tries to determine if the node agent is running. The
process fails.

2. When the node agent is started, it contacts the deployment manager, creates
a communication channel, and synchronizes data.

Situation: The node agent starts but no managed servers are started:

1. The node agent knows all about its managed servers and checks whether
they are started. If so, it creates communication channels to these processes.

2. When a managed server starts, it checks whether the node agent is started
and then creates a communication channel to it.

2.3.2 Centralized changes to configuration and application data
In a distributed server environment, you have a master repository of
configuration and application data for the cell. Administrative clients are used to
provide centralized functionality for:

� Modification of configuration settings in the master repository.

� Installation, update, and uninstallation of applications on application server(s)
in the cell. In the process, the Enterprise Application Archive (EAR) files and
deployment descriptors are also stored in the master repository.

Each node contains a separate copy of the repository containing only the files
required for that node, including:

� Cell and node-level configuration files necessary for node and managed
server operation, for example, the serverindex.xml file for each node in the
cell.

� Application server configuration files for the application servers on that node.

� EAR files for the applications hosted by servers on that node.

� Application deployment descriptors for the applications hosted by servers on
that node. These deployment descriptors contain the settings specified when
the application was deployed.

When an administrator makes changes to the configuration using an
administration tool and saves these changes to the master repository, they are
available for use. The next step is to synchronize the changes out to the nodes of
the cell.
 Chapter 2. System management: A technical overview 31

2.3.3 File synchronization
The file synchronization service is the administrative service responsible for
keeping up to date the configuration and application data files that are distributed
across the cell. The service runs in the deployment manager and node agents,
and ensures that changes made to the master repository will be propagated out
to the nodes, as necessary. The file transfer system application is used for the
synchronization process. File synchronization can be forced from an
administration client, or can be scheduled to happen automatically.

During the synchronization operation, the node agent checks with the
deployment manager to see if any files that apply to the node have been updated
in the master repository. New or updated files are sent to the node, while any
deleted files are also deleted from the node.

Synchronization is one-way. The changes are sent from the deployment manager
to the node agent. No changes are sent from the node agent back to the
deployment manager.

How files are identified for synchronization
When synchronization occurs, WebSphere must be able to identify the files that
have changed and therefore need to be synchronized. To do this, WebSphere
uses the following scheme:

� A calculated digest is kept by both the node agent and the deployment
manager for each file in the configuration they manage. These digest values
are stored in memory. If the digest for a file is recalculated and it does not
match the digest stored in memory, this indicates the file has changed.

� An epoch for each folder in the repository and one for the overall repository is
also stored in memory. These epochs are used to determine whether any files
in the directory have changed. When a configuration file is altered through
one of the WebSphere administration interfaces, then the overall repository
epoch and the epoch for the folder in which that file resides is modified.

Note that manually updating a configuration file does not cause the digest to
change. Only files updated with administration clients will be marked as
changed. Manually updating the files is not recommended, but if you do, a
forced synchronization will include manually updated files.

� During configuration synchronization operations, if the repository epoch has
changed since the previous synchronize operation, then individual folder
epochs are compared. If the epochs for corresponding node and cell
directories do not match, then the digests for all files in the directory are
recalculated, including that changed file.
32 WebSphere Application Server V6.1: System Management and Configuration

Synchronization scheduling
The scheduling of file synchronization is configured using an administrative
client. The available options are:

� Automatic synchronization

Synchronization can be made to operate automatically by configuring the file
synchronization service of the node agent. These settings allow you to:

– Enable periodic synchronization to occur at a specified time interval

By default, this option is enabled with a time interval of one minute.

– Enable synchronization at server startup

The synchronization will occur before the node agent starts a server. Note
that if you start a server using the startServer command, this setting has
no effect.

� Explicit/forced synchronization

Synchronization can be explicitly forced at anytime via use of an
administrative client.

Tip: In a production environment, the automatic synchronization interval
should be increased from the one minute default so that processing and
network overhead is reduced.
 Chapter 2. System management: A technical overview 33

Ensuring manual changes are synchronized

If a change to a configuration file is made by editing the file, then the digest for
the file is not recalculated, because the epochs for the directories continue to
match and the synchronization process will not recognize that the files have
changed.

However, manual edits of configuration files in the master cell repository can be
picked up if the repository is reset so that it re-reads all the files and recalculates
all of the digests. You can reset either the master cell repository epoch or the
node repository epoch.

� Resetting the master cell repository causes any manual changes made in the
master configuration repository to be replicated to the nodes where the file is
applicable.

� Resetting the node repository causes any manual changes to the local node
files to be overwritten by whatever is in the master cell repository, regardless
of whether the cell repository was changed or not. Any manual changes in the
master repository will be picked up and brought down to the node.

The main difference between cell reset and node reset is that cell reset is likely to
impact the entire cell, not just one node.

Important: Although it is technically possible to edit configuration files
manually, it should not be done unless absolutely necessary. Manual editing
has several drawbacks, including:

� When using wsadmin and the administrative console, you have the benefit
of a validation process before the changes are applied. With manual
editing, you have no such failsafe.

� Updates made manually are not marked for synchronization and will be
lost at the next synchronization process unless you make them in the
master repository and manually force synchronization.

Manual editing might be appropriate in problem determination scenarios. For
example, if you enable WebSphere security, but have not set it up properly,
you might not be able to start WebSphere and, thus, have no access to admin
clients. In this instance, being able to turn off security manually so you can
start WebSphere and review your configuration is very helpful.

The Configuration Document Descriptions topic in the Information Center lists
several configuration files that have settings not exposed in the administration
clients. In the event you find it necessary to edit a file manually, this topic will
help make sure you do not lose your changes.
34 WebSphere Application Server V6.1: System Management and Configuration

This holds true for changes to installed applications as well. They are treated the
same as other configuration files in the repository. For each installed application,
there is an EAR file in the repository and also some configuration files associated
with the deployment of the application.

If you manually change the EAR file and reset the master cell repository, the
changed EAR file will be replicated out to the nodes where it is configured to be
served and will be expanded in the appropriate location on that node for the
application server to find it. The application on that node will be stopped and
restarted automatically so that whatever is changed is picked up and made
available in the application server.

If you manually edit one of the deployment configuration files for the application
and reset the repository, that change will be replicated to the applicable nodes
and will be picked up the next time the application on that node is restarted.

Resetting the master cell repository

To perform a reset of the master cell repository, do the following:

1. Open a command prompt and change to the <dmgr_profile_home>/bin
directory and start a wsadmin session. Note that the deployment manager
must be running. Use the following command:

cd <install_root>\profiles\Dmgr01\bin
wsadmin

2. Enter the following:

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=dmgr]

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch

Important: Manually changing the EAR file is best performed by advanced
users. Otherwise, unpredictable results can occur.

Note: The use of wsadmin is covered in Chapter 5, “Administration with
scripting” on page 249. The only thing you might need to know about wsadmin
to complete these tasks is to start wsadmin on the SOAP connector port of the
process on which you want to run the commands. The default is to start to port
8879. If the process you are connecting to has a different port number
specified, start wsadmin with the -port argument.
 Chapter 2. System management: A technical overview 35

You will see a number returned by the refreshRepositoryEpoch operation, for
example, 1047961605195, as shown in Example 2-1.

Example 2-1 Resetting the master cell repository

<install_root>\profiles\Dmgr01\bin>wsadmin
WASX7209I: Connected to process "dmgr" on node DmgrNode using SOAP connector;
The type of process is: DeploymentManager
WASX7029I: For help, enter: "$Help help"

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=dmgr]

WebSphere:platform=common,cell=DmgrCell,version=6.1.0.0,name=repository,mbeanId
entifier=repository,type=ConfigRepository,node=DmgrNode,process=dmgr

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch
1098317369266
wsadmin>

This resets the entire cell repository digest set. On the next synchronize
operation, all files in the master cell repository will have their digests
recalculated. Any manual changes will be replicated to the applicable nodes.

Resetting the node repository
There are multiple ways to reset a node repository for synchronization:

� In a wsadmin session connected to the deployment manager or node agent,
enter the following:

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=nodeagent]

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch

This resets the node digest set. Any file that does not match what is in the
repository is overwritten.

Example 2-2 gives an overview of resetting the node repository.
36 WebSphere Application Server V6.1: System Management and Configuration

Example 2-2 Resetting the node repository

<install_root>\profiles\<server_name>\bin>wsadmin -port 8883

WASX7209I: Connected to process "nodeagent" on node AppSrvrNode using
SOAP connector; The type of process is: NodeAgent
WASX7029I: For help, enter: "$Help help"

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=nodeagent]
WebSphere:platform=common,cell=DmgrCell,version=6.1.0.0,name=repository
,mbeanIdentifier=repository,type=ConfigRepository,node=AppSrvrNode,proc
ess=nodeagent

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch
1098397549240

� From the deployment manager administrative console, select System
Administration → Nodes to see a list of the nodes in the cell. Notice the
Synchronize and Full Resynchronize buttons on the page. The Synchronize
button causes a normal synchronize operation with no re-reading of the files.
The Full Resynchronize button is the reset and recalculate function. Select
the node or nodes to be updated with manual changes, then click the Full
Resynchronize button.

� Use the syncNode command. This command is a stand-alone program that
runs separately from the node agent. It has no cache of epoch values that
could be used for an optimized synchronization, therefore performing a
complete synchronization. For this same reason, if you restart a node agent,
the very first synchronization it performs will always be a complete
synchronization. Note that this requires the node agent to be stopped.

The syncNode command resides in the bin directory of the base install. To use
the syncNode command, type the following from the command line:

cd <profile_home>\bin
syncNode <cell_host>
 Chapter 2. System management: A technical overview 37

Example 2-3 shows the use of the snycNode command.

Example 2-3 Using the syncNode command

<install_root>\profiles\<server_name>\bin>stopnode
ADMU0116I: Tool information is being logged in file

<install_root>\profiles\<server_name>\logs\nodeagent\stopServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server nodeagent stop completed.

<install_root>\profiles\<server_name>\bin>syncnode carlavm2
ADMU0116I: Tool information is being logged in file
<install_root>\profiles\<server_name>\logs\syncNode.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU0401I: Begin syncNode operation for node AppSrvrNode with Deployment
 Manager carlavm2: 8879
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0402I: The configuration for node AppSrvrNode has been synchronized with
 Deployment Manager carlavm2: 8879

As a way to use this tip, under normal circumstances, all application files are
packaged in the EAR file for the application. However, consider a configuration
file specific to an application. Any changes to that file would require that you
update the EAR file and synchronize the entire application.

One possibility is to put a properties file in the application deployment directory in
the master configuration repository, so that it is replicated to all nodes where the
application is installed automatically but the entire EAR is not replicated. Then
you could have an ExtensionMBean update the properties file in the master
repository and normal synchronization would replicate just those changes out to
the nodes without the need to synchronize the whole EAR and restart the
application.

Tip: The repository is flexible in that there is no predefined list of document
types that it permits. You can add any file you want. Perhaps you have some
unique configuration data that needs to be used on all nodes. You could put it
in the config/cells/<cell name> folder and it would be synchronized to all
nodes. If it applies to just one node, you could put it in the folder corresponding
to that node and it would be synchronized only to that node. The same applies
for any additional documents in a server level folder.
38 WebSphere Application Server V6.1: System Management and Configuration

2.4 Configuration and application data repository
The configuration and application data repository is a collection of files
containing all the information necessary to configure and execute servers and
their applications. Configuration files are stored in XML format, while application
data is stored as EAR files and deployment descriptors.

2.4.1 Repository directory structure
With V6.x, the directory structure of a WebSphere Application Server installation
is slightly different than in previous releases. We will discuss this in detail in
Chapter 3, “Getting started with profiles” on page 47, but for now, it is important
to know configuration files defining a run time environment are stored in profile
directories. Each node, deployment manager, and stand-alone application server
has its own profile directory under the <was_home>/profiles directory.

Note: In the rest of this book, when we talk about a specific profile directory,
located at, <was_home>/profiles/<profile_name>, we will refer to it as the
<profile_home> directory.

When we are speaking specifically of the profile directory for the deployment
manager, we will refer to it as <dmgr_profile_home>.
 Chapter 2. System management: A technical overview 39

The repository files are arranged in a set of cascading directories under each
profile directory structure, with each directory containing a number of files
relating to different components of the cell. You can see this in Figure 2-10. The
repository structure follows the same format, regardless of whether you have a
stand-alone server environment or distributed server environment.

Figure 2-10 Repository directory structure

The <profile_home>/config directory is the root of the repository for each profile.
It contains the following directory structure:

� cells/<cell>/

This is the root level of the configuration for the cell. The directory contains a
number of cell-level configuration files. Depending on the types of resources
that have been configured, you might see the following subdirectories:

– cells/<cell>/applications/ contains one subdirectory for every application
that has been deployed within the cell.

Config:
plugin_cfg_service.xml

Cell:
admin_autz.xml
cell.xml
namestore.xml
naming_autz.xml
security.xml
variables.xml
virtualhosts.xml

Node:
node.xml
resources.xml
namestore.xml
variables.xml
serverindex.xml

Server:
node.xml
resources.xml
namestore.xml
variables.xml
serverindex.xml

<dmgr_profile_home>

<profile_home>
40 WebSphere Application Server V6.1: System Management and Configuration

– cells/<cell>/buses/ contains one directory for each service integration bus
(bus) defined.

– cells/<cell>/coregroups/ contains one directory for each core group
defined.

– cells/<cell>/nodegroups/ contains one directory for each node group
defined.

– cells/<cell>/nodes/ contains the configuration settings for all nodes and
servers managed as part of this cell. The directory contains one directory
per node. Each cells/<cell>/nodes/<node> directory will contain
node-specific configuration files and a server directory which in turn will
contain one directory per server and node agent on that node.

– cells/<cell>/clusters/ contains one directory for each of the clusters
managed as part of this cell. Each cluster directory contains a single file,
cluster.xml, which defines the application servers of one or more nodes
that are members of the cluster.

The overall structure of the master repository is the same for both a stand-alone
server environment and a distributed server environment. The differences are
summarized in the following sections.

In a stand-alone server environment, the structure has the following:

� The master repository is held on a single machine. There are no copies of this
specific repository on any other node.

� The repository contains a single cell and node.

� There is no node agent because each application server is stand-alone, so
there is no directory for the node agent (nodeagent).

� Clusters are not supported, and therefore will not contain the clusters
directory or subdirectories.

In a distributed server environment, the structure has the following
characteristics:

� The master repository is held on the node containing the deployment
manager. It contains the master copies of the configuration and application
data files for all nodes and servers in the cell.

� Each node also has a local copy of the configuration and application data files
from the master repository that are relevant to the node.

� Changes can be made to the configuration files on a node, but the changes
will be temporary. Such changes will be overwritten by the next file
synchronization from the deployment manager. Permanent changes to the
configuration require changes to the file or files in the master repository.
 Chapter 2. System management: A technical overview 41

Configuration changes made to node repositories are not propagated up to
the cell.

� The applications directory of the master repository contains the application
data (binaries and deployment descriptors) for all applications deployed in the
cell. The local copy of the applications directory on each node will only
contain the directories and files for the applications deployed on application
servers within that node.

Information about the individual files found in each of these directories can be
found in the Configuration Document Descriptions topic in the Information
Center.

2.4.2 Variable scoped files
Identically named files that exist at differing levels of the configuration hierarchy
are termed variable scoped files. There are two uses for variable scoped files:

� Configuration data contained in a document at one level is logically combined
with data from documents at other levels of the configuration hierarchy. In the
case of conflicting definitions, the “most specific” value takes precedence. For
example, if an identical entry exists in the files at the cell and node level (as
with a variable defined in both the cell and node’s variables.xml), the entry at
the node level takes precedence.

� Documents representing data that is not merged but is rather scoped to a
specific level of the topology. For example, the namestore.xml document at
the cell level contains the cell persistent portion of the name space, while the
namestore.xml at the node level contains the node persistent root of the name
space.

2.4.3 Application data files
The master repository is also used to store the application binaries (EAR files)
and deployment descriptors. This allows modified deployment descriptors to be
kept in the repository, and allows system administrators to make application
updates more automatic.

The <profile_home>/config directory of the master repository contains the
following directory structure used to hold application binaries and deployment
settings:

� cells/<cell>/applications/

This directory contains a subdirectory for each application deployed in the
cell. The names of the directories match the names of the deployed
applications.
42 WebSphere Application Server V6.1: System Management and Configuration

� cells/<cell>/applications/<appname>.ear

Each application’s directory in the master repository contains the following:

– A copy of the original EAR, called <appname>.ear, which does not contain
any of the bindings specified during the installation of the application

– A deployments directory, which contains a single <appname> directory
used to contain the deployed application configuration

� cells/<cell>/applications/<appname>.ear/deployments/<appname>

The deployment directory of each application contains the following:

– deployment.xml

This file contains configuration data for the application deployment,
including the allocation of application modules to application servers, and
the module startup order.

– META-INF/

This directory contains the following:

• application.xml

J2EE standard application deployment descriptor

• ibm-application-bnd.xmi

IBM WebSphere-specific application bindings

• ibm-application-ext.xmi

IBM WebSphere-specific application extensions

• was.policy

Application-specific Java 2 security configuration

This file is optional. If not present, then the policy files defined at the
node level will apply for the application.

Note: The name of the deployed application does not have to match the
name of the original EAR file used to install it. Any name can be chosen
when deploying a new application, as long as the name is unique across all
applications in the cell.

Note: The deployment descriptors stored in the repository contain
the bindings chosen during application installation.
 Chapter 2. System management: A technical overview 43

The subdirectories for all application modules (WARs and EJB JARs)
are contained in the was.policy along with each module’s deployment
descriptors.

Repository files used for application execution
The installation of an application onto a WebSphere Application Server
application server results in:

� The storage of the application binaries (EAR) and deployment descriptors
within the master repository.

� The publishing of the application binaries and deployment descriptors to each
node that will be hosting the application. These files are stored in the local
copy of the repository on each node.

Each node then installs applications ready for execution by exploding the EARs
under the <profile_home>/installedApps/<cell>/ as follows:

� <profile_home>/installedApps/<cell>/

This directory contains a subdirectory for each application deployed to the
local node.

� <profile_home>/installedApps/<cell>/<appname>.ear/

Each application-specific directory contains the contents of the original EAR
used to install the application.

– The deployment descriptors from the original EAR. These descriptors do
not contain any of the bindings specified during application deployment.

– All application binaries (JARs, classes, and JSPs)

Figure 2-11 summarizes how the node’s local copy of the repository contains the
application’s installed deployment descriptors, while the directory under
installedApps contains the application binaries.

Note: The subdirectories for each module do not contain application
binaries (JARs, classes, and JSPs), only deployment descriptors
and other configuration files.

Note: The name of each application’s directory reflects the name under
which the application is installed, not the name of the original EAR. For
example, if an application is called myapp, then the installedApps/<cell>
directory will contain a myapp.ear subdirectory.
44 WebSphere Application Server V6.1: System Management and Configuration

Figure 2-11 Location of application data files

By default, a WebSphere Application Server application server executes an
application by performing the following tasks:

1. Loading the application binaries stored under:

<profile_home>/installedApps/<cell>/<appname>.ear/

You can change this location by altering the Application binaries setting for
the enterprise application or by altering the $(APP_INSTALL_ROOT) variable
setting.
 Chapter 2. System management: A technical overview 45

2. Configuring the application using the deployment descriptors stored under:

<profile_home>/config/cells/<cell>/applications/<appname>.ear/deployments
/<appname>

You can change this for applications deployed to V6.x application servers by
modifying the Use metadata from binaries setting for the enterprise
application. This is the Use Binary Configuration field on the application
installation and update wizards.

By default, the setting is not enabled. Enabling it specifies that you want the
application server to use the binding, extensions, and deployment descriptors
located in the application EAR file rather than those stored in the deployments
directory.
46 WebSphere Application Server V6.1: System Management and Configuration

Chapter 3. Getting started with profiles

Installing a WebSphere Application Server environment requires careful
planning. A major decision point is the topology for the system. These decisions
include, for example, whether you will have a stand-alone server, a distributed
managed server environment, clustering, and so forth.

These topics are covered in detail in Planning and Designing for WebSphere
Application Server V6.1, SG24-7305. That IBM Redbook is designed to help you
select a topology and develop a clear idea of what steps are needed to set up
your chosen environment. Your options will depend on your chosen WebSphere
Application Server package. The installation process is well-documented in the
installation guide packaged with the product.

The purpose of this chapter is to help you build your initial WebSphere
Application Server environment after you have installed the product. It includes
the following topics:

� Understanding profiles
� Building a system using profiles
� Creating profiles on distributed systems (non z/OS)
� Managing profiles
� Managing the processes

3

Important: This chapter assumes you are performing a new installation. For
migration issues, see WebSphere Application Server V6.1 Migration Guide,
SG24-6369.
© Copyright IBM Corp. 2006. All rights reserved. 47

3.1 Understanding profiles
The WebSphere Application Server installation process simply lays down a set of
core product files required for the run time processes. After installation, you need
to create one or more profiles that define the run time to have a functional
system. The core product files are shared among the run time components
defined by these profiles.

With Base and Express, you can only have stand-alone application servers, as
shown in Figure 3-1. Each application server is defined within a single cell and
node. The administration console is hosted within the application server and can
only connect to that application server. No central management of multiple
application servers is possible. An application server profile defines this
environment. You can also create stand-alone application servers with the
Network Deployment package, though you would most likely do so with the intent
of federating that server into a cell for central management.

Figure 3-1 System management topology: Stand-alone server (Base and Express)

With the Network Deployment package, you have the option of defining multiple
application servers with central management capabilities, as summarized in
Figure 3-2 on page 49. The administration domain is the cell, consisting of one or
more nodes. Each node contains one or more application servers and a node
agent that provides an administration point management by the deployment
manager.

The deployment manager can be located on the same machine as one or more
of the application servers. This would be a common topology for single machine
development and testing environments. In most production topologies, we
recommend that the deployment manager be placed on a separate dedicated
machine.

Cell

Application
Server

"server1"

Node A

Admin
console

Application
Server profile
48 WebSphere Application Server V6.1: System Management and Configuration

The basis for this run time environment starts with the deployment manager that
provides the administration interface for the cell. As you would expect, the
deployment manager is defined by a deployment manager profile.

Figure 3-2 System management topology: Network Deployment

Nodes can be added to the cell in one of two ways:

� You can create an application server profile, then federate it to the cell. When
a node is added to a cell, a node agent is created on the node and
configuration files for the node are added to the master configuration
repository for the cell. The deployment manager then assumes responsibility
for the configuration of all servers on the node.

Note that the server name for a federated application server is always going
to be “server1”.

� You can define a custom profile to create an empty node for federation to the
cell. After federation, you can further configure the node by creating
application servers and clusters from the deployment manager administrative
console. If you are using a naming convention for servers, this is the best
option.

Cell

Node A

Application
Server

A

Node
Agent

Node B

Node
Agent

Deployment
Manager

Application
Server

D
Cluster

Application
Server

C

Application
Server

B

Admin
console

Deployment
Manager profile

Created via
administrative

console

Node CCustom profile
(federated to cell)

Custom profile
(federated to cell)

Created via
administrative

console

Created via
administrative

console
 Chapter 3. Getting started with profiles 49

3.1.1 Types of profiles
We mentioned the types of profiles available for defining the run time. In the
following sections, we take a closer look at these profiles.

Application server profile
The application server profile defines a single stand-alone application server.
Using this profile gives you an application server that can run stand-alone, or
unmanaged. The environment will have the following characteristics:

� The profile consists of one cell, one node, and one server. The cell and node
are not relevant in terms of administration, but you see them when you
administer the server through the administrative console scopes.

� The name of the application server is “server1”.

� The application samples are installed on the server (optional).

� The server has a dedicated administrative console.

The primary use for this type of profile is:

� To build a stand-alone server in a Base or Express installation.

� To build a stand-alone server in a Network Deployment installation that is not
managed by the deployment manager (a test machine, for example).

� To build a server in a distributed server environment to be federated and
managed by the deployment manager. If you are new to WebSphere
Application Server and want a quick way of getting an application server
complete with samples, this is a good option. When you federate this node,
the default cell becomes obsolete and the node is added to the deployment
manager cell. The server name remains “server1” and the administrative
console is removed from the application server.

Deployment manager profile
The deployment manager profile defines a deployment manager in a distributed
server environment. Although you could conceivably have the Network
Deployment package and run only stand-alone servers, this would bypass the
primary advantages of Network Deployment, which is workload management,
failover, and central administration.

In a Network Deployment environment, you should create one deployment
manager profile. This gives you:

� A cell for the administrative domain
� A node for the deployment manager
� A deployment manager with an administrative console
� No application servers
50 WebSphere Application Server V6.1: System Management and Configuration

Once you have the deployment manager, you can:

� Federate nodes built either from existing application server profiles or custom
profiles.

� Create new application servers and clusters on the nodes from the
administrative console.

Custom profile
A custom profile is an empty node, intended for federation to a deployment
manager. This type of profile is used when you are building a distributed server
environment. Use a custom profile in the following way:

1. Create a deployment manager profile.

2. Create one custom profile on each node on which you will run application
servers.

3. Federate each custom profile to the deployment manager, either during the
custom profile creation process or later by using the addNode command.

4. Create new application servers and clusters on the nodes from the
administrative console.

Cell profile

A cell profile is actually a combination of two profiles: a deployment manager
profile and an application server profile. The application server profile is
federated to the cell. The deployment manager and application server reside on
the same system. This type of profile lets you get a quick start with a distributed
server environment and is especially useful for test environments that typically
have all nodes on one test system.

3.1.2 Directory structure and default profiles
If you have worked with previous versions of WebSphere Application Server, you
will notice a difference in the directory structure. First, all packages (Base,
Express, and Network Deployment) specify the same default root directory
during installation. For example, in Windows installations, this is commonly
c:\Progam Files\IBM\WebSphere\AppServer. In this IBM Redbook, we refer to
this root directory as the <was_home> directory.

In addition to the traditional directories under the <was_home> directory (bin,
config, installedapps, and so on), you now have a profiles directory containing a

Cell profile (new): This new option allows you to quickly set up a distributed
server environment on a single system.
 Chapter 3. Getting started with profiles 51

subdirectory for each profile you create and allow to use the default home
location. The directory structure for each profile resembles the primary structure.
In other words, there is a bin, config, installedApps, and other directories
required for a unique run time under each profile.

For example, if you installed on a Windows system, and created a profile named
AppSrvr01, you would normally see a directory structure like that shown in
Figure 3-3 on page 52.

Figure 3-3 Directory structure
52 WebSphere Application Server V6.1: System Management and Configuration

However, profiles can be stored in any folder, so we suggest storing them in a
more friendly structure (by default, there are at least six levels). We refer to the
root of each profile directory (by default <was_home>/profiles/profile_name) as
<profile_home>.

Why do we emphasize this point? If you enter commands while in the
<was_home>/bin directory, they are executed against the run time defined by the
default profile. The default profile is determined by the following:

� The profile was defined as the default profile when you created it. The last
profile specified as the default takes precedence. You can also use the
manageprofiles command to specify the default profile.

� If you have not specified the default profile, it will be the first profile you
created.

To make sure command line operations are executed for the correct run time, you
need to do one of two things:

� Specify the -profileName option when using a command and execute the
command from the <was_home>/bin directory.

� Execute the command from its <profile_home>/bin directory.

z/OS considerations
The configuration information for a profile is kept in the HFS or zFS depending on
how your system is set up. A unique directory serves as the mount point for each
file system that will hold a profile. The name of the mount point can be anything
you want and can be set during the profile customization process that is covered
in the following sections.

Under the mount point, you will find two directories, one for the daemon server
and the other for the profile. Figure 3-4 on page 54 shows an application server
profile. You can see the structure of the files under the mount point, including the
application server directory and the daemon directory.

The daemon directory structure is similar to the profile directory structure and the
name “Daemon” is fixed, although the “AppServer” name can be changed during
the profile customization process that is covered in the following sections.
 Chapter 3. Getting started with profiles 53

.

Figure 3-4 z/OS directory structure

If you check under the AppServer/profiles/default/config/cells directory, you will
see a directory that will have the same name as you provided for the cell long
name during the customization for this profile. Further down in the structure,
under the /nodes directory, there will be a directory with the same name you
provided for the node long name

3.2 Building a system using profiles
During the planning cycle, a topology was selected for the WebSphere
Application Server environment. There are many topologies to choose from,
each with its own unique features.

However, when we discuss using profiles to build a WebSphere Application
Server environment, we are focusing on the WebSphere Application Server
processes or daemons for z/OS. Regardless of the topology you select, there are

Note: Under profile you will see default. The profile name you created from
your workstation is not reflected here. The name “default” is always used in
WebSphere Application Server V6.1 for z/OS. Profile names cannot be
created or modified directly.

/<mount point>

/Daemon

/AppServer

/profiles

/default

/config

/cells

/<Cell Name>

cell.xml

/applications

/clusters

/nodes

/<Node Name>

node.xml

serverindex.xml

/servers

/<Server Name>

was.env

HFS
<Cell Name>

<Node>
<Server>

CRA

CR SR
SR

Daemon

CR
54 WebSphere Application Server V6.1: System Management and Configuration

really only two primary situations to consider when deciding which profiles you
need to create:

� You plan to create one or more stand-alone application servers. We will refer
to this as a stand-alone server environment.

� You plan to create a deployment manager and one or more nodes with
application servers. We refer to the application servers in this environment as
managed servers. These nodes can coexist or reside on different machines.
We refer to this as a distributed server environment.

The following topics will give the basic steps for each. You can extend this to suit
your own environment.

3.2.1 Stand-alone server environment
If you are creating a stand-alone application server, do the following:

1. Install your choice of Base, Express, or Network Deployment on the system.

An application server profile is created during the installation of Express and
Base. With Network Deployment, you have the option of creating a profile of
any type, including an application server profile.

2. Create an application server profile on that system. Since you have an
application server automatically after Base and Express installation, you only
need to do this if you want an additional stand-alone server environment.

3.2.2 Distributed server environment
There are two options for building this environment. The option you select
depends on your circumstance. If you are building a new production environment
from scratch, we would recommend method 1. Either method is fine for a
development or test environment.

Method 1
This method assumes that you do not have a stand-alone application server to
federate, but instead will create application servers from the deployment
manager. This gives you a little more control over the characteristics of the
application servers during creation, including the server name (all application
servers created with the application server profile are named server1). You can

Note: When defining multiple deployment managers or application servers on
a single machine or LPAR, you need to ensure that the ports and names you
select for each are unique. For more information about ports, see Planning
and Designing for WebSphere Application Server V6.1, SG24-7305.
 Chapter 3. Getting started with profiles 55

also create an application server, customize it, and then use it as a template for
future application servers you create. If you are using clustering, you can create
the cluster and its application servers as one administrative process.

When you create an application server this way, you do not automatically get the
sample applications, but can install them later if you want.

The process to follow for this method is:

1. Install Network Deployment on a server. If this is a multiple-machine install
with the deployment manager on one machine and application servers on one
or more separate machines, install the product on each machine.

2. Create a deployment manager profile on the deployment manager machine
and start the deployment manager.

3. Create and federate a custom profile on the application server machine and
start the node. You can federate the node to the cell as part of the profile
creation process, or you can elect to do it manually as a second step.

4. Verify that the node agent is started. It should be started automatically as part
of the federation process.

5. Open the deployment manager’s administrative console, then create
application servers or clusters on the custom profile node from the
administrative console.

Method 2
This method assumes you will federate an application server profile to the cell.
With the application server profile, you have an existing application server
(server1) and might have applications installed, including the sample applications
and any user applications you have installed.

1. Install Network Deployment on the server. If this is a multiple machine install
(deployment manager on one and application servers on one or more
separate machines), install the product on each machine.

2. Create a deployment manager profile on the deployment manager machine
and start the deployment manager.

3. Create an application server profile on the application server machine and
start the application server.

4. Open the deployment manager’s administrative console and add the node
defined by the application server profile to the cell.

5. This deletes the application server cell, and federates the node to the
deployment manager cell. If you want to keep applications that have been
installed on the server, be sure to specify this when you federate the node.
56 WebSphere Application Server V6.1: System Management and Configuration

6. The new node agent is started automatically by the federation process, but
you need to start the application server manually.

3.3 Creating profiles on distributed systems (non z/OS)
This section shows how to create profiles using the Profile Management Tool.
Note that the Profile Management Tool is not available on 64-bit or Linux on
System z platforms.

The first steps are common, regardless of the type of profile you will create. You
can start the Profile Management Tool in one of the following ways:

1. From the Start menu in Windows only, select Start → Programs → IBM
WebSphere → Application Server Network Deployment v6.1 → Profile
Management Tool.

2. Use the platform-specific command in the
<was_home>/bin/ProfileManagement directory:

– Windows: pmt.bat
– Linux/HP-UX/Solaris/AIX: pmt.sh

3. Check the box directly after installation from the install wizard to launch the
Profile Management Tool.

Silent install: You can also create profiles in silent mode using the
manageprofiles command (see “Creating a profile in silent mode” on
page 125).
 Chapter 3. Getting started with profiles 57

When you start the wizard, the first window you see is the Welcome window.
Click Next to select the type of profile you will create, as in Figure 3-5 on
page 58.

Figure 3-5 Creating a profile: Profile type selection

The rest of the wizard varies, depending on the type of profile you are creating.
The steps to create each type of profile are discussed more in the following
sections.

Default profiles: As you create profiles, you will have the option of specifying
a default profile. This is the profile that commands are executed against if you
execute them from the <was_home>/bin directory and you do not specify the
-profileName argument. The default profile is the first profile that you create,
unless you subsequently specify another profile as the default. To see this
option, you must take the Advanced path through the Profile Management
Tool.
58 WebSphere Application Server V6.1: System Management and Configuration

You will always have two options when using the Profile Management Tool to
create a profile. The “Typical” path will determine a set of default values to use for
most settings without giving you the option to modify them. The “Advanced” path
lets you specify values for each option.

3.3.1 Creating a deployment manager profile
Table 3-1 shows a summary of the options you have for creating a deployment
manager. The table shows the options and results you will see depending on
which path (typical or advanced) you take.

Table 3-1 Deployment manager profile options

 First Steps: At the end of the Profile Management Tool, you have the
opportunity to start the First Steps interface. This interface helps you start the
deployment manager or application server and has other useful links, such as
opening the administrative console, migration help, starting the Profile
Management Tool, and installation verification.

Each profile you create has its own First Steps program located here:

<profile_home>/firststeps/firststeps.bat (.sh)

If you choose not to start the First Steps program at the completion of the
wizard, you can start it later from this location.

Typical settings Advanced options

The administrative console is deployed by default. You can choose whether to deploy the
administrative console. We recommend that you
do so.

The profile name is Dmgrxx by default, where xx is 01
for the first deployment manager profile and
increments for each one created. The profile is stored
in <was_home>/profiles/Dmgrxx.

You can specify the profile name and its location.

The cell name is <hostname>Cellxx.
The node name is <hostname>CellManagerxx.
The host name is prefilled in with your system’s host
name.

You can specify the node, host, and cell names.

You can enable administrative security (yes or no). If you select yes, you will be asked to specify a user
name and password that will be given administrative authority.
 Chapter 3. Getting started with profiles 59

The following steps outline the process of creating a deployment manager.

1. Start the Profile Management Tool and click Next on the Welcome page.

2. Select the deployment manager profile option. Click Next.

3. Select whether to take the typical settings or to go through the advanced
windows. The options you see next depend on the path you take.

If Typical is selected, then you will only see one more option (to enable
security).

If Advanced is selected, you will continue with the following steps.

4. Select whether to deploy the administrative console application. This is
recommended, but if you choose not to, you can install it after profile creation.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The deployment manager will be run as
service.

(Windows) You can choose whether to the
deployment manager will run as a service.

Typical settings Advanced options
60 WebSphere Application Server V6.1: System Management and Configuration

5. Enter a unique name for the profile or accept the default. The profile name will
become the directory name for the profile files (see Figure 3-6). Click the box
if you want this to be the default profile for receiving commands. Select the
location for the profile and click Next.

Figure 3-6 Creating a deployment manager profile: Enter name and location
 Chapter 3. Getting started with profiles 61

6. Enter the node, host, and cell names. These default based on the host name
of your system. The wizard recognizes if there are existing cells and nodes in
the installation and takes this into account when creating the default names
See Figure 3-7 on page 62.

Figure 3-7 Creating a deployment manager profile: Enter cell, host, and node names

Click Next.

7. Choose whether to enable administrative security. If you enable security here,
you will be asked for a user ID and password that will be added to a file-based
user registry with the Administrative role. Click Next.

8. The wizard presents a list of TCP/IP ports for use by the deployment
manager. If you already have existing profiles on the system, this is taken into
account when the wizard selects the port assignments. However, you should
verify that these ports will be unique on the system. See Figure 3-8 on
page 63.
62 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-8 Creating a deployment manager profile: Select ports

Note two ports: You might want to note the following ports for later use:

� SOAP connector port: If you use the addNode command to federate a node
to this deployment manager, you need to know this port number. This is
also the port you connect to when using the wsadmin administration
scripting interface.

� Administrative console port: You need to know this port in order to access
the administrative console. When you turn on security, you need to know
the Administrative console secure port.
 Chapter 3. Getting started with profiles 63

9. On Windows systems, you have the option of running the deployment
manager as a service. This provides you a simple way of automatically
starting the deployment manager when the system starts. If you would like to
run the process as a Windows service, check the box and enter the values for
the logon and startup type. See Figure 3-9 on page 64.

Figure 3-9 Creating a deployment manager profile: Run as a Windows service

Note that the window lists the user rights the user ID you select needs to
have. If the user ID does not have these rights, the wizard will automatically
add them.

Click Next.

10.Review the options you have chosen and click Next to create the profile. After
the wizard has finished, you will be presented with the window in Figure 3-10
on page 65.
64 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-10 Creating a deployment manager profile: Finish

This final window indicates the success or failure of the profile creation. If you
have errors, check the log at:

<was_home>/logs/manageprofiles/<profile_home>_create.log

You will also find logs for individual actions stored in:

<profile_home>/logs
 Chapter 3. Getting started with profiles 65

11.Click Finish to close the wizard and start the First Steps application, as
shown in Figure 3-11.

Figure 3-11 Deployment manager First Steps menu

Check your results
If the creation was successful, do the following to familiarize yourself with the
profile and how to use it:

1. View the directory structure and find the new profile. In this IBM Redbook, we
refer to the location as <profile_home>. This is where you find, among other
things, the config directory containing the deployment manager configuration
files, the bin directory for entering commands, and the logs directory where
information is recorded.

2. Verify the installation. You can do this directly from the First Steps menu. This
process starts the deployment manager and checks the log file for warnings
or errors on start. Messages are displayed on the First Steps window and
logged in the following places:

– <profile_home>/logs/dmgr/startServer.log
– <profile_home>/logs/dmgr/SystemOut.log

3. Open the administrative console, either by selecting the option in the First
Steps window, or by accessing its URL from a Web browser:

http://<dmgr_host>:<admin_console_port>/ibm/console
66 WebSphere Application Server V6.1: System Management and Configuration

Here is a sample URL in the address bar:

http://localhost:9060/ibm/console/

The administrative console port of 9060 was selected during the Profile
Management Tool. See Figure 3-8 on page 63.

Click the Log in button. If you did not enable security, you do not have to enter
a user name. If you choose to enter a name, it can be any name. It is used to
track changes you make from the console. If you enabled security, enter the
user ID and password you specified.

4. Display the configuration from the console. You should be able to see the
following items from the administrative console:

a. Cell information: Select System administration → Cell.

b. Deployment manager: Select System administration → Deployment
manager.

c. Deployment manager node: Select System administration → Nodes.

d. The default node group: Select System administration → Node groups.

Note that at the completion of this process you will not have:

a. A node agent

Node agents reside on nodes with managed application servers. You will
not see node agents appear until you federate a node to the cell.

b. Application servers

5. Stop the deployment manager. You can do this from the First Steps menu, or
better yet, use the stopManager command:

cd <profile_home>\bin
stopManager

On a UNIX system, use the following command:

cd <profile_home>/bin
stopManager.sh

3.3.2 Creating an application server profile
An application server profile defines a new stand-alone application server. This
server can be run stand-alone or can be later federated to a deployment
manager cell for central management.

Tip: In the same manner, you can use the startManager command to start
the deployment manager.
 Chapter 3. Getting started with profiles 67

Table 3-2 shows a summary of all steps involved in process of creating a
application server profile.

Table 3-2 Application server profile options - V6.1

This section takes you through the steps of creating the application server profile:

1. Start the Profile Management Tool. Click Next on the Welcome page.

2. Select the Application server profile option. Click Next.

3. Select the kind of creation process you want to run: Typical or Advanced.

If Typical is selected, then you will only see one more option (to enable
security).

If Advanced is selected, you will continue with the next step.

Typical Advanced

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended), the default application,
and the sample applications (if installed).

The profile name is AppSrvxx by default, where xx is
01 for the first application server profile and
increments for each one created. The profile is stored
in <was_home>/profiles/AppSrvxx.

You can specify the profile name and its location.

The profile is not the default profile. You can choose whether to make this the default
profile. (Commands run without specifying a
profile will be run against the default profile.)

The application server is built using the default
application server template.

You can choose the default template, or a
development template that is optimized for
development purposes.

The node name is <host>Nodexx.
The host name is prefilled in with your system’s DNS
host name.

You can specify the node name and host name.

You can enable administrative security (yes or no). If you select yes, you will be asked to specify a user
name and password that will be given administrative authority.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The deployment manager will be run as a
service.

(Windows) You can choose whether the
deployment manager will run as a service.

Does not create a Web server definition. Allows you to define an external Web server to
the configuration.
68 WebSphere Application Server V6.1: System Management and Configuration

4. Select whether you want to deploy the administrative console and the default
application. If you have installed the sample applications (optional during
WebSphere Application Server installation), then you can opt to deploy these
as well.

5. Enter a unique name for the profile or accept the default. The profile name will
become the directory name for the profile files. See Figure 3-12.

Click the box if you want this directory to be the default profile for receiving
commands.

If the application server will be used primarily for development purposes,
check the option to create it from the development template.

Click Next.

Figure 3-12 Creating an application server profile: Enter name and location
 Chapter 3. Getting started with profiles 69

6. Enter the new node name and the system host name. See Figure 3-13. The
node name will default based on the host name of your system. The wizard
recognizes if there are existing nodes in the installation and takes this into
account when creating the default node name. Click Next.

Figure 3-13 Creating an application server profile: Enter host and node names

7. Choose whether to enable administrative security. If you enable security here,
you will be asked for a user ID and password that will be added to a file-based
user registry with the Administrative role. Click Next.

8. The wizard will present a list of TCP/IP ports for use by the application server,
as in Figure 3-14. If you already have existing profiles on the system (within
this installation), this will be taken into account when the wizard selects the
port assignments, but you should verify that these ports will be unique on the
system.

Note: If you are planning to create multiple stand-alone application servers
for federation later to the same cell, make sure you select a unique node
name for each application server.
70 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-14 Creating an application server profile: Select ports

Note two ports: You might want to note the following ports for later use.

� SOAP connector port: If you plan to federate this node to a deployment
manager later using the deployment manager administrator console, you
will need to know this port number. This is also the port you will connect to
when using the wsadmin administration scripting interface.

� Administrative console port: You will need to know this port in order to
access the administrative console. When you turn on security, you will
need to know the Administrative console secure port.
 Chapter 3. Getting started with profiles 71

9. On Windows systems, you have the option of running the application server
as a service. This provides you a simple way of automatically starting the
application server when the system starts. If you would like to run the process
as a Windows service, check the box and enter the values for the logon and
startup type, as shown in Figure 3-15.

Figure 3-15 Creating an application server profile: Run as a service

Note that the window lists the user rights the user ID you select needs to
have. If the user ID does not have these rights, the wizard will automatically
add them.

Click Next.

10.The wizard will allow you to create an optional Web server definition, as in
Figure 3-16. Web server definitions define an external Web server to
WebSphere Application Server. This allows you to manage Web server
plug-in configuration files for the Web server and in some cases to manage
the Web server. If you have not installed a Web server or wish to do this later,
you can easily do this from the administrative console.
72 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-16 Creating an application server profile: Creating a Web server definition.

11.Review the options you have chosen and click Next to create the profile. See
Figure 3-17.

Figure 3-17 Creating an application server profile: Finish
 Chapter 3. Getting started with profiles 73

This final window indicates the success or failure of the profile creation.

If you have errors, check the log at:

<was_home>/logs/manageprofiles/<profile_name>_create.log

Note that you will have to click Finish on the screen to unlock the log.

You will also find logs for individual actions stored in:

<profile_home>/logs

12.Click Finish to close the wizard and start the First Steps application. See
Figure 3-18 on page 74.

Figure 3-18 Application server First Steps menu

Check your results
If the creation was successful, do the following to familiarize yourself with the
profile and how to use it:

1. View the directory structure and find the new profile. In this IBM Redbook, we
refer to this directory as <profile_home>. This is where you will find, among
other things, the config directory containing the application server
configuration files, the bin directory for entering commands, and the logs
directory where information is recorded.

2. Verify the installation. You can do this directly from the First Steps menu. This
process will start the application server and verify the proper operation of the
74 WebSphere Application Server V6.1: System Management and Configuration

Web and EJB containers. Messages are displayed on the First Steps window
and logged in the following places:

– <profile_home>/logs/server1/startServer.log
– <profile_home>/logs/server1/SystemOut.log

3. Start the server. If you ran the installation verification, the server should
already be started. You can check it using the following commands:

cd <profile_home>\bin
serverStatus -all

If the server status is not started, then start it from the First Steps menu or
with the following commands:

cd <profile_home>\bin
startServer server1

4. Open the administrative console, either by selecting the option in the First
Steps window, or by accessing its URL from a Web browser:

http://<appserver_host>:<admin_console_port>/ibm/console

Here is a sample URL:

http://localhost:9061/ibm/console/

The administrative console port of 9061 was selected during the Profile
Management Tool (see Figure 3-14 on page 71).

Click the Log in button. If you did not enable security, you do not have to enter
a user name. If you choose to enter a name, it can be any name. It is used to
track changes you make from the console. If you enabled administrative
security, enter the user ID and password you specified.
 Chapter 3. Getting started with profiles 75

5. Display the configuration from the console. See Figure 3-19. You should be
able to see the following items from the administrative console:

a. Application servers

Select Servers → Application servers. You should see server1. To see
the configuration of this server, click the name in the list.

Figure 3-19 Application server defined by the application server profile

b. Enterprise applications

Select Applications → Enterprise Applications. See Figure 3-20. You
should see a list of applications. These are the WebSphere sample
applications.
76 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-20 Applications installed on server1

6. Stop the application server. You can do this from the First Steps menu, or
better yet, use the stopServer command:

cd <profile_home>\bin
stopServer server1

On a UNIX system, use the following command:

cd <profile_home>/bin
stopServer.sh server1

Note: Although you cannot display the cell and node from the administrative
console, they do exist. You will see this later as you begin to configure
resources and choose a scope. You can also see them in the <profile_home>
/config directory structure.
 Chapter 3. Getting started with profiles 77

3.3.3 Creating a cell profile
Table 3-3 shows a summary of the options you have during a cell profile creation.
Using this option actually creates two distinct profiles, a deployment manager
profile and an application server profile. The application server profile is
federated to the cell. The options you see are a reflection of the options you
would see if you were creating the individual profiles versus a cell. The Profile
Management Tool windows give you basically the same options that you would
see if you created a deployment manager, then an application server.

Table 3-3 Cell profile options

Typical Advanced

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended), the default application,
and the sample applications (if installed).

The profile name for the deployment manager is
Dmgrxx by default, where xx is 01 for the first
deployment manager profile and increments for each
one created. The profile is stored in
<was_home>/profiles/Dmgrxx.

You can specify the profile name and its location.

The profile name for the federated application server
and node is AppSrvxx by default, where xx is 01 for
the first application server profile and increments for
each one created. The profile is stored in
<was_home>/profiles/AppSrvxx.

You can specify the profile name and its location.

Neither profile is made the default profile. You can choose to make the deployment
manager profile the default profile.

The cell name is <host>Cellxx.
The node name for the deployment manager is
<host>CellManagerxx.
The node name for the application server is
<host>Nodexx.
The host name is prefilled in with your system’s DNS
host name.

You can specify the cell name, the host name,
and the profile names for both profiles.

You can enable administrative security (yes or no). If you select yes, you will be asked to specify a user
name and password that will be given administrative authority.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports for each
profile (unique to the installation), use the basic
defaults, or select port numbers manually.

(Windows) The deployment manager will be run a as
service.

(Windows) You can choose whether the
deployment manager will run as a service.
78 WebSphere Application Server V6.1: System Management and Configuration

3.3.4 Creating a custom profile
A custom profile defines an empty node on a system. The purpose of this profile
is to define a node on a system to be federated to a cell for central management.

As you create the profile, you will have the option to federate the node to a cell
during the wizard, or to simply create the profile for later federation. Before you
can federate the custom profile to a cell, you will need to have a running
deployment manager.

Table 3-4 shows a summary of the options you have during profile creation for a
a custom node.

Table 3-4 Custom profile options

Does not create a Web server definition. Allows you to define an external Web server to
the configuration.

Typical Advanced

Note: With other profiles, you have the option of registering the processes as
Windows services. This does not appear as an option when you create a
custom profile. If you want to register the node agent as a Windows service
later, see 3.6.3, “Enabling process restart on failure” on page 130.

Typical Advanced

The profile name is Customxx.
The profile is stored in
<was_home>/profiles/Customxx.
By default, it is not considered the default profile.

You can specify profile name and location. You
can also specify if you want this to be the default
profile.

The node name is <host>Nodexx.
The host name is prefilled in with your system’s DNS
host name.

You can specify node name and host name.

You can opt to federate the node later, or during the profile creation process.
If you want to do it now, you have to specify the deployment manager host and SOAP port (by default,
localhost:8879). If security is enabled on the deployment manager, you will need to specify a user ID and
password.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports for each
profile (unique to the installation), use the basic
defaults, or select port numbers manually.
 Chapter 3. Getting started with profiles 79

This section takes you through the steps of creating a custom profile.

1. Start the Profile Management Tool. Click Next on the Welcome page.

2. Select the Custom profile option. Click Next.

3. Select the kind of creation process you want to run, typical or advanced. Click
Next.

If Typical is selected, then you will be sent directly to the option to federate
(Figure 3-23 on page 82).

If Advanced is selected, you will see the next step.

4. Enter a unique name for the profile or accept the default. The profile name will
become the directory name for the profile files. See Figure 3-21.

Click the box if you want this directory to be the default profile for receiving
commands. Click Next.

Figure 3-21 Creating a Custom profile: Enter name and location
80 WebSphere Application Server V6.1: System Management and Configuration

5. Enter the new node name and the system host name. See Figure 3-22. The
node name defaults to the host name of your system. The wizard recognizes
if there are existing nodes in the installation and takes this into account when
creating the default node name. Click Next.

Figure 3-22 Creating a custom profile: Enter host, and node names
 Chapter 3. Getting started with profiles 81

6. If you would like to federate, or add, the new node defined by the profile to a
cell as part of the wizard process, leave the Federate this node later box
unchecked and enter the host name and SOAP connector port (Figure 3-8 on
page 63) for the deployment manager. See Figure 3-23.

Figure 3-23 Creating a custom profile: Federate now or later

7. Review the options you have chosen. See Figure 3-24.

Note: If you choose to federate now, make sure the deployment manager
is started.
82 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-24 Creating a custom profile: Summary

Click Next to create the profile.

This final window indicates the success or failure of the Custom profile
creation.

If you have errors, check the log at:

<was_home>/logs/manageprofiles/<profile_name>_create.log

Note that you will have to click Finish on the window to unlock the log.

You will also find logs for individual actions stored in:

<profile_home>/logs

8. After the wizard has finished, you will be presented with a screen containing
messages indicating the success or failure of the process. And you can
launch First Steps if you want or even create another profile. If you have
errors, check the log at:

<was_home>/logs/manageprofiles/<profile_name>_create.log

Note that you will have to click Finish on the window to unlock the log.

You will also find logs for individual actions stored in:

<profile_home>/logs
 Chapter 3. Getting started with profiles 83

9. Click Finish to close the wizard and start the First Steps application if you
want. See Figure 3-25 on page 84.

Figure 3-25 Custom profile First Steps window

Checking your results
If the creation was successful, do the following to familiarize yourself with the
profile and how to use it:

1. View the <profile_home> directory structure and find the new profile. This is
where you will find, among other things, the config directory containing the
node configuration files.

2. If you federated the custom profile, open the deployment manager
administrative console and view the node and node agent:

– Select System Administration → Nodes. You should see the new node.

– Select System Administration → Node agents. You should see the new
node agent.

– Select System Administration → Cells. Click the Topology tab and
expand the view. From here, you can see a tree diagram of the cell, as in
Figure 3-26 on page 85.
84 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-26 Topology view of a cell

3. The federation process creates a node agent for the new node, federates it to
the cell, and starts the node agent.

You can stop the new node agent from the console or with the following
commands on the node system:

cd <profile_home>\bin
stopNode

While you can restart a node agent from the administrative console, you
cannot start a node that has been stopped. To start the new node agent, use
the following commands on the node system.

cd <profile_home>\bin
startNode

If you have not federated the node, you will not be able to start it yet. Proceed
to 3.3.5, “Federating a custom node to a cell” on page 86. Otherwise, you can
continue by defining an application server on the new node. To do this, see
3.3.6, “Creating a new application server on an existing node” on page 88.
 Chapter 3. Getting started with profiles 85

3.3.5 Federating a custom node to a cell

An custom profile is used to define a node that can be added to a cell. To
federate the node to the cell, do the following:

1. Start the deployment manager.

2. Open a command window on the system where you created the custom
profile for the new node. Switch to the <profile_home>/bin directory (for
example, cd C:\myWAS61Profiles\cstmProfiles\CstmProfile1).

3. Run the addNode command. Here you need the host name of the deployment
manager and the SOAP connector address (see Figure 3-7 on page 62 and
Figure 3-8 on page 63):

addNode <dmgrhost> <dmgr_soap_port>

Example 3-1 shows an example of using the addNode command on a
Windows system to add Node06 to the deployment manager using 8879 as
the SOAP connector address.

Example 3-1 addNode command

C:\WebSphere\ND\profiles\Node06\bin>addnode localhost 8879
ADMU0116I: Tool information is being logged in file
 c:\WebSphere\ND\profiles\Node06\logs\addNode.log
ADMU0128I: Starting tool with the Node06 profile
CWPKI0308I: Adding signer alias "dummyclientsigner" to local keystore
 "ClientDefaultTrustStore" with the following SHA digest:
 0B:3F:C9:E0:70:54:58:F7:FD:81:80:70:83:A6:D0:92:38:7A:54:CD
CWPKI0308I: Adding signer alias "dummyserversigner" to local keystore
 "ClientDefaultTrustStore" with the following SHA digest:
 FB:38:FE:E6:CF:89:BA:01:67:8F:C2:30:74:84:E2:40:2C:B4:B5:65
CWPKI0308I: Adding signer alias "default_2" to local keystore
 "ClientDefaultTrustStore" with the following SHA digest:
 CC:60:A6:33:99:B0:D9:34:B2:6A:89:5F:A7:5F:C8:C1:9E:CC:8C:2A
CWPKI0308I: Adding signer alias "default_1" to local keystore
 "ClientDefaultTrustStore" with the following SHA digest:
 20:83:69:46:D9:B9:95:51:00:99:3C:D9:3B:EF:E4:1B:C1:9A:C1:84
CWPKI0308I: Adding signer alias "default" to local keystore
 "ClientDefaultTrustStore" with the following SHA digest:
 DA:29:33:E3:61:67:91:79:B4:54:EA:95:04:D0:47:8A:14:70:DF:90
ADMU0001I: Begin federation of node Node06 with Deployment Manager at

Note: You only have to do this if you created a custom profile and chose not to
federate it at the time. This requires that you have a deployment manager
profile and that the deployment manager is up and running.
86 WebSphere Application Server V6.1: System Management and Configuration

 localhost:8879.
ADMU0001I: Begin federation of node Node06 with Deployment Manager at
 localhost:8879.
ADMU0009I: Successfully connected to Deployment Manager Server: localhost:8879
ADMU0507I: No servers found in configuration under:
 c:\WebSphere\ND\profiles\Node06\config/cells/kadw028Node04Cell/nodes
Node06/servers
ADMU2010I: Stopping all server processes for node Node06
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: Node06
ADMU0014I: Adding node Node06 configuration to cell: kadw028Cell01
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: Node06
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 2120
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: nodeagent
ADMU9990I:
ADMU0300I: The node Node06 was successfully added to the kadw028Cell01 cell.
ADMU9990I:
ADMU0306I: Note:
ADMU0302I: Any cell-level documents from the standalone kadw028Cell01
 configuration have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the kadw028Cell01 Deployment Manager
 with values from the old cell-level documents.
ADMU9990I:
ADMU0306I: Note:
ADMU0304I: Because -includeapps was not specified, applications installed on
 the standalone node were not installed on the new cell.
ADMU0307I: You might want to:
ADMU0305I: Install applications onto the kadw028Cell01 cell using wsadmin
 $AdminApp or the Administrative Console.
ADMU9990I:
ADMU0003I: Node Node06 has been successfully federated.

C:\WebSphere\ND\profiles\Node06\bin>

4. Open the deployment manager administrative console and view the node and
node agent:

– Select System Administration → Nodes. You should see the new node.
 Chapter 3. Getting started with profiles 87

– Select System Administration → Node agents. You should see the new
node agent and its status. It should be started. If not, check the status from
a command window on the custom node system:

cd <profile_home>\bin
serverStatus -all

If you find that it is not started, start it with this command:

cd <profile_home>\bin
startNode

3.3.6 Creating a new application server on an existing node
The custom profile does not automatically give you an application server. You
can follow these steps to create a new server once the custom profile has been
federated to a cell.

1. Ensure the custom profile node agent is started.

2. Open the deployment manager administrative console.

3. Select Servers → Application Servers

4. Click New.

5. Select the custom profile node and enter a new name for the server
(Figure 3-27). Click Next.

Note: This topic outlines the procedure to create and start an application
server. For detailed information about creating and customizing application
servers, see 4.4, “Working with application servers” on page 170.

If you plan to use clustering, you can create application servers when you
create the cluster. For information about working with clusters, see 4.6,
“Working with clusters” on page 222.
88 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-27 Creating a new server: Enter a node and name

6. Select a template to use as a basis for the new application server
configuration. See Figure 3-28.

Figure 3-28 Creating a new server: Select a template

The DeveloperServer and default templates have been created for you. The
default template is used to create a typical server for production.
 Chapter 3. Getting started with profiles 89

You can also create templates based on existing servers.

If you have not previously set up a template based on an existing application
server, select the default template. Click Next.

7. Each application server on a node must have unique ports assigned. The next
window gives you the option of having unique ports generated for this
application server, as opposed to the default set. Click Next. See Figure 3-29
on page 90.

Figure 3-29 Creating a new server: Generate unique ports

8. The last window summarizes your choices. See Figure 3-30. Click Finish to
create the profile.

New in V6.1: The DeveloperServer template is used to create a server
optimized for development. It turns off PMI and sets the JVM into a mode
that disables class verification and allows it to startup faster via the
-Xquickstart command. Note that it does not enable the
“developmentMode" configuration property (Run in development mode
setting on the application server window). If you would like to set this to
speed up the application server startup, you will need to configure it after
server creation using the administrative console.
90 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-30 Creating a new server: Summary and finish

9. In the messages box, click Save to save the changes to the master
configuration.

10.Start the application server from the administrative console.

– Select Servers → Application Servers.

– Check the box to the left of the server and click Start.

3.3.7 Federating an application server profile to a cell
If you created an application server profile and now want to add the node and
server to the cell, do the following:

1. Start the application server.

Note: WebSphere Application Server provides sample applications that you
can use to familiarize yourself with WebSphere applications. These samples
can be installed (optional) when you create an application server profile. If you
create an application server from the administrative tools, you will not get the
samples installed automatically. For information about the samples available
and how to install them, see the Accessing the Samples topic under Learn
about WebSphere Applications in the Information Center.
 Chapter 3. Getting started with profiles 91

2. Start the deployment manager.

3. Open the deployment manager administrative console.

4. Select System Administration → Nodes

5. Click Add Node.

6. Select Managed node and click Next.

7. Enter the host name and SOAP connector port specified when you created
the application server profile. See Figure 3-13 on page 70 and Figure 3-14 on
page 71.

If you want to keep the sample applications and any other applications you
have installed, check the Include applications box. If this is a newly created
application server profile, it will contain the sample applications, so be sure to
check this box if you want to keep the samples.

If you have created a service integration bus on the server, you can opt to
have it included in the managed server as well. By default, you do not have a
service integration bus in a newly created application profile. If you have
created a bus, and choose to include it, the name must be unique in the cell.

See Figure 3-32 on page 94.
92 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-31 Adding a standalone application profile to a cell

Click OK.
 Chapter 3. Getting started with profiles 93

8. If the node is a Windows node, you have the opportunity to register the new
node agent as a Windows service, as shown in Figure 3-32. Make your
selection and click OK.

Figure 3-32 Run a node agent as a Windows service

The federation process stops the application server. It creates a new node
agent for the node, and adds the node to the cell. The application server
becomes a managed server in the cell. It then starts the node agent, but not
the server.

9. You can now display the new node, node agent, and application server from
the console. You can also start the server from the console.

At the completion of the process:

� The profile directory for the application server still exists and is used for the
application server.

� The old cell name for the application server has been replaced with a profile
directory with the cell name of the deployment manager.

<profile_home>/config/cells/<dmgr_cellname>/

� A new entry in the deployment manager profile directory has been added for
the new node.

<dmgr_profile_home>/config/cells/<dmgr_cellname>/nodes/<federated
node>

� An entry for each node in the cell is added to the application server profile
configuration. Each node entry contains the serverindex.xml file for the node.

<profile_home>/config/cells/<dmgr_cellname>/nodes/<federated node>
94 WebSphere Application Server V6.1: System Management and Configuration

In turn, an entry for the new node is added to the nodes directory for each
node in the cell with a serverindex.xml entry for the new node.

3.4 Creating profiles on z/OS systems
Configuring a WebSphere Application Server for z/OS consists of setting up the
configuration directory for the environment and making any required changes to
the z/OS target system that pertain to the particular application serving
environment. Configuring these application serving environments after product
installation requires a fair amount of planning and coordination. For example,
when defining multiple deployment managers or application servers on a single
machine or LPAR, you need to ensure that the ports and names you select for
each are unique and the z/OS environment variables, generated jobs, and so on,
were all set up properly. We strongly recommend you spend time planning the
installation and if possible, practice by configuring a stand-alone application
server using the default options.

For more information about planning for installation, WebSphere Application
Server V6.1: Planning and Design, SG24-7305

There are three main ways to create profiles on z/OS:

� Using the WebSphere Application Server for z/OS Profile Management Tool
(zPMT) available with the Application Server Toolkit (new with V6.1)

zPMT is a dialog tool that runs in the Application Server Toolkit. It is an
Eclipse plug-in that allows you to do the initial setup of WebSphere
Application Server for z/OS cells and nodes. It provides the same functionality
as the ISPF dialogs plus additional features to help you.

The zPMT itself does not create the cells and nodes; however, it creates
batch jobs, scripts, and data files that you can use to perform WebSphere
Application Server for z/OS customization tasks. These jobs, scripts, and data
files form a customization definition on your workstation, which is then
uploaded to z/OS where you submit the jobs. The zPMT is used to create
profiles and cannot be used to perform functions like delete or list profiles.
Only the manageprofiles command-line script interface can perform these
functions.

Note: In this IBM Redbook, we will only talk about creating profiles using
zPMT and the manageprofiles command-line interface since the ISPF dialogs
are deprecated and will be removed in a future release.
 Chapter 3. Getting started with profiles 95

� Using the ISPF dialogs

As mentioned above, the ISPF customization dialogs are deprecated and will
be removed in a future release, although you can still set up your profile
through ISPF dialogs in V6.1. On V6.1, the windows have the same interface
as on V6.0 with only few changes to accommodate the new V6.1 functions.

� Using the manageprofiles script interface

Creating a cell profile
In this section, we are going to explain how to use the zPMT to generate the jobs,
scripts, and data files you need to generate a cell consisting of a deployment
manager and a federated application server.

Review the documentation:

The WebSphere Application Server information center contains planning
topics for each WebSphere Application Server package that is tailored to each
platform. This section will give you a high level look at the planning tasks you
will need to perform.

If you are planning a WebSphere Application Server for z/OS environment, we
strongly suggest that you review the following:

For more information and examples of defining a naming convention for
WebSphere for z/OS, see the following:

� WebSphere z/OS V6 -- WSC Sample ND Configuration, found at:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10
0653

To go with this document, a spreadsheet has been developed that will help
you create and document your names. This spreadsheet can be
downloaded from this same URL. Many of the values you will be asked to
use in the zPMT tool can be planned using this spreadsheet.

For information about differences you will find in V6.1:

� WebSphere for z/OS V6.1 - New Things Encountered During
Configuration, found at:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10
0781
96 WebSphere Application Server V6.1: System Management and Configuration

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781

Using zPMT requires that you have the Application Server Toolkit for V6.1
installed. For more information about how to download and install the Application
Server Toolkit, see the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/tins_astinstall.html

Through the zPMT, you have the following options:

� Create an application server profile

Generates the customization jobs to create a z/OS stand alone application
server.

� Create a cell profile (deployment manager profile and federated application
server)

Generates the customization jobs to create a z/OS deployment manager and
a federated node that contains an application server. This option only exists in
the zPMT.

� Create a deployment manager profile

Generates the customization jobs to create a z/OS deployment manager cell
without a federated application server.

� Federate an application server to a cell

Generates the customization jobs to federate an existing stand alone z/OS
application server into an existing network deployment cell.

� Create a managed (custom) node

Generates the customization jobs to create a z/OS managed node and
federate it into an existing network deployment cell.

All these options are also available through the ISPF Dialogs except the z/OS cell
(deploy manager and application server) that is unique to zPMT.
 Chapter 3. Getting started with profiles 97

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/tins_astinstall.html

In this section, we are going to show how to use zPMT to create a z/OS cell
(deploy manager and application server). We chose this option because it will
basically go through all the steps you will find on the other options. Figure 3-33
on page 98 illustrates the flow you will go through in order to generate the jobs for
this option.

Figure 3-33 zPMT basic flow

To create the profile, do the following:

1. Open the Application Server Toolkit and select Window → Preferences.

2. From the Preferences window, expand Server category and select
WebSphere for z/OS.

3. Click on the Create button (on the top right corner).

The Welcome window for the Profile Management Tool will open (Figure 3-34
on page 99). Note that this window contains a link to the WebSphere
Application Server V6.1 Information Center.

zPMT Dialogs
(Application Server Toolkit)

Daemon

CR

Node Agent

CR

AppServer

CR SR

Node

DMGR

CR A

Node

Cell

Directory structure
created and populated
with XML and
properties files

Define environment
variables zPMT options according

to the installation selected:
System Locations

Server Customization
Etc.
…

CNTL

DATA

Generated JCL
jobs and scripts,
customized with
input from zPMT

Instructions: BBOCCINS

JCL start procedures
98 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-34 Creating a profile: zPMT welcome window

Click Next.
 Chapter 3. Getting started with profiles 99

4. Select the appropriate configuration in the next pane (Figure 3-35 on
page 100). In this example, we will be creating a cell to illustrate the zPMT
utilization.

Figure 3-35 Creating a profile: Environment selection window

Select z/OS cell (deploy manager and application server) and click Next.

5. The next window (Figure 3-36 on page 101) contains the following fields:

– Customization definition name: Used to specify the customization profile
you are about to create. This name is not transported to your host system.

– Customization definition directory: The location on your workstation where
the CNTL and DATA files will be stored, and from which they will be
uploaded to your host system.

– Response file path name: Allows you to specify a saved file with values
from a previously created configuration. Doing this populates the fields
throughout the windows with the values that are contained in the response
file. This field is optional. Since it is the first time you will be creating a
profile, you probably do not have this file. A response file is written each
time a z/OS customization definition is created and its name is the
customization definition name itself + .responseFile created under the root
directory for the customization definition. Normally, you should specify a
response file from a customization definition of the same type as you are
about to define. However, a response file from a similar customization type
can be used to pre-load most of the default values.
100 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-36 Creating a profile: customization name and location window

After completing the required fields, click Next.

6. The next window (Figure 3-37 on page 102) asks you to specify a high level
qualifier for the target z/OS data sets that will contain the generated jobs and
instructions.
 Chapter 3. Getting started with profiles 101

Figure 3-37 Creating a profile: target data sets window

The high level qualifier can be composed of multiple qualifiers up to 39
characters. When a customization profile is uploaded on the target z/OS
system, the generated jobs and files are written on a pair of data sets. The
same data sets can be reused for a future installation; however, we strongly
recommend you create a new pair of data sets for every new profile
installation. A good planning and naming convention is crucial when defining
this type of information. As a best practice, try to set the high level qualifier
according to the version and release of WebSphere Application Server for
z/OS, the task you are performing, and the cell (and, in some cases, the node
name) you are configuring.

For example, on a stand-alone installation for a cell named ITSOCELL, you
could use the following qualifier:

SYSPLEX1.WAS61.ITSOCELL.APPSERV

In this case, the following data sets will be created when the customization
profile is uploaded to the target z/OS system:

SYSPLEX1.WAS61.ITSOCELL.APPSERV.CNTL
SYSPLEX1.WAS61.ITSOCELL.APPSERV.DATA

The CNTL data set is a partitioned data set with a fixed block 80-byte records
that keeps the customization jobs. The DATA data set is a partitioned data set
as well, but with variable length data to contain the other customization data.

After completing the HLQ field, click Next.

Note: Once the customization profile is created, the data set names cannot be
changed, since all jobs are based on these data set names.
102 WebSphere Application Server V6.1: System Management and Configuration

7. The next window (Figure 3-38 on page 103) contains the fields to configure
common groups and users.

Figure 3-38 Creating a profile: Configure common groups and users window
 Chapter 3. Getting started with profiles 103

You will find five main sections that you need to fill out on this window:

– WebSphere Application Server Configuration Group Information: Used to
specify the group name for the WebSphere Application Server
administrator user ID and all server user IDs.

– WebSphere Application Server file system owner Information: Specify the
user ID that owns the file system.

– WebSphere Application Server Servant Group Information: Used to
connect all servant user IDs to this group. You can use it to assign
subsystem permissions, such as DB2 authorizations, to all servants in the
security domain.

– WebSphere Application Server Local User Group Information: Specify the
local client group and unauthorized user IDs.This group provides minimal
access to the cell.

– WebSphere Application Server user ID home directory: Specify a new or
existing z/OS file system directory in which home directories for
WebSphere Application Server for z/OS user IDs will be created by the
customization process. Note that this directory does not need to be shared
among z/OS systems in a WebSphere Application Server cell.

After completing the required fields, click Next.

8. The next window asks for information about the z/OS system.

– System name: The system name of the target z/OS system.

– Sysplex name: The sysplex name of the target z/OS system.

– PROCLIB data set name: The PROCLIB data set where the WebSphere
Application Server for z/OS cataloged procedures are to be added.

– WebSphere product data set high level qualifier: This name prepends your
system libraries, for example, WAS61.SBBOLOAD. A multi-level high level
qualifier can be specified as the WebSphere product data set high level
qualifier.

Note: If you are not sure of the System and Sysplex names for your
target z/OS system, you can use the console command D SYMBOLS
on the target z/OS system to display them.

Note: You are no longer required to enter a PARMLIB name. It was a
required field on ISPF windows for Version 6.0.
104 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-39 Creating a profile: System Locations: Names and data set qualifier window

After completing the required fields, click Next.
 Chapter 3. Getting started with profiles 105

9. The next window asks for the product data set location information (see
Figure 3-40). In this window, you specify the product file system directory and
the data sets.

In Version 6.1, most LPA-resident modules are merged into a single member
in SBBOLOAD, which is loaded into common storage for each node if
SBBOLOAD is not in LPA. The remaining module in SBBOLPA is BBORTS61,
the CTRACE support module for WebSphere Application Server Version 6.1,
which should always be loaded into LPA.

Figure 3-40 zPMT - System locations
106 WebSphere Application Server V6.1: System Management and Configuration

Important considerations:

– The SBBOLD2 data set is the WebSphere Application Server for z/OS
load module library that you installed through SMP/E. It has members that
should go into the link list, or into STEPLIB. Do not place them in LPA.

– The SBBOEXEC data set contains the WebSphere Application Server for
z/OS CLIST library.

– The SBBOMSG data set contains the WebSphere Application Server for
z/OS message skeletons for language translation.

– The WebSphere Application Server product file system directory is the
name of the directory where WebSphere Application Server for z/OS
product files reside after installation.

– The “run WebSphere Application Server from STEPLIB” check box
specifies whether to load WebSphere Application Server for z/OS load
modules from STEPLIB or from the link pack area and link list. The load
modules must be loaded from STEPLIB if you have another instance of
WebSphere Application Server for z/OS (Version 4 or later) in the system
link pack area or link list.

After completing the required fields, click Next.

10.The next window allows you to specify the long and short names to use for the
components of the profile.

– Cell short name: Identifies the cell to z/OS facilities, such as SAF.

– Cell long name: It is the primary external identification of this WebSphere
Application Server for this z/OS cell. This name identifies the cell as
displayed through the administrative console.

– Deployment manager short name: It is a name that identifies the node to
z/OS facilities, such as SAF.

– Deployment manager long name: It is the primary external identification of
this WebSphere Application Server for the z/OS node. This name
identifies the node as displayed through the administrative console.

Note: LPA is a major element of MVS/ESA™ virtual storage below the 16
MB line. The storage areas that make up the LPA contain all the common
reentrant modules shared by the system. The LPA provides economy of
real storage by sharing one copy of the modules, protection because LPA
code cannot be overwritten even by key 0 programs, and reduced path
length, because the modules can be branched to. The LPA is duplicated
above the 16 MB line as the extended link pack area (ELPA).
 Chapter 3. Getting started with profiles 107

– Deployment manager server short name: Identifies the server to z/OS
facilities, such as SAF. The server short name is also used as the server
JOBNAME.

– Deployment manager server long name: It is the name of the application
server and the primary external identification of this WebSphere
Application Server for the z/OS server. This name identifies the server as
displayed through the administrative console.

– Node agent and application server nodes short name: Identifies the node
to z/OS facilities, such as SAF.

– Node agent and application server nodes long name: It is the primary
external identification of this WebSphere Application Server for the z/OS
node.This name identifies the node as displayed through the
administrative console.

– Node agent server short name: Identifies the node agent to z/OS facilities,
such as SAF. The server short name is also used as the node agent
JOBNAME.

– Node agent server long name: It is the name of the node agent and the
primary external identification of this WebSphere Application Server for
the z/OS node agent.

– Application server short name: Identifies the server to z/OS facilities, such
as SAF. The server short name is also used as the server JOBNAME.

– Application server long name: It is the name of the application server and
the primary external identification of this WebSphere Application Server
for the z/OS server. This name identifies the server as displayed through
the administrative console.

– Deployment manager cluster transition name: The WLM application
environment (WLM APPLENV) name for the deployment manager. If this
is a server that is converted into a clustered server, this name becomes
the cluster short name. The cluster short name is the WLM APPLENV
name for all servers that are of the same cluster.

– Application server cluster transition name: The WLM application
environment (WLM APPLENV) name for the application server. If this is a
server that is converted into a clustered server, this name becomes the
cluster short name. The cluster short name is the WLM APPLENV name
for all servers that are of the same cluster.

After completing the required fields, click Next.

11.The next window (Figure 3-41 on page 109) contains the file system
information for your z/OS system. The file system can be either HFS or zFS. It
is used to hold WebSphere Application Server configuration information. You
108 WebSphere Application Server V6.1: System Management and Configuration

will need to fill out this window twice, once for the deployment manager file
system configuration and a second time for the application server.

Figure 3-41 zPMT - Configuration file system

– Mount point: The read/write HFS directory where application data and
environment files are written. The customization process creates this
mount point if it does not already exist.

– Name: The file system data set you will create and mount at the specified
mount point above.
 Chapter 3. Getting started with profiles 109

– Volume, or '*' for SMS: Specify either the DASD volume serial number to
contain the above data set or "*" to let SMS select a volume. Using "*"
requires that SMS automatic class selection (ACS) routines be in place to
select the volume. If you do not have SMS set up to handle data set
allocation automatically, list the volume explicitly.

– Primary allocation in cylinders: The initial size allocation for the
configuration file system data set. In the application server, the total space
needed for this data set increases with the size and number of the
installed applications.The minimum suggested size is 250 cylinders
(3390).

– Secondary allocation in cylinders: The size of each secondary extent. The
minimum suggested size is 100 cylinders.

– File System type: Select to allocate and mount your configuration file
system data set using HFS or zFS.

After completing the required fields for the deploy manager configuration file
system, click Next.

12.Complete the required fields for the application server configuration file
system and click Next.

13.The next window contains the following fields. Complete the required
information to set up the log stream.

– Error log stream name: It is the name of the WebSphere error log stream
you will create.

– Trace Parmlib member suffix: It is the value that is appended to CTIBBO to
form the member name for the CTRACE parmlib member.

After completing the required fields, click Next.

14.The next window (Figure 3-42 on page 111) allows you to enter the required
information for the application server and deployment manager home
directory.
110 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-42 zPMT - Defining App_Server_Root

– Deploy manager configuration file system mount point: Specifies the
Read/write file system directory where the application data and
environment files are written. This field is not writable here, but was
specified earlier on the “System Environment: Configuration file system
information” window.
 Chapter 3. Getting started with profiles 111

– Deployment Manager directory path name relative to mount point: It is the
relative path name of the directory within the configuration file system in
which the Deployment Manager configuration resides.

– Application server configuration file system mount point: Specifies the
Read/write file system directory where the application data and
environment files are written. This field is not writable here, but was
specified earlier on the “System Environment: Configuration file system
information” window.

– Application server directory path name relative to mount point: It is the
relative path name of the directory within the configuration file system in
which the application server configuration resides.

– Admin asynch operations procedure name: Specifies the JCL procedure
name of a started task that is launched by way of the START command by
application servers or node agents to perform certain asynchronous
administrative operations.

– Asynchronous Administration Task User ID: This user ID is used to run the
asynchronous administration operations procedure. It must be a member
of the WebSphere Application Server configuration group.

– Asynchronous Administration Task UID: It is the UNIX System Services
(UID) number for the Asynchronous Administration Task User ID.

After completing the required fields, click Next.

15.The next window allows you to select the applications to deploy on the
environment that you are creating. We recommend that you select at least the
administrative console application.

Your choices are:

– Administrative console

– Default application

– Sample applications

After selecting the applications, click Next.

16.The next window allows you to define the job names, procedure names, and
user IDs to use for each process.

– Deploy manager controller process: The job name is specified in the
MVS™ START command JOBNAME parameter, associated with the
control region. This is the same as the server short name and it cannot be
changed during customization. The procedure name is the member name
in your procedure library to start the control region. The User ID is the user
ID associated with the control region.
112 WebSphere Application Server V6.1: System Management and Configuration

– Deploy manager servant process: Specify the job name used by WLM to
start the servant regions. This is set to the server short name, followed by
the letter "S", and it cannot be changed during customization. The
procedure name is the member name in your procedure library to start the
servant regions. The User ID is the user ID associated with the servant
regions.

– Application server controller process: Specify the name of the member in
your procedure library to start the control region. The User ID is the user
ID associated with the control region.

– Application server controller adjunct process: Specify the name of
member in your procedure library that starts the control region adjunct.
The User ID is the user ID associated with the control region adjunct.

– Application server servant process: Specify the name of member in your
procedure library that starts the servant regions. The jobname used by
WLM to start the servant regions. This is set to the server short name,
followed by the letter "S", and it cannot be changed during
customization.The User ID is the user ID associated with the servant
regions

After completing the required fields, click Next.

17.The next window allows you to specify the ports to use for each process.
Once again, good planning is very important to avoid port conflicts, so be sure
you have all values you need in order to fill out this window. The required
fields in this window are:

– Deployment manager

• Node host name

• SOAP JMX connector port

• Cell Discovery Address port

• ORB Listener host name

• ORB port

• ORB SSL port

• HTTP transport host name

• Administrative console port

• Administrative secure console port

• High availability manager communication port

– Node agent

• JMX SOAP Connector port

• ORB port
 Chapter 3. Getting started with profiles 113

• ORB SSL port

• High Availability Manager Communication Port

• Node Discovery Port

• Node Multicast Discovery Port

• Node IPv6 Multicast Discovery Port

– Application server

• JMX SOAP Connector port

• ORB port

• ORB SSL port

• HTTP port

• HTTP SSL port

• High Availability Manager Communication Port

• Service Integration port

• Service Integration Secure port

• Service Integration MQ Interoperability port

• Service Integration MQ Interoperability Secure port

• Session Initiation Protocol

• Session initiation Secure Protocol

After completing the required ports, click Next.

18.The next window allows you to specify the location daemon settings. The
location daemon service is the initial point of client contact in WebSphere
Application Server for z/OS. The server contains the CORBA-based location
service agent which places sessions in a cell. All RMI/IIOP IORs (for example,
enterprise beans) establish connections to the location service daemon first,
then forward them to the target application server.

– Daemon home directory: It is the directory in which the location service
daemon resides. This is set to the configuration file system mount
point/Daemon and cannot be changed.

– Daemon job name: Specifies the jobname of the location service daemon,
specified in the JOBNAME parameter of the MVS start command used to
start the location service daemon. When configuring a new cell, be sure to
choose a new daemon jobname value. A server automatically starts the
location service daemon if it is not already running.

– Procedure name: It is the member name in your procedure library to start
the location service daemon.
114 WebSphere Application Server V6.1: System Management and Configuration

– User ID: Specify the user ID associated with the location service daemon.

– UID: It is the user identifier associated with this user ID. UIDs must be
unique numbers within the system.

– IP name: It is the fully qualified IP name, registered with the Domain Name
Server (DNS), that the location service daemon uses. The default is your
node host name. In a sysplex, you should consider using a virtual IP
address (VIPA) for the location service daemon IP name. Select the IP
name for the location service daemon carefully. You can choose any name
you want, but, once chosen, it is difficult to change, even in the middle of
customization.

– Listen IP: It is the address at which the daemon listens. Select either * or a
dotted IP address for this value.

– Port number: Specify the port number on which the location service
daemon listens.

– SSL port: The port number on which the location service daemon listens
for SSL connections.

– Register daemon with WLM DNS check box: If you use the WLM DNS
(connection optimization), you must register your location service daemon.
Otherwise, do not register your location service daemon. Only one
location service daemon per LPAR can register its domain name with
WLM DNS; if you have multiple cells in the same LPAR and register more
than one location service, it will fail to start.

After completing the required fields, click Next.

19.The next window allows you to enter SSL configuration values.

– Certificate authority keylabel: It is the name that identifies the certificate
authority (CA) to be used in generating server certificates.

– Generate certificate authority (CA) certificate check box: It is selected to
generate a new CA certificate. Do not select this option to have an existing
CA certificate generate server certificates.

– Expiration date for certificates: It is used for any X509 Certificate Authority
certificates created during customization, as well as the expiration date for
the personal certificates generated for WebSphere Application Server for
z/OS servers. You must specify this even if you have not selected
Generate Certificate Authority (CA) certificate.

Note: Choose the IP name and port number carefully since it is difficult
to change, even in the middle of customization.
 Chapter 3. Getting started with profiles 115

– Default SAF keyring name: It is the default name given to the RACF®
keyring used by WebSphere Application Server for z/OS. The keyring
names created for repertoires are all the same within a cell.

– Enable SSL on location service daemon check box: Select if you want to
support secure communications using Inter-ORB Request Protocol (IIOP)
to the location service daemon using SSL. If selected, a RACF keyring will
be generated for the location service daemon to use.

After completing the required SSL information, click Next.

20.The next window allows you to select the user registry to be used for
administrative security. You can choose from the following options:

– z/OS security product option: This option uses the z/OS system's SAF
compliant security product, such as IBM RACF or equivalent, to manage
WebSphere Application Server identities and authorization according to
the following:

• The SAF security database will be used as the WebSphere user
repository.

• SAF EJBROLE profiles will be used to control role-based authorization,
including administrative authority.

• Digital certificates will be stored in the SAF security database.

– WebSphere Application Server security option: The WebSphere
Application Server administrative security option is used to manage the
Application Server identities and authorization according to the following:

• A simple file-based user registry will be built as part of the
customization process.

• Application-specific role binds will be used to control role-based
authorization.

• The WebSphere Application Server console users and groups list will
control administrative authority.

• Digital certificates will be stored in the configuration file system as
keystores.

Note: Select the z/OS security product option if you are planning to use
the SAF security database as your WebSphere Application Server
registry or if you plan to set up an LDAP or custom user registry whose
identities will be mapped to SAF user IDs for authorization checking.
For this security option, you must decide whether to set a security
domain name, and choose an administrator user ID and an
unauthenticated (guest) user ID.
116 WebSphere Application Server V6.1: System Management and Configuration

– No security

Although it is not recommended, you may disable administrative security. If
you choose this security option, there are no other choices to make. Your
WebSphere Application Server environment will not be secured until you
configure and enable security manually. You can enable security manually
later via the administrative console or using Jython scripts.

Select an option and click Next.

21.The next window you see will depend on the security option you choose.

– z/OS product option

Figure 3-43 shows the parameters to enter if you chose to use a z/OS
product for security.

Figure 3-43 Creating a profile: Using z/OS security

Note: Choose this option if you plan to use an LDAP or custom user
registry without mapping to SAF user IDs. (The file-based user registry
is not recommend for production use.)
 Chapter 3. Getting started with profiles 117

• Security domain identifier: (Optional) Used to distinguish between
APPL or EJBROLE profiles based on security domain name; provides
an alphanumeric security domain name of one to eight characters.
Internally, this sets SecurityDomainType to the string cellQualified. All
servers in the cell will prepend the security domain name you specify to
the application-specific J2EE role name to create the SAF EJBROLE
profile for checking. The security domain name is not used, however, if
role checking is performed using WebSphere Application Server for
z/OS bindings. The security domain name is also used as the APPL
profile name and inserted into the profile name used for CBIND checks.
The RACF jobs that the Customization Dialog generates create and
authorize the appropriate RACF profiles for the created nodes and
servers. If you do not want to use a security domain identifier, leave this
field blank.

• WebSphere Application Server administrator user ID: The initial
WebSphere Application Server administrator. It must have the
WebSphere Application Server configuration group as its default UNIX
System Services group. The UNIX System Services UID number for
the administrator user ID is specified here, and must be a unique
numeric value between 1 and 2,147,483,647.

• WebSphere Application Server unauthenticated user ID: Associated
with unauthenticated client requests. It is sometimes referred to as the
"guest" user ID. It should be given the RESTRICTED attribute in RACF,
to prevent it from inheriting UACC-based access privileges. The UNIX
System Services UID number for the user ID is specified here and is
associated with unauthenticated client requests. The UID value must
be unique numeric values between 1 and 2,147,483,647.

Click Next.

– WebSphere Application Server security option

On this window (Figure 3-44), specify a user name and password to log in
to the administrative console and perform administrative tasks. The
sample applications require a user and password as well.
118 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-44 Creating a profile: Using WebSphere family security

Click Next.

22.The next window allows you to create a Web server definition for an existing
Web server. This step is not required for your configuration and can be easily
done after the run time environment is up and running by using the
administrative console. You can only have one Web server defined on a
stand-alone application server.

Click Next.
 Chapter 3. Getting started with profiles 119

23.The next window (Figure 3-45) allows you to tailor the JCL for the
customization jobs. Enter a valid job statement for your installation on this
window. The profile creation process will update the job name for you in all the
generated jobs, so you need not be concerned with that portion of the job
statement. If continuation lines are needed, replace the comment lines with
continuation lines.

Figure 3-45 Creating a profile: job statement definition

After you are done with this window, click Next.

24.The last window shows a short summary of the customization, including
profile type and where the generated jobs will be stored. To change the
characteristics of this profile, click the Back button; otherwise, click Create to
generate your z/OS Customization jobs and a status window is shown after
clicking Create.

When zPMT is done, it will display a summary window (Figure 3-46) that
indicates whether the jobs were created successfully or not. If the jobs were
not created, a log file containing failure information will be identified. If
successful, the next step in the z/OS customization process is to upload these
jobs and the associated instructions to a pair of z/OS partitioned data sets. To
do this, click Finish to return to the zWebSphere preference window and
select Upload.
120 WebSphere Application Server V6.1: System Management and Configuration

Figure 3-46 Creating a profile: Customization creation summary window

25.Now, on the main window, select the profile you have just create and then
click the Upload... button.

In the upload customization definition window (Figure 3-47 on page 122),
enter the target z/OS system. This must be fully qualified or the upload will
fail.

Use the Allocate target z/OS data sets check box to specify whether to
allocate the data sets if they do not exist (box check). If the data sets exist and
are to be reused, clear the box.

You will see a progress information window while the upload is occurring.
 Chapter 3. Getting started with profiles 121

Figure 3-47 Creating a profile: Upload customization definition window

26.Once the customization profile is uploaded, follow the instructions in the
BBOSSINS member of the CNTL data set. You can view this data set on the
host, or select the configuration and use the View... button.

These instructions will help you determine what jobs to run, the order to run
them in, and the expected results. It will also tell you how to start the
environment once you are done. From this point, the process is identical to
that you would use with the ISPF Customization Dialog process.
122 WebSphere Application Server V6.1: System Management and Configuration

3.5 Managing profiles
Each profile you create is registered in a profile registry:

<was_home>/properties/profileRegistry.xml

You have already seen how profiles are created with the Profile Management
Tool. At the heart of this wizard is the manageprofiles command. This command
provides you with the means to do normal maintenance activities for profiles. For
example, you can call this command to create profiles natively or silently, list
profiles, delete profiles, validate the profile registry, and other functions.

3.5.1 Using the manageprofiles command
The manageprofiles command can be found in the <was_home>/bin directory.

Syntax
Use the following syntax for the manageprofiles command:

� For Windows, use manageprofiles.bat -mode -arguments
� For UNIX, use manageprofiles.sh -mode -arguments

The following modes in Table 3-5 are available.

Table 3-5 manageprofiles modes

Mode Use

-create: Creates a new profile.

-augment Augments the given profile using the given profile template.

-delete Deletes a profile.

-unaugment: Unaugments the profile.

-deleteAll Deletes all registered profiles.

-listProfile Lists the profiles in the profile registry.

-getName Returns the name of the profile at the path specified.

-getPath Returns the path of the profile name specified.

-validateRegistry Validates the profile registry and returns a list of profiles
that are not valid.

-validateAndUpdateRegistry Validates the profile registry and lists the non-valid profiles that it purges.

-getDefaultName Returns the name of the default profile.
 Chapter 3. Getting started with profiles 123

The following two examples show the results of manageprofiles -<mode> - help
and manageprofiles -listProfiles modes:

� Enter manageprofiles -<mode> -help for detailed help on each mode. See
Example 3-2 for an example of the manageprofiles -create -help
command.

Example 3-2 Getting help for the manageprofiles command

C:\Program Files\IBM\WebSphere\AppServer\bin>manageprofiles -create -help
The following command line arguments are required for this mode.
Command-line arguments are case sensitive.
-create: Creates a new profile. Specify -help -create -templatePath <path> to
get template-specific help information.
-templatePath: The fully qualified path name of the profile template that is
located on the file system. The following example selects a template:
-templatePath <app_server_home>/profileTemplates/<Template_name>
-profileName: The name of the profile.
-profilePath: The intended location of the profile in the file system.
The following command line arguments are optional, and have no default values.
Command-line arguments are case sensitive.
-isDefault: Make this profile the default target of commands that do not use
their profile parameter.

� Enter manageprofiles -listProfiles to see a list of the profiles in the
registry. The following is a sample output of -listProfiles:

C:\Program Files\IBM\WebSphere\AppServer\bin>manageprofiles -listProfiles
[Dmgr01, AppSrv01, Custom01, Custom02, Dmgr02]

3.5.2 Creating a profile

You can use the manageprofiles command to create profiles instead of using the
Profile Management Tool.

-setDefaultName Sets the default profile.

-backupProfile Back ups the given profile into a zip file.

-restoreProfile Restores the given profile from a zip file.

-response Manage profiles from a response file.

-help Shows help.

Mode Use
124 WebSphere Application Server V6.1: System Management and Configuration

For example, Example 3-3 shows the commands used to create an application
server named saserver1 on node sanodel in cell sacell1 on host
kcgg1d7.itso.ibm.com from the command line.

Example 3-3 Creating a profile with the manageprofiles command

cd $WAS_HOME\bin
{asuming WAS_HOME was set to some value, for example to “C:\Program
Files\IBM\WebSphere\AppServer”}
manageprofiles -create -profileName saserver1 -profilePath
C:\myWAS61Profiles\appSrvrProfiles\saserver1 -templatePath
$WAS_HOME\profileTemplates\default -nodeName sanode1 -cellName sacell1
-hostName kcgg1d7.itso.ibm.com

Creating a profile in silent mode
Profiles can also be created in silent mode using a response file. The command
to use is:

<profile_management_tool> -options <response_file> -silent

In this example, <profile_management_tool> is the command required to start
the Profile Management Tool. The command to start the wizard is
platform-specific and is located in <was_home>/bin/ProfileManagement. Choose
your platform command from Table 3-6.

Table 3-6 Platform-specific creation wizard

Profile templates: The profiles are created based on templates supplied with
the product. These templates are located in <was_home>/profileTemplates.
Each template consists of a set of files that provide the initial settings for the
profile and a list of actions to perform after the profile is created. Currently,
there is no provision for modifying these templates for your use, or for creating
new templates. When you create a profile using manageprofiles, you will need
to specify one of the following templates:

� default (for application server profiles)
� dmgr (for deployment manager profiles)
� managed (for custom profiles)
� cell (for cell profiles)

Platform (32-bit) Profile Management Tool command

Linux/HP-UX/Solaris/AIX pmt.sh

Windows pmt.bat
 Chapter 3. Getting started with profiles 125

Sample response files are stored in the <was_home>/bin/profileCreator
directory.

3.5.3 Deleting profiles
To delete a profile, you should do the following:

� If you are removing a custom profile or application server profile that has been
federated to a cell:

– Stop the application servers on the node.

– Remove the node from the cell using the administrative console or the
removeNode command. Removing a node does not delete it, but restores it
to its pre-federated configuration that was saved as part of the federation
process.

– Delete the profile using manageprofiles -delete.

– Use the manageprofiles -validateAndUpdateRegistry command to clean
the profile registry.

– Delete the <profile_home> directory.

� If you are removing an application server profile that has not been federated
to a cell:

– Stop the application server.

– Delete the profile using manageprofiles -delete.

– Use the manageprofiles -validateAndUpdateRegistry command to clean
the profile registry.

– Delete the <profile_home> directory.

� If you are removing a deployment manager profile:

– Remove any nodes federated to the cell using the administrative console
or the removeNode command. Removing a node does not delete it, but
restores it to its pre-federated configuration that was saved as part of the
federation process.

– Stop the deployment manager.

– Delete the profile using manageprofiles -delete.

– Use the manageprofiles -validateAndUpdateRegistry command to clean
the profile registry.

– Delete the <profile_home> directory.
126 WebSphere Application Server V6.1: System Management and Configuration

Deleting a profile with manageprofiles
To delete a profile, use the manageprofiles -delete command. The format is:

manageprofiles -delete -profileName <profile>

At the completion of the command, the profile will be removed from the profile
registry, and the run time components will be removed from the <profile_home>
directory with the exception of the log files.

If you have errors while deleting the profile, check the following log:

<was_home>/logs/manageprofile/<profile_name>_delete.log

For example, in Example 3-4, you can see the use of the manageprofiles
command to delete the profile named Node06.

Example 3-4 Deleting a profile using manageprofiles

C:\WebSphere\ND\profiles\Dmgr01\bin>manageprofiles -delete -profileName Node06
INSTCONFSUCCESS: Success: The profile no longer exists.

As you can see in Example 3-4, all seems to have gone well. But, as an
additional step to ensure the registry was properly updated, you can list the
profiles to ensure the profile is gone from the registry and validate the registry.
See Example 3-5.

Example 3-5 Verifying the delete profile results

C:\WebSphere\ND\profiles\Dmgr01\bin>manageprofiles -listProfiles
[Dmgr01, AppSrv01, AppSrv02, SamplesServer, WebServer2Node, DmgrSecure]

C:\WebSphere\ND\profiles\Dmgr01\bin> manageprofiles -validateAndUpdateRegistry
[]

3.6 Managing the processes
In a stand-alone server environment, you only have one process, the application
server, so it is clear how to stop and start the environment. But, when starting or
stopping a distributed server environment, it helps to do this in an orderly
manner. In some cases that we point out, the order is necessary. In others, it
simply makes good administrative sense.

Note: If there are problems during the delete, you can manually delete the
profile. For information about this, see the Deleting a profile topic in the
Information Center.
 Chapter 3. Getting started with profiles 127

3.6.1 Starting a distributed server environment
An orderly procedure for starting a distributed server environment involves the
following steps:

1. On the deployment manager machine:

a. Change the directory to the <profile_home>/bin directory of the Network
Deployment installation.

b. Use the startManager command to start the deployment manager.

If you are successful, you will see the process ID for the deployment
manager process displayed on the window. See Example 3-6.

Example 3-6 Starting the deployment manager from the command line

C:\myWAS61Profiles\dmgrProfiles\DmgrProfile1\bin>startmanager
ADMU0116I: Tool information is being logged in file
C:\myWAS61Profiles\dmgrProfiles\DmgrProfile1\logs\dmgr\startServer.log
ADMU0128I: Starting tool with the DmgrProfile1 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server dmgr open for e-business; process id is 1120

If there are any errors, check the log file for the dmgr process:

<profile_home>/logs/dmgr/SystemOut.log

2. On each node, do the following:

a. Change directory to the <profile_home>/bin directory for the application
server on that node.

b. Run the startNode command.

If successful, the node agent server process ID will be displayed on the
window, as shown in this sample:

C:\myWAS61Profiles\appSrvrProfiles\AppSrvProfile1\bin>startnode
ADMU0116I: Tool information is being logged in file
C:\myWAS61Profiles\appSrvrProfiles\AppSrvProfile1\logs\nodeagent\sta
rtServer.log
ADMU0128I: Starting tool with the AppSrvProfile1 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server nodeagent open for e-business; process id is 3356

If there are any errors, check the log file for the node agent process by typing
this command:

<profile_home>/logs/nodeagent/SystemOut.log
128 WebSphere Application Server V6.1: System Management and Configuration

c. Use the startServer command to start each of the application server
processes on the node.

d. Check the node status by running the serverStatus -all command.

3. Repeat step 2 on page 128 for each and every node associated with this
deployment manager.

3.6.2 Stopping the distributed server environment
The following is a logical sequence of steps to follow to stop a distributed server
environment:

1. On each node agent machine:

a. Use the stopServer command to stop each of the application server
processes on the node.

b. Use the stopNode command to stop the node agent process.

i. Change directory to the <profile_home>/bin directory for the
application server on that node.

ii. Run the stopNode command.

If successful, the message Server <node_agent> stop completed is
displayed on the console, as shown in this sample:

If there are any errors, check the log file for the node agent process:

<profile_home>/logs/dmgr/SystemOut.log

c. Check the node status by running the serverStatus -all command.

2. Repeat step 2 on page 128 for each and every node associated with this
deployment manager.

3. On the deployment manager machine:

a. Change directory to the <profile_home>/bin directory of the deployment
manager.

b. Use the stopManager command to stop the deployment manager (dmgr)
process.

If the procedure is successful, you will see a Server dmgr stop completed
message.

If there are any errors, check the log file for the dmgr process:

<profile_home>/logs/dmgr/SystemOut.log

Note: Stopping the deployment manager does not stop any node agents.
 Chapter 3. Getting started with profiles 129

3.6.3 Enabling process restart on failure
WebSphere Application Server does not have either:

� A nanny process to monitor whether the AdminServer process is running, and
restart it if the process has failed

� An AdminServer process to monitor whether each application server process
is running, and restart it if the process has failed

Instead, WebSphere Application Server uses the native operating system
functionality to restart a failed process. Refer to the sections below that discuss
your operating system.

Windows
The administrator can choose to register one or more of the WebSphere
Application Server processes on a machine as a Windows service during profile
creation, or after by using the WASService command. With this command,
Windows then automatically attempt to restart the service if it fails.

Syntax
Enter WASService.exe with no arguments to get a list the valid formats. See
Example 3-7.

Example 3-7 WASService command format

Usage: WASService.exe (with no arguments starts the service)
 || -add <service name>
 -serverName <Server>
 -profilePath <Server's Profile Directory>
 [-wasHome <Websphere Install Directory>]
 [-configRoot <Config Repository Directory>]
 [-startArgs <additional start arguments>]
 [-stopArgs <additional stop arguments>]
 [-userid <execution id> -password <password>]
 [-logFile <service log file>]
 [-logRoot <server's log directory>]
 [-encodeParams]
 [-restart <true | false>]
 [-startType <automatic | manual | disabled>]
 || -remove <service name>
 || -start <service name> [optional startServer.bat parameters]
 || -stop <service name> [optional stopServer.bat parameters]
 || -status <service name>
 || -encodeParams <service name>
130 WebSphere Application Server V6.1: System Management and Configuration

Be aware of the following when using the WASService command:

� When adding a new service, the -serverName argument is mandatory. The
serverName is the process name. If in doubt, use the serverstatus -all
command to display the processes. For a deployment manager, the
serverName is dmgr, for a node agent it is nodeagent, and for a server, it is
the server name.

� The -profilePath argument is mandatory. It specifies the home directory for
the profile.

� Use unique service names. The services are listed in the Windows Services
control window as:

IBM WebSphere Application Server V6.1 - <service name>

The convention used by the Profile Management Tool is to use the node name
as the service name for a node agent. For a deployment manager, it uses the
node name of the deployment manager node concatenated with dmgr as the
service name.

Examples
Example 3-8 shows using the WASService command to add the deployment
manager as a Windows service and sample successful output.

Example 3-8 Registering a deployment manager as a Windows service

C:\Program Files\IBM\WebSphere\AppServer\bin>WASService -add "Deployment Mgr"
-serverName dmgr -profilePath "C:\myWAS61Profiles\dmgrProfiles\DmgrProfile1
-restart true

Adding Service: Deployment Mgr
 Config Root: C:\myWAS61Profiles\dmgrProfiles\DmgrProfile1 -restart
true\config
 Server Name: dmgr
 Profile Path: C:\myWAS61Profiles\dmgrProfiles\DmgrProfile1 -restart true
 Was Home: C:\Program Files\IBM\WebSphere\AppServer\
 Start Args:
 Restart: 1
IBM WebSphere Application Server V6.1 - Deployment Mgr service successfully
added.
 Chapter 3. Getting started with profiles 131

Note that the service name added in Figure 3-48 on page 132 will be IBM
WebSphere Application Server V6.1, concatenated with the name you specified
for the service name.

Figure 3-48 New service

If you remove the service using the WASService -remove command, specify only
the latter portion of the name, as in Example 3-9.

Example 3-9 Removing a service

C:\Program Files\IBM\WebSphere\AppServer\bin>WASService -remove "Deployment
Mgr"

Remove Service: Deployment Mgr
Successfully removed service

The commands shown in Example 3-10 are used on a WebSphere Application
Server node to add the node agent and a server as Windows services.

Example 3-10 Registering WebSphere processes as Windows services

C:\Program Files\IBM\WebSphere\AppServer\bin>WASService -add CustomNode
-serverName nodeagent -profilePath
"C:\myWAS61Profiles\cstmProfiles\CstmProfile1 -restart true

Adding Service: CustomNode
 Config Root: C:\myWAS61Profiles\cstmProfiles\CstmProfile1 -restart
true\config
 Server Name: nodeagent
132 WebSphere Application Server V6.1: System Management and Configuration

 Profile Path: C:\myWAS61Profiles\cstmProfiles\CstmProfile1 -restart true
 Was Home: C:\Program Files\IBM\WebSphere\AppServer\
 Start Args:
 Restart: 1
IBM WebSphere Application Server V6.1 - CustomNode service successfully added.

C:\Program Files\IBM\WebSphere\AppServer\bin>WASService -add "Cserver1"
-serverName Cserver1 -proflePath "C:\myWAS61Profiles\cstmProfiles\CstmProfile1
-restart true
dding Service: Cserver1
 Config Root: C:\myWAS61Profiles\cstmProfiles\CstmProfile1 -restart
true\config
 Server Name: Cserver1
 Profile Path: C:\myWAS61Profiles\cstmProfiles\CstmProfile1 -restart true
 Was Home: C:\Program Files\IBM\WebSphere\AppServer\
 Start Args:
 Restart: 1
BM WebSphere Application Server V6.1 - Cserver1 service successfully
added.

UNIX and Linux
The administrator can choose to include entries in inittab for one or more of the
WebSphere Application Server V6.1 processes on a machine, as shown in
Example 3-11. Each such process will then be automatically restarted if it has
failed.

Example 3-11 Inittab contents for process restart

On deployment manager machine:
ws1:23:respawn:/usr/WebSphere/DeploymentManager/bin/startManager.sh

On node machine:
ws1:23:respawn:/usr/WebSphere/AppServer/bin/startNode.sh
ws2:23:respawn:/usr/WebSphere/AppServer/bin/startServer.sh nodename_server1
ws3:23:respawn:/usr/WebSphere/AppServer/bin/startServer.sh nodename_server2
ws4:23:respawn:/usr/WebSphere/AppServer/bin/startServer.sh nodename_server2

Note: When setting the action for startServer.sh to respawn in /etc/inittab, be
aware that init will always restart the process, even if you intended for it to
remain stopped. As an alternative, you can use the rc.was script located in
${WAS_HOME}/bin, which allows you to limit the number of retries.

The best solution is to use a monitoring product that implements notification of
outages and logic for automatic restart.
 Chapter 3. Getting started with profiles 133

z/OS
WebSphere for z/OS takes advantage of the z/OS Automatic Restart
Management (ARM) to recover application servers. Each application server
running on a z/OS system (including servers you create for your business
applications) are automatically registered with an ARM group. Each registration
uses a special element type called SYSCB, which ARM treats as restart level 3,
ensuring that RRS (It is a z/OS facility that provides two-phase sync point
support across participating resource managers) restarts before any application
server.

Some important things to consider when using automatic restart management:

� If you have automatic restart management (ARM) enabled on your system,
you might want to disable ARM for the WebSphere Application Server for
z/OS address spaces before you install and customize WebSphere
Application Server for z/OS. During customization, job errors might cause
unnecessary restarts of the WebSphere Application Server for z/OS address
spaces. After installation and customization, consider enabling ARM.

� If you are ARM-enabled and you cancel or stop a server, it will restart in place
using the armrestart command.

� It is a good idea to set up an ARM policy for your deployment manager and
node agents. For more information about how to change the ARM policies
please refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.zseries.doc/info/zseries/ae/cins_changearm.html

� If you start the location service daemon on a system that already has one, it
will terminate.

� Every other server will come up on a dynamic port unless the configuration
has a fixed port. Therefore, the fixed ports must be unique in a sysplex.

� If you issue STOP, CANCEL, or MODIFY commands against server
instances, be aware of how automatic restart management behaves
regarding WebSphere Application Server for z/OS server instances; Table 3-7
on page 135 depicts the behavior of ARM regarding WebSphere Application
Server for z/OS server instances.

Note: If you have an application that is critical for your business, you need
facilities to manage failures. z/OS provides rich automation interfaces, such as
automatic restart management, that you can use to detect and recover from
failures. The automatic restart management handles the restarting of servers
when failures occur.
134 WebSphere Application Server V6.1: System Management and Configuration

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/cins_changearm.html

Table 3-7 Behavior of ARM and WebSphere Application Server for z/OS server instances

For more information about how to activate the ARM, please refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/tins_activearm.html

Let us say you have activated ARM and want to check the status of address
spaces registered for automatic restart management; in order to get this
information, you need to:

1. Initialize all servers.

2. Issue one or both of the commands shown in Example 3-12.

Example 3-12 Displaying the status of address spaces registered for automatic restart
management

To display all registered address spaces (including the address spaces of
server instances), issue the command:

d xcf,armstatus,detail

To display the status of a particular server instance, use the display
command and identify the job name. For example, to display the status
of the Daemon server instance (job BBODMN), issue the following
command:

d xcf,armstatus,jobname=bbodmn,detail

For more information about how to use the display command, please refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_mvsdisplay.html

When you issue ARM behavior

STOP address_space It will not restart the address space.

CANCEL address_space It will not restart the address space.

CANCEL address_space, ARMRESTART It will restart the address space.

MODIFY address_space, CANCEL It will not restart the address space.

MODIFY address_space,
CANCEL,ARMRESTART

It will restart the address space.
 Chapter 3. Getting started with profiles 135

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/tins_activearm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_mvsdisplay.html

136 WebSphere Application Server V6.1: System Management and Configuration

Chapter 4. Administration basics

In this chapter, we introduce the WebSphere administrative console, command
line administration, and some basic administration tasks.

The topics we cover include:

� Introducing the WebSphere administrative console
� Securing the administrative console
� Working with the deployment manager
� Working with application servers
� Working with nodes
� Working with clusters
� Working with virtual hosts
� Managing applications
� Managing your configuration files

This IBM Redbook does not cover high availability, performance, scalability, or
the settings related to these topics. This includes dynamic caching, performance
monitoring, failover settings, and others. As you go through this chapter, keep in
mind that more information about these topics and settings can be found in the
following IBM Redbooks:

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

4

© Copyright IBM Corp. 2006. All rights reserved. 137

4.1 Introducing the WebSphere administrative console
The WebSphere administrative console is the graphical, Web-based tool that you
use to configure and manage an entire WebSphere cell. It supports the full range
of product administrative activities, such as creating and managing resources
and applications, viewing product messages, and so on.

In a stand-alone server environment, the administrative console is located on the
application server and can be used to configure and manage the resources of
that server only.

In a distributed server environment, the administrative console is located in the
deployment manager server, dmgr. In this case, the administrative console
provides centralized administration of multiple nodes. Configuration changes are
made to the master repository and pushed to the local repositories on the nodes
by the deployment manager. In order for the administrative console to run, the
dmgr server must be running. In order for the changes to the master repository to
be pushed to the nodes, the node agents must also be running.

The administrative console groups administrative tasks into the following
categories:

� Guided activities
� Servers
� Applications
� Resources
� Security
� Environment
� System administration
� Users and groups
� Monitoring and tuning
� Troubleshooting
� Service integration
� UDDI

4.1.1 Starting the administrative console
The way you access the administrative console is the same whether you have a
stand-alone server environment or a distributed server environment. However,
the location and how you start the necessary processes will vary.

Stand-alone server environment
In a single application server installation, the console is hosted on the application
server, so you must start the server in order to reach the console.
138 WebSphere Application Server V6.1: System Management and Configuration

To access the administrative console, do the following:

1. Make sure that application server, server1, is running by using this command:

– Windows: <profile_home>\bin\serverStatus -all

– UNIX and z/OS: <profile_home>/bin/serverStatus.sh -all

2. If the status of server1 is not STARTED, start it with the following command:

– On Windows: <profile_home>\bin\startServer server1

– On UNIX and z/OS: <profile_home>/bin/startServer.sh server1

3. Open a Web browser to the URL of the administrative console. The default
port is 9060 for HTTP and 9043 for HTTPS. This port can vary, depending on
the ports you specified when you created the application server profile.

http://<hostname>:9060/ibm/console
https://<hostname>:9043/ibm/console

<hostname> is your host name for the machine running the application server.

4. The administrative console loads and you are asked to log in.

Distributed server environment
If you are working with a deployment manager and its managed nodes, the
console is hosted on the deployment manager. You must start it in order to use
the console. To access the administrative console, do the following:

1. Make sure that deployment manager, dmgr, is running by using this
command:

– Windows: <dmgr_profile_home>\bin\serverStatus -all

– UNIX and z/OS: <dmgr_profile_home>/bin/serverStatus.sh -all

2. If the dmgr status is not STARTED, start it with the following command:

– On Windows: <dmgr_profile_home>\bin\startManager

– On UNIX and z/OS: <dmgr_profile_home>/bin/startManager.sh

3. Open a Web browser to the URL of the administrative console. The default
port is 9060 for HTTP and 9043 for HTTPS.

http://<hostname>:9060/admin
https://<hostname>:9043/admin

<hostname> is your host name for the machine running the deployment
manager process, dmgr.

4. The administrative console loads and you are prompted for your user ID and
password.
 Chapter 4. Administration basics 139

4.1.2 Logging in to the administrative console
The user ID specified during login is used to track configuration changes made
by the user. This allows you to recover from unsaved session changes made
under the same user ID, for example, when a session times out or the user
closes the Web browser without saving. The user ID for login depends on
whether WebSphere administrative security is enabled.

� WebSphere administrative security is not enabled.

You can enter any user ID, valid or not, to log in to the administrative console.
The user ID is used to track changes to the configuration, but is not
authenticated. You can also simply leave the User ID field blank and click the
Log In button.

� WebSphere administrative security is enabled.

You must enter a valid user ID and password that has been assigned an
administrative security role.

A user ID must be unique to the deployment manager. If you enter an ID that is
already in use and in session, you will receive the message Another user is
currently logged with the same User ID and you will be prompted to do one
of the following:

� Force the existing user ID out of session. You will be allowed to recover
changes that were made in the other user’s session.

� Wait for the existing user ID to log out or time out of the session.

� Specify a different user ID.

Recovering from an interrupted session
Until you save the configuration changes you make during a session, the
changes do not become effective. If a session is closed without saving the
configuration changes made during the session, these changes are remembered
and you are given the chance to pick up where you left off.

Note: Logging in without an ID is not a good idea if you have multiple
administrators.

Note: The message Another user is currently logged with the same User
ID appears if a previous session ended without a logout. For example, if the
user closed a Web browser during a session and did not log out first or if the
session timed out.
140 WebSphere Application Server V6.1: System Management and Configuration

When unsaved changes for the user ID exist during login, you are prompted to
do one of the following:

� Work with the master configuration

Selecting this option specifies that you want to use the last saved
administrative configuration. Changes made to the user's session since the
last saving of the administrative configuration will be lost.

� Recover changes made in a prior session

Selecting this option specifies that you want to use the same administrative
configuration last used for the user's session. It recovers all changes made by
the user since the last saving of the administrative configuration for the user's
session.

As you work with the configuration, the original configuration file and the new
configuration file are stored in a folder at:

<profile_home>/wstemp

Once you save the changes, these files are removed from the wstemp folder.

Each user who logs in has a folder created in wstemp. Even when there are no
unsaved changes, the folder will contain a preferences.xml file with the user
preference settings.

For information about how to change the default location, refer to the Changing
the location of temporary workspace files topic in the Information Center.
 Chapter 4. Administration basics 141

4.1.3 Changing the administrative console session timeout
You might want to change the session timeout for the administrative console
application. This is the time it takes for the console session to time out after a
period of idleness. The default is 30 minutes. To change the session timeout
value, do the following:

1. Copy the following script into a file. See Example 4-1.

Example 4-1 Jython script to change the console session expiration

dep = AdminConfig.getid("/Deployment:isclite/")
appDep = AdminConfig.list("ApplicationDeployment", dep)
sesMgmt = AdminConfig.list("SessionManager", appDep)

check if existing sesMgmt there or not, if not then create a new one, if
exist then modify it
if (sesMgmt == ""):
 # get applicationConfig to create new SessionManager
 appConfig = AdminConfig.list("ApplicationConfig", appDep)
 if (appConfig == ""):
 # create a new one
 appConfig = AdminConfig.create("ApplicationConfig", appDep, []
)
 # then create a new SessionManager using new Application Config
just created
 sesMgmt = AdminConfig.create("SessionManager", appConfig, [])
 else:
 # create new SessionManager using the existing
ApplicationConfig
 sesMgmt = AdminConfig.create("SessionManager", appConfig, [])
 #endElse
#endIf

get tuningParams config id
tuningParams = AdminConfig.showAttribute(sesMgmt, "tuningParams")
if (tuningParams == ""):
 # create a new tuningParams
 AdminConfig.create("TuningParams", sesMgmt, [["invalidationTimeout",
<timeout value>]])

else:
 #modify the existing one
 AdminConfig.modify(tuningParams, [["invalidationTimeout", <timeout
value>]])

#endElse
saving the configuration changes
AdminConfig.save()
142 WebSphere Application Server V6.1: System Management and Configuration

2. Change the <timeout value> on the two lines of this sample to the new
session expiration value. This number specifies the number of minutes the
console preserves the session during inactivity.

3. Save the file to any directory using, for example, the filename timeout.py.

4. Start the wsadmin scripting client from the
<was_home>/profiles/<profile_name>/bin directory.

Issue the following command.

wsadmin -f <path to jython file>/timeout.py

4.1.4 The graphical interface

The WebSphere administrative console has the following main areas:

� Taskbar
� Navigation tree
� Workspace, including the messages and help display areas.

Each area can be resized as desired. See Figure 4-1.

Figure 4-1 The administrative console graphical interface
 Chapter 4. Administration basics 143

Taskbar
The taskbar is the horizontal bar near the top of the console. The taskbar
provides the following actions:

� Logout logs you out of the administrative console session and displays the
Login page. If you have changed the administrative configuration since last
saving the configuration to the master repository, the Save page displays
before returning you to the Login page. Click Save to save the changes,
Discard to return to the administrative console, or Logout to exit the session
without saving changes.

� Help opens a new Web browser with detailed online help for the
administrative console. This is not part of the Information Center.

The taskbar display is controlled with the Show banner setting in the console
preferences. See “Setting console preferences” on page 146.

Navigation tree
The navigation tree on the left side of the console offers links for you to view,
select, and manage components.

Clicking a + beside a tree folder or item expands the tree for the folder or item.
Clicking a - collapses the tree for the folder or item. Double-clicking an item
toggles its state between expanded and collapsed.

The content displayed on the right side of the console, the workspace, depends
on the folder or item selected in the tree view.

The folders shown in Table 4-1 are provided for selection.

Table 4-1 Navigation tree options

Navigation tree
option

Description Standalone Deployment
Manager

Guided Activities Guided activities lead you through common
administrative tasks that require you to visit multiple
administrative console pages.

Yes Yes

Servers Enables configuration of application servers, clusters,
and external servers.

Limited Yes

Applications Enables installation and management of applications. Yes Yes

Resources Enables configuration of resources, including JMS
providers, asynchronous beans, caching, mail
providers, URL providers, and others.

Yes Yes
144 WebSphere Application Server V6.1: System Management and Configuration

Workspace
The workspace, on the right side of the console in Figure 4-1 on page 143,
allows you to work with your administrative configuration after selecting an item
from the console navigation tree.

When you click a folder in the tree view, the workspace lists information about
instances of that folder type, the collection page. For example, selecting Servers
→Application Servers shows all the application servers configured in this cell.
Selecting an item, an application server in this example, displays the detail page
for that item. The detail page can contain multiple tabs. For example, you might
have a Runtime tab for displaying the run time status of the item, and a
Configuration tab for viewing and changing the configuration of the displayed
item.

Messages are displayed at the top of the workspace, while help information is
displayed to the right.

Security Enables configuration and management of
WebSphere security, SSL, and Web services
security.

Limited Yes

Environment Enables configuration of hosts, replication domains,
environment variables, naming, and others.

Yes Yes

System
Administration

Enables configuration and management of nodes,
cells, console settings. This is also where you save
configuration changes.

Limited Yes

Users and
Groups

Enables creation and update of user and groups and
their administrative roles.

Yes Yes

Monitoring and
Tuning

Enables you to work with the Performance Monitor
Infrastructure (PMI), request metrics, and the Tivoli
Performance Viewer.

Yes Yes

Troubleshooting Enables you to check for and track configuration
errors and problems. This section contains messages
resulting from configuration changes and the run time
messages.

Yes Yes

Service
Integration

Enables you to work with the service integration bus. Yes Yes

UDDI Allows you to work with the private UDDI registry
functions.

Yes Yes

Navigation tree
option

Description Standalone Deployment
Manager
 Chapter 4. Administration basics 145

The display of help information can be controlled with the Show Descriptions
console preference setting.

Setting console preferences
The look of the administrative console can be altered by setting console
preferences. See Figure 4-2 on page 146.

Figure 4-2 Administrative console preferences

To set console preferences, select System Administration →Console
settings →Preferences in the navigation tree. You have the following options:

� Turn on WorkSpace Auto-Refresh specifies that the view automatically
refreshes after a configuration change. If it is not selected, you must reaccess
the page to see the changes.

� No Confirmation on Workspace Discard specifies that a confirmation window
be displayed if you elect to discard the workspace. For example, if you have
unsaved changes and log out of the console, you will be asked whether you
want to save or discard the changes. If this option is not selected and you
elect to discard your changes, you will be asked to confirm the discard action.

� Use default scope (administrative console node) sets the default scope to the
node of the administration console.
146 WebSphere Application Server V6.1: System Management and Configuration

� Show the help portlet displays the help portlet at right top.

� Enable command assistance notifications specifies whether you want to
enable integration with the Application Server Toolkit scripting tool.

� Log command assistance commands specifies whether to log all the
command assistance wsadmin data for the current user.

� Synchronize changes with Nodes synchronizes changes that are saved to the
deployment manager profile with all the nodes that are running.

Click the boxes to select which preferences you want to enable and click Apply.

4.1.5 Finding an item in the console
To locate and display items within a cell, do the following:

1. Select the associated task from the navigation tree. For example, to locate an
application server, select Servers →Application Servers.

2. Certain resources are defined at a scope level. If applicable, select the scope
from the drop-down. With V6.1, you can now display resources at all scopes.

3. Set the preferences to specify how you would like information to be displayed
on the page.
 Chapter 4. Administration basics 147

Select task
The navigation tree on the left side of the console contains links to console pages
that you use to create and manage components in the cell. To create a JDBC
provider, for example, expand Resources and then select the JDBC Providers
action. See Figure 4-3.

Figure 4-3 Working with the administrative console

Select a scope
After selecting an action, use the scope settings to define what information is
displayed. Not all actions will require a scope setting. See Figure 4-4.

Figure 4-4 Setting scope
148 WebSphere Application Server V6.1: System Management and Configuration

Configuration information is defined at the following levels: cell, cluster, node,
server, and application. The scope determines which applications or application
servers will see and use that configuration.

Configuration information is stored in the repository directory that corresponds to
the scope. For example, if you scope a resource at the node level, the
configuration information for that resource is in
<profile_home>/config/cells/<cell>/nodes/<node>/resources.xml. If you scoped
that same resource at the cell level, the configuration information for that
resource is in <profile_home>/config/cells/<cell>/resources.xml.

The following lists the scopes in overriding sequence. Because you see
application scope first, anything defined at this scope overrides any conflicting
configuration you might find in the higher level scopes.

1. Resources and variables scoped at the application level apply only to that
application. Resources and variables are scoped at the application level by
defining them in an enhanced EAR. They cannot be created from the
WebSphere administrative tools, but can be viewed and modified (in the
administrative console, navigate to the details page for the enterprise
application and select Application scoped resources in the References
section).

2. Resources scoped at the server level apply only to that server. If a node and
server combination is specified, the scope is set to that server. Shared
libraries configured in an enhance EAR are automatically scoped at the
server level.

3. Resources scoped at the node level apply to all servers on the node.

4. Resources scoped at the cluster level apply to all application servers in the
cluster. New cluster members automatically have access to resources scoped
at this level. If you do not have any clusters defined, you will not see this
option.

5. Resources scoped at the cell level apply to all nodes and servers in the cell.

Select the scope from the drop-down.

The scope setting is available for all resource types, WebSphere variables,
shared libraries, and name space bindings.

Stand-alone application servers: Although the concept of cells and nodes is
more relevant in a managed server environment, scope is also set when
working with stand-alone application servers. Because there is only one cell,
node, and application server, and no clusters, simply let the scope default to
the node level.
 Chapter 4. Administration basics 149

Set preferences for viewing the console page
After selecting a task and a scope, the administrative console page shows a
collection table with all the objects created at that particular scope.

You can change the list of items you see in this table by using the filter and
preference settings. The filter options can be displayed or set by clicking the
Show Filter Function icon at the top of the table. See Figure 4-5 on
page 150.

Figure 4-5 Setting filters and preferences

When you click the icon, a new area will appear at the top of the table allowing
you to enter filter criteria. To filter entries, do the following:

1. Select the column to filter on. For example, in Figure 4-5, the display table has
three columns to choose from. Your options vary depending on the type of
item you are filtering.

2. Enter the filter criteria. The filter criteria is case sensitive and wild cards can
be used. In our example, to see only providers with names starting with “S”,
select the Name column to filter on and enter S* as the filter.

3. Click Go.

4. Once you have set the filter, click the Show Filter Icon again to remove the
filter criteria from view. You still have a visual indication that the filter is set at
the top of the table.

clear the filter

set a filter
150 WebSphere Application Server V6.1: System Management and Configuration

Setting the filter is temporary and only lasts for as long as you are in that
collection. To keep the filter active for that collection, check the Retain filter
criteria box in the Preferences section and click Apply. To clear the filter criteria,
click the icon.

The Preferences settings also allow you to specify the maximum number of rows
to display per page.

4.1.6 Updating existing items
To edit the properties of an existing item, complete these tasks:

1. Select the category and type in the navigation tree. For example, select
Servers →Application Servers.

2. A list of the items of that type in the scope specified will be listed in a
collection table in the workspace area. Click an item in the table. This opens a
detail page for the item.

3. In some cases, you see a Configuration tab and a Runtime tab on this page.
In others, you only see a Configuration tab. Updates are done under the
Configuration tab. Specify new properties or edit the properties already
configured for that item. The configurable properties will depend on the type
of item selected.

Tip: For help on filtering, see:

� The Administrative console buttons topic in the Information Center.

� Click the Help item in the Task bar and select the Administrative Console
Buttons topic under the Core Console heading.
 Chapter 4. Administration basics 151

For example, if we click an application server, this opens a page resembling
Figure 4-6 on page 152.

Figure 4-6 Editing application server properties

The detail page provides fields for configuring or viewing the more common
settings and links to configuration pages for additional settings.

4. Click OK to save your changes to the workspace and exit the page. Click
Apply to save the changes without exiting. The changes are still temporary.
They are only saved to the workspace, not to the master configuration. This
still needs to be done.

5. As soon as you save changes to your workspace, you will see a message in
the Messages area reminding you that you have unsaved changes. See
Figure 4-7.
152 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-7 Save changes to the master repository

At intervals during your configuration work and at the end, you should save
the changes to the master configuration. You can do this by clicking Save in
the message, or by selecting System administration →Save Changes to
Master Repository in the navigation tree.

To discard changes, use the same options. These options simply display the
changes you have made and give you the opportunity to save or discard.

4.1.7 Adding new items
To create new instances of most item types, complete these tasks:

1. Select the category and type in the navigation tree. See Figure 4-8.

2. Select Scope. (To create a new item, you cannot select the All option for
scope.)

3. Click the New button above the collection table in the workspace.

Figure 4-8 Create a new item
 Chapter 4. Administration basics 153

You might be presented with a wizard prompting you to enter information and
taking you through the process. Proceed until all the required properties are
entered.

4. Click Save in the task bar or in the Messages area when you are finished.

4.1.8 Removing items
To remove an item, complete these tasks:

1. Find the item.
2. Select the item in the collection table by checking the box next to it.
3. Click Delete.
4. If asked whether you want to delete it, click OK.
5. Click Save in the taskbar or in the Messages area when you are finished.

For example, to delete an existing JDBC provider, select Resources →JDBC
Providers. Check the provider you want to remove and click Delete.

4.1.9 Starting and stopping items
To start or stop an item using the console:

1. Select the item type in the navigation tree.

2. Select the item in the collection table by checking the box next to it.

3. Click Start or Stop. The collection table shows the status of the item. See
Figure 4-9 on page 155.

For example, to start an application server in a distributed server environment,
select Servers → Application Servers. Place a check mark in the check box
beside the application server you want and click Start.

Note: In the configuration pages, you can click Apply or OK to store your
changes in the workspace. If you click OK, you will exit the configuration
page. If you click Apply, you will remain in the configuration page. As you
are becoming familiar with the configuration pages, we suggest that you
always click Apply first. If there are additional properties to configure, you
will not see them if you click OK and leave the page.
154 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-9 Starting and stopping items

You can start and stop the following items from the administrative console:

� Applications

� Application, Web, and generic servers

� Clusters: Starting or stopping a cluster will start or stop all the servers in the
cluster.

� Nodes: Stop only.

� Node agents: Stop or recycled only.

� Deployment manager: Stop only. This kills the console. It does not stop any of
the node agents or the application servers running under those node agents.
 Chapter 4. Administration basics 155

4.1.10 Using variables
WebSphere variables are name and value pairs used to represent variables in
the configuration files. This makes it easier to manage a large configuration.

To set a WebSphere variable:

1. Click Environment →WebSphere Variables. See Figure 4-10.

Figure 4-10 WebSphere variables

2. To add a new variable, click New, or click a variable name to update its
properties.

3. Enter a name and value and click Apply. See Figure 4-11.
156 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-11 New WebSphere variable

4.1.11 Saving work
As you work with the configuration, your changes are saved to temporary
workspace storage. For the configuration changes to take effect, they must be
saved to the master configuration. If you have a distributed server environment, a
second step is required to synchronize, or send, the configuration to the nodes.
Consider the following:

1. If you work on a page, and click Apply or OK, the changes are saved in the
workspace under your user ID. This allows you to recover changes under the
same user ID if you exit the session without saving.

2. You need to save changes to the master repository to make them permanent.
This can be done from the Navigation tree by selecting System
administration →Save Changes to Master Repository from the Messages
area, or when you log in if you logged out without saving the changes.

3. The Save window presents you with the following options:

– Save

– Discard

Discard reverses any changes made during the working session and
reverts to the master configuration.
 Chapter 4. Administration basics 157

– Cancel

Cancel does not reverse changes made during the working session. It just
cancels the action of saving to the master repository for now.

– Synchronize changes with nodes

This distributes the new configuration to the nodes in a distributed server
environment.

Before deciding whether you want to save or discard changes, you can see
the changed items by expanding Total changed documents in the Save
window.

4. When you are finished, log out of the console using the Logout option on the
taskbar.

4.1.12 Getting help
To access help, do the following:

1. Use the Help menu in the taskbar. This opens a new Web browser with online
help for the administrative console. It is structured by administrative tasks.
See Figure 4-12 on page 159.

Important: All the changes made during a session are cumulative.
Therefore, when you decide to save changes to the master repository,
either at logon or after clicking Save on the taskbar, all changes are
committed. There is no way to be selective about what changes are saved
to the master repository.
158 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-12 Online help

2. With the option Show the help portlet enabled, you can see the Help window
in the workspace.

3. The Information Center can be viewed online or downloaded from:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

4.2 Securing the administrative console
WebSphere Application Server provides the ability to secure the administrative
console so only authenticated users can use it. Note that enabling administrative
security does not enable application security.

With V6.1, you can enable administrative security during installation and profile
creation. If you do this on distributed systems, you will automatically get a
file-based user registry populated with an administrative user ID of your
choosing. This registry can later be federated with the registry you choose for
application security. On z/OS platforms, you will have the option of using the
file-based registry or the z/OS system’s SAF-compliant security database.
 Chapter 4. Administration basics 159

You can enable administrative security after profile creation through the
administrative console by navigating to Security → Secure administration,
applications, and infrastructure. Doing this allows you more flexibility in
specifying security options.

Before enabling any type of security, you will need to complete the configuration
items for authentication, authorization, and realm (user registry). You will also
need to populate the chosen user registry with at least one user ID to be used as
an administrator ID.

Figure 4-13 Enabling administrative security

Administrative security is based on identifying users or groups that are defined in
the active user registry and assigning roles to each of those users. When you log
in to the administrative console, you must use a valid administrator user ID and
password. The role of the user ID determines the administrative actions the user
can perform.

Attention: Beware that when you check the box to enable administrative
security, the application security and Java 2 security check boxes are enabled
automatically. If you are not prepared to use Java 2 or application security at
this time, be sure to uncheck the boxes.
160 WebSphere Application Server V6.1: System Management and Configuration

� Administrator

The administrator role has operator permissions, configurator permissions,
and the permission required to access sensitive data, including server
password, Lightweight Third Party Authentication (LTPA) password and keys,
and so on.

� Configurator

The configurator role has monitor permissions and can change the
WebSphere Application Server configuration.

� Operator

The operator role has monitor permissions and can change the run time state.
For example, the operator can start or stop services.

� Monitor

The monitor role has the least permissions. This role primarily confines the
user to viewing the WebSphere Application Server configuration and current
state.

� Deployer

The deployer role is only available for wsadmin users, not for administrative
console users. Users granted this role can perform both configuration actions
and run time operations on applications.

� AdminSecurityManager

The AdminSecurityManager role is only available for wsadmin users, not for
administrative console users. When using wsadmin, users granted this role
can map users to administrative roles. When fine grained administrative
security is used, users granted this role can manage authorization groups.

Fine-grained administrative security (new):

In releases prior to WebSphere Application Server Version 6.1, users granted
administrative roles could administer all of the resource instances under the
cell. With V6.1, administrative roles are now per resource instance rather than
to the entire cell. Resources that require the same privileges are placed in a
group called the authorization group. Users can be granted access to the
authorization group by assigning to them the required administrative role
within the group.

A cell-wide authorization group for backward compatibility: Users assigned to
administrative roles in the cell-wide authorization group can still access all of
the resources within the cell.
 Chapter 4. Administration basics 161

� Iscadmins

The iscadmins role has administrator privileges for managing users and
groups from within the administrative console only.

Role assignments are managed through the administrative console. Navigate to
Users and groups →Administrative User Roles or Users and
groups →Administrative Group Roles.

If you are using a file-based repository, you can add users and groups through
the console by navigating to Users and groups → Manage Users or Users and
groups → Manage Groups.

After saving the configuration, you must restart the application server in a
stand-alone server environment or the deployment manager in a distributed
server environment.

The next time you log in to the administrative console, you must authenticate
with one of the users that were identified as having an administrative role.
Entering commands from a command window will also prompt you for a user ID
and password.

4.3 Working with the deployment manager
This section will provide information about how to manage the deployment
manager and will introduce you to the configuration settings associated with it.

4.3.1 Deployment manager configuration settings
A deployment manager is created by creating a deployment manager profile.
Once created, there usually is not much that you need to do. However, it is good
to note that there are settings that you can modify from the administration tools.
This section gives you a brief look at these settings.

To view the deployment manager from the administrative console, select System
Administration →Deployment manager. You have two pages available, the
Runtime page and the Configuration page. Figure 4-14 on page 163 shows the
Configuration page.
162 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-14 Deployment manager configuration

Configuration tab
Because it is unlikely that you will need to change most of these settings, we only
give you a brief description here of the settings you can configure.

Java and process management
The Java and process management settings allow you to define how the
deployment manager process is initialized. The only category of settings under
this group is the process definition settings. These include:

� JVM settings, including heap size, class path and boot class path, and
verbose settings for garbage collection, class loading, and JNI

� Environment entries consisting of name/value pairs that define custom
properties

� Process execution properties (not used on Windows) that allow you to define
process priority, run as settings, file permission mode mask, and process
group assignment (for processor partitioning)

� Process log settings for stdout and stderr logs
 Chapter 4. Administration basics 163

Core group service
A core group is a set of processes that participate in providing high availability
function to each other. In a distributed server environment, there is one default
core group automatically defined called DefaultCoreGroup. The deployment
manager is automatically added to this core group. New core groups can be
defined and the servers can be moved from one core group to another.

The core group settings allow you to modify core group settings related to the
deployment manager.

For more information about high availability and using core groups, see
WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688.

Ports
The port settings allow you to modify the TCP/IP port settings used for the
deployment manager process. These settings were first defined when the
deployment manager profile was created.

Administration services
These settings allow you to configure properties related to the administrative
services. These include:

� Repository service settings used to enable auditing.

� Existing JMX connectors (RMI and SOAP). This allows you to update, add
HTTP and JMS connectors, or remove connectors.

� Mbean extensions. This allows you to add new extensions in order to manage
new types of resources.

� Custom properties consisting of name/value pairs.

� Web server plug-in automation.

Custom services
Custom services settings provide an extension point for configuration data for
plug-in services. This allows you to add in custom code that will be executed
during process initialization.

ORB service
These settings allow you to specify settings for the Object Request Broker
service.

Change log level details
These settings allow you to control which events are processed by Java logging.
164 WebSphere Application Server V6.1: System Management and Configuration

Logging and tracing
Log settings are available for the following logs:

� Diagnostic trace
� JVM logs
� Process logs
� IBM Service logs
� Change log detail levels

Web container transport chains
Transport chains represent network protocol stacks operating within a client or
server. These settings give you access to transport chain definitions. For
information about transport chains, see “Working with nodes” on page 201.

Deployment manager Runtime tab
In addition to the Configuration page, the administrative console contains a
Runtime page for the deployment manager. To view the Runtime page, select
System Administration →Deployment manager and click the Runtime tab at
the top of the page. Figure 4-15 on page 165 shows the Runtime tab.

Figure 4-15 Deployment manager run time page

The fact that the state is Started does not mean much, because you would not be
able to access the administrative console otherwise.
 Chapter 4. Administration basics 165

The Diagnostic Provider framework is a new feature in V6.1. It allows you to
query components for current configuration data, state data, and to run a
self-diagnostic test routine. Not all components have a diagnostic provider in this
release.

4.3.2 Starting and stopping the deployment manager
The deployment manager must be started and stopped with commands. The
administrative console is not available unless it is running.

On a Windows system, you have the option of registering the deployment
manager as a Windows service. In order to have it registered, you must select
this option when you create the deployment manager profile or register it later
using the WASService command (see 3.6.3, “Enabling process restart on failure”
on page 130.

On Windows you also have the option of starting and stopping the deployment
manager using the Start menu. Select the following:

� Start → Programs → IBM WebSphere → WebSphere Application Server
Network Deployment V6.1 → Profiles → <profile_name → Start the
deployment manager

� Start → Programs → IBM WebSphere → WebSphere Application Server
Network Deployment V6.1 → Profiles → <profile_name → Stop the
deployment manager

Starting the deployment manager with startManager
Using the startManager command is the most common way to start the
deployment manager, as shown in Example 4-2.

Example 4-2 startManager command

c:\>cd <was_home>\profiles\<dmgr_profile>\bin
C:\<was_home>\profiles\<dmgr_profile>\bin>startManager

ADMU7701I: Because dmgr is registered to run as a Windows Service, the request
 to start this server will be completed by starting the associated
 Windows Service.
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Dmgr01\logs\dmgr\startServer.log
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server dmgr open for e-business; process id is 1536
166 WebSphere Application Server V6.1: System Management and Configuration

Run this command from the deployment manager <profile_home>/bin directory.
If you run it from the <was_home>/bin directory, use the -profileName parameter
to ensure the command is run against the deployment manager profile.

Syntax of startManager
The syntax of the startManager command is:

startManager.bat(sh) [options]

All arguments are optional. See Table 4-2.

Table 4-2 Options for startManager

Option Description

-nowait Do not wait for successful initialization of the deployment
manager process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify a log file location to which information gets
written. The default is
<profile_home>/logs/dmgr/startServer.log.

-profileName <profile> Specify a profile to run the command against. If the
command is run from <was_home>/bin and -profileName
is not specified, the default profile is used. If it is run from
<profile_home>/bin, that profile is used.

-trace Generates trace information into a file for debugging
purposes. The output goes to startServer.log.

-script [<script filename>] -background Generate a launch script instead of starting the server.
The script file name is optional. If the file name is not
provided, the default script file name is
start_dmgr.bat(sh). The script is saved to the
<dmgr_profile_home>/bin directory.

The -background parameter specifies that the generated
script runs in the background.

-timeout <seconds> Specifies the waiting time before server initialization
times out and returns an error.

-statusport <portnumber> Set the port number for server status callback.

-replacelog Replace the log file instead of appending to the current
log.

-J-<java option> Options are to be passed through to the Java interpreter.
Options are specified in the form: -D<name>=<value>.
 Chapter 4. Administration basics 167

Starting the deployment manager on z/OS (START command)
On z/OS, the deployment manager can be started using a JCL start procedure.
The exact command can be found in the BBOCCINS instruction member of the
JCL generated to create the profile.

For example:

START CHMGCR,JOBNAME=CHDMGR,ENV=CHCELL.CHDMNODE.CHDMGR

Where:

� CHMGCR is the JCL start procedure.

� CHDMGR is the Job name.

� ENV is the concatenation of the cell short name, node short name, and server
short name.

Starting the deployment manager will start the following:

� A daemon. In our example, named CHDEMN. There will be one daemon per
cell per MVS image. One of the functions of the daemon server is to provide
the "location name service" for the cell. All daemons in the cell are fully aware
of all the objects in the cell and use the same port values.

� A controller region. In our example, named CHDMGR. The controller region
serves many functions, including acting as the endpoint for communications.

� A servant region. In our example, named CHDMGRS. The servant region
contains the JVM where the applications are run.

� If you are using messaging, you will also see a control region adjunct server
start.

Stopping the deployment manager
The deployment manager is stopped with the stopManager command, as shown
in Example 4-3.

Example 4-3 stopManager command

c:\>cd <was_home>\profiles\<dmgr_profile>\bin
C:\<was_home>\profiles\<dmgr_profile>\bin>stopmanager

ADMU7702I: Because dmgr is registered to run as a Windows Service, the request
 to stop this server will be completed by stopping the associated
 Windows Service.
ADMU0116I: Tool information is being logged in file

-help or -? Prints the command syntax to the console.

Option Description
168 WebSphere Application Server V6.1: System Management and Configuration

 C:\WebSphere\AppServer\profiles\Dmgr01\logs\dmgr\stopServer.log
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server dmgr stop completed.

Syntax of stopManager
The syntax of the stopManager command is:

stopManager.bat(sh) [options]

All arguments are optional. See Table 4-3.

Table 4-3 Options for stopManager

Option Description

-nowait Do not wait for successful shutdown of the deployment manager process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information is written. The default
is <profile_home>/logs/dmgr/startServer.log.

-profileName <profile> Specify the profile against which to run the command. If the command is run
from <was_home>/bin and -profileName is not specified, the default profile
is used. If run from <profile_home>/bin, that profile is used.

-trace Generate trace information into a file for debugging purposes. The output
goes to stopServer.log.

-timeout <seconds> Specify the waiting time before server shutdown times out and returns an
error.

-statusport <portnumber> Set the port number for server status callback.

-replacelog Replace the log file instead of appending to the current log.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specify the password for authentication if security is enabled.

-conntype <type> Specify the JMX connector type to use for connecting to the deployment
manager. Valid types are SOAP or RMI.

-port <portNumber> Specify the deployment manager JMX port to use explicitly, so that you can
avoid reading the configuration files to obtain information.

-help or -? Print the command syntax to the console.
 Chapter 4. Administration basics 169

Stopping the deployment manager on z/OS (STOP command)
To stop the deployment manager with a STOP command, use the following
format:

STOP dmgr_JOBNAME

For example:

STOP CHDMGR

Stopping the daemon server will stop all servers for that cell, and all the servers
on that daemon instance’s MVS image will be stopped in an order fashion. For
example:

STOP CHDEMN

4.4 Working with application servers
This section discusses the following topics:

� Creating an application server
� Viewing the status of an application server
� Starting an application server
� Stopping an application server
� Viewing run time attributes of an application server
� Customizing application servers

Server types: This section uses the following terms.

� A stand-alone application server is an application server created through
the use of an application server profile and is not federated to a cell. This is
the only option in the Base and Express environments. You can also
create a stand-alone application server in the Network Deployment
package. However, the expectation is that you will federate the application
server to a cell for centralized management in the future.

� A managed application server is one that is managed from a deployment
manager. This is only possible with the Network Deployment package. A
managed server can either be an application server that was created using
an application server profile and subsequently federated to the cell, or it
can be created directly from the deployment manager’s administrative
console.
170 WebSphere Application Server V6.1: System Management and Configuration

4.4.1 Creating an application server
The process to create an application server depends on your WebSphere
Application Server package.

Stand-alone application servers
Stand-alone application servers are created by creating an application server
profile. This results in a profile that defines one stand-alone application server
called server1. This application server hosts the sample applications and the
administrative console application. During the Profile creation wizard, you have
the option of registering the new application server as a Windows service.

For information about creating an application server profile, see 3.3.2, “Creating
an application server profile” on page 67.

Managed application servers
In a Network Deployment distributed server environment, you can create an
application server from the deployment manager administrative console. The
following directions assume that you have created a deployment manager profile
and have started the deployment manager.

To create an application server from the administrative console:

1. Open the deployment manager administrative console.

2. Select Servers → Application Servers.

Note: If you are creating an application server with the intention of adding it to
a cluster, using the Servers →Cluster menu options is more efficient. See
4.6, “Working with clusters” on page 222.
 Chapter 4. Administration basics 171

3. Click New. See Figure 4-16.

4. Select the node for the new server and enter a name for the new server.

Figure 4-16 Create an application server: Step 1

Click Next.

5. Select a template to use by clicking the appropriate radio button. See
Figure 4-17. You have the following options:

– Default: Standard production server.

– DeveloperServer: Optimized to developer uses.

– defaultZOS: This is only available on z/OS platforms and is the only option
until you create new templates.

Later, you can also create templates based on existing application servers.
(see “Creating a template” on page 174).

Figure 4-17 Create an application server: Step 2

Click Next.
172 WebSphere Application Server V6.1: System Management and Configuration

6. The options you see on the next window vary depending on the platform. For
distributed platforms, you see Figure 4-18. Select the core group from the list.
You will only have this option if you have more than one core group defined.

Check the Generate Unique Http Ports box to have unique ports generated
for this server.

Figure 4-18 Create an application server: Step 3 for distributed systems

For z/OS systems, you will see Figure 4-19.

Figure 4-19 Create an application server: Step 3 for z/OS

The server specific short name specifies the short name for the server. This is
also used as the job name (for example, BBOS002). The generic short name
is the short name that is converted to a cluster short name if the server is later
used in a cluster.
 Chapter 4. Administration basics 173

Click Next.

7. A summary window is presented with the options you chose. See Figure 4-20.

Figure 4-20 Create an application server: Step 4

Click Finish to create the server.

8. In the messages box, click Save to save the changes to the master repository.

Creating a template
To create an application server template based on an existing server:

1. Select Servers →Application Servers.
2. Click Templates... at the top of the server list.
3. Click New.
4. Select a server from the list to build the template from and click OK.
5. Enter a name and description for the template and click OK.
6. Save your configuration.

Note: If you are creating an application server on a Windows operating
system, this process does not give you the option of registering the new server
as a Windows service. You can do this later with the WASService command
(see 3.6.3, “Enabling process restart on failure” on page 130).
174 WebSphere Application Server V6.1: System Management and Configuration

The new template will be in the list of templates and available to select the next
time you create an application server.

4.4.2 Viewing the status of an application server
Table 4-4 shows a summary of ways to view the status of an application server.

Table 4-4 Methods to view the status of an application server

Using the administrative console
To check the status of a managed server using the deployment manager’s
administrative console, the node agent must be started. To use the administrative
console, do the following:

1. Select Servers →Application Servers.

Method Server types Summary

Windows service Managed and
stand-alone

If an application server is registered as a Windows service,
then check the Windows services window for its status.

Command line Managed and
stand-alone

To view the status of a stand-alone application server, type:

cd <profile_home>/bin
serverStatus(.sh) server1

To view the status of a managed application server, type:

cd <profile_home>/bin
serverStatus(.sh) <server_name>

To check the status of all servers on the node, type:

cd <profile_home>/bin
serverStatus(.sh) -all

Administrative console Managed Select Servers →Application Servers.
 Chapter 4. Administration basics 175

2. The servers are listed. The last column to the right contains an icon to
indicate the status of each server. Figure 4-21 shows the icons and the
corresponding status.

Figure 4-21 Status icons

Using the serverStatus command
The syntax of the serverStatus command is as follows:

serverStatus.bat(sh) <server>|-all [options]

The first argument is mandatory. The argument is either the name of the server
for which status is desired, or the -all keyword, which requests status for all
servers defined on the node. See Table 4-5 on page 177 for a list of available
options.

Note: If the server status is Unavailable, the node agent on the node in which
the application server is installed is not active. The server cannot be managed
from the administrative console unless its node agent is active.
176 WebSphere Application Server V6.1: System Management and Configuration

Table 4-5 Options for serverStatus

Option Description

-logfile <log file path> Specify an alternative location for the command’s log
output, instead of serverStatus.log. The path can be
specified in the following forms: absolute, relative, or
file name.

If the server name is specified, the default location is
<profile_home>/logs/<servername>/serverStatus.log.

If -all is specified, the default location is
<profile_home>/logs/serverStatus.log.

-replacelog Start a new log, replacing any previous log of the
same name. If this argument is not specified, the
default behavior is to append the output to the existing
file.

-profileName <profile> Us this profile to run the command against. If the
command is run from <was_home>/bin and
-profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is
used.

-trace Generate trace information into a file for debugging
purposes. The output goes to serverStatus.log.

-username <username> Specify the user name for authentication if
WebSphere security is enabled. it is ignored if
WebSphere security is disabled.

-password <password> The password for authentication if WebSphere
security is enabled. It is ignored if WebSphere security
is disabled.

-help or -? Prints a usage statement.
 Chapter 4. Administration basics 177

Example 4-4 shows an example of using the serverStatus command.

Example 4-4 serverStatus example

C:\<was_home>\profiles\Node01\bin>serverstatus -all
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\serverStatus.log
ADMU0128I: Starting tool with the Node01 profile
ADMU0503I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: Cserver1
ADMU0506I: Server name: Cserver2
ADMU0506I: Server name: nodeagent
ADMU0506I: Server name: ServerN11
ADMU0506I: Server name: ServerN12
ADMU0509I: The Application Server "Cserver1" cannot be reached. It appears to
 be stopped.
ADMU0509I: The Application Server "Cserver2" cannot be reached. It appears to
 be stopped.
ADMU0508I: The Node Agent "nodeagent" is STARTED
ADMU0509I: The Application Server "ServerN11" cannot be reached. It appears to
 be stopped.
ADMU0509I: The Application Server "ServerN12" cannot be reached. It appears to
 be stopped.

4.4.3 Starting an application server
How you start an application server depends largely on personal preference and
on whether the application server is stand-alone or managed. Keep in mind that
the application server created by an application server profile is always called
server1. Multiple servers federated in this way are all named server1, but reside
on different nodes.

Table 4-6 shows the various methods you can use to start an application server.

Table 4-6 Methods to start an application server

Method Server types: Summary

Windows service Managed and
stand-alone

Application servers can be registered as a Windows service.
You can start the server by starting the service.

First steps menu Managed and
stand-alone

The First Steps menu is located at
<profile_home>/firststeps/firststeps.bat (.sh).

Windows Start menu Managed and
stand-alone

Select Start → Programs → IBM WebSphere →
Application Server V6.1 → Profiles → <profile_name →
Start the Server.
178 WebSphere Application Server V6.1: System Management and Configuration

Using the administrative console to start a managed server

From the administrative console, do the following:

1. Select Servers →Application Servers.
2. Check the box to the left of each server you want to start.
3. Click Start.

If there are any errors, check the log file for the application server process:

<profile_home>/logs/<server_name>/SystemOut.log

Using the startServer command
The syntax of the startServer command is as follows:

startServer.bat(sh) <server> [options]

Command line Managed and
stand-alone

cd <profile_home>/bin
startServer(.sh) server1

Administrative console Managed Select Servers → Application Servers.

To start a managed server from the administrative console,
the node agent must be started.

Administrative console Clusters Select Servers → Clusters.

Starting a cluster starts each application server in the cluster.

z/OS START
command

Managed and
stand-alone

START
appserver_procname,JOBNAME=server_shortname,
ENV=cell_shortname.node_shortname.server_shortname

Method Server types: Summary

Note: Before managing a server in a distributed server environment using the
administrative console, you must make sure that the node agent for the
server’s node is running. To do this:

1. Select System Administration → Node Agents.

2. The status of the node agent is in the far right column. If it is not started,
you must start it (see 4.5.5, “Starting and stopping nodes” on page 215).

Note: By default, all the applications on a server start when the application
server starts. To prevent an application from starting, see 4.8.7, “Preventing an
enterprise application from starting on a server” on page 234.
 Chapter 4. Administration basics 179

<server> is the name of the server to be started. The first argument is mandatory
and case sensitive. The options are listed in Table 4-7.

Table 4-7 Options for startServer

Option Description

-nowait Tell the command not to wait for successful startup of
the server.

-quiet Suppress progress information printed to console in
normal mode. This option does not affect information
written to a file.

-trace Generate trace information into a file for debugging
purposes. The output goes to startServer.log.

-logfile <log file path> Specify an alternative location for the command’s log
output instead of startServer.log. The path can be
specified in absolute, relative, or file name form. The
default location is
<profile_home>/logs/startServer.log.

-profileName <profile> Specify the profile against which to run the command.
If the command is run from <was_home>/bin and
-profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile
is used.

-replacelog Start a new log, replacing any previous log of the
same name. If this argument is not specified, the
default behavior is to append output to the existing
file.

-script [<script filename>] Generate a launch script instead of starting the
server. The script file name is optional. If the file name
is not provided, the default script file name is
start_<server>.

The script needs to be saved to the bin directory of the
node installation.

-username <username> User name for authentication if WebSphere security is
enabled. Ignored if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere
security is enabled. The password is ignored if
WebSphere security is disabled.

-timeout <seconds> Specify the waiting time before server initialization
times out and returns an error.
180 WebSphere Application Server V6.1: System Management and Configuration

startServer example
Example 4-5 on page 181 shows an example of using the startServer
command.

Example 4-5 startServer example

C:\<was_home>\profiles\<profile_server>\bin>startserver server1
ADMU0116I: Tool information is being logged in file

C:\WebSphere\AppServer\profiles\AppSrv02\logs\server1\startServer.log

ADMU0128I: Starting tool with the AppSrv02 profile
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is
2548

4.4.4 Stopping an application server
How you stop an application server depends largely on personal preference and
on whether the application server is stand-alone or managed. Keep in mind that
the application server created by a application server profile is always called
server1.

-statusport <portnumber> Set the port number for server status callback.

-J-<java option> Specify options to be passed through to the Java
interpreter. Options are specified in the form:
-D<name>=<value>.

-help or -? Print a usage statement.

Option Description
 Chapter 4. Administration basics 181

Table 4-8 shows several methods to stop an application server.

Table 4-8 Methods to stop an application server

Method Server types: Summary

Windows service Managed and
stand-alone

Application servers can be registered as a Windows service.
You can stop the server by stopping the service.

First steps menu Managed and
stand-alone

The First Steps menu is located at
<profile_home>/firststeps/firststeps.bat (.sh).

Windows Start menu Managed and
stand-alone

For a standalone application server, do the following:

Select Start → Programs → IBM WebSphere →
Application Server V6.1 → Profiles → <profile_name> →
Stop the Server.

For a stand-alone or managed application server on a
Network Deployment system, do the following:

Select Start → Programs → IBM WebSphere →
Application Server Network Deployment V6.1 →
Profiles → <profile_name> → Stop the Server.

Command line Managed and
stand-alone

For a stand-alone application server:

cd <profile_home>/bin
stopServer(.sh) server1

For a managed application server:

cd <profile_home>/bin
stopServer(.sh) <server_name>

Administrative console Managed Select Servers →Application Servers.

To stop a managed server from the administrative console,
the node agent must be started.

Administrative console Managed Select System Administration →Node Agents → Restart
all Servers on the Node.
This restarts all the servers on the node.

z/OS STOP command Managed and
standalone

STOP appserver_JOBNAME
182 WebSphere Application Server V6.1: System Management and Configuration

Using the administrative console to stop a managed server

From the administrative console, you have the following options to stop an
application server:

� Stop quiesces the application server and stops it.

� Immediate Stop stops the server, but bypasses the normal server quiesce
process that supports in-flight requests to complete before shutting down the
entire server process. This shutdown mode is faster than the normal server
stop processing, but some application clients can receive exceptions.

� Terminate deletes the application server process. Use this if immediate stop
fails to stop the server.

From the administrative console, do the following to stop an application server:

1. Select Servers →Application Servers.
2. Check the box to the left of each server you want to stop.
3. Click the appropriate stop option.

If there are any errors, check the log file for the application server process:

<profile_home>/logs/<server_name>/SystemOut.log

Restarting all servers on a node
If you want to stop, and then restart, all the application servers on a node, you
can do the following from the administrative console:

1. Select System Administration →Node Agents.
2. Check the box to the left of the node agent.
3. Click Restart all Servers on the Node.

Restarting all servers in a cluster
If you want to stop, and then restart, all the servers in a cluster, you can do the
following from the administrative console:

1. Select Servers →Clusters.
2. Check the box to the left of the cluster.
3. Click Ripplestart.

Using the stopServer command
The syntax of the stopServer command is:

stopServer.bat(sh) <server> [options]

Note: These directions assume the node agent for the application server is
running.
 Chapter 4. Administration basics 183

<server> is the name of the server to be started. The first argument is mandatory
and is case sensitive. The options are listed in Table 4-9.

Table 4-9 stopServer command options

Option Description

-nowait Tells the command not to wait for the successful stop of the server.

-quiet Suppress progress information printed to console in normal
mode. This option does not affect information written to file.

-trace Generate trace information into a file for debugging purposes. The
output is to stopServer.log.

-logfile <log file path> Specify an alternative location for the command’s log output,
instead of stopServer.log. The path can be specified in the
following forms: absolute, relative, or file name.

-profileName <profile> Specify the profile to run the command against. If the command is
run from <was_home>/bin and -profileName is not specified, the
default profile is used. If run from <profile_home>/bin, that profile
is used.

-replacelog Start a new log, replacing any previous log of the same name. If
this argument is not specified, the default behavior is to append
the output to the existing file.

-timeout <seconds> Specify the waiting time before server initialization times out and
returns an error.

-conntype <connector type> Specify the type of JMX connector to use for connection to the
deployment manager. Valid values are SOAP or RMI. If not
specified, SOAP is assumed.

-port <portnumber> The server JMX port is used explicitly, so that configuration files
do not have to be read to obtain the information.

-statusport <portnumber> Set the port number for server status callback.

-username <username> Specify the user name for authentication if WebSphere security is
enabled. Ignore the user name if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere security is
enabled. Ignore the password if WebSphere security is disabled.

-help or -? Print a usage statement.
184 WebSphere Application Server V6.1: System Management and Configuration

Table 4-6 shows an example of the stopServer command

Example 4-6 stopServer command example

C:\<was_home>\profiles\Node01\bin>stopServer ServerN11

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\ServerN11\stopServer.log
ADMU0128I: Starting tool with the Node01 profile
ADMU3100I: Reading configuration for server: ServerN11
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server ServerN11 stop
completed.

4.4.5 Viewing run time attributes of an application server
To view run time attributes, do the following:

1. Select Servers →Application Servers to display the list of servers.

2. Click the server name to access the detail page.
 Chapter 4. Administration basics 185

3. If the server is running, you will see both a Configuration tab and Runtime tab.
If it is not running, you will see only a Configuration tab. Click the Runtime
tab. Figure 4-22 on page 186 shows the Runtime tab and the information it
provides.

Figure 4-22 Application server Runtime tab

4. From the Runtime tab, you have access to the following:

– A list of messaging engines that run on this application server. There will be
one messaging engine for each bus that the server is a member of.

– Access to the Diagnostic Provider service, allowing you to query current
configuration data, state, and to initiate diagnostic tests.

– Transaction Service properties allow you to specify settings for the
transaction service. You can change the timeout settings while the server
is running, but not the transaction log directory setting.
186 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-23 Transaction service options and settings

You can also view or act on transactions in the following states by clicking
Review to the right of the state. This action is not normally necessary, but
in an exceptional situation it might be useful.

• Manual transactions

These transactions await administrative completion. For each
transaction, the local or global ID is displayed. You can display each
transaction resource and its associated resource manager. You can
choose also to commit or rollback transactions in this state.
 Chapter 4. Administration basics 187

• Retry transactions

These are transactions with some resources being retried. For each
transaction, the local or global ID is displayed, and whether the
transaction is committing or rolling back. You can display each
transaction resource and its associated resource manager. You can
choose also to finish, or abandon retrying, transactions in this state.

• Heuristic transactions

These are transactions that have completed heuristically. For each
transaction, the local or global ID and the heuristic outcome is
displayed. You can display each transaction resource and its
associated resource manager. You can also choose to clear the
transaction from the list.

• Imported prepared transactions

Transactions that have been imported and prepared but not yet
committed. For each transaction, the local or global ID is displayed.
You can display each transaction resource and its associated resource
manager. You can also choose to commit or rollback transactions in
this state.

– Performance Monitoring Service settings allow you to change the
instrumentation levels while the server is running.

– Product Information gives you access to extensive information about the
product installation and Fix Pack information.

4.4.6 Customizing application servers
When you create a new application server, it inherits most of its configuration
settings from the specified template server. To view or modify these settings,
select Servers →Application Servers. A list of application servers defined in
the cell appears in the workspace. Click the name of the application server to
make a modification.

This section gives you a quick overview of the types of settings you can
customize. See Figure 4-24 on page 189 (not all settings are shown due to the
size of the configuration window).
188 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-24 Application server configuration

General properties
The general properties consist of a few items that you can see immediately.

� Run in development mode: Enable this option to streamline the startup time of
an application server. Do not enable this setting on production servers.

� Parallel start: Select this field to start the server components, services, and
applications on multiple threads. This might shorten the startup time.

The order in which the applications start depends on the weights you
assigned to each of them. Applications that have the same weight are started
in parallel.

� Access to internal server classes: Specifies whether the applications can
access many of the server implementation classes.
 Chapter 4. Administration basics 189

� Application classloader policy and class loading mode: These settings allow
you to define an application server-specific classloader policy and class
loading mode. Class loaders are discussed in Chapter 12, “Understanding
class loaders” on page 795.

SIP container settings

Use these items to configure SIP container timers and custom properties.

� SIP container transport chains: Use this option to manage and create a SIP
transport chain. Transport chains represent network protocol stacks operating
within a client or server.

� SIP container: You can use this item to create and manage SIP container
timers and custom properties.

– Maximum application sessions: The maximum number of SIP application
sessions that the container manages. When the maximum has been
reached, no new SIP conversations are started.

– Maximum messages per averaging period: Sets the maximum amount of
SIP messages per averaging period.

– Maximum response time: The maximum acceptable response time in
milliseconds for an application. After this parameter has been exceeded,
the container notifies the clustering framework that it is unavailable.

– Averaging period: The time period in milliseconds over which averages are
calculated.

– Statistic update rate: The interval at which the container calculates
averages and publishes statistics to PMI.

– Thread pool: The thread pool to use for the SIP container.

– Custom properties: Specifies additional custom properties for this run time
component. Some components use custom configuration properties that
can be defined on this option.

– Session management: Use to configure the session manager that is
associated with the Web container and the SIP container.

Session Initiation Protocol (SIP) support (new): V6.1 extends the
application server to allow it to run SIP applications written to the JSR 116
specification.
190 WebSphere Application Server V6.1: System Management and Configuration

Web container settings
The Web container serves application requests for servlets and JSPs. The Web
container settings allow you to specify the default virtual host, enable servlet
caching, specify session manager settings such as persistence and tuning
parameters, and HTTP transport properties. See Figure 4-25.

Figure 4-25 Web container settings

– Default virtual host: This is the default virtual host to use for applications
on the server.

– Enable servlet caching: You can use dynamic cache to improve application
performance by caching the output of servlets, commands, and JSPs. This
setting allows you to enable dynamic caching for servlets. You must first
enable dynamic caching and create the appropriate cache policies in order
to use servlet caching.

– Disable servlet request and response pooling: You may want to disable
request and response pooling if your application is creating threads inside
of the application or if you are concerned about the Web container reusing
request and response objects.

– Session management: You can determine how the Web container will
manage HTTP session data. This includes settings for the session
tracking mechanism (for example, cookies), session timeout, and for the
session persistence method. Session management settings are discussed
in Chapter 10, “Session management” on page 671.

– Custom Properties: You can specify name/value pairs for configuring
internal system properties. Some components can make use of custom
configuration properties, which can be defined here. It is not common to
 Chapter 4. Administration basics 191

pass information to the Web container this way, but the J2EE specification
indicates this as a requirement. Most configuration information can be
handled programmatically, or through the deployment descriptor.

� Web container transport chains: Communication to the Web container is
handled through the channel framework, which provides a common
networking service for WebSphere Application Server components. The
channel framework uses a set of configuration settings that describe in layers,
how a component communicates to networking ports.

– Port

A port is the component’s view of the transport mechanism. A port that
uses the channel framework serves as a link between the component and
the transport chain.

– Transport chain

A transport chain consists of one or more transport channel types that
support a specific I/O protocol.

– Transport channel

A transport channel is specific to an I/O protocol. It contains settings that
affect the communication, such as buffer size, timeout settings, TCP/IP
port numbers for TCP channels, and other settings required for the
communication protocol.

By default, you have four ports, their associated transport chains, and
channels defined for a Web container. These are shown in Table 4-10.

Table 4-10 Web container transports

Port Transport chain Transport channels

WC_adminhost WCInboundAdmin
� Enabled
� Host = *
� Port = 9061
� SSL disabled

TCP Inbound Channel (TCP 1)
� Host = *
� Port = 9061
� Thread pool=Web container
� Max open connections = 100
� Inactivity timeout = 60 sec

HTTP Inbound Channel (HTTP 1)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 1)
� Discrimination weight = 1
� Write buffer size = 32768
192 WebSphere Application Server V6.1: System Management and Configuration

WC_adminhost_secure WCInboundAdminSecure
� Enabled
� Host = *
� Port = 9044
� SSL enabled

TCP Inbound Channel (TCP 1)
� Host = *
� Port = 9044
� Thread pool=Web container
� Max open connections = 100
� Inactivity timeout = 60 sec

SSL Inbound Channel (SSL 1)
� SSL repertoire DMGRNode/

DefaultSSLSettings

HTTP Inbound Channel (HTTP 3)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 1)
� Discrimination weight = 1
� Write buffer size = 32768

WC_defaulthost WCInboundAdminSecure
� Enabled
� Host = *
� Port = 9080
� SSL disabled

TCP Inbound Channel (TCP 2)
� Host = *
� Port = 9080
� Thread pool=Web container
� Max open connections = 20000
� Inactivity timeout = 60 sec

HTTP Inbound Channel (HTTP 2)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 2)
� Discrimination weight = 1
� Write buffer size = 32768

Port Transport chain Transport channels
 Chapter 4. Administration basics 193

TCP channels provide client applications with persistent connections
within a Local Area Network (LAN). When configuring a TCP channel, you
can specify a list of IP addresses that are allowed to make inbound
connections and a list of IP addresses that are not allowed to make
inbound connections. You can also specify the thread pool that this
channel uses, which allows you to segregate work by the port on which the
application server is listening.

HTTP channels are used to enable communication with remote servers. It
implements the HTTP 1.0 and 1.1 standards and is used by other
channels, such as the Web container channel, to serve HTTP requests
and to send HTTP specific information to servlets expecting this type of
information.

Web container channels are used to create a bridge in the transport chain
between an HTTP inbound channel and a servlet and JavaServer™
Pages™ (JSP™) engine.

SSL channels are used to associate an SSL configuration repertoire with
the transport chain. This channel is only available when Secure Sockets
Layer (SSL) support is enabled for the transport chain. An SSL
configuration repertoire is defined in the security settings in the
administrative console.

WC_defaulthost_secure WCInboundDefaultSecure
� Enabled
� Host = *
� Port = 9443
� SSL enabled

TCP Inbound Channel (TCP 4)
� Host = *
� Port = 9443
� Thread pool=Web container
� Max open connections = 20000
� Inactivity timeout = 60 sec

SSL Inbound Channel (SSL 2)
� SSL repertoire DMGRNode/

DefaultSSLSettings

HTTP Inbound Channel (HTTP 4)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 4)
� Discrimination weight = 1
� Write buffer size = 32768

Port Transport chain Transport channels
194 WebSphere Application Server V6.1: System Management and Configuration

Portlet container services

The portlet container is the run time environment for portlets using the JSR 168
Portlet Specification, in which portlets are instantiated, used, and finally
destroyed. The JSR 168 Portlet API provides standard interfaces for portlets.
Portlets based on this JSR 168 Portlet Specification are referred to as standard
portlets. Use this option to configure the portlet container.

� General Properties: Enable the configure portlet fragment caching to save the
output of portlets to the dynamic cache. You must enable the dynamic cache
service first.

� Additional Properties: Additional custom properties for this run time
component. Some components use custom configuration properties.

Portlet support (new): V6.1 extends the application server to allow it to run
JSR 168 compliant portlets.
 Chapter 4. Administration basics 195

EJB container properties
These properties allow you configure the services provided by the EJB container.
See Figure 4-26.

Figure 4-26 EJB container settings

� Passivation Directory: This attribute provides the directory that you can use to
store the persistent state of passivated, stateful session EJBs. If you are
using the EJB container to manage session data, you should give WebSphere
the ability to swap data to disk when necessary. This directory tells
WebSphere where to hold EJB session data when it passivates and activates
beans from the pool.

� Inactive pool cleanup interval: Because WebSphere builds a pool of EJBs to
satisfy incoming requests, you need to tell it when to remove beans from this
pool to preserve resources. This attribute allows you to define the interval at
which the container examines the pools of available bean instances to
determine if some instances can be deleted to reduce memory usage.
196 WebSphere Application Server V6.1: System Management and Configuration

� Default data source JNDI name: Here you can set a default data source to
use for EJBs that have no individual data source defined. This setting is not
applicable for EJB 2.x-compliant CMP beans.

� Initial state: This attribute allows you to identify the state of the container
when WebSphere is started. If you have to recycle the application server, this
attribute is used to determine whether to start the EJB container at server
startup. You would only set this to stopped if you planned on never using the
EJB container or EJBs within that specific application server instance.

� EJB cache settings: You can set up two types of cache settings in
WebSphere:

– Cleanup interval: This attribute allows you to set the interval at which the
container attempts to remove unused items from the cache in order to
reduce the total number of items in cache to the value we set in the cache
size attribute.

– Cache size: This attribute specifies the number of buckets in the active
instance list within the EJB container. This attribute is used by WebSphere
to determine how large the cache will be and when to remove components
from the cache to reduce its size.

� EJB timer service settings: Configure and manage the EJB timer service for a
specific EJB container.

– Scheduler type: Specifies a scheduler for the timer service to use.

Container services
The following settings are available under the container services section:

� Application profiling service: WebSphere Application Server V6 includes a
new feature as part of the programming model extensions that provides an
extension to access intents. This feature, Application Profiles, lets you identify
tasks and access intent to use for a specific task. For information about
Application Profiles, refer to the WebSphere Information Center.

Application profiles let you specify externally a set of tasks (a flow of calls in
your code), and specify which access intent should be used for a specific
task. For information about Application Profiles, refer to the WebSphere
Information Center.

� Transaction service: The transaction service properties allow you to specify
settings for the transaction service, as well as manage active transaction
locks. The settings include the directory location for the transaction service on
the application server to store log files for recovery, the total transaction
lifetime timeout, and client inactivity timeout.
 Chapter 4. Administration basics 197

When the application server is running, a Runtime tab is available in the
Transaction Service properties workspace. From here, you can manage
running transactions and modify timeout settings at run time.

� Dynamic cache service: This page allows you to specify settings for the
dynamic cache service of this server.

� Programming model extensions (PME): These settings are for:

– Compensation service

– Internationalization service

– Object pool service

– Startup beans service

� ORB service settings: These settings allow you to specify settings for the
Object Request Broker service.

Business process services
The business process settings allow you to manage the following PME features:

� Activity session service
� Work area partition service
� Work area service

Server messaging
The server messaging settings provide configuration settings and information for
the messaging services. For information about messaging, see Chapter 8,
“Asynchronous messaging” on page 399 and Chapter 9, “Default messaging
provider” on page 539.

Server infrastructure
The server infrastructure settings include settings for Java and process
management and administration services.

� Java and Process Management

– Class loader: Create and configure class loader instances. Class loaders
are discussed in Chapter 12, “Understanding class loaders” on page 795.

– Process definition: You can enhance the operation of an application
server, and you can define command-line information for starting or
initializing an application server process. These settings define run time
properties, such as the program to run, arguments to run the program, and
the working directory. Within the process definitions, you will find the JVM
definitions, such as the initial and maximum heap sizes, debug options,
the process classpath, or different run time options, such as profiler
support and heap size.
198 WebSphere Application Server V6.1: System Management and Configuration

– Process execution: These include settings such as the process priority, or
the user and group that should be used to run the process. These settings
are not applicable on the Windows platform.

– Monitoring policy: These properties determine how the node agent will
monitor the application server. It includes ping intervals, timeouts, and an
initial state setting. These can be used to ensure that the server is started
when the node starts and will be restarted in the event of a failure.

� Administration

– Custom properties: Specifies additional custom properties for this
component.

– Administration services: This group of settings allows you to specify
various settings for administration facility for this server, such as
administrative communication protocol settings and timeouts. These
settings are not something you would normally be concerned with.

– Server components: Create an additional run time components that are
configurable.

– Custom Services: Create a custom service classes that run within this
server and their configuration properties.

If you plan to extend the administration services by adding custom MBeans,
see the Extending WebSphere Application Server Administrative System with
custom MBeans topic in the Information Center.

Performance
These settings allow you to specify settings for the Performance Monitoring
Infrastructure (PMI) and the Runtime Performance Advisor.

Communications
The communications settings include:

� Ports

These settings contain the basic port definitions for the server.

You might not ever need to manually change these ports. It is likely, however,
that you will want to view these. For example, if you use the dumpNameSpace
command, you can specify the bootstrap port of the process to dump the
name space from. When you federate a node, you will need to know the
SOAP connector port of the node or deployment manager. And the inbound
communications ports are essential for accessing applications and the
administrative console.

Some port settings will be defined to use the channel framework. These will
have an associated transport chain. The ports that use the channel
 Chapter 4. Administration basics 199

framework include the Web container ports (see “Working with nodes” on
page 201), the service integration bus ports (see 9.2.2, “Service integration
bus transport chains” on page 563), and the port for Distribution and
Consistency Services (DCS) messages.

� Message listener service

The message listener service provides support for WebSphere Application
Server V5 message-driven beans applications.

Security
Security settings for the application server allow you to set specific settings at the
server level. Security settings are covered in WebSphere Application Security
V6.1 Security Handbook, SG24-6316.

Troubleshooting
These settings include those for logging and tracing. For information
troubleshooting and using these settings, see WebSphere Application Server V6
Problem Determination for Distributed Platforms, SG24-6798.

Additional properties
The following settings are defined under the additional properties section:

� Class loader viewer service: Enable or disable service to keep track of
classes loaded.

� Core group service: These settings are related to high availability.

� Endpoint listeners: An endpoint listener receives requests from service
requester applications within a specific application server or cluster.

� Debugging service: On this page, you can specify settings for the debugging
service, to be used in conjunction with a workspace debugging client
application, for example, the Application Server Toolkit.

� Thread pool: The thread pool specifies the possible maximum number of
concurrently running threads in the Web container. As one thread is needed
for every client request, this directly relates to the number of active clients that
can possibly access the Web container on this application server at any given
time. A timeout value can be specified for the application server to remove
threads from the pool based on a timed period of inactivity.

Finally, an option for creating threads beyond the maximum pool size is
available. Be careful when using this option. It can have the unexpected effect
of allowing the Web container to create more threads than the JVM might be
able to process, creating a resource shortage and bringing the application
server to a halt.
200 WebSphere Application Server V6.1: System Management and Configuration

� Web server plug-in properties: Used to change the HTTP plug-in
configuration without having to stop the server and start it again.

4.5 Working with nodes
Managing nodes is a concept specific to a Network Deployment environment.
Nodes are managed by the deployment manager through a process known as a
node agent that resides on each node. In order to manage a node in a Network
Deployment environment, the node must be defined and the node agent on each
WebSphere Application Server node must be started.

4.5.1 Adding (federating) a node
When you add a node to a cell, the node can be an existing stand-alone
application server, or it can be a custom node profile that you have not federated
yet.

A custom profile defines a node that can be federated during profile creation, or
later using the addNode command. For an example of federating a custom profile
during profile creation, see 3.3.4, “Creating a custom profile” on page 79. For an
example of using addNode to federate a custom profile, see 3.3.5, “Federating a
custom node to a cell” on page 86.

If you are adding a stand-alone application server installation to a cell, you can
do this from the deployment manager administrative console, or you can use the
addNode command from the node installation. The following examples illustrate
using these methods to federate an application server profile to the cell.

Method 1: Using the administrative console
Before you begin, be certain these tasks are completed.

� Make sure the application server is started on the node to be added.

� Open the administrative console for the application server and note the port
for the SOAP_CONNECTOR_ADDRESS. You can find this port number by
looking in the Communications section in the Details page for the application
server.

From the administrative console, do the following to add a node:

1. Select System Administration → Nodes → Add Node.

2. Select Managed node and click Next. The unmanaged node option is for
defining a Web server to the deployment manager (covered later in
Chapter 7, “Managing Web servers” on page 365). See Figure 4-27 on
page 202.
 Chapter 4. Administration basics 201

3. Specify the host name of the node to be added to the cell.

4. Fill in the following fields, as applicable:

Figure 4-27 Working with nodes

– Host

Specifies the network name of the node to be added to the cell. This value
can be an IP address, a domain name server (DNS) name that resolves to
an IP address, or the word localhost, if the application server is running on
the same machine as the deployment manager. The application server
process must be running at the IP address identified by the host field.

– JMX connector type and port

Select the JMX connector type. You can select between SOAP and RMI. If
you select SOAP, enter the SOAP_CONNECTOR_PORT number for the
202 WebSphere Application Server V6.1: System Management and Configuration

application server. If you select RMI, enter the
ORB_LISTENER_ADDRESS number for the application server. These
port numbers can be found in serverindex.xml.

– Application server user name

The user ID and password for the application server. If security is enabled
at the node you are adding, enter a valid user ID and password to enable
the deployment manager to communicate with the remote application
server process. If security is not enabled at the application server, no
entry is required.

– Application server password

Password for the application server user ID entered previously.

– Deployment manager user name

User ID and password for the deployment manager that is required since
security is enabled at the deployment manager.

– Deployment manager password

The password for the deployment manager user ID entered previously.

– Config URL

Define the security settings that enables a remote application server to
communicate with the deployment manager.

– Include applications

Check this box if you want the applications currently installed on the
application server in the node to be included. If you do not check this box,
any existing applications on the server will be uninstalled during the
process.

– Include buses

If the node you are adding includes a service integration bus and you want
to include it in the federation, check this box. The bus name has to be
unique within the cell. If there is already a bus by the same name, the
node will not be added.

– Starting port

If you want to specify the ports for the node rather than taking the default,
you can specify a starting port. The numbers will be incremented from this
number. For example, if you specify 3333, the BOOTSTRAP_ADDRESS
port will be 3333, CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS
will be 3334, and so on.
 Chapter 4. Administration basics 203

– Core group name

Specify the core group the node agent will belong to. If you only have one
core group (DefaultCoreGroup), you will not see this option.

Click OK. The messages will be displayed on the administrative console. See
Example 4-7.

Example 4-7 Adding a node from the administrative console - output messages

ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU2010I: Stopping all server processes for node AppSrv02Node
ADMU0510I: Server server1 is now STOPPED
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: AppSrv02Node
ADMU0014I: Adding node AppSrv02Node configuration to cell: Cell01
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: AppSrv02Node
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
1196
ADMU9990I:
ADMU0300I: Congratulations! Your node AppSrv02Node has been successfully
incorporated into the Cell01 cell.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the standalone CARLAVM2Node03Cell
configuration have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the Cell01 Deployment Manager with
values from the old cell-level documents.
ADMU9990I:
ADMU0003I: Node AppSrv02Node has been successfully federated.
The new node will not be available in the console until you log in again
Logout from the WebSphere Administrative Console

Method 2: Using the addNode command
Before you begin, be certain these tasks are completed.

� Make sure the application server is started on the node to be added.

� Open the deployment manager administrative console and note the port
specified as the SOAP_CONNECTOR_ADDRESS port for the deployment
manager. You will can find this port number by looking in the Additional
Properties section in the Details page for the deployment manager.
204 WebSphere Application Server V6.1: System Management and Configuration

To use the addNode command, do the following:

1. Open a command-line window on the system that has the running
stand-alone application server.

2. Change the directory to the <profile_home>/bin directory of the stand-alone
application server installation. On z/OS, the addNode.sh command is in the
<was_home>/bin directory.

3. Execute addNode.

The addNode command adds a new node to an existing administrative cell.

The actions the command performs are:

1. Connects to the deployment manager process. This is necessary for the file
transfers performed to and from the deployment manager in order to add the
node to the cell.

2. Attempts to stop all running application servers on the node.

3. Backs up the current stand-alone node configuration to the
<profile_home>/config/backup/base/ directory.

4. Copies the stand-alone node configuration to a new cell structure that
matches the deployment manager structure at the cell level.

5. Creates a new local config directory and definition (server.xml) for the node
agent.

6. Creates entries (directories and files) in the master repository for the new
node’s managed servers, node agent, and application servers.

7. Uses the FileTransfer service to copy files from the new node to the master
repository.

8. Uploads applications to the cell only if the -includeapps option is specified.

9. Performs the first file synchronization for the new node. This pulls everything
down from the cell to the new node.

10.Fixes the node’s setupCmdLine and wsadmin scripts to reflect the new cell
environment settings.

11.Launches the node agent.
 Chapter 4. Administration basics 205

Addnode command syntax
The syntax of the addNode command is as follows:

addNode.bat(sh) <dmgr_host> <dmgr_port> [options]

The command must be run from the node’s <profile_home>/bin. It cannot be run
from the deployment manager. The <dmgr_host> and <dmgr_port> parameters
give the location of the deployment manager. The <dmgr_host> parameter is
required.

The default JMX connector type to use is SOAP and the default port number for
SOAP is 8879. If this is how you want to connect, and the
SOAP_CONNECTOR_ADDRESS is 8879 for the deployment manager, you do
not need to specify the <dmgr_port> parameter.

For options, see Table 4-11.

Table 4-11 Options for addNode

Important: Keep in mind the following points when adding a node to a cell.

� The cell must already exist.

� The cell’s deployment manager must be running before addNode can be
executed.

� The new node must have a unique name. If an existing node in the cell
already has the same name, addNode will fail.

� By default, addNode does not carry over the applications or service
integration buses when added to the cell. The -includeApps and
-includebuses options must be used for this purpose.

Option Description

-nowait Tell the command not to wait for successful completion of the node
addition.

-quiet Suppress progress information printed to the console in normal mode.
This option does not affect information written to file.

-trace Generate trace information into a file for debugging purposes. The
output goes to addNode.log.

-logfile <log file path> Specify an alternative location for command’s log output, instead of
addNode.log. The path can be specified in the following forms:
absolute, relative, or file name. The default is
<profile_home>/logs/addNode.log.
206 WebSphere Application Server V6.1: System Management and Configuration

-replacelog Start a new log, replacing any previous log of the same name. If this
argument is not specified, the default behavior is to append output to
the existing file.

-conntype <type> Specify the JMX connector to use for connection. Valid values are
SOAP or RMI. If not specified, SOAP is assumed.
If RMI is specified, then the deployment manager’s correct RMI/IIOP
JMX connector port must be specified by the <dmgr_port> argument.

-profileName <profile> Specify the profile to run the command against. If the command is run
from <was_home>/bin and -profileName is not specified, the default
profile is used. If it is run from <profile_home>/bin, that profile is used.

-username <username> Specify a user name for authentication if WebSphere security is
enabled. The user name is ignored if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere security is
enabled. The password is ignored if WebSphere security is disabled.

-includeapps Attempt to include the applications in the incorporation of the base
node into a cell. The default is not to include the applications.

-includebuses If the node contains one or more service integration buses, carry these
into the new configuration.

-startingport <port> Used as the starting/base IP port number for the node agent created
for this new node.

-portprops <qualified-filename> Passes the name of the file that contains key-value pairs of explicit
ports that you want the new node agent to use.

-nodeagentshortname <name> Specify the short name to use for the new node agent.

-nodegroupname <name> Specify the node group in which to add this node. If you do not specify,
the node is added to the DefaultNodeGroup.

-registerservice
-serviceusername <name>
-servicepassword <password>

In Windows only, this option registers the node agent as a Windows
service with the specified user ID and password.

-coregroupname <name> Specify the core group in which to add this node. If you do not specify
this option, the node will be added to the DefaultCoreGroup.

-statusport <port> Set the port number for server status callback.

-noagent Indicates that the new node agent (generated as part of adding the
node to a cell) is not to be started at the end. The default setting is to
start the node agent.

-help or -? Print a usage statement.

Option Description
 Chapter 4. Administration basics 207

Example 4-8 shows an example of using the addNode command to add a custom
node to a cell.

Example 4-8 addNode usage examples

C:\<was_base>\profiles\Node02\bin>addnode carlavm2 8879 -startingport 3333

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node02\logs\addNode.log
ADMU0128I: Starting tool with the Node02 profile
ADMU0001I: Begin federation of node Node02 with Deployment Manager at
 carlavm2:8879.
ADMU0009I: Successfully connected to Deployment Manager Server: carlavm2:8879
ADMU0507I: No servers found in configuration under:
C:\<was_base>\profiles\Node02\config\cells\CARLAVM2Node02Cell\nodes\Node02\serv
ers
ADMU2010I: Stopping all server processes for node Node02
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: Node02
ADMU0014I: Adding node Node02 configuration to cell: Cell01
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: Node02
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 1072
ADMU9990I:
ADMU0300I: Congratulations! Your node Node02 has been successfully incorporated
 into the Cell01 cell.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the standalone CARLAVM2Node02Cell
 configuration have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the Cell01 Deployment Manager with
 values from the old cell-level documents.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0304I: Because -includeapps was not specified, applications installed on
 the standalone node were not installed on the new cell.
ADMU0307I: You might want to:
ADMU0305I: Install applications onto the Cell01 cell using wsadmin $AdminApp or
 the Administrative Console.
ADMU9990I:
ADMU0003I: Node Node02 has been successfully federated.
C:\<was_base>\profiles\Node02\bin>
208 WebSphere Application Server V6.1: System Management and Configuration

Federating a node on z/OS
The zPMT tool has an option that leads you through the process of generating
jobs that will federate a stand-alone server to a cell.

4.5.2 Removing a node
There are two ways of removing a node from a network distributed administration
cell.

Method 1: Using the administrative console
From the administrative console, do the following:

1. Select System Administration →Nodes.

2. Place a check mark in the check box beside the node you want to remove and
click Remove Node.

This method runs the removeNode command in the background.

Method 2: Using the removeNode command
The removeNode command detaches a node from a cell and returns it to a
stand-alone configuration.

To use the command, do the following:

1. Change the directory to the <profile_home>/bin directory.

2. Run removeNode. All parameters are optional for this command.

In a distributed environment on z/OS, the removeNode.sh command is in the
<was_home>/bin directory. You will need to specify the -profileName parameter
to specify the profile for the node you want to remove.

The command performs the following operations:

1. Connects to the deployment manager process to read the configuration data.

2. Stops all of the running server processes of the node, including the node
agent process.

3. Removes servers in the node from clusters.

4. Restores the original stand-alone node configuration. This original
configuration was backed up when the node was originally added to the cell.

Note: When a node is removed, it is restored to its original configuration,
except when it was added to the cell.
 Chapter 4. Administration basics 209

5. Removes the node’s configuration from the master repository of the cell. The
local copy of the repository held on each node will get updated at the next
synchronization point for each node agent. Although the complete set of
configuration files are not pushed out to other nodes, some directories and
files are pushed out to all nodes.

6. Removes installed applications from application servers in the cell that are
part of the node being removed.

7. Copies the original application server cell configuration into the active
configuration.

Unlike the addNode command, removeNode always uses the SOAP JMX connector
of the deployment manager. There is no option provided for specifying the RMI
JMX connector.

The command provides the -force option to force the local node’s configuration to
be decoupled from the cell even if the deployment manager cannot be contacted.
However, if this situation occurs, the cell’s master repository will then have to be
separately updated to reflect the node’s removal, for example, through manual
editing of the master repository configuration files.

removeNode command
The command syntax is as follows:

removeNode [options]

Table 4-12 shows the removeNode parameters.

Table 4-12 removeNode parameters

Parameter Description

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information is written. The default
is <profile_home>/logs/removeNode.log.

-profileName <profile> Specify the profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile is used.

-replacelog Replace the log file instead of appending to the current log.

-trace Generate trace information into the log file for debugging purposes.

-statusport <portNumber> Set the port number for node agent status callback.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specify the password for authentication if security is enabled.
210 WebSphere Application Server V6.1: System Management and Configuration

Example
Table 4-9 shows an example of using the removeNode command.

Example 4-9 removeNode example

C:\<was_base>\bin>removeNode -profileName Custom01
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Custom01\logs\removeNode.log
ADMU0128I: Starting tool with the Custom01 profile
ADMU2001I: Begin removal of node: CustomNode
ADMU0009I: Successfully connected to Deployment Manager Server:
 CARLAVM2.itso.ral.ibm.com:8879
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: Cserver1
ADMU0506I: Server name: Cserver2
ADMU0506I: Server name: nodeagent
ADMU2010I: Stopping all server processes for node CustomNode
ADMU0512I: Server Cserver1 cannot be reached. It appears to be stopped.
ADMU0512I: Server Cserver2 cannot be reached. It appears to be stopped.
ADMU0512I: Server nodeagent cannot be reached. It appears to be stopped.
ADMU2021I: Removing all servers on this node from all clusters in the cell.
ADMU2014I: Restoring original configuration.
ADMU2017I: The local original configuration has been restored.
ADMU9990I:
ADMU0306I: Be aware:
ADMU2031I: Any applications that were uploaded to the DMCell cell configuration
 during addNode using the -includeapps option are not uninstalled by
 removeNode.
ADMU0307I: You might want to:
ADMU2032I: Use wsadmin or the Administrative Console to uninstall any such
 applications from the Deployment Manager.
ADMU9990I:
ADMU2024I: Removal of node CustomNode is
complete.

-force Clean up the local node configuration, regardless of whether you can reach
the deployment manager for cell repository cleanup.

Note: After using the -force parameter, you might need to use the
cleanupNode command on the deployment manager.

-help or -? Print command syntax information.

Parameter Description
 Chapter 4. Administration basics 211

4.5.3 Renaming a node

To run the command, do the following:

1. Change to the <profile_home>/bin directory of the deployment manager.

2. Run the renameNode command.

The command:

1. Connects to the deployment manager.

2. Stops all servers.

3. Changes the node configuration on the deployment manager.

4. Synchronizes the node.

renameNode command
The command syntax is as follows:

renameNode.sh <dmgr_host> <dmgr_port> <node_name> [options]

The parameters for the command are shown in Table 4-13.

Table 4-13 renameNode parameters

renameNode (new): The renameNode command allows you to modify the node
name of a federated server.

Parameter Description

-nodeshortname <name> Short name of the node.

-conntype <type> Specifies the JMX connector type to use for connecting to the deployment
manager. Valid types are SOAP or RMI.

-trace Generate trace information into the log file for debugging purposes.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specify the password for authentication if security is enabled.

-logfile <filename> Specify the location of the log file to which information is written. The default
is <profile_home>/logs/renameNode.log.

-help or -? Print command syntax information.
212 WebSphere Application Server V6.1: System Management and Configuration

4.5.4 Node agent synchronization
Configuration synchronization between the node and the deployment manager is
enabled by default. During a synchronization operation, a node agent checks
with the deployment manager to see if any configuration documents that apply to
the node have been updated. New or updated documents are copied to the node
repository, and deleted documents are removed from the node repository.
Configure the interval between synchronizations in the administrative console by
doing the following:

1. Expand System Administration →Node Agents in the administrative
console.

2. Select the node agent process on the appropriate server to open the
Properties page.

3. In the Additional Properties section, click File Synchronization Service.

4. Configure the synchronization interval. By default, the synchronization
interval is set to one minute.

Explicit synchronization can be forced by selecting System Administration →
Nodes. Select a node and click Synchronize or Full Synchronization.

Synchronize performs an immediate synchronization on the selected node.

The Full Synchronization option disregards any synchronization optimization
settings and ensures that the node and cell configuration are identical.

Using the syncNode command
The syncNode command can be used to force the synchronization of a node’s
local configuration repository with the master repository on the deployment
manager node.

The syntax of the syncNode command is as follows:

syncNode.bat(sh) <dmgr_host> [dmgr_port] [options]

Tip: Increase the synchronization interval in a production environment to
reduce the overhead.

Note: To use the syncNode command. the node agent must be stopped. You
can use the -stopservers and -restart options on the syncNode command to
stop the node agent and application servers, and then restart the node agent.
 Chapter 4. Administration basics 213

The first argument is mandatory. The options are listed in Table 4-14.

Table 4-14 Options for syncNode

Option Description

-nowait Tell the command not to wait for successful synchronization of the
node.

-quiet Suppress progress information printed to the console in normal mode.
This option does not affect information written to file.

-trace Generate trace information into a file for debugging purposes. The
output goes to syncNode.log.

-profileName <profile> Specify the profile to run the command against. If the command is run
from <was_home>/bin and -profileName is not specified, the default
profile is used. If it is run from <profile_home>/bin, that profile is used.

-conntype <type> Specify the JMX connector type to use for connection to the
deployment manager. Valid values are SOAP or RMI. If not specified,
SOAP is assumed.

-stopservers Indicate that the node agent and all managed servers of the node
should be stopped prior to synchronizing the node’s configuration with
the cell.

-restart Indicate that the node agent is to be restarted after synchronizing the
node’s configuration with the cell.

-logfile <log file path> Specify an alternative location for the command’s log output, instead
of syncNode.log. The path can be specified in the following forms:
absolute, relative, or file name. The default location is
<profile_home>/logs/syncNode.log

-replacelog Start a new log, replacing any previous log of the same name. If this
argument is not specified, the default behavior is to append the output
to the existing file.

-username <username> Specify a user name for authentication if WebSphere security is
enabled. Ignore it if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere security is
enabled. Ignore it if WebSphere security is disabled.

-localusername
<localusername>

Specifies the user name for authentication for existing application
servers on the node that you want to federate. This parameter is only
applicable if security is enabled for the application server.
214 WebSphere Application Server V6.1: System Management and Configuration

Example 4-10 shows an example of using the syncNode command. This example
was run on a Windows system.

Example 4-10 syncNode usage examples

C:\<was_base>\profiles\Node01\bin>stopnode

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\nodeagent\stopServer.log
ADMU0128I: Starting tool with the Node01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server nodeagent stop completed.

C:\<was_base>\profiles\Node01\bin>syncnode carlavm2

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\syncNode.log
ADMU0128I: Starting tool with the Node01 profile
ADMU0401I: Begin syncNode operation for node Node01 with Deployment Manager
 carlavm2: 8879
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0402I: The configuration for node Node01 has been synchronized with
 Deployment Manager carlavm2: 8879

4.5.5 Starting and stopping nodes
A node consists of the node agent and the servers. There are several ways to
start and stop a node and node agent, or stop them individually. Before using any
of these methods, be sure to note whether it affects the entire node, including
servers, or just the node agent.

Starting a node agent
When a node agent is stopped, the deployment manager has no way to
communicate with it. Therefore, the node agent has to be started with the
startNode command run from on the profile node system.

-localpassword
<localpassword>

Specifies the password for authentication for existing application
servers on the node that you want to federate. The password that you
choose must be one that is associated with a preexisting user name.
This parameter is only applicable if security is enabled for the
application server.

-help or -? Print a usage statement.

Option Description
 Chapter 4. Administration basics 215

From a command prompt, type the following command:

� Windows: <profile_home>\bin\startNode
� UNIX and z/OS: <profile_home>/bin/startNode.sh

startNode command
The command syntax is as follows:

startNode.bat(sh) [options]

The parameters are shown in Table 4-15.

Table 4-15 startNode parameters

See Example 4-11 for an example of the startNode command.

Parameter Description

-nowait Do not wait for successful initialization of the node agent process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information gets written. The
default is <profile_home>/logs/nodeagent/startServer.log.

-profileName <profile> Specify the profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile is used.

-replacelog Replace the log file instead of appending to the current log.

-trace Generate trace information into the log file for debugging purposes.

-timeout <seconds> Specify the wait time before node agent initialization times out and returns
an error.

-statusport <portNumber> Set the port number for node agent status callback.

-script [<script fileName>]
-background

Generate a launch script with the startNode command instead of launching
the node agent process directly. The launch script name is an optional
argument. If you do not provide the launch script name, the default script file
name is start_<nodeName>, based on the name of the node. The
-background parameter is an optional parameter that specifies that the
generated script will run in the background when you execute it.

-J-<java_option> Specify options to pass through to the Java interpreter.

-help Prints command syntax information
216 WebSphere Application Server V6.1: System Management and Configuration

Example 4-11 startNode command

C:\<was_base>\profiles\<profile_name>\bin>startnode
ADMU0116I: Tool information is being logged in file
C:\WebSphere\AppServer\profiles\Custom01\logs\nodeagent\startServer.log
ADMU0128I: Starting tool with the Custom01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server nodeagent open for e-business; process id is 1816

Starting a node on z/OS using the START command
To start a node agent on z/OS using the START command, use the following
format:

START nodeagent_procname,JOBNAME=server_shortname,
ENV=cell_shortname.node_shortname.server_shortname

For example:

START CHACRA,JOBNAME=CHAGNTA,ENV=CHCELL.CHNODEA.CHAGNTA

Stopping a node agent
To stop the node agent and leave the servers running, do the following,
depending on your preferred method.

From the administrative console, do the following:

1. From the administrative console, select System Administration →Node
Agents.

2. Check the box beside the node agent for the server and click Stop.

From a command prompt, type the following command:

� Windows: <profile_home>\bin\stopNode
� UNIX and z/OS: <profile_home>/bin/stopNode.sh

stopNode command
The command syntax is as follows:

stopNode [options]

Note: Once you stop the node agent, the deployment manager has no way to
communicate with the servers on that node. The servers might be up and
running, but the administrative console is not able to determine their status.
 Chapter 4. Administration basics 217

The parameters are shown in Table 4-16 on page 218.

Table 4-16 stopNode parameters

See Example 4-12 for an example and sample output of the stopNode command.

Example 4-12 stopNode command

C:\<was_base>\profiles\<profile_name>\bin>stopNode
ADMU0116I: Tool information is being logged in file
C:\<was_base>\profiles\<profile_name>\logs\nodeagent\stopServer.log
ADMU0128I: Starting tool with the Custom01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server nodeagent stop
completed.

Parameter Description

-nowait Do not wait for successful initialization of the node agent process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information gets written. The
default is <profile_home>/logs/nodeagent/stopServer.log.

-profileName <profile> Specify the profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is used.

-replacelog Replace the log file instead of appending to the current log.

-trace Generate trace information into the log file for debugging purposes.

-timeout <seconds> The wait time before node agent shutdown times out and returns an error.

-statusport <portNumber> Set the port number for node agent status callback.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specify the password for authentication if security is enabled.

-stopservers Stop all application servers on the node before stopping the node agent.

-conntype <type> Specify the JMX connector type to use for connecting to the deployment
manager. Valid types are SOAP or RMI.

-port <portNumber> Specify the node agent JMX port to use explicitly, so that you can avoid
reading configuration files to obtain the information.

-help Print command syntax information.
218 WebSphere Application Server V6.1: System Management and Configuration

Stopping a node on z/OS using the STOP command
To stop a node agent on z/OS, you can use the following command:

STOP nodeagent_JOBNAME

For example:

STOP CHAGNTA

Stopping a node (the node agent and servers)
You can use the administrative console to stop a node and its servers with one
action:

1. From the administrative console, select System Administration →Nodes.
2. Check the box beside the node and click Stop.

Restarting a node agent
You can restart a running node agent from the administrative console by doing
the following from the administrative console:

1. Select System Administration →Node Agents.
2. Check the box beside the node agent for the server and click Restart.

4.5.6 Node groups
You can have nodes in cells with different capabilities. Currently, this means
having a cell with nodes on both distributed platforms and z/OS nodes. In the
future, there might be other situations that fit this criteria. However, there are still
restrictions on how the nodes can coexist. For example, you cannot have mixed
nodes in a cluster. Node groups are created to group nodes of similar capability
together to allow validation during system administration processes.

A default node group called DefaultNodeGroup is automatically created for you
when the deployment manager is created, based on the deployment manager
platform. New nodes on similar platforms are automatically added to the default
group. A node must belong to at least one node group, but can belong to more
than one.

As long as you have nodes in a cell with similar platforms, you do not need to do
anything with node groups. New nodes are automatically added to the node
group. However, before adding a node on a platform that does not have the same
capabilities as the deployment manager platform, you will need to create the new
node group.
 Chapter 4. Administration basics 219

Working with node groups
You can display the default node group and its members by selecting System
Administration →Node Groups. See Figure 4-28.

Figure 4-28 Display a list of node groups

� To create a new node group, click New. The only thing you need to enter is
the name of the new node group. Click OK.

� To delete a node group, check the box to the left of the node group name and
select Delete.

� To display a node group, click the node group name. For example, in
Figure 4-30, we have displayed the DefaultNodeGroup.
220 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-29 Node group properties

� To add a node to a node group, display the node group and click Node group
members in the Additional Properties section. When the list appears, select
Add. You will be able to select from a list of nodes.

Figure 4-30 Displaying node group members
 Chapter 4. Administration basics 221

4.6 Working with clusters
This section discusses creating, configuring, and managing clusters using the
administrative console. Clustering is an option in a distributed server
environment only.

4.6.1 Creating clusters
Clusters consist of one or more application servers. When you create a cluster,
you can choose one existing application server to add to the cluster. The rest of
the servers must be new and can be created when you create the cluster or later.

When creating a cluster, it is possible to select the template of an existing
application server for the cluster without adding that application server into the
new cluster. For this reason, consider creating an application server with the
server properties that you want as a standard in the cluster first, then use that
server as a template or as the first server in the cluster.

To create a new cluster:

1. Select Servers →Clusters.

2. Click New. See Figure 4-31 on page 222.

Figure 4-31 Creating a new cluster

3. Enter the information for the new cluster:

– Cluster name: Enter a cluster name of your choice. On z/OS, you will also
be asked for the short name for the cluster.
222 WebSphere Application Server V6.1: System Management and Configuration

– Prefer local: This setting indicates that a request to an EJB should be
routed to an EJB on the local node if available.

– Configure HTTP session memory-to-memory replication: WebSphere
Application Server supports session replication to another WebSphere
Application Server instance. In this mode, sessions can replicate to one or
more WebSphere Application Server instances to address HTTP Session
single point of failure.

4. Create first cluster member: The first cluster member determines the server
settings for the cluster members.

Figure 4-32 First cluster member
 Chapter 4. Administration basics 223

– Member Name: Type a name of the new server to be added to the cluster.
On z/OS, you will also be asked for the short name for the server.

– Select Node: Specifies the node on which this new cluster member is
created.

– Server weight: The value for this field determines how workload is
distributed. For example, if all cluster members have identical weights,
work is distributed among the cluster members equally. Servers with
higher weight values are given more work. A rule of thumb formula for
determining routing preference would be:

% routed to Server1 = weight1 /(weight1+weight2+...+weight n)

In the formula, n represents the number of cluster members in the cluster.

– Generate unique HTTP ports: Generates unique port numbers for every
transport that is defined in the source server, so that the resulting server
that is created will not have transports that conflict with the original server
or any other servers defined on the same node.

– Select basis for first cluster member:

• If you select Create the member using an application server
template, the settings for the new application server are identical to the
settings of the application server template you select from the list of
available templates.

• If you select Create the member using an existing application
server as a template, the settings for the new application server are
identical to the settings of the application server you select from the list
of existing application servers.

• If you select Create the member by converting an existing
application server, the application server you select from the list of
available application servers becomes a member of this cluster.

• If you select None. Create an empty cluster, a new cluster is created,
but it does not contain any cluster members.

Click Next.

5. Create additional cluster members: Use this page to create additional
members for a cluster. You can add a member to a cluster when you create
the cluster or after you create the cluster. A copy of the first cluster member
that you create is stored as part of the cluster data and becomes the template
for all additional cluster members that you create.

To add a member, enter a new server name, select the node, and click Add
Member. See Figure 4-33.
224 WebSphere Application Server V6.1: System Management and Configuration

Figure 4-33 Additional cluster members

6. When all the servers have been entered, click Next.

7. A summary page shows you what will be created.

8. Click Finish to create the cluster and new servers.

9. Save the configuration.
 Chapter 4. Administration basics 225

4.6.2 Viewing cluster topology
The administrative console provides a graphical view of the existing clusters and
their members. To see the view, do the following:

1. Select Servers →Cluster Topology.

2. Expand each category. See Figure 4-34.

Figure 4-34 Cluster topology view

3. Selecting a server will take you to the configuration window for the application
server.

4.6.3 Managing clusters
Application servers within a cluster can be managed as independent servers. A
second option is to manage all the servers in the cluster using a single button:

1. Select Servers →Clusters.

2. Check each cluster you want to work with and select one of the following
options:

– Start: Use this option to start all servers in the cluster.

– Stop: Use this option to stops all servers in the cluster. This allows the
server to finish existing requests and allows failover to another member of
the cluster.

– Ripplestart: Use this option to Stop, then start all servers in the cluster.

– ImmediateStop: Stop all servers immediately.
226 WebSphere Application Server V6.1: System Management and Configuration

4.7 Working with virtual hosts

A virtual host is a configuration enabling a single host machine to resemble
multiple host machines. It consists of a host alias or aliases, which consist of a
host name and a port number. If you specify an asterisk (*) as a host name, all
host names and IP addresses that the Web server can receive will be mapped to
that virtual host.

There are two virtual hosts defined during installation: default_host and
admin_host.

� The default_host virtual host is intended for access to user applications, either
through the HTTP transport or through a Web server. At installation time, it is
configured as the default virtual host for the server1 application server. It is
configured to match requests to ports 80, 9080, and 9443 for any host name.

� The admin_host virtual host is used for access to the WebSphere
administrative console. It is configured to match requests to the secure ports
9090 (HTTP transport) and 9043 (Web server) for any host name.

� The proxy_host virtual host includes default port definitions, port 80 and 443,
which are typically initialized as part of the proxy server initialization. Use this
proxy host as appropriate with routing rules associated with the proxy server.

When you install an application, you associate a virtual host with each Web
module in the application. By associating a virtual host with a Web module,
requests that match the host aliases for the virtual host should be processed by
servlets/JSPs in this Web module. The Web server plug-in also checks the URI
of the request against the URIs for the Web module to determine whether the
Web module can handle them or not.

A single virtual host can be associated with multiple Web modules unless each
application has unique URIs. If there are same URIs among applications,
different virtual hosts must be created and associated with each of the
applications.

Note: For an example of defining and using a new virtual host, see 14.1.4,
“Defining the Plants by WebSphere virtual host” on page 901.
 Chapter 4. Administration basics 227

4.7.1 Creating a virtual host
By default, default_host is associated with all user application requests. There
are some cases in which multiple virtual hosts should be created, for example:

� Applications having conflicting URIs
� Support for extra ports, such as port 443 for SSL
� Keep clear independence of each virtual host for applications and servers

The configuration of a virtual host is applied to an entire cell. To create a new
virtual host, do the following:

1. Select Environment → Virtual Hosts and then click New.

2. Enter a name for the virtual host and click Apply.

3. Click Host Aliases in the Additional Properties pane.

4. Click New.

5. Enter values for the Host Name and Port fields and click OK.

The host aliases are not necessarily the same as the host name and port
number of the WebSphere Application Servers. They are the host names and
port numbers that the Web server plug-in is expecting to receive from the
browser. The Web server plug-in will send the request to the application
server using the host name and port number in the transport setting for that
server. If the Web server is running on a separate machine from WebSphere,
then the host aliases are for Web server machines.

Mapping HTTP requests to host aliases is case sensitive and the match must
be alphabetically exact. Also, different port numbers are treated as different
aliases.

For example, the request http://www.myhost.com/myservlet does not map to
any of the following:

http://myhost/myservlet
http://www.myhost.com/MyServlet
http://www.myhost.com:9876/myservlet

If the Web server plug-in receives a request that does not match one of the
virtual hosts, then an HTTP error will be returned to the user.

Simple wild cards can be used on the host aliases. A * can be used for the
host name, the port or both. It means that any request will match this rule.

Note: If the virtual host is used in a cluster environment, all host aliases
used by servers in the cluster should be registered in the virtual host. For
information about how to do this, see 7.3.1, “Regenerating the plug-in
configuration file” on page 386.
228 WebSphere Application Server V6.1: System Management and Configuration

6. Multi-Purpose Internet Mail Extensions (MIME) mappings associate a file
name extension with a type of data file, such as text, audio, or image. A set of
MIME types is automatically defined for you when you create a virtual host. To
see or alter the MIME types associated with this new virtual host, click MIME
Types in the Additional Properties section of the virtual host.

7. Click New to add a MIME type.

8. Enter the MIME type and extension. Click Apply to continue adding new
types or click OK if you are finished.

9. Click Save on the taskbar and save your changes.

4.8 Managing applications
Applications can be managed using the following methods:

� Using wsadmin

Using scripts to manage applications is more complicated than using the
other methods. It requires skill in at least one of the supported scripting
languages and a complete understanding of the WebSphere Application
Server configuration. However, scripting can offer a greater degree of control
and can be quite useful in situations where you are performing the same
administrative tasks multiple times, or when the tasks are to be done by
multiple administrators.

Information about using wsadmin scripts is found in Chapter 5, “Administration
with scripting” on page 249.

� Using WebSphere Rapid Deployment

The rapid deployment tools in WebSphere Rapid Deployment provides a
shortcut to installing, uninstalling, and updating applications. You can place
full J2EE applications (EAR files), application modules (WAR files or EJB JAR
files), or application artifacts (Java source files, Java class files, images,
JSPs, and so on) into a configurable location on your file system, referred to
as the monitored, or project, directory. The rapid deployment tools then
automatically detect added or changed parts of these J2EE artifacts and
performs the steps necessary to produce a running application on an
application server.

For information about using this feature, see Rapid deployment of J2EE
applications topic in the Information Center.

Important: If you create, delete, or update virtual hosts, you need to
regenerate the Web server plug-in.
 Chapter 4. Administration basics 229

� Using the administrative console

Using the administrative console is an easy way to install or update an
application. Wizards take you through the process and provide help
information at each step.

This is the method discussed in this section at a high level. A detailed
example of it can be found in Chapter 14, “Deploying applications” on
page 893.

4.8.1 Using the administrative console to manage applications
To view and manage applications using the administrative console, select
Applications → Enterprise Applications.

In the window, you see the list of installed applications and options for performing
application management tasks. Select one or more applications by checking the
box to the left of the application name, and then click an action to perform. The
exception to this is the Install option, which installs a new application, and
requires no existing application to be selected. See Figure 4-35 on page 230.

Figure 4-35 Working with enterprise applications

The following list describes the actions you can choose on this window.

� Start

Applications normally start when the server to which they are mapped starts.
Exceptions to this include when the application has just been installed, and
when the application has been stopped manually.
230 WebSphere Application Server V6.1: System Management and Configuration

� Stop

You can stop an application manually without affecting the rest of the
application server processes. This is common when you are updating an
application or want to make it unavailable to users.

� Install

The install option takes you through the process of installing a new enterprise
application EAR file.

� Uninstall

Use this to uninstall an application. This removes it from the application
servers and from the configuration repository.

� Update or Rollout Update

Applications can be updated in several ways. The update options include full
application, single module, single file, and partial application.

� Remove file

With this option, you can remove a single file from an application.

� Export

Use this option to export an EAR file of the application.

� Export DDL

Use this option to export DDL files found in the application.

4.8.2 Installing an enterprise application

To install an enterprise application into a WebSphere configuration, you must
install its modules onto one or more application servers. Follow these steps for
this task:

1. Select Applications → Enterprise Applications → Install, or Applications
→ Install New Application.

Adding a new cluster member: When an application server is added as a
member to a server cluster, the modules installed on other members are also
installed on the new member. You do not need to re-install or upgrade the
application.
 Chapter 4. Administration basics 231

2. Specify the location of the EAR file to install, as shown in Figure 4-36 on
page 232.

The EAR file that you are installing can be either on the client machine
running the Web browser, or on any of the nodes in the cell.

Figure 4-36 Installing an enterprise application

Click Next.

3. The first window has settings used during the installation. These settings
primarily determine whether default settings will be used or if you will override
them during the installation. You can choose to view all installation options
and parameters or just prompt when additional information is required.

Click Next.

Streamline™ installation process (new): Note the new V6.1 Prompt
me... option that allows you to streamline the installation process.
232 WebSphere Application Server V6.1: System Management and Configuration

4. The rest of the installation process is done in steps. The steps can vary,
depending on the contents of the EAR file. The following steps are a typical
sequence for the option Show me all installation options and parameters:

a. Provide options to perform the installation. This includes an option to use
embedded configuration values in an Enhanced EAR and the option to
pre-compile JSPs.

b. Map modules to servers

c. Provide JSP reloading options for Web modules

d. Map shared libraries

e. Initialize parameters for servlets

f. Provide JNDI names for beans

g. Map resource references to resources

h. Map virtual hosts for Web modules

i. Map context roots for Web modules

j. Map security roles to users or groups

k. Summary

5. Click Finish to install the application.

6. Save the configuration.

For information about where the application files are stored, see 2.4.3,
“Application data files” on page 42.

4.8.3 Uninstalling an enterprise application
To uninstall a no longer needed enterprise application, do the following:

1. Select Applications → Enterprise Applications.
2. Check the application you want uninstall and click Uninstall.

4.8.4 Exporting an enterprise application
If you have modified the binding information of an enterprise application, you
might want to export the changed bindings to a new EAR file. To export an
enterprise application to an EAR file:

1. Select Applications →Enterprise Applications.
2. Check the application you want to export and click Export.
3. Click the link for the file you want to export.
4. Click Save.
5. Specify the directory on the local machine and click Save.
 Chapter 4. Administration basics 233

4.8.5 Starting an enterprise application

An application starts automatically when the application server to which it is
mapped starts. You only need to start an application immediately after installing
it, or if you have manually stopped it.

An application can be started by following these steps from the administrative
console:

1. Select Applications →Enterprise Applications.
2. Check the application you want and click Start.

4.8.6 Stopping an enterprise application
An application can be stopped using the administrative console.

1. From the administrative console, do the following.

a. Select Applications → Enterprise Applications
b. Check the application you want to stop and click Stop.

4.8.7 Preventing an enterprise application from starting on a server
By default, an application will start when the server starts. The only way to
prevent this is to disable the application from running on the server.

1. From the administrative console:

a. Select Applications → Enterprise Applications.
b. Click the application to open the configuration.

Application startup: Starting an application server starts the applications
mapped to that server. The order in which the applications start depends on
the weights you assigned to each them. The application with the lowest
starting weight is started first. Applications that have the same weight are
started in no particular order. Enabling the parallel start option for the
application server means start applications with the same weight in parallel.

To view or change the application starting weight, select
Applications →Enterprise Applications. To find the Starting weight field,
open the configuration page for the application by clicking the application
name.

Note: In order to start an application, the application server that contains the
application has to be started. If not, the application displays in the
administrative console as unavailable and you are not able to start it.
234 WebSphere Application Server V6.1: System Management and Configuration

c. Select Target specific application status in the Detail Properties table.
d. Select the server for which you want to disable the application.
e. Click the Disable Auto Start button.
f. Save the configuration.

4.8.8 Viewing application details
The administrative console does not display the deployed servlets, JSPs, or
EJBs directly on the console. However, you can use the console to display XML
deployment descriptors for the enterprise application, Web modules, and EJB
modules.

To view the application deployment descriptor for an application, do the following:

1. From the console navigation tree, select Applications →Enterprise
Applications.

2. Click the application that you are interested in.

3. Under the Configuration tab, select View Deployment Descriptor under
Detail Properties.
 Chapter 4. Administration basics 235

Figure 4-37 shows the deployment descriptor window for the
PlantsByWebSphere enterprise application. The Configuration tab shows you
the structure defined by the deployment descriptor:

� The name and description of the enterprise application
� The Web modules or WAR files and their context roots
� The EJB modules and their associated JAR files
� The security roles associated with the enterprise application

Figure 4-37 Enterprise application deployment descriptor

Viewing EJB modules
To see the EJBs that are part of an enterprise application:

1. Select Applications →Enterprise Applications.

2. Click the application that you are interested in.
236 WebSphere Application Server V6.1: System Management and Configuration

3. Select Manage Modules under Modules Items.

4. Click the EJB module you want to view. See Figure 4-38.

Figure 4-38 Viewing an EJB module configuration

5. Click View Deployment Descriptor under Additional Properties to see the
EJB deployment descriptor.

Viewing Web modules
To see the servlets and JSPs that are part of an enterprise application:

1. Select Applications →Enterprise Applications.

2. Click the application that you are interested in.

3. Select Manage Modules under Modules.
 Chapter 4. Administration basics 237

4. Click the Web module you want to view. See Figure 4-39.

Figure 4-39 View a Web module

5. Click View Deployment Descriptor to see the details of the Web module
content.

4.8.9 Finding a URL for a servlet or JSP
The URL for a servlet or JSP is the path used to access it from a browser. The
URL is partly defined in the deployment descriptor provided in the EAR file and
partly defined in the deployment descriptor for the Web module containing the
servlet or JSP.

To find the URL for a servlet or JSP:

1. Find the context root of the Web module containing the servlet.

2. Find the URL for the servlet.

3. Find the virtual host where the Web module is installed.
238 WebSphere Application Server V6.1: System Management and Configuration

4. Find the aliases by which the virtual host is known.

5. Combine the virtual host alias, context root, and URL pattern to form the URL
request of the servlet/JSP.

For example, to look up the URL for the snoop servlet:

1. Find the context root of the Web module DefaultWebApplication of the
DefaultApplication enterprise application. This Web module contains the
snoop servlet.

a. From the console navigation tree, select Applications →Enterprise
Applications.

b. Click the application that you are interested in, in our case,
DefaultApplication.

c. On the Configuration tab, select Context Root for Web Modules.
(Figure 4-40). You can see:

i. There is only one Web module in this application,
DefaultWebApplication.

ii. The context root for the DefaultWebApplication Web module is “/”.We
will use this later.

Figure 4-40 Context root for the Web modules in DefaultApplication

d. Click OK to return to the DefaultApplication configuration.

2. Find the URL for the snoop servlet:

a. In the DefaultApplication configuration page, select Manage Modules.

b. Click the DefaultWebApplication Web module to see the general
properties.
 Chapter 4. Administration basics 239

c. Click View Deployment Descriptor.

This displays the Web module properties window, as shown in
Figure 4-41. Note that the URL pattern for the snoop servlet starting from
the Web module context root is “/snoop/*”. The Web module context root
was “/”.

Figure 4-41 DefaultWebApplication Web module deployment descriptor

d. Note that as you navigate through the windows, a navigation path is
displayed below the Messages area. Click DefaultApplication to return to
the application configuration page.
240 WebSphere Application Server V6.1: System Management and Configuration

3. Find the virtual host where the DefaultWebApplication Web module is
installed:

a. In the DefaultApplication configuration page, select Virtual hosts under
Web Module Properties.

This will display all of the Web modules contained in the enterprise
application, and the virtual hosts in which they have been installed. See
Figure 4-42. Note that the DefaultWebApplication Web module has been
installed on the default_host virtual host.

Figure 4-42 List of virtual hosts

4. Find the host aliases for the default_host virtual host.

a. From the console navigation tree, select Environment →Virtual Hosts.

b. Click default_host.
 Chapter 4. Administration basics 241

c. Select Host Aliases under Additional Properties.

This shows the list of aliases by which the default_host virtual host is
known. See Figure 4-43.

Figure 4-43 Default_host virtual host aliases

Note that the aliases are composed of a DNS host name and a port
number. The host aliases for the default_host virtual host are *:80, *:9080
and *:9443, “*” meaning any host name.

5. Combine the virtual host alias, context root and URL pattern to form the URL
request of the snoop servlet. Requests for the servlet with any of the following
URLs will map to the default_host virtual host:

http://<hostname>:80/snoop
http://<hostname>:9080/snoop
https://<hostname>:9443/snoop

4.9 Managing your configuration files
This section summarizes some of the most common system management tasks:

� Backing up a profile
� Restoring a profile
� Exporting and importing profiles
242 WebSphere Application Server V6.1: System Management and Configuration

4.9.1 Backing up a profile
Use the backupConfig command to back up a profile. The command will zip the
configuration file and store it in the current directory or a specified file name. The
zip file can be restored using the restoreConfig command. By default,
backupConfig will stop all servers in the configuration before performing the
backup.

� Executing backupConfig from the <was_home>/bin directory without the
-profileName parameter will back up the default directory.

� Executing backupConfig from the <profile_home>/bin directory without the
-profileName parameter will back up that profile.

� To back up a node configuration, specify the node profile in the -profileName
parameter.

� To back up a cell configuration, specify the deployment manager profile in the
-profileName parameter.

� To back up a stand-alone application server, specify the application server
profile in the -profileName parameter.

Syntax:

backupConfig <backup_file> [options]

The backup_file parameter specifies the file where the backup is to be written. If
you do not specify a backup file name, a unique name is generated and the file is
stored in the current directory. If you specify a backup file name in a directory
other than the current directory, the specified directory must exist.

The parameters are shown in Table 4-17.

Table 4-17 backupConfig parameters

Parameter Description

-nostop Servers are not to be stopped before backing up the configuration.

-quiet Suppresses the printing of progress information.

-logfile <fileName> Name of the log file to which information gets written. The default is
<profile_home>/logs/backupConfig.log

-profileName <profile> Profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is used.

-replacelog Replaces the log file instead of appending to the current log.

-trace Generates trace information into the log file for debugging purposes.
 Chapter 4. Administration basics 243

Example
Example 4-13 shows an example of backing up a deployment manager.

Example 4-13 backupConfig example

C:\WebSphere\ND\bin>backupConfig c:\WASbackups\Dmgr01\Dmgr01Aug2506
-profileName Dmgr01 -logfile c:\WASbackups\logs\Dmgr01Aug2506
ADMU0116I: Tool information is being logged in file
 c:\WASbackups\logs\Dmgr01Aug2506
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU5001I: Backing up config directory C:\WebSphere\ND\profiles\Dmgr01\config
 to file C:\WASBackups\Dmgr01\Dmgr01Aug2506
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: dmgr
ADMU2010I: Stopping all server processes for node kadw028CellManager01
...
...
ADMU5002I: 627 files successfully backed up.

4.9.2 Restoring a profile
Use the restoreConfig command to restore a profile configuration using an
archive previously generated using backupConfig. If the configuration to be
restored exists, the config directory is renamed to config.old (then config.old_1,
etc.) before the restore begins. The command then restores the entire contents
of the <profile_home>/config directory. By default, all servers on the node stop
before the configuration restores so that a node synchronization does not occur
during the restoration.

� Executing restoreConfig from the <was_home>/bin directory without the
-profileName parameter will restore the default directory.

� Executing restoreConfig from the <profile_home>/bin directory without the
-profileName parameter will restore that profile.

Syntax:

restoreConfig <backup_file> [options]

-username <name> User name for authentication if security is enabled in the server.

-password <password> Specifies the password for authentication if security is enabled.

-help of -? Prints command syntax information.

Parameter Description
244 WebSphere Application Server V6.1: System Management and Configuration

where backup_file specifies the file to be restored. If you do not specify one, the
command will not run.

The parameters are shown in Table 4-18.

Table 4-18 restoreConfig parameters

Parameter Description

-nowait Do not wait for the servers to be stopped before backing up the
configuration.

-quiet Suppresses the printing of progress information.

-location
<directory_name>

Location of the backup file.

-logfile <fileName> Location of the log file to which information gets written. The default is
<profile_home>/logs/backupConfig.log.

-profileName <profile> Profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is used.

-replacelog Replaces the log file instead of appending to the current log.

-trace Generates trace information into the log file for debugging purposes.

-username <name> User name for authentication if security is enabled in the server.

-password <password> Specifies the password for authentication if security is enabled.

-help or -? Prints command syntax information.
 Chapter 4. Administration basics 245

Example
Example 4-14 shows an example of restoring an application server profile.

Example 4-14 restoreConfig example

C:\<was_base>\bin>restoreconfig d:\wasbackups\appsrv01Nov022004 -profileName
AppSrv01
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\AppSrv01\logs\restoreConfig.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU2010I: Stopping all server processes for node AppSrvNode01
ADMU0512I: Server server1 cannot be reached. It appears to be stopped.
ADMU5502I: The directory C:\WebSphere\AppServer\profiles\AppSrv01\config
 already exists; renaming to
 C:\WebSphere\AppServer\profiles\AppSrv01\config.old
ADMU5504I: Restore location successfully renamed
ADMU5505I: Restoring file d:\wasbackups\appsrv01Nov022004 to location
 C:\WebSphere\AppServer\profiles\AppSrv01\config
...
ADMU5506I: 187 files successfully restored
ADMU6001I: Begin App Preparation -
ADMU6009I: Processing complete.

4.9.3 Exporting and importing profiles
WebSphere Application Server V6.x provides a mechanism that allows you to
export certain profiles, or server objects from a profile to an archive. The archive
can be distributed and imported to other installations.

An exported archive is a zip file of the config directory with host-specific
information removed. The recommended extension of the zip file is .car. The
exported archive can be the complete configuration or a subset. Importing the
archive creates the configurations defined in the archive.

The target configuration of an archive export / import can be a specific server or
an entire profile.

To use an archive, you would:

1. Export a WebSphere configuration. This creates a zip file with the
configuration.

2. Unzip the files for browsing or update for use on other systems. For example,
you might need to update resource references.
246 WebSphere Application Server V6.1: System Management and Configuration

3. Send the configuration to the new system. An import can work with the zip file
or with the expanded format.

4. Import the archive. The import process requires that you identify the object in
the configuration you want to import and the target object in the existing
configuration. The target can be the same object type as the archive or its
parent:

– If you import a server archive to a server configuration, the configurations
are merged.

– If you import a server archive to a node, the server is added to the node.

Server archives
The following command in wsadmin can be used to create an archive of a server:

$AdminTask exportServer {-archive <archive_location> -nodeName <node>
-serverName <server>}

This process removes applications from the server that you specify, and breaks
the relationship between the server that you specify and the core group of the
server, cluster, or bus membership. If you export a single server of a cluster, the
relation to the cluster is eliminated.

To import a server archive, use the following command:

$AdminTask importServer {-archive <archive_location> [-nodeInArchive
<node>] [-serverInArchive <server>][-nodeName <node>] [-serverName
<server>]}

When you use the importServer command, you select a configuration object in
the archive as the source and select a configuration object on the system as the
target. The target object can match the source object or be its parent. If the
source and target are the same, the configurations are merged.

Profile archives
You can create a configuration archive (CAR) file containing the configuration of
a stand-alone application server profile for later restoration. A CAR file can be
used to clone the original profile to another machine or system. CAR files can be
bundled in a customized installation package for use with the Installation Factory
feature. For more information about using the Installation Factory, refer to the
Information Center.

You can only create an archive of an unfederated profile (standalone application
server).
 Chapter 4. Administration basics 247

The following commands in wsadmin can be used to create an archive of a
profile:

$AdminTask exportWasprofile {-archive <archive_location>}
248 WebSphere Application Server V6.1: System Management and Configuration

Chapter 5. Administration with
scripting

In this chapter, we introduce the WebSphere scripting solution called wsadmin
and describe how some of the basic tasks that are performed by WebSphere
administrators can be done using the scripting solution. There are two types of
tasks: the operational task and the configurational task. The operational tasks
deal with currently running objects in WebSphere installation and the
configurational tasks deal with the configuration of WebSphere installations.

This chapter contains the following topics:

� Overview of WebSphere scripting
� Using wsadmin
� Common operational tasks using wsadmin
� Common configuration tasks
� Help creating wsadmin scripts
� Using Java for administration

The system management operations used in WebSphere Application Server
V6.1 are based on the model used on V.6.0.x. All V.6.0.x commands continue to
work as before. There have been some improvements, as we will point out in the
relevant sections.

The examples shown in this chapter were written in the Jython language.

5

© Copyright IBM Corp. 2006. All rights reserved. 249

5.1 Overview of WebSphere scripting
WebSphere Application Server provides a scripting interface based on the Bean
Scripting Framework (BSF) called wsadmin. BSF is an open source project to
implement an architecture for incorporating scripting into Java applications and
applets. The BSF architecture works as an interface between Java applications
and scripting languages. Using BSF allows scripting languages to do the
following:

� Look up a pre-registered bean and access a pre-declared bean
� Register a newly created bean
� Perform all bean operations
� Bind events to scripts in the scripting language

Because wsadmin uses BSF, it can make various Java objects available through
language-specific interfaces to scripts. Figure 5-1 shows the major components
involved in the wsadmin scripting solution.

Figure 5-1 wsadmin scripting

5.2 Using wsadmin
In this section, we describe how to configure and launch wsadmin. We then
describe the wsadmin objects used to manage WebSphere Application Server.

5.2.1 Jacl versus Jython

Both the Jacl and Jython scripting languages are supported by the wsadmin tool.
This chapter shows scripting using Jython.

Resources

MBeans

MBeansMBean
Server

JVM

External tools
and programs Connector

Jacl deprecated (new): WebSphere Application Server V6.1 represents the
start of the deprecation process for the Jacl syntax.
250 WebSphere Application Server V6.1: System Management and Configuration

If you have existing Jacl scripts and would like to start migrating to Jython, the
Application Server Toolkit V6.1 provides a tool that converts the Jacl scripts to
Jython, Jacl2Jython. In most cases, the resulting conversion is syntactically
equivalent, and is usually run time equivalent.

However Jacl and Jython language differences can result in a few lines of code
that are difficult to automatically convert, and in almost all such cases these
preliminary converted lines are flagged #?PROBLEM?. This helps developer's focus
on manual verification or alteration of these lines to ensure the intended run time
result is maintained. While the developer needs to manually review and verify all
the converted script, the #?PROBLEM? comment flags help identify the most likely
problem lines.

Jacl2Jython is a conversion assistant which typically does 95-98% of a
preliminary conversion, but the developer must manually verify all of the
preliminary conversion, and typically must also manually convert or modify some
code to make it function as originally intended. Even if the preliminary conversion
superficially appears correct, it always requires a complete line-by-line manual
review and verification.

5.2.2 Launching wsadmin
The wsadmin.bat (Windows) or .sh (UNIX) command file resides in the bin
directory of every profile for an application server, deployment manager, and
managed node instance. Start wsadmin from a command prompt with the
command:

<was_home>\profiles\<profile_name>\bin\wsadmin.bat (.sh)

Note that the wsadmin command also exists in the bin directory of every
<profile_home> directory. Starting wsadmin from this location is not
recommended because you have to be very careful to specify the right profile to
work with. The default profile will be chosen.
 Chapter 5. Administration with scripting 251

To get syntax-related help, type wsadmin.bat -? and press Enter. Example 5-1
shows the output. Some of these options have an equivalent in the properties
file. Any options specified on the command line will override those set in the
properties file.

Example 5-1 wsadmin command-line options

C:\<was_home>\profiles\<profile_name>\bin>wsadmin -?
wsadmin
 [-h(elp)]
 [-?]
 [-c <command>]
 [-p <properties_file_name>]
 [-profile <profile_script_name>]
 [-f <script_file_name>]
 [-javaoption java_option]
 [-lang language]
 [-wsadmin_classpath classpath]
 [-profileName profile]
 [-conntype
 SOAP
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 RMI
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 NONE
]
 [-jobid <jobid_string>]
 [-tracefile <trace_file>]
 [-appendtrace <true/false>]
 [script parameters]

5.2.3 Configuring wsadmin
The properties that determine the scripting environment for wsadmin can be set
using either the command line or a properties file. Properties can be set in the
following three ways:

� Use the profile or system default properties file:

<profile_home>/properties/wsadmin.properties

or
252 WebSphere Application Server V6.1: System Management and Configuration

<was_home>/properties/wsadmin.properties

� Use a customized properties file placed in the location pointed to by the
WSADMIN_PROPERTIES environment variable. You can copy the default
properties file to this location and modify it.

� Specify the -p argument to the wsadmin command.

The properties to note are listed in Table 5-1.

Table 5-1 wsadmin properties

Property Value

com.ibm.ws.scripting.connectionType SOAP, RMI or NONE

com.ibm.scripting.port TCP port of target system

com.ibm.scripting.host Host name of target system

com.ibm.ws.scripting.defaultLang Jython or Jacl

com.ibm.ws.scripting.echoparams Determines whether parameters or
arguments are output to STDOUT or to
the wsadmin trace file

com.ibm.ws.scripting.traceFile File for trace information

com.ibm.ws.scripting.validationOutpu
t

Location of validation reports

com.ibm.ws.scripting.traceString =com.ibm.*=all=enabled

com.ibm.ws.scripting.appendTrace Appends to the end of the existing log file

com.ibm.ws.scripting.profiles List of profiles to be run before running
user commands, scripts, or an interactive
shell

com.ibm.ws.scripting.emitWarningForC
ustomSecurityPolicy

Controls whether message WASX7207W
is emitted when custom permissions are
found

com.ibm.ws.scripting.tempdir Store temporary files when installing
applications

com.ibm.ws.scripting.validationLevel Level of validation to use when
configuration changes are made from the
scripting interface

com.ibm.ws.scripting.crossDocumentVa
lidationEnabled

Determines whether the validation
mechanism examines other documents
when changes are made to one document
 Chapter 5. Administration with scripting 253

Some of the listed properties in the wsadmin.properties file are commented out by
default. An example is com.ibm.ws.scripting.traceString. If you want to trace
wsadmin execution, remove the comment sign # from the properties file.

Similarly, some of the properties contain values. For example,
com.ibm.ws.scripting.connectionType has a default value of SOAP. This means
that when a scripting process is invoked, a SOAP connector is used to
communicate with the server.

The wsadmin command can operate in either connected or local mode. In
connected mode, all operations are performed by method invocations on running
JMX MBeans. In local mode, the application server (MBeans server) is not
started and the wsadmin objects are limited to configuring the server by means of
directly manipulating XML configuration documents. When operating in local
mode, it is very important to specify the correct profile for performing the
administration tasks or starting the tool from the correct profile directory.
Remember that each application server instance is configured from a set of XML
documents that is stored in separate directories for every server instance (the
application server profile).

When performing configuration changes in local mode in a distributed server
environment, care should be take to make configuration changes at the
deployment manager level. Changes made directly to the node configuration will
be lost at server startup or at configuration replication.

In addition to the properties file and configuration profile, you should also take
note of the script profile file. This is not to be confused with the server
configuration profile. A script profile is a script that is invoked before the main
script or before invoking wsadmin in interactive mode. The purpose of the script
profile is to customize the environment on which scripts run. For example, a
script profile can be set for Java Command Language (Jacl) scripting language
that makes Jacl-specific variables or procedures available to the interactive
session or main script.

5.2.4 Command and script invocation
The wsadmin commands can be invoked in three different ways. This section
details the different ways in which command invocation is performed.

com.ibm.ws.scripting.classpath List of paths to search for classes and
resources

Property Value
254 WebSphere Application Server V6.1: System Management and Configuration

Invoking a single command (-c)
The -c option is used to execute a single command using wsadmin in
Example 5-2. In the example, we use the AdminControl object to query the node
name of the WebSphere server process.

Example 5-2 Running a single command in wsadmin

C:\<was_home>\profiles\<profile_name>\bin>wsadmin -c AdminControl.getNode()
WASX7209I: Connected to process "dmgr" on node kcgg1f3CellManager01 using SOAP
connector; The type of process is: DeploymentManager
'kcgg1f3CellManager01'

Invoking commands interactively
The command execution environment can be run in interactive mode, so you can
invoke multiple commands without having the overhead of starting and stopping
the wsadmin environment for every single command. Run the wsadmin command
without the command (-c) and script file (-f) options to start the interactive
command execution environment, as shown in Example 5-3.

Example 5-3 Starting the wsadmin interactive command execution environment

C:\<was_home>\profiles\<profile_name>\bin>wsadmin
WASX7209I: Connected to process "dmgr" on node kcgg1f3CellManager01 using SOAP
connector; The type of process is: DeploymentManager
WASX7031I: For help, enter: "print Help.help()"
wsadmin>

From the wsadmin> prompt, the WebSphere administrative objects and built-in
language objects can be invoked, as shown in Example 5-4. Type the commands
as shown in bold.

Example 5-4 Interactive command invocation

wsadmin>AdminControl.getNode()
'kcgg1f3CellManager01'
wsadmin>

End the interactive execution environment by typing quit and pressing the Enter
key.
 Chapter 5. Administration with scripting 255

Running script files (-f)
The -f option is used to execute a script file. Example 5-5 shows a two-line
Jython script named myScript.py. The script has a .py extension to reflect the
Jythonl language syntax of the script. The extension plays no significance in
wsadmin; the com.ibm.ws.scripting.defaultLang property and -lang command-line
option is used to determine the language used. If the property setting is not
correct, use the -lang option to identify the scripting language, because the
default is Jacl.

Example 5-5 Jython script

print "This is an example Jython script"
print ""+ AdminControl.getNode()+""

Example 5-6 shows how to execute the script.

Example 5-6 Running a Jython script in wsadmin

C:\<was_home>\profiles\<profile_name>\bin>wsadmin -f myScript.py
WASX7209I: Connected to process "dmgr" on node kcgg1f3CellManager01 using SOAP
connector; The type of process is: DeploymentManager
This is an example Jython script
kcgg1f3CellManager01

Using a profile (-profile)
The -profile command-line option can be used to specify a profile script. The
profile can be used to perform whatever standard initialization is required.
Several -profile options can be used on the command line and those are invoked
in the order given.

Specifying a properties file (-p)
Use the -p option to specify a properties file other than wsadmin.properties either
located in the <profile_home>/properties directory, <was_home>/properties
directory, or in the $user_home directory.

Figure 5-7 shows an example of invoking wsadmin to execute a script file using a
specific properties file.
256 WebSphere Application Server V6.1: System Management and Configuration

Example 5-7 Specifying properties file on the command line

C:\<was_home>\profiles\<profile_name>\bin>wsadmin -f c:\myScript.py -p
c:\temp\custom.properties
WASX7209I: Connected to process "dmgr" on node kcgg1f3CellManager01 using SOAP
connector; The type of process is: DeploymentManager
This is an example Jython script
kcgg1f3CellManager01

5.2.5 Overview of wsadmin objects
The wsadmin command exposes four objects used for managing the WebSphere
environment, as well as a help object:

� AdminControl
� AdminConfig
� AdminApp
� AdminTask
� Help

AdminControl
The AdminControl scripting object is used for operational control. It
communicates with MBeans that represent live objects running a WebSphere
server process. It includes commands to query existing running objects and their
attributes and invoke operations on the objects. In addition to the operational
commands, the AdminControl object supports commands to query information
about the connected server, convenient commands for client tracing,
reconnecting to a server, and starting and stopping a server.

AdminConfig
The AdminConfig object is used to manage the configuration information that is
stored in the repository. This object communicates with the WebSphere
Application Server configuration service component to make configuration
inquires and changes. You can use it to query existing configuration objects,
create configuration objects, modify existing objects, and remove configuration
objects. In a distributed server environment, the AdminConfig commands are
available only if a scripting client is connected to the deployment manager. When
connected to a node agent or a managed application server, the AdminConfig
commands will not be available because the configuration for these server
processes are copies of the master configuration that resides in the deployment
manager.
 Chapter 5. Administration with scripting 257

AdminApp
The AdminApp object can update application metadata, map virtual hosts to Web
modules, and map servers to modules for applications already installed.
Changes to an application, such as specifying a library for the application to use
or setting session management configuration properties, are performed using the
AdminConfig object.

AdminTask
The AdminTask object is used to access a set of task-oriented administrative
commands that provide an alternative way to access the configuration
commands and the running object management commands. The administrative
commands run simple and complex commands. The administrative commands
are discovered dynamically when the scripting client is started. The set of
available administrative commands depends on the edition of WebSphere
Application Server you install. You can use the AdminTask object commands to
access these commands.

Two run modes are always available for each administrative command, namely
the batch and interactive mode. When you use an administrative command in
interactive mode, you go through a series of steps to collect your input
interactively. This process provides users a text-based wizard and a similar user
experience to the wizard in the administrative console. You can also use the help
command to obtain help for any of the administrative commands and the
AdminTask object.

Help
The Help object provides information about the available methods for the four
management objects as well as information about operations and attributes of
running MBeans. For example, to get a list of the public methods available for the
AdminControl object, enter the command as shown:

wsadmin>print Help.AdminControl()

To get a detailed description of a specific object method and the parameters it
requires, invoke the help method of the target object with the method name as
the option to the help method, as shown in Example 5-8 on page 259.
258 WebSphere Application Server V6.1: System Management and Configuration

Example 5-8 Getting method-specific help

wsadmin>print AdminControl.help('completeObjectName')
WASX7049I: Method: completeObjectName

 Arguments: object name, template

 Description: Returns a String version of an object name that matches
 the "template." For example, the template might be "type=Server,*"
 If there are several MBeans that match the template, the first match

Similarly, you can get a detailed methods help for the AdminConfig, AdminApp,
and AdminTask objects.

Obtaining operations and attributes information from the Help object are
discussed in “Finding attributes and operations for running MBeans” on
page 262.

Execution environment
The AdminConfig, the AdminTask, and the AdminApp objects all handle
configuration functionality. You can invoke configuration functions with or without
being connected to a server. Only the AdminControl object requires the server to
be started because its commands can only be invoked on running JMX MBeans.

If a server is running, it is not recommended that the scripting client be started in
local mode because configuration changes made in local mode are not reflected
in the running server configuration. The reverse is also true. In connected mode,
the availability of the AdminConfig commands depend on the type of server to
which the scripting client is attached to. Performing configuration changes to a
node agent or managed application server is not advised.

5.2.6 Management using wsadmin objects
Administration can be performed from wsadmin on JMX MBean objects from the
AdminControl object. Configuration management is done with the AdminConfig
object. the AdminTask is used for performing common types of administrative
and configurative tasks without in-depth knowledge of the JMX framework and
the WebSphere XML configuration structure. The following sections explain
these wsadmin objects in more detail.

Note: For the purposes of this discussion, we will refer to the methods of the
AdminControl, AdminConfig, AdminApp, AdminTask, and Help objects as
commands.
 Chapter 5. Administration with scripting 259

Administration using AdminControl
In order to invoke administrative methods on running JMX MBeans, a reference
to the target MBean object is required, by means of an Object Name. As
explained previously, MBeans represent running components in the WebSphere
run time environment and can be used to query and alter state and configuration.
Each WebSphere server instance contains an MBean server that registers and
provides the run time environment for all MBeans in that server.

Use the queryNames command to list the object names of all MBeans registered
and running in the MBean server. The simplest form of this command in Jython
is:

AdminControl.queryNames('*')

The list contains all object names of all MBeans currently running in the MBean
server. Depending on the server your scripting client is attached to, this list might
contain MBeans that are running in remote servers. This is because every
MBean server provides management capabilities for all the node agents and
managed application servers that is manageable from this level in the cell
hierarchy. The MBeans running on the remote MBean server are manageable by
means of a proxy MBean, transparent to the scripting client.

� If the client is attached to a stand-alone WebSphere Application Server, the
list contains only MBeans running on that server.

� If the client is attached to a node agent, the list contains MBeans running in
the node agent as well as MBeans running on all application servers on that
node.

� If the client is attached to a deployment manager, the list contains MBeans
running in the deployment manager, in all node agents communicating with
that deployment manager, and all application servers on all the nodes served
by those node agents.

Example 5-9 on page 261 shows a Jython script that collects information about
running MBeans into a file named mbean.txt. The list returned by the queryNames
command is a single Jython string object that separates every object name with
two new line control characters for clear readability. The new line character is
used for creating a Jython list structure that is written to the mbean.txt file with an
ObjectName: prefix. Note that because the list is created based on new line
(line.separator) information, every other entry from the mbList object is empty.
260 WebSphere Application Server V6.1: System Management and Configuration

Example 5-9 Finding information for running MBeans

file = "mbean.txt"
logFile = open(file, "a")
mbStr = AdminControl.queryNames("*:*")
mbList = mbStr.split(java.lang.System.getProperty("line.separator"))
for item in mbList:
 if (item != ""):
 print >>logFile, "ObjectName: "+item
 #endIf
#endFor
logFile.close()

An example of object name item returned by the queryNames command could
look like Example 5-10.

Example 5-10 Returned object name item

ObjectName:
WebSphere:name=dmgr,process=dmgr,platform=proxy,node=kcgg1f3CellManager01,j2eeT
ype=J2EEServer,version=6.1.0.0,type=Server,mbeanIdentifier=cells/kcgg1f3Cell01/
nodes/kcgg1f3CellManager01/servers/dmgr/server.xml#Server_1,cell=kcgg1f3Cell01,
spec=1.0,processType=DeploymentManager

This represents a deployment manager (dmgr) running in cell kcgg1f3Cell01 on
node kcgg1f3CellManager01. WebSphere includes the following key properties
on its object names:

� Name
� Type
� Cell
� Node
� Process
� mbeanIdentifier

You can use any of these key properties to narrow the scope of the list returned
by queryNames. For example you can list all MBeans that represent server
objects on the node kcgg1f3CellManager01, as follows:

wsadmin>AdminControl.queryNames('WebSphere:type=Server,node=kcgg1f3CellManager0
1,*')

Note: Be aware of the following when using AdminControl.queryNames.

� You will get an empty list back if you do not use the * wildcard at the end of
the ObjectName.

� WebSphere: represents the domain and is assumed if you do not include it.
 Chapter 5. Administration with scripting 261

An alternative way to obtain the object name is by using the completeObjectName
command. This command only returns the first object name matching the pattern
specified. For patterns specifying the exact object needed or the top level
MBean, for example, the deployment manager, the completeObjectName
command could be a better choice. For example, this command would obtain the
deployment manager object name:

wsadmin>AdminControl.completeObjectName('type=DeploymentManager,node=kcgg1f3Cel
l

Finding attributes and operations for running MBeans
The Help object can be used to list attributes and operations available for any
running MBean. The object name of the running MBean is needed in order to
complete the query. The object name can be obtained by use of the
AdminControl completeObjectName command.

Example 5-11 shows how to find attributes information for a server MBean. The
first command initializes the variable serv to the object name of a running server
on the kcgg1f3CellManager01, as found by the completeObjectName command.
Note that the object name returned is the first found by completeObjectName. The
attributes command of the Help object lists all the available attributes for the
particular server MBean found.

Example 5-11 Finding attributes for a running MBean

wsadmin>serv =
AdminControl.completeObjectName('type=Server,node=kcgg1f3CellManager01,*')
wsadmin>print Help.attributes(serv)
Attribute Type Access
name java.lang.String RO
shortName java.lang.String RO
threadMonitorInterval int RW
threadMonitorThreshold int RW
threadMonitorAdjustmentThreshold int RW
pid java.lang.String RO
cellName java.lang.String RO
cellShortName java.lang.String RO
deployedObjects java.lang.String; RO
javaVMs java.lang.String; RO
nodeName java.lang.String RO

Javadoc™: All MBean types are documented in the Javadoc format in the
web\mbeanDocs directory from within the WebSphere target installation
directory. The starting point is the index.html file. For a default installation, the
location of the index.html file is in this directory in a Windows environment:

C:\<was_home>\web\mbeanDocs\index.html
262 WebSphere Application Server V6.1: System Management and Configuration

nodeShortName java.lang.String RO
processType java.lang.String RO
resources java.lang.String; RO
serverVersion java.lang.String RO
serverVendor java.lang.String RO
state java.lang.String RO
platformName java.lang.String RO
platformVersion java.lang.String RO
internalClassAccessMode java.lang.String RO
objectName java.lang.String RO
stateManageable boolean RO
statisticsProvider boolean RO
eventProvider boolean RO
eventTypes java.lang.String; RO

Attribute values for any specific MBean can be read with the getAttribute
command of the AdminControl object. Depending on the access policy for the
individual attribute (Read only (RO) or Read and Write (RW), as listed with the
attributes Help command), attribute values can be modified with the
setAttribute command. For example, the process ID (pid) from the server
MBean can be retrieved by running:

wsadmin>AdminControl.getAttribute(serv,'pid')
 Chapter 5. Administration with scripting 263

Similar to the attributes command, the operations command can be used to
list the operations supported by a particular MBean. Example 5-12 shows the
usage of the operation command and its output.

Example 5-12 Finding operations for a running MBean (partial list of operations)

wsadmin>print Help.operations(serv)
Operation
java.lang.String getName()
java.lang.String getShortName()
int getThreadMonitorInterval()
void setThreadMonitorInterval(int)
int getThreadMonitorThreshold()
void setThreadMonitorThreshold(int)
int getThreadMonitorAdjustmentThreshold()
void setThreadMonitorAdjustmentThreshold(int)
java.lang.String getPid()
java.lang.String getCellName()
java.lang.String getCellShortName()
java.lang.String; getDeployedObjects()
void stopImmediate()
void stop(java.lang.Boolean, java.lang.Integer)
void restart()
java.lang.String getObjectNameStr()
boolean isStateManageable()
boolean isStatisticsProvider()
boolean isEventProvider()
java.lang.String; getEventTypes()

MBean operations are invoked by use of the invoke command of the
AdminControl object. For example, this is the syntax for invoking the
getVersionsForAllProducts operation:

wsadmin>print AdminControl.invoke(serv,'getVersionsForAllProducts')

For viewing and invoking MBean attributes and operations visually, the graphical
tool MBeanInspector (MBI) is recommended. With MBeanInspector, all JMX
MBeans are listed in a parent-child tree structure and with the wsadmin invocation
syntax displayed for most operations.

Even though MBI was not available for WebSphere Application Server Version
6.x, the current version for Version 5 works fine with Version 6. However, MBI is
not profile-aware. With security enabled, it uses the generic sas.properties file
from the root of the WebSphere install tree instead of the sas.properties file from
the current profile. For more information, see MBeanInspector for WebSphere
Application Server on alphaWorks® at:

http://www.alphaworks.ibm.com/tech/mbeaninspector
264 WebSphere Application Server V6.1: System Management and Configuration

http://www.alphaworks.ibm.com/tech/mbeaninspector

Configuring using AdminConfig
The AdminConfig and AdminTask objects are used to manage configuration
information for the WebSphere environment. This section discusses the use of
the AdminConfig object.

The AdminConfig object communicates with the configuration service of the
WebSphere process to query and update the configuration. All modifications
done with the AdminConfig commands are stored to a temporary workspace until
you invoke the save command.

The AdminConfig object performs a series of tasks for configuration changes:

1. Identify the configuration type and the corresponding attributes.

2. Query an existing configuration object to obtain the configuration ID of the
object to modify.

3. Modify the existing configuration object or overwrite with a new object.

4. Save the configuration.

The next sections discuss these steps in more detail. Be warned that configuring
WebSphere by use of the AdminConfig object requires a good understanding of
the WebSphere XML configuration documents and the config directory content.
A starting point would be to look through a default WebSphere configuration
profile and understand the defined elements, attributes, and namespaces listed
in the Javadoc configuration documentation.
 Chapter 5. Administration with scripting 265

The types command
The WebSphere configuration consists of element types and attribute names
structured in a set of XML documents. The WebSphere configuration is managed
from the AdminConfig object by obtaining a reference to an existing element type
or by instantiating or removing element types from the configuration. In wsadmin,
every element type is managed as a configuration object with a unique
configuration ID. All available configuration objects can be listed by using the
types command. Example 5-13 shows the partial output of the types command.

Example 5-13 Partial output of types command

wsadmin>print AdminConfig.types()
AccessPointGroup
ActivationSpec
ActivationSpecTemplateProps
ActivitySessionService
AdminObject
AdminObjectTemplateProps
AdminServerAuthentication
AdminService
Agent
AllActivePolicy
AllAuthenticatedUsersExt
Application
ApplicationClientFile
ApplicationConfig
ApplicationContainer
ApplicationDeployment
ApplicationManagementService
ApplicationProfileService
ApplicationServer

Every configuration object is used for configuring a specific part of the overall
cell. For example, the ApplicationServer object is used for defining application
servers in the environment. As the application server provides configurable
features, attributes defined from within the object are used to configure the
application server features. The available attributes for the ApplicationServer
object can be listed by use of the AdminConfig attributes command, this will be
discussed in detail in “Input and output of configuration object attributes” on
page 269.
266 WebSphere Application Server V6.1: System Management and Configuration

An object can contain other objects. Therefore, a parent-to-child relationship
exists in the configuration. For example, a node type object contains server type
objects, making the node object a parent to the server objects. To identify
possible objects in where a given configuration object can reside, use the
parents command. Locate the parent configuration objects for the
ApplicationServer object by issuing:

wsadmin>AdminConfig.parents('ApplicationServer')

The getid command
The getid command returns the configuration name for a configuration object.
Configuration objects are named with a combination of the display name for the
object and its configuration ID. The ID uniquely identifies the object and can be
used in any configuration command that requires a configuration object name.

Example 5-14 shows how to obtain the configuration name for dmgr. The string
argument passed to the command identifies the node and server to get the name
for. The / is used to separate one set of object type and value from another. The :
is used to separate the value from the object type in an object type and value
pair.

Example 5-14 Finding configuration name of an object

wsadmin>AdminConfig.getid('/Node:kcgg1f3CellManager01/Server:dmgr/')
'dmgr(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#Se
rver_1)'

Example 5-14 illustrates how the parent-to-child relationship of configuration
objects comes into play. As the configuration object name for the dmgr residing
on the kcgg1f3CellManager01 is needed, the specification of both child and
parent objects are required.

Note: Configuration objects are named using a combination of the display
name and its configuration ID. The display name comes first, followed by the
configuration ID in parentheses. An example of such an object name is:

server1(cells/MyCell/nodes/MyNode/servers/server1|server.xml#Server_1)

For those pieces of configuration data that do not have display names, the
name of the object simply consists of the configuration ID in parentheses. An
example of such an object name is as follows:

(cells/MyCell/nodes/MyNode/servers/server1|server.xml#ApplicationServer_1)

Because the ID portion is completely unique, a user can always use it without
the prepended display name in any command that requires a configuration
object name.
 Chapter 5. Administration with scripting 267

The list command
The list command returns a list of objects for a given type. In a WebSphere
Application Server environment, there are several object types and many objects
configured that have the same object type.

Example 5-15 list all objects of the DataSource object type in the test
environment. The list command returns two objects of the DataSource type to the
server1 server. Note how this command lists all objects regardless of scope.
From the administrative console, you would have to collect this information by
querying at each scope level.

Example 5-15 Finding objects of the same object type

wsadmin>print AdminConfig.list('DataSource')
"Default
Datasource(cells/kcgg1f3Cell01/nodes/kcgg1f3Node01/servers/server1|resources.xm
l#DataSource_1153406381923)"
DefaultEJBTimerDataSource(cells/kcgg1f3Cell01/nodes/kcgg1f3Node01/servers/serve
r1|resources.xml#DataSource_1000001)

The defaults command
The defaults command displays a table of attributes, their types, and defaults, if
any, for the configuration object. Each object has an object type and each object
type has attributes that might or might not have default values.

Example 5-16 shows the usage of the defaults command to list the attributes
and default values for those attributes for object type DynamicCache.

Example 5-16 Finding attributes and default values for an object type

wsadmin>print AdminConfig.defaults('DynamicCache')
Attribute Type Default
enable boolean false
defaultPriority int 1
hashSize int 0
cacheSize int 2000
enableCacheReplication boolean false
replicationType ENUM NONE
pushFrequency int 1
enableDiskOffload boolean false
diskOffloadLocation String
flushToDiskOnStop boolean false
enableTagLevelCaching boolean false
diskCachePerformanceLevel ENUM BALANCED
diskCacheSizeInGB int 0
diskCacheSizeInEntries int 0
diskCacheEntrySizeInMB int 0
diskCacheCleanupFrequency int 0
268 WebSphere Application Server V6.1: System Management and Configuration

context ServiceContext
properties Property
cacheGroups ExternalCacheGroup
cacheReplication DRSSettings
diskCacheCustomPerformanceSettings DiskCacheCustomPerformanceSettings
diskCacheEvictionPolicy DiskCacheEvictionPolicy

Input and output of configuration object attributes
The AdminConfig attributes command is part of the wsadmin online help
feature. The information displayed does not represent any particular
configuration object, but represents configuration object types or object
metadata. The metadata is used to show, modify, and create real configuration
objects. In this section, we discuss the interpretation of the output of those
commands.

The attributes command displays the type and name of each attribute defined
for a given type of configuration object. The name of each attribute is always a
string, generally beginning with a lowercase letter. But the types of attributes
vary.

Example 5-17 shows the output of the attributes command for the
configuration object DynamicCache. There are 15 attributes listed, four simple
integer attributes, five Boolean attributes, and one String attribute.

The cacheGroups and properties objects are lists of objects indicated by * at the
end of ExternalCacheGroup and Property(TypedProperty), respectively. These
are nested attributes. Another attributes invocation can be used to see the
composition of these nested attributes.
 Chapter 5. Administration with scripting 269

Example 5-17 Output of attribute command of AdminConfig object

wsadmin>print AdminConfig.attributes('DynamicCache')
cacheGroups ExternalCacheGroup*
cacheReplication DRSSettings
cacheSize int
context ServiceContext@
defaultPriority int
diskCacheCleanupFrequency int
diskCacheCustomPerformanceSettings DiskCacheCustomPerformanceSettings
diskCacheEntrySizeInMB int
diskCacheEvictionPolicy DiskCacheEvictionPolicy
diskCachePerformanceLevel ENUM(HIGH, CUSTOM, BALANCED, LOW)
diskCacheSizeInEntries int
diskCacheSizeInGB int
diskOffloadLocation String
enable boolean
enableCacheReplication boolean
enableDiskOffload boolean
enableTagLevelCaching boolean
flushToDiskOnStop boolean
hashSize int
properties Property(TypedProperty, DescriptiveProperty)*
pushFrequency int
replicationType ENUM(PULL, PUSH, PUSH_PULL, NONE)

wsadmin>print AdminConfig.attributes('ExternalCacheGroup')
members ExternalCacheGroupMember*
name String
type ENUM(SHARED, NOT_SHARED)

wsadmin>print AdminConfig.attributes('TypedProperty')
description String
name String
required boolean
type String
validationExpression String
value String

In Example 5-17, the properties attribute of the DynamicCache object has a
value that is also a list of objects of the Property type. The Property type is a
generic type, so its sub-types are listed, that is TypedProperty. The
replicationType and diskCachePerformanceLevel attribute are an ENUM type
attribute whose value must be one of the four possible values listed in
parentheses.
270 WebSphere Application Server V6.1: System Management and Configuration

The show command of the AdminConfig object can be used to display the
top-level attributes of a given object. In Example 5-18, the top-level attributes for
the SocratesServer1 object is shown by use of the show command.

Example 5-18 Finding top-level attributes for a given object

wsadmin>print
AdminConfig.show(AdminConfig.getid('/Node:kcgg1f3CellManager01/Server:dmgr/'))
[components
"[(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#NameS
erver_1) "Deployment
Manager(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#
CellManager_1)" "WorkloadManagement
Server(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#W
orkloadManagementServer_1)" "Network Deployment
Server(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#A
pplicationServer_1)"]"]
[customServices []]
[developmentMode false]
[errorStreamRedirect
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#StreamR
edirect_1)]
[name dmgr]
[outputStreamRedirect
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#StreamR
edirect_2)]
[parallelStartEnabled true]
[processDefinitions
[(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#JavaPr
ocessDef_1)]]
[serverType DEPLOYMENT_MANAGER]
[services
"[(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#PMISe
rvice_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#AdminSe
rvice_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#TraceSe
rvice_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#Diagnos
ticProviderService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#RASLogg
ingService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#CoreGro
upBridgeService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#ObjectR
equestBroker_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#Transpo
rtChannelService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#ThreadP
 Chapter 5. Administration with scripting 271

oolManager_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#HTTPAcc
essLoggingService_1)]"]
[stateManagement
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#StateMa
nageable_1)]
[statisticsProvider
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#Statist
icsProvider_1)]

The value for a particular attribute can be retrieved with the showAttribute
command. In Example 5-19, the values for the name attribute and the services
attribute of SocratesServer1 server object are listed.

Example 5-19 Retrieving attribute values for a given object

wsadmin>serv = AdminConfig.getid('/Node:kcgg1f3CellManager01/Server:dmgr/')

wsadmin>print AdminConfig.showAttribute(serv,'name')
dmgr

wsadmin>print AdminConfig.showAttribute(serv,'services')
[(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#PMISer
vice_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#AdminSe
rvice_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#TraceSe
rvice_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#Diagnos
ticProviderService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#RASLogg
ingService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#CoreGro
upBridgeService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#ObjectR
equestBroker_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#Transpo
rtChannelService_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#ThreadP
oolManager_1)
(cells/kcgg1f3Cell01/nodes/kcgg1f3CellManager01/servers/dmgr|server.xml#HTTPAcc
essLoggingService_1)]

Another useful command to list all attributes and their values in the AdminConfig
object is the showall command. This command returns names and values for all
attributes of a given object, including nested attributes.
272 WebSphere Application Server V6.1: System Management and Configuration

Configuring using AdminTask
Use of the AdminConfig and AdminControl requires some knowledge of the JMX
framework and WebSphere XML configuration structure. For performing various
scripted administrative tasks without knowledge of the underlying infrastructure,
the AdminTask object has been introduced.

The AdminTask object commands are more like wizards, providing a
step-by-step guide to performing management operations. The AdminTask
commands can either be invoked interactively, in order to prompt the user for the
parameters required, or be invoked batch-like, with all input specified as part of
the invocation. The AdminTask commands offered are direct reflections of the
tasks each component provides through the command framework. As the
command set is discovered dynamically on wsadmin startup, the number of
commands can differ, depending on the server environment and WebSphere
Application Server package.

Overview of AdminTask commands
The AdminTask object provides a large number of commands that perform
simple and complex administrative tasks. In order to find a command for a
specific task, commands have been logically grouped into command groups.

Tip: Scripting examples for managing the WebSphere Application Server
configuration are available from the IBM WebSphere Developer Domain
(WSDD) library in the samples collection. Even though the samples are for
WebSphere Application Server V5, they are just as useful for WebSphere
Application Server V6.1.
 Chapter 5. Administration with scripting 273

For example, to find AdminTask commands related to service integration bus
administration, the commands of the SIBAdminCommands group can be listed.
All the command groups and the commands in the SIBAdminCommands group
are listed in Example 5-20.

Example 5-20 AdminTask Groups and SIBAdmin commands (partial list)

wsadmin>print AdminTask.help('-commandGroups')
WASX8005I: Available admin command groups:

AdminReports - Admin configuration reports
AuthorizationGroupCommands - Authorization Group
AutoGen Commands - Commands for autogenerating LTPA password and server Id.
CertificateRequestCommands - Command that manage certificate request.
ChannelFrameworkManagement - A group of admin commands that help in configuring
the WebSphere Transport Channel Service
ClusterConfigCommands - Commands for configuring application server clusters
and cluster members.
ConfigArchiveOperations - A command group that contains various config archive
related operations.
ConfigLimits - No description available
CoreGroupBridgeManagement - A group of administrative commands that help in
configuring core groups.
CoreGroupManagement - A set of commands for modifying core groups
CreateWebServerByHostNameCommands - Specify the configuration properties for
IBM HTTP Server.
DescriptivePropCommands - Commands to configure Descriptive Properties.

wsadmin>print AdminTask.help('SIBAdminCommands')
WASX8007I: Detailed help for command group: SIBAdminCommands
Description: A group of commands that help configure SIB queues and messaging
engines.
Commands:
addSIBPermittedChain - Adds the specified chain to the list of permitted chains
for the specified bus.
addSIBusMember - Add a member to a bus.
createSIBDestination - Create bus destination.
createSIBEngine - Create a messaging engine.
createSIBForeignBus - Create a SIB foreign bus.
createSIBLink - Create a new SIB link.
createSIBMQLink - Create a new WebSphere MQ link.
createSIBMediation - Create a mediation.
createSIBWMQServer - Create a new WebSphere MQ server.
createSIBus - Create a bus.
deleteSIBDestination - Delete bus destination.
274 WebSphere Application Server V6.1: System Management and Configuration

All the available AdminTask commands can be retrieved in one list with the help
command:

wsadmin>print AdminTask.help('-commands')

For example, in order to invoke the createSIBus command, a number of options
are needed. To list the options, invoke help on the command:

wsadmin>print AdminTask.help('createSIBus')

An example of creating a service integration bus interactively is shown in
Example 5-21 on page 276. The batch invocation of the command is displayed at
the end of the interactive guide with all the correct options added. This command
can be used to form scripted creations of additional service integration buses. It
is a means to help the script developer become familiar with the command
invocation of the AdminTask object. Using the interactive approach for obtaining
the correct invocation syntax can be very useful when developing automated
scripted installations and configurations.

Tip: The AdminTask batch command syntax is displayed at the time of
command invocation. To obtain the command syntax without changing the
master WebSphere configuration repository, the change need not be saved
from the local workspace to the repository. The change to the workspace can
be reversed with use of the AdminConfig reset command:

wsadmin>AdminConfig.reset()
 Chapter 5. Administration with scripting 275

Example 5-21 Interactive invocation of AdminTask

wsadmin>AdminTask.createSIBus('-interactive')
Create a bus

Create a bus.

*Bus name (bus): WSBus
Description of bus (description): Web Services cell wide bus
Security (Deprecated) (secure): false
Inter-engine authentication alias (interEngineAuthAlias):
Mediations authentication alias (mediationsAuthAlias):
Protocol (protocol):
Discard messages after queue deletion (discardOnDelete): [false]
Max bus queue depth (highMessageThreshold):
Dynamic configuration reload enabled (configurationReloadEnabled): [true]
Enable bus security (busSecurity):
Script Compatibility (scriptCompatibility):

Create a bus

F (Finish)
C (Cancel)

Select [F, C]: [F] F
WASX7278I: Generated command line: AdminTask.createSIBus('[-bus WSBus
-description "Web Services cell wide bus" -secure false]')
'WSBus(cells/kcgg1f3Cell01/buses/WSBus|sib-bus.xml#SIBus_1153949210676)'

As some configuration tasks are dependent on other resources to exist, the task
commands can provide a means for configuring related resources for completing
the intended task. Such tasks are split into steps. An example of a multi-step task
is the createCluster command, which provides steps to create a replication
domain and convert servers to cluster members as part of the cluster creation.
See the help text for the createCluster command in Example 5-22.
276 WebSphere Application Server V6.1: System Management and Configuration

Example 5-22 createCluster help text

wsadmin>print AdminTask.help('createCluster')
WASX8006I: Detailed help for command: createCluster
Description: Creates a new application server cluster.
Target object: None
Arguments:
 None
Steps:
 clusterConfig - Specifies the configuration of the new server cluster.
 replicationDomain - Specifies the configuration of a replication domain for

this cluster. Used for HTTP session data replication.
 convertServer - Specifies an existing server will be converted to be the
 first member of cluster.
 eventServiceConfig - Specifies the event service configuration of the new

server cluster.
 promoteProxyServer - If a proxy server was specified for convertServer,
 apply its proxy settings to the cluster.

Some steps are required for performing the intended task, while others are
optional. When starting the command task in interactive mode, the steps are
numbered with an optional marker prefixed to the number. A prefix of:

� The asterisk (*) character indicates a required step.
� A parentheses () indicates a step that is disabled.
� No denotation indicates an optional step.
� An arrow (→) indicates the current step in process.

Table 5-2 New high level commands

New in V6.1: Several new high level commands have been added to wsadmin
to ease administrative tasks. These commands are exposed in wsadmin as
AdminTask commands. Table 5-2 shows these new commands.

High level command group Commands

Data Source Management createJDBCProvider, createDataSource,
listJDBCProviders, and listDatasources

Server Management New commands to modify and view server
configurations

Variable Configuration setVariable, removeVariables, and showVariables

Port Management listServerPorts, modifyServerPort, and
listApplicationPorts

Report Generation Commands ReportConfigInconsistencies,
ReportConfiguredPorts
 Chapter 5. Administration with scripting 277

Table 5-3 New utility commands

5.3 Common operational tasks using wsadmin

In this section, we describe how you can use wsadmin to perform common
WebSphere operations. This section discusses a general approach for
operational tasks and gives specific examples of common administrative tasks.

5.3.1 General approach for operational tasks
In order to invoke an operation on a running MBean, you first need to know the
name of the running object. Then you invoke the method on a fully qualified
object name. This means that invoking operations usually involves two types of
commands:

� Find the object name.
� Invoke the operation.

In simple cases, the two commands can be combined.

Similarly, in order to change an attribute of a running object, you first need to
know the object name of that running object. This means that getting or setting
attributes involves a sequence of two commands:

� Find the object name of the running object/MBeans.
� Get or set attributes for that running object.

New in V6.1: Table 5-3 on page 278 shows some utility commands introduced
in WebSphere Application Server V6.1.

Utility Function

isFederated Check if the system is a single server or network deployment.

getDmgrProperties Return the name of the deployment manager.

changeHostName Change the host name of a node.

renameNode This new command line utility is used to rename a federated
node in a network deployment environment.

Note: You can use the queryNames and completeObjectName commands of the
AdminControl object to identify the name of a running object. See “Help” on
page 258 for information about how to do this.
278 WebSphere Application Server V6.1: System Management and Configuration

5.3.2 Examples of common administrative tasks
Common operational tasks performed using wsadmin include:

� Starting and stopping the deployment manager
� Starting and stopping nodes
� Starting and stopping application servers
� Starting, stopping, and viewing enterprise applications
� Starting and stopping clusters
� Generating the Web server plug-in configuration file
� Enabling tracing for WebSphere components

5.3.3 Managing the deployment manager
This section describes how to start and stop tasks on the deployment manager
using wsadmin.

Starting the deployment manager
wsadmin works on MBeans. Because the MBean representing the deployment
manager is not available unless the process is running, you have to start the
deployment manager using other methods (see 4.3.2, “Starting and stopping the
deployment manager” on page 166).

Stopping the deployment manager
The deployment manager can be stopped using the AdminControl object and
invoking the stopServer command. To invoke stopServer, you must provide the
deployment manager name and the node name. Example 5-23 shows an
example of stopping the deployment manager.

Example 5-23 Stopping deployment manager using a single line command

wsadmin>AdminControl.stopServer('dmgr','kcgg1f3CellManager01')
WASX7337I: Invoked stop for server "dmgr" Waiting for stop completion.
WASX7264I: Stop completed for server "dmgr" on node "kcgg1f3CellManager01"

Note: Some of the examples used in this section need Network Deployment
installed. To show the command syntax, we used the WebSphere sample
applications.

The elements of our distributed server environment include:

� Server node: kcgg1f3Node01
� Deployment manager node: dmgr
� Node agent server: nodeagent
� Servers: server1, server2
 Chapter 5. Administration with scripting 279

The stop operation can also be performed by invoking the stop method of the
AdminControl object on the MBean representing the deployment manager. To do
this, you need to identify the MBean that represents the deployment manager
using the completeObjectName command of AdminControl object.

Example 5-24 shows the command to query the MBeans information and the
command to stop the deployment manager. First, the variable named dmgr is
assigned to the DeploymentManager Server MBean; subsequently, this variable
is used for starting the invoke command.

Example 5-24 Getting MBean information and stopping the deployment manager

wsadmin>dmgr =
AdminControl.completeObjectName('type=Server,processType=DeploymentManager,*')
wsadmin>AdminControl.invoke(dmgr,'stop')

5.3.4 Managing nodes
This section describes how to perform common administration tasks on nodes
and their node agent using wsadmin.

Starting a node agent
As with the deployment manager, the node agent cannot be started with wsadmin
because there are no MBeans available yet. Use the startNode command to
start the node agent. For information, see 4.5.5, “Starting and stopping nodes”
on page 215.

Stopping a node agent
The node agent process controls all of the WebSphere managed processes on a
node. Therefore, stopping a node agent limits the ability to issue any further
commands against managed servers. There is one node agent per node.

You can stop node agents by invoking the stopServer command of the
AdminControl object. The name of the node agent server and the name of the
node need to be supplied as arguments. Example 5-25 shows the command to
stop a node agent.

Example 5-25 Single line command to stop a node agent

wsadmin>AdminControl.stopServer('nodeagent','kcgg1f3Node01')
WASX7337I: Invoked stop for server "nodeagent" Waiting for stop completion.
WASX7264I: Stop completed for server "nodeagent" on node "kcgg1f3Node01"
280 WebSphere Application Server V6.1: System Management and Configuration

The stop operation of the node agent can also be performed by invoking the stop
operation on the MBean representing the node agent. You first need to identify
the Server MBean for the node agent using the completeObjectName command.

Example 5-26 shows the command syntax to query MBean information for the
node agent Server object and to invoke the stop method on the identified MBean.

Example 5-26 Getting MBean information for a node agent Server object

wsadmin>naServer =
AdminControl.completeObjectName('type=Server,node=kcgg1f3Node01,name=nodeagent,
*')
wsadmin>AdminControl.invoke(naServer,'stop')

5.3.5 Managing application servers
This section describes how to perform common administration tasks on
application servers using wsadmin.

Starting an application server
In a distributed server environment, the node agent can start an application
server. Example 5-27 shows the command for starting the server2 application
server by use of the startServer command.

Example 5-27 Start an application server

wsadmin>AdminControl.startServer('server2','kcgg1f3Node01')
'WASX7262I: Start completed for server "server2" on node "kcgg1f3Node01"'

You can also use the launchProcess operation on the NodeAgent object to start
server2. Example 5-28 on page 281 shows the command syntax to query the
MBean information for the NodeAgent object and to invoke the launchProcess
operation from the identified MBean.

Example 5-28 Getting MBean information for a node agent NodeAgent object

wsadmin>naMain =
AdminControl.completeObjectName('type=NodeAgent,node=kcgg1f3Node01,name=NodeAge
nt,*')
wsadmin>AdminControl.invoke(naMain,'launchProcess', 'server2')
'true'
 Chapter 5. Administration with scripting 281

Stopping an application server
Example 5-29 shows the command for stopping the server2 application server.

Example 5-29 Stop an application server

wsadmin>AdminControl.stopServer('server2','kcgg1f3Node01')
WASX7337I: Invoked stop for server "server2" Waiting for stop
completion.
WASX7264I: Stop completed for server "server2" on node "kcgg1f3Node01"

You can also use the launchProcess operation on the NodeAgent to start the
application server. Example 5-30 on page 282 shows the command syntax to
query the MBean information for the NodeAgent object and to invoke the
launchProcess operation from the identified MBean.

Example 5-30 Getting MBean information for a node agent NodeAgent object

wsadmin>naMain = AdminControl.queryNames ('*:*,type=NodeAgent')
wsadmin>AdminControl.invoke(naMain,'launchProcess', 'server2')
'true'

If there are multiple application servers running on a node, you can stop all the
servers from a single script. Example 5-31 on page 282 shows a script that stops
all application servers on the SocratesNode node. In this example, the node
name is hardcoded, but it is also possible to write Jython code that accepts the
node name from the command line or a menu.

To invoke the script from a command, type the following:

cd \<was_home>\profiles\<profile_name>\bin
wsadmin -f <script_filename>

Example 5-31 Stopping all application servers on a node

servername =
AdminControl.queryNames('node=kcgg1f3Node01,type=Server,processType=ManagedProc
ess,*').split(lineSeparator)
for item in servername:
 shortname = AdminControl.getAttribute(item,'name')
 completename =
AdminControl.completeObjectName('type=Server,node=kcgg1f3Node01,name='+shortnam
e+',*')
 print 'Stopping server : '+shortname
 AdminControl.invoke(completename, "stop")
#endFor
282 WebSphere Application Server V6.1: System Management and Configuration

5.3.6 Managing enterprise applications
This section describes how to perform common administration tasks on
enterprise applications.

Viewing installed applications
Use the AdminApp object to view the applications installed on an application
server. Example 5-32 shows the use of the list command and the resulting
output.

Example 5-32 Listing installed applications

wsadmin>AdminApp.list()
'DefaultApplication'

You can also do this by querying the MBeans for running applications on a node.
Example 5-33 shows you how to perform this task.

Example 5-33 Listing applications by MBeans query

wsadmin>AdminControl.queryNames('type=Application,node=kcgg1f3Node01,*')
'WebSphere:name=DefaultApplication,process=server1,platform=dynamicproxy,node=k
cgg1f3Node01,J2EEName=DefaultApplication,Server=server1,version=6.1.0.0,type=Ap
plication,mbeanIdentifier=cells/kcgg1f3Cell01/applications/DefaultApplication.e
ar/deployments/DefaultApplication/deployment.xml#ApplicationDeployment_11534063
59260,cell=kcgg1f3Cell01,spec=1.0'

If an object is not running, the MBean for that object does not exist. Based on
this, we can write a simple Jython script that will display running applications.

New in V6.1
The application management functions of install, edit, and update provided by
AdminApp have been simplified using the regular expression pattern instead
of use of all parameters. In order to specify target for all Web modules, one
can specify .*war* as module URI pattern in the MapModulesToServer step.

Install and update commands now support the server or node option to specify
a default target for installation or updating. Multiple targets can be specified in
a single command, avoiding the need to repeat a command for each target. A
+ or - leading delimiter is used on AdminApp install or edit operations to add or
remove deployment targets. Lack of leading delimiter replaces existing targets
with specified ones, which is the behavior in V6.0.x.
 Chapter 5. Administration with scripting 283

Example 5-34 shows a script using the AdminApp object that lists the installed
applications. The data obtained is configurational data and cannot be
interrogated to determine run time status. Use queryNames for each installed
application to see if an MBean exists, if the application is running. If the
application is running, queryNames returns a name; otherwise, queryNames returns
a null value.

Example 5-34 Script to display the status of applications

application = AdminApp.list().split(lineSeparator)
for app in application:

objName = AdminControl.queryNames('type=Application,name='+ app +',*')
if (len(objName) == 0):

print 'The Application '+ app +' is not running'
else:

print 'The Application '+ app +' is running'
#end if

#end for

Stopping a running application
To stop a running application, we use the AdminControl object and invoke the
stopApplication method on the MBean of the running application. Example 5-35
shows the sequence of commands used to query the MBean and stop the
application.

Example 5-35 Stopping a running application

wsadmin>appservername =
AdminControl.queryNames('type=ApplicationManager,node=kcgg1f3Node01,process=ser
ver1,*')
wsadmin>AdminControl.invoke(appservername,'stopApplication','DefaultApplication
')

Starting a stopped application
To start a stopped application, we use the AdminControl object and invoke the
startApplication method on the stopped application. This requires the identity of
the application server MBean. Example 5-36 shows the sequence of commands
used to start the DefaultApplication application.

Example 5-36 Starting a stopped application

wsadmin>appservername =
AdminControl.queryNames('type=ApplicationManager,node=kcgg1f3Node01,process=ser
ver1,*')
wsadmin>AdminControl.invoke(appservername,'startApplication','DefaultApplicatio
n')
284 WebSphere Application Server V6.1: System Management and Configuration

5.3.7 Managing clusters
This section describes how to perform common administration tasks on clusters
using wsadmin.

Starting a cluster
Example 5-37 shows the sequence of commands needed to start a cluster. The
first command lists the configured clusters in the cell. In this case, there is only
one cluster, testCluster. The second command initializes a variable named
tstClst with the cluster object name. The final command invokes the start
operation on the cluster object.

Example 5-37 Start a cluster

wsadmin>AdminControl.queryNames('type=Cluster,*')
'WebSphere:name=testCluster,process=dmgr,platform=common,node=kcgg1f3CellManage
r01,version=6.1.0.0,type=Cluster,mbeanIdentifier=testCluster,cell=kcgg1f3Cell01
,spec=1.0'

wsadmin>tstClst =
AdminControl.completeObjectName('type=Cluster,name=testCluster,*')
wsadmin>AdminControl.invoke(tstClst,'start')

Stopping a cluster
Example 5-38 shows the sequence of commands used to stop a cluster. The first
command lists the configured clusters in the cell. The second command
initializes a variable named tstClst with the cluster object name. The final
command invokes the stop operation on the cluster object.

Example 5-38 Stopping a cluster

wsadmin>AdminControl.queryNames('type=Cluster,*')
'WebSphere:name=testCluster,process=dmgr,platform=common,node=kcgg1f3CellManage
r01,version=6.1.0.0,type=Cluster,mbeanIdentifier=testCluster,cell=kcgg1f3Cell01
,spec=1.0'

wsadmin>tstClst =
AdminControl.completeObjectName('type=Cluster,name=testCluster,*')

wsadmin>AdminControl.invoke(tstClst,'stop')
 Chapter 5. Administration with scripting 285

5.3.8 Generating the Web server plug-in configuration
Example 5-39 shows the sequence of commands used to generate the Web
server plug-in configuration file. The first command identifies the MBean for the
Web server plug-in configuration file generator on a node. The second command
generates the Web server plug-in configuration file.

Example 5-39 Generating the Web server plug-in configuration file

wsadmin>pluginGen =
AdminControl.completeObjectName('type=PluginCfgGenerator,*')
wsadmin>AdminControl.invoke(pluginGen,'generate',"C:/PROGRA~1/IBM/WebSphere/App
Server/profiles/Dmgr01/config kcgg1f3Cell01 kcgg1f3CellManager01 dmgr
plugin-cfg.xml")
WASX7435W: Value plugin-cfg.xml is converted to a boolean value of false.

The argument for the generate command includes:

� Install root directory
� Configuration root directory
� Cell name
� Node name
� Server name
� Output file name

You can use null as an argument for the node and server name options. The
generate operation generates a plug-in configuration for all the nodes and
servers residing in the cell. The output file, plugin-cfg.xml, is created in the
configuration root directory, in this case on C:\ Program
Files\IBM\WebSphere\AppServer\profiles\Dmgr01\config\cells\kcgg1f3Cell01\no
des\kcgg1f3CellManager01\servers\dmgr.

5.3.9 Enabling tracing for WebSphere components
This section illustrates how to enable tracing for a server process using the
setAttribute command on the TraceService MBean.

In a Network Deployment environment, there are multiple server processes and
therefore multiple TraceService MBeans. Example 5-40 shows how to use
queryNames to list the TraceService MBeans.
286 WebSphere Application Server V6.1: System Management and Configuration

Example 5-40 List of TraceService MBeans

wsadmin>print AdminControl.queryNames('type=TraceService,*')
WebSphere:name=TraceService,process=dmgr,platform=proxy,node=kcgg1f3CellManager
01,version=6.1.0.0,type=TraceService,mbeanIdentifier=cells/kcgg1f3Cell01/nodes/
kcgg1f3CellManager01/servers/dmgr/server.xml#TraceService_1,cell=kcgg1f3Cell01,
spec=1.0
WebSphere:name=TraceService,process=nodeagent,platform=proxy,node=kcgg1f3Node01
,version=6.1.0.0,type=TraceService,mbeanIdentifier=cells/kcgg1f3Cell01/nodes/kc
gg1f3Node01/servers/nodeagent/server.xml#TraceService_1120677326772,cell=kcgg1f
3Cell01,spec=1.0
WebSphere:name=TraceService,process=server2,platform=proxy,node=kcgg1f3Node01,v
ersion=6.1.0.0,type=TraceService,mbeanIdentifier=cells/kcgg1f3Cell01/nodes/kcgg
1f3Node01/servers/server2/server.xml#TraceService_1154007376682,cell=kcgg1f3Cel
l01,spec=1.0

To start tracing for a server, you need to locate the TraceService MBean for the
server process using the completeObject command. Example 5-41 shows how
to do this using a variable named ts, which is set to the value of the tracing
service MBean. In the second step, the setAttribute command is used to
enable the tracing.

Example 5-41 Enable tracing using TraceService mbean

wsadmin>ts =
AdminControl.completeObjectName('type=TraceService,process=server1,*')
wsadmin>AdminControl.setAttribute(ts,'traceSpecification','com.ibm.ejs.*=all')

The SystemOut.log file for the Server reflects this new trace specification, as the
TraceService has logged this statement:

TRAS0018I: The trace state has changed. The new trace state is
=info:com.ibm.ejs.=all

Note that setting trace level with use of the AdminControl object only changes the
current trace specification of the TraceService. The specification is not stored to
the WebSphere configuration repository. To change the configuration
permanently, use the modify command of the AdminConfig object to change the
traceSpecification attribute of the TraceService configuration object.
 Chapter 5. Administration with scripting 287

5.4 Common configuration tasks
In this section, we describe how to use wsadmin to create, modify, and change the
WebSphere Application Server configuration. The section is described in two
parts as follows:

� General approach for configuration tasks
� Specific examples of WebSphere configuration tasks

5.4.1 General approach for configuration tasks
The are many possible configuration tasks that can be performed in a
WebSphere environment. Rather than document every possible modification, we
describe a general approach to use when performing configuration tasks and
then give a few specific examples.

This general approach has three steps:

1. Find the object you want to change using AdminConfig.getid().
2. Change or create a configuration using AdminConfig.modify() or create().
3. Save the changes using AdminConfig.save().

The create and modify commands use an attribute list. In general, the attribute
is supplied as a list of Jython lists. A Jython list can be constructed using name
and value pairs as follows:

[['name1', 'value1'],['name2', 'value2''],['name3', 'value3']...]

The attributes for a WebSphere configuration object are often deeply nested. If
you need to modify a nested attribute, you can get the ID of the object and modify
it directly. This is the preferred method, although it requires more lines of
scripting.

5.4.2 Specific examples of WebSphere configuration tasks
This section describes how a variety of typical configuration tasks can be done
using the wsadmin objects, including:

� Application server

– Create or remove an application server.

� Enterprise application

– Install or uninstall an enterprise application.

– Change attributes of an enterprise application.

� Configure and modify WebSphere configuration
288 WebSphere Application Server V6.1: System Management and Configuration

– Configure virtual hosts.

– Configure JDBC providers.

– Edit an application server.

– Create a cluster.

– Add member to a cluster.

Creating an application server
With the introduction of the AdminTask object, there are now two ways of creating
an application server. The AdminTask provides the interactive approach, and is
shown in Example 5-42. Notice the batch invocation of the
createApplicationServer command shown at the end of the input.

Notice the extra step after collecting the configuration values for the server
creation. This extra step provides the ability to configure ConfigCoreGroup
options for the server being created. The → arrow in front of the line indicates
this to be the current step of the interactive guide. To input a core group name for
this server, type S (for select), then press Enter. To skip configuration of a core
group for this server, type F (as shown).

Example 5-42 Creating an application server using AdminTask

wsadmin>AdminTask.createApplicationServer('-interactive')
Create Server

Command that creates a server

*Node Name: kcgg1f3Node01
*Server Name (name): server4
Template Name (templateName):
Generate Unique Ports (genUniquePorts): [true]
template location (templateLocation):
server specific short name (specificShortName):
server generic short name (genericShortName):
Create Server

Command that creates a server

-> 1. No description available (ConfigCoreGroup)

S (Select)
F (Finish)
C (Cancel)
H (Help)

Select [S, F, C, H]: [F] F
 Chapter 5. Administration with scripting 289

WASX7278I: Generated command line:
AdminTask.createApplicationServer('kcgg1f3Node01', '[-name server4]')
'server4(cells/kcgg1f3Cell01/nodes/kcgg1f3Node01/servers/server4|server.xml#Ser
ver_1154109581505)'
wsadmin>AdminConfig.save()

The alternative approach to using AdminTask for creating an application server is
using the AdminConfig object. Example 5-43 illustrates application server
creation using AdminConfig. The first command initializes a variable named node
to set the value of the node configuration ID. The second command creates the
server on the node.

Example 5-43 Creating an application server using AdminConfig

wsadmin>AdminConfig.getid('/Node:kcgg1f3Node01/')
'kcgg1f3Node01(cells/kcgg1f3Cell01/nodes/kcgg1f3Node01|node.xml#Node_1)'

wsadmin>node = AdminConfig.getid('/Node:kcgg1f3Node01/')
wsadmin>AdminConfig.create("Server", node, [["name", "server5"]])
'server5(cells/kcgg1f3Cell01/nodes/kcgg1f3Node01/servers/server5|server.xml#Ser
ver_1154115062206)'
wsadmin>AdminConfig.save()

Removing an application server
As with creating application servers, an application server can be removed by
either using the AdminTask object or the AdminConfig object. Example 5-44
illustrates removing an application server using AdminTask.

Example 5-44 Remove an application server using AdminTask

wsadmin>AdminTask.deleteServer('-interactive')
Delete Server

Delete a server configuration

*ADMG0106I (serverName): server5
*ADMG0104I (nodeName): kcgg1f3Node01
Delete Server

Delete a server configuration

-> 1. No description available (ConfigCoreGroup)
 2. No description available (CleanupSIBuses)

S (Select)
N (Next)
F (Finish)
290 WebSphere Application Server V6.1: System Management and Configuration

C (Cancel)
H (Help)

Select [S, N, F, C, H]: [F] F
WASX7278I: Generated command line: AdminTask.deleteServer('[-serverName server5
-nodeName kcgg1f3Node01]')
wsadmin>AdminConfig.save()

The general syntax for removing an application server using the AdminConfig
object is:

AdminConfig.remove(‘<server Config id>’)

Installing an enterprise application
There are two options for installing an application:

� Perform an interactive installation using the installInteractive command.
The interactive install prompts you for options. The syntax is:

AdminApp.installInteractive(‘<ear_file_location>’)

For example:

wsadmin>AdminApp.installInteractive('C:/PROGRA~1/IBM/WebSphere/AppServer/in
stallableApps/ivtApp.ear')

� Perform a non-interactive installation using the install command.

Using the install command
The general syntax for installing an enterprise application is as follows:

AdminApp.install(‘<location of the ear file> {task or non-task option}’)

There are two types of options that can be specified when using the install
command:

� To see a list of install task options, use the following syntax:

AdminApp.options()

The list includes options for specifying server name, cluster name, install
directory, and so on.

� To see a list of application-specific options, use the following syntax:

AdminApp.options(‘<ear_file_location>’)

Note: In Windows, use either a forward slash (/), or double backslashes
(\\) when specifying the path to the .ear file.
 Chapter 5. Administration with scripting 291

Here is a sample output for application-specific options:

wsadmin>print
AdminApp.options('C:/PROGRA~1/IBM/WebSphere/AppServer/installableApps/ivtAp
p.ear')

The list of options includes things that define application information, security
role mapping, module-to-virtual host mapping, and whether to pre-compile JSPs.

Example 5-45 shows an example of installing a new application named ivtApp on
a server named server1 inside cluster testCluster.

Example 5-45 Installing an application

wsadmin>AdminApp.install('C:/PROGRA~1/IBM/WebSphere/AppServer/installableApps/i
vtApp.ear',['-server','server1','-node','kcgg1f3Node01','-cluster','testCluster
','-appname','IVT App'])
....
wsadmin>AdminConfig.save()

Uninstalling an enterprise application
The general syntax for uninstalling an enterprise application is:

AdminApp.uninstall(‘<application name>’)

Example 5-46 shows an example of uninstalling an application, remember that
the application name is case sensitive.

Example 5-46 Uninstalling an enterprise application

wsadmin>AdminApp.uninstall('IVT App')
ADMA5017I: Uninstallation of IVT App started.
ADMA5104I: The server index entry for
WebSphere:cell=kcgg1f3Cell01,node=kcgg1f3N
ode01 is updated successfully.
ADMA5102I: The configuration data for IVT App from the configuration repository
is deleted successfully.
ADMA5011I: The cleanup of the temp directory for application IVT App is
complete.
ADMA5106I: Application IVT App uninstalled successfully.
wsadmin>AdminConfig.save()

Note: All options supplied for the install command must be supplied in a
single string. In Jython, a single string is formed by collecting all options within
curly braces or double quotes:

AdminApp.install("c:/temp/application.ear", [["-server", "serv2",
"-appname", "-TestApp"]])
292 WebSphere Application Server V6.1: System Management and Configuration

Editing an enterprise application
Editing of an enterprise application can be done either interactively or
non-interactively. The following commands are available for editing:

� Interactively, use the editInteractive command, which prompts you for
input. The syntax is:

AdminApp.editInteractive(’<application name>’)

� Non-interactively, you can use the edit command.

Using the edit command
The general syntax for editing an enterprise application in non-interactive mode
is:

AdminApp.edit(<application_name>, [-taskname [[’item1a’,
’item2a’,’item3a’] [’item1b’,’item2b’,’item3b’].......]]

In Example 5-47, you can see how to change the module to server mapping for
an application. The options are the same as those you would use during
installation with the install command.

Example 5-47 Edit an enterprise application

wsadmin>AdminApp.edit("IVT App", ["-MapModulesToServers", [["IVT Application",
"ivt_app.war,WEB-INF/web.xml","WebSphere:cell=kcgg1f3Cell01,node=kcgg1f3Node01,
server=server1,cluster=testCluster"]]])
wsadmin>AdminConfig.save()

Preventing the startup of an application
To prevent the startup of a specific enterprise application when starting the
application server, change the configuration property to enable the enterprise
application on the deployed target. In Example 5-48, the steps to locate, modify,
and save the target property are outlined.

Example 5-48 Disable of enterprise application on target server

wsadmin>import java.lang.System as sys
wsadmin>lineSeparator = sys.getProperty('line.separator')
wsadmin>eaBk =
AdminConfig.list('ApplicationDeployment').split(lineSeparator)[0]
wsadmin>print AdminConfig.showAttribute(eaBk,'targetMappings')
["(cells/kcgg1f3Cell01/applications/IVT App.ear/deployments/IVT
App|deployment.xml#DeploymentTargetMapping_1154118924159)"]
wsadmin>AdminConfig.modify('(cells/kcgg1f3Cell01/applications/IVT
App.ear/deployments/IVTApp|deployment.xml#DeploymentTargetMapping_11541
18924159)' ,[['enable','false']])
wsadmin>print AdminConfig.queryChanges()
 Chapter 5. Administration with scripting 293

'WASX7146I: The following configuration files contain unsaved changes:
cells/kcgg1f3Cell01/applications/IVT App.ear/deployments/IVT
App/deployment.xml'
wsadmin>AdminConfig.save()

Creating a virtual host
The command to create a virtual host is:

AdminConfig.create(’VirtualHost’,<cell object>,[[’name’,’<vhost name>’]])

First, you need to find the ID of the object you want to change. The virtual host is
a WebSphere resource defined in a cell. Therefore, by creating a virtual host, we
are modifying the configuration of the cell object. Example 5-49 shows the
command syntax for retrieving the configuration ID of the cell object and creating
the virtual host resource. Finally, save the changes to the WebSphere
configuration repository.

Example 5-49 Find an object using the AdminConfig command

wsadmin>cell = AdminConfig.getid('/Cell:kcgg1f3Cell01/')
wsadmin>AdminConfig.create('VirtualHost',cell,[['name','IVTVHost']])
'IVTVHost(cells/kcgg1f3Cell01|virtualhosts.xml#VirtualHost_1154362727831)'
wsadmin>AdminConfig.save()

Modifying a virtual host
Modify the virtual host configuration with the modify command in the
AdminConfig object. Example 5-50 shows an example of modifying a virtual host.
The example gets the ID of the IVTVHost virtual host, then uses that ID in the
modify command to redefine the list of aliases.

Example 5-50 Modifying a virtual host

wsadmin>IVTVHost = AdminConfig.getid('/VirtualHost:IVTVHost/')
wsadmin>AdminConfig.modify(IVTVHost, [["aliases", [[["hostname",'*'], ["port",
9082]], [["hostname",'*'], ["port", 80]]]]])
wsadmin>print AdminConfig.queryChanges()
WASX7146I: The following configuration files contain unsaved changes:
 cells/kcgg1f3Cell01/virtualhosts.xml
wsadmin>AdminConfig.save()

Modifying an application server
Modify an application server configuration using the AdminConfig object. The
modify command is used for changing the attribute values for configuration
objects. As the AdminConfig commands interacts with the configuration service,
changes are written to the WebSphere configuration repository (XML
294 WebSphere Application Server V6.1: System Management and Configuration

documents). All services within the WebSphere run time environment read from
the configuration repository at startup only. As a result, changes made with the
AdminConfig commands take effect only after restarting the service or
WebSphere run time.

Example 5-51 shows an example of changing the ping interval for a server
named server1.

Example 5-51 Modifying an application server

wsadmin>AdminControl.stopServer('server1','kcgg1f3Node01')
WASX7337I: Invoked stop for server "server1" Waiting for stop completion.
'WASX7264I: Stop completed for server "server1" on node "kcgg1f3Node01"'

wsadmin>srv = AdminConfig.getid('/Node:kcgg1f3Node01/Server:server1/')

wsadmin>prcDef = AdminConfig.list('ProcessDef',srv)

wsadmin>monPol = AdminConfig.list('MonitoringPolicy',prcDef)

wsadmin>AdminConfig.modify(monPol, [["pingInterval", 120]])

wsadmin>AdminConfig.save()

wsadmin>AdminControl.startServer('server1','kcgg1f3Node01')
'WASX7262I: Start completed for server "server1" on node "kcgg1f3Node01"'

Tip: To find the parent-child relationships for configuration objects placed in
the application server configuration hierarchy, use the output from the showall
command. To use showall, use the following syntax:

AdminConfig.showall(<object id of application server>)

Also, the layout of the WebSphere administrative console presents some kind
of logical progression from parent to child. For example, to change the
PingInterval you would need to select Application Server →
<server_name> → Monitoring Policy → Ping Interval.
 Chapter 5. Administration with scripting 295

Creating a cluster
To create a new cluster use either the AdminTask or AdminConfig object. In
Example 5-52, the AdminTask object is used for creating a cluster named
T4SCluster adding an existing server named server2 as a cluster member.

Example 5-52 Create a server cluster

wsadmin>AdminTask.createCluster('-interactive')
Create Server Cluster

Creates a new application server cluster.

-> *1. Cluster Configuration (clusterConfig)
 2. Replication Domain (replicationDomain)
 3. Convert Server (convertServer)
 4. Configure the event service during cluster creation.
(eventServiceConfig)

 5. Promote Proxy Server Settings To Cluster (promoteProxyServer)

S (Select)
N (Next)
C (Cancel)
H (Help)

Select [S, N, C, H]: [S] S

Cluster Configuration (clusterConfig)

*Cluster Name (clusterName):
Prefer Local (preferLocal): [true]
Cluster Type (clusterType):
Short Name of Cluster (shortName):

Select [C (Cancel), E (Edit)]: [E]
*Cluster Name (clusterName): testCluster2
Prefer Local (preferLocal): [true]
Cluster Type (clusterType):
Short Name of Cluster (shortName):
Create Server Cluster

Creates a new application server cluster.

 1. Cluster Configuration (clusterConfig)
-> 2. Replication Domain (replicationDomain)
 3. Convert Server (convertServer)
296 WebSphere Application Server V6.1: System Management and Configuration

 4. Configure the event service during cluster creation.
(eventServiceConfig)

 5. Promote Proxy Server Settings To Cluster (promoteProxyServer)

S (Select)
N (Next)
P (Previous)
F (Finish)
C (Cancel)
H (Help)

Select [S, N, P, F, C, H]: [F] N
Create Server Cluster

Creates a new application server cluster.

 1. Cluster Configuration (clusterConfig)
 2. Replication Domain (replicationDomain)
-> 3. Convert Server (convertServer)
 4. Configure the event service during cluster creation.
(eventServiceConfig)

 5. Promote Proxy Server Settings To Cluster (promoteProxyServer)

S (Select)
N (Next)
P (Previous)
F (Finish)
C (Cancel)
H (Help)

Select [S, N, P, F, C, H]: [F] S

Convert Server (convertServer)

Converted Server Node Name (serverNode):
Converted Server Name (serverName):
Member Weight (memberWeight):
Node Group (nodeGroup):
enable data replication (replicatorEntry):

Select [C (Cancel), E (Edit)]: [E] E
Converted Server Node Name (serverNode): kcgg1f3Node01
Converted Server Name (serverName): server2
Member Weight (memberWeight):
 Chapter 5. Administration with scripting 297

Node Group (nodeGroup):
enable data replication (replicatorEntry):
Create Server Cluster

Creates a new application server cluster.

 1. Cluster Configuration (clusterConfig)
 2. Replication Domain (replicationDomain)
 3. Convert Server (convertServer)
-> 4. Configure the event service during cluster creation.
(eventServiceConfig)

 5. Promote Proxy Server Settings To Cluster (promoteProxyServer)

S (Select)
N (Next)
P (Previous)
F (Finish)
C (Cancel)
H (Help)

Select [S, N, P, F, C, H]: [F] F
WASX7278I: Generated command line: AdminTask.createCluster('[-clusterConfig
[-clusterName testCluster2] -convertServer [-serverNode kcgg1f3Node01
-serverName server2]]')
'testCluster2(cells/kcgg1f3Cell01/clusters/testCluster2|cluster.xml#ServerClust
er_1154374243841)'
wsadmin>AdminConfig.save()

The AdminConfig object provides a different means of creating a cluster. Use the
convertToCluster command to create a cluster with an existing server added.
Use the create command to create an empty cluster with the ServerCluster type
object.

Adding a member to an existing cluster
As with creating a cluster, both AdminTask and AdminConfig objects provide the
means for creating a new cluster members. Servers have to be created as cluster
members from the start; they cannot be joined to a cluster later.

Example 5-53 shows how to create a new server, server4, and make it a member
of a cluster, testCluster2, by use of the batch invocation of the
createClusterMember command from the AdminTask.
298 WebSphere Application Server V6.1: System Management and Configuration

Example 5-53 Create a new cluster member

wsadmin>AdminTask.createClusterMember(["-clusterName", "testCluster2",
"-memberConfig", [["kcgg1f3Node01", "server4", "", "", "true", "false"]]])
'server4(cells/kcgg1f3Cell01/clusters/testCluster2|cluster.xml#ClusterMember_11
54375381547)'
wsadmin>AdminConfig.save()

Deleting a member from a cluster
To delete a member from a cluster, use the AdminTask deleteClusterMember
command. Example 5-54 shows how to delete a cluster member.

Example 5-54 Delete a cluster member

wsadmin>AdminTask.deleteClusterMember(["-clusterName", "testCluster2",
"-memberNode", "kcgg1f3Node01", "-memberName", "server4"])
'ADMG9239I: Cluster member server4 on node kcgg1f3Node01 deleted from cluster
testCluster2.'
wsadmin>AdminConfig.save()

Configuring JDBC providers
Example 5-55 on page 300 shows a common method for creating a JDBC
provider. The provider is created based on a template.

Using templates: A group of templates are supplied with the WebSphere
installation as XML files in the <profile_home>/config/templates directory.
Within each XML file, you will find multiple entries. To use a template, you
specify the XML file and the entry within the file that you want to use.

Templates are especially useful when using the AdminConfig object for
configuration purposes. The template reduces the amount of typed input
required, speeding up the process and reducing the probability of syntax
errors.

The listTemplates command of the AdminConfig object prints a list of
templates matching a given type. These templates can be used with the
createUsingTemplate command.
 Chapter 5. Administration with scripting 299

In Example 5-55, the JDBC provider is added at the cluster scope, so the first
command gets the configuration ID for the cluster and assigns it to a variable
named cluster to hold the ID. The second command uses listTemplates to set
the JDBCTempl variable to the template ID. The third command creates the
JDBC provider using the template.

Example 5-55 Configuring a JDBC driver

wsadmin>cluster = AdminConfig.getid('/ServerCluster:testCluster/')
wsadmin>JDBCTempl = AdminConfig.listTemplates("JDBCProvider", "Cloudscape JDBC
Provider (XA)").split(lineSeparator)[1]
wsadmin>AdminConfig.createUsingTemplate("JDBCProvider", cluster, [["name",
"testDriver"]], JDBCTempl)
'testDriver(cells/kcgg1f3Cell01/clusters/testCluster|resources.xml#JDBCProvider
_1154378721689)'
wsadmin>AdminConfig.save()

5.5 Help creating wsadmin scripts

Command assistance in the administrative console maps your administrative
activities to wsadmin scripting commands, so that you can capture your console
activities and apply them to wsadmin scripts. To enable this feature, go to
Console Preferences and check the box Enable command assistance
notifications. After performing an administrative task, the help portlet will show
the corresponding command in Jython. You can also enable an option to log
command assistance commands.

The new Jython editor in Application Server ToolKit V6.1 is used to perform a
variety of tasks, such as the followi.ng:

� Develop Jython script files.

� Edit Jython script files.

� Import existing Jython files for structured viewing.

� Set breakpoints for debugging your scripts.

Assistance with scripting (new): V6.1 has added the command assistance
feature in the administrative console to show the corresponding scripting
commands when you perform certain activities. The list of activities that show
the corresponding commands will grow over time. You also have the option to
send these as notifications to the Application Server Toolkit, where you can
use the new Jython editor to build scripts.
300 WebSphere Application Server V6.1: System Management and Configuration

The Jython Editor is also integrated with the WebSphere Administrative Script
Launcher and Debugger tools, so you can run and debug script files directly from
the editor.

Figure 5-2 Jython editor running on debug mode.

The Jython editor has many text editing features, such as syntax highlighting,
unlimited undo or redo, and automatic tab indentation. When you tag a comment
in a Jython script with "#TODO", the editor automatically creates a corresponding
task as a reminder in the Tasks view. Then, if you open the task later, the editor
automatically synchronizes to that TODO entry in the script source. Other helpful
features are content assist and tips, which provides a list of acceptable
continuations depending on where the cursor is located in a Jython script file, or
what you have just typed. The Jython editor is not integrated to a compiler. As a
result, the Jython editor does not perform syntax verification on your scripts.

5.6 Using Java for administration

An alternative way of managing the WebSphere environment from a
programmatic point of view is to develop a Java client that attaches to the
WebSphere JMX infrastructure directly. Every administrative task can be
performed with the use of MBean resources, just as the administrative console
and wsadmin administrative objects use MBeans to do their tasks. The advantage
of using Java for developing the administrative client is that the language is
well-adopted in the WebSphere community. Every administrative aspect can be
highly-customized. The disadvantage is that the developer needs to have a very
detailed understanding of the WebSphere infrastructure and every administrative
 Chapter 5. Administration with scripting 301

task has to be built directly from the MBean resources. This means that wsadmin
object functionality has to be programmed by the developer.

The Information Center has more on this topic. Also, the IBM WebSphere
Developer Technical Journal article series System Administration for WebSphere
Application Server V5 discussed this subject in detail.

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/was/library/

See Scripting: Resources for learning

� MBeanInspector for WebSphere Application Server:

http://www.alphaworks.ibm.com/tech/mbeaninspector

� Sample Scripts for WebSphere Application Server Versions 5 and 6:

http://www.ibm.com/developerworks/websphere/library/samples/
SampleScripts.html

� Tcl Developer Xchange

http://www.tcl.tk/

� IBM WebSphere Developer Technical Journal

http://www.ibm.com/developerworks/websphere/techjournal/
302 WebSphere Application Server V6.1: System Management and Configuration

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.alphaworks.ibm.com/tech/mbeaninspector
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.tcl.tk/
http://www-106.ibm.com/developerworks/websphere/techjournal/

Chapter 6. Configuring WebSphere
resources

Resource providers are a class of objects that provide resources needed by
running Java applications, and J2EE applications in particular. For example, if an
application requires database access through a data source, you would need to
install a JDBC data source provider and then configure a data source to be used
by your application.

This chapter discusses the following application server resource providers:

� JDBC resources
� JCA resources
� JavaMail resources
� URL providers
� Resource environment providers
� Resource authentication

6

© Copyright IBM Corp. 2006. All rights reserved. 303

6.1 WebSphere resources
WebSphere Application Server provides a number of resources that you can
define for applications to use. The resource types can be seen in the
administrative console under the Resources category, as in Figure 6-1.

Figure 6-1 WebSphere Application Server resource types

New in V6.1: The path to access resources from the administrative console
has been shortened in some cases. For example, you can list the data
sources without selecting a JDBC provider first. A new option for scope (All
scopes) allows you to display all of the selected resource types as opposed to
only those defined at a specific scope.
304 WebSphere Application Server V6.1: System Management and Configuration

In this chapter, we discuss the following topics:

� JDBC resources
� Resource adapters
� Mail providers
� URL providers
� Resource environment providers

For information about configuring JMS resources, see Chapter 8, “Asynchronous
messaging” on page 399.

For information about dynamic cache, including servlet cache, and object cache
configuration, see WebSphere Application Server V6 Scalability and
Performance Handbook, SG24-6392.

Asynchronous beans, object pools, and schedulers are programming model
extensions that have previously been available only in WebSphere Application
Server Enterprise and in WebSphere Business Integration Server Foundation.
These programming model extensions are not covered in this IBM Redbook.
Information about them can be found in the Information Center. Conceptual
information and examples of these at the previous versions can be found in:

� WebSphere Application Server Enterprise V5 and Programming Model
Extensions, SG24-6932

� WebSphere Business Integration Server Foundation V5.1 Handbook,
SG24-6318

6.2 JDBC resources
The JDBC API provides a programming interface for data access of relational
databases from the Java programming language. The JDBC 3.0 API is
comprised of two packages:

� The java.sql package (the JDBC 3.0 core API)
� The javax.sql package (the JDBC 3.0 Standard Extension API)

This package provides data source and connection pooling functionality.

In the next sections, we explain how to create and configure data source objects
for use by JDBC applications. This is the recommended way of getting a
connection to a database, and the only way if you are looking to use connection
pooling and distributed transactions.
 Chapter 6. Configuring WebSphere resources 305

The following database platforms are supported for JDBC:

� DB2 family
� Oracle
� Sybase
� Informix
� SQL Server
� Cloudscape / Derby (test and development only)
� Third-party vendor JDBC data source using SQL99 standards

6.2.1 What are JDBC providers and data sources?
A data source represents a real-world data source, such as a relational
database. When a data source object has been registered with a JNDI naming
service, an application can retrieve it from the naming service and use it to make
a connection to the data source it represents.

Information about the data source and how to locate it, such as its name, the
server on which it resides, its port number, and so on, is stored in the form of
properties on the DataSource object. This makes an application more portable
because it does not need to hardcode a driver name, which often includes the
name of a particular vendor. It also makes maintaining the code easier because
if, for example, the data source is moved to a different server, all that needs to be
done is to update the relevant property in the data source. None of the code
using that data source needs to be touched.

Once a data source has been registered with an application server’s JNDI name
space, application programmers can use it to make a connection to the data
source it represents.

The connection will usually be a pooled connection. In other words, once the
application closes the connection, the connection is returned to a connection
pool, rather than being destroyed.

New in V6.1: The new embedded Cloudscape v10.1 is a pure Java database
server. The code base, which the open source community calls Derby, is a
product of the Apache Software Foundation (ASF) open source relational
database project. The new Cloudscape includes Derby without any
modification to the underlying source code. Learn more about Derby code at
the Apache Derby Web site:

http://db.apache.org/derby/

WebSphere Application Server does not currently support Cloudscape v10.1
for production.
306 WebSphere Application Server V6.1: System Management and Configuration

http://db.apache.org/derby/

Data source classes and JDBC drivers are implemented by the data source
vendor. By configuring a JDBC provider, we are providing information about the
set of classes used to implement the data source and the database driver. We
are providing the environment settings for the DataSource object. A driver can be
written purely in the Java programming language or in a mixture of the Java
programming language and the Java Native Interface (JNI) native methods.

In the next sections, we describe how to create and configure data source
objects, as well as how to configure the connection pools used to serve
connections from the data source.

6.2.2 WebSphere support for data sources
The programming model for accessing a data source is as follows:

1. An application retrieves a DataSource object from the JNDI naming space.

2. After the DataSource object is obtained, the application code calls
getConnection() on the data source to get a Connection object. The
connection is obtained from a pool of connections.

3. Once the connection is acquired, the application sends SQL queries or
updates to the database.

In addition to the data source support for J2EE 1.3 and J2EE 1.4 applications,
support is also provided for J2EE 1.2 data sources. The two types of support
differ in how connections are handled. However, from an application point of
view, they look the same.
 Chapter 6. Configuring WebSphere resources 307

Data source support
The primary data source support is intended for J2EE 1.3 and J2EE 1.4
applications. Connection pooling is provided by two components, a JCA
Connection Manager, and a relational resource adapter. See Figure 6-2.

Figure 6-2 Resource adapter in J2EE connector architecture

The JCA Connection Manager provides connection pooling, local transaction,
and security support.

The relational resource adapter provides JDBC wrappers and the JCA CCI
implementation that allows BMP, JDBC applications, and CMP beans to access
the database.

Figure 6-3 on page 309 shows the relational resource adapter model.

Application Server

JD
BC

 D
riv

er

C
on

ne
ct

io
ns

Resource
Adapter

Ap
pl

ic
at

io
n DB Server

Datasource

Connection
Factory

Delegate

JCA
Connection

Manager

DB Connection
Pool
308 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-3 Persistence resource adapter model

WebSphere Application Server has a Persistence Resource Adapter that
provides relational persistence services to EJB beans as well as providing
database access to BMP and JDBC applications. The Persistence Resource
Adapter has two components: the Persistence Manager, which supports the EJB
CMP persistence model, and the Relational Resource Adapter. The Persistence
Resource Adapter code is included in the following Java packages:

� com.ibm.ws.rsadapter.cci contains CCI implementation and JDBC wrappers.

� com.ibm.ws.rsadapter.spi contains SPI implementation.

� com.ibm.ws.rsadapter.jdbc contains all the JDBC wrappers.

� com.ibm.websphere.rsadapter DataStoreHelper, WSCallerHelper and
DataAccessFunctionSet.

CCI

Relational Resource Adapter

Plug-in Layer

JDBC Wrappers

SP1

JDBC SQLJ

JDBC API

CMP
Bean

Persistence
Manager

Connection
Manager

BMPJDBC
Application

JDBC API
 Chapter 6. Configuring WebSphere resources 309

The Relational Resource Adapter is the Persistence Manager's vehicle to handle
data access to and from the back-end store, providing relational persistence
services to EJB beans. The implementation is based on the J2EE Connector
(JCA) specification and implements the JCA CCI and SPI interfaces.

When an application uses a data source, the data source uses the JCA
connector architecture to get to the relational database.

For an EJB, the sequence is as follows:

1. An EJB performs a JNDI lookup of a data source connection factory and
issues a getConnection() request.

2. The connection factory delegates the request to a connection manager.

3. The connection manager looks for an instance of a connection pool in the
application server. If no connection pool is available, then the manager uses
the ManagedConnectionFactory to create a physical, or nonpooled,
connection.

Version 4 data source
WebSphere Application Server V4 provided its own JDBC connection manager
to handle connection pooling and JDBC access. This support is included with
WebSphere Application Server V6 to provide support for J2EE 1.2 applications. If
an application chooses to use a Version 4 data source, the application will have
the same connection behavior as in Version 4 of the application server.

Figure 6-4 Connection pooling in WebSphere Application Server Version 4

Application Server

JDBC
Connection

Manager

JD
B

C
 D

riv
er

Connections

DB Server
DB Connection

Pool

Ap
pl

ic
at

io
n

D
at

as
ou

rc
e

310 WebSphere Application Server V6.1: System Management and Configuration

Use the Version 4 data source for the following:

� J2EE 1.2 applications

All EJB beans, JDBC applications, or Version 2.2 servlets must use the
Version 4 data source.

� EJB 1.x modules with 1.1 deployment descriptor

All of these must use the Version 4 data source.

6.2.3 Creating a data source
The following steps are involved in creating a data source:

1. Create a JDBC provider.

The JDBC provider gives the classpath of the data source implementation
class and the supporting classes for database connectivity. This is
vendor-specific.

2. Create a data source.

The JDBC data source encapsulates the database-specific connection
settings.

6.2.4 Creating a JDBC provider
To create a JDBC provider, complete the following steps from the administrative
console:

1. Expand Resources from the navigation tree.

2. Click JDBC Providers.

3. Select the scope. (Although you can select All scopes to view all resources,
you must select a specific scope to create a resource.)
 Chapter 6. Configuring WebSphere resources 311

The administrative console now shows all the JDBC providers created at that
scope level. In Figure 6-5 on page 313, you can see that in this case there is
one JDBC provider defined at the server level.

Note: JDBC resources are created at a specific scope level. The data
source scope level is inherited from the JDBC provider. For example, if we
create a JDBC provider at the node level and then create a data source
using that JDBC provider, the data source will inherit:

� The JDBC provider settings, such as classpath, implementation class,
and so on

� The JDBC provider scope level

In this example, if the scope were set to node-level, all application
servers running on that node would register the data source in their
name space.

The resources.xml file will also get updated at the node and application
server level.
312 WebSphere Application Server V6.1: System Management and Configuration

4. Select New to create a new JDBC provider.

Figure 6-5 JDBC providers
 Chapter 6. Configuring WebSphere resources 313

5. Use the list boxes to select the type of provider you want to create. See
Figure 6-6.

Figure 6-6 Define a new JDBC provider: window 1

– Database type

Select the vendor-specific database type. If the database type you need is
not in the list, select User-defined and consult the vendor documentation
for the specific properties that will be required.

– Provider type

Select from a predefined list of supported provider types, based on the
database type you select.

– Implementation type

Select from the implementation types for the provider type you selected.
314 WebSphere Application Server V6.1: System Management and Configuration

– Name

Specify a Name for this driver.

6. Click Next. The settings page for your JDBC database class path appears.
Figure 6-7 on page 315 shows the configuration page for a DB2 Universal
JDBC Provider.

Figure 6-7 Define a new JDBC provider: window 2

Enter the JDBC provider properties.

– Classpath

This field is a list of paths or JAR file names that together form the location
for the resource provider classes. For example, c:\sqllib\java\db2java.zip is
the path if the data source connects to DB2. Separate the entries by
pressing Enter between each one.
 Chapter 6. Configuring WebSphere resources 315

– Library path

This field specifies the values for the global variable
DB2UNIVERSAL_JDBC_DRIVER_PATH, which indicates the classpath
jar’s location.

– Native Library Path

This field is an optional path to any native libraries. Entries are required if
the JBDC provider chosen uses non-Java, or native, libraries. The global
variable for this is DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH.

7. After verifying the settings, click Finish. This enables the links to create data
sources under the Additional Properties section.

To create one or more data sources for this provider, proceed to 6.2.5, “Creating
JDBC data source” on page 317. If you are not ready to create the data source
yet, click OK and then save your changes.

Note: The default settings use environment variables in the path names for
the classpath and native library path settings. After you complete the
process of defining the data source, if you did not during this process,
make sure to update the environment variables used to reflect the proper
locations of these files on your system. You can set variables by selecting
Environment → WebSphere Variables in the navigation menu.

Refer to 4.1.10, “Using variables” on page 156 for more information about
WebSphere environment variables.
316 WebSphere Application Server V6.1: System Management and Configuration

6.2.5 Creating JDBC data source
Data sources are associated with a specific JDBC provider and can be viewed or
created from the JDBC provider configuration page. You have two options when
creating a data source, depending on the J2EE support of the application. This
section discusses creating or modifying data sources for J2EE 1.3 and J2EE 1.4
applications.

For information about using data sources with J2EE 1.2 applications, see the
Data sources (Version 4) topic in the Information Center.

To create a data source, do the following:

1. Expand Resources → JDBC in the navigation tree and select Data sources.

2. Select the scope. Although you can select All to view all resources, you must
select a specific scope to create a resource.

Tip: To make a data source available on multiple nodes using different
directory structures, complete the following steps using the administrative
console:

1. Define the JDBC provider at the cell scope. Use WebSphere environment
variables for the classpath and native path.

2. Create the data source that uses this JDBC provider at the cell scope. All
files defined at the cell scope are replicated to every node in the cell.

3. For the paths to the driver on each node to be unique, use a variable to
specify the driver location and have that variable be defined differently on
each node.

For example, ${DRIVER_PATH} can be used for the classpath in the
provider definition. You can then define a variable called
${DRIVER_PATH} at the cell scope to act as a default driver location. Then
you can override that variable on any node by defining ${DRIVER_PATH}
at the node scope. The node-level definition takes precedence over the
cell-level definition.
 Chapter 6. Configuring WebSphere resources 317

3. Click New to create a new data source. This will start a wizard (Figure 6-8 on
page 318).

Figure 6-8 Data source general properties

� Data source name

This field is a name by which to administer the data source. Use a name that
is suggestive of the database name or function.

� JNDI name

This field refers to the data source’s name as registered in the application
server’s name space. When installing an application that contains modules
with JDBC resource references, the resources defined by the deployment
descriptor of the module need to be bound to the JNDI name of the
resources. For example, jdbc/<database_name>.
318 WebSphere Application Server V6.1: System Management and Configuration

� Component-managed authentication alias and Authentication alias for XA
recovery

This field specifies a user ID and password to be used by J2C security. The
entry references authentication data defined in the J2C authentication data
entries. Make new entries by selecting the J2EE Connector Architecture
(J2C) authentication data entries link on the data source configuration
window. See Figure 6-8 on page 318. On the other hand, the Authentication
alias for XA recovery is used to specify the authentication alias that should be
used during XA recovery processing.

Click Next.

4. Now you need to specify database specific properties. These are shown on
the right of Figure 6-12 on page 322. Click Next.

Figure 6-9 Select a JDBC provider

This window allows you to select a JDBC provider or to create a new one. If
you create a new JDBC provider, you will be routed through the windows seen
earlier in 6.2.4, “Creating a JDBC provider” on page 311. If you select an
existing JDBC provider you will continue with the next step here.

In this case, we select an existing JDBC provider and click Next.
 Chapter 6. Configuring WebSphere resources 319

The entries shown in Figure 6-10 are specific to the JDBC driver and data
source type. Figure 6-10 shows the properties for the DB2 Universal data
source.

Figure 6-10 Database-specific properties

� Database Name

The name of the database (or the cataloged alias).

� Driver type

The type of JDBC Driver (2 or 4) used to access the database.

� DB2 server name and port.

The DB2 instance’s server name and its listening port (by default 50000).

� Container-managed persistence (CMP)

This field specifies if the data source is to be used for container-managed
persistence of EJB beans. Checking this box causes a CMP connection
factory corresponding to this data source to be created for the relational
resource adapter. The connector factory created has the name
<datasourcename>_CF and is registered in JNDI under the entry
eis/<jndi_name>_CMP.

You can see the properties of the just created connection factory by selecting
Resources → Resource Adapters → Resource Adapters. Enable the
Show built-in resources check box (new in V6.1) in the preferences. Select
320 WebSphere Application Server V6.1: System Management and Configuration

WebSphere Relational Resource Adapter → CMP Connection Factories.
Be sure to set the scope so it is the same as that for the data source.

Click Next.

5. You will see a summary of the options you have chosen. Click Next to create
the data source.

The new data source will be listed in the table of resources. You can test the new
connection by checking the box to the left of the data source and clicking Test
Connection.

You can view or modify settings for the new data source by clicking the name in
the resources list. Figure 6-11 shows a portion of the details page. Other settings
not shown include the database details and the component-managed
authentication settings.

Figure 6-11 Data source details page
 Chapter 6. Configuring WebSphere resources 321

Adding or updating custom properties
To add or update custom properties, do the following:

1. Open the data source by clicking the name in the resource list.

2. Click Custom Properties in the Additional Properties table, to provide or
update data source properties that might be required. A list of predefined
properties based on the data source type appears.

3. Click New to add a custom property, or click a property name to modify it.

Figure 6-12 shows the first few custom properties configured for a data source
connecting to a DB2 database.

Figure 6-12 Data Source custom properties

4. Click OK when you finish.

Configure connection pooling properties
The link to connection pooling settings is found in the Additional Properties
section of the data source configuration window. See Figure 6-8 on page 318.
322 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-13 Data source connection pool properties

� Connection Timeout

Specify the interval, in seconds, after which a connection request times out
and a ConnectionWaitTimeoutException is thrown. This can occur when the
pool is at its maximum (Max Connections) and all of the connections are in
use by other applications for the duration of the wait.

For example, if Connection Timeout is set to 300 and the maximum number of
connections is reached, the Pool Manager waits for 300 seconds for an
available physical connection. If a physical connection is not available within
this time, the Pool Manager throws a ConnectionWaitTimeoutException.

Tip: If Connection Timeout is set to 0, the pool manager waits as long as
necessary until a connection is allocated.
 Chapter 6. Configuring WebSphere resources 323

� Max Connections

Specify the maximum number of physical connections that can be created in
this pool.

These are the physical connections to the back-end database. Once this
number is reached, no new physical connections are created and the
requester waits until a physical connection that is currently in use is returned
to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if Max Connections is set to 5, and there are five physical
connections in use, the Pool Manager waits for the amount of time specified in
Connection Timeout for a physical connection to become free. If, after that
time, there are still no free connections, the Pool Manager throws a
ConnectionWaitTimeoutException to the application.

� Min Connections

Specify the minimum number of physical connections to be maintained. Until
this number is reached, the pool maintenance thread does not discard any
physical connections. However, no attempt is made to bring the number of
connections up to this number.

For example, if Min Connections is set to 3, and one physical connection is
created, that connection is not discarded by the Unused Timeout thread. By
the same token, the thread does not automatically create two additional
physical connections to reach the Min Connections setting.

� Reap Time

Specify the interval, in seconds, between runs of the pool maintenance
thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs
every 60 seconds. The Reap Time interval affects the accuracy of the Unused
Timeout and Aged Timeout settings. The smaller the interval you set, the
greater the accuracy. When the pool maintenance thread runs, it discards any
connections that have been unused for longer than the time value specified in
Unused Timeout, until it reaches the number of connections specified in Min
Connections. The pool maintenance thread also discards any connections
that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that
the pool maintenance thread runs more often and degrades performance.

Tip: If the pool maintenance thread is enabled, set the Reap Time value
less than the values of Unused Timeout and Aged Timeout.
324 WebSphere Application Server V6.1: System Management and Configuration

� Unused Timeout

Specify the interval in seconds after which an unused or idle connection is
discarded.

For example, if the unused timeout value is set to 120, and the pool
maintenance thread is enabled (Reap Time is not 0), any physical connection
that remains unused for two minutes is discarded. Note that accuracy of this
timeout, as well as performance, is affected by the Reap Time value. See the
Reap Time bullet for more information.

� Aged Timeout

Specify the interval in seconds before a physical connection is discarded,
regardless of recent usage activity.

Setting Aged Timeout to 0 allows active physical connections to remain in the
pool indefinitely. For example, if the Aged Timeout value is set to 1200, and
the Reap Time value is not 0, any physical connection that remains in
existence for 1200 seconds (20 minutes) is discarded from the pool. Note that
accuracy of this timeout, as well as performance, is affected by the Reap
Time value. See Reap Time for more information.

� Purge Policy

Specify how to purge connections when a stale connection or fatal connection
error is detected.

Valid values are EntirePool and FailingConnectionOnly. If you choose
EntirePool, all physical connections in the pool are destroyed when a stale
connection is detected. If you choose FailingConnectionOnly, the pool
attempts to destroy only the stale connection. The other connections remain
in the pool. Final destruction of connections that are in use at the time of the
error might be delayed. However, those connections are never returned to the
pool.

Tip: Set the Unused Timeout value higher than the Reap Timeout value for
optimal performance. Unused physical connections are only discarded if
the current number of connections not in use exceeds the Min Connections
setting.

Tip: Set the Aged Timeout value higher than the Reap Timeout value for
optimal performance.
 Chapter 6. Configuring WebSphere resources 325

Selecting the Advanced connection pool properties link allows you to modify
the properties shown in Figure 6-14 on page 326.

Figure 6-14 Advanced connection pool properties

These properties require advanced knowledge of how connection pooling works
and how your system performs. For information about these settings, see the
Connection pool advanced settings topic in the Information Center.

WebSphere Application Server data source properties
You can set the properties that apply to the WebSphere Application Server
connection, rather than to the database connection, by selecting the WebSphere
Application Server data source properties link under the Additional Properties
section of the data source configuration page. See Figure 6-11 on page 321.
Clicking the link gives you the window shown in Figure 6-15 on page 327.
326 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-15 WebSphere data source custom properties

� Statement Cache Size

Specify the number of prepared statements that are cached per connection. A
prepared statement is a precompiled SQL statement that is stored in a
prepared statement object. This object is used to execute the given SQL
statement multiple times. The WebSphere Application Server data source
optimizes the processing of prepared statements.

In general, the more statements your application has, the larger the cache
should be. For example, if the application has five SQL statements, set the
statement cache size to 5, so that each connection has five statements.
 Chapter 6. Configuring WebSphere resources 327

� Enable multithreaded access detection

If you enable this feature, the application server detects the existence of
access by multiple threads.

� Enable database reauthentication

Connection pool searches do not include the user name and password. If you
enable this feature, a connection can still be retrieved from the pool, but you
must extend the DataStoreHelper class to provide implementation of the
doConnectionSetupPerTransaction() method where the reauthentication
takes place.

Connection reauthentication can help improve performance by reducing the
overhead of opening and closing connections, particularly for applications
that always request connections with different user names and passwords.

� Manage cached handles

When you call the getConnection() method to access a database, you get a
connection handle returned. The handle is not the physical connection, but a
representation of a physical connection. The physical connection is managed
by the connection manager. A cached handle is a connection handle that is
held across transaction and method boundaries by an application.

This setting specifies whether cached handles should be tracked by the
container. This can cause overhead and only should be used in specific
situations. For more information about cached handles, see the Connection
Handles topic in the Information Center.

� Transaction context logging.

The J2EE programming model indicates that connections should always have
a transaction context. However, some applications do not have a context
associated with them. This option tells the container to log that there is a
missing transaction context in the activity log when the connection is
obtained.

� Pretest existing pooled connections

If you check this box, the application server tries to connect to this data
source before it attempts to send data to or receive data from this source. If
you select this property, you can specify how often, in seconds, the
application server retries to make a connection if the initial attempt fails. The
pretest SQL string is sent to the database to test the connection.

� Pretest new connections

If you check this box, the application server test the initial connection to
database. If you select this property, you specify how often, in seconds, the
application server retries to make a connection and how many times it tries.
The pretest SQL string is sent to the database to test the connection.
328 WebSphere Application Server V6.1: System Management and Configuration

6.3 JCA resources
The J2EE Connector architecture (JCA) defines a standard architecture for
connecting the J2EE platform to heterogeneous Enterprise Information Systems
(EIS), for example, ERP, mainframe transaction processing, database systems,
and existing applications not written in the Java programming language. By
defining a set of scalable, secure, and transactional mechanisms, the JCA
enables the integration of EISs with application servers and enterprise
applications.

WebSphere Application Server V6 provides a complete implementation of the
JCA 1.5 specification, including the features of the JCA 1.0 Specification:

� Connection sharing (res-sharing-scope)

� A get/use/close programming model for connection handles

� A get/use/cache programming model for connection handles

� XA, Local, and No Transaction models of resource adapters, including XA
recovery

� Security options A and C, as in the specification

� Applications with embedded .rar files

The new features for the JCA 1.5 specification are:

� Deferred enlistment transaction optimization

� Lazy connection association optimization

� Inbound communication from an enterprise information system (EIS) to a
resource adapter

� Inbound transactions from an EIS to a resource adapter

� Work management, enabling a resource adapter to put work on separate
threads and pass execution context, such as inbound transactions, to the
thread

� Life cycle management, enabling a resource adapter to be stopped and
started

The JCA Resource Adapter is a system-level software driver supplied by EIS
vendors or other third-party vendors. It provides the following functionality:

� Provides connectivity between J2EE components, such as an application
server or an application client and an EIS.

� Plugs into an application server.
 Chapter 6. Configuring WebSphere resources 329

� Collaborates with the application server to provide important services, such
as connection pooling, transaction, and security services.

JCA defines the following set of system-level contracts between an
application server and EIS:

– A connection management contract lets an application server pool connect
to an underlying EIS, and lets application components connect to an EIS.
This leads to a scalable application environment that can support a large
number of clients requiring access to EISs.

– A transaction management contract between the transaction manager and
an EIS supports transactional access to EIS resource managers. This
contract lets an application server use a transaction manager to manage
transactions across multiple resource managers. This contract also
supports transactions that are managed internally to an EIS resource
manager without the necessity of involving an external transaction
manager.

– A security contract enables a secure access to an EIS. This contract
provides support for a secure application environment, reducing security
threats to the EIS and protecting valuable information resources managed
by the EIS.

The resource adapter implements the EIS-side of these system-level
contracts.

� Implements the Common Client Interface (CCI) for EIS access.

The CCI defines a standard client API through which a J2EE component
accesses the EIS. This simplifies writing code to connect to an EIS data store.

The resource adapter provides connectivity between the EIS, the application
server, and the enterprise application via the CCI.

� Implements the standard Service Provider Interface (SPI).

The SPI integrates the transaction, security, and connection management
facilities of an application server (JCA Connection Manager) with those of a
transactional resource manager

Multiple resource adapters (one resource adapter per type of EIS) are pluggable
into an application server. This capability enables application components
deployed on the application server to access the underlying EISs. This is shown
in Figure 6-16.
330 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-16 Common Client Interface API

The benefits of JCA include:

� Once an application server implements JCA, any JCA-compliant resource
adapter can plug in.

� Once a resource adapter implements JCA, it can plug in to any
JCA-compliant application server.

� Each EIS requires just one implementation of the resource adapter.

� The common client interface simplifies application integration with diverse
EISs.

6.3.1 WebSphere Application Server JCA support
In WebSphere Application Server, two types of objects are configured for JCA
support:

� Resource adapters
� Connection factories

Resource Adapter
for the EIS Oracle

J2EE
Component

J2EE
Component

J2EE
Component

Provided by EIS vendor
or Third Party vendor

Common
Client

Interface
API

EIS
(Oracle)

Resource Adapter
for the EIS CICS

EIS
(CICS)

Resource Adapter
for the EIS IMS

EIS
(IMS)

J2EE Server Runtime

Included with J2EE
 Chapter 6. Configuring WebSphere resources 331

The role of the WebSphere administrator is to:

� Install and define the resource adapter.

� Define one or more connection factories associated with the resource
adapter.

From the application point of view, the application using the resource adapter
requests a connection from the connection factory through a JNDI lookup. The
connection factory connects the application to the resource adapter.

Resource adapter
� A WebSphere resource adapter administrative object represents the library

that supplies implementation code for connecting applications to a specific
EIS, such as CICS® or SAP®. Resource adapters are stored in a Resource
Adapter Archive (RAR) file, which is a Java archive (JAR) file used to package
a resource adapter for the connector architecture. The file has a standard file
extension of .rar.

A RAR file can contain the following:

� EIS-supplied resource adapter implementation code in the form of JAR files
or other executables, such as DLLs

� Utility classes

� Static documents, such as HTML files for developer documentation, not used
for run time

� J2C common client interfaces, such as cci.jar

� A mandatory deployment descriptor (ra.xml)

This deployment descriptor instructs the application server about how to use
the resource adapter in an application server environment. The deployment
descriptor contains information about the resource adapter, including security
and transactional capabilities, and the ManagedConnectionFactory class
name.

The RAR file or JCA resource adapter is provided by your EIS vendor.

WebSphere provides two JCA resource adapters:

� The WebSphere Relational Resource Adapter, used to connect to relational
databases using JDBC

� The SIB JMS Resource Adapter, used to connect to the default messaging
provider
332 WebSphere Application Server V6.1: System Management and Configuration

Connection factory
The WebSphere connection factory administrative object represents the
configuration of a specific connection to the EIS supported by the resource
adapter. The connection factory can be thought of as a holder of a list of
connection configuration properties.

Application components, such as CMP enterprise beans, have
cmpConnectionFactory descriptors that refer to a specific connection factory, not
to the resource adapter.

6.3.2 Installing and configuring resource adapters
To use a resource adapter, you need to install the resource adapter code and
create connection factories that use the adapter. Resource adapter configuration
is stored in the resources.xml file.

To install a resource adapter (.rar file), do the following:

1. From the administrative console, expand Resources from the navigation tree
and click Resource Adapters.
 Chapter 6. Configuring WebSphere resources 333

2. Select a scope, and if you want to see the WebSphere built-in resources,
select the Show built-in resources preference. A list of existing resources
will be shown (Figure 6-15).

Figure 6-17 JCA resource adapters

3. Click Install RAR to install a new resource adapter.

4. Enter the path to the RAR file supplied by your EIS vendor. It can reside
locally, on the same machine as the browser, or on any of the nodes in your
cell. See Figure 6-18 on page 335.
334 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-18 RAR file location

5. Select the node where you want to install the RAR file. You have to install the
file on each node separately.
 Chapter 6. Configuring WebSphere resources 335

6. Click Next. The Configuration page for the resource adapter selected is
displayed. This is shown in Figure 6-19 on page 336.

Figure 6-19 JCA resource adapter properties

In this example, you do not have to configure any properties. The defaults
combined with the information supplied in the RAR file provide all the
information needed. However, you have the option of configuring the
following:

– Name

Create an administrative name for the resource adapter.

– Description

Create an optional description of the resource adapter, for your
administrative records.
336 WebSphere Application Server V6.1: System Management and Configuration

– Archive path

This field is the path where the RAR file is installed. If this property is not
specified, the archive will be extracted to the absolute path represented by
the ${CONNECTOR_INSTALL_ROOT} variable. The default is
<profile_home>/installedConnectors/<adaptername.rar>

– Class path

A list of paths or JAR file names that together form the location for the
resource adapter classes. The resource adapter codebase itself, the RAR
file, is automatically added to the classpath.

– Native path

This is a list of paths that together form the location for the resource
adapter native libraries (.dll, and .so files).

7. Click OK.

6.3.3 Configuring J2C connection factories

A J2C connection factory represents a set of connection configuration values.
Application components such as EJBs have <resource-ref> descriptors that refer
to the connection factory, not the resource adapter. The connection factory is just
a holder of a list of connection configuration properties. In addition to the arbitrary
set of configuration properties defined by the vendor of the resource adapter,
there are several standard configuration properties that apply to the connection
factory. These standard properties are used by the connection pool manager in
the application server run time and are not used by the vendor supplied resource
adapter code.

To create a J2C connection factory, do the following:

1. Select Resources → J2C connection factories. You will see a list of J2C
connection factories at the selected scope.

2. Click New to create a new connection factory, or select an existing one to
modify the connection factory properties.

Note: The terms J2C and JCA both refer to J2EE Connector Architecture and
they are used here interchangeably.
 Chapter 6. Configuring WebSphere resources 337

The J2C Connection Factory Configuration page is shown in Figure 6-20 on
page 338.

Figure 6-20 J2C connection factory properties

The general properties are:

– Name

Type an administrative name for the J2C connection factory.

– JNDI name

This field is the connection factory name to be registered in the application
server’s name space, including any naming subcontext.

When installing an application that contains modules with J2C resource
references, the resources defined by the deployment descriptor of the
module need to be bound to the JNDI name of the resource.
338 WebSphere Application Server V6.1: System Management and Configuration

As a convention, use the value of the Name property prefixed with eis/, for
example,

eis/<ConnectionFactoryName>

– Description

This is an optional description of the J2C connection factory, for your
administrative records.

– Connection factory interface

This field is the name of the connection factory interfaces supported by the
resource adapter.

– Category

Specify a category that you can use to classify or group the connection
factory.

– Component-managed authentication alias

This authentication alias is used for component-managed sign-on to the
resource.

3. Click Apply. The links under the Additional Properties section for connection
pool, advanced connection factory, and custom properties become active.

The connection pool properties are configured the same as for a JDBC data
source. For information about these settings, see “Configure connection
pooling properties” on page 322.

Deprecated in V6.1: The following security settings are deprecated:

� Container managed authentication alias
� Authentication preference
� Mapping configuration alias

Resource authentication settings should be used instead. For more
information, see 6.7, “Resource authentication” on page 361.
 Chapter 6. Configuring WebSphere resources 339

The advanced connection factory properties are shown in Figure 6-21 on
page 340.

Figure 6-21 Advanced connection factory properties

� Manage cached handles

When you call the getConnection() method to access a database, you get a
connection handle returned. The handle is not the physical connection, but a
representation of a physical connection. The physical connection is managed
by the connection manager. A cached handle is a connection handle held
across transaction and method boundaries by an application.

This setting specifies whether cached handles should be tracked by the
container. This can cause overhead and only should be used in specific
situations. For more information about cached handles, see the Connection
Handles topic in the Information Center.

� Log missing transaction context

The J2EE programming model indicates that connections should always have
a transaction context. However, some applications do not have a context
associated with them. This option tells the container to log that there is a
missing transaction context in the activity log when the connection is
obtained.

6.3.4 Using resource adapters from an application
Example 6-1 shows how you might access the CICS ECI resource adapter from
an application. This code snippet assumes you have a resource reference called
eis/ref/ECICICS that points to a javax.resource.cci.ConnectionFactory with the
JNDI name eis/ECICICS. It is a minimal sample, with no connection factory
caching, and so on.
340 WebSphere Application Server V6.1: System Management and Configuration

Example 6-1 Using resource adapters from an application: code sample

private int getRate(String source) throws java.lang.Exception {

// get JNDI context
javax.naming.InitialContext ctx = new javax.naming.InitialContext();
// get local JNDI environment
javax.naming.Context env =

(javax.naming.Context)ctx.lookup("java:comp/env");
javax.resource.cci.ConnectionFactory connectionFactory connectionFactory =

(javax.resource.cci.ConnectionFactory) env.lookup("eis/ref/ECICICS");

// get a connection to the EIS
javax.resource.cci.Connection connection =

connectionFactory.getConnection();

// create an interaction and a CICS ECI specific interaction spec
javax.resource.cci.Interaction interaction =

connection.createInteraction();
com.ibm.connector2.cics.ECIInteractionSpec interactionSpec = new

com.ibm.connector2.cics.ECIInteractionSpec();

// create the comm area record
source = (source.trim().toUpperCase()+" ").substring(0, 12);
GenericRecord record = new GenericRecord((source).getBytes("IBM037"));

// set the CICS program name we want to call
interactionSpec.setFunctionName("CALCRATE");

// invoke the CICS program
interaction.execute(interactionSpec, record, record);

// close the interation and the connection
interaction.close();
connection.close();

// get the results from the return comm area record
byte[] commarea = record.getCommarea();
int value = Integer.parseInt(new String(commarea,

"IBM037").substring(8,12).trim());
return value;

}

 Chapter 6. Configuring WebSphere resources 341

6.4 JavaMail resources
The JavaMail™ APIs provide a platform and protocol-independent framework for
building Java-based mail client applications. The JavaMail APIs are generic for
sending and receiving mail. They require service providers, known in WebSphere
as protocol providers, to interact with mail servers that run the protocols.

A JavaMail provider encapsulates a collection of protocol providers. WebSphere
Application Server has a Built-in Mail Provider that encompasses three protocol
providers: SMTP, IMAP, and POP3. These protocol providers are installed as the
default and should be sufficient for most applications.

� Simple Mail Transfer Protocol (SMTP)

This is a popular transport protocol for sending mail. JavaMail applications
can connect to an SMTP server and send mail through it by using this SMTP
protocol provider.

� Post Office Protocol (POP3)

This is the standard protocol for receiving mail.

� Internet Message Access Protocol (IMAP)

This is an alternative protocol to POP3 for receiving mail.

To use other protocols, you must install the appropriate service provider for those
protocols.

In addition to service providers, JavaMail requires the Java Activation Framework
(JAF) as the underlying framework to deal with complex data types that are not
plain text, like Multipurpose Internet Mail Extensions (MIME), Uniform Resource
Locator (URL) pages, and file attachments.

The JavaMail APIs, the JAF, the service providers and the protocols are shipped
as part of WebSphere Application Server using the following Sun licensed
packages:

� mail.jar

This file contains the JavaMail APIs, and the SMTP, IMAP, and POP3 service
providers.

� activation.jar

This file Contains the JavaBeans Activation Framework.

Note: In this section, the terms JavaMail provider and mail provider are used
interchangeably.
342 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-22 on page 343 illustrates the relationship among the different JavaMail
components.

Figure 6-22 JavaMail components

WebSphere Application Server supports JavaMail Version 1.3 and the
JavaBeans Activation Framework (JAF) Version 1.0. All Web components of
WebSphere, including servlets, JSPs, EJBs, and application clients, support
JavaMail.

6.4.1 JavaMail sessions
A JavaMail session object, or session administrative object, is a resource used
by the application to obtain connections to a mail server. A mail session object
manages the configuration options and user authentication information used to
interact with the mail system. JavaMail sessions are configured to use a
particular JavaMail provider.

6.4.2 Configuring the mail provider
A mail provider encapsulates a collection of protocol providers. Protocol
providers interact with JavaMail APIs and mail servers running those protocols.
WebSphere Application Server has a built-in mail provider that encompasses
three protocol providers: SMTP, IMAP and POP3. These protocol providers are
installed by default and should be sufficient for most applications. However, you
can configure a new provider if necessary.

SMTP
Server

IMAP
Mail Store

POP3
Mail Store

JavaMail Installation

SMTP
SP

IMAP
SP

POP3
SP

JavaMail API JAF

JavaMail Application
 Chapter 6. Configuring WebSphere resources 343

To configure a new mail provider, complete the following steps from the
administrative console:

1. Expand Resources from the navigation tree and click Mail Providers.

2. Select Scope and click Apply. The scope determines whether JavaMail
resources configured to use this provider will be available at the cell, node, or
the application server level.

Figure 6-23 shows the mail provider installed with WebSphere. The built-in
mail provider is available to all the application servers in the cell.

Figure 6-23 Mail provider page

3. Click New to configure a new mail provider.

4. Enter a name and a description, and then click Apply. The properties
required to configure a new mail provider are shown in Figure 6-24 on
page 345.
344 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-24 Mail Provider general properties

5. Click Protocol Providers under the Additional Properties section.
 Chapter 6. Configuring WebSphere resources 345

6. Click New to add a protocol provider. See Figure 6-25.

Figure 6-25 Protocol provider configuration page

The properties to configure are:

– Protocol

This field specifies the protocol name.

– Classname

This field specifies the implementation class for the specific protocol
provider. The class must be available in the classpath.

– Classpath

This field specifies the path to the JAR files that contain the
implementation classes for this protocol provider.
346 WebSphere Application Server V6.1: System Management and Configuration

– Type

This field specifies the type of protocol provider. Valid options are:

• STORE: This protocol is used for receiving mail.

• TRANSPORT: This protocol is used for sending mail.

For guidance, you can look at the protocol providers provided with the built-in
mail provider, as shown in Figure 6-26.

Figure 6-26 Protocol providers

7. Click OK and save the configuration.

6.4.3 Configuring JavaMail sessions
To configure JavaMail sessions with a particular mail provider, complete the
following steps from the administrative console:

1. Expand Resources from the navigation tree.

2. Click Mail Providers.

3. Select Scope and click Apply.

4. Select the mail provider to be used by the JavaMail session.

5. Select Mail Sessions in the Additional Properties section. See Figure 6-24
on page 345.
 Chapter 6. Configuring WebSphere resources 347

6. Select New to create a new mail session object. Figure 6-27 on page 348
shows the configuration page for the PlantsByWebSphere sample
application.

Figure 6-27 Configuration page for the mail session

Define the following properties, according to your situation:

– Name

Type an administrative name for the JavaMail session object.

– JNDI name

Use the JavaMail session object name as registered in the application
server’s name space, including any naming subcontext.
348 WebSphere Application Server V6.1: System Management and Configuration

When installing an application that contains modules with JavaMail
resource references, the resources defined by the deployment descriptor
of the module need to be bound to the real JNDI name of the resources.

As a convention, use the value of the Name property prefixed with mail/,
such as mail/<mail_session_name>.

– Mail transport host

This field specifies the server to connect to when sending mail. Use the
fully qualified Internet host name of the mail server.

– Mail transport protocol

This field defines the transport protocol to use when sending mail, for
example SMTP. Select from the transport protocols defined for the
provider.

– Mail transport user ID

This field contains the user ID to provide when connecting to the mail
transport host. This setting is not generally used for most mail servers.
Leave this field blank unless you use a mail server that requires a user ID
and password.

– Mail transport password

Use this field to specify the password to provide when connecting to the
mail transport host. Like the user ID, this setting is rarely used by most
mail servers. Leave this field blank, unless you use a mail server that
requires a user ID and password.

– Enable strict Internet parsing

Check this box to enforce RFC 822 syntax rules for parsing Internet
addresses when sending mail.

– Mail from

This value represents the Internet e-mail address that displays as either
the From or the Reply-To address. The recipient's reply is sent to this
address.

– Mail store host

This field defines the server to which to connect when receiving mail. This
setting combines with the mail store user ID and password to represent a
valid mail account. For example, if the mail account is itso@itso.ibm.com,
then the mail store host is itso.ibm.com.

– Mail store protocol

This field specifies the protocol to be used when receiving mail. It could be
IMAP, POP3, or any store protocol for which the user has installed a
provider.
 Chapter 6. Configuring WebSphere resources 349

– Mail store user ID

This field specifies the user ID to use when connecting to the mail store.
This setting combines with the mail store host and password to represent
a valid mail account. For example, if the mail account is itso@itso.ibm.com
then the user ID is itso.

– Mail store password

This field defines the password to use when connecting to the mail store
host. This property combines with the mail store user ID and host to
represent a valid mail account.

– Enable debug mode

Use this field to toggle debug mode on and off for this mail session. When
true, JavaMail’s interaction with mail servers, along with this mail session’s
properties, will be printed to <stdout>.

7. Click OK and save the configuration.

6.4.4 Example code
The code segment shown in Example 6-2 illustrates how an application
component sends a message and saves it to the Sent folder.

Example 6-2 JavaMail application code

//get JavaMail session

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.mail.Session mail_session = (javax.mail.Session)
ctx.lookup("java:comp/env/mail/MailSession");

//prepare message

 MimeMessage msg = new MimeMessage(mail_session);
 msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse("bob@coldmail.net"));
msg.setFrom(new InternetAddress("alice@mail.eedge.com"));
 msg.setSubject("Important message from eEdge.com");
 msg.setText(msg_text);

//send message

 Transport.send(msg);

//save message in “Sent” folder

 Store store = mail_session.getStore();
 store.connect();
350 WebSphere Application Server V6.1: System Management and Configuration

 Folder f = store.getFolder("Sent");
 if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);
 f.appendMessages(new Message[] {msg});

6.5 URL providers
A URL provider implements the functionality for a particular URL protocol, such
as HTTP, by extending the java.net.URLStreamHandler and
java.net.URLConnection classes. It enables communication between the
application and a URL resource that is served by that particular protocol.

A URL provider named Default URL Provider is included in the initial WebSphere
configuration. This provider utilizes the URL support provided by the IBM JDK™.
Any URL resource with protocols based on the Java 2 Standard Edition 1.3.1,
such as HTTP, FTP or File, can use the default URL provider.

You can also plug in your own URL provider for another protocol not supported
by the JDK.

6.5.1 Configuring URL providers
URL resource objects are administrative objects used by an application to
communicate with an URL. These resource objects are used to read from an
URL or to write to an URL. URL resource objects use URL providers for class
implementation.

To configure or create a URL provider from the administrative console, do the
following:

1. Expand Resources from the navigation tree and click URL Providers.

2. Select the scope.
 Chapter 6. Configuring WebSphere resources 351

3. Click New to configure a new URL provider, or select an existing one to edit it.
Figure 6-28 shows the properties for the default URL provider.

Figure 6-28 URL provider configuration page

Configure the following properties:

– Name

Type an administrative name for the URL provider.

– Class path

Make a list of paths or JAR file names that together form the location for
the URL provider classes.

– Stream handler class name

Define the fully qualified name of the Java class that implements the
stream handler for the protocol specified by the Protocol property. A
stream protocol handler knows how to make a connection for a particular
352 WebSphere Application Server V6.1: System Management and Configuration

protocol type, such as HTTP or FTP. It extends the
java.net.URLStreamHandler class for that particular protocol.

– Protocol

Define the protocol supported by this stream handler, for example, http or
ftp.

4. Click OK and save the configuration.

6.5.2 Configuring URLs
To configure a URL administrative object, do the following from the administrative
console:

1. Expand Resources from the navigation tree and click URLs.

2. Click New. See Figure 6-29 on page 353.

Figure 6-29 Defining URLs

Important: You need to manually install the URL provider (a set of JARs) on
each node where the URL provider is going to be used and ensure that it is
included in the classpath above.
 Chapter 6. Configuring WebSphere resources 353

Use the following properties:

– Name

Define the administrative name for the URL resource object.

– JNDI Name

Type the URL session object name as registered in the application servers
name space, including any naming subcontext.

When installing an application that contains modules with URL resource
references, the resources defined by the deployment descriptor of the
module need to be bound to the real JNDI name of the resources.

As a convention, use the value of the Name property prefixed with url/,
such as url/<UrlName>.

– Specification

Type the URL resource to which this URL object is bound.

3. Click OK and save the configuration.

6.5.3 URL provider sample
Example 6-3 provides a code sample making use of the URL provider and URL
resources. Note that the Web module resource reference, myHttpUrl, is bound to
the URL resource JNDI name, url/MotdUrl, during application assembly or
deployment.

Example 6-3 HTTP URL provider sample

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.naming.Context env =

(javax.naming.Context) ctx.lookup("java:comp/env");
java.net.URL url = (java.net.URL) env.lookup("myHttpUrl");
java.io.InputStream ins = url.openStream();
int c;
while ((c = ins.read()) != -1) {

out.write(c);
}

In this case, we inserted the Example 6-3 code into a JSP, added the JSP to a
Web module, added a URL resource reference to the Web module, and then
deployed the Web module. Then we checked that the contents of the file
specified in the MotdUrl URL resource, file:///d:/url/motd.txt, were included in the
JSP’s output.
354 WebSphere Application Server V6.1: System Management and Configuration

Similarly, a stock quote custom URL provider could be accessed, as shown in
Example 6-4. The Web module resource reference, myQuoteUrl, is bound to a
URL resource with JNDI name, url/QuoteUrl, and URL quote://IBM. The
custom URL provider will access an online stock quote for IBM.

Example 6-4 Quote URL provider sample

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.naming.Context env =

(javax.naming.Context) ctx.lookup("java:comp/env");
java.net.URL url = (java.net.URL) env.lookup("myQuoteUrl");
out.println("The stock price is "+url.getContent());

6.6 Resource environment providers
The java:comp/env environment provides a single mechanism by which both
JNDI name space objects and local application environment objects can be
searched. WebSphere Application Server provides a number of local
environment entries by default.

The J2EE 1.4 specification also provides a mechanism for defining custom,
non-default, environment entries using <resource-env-ref> entries defined in an
application's standard deployment descriptors. The specification separates the
definition of the resource environment entry from the application by:

� Requiring the application server to provide a mechanism for defining separate
administrative objects that encapsulate a resource environment entry. The
administrative objects are accessible through JNDI in the application server’s
local name space, java:comp/env. The specification does not define how an
application server should provide this functionality. As a result, the
mechanism is generally application-server product-specific.

� Specifying the administrative object's JNDI lookup name and the expected
returned object type in the <resource-env-ref>.

Note: Each application server’s name space is initialized on startup. This
means application servers must be restarted to load a modified resource
property, such as a URL string.
 Chapter 6. Configuring WebSphere resources 355

http://java.sun.com/products/jdk/1.2/docs/api/java/net/URL.html

Example 6-5 shows a resource environment entry defined in an application's
Web module deployment descriptor, web.xml.

Example 6-5 Resource-env-ref in deployment descriptor

<web-app>
.....
<resource-env-ref>

<resource-env-ref-name>myapp/MyLogWriter</resource-env-ref-name>
<resource-env-ref-type>com.ibm.itso.test.LogWriter</resource-env-ref-type>

</resource-env-ref>
.....
</web-app>

Example 6-6 shows how this resource environment entry could be accessed
from Java code in the Web module.

Example 6-6 Java code to access resource environment reference

import com.ibm.itso.test.*;
.....
InitialContext ctx = new InitialContext();
LogWriter myLog = (LogWriter) ctx.lookup("java:comp/env/myapp/MyLogWriter");
myLog.write(msg);
.....

6.6.1 Resource environment references

WebSphere Application Server supports the <resource-env-ref> mechanism by
providing resource environment provider administrative objects that are
configured using the administration tools. Each <resource-env-ref> requires the
creation of the following administered objects in the order shown:

1. Resource environment provider

This provider defines an administrative object that groups together the
referenceable, resource environment entry administrative objects and any
required custom properties.

The scope you choose determines which resources.xml configuration file is
updated to contain the provider’s configuration stanza:

<resources.env:ResourceEnvironmentProvider
xmi:id="ResourceEnvironmentProvider_1" name="ResProviderName"/>

2. Referenceable

This object defines the classname of the factory class that returns object
instances implementing a Java interface.
356 WebSphere Application Server V6.1: System Management and Configuration

The referenceable’s configuration is added to the provider’s stanza in the
resources.xml file appropriate to the scope, as in Example 6-7.

Example 6-7 Referenceable object

<resources.env:ResourceEnvironmentProvider
xmi:id="ResourceEnvironmentProvider_1" name="ResProviderName">
 <referenceables xmi:id="Referenceable_1"
factoryClassname="com.ibm.itso.test.LogWriterFactory"
classname="com.ibm.itso.test.LogWriter"/>
 </resources.env:ResourceEnvironmentProvider>

3. Resource environment entry

Defines the binding target (JNDI name), factory class, and return object type
(via link to the Referenceable) of the resource environment entry.

The referenceable’s configuration is added to the provider’s stanza in the
resources.xml file appropriate to the scope, as in Example 6-8.

Example 6-8 Resource environment entry

<resources.env:ResourceEnvironmentProvider
xmi:id="ResourceEnvironmentProvider_1" name="ResProviderName">

<factories xmi:type="resources.env:ResourceEnvEntry"
xmi:id="ResourceEnvEntry_1" name="MyLogWriter" jndiName="myapp/MyLogWriter"
referenceable="Referenceable_1"/>

<referenceables xmi:id="Referenceable_1"
factoryClassname="com.ibm.itso.test.LogWriterFactory"
classname="com.ibm.itso.test.LogWriter"/>
 </resources.env:ResourceEnvironmentProvider>

6.6.2 Configuring the resource environment provider
To create settings for a resource environment provider:

1. Click Resources → Resource Environment Providers in the navigation
tree.

2. Select the scope.

3. Click New.
 Chapter 6. Configuring WebSphere resources 357

4. Enter a name and description for the new resource environment provider and
click Apply. See Figure 6-30.

Figure 6-30 Creating a resource environment provider

5. Click Referenceables in the Additional Properties section.

6. Click New. Use this page to set the classname of the factory that will convert
information in the name space into a class instance for the type of resource
you want. See Figure 6-31.
358 WebSphere Application Server V6.1: System Management and Configuration

Figure 6-31 Create a reference

– Factory class name

This field contains a javax.naming.ObjectFactory implementation class
name.

– Class name

This field refers to the Java type that a referenceable provides access to,
for binding validation and to create the reference data type string.

7. Click OK.

8. Select the resource environment provider (in the top navigation path) and
click Resource Env Entries under Additional Properties.
 Chapter 6. Configuring WebSphere resources 359

9. Click New. See Figure 6-32 on page 360.

Figure 6-32 Creating a resource environment entry

– Name

Type a display name for the resource.

– JNDI name

Type the JNDI name for the resource, including any naming subcontexts.

This name is used as the link between the platform's binding information
for resources defined by a module's deployment descriptor and resources
bound into JNDI by the platform.
360 WebSphere Application Server V6.1: System Management and Configuration

– Referenceable

The referenceable holds the factoryClassname of the factory that will
convert information in the name space into a class instance for the type of
resource desired, and for the classname of the type to be returned.

10.Click OK.

11.Save your configuration.

6.7 Resource authentication
Resources often require you to perform authentication and authorization before
an application can access them. You can configure the settings to determine how
this is done in a number of ways. This section discusses the configuration
settings and how to use them. However, before implementing any security, you
should review the information in WebSphere Application Server V6.1 Security
Handbook, SG24-6316.

The party responsible for the authentication and authorization is determined by
the res-auth setting found in the Web and EJB deployment descriptors. There
are two possible settings:

� res-auth=Application: The application, or component, is responsible.

� res-auth=Container: WebSphere is responsible.

These settings can be configured during application assembly using Rational
Application Developer or the Application Server Toolkit in the EJB or Web
deployment descriptor. They can also be set or overridden during application
installation.

Table 6-1 Authentication settings

Component-managed authentication
In the case of component-managed authentication, the application component
accessing the resource or adapter is responsible for programmatically supplying
the credentials. WebSphere can also supply a default component-managed
authentication alias if available. After obtaining the connection factory for the

Authentication type Setting at assembly
Authorization type

Setting during installation
Resource authorization

Application (component) managed:
res-auth=Application

Per_Connection_Factory Per application

WebSphere managed:
res-auth=Container

Container Container
 Chapter 6. Configuring WebSphere resources 361

resource from JNDI, the application component creates a connection to the
resource using the create method on the connection factory supplying the
credentials. If no credentials are supplied when creating a connection and a
component-managed authentication alias has been specified on the J2C
connection factory, the credentials from the authentication alias will be used.
Assuming the credentials are valid, future requests using the same connection
will use the same credentials.

The application follows these basic steps:

1. Get the initial JNDI context.

2. Look up the connection factory for the resource adapter.

3. Create a ConnectionSpec object holding credentials.

4. Obtain a connection object from the connection factory by supplying the
ConnectionSpec object.

Authentication with WebSphere
Container-managed authentication removes the requirement that the component
programmatically supply the credentials for accessing the resource. Instead of
calling the getConnection() method with a ConnectionSpec object,
getConnection() is called with no arguments. The authentication credentials are
then supplied by the Web container, application container, or the EJB container,
depending on from where the resource is accessed. WebSphere Application
Server V6 supports the JAAS specification, so the credentials can be mapped
from any of the configured JAAS authentication login modules, including any
custom JAAS authentication login module.

When using container-managed authentication, you have the following options
for the authentication method to be used:

� Select None if you are using the WebSphere administrative console or
Container Managed Authentication (deprecated) in the Application Server
Toolkit.

This option uses the container-managed authentication settings that are
defined for the resource’s connection factory. The credentials can come from
a JAAS authentication alias when using the DefaultPrincipalMapping
Mapping-configuration alias setting, or mapped from another JAAS
authentication login module. Any application that can get the resource’s
connection factory from JNDI will be able to access the EIS. This creates a
security exposure where unauthorized applications can gain access to the
resource.

Selecting this option and specifying DefaultPrincipalMapping and selecting
a JAAS authentication alias when defining the resource’s connection factory
362 WebSphere Application Server V6.1: System Management and Configuration

provides the same functionality as WebSphere Application Server V5. This is
no longer the recommended method.

� Select the Use default method.

The Use Default Method setting behaves very similar to container-managed
authentication using the DefaultPrincipalMapping option. A JAAS
authentication alias is linked to the connection factory and all container-
managed authentication requests using the resource reference use the
credentials from the alias. The difference is that the linking from the JAAS
authentication alias to connection factory is done at the resource reference
level within the application. This alleviates a security exposure by limiting the
scope of the credentials to the application defining the resource reference. All
other applications would need to supply their own credentials when accessing
the connection factory directly from JNDI. This is the recommended method
for mapping JAAS authentication aliases to connection factories.

� Select Use custom login configuration.

You can also use any WebSphere or user-supplied custom JAAS login
configuration.

6.8 More information
These documents and Web sites are also relevant as further information
sources:

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� Java 2 Platform Enterprise Edition Specification, v1.4

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� JDBC Technology

http://java.sun.com/products/jdbc/index.html

� Enterprise JavaBeans Technology

http://java.sun.com/products/ejb/

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/

� JavaMail API Specification

http://java.sun.com/products/javamail/reference/api/index.html
 Chapter 6. Configuring WebSphere resources 363

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/connector/
http://java.sun.com/products/javamail/reference/api/index.html

364 WebSphere Application Server V6.1: System Management and Configuration

Chapter 7. Managing Web servers

This chapter describes in detail the system management functionality of the Web
server. We cover:

� Web server support overview
� Working with Web servers
� Working with the plug-in configuration file

For information regarding the topology of the Web server installation, refer to
Planning and Designing for WebSphere Application Server V6.1, SG24-7305.

7

© Copyright IBM Corp. 2006. All rights reserved. 365

7.1 Web server support overview
WebSphere Application Server provides Web server plug-ins that work with a
Web server to route requests for dynamic content, such as servlets, from the
Web server to the proper application server. A Web server plug-in is specific to
the type of Web server. It is installed on the Web server machine and configured
in the Web server configuration.

A plug-in configuration file generated on the application server and placed on the
Web server is used for routing information. In order to manage the generation
and propagation of these plug-in configuration files, Web servers are defined to
the WebSphere Application Server configuration repository. In some cases, Web
server configuration and management features are also available from the
WebSphere administrative tools.

The following are the supported Web servers for WebSphere Application Server
V6.1:

� Apache HTTP Server
� Domino Web Server
� IBM HTTP Server
� Microsoft Internet Information Services
� Sun Java System Web Server (formerly Sun ONE and iPlanet™)

For the latest list of supported Web servers and the versions supported, see the
prerequisite document at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

7.1.1 Request routing using the plug-in

The Web server plug-in uses an XML configuration file to determine whether a
request is for the Web server or the application server. When a request reaches
the Web server, the URL is compared to those managed by the plug-in. If a
match is found, the plug-in configuration file contains the information needed to
forward that request to the Web container using the Web container inbound
transport chain. See Figure 7-1 on page 367.
366 WebSphere Application Server V6.1: System Management and Configuration

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Figure 7-1 Web server plug-in routing

The plug-in configuration file is generated using the WebSphere administrative
tools. Each time you make a change to the WebSphere Application Server
configuration that would affect how requests are routed from a Web server to the
application server, you need to regenerate and propagate the plug-in
configuration file to the Web server. You can propagate manually or configure it
to be done automatically.

7.1.2 Web server and plug-in management
The setup of your Web server and Web server plug-in environment is defined in
a Web server definition. The Web server definition includes information about the
location of the Web server, its configuration files, and plug-in configuration.
During application deployment, Web modules can be mapped to a Web server,
ensuring the proper routing information is generated for the plug-in configuration
file.

Web server

application server

plug-in configuration file

http://www.myhost.com/hello

<VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:80"/>
 </VirtualHostGroup>
 <ServerCluster LoadBalance="Round Robin" Name="server1_AppSrvNode_Cluster" ...>
 <Server ... Name="AppSrvNode_server1">
 <Transport Hostname="AppsHost" Port="9080" Protocol="http"/>
 </Server>
 </ServerCluster>
 <UriGroup Name="default_host_server1_AppSrvNode_Cluster_URIs">

 <Uri ... Name="/hello"/>

 </UriGroup>
 <Route ServerCluster="server1_AppSrvNode_Cluster"
UriGroup="default_host_server1_AppSrvNode_Cluster_URIs" VirtualHostGroup="default_host"/>

Web container

default_host
port 9080
/hello

LoadModule was_ap20_module
"C:\WebSphere\Plugins\bin\mod_was_ap20_http.dll"
WebSpherePluginConfig "C:\WebSphere\AppServer\
profiles\AppSrv01\config\cells\Cell01\nodes\AppSrvNode\
servers\webserver1\plugin-cfg.xml"

AppsHost

hello servlet
 Chapter 7. Managing Web servers 367

Each Web server is associated with a node, either managed or unmanaged. Web
server definitions are located under Servers → Web servers in the
administrative console (see Figure 7-2).The Web server definition is configured
as part of the plug-in installation process. Web servers can also be added
manually.

Figure 7-2 Web server definition

Managed Web servers versus unmanaged
When defining Web servers to WebSphere Application Server, it is important to
understand the concept of managed versus unmanaged nodes. A supported
Web server can be on a managed node or an unmanaged node, depending on
the environment on which you are running the Web server.

WebSphere Application Server supports basic administrative functions for all
supported Web servers. For example, generation of a plug-in configuration can
be performed for all Web servers. If the Web server is defined on a managed
node, automatic propagation of the plug-in configuration can be performed using
node synchronization. If the Web server is defined on an unmanaged node,
automatic propagation of a plug-in configuration is only supported for IBM HTTP
Servers.

WebSphere Application Server supports some additional administrative console
tasks for IBM HTTP Servers on managed and unmanaged nodes. For example,
you can start IBM HTTP Servers, stop them, terminate them, display their log
files, and edit their configuration files.
368 WebSphere Application Server V6.1: System Management and Configuration

Unmanaged nodes
An unmanaged node does not have a node agent to manage its servers. In a
stand-alone server environment, you can define one Web server and it, by
necessity, resides on an unmanaged node. In a distributed server environment,
Web servers defined to an unmanaged node are typically remote Web servers.

If the Web server is defined to an unmanaged node, you can do the following:

1. Check the status of the Web server.

2. Generate a plug-in configuration file for that Web server.

If the Web server is an IBM HTTP Server and the IHS Administration server is
installed and properly configured, you can also:

a. Display the IBM HTTP Server Error log (error.log) and Access log
(access.log) files.

b. Start and stop the server.

c. Display and edit the IBM HTTP Server configuration file (httpd.conf).

d. Propagate the plug-in configuration file after it is generated.

You cannot propagate an updated plug-in configuration file to a non-IHS Web
server that is defined to an unmanaged node. You must install an updated
plug-in configuration file manually to a Web server that is defined to an
unmanaged node.

Managed nodes
In a distributed server environment, you can define multiple Web servers. These
Web servers can be defined on managed or unmanaged nodes. A managed node
has a node agent. If the Web server is defined to a managed node, you can do
the following:

1. Check the status of the Web server.

2. Generate a plug-in configuration file for that Web server.

3. Propagate the plug-in configuration file after it is generated.

If the Web server is an IBM HTTP Server (IHS) and the IHS Administration
server is installed and properly configured, you can also:

a. Display the IBM HTTP Server Error log (error.log) and Access log
(access.log) files.

b. Start and stop the server.

c. Display and edit the IBM HTTP Server configuration file (httpd.conf).
 Chapter 7. Managing Web servers 369

How are nodes and servers defined?
During the installation of the plug-in, the Plug-ins installation wizard creates a
Web server configuration script named configure<Web_server_name>. This
configuration script is used to create the Web server definition and, if necessary,
the node definition in the configuration of the application server.

If a Web server definition already exists for a stand-alone application server,
running the script does not add a new Web server definition. Each stand-alone
application server can have only one Web server definition. A distributed server
environment, on the other hand, can have multiple Web server definitions. The
script creates a new Web server definition unless the Web server name is the
same.

The Plug-ins installation wizard stores the script in the <plug-in_home>/bin
directory on the Web server machine. If the plug-in is installed locally (on the
same machine as the application server), the configuration script will be run
automatically.

For remote installations, you must copy the script from the Web server machine
to the <was_home>/bin directory on the application server machine for
execution. The script runs against the default profile. If one machine is running
under Linux or UNIX and the other machine is running under Windows, use the
script created in the <plug-in_home>/bin/crossPlatformScripts directory.

If you are federating a stand-alone application server into a cell, any Web server
definitions created for a stand-alone application server will be lost when they are
federated. If you are creating a distributed server environment this way, wait until
after federating your application servers to create Web server definitions.

This chapter will discuss how to administer Web servers and Web server plug-ins
using the administration tools. For more information about the installation of Web
server plug-ins and how the Web server definitions scripts are generated and
executed, see WebSphere Application Server V6.1: Planning and Design,
SG24-7305.

Note: Always open a new command window in which to execute the
configure<Web_server_name> script. There is a potential conflict between a
shell environment variable, the WAS_USER_SCRIPT variable, and the real
default profile. The script always works against the default profile. However, if
the WAS_USER_SCRIPT environment variable is set, a conflict arises as the
script attempts to work on the profile identified by the variable.
370 WebSphere Application Server V6.1: System Management and Configuration

7.2 Working with Web servers
The introduction of Web server definitions to the WebSphere Application Server
administrative tools provides the following administrative features:

� Define nodes (distributed server environment).
� Define and modify Web servers.
� Check the status of a Web server.
� Start and stop IBM HTTP Servers.
� Administer IBM HTTP Servers.
� View or modify the Web server configuration file.
� Map modules to servers.

7.2.1 Defining nodes and Web servers
A managed node is added to the cell as part of the process when you federate an
application server profile or custom profile to the cell. An unmanaged node,
however, is not created using a profile.

The Web server definition script created by the Plug-ins installation wizard
defines an unmanaged node for a Web server and the Web server. However,
there might be times when you need to define or update the definitions using the
administrative console.

Adding an unmanaged node to the cell
To add an unmanaged node using the administrative console:

1. Select System Administration → Nodes in the console navigation tree.

2. Click Add Node.

3. Select Unmanaged node.

4. Click Next.

5. Enter the following values in the General Properties page. See Figure 7-3 on
page 372:

a. Name

Type a logical name for the node. The name must be unique within the
cell. A node name usually is identical to the host name for the computer.
However, you can make the node name different than the host name.

Tip: See Hints and tips for managing IBM HTTP Server using the WebSphere
administrative console in the Information Center for valuable information in
troubleshooting problems when managing an IBM HTTP Server.
 Chapter 7. Managing Web servers 371

b. Host name

Enter the host name of the unmanaged node that is added to the
configuration.

c. Platform Type

Select the operating system on which the unmanaged node runs. Valid
options are:

• Windows

• AIX

• HP-UX

• Solaris

• Linux

• OS/400

• z/OS

Figure 7-3 General properties for an unmanaged node

6. Click OK. The node is added and the name is displayed in the collection on
the Nodes page.

Adding a Web server
Once the node for the Web server has been defined, you can add the Web
server definition. To add a Web server definition, do the following:

1. Select Servers → Web servers.
372 WebSphere Application Server V6.1: System Management and Configuration

2. Click New. See Figure 7-4.

3. Select the node, enter the server name, and its type.

Figure 7-4 Defining a Web server: Step 1

Click Next.
 Chapter 7. Managing Web servers 373

4. Select the template for Web server specification. Initially, this template will be
one supplied with WebSphere specific to the Web server type. Once you have
defined a Web server, you can make it a template for use the next time. See
Figure 7-5 on page 374.

Figure 7-5 Defining a Web server: Step 2

Click Next.

5. Enter the properties for the Web server. See Figure 7-6 on page 375.
374 WebSphere Application Server V6.1: System Management and Configuration

Figure 7-6 Defining a Web server: Step 3

When defining a Web server hosted on a Windows operating system, use the
real service name instead of the display name. The service name does not
contain spaces. If you do not use the service name, you might have problems
starting and stopping the service.

6. Review the options and click Finish.
 Chapter 7. Managing Web servers 375

7.2.2 Viewing the status of a Web server
Web server status is reflected in the administrative console. To view Web servers
and their status, do the following:

1. Select Servers → Web servers. If a Web server is started or stopped using a
native command, you might need to refresh the view by clicking on the
icon to see the new status. See Figure 7-7.

Figure 7-7 Web server status

WebSphere Application Server reports server status using the Web server host
name and port that you have defined. See Figure 7-3 on page 372 and
Figure 7-6 on page 375. This is normally port 80. You do not use the remote
administration port. If Use secure protocol is defined, SSL will be used. See
Figure 7-9 on page 379.

7.2.3 Starting and stopping a Web server
A Web server can be started or stopped using one of the following methods.

From the administrative console
You can start or stop the following Web servers from the WebSphere
administrative console:

� All Web servers on a managed node

The node agent will be used to start or stop the Web server.

� IBM HTTP Server on an unmanaged node

The IBM HTTP Server administration must be up and running on the Web
server node.
376 WebSphere Application Server V6.1: System Management and Configuration

To start or stop a Web server from the administrative console, do the following:

1. Select Servers → Web servers. See Figure 7-8 on page 377.

2. Check the box to the left of each Web server you want.

3. Click Start or Stop.

Figure 7-8 Web server definitions

If you have problems starting or stopping an IBM HTTP Server, check the
WebSphere console logs (trace) and, if using the IBM HTTP administration
server, check the admin_error.log file.

If you have problems starting and stopping IBM HTTP Server on a managed
node using the node agent, you can try to start and stop the server by setting up
the managed profile and issuing the startserver <IBM HTTP Server> -nowait
-trace command and check the startServer.log file for the IBM HTTP Server
specified.

From a command window
You can also use the native startup or shutdown procedures for the supported
Web server. From a command window, change to the directory of your IBM HTTP
Server installed image, or to the installed image of a supported Web server.

� To start or stop the IBM HTTP Server for Linux or UNIX platforms, enter one
of the following at a command prompt:

<ihs_install>/bin/apachectl start
<ihs_install>/bin/apachectl stop

� To start or stop the IBM HTTP Server on Windows platform, select the IBM
HTTP Server 6.1 service from the Services window and invoke the
appropriate action.
 Chapter 7. Managing Web servers 377

7.2.4 IBM HTTP Server remote administration
You can administer and configure IBM HTTP Server using the WebSphere
administrative console. On a managed node, administration is performed using
the node agent. This true of all Web server types. However, unlike other Web
servers, administration is possible for an IBM HTTP Server installed on an
unmanaged node. In this case, administration is done through the IBM HTTP
administration server. This server must be configured and running.
Administration is limited to generation and propagation of the plug-in
configuration file.

Remote administration setup (unmanaged nodes)
In order for the administrative console to access the IBM HTTP administration
server, you must define a valid user ID and password to access the IBM HTTP
Server administration server. The user ID and password are stored in the Web
server’s IHS administration server properties.

You can update your IHS administration server properties in the Web server
definition through the Remote Web server management properties page of the
administrative console. To set or change these properties, do the following:

1. Click Servers → Web servers.

2. Select the Web server.

3. Click Remote Web server management in the Additional Properties section.

4. Enter the remote Web server management information, as in Figure 7-9 on
page 379.

Note: When the Web server is started or stopped with the native methods, the
Web server status on the Web servers page of the administrative console is
updated accordingly.
378 WebSphere Application Server V6.1: System Management and Configuration

Figure 7-9 IHS remote management properties

a. Enter the port number for the IHS administration server. The default is
8008.

b. Enter a user ID and password that are defined to the IBM HTTP
administration server. The IBM HTTP administration server User ID and
password are not verified until you attempt to connect.

5. Click OK and save the configuration.

Setting the user ID and password in the IBM HTTP administration server:
The IBM HTTP administration server is set, by default, to look at the following
file to get the user ID and passwords to use for authentication:

<ihs_install>/conf/admin.passwd

To initialize this file with a user ID, use the htpasswd command. The following
example initializes the file with the user ID webadmin:

C:\IBM HTTP Server\bin>htpasswd "C:\IBM HTTP Server\conf\admin.passwd"
webadmin

Automatically using MD5 format.
New password: ******
Re-type new password: ******
Adding password for user webadmin
 Chapter 7. Managing Web servers 379

When you are managing an IBM HTTP Server using the WebSphere
administrative console, you must ensure the following conditions are met:

� Verify that the IBM HTTP Server administration server is running.

� Verify that the Web server host name and port defined to WebSphere match
the IBM HTTP Server administration host name and port.

� Verify that the firewall is not preventing you from accessing the IBM HTTP
Server administration server from the WebSphere administrative console.

� Verify that the user ID and password specified in the WebSphere
administrative console under Remote Web server management is an
authorized combination for IBM HTTP Server administration
(conf/admin.passwd file).

� If you are trying to connect securely, verify that you have exported the IBM
HTTP Server administration server keydb personal certificate into the
WebSphere key database as a signer certificate. This key database will be
specified by the com.ibm.ssl.trustStore in the sas.client.props file in which
profile your console is running. This is mainly for self-signed certificates.

� Verify that the IBM HTTP Server admin_error.log file and the WebSphere
Application Server logs (trace.log) do not contain any errors.

Hints and tips
The following list describes hints and tips on starting, stopping, and obtaining the
status of the IBM HTTP Server using the WebSphere administrative console.

Viewing or modifying the Web server configuration file
The Plug-ins installation wizard automatically configures the Web server
configuration file with the information necessary to use the plug-in. For example,
among the updates made at the bottom of the httpd.conf file are the lines shown
in Example 7-1.

Example 7-1 Plug-in configuration location defined in httpd.conf

LoadModule was_ap20_module "C:\opt\WebSphere\Plugins\bin\mod_was_ap20_http.dll"
WebSpherePluginConfig
"C:\opt\WebSphere\Plugins\config\webserver1\plugin-cfg.xml"

Note that the location the Web server expects to find the plug-in configuration file
in is specified in these lines. When you generate the Web server plug-in
configuration for this Web server, you will need to propagate or copy the
generated file to this location.
380 WebSphere Application Server V6.1: System Management and Configuration

The Web server configuration file is a text file and can be modified or viewed
manually with a text editor. You can also view or modify this file using the
WebSphere Application Server administrative console.

To view or modify the contents of the Web server configuration file in your Web
browser:

1. Click Servers → Web servers.

2. Select the Web server.

3. Click Configuration File in the Additional Properties section. See
Figure 7-10 on page 381.

Figure 7-10 IBM HTTP Server configuration file httpd.conf

4. Type your changes directly in the window and click OK. Save the changes.

Note: If you made changes to the configuration file, you need to restart your
Web server for the changes to take effect.
 Chapter 7. Managing Web servers 381

Viewing Web server logs
With remote administration, you can also view the IBM HTTP Server access log
and error log. To view the logs, do the following:

1. Click Servers → Web servers.

2. Select the Web server.

3. Click Log file in the Additional Properties section.

4. Select the Runtime tab. See Figure 7-11 on page 382.

Figure 7-11 Web server Runtime page for logs

5. Click View beside the log you want to view. See Figure 7-12.
382 WebSphere Application Server V6.1: System Management and Configuration

Figure 7-12 Viewing the error log

7.2.5 Mapping modules to servers
Each module of an application is mapped to one or more target servers. The
target server can be an application server, cluster of application servers, or Web
server. Modules can be installed on the same application server or dispersed
among several application servers. Web servers specified as targets will have
routing information for the application generated in the plug-in configuration file
for the Web server.

This mapping takes place during application deployment. Once an application is
deployed, you can view or change these mappings. To check or change the
mappings, do the following:

1. Select Applications → Enterprise Applications.

2. Click the application for which you want to review the mapping.

3. Click Manage Modules.
 Chapter 7. Managing Web servers 383

4. Examine the list of mappings. See Figure 7-13.

Figure 7-13 Map modules to selected servers

5. To change a mapping, do the following:

a. Select each module that you want mapped to the same targets by placing
a check mark in the box to the left of the module.

b. From the Clusters and Servers list, select one or more targets. Use the
Ctrl key to select multiple targets. For example, to have a Web server
serve your application, use the Ctrl key to select an application server and
the Web server together.

6. Click Apply.

7. Repeat step 5 on page 384 until each module maps to the desired targets.

8. Click OK and save your changes.

9. Regenerate and propagate the plug-in configuration, if it is not automatic.

Once you have defined at least one Web server, you must specify a Web server
as a deployment target whenever you deploy a Web application. If the Web
server plug-in configuration service is enabled, a Web server plug-in's
configuration file is automatically regenerated whenever a new application is
associated with that Web server.
384 WebSphere Application Server V6.1: System Management and Configuration

7.3 Working with the plug-in configuration file
The plug-in configuration file (plugin-cfg.xml) contains routing information for all
applications mapped to the Web server. This file is read by a binary plug-in
module loaded in the Web server. An example of a binary plug-in module is the
mod_ibm_app_server_http.dll file for IBM HTTP Server on the Windows platform.

The binary plug-in module does not change. However, the plug-in configuration
file for the binary module needs to be regenerated and propagated to the Web
server whenever a change is made to the configuration of applications mapped
to the Web server. The binary module reads the XML file to adjust settings and to
locate deployed applications for the Web server.

Example 7-2 shows an excerpt from a generated plug-in configuration file.

Example 7-2 An except from the plugin-cfg.xml

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file
for the webserver ITSOCell.wan.webserver1 generated on 2004.10.29 at 03:32:12
PM BST-->
<Config ASDisableNagle="false" AcceptAllContent="false"
AppServerPortPreference="HostHeader" ChunkedResponse="false"
IISDisableNagle="false" IISPluginPriority="High" IgnoreDNSFailures="false"
RefreshInterval="60" ResponseChunkSize="64" VHostMatchingCompat="false">
 <Log LogLevel="Error"
Name="c:\opt\WebSphere\Plugins\logs\webserver1\http_plugin.log"/>
 <Property Name="ESIEnable" Value="true"/>
 <Property Name="ESIMaxCacheSize" Value="1024"/>
 <Property Name="ESIInvalidationMonitor" Value="false"/>

 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:9080"/>
 <VirtualHost Name="*:80"/>
 <VirtualHost Name="*:9443"/>
 </VirtualHostGroup>

 <ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="server1_NodeA_Cluster" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="60">
 <Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1"
Name="NodeA_server1" WaitForContinue="false">
 <Transport Hostname="wan" Port="9080" Protocol="http"/>
 <Transport Hostname="wan" Port="9443" Protocol="https">
 <Property Name="keyring"
Value="c:\opt\WebSphere\Plugins\etc\plugin-key.kdb"/>
 <Property Name="stashfile"
Value="c:\opt\WebSphere\Plugins\etc\plugin-key.sth"/>
 </Transport>
 Chapter 7. Managing Web servers 385

 </Server>
 </ServerCluster>

 <UriGroup Name="default_host_server1_NodeA_Cluster_URIs">
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/snoop/*"/>
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/hello"/>

 </UriGroup>
 <Route ServerCluster="server1_NodeA_Cluster"
UriGroup="default_host_server1_NodeA_Cluster_URIs"
VirtualHostGroup="default_host"/>
</Config>

The specific values for the UriGroup Name and AffinityCookie attributes depend
on how you have assembled your application. When you assemble your
application:

� If you specify File Serving Enabled, then only a wildcard URI is generated,
regardless of any explicit servlet mappings.

� If you specify Serve servlets by class name, then a URI of the form URI
name = <web_app_uri>/servlet/ is generated.

Both these options apply for both the UriGroup Name and AffinityCookie
attributes.

When the plug-in configuration file is generated, it does not include admin_host
in the list of virtual hosts. See Allowing Web servers to access the administrative
console in the Information Center for information about how to add it to the list.

7.3.1 Regenerating the plug-in configuration file

The plug-in configuration file needs to be regenerated and propagated to the
Web servers when there are changes to your WebSphere configuration that
affect how requests are routed from the Web server to the application server.
These changes include:

� Installing an application
� Creating or changing a virtual host
� Creating a new server
� Modifying HTTP transport settings
� Creating or altering a cluster

The plug-in file can be regenerated manually using the administration tools. You
can also set up the plug-in properties of the Web server to enable automatic
386 WebSphere Application Server V6.1: System Management and Configuration

generation of the file whenever a relevant configuration change is made. See
“Enabling automated plug-in regeneration” on page 391.

To regenerate the plug-in configuration manually, you can either use the
administrative console, or you can issue the GetPluginCfg command.

Generating the plug-in with administrative console
To generate or regenerate the plug-in configuration file, do the following:

1. Select Servers → Web servers.

2. Click the box to the left of your Web server.

3. Click Generate Plug-in.

4. Verify that the generation was successful by looking at the messages. A
success message will be accompanied with the location of the generated
plug-in configuration file:

<profile_home>/config/cells/<cell_name>/nodes/<web_server_node>/servers
/<web_server>/plugin-cfg.xml
 Chapter 7. Managing Web servers 387

See Figure 7-14.

Figure 7-14 Web server definitions

5. You can view the plug-in configuration file by selecting the View button next to
the Plug-in configuration file name on the Plug-in properties page of your Web
server definition. See Figure 7-15. You can also open it with a text editor.
388 WebSphere Application Server V6.1: System Management and Configuration

Figure 7-15 Plug-in properties

To use the new plugin-cfg.xml, file you must propagate it to the Web server
system. See 7.3.2, “Propagating the plug-in configuration file” on page 392.

Regenerating the plug-in with the GenPluginCfg command
The GenPluginCfg command is used to regenerate the plug-in configuration file.
Depending on the operating platform, the command is:

� Linux and UNIX: GenPluginCfg.sh
� Windows: GenPluginCfg.bat

You can use the -profileName option to define the profile of the Application
Server process in a multi-profile installation. The -profileName option is not
required for running in a single profile environment. The default for this option is
the default profile. For a distributed server environment, the default profile is the
deployment manager profile.
 Chapter 7. Managing Web servers 389

Syntax
The GenPluginCfg command reads the contents of the configuration repository
on the local node to generate the Web server plug-in configuration file.

The syntax of the GenPluginCfg command is as follows:

:GenPluginCfg.bat(sh) [options]

All options are optional.The options are listed in Table 7-1.

Table 7-1 Options for GenPluginCfg

Option Description

-config.root <config root> Specify the directory path of the particular
configuration repository to be scanned. The default is
the value of CONFIG_ROOT defined in the
SetupCmdLine.bat(sh) script.

-profileName <profile> Use this profile to run the command against. If the
command is run from <was_home>/bin and
-profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile
is used.

-cell.name <cell name> Restrict generation to only the named cell in the
configuration repository. The default is the value of
WAS_CELL defined in the SetupCmdLine.bat(sh)
script.

-node.name <node name> Restrict generation to only the named node in the
particular cell of the configuration repository. The
default is the value of WAS_NODE defined in the
SetupCmdLine.bat(sh) script.

-webserver.name <webserver1> Required for creating plug-in configuration file for a
given Web server.

-propagate yes/no This option applies only when the option
webserver.name is specified. The default is no.

-cluster.name <cluster_name,cluster_name> |
ALL

Generate an optional list of clusters. Ignored when the
option webserver.name is specified.

-server.name <server_name, server_name> Generate an optional list of servers. It is required for
single server plug-in generation. It is ignored when the
option webserver.name is specified.
390 WebSphere Application Server V6.1: System Management and Configuration

Examples
To generate a plug-in configuration for all of the clusters in a cell, type the
following:

GenPluginCfg -cell.name NetworkDeploymentCell

To generate a plug-in configuration for a single server, type:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name appServerNode
-server.name appServerName

To generate a plug-in configuration file for a Web server, type:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name webserverNode
-webserver.name webserverName

When this command is issued without the option -webserver.name
webservrName, the plug-in configuration file is generated based on topology.

Enabling automated plug-in regeneration
The Web server plug-in configuration service by default regenerates the
plugin-cfg.xml file automatically. You can view or change the configuration
settings for the Web server plug-in configuration service.

See Example 7-14 on page 388. To view or change the plug-in generation
property, do the following:

1. Select Servers → Web servers.

2. Click your Web server.

-output.file.name <filename> Define the path to the generated plug-in configuration
file. The default is <configroot_dir>/plugin-cfg.xml file.
It is ignored when the option webserver.name is
specified.

-destination.root <root> Specify the installation root of the machine the
configuration is used on. It is ignored when the option
webserver.name is specified.

-destination.operating.system windows/unix Specify the operating system of the machine the
configuration is used on. It is ignored when the option
webserver.name is specified.

-debug <yes | no> Enable or disable output of debugging messages.
The default is no, that is, debug is disabled.

-help or -? Print command syntax.

Option Description
 Chapter 7. Managing Web servers 391

3. Select Plug-in properties in the Additional Properties section.

4. View or change the Automatically generate the plug-in configuration file
option.

When selected, the Web server plug-in configuration service automatically
generates the plug-in configuration file whenever the Web server environment
changes. For example, the plug-in configuration file is regenerated whenever
one of the following activities occurs:

– A new application is deployed on an associated application server.

– The Web server definition is saved.

– An application is removed from an associated application server.

– A new virtual host is defined.

Whenever a virtual host definition is updated, the plug-in configuration file
is automatically regenerated for all of the Web servers.

7.3.2 Propagating the plug-in configuration file
After a plug-in configuration file is regenerated, it needs to be propagated to the
Web server.

The configuration service can automatically propagate the plugin-cfg.xml file to a
Web server machine if it is configured on a managed node, and to an IBM HTTP
Server if it is configured on an unmanaged node. For other scenarios, you must
manually copy the file to the Web server machines.

You can manually propagate the file by copying it from the application server
machine to the Web server machine, or you can do it from the administrative
console.

From a command window
To copy the file from one machine to another, do the following:

1. Copy the file:

<profile_home>/config/cells/<cell_name>/nodes/<web_server_node>/servers
/<web_server>/plugin-cfg.xml

2. Place the copy in this directory on the remote Web server machine:

<plugins_home>/config/<web_server>
392 WebSphere Application Server V6.1: System Management and Configuration

From the administrative console
To propagate the plug-in configuration manually from the administrative console,
do the following:

1. Select Servers → Web servers.

2. Click the box to the left of your Web server.

3. Click Propagate plug-in. See Example 7-14 on page 388.

4. Verify that the propagation was successful by looking at the messages.

If you are in doubt, check whether the plug-in configuration file has been
propagated to the Web server plug-in location by viewing it.

Activating the new plug-in configuration
The Web server binary plug-in module checks for a new configuration file every
60 seconds. You can wait for the plug-in to find the changes, or you can restart
the Web sever to invoke the changes immediately.

Enable automated plug-in propagation
The Web server plug-in configuration service by default propagates the
plugin-cfg.xml file automatically. To view or change the plug-in propagation
property, do the following steps. See Example 7-14 on page 388 for further
information.

1. Select Servers → Web servers.

2. Click your Web server.

3. Select Plug-in properties in the Additional Properties sub section.

4. View or change the Automatically propagate plug-in configuration file
option.

7.3.3 Modifying the plug-in request routing options
You can specify the load balancing option that the plug-in uses when sending
requests to the various application servers associated with that Web server.

To view or modify the Request routing, do the following:

1. Select Servers → Web Servers.

Tip: If you encounter problems restarting your Web server, check the
http_plugin.log file in <plug-ins_home>/config/<web_server> for information
about what portion of the plugin-cfg.xml file contains an error. The log file
states the line number on which the error occurred along with other details that
might help you diagnose why the Web server did not start.
 Chapter 7. Managing Web servers 393

2. Click your Web server.

3. Select Plug-in properties in the Additional Properties section.

4. Select Request Routing in the Additional Properties section. See
Figure 7-16.

Figure 7-16 Request routing properties
394 WebSphere Application Server V6.1: System Management and Configuration

a. Load balancing option

This field corresponds to the LoadBalanceWeight element in the
plugin-cfg.xml file. The load balancing options are covered in detail in
WebSphere Application Server V6 Scalability and Performance
Handbook, SG24-6392. The following items are short overviews.

i. Round robin (default)

When using this algorithm, the plug-in selects, at random, a cluster
member from which to start. The first successful browser request will
be routed to this cluster member and then its weight is decremented by
one. New browser requests are then sent round robin to the other
application servers and, subsequently, the weight for each application
server is decremented by one. The spreading of the load is equal
between application servers until one application server reaches a
weight of zero. From then on, only application servers without a weight
higher than zero will receive routed requests. The only exception to this
pattern is when a cluster member is added or restarted.

ii. Random

Requests are passed to cluster members randomly. Weights are not
taken into account as in the round robin algorithm. The only time the
application servers are not chosen randomly is when there are
requests with associated sessions. When the random setting is used,
cluster member selection does not take into account where the last
request was handled. This means that a new request could be handled
by the same cluster member as the last request.

b. Retry interval

The length of time, in seconds, that should elapse from the time an
application server is marked down to the time that the plug-in retries a
connection.

This field corresponds to the ServerWaitforContinue element in the
plugin-cfg.xml file. The default is 60 seconds.

c. Maximum size of request content

Limits the size of request content. If limited, this field also specifies the
maximum number of bytes of request content allowed in order for the
plug-in to attempt to send the request to an application server.

This field corresponds to the PostSizeLimit element in the plugin-cfg.xml
file. When a limit is set, the plug-in fails any request that is received that is
greater than the specified limit.

You can set a limit in kilobytes or no limit. The default is set to no limit for
the post size.
 Chapter 7. Managing Web servers 395

d. Remove special headers

When enabled, the plug-in will remove any headers from incoming
requests before adding the headers the plug-in is supposed to add before
forwarding the request to an application server.

This field corresponds to the RemoveSpecialHeaders element in the
plugin-cfg.xml file. The plug-in adds special headers to the request before
it is forwarded to the application server. These headers store information
about the request that will need to be used by the application. Not
removing the headers from incoming requests introduces a potential
security exposure.

The default is to remove special headers.

e. Clone separator change

When enabled, the plug-in expects the plus character (+) as the clone
separator.

This field corresponds to the ServerCloneID element in the plugin-cfg.xml
file. Some pervasive devices cannot handle the colon character (:) used to
separate clone IDs in conjunction with session affinity. If this field is
checked, you must also change the configurations of the associated
application servers so that the application servers separate clone IDs with
the plus character as well.
396 WebSphere Application Server V6.1: System Management and Configuration

Part 2 Messaging with
WebSphere

This part of this IBM Redbook introduces you to the new service integration
technology included with WebSphere Application Server V6. It gives you the
basic knowledge you need to configure a run time environment for messaging
applications.

This part includes the following chapters:

� Chapter 8, “Asynchronous messaging” on page 399
� Chapter 9, “Default messaging provider” on page 539

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 397

398 WebSphere Application Server V6.1: System Management and Configuration

Chapter 8. Asynchronous messaging

In this chapter, we describe the concepts behind the asynchronous messaging
functionality provided as part of WebSphere Application Server. We discuss:

� Messaging concepts
� Java Message Service
� Messaging and the J2EE Connector Architecture
� Message-driven beans
� Managing WebSphere JMS providers
� Configuring WebSphere JMS administered objects
� Connecting to a service integration bus

8

© Copyright IBM Corp. 2006. All rights reserved. 399

8.1 Messaging concepts
The term messaging, in the generic sense, is usually used to describe the
exchange of information between two interested parties. In the context of
computer science, messaging can be used to loosely describe a broad range of
mechanisms used to communicate data. For example, e-mail and instant
messaging are two communication mechanisms that could be described using
the term messaging. In both cases, information is exchanged between two
parties, but the technology used to achieve the exchange is different.

8.1.1 Loose coupling
These two technologies can also be used to describe one of the main benefits of
messaging, that is, loose coupling. We discuss two aspects of coupling in the
context of messaging applications: process coupling and application coupling.

Process coupling
In the case of Instant Messaging, both parties involved in the exchange of
messages need to be available at the point in time when the message is sent.
Therefore, from a process point of view, the sending and receiving applications
can be said to have tight coupling.

In contrast, a user can send an e-mail to a recipient regardless of whether the
recipient is currently online. In this case, the sender connects to an intermediary
that is able to store the message until the recipient requests it. The sender and
receiver processes in this situation can be described as loosely coupled. The
intermediary in this situation is usually a mail server of some variety, but it can be
generically referred to as a messaging provider.

Application coupling
As well as enabling loose coupling at the process level, messaging can also
enable loose coupling at the application level. In this context, loose coupling
means that the sending application is not dependent on any interface exposed by
the receiving application. Both applications need only worry about the interface
that the messaging provider exposes to enable them to connect and exchange
data. With most messaging providers today, these interfaces are reasonably
stable and, in some cases, based on open standards. This allows messaging
applications to focus on the format of the data that is being exchanged, rather
than the interface used to exchange the data. For this reason, messaging
applications can be described as datacentric.

Contrast this with applications that make use of Enterprise JavaBeans (EJB).
EJB client applications need to know about the interface exposed by the EJB. If
400 WebSphere Application Server V6.1: System Management and Configuration

this interface changes, then the EJB client application needs to be recompiled to
prevent run time errors. For this reason, EJBs and their clients can be described
as tightly coupled. Also, due to the dependence on the interface exposed by the
EJB, they can also be described as interface centric applications.

8.1.2 Messaging types
The terms tight and loose coupling are not commonly used when describing
messaging applications. It is more common to refer to the type of messaging that
a given application uses. The messaging type describes the style of interaction
between the sender and receiver.

The two messaging types are:

� Synchronous messaging

Synchronous messaging involves tightly coupled processes, where the
sending and receiving applications communicate directly and both must be
available in order for the message exchange to occur.

� Asynchronous messaging

Asynchronous messaging involves loosely coupled processes, where the
sending and receiving applications communicate through a messaging
provider. The sending application is able to pass the data to the messaging
provider and then continue with its processing. The receiving application is
able to connect to the messaging provider, possibly at some later point in
time, to retrieve the data.

8.1.3 Destinations
With synchronous messaging, because there is no intermediary involved in the
exchange of messages, the sending application must know how to connect to the
receiving application. Once connected, there is no ambiguity to the intended
destination of a message because messages can only be exchanged between
the connected parties. This is shown in Figure 8-1.

Figure 8-1 Direct communication using synchronous messaging

Message
Sender Receiver
 Chapter 8. Asynchronous messaging 401

With asynchronous messaging, however, we need to introduce the concept of a
destination. The need for a destination becomes apparent when we consider the
fact that a single messaging provider can act as an intermediary for many
applications. In this situation, the sending and receiving applications must agree
on a single destination used to exchange messages. This destination must be
specified when sending a message to the messaging provider, or receiving a
message from the messaging provider. This is shown in Figure 8-2.

Figure 8-2 Indirect communication via a destination using asynchronous messaging

A sending application might need to exchange different messages with several
receiving applications. In this situation, it would be normal for the sending
application to use a different destination for each receiving application with which
it wants to communicate. This is shown in Figure 8-3.

Figure 8-3 Communicating with multiple receivers using asynchronous messaging

8.1.4 Messaging models
As messaging technologies have evolved, two types of asynchronous
messaging models have emerged, Point-to-Point and Publish/Subscribe. These
models describe how the messaging provider distributes messages to the target

Messaging ProviderMessage
Destination

Sender

Message

Receiver

Messaging Provider
Message 1 Destination 1

Message 2 Destination 2

Sender

Message 1

Message 2

Receiver

Receiver
402 WebSphere Application Server V6.1: System Management and Configuration

destination, that is, they describe the cardinalities for the sender-receiver
relationship. It is possible for an application to make use of both messaging
models. The Point-to-Point and Publish/Subscribe messaging models are
described in the following sections.

Point-to-Point
In the Point-to-Point messaging model, the sending application must specify the
target destination for the message. In order to receive the message, the receiving
application must specify the same destination when it communicates with the
messaging provider. This means that there is a one-to-one mapping between the
sender and receiver of a message. This is the same situation as depicted in
Figure 8-2 on page 402. In the Point-to-Point messaging model, the destination is
usually referred to as a queue.

Publish/Subscribe
In the Publish/Subscribe messaging model, the sending application publishes
messages to a destination. Multiple receiving applications can subscribe to this
destination in order to receive a copy of any messages that are published.

When a message arrives at a destination, the messaging provider distributes a
copy of the message to all of the receiving applications who have subscribed to
the destination. This means that there is potentially a one-to-many relationship
between the sender and receiver of a message. However, there might also be no
receiving applications subscribed to a destination when a message arrives.

Note that this is not the same situation as depicted in Figure 8-3 on page 402.
Figure 8-3 shows a sending application communicating with several receiving
applications using the Point-to-Point messaging model with each. Figure 8-4
shows the Publish/Subscribe messaging model.

Figure 8-4 Publish/Subscribe messaging model

Message

Topic

Publisher

Message

Message

Subscriber

Subscriber
 Chapter 8. Asynchronous messaging 403

8.1.5 Messaging patterns
Several patterns also exist that describe the way in which messaging
applications connect to, and use, messaging providers. These patterns describe
whether a messaging application interacts with the messaging provider as a
message producer, message consumer, or both. When a messaging application
acts as both message producer and message consumer, the messaging pattern
is referred to as request-reply. These messaging patterns are discussed in more
detail in the following sections.

Message producers
In the message producer pattern, the sending application simply connects to the
messaging provider, sends a message, and then disconnects from the
messaging provider. Because the sending application is not interested in what
happens to the message once the messaging provider has accepted it, this
pattern is sometimes referred to as fire and forget, although it is also commonly
referred to as datagram. The message producer pattern is shown in Figure 8-5.

Figure 8-5 Message producer pattern

Message consumers
Message consumers operate in one of two modes:

� Pull mode

In pull mode, the receiving application connects to the messaging provider
and explicitly receives a message from the target destination. Obviously, there
is no guarantee that a message will be available on the destination at a given
point in time, so the receiving application might need to retry at some later
stage in order to retrieve a message. For this reason, the receiving application
is said to poll the destination.

� Push mode

In push mode, it is the messaging provider who initiates the communication
with the receiving application when a message arrives at a destination. The

Messaging Provider

Message
Destination

Message
Producer
404 WebSphere Application Server V6.1: System Management and Configuration

receiving application must register an interest in messages that arrive at the
target destination with the messaging provider.

The message consumer pattern is shown in Figure 8-6 on page 405.

Figure 8-6 Message consumer pattern

Request-reply
The request-reply pattern involves the sending and receiving applications acting
as both message producers and message consumers. The sending application
initiates the process by sending a message to a destination within the messaging
provider and then waiting for a reply. The receiving application receives the
message from the messaging provider, performs any required processing, and
then sends the reply to the messaging provider. The sending application then
receives this response from the messaging provider.

In this situation, the sending and receiving applications are tightly coupled
processes, even though they are communicating using asynchronous
messaging. For this reason, this pattern is often referred to as
pseudo-synchronous messaging.

The request-reply pattern is shown in Figure 8-7.

Figure 8-7 Request-reply pattern

Messaging Provider

Message
Destination

Message
Consumer

Messaging Provider
Message Destination

Message Destination

Message
Producer

Message

Message

Message
Producer
 Chapter 8. Asynchronous messaging 405

8.2 Java Message Service
The Java Message Service (JMS) API is the standard Java API for accessing
enterprise messaging systems from Java programs. In other words, it is a
standard API that sending and receiving applications written in Java can use to
access the messaging provider to create, send, receive, and read messages. We
discuss some of the important features of the JMS specification in this section,
such as:

� JMS API history
� JMS providers
� JMS domains
� JMS administered objects
� JMS and JNDI
� JMS connections
� JMS sessions
� JMS messages
� JMS message producers
� JMS consumers
� JMS exception handling
� Application Server Facilities
� JMS and J2EE

For a complete discussion of JMS, refer to the Java Message Service Version 1.1
specification. A link for this specification is contained in 8.8, “References and
resources” on page 536.

8.2.1 JMS API history
IBM, among others, was involved actively with Sun Microsystems™ in the
specification process that led to the original JMS API being published in 1999.
Several versions of the API have subsequently been released. The latest is
Version 1.1, which includes many changes that resulted from a review of the API
by the Java community.

It is important to note that the JMS API defines a vendor-independent
programming interface. It does not define how the messaging provider should be
implemented or which communication protocol should be used by clients to
communicate with the messaging provider. Different vendors can produce

Note: This section introduces the features of the JMS API, as described in the
JMS Version 1.1 specification. The J2EE Version 1.4 specification places
certain restrictions on the use of the JMS API within the various J2EE
containers. These restrictions are discussed in 8.2.13, “JMS and J2EE” on
page 422.
406 WebSphere Application Server V6.1: System Management and Configuration

different JMS implementations. They should all be able to run the same JMS
applications, but the implementations from different vendors will not necessarily
be able to communicate directly with each other.

8.2.2 JMS providers
JMS providers are simply messaging providers that provide a JMS API
implementation. However, this does not mean that the underlying messaging
provider will be written using the Java programming language. It simply means
that the JMS provider written by a specific vendor will be able to communicate
with the corresponding messaging provider. As an example, the WebSphere MQ
JMS provider knows how to communicate with WebSphere MQ.

8.2.3 JMS domains
The JMS API introduces the concept of JMS domains, and defines the
point-to-point and publish/subscribe domains. These JMS domains simply
represent, in the Java environment, the messaging models described in 8.1.4,
“Messaging models” on page 402.

The JMS API also defines a set of domain-specific interfaces that enable client
applications to send and receive messages in a given domain. However, Version
1.1 of the JMS specification introduces a set of domain independent interfaces,
referred to as the common interfaces, in support of a unified messaging model.
The domain-specific interfaces have been retained in Version 1.1 of the JMS
specification for backwards compatibility.

The preferred approach for implementing JMS client applications is to use the
common interfaces. For this reason, the JMS code examples in this chapter all
make use of the common interfaces.

Durable subscriptions in the Publish/Subscribe domain
The JMS API also recognizes the need in the Publish/Subscribe domain for topic
subscriptions to persist beyond the lifetime of the Java objects that represent
them. The JMS API introduces the concept of durable subscriptions to address
this requirement.

A topic subscriber is said to be active when the Java objects that represent them
exist. That is, they are active when the JMS client application that they are
defined within is executing. When the JMS client application is not executing, a
topic subscriber is said to inactive.
 Chapter 8. Asynchronous messaging 407

A non-durable subscription only lasts as long as the topic subscriber is active. A
topic subscriber only receives messages that are published on a topic as long as
it is active. When the topic subscriber is inactive, it is no longer subscribed to the
topic and, therefore, will not receive any messages published to the topic.

A durable subscription, on the other hand, continues to exist even when the topic
subscriber is inactive. If there is no active topic subscriber for a durable
subscription, the JMS provider stores any publication messages until they expire.
The next time that a topic subscriber for a durable subscription becomes active,
the JMS provider delivers any messages that it is storing for the durable
subscription. A topic subscriber specifies a unique identity when it creates the
durable subscription. Subsequent topic subscribers that specify the same unique
identity resume the subscription in the state it was left in by the previous
subscriber.

8.2.4 JMS administered objects
Administered objects encapsulate JMS provider-specific configuration
information. They are created by an administrator and are later used at run time
by JMS clients.

The JMS specification states that the benefits of administered objects are:

� They hide provider specific configuration details from JMS clients.

� They abstract JMS administrative information into Java objects that are easily
organized and administered from a common management console.

The JMS specification defines two types of administered objects: JMS
connection factories and JMS destinations. These are discussed in the following
sections.

JMS connection factories
A connection factory encapsulates the configuration information that is required
to connect to a specific JMS provider. A JMS client uses a connection factory to
create a connection to that JMS provider. ConnectionFactory objects support
concurrent use, that is, they can be accessed at the same time by multiple
threads within a JMS client application.

The connection factory interfaces defined within the JMS specification are shown
in Table 8-1.
408 WebSphere Application Server V6.1: System Management and Configuration

Table 8-1 JMS connection factory interfaces

JMS destinations
A destination encapsulates addressing information for a specific JMS provider. A
JMS client uses a destination object to address a message to a specific
destination on the underlying JMS provider. Destination objects support
concurrent use, that is, they can be accessed at the same time by multiple
threads within a JMS client application.

The destination interfaces defined within the JMS specification are shown in
Table 8-2.

Table 8-2 JMS destination interfaces

8.2.5 JMS and JNDI
At run time, JMS clients need a mechanism by which to obtain references to the
configured JMS administered objects. The JMS specification establishes the
convention that these references are obtained by looking them up in a name
space using the Java Naming and Directory Interface™ (JNDI) API.

The JMS specification does not define a naming policy that indicates where
messaging resources should be placed in a name space. However, if the JMS
client is a J2EE application, then the J2EE specification does recommend that
messaging-related resources be placed in a JMS sub-context.

Administrators require additional tools in order to create and bind the JMS
administered objects into the JNDI name space. The JMS specification places
the onus of providing these tools on the JMS provider. The tools that are provided
for this purpose by WebSphere Application Server are discussed in 8.5,
“Managing WebSphere JMS providers” on page 451 and 8.6, “Configuring
WebSphere JMS administered objects” on page 461.

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

Destination Queue Topic
 Chapter 8. Asynchronous messaging 409

J2EE references and JMS
An additional consideration in this discussion is that the JMS client application
needs to know where the JMS administered object was placed within the JNDI
name space in order to be able to locate it at run time. This requirement creates
a dependency between the JMS client code and the run time topology. If the JMS
administered object is moved within the JNDI name space, the JMS client
application needs to be modified. This is obviously unacceptable.

The J2EE specification provides various naming mechanisms you can use to
decouple the JMS client code from the real JNDI names to which the JMS
administered objects are bound. For a JMS connection factory, use a Resource
Manager Connection Factory Reference. For a JMS destination, use a Resource
Environment Reference. These references are defined within the deployment
descriptor for a J2EE component. Refer to Chapter 5, “Naming,” of Version 1.4 of
the J2EE Specification for more information about the definition of these
references.

Defining either of these references within a J2EE component results in a JNDI
entry being created in the local JNDI name space for that component at run time.
You can access this local JNDI name space by the JMS client by performing
JNDI lookups with names that begin with java:comp/env.

These references are mapped by the administrator to the real JMS-administered
objects in the global JNDI name space when the application is deployed to the
target operational environment. At run time, when the JMS client performs a
lookup in its local JNDI name space, it is redirected to the JMS administered
object in the global name space.

Consequently, if a JMS administered object is moved within the JNDI name
space, only the mapping for the resource reference needs to modified. The code
for the JMS client application would remain unchanged.

Retrieving administered objects from JNDI
The code required to obtain references to a ConnectionFactory and Destination
object is shown in Example 8-1.

Example 8-1 Using JNDI to retrieve JMS administered objects

import javax.jms.*;
import javax.naming.*

// Create the JNDI initial context
InitialContext initCtx = new InitialContext();

// Get the connection factory
ConnectionFactory connFactory
410 WebSphere Application Server V6.1: System Management and Configuration

= (ConnectionFactory)initCtx.lookup(“java:comp/env/jms/myCF”);

// Get the destination used to send a message
Destination destination

= (Destination)initCtx.lookup(“java:comp/env/jms/myQueue”);

8.2.6 JMS Connections
A JMS Connection object represents the connection that a JMS client has to its
JMS provider. The JMS specification states that a Connection encapsulates an
open connection with a JMS provider and that it typically represents an open
TCP/IP socket between a client and a JMS provider. However, this is dependent
on the JMS providers implementation.

It is important to note that the creation of a Connection object normally results in
resources being allocated within the JMS provider itself, that is, resources are
allocated outside of the process running the JMS client. For this reason, care
must be taken to close a Connection when it is no longer required within the JMS
client application. Invoking the close method on a Connection object results in
the close method being called on all of the objects created from it.

The creation of the Connection object is also the point at which the JMS client
authenticates itself with the JMS provider. If no credentials are specified, then the
identity of the user under which the JMS client is running is used.

Connection objects support concurrent use.

ConnectionFactory objects are used to create instances of Connection objects.
The connection interfaces defined within the JMS specification are shown in
Table 8-3.

Table 8-3 JMS connection interfaces

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

Connection QueueConnection TopicConnection
 Chapter 8. Asynchronous messaging 411

The code required to create a Connection object is shown in Example 8-2.

Example 8-2 Creating JMS Connections

// User credentials
String userID = “jmsClient“;
String password = “password“;

// Create the connection, specifying no credentials
Connection conn1 = connFactory.createConnection();

// Create connection, specifying credentials
Connection conn2 = connFactory.createConnection(userID, password);

8.2.7 JMS sessions
A JMS session is used to create message producers and message consumers
for a single JMS provider. It is created from a Connection object.

It is also used to define the scope of local transactions. It can group multiple send
and receive interactions with the JMS provider into a single unit of work.
However, the unit of work only spans the interactions performed by message
producers or consumers created from this Session object. A transacted session
can complete a transaction using the commit or rollback methods of the Session
object. Once the current transaction has been completed, a new transaction is
automatically started.

Session objects do not support concurrent use. They cannot be accessed at the
same time by multiple threads within a JMS client application. If a JMS client
requires one thread to produce messages while another thread consumes them,
the JMS specification recommends that the JMS client uses separate Sessions
for each thread.

The session interfaces defined within the JMS specification are shown in
Table 8-4.

Table 8-4 JMS session interfaces

The code required to create a Session object is shown in Example 8-3.

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

Session QueueSession TopicSession
412 WebSphere Application Server V6.1: System Management and Configuration

Example 8-3 Creating JMS Sessions

// Create a non-transacted session
Session session = conn1.createSession(false, Session.AUTO_ACKNOWLEDGE);

8.2.8 JMS messages
The JMS session acts as factory for JMS messages. The JMS specification
defines a logical format for the messages that can be sent to, and received from,
JMS providers. Recall that the JMS specification only defines interfaces and not
any implementation specifics, so the physical representation of a JMS message
is provider-specific.

The elements that make up a JMS message are:

� Headers

All messages support the same set of header fields. Header fields contain
values that are used by both clients and providers to identify and route
messages.

� Properties

Each message contains a built-in facility to support application-defined
property values. Properties provide an efficient mechanism to filter
application-defined messages.

� Body

The JMS specification defines several types of message body.

The logical format of a JMS message is shown in Figure 8-8.

Figure 8-8 Logical format of a JMS message

JMS Message

Headers

Properties

Body
 Chapter 8. Asynchronous messaging 413

The JMS specification defines five message interface children. These child
interfaces enable various types of data to be placed into the body of the
message. The JMS message interfaces are described in Table 8-5.

Table 8-5 JMS message interface types

Message selectors
A JMS message selector allows a JMS client to filter the messages on a
destination so that it only receives the messages that it is interested in. It must be
a string whose syntax is based on a subset of the SQL92 conditional expression
syntax. However, the message selector expression might only reference JMS
message headers and properties, not values that might be part of the message
body. An example of a message selector is shown in Example 8-4.

Example 8-4 Sample message selector

JMSType='car' AND color='blue' AND weight>2500

If a message consumer specifies a message selector when receiving a message
from a destination, only messages whose headers and properties match the
selector are delivered. If the destination in question is a JMS queue, the
message remains on the queue. If the destination in question is a topic, the
message is never delivered to the subscriber (from the subscribers perspective,
the message does not exist).

For a full description of message selectors and their syntax, please refer to the
JMS specification. A link for this specification is contained in 8.8, “References
and resources” on page 536.

Message type Message body

BytesMessage A stream of uninterpreted bytes. This message type is for literally
encoding a body to match an existing message format.

MapMessage A set of name-value pairs, where names are strings and values are
Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

ObjectMessage A message that contains a serializable Java object.

StreamMessage A stream of Java primitive values. It is filled and read sequentially.

TextMessage A message containing a java.lang.String.
414 WebSphere Application Server V6.1: System Management and Configuration

8.2.9 JMS message producers
The JMS session also acts as a factory for JMS message producers. A JMS
message producer is used to send messages to a specific destination on the
JMS provider. A JMS message producer does not support concurrent use.

The target destination is specified when creating the message producer.
However, it is possible to pass a value of null when creating the message
producer. When using a message producer created in this manner, the target
destination must be specified on every invocation of the send method.

The message producer can also be used to specify certain properties of
messages that it sends, such as delivery mode, priority, and time-to-live.

The message producer interfaces defined within the JMS specification are shown
in Table 8-6.

Table 8-6 JMS MessageProducer interfaces

The code required to create and send a message is shown in Example 8-5.

Example 8-5 Creating and sending a JMS message

// Create the message producer
MessageProducer msgProducer = session.createProducer(destination);

// Create the message
TextMessage txtMsg = session.createTextMessage(“Hello World”);

// Send the message
msgProducer.send(txtMsg);

8.2.10 JMS message consumers
The JMS session also acts as a factory for JMS message consumers. A JMS
client uses a message consumer to receive messages from a destination on the
JMS provider. A JMS message consumer does not support concurrent use.

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

MessageProducer QueueSender TopicPublisher
 Chapter 8. Asynchronous messaging 415

The message consumer interfaces defined within the JMS specification are
shown in Table 8-7.

Table 8-7 JMS MessageConsumer Interfaces

Recall from the discussion in “Message consumers” on page 404 that message
consumers can operate in pull mode or push mode. The JMS specification
defines message consumers for both of these modes. The message consumers
for these are modes are discussed in the following sections.

Pull mode
A JMS client operates in pull mode simply by invoking one of the receive
methods on the MessageConsumer object. The MessageConsumer interface
exposes a variety of receive methods that allow a client to poll the destination or
wait for the next message to arrive.

The code required to receive a message using pull mode is shown in
Example 8-6.

Example 8-6 Receiving a JMS message using pull mode

// Create the message consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// Start the connection
conn1.start();

// Attempt to receive a message
Message msg = msgConsumer.receiveNoWait();

// Make sure that we have a text message
if (msg instanceof TextMessage)
{

// Cast the message to the correct type
TextMessage txtMsg = (TextMessage)msg;

// Print the contents of the message
System.out.println(txtMsg.getText());

}

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

MessageConsumer QueueReceiver TopicSubscriber
416 WebSphere Application Server V6.1: System Management and Configuration

Push mode
In order to implement a solution that uses push mode, the JMS client must
register an object that implements the javax.jms.MessageListener interface with
the MessageConsumer. With a message listener instance registered, the JMS
provider delivers messages as they arrive by invoking the listener’s onMessage
method.

The javax.jms.MessageListener interface is shown in Example 8-7 on page 417.

Example 8-7 The javax.jms.MessageListener interface

package javax.jms;

public interface MessageListener
{

public void onMessage(Message message);
}

Note: The start method must be invoked on the Connection object prior to
attempting to receive a message. A connection does not need to be started in
order to send messages, only to receive them. This enables the application to
complete all of the required configuration steps before attempting to receive a
message.
 Chapter 8. Asynchronous messaging 417

A simple class the implements the javax.jms.MessageListener interface is shown
in Example 8-8.

Example 8-8 Simple MessageListener implementation

package com.ibm.itso.jms;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class SimpleListener implements MessageListener
{

public void onMessage(Message msg)
{

// Make sure that we have a text message
if (msg instanceof TextMessage)
{

// Cast the message to the correct type
TextMessage txtMsg = (TextMessage)msg;

try
{

// Print the contents of the message
System.out.println(txtMsg.getText());

}
catch (JMSException e)
{

e.printStackTrace();
}

}
}

}

An instance of the message listener can now be registered with the JMS
message consumer by the JMS client application. Once the listener is registered,
the connection needs to be started in order for messages to be delivered to the
message listener. The code required to register a message listener with a JMS
message consumer is shown in Example 8-9.
418 WebSphere Application Server V6.1: System Management and Configuration

Example 8-9 Receiving a JMS message using push mode

import com.ibm.itso.jms.SimpleListener;

// Create the message consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// Create an instance of the message listener
SimpleListener listener = new SimpleListener();

// Register the message listener with the consumer
msgConsumer.setMessageListener(listener);

// Start the connection
conn1.start();

8.2.11 JMS exception handling
Any run time errors in a JMS application results in a thrown
javax.jms.JMSException. The JMSException class is the root class of all JMS
API exceptions.

A JMSException contains the following information:

� A provider-specific string describing the error

� A provider-specific string error code

� A reference to another exception

The JMSException is usually caused by another exception being thrown in
the underlying JMS provider. The JMSException class allows JMS client
applications to access the initial exception using the getLinkedException
method. The linked exception can then be used to determine the root cause
of the problem in the JMS provider.

Note: In the JMS Point-to-Point domain, messages remain on a destination
until they are either received by a message consumer, or they expire. In the
JMS Publish/Subscribe domain, messages remain on a destination until they
have been delivered to all of the registered subscribers for the destination or
they expire. In order for a message to be retained when a subscribing
application is not available, the subscribing application must create a durable
subscription. Please refer to “Durable subscriptions in the Publish/Subscribe
domain” on page 407 for more information.
 Chapter 8. Asynchronous messaging 419

The implementation of JMSException does not include the embedded exception
in the output of its toString method. Therefore, it is necessary to check explicitly
for an embedded exception and print it out, as shown in Example 8-10.

Example 8-10 Handling a javax.jms.JMSException

try
{

// Code which may throw a JMSException
}
catch (JMSException exception)
{

System.err.println("Exception caught: " + exception);
Exception linkedException = exception.getLinkedException();
if (linkedException != null)
{

System.err.println("Linked exception: " + linkedException);
}

}

However, when using a message listener to receive messages asynchronously,
the application code cannot catch exceptions raised by failures to receive
messages. This is because the application code does not make explicit calls to
the receive methods on the message consumer.

The JMS API provides the javax.jms.ExceptionListener interface to solve this
problem. An exception listener allows a client to be notified of a problem
asynchronously. The JMS client must register an object that implements this
interface with the connection using the setExceptionListener method. With an
exception listener instance registered, the JMS provider invokes its onException
method to notify it that a problem has occurred.

The javax.jms.ExceptionListener interface is shown in Example 8-11.

Example 8-11 The javax.jms.ExceptionListener interface

package javax.jms;

public interface ExceptionListener
{

public void onException(JMSException exception);
}

A simple class the implements the javax.jms.ExceptionListener interface is
shown in Example 8-12.
420 WebSphere Application Server V6.1: System Management and Configuration

Example 8-12 Simple ExceptionListener implementation

package com.ibm.itso.jms;

import javax.jms.ExceptionListener;
import javax.jms.JMSException;

public class SimpleExceptionListener implements ExceptionListener
{

public void onException(JMSException exception)
{

System.err.println("Exception caught: " + exception);
Exception linkedException = exception.getLinkedException();
if (linkedException != null)
{

System.err.println("Linked exception: " + linkedException);
}

}
}

8.2.12 Application Server Facilities
The JMS specification defines a number of optional facilities that are intended to
be implemented by JMS providers and application server vendors. These
facilities extend the functionality of JMS when the JMS client is executing within
the context of a J2EE container. The Application Server Facilities are concerned
with two main areas of functionality, concurrent message processing and
distributed transactions, and these are briefly described in the following sections.

Concurrent message consumers
Recall that Session and MessageConsumer objects do not support being
accessed from multiple threads concurrently. Such a restriction would be a huge
obstacle to implementing JMS applications within an application server
environment, where performance and resource usage are key concerns. The
Application Server Facilities define a mechanism that allows an application
server to create MessageConsumers that can concurrently process multiple
incoming messages.

Distributed transactions
The JMS specification states that it does require a JMS provider to support
distributed transactions. However, it also states that if a provider supplies this
support, it should be done in the JTA XAResource API. The Application Server
Facilities define the interfaces that an application server should implement in
order to correctly provide support for distributed transactions.
 Chapter 8. Asynchronous messaging 421

8.2.13 JMS and J2EE
The JMS API was first included in Version 1.2 of the J2EE specification. This
specification required that the JMS API definitions be included in a J2EE product,
but that the platform was not required to include an implementation of the JMS
ConnectionFactory and Destination objects.

Subsequent versions of the J2EE specification have placed further requirements
on application server vendors. WebSphere Application Server V6 is fully
compliant with Version 1.4 of the J2EE specification. See 6.6, “Java Message
Service (JMS) 1.1 Requirements”, of the J2EE Specification V1.4 for information
related to these requirements. The J2EE Specification V1.4 can be downloaded
from the following Web site:

http://java.sun.com/j2ee/index.jsp

WebSphere Application Server V6 also provides full support for the Application
Server Facilities described in 8.2.12, “Application Server Facilities” on page 421.

8.3 Messaging in the J2EE Connector Architecture
Prior to J2EE Version 1.3, there was no architecture that specified the interface
between an application server and providers implementing an Enterprise
Information System (EIS). Consequently, application server and EIS vendors
used vendor-specific architectures to provide EIS integration. This meant that, for
each application server that an EIS vendor wanted to support, it needed to
provide a specific resource adapter, and, for every resource adapter that an
application server vendor wanted to support, it needed to extend the application
server.

J2EE Version 1.3 required application servers to support Version 1.0 of the J2EE
Connector Architecture (JCA). The J2EE Connector Architecture defines a
standard for connecting a compliant application server to an EIS. It defines a
standard set of system-level contracts between the J2EE application server and
a resource adapter.

As a result, application servers only need to be extended once to add support for
all J2EE Connector Architecture compliant resource adapters. Conversely, EIS
vendors only need to implement one J2EE Connector Architecture compliant
resource adapter, which can then be installed on any compliant application
server.
422 WebSphere Application Server V6.1: System Management and Configuration

http://java.sun.com/j2ee/index.jsp

The system contracts defined by Version 1.0 of the J2EE Connector Architecture
are described by the specification as follows:

� Connection management

Connection management enables an application server to pool connections
to the underlying EIS and enables application components to connect to an
EIS. This leads to a scalable application environment that can support a large
number of clients requiring access to an EIS.

� Transaction management

Transaction management enables an application server to use a transaction
manager to manage transactions across multiple resource managers. This
contract also supports transactions that are managed internal to an EIS
resource manager without the necessity of involving an external transaction
manager.

� Security management

Security management provides support for a secure application environment
that reduces security threats to the EIS and protects valuable information
resources managed by the EIS.

While Version 1.0 of the J2EE Connector Architecture addressed the main
requirements of both application server and EIS vendors, it left some issues
unresolved. As a result, Version 1.5 of the specification was produced and it is
this version that application servers are now required to support by Version 1.4 of
the J2EE specification.

The additional system contracts defined by Version 1.5 of the J2EE Connector
Architecture are described by the specification as follows:

� Life cycle management

Life cycle management enables an application server to manage the life cycle
of a resource adapter. This contract provides a mechanism for the application
server to bootstrap a resource adapter instance during its deployment or
application server startup, and to notify the resource adapter instance during
its undeployment or during an orderly shutdown of the application server.

� Work management

Work management enables a resource adapter to do work (monitor network
endpoints, call application components, and so on) by submitting work
instances to an application server for execution. The application server
dispatches threads to execute submitted work instances. This allows a
resource adapter to avoid creating or managing threads directly, and allows
an application server to efficiently pool threads and have more control over its
run time environment. The resource adapter can control the transaction
context with which work instances are executed.
 Chapter 8. Asynchronous messaging 423

� Transaction inflow management

Transaction inflow management enables a resource adapter to propagate an
imported transaction to an application server. This contract also allows a
resource adapter to transmit transaction completion and crash recovery calls
initiated by an EIS, and ensures that the Atomicity, Consistency, Isolation and
Durability (ACID) properties of the imported transaction are preserved.

� Message inflow management

Message inflow management enables a resource adapter to asynchronously
deliver messages to message endpoints residing in the application server
independent of the specific messaging style, messaging semantics, and
messaging infrastructure used to deliver messages. This contract also serves
as the standard message provider pluggability contract that allows a wide
range of message providers (Java Message Service (JMS), Java API for XML
Messaging (JAXM), and so on) to be plugged into any J2EE compatible
application server with a resource adapter.

In the context of asynchronous messaging, we are interested in the connection
management and message inflow system contracts. These system contracts
provide for both inbound and outbound communication from a messaging client,
to a messaging provider. This is shown in Figure 8-9 on page 424.

Figure 8-9 Inbound and outbound communication using a resource adapter

Note: For a full description of all of the system contracts listed above, please
refer to the J2EE Connector Architecture Version 1.5 specification. A link for
this specification is included in 8.8, “References and resources” on page 536.

Messaging
Provider

Resource Adapter

Application Connection
Management

Application Message
Inflow

Outbound
Communications

Inbound
Communications
424 WebSphere Application Server V6.1: System Management and Configuration

Because the connection management system contract was introduced in Version
1.0 of the J2EE Connector Architecture, we will not discuss it further here. Refer
to the J2EE Connector Architecture Version 1.5 specification for more
information regarding the connection management system contract.

The sections that follow discuss the following aspects of the message inflow
system contract:

� Message endpoints
� Resource adapters
� JMS ActivationSpec JavaBean
� Administered objects

8.3.1 Message endpoints
The message inflow system contract makes use of the message-driven bean
(MDB) programming model to asynchronously deliver messages from an EIS into
a running application server. A message endpoint is simply a message-driven
bean application that is running inside a J2EE application server. It
asynchronously consumes messages from a message provider.

An application server compliant with J2EE Version 1.4 is required to support
Version 2.1 of the Enterprise JavaBeans specification. This version of the EJB
specification has defined additional elements for the message-driven bean
deployment descriptor to support the message inflow system contract of the
J2EE Connector Architecture. These deployment descriptor elements are
discussed in more detail in 8.4.6, “Message-driven bean activation configuration
properties” on page 443.

8.3.2 MessageEndpointFactory
The J2EE Connector Architecture requires application server vendors to provide
a MessageEndpointFactory implementation. A MessageEndpointFactory is used
by the resource adapter to obtain references to message endpoint instances in
order to process messages. In other words, the resource adapter uses the
MessageEndpointFactory to obtain references to message-driven beans.
Multiple message endpoint instances can be created for a single message
endpoint, enabling messages to be processed concurrently.

8.3.3 Resource adapters
A resource adapter is the component that maps the proprietary API exposed by
the EIS to the API defined by the JCA or some other architecture, JDBC or JMS,
for example. Resource adapters are also commonly referred to as connectors.
 Chapter 8. Asynchronous messaging 425

The resource adapter itself runs in the same process as the application server
and is responsible for delivering messages to the message endpoints hosted by
the application server.

Resource adapter packaging
A resource adapter typically is provided by the messaging provider or a third
party and comes packaged in a Resource Adapter Archive (RAR) file. This RAR
must be packaged using the Java Archive (JAR) file format and can contain:

� Any utility classes

� Native libraries required for any platform dependencies

� Documentation

� A deployment descriptor

� Java classes that implement the J2EE Connector Architecture contracts and
any other functionality of the adapter

The only element of the RAR file that is required is the deployment descriptor.
This must called ra.xml and must be placed in the META-INF subdirectory of the
RAR file.

The resource adapter is installed normally on the application server so that it is
available to several J2EE applications at run time. However, it is possible to
package the resource adapter within the message endpoint application.

WebSphere Application Server provides a pre-configured resource adapter for
the default messaging JMS provider. The RAR file for this resource adapter is
called sib.api.jmsra.rar and is located in the \lib\ subdirectory of the WebSphere
installation directory.

Resource adapter deployment descriptor
The resource adapter deployment descriptor contains several pieces of
information that are used by the application server and the resource adapter at
run time, such as:

� Supported message listener types

The resource adapter lists the types of message listener that it supports. The
J2EE Connector Architecture Version 1.5 and the EJB Version 2.1
specifications do not restrict message listeners to using the JMS API.

� ActivationSpec JavaBean

For each message listener type supported for the resource adapter, the
deployment descriptor must also specify the Java class name of the
ActivationSpec JavaBean. An ActivationSpec JavaBean instance
encapsulates the configuration information needed to set up asynchronous
426 WebSphere Application Server V6.1: System Management and Configuration

message delivery to a message endpoint. Section 8.3.4, “JMS ActivationSpec
JavaBean” on page 428 discusses the ActivationSpec JavaBean for JMS
providers in more detail.

� Required configuration properties

Each ActivationSpec can also specify a list of required properties. These
required properties can be used to validate the configuration of an
ActivationSpec JavaBean instance. Example 8-13 shows the messagelistener
entry in the deployment descriptor for the default messaging JMS provider.
Notice that it supports the JMS message listener
(javax.jms.MessageListener) and that the ActivationSpec JavaBean has
three required properties: destination, destinationType, and busName.

Example 8-13 J2EE Connector Architecture message listener definition

<inbound-resourceadapter>
<messageadapter>

<messagelistener>
<messagelistener-type>

javax.jms.MessageListener
</messagelistener-type>
<activationspec>

<activationspec-class>
com.ibm.ws.sib.api.jmsra.impl.JmsJcaActivationSpecImpl

</activationspec-class>
<required-config-property>

<config-property-name>destination</config-property-name>
</required-config-property>
<required-config-property>

<config-property-name>destinationType</config-property-name>
</required-config-property>
<required-config-property>

<config-property-name>busName</config-property-name>
</required-config-property>

</activationspec>
</messagelistener>

</messageadapter>
</inbound-resourceadapter>

� Administered objects

The resource adapter deployment descriptor can also specify a set of
administered objects. For each administered object listed, the deployment
descriptor must provide the Java class name of the administered object and
the interface that it implements.

These administered objects are similar in nature to JMS administered objects,
discussed in 8.2.4, “JMS administered objects” on page 408. In fact, for the
 Chapter 8. Asynchronous messaging 427

default messaging JMS provider within WebSphere Application Server, the
J2EE Connector Architecture administered objects that it defines implement
the relevant JMS administered object interfaces. This is shown in
Example 8-14.

Example 8-14 J2EE Connector Architecture administered object definition

<adminobject>
<adminobject-interface>

javax.jms.Queue
</adminobject-interface>
<adminobject-class>

com.ibm.ws.sib.api.jms.impl.JmsQueueImpl
</adminobject-class>
<config-property>

<config-property-name>QueueName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>

... additional properties removed ...

<config-property>
<config-property-name>BusName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
</adminobject>

8.3.4 JMS ActivationSpec JavaBean
An ActivationSpec JavaBean instance encapsulates the configuration
information needed to set up asynchronous message delivery to a message
endpoint. The J2EE Connector Architecture recommends that JMS providers
include the following properties in their implementation of an ActivationSpec
JavaBean:

� destination

Recall that a JMS destination encapsulates addressing information for the
JMS provider. A JMS client explicitly specifies a destination when sending a
message to, or receiving a message from, the JMS provider. A message
endpoint needs to specify which destination the resource adapter should
monitor for incoming messages. The resource adapter is then responsible for
notifying the message endpoint when a message arrives at the specified
destination.

The J2EE Connector Architecture does not define the format for the
destination property, but it does acknowledge that it is not always practical for
a value to be specified in the deployment descriptor for a message endpoint
428 WebSphere Application Server V6.1: System Management and Configuration

application. However, a value for the destination property is required when
deploying the message endpoint application. For this reason, the J2EE
Connector Architecture recommends that a JMS resource adapter defines the
destination property as a required property on the ActivationSpec JavaBean.
The resource adapter for the default messaging JMS provider within
WebSphere Application Server does just this, as shown in Example 8-13 on
page 427.

The J2EE Connector Architecture also recommends that, if the destination
object specified implements the javax.jms.Destination interface, the JMS
resource adapter should provide an administered object that implements this
same interface. Once again, the resource adapter for the default messaging
JMS provider within WebSphere Application Server does just this, as shown
in Example 8-14 on page 428.

� destinationType

The destinationType property simply indicates whether the destination
specified is a JMS queue or JMS topic. The valid values for this property are,
therefore, javax.jms.Queue or javax.jms.Topic. The J2EE Connector
Architecture recommends that a JMS resource adapter defines the
destinationType property as a required property on the ActivationSpec
JavaBean. The resource adapter for the default messaging JMS provider
within WebSphere Application Server does just this, as shown in
Example 8-13 on page 427.

� messageSelector

The JMS ActivationSpec JavaBean can optionally define a messageSelector
property. JMS message selectors are discussed in “Message selectors” on
page 414.

� acknowledgeMode

The JMS ActivationSpec JavaBean can optionally define an
acknowledgeMode property. This property indicates to the EJB container how
a message received by a message endpoint (MDB) should be acknowledged.
Valid values for this property are Auto-acknowledge or Dups-ok-acknowledge.
If no value is specified, Auto-acknowledge is assumed.

For a full description of message acknowledgement, please see both the JMS
Version 1.1 and the EJB Version 2.1 specifications. Links for these
specifications are contained in 8.8, “References and resources” on page 536.

� subscriptionDurability

The JMS ActivationSpec JavaBean can optionally define a
subscriptionDurability property. This property is only relevant if the message
endpoint (MDB) is receiving messages from a JMS topic. The destinationType
property specifies a value of javax.jms.Topic.
 Chapter 8. Asynchronous messaging 429

As discussed in “Durable subscriptions in the Publish/Subscribe domain” on
page 407, in the JMS Publish/Subscribe domain, in order for a message to be
retained on a destination when a subscribing application is not available, the
subscribing application must create a durable subscription. With
message-driven beans, it is the EJB container that is responsible for creating
subscriptions when the specified destination is a JMS topic. This property
indicates to the EJB container whether it must create a durable subscription
to the JMS topic.

The valid values for the subscriptionDurability property are either Durable or
NonDurable. If no value is specified, NonDurable is assumed.

� clientId

The JMS ActivationSpec JavaBean can optionally define a clientId property.
This property is only relevant if the message endpoint (MDB) defines a
durable subscription to a JMS topic (the destinationType property specifies a
value of javax.jms.Topic and the subscriptionDurability property specifies a
value of Durable).

The JMS provider uses the clientId for durable subscriptions to uniquely
identify a message consumer. If a message endpoint defines a durable
subscription, then a value for the clientId property must be specified. A
suitable value for the clientId property would normally be specified when
deploying the message endpoint application.

� subscriptionName

The JMS ActivationSpec JavaBean can optionally define a subscriptionName
property. This property is only relevant if the message endpoint (MDB)
defines a durable subscription to a JMS topic. The destinationType property
specifies a value of javax.jms.Topic and the subscriptionDurability property
specifies a value of Durable.

The JMS provider uses the subscriptionName in combination with the clientId
to uniquely identify a message consumer. If a message endpoint defines a
durable subscription, then a value for the subscriptionName property must be
specified. A suitable value for the subscriptionName property would normally
be specified when deploying the message endpoint application.

8.3.5 Message endpoint deployment
Before any messages can be delivered to a message endpoint, the message
endpoint must be associated with a destination. This task is performed during
application installation. Therefore, the responsibility of associating a
message-driven bean with a destination lies with the application deployer.

The application deployer creates an instance of the ActivationSpec JavaBean for
the relevant resource adapter and associates it with the message endpoint
430 WebSphere Application Server V6.1: System Management and Configuration

during installation. In this way, an ActivationSpec JavaBean, through its
destination property, associates a message endpoint with a destination on the
message provider. This relationship is shown in Figure 8-10 on page 431.

Figure 8-10 Associating an MDB with a destination using a ActivationSpec JavaBean

8.3.6 Message endpoint activation
A message endpoint is activated by the application server when the message
endpoint application is started. During message endpoint activation, the
application server passes the ActivationSpec JavaBean, and a reference to the
MessageEndpointFactory, to the resource adapter by invoking its
endpointActivation method.

The resource adapter uses the information in the ActivationSpec JavaBean to
interact with messaging provider and set up message delivery to the message
endpoint. For a JMS message-driven bean, this might involve configuring a
message selector or a durable subscription against the destination. Once the
endpointActivation method returns, the message endpoint is ready to receive
messages. This process is shown in Figure 8-11 on page 432.

Messaging Provider

Application Server

EJB Container

Message-driven
Bean

MessageEndpointFactory

Destination

ActivationSpec
JavaBean

Resource Adapter
 Chapter 8. Asynchronous messaging 431

Figure 8-11 Activating a message endpoint

8.3.7 Message delivery
The following steps describe the sequence of events that occur when a message
arrives at a destination:

1. The resource adapter detects the arrival of a message at the destination.

2. The resource adapter invokes the createEndpoint method on the
MessageEndpointFactory.

3. The MessageEndpointFactory obtains a reference to a message endpoint.
This might be an unused message endpoint obtained from a pool or, if no
message endpoints are available, it can create a new message endpoint.

4. The MessageEndpointFactory returns a proxy to this message endpoint
instance to the resource adapter.

5. The resource adapter uses the message endpoint proxy to deliver the
message to the message endpoint.

This process is shown in Figure 8-12 on page 433.

Messaging Provider

Application Server

EJB Container

Message-driven
Bean

MessageEndpointFactory

Destination

Resource Adapter ActivationSpec
JavaBean
432 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-12 Delivering a message to a message endpoint

8.3.8 Administered objects
The resource adapter deployment descriptor defines the list of administered
objects implemented by the resource adapter. However, it does not define any
administered object instances. This must still be performed as an administrative
task within the WebSphere administrative console. Because the default
messaging JMS provider is specific to the JMS programming model, the
WebSphere administrative console provides a set of JMS administration
windows for this resource adapter. Section 8.6, “Configuring WebSphere JMS
administered objects” on page 461 details the steps required to configure
administered objects for the default messaging JMS provider.

Messaging Provider

Application Server

EJB Container

Message-driven
BeanMessageEndpointFactory

Resource Adapter

Destination Message

5

3

42

1

 Chapter 8. Asynchronous messaging 433

8.4 Message-driven beans
The Enterprise JavaBeans specification (EJB) Version 2.0 introduced a new type
of EJB called the message-driven bean (MDB). Message-driven beans are
asynchronous message consumers that run within the context of an application
servers EJB container. This enables the EJB container to provide additional
services to the message-driven bean during the processing of a message, such
as transactions, security, concurrency, and message acknowledgement.

The EJB container is also responsible for managing the lifetime of the
message-driven beans and for invoking message-driven beans when a message
arrives for which a given message-driven bean is the consumer.

Message-driven bean instances should not maintain any conversational state on
behalf of a client. This enables the EJB container to maintain a pool of
message-driven bean instances and to select any instance from this pool to
process an incoming message. However, this does not prevent a message-driven
bean from maintaining a state that is not specific to a client, for example, data
source references or references to another EJB.

WebSphere Application Server V6 is fully compliant with Version 1.4 of the J2EE
specification, which requires application servers to support Version 2.1 of the
EJB specification.

8.4.1 Message-driven bean types
Version 2.0 of the EJB specification defined a single type of message-driven
bean that enabled the asynchronous delivery of messages via the Java Message
Service.

However, the integration of multiple JMS providers into application servers has
proven difficult. For various reasons, many application server vendors have only
provided support for one JMS provider within their product. Also, the fact that
message-driven beans within the EJB 2.0 specification only support the JMS
programming model was considered too restrictive. Several other messaging
providers exist that require similar functionality to message-driven beans within
the EJB container, such as the Java API for XML Messaging (JAXM).

Because of this, Version 2.1 of the EJB specification expanded the definition of
message-driven beans to provide support for messaging providers other than
JMS providers. It does this by allowing a message-driven bean to implement an
interface other than the javax.jms.MessageListener interface. The type of
message listener interface that a message-driven bean implements determines
its type. Therefore, a message-driven bean that implements the
434 WebSphere Application Server V6.1: System Management and Configuration

javax.jms.MessageListener interface is a referred to as a JMS message-driven
bean.

8.4.2 Client view of a message-driven bean
Unlike session and entity beans, message-driven beans do not expose home or
component interfaces. A client is not able to locate instances of a
message-driven bean and invoke methods on it directly.

The only manner in which a client can interact with a message-driven bean is to
send a message to the destination or endpoint for which the message-driven
bean is the listener. The EJB container is responsible for invoking an instance of
the message-driven bean as a result of the arrival of a message. From the
client’s perspective, the existence of the message-driven bean is completely
transparent. This is shown in Figure 8-13, where the client is only able to see the
messaging provider and the target destination.

Figure 8-13 Client view of a message-driven bean

8.4.3 Message-driven bean implementation
A bean provider developing a message-driven bean must provide a
message-driven bean implementation class. This class must implement, directly
or indirectly, the javax.ejb.MessageDrivenBean interface and a message listener
interface. It must also provide an ejbCreate method implementation. These
aspects of message-driven implementation are discussed in the next sections.

Messaging ProviderMessage

Destination/Endpoint

Client

Message Application Server

EJB Container

MDBMDBMDBMDBMDB
 Chapter 8. Asynchronous messaging 435

MessageDrivenBean interface
The javax.ejb.MessageDrivenBean interface defines a number of callback
methods that allow the EJB container to manage the life cycle of each
message-driven bean instance. Because message-driven beans expose no
home or component interfaces, the javax.ejb.MessageDrivenBean interface
defines fewer callback methods than the corresponding javax.ejb.SessionBean
and java.ejb.EntityBean interfaces. The definition of the
javax.ejb.MessageDrivenBean interface is shown in Example 8-15.

Example 8-15 The javax.ejb.MessageDrivenBean interface

public interface MessageDrivenBean extends javax.ejb.EnterpriseBean
{

public void setMessageDrivenContext(MessageDrivenContext ctx);
public void ejbRemove();

}

The purpose of each of the callback methods is described below:

� setMessageDrivenContext

This method is invoked by the EJB container to associate a context with an
instance of a message-driven bean. The message-driven bean instance
stores a reference to the context as part of its state.

� ejbRemove

This method is invoked by the EJB container to notify the message-driven
bean instance that it is in the process of being removed. This gives the
message-driven bean the opportunity to release any resources that it might
be holding.

Message listener interface
As discussed in 8.4.1, “Message-driven bean types” on page 434, Version 2.1 of
the EJB specification no longer requires a message-driven bean to implement
the javax.jms.MessageListener interface. The specification simply states that a
message-driven bean is required to implement the appropriate message listener
interface for the messaging type that the message-driven bean supports.

The specification also allows the message listener interface to define more than
one message listener method and for these methods to specify return types. If a
messaging provider has defined an interface that contains more than one
message listener method, it is the responsibility of the resource adapter to
determine which of these methods to invoke upon the receipt of a message.

The message listener interface for JMS message-driven beans is the
javax.jms.MessageListener interface, as shown in Example 8-7 on page 417.
436 WebSphere Application Server V6.1: System Management and Configuration

As an example of other types of message listener interface that might be used by
messaging providers, again, consider a theoretical JAXM messaging provider. A
JAXM messaging provider might decide to use the
javax.xml.messaging.ReqRespListener interface as its message listener
interface. This interface is shown in Example 8-16.

Example 8-16 The javax.xml.messaging.ReqRespListener interface

package javax.xml.messaging;

import javax.xml.soap.SOAPMessage;

public interface ReqRespListener
{

public SOAPMessage onMessage(SOAPMessage message);
}

Notice that this interface is similar to the javax.jms.MessageListener interface in
that it defines an onMessage method. However, any method name can be used
when defining methods within the message listener interface.

Also, notice that the onMessage method specifies a return type of
SOAPMessage. The SOAPMessage can be considered to be a reply message.
However, because it is the EJB container that invokes the onMessage method,
the SOAPMessage is returned to the EJB container. The EJB specification states
that, if the message listener interface supports the request-reply pattern in this
manner, it is the responsibility of the EJB container to deliver the reply message
to the resource adapter.

The ejbCreate method
One other requirement on the implementation class for a message-driven bean
is that it implements the ejbCreate method. Once again, this implementation can
be defined within the message-driven bean class itself, or within any of its
superclasses. The EJB container invokes the ejbCreate as the last step in
creating a new instance of a message-driven bean.This gives the
message-driven bean the opportunity to allocate any resources that it requires.

8.4.4 Message-driven bean life cycle
The EJB container is responsible for hosting and managing message-driven
bean instances. It controls the life cycle of the message-driven bean and uses
the callback methods within the bean implementation class to notify the instance
when important state transitions are about to occur.
 Chapter 8. Asynchronous messaging 437

The life cycle of a message-driven bean is shown in Figure 8-14.

Figure 8-14 Message-driven bean life cycle

The relevant state transitions for a message-driven bean are:

� Message-driven bean creation

Message-driven bean instances are created in three steps by the EJB
container:

a. The EJB container invokes the Class.newInstance() method on the bean
implementation class.

b. The EJB container provides the new instance with its
MessageDrivenContext reference by invoking the
setMessageDrivenContext method.

c. The EJB container gives the new message-driven bean instance the
opportunity to perform one-time initialization by invoking the ejbCreate
method. The message-driven bean is able to allocate any resources that it
requires here.

� Message listener method invocation

Once in the method-ready pool, a message-driven bean instance is available
to process any message that is sent to its associated destination or endpoint.
When a message arrives at this destination, the EJB container receives the
message and allocates a message-driven bean instance from the
method-ready pool to process the message. When processing is complete,
the message-driven bean instance is returned to the method-ready pool.

Note: The EJB container performs a number of other operations during the
processing of a message, such as ensuring that the processing takes
place within the specified transactional context and performing any
required security checks. These steps have been omitted for clarity.

Does not exist

1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

ejbRemove()

Method-ready pool ejbTimeout(arg)Message listener
method
438 WebSphere Application Server V6.1: System Management and Configuration

� Message-driven bean removal

The EJB container decides at any time that it needs to release resources. To
do this, it can reduce the number of message-driven bean instances in the
method-ready pool. As part of the removal process, it invokes the ejbRemove
method on the instance being removed to give the message-driven bean the
opportunity to release any resources that it might be holding.

8.4.5 Message-driven beans and transactions
A bean provider can specify whether a message-driven bean will demarcate its
own transactions programmatically or whether it will rely on the EJB container to
demarcate transactions on its behalf. The bean provider does this by specifying
either bean or container as the value for the transaction-type field for the
message-driven bean in the EJB module deployment descriptor.

Regardless of whether transaction demarcation is bean-managed or
container-managed, a message-driven bean can only access the transactional
context within which it is running by using the relevant methods of the
MessageDrivenContext interface.

MessageDrivenContext interface
The javax.ejb.MessageDrivenContext interface extends the javax.ejb.EJBContext
interface. However, unlike the SessionContext and EntityContext interfaces, the
MessageDrivenContext interface does not define any additional methods. The
parent EJBContext interface is shown in Example 8-17.

Example 8-17 The javax.ejb.EJBContext interface

package javax.ejb;

import java.security.Identity;
import java.security.Principal;
import java.util.Properties;
import javax.transaction.UserTransaction;

public interface EJBContext
{

// EJB Home methods
public abstract EJBHome getEJBHome();
public abstract EJBLocalHome getEJBLocalHome();

// Security methods
public abstract Principal getCallerPrincipal();
public abstract boolean isCallerInRole(String s);

// Transaction methods
 Chapter 8. Asynchronous messaging 439

public abstract UserTransaction getUserTransaction()
throws IllegalStateException;

public abstract void setRollbackOnly() throws IllegalStateException;
public abstract boolean getRollbackOnly() throws IllegalStateException;

// Timer service methods
public abstract TimerService getTimerService()

throws IllegalStateException;

// Deprecated Methods
public abstract Properties getEnvironment();
public abstract Identity getCallerIdentity();
public abstract boolean isCallerInRole(Identity identity);

}

Container-managed transactions
A message-driven bean with a transaction-type of Container is said to make use
of container-managed transactions. When a message-driven bean is using
container-managed transactions, the EJB container uses the transaction
attribute of the message listener method to determine the actions that it needs to
take when a message arrives at the relevant destination.

The transaction attributes that can be specified for message listener method are:

� NotSupported

The EJB container does not create a transaction prior to receiving the
message from the destination and invoking the message listener method on
the message-driven bean. Consequently, if the message-driven bean

Note: When using a message-driven bean instance, only invoke the
transaction and timer service methods exposed by the
MessageDrivenContext interface.

Attempting to invoke the EJB home methods results in a
java.lang.IllegalStateException being thrown because message-driven beans
do not define EJBHome or EJBLocalHome objects.

Attempting to invoke the getCallerPrincipal method is allowed by Version 2.1
of the EJB specification. However, with a message-driven bean, the caller is
the EJB container, which does not have a client security context. In this
situation the getCallerPrincipal method returns a representation of the
unauthenticated identity. Invoking the isCallerInRole method is still not allowed
by the EJB specification and will result in a java.lang.IllegalStateException
being thrown.
440 WebSphere Application Server V6.1: System Management and Configuration

accesses other resource managers or enterprise beans, it does so with an
unspecified transaction context.

Also, depending on the capabilities of the underlying JMS provider, if an error
occurs during the processing of the message, it might not be placed back on
the destination for redelivery.

� Required

The EJB container creates a transaction prior to receiving the message from
the destination and invoking the message listener method on the
message-driven bean.

If the message-driven bean accesses a resource manager within the
message listener method, then this access takes place within the context of
this transaction. Similarly, if the message-driven bean invokes other EJBs
within the message listener method, the EJB container passes the transaction
context with the invocation.

When the message listener method completes, the EJB container attempts to
commit the transaction. For a JMS message-driven bean, a rollback of the
transaction has the effect of placing the message back on the destination for
redelivery.

When a message listener method specifies a transaction attribute of Required, it
can only use the getRollbackOnly and setRollbackOnly methods of the
MessageDrivenContext object. The code required to mark a transaction for
rollback within a message listener method is shown in Example 8-18.

Example 8-18 Using the setRollbackOnly method

public class SampleMDBBean implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext msgDrivenCtx;

// Lifecycle methods removed for clarity

public void onMessage(Message msg)
{

try
{

// Process the message

// Try to access a relational database
}
catch (SQLException e)
{

// An error occured, rollback the transaction
msgDrivenCtx.setRollbackOnly();

}

 Chapter 8. Asynchronous messaging 441

}
}

Bean-managed transactions
A message-driven bean with a transaction-type of Bean is said to make use of
bean-managed transactions. When a message-driven bean is using
bean-managed transactions, the EJB container does not create a transaction
prior to receiving the message from the destination and invoking the message
listener method on the message-driven bean. Consequently, for a JMS
message-driven bean, the message might not be placed back on the destination
for redelivery if an error occurs during the processing of the message. The
message listener method is responsible for creating any transactions that it
requires when processing a message.

A message-driven bean using bean-managed transactions can only use the
getUserTransaction method of the MessageDrivenContext object. It is then able
to use the javax.transaction.UserTransaction interface to begin, commit, and roll
back transactions. The code required to use the UserTransaction interface within
a message listener method is shown in Example 8-19.

Example 8-19 Using the javax.transaction.UserTransaction interface

public class SampleMDBBean implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext msgDrivenCtx;

// Lifecycle methods removed for clarity

public void onMessage(Message msg)
{

// Get the UserTransaction object reference
UserTransaction userTx = msgDrivenCtx.getUserTransaction();

try
{

// Begin the transaction
userTx.begin();

// Process the message

// Try to access a relational database

// Attempt to commit the transaction
userTx.commit();

}
catch (Exception e)
{

442 WebSphere Application Server V6.1: System Management and Configuration

try
{

// An error occured, rollback the transaction
userTx.rollback();

}
catch (SystemException e2)
{

e2.printStackTrace();
}

}
}

}

8.4.6 Message-driven bean activation configuration properties
The way in which message-driven beans specify deployment options within the
EJB deployment descriptor has changed significantly for EJB Version 2.1. This
reflects the changes made to the J2EE Connector Architecture specification to
enable a resource adapter to asynchronously deliver messages to a
message-driven bean, independent of the specific messaging style, messaging
semantics, and messaging infrastructure. Consequently, Version 2.1 of the EJB
specification introduced a more generic mechanism to specify the messaging
semantics of a message-driven bean, known as activation configuration
properties.

The EJB specification defines the following activation configuration properties for
a JMS message-driven bean:

� destinationType
� messageSelector
� acknowledgeMode
� subscriptionDurability

Notice that the names of these activation configuration properties match the
names of the equivalent JMS ActivationSpec JavaBean properties described in
8.3.4, “JMS ActivationSpec JavaBean” on page 428. The description of each of
the properties is also the same.

This is intentional on the part of the J2EE Connector Architecture and the EJB
specifications. The intention is that this will allow the automatic merging of the
activation configuration element values with the corresponding entries in the JMS
ActivationSpec JavaBean, while configuring the JMS ActivationSpec JavaBean

Note: Because of the complex nature of distributed transactions, it is
recommended that bean providers make use of container-managed
transactions.
 Chapter 8. Asynchronous messaging 443

during endpoint deployment. This is exactly what happens when WebSphere
starts an application that contains a message-driven bean.

Example 8-20 on page 444 shows the relevant entry for the BankListener
message-driven bean that is packaged as part of the WebSphereBank sample in
WebSphere Application Server. The elements of the deployment descriptor that
are specific to messaging are shown in bold. Table 8-8 shows activation
configuration properties that are defined within the deployment descriptor.

Table 8-8 Activation configuration properties for the BankListener message-driven bean

Example 8-20 BankListener message-driven bean deployment descriptor

<message-driven id="MessageDriven_1037986117955">
<ejb-name>BankListener</ejb-name>
<ejb-class>com.ibm.websphere.samples.bank.ejb.BankListenerBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<transaction-type>Container</transaction-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-link>BankJSQueue</message-destination-link>
<activation-config>

<activation-config-property>
<activation-config-property-name>

destinationType
</activation-config-property-name>
<activation-config-property-value>

javax.jms.Queue
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
acknowledgeMode

</activation-config-property-name>
<activation-config-property-value>

Auto-acknowledge

Note: If a message-driven bean and the JMS activation specification with
which it is associated both specify a value for a given property, the value
contained in the EJB deployment descriptor for the message-driven bean will
be used.

Property name Property value

destinationType javax.jms.Queue

acknowledgeMode Auto-acknowledge

messageSelector JMSType = ‘transfer’
444 WebSphere Application Server V6.1: System Management and Configuration

</activation-config-property-value>
</activation-config-property>
<activation-config-property>

<activation-config-property-name>
messageSelector

</activation-config-property-name>
<activation-config-property-value>

JMSType = 'transfer'
</activation-config-property-value>

</activation-config-property>
</activation-config>
<ejb-local-ref id="EJBLocalRef_1037986243867">

<description></description>
<ejb-ref-name>ejb/Transfer</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>

com.ibm.websphere.samples.bank.ejb.TransferLocalHome
</local-home>
<local>com.ibm.websphere.samples.bank.ejb.TransferLocal</local>
<ejb-link>Transfer</ejb-link>

</ejb-local-ref>
</message-driven>

8.4.7 Associating a message-driven bean with a destination
Before any messages can be delivered to a message-driven bean, the
message-driven bean must be associated with a destination. As discussed in
8.3.5, “Message endpoint deployment” on page 430, the responsibility of
associating a message-driven bean with a destination lies with the application
deployer.

Within WebSphere Application Server, there are two mechanisms that can be
used to associate these objects: JMS activation specifications and listener ports.
This is due to the fact that the service integration bus is accessed using a J2EE
Connector Architecture resource adapter, while WebSphere MQ is accessed
using a standard JMS API implementation.

If the message-driven bean that is being deployed needs to be associated with a
destination defined on a service integration bus, use a JMS activation
specification. If the message-driven bean that is being deployed needs to be
associated with a destination defined on WebSphere MQ, use a listener port.
JMS activation specifications and listener ports are discussed in the sections that
follow.
 Chapter 8. Asynchronous messaging 445

JMS activation specification
An ActivationSpec JavaBean, through its destination property, associates a
message endpoint with a destination. Within WebSphere Application Server, an
instance of the ActivationSpec JavaBean for the default messaging JMS provider
is configured by creating a JMS activation specification using the WebSphere
administrative console. These JMS activation specifications are normally created
prior to installing the message-driven bean application and are stored in the JNDI
name space by WebSphere.

At installation time, the deployer specifies which JMS activation specification to
associate with a particular message-driven bean, using its JNDI name. The
destination property within the JMS activation specification, specifies the JNDI
name of the target JMS destination. This relationship is shown Figure 8-15.

Figure 8-15 Associating an MDB with a destination using a JMS activation specification

The steps required to create a JMS activation specification for the default
messaging JMS provider are described in “JMS activation specification
configuration” on page 488.

Service Integration Bus

Application Server

JNDIEJB Container

Message-driven
Bean

JMS Destination

Destination

Default Messaging
Resource Adapter

JMS Activation
Specification
446 WebSphere Application Server V6.1: System Management and Configuration

Listener ports
Prior to Version 1.5 of the J2EE Connector Architecture, there was no standard
way to associate a message-driven bean with a destination. To solve this
problem, WebSphere Application Server V5 introduced the concept of a listener
port. A listener port is used to simplify the administration of the association
between a connection factory, destination, and deployed message-driven bean,
as shown in Figure 8-16 on page 447. WebSphere Application Server V6
continues to use listener ports for those JMS providers that are not accessed
using a resource adapter.

Figure 8-16 Associating an MDB with a destination using a listener port

The steps required to create a listener are described in 8.6.4, “Configuring
listener ports” on page 511.

WebSphere MQ

Application Server

JNDIEJB Container

JMS Connection
Factory

Message-driven
Bean

JMS Connection
Factory

Listener Port

Destination

WebSphere MQ
JMS Provider
 Chapter 8. Asynchronous messaging 447

8.4.8 Message-driven bean best practices
As with all programming models, certain best practices have emerged for using
the message-driven bean programming model. These best practices are
discussed below:

� Delegate business logic to another handler.

Traditionally, the role of a stateless session bean is to provide a facade for
business logic. Message-driven beans should delegate the business logic
concerned with processing the contents of a message to a stateless session
bean. Message-driven beans can then focus on what they were designed to
do, which is processing messages. This is shown in Figure 8-17.

Figure 8-17 Delegating business logic to a stateless session bean

An additional benefit of this approach is that the business logic within the
stateless session bean can be reused by other EJB clients. This is shown in
Figure 8-18.

JMS Client

Application Server

EJB Container

Message-driven
Bean

Stateless
Session Bean

Message
JMS Provider

Destination

Message

DB
448 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-18 Business logic reuse

� Do not maintain a client-specific state within an MDB.

As discussed earlier, message-driven bean instances should not maintain
any conversational state on behalf of a client. This enables the EJB container
to maintain a pool of message-driven bean instances and to select any
instance from this pool to process an incoming message. However, this does
not prevent a message-driven bean from maintaining a state that is not
specific to a client, for example, datasource references or references to
another EJB.

� Avoid large message bodies.

A JMS message probably will travel over the network at some point in its life.
It will definitely need to be handled by the JMS provider. All of these
components contribute to the overall performance and reliability of the
system. The amount of data contained in the body of a JMS message should
be kept as small as possible to avoid impacting the performance of the
network or the JMS provider.

� Minimize message processing time.

Recall from the discussion in 8.4.4, “Message-driven bean life cycle” on
page 437 that instances of a message-driven bean are allocated from the
method-ready pool to process incoming messages. These instances are not
returned to the method-ready pool until message processing is complete.
Therefore, the longer it takes for a message-driven bean to process a
message, the longer it is unavailable for reallocation.

If an application is required to process a high volume of messages, the
number of message-driven bean instances in the method-ready pool could be
rapidly depleted if each message requires a significant processing. The EJB

JMS Client

Application Server

EJB Container

Message-driven
Bean

Stateless
Session Bean

Message
JMS Provider

Destination

Message

DBEJB Client
 Chapter 8. Asynchronous messaging 449

container would then need to spend valuable CPU time creating additional
message-driven bean instances for the method-ready pool, further impacting
the performance of the application.

Additional care must be taken if other resources are enlisted into a global
transaction during the processing of a message. The EJB container will not
attempt to commit the global transaction until the MDB’s onMessage method
returns. Until the global transaction commits, these resources cannot be
released on the resource managers in question.

For these reasons, the amount of time required to process each message
should be kept to a minimum.

� Avoid dependencies on message ordering.

Try to avoid having an application making any assumptions with regard to the
order in which JMS messages are processed. This is due to the fact that
application servers enable the concurrent processing of JMS messages by
MDBs and that some messages can take longer to process than others.
Consequently, a message delivered later in a sequence of messages might
finish message processing before a message delivered earlier in the
sequence. It might be possible to configure the application server in such a
way that messaging ordering is maintained within the application, but this is
usually done at the expense of performance or architectural flexibility, such as
the inability to deploy an application to a cluster.

� Be aware of poison messages.

Sometimes, a badly-formatted JMS message arrives at a destination. Such a
message might cause an exception to be thrown within the MDB during
message processing. An MDB that is making use of container-managed
transactions then marks the transaction for rollback, as discussed in 8.4.5,
“Message-driven beans and transactions” on page 439. The EJB container n
rolls back the transaction, causing the message to be placed back on the
queue for redelivery. However, the same problem occurs within the MDB the
next time the message is delivered. In this situation, such a message might
be received, and then returned to the queue, repeatedly. These messages
are known as poison messages.
Fortunately, some messaging providers have implemented mechanisms that
can detect poison messages and redirect them to another destination.
WebSphere MQ and the service integration bus are two such providers.
450 WebSphere Application Server V6.1: System Management and Configuration

8.5 Managing WebSphere JMS providers
WebSphere Application Server V6 supports the following JMS providers:

� Default messaging
� WebSphere MQ
� Generic
� V5 default messaging

The sections that follow describe the first three of these JMS providers and how
the WebSphere administrative console can be used to configure and administer
them. Note that the V5 default messaging provider is supported for migration
purposes only. We are not be discussing that provider in this IBM Redbook. For
information about the V5 default messaging provider, see IBM WebSphere
Application Server V5.1 System Management and Configuration, SG24-6195.

8.5.1 Managing the default messaging JMS provider
WebSphere Application Server supplies a preconfigured JCA resource adapter
implementation that can be used to communicate with a service integration bus.
This resource adapter is installed as a fully-integrated component at all levels of
the cell and needs no separate installation steps. The administered objects for
this resource adapter also implement the corresponding interfaces of Version 1.1
of the JMS specification. This enables them to be used by JMS clients for both
the Point-to-Point and Publish/Subscribe messaging models.

The WebSphere administrative console exposes a set of windows that you can
use to configure the resource adapter as though it were purely a JMS provider,
known as the default messaging JMS provider. These windows can be used to
configure the following JMS resources:

� A JMS connection factory that can be used to connect to a service integration
bus

� A JMS queue or topic destination that refers to a destination on a service
integration bus

Such JMS queues and topics are available, over a long period of time, to all
applications with access to the bus destination.

New in V6.1: The path to access JMS resources from the administrative
console has been shortened in some cases. For example, you can list the
JMS queue connection factories and JMS queues without selecting a JMS
provider first. A new option for scope (All scopes) allows you to display all of
the selected resource types as opposed to only those defined at a specific
scope.
 Chapter 8. Asynchronous messaging 451

� A JMS activation specification that can be used to associate a
message-driven bean with a JMS queue or topic destination

The sections that follow discuss how to configure the resource adapter using the
default messaging JMS provider windows. To view the properties of the default
messaging JMS provider, use the administrative console to complete the
following steps:

1. In the navigation tree, expand Resources → JMS → JMS Providers.

2. Set the scope for the JMS Provider.

3. Click Default messaging provider.

4. The properties for the Default messaging JMS provider are displayed in the
main content pane of the WebSphere administrative console, as shown in
Figure 8-19 on page 452.

Figure 8-19 Default messaging provider configuration properties

Note: You do not have to configure the underlying service integration bus
resources before configuring the corresponding JMS resources. However,
certain fields within the default messaging JMS provider administration
windows are populated with relevant bus resources, if they exist. Therefore, to
simplify the process of creating JMS resources for the default messaging JMS
provider, we recommend that you create and configure the underlying service
integration bus resources first.
452 WebSphere Application Server V6.1: System Management and Configuration

It is worth noting that the resource adapter can also be configured as a generic
J2EE Connector Architecture resource adapter. However, the administration
windows used for configuring a generic resource adapter are not specific to JMS
resources and are, therefore, not as easy to use as the default messaging JMS
provider administration windows. To view the properties of the resource adapter,
use the administrative console to complete the following steps:

1. In the navigation tree, expand Resources → Resource adapters.

2. Set the scope for the resource adapter.

3. Set the Preferences to show built-in resources. Press Apply.

4. A list of resource adapters defined at this scope is displayed. Remember that
the resource adapter for the service integration bus is defined at all levels
within the cell. The list of resource adapters is shown in Figure 8-20 on
page 453.

Figure 8-20 Resource adapters
 Chapter 8. Asynchronous messaging 453

5. Click SIB JMS Resource Adapter.

6. The properties for the resource adapter are displayed. These are shown in
Figure 8-21 on page 454.

Figure 8-21 SIB JMS Resource Adapter properties

The links under the Additional Properties section of the configuration
window, shown in Figure 8-21, can be used to configure the following J2C
resources at the relevant scope of the resource adapter:

– J2C activation specifications

– J2C administered objects

– J2C connection factories
454 WebSphere Application Server V6.1: System Management and Configuration

8.5.2 Managing the WebSphere MQ JMS provider
WebSphere Application Server V6 supplies a pre-configured JMS provider
implementation for communicating with installations of the following products,
using both the Point-to-Point and Publish/Subscribe messaging models:

� WebSphere MQ
� WebSphere Business Integration Event Broker
� WebSphere Business Integration Message Broker

The WebSphere MQ JMS provider allows WebSphere solutions to be integrated
into heterogeneous WebSphere MQ environments. It is also fully compliant with
Version 1.1 of the JMS specification.

However, the WebSphere MQ JMS provider is only partially integrated into
WebSphere system management. While the WebSphere administration tools
can be used to both configure and manage WebSphere MQ JMS administered
objects, the creation and management of queue managers, channels, and
queues must be performed using WebSphere MQ native tools.

To view the properties of the WebSphere MQ JMS provider, use the
administrative console to do the following:

1. In the navigation tree, expand Resources → JMS → JMS Providers.

2. Set the scope for the JMS Provider.

Note: Using the generic resource adapter configuration windows to configure
JMS resources for a service integration bus is not recommended. However,
the following advanced properties for a JMS activation specification can be
configured only using these windows:

� readAhead
� shareDataSourceWithCMP
� targetTransportChain

Note: Publish/Subscribe functionality for WebSphere MQ is provided through
the WebSphere MQ MA0C SupportPac™. However, use of MA0C is
discouraged, because the other brokers provide a much more robust
production publish/subscribe environment.

Note: Unlike the default messaging JMS provider, the WebSphere MQ JMS
provider is not a J2EE Connector Architecture Version 1.5 compliant resource
adapter. It simply provides an implementation of Version 1.1 of the JMS API,
enabling JMS clients to communicate directly with WebSphere MQ.
 Chapter 8. Asynchronous messaging 455

3. Click WebSphere MQ messaging provider, as shown in Figure 8-22 on
page 456.

Figure 8-22 Finding the WebSphere MQ JMS provider in the navigation tree

4. The properties for the WebSphere MQ JMS provider are displayed in the
main content pane of the WebSphere administrative console, as shown in
Figure 8-23 on page 457.
456 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-23 WebSphere MQ JMS provider configuration properties

8.5.3 Managing a generic JMS provider
WebSphere Application Server supports the use of third-party JMS providers
within its run time environment through the use a generic JMS provider. However,
unlike the default messaging and WebSphere MQ JMS providers, a generic JMS
provider must be defined to WebSphere Application Server before any JMS
resources can be configured for that provider. Defining a generic JMS provider to
WebSphere ensures that the JMS provider classes are available on the
application server classpath at run time.

A generic JMS provider is recommended in the following situations:

� A non-WebSphere MQ messaging system already exists in the environment,
and into which the WebSphere installation is required to integrate directly.

� A non-WebSphere MQ JMS provider supports functionality that is not
available using the default messaging or WebSphere MQ JMS providers, and
which would be useful for the user’s messaging environment.
 Chapter 8. Asynchronous messaging 457

WebSphere interaction with a generic JMS provider
The JMS administered objects for a generic JMS provider are bound into the
local JNDI name space within WebSphere Application Server. However, these
JNDI entries act as aliases to the real JMS administered objects that have been
configured in the external JNDI name space of the messaging provider. This is
shown in Figure 8-24.

Figure 8-24 Generic JMS provider components

This indirection is achieved by providing additional JNDI information when
configuring the JMS administered objects for the generic JMS provider. JMS
client application code is not affected in any way. It is the responsibility of the
WebSphere run time to resolve accesses to the real JNDI entries in the external
name space.

Note: WebSphere Application Server also supports the use of third-party JMS
providers that are implemented as J2EE Connector Architecture resource
adapters. The JMS resources for such JMS providers are configured using the
generic resource adapter configuration windows.

If the third-party JMS provider is not implemented as a J2EE Connector
Architecture resource adapter, we recommend that it supports the JMS
Application Server Facilities described in 8.2.12, “Application Server Facilities”
on page 421.

Application Server

Local JNDI
Messaging Provider

Admin Tool

Application

Connection
Factory

Destination

Generic JMS Provider

External JNDI

Connection
Factory

Destination

Destination
458 WebSphere Application Server V6.1: System Management and Configuration

However, WebSphere is not responsible for binding the JMS administered
objects into the external name space. This administrative task, along with
creating the underlying messaging objects, queues, and topics, must be
performed using the tools provided by the generic JMS provider.

Defining a generic JMS provider
Before you can configure a generic JMS provider, you must install the underlying
messaging provider software and configure it using the tools and information
provided with the messaging provider.

To define a new generic messaging provider, use the administrative console to
complete the following steps:

1. In the navigation tree, expand Resources → JMS → JMS Providers.

2. Set the scope at which to define the generic JMS provider by using the
relevant controls. Any existing generic JMS providers defined at this scope
are displayed in the content pane.

3. Click New in the content pane.
 Chapter 8. Asynchronous messaging 459

4. Define the JMS provider by specifying the appropriate values in the General
Properties section of the content pane, shown in Figure 8-25 on page 460.
The properties are described in Table 8-9 on page 461.

Figure 8-25 Generic JMS provider configuration properties
460 WebSphere Application Server V6.1: System Management and Configuration

Table 8-9 Generic JMS provider properties

5. Click OK.

6. Save the changes and synchronize them with the nodes.

Once the generic JMS provider has been defined, JMS administered objects can
be configured for it. This is discussed in 8.6.5, “Configuring a generic JMS
provider” on page 515.

8.6 Configuring WebSphere JMS administered objects
As discussed earlier, an administrator must configure JMS administered objects
before they can be used within a JMS client application. JMS administered
objects are configured using the WebSphere administrative console. The
sections that follow discuss the properties exposed by the JMS administered
objects supported by WebSphere.

Property Description

Scope The scope of the generic JMS provider.

Name The name by which the generic JMS provider is known for
administrative purposes.

Description A description of the generic JMS provider, for administrative
purposes within IBM WebSphere Application Server.

Class path The list of paths or JAR file names that together form the location
for the generic JMS providers classes.

Native library path An optional path to any native libraries (.dll’s, .so’s) required by the
generic JMS provider.

External initial
context factory

This property is the Java classname of the generic JMS providers
initial context factory. For example, this would be the
com.swiftmq.jndi.InitialContextFactoryImpl for the SwiftMQ JMS
provider.

External provider
URL

This is the JMS provider URL for external JNDI lookups. The
external provider URL specifies how the initial context factory
should connect to the external naming service. The format of the
external provider URL is <protocol>://<host name>:<port
number>. Continuing with the example above, the provider URL
smqp://localhost:4001 indicates that the initial context factory
connects to the SwiftMQ naming service using port 4001 on the
local machine and using the sqmq protocol.
 Chapter 8. Asynchronous messaging 461

8.6.1 Common administration properties
All of the JMS administered objects that can be configured within WebSphere
Application Server expose a subset of properties that are common. These
properties are used by WebSphere for administrative purposes. For example, the
name and description properties are used for display purposes within the
WebSphere administrative console. These common administration properties
are shown in Table 8-10 on page 462.

Table 8-10 Common administration properties

8.6.2 Configuring the default messaging JMS provider
The sections that follow describe how to configure connection factories and
destinations for the default messaging JMS provider.

JMS connection factory properties
A JMS connection factory is used to create connections to a service integration
bus. These connections form part of the common interfaces described in 8.2.3,
“JMS domains” on page 407 and can be used by a JMS client to interact with a
service integration bus using both the Point-to-Point and Publish/Subscribe
messaging models. To remain compatible with JMS specification Version 1.0,
there are two specific types of connection factories (prefixed with “Queue” and
“Topic”) and a more general type of connection factory with no prefix. All three
are configured in exactly the same way with minor exceptions noted below.

Property Description

Scope This is the scope of the configured JMS administered object
within the cell. The value of this property specifies the level at
which this resource definition is visible to applications.

Provider This is the name of the JMS provider associated with the JMS
administered object.

Name This property is the name by which the JMS administered
object is known for administrative purposes.

JNDI name The JNDI name is used to bind the JMS administered object
into the application server's JNDI name space.

Description This is an optional description for the JMS administered
object.

Category This is an optional category string to use when classifying or
grouping the JMS administered object.
462 WebSphere Application Server V6.1: System Management and Configuration

The sections that follow describe the properties of the JMS connection factory for
the default messaging JMS provider. These properties have been grouped as
follows:

� Connection properties
� Durable subscription properties
� Quality of service properties
� Advanced messaging properties
� Advanced administrative properties

Connection properties
A connection to a service integration bus is a connection to an individual
messaging engine that is part of that bus. The connection properties for a
connection factory determine to which messaging engine a JMS client connects.
These connection properties provide an administrator with a range of possibilities
when configuring a connection factory, from simply connecting to any suitable
messaging engine within the named service integration bus, to using a highly
specific messaging engine selection algorithm.

It is worth noting that, in its simplest form, the only connection property that must
be specified is the name of the service integration bus with which to connect. It is
anticipated that, in the majority of cases, a connection factory configured in such
a way is suitable for the needs of most applications. For this reason, only a brief
description of the connection properties is included here. For an in depth
discussion of the connection properties and how they can be used to control
messaging engine selection, refer to 8.7, “Connecting to a service integration
bus” on page 520.
 Chapter 8. Asynchronous messaging 463

A brief description of the connection properties for a default messaging JMS
provider connection factory are shown in Table 8-11.

Table 8-11 JMS connection factory connection properties

Durable subscription properties
The default messaging JMS provider supports the concept of durable
subscriptions, as required by the JMS specification. The durable subscription
properties for a connection factory configure this support. These properties are
described in Table 8-12.

Property Description

Bus name This property is the name of the service integration bus to
which to connect. The connection factory creates JMS
connections to this service integration bus.

Target This property specifies the name of a target that identifies a
group of messaging engines.

Target type This property specifies the type of target named in the Target
property. If no target is specified, this property is ignored. The
default value for this property is Bus member name, indicating
that the target property specifies the name of a bus member.

Target significance This property specifies whether it is required that the
messaging engine selected is part of the named target group,
or whether it is only preferred. If no target is specified, this
property is ignored. The default value for this property is
Preferred.

Target inbound
transport chain

This property identifies the transport chain used by the JMS
client when connecting remotely to a messaging engine. Only
messaging engines that have this transport chain available are
considered for selection. If no value is specified, the
connection factory defaults to using the
InboundBasicMessaging transport chain.

Provider endpoints This property specifies a comma separated list of endpoints
used by a JMS client to connect to a bootstrap server. It is only
necessary to specify a provider endpoint list if the JMS client
is not running within the WebSphere Application Server
environment, or if the target bus is defined within another cell.
For more information, see 8.7, “Connecting to a service
integration bus” on page 520.

Connection proximity This property defines the proximity of messaging engines that
can accept connection requests, in relation to the JMS client
or the bootstrap server.
464 WebSphere Application Server V6.1: System Management and Configuration

Table 8-12 JMS connection factory durable subscription properties

Property Description

Client identifier JMS clients must provide a unique identifier when attempting
to register a durable subscription. This identifier is used by the
messaging provider to associate messages with a JMS client
while it is inactive. When the JMS client becomes active again,
it subscribes to the durable subscription, passing the same
unique identifier. The messaging provider is then able to
deliver persisted messages to the correct client.

The unique identifier can either be provided programatically by
a JMS client running inside the J2EE Client Container, or
administratively by the connection factory. The client identifier
property enables an administrator to specify the identifier that
should be assigned to connections created by the connection
factory. This identifier is then used if the JMS client attempts to
register a durable subscription without programmatically
providing a client identifier.

Durable subscription
home

Messages that are published to a topic that has inactive
durable subscribers registered must be stored by the
messaging provider and delivered to each subscriber as and
when they become active. The durable subscription home
property enables an administrator to specify which messaging
engine is responsible for persisting such messages. A suitable
messaging engine must be specified in order to enable JMS
clients to use durable subscriptions.
 Chapter 8. Asynchronous messaging 465

Quality of service properties
The JMS specification supports two modes of delivery for JMS messages:
persistent and non-persistent. However, the service integration bus defines
several levels of reliability that can be applied to both persistent and
non-persistent messages. The levels of reliability defined by the service
integration bus are discussed in more detail in “Reliability” on page 551. The
quality of service properties enable an administrator to define the reliability
applied to messages sent using connections created from this connection
factory. These properties are described in Table 8-13.

Table 8-13 JMS connection factory quality of service properties

Advanced messaging properties
The connection factory for the default messaging JMS provider also exposes a
number of properties for advanced JMS users. These properties are described in
Table 8-14 on page 467.

Property Description

Nonpersistent
message reliability

Reliability should be applied to non-persistent JMS messages
sent using connections created from this connection factory.
Different reliability options can be specified for individual
destinations by setting the value of this property to As bus
destination. The reliability is then defined by the reliability
properties specified on the underlying bus destination to which
the JMS destination is assigned. The default value for this
property is Express nonpersistent.

Persistent message
reliability

Reliability should be applied to persistent JMS messages sent
using connections created from this connection factory.
Different reliability options can be specified for individual
destinations by setting the value of this property to As bus
destination. The reliability is then defined by the reliability
properties specified on the underlying bus destination to which
the JMS destination is assigned. The default value for this
property is Reliable nonpersistent.

Note: The property “Temporary topic name prefix” does not appear when
configuring a specific queue connection factory. In the same vein, the property
“Temporary queue name prefix” does not appear when configuring a specific
topic connection factory. Both properties will appear when configuring a
non-specific connection factory.
466 WebSphere Application Server V6.1: System Management and Configuration

Table 8-14 JMS connection factory advanced messaging properties

Property Description

Read ahead Read ahead is an optimization technique used by the default
messaging JMS provider to reduce the time taken to satisfy
requests from message consumers. It works by preemptively
assigning messages to message consumers. Messages
assigned to message consumers are locked on the server and
sent to a proxy destination on the client, prior to the message
consumer requesting them. The message consumer running
within the client is then able to consume the messages from
the local proxy destination.

Messages that are locked on the server cannot be consumed
by any other message consumers for that destination.
Messages that are assigned to a message consumer, but not
consumed before it is closed, are subsequently unlocked on
the server and are then available for receipt by other message
consumers.

Valid values for this property are:

� Default

Read ahead is enabled in situations where there can only
be a single message consumer. That is, read ahead is
enabled for message consumers on non-durable
subscriptions and unshared durable subscriptions. This is
the default value for this property.

� Enabled

Read ahead is enabled for all message consumers.

� Disabled

Read ahead is disabled for all message consumers.

The read ahead property for the connection factory can be
overridden by specifying a value for the read ahead property
on a specific JMS destination.

Temporary queue
name prefix

Enter the prefix to be used when generating the names of
temporary queues created within JMS clients using this
connection factory. The prefix can be up to twelve characters
long. By default, no value is specified for this property, which
causes temporary queues to be generated without any prefix.

Temporary topic
name prefix

Enter the prefix to be used when generating the names of
temporary topics created within JMS clients using this
connection factory. The prefix can be up to twelve characters
long. By default, no value is specified for this property, which
causes temporary topics to be generated without any prefix.
 Chapter 8. Asynchronous messaging 467

Advanced administrative properties
The connection factory for the default messaging JMS provider also exposes a
number of advanced properties that are used for administrative purposes. These
properties are described in Table 8-15.

Table 8-15 JMS connection factory advanced administrative properties

Share durable
subscriptions

This property specifies whether multiple TopicSubscribers,
created using this connection factory, can consume messages
simultaneously from a single durable subscription. Normally,
only one session at a time can have a TopicSubscriber for a
particular durable subscription. This property enables you to
override this behavior, to enable a durable subscription to
have multiple simultaneous consumers.

Valid values for this property are:

� In cluster

Allow sharing of durable subscriptions when connections
are made from within a server cluster. This is the default
value for this property.

� Always shared

Share durable subscriptions across connections.

� Never shared

Never share durable subscriptions across connections.

Property Description

Component-managed
authentication alias

Specify the J2C authentication data entry alias to be used to
authenticate the creation of a new connection to the JMS
provider. The alias encapsulates the user ID and password
that will be used to authenticate the creation of the connection.

The use of this alias depends on the resource authentication
(res-auth) setting declared in the connection factory resource
reference of an application component's deployment
descriptors.

Log missing
transaction contexts

Specify whether the Web or EJB container logs the fact that
there is no transaction context associated with the thread on
which a connection is obtained. This situation can occur if an
application has created its own threads. The log entry is
written to the SystemOut.log file. The default value for this
property is false. The check box is not selected.

Property Description
468 WebSphere Application Server V6.1: System Management and Configuration

JMS connection factory configuration
To configure a JMS connection factory for the default messaging JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources → JMS → Connection factories.

Manage cached
handles

Specify whether the Web or EJB container tracks connection
handles that have been cached by an application. An
application caches connection handles by storing them in
instance variables. If the application subsequently fails, the
Web or EJB container will attempt to close any connections
that it was using. However, tracking cached connection
handles incurs a large run time performance overhead and
should only be used for debugging purposes. The default
value for this property is false (the check box is not selected).

Share data source
with CMP

Use this property to enable the sharing of JDBC connections
between the data store component of a messaging engine and
container-managed persistence (CMP) entity beans. In order
for this to provide a performance improvement, the data
source used by the data store and the CMP entity bean must
be the same. If this is the case, a JDBC connection can be
shared within the context of a global transaction involving the
messaging engine and the CMP entity bean. If no other
resources are accessed as part of the global transaction,
WebSphere is able to use local transaction optimization in an
effort to improve performance. The default value for this
property is false (the check box is not selected).

Please refer to the WebSphere Information Center for a full
description of this performance optimization.

XA recovery
authentication alias

Specify the J2C authentication data entry alias to be used to
authenticate the creation of a connection to the JMS provider
during XA recovery processing. The alias encapsulates the
user ID and password that will be used to authenticate the
creation of the connection.

During XA recovery processing, a connection might need to be
made to a messaging engine within the service integration
bus. If security is enabled for the bus, it might be necessary to
authenticate the creation of the connection. The XA recovery
authentication alias is used for this purpose.

Property Description
 Chapter 8. Asynchronous messaging 469

2. Set the scope. A list of any existing JMS connection factories defined at this
scope will be displayed. This is shown in Figure 8-26.

Figure 8-26 Default messaging JMS connection factory administered objects

In this example, we already have one JMS connection factory object defined,
called BankJMSConnFactory. This connection factory object has all of the
necessary properties configured in order to connect to a service integration
bus.

3. To create a new JMS connection factory object, click New and select the JMS
provider. Alternatively, to change the properties of an existing JMS connection
factory, click one of the connection factories displayed. Figure 8-27 on
page 471 shows the top portion of the configuration page for the
BankJMSConnFactory object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Bus name. In
Figure 8-27, the value specified for the Bus name property is SamplesBus.
This specifies that the BankJMSConnFactory object will create connections to
the SamplesBus service integration bus.
470 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-27 Default messaging JMS connection factory properties

4. Enter the required configuration properties for the JMS connection factory.

5. Click OK.

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, any application servers within the scope
of the resources will need to be restarted.
 Chapter 8. Asynchronous messaging 471

JMS destination properties
Both queue and topic destinations can be configured for the default messaging
JMS provider. The sections that follow describe the properties of the queue and
topic destinations. These properties have been grouped as follows:

� Common connection properties
� Queue specific connection properties
� Topic specific connection properties
� Advanced destination properties

Common connection properties
JMS queue and JMS topic destinations share a number of common connection
properties. These common properties are described in Table 8-16.

Table 8-16 JMS destination connection properties

Property Description

Bus name Use this property to specify the name of the service integration
bus on which the destination is defined. The default behavior,
if no value is specified for this property, is to assume that the
destination is defined on the same service integration bus to
which the application is connected. That is, the service
integration bus will be determined from the connection factory
that is used in conjunction with this JMS destination.

The only situation in which a bus name must be specified is if
the underlying destination that this JMS destination refers to is
defined on a foreign bus. The foreign bus specified can refer
to a service integration bus, or to WebSphere MQ. Please
refer to 9.1.7, “Foreign buses” on page 555 for more
information.
472 WebSphere Application Server V6.1: System Management and Configuration

Delivery mode Use this property to specify the delivery mode to be used for
messages that are sent to this destination. This property
allows an administrator to override the delivery mode specified
by the JMS client when sending a message.

Valid values for this property are:

� Application

The persistence of messages sent to this destination is
determined by the JMS client application when sending a
message. This is the default value for this property.

� Nonpersistent

All messages that are sent to this destination are treated
as non-persistent.

� Persistent

All messages that are sent to this destination are treated
as persistent.

Time to live Specify the length of time, in milliseconds, from its dispatch
time that a message sent to this destination should be kept by
the system. Specifying a time to live on a destination overrides
the time to live specified by the JMS client when sending a
message. A value of 0 (zero) means that messages are kept
indefinitely. By default, no value is specified for this property,
allowing the JMS client application to determine the time to
keep messages.

Priority Specify the relative priority for messages sent to this
destination. Specifying a priority on a destination overrides the
priority specified by the JMS client when sending a message.
The JMS specification defines ten levels of priority ranging
from 0 (zero) to 9. Zero is the lowest priority and 9 is the
highest. By default, no value is specified for this property,
allowing the JMS client application to determine the priority for
a message. If the JMS client application does not specify a
priority, the default JMS priority of 4 will be used.

Property Description
 Chapter 8. Asynchronous messaging 473

Queue specific connection properties
The property that is specific to JMS queue destinations are described in
Table 8-17 on page 474.

Table 8-17 JMS queue specific connection properties

Topic specific connection properties
When configuring a JMS topic destination, it is possible to partition the topic
space into a tree-like hierarchical structure. You can achieve this by defining
multiple JMS topic destinations that refer to the same underlying topic space
destination, but specifying different topic names. It is the topic name property on
a JMS topic destination that is used to partition a topic space.

The topic name property also allows the use of wildcards characters. Figure 8-18
on page 474 describes the wildcard characters that can be used when specifying
the topic name.

Table 8-18 Service integration bus topic wildcard characters

Property Description

Queue name Use this property to specify the name of the queue destination
on the underlying service integration bus or foreign bus. If this
JMS destination refers to a destination defined on WebSphere
MQ, through a foreign bus, special consideration must be
given to the queue name specified. Refer to “Addressing
destinations across the WebSphere MQ link” on page 587 for
more information.

Topic name Topics selected

A/B Selects the B child of A.

A/* Selects all children of A.

A//* Selects all descendents of A.

A//. Selects A and all descendents of A.

//* Selects everything.

A/./B Equivalent to A/B.

A/*/B Selects all B grandchildren of A.

A//B Selects all B descendents of A.

//A Selects all A elements at any level.

* Selects all first level elements.
474 WebSphere Application Server V6.1: System Management and Configuration

Refer to the WebSphere Information Center for a full description of using topic
wildcards in topic expressions to retrieve topics provided by the default
messaging provider and service integration bus.

The properties that are specific to JMS topic destinations are described in
Table 8-19.

Table 8-19 JMS topic specific connection properties

Note: The use of wildcards within a topic name for a JMS topic destination is
only valid when the JMS topic destination is used by a message consumer. If
a message producer attempts to use such a JMS topic destination, a JMS
exception will be thrown to the JMS client application.

Property Description

Topic space Use this property to specify the name of the topic space
destination on the underlying service integration bus.

Topic name The topic name property allows a topic space to be partitioned
into a tree-like hierarchical structure. Several JMS topic
destinations can be defined that refer to different nodes of this
tree structure within the same underlying topic space on a
service integration bus. By default, no value is specified for this
property. In this situation, the topic name will default to the
value specified for the Name property for this JMS topic
destination.
 Chapter 8. Asynchronous messaging 475

Advanced destination properties
The JMS queue and JMS topic destinations for the default messaging JMS
provider also exposes the advanced properties described in Table 8-20.

Table 8-20 JMS destination advanced properties

JMS queue configuration
To configure a queue destination for the default messaging JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources → JMS → Queues.

2. Set the scope. A list of any existing queue destinations defined at this scope
will be displayed. This is shown in Figure 8-28.

Property Description

Read ahead The read ahead property on a JMS destination enables an
administrator to override the value of the read ahead property
specified on the JMS connection factory.

Valid values for this property are:

� Enabled

Read ahead is enabled for all message consumers that
are consuming messages from this destination.

� Disabled

Read ahead is disabled for all message consumers that
are consuming messages from this destination.

� Inherit from connection factory

The value of the read ahead property specified on the
JMS connection factory should be used.

For information about the read ahead property, refer to
Table 8-14 on page 467.
476 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-28 Default messaging queue destination administered objects

In this example, we already have one JMS queue destination object defined,
called BankJMSQueue.

3. To create a new queue destination object, click New. Alternatively, to change
the properties of an existing queue destination, click one of the queue
destinations displayed. Figure 8-29 on page 478 shows part of the
configuration page for the BankJMSQueue object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Queue name. In
Figure 8-29 on page 478, the value specified for the Queue name property is
BankJSQueue. This must match the name of the queue destination defined
on the corresponding service integration bus.

By default, no value is specified for the Bus name property. The default
behavior when no bus name is specified is to assume that the queue
destination is defined on the same service integration bus to which the
application is connected. That is, the service integration bus will be
determined from the connection factory that is used in conjunction with the
JMS queue destination.
 Chapter 8. Asynchronous messaging 477

Figure 8-29 Default messaging queue destination properties

4. Enter the required configuration properties for the JMS queue destination.

5. Click OK.

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, restart any application servers within
the scope of the resources.
478 WebSphere Application Server V6.1: System Management and Configuration

JMS topic configuration
To configure a topic destination for the default messaging JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources → JMS → Topics.

2. Set the scope. A list of any existing topic destinations defined at this scope
will be displayed. This is shown in Figure 8-30.

Figure 8-30 Default messaging topic destination administered objects

In this example, we already have three JMS topic destination objects defined,
FootballTopic, RugbyTopic, and SportsTopic.
 Chapter 8. Asynchronous messaging 479

3. To create a new topic destination object, click New. Alternatively, to change
the properties of an existing topic destination, click one of the topic
destinations displayed. Figure 8-31 on page 480 shows part of the
configuration page for the FootballTopic object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Topic space. In
Figure 8-31, the value specified for the Topic space property is SportsTopic.
This must match the name of the topic space destination defined on the
corresponding service integration bus.

Figure 8-31 Default messaging topic destination properties
480 WebSphere Application Server V6.1: System Management and Configuration

By default, no value is specified for the Bus name property. The default
behavior when no bus name is specified is to assume that the topic
destination is defined on the same service integration bus to which the
application is connected. The service integration bus will be determined from
the connection factory that is used in conjunction with the JMS topic
destination.

It is also worth noting that the Topic name property shown in Figure 8-31 has
a value of sports/football. The topic name property allows a topic space to be
partitioned into a tree-like hierarchical structure. The three JMS topic
destinations shown in Figure 8-30 on page 479 all refer to the SportsTopic
destination on the underlying service integration bus. However, they all
specify different topic names, as shown in Table 8-21.

Table 8-21 Sample sports topic names

Effectively, this configuration partitions the SportsTopic topic space into the
hierarchical structure shown in Figure 8-32.

Figure 8-32 Sample sports topic hierarchy

If a subscriber subscribes to the FootballTopic JMS destination, which
represents the sports/football topic name, it will only receive publications sent
using the FootballTopic JMS destination, that map on to the same topic name.

However, the SportsTopic JMS destination defines a topic name that ends
with a wildcard character. This allows a subscriber interested in all sports to
subscribe to the SportsTopic destination. This subscriber would then receive
publications sent to either the FootballTopic or RugbyTopic JMS destinations.

See “Topic specific connection properties” on page 474 for more information
about using wild cards.

JMS topic destination Topic name

SportsTopic sports/*

FootballTopic sports/football

RugbyTopic sports/rugby

Sports

Football Rugby
 Chapter 8. Asynchronous messaging 481

4. Enter the required configuration properties for the JMS topic destination.

5. Click OK.

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, restart any application servers within
the scope of the resources.

JMS activation specification properties
As we discussed in 8.4.7, “Associating a message-driven bean with a
destination” on page 445, a JMS activation specification is used to configure an
instance of an ActivationSpec JavaBean for the default messaging JMS provider.
A JMS activation specification is then associated with a message-driven bean
during application installation.

The JMS activation specification object defines all of the properties that the J2EE
Connector Architecture requires or recommends an ActivationSpec JavaBean to
support. For more information about these properties, please refer to 8.3.4, “JMS
ActivationSpec JavaBean” on page 428. It also defines other properties specific
to using it in conjunction with a service integration bus.

The sections that follow describe the properties of the JMS activation
specification. These properties have been grouped as follows:

� Destination properties
� Additional properties
� Subscription durability properties
� Advanced properties

Destination properties
The JMS activation specification defines a number of properties that identify the
destination with which a message-driven bean will be associated. These
properties are described in Table 8-22 on page 483.

Note: JMS activation specifications also expose the following administration
properties:

� Scope
� Provider
� Name
� JNDI name
� Description

A description for these properties can be found in 8.6.1, “Common
administration properties” on page 462.
482 WebSphere Application Server V6.1: System Management and Configuration

Table 8-22 JMS activation specification destination properties

Property Description

Destination type Use this property to specify the type of the JMS destination
with which a message-driven bean will be associated. Valid
values for this property are:

� Queue

The target destination is a queue destination. This is the
default value for this property.

� Topic

The target destination is a topic destination

Destination JNDI
name

You must specify a JNDI name for the target destination.

Message selector This property specifies a JMS message selector that should
be applied to the target JMS destination. Only messages that
match this message selector will be delivered to the
message-driven bean. By default, no message selector is
specified for a JMS activation specification. Refer to “Message
selectors” on page 414 for more information.

Bus name This property is the name of the service integration bus on
which the target destination is defined. This bus must exist
within the same cell as the application server on which the
message-driven bean is running, but this application server is
not required to be a member of the bus. However, the best
performance will be obtained if the application server on which
the message-driven bean is running is a member of the bus
specified. A value must be specified for this property.

Acknowledge mode Use this property to specify how the EJB container
acknowledges the receipt of a message by a message-driven
bean instance that is using bean managed transactions. Valid
values for this property are:

� Auto-acknowledge

The EJB container automatically acknowledges the
delivery of a message when the onMessage method of
the message-driven bean successfully returns.

� Duplicates-ok auto-acknowledge

The EJB container lazily acknowledges the delivery of
messages to message-driven beans. This can improve
performance, but can lead to a message-driven bean
receiving a message more than once.

Target This property specifies the name of a target that identifies a
group of messaging engines.
 Chapter 8. Asynchronous messaging 483

Additional properties
The JMS activation specification for the default messaging JMS provider also
exposes a group of additional properties, as described in Table 8-23 on
page 484.

Table 8-23 JMS activation specification additional properties

Target Type This property specifies the type of target named in the Target
property. If no target is specified, this property is ignored. The
default value for this property is Bus member name, indicating
that the target property specifies the name of a bus member.

Target Significance This property specifies whether it is required that the
messaging engine selected is part of the named target group,
or whether it is only preferred. If no target is specified, this
property is ignored. The default value for this property is
Preferred.

Target inbound
transport chain

This property identified the transport chain used by the JMS
client when connecting remotely to a messaging engine. Only
messaging engines that have this transport chain available are
considered for selection. If no value is specified, the
connection factory defaults to using the
InboundBasicMessageing transport chain.

Property Description

Authentication alias Use this property to specify the J2C authentication data entry
alias to be used to authenticate the creation of a new
connection to the JMS provider. The alias encapsulates the
user ID and password that will be used to authenticate the
creation of the connection.

Maximum batch size Specify the maximum number of messages that can be
received from a messaging engine in a single batch. These
messages are then delivered serially to an instance of the
message-driven bean that is associated with this JMS
activation specification. Delivering messages in a batch can
improve the performance of the JMS application. However, if
message ordering must be maintained across failed
deliveries, the batch size should be set to 1. If no value is
specified for this property, it defaults to 1.

Property Description
484 WebSphere Application Server V6.1: System Management and Configuration

Subscription durability properties
A JMS activation specification can be configured with a destination type of Topic.
It might be required that message-driven beans that are associated with such a
JMS activation specification need to register durable subscriptions with the topic
destination. However, a message-driven bean is not able to programatically
configure a durable subscription. The subscription durability properties on a JMS
activation specification enable the configuration properties for a durable
subscription to be specified administratively. These properties are described in
Table 8-24 on page 485.

Table 8-24 JMS activation specification subscription durability properties

Maximum concurrent
endpoints

This property specifies the maximum number of message
endpoints to which messages are delivered concurrently. In
the case of a JMS activation specification, a message
endpoint is a JMS message-driven bean. Increasing this
number can improve performance but will also increase the
number of running threads within the application server. If
message ordering must be maintained across failed
deliveries, the number of maximum concurrent endpoints
should be set to 1. If no value is specified for this property, it
defaults to 10.

Property Description

Subscription durability Use this property to specify whether a JMS topic subscription
is durable or nondurable.

Valid values for this property are:

� Durable

The messaging provider stores messages while the
message-driven bean is not available, and delivers the
messages when the message-driven bean becomes
available again.

� Nondurable

The messaging provider does not store and redeliver
messages if a message-driven bean is not available. This
is the default value for this property.

Property Description
 Chapter 8. Asynchronous messaging 485

Advanced properties
The JMS activation specification for the default messaging JMS provider also
exposes the advanced properties described in Table 8-25 on page 487.

Subscription name JMS clients must provide a subscription name when
attempting to register a durable subscription. Because a JMS
client can create several durable subscriptions, the
subscription name must be unique within the context of a
particular client identifier (described within this table).

A message-driven bean is not able to programatically specify
a subscription name when it creates a durable subscription. A
suitable subscription name must be specified in order to
enable message-driven beans associated with this JMS
activation specification to use durable subscriptions.

Client identifier JMS clients must provider a unique identifier when attempting
to register a durable subscription. This identifier is used by the
messaging provider to associate messages with a JMS client
while it is inactive. When the JMS client becomes active again,
it subscribes to the durable subscription, passing the same
unique identifier. The messaging provider is then able to
deliver persisted messages to the correct client.

A message-driven bean is not able to programatically specify
a client identifier when it creates a durable subscription. A
suitable client identifier must be specified in order to enable
message-driven beans associated with this JMS activation
specification to use durable subscriptions.

Durable subscription
home

Messages that are published to a topic that has inactive
durable subscribers registered must be stored by the
messaging provider and delivered to each subscriber as and
when they become active. The durable subscription home
property enables an administrator to specify which messaging
engine is responsible for persisting such messages. A suitable
messaging engine must be specified in order to enable
message-driven beans associated with this JMS activation
specification to use durable subscriptions.

Property Description
486 WebSphere Application Server V6.1: System Management and Configuration

Table 8-25 JMS activation specification advanced properties

Property Description

Share durable
subscriptions

The share durable subscriptions property for the JMS
activation specification defines whether a durable subscription
should be shared across connections. This property is only
relevant if the value of the destination type property is Topic
and the value of the subscription durability property is Durable.
The default value for this property is In cluster. Refer to
Table 8-14 on page 467 for more information.

Share data source
with CMP

Use this property to enable the sharing of JDBC connections
between the data store component of a messaging engine and
container-managed persistence (CMP) entity beans. In order
for this to provide a performance improvement, the data
source used by the data store and the CMP entity bean must
be the same. If this is the case, a JDBC connection can be
shared within the context of a global transaction involving the
messaging engine and the CMP entity bean. If no other
resources are accessed as part of the global transaction,
WebSphere is able to use local transaction optimization in an
effort to improve performance. The default value for this
property is false (the check box is not selected).

Please refer to the WebSphere Information Center for a full
description of this performance optimization.

Read ahead Read ahead is an optimization technique used by the default
messaging JMS provider to reduce the time taken to satisfy
requests from message consumers. It works by preemptively
assigning messages to message consumers. Messages
assigned to message consumers are locked on the server and
sent to a proxy destination on the client, prior to the message
consumer requesting them. The message consumer running
within the client is then able to consume the messages from
the local proxy destination.

Messages that are locked on the server cannot be consumed
by any other message consumers for that destination.
Messages that are assigned to a message consumer, but not
consumed before it is closed, are subsequently unlocked on
the server and are then available for receipt by other message
consumers.

Refer to Table 8-14 on page 467 for more information.
 Chapter 8. Asynchronous messaging 487

JMS activation specification configuration
To configure a JMS activation specification for the default messaging JMS
provider, complete the following steps:

1. In the navigation tree, expand Resources → JMS → Activation
specifications.

2. Set the scope. A list of any existing activation specifications defined at this
scope will be displayed. This is shown in Figure 8-33 on page 488.

Figure 8-33 Default messaging JMS activation specifications

In this example, we already have one JMS activation specification object
defined, called BankActivationSpec.

3. To create a new JMS activation specification object, click New. Alternatively,
to change the properties of an existing JMS activation specification, click one
of the JMS activation specifications displayed. Figure 8-31 on page 480
shows the top portion of the configuration page for the BankActivationSpec
object.

The JMS activation specification object is not, strictly speaking, a JMS
administered object. However, it still exposes a number of the properties that
are common among all JMS administered objects. These are scope, provider,
name, JNDI name, and description. As with JMS administered objects, values
for these properties are required by the WebSphere administrative console for
administrative purposes.
488 WebSphere Application Server V6.1: System Management and Configuration

Values must also be specified for all of the properties on the ActivationSpec
JavaBean that are defined as required within the deployment descriptor for
the default messaging resource adapter. Recall from Example 8-13 on
page 427 that these properties are destination, destinationType and
busName. The relevant mappings between these properties and the
corresponding properties on the JMS activation specification are shown in
Table 8-26.

Table 8-26 Required properties for a JMS activation specification object

Following our example, using the JMS queue defined in “JMS queue
configuration” on page 476, we know that the BankJMSQueue object was
bound into the JNDI name space with the name jms/BankJMSQueue. This
JMS queue object maps on to the BankJSQueue on the SamplesBus service
integration bus.

ActivationSpec
JavaBean property

JMS activation
specification property

BankActivationSpec
value

destination Destination JNDI name jms/BankJMSQueue

destinationType Destination type Queue

busName Bus name SamplesBus
 Chapter 8. Asynchronous messaging 489

Therefore, if a message-driven bean is associated with this JMS activation
specification, it would be invoked when messages arrived at the
BankJMSQueue destination on the SamplesBus. See Figure 8-34 on
page 490.

Figure 8-34 Default messaging JMS activation specification properties
490 WebSphere Application Server V6.1: System Management and Configuration

4. Enter the required configuration properties for the JMS activation
specification.

5. Click OK.

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, restart any application servers within
the scope of the resources.

8.6.3 Configuring the WebSphere MQ JMS provider
The WebSphere MQ JMS provider can be configured to communicate with
WebSphere MQ using a bindings or client connection. These two connectivity
options are described below:

� Bindings connection

When used in bindings mode, the WebSphere MQ JMS provider uses the
Java Native Interface (JNI) to call directly into the existing queue manager
API, rather than communicating through a network. This provides better
performance when connecting to WebSphere MQ than using a client
connection.

However, to use a bindings connection, WebSphere MQ and WebSphere
Application Server must be installed on the same machine.

� Client connection

If it is not possible to collocate WebSphere Application Server and
WebSphere MQ on the same machine, the WebSphere MQ JMS provider
must be configured to connect to WebSphere MQ using TCP/IP. Using a client
connection allows you to perform authorization checks.

Additional considerations must be taken into account when configuring the
WebSphere MQ JMS provider to use a client connection, for example:

– Whether the connection needs to be secured by encrypting the data that
flows over the connection

– Whether the connection will go through a firewall

The sections that follow describe the properties exposed by WebSphere MQ
connection factories and destinations, and also how to configure connection
factories and destinations for the WebSphere MQ JMS provider.

Note: As discussed in 8.5.2, “Managing the WebSphere MQ JMS provider” on
page 455, WebSphere MQ resources, such as queue managers, channels,
and queues, must be created using the tools provided with WebSphere MQ.
 Chapter 8. Asynchronous messaging 491

WebSphere MQ connection factory properties
A WebSphere MQ connection factory is used to create connections to
WebSphere MQ. These connections form part of the common interfaces
described in 8.2.3, “JMS domains” on page 407 and can be used by a JMS client
to interact with WebSphere MQ using both the Point-to-Point and
Publish/Subscribe messaging models.

However, because the WebSphere MQ connection factory is not specific to either
JMS domain, it encapsulates all of the configuration information that might be
required to communicate using either messaging model. Consequently, a large
number of properties are exposed by the WebSphere MQ connection factory
object. Fortunately, default values are defined for many of these properties.

To remain compatible with JMS specification 1.0, there are two specific types of
connection factories (prefixed with “Queue” and “Topic”) and a more general type
of connection factory with no prefix. The particular properties of specific types of
connection factories will be a subset of the more general connection factory, but
all are administered in the same way.

The sections that follow describe some of the more important properties that are
exposed by the WebSphere MQ connection factory object. These properties
have been grouped as follows:

� Bindings connection properties
� Client connection properties
� Queue connection specific properties
� Topic connection specific properties
� Connection security properties
� Advanced connection properties

Bindings connection properties
With respect to the number of properties, setting up a bindings connection
between a WebSphere MQ connection factory and WebSphere MQ is the
simplest configuration. The properties required to configure a bindings
connection for a WebSphere MQ connection factory object are shown in
Table 8-27.

Note: Not all of the properties of the WebSphere MQ connection factory are
described. For a full description of all of the properties, please refer to the
WebSphere Information Center and the WebSphere MQ Using Java manual,
links for which are contained in 8.8, “References and resources” on page 536.
492 WebSphere Application Server V6.1: System Management and Configuration

Table 8-27 WebSphere MQ connection factory bindings connection properties

Client connection properties
The properties required to configure a basic client connection for a WebSphere
MQ connection factory object are shown in Table 8-28.

Table 8-28 WebSphere MQ connection factory client connection properties

Property Description

Transport type Use this property to specify whether a WebSphere MQ client
TCP/IP connection or interprocess bindings connection is to
be used to connect to the WebSphere MQ queue manager.
Inter-process bindings can only be used to connect to a queue
manager on the same physical machine. The transport type
defaults to BINDINGS.

Queue manager This property is the name of the WebSphere MQ queue
manager for this connection factory. Connections created by
this factory connect to the specified queue manager on the
local machine. If no queue manager is specified, the
connections created by this factory will connect to the default
queue manager on the local machine if one exists.

Property Description

Transport type Use this property to specify whether a WebSphere MQ client
TCP/IP connection or interprocess bindings connection is to
be used to connect to the WebSphere MQ queue manager. To
configure a WebSphere MQ client TCP/IP connection, a value
of CLIENT must be specified.

Host This property is the name of the host on which the WebSphere
MQ queue manager runs.

Port This property defines the TCP/IP port number used for
connection to the WebSphere MQ queue manager. This port
number should match the listener port defined for the queue
manager. The default value for the port property is 0 (zero).
The default port for a WebSphere MQ queue manager listener
is 1414.

Channel Specify the name of the channel used for connection to the
WebSphere MQ queue manager. If no channel is specified,
the channel defaults to a standard server connection channel
defined by all queue managers called
SYSTEM.DEF.SVRCONN.
 Chapter 8. Asynchronous messaging 493

Queue connection properties
A number of the properties defined by the WebSphere MQ connection factory
object are specific to WebSphere MQ queue destinations. Table 8-29 on
page 494 describes these properties.

Table 8-29 WebSphere MQ connection factory queue connection specific properties

Topic connection properties
A large number of the properties defined by the WebSphere MQ connection
factory object are specific to WebSphere MQ topic destinations. Table 8-30
describes some of the more important topic connection specific properties.

Local server address In some network configurations, firewalls are configured to
prevent connection attempts unless they originate from
specific ports or range of ports. The local server address
property allows a port or range of ports to be specified for the
WebSphere MQ connection factory to use when creating the
outbound client connection. The local server address property
defaults to null.

Property Description

Enable message
retention

Check this box to specify that unwanted messages are to be
left on the queue. Otherwise, unwanted messages are dealt
with according to their disposition options. By default, this
means that a message is sent to the queue manager’s
dead-letter queue. It is also possible to specify that unwanted
messages be discarded. The default value for the enable
message retention property is true. The box is checked.

Model queue
definition

This property is the name of the model queue from which
WebSphere MQ dynamic queues are created. The model
queue acts a template for the WebSphere MQ dynamic.
WebSphere MQ dynamic queues are created as a result of the
JMS client invoking the createTemporaryQueue method on
the Session object. If no model queue definition is specified, it
defaults to a standard model queue defined by all queue
managers called SYSTEM.DEFAULT.MODEL.QUEUE.

Temporary queue
prefix

The prefix that is used to form the name of a WebSphere MQ
dynamic queue. The prefix must end in an asterisk (*) and be
no more than 33 characters in length, including the asterisk. If
no temporary queue prefix is specified, it defaults to AMQ.*.

Property Description
494 WebSphere Application Server V6.1: System Management and Configuration

Table 8-30 WebSphere MQ connection factory topic connection specific properties

Property Description

Broker queue
manager

Use this property to define the name of the WebSphere MQ
queue manager that is hosting WebSphere Business
Integration Event Broker or WebSphere Business Integration
Message Broker. This can be different from the value specified
for the queue manager property. However, if it is different,
server channels must be defined between the two queue
managers. If no broker queue manager is specified, it defaults
to having the same value as the queue manager property.

Broker control queue Define the name of the queue on the broker queue manager
to which subscription requests should be sent. If no broker
control queue is specified, it defaults to a standard control
queue on the broker queue manager called
SYSTEM.CONTROL.BROKER.QUEUE.

Broker publication
queue

This property defines the name of the queue on the broker
queue manager to which publications should be sent. If no
broker publication queue definition is specified, it defaults to a
standard publication queue on the broker queue manager
called SYSTEM.BROKER.DEFAULT.STREAM.

Broker subscription
queue

Specify the name of the queue on the broker queue manager
from which non-durable subscription messages are retrieved.
If no broker subscription queue is specified, it defaults to a
SYSTEM.JMS.ND.SUBSCRIBER.QUEUE.

Client ID Define the client identifier used when creating durable
subscriptions to a topic. The client identifier is ignored for
point-to-point connections.
 Chapter 8. Asynchronous messaging 495

Connection security properties
Security is an additional consideration when configuring a bindings connection
between a WebSphere MQ connection factory and WebSphere MQ. Table 8-31
describes the properties of a WebSphere MQ connection factory that relate to
security.

Table 8-31 WebSphere MQ connection factory connection security properties

Property Description

Component-managed
authentication alias

The component-managed authentication alias drop down can
be used to specify a J2C authentication data entry. If the
resource reference used within the JMS client application
specifies a res-auth of Application, the user ID and password
defined by the J2C authentication data entry will be used to
authenticate the creation of a connection.

The component-managed authentication alias defaults to
none. If no component-managed authentication alias is
specified and the WebSphere MQ queue manager requires
the user ID and password to get a connection, then an
exception will be thrown when attempting to connect.

SSL cipher suite Enter the SSL cipher suite used to encrypt the communication
with the queue manager. If set, the value of this property must
be a valid CipherSuite provided by the JSSE provider
configured within WebSphere Application Server. It must also
be equivalent to the CipherSpec specified on the server
connection channel within WebSphere MQ, named by the
CHANNEL property. By default, no value is specified for this
property.

SSL CRL The SSL CRL property specifies zero or more Certificate
Revocation List (CRL) servers. These are LDAP servers that
are used to check whether a SSL certificate has been revoked.

If SSLCRL is not set, which is the default, no such checking is
performed. Also, SSL CRL is ignored if no SSL cipher suite is
specified.

SSL peer name The SSL peer name property specifies a distinguished name
that must match the SSLPEER parameter specified on the
server connection channel named by the CHANNEL property.

If the SSL peer name property is not set, which is the default,
no such checking is performed. Also, SSL peer name is
ignored if no SSL cipher suite is specified.
496 WebSphere Application Server V6.1: System Management and Configuration

Advanced connection properties
The WebSphere MQ connection factory object also exposes a number of
properties that affect how the WebSphere MQ JMS provider interacts with
WebSphere MQ. In order to fully understand these properties, an advanced
knowledge of WebSphere MQ is required. Some of the more important
properties are described in Table 8-32.

Table 8-32 WebSphere MQ connection factory advanced properties

Property Description

CCSID Use this property to define the coded-character-set-ID to be
used on connections. The value for this property defaults to
null. This indicates to the WebSphere MQ JMS provider that
its default CCSID should not be overridden. The default
CCSID within the WebSphere MQ JMS provider is 819, which
represents the ASCII character set. Changing this value
affects the way in which the queue manager that this
connection factory creates connections for translates
information in the WebSphere MQ headers.

XA enabled Specify whether the resources of WebSphere MQ can be
enlisted into a distributed transaction. The default value for the
XA enabled property is true. The box is checked. If the XA
enabled check box is not selected, the JMS session is still
enlisted in a transaction, but uses the resource manager local
transaction calls (session.commit and session.rollback)
instead of XA calls. This can lead to an improvement in
performance. However, unless last participant support is used,
this means that only a single resource can be enlisted in a
transaction in WebSphere Application Server.

Enable return
methods during
shutdown

Define whether a JMS client application returns from a method
call if the queue manager has entered a controlled shutdown.
The default value for the enable return methods during
shutdown property is true (the check box is selected).

Polling interval The polling interval property specifies the interval, in
milliseconds, between scans of all receivers during
asynchronous message delivery. The polling interval property
defaults to 5000.

Rescan interval The rescan interval property specifies the interval in
milliseconds between which a queue is scanned to look for
messages that have been added to a queue out of order. This
interval controls the scanning for messages that have been
added to a queue out of order with respect to a WebSphere
MQ browse cursor. The rescan interval property defaults to
5000.
 Chapter 8. Asynchronous messaging 497

WebSphere MQ connection factory configuration
To configure a connection factory for the WebSphere MQ JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources → JMS → Connection factories.

2. Set the scope A list of any existing connection factories defined at this scope
will be displayed. This is shown in Figure 8-35.

Figure 8-35 WebSphere MQ connection factory administered objects

Enable MQ
connection pooling

This property specifies whether MQ connection pooling should
be used to pool the connections to the WebSphere MQ queue
manager. If MQ connection pooling is used, when a
connection is no longer required, instead of destroying it, it can
be pooled, and later reused. This can provide a substantial
performance enhancement for repeated connections to the
same queue manager. The default value for the enable MQ
connection pooling property is true. The box is checked.

Property Description
498 WebSphere Application Server V6.1: System Management and Configuration

In this example, we already have one WebSphere MQ connection factory
object defined called BankMQJMSConnFactory. This connection factory
object has all of the necessary properties configured in order to connect to a
full WebSphere MQ JMS provider using a client connection. Note the different
providers in the list above.

3. To create a new connection factory object, click New, specify the type of
provider in the next window, and click Next. Alternatively, to change the
properties of an existing connection factory, click one of the connection
factories displayed. Figure 8-36 on page 500 shows the top portion of the
configuration page for BankMQJMSConnFactory object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only other properties that we must specify values for, in order to
configure a client connection to WebSphere MQ, are as follows:

– Transport type

A transport type of CLIENT has been specified to indicate that we will
connect to WebSphere MQ using a WebSphere MQ client TCP/IP
connection.

– Host

The WebSphere MQ queue manager is running on host kcgg1d6.

– Port

The WebSphere MQ queue manager listener is listening on port 1414.

The BankMQJMSConnFactory object uses the default value for the Channel
property, which is SYSTEM.DEF.SVRCONN.
 Chapter 8. Asynchronous messaging 499

Figure 8-36 WebSphere MQ connection factory properties

4. Enter the required configuration properties for the WebSphere MQ connection
factory.

5. Click OK.
500 WebSphere Application Server V6.1: System Management and Configuration

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, restart any application servers within
the scope of the resources.

WebSphere MQ destination properties
Both queue and topic destinations can be configured for the WebSphere MQ
JMS provider. The sections that follow describe the properties of the queue and
topic destinations. These properties have been grouped as follows:

� Basic destination connection properties
� Queue specific destination properties
� Topic specific destination properties
� Advanced destination properties

Basic destination properties
The WebSphere MQ queue and WebSphere MQ topic destinations share a
number of basic common properties. These properties are described in
Table 8-33.

Table 8-33 Basic WebSphere MQ destination properties

Property Description

Persistence Use this property to specify whether the messages sent to this
destination are persistent, non-persistent, or have their
persistence defined by the application or queue. The default
value for the persistence property is APPLICATION DEFINED.
This specifies that the messages on the destination have their
persistence defined by the application that put them onto the
queue.

Priority Use this property to specify whether the message priority for
this destination is defined by the application, queue, or the
Specified priority property. The default value for the priority
property is APPLICATION DEFINED. This specifies that the
priority of messages on this destination is defined by the
application that put them onto the destination.

Specified priority If the Priority property is set to Specified, the value of this
property determines the message priority for messages sent
to this destination. Priorities range from 0 (lowest) through 9
(highest).
 Chapter 8. Asynchronous messaging 501

Queue specific destination properties
The properties specific to WebSphere MQ queue destination objects are shown
in Table 8-34.

Table 8-34 WebSphere MQ queue destination properties

Expiry Specify whether the expiry timeout for this destination is
defined by the application or the Specified Expiry property, or
messages on the destination never expire (have an unlimited
expiry timeout). The default value for the expiry property is
APPLICATION DEFINED. This specifies that the expiry
timeout of messages on this destination is defined by the
application that put them onto the destination.

Specified expiry If the Expiry Timeout property is set to Specified, the value of
this property determines the number of milliseconds (greater
than 0) after which messages on this destination expire.

Property Description

Base queue name Use this property to specify the name of the queue to which
messages are sent, on the queue manager specified by the
Base Queue Manager Name property.

Base queue manager
name

Specify the name of the WebSphere MQ queue manager to
which messages are sent. This queue manager provides the
queue specified by the Base queue name property. The
default value for this property is null, in which case the queue
manager is assumed to be that of the connection factory object
used to connect to WebSphere MQ.

Queue manager host This property is the name of the host on which the WebSphere
MQ queue manager runs.

Queue manager port This property defines the TCP/IP port number used for
connection to the WebSphere MQ queue manager. The port
number should match the listener port defined for the queue
manager. The default value is 0 (zero); however, the default
port for a WebSphere MQ queue manager listener is 1414.

Server connection
channel name

Specify the name of the channel used for connection to the
WebSphere MQ queue manager. If no channel is specified,
the channel defaults to a standard server connection channel
defined by all queue managers, called
SYSTEM.DEF.SVRCONN.

Property Description
502 WebSphere Application Server V6.1: System Management and Configuration

Topic specific destination properties
The properties specific to WebSphere MQ topic destination objects are shown in
Table 8-35.

Table 8-35 WebSphere MQ topic destination properties

User ID This property is used in conjunction with the Password
property to provide authentication when connecting to the
WebSphere MQ queue manager.

Password This property is used in conjunction with the User ID property
to provide authentication when connecting to the WebSphere
MQ queue manager.

Property Description

Base topic name Use this property to specify the name of the topic on the
underlying queue manager that JMS clients will publish or
subscribe to.

Broker durable
subscription queue

Define the name of the brokers queue from which durable
subscription messages are retrieved. The subscriber specifies
the name of the queue when it registers a subscription.

Broker CC durable
subscription queue

Specify the name of the brokers queue from which durable
subscription messages are retrieved for a
ConnectionConsumer.

Enable multicast
transport

Indicate whether or not this topic destination uses multicast
transport if supported by the connection factory.

Property Description
 Chapter 8. Asynchronous messaging 503

Advanced destination properties
The WebSphere MQ queue and WebSphere MQ topic destinations share a
number of advanced common properties. These properties are described in
Table 8-36.

Table 8-36 Advanced WebSphere MQ destination properties

WebSphere MQ queue destination configuration
To configure a queue destination for the WebSphere MQ JMS provider, complete
the following steps:

1. In the navigation tree, expand Resources → JMS → Queues.

2. Set the scope. A list of any existing queue destinations defined at this scope
will be displayed. This is shown in Figure 8-37 on page 505.

Property Description

CCSID Use this property to identify the coded character set identifier
for use with the WebSphere MQ queue manager. This coded
character set identifier (CCSID) must be one of the CCSIDs
supported by WebSphere MQ.

Use native encoding Indicate whether or the destination should use native
encoding, using appropriate encoding values for the Java
platform.

Integer encoding If native encoding is not enabled, select whether integer
encoding is normal or reversed.

Decimal encoding If native encoding is not enabled, select whether decimal
encoding is normal or reversed.

Floating point
encoding

If native encoding is not enabled, select the type of floating
point encoding.

Target client Indicate whether the receiving application is JMS-compliant or
is a traditional WebSphere MQ application.
504 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-37 WebSphere MQ queue destination administered objects

In this example, we already have one WebSphere MQ queue destination
object defined, called BankMQJMSQueue. Note the provider types.
 Chapter 8. Asynchronous messaging 505

3. To create a new queue destination object, click New, specify the type of
provider in the next window, and click Next. Alternatively, to change the
properties of an existing queue destination, click one of the queue
destinations displayed. Figure 8-38 on page 507 shows the top portion of the
configuration page for BankMQJMSQueue object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Base queue name.
The value specified for the Base queue name property must match the name
of the queue defined on the WebSphere MQ queue manager to which we are
connecting.
506 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-38 WebSphere MQ queue destination properties

4. Enter the required configuration properties for the WebSphere MQ queue
destination.

5. Click OK.
 Chapter 8. Asynchronous messaging 507

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, restart any application servers within
the scope of the resources.

WebSphere MQ topic destination configuration
To configure a topic destination for the WebSphere MQ JMS provider, complete
the following steps:

1. In the navigation tree, expand Resources → JMS → Topics.

2. Set the scope. A list of any existing topic destinations defined at this scope
will be displayed. This is shown in Figure 8-39.

Figure 8-39 WebSphere MQ topic destination administered objects

In this example, we already have one WebSphere MQ topic destination object
defined, called TestMQTopic. Note the provider type.
508 WebSphere Application Server V6.1: System Management and Configuration

3. To create a new topic destination object, click New, specify the type of
provider in the next window, and click Next. Alternatively, to change the
properties of an existing topic destination, click one of the topic destinations
displayed. Figure 8-40 on page 510 shows the top portion of the configuration
page for TestMQTopic object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Base topic name.
In Figure 8-40, the value specified for the Base topic name property is
TestTopic. This must match the name of the topic defined on the broker.
 Chapter 8. Asynchronous messaging 509

Figure 8-40 WebSphere MQ topic destination properties

4. Enter the required configuration properties for the WebSphere MQ topic
destination.

5. Click OK.
510 WebSphere Application Server V6.1: System Management and Configuration

6. Save the changes and synchronize them with the nodes.

7. For the changes to become effective, restart any application servers within
the scope of the resources.

8.6.4 Configuring listener ports
As discussed in 8.4.7, “Associating a message-driven bean with a destination”
on page 445, a listener port is used to associate a message-driven bean with a
connection factory and a destination for the WebSphere MQ JMS provider. A
listener must be defined on the application server on which the message-driven
application will be installed. To configure a listener port, complete the following
steps:

1. In the navigation tree, expand Servers.

2. Click Application servers.

3. A list of the application servers defined within the cell will be displayed. This is
shown in Figure 8-41.

Figure 8-41 Application servers defined within the cell

4. Click the application server on which to create the listener port.

5. The configuration properties for the application server will be displayed. In the
Communications section, expand Messaging.
 Chapter 8. Asynchronous messaging 511

6. Click Message Listener Service, as shown in Figure 8-42 on page 512.

Figure 8-42 Message listener service link

7. The configuration properties for the message listener service will be
displayed.
512 WebSphere Application Server V6.1: System Management and Configuration

8. Click Listener Ports. A list of listener ports that are currently defined for this
application server will be displayed. This is shown in Figure 8-43 on
page 513.

Figure 8-43 Listener ports

In this example, we already have one listener port defined, called
BankListenerPort.
 Chapter 8. Asynchronous messaging 513

9. To create a new listener port, click New. Alternatively, to change the
properties of an existing listener port, click one of the listener ports displayed.
Figure 8-44 on page 514 shows the configuration page for the
BankListenerPort object. Values must be specified for the Name, Initial State,
Connection factory JNDI name, and Destination JNDI name properties.

Figure 8-44 Listener port properties

10.Enter the required configuration properties for the JMS activation
specification.
514 WebSphere Application Server V6.1: System Management and Configuration

11.Click OK.

12.Save the changes and synchronize them with the nodes.

13.For the changes to become effective, restart any application servers within
the scope of the resources.

Following our example, using the WebSphere MQ connection factory defined in
“WebSphere MQ connection factory configuration” on page 498 and the
WebSphere MQ queue defined in “WebSphere MQ queue destination
configuration” on page 504, we know that the BankMQJMSConnFactory object
was bound into the JNDI name space with the name jms/BankJMSConnFactory.
This JMS connection factory maps to a WebSphere MQ Queue Manager running
on host kcgg1d6 and listening on port 1414. We also know that the
BankMQJMSQueue object was bound into the JNDI name space with the name
jms/BankJMSQueue. This JMS queue maps on to the BankJSQueue on this
WebSphere MQ Queue Manager.

Therefore, if a message-driven bean is associated with this listener port, it would
be invoked when messages arrived at the BankJSQueue destination on the
WebSphere MQ Queue Manager listening on port 1414 of host kcgg1d6.

8.6.5 Configuring a generic JMS provider
If you use a generic JMS provider, the WebSphere administrative console can
still be used to configure JMS administered objects within the JNDI name space
of the application server. The sections that follow describe how the WebSphere
administrative console can be used to specify a JMS provider, and also to
configure JMS connection factories and JMS destinations for that JMS provider.

JMS connection factory configuration
To remain compatible with JMS specification 1.0, there are two specific types of
connection factories (prefixed with “Queue” and “Topic”) and a more general type
of connection factory with no prefix (JMS 1.1). The particular properties of
specific types of connection factories will be a subset of the more general
connection factory, but all are administered in the same way.

To configure a JMS connection factory for a generic JMS provider, complete the
following steps:

1. In the navigation tree, expand Resources → JMS → Connection factories.

2. Set the scope. A list of any existing connection factories defined at this scope
will be displayed.

3. To create a new connection factory object, click New, specify the previously
defined generic provider in the next window, and click Next. Alternatively, to
 Chapter 8. Asynchronous messaging 515

change the properties of an existing connection factory, click one of the
connection factories displayed. Figure 8-45 shows the configuration page for
a connection factory object.

Figure 8-45 Generic JMS provider connection factory configuration window
516 WebSphere Application Server V6.1: System Management and Configuration

4. Enter the required configuration properties for the JMS connection factory.
The common properties are described in 8.6.1, “Common administration
properties” on page 462. The properties specific to the generic JMS
connection factory object are shown in Table 8-37 on page 517.

Table 8-37 Generic JMS provider connection factory properties

5. Click OK.

6. Save the changes and synchronize them with the nodes.

7. For the new connection factory to be bound into the JNDI name space at the
correct scope, restart the relevant application servers.

Property Description

Type This is a read-only property that is set according to the type of
connection factory being configured. For a JMS 1.1 general
connection factory, the property will be UNIFIED. For the
Queue Connection Factory and Topic Connection Factory, the
property will be QUEUE or TOPIC, respectively.

External JNDI name Specify the JNDI name used to bind the JMS connection
factory into the name space of the messaging provider.

Component managed
authentication alias

The component-managed authentication alias list can be used
to specify a Java 2 Connector authentication data entry. If the
resource reference used within the JMS client application
specifies a res-auth of Application, the user ID and password
defined by the Java 2 Connector authentication data entry will
be used to authenticate the creation of a connection. The
component-managed authentication alias defaults to none. If
no component-managed authentication alias is specified and
the messaging provider requires the user ID and password to
get a connection, then an exception will be thrown when
attempting to connect. If using a Component managed alias,
the Container managed alias (below) should not be used.

Container managed
authentication alias

The container-managed authentication alias list can be used
to specify a Java 2 Connector authentication data entry.
Please refer to the Component managed authentication alias
description (above) for more detail. If using a Container
managed alias, the Component managed alias (above) should
not be used.

Mapping-configuratio
n alias

This property provides a list of modules defined at Security →
Java Authentication and Authorization Service → Application
Logins. The DefaultPrincipalMapping JAAS configuration
maps the authentication alias to the user ID and
password required by the JMS Provider resource. Other
mappings can be defined and used.
 Chapter 8. Asynchronous messaging 517

JMS destination configuration
There are two types of Generic JMS provider destinations: Queue and Topic. The
properties for both are precisely the same, so only creation of the Queue will be
described here.

To configure a JMS destination for a generic JMS provider, complete the
following steps:

1. In the navigation tree, expand Resources → JMS → Queues.

2. Set the scope. A list of any existing queues defined at this scope will be
displayed.
518 WebSphere Application Server V6.1: System Management and Configuration

3. To create a new destination, click New, specify the previously defined generic
provider in the next window, and click Next. Alternatively, to change the
properties of an existing destination, click one of the destinations displayed.
Figure 8-46 on page 519 shows the configuration page for a destination
object.

Figure 8-46 Generic JMS provider Queue destination configuration window
 Chapter 8. Asynchronous messaging 519

4. Enter the required configuration properties for the JMS destination. The
common properties are described in 8.6.1, “Common administration
properties” on page 462. The properties specific to the generic JMS
destination object are shown in Table 8-38.

Table 8-38 Generic JMS provider destination properties

5. Click OK.

6. Save the changes and synchronize them with the nodes.

7. For the new destination to be bound into the JNDI name space at the correct
scope, restart the relevant application servers.

8.7 Connecting to a service integration bus
A JMS client obtains connections to a service integration bus using a suitably
configured JMS connection factory, defined for the default messaging JMS
provider. However, the selection of which messaging engine within a particular
service integration bus a JMS client will connect to depends on the connection
properties defined within the JMS connection factory. The options available can
range from simply connecting to any suitable messaging engine within the
named service integration bus, to using a highly specific connection selection
algorithm. The sections that follow describe the mechanisms used to determine
the most suitable messaging engine when a JMS client is connecting to a service
integration bus.

Property Description

Type This is a read-only property set to QUEUE or TOPIC
depending on the type of destination being configured.

External JNDI name Define the JNDI name used to bind the JMS connection
factory into the name space of the messaging provider.

Note: None of the messaging engine selection processes discussed in this
section affect the JMS client in any way. As far as the JMS client is concerned,
the ConnectionFactory simply returns a connection to the underlying
messaging provider, in this case, a service integration bus. The process of
configuring a ConnectionFactory in order to tailor the messaging engine that is
selected, is a purely administrative task.
520 WebSphere Application Server V6.1: System Management and Configuration

8.7.1 JMS client run time environment
Regardless of the environment on which a JMS client is executing, it will always
performs the same steps in order to connect to a JMS provider. These steps are:

1. Obtain a reference to a JMS connection factory from the JNDI name space.

2. Invoke the createConnection method on the JMS connection factory.

The important point here is that the JMS connection factory object will always
execute within the same process as the JMS client. However, the JMS client, and
therefore the JMS connection factory, might be executing inside of a WebSphere
process, or they might be executing within a stand-alone JVM. In the case of the
connection factory for the default messaging JMS provider, the behavior of the
connection factory depends on the environment on which it is executing.

� Clients running inside of WebSphere Application Server

When the connection factory is executing within the WebSphere Application
Server V6 environment, it is able to communicate with components of the
WebSphere run time in order to determine which messaging engines are
defined within the specified service integration bus, and where these
messaging engines are currently located. The relevant connection properties
configured on the connection factory can then be used to select a suitable
messaging engine to which to connect.

� Clients running outside of WebSphere Application Server

When the connection factory is executing outside of the WebSphere
Application Server V6 environment, or in a WebSphere Application Server V6
environment on a different cell to the target bus, it is not able to determine
which messaging engines are defined within the specified service integration
bus or where they are currently located. In order to obtain this information, the
connection factory must connect to an application server within the same cell
as the target bus. This application server is known as a bootstrap server.
A bootstrap server is simply an ordinary application server that is running the
SIB service. The SIB service is the component within an application server
that manages the service integration bus resources for that application server.
It is the SIB service that enables an application server to act as bootstrap
server for default messaging JMS provider connection factories. However,
while the bootstrap server needs to be running the SIB service, it does not

Note: The connection factory is only able to determine the location of
messaging engines that are defined within the same WebSphere cell. If the
target bus is defined within another cell, then a list of suitable provider
endpoints must be configured on the connection factory.
 Chapter 8. Asynchronous messaging 521

necessarily need to be hosting any messaging engines. This is shown in
Figure 8-47 on page 522.

Figure 8-47 Using a bootstrap server with a messaging engine

Use the provider endpoints property to configure the bootstrap servers to
which a connection factory can connect.

Provider endpoints
The provider endpoints property of the connection factory allows an administrator
to specify a comma-separated list of suitable bootstrap servers for the
connection factory. Each bootstrap server in the list is specified as a triplet of the
form:

hostname : port : transport chain

The different elements are:

� hostname is the name of the host on which the bootstrap server is running. If a
host name is not specified, the value will default to localhost.

� port is the port number that the SIB service for the bootstrap server is
listening on. This can be determined from the relevant messaging engine
inbound transport that will be used for the bootstrap request. If no port is

WebSphere Application Server V6 Cell

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

Application Server

Messaging
Engine

SIB Service

J2EE Client Container

JMS Client

1. Bootstrap 2. Connect
522 WebSphere Application Server V6.1: System Management and Configuration

specified, the value will default to 7276 (the default port number for
SIB_ENDPOINT_ADDRESS).

� transport chain specifies the transport chain that will be used to send the
bootstrap request to the bootstrap server. Valid values for transport chain are:

– BootstrapBasicMessaging

The bootstrap request will be sent to the bootstrap server using a standard
TCP/IP connection to the InboundBasicMessaging transport chain.

– BootstrapSecureMessaging

The bootstrap request will be sent to the bootstrap server over a secure
TCP/IP connection to the InboundSecureMessaging transport chain.

– BootstrapTunneledMessaging

The bootstrap request will be tunneled to the bootstrap server over an
HTTP connection. Before you can use this transport chain, you must
define a corresponding transport chain on the bootstrap server.

– BootstrapTunneledSecureMessaging

The bootstrap request will be tunneled to the bootstrap server over a
secure HTTP connection. Before you can use this transport chain, you
must define a corresponding transport chain on the bootstrap server.

If no transport chain is specified the value will default to
BootstrapBasicMessaging.

If no value is specified, for the provider endpoint property, the connection factory
will use the following default provider endpoint address:

localhost:7276:BootstrapBasicMessaging

Dedicated bootstrap servers
Because the location of a bootstrap server is defined explicitly within the provider
endpoints property of a connection factory, consideration must be given to the
availability of the bootstrap server. By specifying a list of bootstrap servers in the
provider endpoints property, a connection factory is able to transparently
bootstrap to another server in the list in the event that one of the bootstrap
servers fails. The connection factory attempts to connect to a bootstrap server in
the order in which they are specified in the provider endpoints list. However, you
want to avoid specifying a long list of bootstrap servers. Consider configuring
only a few highly available application servers as dedicated bootstrap servers.
 Chapter 8. Asynchronous messaging 523

8.7.2 Controlling messaging engine selection
The remaining connection properties that can be specified on a connection
factory for the default messaging JMS provider are used to control how the
connection factory selects the messaging engine to connect to on the specified
service integration bus. The sections that follow discuss these properties in more
detail.

Bus name
The only connection property that is required when configuring a connection
factory for the default messaging JMS provider is the bus name property. The
value of the bus name property specifies the name of the bus to which the
connection factory will create JMS connections.

In the absence of any other connection properties, the connection factory returns
a connection to any available messaging engine in the bus. However, despite the
freedom to connect to any available messaging engine in the bus, the connection
factory applies a few simple rules to find the most suitable messaging engine
with which to connect. The rules are as follows:

1. The connection factory looks for a messaging engine within the specified
service integration bus that is in the same server process as the JMS client. If
a messaging engine within the specified bus is found in the same application
server process, then a direct in-process connection is made from the JMS
client to the messaging engine. This is shown in Figure 8-48.
524 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-48 In-process connection for a JMS client and a messaging engine

Note: A direct in-process connection provides the best performance when
connecting a JMS client to a messaging engine.

WebSphere Application Server V6 Cell

Host 2

Server 3

Messaging
Engine

Server 4

Messaging
Engine

Host 1

Server 1

Messaging
Engine

JMS Client

Server 2

Messaging
Engine
 Chapter 8. Asynchronous messaging 525

2. If it is not possible for the connection factory to create a connection to a
messaging engine in the same application server process, the connection
factory looks for a messaging engine that is running on the same host as the
JMS client. If a messaging engine within the specified bus is found on the
same host, then a remote connection is made from the JMS client to the
messaging engine. This is shown in Figure 8-49.

Figure 8-49 Remote connection on the same host

3. If it is not possible for the connection factory to create a connection to a
messaging engine on the same host as the JMS client, the connection factory
looks for any other messaging engine that is part of the specified service
integration bus. This is shown in Figure 8-50.

Note: If multiple messaging engines are available on the same host as the
JMS client, new connections to the target bus will be load-balanced across
them.

WebSphere Application Server V6 Cell

Host 2

Server 3

Messaging
Engine

Server 4

Messaging
Engine

Host 1

Server 1

JMS Client

Server 2

Messaging
Engine
526 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-50 Remote connection on a different host

Note: If multiple messaging engines are available within the target bus,
new connections to the target bus will be load balanced across them.

WebSphere Application Server V6 Cell

Host 2

Server 3 Server 4

Messaging
Engine 4

Host 1

Server 1

JMS Client

Server 2
 Chapter 8. Asynchronous messaging 527

4. If it is not possible for the connection factory to create a connection to any of
the messaging engines that make up the specified service integration bus, the
connection factory throws a javax.jms.JMSException to the JMS client. The
javax.jms.JMSException contains a linked exception to a service integration
bus specific exception, similar to that shown in Example 8-21.

Example 8-21 Failure to connect to a messaging engine

com.ibm.websphere.sib.exception.SIResourceException: CWSIT0019E: No suitable
messaging engine is available in bus SamplesBus.

Target inbound transport chain
The target inbound transport chain property for a connection factory specifies the
transport chain that the JMS client should use when establishing a remote
connection to a messaging engine. Suitable values for this property are:

� InboundBasicMessaging

The JMS client establishes a standard TCP/IP connection to the messaging
engine. This is the default value for the target inbound transport chain
property.

� InboundSecureMessaging

The JMS client establishes a secure TCP/IP connection to the messaging
engine.

The process of selecting a suitable messaging engine takes into account the
inbound transport chains that are currently available to those messaging engines
under consideration. There is no point in selecting a messaging engine that
cannot be contacted using the target transport chain specified, so a final
selection is made only from those messaging engines that have the specified
target transport chain available to them.

Connection proximity
The messaging engine selection process performed by the connection factory
can be subtly altered by specifying different connection proximities. The
connection proximity property is used to restrict the set of available messaging
engines considered for selection by the connection factory. The set of available
messaging engines is restricted based on their proximity to the JMS client or the
bootstrap server acting on behalf of the JMS client. The valid values for the
connection proximity property are as follows:

� Bus

The set of available messaging engines will include all messaging engines
defined within the target service integration bus. This is the default value for
the connection proximity property and, in effect, does not restrict the set of
528 WebSphere Application Server V6.1: System Management and Configuration

available messaging engines in any way. When a connection proximity of Bus
is specified, the messaging engine selection process described in “Bus name”
on page 524 is used.

� Cluster

The set of available messaging engines for the target service integration bus
only includes those messaging engines defined within the same cluster as the
JMS client or bootstrap server.

� Host

The set of available messaging engines for the target service integration bus
only includes those messaging engines running on the same host as the JMS
client or bootstrap server.

� Server

The set of available messaging engines for the target service integration bus
only includes those messaging engines running within the same application
server process as the JMS client or bootstrap server.
 Chapter 8. Asynchronous messaging 529

To see how the value of the connection proximity property affects the messaging
engine selection process, consider the configuration shown in Figure 8-51. All of
the messaging engines shown in Figure 8-51 exist within the same service
integration bus.

Figure 8-51 Sample topology for a service integration bus

The effect of the value of the connection proximity property on messaging engine
selection is described in Table 8-39 on page 531.

WebSphere Application Server V6 Cell

Host 2

Server 3

Messaging
Engine

Server 4

Messaging
Engine

Host 1

Server 1

JMS Client

Cluster 1

Server 2

Messaging
Engine

Cluster 2
530 WebSphere Application Server V6.1: System Management and Configuration

Table 8-39 Effect of connection proximity on messaging engine selection

Target groups
Target groups provide a further means of controlling the selection of a suitable
messaging engine by restricting the messaging engines available for
consideration during the connection proximity check. Before the connection
proximity search is performed, the set of messaging engines that are members of
the specified target group is determined. The connection proximity check is then
restricted to these messaging engines.

The use of target groups is controlled through the target, target type, and target
significance properties of the connection factory, the descriptions for which are
as follows:

� Target

The target property identifies a group of messaging engines that should be
used when determining the set of available messaging engines. If no target
group is specified, then no sub-setting of the available messaging engines
takes place and every messaging engine within the bus is considered during
the connection proximity check. By default, no target group is specified.

Connection proximity
value

Messaging engine selected

Bus The JMS client connects to the messaging engine on Server
2, following the rules described in “Bus name” on page 524.

Cluster The JMS client connect to the messaging engine on Server
3, because this is the only messaging engine in the same
cluster as the client.

Host The JMS client connects to the messaging engine on Server
2, because this is the only messaging engine on the same
host as the client.

Server The JMS client fails to connect to the service integration bus,
because there is no messaging engine in the same server as
the client.
 Chapter 8. Asynchronous messaging 531

� Target type

The target type property specifies the type of the group identified by the target
property. Valid values for the target type property are:

– Bus member name

Bus member name indicates that the target property specifies the name of
a bus member. Because bus members can only be application servers or
application server clusters, the value of the target property must be an
application server name of the form <node name>.<server name> or the
name of the cluster.

– Custom messaging engine group name

This value indicates that the target property specifies the name of a user
defined custom group of messaging engines. A messaging engine is
registered with a custom group by specifying the name of the group in the
target groups property for the messaging engine. The registration of the
messaging engine takes place when the messaging engine is started.

– Messaging engine name

Choosing this value indicates that the target property specifies the name
of a specific messaging engine. This is the most restrictive target type that
can be specified.

� Target significance

The target significance property allows the connection factory to relax the
rules that are applied regarding the target group. The valid values for this
property are as follows:

– Preferred

Use Preferred to indicate that a messaging engine be selected from the
target group. A messaging engine in the target group is selected if one is
available. If a messaging engine in the target group is not available, an
available messaging engine within the specified service integration bus,
but outside of the target group, is selected.

– Required

Use Required to indicate that a messaging engine be selected from the
target group. A messaging engine in the target group is selected if one is
available. If a messaging engine in the target group is not available, the
connection process fails.

To see how the values of the target group properties affect the messaging engine
selection process, consider the configuration shown in Figure 8-52 on page 533.
All of the messaging engines shown in Figure 8-52 exist the same service
integration bus.
532 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-52 Sample topology for a service integration bus

The effect of the value of the connection proximity property on messaging engine
selection is described in Table 8-40.

Table 8-40 Effect of target group properties on messaging engine selection

Connection property Messaging engine selected

Name Value

Target Cluster 2 The set of available messaging engines
in the target group, Cluster 2, is:
{Messaging Engine 2, Messaging
Engine 4}. Because a connection
proximity of Bus has been specified, the
JMS client would connect to Messaging
Engine 2. This is the only messaging
engine in the set that is on the same host
as the client.

Target type Bus member name

Target significance Required

Connection proximity Bus

WebSphere Application Server V6 Cell

Host 2

Server 3

Messaging
Engine 3

Server 4

Messaging
Engine 4

Host 1

Server 1

Messaging
Engine 1

JMS Client

Cluster 1

Server 2

Messaging
Engine 2

Cluster 2
 Chapter 8. Asynchronous messaging 533

8.7.3 Load balancing bootstrapped clients
JMS clients that connect to a service integration bus using a bootstrap server,
which is itself running a suitable messaging engine, always connect to the
messaging engine running in the bootstrap server. This is because this
messaging engine is the closest suitable messaging engine to the bootstrap
server.

If there are many JMS clients using the same connection factory, they all
bootstrap using the same list of bootstrap servers. Because the connection
factory attempts to connect to a bootstrap server in the order in which they are
specified in the provider endpoints list, it is likely that all of the JMS clients will be
connected to the same messaging engine in the first available bootstrap server.
The JMS clients will not be load-balanced across the set of suitable messaging
engines. This is shown in Figure 8-53 on page 535.

Target Cluster 2 The set of available messaging engines
in the target group, Cluster 2, is:
{Messaging Engine 2, Messaging
Engine 4}. Because a connection
proximity of Server and a target
significance of Required have been
specified, the JMS client would fail to
connect to the service integration bus,
because there are no messaging
engines in the target group that are on
the same server as the client.

Target type Bus member name

Target significance Required

Connection proximity Server

Target Cluster 2 By relaxing the target significance to
Preferred, the JMS client is now able to
connect to an alternative messaging
engine that does not necessarily meet
the connection proximity constraint. In
this case, the JMS client would connect
to Messaging Engine 1.

Target type Bus member name

Target significance Preferred

Connection proximity Server

Connection property Messaging engine selected

Name Value

Note: The term suitable messaging engine describes a messaging engine that
matches all of the target group and connection proximity rules described in
8.7.2, “Controlling messaging engine selection” on page 524.
534 WebSphere Application Server V6.1: System Management and Configuration

Figure 8-53 Bootstrapped JMS clients connecting to a single messaging engine

A solution to this problem is to make use of a dedicated bootstrap server that is
not a running a messaging engine for the target bus. This ensures that the
connections established for JMS client are load-balanced across the available
messaging engines for the target bus. This is shown in Figure 8-54 on page 536.

We expect that a future release will support the automatic load-balancing of
bootstrapped JMS clients across the set of suitable messaging engines, thus
reducing the tendency for bootstrapped JMS clients to congregate at a single
bootstrap server.

J2EE Client ContainerJ2EE Client Container J2EE Client Container

WebSphere Application Server V6 Cell

JMS Client

SIB_ENDPOINT_ADDRESS

Application Server

Messaging
Engine

SIB Service

SIB_ENDPOINT_ADDRESS

Application Server

Messaging
Engine

SIB Service

JMS ClientJMS Client

1. Bootstrap
2. Connect
 Chapter 8. Asynchronous messaging 535

Figure 8-54 Load balancing of connections for bootstrapped JMS clients

8.8 References and resources
These documents and Web sites are contain relevant information:

� WebSphere Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� Java 2 Platform Enterprise Edition Specification, v1.4

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/

� WebSphere MQ Using Java

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/
manuals/crosslatest.html

� Java Message Service (JMS)

http://java.sun.com/products/jms

J2EE Client Container

JMS Client

J2EE Client ContainerJ2EE Client Container

WebSphere Application Server V6 Cell

Application Server

SIB Service

Application Server

Messaging
Engine

SIB Service

Application Server

Messaging
Engine

SIB Service

JMS ClientJMS Client

1. Bootstrap

2. Connect 2. Connect 2. Connect

SIB_ENDPOINT_ADDRESS SIB_ENDPOINT_ADDRESS SIB_ENDPOINT_ADDRESS
536 WebSphere Application Server V6.1: System Management and Configuration

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/j2ee/connector/
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://java.sun.com/products/jms

� Yusuf, Enterprise Messaging Using JMS and WebSphere, Pearson
Education, 2004, ISBN 0131468634

� Monson-Haefel, et al, Java Message Service, O’Reilly Media, Incorporated,
2000, ISBN 0596000685

� Giotta, et al, Professional JMS, Wrox Press Inc., 2001, ISBN 1861004931

� Monson-Haefel, et all, Enterprise JavaBeans, Fourth Edition, O’Reilly Media,
Incorporated, 2004, ISBN 059600530X

� Marinescu, et al, EJB Design Patterns, Wiley, John & Sons, Incorporated,
2002, ISBN 0471208310
 Chapter 8. Asynchronous messaging 537

538 WebSphere Application Server V6.1: System Management and Configuration

Chapter 9. Default messaging provider

WebSphere Application Server V6 introduced a new component called the
service integration bus. In this chapter, we describe the concepts behind the
service integration bus, focusing on its role as the default messaging provider
within WebSphere Application Server. We cover:

� Concepts and architecture
� Run time components
� High availability and workload management
� Service integration bus topologies
� Service integration bus and message-driven beans
� Service integration bus security
� Problem determination
� Configuration and management

9

© Copyright IBM Corp. 2006. All rights reserved. 539

9.1 Concepts and architecture
The service integration bus provides a managed communications framework that
supports a variety of message distribution models, reliability options, and
network topologies. It provides support for traditional messaging applications, as
well as enabling the implementation of service-oriented architectures within the
WebSphere Application Server environment.

The service integration bus is the underlying messaging provider for the default
messaging JMS provider, replacing the embedded messaging provider that was
supported in WebSphere Application Server V5.

The service integration bus introduces a number of new concepts. The sections
that follow discuss each of these concepts in more detail.

9.1.1 Buses
A service integration bus, or bus, is simply an architectural concept. It gives an
administrator the ability to group a collection of resources together that provide
the messaging capabilities of the bus. At run time, the bus presents these
cooperating messaging resources to applications as a single entity, hiding from
those applications the details of how the bus is configured and where on the bus
the different resources are located.

A bus is defined at the cell level. It is anticipated that, in a standard configuration,
no more than one bus will be required within a cell. However, a cell can contain
any number of buses.

Resources are created within, or added to, the scope of a specific bus. Simply
defining a bus within a cell has no run time impact on any of the components
running within a cell. It is not until members are added to a bus that any of the run
time components within an application server are affected.

Figure 9-1 on page 541 shows a bus defined within a cell.
540 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-1 Service integration buses within a cell

9.1.2 Bus members
A bus member is simply an application server, or cluster of application servers,
that has been added as a member of a bus. Adding an application server, or
cluster of application servers, as a member of a bus automatically defines a
number of resources on the bus member in question. In terms of the functionality
provided by a bus, the most important of the resources that are automatically
defined is a messaging engine.

9.1.3 Messaging engines
A messaging engine is the component within an application server that provides
the core messaging functionality of a bus. At run time, it is the messaging
engines within a bus that communicate and cooperate with each other to provide
the messaging capabilities of the bus. A messaging engine is responsible for
managing the resources of the bus and it also provides a connection point to
which local and remote client applications can connect.

A messaging engine is associated with a bus member. When an application
server is added as a member of a bus, a messaging engine is automatically

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

Application
Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

Accounts Department Bus
 Chapter 9. Default messaging provider 541

created and associated with this application server. Figure 9-2 on page 542
shows a cell that contains two buses, each of which has two application servers
defined as bus members.

Figure 9-2 Messaging engines within bus members

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

Application
Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

ME

ME

Accounts Department Bus
Members = {Application Server 1, Application Server 4}

HR Department Bus
Members = {Application Server 2, Application Server 3}

ME

ME
542 WebSphere Application Server V6.1: System Management and Configuration

A messaging engine is a relatively lightweight run time object. This allows a
single application server to host several messaging engines. If an application
server is added as a member of multiple buses, that application server is
associated with multiple messaging engines, one messaging engine for each bus
of which it is a member. This is shown in Figure 9-3 on page 543.

Figure 9-3 Multiple messaging engines within a single application server

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

Application
Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

ME

ME

Accounts Department Bus
Members = {Application Server 1, Application Server 4}

HR Department Bus
Members = {Application Server 2, Application Server 3}

ME

MEME

Payroll Department Bus
Members = {Application Server 1}
 Chapter 9. Default messaging provider 543

When a cluster of application servers is added as a member of bus, a single
messaging engine is automatically created and associated with the application
server cluster, regardless of the number of application servers defined as
members of the cluster. At run time, this messaging engine is activated within a
single application server within the cluster. The application server that is chosen
to host the messaging engine will be the first cluster member to start. This is
shown in Figure 9-4.

Figure 9-4 An application server cluster as a bus member

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Cluster 1
Application

Server 3
Application

Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

ME

HR Department Bus
Members = {Cluster 1}
544 WebSphere Application Server V6.1: System Management and Configuration

However, this messaging engine is able to run within any of the application
servers defined as members of the cluster. If the messaging engine, or the
application server within which it is running, should fail, the messaging engine is
activated on another available server in the cluster. Therefore, adding an
application server cluster as a member of a bus enables failover for messaging
engines that are associated with that cluster. This is shown in Figure 9-5 on
page 545.

Figure 9-5 Messaging engine failover within an application server cluster

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Cluster 1
Application

Server 3
Application

Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

ME

HR Department Bus
Members = {Cluster 1}

ME
 Chapter 9. Default messaging provider 545

Once an application server cluster has been added as a member of a bus, it is
also possible to create additional messaging engines and associate them with
the cluster. These additional messaging engines can then be configured to run
within a specific cluster member, if required. Such a configuration enables a bus
to be scaled to meet the needs of applications that generate high message
volumes. It also improves the availability of the bus in question. This is shown in
Figure 9-6 on page 546.

Figure 9-6 Messaging engine scalability within an application server cluster

For more information about failover and scalability within the bus, refer to 9.3,
“High availability and workload management” on page 594.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Cluster 1
Application

Server 3
Application

Server 4

HR Department Bus
Members = {Cluster 1}

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

ME MEME ME
546 WebSphere Application Server V6.1: System Management and Configuration

Messaging engine naming
As discussed previously, when a member is added to a bus, a messaging engine
is automatically created and associated with the new bus member. The name of
the new messaging engine is generated based on the details of the new bus
member, as follows:

� Application server bus members

The format of the messaging engine name generated when an application
server is added as a member of a bus is as follows:

<node>.<server>-<bus>

The elements are defined as:

– <node> is the name of the node on which the new bus member is defined.
– <server> is the name of the new application server bus member.
– <bus> is the name of the bus to which the new bus member has been

added.

We can use it in an example, such as:

ITSONode.Server 1-ITSOBus

� Application server cluster bus members

The format of the messaging engine name generated when an application
server cluster is added as a member of a bus is as follows:

<cluster>.<X>-<bus>

The elements of this format are:

– <cluster> is the name of the new application server cluster bus member.
– <X> is a number that is used to uniquely identify the messaging engine

within the cluster. This value starts at 000 and is incremented each time a
new messaging engine is added to the cluster.

– <bus> is the name of the bus to which the new bus member has been
added.

We can use it in an example, such as:

ITSOCluster.000-ITSOBus

9.1.4 Message stores

New in V6.1: In V6.0, the message store was backed by a relational
database. In V6.1, you have the option of using a flat file backed by the
operating system.
 Chapter 9. Default messaging provider 547

Every messaging engine defined within a bus has a message store associated
with it. A messaging engine uses this message store to persist durable data,
such as persistent messages and transaction states. Durable data written to the
message store survives the orderly shutdown, or failure, of a messaging engine,
regardless of the reason for the failure.

It can also use the message store to reduce run time resource consumption. For
example, the messaging engine can write non-persistent messages to the
message store in order to reduce the size of the Java heap when handling high
message volumes. This is known as spilling.

Message stores can be implemented as a set of database tables (known as a
data store), or as flat files (known as a file store). Figure 9-7 on page 549 shows
messaging engines associated with message stores. Two of the messaging
engines shown in Figure 9-7 are associated with data stores that exist within the
same database, each with its own set of tables and schema. The other
messaging engine uses a file store on the local file system. There are certain
considerations you must take into account when deciding the message store
topology. These considerations are discussed in more detail in 9.2.3, “Message
stores” on page 568, as part of the description of the run time components of the
bus.
548 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-7 Messaging engine data stores

9.1.5 Destinations
A destination within a bus is a logical address to which applications can attach as
message producers, message consumers, or both, in order to exchange
messages. The main types of destination that can be configured on a bus are:

� Queue destinations

Queue destinations are destinations that can be configured for point-to-point
messaging.

� Topic space destinations

Topic space destinations are destinations that can be configured for
publish/subscribe messaging.

� Alias destinations

Alias destinations are destinations that can be configured to refer to another
destination, potentially on a foreign bus. They can provide an extra level of
indirection for messaging applications. An alias destination can also be used

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

HR Department Bus

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

MEME ME

File Store
Data store

Data store

Database
 Chapter 9. Default messaging provider 549

to override some of the values specified on the target destination, such as
default reliability and maximum reliability. Foreign buses are discussed in
9.1.7, “Foreign buses” on page 555.

� Foreign destinations

Foreign destinations are not destinations within a bus, but they can be used to
override the default reliability and maximum reliability properties of a
destination that exists on a foreign bus. Foreign buses are discussed in 9.1.7,
“Foreign buses” on page 555.

Message points
When a destination is configured on a bus, it simply defines a logical address to
which applications can attach. Queue and topic space destinations must be
associated with a messaging engine in order for any persistent messages
directed at those destinations to be persisted to an underlying message store.
These destinations are associated with a messaging engine using a message
point. A message point is a physical representation of a destination defined on a
bus. A message point can be configured to override some of the properties
inherited from the bus destination.

The two main types of message point that can be contained with a messaging
engine are:

� Queue points

A queue point is the message point for a queue destination. When creating a
queue destination on a bus, an administrator specifies the bus member that
will hold the messages for the queue. This action automatically defines a
queue point for each messaging engine associated with the specified bus
member.

If the bus member is an application server, a single queue point will be
created and associated with the messaging engine on that application server.
All of the messages that are sent to the queue destination will be handled by
this messaging engine. In this configuration, message ordering is maintained
on the queue destination.

If the bus member is a cluster of application servers, a queue point is created
and associated with each messaging engine defined within the bus member.
The queue destination is partitioned across the available messaging engines
within the cluster. In this configuration, message ordering is not maintained
on the queue destination. For more information about partitioned destinations
within the bus, please refer to 9.3, “High availability and workload
management” on page 594.
550 WebSphere Application Server V6.1: System Management and Configuration

� Publication points

A publication point is the message point for a topic space. When creating a
topic space destination, an administrator does not need to specify a bus
member to hold messages for the topic space. Creating a topic space
destination automatically defines a publication point on each messaging
engine within the bus.

Figure 9-8 on page 551 shows a queue destination and a topic space destination
and their associated queue and publication points.

Figure 9-8 Queue and publication points in the bus

Reliability
It is on a destination that an administrator specifies the default quality of service
levels that will be applied when a message producer or message consumer
interacts with the destination. An administrator is able to configure a default
reliability and a maximum reliability for each bus destination. There are five levels

Node Agent

Node 1

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

Accounts Department Bus
Members = {Application Server 1, Application Server 2}

Application
Server 1

Messaging
Engine

Publication Point

Queue Destination
Members = Application Server 2

Topic Space
Destination

Application
Server 2

Publication Point

Queue Point
Message

Store
Message

Store

Messaging
Engine
 Chapter 9. Default messaging provider 551

of reliability that can be specified for these properties. These are described in
Table 9-1.

Table 9-1 Service integration bus destination reliabilities

Administrators can also allow message producers to override the default
reliability that is specified on a destination. The mechanism that is used to
achieve this depends on the type of the message producer. For instance, a JMS
message producer can use the quality of service properties on the default
messaging JMS provider connection factory to map the JMS PERSISTENT and
NON_PERSISTENT delivery modes onto the required bus reliabilities. This is
discussed in more detail in “Quality of service properties” on page 466.

Reliability Description

Best Effort nonpersistent Messages that are sent to this destination are discarded
when the messaging engine with which it associated is
stopped, or if it fails. Messages can also be discarded if
the connection used to send them becomes unavailable
or as a result of constrained system resources.
Messages delivered asynchronously to non-transactional
MessageListeners or message-driven beans will not be
redelivered if an exception is thrown.

Express nonpersistent Messages that are sent to this destination are discarded
when the messaging engine with which it is associated is
stopped or if it fails. Messages can also be discarded if
the connection used to send them becomes unavailable.

Reliable nonpersistent Messages that are sent to this destination are discarded
when the messaging engine with which it is associated is
stopped or if it fails.

Reliable persistent Messages that are sent to this destination can be
discarded when the messaging engine with which it is
associated fails, but are persisted if the messaging
engine is stopped normally.

Assured persistent Messages that are sent to this destination are never
discarded.

Least reliable

Most reliable

Note: Reliability settings should be chosen according to your messaging
needs. More reliable qualities of service might not perform as well as less
reliable qualities of service.
552 WebSphere Application Server V6.1: System Management and Configuration

Strict message ordering

A destination can be configured so that the order of messages produced and
consumed is preserved in a much more rigorous fashion that in normal
circumstances. This setting is found on the destination configuration page.

Generally, messages going from a single producer to a single consumer will be
seen to arrive in the same order in which they were produced. However, the order
of messages may change due to certain events, such as a system failure of
some kind. If a destination is configured to try and enforce message ordering,
there are a number of automatic restrictions that come into play at run time.
These are listed below:

1. Concurrent consumers are prevented from attaching to an ordered
destination.

Only a single consumer can attach to an ordered destination at any given
time. This is like an exclusive lock that prevents other consumers from
attaching and potentially consuming messages out of order.

2. Partially consumed messages prevent subsequent messages from being
consumed.

Destinations without strict message ordering will allow consumers to skip over
messages that have been “partially” consumed. An example of this is a
message that has a lock on it due to an uncommitted transaction. For a
destination with strict message ordering, this would result in the destination
being blocked until the partially consumed message is fully removed or
replaced (committed or rolled back).

3. Concurrent message driven beans (MDBs) are restricted for an ordered
destination.

To prevent race conditions and ensure ordered processing of MDBs from the
destination, the maximum concurrent endpoints and maximum batch size

Note: The reliability specified by a message producer can never exceed the
maximum reliability specified on a bus destination. In the case of a JMS
message producer, attempting to do this will cause a JMS exception to be
thrown to the client application.

New in V6.1: Destinations on a bus can now be configured to be much more
strict in the delivery of messages in the order they were produced. When the
setting is enabled, certain automatic restrictions are placed on the use of the
destination, such as disallowing concurrent consumption of messages by
multiple applications, which may disrupt message ordering.
 Chapter 9. Default messaging provider 553

settings of any MDB deployed to an ordered destination are overridden and
set to one.

4. Concurrent mediations are restricted for an ordered destination.

The concurrent mediation setting is set to false, ensuring an ordered
mediation of messages.

However, there are other issues that should be understood, but cannot be
automatically detected at run time. The main ones are listed below:

� If there is an exception destination configured, this may cause messages
under error conditions to be directed away from the consumer, thus disrupting
the message order. We recommend that for ordered destinations that no
exception destination be defined.

� Topology changes to the bus, such as deleting and recreating an ordered
destination, or introducing or removing mediation, could affect message
ordering.

� Mediations or application code can be designed to disrupt message ordering.
For example, mediations may divert messages to other destinations.

� Alias or foreign destinations do not have a message ordering option. In each
case, only the underlying destination can be ordered.

� If a queue type destination is deployed to a cluster bus member with more
than one messaging engine, this results in a destination with more than one
queue point or mediation point. Message ordering cannot be maintained
across such a destination.

� Only messages with a reliability of “assured persistent” should be used with
an ordered destination. Any other reliability levels may result in lost or
duplicated messages.

� Multiple producers can send messages to an ordered destination, but
messages are presented in the order in which they were committed by the
sending transaction. This may be different from the order in which they were
actually written to the queue.

� Messages of different reliabilities can overtake one another. We recommend
that messages to the ordered destination be of the same reliability level.

� Messages of different priorities can overtake one another. We recommend
that messages to the ordered destination be of the same priority.
554 WebSphere Application Server V6.1: System Management and Configuration

9.1.6 Mediations
A mediation processes in-flight messages between the production of a message
by one application, and the consumption of a message by another application.
Mediations enable the messaging behavior of a bus to be customized. Examples
of the processing that can be performed by a mediation are:

� Transforming a message from one format into another

� Routing messages to one or more target destinations that were not specified
by the sending application

� Augmenting messages by adding data from a data source

� Distributing messages to multiple target destinations

� Discarding messages

A mediation is defined within a specific bus. This mediation can then be
associated with a destination on the bus. A corresponding mediation point is
automatically created and associated with the destination as a result of this
process. A mediation point is a specialized type of message point. A destination
with which the mediation is associated is referred to as a mediated destination.

9.1.7 Foreign buses
A bus can be configured to connect to, and exchange messages with, other
messaging networks. In order to do this, a foreign bus must be configured.

A foreign bus encapsulates information related to the remote messaging
network, such as the type of the foreign bus and whether messaging applications
are allowed to send messages to the foreign bus. A foreign bus can represent:

� A bus in the same cell as the local bus
� A bus in a different cell from the local bus
� A WebSphere MQ network

The ability of a bus to be able to communicate with other messaging networks
provides several benefits, examples of which are:

� It enables the separation of resources for different messaging applications
that only need to communicate with each other infrequently. This simplifies
the administration of the resources for each individual messaging application.

� It enables a bus to be integrated with preexisting messaging networks.

When buses are interconnected, applications can send messages to destinations
that are defined on other buses. Published messages can also span multiple
buses, if the links between the buses are configured to allow it.
 Chapter 9. Default messaging provider 555

Routing definition types
During foreign bus configuration, an administrator defines a routing definition that
specifies the type of the foreign bus. This information is used at run time to
determine the protocol that will be used to communicate with the foreign bus. The
three types of routing definition that can be defined are:

� Direct, service integration bus link

This routing definition type indicates that the local bus will connect directly to
another bus. This is shown in Figure 9-9, where the Accounts Department
Bus is linked to the HR Department Bus within its own cell and the Payroll
Department Bus within another cell.

Figure 9-9 Direct, service integration bus links

� Direct, WebSphere MQ link

This routing definition type indicates that the local bus will connect directly to
a WebSphere MQ gateway queue manager. This WebSphere MQ queue
manager might itself be connected to several other queue managers in a
WebSphere MQ network. This is shown in Figure 9-10.

Note: Care must be taken to avoid creating circular link dependencies (Bus
A → Bus B → Bus C → Bus A), when configuring foreign buses within
complex topologies. Circular links are not supported by the bus.

WebSphere Application Server V6.1 CellWebSphere Application Server V6.1 Cell

HR Department Bus
Foreign Bus = {Accounts

Department Bus}

Accounts Department Bus
Foreign Buses = {HR Department Bus,

Payroll Department Bus}

Payroll Department Bus
Foreign Bus = {Accounts

Department Bus}
556 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-10 Direct, WebSphere MQ link

� Indirect

The indirect routing definition type indicates that the foreign bus being
configured is not directly connected to the local bus. In this situation, the
administrator specifies the name of the next bus in the route. This bus can be
another bus or a WebSphere MQ network, but it must already be defined in
order to configure an indirect routing definition. Ultimately, a message could
travel through several intermediate buses before it reaches its destination.

This is shown in Figure 9-11, where the Accounts Department Bus is linked
indirectly to the Payroll Department Bus via the HR Department Bus.

Figure 9-11 Indirect foreign bus link

Note: Connections to WebSphere MQ on z/OS have a special connection
type called WebSphere MQ Server that offers advantages over a foreign
bus defined as a direct WebSphere MQ link. For more information, see
9.2.7, “WebSphere MQ Servers” on page 592.

WebSphere MQ

Accounts Department Bus
Foreign Bus = {IT Department Bus}

WebSphere Application Server V6.1 Cell

IT Department Bus

WebSphere Application Server V6.1 CellWebSphere Application Server V6.1 Cell

HR Department Bus
Foreign Buses = {Accounts

Department Bus, Payroll
Department Bus}

Accounts Department Bus
Foreign Buses = {HR Department Bus,

{Payroll Department Bus,
Next Bus = HR Department Bus}}

Payroll Department Bus
Foreign Bus = {Accounts

Department Bus}
 Chapter 9. Default messaging provider 557

Foreign bus links
Recall that a service integration bus is simply an architectural concept within a
cell. Similarly, when a foreign bus is configured on a bus, it simply describes a
link between the two buses at an architectural level.

In order for the two buses to be able to communicate with each other at run time,
links must be configured between a specific messaging engine within the local
bus and a specific messaging engine, or queue manager, within the foreign bus.
When configuring a direct service integration bus link, these links must be
configured in both directions in order for the two buses to be able to
communicate. At run time, messages that are routed to a foreign bus will flow
across the corresponding link. This is shown in Figure 9-12.

Figure 9-12 Run time view of foreign buses

Note: It is not possible to define multiple links between the local bus and a
specific foreign bus.

WebSphere Application Server V6.1 CellWebSphere Application Server V6.1 Cell

HR Department Bus

Accounts
Department

Bus

Link

Li
nkME

Link

Link

ME

WebSphere MQ

IT Department Bus

Queue
Manager

Channels

Payroll Department Bus

Li
nk ME
558 WebSphere Application Server V6.1: System Management and Configuration

Foreign buses and point-to-point messaging
Messaging applications that make use of the Point-to-Point messaging model,
with destinations that are defined on a local bus, are able to act as both message
producers and message consumers. This is shown in Figure 9-13.

Figure 9-13 Point-to-point messaging on the local bus

However, when a messaging application is making use of the Point-to-Point
messaging model with destinations that are defined on a foreign bus, it is only
able to act as a message producer. This is shown in Figure 9-14.

Figure 9-14 Point-to-point message producer for a foreign bus

Local Bus

Produce and
Consume
Messages

Client

Local Bus

Produce
Messages

Only

Client

Foreign Bus
 Chapter 9. Default messaging provider 559

If a messaging application is required to consume messages from a destination
that is defined on a foreign bus, the messaging application must connect directly
to the foreign bus. This is shown in Figure 9-15 on page 560.

This is similar to the restrictions placed on WebSphere MQ messaging clients,
where a client application is only able to consume messages from a queue by
connecting directly to the WebSphere MQ queue manager on which the queue is
defined.

Figure 9-15 Point-to-point messaging on a foreign bus

If the messaging application is unable to connect directly to the foreign bus, then
the destinations on the foreign bus must be configured to forward messages to
destinations on the local bus. The messaging application is then able to connect
to the local bus to consume the messages. This is shown in Figure 9-16.

Figure 9-16 Forwarding messages for consumption from the local bus

Local Bus

Client

Foreign Bus

Produce and
Consume
Messages

Local Bus

Consume
Messages

Client

Foreign Bus
Client

Produce
Messages
560 WebSphere Application Server V6.1: System Management and Configuration

Foreign buses and Publish/Subscribe messaging
By default, foreign bus links will not flow messages that are produced by
messaging applications using the Publish/Subscribe messaging model. It is
possible to configure a foreign bus link such that messages published to topic
spaces on the local bus will be published on the foreign bus.

9.2 Run time components
At run time, a bus is comprised of a collection of cooperating messaging
resources. The sections that follow describe the run time aspects of these
messaging resources in more detail.

9.2.1 SIB service
The SIB service is a WebSphere Application Server component that is
responsible for managing all of the messaging resources that have been
associated with a particular application server. However, the SIB service is not
associated with a specific bus or messaging engine. Its management tasks
include:

� Managing the life cycle of any messaging related transport chains that have
defined within the application server

� Handling inbound connection requests from external messaging applications
 Chapter 9. Default messaging provider 561

Figure 9-17 shows a SIB service within an application server environment.

Figure 9-17 SIB service

Every application server has exactly one SIB service. However, by default the
SIB service within an application server is disabled. This ensures that the SIB
service does not consume resources unnecessarily if the application server is
not hosting any messaging resources.

The process of adding an application server as a member of a bus automatically
enables its SIB service. This ensures that the SIB service is available to manage
the messaging resources that are created as a result of adding the application
server as a bus member.

The SIB service can also be manually enabled within an application server that is
not a member of a bus. An application server configured in this manner is able to
act as a bootstrap server for clients that are running outside of the WebSphere
Application Server environment, or for messaging engines that are running in a
different cell. Refer to 8.7, “Connecting to a service integration bus” on page 520
for more information regarding bootstrap servers.

Configuration reload
The SIB service also allows certain configuration changes to be applied to a bus,
without requiring a restart of the application servers that are hosting components
associated with that bus. The configuration changes that can be applied without
an application server restart are:

� Creation, modification, or deletion of a destination
� Creation, modification, or deletion of a mediation

PORT

Application Server 1

MEME ME

Inbound Transport Chain

PORT

Inbound Transport Chain

SIB Service
562 WebSphere Application Server V6.1: System Management and Configuration

For example, if a new destination is created on a bus, that destination can be
made available for use without needing to restart application servers or
messaging engines associated with the bus.

However, the configuration changes that require the affected application servers
or messaging engines to be restarted before the changes come into effect
include:

� Creation of a new bus
� Creation of a new messaging engine
� Creation of a bus link
� Creation of a WebSphere MQ link
� Creation of a WebSphere MQ Server

9.2.2 Service integration bus transport chains
The SIB service and any messaging engines running within an application server
make use of a variety of transport chains in order to communicate with each
other and with client applications. The sections that follow describe the inbound
and outbound transport chains used by bus components.

Inbound transport chains
When an application server is created using the default template, a number of
inbound transport chains are automatically defined. These transport chains
enable messaging clients to communicate with a messaging engine. A
messaging client can be a client application or another messaging engine.
Table 9-2 describes these transport chains.

Table 9-2 Messaging engine inbound transport chains

Note: Each bus that requires this functionality must also be configured to
support configuration reload. By default, each bus has configuration reload
support enabled. See 9.8.1, “SIB service configuration” on page 613 for more
information.

Transport chain and
associated port

Default
port

Client Types Description

InboundBasicMessaging

SIB_ENDPOINT_ADDRESS

7276 Remote messaging engines

JMS client applications
running in the J2EE client
container and using the
default messaging JMS
provider

This chain allows clients of the
specified type to communicate
with a messaging engine using
the TCP protocol.
 Chapter 9. Default messaging provider 563

As discussed in 9.2.1, “SIB service” on page 561, the SIB service is responsible
for managing the life cycle of the messaging-related inbound transport chains
within an application server. Certain transport chains can be started even if the
application server is not hosting any messaging engines. When a transport chain
starts, it binds to the TCP port to which it has been assigned and listens for
network connections. Table 9-3 describes the circumstances under which the
inbound transport chains are started by the SIB service.

InboundSecureMessaging

SIB_ENDPOINT_SECURE_
ADDRESS

7286 Remote messaging engines

JMS client applications
running in the J2EE client
container and using the
default messaging JMS
provider

This chain allows clients of the
specified type to communicate
securely with a messaging
engine using the secure
sockets layer (SSL) protocol
over a TCP connection. The
SSL configuration information
for this chain is based on the
default SSL repertoire for the
application server.

InboundBasicMQLink

SIB_MQ_ENDPOINT_
ADDRESS

5558 WebSphere MQ queue
manager sender channels

JMS client applications
running in the J2EE client
container and using the
WebSphere MQ JMS
provider

This chain allows clients of the
specified type to communicate
with a messaging engine using
the TCP protocol.

InboundSecureMQLink

SIB_MQ_ENDPOINT_
SECURE_ADDRESS

5578 WebSphere MQ queue
manager sender channels

JMS client applications
running in the J2EE client
container and using the
WebSphere MQ JMS
provider

This chain allows clients of the
specified type to communicate
securely with a messaging
engine using the secure
sockets layer (SSL) protocol
over a TCP connection. The
SSL configuration information
for this chain is based on the
default SSL repertoire for the
application server.

Transport chain and
associated port

Default
port

Client Types Description
564 WebSphere Application Server V6.1: System Management and Configuration

Table 9-3 Default transport chain initialization during application server startup

Figure 9-18 shows the InboundBasicMessaging and InboundSecureMessaging
transport chains, and the corresponding ports that they are bound to, within an
application server.

Figure 9-18 Messaging engine inbound transport chains

Outbound transport chains
When you create an application server using the default template, a number of
outbound transport chains are automatically defined. These transport chains are
also available to JMS client applications running within the J2EE client container.
Outbound transport chains are used by messaging clients to establish network

Application server
configuration

Transport chains

InboundBasicMessaging
InboundSecureMessaging

InboundBasicMQLink
InboundSecureMQLink

SIB service disabled Not started Not started

SIB service enabled
No WebSphere MQ links
No WebSphere MQ client
links

Started Not started

SIB service enabled
WebSphere MQ links
or WebSphere MQ client
links defined

Started Started

Application Server 1

MEME ME

InboundBasicMessaging

SIB_ENDPOINT_ADDRESS

InboundSecureMessaging

SIB_ENDPOINT_SECURE_ADDRESS

SIB Service
 Chapter 9. Default messaging provider 565

connections to bootstrap servers or to WebSphere MQ queue manager receiver
channels. Table 9-4 on page 566 describes these transport chains.

Table 9-4 Default messaging engine outbound transport chains

Transport chain Description

BootstrapBasicMessaging This chain is suitable for establishing a bootstrap
connection to inbound transport chains within an
application server that are configured to use the TCP
protocol. An example of such a transport chain is the
InboundBasicMessaging chain.

BootstrapSecureMessaging This chain is suitable for establishing a bootstrap
connection to inbound transport chains within an
application server that are configured to use SSL over a
TCP connection. An example of such a transport chain is
the InboundSecureMessaging transport chain. Success
in establishing such a connection is dependent on a
suitably compatible set of SSL credentials being
associated with both this bootstrap outbound transport
chain and also the inbound transport chain to which it is
connecting. The SSL configuration used is taken from
the default SSL repertoire of the application server within
which the messaging client is running, or from the
relevant configuration file if the messaging client is
running within the J2EE client container.

BootstrapTunneledMessaging This chain can be used to tunnel a bootstrap request
through the Hypertext Transfer Protocol (HTTP). Before
this transport can be used, a corresponding inbound
transport chain must be configured on the bootstrap
server.

BootstrapTunneledSecureMessaging This chain can be used to tunnel a secure bootstrap
request through the Hypertext Transfer Protocol
(HTTPS). Success in establishing such a connection is
dependent on a suitably compatible set of SSL
credentials being associated with both this bootstrap
outbound transport chain and also the inbound transport
chain to which it is connecting. The SSL configuration
used is taken from the default SSL repertoire of the
application server within which the messaging client is
running, or from the relevant configuration file if the
messaging client is running within the J2EE client
container. Before this transport can be used, a
corresponding inbound transport chain must be
configured on the bootstrap server.
566 WebSphere Application Server V6.1: System Management and Configuration

When attempting to establish a network connection, a messaging client must use
an outbound transport chain suitable for connecting to the corresponding target.
For example, the BootstrapTunneledMessaging transport chain can only be used
to connect to an inbound transport chain that supports bootstrap requests
tunneled over the HTTP protocol. Similarly, the OutboundBasicMQLink can only
be used to connect to a WebSphere MQ queue manager receiver channel. Refer
to 8.7, “Connecting to a service integration bus” on page 520 for more
information regarding bootstrap servers.

Configuring outbound transport chains within an application server used for
bootstrap purposes is considered to be an advanced administrative task. For this
reason, these transport chains can only be altered, or new bootstrap transport
chains defined, using the wsadmin command-line environment.

Outbound transport chains within the J2EE client container environment that are
used for bootstrap purpose are not configurable. However, certain attributes of
the outbound transport chains that are used to establish SSL connections can be
customized.

Secure transport considerations
As discussed previously, additional considerations need to be taken into account
when using a transport chain that makes use of the SSL protocol to encrypt the
traffic that flows over the connection.

Establishing an SSL or HTTPS connection between messaging engines, or
between a messaging engine and a JMS application running within the J2EE

OutboundBasicMQLink This chain is suitable for establishing a connection to a
WebSphere MQ queue manager receiver channel using
the TCP protocol.

OutboundSecureMQLink This chain is suitable for establishing a secure
connection to a WebSphere MQ queue manager
receiver channel that has been configured to accept SSL
connections. Success in establishing such a connection
is dependent on a suitably compatible set of SSL
credentials being associated with both this outbound
transport chain and also the WebSphere MQ receiver
channel to which it is connecting. The SSL configuration
for the outbound transport chain is taken from the default
SSL repertoire of the application server that is attempting
to contact the WebSphere MQ queue manger receiver
channel.

Transport chain Description
 Chapter 9. Default messaging provider 567

client container, requires a set of compatible credentials to be supplied by both
the party initiating the connection, and the party accepting the connection.

Within an application server environment, the credentials used by a secure
transport chain can be configured by associating the required SSL repertoire
with the relevant SSL channel within the chain. For inbound transport chains, this
can be performed using the WebSphere administrative console. By default,
secure transport chains within an application server environment are associated
with the default SSL repertoire for the cell. When configuring secure
communications between two messaging engines, the name of the inbound
transport chain on both messaging engines must match in order for the
connection to be established. These transport chains must also be configured
with compatible SSL credentials. This is true when securing both intra-bus
messaging engine connections and inter-bus messaging engine connections.

Within the J2EE client container environment, the credentials used by a secure
outbound transport chain are specified in the sib.client.ssl.properties file. Every
WebSphere profile has its own copy of this file, contained in the properties
subdirectory of the profile. The properties contained within this file specify,
among other things, the location of the key store and trust store to be used by the
outbound transport chain, when attempting to establish a secure connection to a
messaging engine.

9.2.3 Message stores
A messaging engine must have a message store (and only one) as a place to
preserve persistent and non-persistent data for normal operation and for
recovery should a failure occur. This message store can be implemented as a
data store or as a file store. The process of adding an application server as a
member of a bus automatically creates a messaging engine on that application
server. As part of that process wizard, a choice is presented as to which
implementation of a message store is required.

� A data store is a message store implemented as a set of database tables
within a relational database, accessed via a JDBC data source.

� A file store is a message store implemented as a set of flat files within a file
system that is accessed directly via the native operating system.

Note: Any messaging engine that is active on an application server can be
contacted by any enabled inbound transport chain. By default, all application
servers are created with both secure and insecure transport chains. In order to
ensure that a messaging engine can only be contacted using a secure
transport chain, it is necessary to either disable or delete the insecure
transport chains that are defined on the corresponding application server.
568 WebSphere Application Server V6.1: System Management and Configuration

Both types of message store and considerations when choosing between them
are discussed in the following sections.

File stores
A file store for a messaging engine is hosted directly on a file system as a set of
flat files via the underlying operating system. The messaging engine does not
need any other resources to be set up in order to access the file store. The file
store uses three levels of data storage in separate files and locations. This is
described further in the following sections.

File store files
As can be seen in Figure 9-19, there are three different type of files within a file
store: the permanent store file, the temporary store file, and the log file.

� Permanent store file

This contains data that is required to survive a restart of the messaging
engine. This will include information about the storage and transmission of
persistent messages as well as the persistent messages themselves.

� Temporary store file

This contains temporary data that will not survive a message engine restart,
such as any non-persistent messages spilled to the file store to release Java
heap memory. The temporary store file is emptied when the message engine
starts.

� Log store file

This contains transient data that has not been written to the file, such as
information about currently active transactions.

Figure 9-19 Structure of the file store and relationship to the Messaging Engine,

WebSphere Application Server

Messaging
 Engine

File System

Permananent store file

Temporary store file

Log file
 Chapter 9. Default messaging provider 569

File store location and attributes
The locations of three files that make up the file store can be configured by the
administrator, however the default location of the file store will be a subdirectory
under:

${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/<me_name>.<me_build>

The file paths within the subdirectory are store/PermanentStore,
store/TemporaryStore, and log/Log.

The log file has a fixed size at run time and does not expand during use. The
messaging engine will write data to the log file in a sequential manner, meaning
new records are appended to the end. Upon reaching the maximum capacity of
the log, the oldest records are overwritten by new records as needed. Any data
required to be kept is subsequently written to the permanent and temporary store
files as appropriate. Only extremely short-lived data is not moved to a store file.
The minimum size for a log file is 10 MB with the default being 100 MB.

Both the permanent and temporary store files have separately configured
minimum file sizes of 0 bytes (the default minimum setting is 200 MB). They may
also have optional maximum size limits placed on them of at least 50 MB each
(the default setting is 500 MB). When created, both the permanent and
temporary log files consume file space up to their individual minimum reserve,
plus the size of the log file. If this does not meet their maximum allocations, then
the store files are free to grow. This growth is unlimited if a maximum allocation
has not been set.

The default settings and configuration for a file store is designed to be adequate
for a typical messaging workload without the need for any administration.
However, it is up to the administrator to make sure that enough space is
allocated to the file store components for predictable and smooth operation of the
messaging engine. To improve the performance and availability of the log or
store files, the file store attributes can be modified to affect sizing and placement
of the files. This can be done at creation of the filestore, or later on.

Note: For a production system, maximum and minimum limits should be
applied and be set to the same value so that the file sizes are stable. This
would prevent unlimited growth from filling up the file system, and allow the
messaging engine to continue to operate unaffected should the file system fill
up due to external causes.
570 WebSphere Application Server V6.1: System Management and Configuration

File store access and high availability considerations
A messaging engine has exclusive access of its own file store, and a file store
can only be used by the messaging engine that created it. Each file store
contains uniquely identifying information about its messaging engine. An
instance of a messaging engine will open its file store with an exclusive lock to
prevent other instances of the same messaging engine from trying to use the file
store at the same time. This situation might arise if there was an accidental
activation of a messaging engine on multiple servers within a cluster. When the
instance of the messaging engine stops for any reason (either controlled or
server failure), the file store’s files are closed, allowing another instance to open
the file store.

The major consideration for high availability of a file store is the file system it is
placed in. The recommendation is to use hardware or software based facilities to
maximize the availability of the file systems themselves, such as the use of
Storage Area Networks (SAN).

WebSphere Application Server V6.1 supports either cluster-managed or
networked file systems. Cluster-managed file systems use clustering and failover
of shared disks to ensure high availability of files and directories. Networked file
systems use remote servers to store and access files as though it were a local
server. Make sure that the file system in use supports access locking to ensure
integrity of the file store components, particularly the log file by the use of
exclusive locks.

Deleting a file store
When a messaging engine is removed, the file store files are not automatically
removed with it and must be located and deleted manually in order to reclaim the
files space. The default file store directory names contain the Universal Unique
IDentifier (UUID) of the messaging engine. It is possible to destroy and recreate
a messaging engine of the same name without having to manually remove the

Note: Optimal operation of a messaging engine cannot be guaranteed where
the file store is subject to a compressing file system, such as Windows NT®
with the Compress this directory option active. In a production system, the use
of file system compression should be avoided.

Note: Neither the WebSphere administrative console or the messaging engine
can check that the file store configuration is correct. Errors will only surface at
run time, so we recommend that the administrator conduct a check and
thorough failover testing. In particular, ensure that all members of a cluster
have universal access to the directories containing the file store components.
 Chapter 9. Default messaging provider 571

old file store as the UUID (and so the file store directory names) will have
changed. Delete the file store files by using the facilities of the operating system.

Backing up and restoring a file store
A file store is made up of simple flat files. As such, backing up and restoring
these files can be done using a backup tool or facilities of the operating system.

Reduction of file store sizes
While it is possible to reduce the file size settings of the file store components in
the configuration, it is not possible for the files to actively shrink or compress their
contents. When the configuration has been changed and the messaging engine
restarted, the messaging engine will attempt to apply the new settings. If the files
are still too big due to their contents, a message is written to SystemOut.log and
the existing settings are kept. The messaging engine will attempt to apply the
new settings each time it is started.

Failover of messaging engine between V6 and V6.1
As WebSphere Application Server V6.0 does not support file stores, it is not
possible to fail over a messaging engine with a file store to a V6.0 server. To
prevent this, the cluster should be divided into sets of servers at different
versions, and the high availability policy of the messaging engine restricted to the
servers at V6.1.

Data stores
A data store can be used for a messaging engine, hosted within an embedded
Cloudscape database. A JDBC data source to access this database is also
defined on the server that has been added to the bus. These defaults allow the
messaging engine to run without any further configuration.

However, while adding a bus member, it is possible to specify the JNDI name of
a different data source for use by the messaging engine. The sections that follow

Note: It is important that the permanent store file, temporary store file, and log
file of a file store be backed up and restored as one unit and not individually.
Also, please make sure that the messaging engine has been stopped before
performing a backup or restore. To do otherwise might result in significant data
corruption.

Note: As stated previously, messaging engine problems may occur if the file
store file sizes are too small. Care must be taken to make sure the sizes are
adequate for the expected messaging workload.
572 WebSphere Application Server V6.1: System Management and Configuration

describe the issues that must be considered when deciding which RDBMS to use
as a data store.

Data store location
The data store can be located on the same host as the messaging engine with
which it is associated, or it can be located on a remote host. The decision of
where to locate the data store might depend on the capabilities of the RDBMS
that host the data store. For example, the embedded Cloudscape database must
run within the same application server process on which the messaging engine
runs.

The location chosen for the data store can have an impact on the overall
performance, reliability, or availability characteristics of the bus components. For
example, a data store located on the same host as the messaging engine with
which it is associated can provide higher persistent message throughput by
avoiding flowing data over the network to the data store. However, such a
configuration might not provide the availability required, because failure of the
host would mean that both the messaging engine and its data store would
become unavailable.

Note: Check with your database administrator to ensure that your RDBMS
supports remote access from JDBC client applications.
 Chapter 9. Default messaging provider 573

Figure 9-20 shows the various options available when deciding where to locate a
data store. The messaging engine in application server 1 uses the default
Cloudscape data store, running in the same process as the application server.
The messaging engine in application server 2 uses a data store hosted by a DB2
instance running on the same host as node 1. The messaging engine in
application server 3 uses a data store hosted by a DB2 instance running on a
remote host.

Figure 9-20 Data store locations relative to the associated messaging engine

Data store access
Each messaging engine must have exclusive access to the tables defined within
its data store. This can be achieved, either by using a separate database as the
data store for each messaging engine, or by partitioning a single, shared,
database into multiple data stores using unique schema names for each data
store.

Deciding which of these mechanisms to use depends on the capabilities of the
RDBMS that will host the data store. For example, the embedded Cloudscape
database does not support concurrent access by multiple processes.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

HR Department Bus

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

ME

Application
Server 3

ME

DB2

ME Cloudscape DB2
574 WebSphere Application Server V6.1: System Management and Configuration

Note: Check with your database administrator to ensure that your RDBMS
supports shared access from JDBC client applications and that it allows
schema names to be specified on a JDBC connection. DB2 and Network
Cloudscape support this functionality.

For databases that do not allow a schema name to be specified on a JDBC
connection, multiple messaging engines share database access by each
messaging engine using a different user ID when connecting to the database.
 Chapter 9. Default messaging provider 575

Figure 9-21 on page 576 shows the options available when deciding whether to
use exclusive access or shared access to a data store. The messaging engine in
application server 1 has exclusive access to the database hosting its data store.
The messaging engines in application servers 2 and 3 have shared access to the
database hosting their data stores. This shared database has been partitioned
into separate schemas, with each messaging engine accessing the data store
tables within a different schema.

Figure 9-21 Exclusive and shared access to data stores

Data store tables
The messaging engine expects its data store to contain a set of specific tables,
each of which has a specific table definition. Each messaging engine can be
configured to create the tables within its data store, if they are not already
present. During initialization, a messaging engine connects to its data store and
checks for the required tables. If the messaging engine has the functionality to
create tables, and they do not exist, it attempts to create the tables.

Node Agent

Node 1

HR Department Bus

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6.1 Cell

Application
Server 1

ME

DB2

Schema
Data Store

Schema
Data Store

Application
Server 2

ME

Node Agent

Node 2

Application
Server 3

ME

DB2

Schema
Data Store
576 WebSphere Application Server V6.1: System Management and Configuration

Some organizations allow a database administrator to perform only certain tasks
on a database, such as creating tables. In this situation, the database
administrator can use the sibDDLGenerator command to generate the DDL
statements required to create these tables. The sibDDLGenerator command is
located in the \bin\ subdirectory of the WebSphere installation directory. Refer to
the WebSphere Information Center for a full description of the sibDDLGenerator
command.

Table 9-5 describes the tables defined within the data store for a messaging
engine.

Table 9-5 Messaging engine data store tables

Note: In order for the messaging engine to be able to create the required
tables within its data store, the user ID for the database must have sufficient
privileges. Please refer to the WebSphere Information Center for a full
description of the database privileges required in order for the messaging
engine to access the data store.

Table name Description

SIBOWNER Ensures exclusive access to the data store by an
active messaging engine.

SIBCLASSMAP Catalogs the different object types in the data store.

SIBLISTING Catalogs the SIBnnn tables.

SIBXACTS Maintains the status of active two-phase commit
transactions.

SIBKEYS Assigns unique identifiers to objects in the
messaging engine.
 Chapter 9. Default messaging provider 577

Considerations when choosing the message store type
A file store has several advantages over a data store:

� Better performance

A file store can often achieve higher throughput than a data store due to
smaller overhead of the file system as compared to that of a relational
database.

� Lower administration requirements

There are little or no administration requirements with the use of a file store. A
data store may require ongoing database administration depending on the
messaging workload profile to maintain optimum performance.

� Lower deployment costs

Costs associated with database server licensing and the services of a
database administrator do not apply to a file store as there is no database.

SIBnnn, where nnn is a number Contains persisted objects such as messages and
subscription information. These tables hold both
persistent and nonpersistent objects, using separate
tables for the different types of data, according to the
following convention:

� SIB000

Use this name for the table that contains
information about the structure of the data in the
other two tables.

� SIB001

Use this name for the table that contains
persistent objects.

� SIB002

Use this name for the table that contains
non-persistent objects saved to the data store to
reduce the messaging engine memory
requirement.

Note: When you remove a messaging engine, WebSphere Application Server
does not automatically delete the tables in its data store. To reuse this data
store with another messaging engine, delete the tables within the data store
manually.

Table name Description
578 WebSphere Application Server V6.1: System Management and Configuration

However, if an organization already has existing database resources and skills, it
may be preferable to use a data store in order to utilize those skills. This would
apply more to larger companies with a strong team of database administrators.

From a technical standpoint, applications may share the messaging engine’s
JDBC connection to a data store to improve performance using a one-phase
commit optimization. This is not possible with a file store.

Security for both types of message store can be achieved utilizing the facilities of
the underlying infrastructure. For example, file stores can use a secure, possibly
encrypted network attached drive to achieve both electronic and physical
security. Data stores can use be secured using the available database security
facilities.

9.2.4 Exception destinations
If a messaging client encounters a problem when attempting to consume a
message from a bus destination, message delivery has failed. The message can
be placed back on the bus destination for redelivery. Use the maximum failed
deliveries property on a bus destination to determine the number of times a
message can fail delivery. The default value of this property is five.

An exception destination handles undeliverable messages. Both queue and topic
space destinations can define an exception destination. If a message cannot be
delivered to its intended bus destination, it is rerouted to the specified exception
destination. This mechanism prevents the loss of messages that cannot be
delivered.

Each messaging engine has a default exception destination of
_SYSTEM.Exception.Destinaton.<Messaging_engine_Name>. By default, all
bus destinations that have message points on a messaging engine use the
default exception destination for that messaging engine when rerouting
undeliverable messages. This enables administrators to access all of the
undeliverable messages for a messaging engine in one place.

Note: Messages can also be placed on an exception destination for a variety
of other reasons, examples of which include:

� When a destination is deleted, any messages on the destination are placed
on the exception destination, unless the bus has been configured to
discard them.

� When a message is received from a foreign bus, the message is placed on
the exception destination if the target destination has reached its high
message threshold.
 Chapter 9. Default messaging provider 579

However, an administrator can also configure a bus destination to use a
nondefault exception destination. This enables administrators to access all of the
undeliverable messages for a specific destination in one place, allowing for more
fine-grained management of undeliverable messages.

When configuring a destination to use a non-default exception destination, the
exception destination specified can be a local or a remote bus destination. We
also recommend that this destination is a queue destination and that it exists
prior to the creation of the bus destination with which it is associated. If the
exception destination specified has been deleted when a destination attempts to
reroute an undeliverable message, the undeliverable message is rerouted to the
default exception destination for the message engine.

When message order is important, it might be necessary to configure a bus
destination not to use an exception destination. In this case, any messages that
cannot be delivered to the target destination are not rerouted, and will be
redelivered repeatedly. This has the effect of blocking the delivery of subsequent
messages to the bus destination in question. For this reason, such a
configuration should be used with caution.

9.2.5 Service integration bus links
As discussed in 9.1.7, “Foreign buses” on page 555, defining a foreign bus on a
bus simply defines a link between the two buses at an architectural level. When
the foreign bus in question represents another bus, the link is implemented at run
time by establishing a connection between a messaging engine from each of the

Note: It is not possible to delete a default exception destination from a bus.
This ensures that there is always a default exception destination available on
each messaging engine within the bus.

Note: Errors might occur as a message traverses the bus to its target
destination. In this situation, the messaging engine handling the message
attempts to redeliver the message. However, if the messaging engine
determines that the target destination is unreachable, it can place the
message on its default exception destination. For this reason, all exception
destinations on the bus must be monitored to ensure that problem messages
are processed appropriately.

Note: Publication messages arriving at a topic space destination for which
there are no subscribers are not considered to be undeliverable. Such
messages are discarded.
580 WebSphere Application Server V6.1: System Management and Configuration

buses. This link is configured on a messaging engine by defining a service
integration bus link. A service integration bus link encapsulates the information
required to communicate with a specific messaging engine, within a specific
foreign bus.

When configuring a service integration bus link, it must be associated with the
target foreign bus definition. The foreign bus definition with which it is associated
enables the service integration bus link to determine the name of the target bus.
This is shown in Figure 9-22.

Figure 9-22 Association between a service integration bus link and a foreign bus

This requirement also determines the order in which these objects must be
defined. The foreign bus must be defined within a bus before a corresponding
service integration bus link can be configured on a messaging engine.

When attempting to establish the connection, the messaging engine within the
local bus always attempts to connect to the foreign bus as though it were a
remote client, even if the foreign bus is defined within the same cell. For this
reason, a list of provider endpoints must also be specified when configuring the
service integration bus link. These provider endpoints are used by the messaging
engine in the local bus to connect to a bootstrap server in the foreign bus. For

Note: The name specified for the foreign bus must exactly match the real
name of the target bus.

The names of each of the buses involved in the link must also be unique. For
this reason, if two buses within separate cells need to be linked, care must be
taken when naming each of the buses.

WebSphere Application Server V6.1 Cell

Node 1
Application Server 1

Li
nkAccounts ME

SIB Service

Foreign Bus
Name = HR Bus

Accounts Bus

WebSphere Application Server V6.1 Cell

Node 2
Application Server 2

HR ME

SIB Service

HR Bus
 Chapter 9. Default messaging provider 581

more information about the bootstrap process, refer to 8.7, “Connecting to a
service integration bus” on page 520.

The service integration bus link is also required to specify the name of the
messaging engine on the target bus with which to connect. The messaging
engine in the local bus uses the bootstrap server to locate the target messaging
engine in the foreign bus. Figure 9-23 shows this process.

Figure 9-23 Bootstrapping during service integration bus link initialization

Once again, this requirement imposes an order in which the various
configuration tasks must be performed. Each of the buses involved in the link
must have at least one bus member defined before a service integration bus link
can be configured.

WebSphere Application Server V6.1 Cell

Node 1
Application Server 1

Li
nkAccounts ME

SIB Service

Foreign Bus
Name = HR Bus

Accounts Bus

WebSphere Application Server V6.1 Cell

Node 2
Application Server 2

HR ME

SIB Service

HR Bus

1. Bootstrap

2. Connect
582 WebSphere Application Server V6.1: System Management and Configuration

The final requirement when configuring a service integration bus link is that the
link must be configured in both directions in order for the two buses to
communicate at run time. This is shown in Figure 9-24 on page 583.

Figure 9-24 Defining a service integration bus link in both directions

Topic space mappings
By default, a service integration bus link only flows messages across the link that
are addressed to a queue destination on the foreign bus. In order to flow
publication messages across the service integration bus link, topic space
mappings need to be configured on the foreign bus definition.

These mappings define the topic space destination within the local bus for which
publication messages are passed over the link. They also define the topic space
destination on the foreign bus to which these publication messages are
addressed. Refer to the WebSphere Information Center for more information
regarding the definition of topic space mappings.

Note: The name specified for the service integration bus link within both buses
must be the same.

Note: If the transport chain used by the service integration bus link encrypts
its traffic using SSL, the names of the target inbound transport chain on each
link must be the same. The transport chain specified must also be configured
identically on each bus to ensure that compatible SSL credentials are used
when establishing the link.

WebSphere Application Server V6.1 Cell

Node 1
Application Server 1

Li
nkAccounts ME

SIB Service

Foreign Bus
Name = HR Bus

Accounts Bus

WebSphere Application Server V6.1 Cell

Node 2
Application Server 2

HR ME

SIB Service

HR Bus

1. Bootstrap

2. Connect Li
nk HR ME

Foreign Bus
Name = Accounts Bus
 Chapter 9. Default messaging provider 583

9.2.6 WebSphere MQ links
Defining a foreign bus on a bus simply defines a link between the two buses at an
architectural level. When the foreign bus in question represents a WebSphere
MQ network, the link is implemented at run time by establishing sender and
receiver channels between a specific messaging engine and a WebSphere MQ
queue manager. These channels are configured on a messaging engine by
defining a WebSphere MQ link.

To a messaging engine configured with a WebSphere MQ link, the WebSphere
MQ queue manager appears to be a foreign bus. To the WebSphere MQ queue
manager, the messaging engine appears to be another WebSphere MQ queue
manager. When configuring a WebSphere MQ link, an administrator must specify
a virtual queue manager name. This is the queue manager name by which the
messaging engine will be known to the remote WebSphere MQ queue manager.
The WebSphere MQ queue manager is completely unaware that it is
communicating with a messaging engine.

When you configure a WebSphere MQ link, you must associate it with the target
foreign bus definition. The name specified for the foreign bus does not need to
match the name of the target WebSphere MQ queue manager. However,
specifying a name for the foreign bus that matches the target WebSphere MQ
queue manager simplifies the routing of messages across the link.

Figure 9-25 shows a high level view of a WebSphere MQ link. Notice that the
name of the foreign bus with which the WebSphere MQ link is associated
matches the name of the target WebSphere MQ queue manager.

Figure 9-25 Overview of a WebSphere MQ link

WebSphere MQ

IT Department Bus

C
ha

nn
el

s
WebSphere Application Server V6.1 Cell

Node 1
Application Server 1

Li
nkAccounts ME

Foreign Bus
Name = QM_itbus

Accounts Bus

Queue Manager
Name = QM_itbus
584 WebSphere Application Server V6.1: System Management and Configuration

WebSphere MQ link sender channel
The WebSphere MQ link sender channel establishes a connection to a receiver
channel on the target WebSphere MQ queue manager. It converts messages
from the format used within the bus, to the format used by WebSphere MQ, and
then sends these messages to the receiver channel on the target WebSphere
MQ queue manager. For a full description of how messages are converted as
they traverse the WebSphere MQ link, refer to the WebSphere Information
Center. The WebSphere MQ link sender channel emulates the behavior of a
sender channel in WebSphere MQ. This is shown in Figure 9-26.

Figure 9-26 WebSphere MQ link sender channel

When you configure a WebSphere MQ link sender channel, you are required to
specify the following information:

� A name for the channel, which must exactly match, including case, the name
of the receiver channel defined on the target WebSphere MQ queue manager

� The host name or IP address of the machine hosting the target WebSphere
MQ queue manager

� The port number on which the target WebSphere MQ queue manager is
listening for inbound communication requests

� An outbound transport chain

Note: It is only necessary to define a WebSphere MQ link sender channel if
messages are required to be sent from the bus to the WebSphere MQ
network.

WebSphere MQ

IT Department Bus

Receiver
Channel

WebSphere Application Server V6.1 Cell

Node 1
Application Server 1

Li
nkAccounts ME

Foreign Bus
Name = QM_itbus

Accounts Bus

MQ Link Sender Queue Manager
Name = QM_itbus
 Chapter 9. Default messaging provider 585

WebSphere MQ link receiver channel
The WebSphere MQ link receiver channel allows a sender channel within a
WebSphere MQ queue manager to establish a connection to a messaging
engine within the bus. It converts messages from the format used within
WebSphere MQ, to the format used by the bus. For a full description of how
messages are converted as they traverse the WebSphere MQ link, refer to the
WebSphere Information Center. The WebSphere MQ link receiver channel
emulates the behavior of a receiver channel in WebSphere MQ. This is shown in
Figure 9-27.

Figure 9-27 WebSphere MQ link receiver channel

When configuring a WebSphere MQ link receiver channel, the following
information is required: a Name for the channel, which must exactly match,
including case, the name of the sender channel defined on the target WebSphere
MQ queue manager

The inbound transport chain with which the sender channel on the WebSphere
MQ queue manager communicates is dependent on the configuration of the

Note: If the receiver channel on the target WebSphere MQ queue manager
accepts only SSL connections, you must associate the transport chain with a
suitably compatible set of SSL credentials.

Note: It is only necessary to define a WebSphere MQ link receiver channel if
messages are required to be sent from the WebSphere MQ network to the
bus.

WebSphere MQ

IT Department Bus

WebSphere Application Server V6.1 Cell

Node 1
Application Server 1

Li
nkAccounts ME

Foreign Bus
Name = QM_itbus

Accounts Bus

MQ Link Receiver Sender
Channel

Queue Manager
Name = QM_itbus
586 WebSphere Application Server V6.1: System Management and Configuration

WebSphere MQ sender channel. The WebSphere MQ administrator should be
consulted to ensure that the sender channel is configured appropriately. As
discussed in “Inbound transport chains” on page 563, the InboundBasicMQLink
transport chain defaults to listening on port 5558 for connections from
WebSphere MQ, and the InboundSecureMQLink transport chain defaults to
listening on port 5578 for connections from WebSphere MQ.

MQ Publish/Subscribe broker profile
By default, a WebSphere MQ link only flows messages across the link that are
addressed to a queue destination on the WebSphere MQ network. To flow
publication messages across the WebSphere MQ link, configure a
publish/subscribe broker profile for the WebSphere MQ link. A
Publish/Subscribe broker profile allows topic mappings to be defined. These
topic mappings define the topic names for which publication messages will be
flowed across the WebSphere MQ link. Please refer to the WebSphere
Information Center for more information about the definition of topic mappings
within a publish/subscribe broker profile.

Addressing destinations across the WebSphere MQ link
There are several issues that must be considered when addressing a message
to a destination that will flow across a WebSphere MQ link. These issues exist
because of the differences in naming structure between the bus and WebSphere
MQ.

WebSphere MQ has a two-level addressing structure, as follows:

� Queue manager name
� Queue name

Each of these elements within WebSphere MQ is limited in length to 48
characters. Within the bus, a destination can be uniquely identified using the
following elements:

� Service integration bus name
� Destination name

The bus places no length restrictions on these elements.

The difference in the allowable lengths of the various naming elements causes
problems when a messaging application running in one environment attempts to
address a message to a destination defined in the other environment, across the
WebSphere MQ link. These issues are discussed in the sections that follow.
 Chapter 9. Default messaging provider 587

WebSphere MQ to service integration bus addressing
Messages that are sent from a WebSphere MQ application to a bus destination
which has a name greater than 48 characters in length must have some means
of using the shorter name used in WebSphere MQ to address the long name
used in the bus.

The bus uses an alias destination to map between the shorter name used by
WebSphere MQ, and the longer name used by the bus. A WebSphere MQ client
application can address a message to an alias destination within a bus that is
defined with a short name of less than 48 characters. The alias destination then
maps this message onto the destination defined with a long name of greater than
48 characters.

Service integration bus to WebSphere MQ addressing
Another problem can happen when a messaging client is required to address a
message to a queue defined on an arbitrary queue manager within the
WebSphere MQ network. For example, when defining JMS destinations for use
by JMS client applications, it is only possible to specify the name of the bus on
which the target destination is defined, and the name of the destination. If the
destination exists within the WebSphere MQ network, the name of the foreign
bus is specified as the bus name. However, if the target queue is not defined on
the queue manager to which the WebSphere MQ link connects, additional
information is required in order to address messages to the correct queue.

To solve this problem, when defining a JMS queue or an alias destination that
represents a queue on a WebSphere MQ network, use a special format for the
target queue name, of the form: <queue>@<queue manager>. These
destination names are only parsed by the WebSphere MQ link, which uses the
information to determine which values to place in the target queue and queue
manager fields of the message header.

In the most simple case, the name specified for the foreign bus matches the
name of the queue manager on which the target queue is defined. When this is
the case, only the name of the target queue needs to be specified. If no queue
manager name is applied as a suffix, then the foreign bus name will be added as
the queue manager name by default. This is shown in Figure 9-28 on page 589.
588 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-28 Simple WebSphere MQ addressing

This is still the case, even if the WebSphere MQ queue manager on which the
target queue is defined, is not the same queue manager to which the
WebSphere MQ link connects. This is shown in Figure 9-29.

Figure 9-29 Simple WebSphere MQ addressing

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1

Foreign Bus
QM1

JMS Queue
Bus name = QM1
Queue = bob

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1

Foreign Bus
QM2

MQ Queue
Manager

QM2

JMS Queue
Bus name = QM2
Queue = bob
 Chapter 9. Default messaging provider 589

When the name specified for the foreign bus does not match the name of the
queue manager on which target queue is defined, the queue manager name
must be included as part of the queue name using the format described
previously. This allows the message to be appropriately routed by WebSphere
MQ once the message has left the bus. This is shown in Figure 9-30.

Figure 9-30 Advanced WebSphere MQ addressing

This mechanism enables a messaging client to address a message to a queue
that is defined on any queue manager within the WebSphere MQ network. This
is shown in Figure 9-31 on page 591.

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1

Foreign Bus
Fred

JMS Queue
Bus name = Fred
Queue = bob@QM1
590 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-31 Advanced WebSphere MQ addressing

WebSphere MQ client links
A WebSphere MQ client link enables a messaging engine to act as a
WebSphere Application Server V5.x embedded JMS Server. This function is
provided as an aid to the migration of V5.x to V6 and should not be used for any
other purpose.

A WebSphere MQ client link enables any applications that are installed and
configured on V5.x, using V5.x JMS resources, to continue to function as normal
after the V5.x JMS server has been migrated to V6.

The process of migrating a V5.x node that contains an embedded JMS server
will remove that JMS server and create a bus with a WebSphere MQ client link.
Queues previously defined on the V5.x embedded JMS server will be created
automatically on the bus.

See the Information Center topic Migrating from version 5 embedded messaging
for more information.

Note: The naming mechanism described within this section can only be used
to address messages to destinations defined within WebSphere MQ. It must
not be used to attempt to address messages to destinations defined on
another bus. An indirect foreign bus must be used for that purpose.

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1

Foreign Bus
QM1

MQ Queue
Manager

QM2

JMS Queue
Bus name = QM1
Queue = bob@QM2
 Chapter 9. Default messaging provider 591

You should not need to create a WebSphere MQ client link manually. Use the
one created automatically for you by the migration process.

9.2.7 WebSphere MQ Servers

An alternative to using an WebSphere MQ link when connecting to WebSphere
MQ V6 on a z/OS platform is the use of a new type of server called a WebSphere
MQ Server. This is a special type of sever that can be added to a bus and used in
place of an MQ link to take advantage of the advanced load balancing and high
availability features of the z/OS based MQ shared queue groups.

An MQ shared queue group is a collection of queues that can be accessed by
one or more queue managers. Each queue manager that is a member of the
shared queue group has access to any of the shared queues. This has the
advantages of high availability and workload balancing, as queue managers can
fail over to one another as they become too busy or unavailable. For more
information about MQ shared queue groups, please refer to WebSphere MQ in a
z/OS Parallel Sysplex Environment, SG24-6864.

The other advantage of the WebSphere MQ Server over an MQ link is that the
server does not depend on any one designated messaging engine. This type of
connectivity to MQ can tolerate the failure of any given message engine as long
as another is available in the bus, increasing robustness and availability.

Important: We recommend that you replace all V5.x JMS resources with v6.0
default messaging provider JMS resources as soon as possible. Once all
resources have been changed, it is possible to delete the WebSphere MQ
client link, as all applications will be using the V6.0 default messaging provider
directly.

New in V6.1: For those of you who wish to access WebSphere MQ on a z/OS
platform, there is a new mechanism called WebSphere MQ Server that allows
applications to take advantage of the high availability and load balancing
features of the MQ queue sharing groups that the z/OS implementation of MQ
provides.

Restriction: This type of connectivity will only work when communicating with
z/OS installations of WebSphere MQ. Any attempt to use a WebSphere MQ
Server with a non z/OS based WebSphere MQ installation will fail and will
require a WebSphere MQ link in order to work.
592 WebSphere Application Server V6.1: System Management and Configuration

A high level overview of a WebSphere MQ server can be seen in Figure 9-32 on
page 593. It shows the high level of failure tolerance built in to this connectivity
mechanism. An application can use any messaging engine within a bus to
connect to the WebSphere MQ Server, so if one fails, another can be used. The
WebSphere MQ Server itself can connect to a single MQ queue manager, or one
of a shared group to access the queues. When connecting to a shared group, if
one queue manager fails, another can be used to access the same queues.

Figure 9-32 Overview of a WebSphere MQ Server

For each queue manager or shared queue group that needs to be accessed, a
separate WebSphere MQ Server definition is required to be created. The
process of creating a server definition allows the connection details and any
security information to be defined for the target queue manager or shared group.

The defined server is added to a bus as a bus member. Queue destinations can
then be created for the server definition and the queue points assigned to
individual MQ queues. The destinations can be internally or externally mediated
(MQ link does not support this). Where this is external, a separate process to the
bus is used, but does the same job.

To the WebSphere MQ Server, the MQ queue manager or shared queue group is
regarded as a mechanism to queue messages for the bus. The WebSphere MQ
Server is regarded by the WebSphere MQ network as just another MQ client
attaching to the queue manager or shared queue group.

One major difference between WebSphere MQ Server and WebSphere MQ link
is that messages are not stored within the messaging engine with WebSphere
MQ Server. Messaging applications directly send and receive messages from the
WebSphere MQ queues. This is the reason that MQ server is tolerant of a
message engine failure. The message engines are stateless in this regard.

This allows message beans to be configured to immediately process messages
as they arrive on an MQ queue. Similarly, any bus mediations take place
immediately upon a message appearing on an MQ queue.

z/OS WebSphere MQ

Shared Queue
Group

WebSphere Application Server V6.1 Cell

Application Server
Service Integration Bus

ME 1 QM1

QM2

QM3

ME 2

Application WebSphere
 MQ Server
 Chapter 9. Default messaging provider 593

In other respects, the use of the WebSphere MQ Server is similar to that of a
WebSphere MQ link, and we recommend that you consult the IBM Information
Center and “Addressing destinations across the WebSphere MQ link” on
page 587 for further information about the use of WebSphere MQ destinations.

9.3 High availability and workload management

High availability and workload management can be achieved using clusters as
bus members. It is worth noting, however, that messaging engines do not follow
the same clustering model that J2EE applications do in clusters.

9.3.1 Cluster bus members for high availability
When you add a cluster to a bus, a single messaging engine is created. The
messaging engine is active on only one server within the cluster. In the event of
an application server or messaging engine failure, the messaging engine
becomes active on another server in the cluster if one is available.

By default, the messaging engine starts on the first available server in a cluster. If
you want to ensure that the messaging engine runs on a particular server, for
example, if you have one primary server and one backup server, or if you want
the messaging engine to only run on a small group of servers within the cluster,
then you must specifically configure this. See 9.8.10, “Setting up preferred
servers” on page 643 for details on configuring preferred servers.

9.3.2 Cluster bus members for workload management
Because a single messaging engine for the cluster is active, there is no workload
management by default. To achieve greater throughput of messages, it is
beneficial to spread messaging load across multiple servers and, optionally,
across multiple hosts. You can achieve this, while maintaining a simple
destination model, by creating additional messaging engines for the cluster, each
of which has a preference to run on a separate server in the cluster.

Note: This section introduces you to the high availability and workload
management capabilities when using the bus. Before configuring your system,
consult the following:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392.

� WebSphere Application Server V6: High Availability Solutions, REDP-3971
594 WebSphere Application Server V6.1: System Management and Configuration

You can configure these messaging engines with a preference to run on
particular servers within the cluster. This enables a messaging engine to run in
every server in the cluster, thus providing every application in the cluster with a
messaging engine for local access to the bus. Local access to the bus is always
better for messaging performance, especially in the case of queues where the
queue is assigned to the bus member from which it is being accessed.

When a queue is assigned to a cluster bus member, the queue will be partitioned
across all messaging engines in the cluster.

9.3.3 Partitioned queues
A queue is partitioned automatically for you when a queue destination is
assigned to a cluster bus member. Every messaging engine within the cluster
owns a partition of that queue and is responsible for managing messages
assigned to the partition. Every message sent to the queue is assigned to exactly
one of the partitions.

Local partitions
When a JMS client attempting to access a partitioned queue is connected to a
messaging engine hosting one of those partitions (a messaging engine in the
cluster), then the client is able to access only that local partition of the queue for
both consuming and producing messages.

Remote partitions
If the JMS client connects to a messaging engine not hosting a destination
partition, a messaging engine in the same bus but not in the cluster, then each
client-created consumer connects to one remote partition to consume messages.
Each session created is workload managed with respect to which remote
partition it connects for consuming messages.

Messages sent to a remote partitioned destination are workload-managed
across the individual partitions on an individual message basis, regardless of the
session.

Note: The only instance where messages are not sent to the local partition is
when that local partition is full and other partitions of the queue are not. In this
case, messages are routed to an available remote partition.

Clients attempt to consume only from the local partition, even if there are no
messages on the local partition and there are messages available on other
partitions.
 Chapter 9. Default messaging provider 595

9.3.4 JMS clients connecting into a cluster of messaging engines
JMS clients outside of a cluster can connect directly into a workload-managed
cluster of messaging engines. In this case, workload-managed means the cluster
is a bus member and one messaging engine has been added for every server in
the cluster. Each messaging engine has been configured to prefer a different
server in the cluster. JMS clients connect to the messaging engines using the
connection rules described in 8.7, “Connecting to a service integration bus” on
page 520.

Important: Cluster bus members and partitioned queues alone do not give
better message throughput. The applications producing and consuming the
messages must be configured to use the bus.

� Message producers must be configured to ensure that their messages will
be workload-managed onto the different partitions of a partitioned queue.
The following are examples of workload management:

– Message producers, JMS clients, connect directly to the cluster. This
has some restrictions in Version 6.0. See 9.3.4, “JMS clients connecting
into a cluster of messaging engines” on page 596. We anticipate
removing these restrictions in the near future with a Fix Pack.

– Message producers connect to messaging engines that are not part of
the cluster. This requires servers outside of the cluster to be available
and added to the bus, and for the message producers to make their
JMS connections to those messaging engines. Once a messaging
engine outside of the cluster accepts a message, the engine becomes
responsible for routing the message through the bus to a queue point
for the destination. Workload management selects a particular queue
point of the partitioned destination so messages are spread evenly
across all partitions of the queue.

– An EJB or servlet in a cluster produces messages. Because the calls to
the EJB or servlet are workload-managed across the cluster, and
assuming that messages are produced to a local queue partition, it
follows that the messages produced will be workload managed across
the partitions of the queue.

� Message consumers must be configured to connect to each partition of a
partitioned queue to consume messages. If any partitions do not have
consumers, then the messages sent to that partition might never be
consumed.

The simplest and recommended way of configuring consumers to every
partition of a partitioned queue is by installing a message-driven bean on
the cluster.
596 WebSphere Application Server V6.1: System Management and Configuration

In this scenario, there is an undesirable side effect of the rules when the servers
in the cluster are used as the provider endpoints for the connection factory.
Consider the following example:

A JMS client connects into a cluster of servers A, B, and C. The connection
factory is configured with provider endpoints of A, B, and C. This allows the client
to bootstrap to any of the three servers in the cluster. Following the connection
rules, the connection factory bootstraps to the first server in the provider
endpoints list, A. Server A has a local messaging engine; therefore, the
messaging engine on Server A is chosen as the preferred connection point for
the client.

Because the connection always tries the first entry in the provider endpoints list
first, every client connecting directly into the cluster connects to the messaging
engine in server A. All messages produced for a destination partitioned across
the cluster are assigned to the partition of the destination associated with the
messaging engine. This is obviously not very good for workload management of
messages. There are two methods that can overcome this:

� Enable a SIB service on a server outside of the cluster. Configure the provider
endpoints on the connection factory to point to this SIB service. If there is no
messaging engine local to this SIB service, then the client connections will be
workload-managed around all of the messaging engines in the bus.

If you only have messaging engines in the cluster, no further configuration is
required. If there are other non-cluster bus members, and you only want the
clients to connect directly to the messaging engines in the cluster, then you
must configure a target group on your connection factory. See “Target groups”
on page 531.

� Provide different clients with differently configured connection factories, each
of which has a different provider endpoint in the first position in the list.

9.3.5 Preferred servers and core group policies
To configure a messaging engine to prefer a server or group of servers, you must
configure a core group policy. A core group policy is used to identify server
components, and define how they will behave within a cell or cluster. This section
discusses these components.

Policy type
For messaging engines, use a policy type of One of N. This means that, while the
messaging engine cam be defined on every server in the cluster, WebSphere’s
HA Manager ensures that it is only active on one of the servers in the group, and
will always be active on one of the servers, if one is available.
 Chapter 9. Default messaging provider 597

Match criteria
The match criteria of a core group policy enables the HA Manager to decide what
server components match the policy and so should be managed according to the
policy. There are two match criteria that you must use to match a messaging
engine:

� type=WSAF_SIB

This criterion matches any messaging engine.

� WSAF_SIB_MESSAGING_ENGINE=<messaging_engine_name>

This criterion matches the messaging engine of the name provided.

Preferred servers
The preferred servers defined in a policy allow you to list a group of servers on
which the messaging engine will prefer to run. The higher up in the list of
preferred servers a particular server is, the more preferred it is. For a messaging
engine that is part of a cluster bus member, select only preferred servers that are
part of the cluster. The messaging engines are defined only in the cluster and
cannot be run on any servers outside of the cluster.

Fail back and preferred servers only
These two options have a large effect on how a particular policy will make a
messaging engine behave in a cluster.

If you select Fail back, when a more preferred server becomes available, then
the messaging engine will be deactivated where it currently runs and activated
on the more preferred server. Enabling fail back ensures that a messaging
engine always run on the most preferred server that is available. This is usually
desirable, as there should be a good reason for configuring a preferred server in
the first place. If you do not enable fail back, then once a messaging engine has
started it will not move to a more preferred server if one becomes available.

If you select Preferred servers only, then the messaging engine will only be
allowed to be active on servers in the policy’s preferred servers list. If you do no
select Preferred servers only, all servers in the cluster that are not in the list will
be able to have the messaging engine active on them, but they will be selected
only if none of the preferred servers are available.

Be very careful when selecting preferred servers only because it is possible to
reduce or remove the high availability of a messaging engine and of the queue
partitions that the messaging engine owns.

If none of the preferred servers are available, then the messaging engine will not
be active anywhere. This means any queue partitions owned by that messaging
engine will also be unavailable. Any messages currently on those partitions will
598 WebSphere Application Server V6.1: System Management and Configuration

be trapped and cannot be consumed until one of the preferred servers has
become available and the messaging engine has been activated.

Large clusters
If you have a medium or large cluster of servers (five or more, configured with
messaging engines), then we recommend a slightly special configuration of
preferred servers.

With a large number of messaging engines defined on a cluster, it would be
undesirable to have all of the messaging engines starting up on the first server in
the cluster to start. We suggest the following configuration.

Configure each messaging engine with a group of preferred servers consisting of
a subset of the cluster with fail back and preferred servers only enabled. The set
of preferred servers should be large enough to support your availability
requirements by providing sufficient failover capabilities for the messaging
engine. For example, you might decide that the messaging engine must be able
to run on two or three servers. Configure each messaging engine with a different
subset of servers, with each messaging engine having a unique, most-preferred
server, as in Figure 9-33 on page 600.
 Chapter 9. Default messaging provider 599

In Figure 9-33 on page 600, the shading indicates the preference order of the
servers.

Figure 9-33 Configuring large clusters of messaging engines

9.3.6 Best practices
For the greatest throughput of messages, do the following:

1. Create a cluster bus member with messaging engines running on every
server in the cluster.

2. Define the queue or queues being used on the cluster bus member.

3. Ensure that message production to the queue is workload-managed across
the cluster:

– Install an EJB or servlet application on the cluster and have that
application produce the messages. Workload management of the client
calls to the application workload manages the message production across
the cluster.

Server 1 Server 2 Server 3

Cluster
Server 4 Server 5

Messaging Engine 000

Messaging Engine 001

Messaging Engine 002

Messaging Engine 003Messaging
Engine 003

Messaging
Engine 004

Messaging Engine 004
600 WebSphere Application Server V6.1: System Management and Configuration

– Produce messages from clients connected to messaging engines outside
of the cluster. The bus can then workload manage the messages across
the cluster.

4. Install an MDB application on the cluster to consume the queue messages.

9.4 Service integration bus topologies
This section discusses briefly some messaging topologies, working up from the
simplest to more complex configurations.

9.4.1 One server in the cell is a member of one bus
In this topology, there is only one bus. There might be multiple application
servers in the cell, but only one is a member of the bus. This is roughly equivalent
to the typical V5.x JMS server topology.

The pros of this topology are:

� It is very simple to set up and manage.

� It can be expanded later by adding more servers to the bus.

The cons are:

� Clients running on other application servers in the cell have to connect
remotely to the bus rather than connecting locally. This can affect messaging
performance.

� Clients running outside application servers have to connect to the bus
member to do messaging. The connection factory you use needs to have
provider endpoints configured with the details of the bus member server.

If the SIB service is enabled on other application servers in the cell, then
connection factories can be configured with provider endpoints that point to a
list of bootstrap servers. See 8.7, “Connecting to a service integration bus” on
page 520 for more information about using a bootstrap server and defining a
list of provider endpoints.

In either case, all messaging connections go to the bus member server and
might affect messaging performance.

� Message consumers might not be on the same server as the queue points
they are consuming from. This could have a performance impact.

� This topology cannot be upgraded easily to support high availability or
workload management. High availability and workload management require
clustering application servers. You can create a new cluster and include the
bus member as the first application server in the cluster. However, this will not
 Chapter 9. Default messaging provider 601

automatically give you the messaging high availability features that are
normally associated with adding a cluster as a bus member.

– Using the bus member server as the template for a cluster server is not
equivalent to adding a cluster to the bus. No bus information is copied as
part of the template process. The SIB service will be enabled on the new
cluster server as a server property, not part of any particular bus.

– Using the bus member as the first server in cluster server is not equivalent
to adding a cluster to the bus. Only the original server is part of the bus.

It is possible to add a cluster to the bus, delete all of the queues you want to
be highly available or workload-managed, and recreate queues of the same
name that have their queue points located on the new cluster bus member.
Any messages on the queues are lost when they are deleted.

9.4.2 Every server in the cell is a member of the same bus
In this topology, there are multiple application servers, but no clusters. There is
one bus and each application server is a member of that bus.

The pros of this topology are:

� Clients in application servers can connect locally to the bus, improving
performance. If only some servers in the cell are members of the bus, then
install any messaging applications on those servers.

� Clients running outside application servers can connect to any cell server to
perform messaging, providing some degree of high availability for those
clients.

� It is possible to have queue points in the same servers as applications that
consume messages from them, improving performance.

The cons are:

� This topology is not easily upgradeable to support high availability or workload
management. See the list of cons in 9.4.1, “One server in the cell is a member
of one bus” on page 601.

9.4.3 A single cluster bus member and one messaging engine
This scenario assumes that all the application servers in the cell belong to one
cluster and that cluster is a member of the bus.

The benefit of this scenario is:

� The messaging engine is highly available. If the messaging engine or the
server on which it runs fails, then the messaging engine starts up on another
602 WebSphere Application Server V6.1: System Management and Configuration

available server in the cluster. See “High availability and workload
management” on page 594 for more details.

The drawback of this scenario is:

� If you want to ensure that the messaging engine runs on one preferred server,
for example, if you have one primary server and one backup server, then you
must specifically configure this. See “Setting up preferred servers” on
page 643.

9.4.4 A cluster bus member with multiple messaging engines
This scenario assumes that all the application servers in the cell belong to one
cluster. Multiple messaging engines have been defined for the cluster.

The pros of this topology are:

� The messaging engines in the cluster are highly available.

� The cluster bus member is capable of messaging workload management. A
queue point assigned to the cluster bus member is partitioned onto every
messaging engine in the cluster and messages delivered into the cluster are
distributed between the partitions.

The drawback is that there are some restrictions on the workload management of
client connections directly into a cluster. See 9.3.4, “JMS clients connecting into
a cluster of messaging engines” on page 596 for details.

9.4.5 Mixture of cluster and server bus members
The cell has some application server clusters and other non-clustered servers.
Both non-clustered servers and server clusters have been added as bus
members. Complex configurations such as these can be completely tailored to
best suit your application and server topologies.

Note: Be aware that some configurations of preferred servers for a
messaging engine can make that messaging engine not highly available.

If preferred servers are set up for the messaging engine with the preferred
servers only option, then it is possible, if none of the preferred servers are
available, that the messaging engine will not have another server on which
to start even if other servers are available in the cluster.
 Chapter 9. Default messaging provider 603

The benefits of this topology are:

� Cluster bus members can be configured with partitioned destinations to
support workload-managed, message-consuming applications, such as
message-driven beans.

� Cluster bus members can be used to make system-critical destinations highly
available.

� To overcome the workload management restrictions of clients connecting to a
cluster, clients outside the cell can connect to server bus members. Clients
can then put messages to destinations with partitioned queue points.
Messages are workload-managed between the partitions.

� To overcome the workload management restrictions of clients connecting to a
cluster (see 9.3.4, “JMS clients connecting into a cluster of messaging
engines” on page 596), clients outside the cell can connect to server bus
members outside of the cluster. Clients can then put messages to partitioned
destinations and the messages will be workload-managed across the
partitions.

� Clients bootstrapping to servers (with a SIB service) outside the cluster can
get workload management of their connections to the messaging engines
within the cluster bus member.

The drawback is that these more complex messaging topologies take a little
more planning and configuration than simpler topologies.

9.4.6 Multiple buses in a cell
It is possible to have many buses within a cell. This topology can be desirable
under in the following situations:

� Separation of concerns

Applications that do not need to share messages can be isolated from each
other by using their own bus.

� Test configuration

A test configuration with identical destination names can be created on a
separate bus that is not used by the production system. Changing the name
of the bus in the connection factories can then redirect the test application to
the production bus without changing any other configuration.
604 WebSphere Application Server V6.1: System Management and Configuration

9.5 Service integration bus and message-driven beans
Message-driven beans (MDBs) attached to destinations in the bus are attached
by means of the SIB JMS Resource Adapter, an activation specification, and a
JMS destination. The resource adapter is responsible for connecting to the bus
and delivering messages to the MDB.

9.5.1 Message-driven beans connecting to the bus
The resource adapter always attempts to connect a message-driven bean to a
messaging engine in the same server, if one is defined there. If there is no
messaging engine in the same server, then a messaging engine is selected from
the bus using the standard connection selection process, see 8.7, “Connecting to
a service integration bus” on page 520.

There are three scenarios where an MDB will start but not connect to the
destination for which it is configured to listen. The resource adapter will allow the
MDB application to start under these circumstances and will attempt to connect
the MDB to its configured destination as soon as possible.

Local messaging engine defined but unavailable
If a messaging engine is defined locally, but is unavailable when the MDB
application starts, the MDB application starts successfully and the resource
adapter connects it to the messaging engine when it activates. Situations when
this happens include:

� If the messaging engine has not started by the time, the MDB application is
started.

� The MDB is installed on a cluster bus member that has been configured for
high availability, and is on a server other than the one with the active
messaging engine.

When an MDB application is started, but the locally defined messaging engine is
unavailable, the warning message in Example 9-1 will appear in SystemOut.log.

Example 9-1 Message: local messaging engine not available

CWSIV0759W: During activation of a message-driven bean, no suitable active
messaging engines were found in the local server on the bus MyBus

Note: For performance reasons, we recommend that MDBs are always
installed on a server that has an active local messaging engine and a queue
point on that local messaging engine.
 Chapter 9. Default messaging provider 605

When the messaging engine activates, the message in Example 9-2 is displayed
when the MDB is connected to its destination.

Example 9-2 MDB connected to messaging engine

CWSIV0764I: A consumer has been created for a message-driven bean against
destination MyQueue on bus MyBus following the activation of messaging engine
cluster1.000-MyBus.

Remote destination unavailable
If there is an active locally defined messaging engine, but the MDB is configured
to listen to a queue currently unavailable (for example, if the messaging engine
that hosts the queue point is not active), then the warning message in
Example 9-3 is displayed.

Example 9-3 Message: remote destination unavailable

CWSIV0769W: The creation of a consumer for remote destination MyQueue on bus
MyBus for endpoint activation ...<section removed>... failed with exception
javax.resource.ResourceException: CWSIP0517E: Cannot attach to queue message
point for destination MyQueue.

The resource adapter tries to connect the MDB to the configured destination
every 30 seconds until it succeeds. Each failure to connect results in the
message shown in Example 9-3.

Remote messaging engine unavailable
If there is no locally defined messaging engine, then a messaging engine is
selected from the bus. If there are no currently available messaging engines in
the bus, then the resource adapter allows the MDB application to start anyway
and attempt to connect the MDB to a messaging engine every 30 seconds. The
message in Example 9-4 appears on the first failed attempt to connect to a
messaging engine. Subsequent failures are silent.

Example 9-4 Message: remote messaging engine unavailable

CWSIV0775W: The creation of a connection for destination MyQueue on bus MyBus
for endpoint activation ...<section removed>... failed with exception
com.ibm.websphere.sib.exception.SIResourceException: CWSIT0019E: No suitable
messaging engine is available in bus MyBus.

Note: Messaging engines are frequently the last component of an application
server to complete their startup, often even after the open for e-business
message is issued for the server. As a result, it is not unusual for MDB
applications to cause the above warning message.
606 WebSphere Application Server V6.1: System Management and Configuration

No messages are delivered to the MDB until the resource adapter has been able
to start a connection to an active messaging engine. The message in
Example 9-5 is displayed with a connection is made.

Example 9-5 Message: connection made to remote messaging engine

CWSIV0777I: A connection to remote messaging engine myNode.server1-MyBus for
destination MyQueue on bus MyBus for endpoint activation ...<section
removed>... is successfully created.

9.5.2 MDBs and clusters
The behavior of message-driven beans installed on clusters that use the bus is
directly related to the bus configuration.

Clusters that are not part of a bus
When an MDB is installed on a cluster that is not part of a bus, the MDBs on
each server connect independently to the bus to consume messages.

Clusters configured for highly available messaging
When a cluster is configured for highly available messaging, a messaging engine
is active on one of the servers in the cluster. An MDB application installed on that
cluster will start on all servers in the cluster, but only the MDB on the server with
the active messaging engine will receive messages. Should the active
messaging engine fail, or the server on which it is active fails or is stopped, then
the messaging engine will start on another server in the cluster. The MDB on that
server will be connected to the messaging engine and start receiving messages.

In this scenario, the bus has been configured to have one active messaging
engine in the cluster, and, effectively, the MDB mirrors that configuration.

Note: You should not configure an MDB on a cluster with no local messaging
engine to listen to a partitioned queue in another cluster. There is no
guarantee that every partition of the queue in the other cluster will have at
least one MDB listening to it. This could lead to a partition without any
consumers.
 Chapter 9. Default messaging provider 607

Clusters configured for messaging workload management
When a cluster is configured for messaging workload management, a messaging
engine will most likely be active on each server in the cluster.

For a MDB installed on the cluster and listening to a topic with a non-durable
subscription, each message on the topic will be received once on each server
with an active messaging engine. If more than one messaging engine is active on
a server, a publish topic message will still be received only once by the MDB on
that server.

If the MDB installed on the cluster is listening to a topic with a shared, durable
subscription, then one MDB in the cluster receives each message published on
the topic only once.

If the MDB installed on the cluster is listening to a queue partitioned on the
cluster, then the MDB is attached to each partition active on the server. Should
more than one messaging engine be active on a server, then the MDB will
receive messages from each messaging engine’s partition of the queue.

For a MDB installed on the cluster and listening to a queue with its queue point
on a messaging engine outside of the cluster, the MDB on each server is
attached to the queue. An MDB on a server with more than one active
messaging engine will not receive a greater proportion of the messages than an
MDB on a server with only a single active messaging engine.

9.6 Service integration bus security

Bus security can be turned on or off at the time of bus creation, or afterward. For
the bus security to be activated, administrative security must be enabled.

Every bus has an optional inter-engine authentication alias that can be specified.
If this property is left unset, then it will default to none and be ignored. However, if
an alias is specified and security enabled, then the ID will be checked when each
messaging engine starts communicating with other messaging engines in the
bus. This provides additional security to prevent hackers pretending to be
another messaging engine in the bus.

New in V6.1: The bus security in WebSphere Application Server V6.1 has
been enhanced. Bus security is enabled independently of application and
administrative security, though administrative security must be enabled to
enable bus security. New features include the requirement of trusted transport
chains, client authentication, and an authorization policy that requires users
and groups to be granted access to the bus and its resources.
608 WebSphere Application Server V6.1: System Management and Configuration

A list of permitted transport chains can be defined that may be used to access a
secured bus. There are three modes: allow all defined transport chains, allow
only SSL enabled transport chains, and allow only those transport chains in a list
defined by the administrator.

The mediations authentication alias is used to authorize any mediation
processes trying to access the secured bus.

Each secured bus now has a bus connector role. Any external client that needs
to access the bus needs to be added to the bus connector role. By default, if the
client has not been added, they will be denied access, even if they have valid
credentials. However, there are options to allow only servers that are members of
the bus to connect to the bus, all authenticated users to connect to the bus, or
everyone (including unauthenticated users) to connect to the bus.

When security is enabled on WebSphere Application Server, certain steps must
be taken for JMS applications using the bus to authenticate themselves to the
bus, allowing them to continue to use the messaging resources.

� All JMS connection factory connections must be authenticated. This can be
done in two ways:

– The connection factory can have a valid authentication alias defined on it.

– The JMS application can pass a valid user name and password on the call
to ConnectionFactory.createConnection(). An ID passed in this way
overrides any ID specified in an authentication alias on the connection
factory.

� All activation specifications must have a valid authentication alias defined on
them.

Details on WebSphere security can be found in WebSphere Application Server
V6.1 Security Handbook, SG24-6316.

Note: If a connection factory is looked up in the server JNDI from outside of
the server environment (for example, from the client container), any
authentication alias defined on the connection factory will be unavailable. This
prevents unauthorized use of an authenticated connection factory.

JMS clients outside of the server can provide a user name and password on
the call to create a connection. If the client is a J2EE client application running
in the WebSphere application client environment, it is possible to define an
authenticated connection factory resource in the .ear file.
 Chapter 9. Default messaging provider 609

9.7 Problem determination
The following information is presented to help you become familiar with
successful messaging engine startup, and some common problems.

No problems
Example 9-6 shows an example of what you can expect to see in systemOut.log
on server start up for a messaging engine that starts successfully.

Example 9-6 Successful messaging engine start

...
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Joined.
...
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Starting.
...
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Started.
...

When you have more than one messaging engine in a bus, you will also see the
messaging engines communicate with each other. Every messaging engine in
the bus connects to every other messaging engine in the bus, as shown in
Example 9-7.

Example 9-7 Messaging engine connections

...
CWSIT0028I: The connection for messaging engine Node1.server1-ITSOBus in bus
ITSOBus to messaging engine Node2.server2-ITSOBus started.
...
CWSIP0382I: messaging engine B68588EF698F4527 responded to subscription
request, Publish Subscribe topology now consistent.
...

Note: When you start a server that is part of a cluster bus member, then the
messaging engine will not always be started. Only one server in the cluster will
have a specific messaging engine activated on it and this messaging engine
might already be started.

If this is the case, then you will see the messaging engine in the state Joined,
but not Starting or Started. This is perfectly normal and means that the
messaging engine is in a stand-by state, waiting to be activated should the
currently active instance of the messaging engine become unavailable.
610 WebSphere Application Server V6.1: System Management and Configuration

CWSIS1535E: Messaging engine’s unique ID does not match...
If you see the error shown in Example 9-8, the database that the messaging
engine points to contains the unique ID of a different messaging engine. The
most likely cause of this is when you create a bus, add a server to that bus using
the default Cloudscape database and start the server. Later, you delete and
recreate a bus of the same name. The newly created messaging engine will use
a default data source that points to the same database used by the old
messaging engine, and this database will contain the ID of the old messaging
engine.

This error can also be caused by configuring any messaging engine with the
same message store as another messaging engine.

Example 9-8 Messaging engine unique ID does not match when using a data store

CWSIS9999E: Attempting to obtain an exclusive lock on the data store.
CWSIS1535E: The messaging engine's unique id does not match that found in the
data store. ME_UUID=1C80283E64EAB2CA, ME_UUID(DB)=B1C40F1182B0A045
WSIS1519E: Messaging engine Node1.server1-ITSOBus cannot obtain the lock on its
data store, which ensures it has exclusive access to the data.
CWSID0027I: Messaging engine Node1.server1-ITSOBus cannot be restarted because
a serious error has been reported.
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Stopped.

For a data store, the simplest solution is to drop the tables in the database, or
delete and recreate the database and then restart the server. Another solution is
to change the messaging engine’s data store by changing the schema, user, and
database configured for the messaging engine. For a file store, delete the files, or
the directory paths. See “Adding the bus member” on page 631 for more details

CWSIT0019E: No suitable Messaging Engine...
This exception shown in Example 9-9 can be thrown to a JMS client on a
createConnection call. Causes of this exception include:

� The JMS connection factory cannot contact an SIB service, for out of cell JMS
clients only. Check that the provider endpoints listed in the connection factory
match the host and port for the SIB services on the servers. Ensure that the
SIB services are enabled and the servers are started.

� The bus name defined in the JMS connection factory does not match the
name of a bus defined in WebSphere.

� No messaging engines on the named bus are active.
 Chapter 9. Default messaging provider 611

Example 9-9 Exception on createConnection call

javax.jms.JMSException: CWSIA0241E: An exception was received during the call
to the method JmsManagedConnectionFactoryImpl.createConnection:
com.ibm.websphere.sib.exception.SIResourceException: CWSIT0019E: No suitable
messaging engine is available in bus ITSOBus.

9.8 Configuration and management
This section discusses how to set up and configure a bus using the
administrative console.

The following specific activities are described:

� SIB service configuration
� Creating a bus
� Configuring bus properties
� Enabling bus security
� Adding a bus member
� Creating a queue destination
� Creating a topic space destination
� Creating an alias destination
� Adding messaging engines to a cluster
� Setting up preferred servers
� Setting up a foreign bus link to a service integration bus
� Setting up a foreign bus link to an MQ queue manager
� Creating a foreign destination

When configuring the bus for use with the default messaging provider, the
minimum tasks that apply are:

1. Creation and configuration of a bus (optionally including security)
2. The addition of at least one bus member
3. The definition of destinations of one variety or another

When configuring the bus to communicate with WebSphere MQ, you can set up
a WebSphere MQ link through a foreign bus, or, where MQ is on a z/OS platform,
a WebSphere MQ Server. The minimum tasks for both appear below:

To use a WebSphere MQ link:

1. Create and configure a bus.

2. Add at least one bus member and any required destinations.

3. Set up a foreign bus link to an MQ queue manager.
612 WebSphere Application Server V6.1: System Management and Configuration

4. Add alias destinations that points to the MQ queues via the MQ link foreign
bus.

To use a WebSphere MQ Server

1. Create and configure a bus.

2. Create a WebSphere MQ Server definition and add it to the bus as a member.

3. Create one or more queue destinations that correspond to the MQ queues.

4. Add at least one other bus member and any other destinations.

9.8.1 SIB service configuration
SIB service is an application server service enabling the server for service
integration activities. When a server is added to a bus, it automatically has its SIB
service enabled. Having the SIB service allows an application server to have
active messaging engines and to be used as a provider endpoint for default
messaging connection factories. The port on which the SIB service listens can
be looked up on the servers configuration window.

1. Select Servers → Application Servers.

2. Select the application server.

Note: In the following instructions, we frequently suggest saving the changes.
You do not have to do this and can make several changes before saving.
 Chapter 9. Default messaging provider 613

3. Under Communications, expand the Ports heading.
SIB_ENDPOINT_ADDRESS is the port used by SIB Service for that server.
See Figure 9-34.

Figure 9-34 Port numbers used by a server

The settings for the SIB service of an application server can be found on the
administrative console:

1. Select Servers → Application Servers.

2. Select the application server.

3. Under Server messaging, select SIB service. See Figure 9-35 on page 615.

Note: SIB service listens on a number of ports, not just the port for
SIB_ENDPOINT_ADDRESS. SIB_ENDPOINT_SECURE_ADDRESS is also
available, and is used for secure communications. Tunnelled and tunnelled
secure endpoints are also provided: jfap/http/tcp and jfap/http/ssl/tcp. Refer to
the Information Center for more details.
614 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-35 SIB Service window

The window for SIB service has two options.

– Enable service at server startup

This option is not enabled on a server by default. However, it is
automatically enabled if you add a server to a bus. If you disable the SIB
service, then any messaging engines defined on the server will not be
started.

– Configuration reload enabled

This option allows the SIB service to activate dynamically certain changes
to a bus configuration during run time. Creation, deletion, or modification
of a destination or mediation takes effect almost immediately on a running
system. If a new destination is created, it becomes available for use
without having to restart servers or messaging engines. Some
configuration changes do require the affected server or messaging engine
to be restarted before the changes become effective, such as the creation
of a new bus, messaging engine, foreign bus link, or MQ link.

A matching flag must also be enabled on each bus on which you want to
enable configuration reload. This flag is enabled by default on every bus,
but can be disabled if you want. To modify the flag either way, do the
following:

i. Select Service integration → Buses.

ii. Select a bus.

iii. Modify the Configuration reload enabled flag as appropriate.
 Chapter 9. Default messaging provider 615

iv. Save the changes.

9.8.2 Creating a bus
No buses are defined by default. To create a bus, do the following:

1. Select Service integration → Buses.

2. Click New. See Figure 9-36.

Figure 9-36 First window of the bus creation wizard

This window is the only opportunity to provide the name of the new bus. You
cannot change the name of a bus after it has been created, but you can create
any number of buses in a cell and delete old ones. Make your bus name unique
and meaningful. It is a required field.

The Bus security check box allows security to be enabled on the bus. If
administrative security is enabled, then the check box is selected by default. If
security is selected, then bus security is enabled and only SSL enabled transport
chains are allowed. Disabling bus security will allow any transport chain.

3. Click Next.

4. Click Finish and save your changes.

9.8.3 Configuring bus properties
1. Select Service integration → Buses.

2. Select the bus that you want to configure. The bus configuration window is
displayed. See Figure 9-37.
616 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-37 Bus configuration window

The following properties can be set:

– Description

This field is an optional description for the bus, for administrative
purposes.

– Inter-engine transport chain

The transport chain used for communication between messaging engines
in this bus. It must correspond to one of the transport chains defined in the
Messaging engine inbound transports settings for the server. When you
specify the name of a transport chain, that chain must be defined to all
servers hosting messaging engines in the bus. Otherwise, some
messaging engines might not be able to communicate with their peers in
the bus. The default transport chain is InboundBasicMessaging.
 Chapter 9. Default messaging provider 617

– Discard messages

Use this field to specify whether messages on a deleted message point
should be retained at a system exception destination or can be discarded.

– Configuration reload enabled

Select this option to enable certain changes to the bus configuration to be
applied without requiring the messaging engines to be restarted. If you
select this option, make sure the matching flag on the SIB service is also
enabled. See 9.8.1, “SIB service configuration” on page 613.

– High message threshold

Enter a threshold above which the messaging system will take action to
limit the addition of more messages to a message point. When a
messaging engine is created on this bus, the value of this property sets
the default high message threshold for the messaging engine.

3. Click Apply or OK and save your changes.

9.8.4 Enabling bus security
Bus security can be enabled or disabled and further configured in this window. If
administrative security is disabled, then bus security cannot be enabled.

1. Select Service integration → Buses.

2. Select the bus that you want to configure. The bus configuration window is
displayed.

3. Select Security in the Additional Properties section. The bus security
configuration window is displayed. See Figure 9-38 on page 619
618 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-38 Bus security configuration window

The following properties can be set:

– Enable bus security

Select this option to if you want to enable bus Security. If this option is
enabled, access to the bus itself and to all destinations must be
authorized. Bus security cannot be enabled if administrative security is not
also enabled.

– Inter-engine authentication alias

This field contains the name of the authentication alias used to authorize
communication between messaging engines on the bus. This field is
optional. If a value is specified, and bus security is enabled, incoming
 Chapter 9. Default messaging provider 619

connections to the bus are controlled to prevent unauthorized clients or
messaging engines from establishing a connection.

– Permitted transports

There are three policies that may be selected to dictate which message
transport chains may be used when bus security is enabled. The first one
allows the use of any transport defined to any bus member. The second
one allows the use of only those transports that are protected by SSL
encryption. The third option restricts allowed transports to those appearing
on an administrator maintained list. This is may accessed by selecting
Permitted Transports in the Additional Properties section.

– Mediations authentication alias

Enter the name of the authentication alias used to authorize mediations to
access the bus. This field is optional and will be ignored if no value is set,
or bus security is disabled.

4. Click Apply or OK and save your changes.

Authorizing users or groups to bus security
If bus security is enabled, individual users or groups must be connected to the
bus connector role to connect to the bus. Even if the external party is properly
authenticated, they will be denied access to the bus if they do not have this role.

To add, remove, or list users in this role, do the following:

1. Select Service integration → Buses.

2. Select the bus that you want to configure. The bus configuration window is
displayed.

3. Select Security in the Additional Properties section. The bus security
configuration window is displayed.

4. Select Users and groups in the bus connector role in the Additional
Properties section. Here you may review the current list, add, or remove
entries. For this example, we will add an entry.

5. Select New. The bus security connector role entry configuration window is
displayed. See Figure 9-39 on page 621.
620 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-39 Bus security connector role entry configuration window

Only one of the following properties may be set (chosen by the radio button):

– Group name

Gives a specified group the bus connector role.

– User name

Gives a specified user the bus connector role.

– Server

This is the identity of a WebSphere Application Server. It allows Message
Driven Beans (MDBs) to connect without specifying an authentication alias
 Chapter 9. Default messaging provider 621

– All Authenticated

This allows all users that have been authenticated to the bus, but not part
of the bus connector role, to connect to the bus. This adds the role to the
group AllAuthenticated.

– Everyone

This allows all users, authenticated or not, to connect to the bus without
being part of the bus connector role. All users are treated as anonymous.

6. Click OK and save your changes.

9.8.5 Adding a bus member
A member of a bus can be an application server, a cluster, or a WebSphere MQ
Server. For a cluster or application server, a messaging engine is automatically
created within the bus. The messaging engine requires a message store for
persistent and temporary storage. This message store can be implemented as
flat files (file store), or as tables in a database (data store).

A wizard is used to add a member to a bus. Application servers and clusters use
the same windows and procedure to be added. WebSphere MQ Servers do not
have a messaging engine created, and so do not have to specify a message
store. This will be addressed in “Creating and using a WebSphere MQ Server” on
page 633.

To add a member to the bus:

1. Select Service integration → Buses.

2. Select the bus to which you want to add a member.

3. Select Bus members in the Additional Properties section.

4. On the Bus members window, click Add. See Figure 9-40 on page 623.

5. Select the type of member you wish to add.

6. Select Next.
622 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-40 First window of Add bus member wizard

Click Next.
 Chapter 9. Default messaging provider 623

7. Every messaging engine has a message store associated with it. This window
allows you to select the type. See Figure 9-41.

Figure 9-41 Select the message store type

What you select here will determine how you proceed through the wizard.

Adding a server or cluster to a bus using a file store
If you want to use a file store with a cluster or application server, do the following
from the second window of the wizard that adds bus members.

1. Select File Store.
624 WebSphere Application Server V6.1: System Management and Configuration

2. Select Next. The file store configuration window will appear. See Figure 9-42
on page 625.

Figure 9-42 File store configuration window
 Chapter 9. Default messaging provider 625

The following properties can be set:

– Log size

The size of the log file. The minimum value is 10 MB. The default is 100
MB. This file does not grow and so does not have minimum and maximum
file sizes.

– Default log directory path

Select this radio button to accept the default system generated path for the
log file. The file name will be Log. The directory path will be
${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/<me_name>.<me_b
uild>/log/.

– Log directory path

Select this radio button and supply a non-default directory path for the log
file. The file name will be Log.

– Same settings for permanent and temporary stores

The permanent and temporary store files can have identical settings. If
you select this option, only one set of store file settings will appear in the
window below this option (marked Permanent and Temporary stores). If
this option is not selected, there will be separate sets for the Permanent
store and the Temporary store displayed in the window (in that order).

– Minimum permanent store size

The minimum size of the permanent store file. The minimum value is 0
MB. The default is 200 MB.

– Unlimited permanent store size

Select this check box to remove any maximum size restrictions on the
permanent store file.

– Maximum permanent store size

This setting will be ignored if the permanent store size is set to be
unlimited. The minimum value is 50 MB. The default is 500 MB.

– Default permanent store directory path

Select this radio button to accept the default system generated path for the
permanent store file. This directory path will be
${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/<me_name>.<me_b
uild>/store/.

Restriction: For a cluster, the file store does not have the option of default
directory paths. The administrator must specify the actual directory paths to be
used by all file store files.
626 WebSphere Application Server V6.1: System Management and Configuration

– Permanent store directory path

Select this radio button and supply a non-default directory path for the
permanent store file. The file name for the permanent store file will be
PermanentStore. The file name for the temporary store file will be
TemporaryStore. If you choose to have the same settings for the
permanent and temporary store files, these files will be co-located in the
same directory with the indicated filenames.

3. Select Next.

4. Select Finish and save your changes.

For more information about file stores, refer to the IBM Information Center and
“File stores” on page 569.

Adding a server or cluster to a bus using a default data store
Every messaging engine has a message store associated with it. If you elect to
use the default data store, a Cloudscape database will be created automatically
and initialized with the messaging engine tables. To create a bus member that
automatically creates a messaging engine and uses the default Cloudscape
database, do the following from the second window of the Add bus member
wizard. See 9.8.5, “Adding a bus member” on page 622.

1. Select Data Store.
 Chapter 9. Default messaging provider 627

2. Select Next. The data store configuration window will appear. See
Figure 9-43

Figure 9-43 Data source window with default settings option checked.

3. Select Next and then Finish and save your changes.

Adding a bus member with a different data store
This section discusses the steps required to create a bus member using a
different data source from the default. In this section, we use DB2 as an
example.

Creating a database
The first step is to create the new database and define the user IDs allowed to
access the database. The privileges required are outlined in the Information
Center. Refer to the Data Stores topic under the service integration bus
administration topics for further information.

For example, The user ID for a DB2 database must have the following privileges:

� SELECT, INSERT, UPDATE, and DELETE privileges on the tables
� CREATETAB authority on the database
� USE privilege on the tablespace
628 WebSphere Application Server V6.1: System Management and Configuration

� CREATEIN privilege on the schema

Use the sibDDLGenerator command to generate the DDL statements needed to
create the data store for the messaging engine, including the proper privileges.
For information about using this command, see the sibDDLGenerator command
topic in the Information Center.

Creating a J2C authentication alias
To define access to the new database, define a J2C authentication alias
containing the user ID and password defined in “Creating a database” on
page 628.

1. Select Security → Secure administration, applications and
infrastructure.

2. Under Authentication, expand the Java Authentication and Authorization
Service section and select J2C Authentication data.

3. Click New.

a. Provide a name for this Alias. The alias name will be used later to identify
this name as the one to access the database.

b. Provide a User ID and Password that have permission to access the
resource you will be using.

c. Click Apply or OK and save your changes.

Creating a JDBC provider and data source
With this step, you define the database to the application server. First, a JDBC
provider is defined to tell the application server how to find the libraries required
to access the database.

1. Select Resources → JDBC → JDBC Providers.

2. Select the appropriate scope for the JDBC Provider. If you are adding a
cluster as a bus member, then select that cluster as the scope. If you are
adding a server as a bus member, then select the server as the scope.

3. Click New.

a. Select a database type. In this example, we use DB2.

b. Select the provider type. This is dependent on the database type. For a
DB2 database, select DB2 Universal JDBC Driver Provider.

c. Select the implementation type. For DB2, use Connection pool data
source.

4. Click Next.

5. Supply the absolute directory paths of the JDBC driver files according to the
on-screen instructions.
 Chapter 9. Default messaging provider 629

6. Click Next and then click Finish.

7. The default values for the DB2 provider use a variable to designate the
directory path where the JDBC drivers are found. Ensure that the
DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable is correctly set
as per step 5 above:

a. Select Environment → WebSphere Variables.

b. Select an appropriate scope for the variable, usually node.

c. Set the value for the DB2UNIVERSAL_JDBC_DRIVER_PATH variable to
be the path to the Java folder in the DB2 installation on the host
appropriate to the scope selected.

d. Save your changes, if any.

8. Create a data source for the bus member. Select Resources → JDBC →
Data sources.

9. Set the scope for the new data source.

10.Click New to create a new data source.

a. Provide a unique and meaningful Data source name.

b. Provide a JNDI Name for the data source. Remember this name because
you will need to provide it when adding your cluster or server to the bus.

c. Provide a J2C authentication alias. This will be the credentials to connect
to the database successfully.

d. Click Next.

e. Select the existing DB2 Universal JDBC Driver Provider.

f. Click Next.

g. Provide the Database name, Driver type and, optionally, the Server name.
Get this information from your database administrator.

i. The database name must be the name of an existing DB2 Database.

ii. The driver type is 2 if the DB2 database exists locally or is catalogued
locally. If the database is only available on a remote host, then the
driver type is 4 and you must enter the Server name.

Note: When the data source is being created at cluster scope, each node that
has a server in the cluster must have the DB2 JAR files available on it. The
DB2UNIVERSAL_JDBC_DRIVER_PATH variable must be set appropriately
for every node.
630 WebSphere Application Server V6.1: System Management and Configuration

h. Click Next and Finish and save your changes.

Adding the bus member
Once the database and supporting definitions are in place, the bus member can
be added. To add the bus member, do the following:

1. Select Service integration → Buses. Select the bus you want.

2. Select Bus members in the Additional Properties section.

3. Click Add.

4. To add a server to the bus, do the following:

a. Select Server on the radio button.

b. Select the server you want to add from the drop-down list.

To add a cluster to the bus, do the following:

a. Select Cluster on the radio button.

b. Select the cluster you want to add from the drop down list.

5. Click Next.

6. Select Data store and click Next.

Note: There is no need to provide a component-managed authentication
alias at this stage. That will be specified later in the data store of the
messaging engine. Specifying the alias in either location is supported, but
for tighter security control, we recommend that you specify it in the
messaging engine’s data store.
 Chapter 9. Default messaging provider 631

7. Select Use existing data source. See Figure 9-44 on page 632

Figure 9-44 Data source window with existing settings option checked

8. Supply the required Data source JNDI name of the JDBC data source you
have created. This is the only required field.

9. The Schema name will be the default, and you may alter this if necessary.
This is only required if you are using the same database instance to contain
multiple data stores, each with its own schema.

10.Select the appropriate Authentication alias to connect to the database. This
should be the same one that you selected when you configured the data
source.

11.Ensure that the Create tables box is checked. The messaging engine will
create all of the tables it needs in the database when it starts for the first time.

12.Click Next and then click Finish.
632 WebSphere Application Server V6.1: System Management and Configuration

Creating and using a WebSphere MQ Server
In this section, we will show you how to create a WebSphere MQ Server and add
it as a member of a bus.

Creating a WebSphere MQ Server
To create a WebSphere MQ Server, do the following:

1. Select Servers → WebSphere MQ Servers.

2. Click New. You will see the WebSphere MQ Server configuration window. See
Figure 9-46 on page 636.

The following properties need to be set:

– Name

Enter a meaningful name for the WebSphere MQ Server.

– Server

This is the name (as defined in WebSphere MQ) of the MQ queue
manager, or the queue sharing group.

– Server type

Here you define the type of the server you want to connect to, a queue
manager or a queue sharing group.

– Use bindings transport mode if available

If this is selected, bindings transport mode will always be used in
preference to client transport mode. Otherwise, client transport mode will
be used.

– WebSphere MQ host

The DNS host name or IP address of the machine that is hosting the MQ
Queue manager.

– WebSphere MQ port

The TCP/IP port number (default 1414) used to connect to the
WebSphere MQ queue manager.

Important: The user ID in the authentication alias must have sufficient
authority to be able to create tables in the database. Check with your
database administrator.

If you do not want the data store to use an ID with the authority to create and
drop tables, then your database administrator must create the tables for you
before you start the messaging engine. See the Information Center section on
Enabling your database administrator to create the data store tables.
 Chapter 9. Default messaging provider 633

– Transport chain name

Select the appropriate transport chain from the drop down list. This is used
to establish an outbound network connection to the WebSphere MQ
Server. See 9.2.2, “Service integration bus transport chains” on page 563
for further information:

Figure 9-45 WebSphere MQ Server configuration window
634 WebSphere Application Server V6.1: System Management and Configuration

– WebSphere MQ Channel

This is the name of the connection channel, as defined in WebSphere MQ.

Other properties on the window will be the defaults, and information about
these can be found in the IBM Information Center.

3. Click OK and save your changes.

Adding a bus member
To add a WebSphere MQ Server as a bus member, do the following:

1. Select Service integration → Buses. Select the bus you want.

2. Select Bus members in the Additional Properties section.

3. Click Add.

4. Select WebSphere MQ server on the radio button and select the server from
the drop-down list.
 Chapter 9. Default messaging provider 635

5. Click Next. You will see the connection settings window. See Figure 9-46 on
page 636.

Figure 9-46 WebSphere MQ Server connection settings window

This window gives the opportunity to review and override some of the
WebSphere MQ Server connection properties. This may be useful in a
multiple bus topology where you may need bus-specific settings for the
server.

If you wish to override the inherited connection settings, select the Override
WebSphere MQ server connection properties check box and alter the
connection settings as desired.

6. Click Next and Finish and save your changes.
636 WebSphere Application Server V6.1: System Management and Configuration

9.8.6 Creating a queue destination
Queue destinations are destinations that you can configure for point-to-point
messaging.

1. Select Service integration → Buses.

2. Select the bus on which you want to create a queue.

3. Select Destinations in the Destination resources section. See Figure 9-47.

Figure 9-47 Default destinations

The Destinations window shows two destinations that are created
automatically for you. The Default.Topic.Space is a default topic space that
can be used for publish/subscribe messaging. It can be deleted. The
_SYSTEM.Exception.Destination is a built-in queue that cannot be deleted.
 Chapter 9. Default messaging provider 637

4. Click New. See Figure 9-48 on page 638.

Figure 9-48 Options when creating a new destination

Select Queue from the radio button list and click Next. See Figure 9-49.

5. Provide an identifier and optional description for the queue.

Figure 9-49 Provide an identifier for your destination

If your application uses the JMS interface, it is not sufficient to create a
destination on the bus. A JMS destination referencing the bus destination
638 WebSphere Application Server V6.1: System Management and Configuration

must also be created. The identifier value specified here must match the
Queue name property of the JMS queue definition (see “JMS queue
configuration” on page 476).

Click Next. See Figure 9-50 on page 639.

6. Select a bus member for the queue point for this queue from the list for the
queue. Click Next.

Figure 9-50 Select a bus member for the queue

7. Click Next and Finish and then save your changes.

9.8.7 Creating a topic space destination
Topic space destinations are destinations that can be configured for
publish/subscribe messaging.

1. Select Service integration → Buses.
2. Select the bus on which you want to create a topic space on.
3. Select Destinations in the Destination resources section.
4. Click New.
5. Select Topic space from the list and click Next.
6. Provide an identifier and optional description for your topic space.
7. Click Next.
8. Click Finished.
9. Save your changes.
 Chapter 9. Default messaging provider 639

9.8.8 Creating an alias destination
Alias destinations refer to another destination, potentially on a foreign bus,
providing an extra level of indirection for messaging applications. An alias
destination can also be used to override some of the values specified on the
target destination, such as default reliability and maximum reliability. Foreign
buses are discussed in 9.1.7, “Foreign buses” on page 555.

1. Select Service integration → Buses.
2. Select the bus on which you want to create a topic space.
3. Select Destinations in the Destination resources section.
4. Click New.
5. Select Alias from the list and click Next. See Figure 9-51 on page 641.
640 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-51 Alias destination properties

The properties to note are:

– Identifier

This field is the destination name as known by the applications.
 Chapter 9. Default messaging provider 641

– Bus

Enter the name of the bus used by applications when referring to the alias
destination.

If the destination that clients will attempt to access is known to them to be
on a foreign bus, then select that bus from the menu. An example of this is
if a foreign destination is configured in the JMS layer and you want to
redirect client requests for that destination.

If the bus does not appear in the list, select Other, specify from the list,
and enter the name of the bus in the text box.

If you leave the Bus field empty, the alias destination is created on the
local bus.

– Target identifier

Enter the identifier of the target destination to which you want this alias
destination to route messages. If the alias destination is targeting a queue
provided by WebSphere MQ, type the value as a concatenation of the
queue name and the queue manager name, for example,
queue_name@qmanager_name; for example: Queue1@Qmgr2.

– Target bus

Enter the name of the bus or foreign bus hosting the target destination.
This can be the name of a foreign bus representing a WebSphere MQ
network. The default is the name specified for the Bus property.

Override any of the other values on the window that you want to override for
the destination.

6. Click Next.

7. Click Finished.

8. Save your changes.

9.8.9 Adding messaging engines to a cluster
When you add a cluster to a bus, you get one messaging engine. To define
additional messaging engines, do the following:

1. Ensure that you have defined a data source that the new messaging engine
will use for its data store before starting this section (see “Creating a JDBC
provider and data source” on page 629).

2. Select Service integration → Buses. Select the bus you want to use.

3. Select Bus members in the Additional Properties section.
642 WebSphere Application Server V6.1: System Management and Configuration

4. Select the cluster bus member to which you want to add an additional
messaging engine. This will display the list of messaging engines that are
defined for the cluster bus member. See Figure 9-52 on page 643.

Figure 9-52 Messaging engines as part of a cluster bus member

5. Click Add messaging engine.

6. Select the type of message store and click Next.

7. Enter the required information for the message store. For information about
using multiple message stores, see 9.2.3, “Message stores” on page 568.

8. Click Next and Finish and save your changes.

9.8.10 Setting up preferred servers
Configure a messaging engine that you prefer to run on one server or a group of
servers in a cluster using a core groups policy. The use of policies is required if
you want to workload-manage your messaging with the bus.
 Chapter 9. Default messaging provider 643

Setting up a policy with the appropriate values can give many different behaviors,
including the following:

� A messaging engine will have an affinity for one particular server in the
cluster. If that server fails, then the messaging engine will run on other
servers, but will move back to the preferred server as soon as it becomes
available. This is set up by having a One-of-N Policy defined with one
preferred server configured, Preferred servers only set to false, and Fail back
set to true.

� A messaging engine will run on only one server inside the cluster. This means
that the messaging engine cannot fail over to another server in the cluster and
will only ever run on the defined server. This can be set up by having a
One-of-N Policy with one preferred server and Preferred servers only set to
true.

To create a core group policy for a messaging engine, do the following:

1. Select Servers → Core groups → Core group settings.

Note: Before attempting to configure a system for workload management and
high availability, consult the following:

� 9.3, “High availability and workload management” on page 594

� The Configuring high availability and workload sharing of service
integration topic in the Information Center

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

Important: If you have more than one messaging engine defined on a cluster
bus member and do not define additional core group policies to set up
preferred servers, then all messaging engines will start and run on the first
server to become available.
644 WebSphere Application Server V6.1: System Management and Configuration

2. Select the DefaultCoreGroup. This will show the properties for the default
core group. See Figure 9-53 on page 645.

Figure 9-53 Default Core Group
 Chapter 9. Default messaging provider 645

3. Select Policies in the Additional Properties section. This will show you the list
of policies defined for the core group. Two policies are created by default. Do
not delete or modify these policies. See Figure 9-54 on page 646.

Figure 9-54 Predefined core group policies in the default core group

4. Click New.

5. From the drop-down list, select the One of N Policy. Click Next. See
Figure 9-55 on page 647.

6. Enter a name for the new policy. It might be helpful if the name includes the
name of the messaging engine for which you are creating this policy.

Enable Fail back and Preferred servers only as desired. These settings can
be changed later.

Click Apply.
646 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-55 Defining a new policy

A warning will show that you must define at least one match criteria. Match
criteria are name and value pairs used to match server components, such as
messaging engines.
 Chapter 9. Default messaging provider 647

7. Select Match criteria in the Additional Properties section.

8. Click New. See Figure 9-56.

Enter type for the name and WSAF_SIB for the value. This match criteria will
match any messaging engine.

Figure 9-56 Defining match criteria for any messaging engine

Click OK.

9. Click New to define another set of match criteria.

10.Enter WSAF_SIB_MESSAGING_ENGINE for the name and the messaging
engine name for the value. Click OK.

11.Return to your policy by clicking the policy name in the navigation trail. See
Figure 9-57 on page 649.

Important: Be aware that if you set preferred servers only that this can
prevent the messaging engine from being highly available. If the
messaging engine or the server it runs on fails or stops and no other
servers that are preferred are available, then the messaging engine cannot
be started on other servers that are available in the cluster. They are not
preferred and only preferred servers can be used.
648 WebSphere Application Server V6.1: System Management and Configuration

Figure 9-57 Match criteria for a messaging engine

12.Click Preferred servers in the Additional Properties section.
 Chapter 9. Default messaging provider 649

13.Select the servers you want to configure as preferred and click Add.

You can select as many preferred servers as you want. All preferred servers
must be servers that are in the cluster on which the messaging engine is
defined. Do not select a node agent or deployment manager. See Figure 9-58
on page 650.

Preferred servers have an order of preference. The higher up the list of
preferred servers, the more preferred the server will be. To move a server up
or down the list, select the server and click Move up or Move down. If Fail
back is enabled, then a messaging engine will fail over to the highest
available server in the list.

Figure 9-58 Selecting preferred servers for a core group policy

14.Click OK and save your changes.

9.8.11 Setting up a foreign bus link to a service integration bus
To define a foreign bus to the bus from which you want to access it, do the
following:

1. Select Service integration → Buses.

2. Select the bus from which you want to access the foreign bus.

3. Select Foreign buses in the Topology section.
650 WebSphere Application Server V6.1: System Management and Configuration

4. Click New. See Figure 9-59 on page 651.

5. Provide the Name of the foreign bus.

Figure 9-59 Creating a new foreign bus

Checking the Send allowed box allows this bus to send messages to
destinations on the foreign bus. This is the default.

You can change this setting at any time. This can be useful if you want to
disable a foreign bus for a short time, for example, while configuration
changes are being made.

Important: When your foreign bus is a bus, then this name must match
exactly the name of that bus.
 Chapter 9. Default messaging provider 651

Click Next. See Figure 9-60.

6. Select the appropriate value for the routing type.

Figure 9-60 Selecting the type of foreign bus

To define another bus, select Direct, service integration bus link from the
menu. Click Next. See Figure 9-61.

7. Optionally, define outbound and inbound user IDs.

Figure 9-61 Define inbound and outbound user IDs
652 WebSphere Application Server V6.1: System Management and Configuration

The inbound user ID authorizes individual messages arriving from the foreign
bus to destinations in this bus. When set, this property replaces the user ID in
messages entering this bus from the foreign bus. If this is not a secure bus,
this property does not affect messages.

The outbound user ID replaces the user ID that identifies the source of a
message in all messages being sent to the foreign bus. When set, this
property replaces the user ID in messages leaving this bus for the foreign
bus. The foreign bus also uses this ID to authorize the message to its
destination if both buses are secure buses and the foreign bus has not
overridden the user ID with its own inbound user ID.

8. Click Next.

9. Click Finish and save your changes.

Define the link to the bus
Now that your bus knows about the foreign bus, you will have to set up the link to
that bus. This link will be managed by a particular messaging engine on your
bus. A link must be created on each bus and it is important that the link has the
same name on each bus.

1. Select Service integration → Buses. Select the bus you want to use.

2. Select Messaging engines in the Topology section and select the
messaging engine you want to host the link.

3. Select Service integration bus links in the Additional Properties section.
 Chapter 9. Default messaging provider 653

4. Click New. See Figure 9-62 on page 654 and fill in the following properties:

Figure 9-62 Defining a service integration bus link

– Name

Enter a name for the link. It might be helpful if this name includes the
names of the buses you are linking.

Important: This link name must be the exactly the same as the link
name on the other bus.
654 WebSphere Application Server V6.1: System Management and Configuration

– Foreign bus name

Enter the name of the messaging engine in the foreign bus to which you
are linking. This name must also match exactly the name of the
messaging engine in the foreign bus hosting the link and is required to
prevent configuration changes on the other bus from causing problems
with the link.

– Bootstrap endpoints

Provide bootstrap endpoints to allow your bus to connect to the foreign
bus. This field is equivalent to the Provider endpoints field for a default
messaging provider connection factory. Both provide a list of endpoints to
be used to connect to a SIB service.

See 8.7.1, “JMS client run time environment” on page 521.

– Authentication alias

If the foreign bus is secure, then you need to provide authentication data
for the link.

5. Click Apply or OK and save your changes.

Configuring topic space mappings to a foreign bus
This section discusses the steps required to create a topic space mapping
between two buses. Before starting this section, you must have defined a foreign
bus that is a service integration bus.

� Select Service integration → Buses. Select the local bus.

� Select Foreign buses in the Topology section.

� Select the foreign bus you to which you want to create a topic mapping.

� Select Service integration bus link routing properties in the Additional
Properties section.

� Select Topic space mapping in the Additional Properties section.

� Optionally, enter a description.

Click Apply.

� Select Topic space map entries in the Additional Properties section.

Important: You must configure a corresponding foreign bus and service
integration bus link on the other bus to complete the link. Ensure that the
name of the link is the same in both buses.

Note: You have to click Apply even if you do not enter a description.
 Chapter 9. Default messaging provider 655

� Click New.

– Enter the name of the Local topic space from which you want to receive
published messages.

– Enter the name of the Remote Topic space from which you want to receive
published messages.

Click Apply or OK and save your changes.

9.8.12 Setting up a foreign bus link to an MQ queue manager
A WebSphere MQ link allows your service integration bus to exchange
messages with a WebSphere MQ queue manager.

First, you must define a foreign bus and define it in your bus. From there, enter
information in the following fields.

1. Select Service integration → Buses. Select the bus you want to use.

2. Select Foreign buses in the Topology section.

3. Click New. See Figure 9-63. Enter information into the following fields:

Figure 9-63 Creating a new foreign bus

Note: Before creating these definitions, review the information in 9.2.6,
“WebSphere MQ links” on page 584.
656 WebSphere Application Server V6.1: System Management and Configuration

– Name

Enter the name of the foreign bus.

– Send allowed

Checking the Send allowed box allows this bus to send messages to
destinations on the foreign bus. This is the default. You can change this
setting at any time. This can be useful if you want to disable a foreign bus
for a short time, for example, while configuration changes are being made.

Click Next. See Figure 9-64.

4. Select Direct, WebSphere MQ link from the menu.

Figure 9-64 Selecting the type of foreign bus

5. Define inbound and outbound user IDs (optional)

The inbound user ID authorizes individual messages arriving from the foreign
bus to destinations in this bus. When set, this property replaces the user ID in
messages entering this bus from the foreign bus. If this is not a secure bus,
this property does not affect messages.

The outbound user ID replaces the user ID that identifies the source of a
message in all messages being sent to the foreign bus. When set, this
property replaces the user ID in messages leaving this bus for the foreign bus.
The foreign bus also uses this user ID to authorize the message to its
destination if both buses are secure buses and the foreign bus has not
overridden the user ID with its own inbound user ID.

6. Click Next.
 Chapter 9. Default messaging provider 657

7. Click Finish and save your changes.

Define the WebSphere MQ link
Now that your bus knows about the foreign bus, set up the link to that MQ queue
manager. This link is managed by a particular messaging engine on your bus.

1. Select Service integration → Buses.

2. Select the bus you want to use.

3. Click Messaging engines and select the messaging engine you want to host
the link.

4. Select WebSphere MQ Links in the Additional Properties section.

Important: If you are unsure of any of the correct MQ values to supply for the
MQ link, then refer to your MQ administrator or documentation for more
information.
658 WebSphere Application Server V6.1: System Management and Configuration

5. Click New. See Figure 9-65 on page 659 and enter information in the
following fields:

Figure 9-65 Defining properties for a new MQ link

– Name

Enter a name for the link. It might be helpful if this name includes the name
of the foreign bus for which you are creating the link.
 Chapter 9. Default messaging provider 659

– Foreign bus name

From the menu, select the name of the foreign bus to which this link will
connect. This should be the name of the queue manager that is
participating in the link.

– Queue manager name

This is the queue manager name by which the MQ queue manager will
know this bus. You must ensure that the MQ queue manager participating
in this link is configured to know about this bus as another queue manager
using this queue manager name.

– Nonpersistent message speed

This field defines whether the channel to MQ will have MQ’s NPMSPEED
channel attribute set to fast or normal.

– Adoptable

This option, enabled by default, provides function similar to MQ’s
ADOPTMCA function. If selected, the receiver channel can be reused
when the sender channel fails or has to be restarted.

Click Next.
660 WebSphere Application Server V6.1: System Management and Configuration

6. You must now provide details on how the link will send information to the MQ
queue manager. See Figure 9-66 on page 661. Enter the following:

Figure 9-66 Providing the link with details on how to send messages to MQ

– Sender MQ channel name

This is the name of the receiver channel that the link will send messages
to in the MQ queue manager.

– Host name

Enter the host name or IP address of the server hosting the MQ queue
manager.
 Chapter 9. Default messaging provider 661

– Port

If the MQ queue manager is using a port other than the default port of
1414, then enter that information.

– Transport chain

Select the appropriate transport chain from the menu. See 9.2.2, “Service
integration bus transport chains” on page 563 for further information.

Click Next. See Figure 9-67.

7. Enter information about the virtual queue manager. Remember, this link
performs as a virtual queue manager for WebSphere MQ. Enter the following
information:

Figure 9-67 Providing the link with details on how MQ will send messages to it

– Receiver MQ channel name

The MQ queue manager participating in the link must be configured with a
sender channel of this name.
662 WebSphere Application Server V6.1: System Management and Configuration

– Provide default information for mapping incoming persistent and
nonpersistent MQ messages into service integration messages, see
“Reliability” on page 551 for more information about service integration
message reliability.

Click Next.

8. Click Finish and save your changes.

Configuring topic space mappings to WebSphere MQ
To configure an MQ publish/subscribe profile, define a WebSphere MQ link to
the WebSphere MQ network. The link does not need to be directly to the broker’s
queue manager. However, it must be to a queue manager that is able to route to
the broker’s queue manager.

1. Select Service integration → Buses. Select the bus you want to use.

2. Click Messaging engines and select the messaging engine that hosts the
MQ link.

3. Select WebSphere MQ links in the Additional Properties section.

WebSphere MQ considerations: Ensure that the WebSphere MQ queue
manager participating in the link has the appropriate sender and receiver
channels defined. Consult your MQ administrator or documentation for details
on how to perform this configuration.

� Sender channel

This channel must have the same name as the name defined in the
MQLink’s receiver channel.

The connection name is the IP address or host name for the server hosting
the messaging engine on which the link is defined.

The port used should match the value of the
SIB_MQ_ENDPOINT_ADDRESS port defined for the server hosting the
messaging engine on which the link is defined. The default is 5559. To find
this value through the administrative console, do the following:

a. Select Servers → Application Servers.

b. Select the server hosting the messaging engine.

c. Under Communications expand the Ports heading. Find the port
number for SIB_MQ_ENDPOINT_ADDRESS.

� Receiver channel

This channel must have the same name as the name defined in the
MQLink’s sender channel.
 Chapter 9. Default messaging provider 663

4. Select the MQ link on which you want to define a MQ publish/subscribe
profile.

5. Select Publish/subscribe broker profiles in the Additional Properties
section. Click New.

– Enter a name for the profile.

– Enter the name of the queue manager associated with the broker.

Click Apply. Define some topic mappings to link MQ topics to service
integration topics.

6. Select Topic mappings in the Additional Properties section.

7. Click New. See Figure 9-68 and enter information in the following fields:

Figure 9-68 Defining a new Topic mapping

– Topic name

Enter the name of the topic that you want to map. This name is the topic
name that will be linked in the service integration bus and MQ. You can
use the bus wildcard “/.” in this topic name to map a group of topics. For
example “stock//.” means all messages with “stock” at the beginning of the
664 WebSphere Application Server V6.1: System Management and Configuration

topic. For more information about the use of wildcard characters when
specifying topic names, refer to “Topic specific connection properties” on
page 474.

� Topic space

Select the Topic space in which this topic will be published on the bus.

– Direction

Select the desired direction of the mapping.

• Bi-directional

Messages published in either WebSphere MQ or the bus will be
published in both.

• To WebSphere MQ

Messages published in the bus will be published in WebSphere MQ,
but messages published in WebSphere MQ will not be published in the
bus.

• From WebSphere MQ

Messages published in WebSphere MQ will be published in the bus,
but messages published in the bus will not be published in WebSphere
MQ.

– Broker stream queue

Select the appropriate broker stream queue from the menu, if required.
The broker stream queue is the queue in MQ to which the message broker
is connected. If the queue does not appear in the list then, select Other,
please specify. A text entry box will appear to the right of the drop-down
menu. Enter the name of the queue there.

– Subscription point

Select an appropriate subscription point from the menu, if required. If the
subscription point does not appear in the list then select Other, please
specify. A text entry box will appear to the right of the drop-down menu.
Enter the name of the subscription point there.

Ask your WebSphere MQ administrator if a subscription point should be
specified and what it should be.

Note: Broker stream queue is required if you want to send messages to
WebSphere MQ. If your topic mapping is Bi-directional, To WebSphere
MQ or if it is From WebSphere MQ and your applications need to be
able to send reply messages to publications received, then a broker
stream queue must be specified.
 Chapter 9. Default messaging provider 665

9.8.13 Creating a foreign destination
To create a destination on a foreign bus, do the following:

1. Select Service integration → Buses.

2. Select the bus on which you want to create a queue.

3. Select Destinations in the Destination resources section.

4. Click New.

5. Select Foreign from the list and click Next. Enter the information shown in
Figure 9-69.

Figure 9-69 Creating a new foreign destination

– Identifier

Enter the name of the foreign destination for which you want to provide
defaults. This must match the name of the destination that exists on the
foreign bus.
666 WebSphere Application Server V6.1: System Management and Configuration

– Bus

From the drop-down menu, select the foreign bus on which this destination
exists. If the foreign bus is not in the list, then select Other, please specify
and enter the name of the foreign bus in the box.

– Enable producers to override default reliability

If this is selected, it allows applications to specify reliability levels that will
override the default reliability setting. If this is set to false, the application’s
reliability level will be ignored in favor of the default reliability setting.

– Default reliability and Maximum reliability

Select the desired default and maximum reliabilities from the drop-down
menus. Consult “Reliability” on page 551.

Click Next.

6. Click Finished.
 Chapter 9. Default messaging provider 667

668 WebSphere Application Server V6.1: System Management and Configuration

Part 3 Working with
applications

This part takes you through the process of packaging and deploying applications.
In addition, it contains information about concepts that you need to understand to
successfully develop and package applications for the WebSphere Application
Server V6 run time environment.

This part includes the following chapters:

� Chapter 10, “Session management” on page 671
� Chapter 11, “WebSphere naming implementation” on page 741
� Chapter 12, “Understanding class loaders” on page 795
� Chapter 13, “Packaging applications” on page 829
� Chapter 14, “Deploying applications” on page 893

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 669

670 WebSphere Application Server V6.1: System Management and Configuration

Chapter 10. Session management

Session support allows a Web application developer to maintain state
information across multiple user visits to the application. In this chapter, we
discuss HTTP session support in WebSphere Application Server V6 and how to
configure it. We also discuss the new support for stateful session bean failover.
The topics include:

� HTTP session management
� Session manager configuration
� Session scope
� Session identifiers
� Local sessions
� General properties for session management
� Session affinity
� Persistent session management
� Invalidating sessions
� Session security
� Session performance considerations
� Stateful session bean failover
� Session security

10
© Copyright IBM Corp. 2006. All rights reserved. 671

10.1 HTTP session management
In many Web applications, users collect data dynamically as they move through
the site based on a series of selections on pages they visit. Where the user goes
next, and what the application displays as the user's next page, or next choice,
depends on what the user has chosen previously from the site. For example, if
the user clicks the checkout button on a site, the next page must contain the
user's shopping selections.

In order to do this, a Web application needs a mechanism to hold the user's state
information over a period of time. However, HTTP alone does not recognize or
maintain a user's state. HTTP treats each user request as a discrete,
independent interaction.

The Java servlet specification provides a mechanism for servlet applications to
maintain a user’s state information. This mechanism, known as a session,
addresses some of the problems of more traditional strategies, such as a pure
cookie solution. It allows a Web application developer to maintain all user state
information at the host, while passing minimal information back to the user
through cookies, or another technique known as URL rewriting.

10.2 Session manager configuration
Similar to WebSphere Application Server V5, session management in
WebSphere Application Server V6 can be defined at the following levels:

� Application server

This is the default level. Configuration at this level is applied to all Web
modules within the server.

� Application

Configuration at this level is applied to all Web modules within the application.

� Web module

Configuration at this level is applied only to that Web module.

10.2.1 Session management properties
With one exception, the session management properties you can set are the
same at each configuration level:

� Session tracking mechanism lets you select from cookies, URL rewriting, and
SSL ID tracking. Selecting cookies will lead you to a second configuration
page containing further configuration options.
672 WebSphere Application Server V6.1: System Management and Configuration

� Select Maximum in-memory session count and whether to allow this
number to be exceeded, or overflow.

� Session timeout specifies the amount of time to allow a session to remain idle
before invalidation.

� Security integration specifies that the user ID be associated with the HTTP
session.

� Serialize session access determines if concurrent session access in a given
server is allowed.

� Overwrite session management, for enterprise application and Web module
level only, determines whether these session management settings are used
for the current module, or if the settings are used from the parent object.

� Distributed environment settings determines how to persist sessions
(memory-to-memory replication or a database) and set tuning properties.
Memory-to-memory persistence is only available in a Network Deployment
distributed server environment.

10.2.2 Accessing session management properties

You can access all session management configuration settings using the
administrative console.

Application server session management properties
To access session management properties at the application server level, from
the administrative console, do the following:

1. Select Servers → Application servers.

2. Click the application server.

3. In the Container Settings section of the Configuration tab, click Web
Container Settings.

4. Click Web Container. You will see the Web Container setting window.

5. In the Additional Properties section, click Session management.

Application session management properties
To access session management properties at the application level, from the
administrative console, do the following:

1. Click Applications → Enterprise Applications.

2. Click the application.

3. In the Web Module Properties section of the Configuration tab, click Session
management.
 Chapter 10. Session management 673

Web module session management properties
To access session management properties at the Web module level, from
administrative console, do the following:

1. Click Applications → Enterprise Applications.

2. Click the application.

3. In the Modules section of the Configuration tab, click Manage Modules.

4. Click the Web module.

5. In the Additional Properties section, click Session Management.

10.3 Session scope
The Servlet 2.4 specification defines session scope at the Web application level.
Session information can be accessed only by a single Web application.
However, there can be times when there is a logical reason for multiple Web
applications to share information, for example, a user name.

WebSphere Application Server provides an IBM extension to the specification
allowing session information to be shared among Web applications within an
enterprise application. This option is offered as an extension to the application
deployment descriptor. No code change is necessary to enable this option. This
option is specified during application assembling.

Sharing session context
The WebSphere extension for sharing session context is set in the
META-INF/ibm-application-ext.xmi file in the enterprise project. You can set this
using the Application Server Toolkit or from Rational Application Developer:

1. Start the Application Server Toolkit or Rational Application Developer and
switch to the J2EE perspective.

2. Double-click the EAR file in the J2EE Hierarchy view. This will open the
application deployment descriptor.

3. Click the Overview tab.

4. Select Shared session context. See Figure 10-1 on page 675.

Note: Because session information is shared within the enterprise application,
you cannot use the Overwrite Session Management property at the Web
module level when the IBM option for shared session context is selected.
674 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-1 Shared HTTP session context using the Application Server Toolkit

5. Save and close the deployment descriptor.
 Chapter 10. Session management 675

10.4 Session identifiers
WebSphere session support keeps the user’s session information about the
server. WebSphere passes the user an identifier known as a session ID, which
correlates an incoming user request with a session object maintained on the
server.

10.4.1 Choosing a session tracking mechanism
WebSphere supports three approaches to tracking sessions:

� SSL session identifiers
� Cookies
� URL rewriting

It is possible to select all three options for a Web application. If you do this:

� SSL session identifiers are used in preference to cookie and URL rewriting.
� Cookies are used in preference to URL rewriting.

To set or change the session mechanism type, do the following:

1. Open the session management properties for the application server,
enterprise application, or Web module.

2. Select the session tracking mechanism that you require. See Figure 10-2 on
page 677.

Note: The example session IDs provided in this chapter are for illustrative
purposes only and are not guaranteed to be absolutely consistent in value,
format, and length.

Note: If SSL session ID tracking is selected, we recommend that you also
select cookies or URL rewriting so that session affinity can be maintained. The
cookie or rewritten URL contains session affinity information enabling the Web
server to properly route a session back to the same server for each request.
676 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-2 Selecting a session tracking mechanism window

3. Click OK.

4. Save and synchronize the configuration changes.

5. Restart the application server or the cluster.
 Chapter 10. Session management 677

10.4.2 SSL ID tracking
When SSL ID tracking is enabled for requests over SSL, SSL session information
is used to track the HTTP session ID.

Because the SSL session ID is negotiated between the Web browser and HTTP
server, it cannot survive an HTTP server failure. However, the failure of an
application server does not affect the SSL session ID and if the distributed
session is not configured, the session itself is lost. In environments that use
WebSphere Edge Server with multiple HTTP servers, you must use an affinity
mechanism when SSL session ID is used as the session tracking mechanism.

The lifetime of an SSL session ID can be controlled by configuration options in
the Web server. For example, in the IBM HTTP Server, the configuration variable
SSLV3TIMEOUT must be set to allow for an adequate lifetime for the SSL
session ID. Too short an interval could result in premature termination of a
session. Also, some Web browsers might have their own timers that affect the
lifetime of the SSL session ID. These Web browsers might not leave the SSL
session ID active long enough to be useful as a mechanism for session tracking.

When the SSL session ID is to be used as the session tracking mechanism in a
clustered environment, either cookies or URL rewriting must be used to maintain
session affinity. The cookie or rewritten URL contains session affinity information
that enables the Web server to properly route requests back to the same server
once the HTTP session has been created on a server. The SSL ID is not sent in
the cookie or rewritten URL but is derived from the SSL information.

Disadvantages of SSL ID tracking
The main disadvantage of using SSL ID tracking is the performance hit of using
SSL. If you have a business requirement to use SSL, then this would be a good
choice. If you do not have such a requirement, it is probably a good idea to
consider using cookies instead.

As discussed previously, Web server and Web browser SSL session timeout
settings can also limit the usefulness of SSL ID tracking.

Note: SSL tracking is supported only for the IBM HTTP Server and SUN ONE
Web Server.
678 WebSphere Application Server V6.1: System Management and Configuration

10.4.3 Cookies
Many sites choose cookie support to pass the user’s identifier between
WebSphere and the user. WebSphere Application Server session support
generates a unique session ID for each user, and returns this ID to the user’s
browser with a cookie. The default name for the session management cookie is
JSESSIONID. See Figure 10-3 on page 679.

Figure 10-3 Cookie overview

A cookie consists of information embedded as part of the headers in the HTML
stream passed between the server and the browser. The browser holds the
cookie and returns it to the server whenever the user makes a subsequent
request. By default, WebSphere defines its cookies so they are destroyed if the
browser is closed. This cookie holds a session identifier. The remainder of the
user’s session information resides at the server.

The Web application developer uses the HTTP request object’s standard
interface to obtain the session:

HttpSession session = request.getSession(true);

WebSphere places the user’s session identifier in the outbound cookie whenever
the servlet completes its execution, and the HTML response stream returns to
the end user. Again, neither the cookie or the session ID within it require any
direct manipulation by the Web application. The Web application only sees the
contents of the session.

Cookie disadvantages
The main disadvantage with cookies is that some users, either by choice or
mandate, disable them from within their browser.

JSESSIONID: 123
Counter: 5
Age: 35
Salary:

Browser's Cookie List

Session Cache

WebSphere Application ServerUser

JSESSION ID: 123

JSESSIONID: 123

JSESSIONID: 123
 Chapter 10. Session management 679

Cookie settings
To configure session management using cookies, do the following from
administrative console:

1. Open the Session Manager window at your preferred level.

2. Click the box for Enable Cookies as the session tracking mechanism. See
Figure 10-4 on page 680.

Figure 10-4 Session tracking mechanism
680 WebSphere Application Server V6.1: System Management and Configuration

3. If you would like to view or change the cookies settings, select the Enable
Cookies hot link. The following cookie settings are available:

– Cookie name

The cookie name for session management should be unique. The default
cookie name is JSESSIONID, which is required by the Servlet 2.4
specification for all cookie-based session IDs. However, this value can be
configured for flexibility.

– Restrict cookies to HTTPS sessions

Enabling this feature restricts the exchange of cookies only to HTTPS
sessions. If it is enabled, the session cookie’s body includes the secure
indicator field.

– Cookie domain

This value dictates to the browser whether or not to send a cookie to
particular servers. For example, if you specify a particular domain, the
browser will only send back session cookies to hosts in that domain. The
default value in the session manager restricts cookies to the host that sent
them.

– Cookie path

The paths on the server to which the browser will send the session
tracking cookie. Specify any string representing a path on the server. Use
the slash (/) to indicate the root directory.

Specifying a value restricts the paths to which the cookie will be sent. By
restricting paths, you can keep the cookie from being sent to certain URLs
on the server. If you specify the root directory, the cookie will be sent no
matter which path on the given server is accessed.

– Cookie maximum age

The amount of time that the cookie will live in the client browser. There are
two choices:

• Expire at the end of the current browser session
• Expire at a configurable maximum age

If you choose the maximum age option, specify the age in seconds.

4. Click OK to exit the page and change your settings.

Note: The LTPA token/cookie that is sent back to the browser is scoped by
a single DNS domain specified when security is configured. This means
that all application servers in an entire WebSphere Application Server
domain must share the same DNS domain for security purposes.
 Chapter 10. Session management 681

5. Click OK to exit the session management settings.

6. Save and synchronize your configuration changes.

7. Restart the application server or the cluster.

For more information about cookie properties, see Persistent Client State HTTP
Cookies at:

http://home.netscape.com/newsref/std/cookie_spec.html

10.4.4 URL rewriting
WebSphere also supports URL rewriting for session ID tracking. While session
management using SSL IDs or cookies is transparent to the Web application,
URL rewriting requires the developer to use special encoding APIs, and to set up
the site page flow to avoid losing the encoded information.

URL rewriting works by storing the session identifier in the page returned to the
user. WebSphere encodes the session identifier as a parameter on URLs that
have been encoded programmatically by the Web application developer. This is
an example of a Web page link with URL encoding:

When the user clicks this link to move to the /store/catalog page, the session
identifier passes into the request as a parameter.

URL rewriting requires explicit action by the Web application developer. If the
servlet returns HTML directly to the requester, without using a JavaServer Page,
the servlet calls the API, as shown in Example 10-1, to encode the returning
content.

Example 10-1 URL encoding from a servlet

out.println("<a href=\");
out.println(response.encodeURL ("/store/catalog"));
out.println("\>catalog");

Even pages using redirection, a common practice, particularly with servlet or JSP
combinations, must encode the session ID as part of the redirect, as shown in
Example 10-2.

Example 10-2 URL encoding with redirection

response.sendRedirect(response.encodeRedirectURL("http://myhost/store/catalog")
);
682 WebSphere Application Server V6.1: System Management and Configuration

http://home.netscape.com/newsref/std/cookie_spec.html
http://home.netscape.com/newsref/std/cookie_spec.html

When JavaServer Pages (JSPs) use URL rewriting, the JSP calls a similar
interface to encode the session ID:

<% response.encodeURL ("/store/catalog"); %>

URL rewriting configuration
URL rewriting is selected in the same way as cookies. The only additional
configuration option is Enable protocol switch rewriting.

This option defines whether the session ID, added to a URL as part of URL
encoding, should be included in the new URL if a switch from HTTP to HTTPS or
from HTTPS to HTTP is required. For example, if a servlet is accessed over
HTTP and that servlet is doing encoding of HTTPS URLs, URL encoding will be
performed only when protocol switch rewriting is enabled, and vice versa.

Disadvantages of using URL rewriting
The fact that the servlet or JSP developer has to write extra code is a major
drawback over the other available session tracking mechanisms.

URL rewriting limits the flow of site pages exclusively to dynamically generated
pages, such as pages generated by servlets or JSPs. WebSphere inserts the
session ID into dynamic pages, but cannot insert the user’s session ID into static
pages, .htm, or .html.

Therefore, after the application creates the user’s session data, the user must
visit dynamically generated pages exclusively until they finish with the portion of
the site requiring sessions. URL rewriting forces the site designer to plan the
user’s flow in the site to avoid losing their session ID.

10.5 Local sessions
Many Web applications use the simplest form of session management: the
in-memory, local session cache. The local session cache keeps session
information in memory and local to the machine and WebSphere Application
Server where the session information was first created.

Local session management does not share user session information with other
clustered machines. Users only obtain their session information if they return to
the machine and WebSphere Application Server holds their session information
about subsequent accesses to the Web site.
 Chapter 10. Session management 683

Most importantly, local session management lacks a persistent store for the
sessions it manages. A server failure takes down not only the WebSphere
instances running on the server, but also destroys any sessions managed by
those instances.

WebSphere allows the administrator to define a limit on the number of sessions
held in the in-memory cache from the administrative console settings on the
session manager. This prevents the sessions from acquiring too much memory in
the Java VM associated with the application server.

The session manager also allows the administrator to permit an unlimited
number of sessions in memory. If the administrator enables the Allow overflow
setting on the session manager, the session manager permits two in-memory
caches for session objects. The first cache contains only enough entries to
accommodate the session limit defined to the session manager, 1000 by default.
The second cache, known as the overflow cache, holds any sessions the first
cache cannot accommodate, and is limited in size only by available memory. The
session manager builds the first cache for optimized retrieval, while a regular,
un-optimized hash table contains the overflow cache.

For best performance, define a primary cache of sufficient size to hold the normal
working set of sessions for a given Web application server.

If you choose to enable session overflow, the state of the session cache should
be monitored closely.

Important: If you enable overflow, the session manager permits an unlimited
number of sessions in memory. Without limits, the session caches might
consume all available memory in the WebSphere instance’s heap, leaving no
room to execute Web applications. For example, two scenarios under which
this could occur are:

� The site receives greater traffic than anticipated, generating a large
number of sessions held in memory.

� A malicious attack occurs against the site where a user deliberately
manipulates their browser so the application creates a new session
repeatedly for the same user.

Note: Each Web application will have its own base, or primary, in-memory
session cache, and with overflow allowed, its own overflow, or secondary,
in-memory session cache.
684 WebSphere Application Server V6.1: System Management and Configuration

10.6 General properties for session management
The session management settings allow the administrator to tune a number of
parameters that are important for both local or persistent sessions. See
Figure 10-5 on page 685.

Figure 10-5 Session Management configuration window
 Chapter 10. Session management 685

� Maximum in-memory session count

This field specifies the maximum number of sessions to maintain in memory.
The meaning differs depending on whether you are using local or persistent
sessions. For local sessions, this value specifies the number of sessions in
the base session table. Select Allow overflow to specify whether to limit
sessions to this number for the entire session manager, or to allow additional
sessions to be stored in secondary tables. Before setting this value, see 10.5,
“Local sessions” on page 683.

For persistent sessions, this value specifies the size of the general cache.
This value determines how many sessions will be cached before the session
manager reverts to reading a session from the database automatically.
Session manager uses a least recently used (LRU) algorithm to maintain the
sessions in the cache.

This value holds when you use local sessions, persistent sessions with
caching, or persistent sessions with manual updates. The manual update
cache keeps the last n time stamps representing the last access times, where
n is the maximum in-memory session count value.

� Allow overflow

Choosing this option specifies whether to allow the number of sessions in
memory to exceed the value specified in the maximum in-memory session
count field. If Allow overflow is not checked, then WebSphere limits the
number of sessions held in memory to this value.

For local sessions, if this maximum is exceeded and Allow overflow is not
checked, then sessions created thereafter will be dummy sessions and will
not be stored in the session manager. Before setting this value, see 10.5,
“Local sessions” on page 683.

As shown in Example 10-3, the IBM HttpSession extension can be used to
react if sessions exceed the maximum number of sessions specified when
overflow is disabled.

Example 10-3 Using IBMSession to react to session overflow

com.ibm.websphere.servlet.session.IBMSession sess =
(com.ibm.websphere.servlet.session.IBMSession) req.getSession(true);

if(sess.isOverFlow()) {
//Direct to a error page…

}

686 WebSphere Application Server V6.1: System Management and Configuration

� Session timeout

If you select Set timeout, when a session is not accessed for this many
minutes it can be removed from the in-memory cache and, if persistent
sessions are used, from the persistent store. This is important for
performance tuning. It directly influences the amount of memory consumed
by the JVM in order to cache the session information.

The value of this setting is used as a default when the session timeout is not
specified in a Web module’s deployment descriptor.

If you select No timeout, a session will be never removed from the memory
unless explicit invalidation has been performed by the servlet. This can cause
a memory leak when the user closes the window without logging out from the
system. This option might be useful when sessions should be kept for a while
until explicit invalidation has been done, when an employee leaves the
company, for example. To use this option, make sure that enough memory or
space in a persistent store is kept to accommodate all sessions.

� Security integration

When security integration is enabled, the session manager associates the
identity of users with their HTTP sessions. See 10.10, “Session security” on
page 725 for more information.

Note: Allowing an unlimited amount of sessions can potentially exhaust
system memory and even allow for system sabotage. Someone could write
a malicious program that continually hits your site, creating sessions, but
ignoring any cookies or encoded URLs and never utilizing the same
session from one HTTP request to the next.

Note: For performance reasons, the session manager invalidation process
runs at regular intervals to invalidate any invalid sessions. This interval is
determined internally based on the Session timeout interval specified in the
Session manager properties. For the default timeout value of 30 minutes,
the invalidation process interval is around 300 seconds. In this case, it
could take up to 5 minutes (300 seconds) beyond the timeout threshold of
30 minutes for a particular session to become invalidated.

Note: Do not enable this property if the application server contains a Web
application that has form-based login configured as the authentication
method and the local operating system is the authentication mechanism. It
will cause authorization failures when users try to use the Web application.
 Chapter 10. Session management 687

� Serialize session access

In WebSphere V4, sessions could be accessed concurrently, meaning
multiple threads could access the same session at the same time. It was the
programmer’s responsibility to serialize access to the session to avoid
inconsistencies.

In WebSphere V5 and WebSphere V6, this option is available to provide
serialized access to the session in a given JVM. This ensures thread-safe
access when the session is accessed by multiple threads. No special code is
necessary for using this option. This option is not recommended when
framesets are used heavily because it can affect performance.

An optional property, Maximum wait time, can be set to specify the maximum
amount of time a servlet request waits on an HTTP session before continuing
execution. The default is two minutes.

If you set the Allow access on timeout option, multiple servlet requests that
have timed out concurrently will execute normally. If it is false, servlet
execution aborts.

10.7 Session affinity
The Servlet 2.4 specification requires that an HTTP session be:

� Accessible only to the Web application that created the session

The session ID, but not the session data, can be shared across Web
applications.

� Handled by a single JVM for that application at any one time

In a clustered environment, any HTTP requests associated with an HTTP
session must be routed to the same Web application in the same JVM. This
ensures that all of the HTTP requests are processed with a consistent view of the
user’s HTTP session. The exception to this rule is when the cluster member fails
or has to be shut down.

WebSphere is able to assure that session affinity is maintained in the following
way: Each server ID is appended to the session ID. When an HTTP session is
created, its ID is passed back to the browser as part of a cookie or URL
encoding. When the browser makes further requests, the cookie or URL
encoding will be sent back to the Web server. The Web server plug-in examines
the HTTP session ID in the cookie or URL encoding, extracts the unique ID of the
cluster member handling the session, and forwards the request.
688 WebSphere Application Server V6.1: System Management and Configuration

This can be seen in Figure 10-6 on page 689, where the session ID from the
HTTP header, request.getHeader("Cookie"), is displayed along with the session
ID from session.getId(). The application server ID is appended to the session ID
from the HTTP header. The first four characters of HTTP header session ID are
the cache identifier that determines the validity of cache entries.

Figure 10-6 Session ID containing the server ID and cache ID

The JSESSIONID cookie can be divided into four parts: cache ID, session ID,
separator, clone ID, and partition ID (new in V6). JSESSION ID will include a
partition ID instead of a clone ID when memory-to-memory replication in
peer-to-peer mode is selected. Typically, the partition ID is a long numeric
number.
 Chapter 10. Session management 689

Table 10-1 shows their mappings based on the example in Figure 10-6. A clone
ID is an ID of a cluster member.

Table 10-1 Cookie mapping

The application server ID can be seen in the Web server plug-in configuration
file, plug-in-cfg.xml file, as shown in Example 10-4.

Example 10-4 Server ID from plugin-cfg.xml file

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file
for the cell ITSOCell generated on 2004.10.15 at 07:21:03 PM BST-->
<Config>
......
 <ServerCluster Name="MyCluster">
 <Server CloneID="vuel491u" LoadBalanceWeight="2" Name="NodeA_server1">
 <Transport Hostname="wan" Port="9080" Protocol="http"/>
 <Transport Hostname="wan" Port="9443" Protocol="https">

</Config>

10.7.1 Session affinity and failover
Server clusters provide a solution for failure of an application server. Sessions
created by cluster members in the server cluster share a common persistent
session store. Therefore, any cluster member in the server cluster has the ability
to see any user’s session saved to persistent storage. If one of the cluster
members fail, the user can continue to use session information from another
cluster member in the server cluster. This is known as failover. Failover works
regardless of whether the nodes reside on the same machine or several
machines. See Figure 10-7 on page 691.

content value in the example

Cache ID 0000

Session ID SHOQmBQ8EokAQtzl_HYdxIt

separator :

Clone ID vuel491u

Note: Session affinity can still be broken if the cluster member handling the
request fails. To avoid losing session data, use persistent session
management. In persistent sessions mode, cache ID and server ID will
change in the cookie when there is a failover or when the session is read from
the persistent store, so do not rely on the value of the session cookie
remaining the same for a given session.
690 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-7 Session affinity and failover

After a failure, WebSphere redirects the user to another cluster member, and the
user’s session affinity switches to this replacement cluster member. After the
initial read from the persistent store, the replacement cluster member places the
user’s session object in the in-memory cache, assuming the cache has space
available for additional entries.

The Web server plug-in maintains the cluster member list in order and picks the
cluster member next in its list to avoid the breaking of session affinity. From then
on, requests for that session go to the selected cluster member. The requests for
the session go back to the failed cluster member when the failed cluster member
restarts.

Note: According to the Servlet 2.4 specification, only a single cluster member
can control and access a given session at a time.

User A Session

User A

Affinity
Routing

Session
Cache

User A
User C
User Z

User D
User E
User K

User A Session

New Affinity
Routing

Session
Retrieved

and Cached

User D
User E
User K
User A

Session
Database

User A Session
Database
 Chapter 10. Session management 691

WebSphere provides session affinity on a best-effort basis. There are narrow
windows where session affinity fails. These windows are:

� When a cluster member is recovering from a crash, a window exists where
concurrent requests for the same session could end up in different cluster
members. The reason for this is the Web server is multi-processed and each
process separately maintains its own retry timer value and list of available
cluster members. The end result is that requests being processed by different
processes might end up being sent to more than one cluster member after at
least one process has determined that the failed cluster member is running
again.

To avoid or limit exposure in this scenario, if your cluster members are
expected to crash very seldom and are expected to recover fairly quickly,
consider setting the retry timeout to a small value. This narrows the window
during which multiple requests being handled by different processes get
routed to multiple cluster members.

� A server overload can cause requests belonging to the same session to go to
different cluster members. This can occur even if all the cluster members are
running. For each cluster member, there is a backlog queue where an entry is
made for each request sent by the Web server plug-in waiting to be picked up
by a worker thread in the servlet engine. If the depth of this queue is
exceeded, the Web server plug-in starts receiving responses that the cluster
member is not available. This failure is handled in the same way by the Web
server plug-in as an actual JVM crash. Examples of when this can happen
are:

– The servlet engine does not have an appropriate number of threads to
handle the user load.

– The servlet engine threads take a long time to process the requests.
Reasons for this include: applications taking a long time to execute,
resources being used by applications taking a long time, and so on.

10.8 Persistent session management
By default, WebSphere places session objects in memory. However, the
administrator has the option of enabling persistent session management, which
instructs WebSphere to place session objects in a persistent store.
Administrators should enable persistent session management when:

� The user’s session data must be recovered by another cluster member after a
cluster member in a cluster fails or is shut down.

� The user’s session data is too valuable to lose through unexpected failure at
the WebSphere node.
692 WebSphere Application Server V6.1: System Management and Configuration

� The administrator desires better control of the session cache memory
footprint. By sending cache overflow to a persistent session store, the
administrator controls the number of sessions allowed in memory at any
given time.

There are two ways to configure session persistence in WebSphere Application
Server V6, as in Figure 10-8:

� Database persistence

� Memory-to-memory session state replication using the data replication
service available in distributed server environments

Figure 10-8 Persistent session options

Database Persistent Sessions

Web
Container

WAS

Web
Container

WAS

Database

Data Replication Service
WAS

(Store)

Web
Container

WAS

Web
Container

WAS
 Chapter 10. Session management 693

All information stored in a persistent session store must be serialized. As a
result, all of the objects held by a session must implement java.io.Serializable if
the session needs to be stored in a persistent session store.

In general, consider making all objects held by a session serialized, even if
immediate plans do not call for the use of persistent session management. If the
Web site grows, and persistent session management becomes necessary, the
transition between local and persistent management occurs transparently to the
application if the sessions only hold serialized objects. If not, a switch to
persistent session management requires coding changes to make the session
contents serialized.

Persistent session management does not impact the session API, and Web
applications require no API changes to support persistent session management.
However, as mentioned previously, applications storing unserializable objects in
their sessions require modification before switching to persistent session
management.

If you use database persistence, using multi-row sessions becomes important if
the size of the session object exceeds the size for a row, as permitted by the
WebSphere session manager. If the administrator requests multi-row session
support, the WebSphere session manager breaks the session data across
multiple rows as needed. This allows WebSphere to support large session
objects. Also, this provides a more efficient mechanism for storing and retrieving
session contents under certain circumstances. See 10.8.6, “Single and multi-row
schemas (database persistence)” on page 717 for information about this feature.

Using a cache lets the session manager maintain a cache of most recently used
sessions in memory. Retrieving a user session from the cache eliminates a more
expensive retrieval from the persistent store. The session manager uses a least
recently used scheme for removing objects from the cache. Session data is
stored to the persistent store based on your selections for write frequency and
write option.

10.8.1 Enabling database persistence
It is assumed in this section that the following tasks have already completed
before enabling database persistence:

1. Create a session database. In this example, it is assumed that the data
source JNDI name is jdbc/Sessions.

2. (z/OS DB2) Create a table for the session data. Name the table SESSIONS. If
you choose to use another name, update the Web container custom property
SessionTableName value to the new table name. Grant ALL authority for the
694 WebSphere Application Server V6.1: System Management and Configuration

server region user ID to the table. An example of creating the table can be
found in the Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.zseries.doc/info/zseries/ae/tprs_db2tzos.html

In distributed environments, the session table will be created automatically for
you when you define the data source for the database as the session
management table; however, if you want to use a page (row) size greater than
4 KB, you will need to create the tablespace manually. An example of creating
the tablespace can be found in the Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.nd.doc/info/ae/ae/tprs_db2t.html

3. Create a JDBC provider and data source for the database. The data source
should be non-XA enabled. See 6.2, “JDBC resources” on page 305 and
6.2.3, “Creating a data source” on page 311.

To enable database persistence, repeat the following steps for each application
server:

1. Select Servers → Application servers.

2. Select the server.

3. Click Session management under Web container in the Additional
Properties section.

4. Click Distributed environment settings.

Note: The following example illustrates the steps to enable database
persistence at the application server level. Session management settings can
also be performed at the enterprise application level and the Web application
level.
 Chapter 10. Session management 695

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/tprs_db2tzos.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprs_db2t.html

5. Select Database and click Database. See Figure 10-9.

Figure 10-9 Distributed Environment Setting (database)

6. Enter the database information:

a. Enter the data source JNDI name. The data source must be a non-JTA
enabled data source.

b. Enter the user ID and password to access the database.

c. If you are using DB2 and you anticipate requiring row sizes greater than
4 KB, select the appropriate value from the DB2 row size menu. See
10.8.5, “Larger DB2 page sizes and database persistence” on page 716
for more information.

d. If DB2 row size is other than 4 KB, you are required to enter the name of
tablespace. See “Larger DB2 page sizes and database persistence” on
page 716.

e. If you intend to use a multi-row schema, select Use Multi row schema.
See 10.8.6, “Single and multi-row schemas (database persistence)” on
page 717 for more information. See Figure 10-10.
696 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-10 Database settings for session persistence

7. Click OK.

After you have updated each server, save the configuration changes,
synchronize them with the servers, and restart the application servers.

Note: For z/OS implementations, only the Datasource JNDI name and Use
multi row schema settings will appear in the window.
 Chapter 10. Session management 697

10.8.2 Memory-to-memory replication
Memory-to-memory replication uses the data replication service to replicate data
across many application servers in a cluster without using a database. Using this
method, sessions are stored in the memory of an application server, providing
the same functionality as a database for session persistence. Separate threads
handle this functionality within an existing application server process.

The data replication service is an internal WebSphere Application Server
component. In addition to its use by the session manager, it is also used to
replicate dynamic cache data and stateful session beans across many
application servers in a cluster.

The advantages of using this method of session persistence are:

� Flexible configuration options, such as peer-peer and client/server

� Elimination of the overhead and cost of setting up and maintaining a real-time
production database.

� Elimination of single point of failure that can occur with a database.

� Encrypted session information between application servers.

Version 5.X versus Version 6 data replication service
The following changes have been made to the data replication service in
WebSphere Application Server V6:

� Simplified configuration

Many fields from V5.X have been deprecated and the configuration windows
are now more intuitive.

� Terminology changes

Some of the terms from V5.X have been deprecated to reflect the new
topologies and configuration needs. The terms replicas and partitions have
been removed. In V6, we have client and servers in a replication domain.

� Topology changes

Partitions from V5.X have been deprecated. Replication domain still exists,
but defined differently. It is no longer a collection of replicas.You can select the
replication mode of server, client, or both when configuring the session
management facility for memory-to-memory replication in WebSphere
Application Server V6. The default is both.

� Integration with workload management to provide hot failover in peer-to-peer
mode

� Ability to collocate stateful session EJB replicas with HTTP session replicas in
hot failover
698 WebSphere Application Server V6.1: System Management and Configuration

V5.X wsadmin DRS scripts continue to work with V6.

Data replication service modes
The memory-to-memory replication function is accomplished by the creation of a
data replication service instance in an application server that communicates to
other data replication service instances in remote application servers.

There are three possible modes you can set up a replication service instance to
run in:

� Server mode

In this mode, a server only stores backup copies of other application server
sessions. It does not send copies of sessions created in that particular server.

� Client mode

In this mode, a server only broadcasts or sends copies of the sessions it
owns. It does not receive backup copies of sessions from other servers

� Both mode

In this mode, the server simultaneously sends copies of the sessions it owns,
and acts as a backup table for sessions owned by other application servers.

You can select the replication mode of server, client, or both when configuring
the session management facility for memory-to-memory replication. The default
is both.

With respect to mode, the following are the primary examples of
memory-to-memory replication configuration:

� Peer-to-peer replication
� Client/server replication

Although the administrative console allows flexibility and additional possibilities
for memory-to-memory replication configuration, only these configurations are
officially supported.

There is a single replica in a cluster by default. You can modify the number of
replicas through the replication domain.
 Chapter 10. Session management 699

Peer-to-peer topology
Figure 10-11 on page 700 shows an example of peer-to-peer topology. Each
application server stores sessions in its own memory. It also stores sessions to
and retrieves sessions from other application servers. Each application server
acts as a client by retrieving sessions from other application servers. Each
application server acts as a server by providing sessions to other application
servers.

Figure 10-11 Example of peer-to-peer topology

The basic peer-to-peer (both mode) topology is the default configuration and has
a single replica. However, you can also add additional replicas by configuring the
replication domain.

WAS

WAS

HTTP servers
with affinity

HTTP servers
with affinity

Replication Domain

Local

Local

Backup

Backup

WebSphere Application Server
Servers including HTTP
sessions with backup tables

WAS

Local

Backup
700 WebSphere Application Server V6.1: System Management and Configuration

In this basic peer-to-peer topology, each application server can:

� Host the Web application leveraging the HTTP session

� Send changes to the HTTP session that it owns

� Receive backup copies of the HTTP session from all of the other servers in
the cluster

This configuration represents the most consolidated topology, where the various
system parts are collocated and requires the fewest server processes. When
using this configuration, the most stable implementation is achieved when each
node has equal capabilities (CPU, memory, and so on), and each handles the
same amount of work.

The advantage of this topology is that no additional processes and products are
required to avoid a single point of failure. This reduces the time and cost required
to configure and maintain additional processes or products.

One of the disadvantages of this topology is that it can consume large amounts
of memory in networks with many users, because each server has a copy of all
sessions. For example, assuming that a single session consumes 10 KB and one
million users have logged into the system, each application server consumes
10 GB of memory in order to keep all sessions in its own memory. Another
disadvantage is that every change to a session must be replicated to all
application servers. This can cause a performance impact.
 Chapter 10. Session management 701

Client/server topology
Figure 10-12 on page 702 shows an example of client/server topology. In this
setup, application servers act as either a replication client or a server. Those that
act as replication servers store sessions in their own memory and provide
session information to clients. They are dedicated replication servers that just
store sessions but do not respond to the users’ requests. Client application
servers send session information to the replication servers and retrieve sessions
from the servers. They respond to user requests and store only the sessions of
the users with whom they interact.

Figure 10-12 Example of client/server topology

The advantage of this topology is that it clearly distinguishes the role of client and
server. Only replication servers keep all sessions in their memory and only the
clients interact with users. This reduces the consumption of memory on each
application server and reduces the performance impact, because session
information is only sent to the servers.

You can recycle a backup server without affecting the servers running the
application, When there are two or more backups, failure recovery is possible.
Conversely, you can recycle an application server without losing the backup data.

When running Web applications on lower-end hardware, you can choose to have
one or two more powerful computers that have the capacity to run a couple of

WAS

WAS

WAS

WAS

WAS

WebSphere Application Server
Servers including HTTP
sessions with local tables

WebSphere Application Server
Servers including HTTP
sessions with backup tables

Replication Domain

Backup

Backup

HTTP servers
with affinity

HTTP servers
with affinity

Local

Local

Local
702 WebSphere Application Server V6.1: System Management and Configuration

session managers in replication server mode, allowing you to reduce the load on
the Web application hardware.

One of the disadvantages of this topology is that additional application servers
have to be configured and maintained over and above those that interact with
users. We recommended that you have multiple replication servers configured to
avoid a single point of failure.

Replication domain
The memory-to-memory replication function is accomplished by the creation of a
data replication service instance in an application server that communicates to
other data replication service instances in remote application servers. You must
configure this data replication service instance as a part of a replication domain.

Data replication service instances on disparate application servers that replicate
to one another must be configured as a part of the same domain. You must
configure all session managers connected to a replication domain to have the
same topology. If one session manager instance in a domain is configured to use
the client/server topology, then the rest of the session manager instances in that
domain must be a combination of servers configured as Client only and Server
only.

If one session manager instance is configured to use the peer-to-peer topology,
then all session manager instances must be configured as both client and server.
For example, a server-only data replication service instance and a both client and
server data replication service instance cannot exist in the same replication
domain. Multiple data replication service instances that exist on the same
application server due to session manager memory-to-memory configuration at
various levels that are configured to be part of the same domain must have the
same mode.

You should create a separate replication domain for each consumer. For
example, create one replication domain for session manager and another
replication domain for dynamic cache.

The only situation where you should configure one replication domain is when
you configure session manager replication and stateful session bean failover.
Using one replication domain in this case ensures that the backup state
information of HTTP sessions and stateful session beans are on the same
application servers.
 Chapter 10. Session management 703

Enabling memory-to-memory replication
It is assumed in this section that the following tasks have already been
completed before enabling data for the replication service:

1. You have created a cluster consisting of at least two application servers.

In this example, we are working with a cluster called MyCluster. It has two
servers, server1 and server2.

2. You have installed applications to the cluster.

To enable memory-to-memory replication, do the following:

1. Create a replication domain to define the set of replicator processes that
communicate with each other.

a. Select Environment → Replication domains. Click New. See
Figure 10-13 on page 705, and enter information in the fields.

Note: A replication domain created with WebSphere Application Server V5.X
is referred to as a multi-broker domain. This type of replication domain
consists of replicator entries. This is deprecated in WebSphere Application
Server V6 and supported only for backward compatibility. Multi-broker
replication domains do not communicate with each other, so migrate any
multi-broker replication domains to the new data replication domains. You
cannot create a multi-broker domain or replicator entries in the administrative
console of WebSphere Application Server V6.

Note: This example illustrates setting up the replication domain and
replicators after the cluster has been created. You also have the option of
creating the replication domain and the replicator in the first server in the
cluster when you create the cluster.
704 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-13 Create a replication domain

– Name

At a minimum, you need to enter a name for the replication domain. The
name must be unique within the cell. In this example, we used
MyClusterRepDomain as the name, and defaults are used for the other
properties.

– Encryption

Encrypted transmission achieves better security but can impact
performance. If DES or TRIPLE_DES is specified, a key for data
transmission is generated. We recommend that you generate a key by
clicking the Regenerate encryption key button periodically to enhance
security.
 Chapter 10. Session management 705

– Number of replicas

A single replica allows you to replicate a session to only one other server.
This is the default. When you choose this option, a session manager picks
another session manager connected to the same replication domain to
which to replicate the HTTP session during session creation. All updates
to the session are only replicated to that single server. This option is set at
the replication domain level. When this option is set, every session
manager connected to this replication domain creates a single backup
copy of HTTP session state information about a backup server.

Alternatively, you can replicate to every application server that is
configured as a consumer of the replication domain with the Entire
Domain option or to a specified number of replicas within the domain.

b. Click Apply.

c. Click OK.

d. Save the configuration changes.

2. Configure cluster members.

Repeat the following steps for each application server:

a. Select Servers → Application servers.

b. Click the application server name. In this example, server1 and server2
are selected as application servers respectively.

c. Click Web container in the Container settings section.

d. Click Session management.

e. Click Distributed environment settings.

f. Select Memory-to-memory replication. See Figure 10-14 on page 707.
706 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-14 Distributed environment settings

g. Choose a replicator domain and replicator mode either from listed
domains. See Figure 10-15 on page 707.

Figure 10-15 Data replication service settings

Select the replication topology by specifying the replication mode.
Selecting Both client and server identifies this as a peer-to-peer
topology. In a client/server topology, select Client only for application
servers that will be responding to user requests. Select Server only for
those that will be used as replication servers.

h. Click OK.
 Chapter 10. Session management 707

3. Save the configuration and restart the cluster. You can restart the cluster by
selecting Servers → Clusters. Check the cluster, and click Stop. After the
messages indicate the cluster has stopped, click Start.

Configuration file results
The replication domain configuration is written to
<profile_home>/config/cells/<cell>/ multibroker.xml.

See Example 10-5 on page 708.

Example 10-5 Replication domain configuration in multibroker.xml

<?xml version="1.0" encoding="UTF-8"?>
<multibroker:DataReplicationDomain xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:multibroker="http://www.ibm.com/websphere/appserver/schemas/5.0/multibrok
er.xmi" xmi:id="DataReplicationDomain_1098124985651" name="MyClusterRepDomain">
 <defaultDataReplicationSettings xmi:id="DataReplication_1098124985651"
requestTimeout="5" encryptionType="NONE" numberOfReplicas="1">
 <partition xmi:id="DRSPartition_1098124985651" size="10"
partitionOnEntry="false"/>
 <serialization xmi:id="DRSSerialization_1098124985651"
entrySerializationKind="BYTES" propertySerializationKind="BYTES"/>
 <pooling xmi:id="DRSConnectionPool_1098124985651" size="10"
poolConnections="false"/>
 </defaultDataReplicationSettings>
</multibroker:DataReplicationDomain>

Configuring an application server to use a replication domain for session
persistence updates the server.xml file:

<profile_home>/config/cells/<cell>/nodes/<node>/servers/<server>/ server.xml

See Example 10-6.

Example 10-6 Server.xml updates

<sessionDRSPersistence xmi:id="DRSSettings_1097867741921"
messageBrokerDomainName="MyClusterRepDomain"/>

10.8.3 Session management tuning
Performance tuning for session management persistence consists of defining the
following:

� How often session data is written (write frequency settings).
� How much data is written (write contents settings).
708 WebSphere Application Server V6.1: System Management and Configuration

� When the invalid sessions are cleaned up (session cleanup settings).

These settings are set in the Custom tuning parameters found under the
Additional properties section for session management settings. Several
combinations of these settings are predefined and available for selection, or you
can customize them.

Writing frequency settings
You can select from three different settings that determine how often session
data is written to the persistent data store:

� End of servlet service

If the session data has changed, it will be written to the persistent store after
the servlet finishes processing an HTTP request.

� Manual update

The session data will be written to the persistent store when the sync()
method is called on the IBMSession object.

� Time-based

The session data will be written to the persistent store based on the specified
write interval value.

Consider an example where the Web browser accesses the application once
every five seconds:

� In End of servlet service mode, the session would be written out every five
seconds.

Note: The last access time attribute is always updated each time the session
is accessed by the servlet or JSP, whether the session is changed or not. This
is done to make sure the session does not time out.

� If you choose the end of servlet service option, each servlet or JSP access
will result in a corresponding persistent store update of the last access
time.

� If you select the manual update option, the update of the last access time
in persistent store occurs on sync() call or at later time.

� If you use time-based updates, the changes are accumulated and written
in a single transaction. This can significantly reduce the amount of I/O to
the persistent store.

See 10.11.2, “Reducing persistent store I/O” on page 730 for options to
change this database update behavior.
 Chapter 10. Session management 709

� In Manual update mode, the session would be written out whenever the
servlet issues IBMSession.sync(). It is the responsibility of the servlet writer to
use the IBMSession interface instead of the HttpSession Interface and the
servlets/JSPs must be updated to issue the sync().

� In Time-based mode, the servlet or JSP need not use the IBMSession class
nor issue IBMSession.sync(). If the write interval is set to 120 seconds, then
the session data is written out at most every 120 seconds.

End of servlet service
When the write frequency is set to the end of servlet service option, WebSphere
writes the session data to the persistent store at the completion of the
HttpServlet.service() method call. The write content settings determine output.

Manual update
In manual update mode, the session manager only sends changes to the
persistent data store if the application explicitly requests a save of the session
information.

Manual update mode requires an application developer to use the IBMSession
class for managing sessions. When the application invokes the sync() method,
the session manager writes the modified session data and last access time to the
persistent store. The session data written to the persistent store is controlled by
the write contents option selected.

If the servlet or JSP terminates without invoking the sync() method, the session
manager saves the contents of the session object into the session cache (if
caching is enabled), but does not update the modified session data in the
session database. The session manager will only update the last access time in
the persistent store asynchronously, at later time. Example 10-7 shows how the
IBMSession class can be used to manually update the persistent store.

Example 10-7 Using IBMSession for manual update of the persistent store

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
// Use the IBMSession to hold the session information
// We need the IBMSession object because it has the manual update
// method sync()
com.ibm.websphere.servlet.session.IBMSession session =

(com.ibm.websphere.servlet.session.IBMSession)req.getSession(true);

Integer value = 1;

Note: Manual updates use an IBM extension to HttpSession that is not part of
the Servlet 2.4 API.
710 WebSphere Application Server V6.1: System Management and Configuration

//Update the in-memory session stored in the cache
session.putValue("MyManualCount.COUNTER", value);

//The servlet saves the session to the persistent store
session.sync();

}

This interface gives the Web application developer additional control of when
and if session objects go to the persistent data store. If the application does not
invoke the sync() method, and manual update mode is specified, the session
updates go only to the local session cache, not the persistent data store. Web
developers use this interface to reduce unnecessary writes to the session
database, and thereby to improve overall application performance.

All servlets in the Web application server must perform their own session
management in manual update mode.

Time-based writes to the session database
Using the time-based write option will write session data to the persistent store at
a defined write interval. The reasons for implementing time-based write lies in the
changes introduced with the Servlet 2.2 API. The Servlet 2.2 specification
introduced two key concepts:

� It limits the scope of a session to a single Web application.

� It both explicitly prohibits concurrent access to an HttpSession from separate
Web applications, and allows for concurrent access within a given JVM.

Because of these changes, WebSphere provides the session affinity mechanism
that assures an HTTP request is routed to the Web application handling its
HttpSession. This assurance still holds in a WLM environment when using
persistent HttpSessions. This means that the necessity to immediately write the
session data to the persistent store can now be relaxed somewhat in these
environments, as well as non-clustered environments, because the persistent
store is used now only for failover and session cache full scenarios.

With this in mind, it is now possible to gain potential performance improvements
by reducing the frequency of persistent store writes.

Note: Time-based writes requires session affinity for session data integrity.
 Chapter 10. Session management 711

The following details apply to time-based writes:

� The expiration of the write interval does not necessitate a write to the
persistent store unless the session has been touched
(getAttribute/setAttribute/removeAttribute was called since the last write).

� If a session write interval has expired and the session has only been retrieved
(request.getSession() was called since the last write), then the last access
time will be written to the persistent store regardless of the write contents
setting.

� If a session write interval has expired and the session properties have been
either accessed or modified since the last write, then the session properties
will be written in addition to the last access time. Which session properties get
written is dependent on the write contents settings.

� Time-based write allows the servlet or JSP to issue IBMSession.sync() to
force the write of session data to the database.

� If the time between session servlet requests for a particular session is greater
than the write interval, then the session effectively gets written after each
service method invocation.

� The session cache should be large enough to hold all of the active sessions.
Failure to do this will result in extra persistent store writes, because the
receipt of a new session request can result in writing out the oldest cached
session to the persistent store. To put it another way, if the session manager
has to remove the least recently used HttpSession from the cache during a
full cache scenario, the session manager will write that HttpSession using the
Write contents settings upon removal from the cache.

� The session invalidation time must be at least twice the write interval to
ensure that a session does not inadvertently get invalidated prior to getting
written to the persistent store.

� A newly created session will always be written to the persistent store at the
end of the service method.

Writing content settings
These options control what is written. See 10.8.7, “Contents written to the
persistent store using a database” on page 719 before selecting one of the
options, because there are several factors to decide. The options available are:

� Only update attributes are written to the persistent store.
� All session attributes are written to the persistent store.
712 WebSphere Application Server V6.1: System Management and Configuration

Session cleanup settings
WebSphere allows the administrator to defer (to off hours) the clearing of
invalidated sessions from the persistent store. Invalidated sessions are sessions
that are no longer in use and timed out. For more information, see 10.9,
“Invalidating sessions” on page 723. This can be done either once or twice a day.
The fields available are:

� First time of day (0-23) is the first hour during which the invalidated persistent
sessions will be cleared from the persistent store. This value must be a
positive integer between 0 and 23.

� Second time of day (0-23) is the second hour during which the invalidated
persistent sessions will be cleared from the persistent store. This value must
be a positive integer between 0 and 23.

� Select Schedule sessions cleanup to enable this option.

Also, consider using schedule invalidation for intranet-style applications that have
a somewhat fixed number of users wanting the same HTTP session for the
whole business day.

Configuration
The session management tuning parameters can be set by selecting a
predefined tuning level or by specifying each parameter. To specify the
performance settings for session management, do the following:

1. Select Servers → Application Servers and click the application server.

2. Expand the Web Container Settings and click Web container.
3. Click Session management.
4. Click Distributed environment settings.
5. Select from the predefined tuning levels or click Custom tuning parameters.

Note: Remember, session management options can also be set at the
enterprise application level (see “Application session management
properties” on page 673) or at the Web module level (see “Web module
session management properties” on page 674).
 Chapter 10. Session management 713

See Figure 10-16 on page 714.

Figure 10-16 Session management tuning parameters

If you want to set each tuning parameter explicitly, select Custom settings.
See Figure 10-17 on page 715.
714 WebSphere Application Server V6.1: System Management and Configuration

Figure 10-17 Session management tuning parameters

10.8.4 Persistent sessions and non-serializable J2EE objects
In order for the WebSphere session manager to persist a session to the
persistent store, all of the Java objects in an HttpSession must be serializable.
They must implement the java.io.Serializable interface. The HttpSession can also
contain the following J2EE objects, which are not serializable:

� javax.ejb.EJBObject
� javax.ejb.EJBHome
� javax.naming.Context
� javax.transaction.UserTransaction
 Chapter 10. Session management 715

The WebSphere session manager works around the problem of serializing these
objects in the following manner:

� EJBObject and EJBHome each have Handle and HomeHandle object
attributes that are serializable and can be used to reconstruct the EJBObject
and EJBHome.

� Context is constructed with a hash table based environment, which is
serializable. WebSphere will retrieve the environment, then wrap it with an
internal, serializable object. On reentry, it can check the object type and
reconstruct the Context.

� UserTransaction has no serializable attributes. WebSphere provides two
options:

a. The Web developer can place the object in the HttpSession, but
WebSphere will not persist it outside the JVM.

b. WebSphere has a new public wrapper object,
com.ibm.websphere.servlet.session.UserTransactionWrapper, which is
serializable and requires the InitialContext used to construct the
UserTransaction. This will be persisted outside the JVM and be used to
reconstruct the UserTransaction.

In general, Web developers should consider making all other Java objects held
by HttpSession serializable, even if immediate plans do not call for the use of
persistent session management. If the Web site grows, and persistent session
management becomes necessary, the transition between local and persistent
management occurs transparently to the application if the sessions hold only
serializable objects. If not, a switch to persistent session management requires
coding changes to make the session contents serializable.

10.8.5 Larger DB2 page sizes and database persistence
WebSphere supports 4 KB, 8 KB, 16 KB, and 32 KB page sizes, and can have
larger varchar for bit data columns of about 7 KB, 15 KB, or 31 KB. Using this
performance feature, we see faster persistence for HttpSession of sizes of 7 KB
to 31 KB in the single-row case, or attribute sizes of 4 KB to 31 KB in the
multi-row case.

Note: According to J2EE, a Web component can only start a transaction in
a service method. A transaction that is started by a servlet or JSP must be
completed before the service method returns. That is, transactions cannot
span Web requests from a client. If there is an active transaction after
returning from the service method, WebSphere will detect it and abort the
transaction.
716 WebSphere Application Server V6.1: System Management and Configuration

Enabling this feature involves dropping any existing table created with a 4 KB
buffer pool and tablespace. This also applies if you subsequently change
between 4 KB, 8 KB, 16 KB, or 32 KB.

To use a page size other than the default 4 KB, do the following:

1. If the SESSIONS table already exists, drop it from the DB2 database:

DB2 connect to session
DB2 drop table sessions

2. Create a new DB2 buffer pool and tablespace, specifying the same page size
(8 KB, 16 KB, or 32 KB) for both, and assign the new buffer pool to this
tablespace. Example 10-8 shows simple steps for creating an 8 KB page.

Example 10-8 Creating an 8K page size

DB2 connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 connect reset
DB2 connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM USING
('D:\DB2\NODE0000\SQL00005\sessionTS.0') BUFFERPOOL sessionBP
DB2 connect reset

Refer to the DB2 product documentation for details.

3. Configure the correct tablespace name and page size, DB2 row size, in the
session management database configuration. See Figure 10-10 on page 697.

Restart WebSphere. On startup, the session manager creates a new SESSIONS
table based on the page size and tablespace name specified.

10.8.6 Single and multi-row schemas (database persistence)
When using the single-row schema, each user session maps to a single
database row. This is WebSphere’s default configuration for persistent session
management. With this setup, there are hard limits to the amount of
user-defined, application-specific data that WebSphere Application Server can
access.

When using the multi-row schema, each user session maps to multiple database
rows, with each session attribute mapping to a database row.

In addition to allowing larger session records, using a multi-row schema can yield
performance benefits, as discussed in 10.11.3, “Multirow persistent sessions:
Database persistence” on page 731.
 Chapter 10. Session management 717

Switching from single-row to multi-row schema
To switch from single-row to multi-row schema for sessions, do the following:

1. Modify the session manager properties to switch from single to multi-row
schema. Select the Use multi row schema on the Database setting of the
Session Manager window, shown in Figure 10-10 on page 697.

2. Manually drop the database table or delete all the rows in the session
database table. To drop the table:

a. Determine which data source the session manager is using. This is set in
the session management distributed settings window. See 10.8.1,
“Enabling database persistence” on page 694.

b. Look up the database name in the data source settings. Find the JDBC
provider, then the data source. The database name is in the custom
settings.

c. Use the database facilities to connect to the database and drop it.

3. Restart the application server or cluster.

Design considerations
Consider configuring direct, single-row usage to one database and multi-row
usage to another database while you verify which option suits your application's
specific needs. You can do this by switching the data source used, then
monitoring the performance. Table 10-2 provides an overview.

Table 10-2 Single versus multi-row schemas

Programming issue Application scenario

Reasons to use single-row � You can read/write all values with just one
record read/write.

� This takes up less space in a database,
because you are guaranteed that each
session is only one record long.

Reasons not to use single-row There is a 2 MB limit of stored data per
session. The sum of sizes of all session
attributes is limited to 2 MB.
718 WebSphere Application Server V6.1: System Management and Configuration

In the case of multi-row usage, design your application data objects so they do
not have references to each other. This is to prevent circular references.

For example, suppose you are storing two objects (A and B) in the session using
HttpSession.put(..), and A contains a reference to B. In the multi-row case,
because objects are stored in different rows of the database, when objects A and
B are retrieved later, the object graph between A and B is different from that
stored. A and B behave as independent objects.

10.8.7 Contents written to the persistent store using a database
WebSphere supports two modes for writing session contents to the persistent
store:

� Only updated attributes

Write only the HttpSession properties that have been updated via
setAttribute() and removeAttribute().

� All session attributes

Write all the HttpSession properties to the database.

Reasons to use multi-row � The application can store an unlimited
amount of data. You are limited only by
the size of the database and a
2 MB-per-record limit. The size of each
session attribute can be 2 MB.

� The application can read individual fields
instead of the whole record. When large
amounts of data are stored in the session
but only small amounts are specifically
accessed during a given servlet's
processing of an HTTP request, multi-row
sessions can improve performance by
avoiding unneeded Java object
serialization.

Reasons not to use multi-row If data is small in size, you probably do not
want the extra overhead of multiple row reads
when everything could be stored in one row.

Programming issue Application scenario
 Chapter 10. Session management 719

When a new session is initially created with either of the above two options, the
entire session is written, including any Java objects bound to the session. When
using database persistence, the behavior for subsequent servlet or JSP requests
for this session varies depending on whether the single-row or multi-row
database mode is in use.

� In single-row mode, choose from the following:

– Only updated attributes

If any session attribute has been updated, through setAttribute or
removeAttribute, then all of the objects bound to the session will be written
to the database.

– All session attributes

All bound session attributes will be written to the database.

� In multi-row mode:

– Only updated attributes

Only the session attributes that were specified via setAttribute or
removeAttribute will be written to the database.

– All session attributes

All of the session attributes that reside in the cache will be written to the
database. If the session has never left the cache, then this should contain
all of the session attributes.

By using the All session attributes mode, servlets and JSPs can change Java
objects that are attributes of the HttpSession without having to call setAttribute()
on the HttpSession for that Java object in order for the changes to be reflected in
the database.

Using the All session attributes mode provides some flexibility to the application
programmer and protects against possible side effects of moving from local
sessions to persistent sessions.

However, using All session attributes mode can potentially increase activity and
be a performance drain. Individual customers will have to evaluate the pros and
cons for their installation. It should be noted that the combination of All session
attributes mode with time-based write could greatly reduce the performance
penalty and essentially give you the best of both worlds.

As shown in Example 10-9 and Example 10-10, the initial session creation
contains a setAttribute, but subsequent requests for that session do not need to
use setAttribute.
720 WebSphere Application Server V6.1: System Management and Configuration

Example 10-9 Initial servlet

HttpSession sess = request.getSession(true);
myClass myObject = new myClass();
myObject.someInt = 1;
sess.setAttribute("myObject", myObject); // Bind object to the session

Example 10-10 Subsequent servlet

HttpSession sess = request.getSession(false);
myObject = sess.getAttribute("myObject"); // get bound session object
myObject.someInt++; // change the session object
// setAttribute() not needed with write "All session attributes" specified

Example 10-11 and Example 10-12 show setAttribute is still required even
though the write all session attributes option is enabled.

Example 10-11 Initial servlet

HttpSession sess = request.getSession(true);
String myString = new String("Initial Binding of Session Object");
sess.setAttribute("myString", myString); // Bind object to the session

Example 10-12 Subsequent servlet

HttpSession sess = request.getSession(false);
String myString = sess.getAttribute("myString"); // get bound session object
...
myString = new String("A totally new String"); // get a new String object
sess.setAttribute("myString", myString); // Need to bind the object to the
session since a NEW Object is used

HttpSession set/getAttribute action summary
Table 10-3 summarizes the action of the HttpSession setAttribute and
removeAttribute methods for various combinations of the row type, write
contents, and write frequency session persistence options.

Table 10-3 Write contents versus write frequency

Row type Write
contents

Write
frequency

Action for
setAttribute

Action for
removeAttribute

Single-row Only
updated
attributes

End of servlet
service /
sync() call with
Manual update

If any of the session
data has changed, then
write all of this session's
data from cache.1

If any of the session data has
changed, then write all of this
session's data from cache.1
 Chapter 10. Session management 721

Multi-row mode has the notion of thread-specific data. Thread-specific data is
defined as session data that was added or removed while executing under this
thread. If you use End of servlet service or Manual update modes and enable
Only updated attributes, then only the thread-specific data is written to the
database.

Single-row Only
updated
attributes

Time-based If any of the session
data has changed, then
write all of this session's
data from cache.1

If any of the session data has
changed, then write all of this
session's data from cache.1

All session
attributes

End of servlet
service /
sync() call with
Manual update

Always write all of this
session's data from
cache.2

Always write all of this
session's data from cache.2

Time-based Always write all of this
session's data from
cache.

Always write all of this
session's data from cache.

Multi-row Only
updated
attributes

End of servlet
service /
sync() call with
Manual update

Write only
thread-specific data
that has changed.

Delete only thread-specific
data that has been removed.

Time-based Write thread-specific
data that has changed
for all threads using
this session.

Delete thread-specific data
that has been removed for all
threads using this session.

All session
attributes

End of servlet
service /
sync() call with
Manual update

Write all session data
from cache.

Delete thread-specific data
that has been removed for all
threads using this session.

Time-based Write all session data
from cache.

Delete thread-specific data
that has been removed for all
threads using this session.

1 When a session is written to the database while using single-row mode, all of the session data is
written. Therefore, no database deletes are necessary for properties removed with removeAttribute(),
because the write of the entire session does not include removed properties.

Row type Write
contents

Write
frequency

Action for
setAttribute

Action for
removeAttribute
722 WebSphere Application Server V6.1: System Management and Configuration

10.9 Invalidating sessions
This section discusses invalidating sessions when the user no longer needs the
session object. for example, when the user has logged off a site. Invalidating a
session removes it from the session cache, as well as from the persistent store.

WebSphere offers three methods for invalidating session objects:

� Programmatically, you can use the invalidate() method on the session object.
If the session object is accessed by multiple threads in a Web application, be
sure that none of the threads still have references to the session object.

� An invalidator thread scans for timed-out sessions every n seconds, where n
is configurable from the administrative console. The session timeout setting is
in the general properties of the session management settings.

� For persistent sessions, the administrator can specify times when the scan
runs. This feature has the following benefits when used with persistent
session:

– Persistent store scans can be scheduled during periods that normally have
low demand. This avoids slowing down online applications due to
contention in the persistent store.

– When this setting is used with the End of servlet service write frequency
option, WebSphere does not have to write the last access time with every
HTTP request. The reason is that WebSphere does not have to
synchronize the invalidator thread's deletion with the HTTP request
access.

You can find the session cleanup schedule setting in the Session
management settings under the Custom tuning properties for distributed
environments.

If you are going to use session cleanup, be aware of the following:

– HttpSession timeouts are not enforced. Instead, all invalidation processing
is handled at the configured invalidation times.

– With listeners, described in 10.9.1, “Session listeners”, processing is
potentially delayed by this configuration. It is not recommended if listeners
are used.

10.9.1 Session listeners
Some listener classes are defined in the Servlet 2.4 specification to listen for
state changes of a session and its attributes. This allows greater control over
interactions with sessions, leading programmers to monitor creation, deletion,
and modification of sessions. Programmers can perform initialization tasks when
a session is created, or clean up tasks when a session is removed. It is also
 Chapter 10. Session management 723

possible to perform some specific tasks for the attribute when an attribute is
added, deleted, or modified.

The following are the Listener interfaces to monitor the events associated with
the HttpSession object:

� javax.servlet.http.HttpSessionListener

Use this interface to monitor creation and deletion, including session timeout,
of a session.

� javax.servlet.http.HttpSessionAttributeListener

Use this interface to monitor changes of session attributes, such as add,
delete, and replace.

� javax.servlet.http.HttpSessionActivationListener

This interface monitors activation and passivation of sessions. This interface
is useful to monitor if the session exists, whether in memory or not, when
persistent session is used.

Table 10-4 is a summary of the interfaces and methods.

Table 10-4 Listener interfaces and their methods

For more information, see Java 2 Platform Enterprise Edition, v 1.4 API
Specification at:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Target Event Interface Method

session create HttpSessionListener sessionCreated()

destroy HttpSessionListener sessionDestroyed()

activate HttpSessionActivationListener sessionDidActivate()

passivate HttpSessionActivationListener sessionWillPassivate()

attribute add HttpSessionAttributeListener attributeAdded()

remove HttpSessionAttributeListener attributeRemoved()

replace HttpSessionAttributeListener attributeReplaced()
724 WebSphere Application Server V6.1: System Management and Configuration

http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

10.10 Session security
WebSphere Application Server maintains the security of individual sessions.
When session manager integration with WebSphere security is enabled, the
session manager checks the user ID of the HTTP request against the user ID of
the session held within WebSphere. This check is done as part of the processing
of the request.getSession() function. If the check fails, WebSphere throws an
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException
exception. If it succeeds, the session data is returned to the calling servlet or
JSP.

Session security checking works with the standard HttpSession. The identity or
user name of a session can be accessed through the
com.ibm.websphere.servlet.session.IBMSession interface. An unauthenticated
identity is denoted by the user name anonymous.

The session manager uses WebSphere’s security infrastructure to determine the
authenticated identity associated with a client HTTP request that either retrieves
or creates a session. For information about WebSphere security features, see
WebSphere Application Server V6.1 Security Handbook, SG24-6316.

Security integration rules for HTTP sessions
Session management security has the following rules:

� Sessions in unsecured pages are treated as accesses by the anonymous
user.

� Sessions created in unsecured pages are created under the identity of that
anonymous user.

� Sessions in secured pages are treated as accesses by the authenticated
user.

� Sessions created in secured pages are created under the identity of the
authenticated user. They can only be accessed in other secured pages by the
same user. To protect these sessions from use by unauthorized users, they
cannot be accessed from an unsecure page. Do not mix access to secure and
unsecure pages.

� Security integration in session manager is not supported in HTTP form-based
login with Simple WebSphere Authentication Mechanism (SWAM).
 Chapter 10. Session management 725

Table 10-5 lists possible scenarios when security integration is enabled, where
outcomes depend on whether the HTTP request was authenticated and whether
a valid session ID and user name was passed to the session manager.

Table 10-5 HTTP session security

See 10.6, “General properties for session management” on page 685 for more
information about the security integration setting.

10.11 Session performance considerations
This section includes guidance for developing and administering scalable,
high-performance Web applications using WebSphere Application Server
session support.

Request session ID/
user name.

Unauthenticated HTTP
request is used to
retrieve the session.

Authenticated HTTP
request is used to
retrieve the session. The
user ID in the HTTP
request is FRED.

No session ID was passed
in for this request, or the ID
is for a session that is no
longer valid.

A new session is created.
The user name is
anonymous.

A new session is created.
The user name is FRED.

A valid session ID is
received. The current
session user name is
anonymous.

The session is returned. The session is returned.
The session manager
changes the user name to
FRED.

A valid session ID is
received. The current
session user name is
FRED.

The session is not
returned.
UnauthorizedSession-
RequestException is
thrown.1

The session is returned.

A valid session ID is
received. The current
session user name is BOB.

The session is not
returned.
UnauthorizedSession-
RequestException is
thrown.1

The session is not
returned.
UnauthorizedSession-
RequestException is
thrown.1

1 com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException is
thrown to the servlet or JSP.
726 WebSphere Application Server V6.1: System Management and Configuration

10.11.1 Session size
Large session objects pose several problems for a Web application. If the site
uses session caching, large sessions reduce the memory available in the
WebSphere instance for other tasks, such as application execution.

For example, assume a given application stores 1 MB of information for each
user session object. If 100 users arrive over the course of 30 minutes, and
assume the session timeout remains at 30 minutes, the application server
instance must allocate 100 MB just to accommodate the newly arrived users in
the session cache:

1 MB for each user session * 100 users = 100 MB

Note this number does not include previously allocated sessions that have not
timed out yet. The memory required by the session cache could be considerably
higher than 100 MB.

Web developers and administrators have several options for improving the
performance of session management:

� Reduce the size of the session object.
� Reduce the size of the session cache.
� Add additional application servers.
� Invalidate unneeded sessions.
� Increase the memory available.
� Reduce the session timeout interval.

Reducing session object size
Web developers must consider carefully the information kept by the session
object:

� Removing information easily obtained or easily derived helps keep the
session object small.

� Rigorous removal of unnecessary, unneeded, or obsolete data from the
session.

� Consider whether it would be better to keep a certain piece of data in an
application database rather than in the HTTP session. This gives the
developer full control over when the data is fetched or stored and how it is
combined with other application data. Web developers can leverage the
power of SQL if the data is in an application database.
 Chapter 10. Session management 727

Reducing object size becomes particularly important when persistent sessions
are used. Serializing a large amount of data and writing it to the persistent store
requires significant WebSphere performance overhead. Even if the Write
contents option is enabled, if the session object contains large Java objects or
collections of objects that are updated regularly, there is a significant
performance penalty in persisting these objects. This penalty can be reduced by
using time-based writes.

Session cache size
The session manager allows administrators to change the session cache size to
alter the cache’s memory footprint. By default, the session cache holds 1000
session objects. By lowering the number of session objects in the cache, the
administrator reduces the memory required by the cache.

However, if the user’s session is not in the cache, WebSphere must retrieve it
from either the overflow cache, for local caching, or the session database, for
persistent sessions. If the session manager must retrieve persistent sessions
frequently, the retrievals can impact overall application performance.

WebSphere maintains overflowed local sessions in memory, as discussed in
10.5, “Local sessions” on page 683. Local session management with cache
overflow enabled allows an unlimited number of sessions in memory. To limit the
cache footprint to the number of entries specified in session manager, use
persistent session management, or disable overflow.

Notes: In general, you can obtain the best performance with session objects
that are less than 2 KB in size. When the session object exceeds 4-5 KB, you
can expect a significant decrease in performance.

Even if session persistence is not an issue, minimizing the session object size
will help to protect your Web application from scale-up disasters as user
numbers increase. Large session objects will require more and more JVM
memory, leaving no room to run servlets.

See 10.8.5, “Larger DB2 page sizes and database persistence” on page 716
to learn how WebSphere can provide faster persistence of larger session
objects when using DB2.

Note: When using local session management without specifying the Allow
overflow property, a full cache will result in the loss of user session objects.
728 WebSphere Application Server V6.1: System Management and Configuration

Creating additional application servers
WebSphere also gives the administrator the option of creating additional
application servers. Creating additional instances spreads the demand for
memory across more JVMs, thus reducing the memory burden on any particular
instance. Depending on the memory and CPU capacity of the machines
involved, the administrator can add additional instances within the same
machine. Alternatively, the administrator can add additional machines to form a
hardware cluster, and spread the instances across this cluster.

Invalidating unneeded sessions
If the user no longer needs the session object, for example, when the user has
logged out of the site, it should be invalidated. Invalidating a session removes it
from the session cache, as well as from the session database. For more
information, see 10.9, “Invalidating sessions” on page 723.

Increasing available memory
WebSphere allows the administrator to increase an application server’s heap
size. By default, WebSphere allocates 256 MB as the maximum heap size.
Increasing this value allows the instance to obtain more memory from the
system, and thus hold a larger session cache.

A practical limit exists, however, for an instance heap size. The machine memory
containing the instance needs to support the heap size requested. Also, if the
heap size grows too large, the length of the garbage collection cycle with the
JVM might impact overall application performance. This impact has been
reduced with the introduction of multi-threaded garbage collection.

Session timeout interval
By default, each user receives a 30 minute interval between requests before the
session manager invalidates the user’s session. Not every site requires a
session timeout interval this generous. By reducing this interval to match the
requirements of the average site user, the session manager purges the session
from the cache and the persistent store, if enabled, more quickly.

Note: When configuring a session cluster, session affinity routing provides the
most efficient strategy for user distribution within the cluster, even with session
persistence enabled. With cluster members, the Web server plug-in provides
affinity routing among cluster member instances.
 Chapter 10. Session management 729

Avoid setting this parameter too low and frustrating users. The administrator
must take into account a reasonable time for an average user to interact with the
site when setting the interval. User activities include reading returned data, filling
out forms, and so on. Also, the interval must represent any increased response
time during peak times on the site, such as heavy trading days on a brokerage
site, for example.

Finally, in some cases where the persistent store contains a large number of
entries, frequent execution of the timeout scanner reduces overall performance.
In cases where the persistent store contains many session entries, avoid setting
the session timeout so low it triggers frequent, expensive scans of the persistent
store for timed-out sessions. Alternatively, the administrator should consider
schedule-based invalidation where scans for invalid object can be deferred to a
time that normally has low demand. See 10.9, “Invalidating sessions” on
page 723.

10.11.2 Reducing persistent store I/O
From a performance point of view, the Web developer’s considerations are the
following:

� Optimize the use of the HttpSession within a servlet. Only store the minimum
amount of data required in HttpSession. Data that does not have to be
recovered after a cluster member fails or is shut down can be best kept
elsewhere, such as in a hash table. Recall that HttpSession is intended to be
used as a temporary store for state information between browser invocations.

� Specify session=false in the JSP directive for JSPs that do not need to access
the session object.

� Use time-based write frequency mode. This greatly reduces the amount of
I/O, because the persistent store updates are deferred up to a configurable
number of seconds. Using this mode, all of the outstanding updates for a Web
application are written periodically based on the configured write interval.

� Use the Schedule sessions cleanup option. When using the End of servlet
service write frequency mode, WebSphere does not have to write out the last
access time with every HTTP request. This is because WebSphere does not
have to synchronize the invalidator thread's deletion with the HTTP request’s
access.
730 WebSphere Application Server V6.1: System Management and Configuration

10.11.3 Multirow persistent sessions: Database persistence

When a session contains multiple objects accessed by different servlets or JSPs
in the same Web application, multi-row session support provides a mechanism
for improving performance. Multi-row session support stores session data in the
persistent session database by Web application and value. Table 10-6 shows a
simplified representation of a multi-row database table.

Table 10-6 Simplified multi-row session representation

In this example, if the user visits the ShoeStore application, and the servlet
involved needs the user’s first name, the servlet retrieves this information through
the session API. The session manager brings into the session cache only the
value requested. The ShoeStore.Big.String item remains in the persistent
session database until the servlet requests it. This saves time by reducing both
the data retrieved and the serialization overhead for data the application does not
use.

After the session manager retrieves the items from the persistent session
database, these items remain in the in-memory session cache. The cache
accumulates the values from the persistent session database over time as the
various servlets within the Web application request them. With WebSphere’s
session affinity routing, the user returns to this same cached session instance
repeatedly. This reduces the number of reads against the persistent session
database, and gives the Web application better performance.

How session data is written to the persistent session database has been made
configurable in WebSphere. For information about session updates using single
and multi-row session support, see 10.8.6, “Single and multi-row schemas
(database persistence)” on page 717. Also see 10.8.7, “Contents written to the
persistent store using a database” on page 719.

Even with multi-row session support, Web applications perform best if the overall
contents of the session objects remain small. Large values in session objects
require more time to retrieve from the persistent session database, generate
more network traffic in transit, and occupy more space in the session cache after
retrieval.

Session ID Web
application

Property Small
value

Large
value

DA32242SSGE2 ShoeStore ShoeStore.First.Name Alice

DA32242SSGE2 ShoeStore ShoeStore.Last.Name Smith

DA32242SSGE2 ShoeStore ShoeStore.Big.String A big
string....
 Chapter 10. Session management 731

Multi-row session support provides a good compromise for Web applications
requiring larger sessions. However, single-row persistent session management
remains the best choice for Web applications with small session objects.
Single-row persistent session management requires less storage in the
database, and requires fewer database interactions to retrieve a session’s
contents (all of the values in the session are written or read in one operation).
This keeps the session object’s memory footprint small, as well as reducing the
network traffic between WebSphere and the persistent session database.

10.11.4 Managing your session database connection pool
When using persistent session management, the session manager interacts with
the defined database through a WebSphere Application Server data source.
Each data source controls a set of database connections known as a connection
pool. By default, the data source opens a pool of no more than 10 connections.
The maximum pool size represents the number of simultaneous accesses to the
persistent session database available to the session manager.

For high-volume Web sites, the default settings for the persistent session data
source might not be sufficient. If the number of concurrent session database
accesses exceeds the connection pool size; the data source queues the excess
requests until a connection becomes available. Data source queuing can impact
the overall performance of the Web application (sometimes dramatically).

For best performance, the overhead of the connection pool used by the session
manager needs to be balanced against the time that a client can spend waiting
for an occupied connection to become available for use. By definition, a
connection pool is a shared resource, so in general the best performance is
realized typically with a connection pool that has significantly fewer connections
than the number of simultaneous users.

A large connection pool does not necessarily improve application performance.
Each connection represents memory overhead. A large pool decreases the
memory available for WebSphere to execute applications. Also, if database
connections are limited because of database licensing issues, the administrator
must share a limited number of connections among other Web applications
requiring database access as well. This is one area where performance tuning
tests are required to determine the optimal setting for a given application.

Note: Avoid circular references within sessions if using multi-row session
support. The multi-row session support does not preserve circular references
in retrieved sessions.
732 WebSphere Application Server V6.1: System Management and Configuration

As discussed above, session affinity routing combined with session caching
reduces database read activity for session persistence. Likewise, manual update
write frequency, time-based write frequency, and multi-row persistent session
management reduce unnecessary writes to the persistent database.
Incorporating these techniques can also reduce the size of the connection pool
required to support session persistence for a given Web application.

Prepared statement caching is a connection pooling mechanism that can be
used to further improve session database response times. A cache of previously
prepared statements is available on a connection. When a new prepared
statement is requested on a connection, the cached prepared statement is
returned, if available. This caching reduces the number of costly prepared
statements created, which improves response times.

In general, base the prepared statement cache size on the following:

� The smaller of:

– Number of concurrent users

– Connection pool size

� The number of different prepared statements

With 50 concurrent users, a connection pool size of 10, and each user using two
statements, a select and an insert, the prepared statement cache size should be
at least 10 x 2 = 20 statements. To read more, see the “Prepared statement
cache size” article in the WebSphere Tuning Guide, included with the Information
Center.

10.11.5 Session database tuning
While the session manager implementation in WebSphere provides for a number
of parameters that can be tuned to improve performance of applications that
utilize HTTP sessions, maximizing performance requires tuning the underlying
session persistence table. WebSphere provides a first step by creating an index
for the sessions table when creating the table. The index is comprised of the
session ID, the property ID for multi-row sessions, and the Web application
name.

While most database managers provide a great deal of capability in tuning at the
table or tablespace level, creating a separate database or instance provides the
most flexibility in tuning. Proper tuning of the instance and database can improve
performance by 5% or more over that which can be achieved by simply tuning the
table or tablespace.
 Chapter 10. Session management 733

While the specifics vary, depending on you database and operating system, in
general, tune and configure the database as appropriate for a database that
experiences a great deal of I/O. The database administrator (DBA) should
monitor and tune the database buffer pools, database log size, and write
frequency. Additionally, maximizing performance requires striping the database
or instance across multiple disk drives and disk controllers, and utilizing any
hardware or OS buffering available to reduce disk contention.

10.12 Stateful session bean failover
Stateful session bean failover is supported now in WebSphere Application Server
V6. This feature utilizes the functions of the data replication service and workload
management.

Each EJB container provides a method for stateful session beans to fail over to
other servers. This enables you to specify whether failover occurs for the stateful
session beans at the EJB module level or container level. You can also override
the parent object's stateful session bean replication settings from the module
level.

10.12.1 Enabling stateful session bean failover
Depending on the requirement, you might not want to enable failover for every
single stateful session bean installed in the EJB container. You can set or
override the EJB container settings at either the application or EJB module level.
You can either enable or disable failover at each of these levels. For example,
consider the following situations:

� You want to enable failover for all applications except for a single application.
To do this, you enable failover at the EJB container level and override the
setting at the application level to disable failover on the single application.

� You want to enable failover for a single, installed application. To do this,
disable failover at the EJB container level and then override the setting at the
application level to enable failover on the single application.

� You want to enable failover for all applications except for a single module of an
application. To do this, enable failover at the EJB container level, then
override the setting at the module application level to disable failover on the
single module.

� You want to enable failover for a single, installed EJB module. To do this,
disable failover at the EJB container level and then override the setting at the
EJB module level to enable failover on the single EJB module.
734 WebSphere Application Server V6.1: System Management and Configuration

EJB container stateful session bean failover properties
To access stateful session bean failover properties at the EJB container level
from the administrative console:

1. Select Servers → Application servers.

2. Click the application server.

3. In the Container Settings section of the Configuration tab, click EJB
container.

4. In the General Properties section, check Enable stateful session bean
failover using memory-to-memory replication.

This check box is disabled until you define a replication domain. This selection
has a hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a window where you can create
one. If at least one domain is configured, the link takes you to a window where
you can select the replication settings to be used by the EJB container. See
Figure 10-18 on page 735.

Figure 10-18 Stateful session bean failover settings at the container level
 Chapter 10. Session management 735

EJB module stateful session bean failover properties
To access stateful session bean failover properties at the EJB module level from
the administrative console:

1. Select Applications → Enterprise applications.

2. Click the application.

3. In the Enterprise Java Bean Properties section of the Configuration tab, click
Stateful session bean failover settings.

This enables failover for all stateful session beans in this application. If you
want to disable the failover, clear this check box. See Figure 10-19 on
page 736.

Figure 10-19 Stateful session bean failover settings at the module level

4. In the General Properties section, select your choice of Replication settings:

– Use replication settings from EJB container

If you select this option, any replication settings defined for this application
are ignored.

Important: If you use this radio button, then you must configure
memory to memory replication at the EJB container level. Otherwise,
the settings on this window are ignored by EJB container during server
startup and the EJB container will log a message indicating that stateful
session bean failover is not enabled for this application.
736 WebSphere Application Server V6.1: System Management and Configuration

– Use application replication settings

If you select this option, you override the EJB container settings. This
button is disabled until you define a replication domain. This selection has
a hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a window to create one. If at
least one domain is configured, the link takes you to a window where you
can select the replication settings to be used by the application.

5. Select your choice of replication from:

– Use replication settings from EJB container
– Use application replication settings using memory-to-memory

replication

6. Select OK.

10.12.2 Stateful session bean failover considerations
The following presents a few considerations when using the stateful session
bean failover feature.

Stateful session bean activation policy with failover enabled
WebSphere Application Server V6 allows an application assembler to specify an
activation policy to use for stateful session beans. It is important to consider that
the only time the EJB container prepares for failover, by replicating the stateful
session bean data using DRS, is when the stateful session bean is passivated. If
you configure the bean with an activate once policy, the bean is essentially never
passivated. If you configure the activate at transaction boundary policy, the bean
is passivated whenever the transaction that the bean is enlisted in completes. For
stateful session bean failover to be useful, the activate at transaction boundary
policy is required.

Rather than forcing you to edit the deployment descriptor of every stateful
session bean and reinstall the bean, the EJB container simply ignores the
configured activation policy for the bean when you enable failover. The container
automatically uses the activate at transaction boundary policy.

Note: The stateful session bean failover settings are available to WebSphere
Application Server V6 enterprise applications. They are ignored by
WebSphere Application Server V5 enterprise applications.
 Chapter 10. Session management 737

Container or bean managed units of work
The relevant units of work in this case are transactions and activity sections.
WebSphere Application Server V6 supports stateful session bean failover for:

� Container managed transactions (CMT)
� Bean managed transactions (BMT)
� Container managed activity sessions (CMAS)
� Bean managed activity sessions (BMAS)

In the container-managed cases, preparation for failover only occurs if a request
for an enterprise bean method invocation fails to connect to the server. Also,
failover does not take place if the server fails after a request is sent to it and had
been acknowledged.

When a failure occurs in the middle of a request or unit of work, WLM cannot
safely fail over to another server without some compensation code being
executed by the application. When that happens, the application receives a
Common Object Request Broker Architecture (CORBA) exception and minor
code telling it that transparent failover could not occur because the failure
happened during execution of a unit of work. The application should be written to
check for the CORBA exception and minor code, and compensate for the failure.
After the compensation code executes, the application can retry the requests
and, if a path exists to a backup server, WLM routes the new request to a new
primary server for the stateful session bean.

The same is true for bean-managed units of work, transactions, or activity
sessions. However, bean managed work introduces a new possibility that needs
to be considered.

For bean managed units of work, the failover process is not always able to detect
that a BMT or BMAS started by a stateful session bean method has not
completed. Thus, it is possible that failover to a new server can occur despite the
unit of work failing during the middle of a transaction or session. Because the unit
of work is implicitly rolled back, WLM behaves as thought it is safe to
transparently fail over to another server, when in fact some compensation code
might be required. When this happens, the EJB container detects this on the new
server and initiates an exception. This exception occurs under the following
scenario:

1. A method of a stateful session bean using bean-managed transaction or
activity session calls begin on a UserTransaction it obtained from the
SessionContext. The method does some work in the started unit of work, but
does not complete the transaction or session before returning to the caller of
the method.
738 WebSphere Application Server V6.1: System Management and Configuration

2. During post invocation of the method started in step 1, the EJB container
suspends the work started by the method. This is the action required by EJB
specification for bean managed units of work when the bean is a stateful
session bean.

3. The client starts several other methods on the stateful session bean. Each
invocation causes the EJB container to resume the suspended transaction or
activity session, dispatch the method invocation, and then suspend the work
again before returning to the caller.

4. The client calls a method on the stateful session bean that completes the
transaction or session started in step 1.

This scenario depicts a sticky bean-managed unit of work. The transaction or
activity session sticks around for more than a single stateful session bean
method. If an application uses a sticky BMT or BMAS, and the server fails after a
sticky unit of work completes and before another sticky unit of work starts,
failover is successful. However, if the server fails before a sticky transaction or
activity session completes, the failover is not successful. Instead, when the
failover process routes the stateful session bean request to a new server, the
EJB container detects that the failure occurred during an active, sticky
transaction or activity session. At that time, the EJB container initiates an
exception.

Essentially, this means that failover for both container-managed and
bean-managed units of work is not successful if the transaction or activity
session is still active. The only real difference is the exception that occurs.

Application design considerations
Consider the following when designing applications that use the stateful session
bean failover process:

� To avoid the possibility described in the section above, you are encouraged to
write your application to configure stateful session beans to use
container-managed transactions (CMT) rather than bean-managed
transactions (BMT).

� If you want immediate failover, and your application creates either an HTTP
session or a stateful session bean that stores a reference to another stateful
session bean, then the administrator must ensure the HTTP session and
stateful session bean are configured to use the same replication domain.

� Do not use a local and a remote reference to the same stateful session bean.

The J2EE 1.4 specification has added additional requirements for Http
Sessions that require the Http Session state objects to be able to contain local
references to EJBs.
 Chapter 10. Session management 739

Normally a stateful session bean instance with a given primary key can only
exist on a single server at any given moment in time. Failover might cause the
bean to be moved from one server to another, but it never exists on more than
one server at a time. However, there are some unlikely scenarios that can
result in the same bean instance, the same primary key, existing on more than
one server concurrently. When that happens, each copy of the bean is
unaware of the other, and no synchronization occurs between the two
instances to ensure they have the same state data. Thus, your application
receives unpredictable results.

Note: To avoid this situation you must remember that with failover
enabled, your application should never get both a local (EJBLocalObject)
and remote (EJBObject) reference to the same stateful session bean
instance.
740 WebSphere Application Server V6.1: System Management and Configuration

Chapter 11. WebSphere naming
implementation

In this chapter, we describe the concepts behind the naming functionality
provided as part of IBM WebSphere Application Server:

� Features
� WebSphere naming architecture
� Interoperable Naming Service (INS)
� Distributed CosNaming
� Configured bindings
� Initial contexts
� Federation of name spaces
� Foreign cell bindings
� Interoperability
� Examples
� Naming tools
� Configuration

11
© Copyright IBM Corp. 2006. All rights reserved. 741

11.1 Features
The following are features of a WebSphere Application Server V6 name space
that remain unchanged from WebSphere Application Server V5:

� Distributed name space

For additional scalability, the name space for a cell is distributed among the
various servers. The deployment manager, node agent, and application
server processes all host a name server.

The default initial context for a server is its server root. System artifacts, such
as EJB homes and resources, are bound to the server root of the server with
which they are associated.

� Transient and persistent partitions

The name space is partitioned into transient areas and persistent areas.
Server roots are transient. System-bound artifacts such as EJB homes and
resources are bound under server roots. There is a cell persistent root, which
can be used for cell-scoped persistent bindings, and a node persistent root,
which can be used to bind objects with a node scope.

� Federated name space structure

A name space is a collection of all names bound to a particular name server.
A name space can contain naming context bindings to contexts located in
other servers. If this is the case, the name space is said to be a federated
name space, because it is a collection of name spaces from multiple servers.
The name spaces link together to cooperatively form a single logical name
space.

The name space for the WebSphere Application Server V6 cell is federated
among the deployment manager, node agents, and application servers of the
cell. Every server process hosts a name server. All name servers provide the
same logical view of the cell name space, with the various server roots and
persistent partitions of the name space being interconnected by means of the
single logical name space.

� Configured bindings

Administrators can configure bindings into the name space. A configured
binding is different from a programmatic binding in that the system creates the
binding every time a server is started, even if the target context is in a
transient partition.

� Support for CORBA Interoperable Naming Service (INS) object URLs

WebSphere Application Server contains support for CORBA object URLs
(corbaloc and corbaname) as JNDI provider URLs and lookup names.
742 WebSphere Application Server V6.1: System Management and Configuration

11.2 WebSphere naming architecture
WebSphere Application Server name servers are an implementation of the
CORBA CosNaming interface. WebSphere Application Server provides a JNDI
implementation that you can use to access CosNaming name servers through
the JNDI interface. CosNaming provides the server-side implementation and is
where the name space is stored. JNDI essentially provides a client-side wrapper
of the name space stored in CosNaming, and interacts with the CosNaming
server on behalf of the client.

The model of JNDI over CosNaming has existed in several releases of
WebSphere. Since J2EE 1.3, limited CosNaming functionality has been required
for interoperability between application servers from different vendors. This level
of CosNaming, known as Interoperable Naming Service (INS), was introduced in
WebSphere Application Server V5.

The following sections provide a summary of the WebSphere naming
architecture, its federated name space, and its support for JNDI.

For an explanation of the WebSphere implementations of INS and Distributed
CosNaming, see 11.3, “Interoperable Naming Service (INS)” on page 757 and
11.4, “Distributed CosNaming” on page 759 respectively.

11.2.1 Components
WebSphere application clients use the naming service to obtain references to
objects related to those applications, such as EJB homes. These objects are
bound into a mostly hierarchical structure, referred to as a name space. In this
structure, all non-leaf objects are called contexts. Leaf objects can be contexts
and other types of objects. Naming operations, such as lookups and binds, are
performed on contexts. All naming operations begin with obtaining an initial
context. You can view the initial context as a starting point in the name space.

The name space structure consists of a set of name bindings, each consisting of
a name relative to a specific context and the object bound with that name. For
example, the name myApp/myEJB consists of one non-leaf binding with the
name myApp, which is a context. The name also includes one leaf binding with
the name myEJB, relative to myApp. The object bound with the name myEJB in
this example happens to be an EJB home reference. The whole name
myApp/myEJB is relative to the initial context, which can be viewed as a starting
place when performing naming operations.

The name space can be accessed and manipulated through a name server.
Users of a name server are referred to as naming clients. Naming clients
typically use Java Naming and Directory Interface (JNDI) to perform naming
 Chapter 11. WebSphere naming implementation 743

operations. Naming clients can also use the Common Object Request Broker
Architecture (CORBA) CosNaming interface.

Figure 11-1 summarizes the naming architecture and its components.

Figure 11-1 Naming topology

Notice that all WebSphere Application Server processes host their own naming
service and local name space. Also the name servers in the deployment
manager and node agents are listening on their default ports of 9809 and 2809,
respectively. The name servers within each application server are listening from
a starting default port of 9810.

11.2.2 JNDI support
Each IBM WebSphere Application Server managed process (JVM) includes:

� A name server providing shared access to its components

Machine A

LookupJNDI
Client

Deployment Manager

9809
Namespace

Machine C

Node Agent 2

2809

Application Server 3

9810

Machine B

2809

9810 9811

LookupLookup

JNDI lookup

Namespace

NamespaceNamespace

Namespace

Namespace

Link between namespaces

Node Agent 1

Application Server 1 Application Server 2
744 WebSphere Application Server V6.1: System Management and Configuration

� An implementation of the javax.naming JNDI package, allowing users to
access the WebSphere name server through the JNDI naming interface

IBM WebSphere Application Server does not provide implementations for the
following Java extension packages:

� javax.naming.directory
� javax.naming.ldap

In addition, IBM WebSphere Application Server does not support interfaces
defined in the javax.naming.event package.

However, to provide access to LDAP servers, the JDK shipped with IBM
WebSphere Application Server supports Sun Microsystem’s implementation of:

� javax.naming.ldap
� com.sun.jndi.ldap.LdapCtxFactory

11.2.3 JNDI bindings
There are three options available for binding EJB (<ejb-ref>) and resource
(<resource-ref>) object names to the name space:

� Simple name
� Compound/fully qualified name
� Corbaname

The binding you can use to look up an object depends on whether or not the
application is running within the same application server. The following sections
describe each of these in more detail.

Simple name
The simple name binding is guaranteed to succeed if lookup is within the same
server or when connected directly to the name space of the server containing the
target of the lookup. It can be used in a servlet or EJB, if it is certain that the
object is located on the same application server. Here is an example of a simple
name:

ejb/webbank/Account

Lookup names of this form provide a level of indirection such that the name used
to look up an object is not dependent on the object's name as it is bound in the

Note: The JNDI implementation provided by IBM WebSphere Application
Server is based on Version 1.2.1 of the JNDI interface, and was tested with
Version 1.2.1 of Sun's JNDI SPI (Service Provider Interface).
 Chapter 11. WebSphere naming implementation 745

name server's name space. The deployment descriptors for the application
provide the mapping between the name and the name server lookup name. The
container sets up the name space based on the deployment descriptor
information so that the name is correctly mapped to the corresponding object.

Compound name
Applications that do not run in the same server cannot use simple name lookup
because the simple name is not local to the application. Instead, an application of
this type must look the object up directly from the name server. Each application
server contains a name server. System artifacts such as EJB homes are bound
relative to the server root context in that name server.

The fully qualified (compound name) JNDI name is always guaranteed to work.
Here is an example of a compound name:

cell/nodes/node1/servers/server1/ejb/webbank/Account

We recommend using compound names for JNDI bindings.

Corbaname
The corbaname binding is always guaranteed to work. However, it requires that
you know the correct path to the object at deployment time. Here is an example
of a corbaname:

corbaname::myhost1:9812/NameServiceServerRoot#ejb/webbank/Account

11.2.4 Federated name space
All name servers with a cell are federated into the cell name space. Every
application server process contains a name server. All name servers provide the
same logical view of the cell name space. The various server roots and
persistent partitions of the name space are interconnected by a system name
space. You can use the system name space structure to traverse any context in
the cell's name space. A logical view of the name space is shown in Figure 11-2
on page 747.
746 WebSphere Application Server V6.1: System Management and Configuration

Figure 11-2 Federated name space

The name space can be broken down into distinct partitions that are updateable
and persistent.

System partition
The system partition is a reflection of the cell topology and is read-only. This part
of the name space cannot be changed programmatically, because it is based on
the configuration rather than run time settings.

The root of this structure is the cell root and contains a node root for each node in
the cell. You can access other contexts to a specific node from the node root,
such as the node persistent root and server roots for servers configured in that
node.

This partition of the name space is persistent, with the data stored in the XML
repository containing the topological information.

cell
root

Nodes

Cells

Foreign Cells

Node
Root

X
Y

Z

Nodes

Node Persistent
Root

X
Y

Z

<Node-Name>

Node Servers
X

Y
Z

Servers

Server Root A
B

C

Cell Clusters
Clusters

<cluster-name>

Cell Persistent
Root

<user-created-bindings>
<system-artifacts>

<user-created-bindings>

<server-name>

User Persistent
Sub-ctxs &

Objs

X
Y

Z

System Artifact
Sub-ctxs & Objs

A
B

C

User Transient
Sub-ctxs & Objs

A
B

C
User Persistent
Sub-ctxs & ObjsCell Root

of Foreign Cell

M
N

L

System Name Space
(Read Only)

Server
Roots

(Read/Write
Transient)

Cell
Persistent

(Read/Write)

Node Persistent
(Read/Write)

Legacy Root

Persistent

Persistent

<foreign-cell-names>

<non-clustered-server-name>

<user-created-bindings>
 Chapter 11. WebSphere naming implementation 747

Cell and node persistent partitions
The persistent partitions are primarily for the storage of resource configuration,
such as data sources, JMS destinations, and so on. This data can be modified by
accessing the JNDI APIs directly, or through the administration clients, which
access the APIs on the user’s behalf. The persistent data is stored to a group of
XML files.

There are two persistent partitions in the federated name space:

� Cell persistent root

This partition is used to register persistent objects that are available to all the
nodes and managed processes of a cell. A binding created under the cell
persistent root is saved as part of the cell configuration and continues to exist
until it is explicitly removed.

Applications that need to create additional persistent object bindings
associated with the cell can bind those objects under the cell persistent root.

� Node persistent root

This partition is used to register persistent objects available to the nodes and
their managed processes. It is similar to the cell partition except that each
node has its own node persistent root. A binding created under a node
persistent root is saved as part of that node's configuration and continues to
exist until it is explicitly removed.

Applications that need to create additional persistent object bindings
associated with a specific node can bind those objects under that particular
node's node persistent root.

Note: The cell persistent root is not designed for transient, rapidly
changing bindings. Instead, the bindings should be more static in nature,
such as part of application setup or configuration, and not created at run
time.

To bind objects to the cell persistent root, the deployment manager and all
node agents in the cell must be running.
748 WebSphere Application Server V6.1: System Management and Configuration

Transient partitions
The server root transient partition in Figure 11-2 on page 747 is updateable
through APIs, and is meant for information, such as EJB bindings and JNDI
names. This name space is transient and bindings are created each time a
server process starts. It reads configuration data from the file system, for
example, EJB deployment descriptors, to register the necessary objects in this
space.

11.2.5 Local name space structure
The structure of the federated name space is hierarchical, with each process’
local name space federated and linked using corbaloc URLs that allow
transparent name searches both within a single local name space and from one
local name space to another.

The contents of the cell, node, and process local name spaces are described in
the following sections.

Note: The node persistent area is not designed for transient, rapidly
changing bindings. Instead, the bindings should be more static in nature,
such as part of application setup or configuration, and not created at run
time.

The node persistent area for a node can be read from any server in the
node even if the respective node agent is not running. However, the node
agent must be running to update the node persistent area, or for any server
outside the node to read from that node persistent partition.

In the federated name space, there is no node root for the deployment
manager node because no node agent or application servers run in that
node.

Note: The Naming Service of each managed process listens to configuration
changes. This means the local name space is updated automatically when
configuration changes occur. For example, there is no need to restart a node
agent to update its name space when a new application server is created.
 Chapter 11. WebSphere naming implementation 749

Cell-level name space
The cell-level name space, hosted by the deployment manager, has the structure
shown in Example 11-1.

(top) represents the root of the federated name space.

Example 11-1 Cell name space dump (dumpNameSpace -port <dmgr_bootstrap>)

1 (top)
 2 (top)/clusters javax.naming.Context
 3 (top)/clusters/MyCluster javax.naming.Context
 3 Linked to URL: corbaloc::wan:9811,:wan:9812/NameServiceServerRoot
 4 (top)/domain javax.naming.Context
 4 Linked to context: ITSOCell
 5 (top)/legacyRoot javax.naming.Context
 5 Linked to context: ITSOCell/persistent
 6 (top)/persistent javax.naming.Context
 7 (top)/persistent/cell javax.naming.Context
 7 Linked to context: ITSOCell
 8 (top)/cellname java.lang.String
 9 (top)/cell javax.naming.Context
 9 Linked to context: ITSOCell
 10 (top)/nodes javax.naming.Context
 11 (top)/nodes/ITSOCellManager javax.naming.Context
 12 (top)/nodes/ITSOCellManager/domain javax.naming.Context
 12 Linked to context: ITSOCell
 13 (top)/nodes/ITSOCellManager/servers javax.naming.Context
 14 (top)/nodes/ITSOCellManager/servers/dmgr javax.naming.Context
 15 (top)/nodes/ITSOCellManager/servers/dmgr/tm javax.naming.Context
 16 (top)/nodes/ITSOCellManager/servers/dmgr/tm/default
 16
com.ibm.ws.asynchbeans.timer.TimerManagerImpl
 17 (top)/nodes/ITSOCellManager/servers/dmgr/com.ibm.isc
 17 javax.naming.Context
 18 (top)/nodes/ITSOCellManager/servers/dmgr/com.ibm.isc/PluginRegistry
 18
com.ibm.ws.PluginRegistry
 19 (top)/nodes/ITSOCellManager/servers/dmgr/services javax.naming.Context
 20 (top)/nodes/ITSOCellManager/servers/dmgr/services/cache
 20 javax.naming.Context
 21 (top)/nodes/ITSOCellManager/servers/dmgr/services/cache/basecache
 21
com.ibm.websphere.cache.DistributedObjectCache
 22 (top)/nodes/ITSOCellManager/servers/dmgr/services/cache/distributedmap
 22
com.ibm.websphere.cache.DistributedObjectCache
 23 (top)/nodes/ITSOCellManager/servers/dmgr/ejb javax.naming.Context
 24 (top)/nodes/ITSOCellManager/servers/dmgr/ejb/mgmt javax.naming.Context
750 WebSphere Application Server V6.1: System Management and Configuration

 25 (top)/nodes/ITSOCellManager/servers/dmgr/ejb/mgmt/MEJB
 25
javax.management.j2ee.ManagementHome
 26 (top)/nodes/ITSOCellManager/servers/dmgr/cell javax.naming.Context
 26 Linked to context: ITSOCell
 27 (top)/nodes/ITSOCellManager/servers/dmgr/servername
 27 java.lang.String
 28 (top)/nodes/ITSOCellManager/servers/dmgr/thisNode javax.naming.Context
 28 Linked to context: ITSOCell/nodes/ITSOCellManager
 29 (top)/nodes/ITSOCellManager/node javax.naming.Context
 29 Linked to context: ITSOCell/nodes/ITSOCellManager
 30 (top)/nodes/ITSOCellManager/cell javax.naming.Context
 30 Linked to context: ITSOCell
 31 (top)/nodes/ITSOCellManager/nodename java.lang.String
 32 (top)/nodes/NodeA javax.naming.Context
 33 (top)/nodes/NodeA/nodename java.lang.String
 34 (top)/nodes/NodeA/persistent javax.naming.Context
 34 Linked to URL: corbaname::wan:2809/NameServiceNodeRoot#persistent
 35 (top)/nodes/NodeA/cell javax.naming.Context
 35 Linked to context: ITSOCell
 36 (top)/nodes/NodeA/domain javax.naming.Context
 36 Linked to context: ITSOCell
 37 (top)/nodes/NodeA/nodeAgent javax.naming.Context
 37 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 38 (top)/nodes/NodeA/node javax.naming.Context
 38 Linked to context: ITSOCell/nodes/NodeA
 39 (top)/nodes/NodeA/servers javax.naming.Context
 40 (top)/nodes/NodeA/servers/MyClusterServer2 javax.naming.Context
 40 Linked to URL: corbaloc::wan:9812/NameServiceServerRoot
 41 (top)/nodes/NodeA/servers/server1 javax.naming.Context
 41 Linked to URL: corbaloc::wan:9810/NameServiceServerRoot
 42 (top)/nodes/NodeA/servers/nodeagent javax.naming.Context
 42 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 43 (top)/nodes/NodeA/servers/MyClusterServer1 javax.naming.Context
 43 Linked to URL: corbaloc::wan:9811/NameServiceServerRoot
 44 (top)/deploymentManager javax.naming.Context
 44 Linked to context: ITSOCell/nodes/ITSOCellManager/servers/dmgr
 45 (top)/cells javax.naming.Context

The cell-level name space contains:

� A link to the cell persistent root, /persistent/cell

� A hierarchy of contexts for nodes and the servers managed by each node

� A full set of entries for the deployment manager node (ITSOCellManager) and
the deployment manager server (dmgr)

� The objects registered in JNDI by the dmgr server
 Chapter 11. WebSphere naming implementation 751

� A corbaloc URL link to the local name space of each of the other nodes in the
cell

� A number of cross links for the federated name space:

– /cells
– /clusters
– /legacyRoot

Node-level name space
A node-level name space, hosted by a node agent, has a structure as shown in
Example 11-2.

Example 11-2 Node-level name space (dumpNameSpace -port <NodeA_bootstrap>)

1 (top)
 2 (top)/clusters javax.naming.Context
 3 (top)/clusters/MyCluster javax.naming.Context
 3 Linked to URL: corbaloc::wan:9811,:wan:9812/NameServiceServerRoot
 4 (top)/domain javax.naming.Context
 4 Linked to context: ITSOCell
 5 (top)/legacyRoot javax.naming.Context
 5 Linked to context: ITSOCell/persistent
 6 (top)/persistent javax.naming.Context
 7 (top)/persistent/cell javax.naming.Context
 7 Linked to context: ITSOCell
 8 (top)/cellname java.lang.String
 9 (top)/cell javax.naming.Context
 9 Linked to context: ITSOCell
 10 (top)/nodes javax.naming.Context
 11 (top)/nodes/ITSOCellManager javax.naming.Context
 12 (top)/nodes/ITSOCellManager/domain javax.naming.Context
 12 Linked to context: ITSOCell
 13 (top)/nodes/ITSOCellManager/servers javax.naming.Context
 14 (top)/nodes/ITSOCellManager/servers/dmgr javax.naming.Context
 14 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 15 (top)/nodes/ITSOCellManager/node javax.naming.Context
 15 Linked to context: ITSOCell/nodes/ITSOCellManager
 16 (top)/nodes/ITSOCellManager/nodename java.lang.String

Note: Because of the hierarchical structure of the cell/node/server
relationship, the following naming conventions and constraints exist:

1. No two nodes can have the same name. Node names must be unique
within a cell.

2. Two application servers on different nodes can have the same name.

3. Two application servers on the same node must have different names.
Application server names must be unique within a node.
752 WebSphere Application Server V6.1: System Management and Configuration

 17 (top)/nodes/ITSOCellManager/cell javax.naming.Context
 17 Linked to context: ITSOCell
 18 (top)/nodes/NodeA javax.naming.Context
 19 (top)/nodes/NodeA/nodename java.lang.String
 20 (top)/nodes/NodeA/persistent javax.naming.Context
 21 (top)/nodes/NodeA/cell javax.naming.Context
 21 Linked to context: ITSOCell
 22 (top)/nodes/NodeA/domain javax.naming.Context
 22 Linked to context: ITSOCell
 23 (top)/nodes/NodeA/nodeAgent javax.naming.Context
 23 Linked to context: ITSOCell/nodes/NodeA/servers/nodeagent
 24 (top)/nodes/NodeA/node javax.naming.Context
 24 Linked to context: ITSOCell/nodes/NodeA
 25 (top)/nodes/NodeA/servers javax.naming.Context
 26 (top)/nodes/NodeA/servers/MyClusterServer2 javax.naming.Context
 26 Linked to URL: corbaloc::wan:9812/NameServiceServerRoot
 27 (top)/nodes/NodeA/servers/server1 javax.naming.Context
 27 Linked to URL: corbaloc::wan:9810/NameServiceServerRoot
 28 (top)/nodes/NodeA/servers/nodeagent javax.naming.Context
 29 (top)/nodes/NodeA/servers/nodeagent/cell javax.naming.Context
 29 Linked to context: ITSOCell
 30 (top)/nodes/NodeA/servers/nodeagent/servername java.lang.String
 31 (top)/nodes/NodeA/servers/nodeagent/thisNode javax.naming.Context
 31 Linked to context: ITSOCell/nodes/NodeA
 32 (top)/nodes/NodeA/servers/MyClusterServer1 javax.naming.Context
 32 Linked to URL: corbaloc::wan:9811/NameServiceServerRoot
 33 (top)/deploymentManager javax.naming.Context
 33 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 34 (top)/cells javax.naming.Context

The node-level name space contains:

� A full set of entries for the node and the node agent server (<nodename> or
nodeAgent)

� A corbaloc URL link to the local name space root (NameServiceServerRoot)
of each application server managed by the node

� Links to other nodes in the cell and to the servers on those nodes

� A corbaloc URL link to the root of the deployment manager local name space
(NameServiceServerRoot)

� A number of cross-links for the federated name space:

– /cells
– /clusters
– /legacyRoot

� A link to the cell persistent root, /persistent/cell
 Chapter 11. WebSphere naming implementation 753

� A link to the node persistent root, /nodes/<nodename>/persistent

Managed process-level name space
A process-level name space, hosted by a managed process, has the structure
shown in Example 11-3 on page 754.

Example 11-3 Managed process-level name space

1 (top)
 2 (top)/domain javax.naming.Context
 2 Linked to context: ITSOCell
 3 (top)/cellname java.lang.String
 4 (top)/nodes javax.naming.Context
 5 (top)/nodes/ITSOCellManager javax.naming.Context
 6 (top)/nodes/ITSOCellManager/servers javax.naming.Context
 7 (top)/nodes/ITSOCellManager/servers/dmgr javax.naming.Context
 7 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 8 (top)/nodes/ITSOCellManager/domain javax.naming.Context
 8 Linked to context: ITSOCell

9 (top)/nodes/ITSOCellManager/cell javax.naming.Context
9 Linked to context: ITSOCell
10 (top)/nodes/ITSOCellManager/nodename java.lang.String

 11 (top)/nodes/ITSOCellManager/node javax.naming.Context
 11 Linked to context: ITSOCell/nodes/ITSOCellManager
 12 (top)/nodes/NodeA javax.naming.Context
 13 (top)/nodes/NodeA/nodename java.lang.String
 14 (top)/nodes/NodeA/persistent javax.naming.Context
 15 (top)/nodes/NodeA/cell javax.naming.Context
 15 Linked to context: ITSOCell
 16 (top)/nodes/NodeA/domain javax.naming.Context
 16 Linked to context: ITSOCell
 17 (top)/nodes/NodeA/nodeAgent javax.naming.Context
 17 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 18 (top)/nodes/NodeA/node javax.naming.Context
 18 Linked to context: ITSOCell/nodes/NodeA
 19 (top)/nodes/NodeA/servers javax.naming.Context
 20 (top)/nodes/NodeA/servers/server1 javax.naming.Context
 21 (top)/nodes/NodeA/servers/server1/servername java.lang.String
 22 (top)/nodes/NodeA/servers/server1/services javax.naming.Context
 23 (top)/nodes/NodeA/servers/server1/services/cache javax.naming.Context
 24 (top)/nodes/NodeA/servers/server1/services/cache/basecache
 24 com.ibm.websphere.cache.DistributedObjectCache
 25 (top)/nodes/NodeA/servers/server1/services/cache/distributedmap
 25 com.ibm.websphere.cache.DistributedObjectCache

26 (top)/nodes/NodeA/servers/server1/thisNode javax.naming.Context
 26 Linked to context: ITSOCell/nodes/NodeA
 27 (top)/nodes/NodeA/servers/server1/com javax.naming.Context
 28 (top)/nodes/NodeA/servers/server1/com/ibm javax.naming.Context
754 WebSphere Application Server V6.1: System Management and Configuration

 29 (top)/nodes/NodeA/servers/server1/com/ibm/websphere
 29 javax.naming.Context
 30 (top)/nodes/NodeA/servers/server1/com/ibm/websphere/ejbquery
 30 javax.naming.Context
 31 (top)/nodes/NodeA/servers/server1/com/ibm/websphere/ejbquery/Query
 31 com.ibm.websphere.ejbquery.QueryHome
 32 (top)/nodes/NodeA/servers/server1/Increment

com.ibm.defaultapplication.IncrementHome
33 (top)/nodes/NodeA/servers/server1/DefaultDatasource
33 javax.resource.cci.ConnectionFactory
34 (top)/nodes/NodeA/servers/server1/eis javax.naming.Context

 35 (top)/nodes/NodeA/servers/server1/eis/jdbc javax.naming.Context
 36(top)/nodes/NodeA/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP
 36 javax.resource.cci.ConnectionFactory
 37 (top)/nodes/NodeA/servers/server1/eis/DefaultDatasource_CMP
37 javax.resource.cci.ConnectionFactory
 38 (top)/nodes/NodeA/servers/server1/jdbc javax.naming.Context
 39 (top)/nodes/NodeA/servers/server1/jdbc/PlantsByWebSphereDataSource
 39 javax.resource.cci.ConnectionFactory

40 (top)/nodes/NodeA/servers/server1/jdbc/DefaultEJBTimerDataSource
 40 javax.resource.cci.ConnectionFactory
 41 (top)/nodes/NodeA/servers/server1/tm javax.naming.Context
 42 (top)/nodes/NodeA/servers/server1/tm/default
com.ibm.ws.asynchbeans.timer.TimerManagerImpl
 43 (top)/nodes/NodeA/servers/server1/plantsby javax.naming.Context
 44 (top)/nodes/NodeA/servers/server1/plantsby/LoginHome
 44 com.ibm.websphere.samples.plantsbywebsphereejb.LoginHome
 45 (top)/nodes/NodeA/servers/server1/plantsby/MailerHome
 45 com.ibm.websphere.samples.plantsbywebsphereejb.MailerHome
 46 (top)/nodes/NodeA/servers/server1/plantsby/BackOrderHome
 46 com.ibm.websphere.samples.plantsbywebsphereejb.BackOrderHome
 47 (top)/nodes/NodeA/servers/server1/plantsby/SuppliersHome
 47 com.ibm.websphere.samples.plantsbywebsphereejb.SuppliersHome
 48 (top)/nodes/NodeA/servers/server1/plantsby/ResetDBHome
 48 com.ibm.websphere.samples.plantsbywebsphereejb.ResetDBHome
 49 (top)/nodes/NodeA/servers/server1/plantsby/ReportGeneratorHome
 49 com.ibm.websphere.samples.plantsbywebsphereejb.ReportGeneratorHome
 50 (top)/nodes/NodeA/servers/server1/plantsby/CatalogHome
 50 com.ibm.websphere.samples.plantsbywebsphereejb.CatalogHome
 51 (top)/nodes/NodeA/servers/server1/plantsby/ShoppingCartHome
 51 com.ibm.websphere.samples.plantsbywebsphereejb.ShoppingCartHome
 52 (top)/nodes/NodeA/servers/server1/plantsby/SupplierHome
 52 com.ibm.websphere.samples.plantsbywebsphereejb.SupplierHome
 53 (top)/nodes/NodeA/servers/server1/plantsby/BackOrderStockHome
 53 com.ibm.websphere.samples.plantsbywebsphereejb.BackOrderStockHome
 54 (top)/nodes/NodeA/servers/server1/mail javax.naming.Context
 55 (top)/nodes/NodeA/servers/server1/mail/PlantsByWebSphere
 55 javax.mail.Session
 56 (top)/nodes/NodeA/servers/server1/jta javax.naming.Context
 Chapter 11. WebSphere naming implementation 755

 57 (top)/nodes/NodeA/servers/server1/jta/usertransaction
 57 java.lang.Object
 58 (top)/nodes/NodeA/servers/server1/cell javax.naming.Context
 58 Linked to context: ITSOCell
 59 (top)/nodes/NodeA/servers/server1/wm javax.naming.Context
 60 (top)/nodes/NodeA/servers/server1/wm/default
com.ibm.websphere.asynchbeans.WorkManager
 61 (top)/nodes/NodeA/servers/MyClusterServer1 javax.naming.Context
 61 Linked to URL: corbaloc::wan:9811/NameServiceServerRoot
 62 (top)/nodes/NodeA/servers/MyClusterServer2 javax.naming.Context
 62 Linked to URL: corbaloc::wan:9812/NameServiceServerRoot
 63 (top)/nodes/NodeA/servers/nodeagent javax.naming.Context
 63 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 64 (top)/clusters javax.naming.Context
 65 (top)/clusters/MyCluster javax.naming.Context
 65 Linked to URL: corbaloc::wan:9811,:wan:9812/NameServiceServerRoot
 66 (top)/legacyRoot javax.naming.Context
 66 Linked to context: ITSOCell/persistent
 67 (top)/persistent javax.naming.Context
 68 (top)/persistent/cell javax.naming.Context
 68 Linked to context: ITSOCell
 69 (top)/cell javax.naming.Context
 69 Linked to context: ITSOCell
 70 (top)/deploymentManager javax.naming.Context
 70 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 71 (top)/cells javax.naming.Context

The process-level name space contains:

� A full set of entries for objects registered in the local name space of the
process.

These entries include resources (JDBC, JMS, and so on) read from the
resources.xml of the process, as well as those registered at run time by
applications, for example, EJB homes.

� A corbaloc URL link to the local name space root (NameServiceServerRoot)
of the node agent.

� A corbaloc URL link to the root of the deployment manager local name space
(NameServiceServerRoot).

� A number of cross-links for the federated name space:

– /cells
– /clusters
– /legacyRoot

� A link to the cell persistent root, /persistent/cell.

� A link to the node persistent root, /nodes/<nodename>/persistent.
756 WebSphere Application Server V6.1: System Management and Configuration

11.3 Interoperable Naming Service (INS)
It is a requirement in J2EE 1.4 to provide a CosNaming service to support the
EJB interoperability through the Interoperable Naming Service (INS). The INS
allows J2EE application servers to deal with and understand names formulated
according to the CORBA 2.3 naming scheme. The main advantage of INS is that
it improves interoperability with other application server products, as well as
CORBA servers. The naming architecture of WebSphere Application Server is
compliant with the Interoperable Naming Service (INS). The requirements of INS
CosNaming include:

� corbaloc and corbaname URLs must be supported, in addition to the IIOP
URL supported in WebSphere Application Server V4.

– Corbaloc designates an endpoint, such as a host machine.
– Corbaname designates an object’s name.

� The default bootstrap port must be 2809, as compared to the default of 900
used in earlier versions of IBM WebSphere Application Server.

11.3.1 Bootstrap ports
Every WebSphere Application Server V6 process has a bootstrap server and
port assignment.

Each process on a given machine and WebSphere logical node requires unique
ports, including the bootstrap port. The default port assignments are:

� Application server

The default for application server is 9810. Each subsequently created
application server will be assigned a unique ascending port number that does
not conflict.

� Network deployment

The default for node agent is 2809. Application servers are each assigned a
unique non-default port, either explicitly by the administrator, or automatically
determined by the administration tool.

11.3.2 CORBA URLs
CORBA URL syntax, both corbaloc and corbaname, is supported by IBM
WebSphere Application Server.

corbaloc
The corbaloc form of the CORBA 2.3 URL has the following syntax:

corbaloc:<protocol>:<addresslist>/<key>
 Chapter 11. WebSphere naming implementation 757

Table 11-1 shows the corbaloc options.

Table 11-1 corbaloc options

The following list illustrates how the corbaloc URL can range from simple to
complex, depending upon whether fault tolerance (request retry with second,
third, and so on, server) is required:

� Basic

corbaloc::myhost

� Cell’s name space root from a specific server

corbaloc:iiop:1.2@myhost.raleigh.ibm.com:9344/NameServiceCellRoot

� Server name space root with fault tolerance

corbaloc::myhost1:9333,:myhost2:9333,:myhost2:9334/NameServiceServerRoot

corbaname
A corbaname can be useful at times as a lookup name. If, for example, the target
object is not a member of the federated name space and cannot be located with
a qualified name, a corbaname can be a convenient way to look up the object.

The corbaloc form of the CORBA 2.3 URL has the following syntax:

corbaname:<protocol>:<addresslist>/<key>#<INS string-formatted-name>

Table 11-2 shows the corbaname options.

Setting Description

protocol The protocol used for the communication. Currently, the only valid
value is iiop.

addresslist List of one or more addresses (host name and port number). The
addresses are separated by commas, and each address has a
colon prefix.

key Defines the type of root to access. See Table 11-5 on page 767 for
further information.

Note: corbaloc URLs are usually used for the provider URL when retrieving an
InitialContext.
758 WebSphere Application Server V6.1: System Management and Configuration

Table 11-2 corbaname options

The following examples illustrate how the corbaname URL can range from simple
to complex, depending upon whether fault tolerance, request retry with second,
third, and so on. server, is required.

� Fully qualified name access

corbaname::myhost:9333#cell/nodes/node1/servers/server5/someEjb

� Object access through a specific server root

corbaname::myhost:9333/NameServiceServerRoot/someEjb

11.4 Distributed CosNaming
One of the advantages of the distributed nature of CosNaming in WebSphere
Application Server is that it removes the bottleneck of having a single name
server for all naming lookups. Each WebSphere process, such as deployment
manager, node agent and application server, hosts its own ORB, NameService
and local name space. Lookups are made by accessing the NameService in the
most convenient process. They are not bottlenecked through a single server
process in the cell.

The WebSphere Application Server naming architecture uses CORBA
CosNaming as its foundation. The CosNaming architecture has been changed to
support a distributed and federated collection of CosNaming servers. Each
deployment manager, node agent, and application server is a CosNaming server

Setting Description

protocol Use this protocol for the communication. Currently, the only
valid value is iiop.

addresslist This is a list of one or more addresses (host name and port
number). The addresses are separated by commas, and each
address has a colon prefix.

key Define the type of root to access. See Table 11-5 on page 767
for details.

<INS
string-formatted-nam
e>

This is the fully qualified path to entry under the specific root
context.

Note: corbaname URLs are usually used when performing a direct URL
lookup using a previously obtained InitialContext, for example,
ic.lookup(“urlstring”).
 Chapter 11. WebSphere naming implementation 759

and is responsible for managing the names of the objects that are bound locally.
Objects are bound into the local context. Lookups start in the local process and
end in the process where the target object is located. This reduces the
dependency of the WebSphere Application Server network on a single name
server for all lookups.

A single, logical name space exists across the cell. The separate name spaces of
each server process are linked and federated via context links in the cell name
space. It is possible to navigate to specific subcontexts, as every server cluster
and non-clustered server has its own context stored in a level of the cell name
space.

The contents of the federated name space are mostly transient, built from
configuration data read from the XML configuration files on the startup of each
server process. Persistent roots are provided at the cell and node level of the
name space to provide locations where objects can be persistently bound. These
bindings are persisted to XML files on the file system.

Each separate server process has its own bootstrap port, thereby reducing
bottlenecks.

11.5 Configured bindings
With the configured bindings feature, you can add objects to the name space
using the administrative interfaces. This feature allows an administrator to
explicitly add bindings to the cell name space without having to write code. The
administrator configures an alias in a persistent name space that refers to a real
reference in one of the local name spaces, thus providing an additional level of
indirection for names. (The configuration details are covered later in 11.12.1,
“Name space bindings” on page 785.)

The functionality is useful in these areas:

� Federation of name spaces

As long as it is CORBA 2.3 compliant, supporting INS, the name space of
other WebSphere Application Server V6 or V5 cells, WebSphere Application
Server V4 administrative domains, third-party application servers and even
CORBA servers can be federated into the cell’s name space.

� Interoperability with WebSphere Application Server V4

The default context of WebSphere Application Server V4 clients is the global,
or legacy, context. However, WebSphere Application Server V6 processes
bind their objects in local, transient name spaces. Therefore, WebSphere
Application Server V4 clients looking up and accessing objects in WebSphere
760 WebSphere Application Server V6.1: System Management and Configuration

Application Server V6 without requiring changes to the client requires the
WebSphere Application Server V6 object to be bound to the legacy name
space accessible to the client. Enter configured bindings. An alias can be
configured into the legacy name space. When used by the WebSphere
Application Server V4 client, the client is transparently redirected to the real
object reference in one of the cell’s local name spaces.

11.5.1 Types of objects
The following types of objects can be bound using configured bindings:

� EJB hosted by a server in the cell

The configured binding identifies an EJB home based on its configured JNDI
name and the server in which it is deployed.

A possible use of this is to put a binding for an EJB into the cell-scoped name
space so that a lookup can be done without knowledge about the server in
which the EJB is deployed. This mechanism is useful for allowing WebSphere
Application Server V4 clients to look up WebSphere Application Server V6
EJBs without having to redeploy.

� CORBA object

The configured binding identifies a CORBA object bound somewhere in this
or another name space by using a corbaname URL string. Included is also an
indicator of whether the object is a CosNaming NamingContext, in which case
the binding is a federated link from one name space to another.

� JNDI name

The configured binding identifies a provider URL and a JNDI name that can
be used to look up an object. This can be used to reference a resource or
other Java serialized object bound elsewhere in this name space or another
name space.

� String constant

The string constant can be used to bind environment data into the name
space.
 Chapter 11. WebSphere naming implementation 761

11.5.2 Types of binding references
There are several different references that can be specified for configured
bindings. Valid types are summarized in Table 11-3.

Table 11-3 Types of binding reference

Binding type Required settings

EJB (EjbNameSpaceBinding) 1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
the configured root.

3. The JNDI is the name of EJB.

4. Use the server or server cluster where
the EJB is deployed.

CORBA
(CorbaObjectNameSpaceBinding)

1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
configured root.

3. Use the corbaname URL.

4. It is an indicator if the target object is a
federated context object, or a leaf node
object.

Indirect
(IndirectLookupNameSpaceBinding)

1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
configured root.

3. Use the Provider URL.

4. Use the JNDI name of object.

String (StringNameSpaceBinding) 1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
configured root.

3. Set the constant string value.
762 WebSphere Application Server V6.1: System Management and Configuration

The configured bindings can be relative to one of the following context roots:

� Server root
� Node persistent root
� Cell persistent root

11.6 Initial contexts
In WebSphere, an initial context for a name server is associated with a bootstrap
host and bootstrap port. These combined values can be viewed as the address
of the name server owning the initial context. To get an initial context, you must
know the bootstrap host and port for the initial context's name server.

JNDI clients should assume the correct environment is already configured, so
there is no need to explicitly set property values and pass them to the
InitialContext constructor.

However, a JNDI client might need to access a name space other than the one
identified in its environment. In this case, it is necessary to explicitly set the
javax.naming.provider.url (provider URL) property used by the InitialContext
constructor. A provider URL contains bootstrap server information that the initial
context factory can use to obtain an initial context. Any property values passed
directly to the InitialContext constructor take precedence over settings of those
same properties found elsewhere in the environment.

Two provider URL forms can be used with WebSphere's initial context factory:

� CORBA object URL
� IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. CORBA object URLs are part of the OMG
CosNaming Interoperable Naming Specification. The IIOP URLs are the JNDI
format, but are still supported by the WebSphere initial context factory. The
examples in the following sections illustrate the use of these URLs.
 Chapter 11. WebSphere naming implementation 763

Using a CORBA object URL
An example of using a corbaloc URL with a single address to obtain an initial
context is shown in Example 11-4.

Example 11-4 Initial context using CORBA object URL

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Using a CORBA object URL with multiple addresses
CORBA object URLs can contain more than one bootstrap server address. This
feature can be used in WebSphere when attempting to obtain an initial context
from a server cluster. The bootstrap server addresses for all servers in the cluster
can be specified in the URL. The operation will succeed if at least one of the
servers is running, eliminating a single point of failure.

An example of using a corbaloc URL with multiple addresses to obtain an initial
context is shown in Example 11-5 on page 764.

Example 11-5 Initial context using CORBA object URL with multiple addresses

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaloc::myhost1:2809,:myhost2:2809,:myhost3:2809");

Context initialContext = new InitialContext(env);

Note: There is no guarantee of any particular order in which the address list
will be processed. For example, the second bootstrap server address might be
used to obtain the initial context even though the first bootstrap server in the
list is available.
764 WebSphere Application Server V6.1: System Management and Configuration

Using a CORBA object URL from a non-WebSphere JNDI
To access a WebSphere name server from a non-WebSphere environment, such
that the WebSphere initial context factory is not used, a corbaloc URL must be
used that has an object key of NameServiceServerRoot to identify the server root
context.

The server root is where system artifacts such as EJB homes are bound. The
default key of NameService can be used when fully qualified names are used for
JNDI operations.

Example 11-6 shows a CORBA object type URL from a non-WebSphere JNDI
implementation. It assumes full CORBA object URL support by the
non-WebSphere JNDI implementation.

Example 11-6 Using a CORBA object URL from non-WebSphere JNDI

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.somecompany.naming.TheirInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaname:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");

Context initialContext = new InitialContext(env);

Using an IIOP URL
The IIOP type of URL is a existing format that is not as flexible as CORBA object
URLs. However, URLs of this type are still supported by the WebSphere initial
context factory.

Example 11-7 shows an IIOP type URL as the provider URL.

Example 11-7 Initial context using an IIOP URL

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);
 Chapter 11. WebSphere naming implementation 765

11.6.1 Setting initial root context
Each server contains its own server root context. When bootstrapping to a
server, the server root is the default initial JNDI context. Most of the time, this is
the desired initial context, because system artifacts such as EJB homes are
bound at this point. However, other root contexts exist that might contain bindings
of interest. It is possible to specify a provider URL to select other root contexts.

The initial root context can be selected using the following settings:

� CORBA object URL
� Name space root property

Default initial context
The default initial context depends on the type of client. Table 11-4 summarizes
the different categories of clients and the corresponding default initial context.

Table 11-4 Default initial context versus client type

Note: The default is that the name will be resolved based upon the context
associated with the server bootstrap to which the client is connected.

Client type Description Default initial context

WebSphere
Application Server V6
or V5 JNDI

EJB applications use the JNDI
interface to perform name space
lookups. WebSphere clients by
default use the WebSphere's
CosNaming JNDI plug-in
implementation.

Server root

WebSphere
Application Server V4
JNDI

WebSphere clients running in
releases prior to V5 by default use
the WebSphere's V4 CosNaming
JNDI plug-in implementation.

Cell persistent root
(legacy root)

Other JNDI Some applications might perform
name space lookups with a
non-WebSphere CosNaming JNDI
plug-in implementation.

Cell root

CORBA Standard CORBA client obtains an
initial
org.omg.CosNaming.NamingCont
ext reference with the key
NamingContext.

Cell root
766 WebSphere Application Server V6.1: System Management and Configuration

Selecting initial root context with a CORBA object URL
There are several object keys registered with the bootstrap server that you can
use to select the root context to be used as the initial context. To select a
particular root context with a CORBA object URL object key, set the object key to
the corresponding value. The default object key is NameService. Using JNDI,
this will yield the server root context.

Table 11-5 lists the different root contexts and their corresponding object key.

Table 11-5 CORBA object URL root context values

Example 11-8 shows the use of a corbaloc URL with the object key set to select
the cell persistent root context as the initial context.

Example 11-8 Select cell persistent root context using corbaloc URL

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context initialContext = new InitialContext(env);

Root context CORBA object URL object key Description

Server root NameServiceServerRoot Server root for the
accessed server

Cell persistent root NameServiceCellPersistentRoot The persistent cell root
for the accessed server

Cell root NameServiceCellRoot The cell root for the
accessed server

Node root NameServiceNodeRoot The node root for the
accessed server

Note: The name server running in the deployment manager process has no
node root registered under the NameServiceNodeRoot key, because there is
no node agent, nor application servers, running in its node.
 Chapter 11. WebSphere naming implementation 767

Selecting initial root context with name space root property
You can select the initial root context by passing a name space root property
setting to the InitialContext constructor. Generally, the object key setting is
sufficient.

Sometimes, a property setting might be preferable. For example, the root context
property can be set on the Java invocation to make it transparent to the
application which server root is being used as the initial context. The default
server root property setting is defaultroot, which will yield the server root context.

Table 11-6 Name space root values

The name space root property is used to select the default root context only if the
provider URL does not contain an object key or contains the object key,
NameService. Otherwise, the property is ignored.

Example 11-9 shows use of the name space root property to select the cell
persistent root context as the initial context.

Example 11-9 Use of name space root property to select cell persistent root context

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS;

Hashtable env = new Hashtable();

Tip: If a simple name is used, the root context that will be assumed can be set
by passing the com.ibm.websphere.naming.namespaceroot property to
InitialContext.

Root context CORBA object URL object key

Server root bootstrapserverroot

Cell persistent root cellpersistentroot

Cell root cellroot

Node root bootstrapnoderoot

Tip: WebSphere makes available constants that can be used instead of
hard-coding the property name and value, for example:

env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);
768 WebSphere Application Server V6.1: System Management and Configuration

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");
env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

Context initialContext = new InitialContext(env);

11.7 Federation of name spaces
Federating name spaces involves binding contexts from one name space into
another name space. In a WebSphere Application Server V6 name space,
federated bindings can be created with the following restrictions:

� Federation is limited to CosNaming name servers. A WebSphere name
server is a CORBA CosNaming implementation.

Federated bindings to other CosNaming contexts can be created, but
bindings to LDAP name server implementation contexts cannot.

� If JNDI is used to federate the name space, the WebSphere initial context
factory must be used to obtain the reference to the federated context. If any
other initial context factory implementation is used, the binding might not be
created, or the level of transparency might be reduced.

� A federated binding to a non-WebSphere naming context has the following
functional limitations:

– JNDI operations are restricted to the use of CORBA objects. For example,
EJB homes can be looked up, but non-CORBA objects such as data
sources cannot.

– JNDI caching is not supported for non-WebSphere name spaces. This
only affects the performance of lookup operations.

� Do not federate two WebSphere single server name spaces. If this is done,
incorrect behavior can result. If you require federation of WebSphere name
spaces, then servers running under IBM WebSphere Application Server
Network Deployment are required.

In the example in Figure 11-3, assume that a name space, Namespace 1,
contains a context under the name a/b. Also assume that a second name space,
Namespace 2, contains a context under the name x/y. If context x/y in
Namespace 2 is bound into context a/b in Namespace 1 under the name f2, the
two name spaces are federated. Binding f2 is a federated binding because the
context associated with that binding comes from another name space. As shown
in Figure 11-3, from Namespace 1, a lookup of the name a/b/f2, would return the
context bound under the name x/y in Namespace 2. Furthermore, if context x/y
contained an EJB home bound under the name ejb1, the EJB home could be
 Chapter 11. WebSphere naming implementation 769

looked up from Namespace1 with the lookup name a/b/f2/ejb1. Notice that the
name crosses name spaces. This fact is transparent to the naming client.

Figure 11-3 JNDI access using federated name spaces

11.8 Foreign cell bindings

A foreign cell binding is a context binding that resolves to the cell root context of
another cell. You can configure a foreign cell binding such that applications in
your cell can access applications and other resources within the other cell.

Foreign cell bindings consist of one or more bootstrap addresses for a given cell.
The bootstrap address consists of the name of the bootstrap host and a port
number that it listens on. This concept places the bootstrap addresses in a single
location, instead of every reference to the foreign cell in the application
deployment data. If the bootstrap information changes, this can be updated in a
central location, just once via the administration console. No applications need to
be updated, as all objects in the foreign cell are looked up through the central
bindings.

Figure 11-4 on page 771 depicts an example, where we have a cell “CellA” that
has a cell-scoped EJB name space binding configured with a name in the name

Namespace 1

a (context)
a/b (context)
a/b/ f2

Namespace 2

x (context)
x/y (context)
x/y/ejb1 (ejbhome)corbaloc

Link

a/b/f2/ejb1 x/y/ejb1

EJB
Lookup

EJB
Lookup

JNDI
Client

New in V6.1: If you have applications in a cell that access other applications
in another cell, you can configure a foreign cell name binding for the other cell.

Note: The foreign cell and the local cell must have different names.
770 WebSphere Application Server V6.1: System Management and Configuration

space /ejb/AccountHome. Applications running in CellA would look up the home
with a JNDI name of cell/persistent/ejb/AccountHome (actually J2EE applications
would use a java:comp/env name that maps to that JNDI name through the
application deployment descriptors). With a foreign cell binding configured in
CellB that points to CellA, applications in CellB can do the same lookup with a
JNDI name of cell/cells/CellA/persistent/ejb/AccountHome.

Figure 11-4 JNDI lookup names using a foreign cell binding

11.9 Interoperability
The name space in IBM WebSphere Application Server V5 is the same as in
WebSphere Application Server V6. Thus, an EJB client running on IBM
WebSphere Application Server V5 accessing EJB applications running on
WebSphere Application Server V6 will have no interoperability issues.

WebSphere Application Server V6 provides the following support for
interoperating with previous releases of WebSphere and with non-WebSphere
JNDI clients:

� EJB clients running on WebSphere V4.0.x, accessing EJB applications
running on WebSphere Application Server V6

� EJB clients running on WebSphere Application Server V6, accessing EJB
applications running on WebSphere V4.0.x servers

� EJB clients running in an environment other than WebSphere, accessing EJB
applications running on WebSphere Application Server V6 servers

CellA

ejb/AccountHome
Cell scoped EJB Name space binding

cell/persistent/ejb/AccountHome

JNDI lookup
name within

Cell A

CellB

cell/cells/CellA/persistent/ejb/AccountHome

JNDI lookup name within Cell
B pointing to Cell A with

foreign cell binding

JNDI Client A

JNDI Client B
 Chapter 11. WebSphere naming implementation 771

11.9.1 WebSphere V4.0 EJB clients
Applications migrated from previous WebSphere releases can still have clients
running in a previous release. The default initial JNDI context for EJB clients
running on previous versions of WebSphere is the cell persistent root (the legacy
root). However, the home for an EJB deployed in V6.0 is bound to the server root
context. For the EJB lookup name for down-level clients to remain unchanged,
configure a binding for the EJB home under the cell persistent root.

The following options enable interoperability with WebSphere Application Server
V4 clients:

� Set the client’s default initial context to legacyRoot. This option is equivalent
to the cell persistent root of WebSphere Application Server V6.

� Redeploy the clients using the Application Server Toolkit so that the JNDI
names can be fixed to reflect the real, fully qualified names in the WebSphere
Application Server V6 name space.

� Use aliases for the names the clients look up. These transparently redirect to
the correct object in the WebSphere Application Server V6 name space. This
option uses configured bindings.

Options for EJB lookup
The following options support EJB lookup from a WebSphere Application Server
V4 client to a WebSphere Application Server V6 hosted EJB:

� Redeploy the WebSphere Application Server V4 client.

Update the <ejb-ref> to reflect the WebSphere Application Server V6
compatible JNDI name.

� In WebSphere Application Server V6, configure EjbNameSpaceBinding:

a. Use the same JNDI name looked up by the WebSphere Application Server
V4 client.

b. Identify the JNDI name and server, or cluster, of the target EJB.

c. Configure the binding in the cell persistent root.

Options for resources bound in external name space
Options for resources bound in external name spaces include the following:

� Redeploy the WebSphere Application Server V4 client.

Update the <resource-ref> to reflect the WebSphere Application Server V6
compatible JNDI name.

� In WebSphere Application Server V6, run the program to bind the resource
into the WebSphere Application Server V6 cell persistent root.
772 WebSphere Application Server V6.1: System Management and Configuration

� In WebSphere Application Server V6, configure
IndirectLookupNameSpaceBinding by doing the following:

a. Use the same JNDI name looked up by the WebSphere Application Server
V4 client.

b. Specify the provider URL and JNDI name of the name space where the
resource is already bound (a WebSphere Application Server V4 name
space).

c. Configure the binding in the cell persistent root.

11.9.2 WebSphere V4.0 server
The default initial context for a WebSphere V4.0 server is the correct context.
WebSphere Application Server V6 clients simply look up the JNDI name under
which the EJB home is bound.

11.9.3 EJB clients hosted by non-WebSphere environment
When an EJB application running in WebSphere Application Server V6 is
accessed by a non-WebSphere EJB client, the JNDI initial context factory is
presumed to be a non-WebSphere implementation. In this case, the default initial
context is the cell root. If the JNDI service provider being used supports CORBA
object URLs, use the corbaname format shown in Example 11-10 to look up the
EJB home.

Example 11-10 corbaname format for EJB home lookup

initialContext.lookup("corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB
");

According to the URL in Example 11-10, the bootstrap host and server (node
agent) port are myHost and 2809. The EJB is installed in a server cluster named
myCluster. The EJB is bound in that cluster under the name myEJB.

Note: The server name could also be the name of a non-clustered server.
This form of lookup works in the following situations:

� With any name server bootstrap host and port configured in the same cell
� If the bootstrap host and port belong to a member of the cluster itself
 Chapter 11. WebSphere naming implementation 773

To avoid a single point of failure, the bootstrap server host and port for each
cluster member could be listed in the URL, as shown in Example 11-11.

Example 11-11 corbaname format with multiple addresses for EJB home lookup

initialContext.lookup("corbaname:iiop:host1:9810,host2:9810#cell/clusters/myClu
ster/myEJB");

The name prefix cell/clusters/<clustername>/ is not necessary if
bootstrapping to the cluster itself, but it always works. The prefix is required,
however, when looking up EJBs in other clusters. The server binding for the
prefix used to access another cluster is implemented in a way that avoids a
single point of failure during a lookup.

If the JNDI initial context factory you use does not support CORBA object URLs,
the initial context can be obtained from the server, and the lookup can be
performed on the initial context, as shown in Example 11-12.

Example 11-12 corbaname format with multiple addresses for EJB home lookup

Hashtable env = new Hashtable();
env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");
Context ic = new InitialContext(env);
Object o = ic.lookup("cell/clusters/myCluster/myEJB");

This form of lookup works from any server in the same cell as the EJB home
being looked up. However, this approach does not allow multiple hosts and ports
to be specified in the provider URL and does not incorporate the availability
advantages of a corbaloc or corbaname URL with multiple hosts and ports
belonging to the server cluster members.

11.10 Examples
The following examples highlight a number of different server topologies and the
effect the topologies have on the use of the Naming Service:

� Single server
� Single server with a non-default port
� Two single servers on the same box
� Two Network Deployment application servers on the same box
� WebSphere Application Server V4 client
774 WebSphere Application Server V6.1: System Management and Configuration

11.10.1 Single server
In the single-server environment, the naming functionality works in exactly the
same way as in WebSphere Application Server V4. There is only one server and
only one root context and, therefore, no ambiguity in the location of a named
object. This is illustrated by the example in Figure 11-5.

Figure 11-5 Single server

By accessing the server root directly, the J2EE or servlet client does not need to
traverse the cell name space (cell root → servers → server root → object).

Svr1
EJB=Customer
JNDINAME=CustomerHome

EJB=Account
JNDINAME=AccountHome

HOSTNAME=h1

PORT=2809

Servlet
Provider URL:
 not needed
Name used in code:

java:comp/env/AccountHome
ejb-ref in deployment:
 NAME=AccountHome
 JNDINAME=AccountHomeJ2EE Client

Provider URL:
 corbaloc::h1
Name used in code:

java:comp/env/ejb/Cust
ejb-ref in
deployment:
 NAME=ejb/Cust

JNDINAME=CustomerHome

nodes
cell
root

CustomerHome

AccountHome

nodes node
root

h1Node node
servers

server
root

Svr1servers
Namespace

Note: Even in a single-server case, clients can still use the fully qualified JNDI
name to look up an object. This removes any dependency on the particular
topology. However, there is a small performance degradation.
 Chapter 11. WebSphere naming implementation 775

In a single-server, the server root acts as the default bootstrap, and should be
assigned port 2809. Clients external to the server process using the provider
URL do not need a port number.

If the named object is looked up by a client running in the same process, then a
provider URL, and corbaloc, is not needed. By default, the lookup is performed
against the local process name space. Table 11-7 illustrates the Provider URL.

Table 11-7 Lookup settings required for a single server

11.10.2 Two single servers on the same box
When more than one instance of the application server runs on a single machine,
then you must configure each server’s bootstrap to run on a different port. In this
case, you can have a J2EE component in one server looking up objects in the
other server. This is illustrated by the example in Figure 11-6.

Component Provider URL JNDI name

Servlet (same process) Not needed CustomerHome

J2EE client (external process) corbaloc::<hostname> CustomerHome
776 WebSphere Application Server V6.1: System Management and Configuration

Figure 11-6 Two single servers on the same box

Because each application server name space is separate, the different objects
can use the same name, CustomerHome. There is no name collision. The fully
qualified JNDI name can be used to uniquely identify the name registered in one
server from the name in another. If objects are registered under the name
CustomerHome on two servers, look up the name using:

cell/nodes/<nodename>/servers/<server1>/CustomerHome
cell/nodes/<nodename>/servers/<server2>/CustomerHome

Table 11-8 illustrates the required Provider URL settings.

Table 11-8 Lookup settings for two single servers on the same box

server1
port=9811

Customer EJB

server2
port=9812

EJB or servlet
Provider URL: corbaloc::h01:9811
Name used in code:
 java:comp/env/ejb/myCust
ejb-ref in deployment:
 NAME=ejb/myCust
 JNDINAME=CustomerHome

servlet or
ejb

Customer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9812
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustomerHome

EJB or servlet
Provider URL: not needed
Name used in code:
 java:comp/env/ejb/myCust
ejb-ref in deployment:
 NAME=ejb/myCust
 JNDINAME=CustomerHome

servlet or
ejb

hostname=h01

nodescell
root

CustomerHome
nodes node

root
h01Node node

servers
server
root

server1servers

Namespace for server1

nodescell
root

CustomerHome
nodes node

root
h01Node node

servers
server
root

server2servers

Namespace for server2

Component Provider URL JNDI name

Servlet (same process) Not needed CustomerHome

Servlet (external process) corbaloc::<hostname>:<port#> CustomerHome

J2EE client (external process) corbaloc::<hostname>:<port#> CustomerHome
 Chapter 11. WebSphere naming implementation 777

11.10.3 Network Deployment application servers on the same box
The configuration becomes more complex when we move from an stand-alone
server environment to a Network Deployment distributed server environment. In
this topology, there can be separate application servers as well as a node agent
process, all of which have a bootstrap port and host a local name space:

� The node agent is the default bootstrap for the node, and has its bootstrap
port configured on 2809.

� The application servers are not the default bootstrap, and, therefore, each is
configured to use a non-default bootstrap port.

This concept is illustrated by the example in Figure 11-7 on page 778.

Figure 11-7 Two network deployment application servers on the same box

Unless a client uses a specific application server in its provider URL, the lookup
is performed on the node agent. For the lookup to succeed, the bindings have to
specify the fully qualified name of the object:

cell/nodes/<nodename>/servers/<servername>/<name of object>

hostname=h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9812
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustomerHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

J2EE Client
Provider URL: corbaloc::h01
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=
cell/nodes/h01/servers/server1/CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9811
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=
cell/nodes/h01/servers/server2/CustomerHome

node
servers

server
root

cell
root

server1
CustomerHome

Namespace

server
root

server2 CustomerHome

nodes
nodes node

root
h01Node serverscell

root
nodes

nodes node
root

h01Node
778 WebSphere Application Server V6.1: System Management and Configuration

That is, the client needs to specify where the object is located. This is a big
difference from the behavior in WebSphere Application Server V4, where all
named objects were registered in a single global name space.

Table 11-9 illustrates the Provider URL settings required.

Table 11-9 Lookup settings for two Network Deployment servers on the same box

Tip: When you need server clusters for high availability, bootstrap to a server
cluster so that the initial context has failover support. Lookups that resolve to
other clusters from that bootstrap cluster also have failover support from the
name server implementation. The provider URL should have the bootstrap
address of each cluster member to avoid a single point of failure when
obtaining the initial context.

In a distributed server environment, choose a bootstrap server that has a
stable bootstrap address, such as a designated cluster, server, or node agent.

Component Provider URL JNDI name

Servlet (same process) Not needed CustomerHome

Servlet (external process
accessing local name space to
access local object)

Not needed cell/nodes/<nodename>
/servers/<server2>/Cust
omerHome

Servlet (external process
accessing other appserver’s
name space to access object
on that appserver)

corbaloc::<appserver2
hostname>:<port#>

CustomerHome

(or) Not needed cell/persistent/Custome
rHome21

J2EE client (external process
accessing appserver1 with
object located on appserver1)

corbaloc::<appserver
hostname>:<port#>

CustomerHome

(or) Not needed cell/persistent/Custome
rHome11

J2EE client (external process
accessing node agent)

corbaloc::<node agent
hostname>

cell/nodes/<nodename>
/servers/<server2>/Cust
omerHome

(or) Not needed cell/persistent/Custome
rHome21
 Chapter 11. WebSphere naming implementation 779

11.10.4 WebSphere Application Server V4 client
In WebSphere Application Server V4, there is no need to specify a path to a
named object, because all objects are registered in a single global name space.
Although convenient, this causes naming conflicts because no two objects can
be registered across all application servers with the same names.

The use of configured bindings, aliases, in the cell persistent root provides a
mechanism by which the V4 naming structure can be mapped to the fully
qualified names of V6. This is illustrated in Figure 11-8.

J2EE client (external process
accessing appserver1 with
object located on appserver2)

corbaloc::<appserver1
hostname>:<port#>

cell/nodes/<nodename>
/servers/<server2>/Cust
omerHome

(or) Not needed cell/persistent/Custome
rHome21

1 You must manually configure indirect JNDI references to the respective EJB in the
cell/persistent name space.

Component Provider URL JNDI name
780 WebSphere Application Server V6.1: System Management and Configuration

Figure 11-8 WebSphere Application Server V4 client

Table 11-10 illustrates the Provider URL settings required.

Table 11-10 Lookup settings for WebSphere Application Server V4 client interoperability

CustHome is the name registered in the cell-level persistent root (the legacy
root), for cell/nodes/<nodename>/servers/<servername>/CustomerHome.

The WebSphere Application Server V4 client accesses the JNDI alias registered
in the cell persistent root of the WebSphere Application Server V6 cell. The
WebSphere Application Server V6 run time transparently redirects the client to
the JNDI entry located in a specific local name space hosted by one of the name
servers of the cell.

hostname=h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

R4.0 J2EE Client
Provider URL: iiop://h01:2809
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

servers node
servers

server
root

server1 CustomerHome

Namespace

server
root

server2 CustomerHome

cell
persistent

root

persistent

CustHome

Configured Binding
Type: EJB
Scope: Cell
NameInNamespace: CustHome
Node: h01Node
Server: Server2
JNDI Name: CustomerHome

node
root

cell
root

nodes
nodes

h01Node

Component Provider URL JNDI name

V4 client iiop://<hostname>:2809 CustHome
 Chapter 11. WebSphere naming implementation 781

11.11 Naming tools
IBM WebSphere Application Server provides the following tools for the support of
the naming architecture.

11.11.1 dumpNameSpace
Run the dumpNameSpace command against any bootstrap port to get a listing of
the names bound with that provider URL.

The output of the command:

� Does not present a full logical view of the name space
� Shows CORBA URLs where the name space transitions to another server

The tool indicates that certain names point to contexts external to the current
server and its name space. The links show the transitions necessary to perform a
lookup from one name space to another.

Syntax
To run the dumpNameSpace command, type the following:

dumpNameSpace [options]

All arguments are optional. Table 11-11 on page 782 shows the available
options.

Table 11-11 Options for dumpNameSpace

Tip: An invocation of the dumpNameSpace command cannot generate a dump of
the entire name space, only the objects bound to the bootstrap server and
links to other local name spaces that compose the federated name space. Use
the correct host name and port number for the server to be dumped.

Option Description

-host <hostname> This option is the host name of bootstrap server. If it is not defined, then
the default is localhost.

-port <portnumber> This option is the bootstrap server port number. If i is not defined, then
the default is 2809.

-factory <factory> This option is the initial context factory to be used to get initial context.
The default of com.ibm.websphere.naming.WsnInitialContextFactory is
okay for most use.
782 WebSphere Application Server V6.1: System Management and Configuration

-root [cell | server | node | host
| legacy | tree | default]

WebSphere V5.0 or later

� cell: dumpNameSpace default. Dump the tree starting at the cell root
context.

� server: Dump the tree starting at the server root context.

� node: Dump the tree starting at the node root context. (Synonymous
with "host")

WebSphere V4.0

� legacy: dumpNameSpace default. Dump the tree starting at the legacy
root context.

� host: Dump the tree starting at the bootstrap host root context
(Synonymous with node)

� tree: Dump the tree starting at the tree root context.

All WebSphere and other name servers

� default: Dump the tree starting at the initial context that JNDI returns
by default for that server type. This is the only -root choice that is
compatible with WebSphere servers prior to V4.0 and with
non-WebSphere name servers.

-url <url> This option is the value for the java.naming.provider.url property used to
get the initial JNDI context. This option can be used in place of the -host,
-port, and -root options. If the -url option is specified, the -host, -port, and
-root options are ignored.

-startAt <context> This option is the path from the requested root context to the top
level context where the dump should begin. Recursively dumps
subcontexts below this point. Defaults to empty string, that is, root
context requested with the -root option.

-format <format> � jndi: Display name components as atomic strings.
� ins: Display name components parsed against INS rules (id.kind).
The default format is jndi.

-report <length> � short: Dumps the binding name and bound object type, essentially
what JNDI Context.list() provides.

� long: Dumps the binding name, bound object type, local object type,
and string representation of the local object. In other words, IORs,
string values, and so on, are printed.

The default report option is short.

-traceString <tracespec> Trace string of the same format used with servers, with output going to
the file DumpNameSpaceTrace.out.

-help or -? Prints a usage statement.

Option Description
 Chapter 11. WebSphere naming implementation 783

Finding the bootstrap address
To find the bootstrap address for node agents, servers, and the cell, do the
following:

� For application servers, click Servers → Application Servers. Click the
server to open the configuration. Select Ports from the Communications
section, then BOOTSTRAP_ADDRESS.

� For node agents, click System Administration → Node Agents. Select the
node agent to open the configuration. Select Ports from the Additional
Properties section, then BOOTSTRAP_ADDRESS.

� For the cell, click System Administration → Deployment Manager. Select
Ports from the Additional Properties section, then BOOTSTRAP_ADDRESS.

To find the dumpNameSpace usage, see Example 11-13.

Example 11-13 dumpNameSpace usage

$ cd c:\ibm\was60\AppServer\bin

Get help on options:
$ dumpNameSpace -?

Dump server on localhost:2809 from cell root:
$ dumpNameSpace

Dump server on localhost:2806 from cell root:
$ dumpNameSpace -port 2806

Dump server on yourhost:2811 from cell root:
$ dumpNameSpace -port 2811 -host yourhost

Dump server on localhost:9810 from server root:
$ dumpNameSpace -root server‘

Dump server at corbaloc
dumpNameSpace -url corbaloc:iiop:yourhost:901

11.12 Configuration
This section discusses how to configure a name binding for an enterprise bean, a
CORBA CosNaming naming context or CORBA leaf node object, an object that
can be looked up using JNDI, or a constant string value using the administrative
console.
784 WebSphere Application Server V6.1: System Management and Configuration

11.12.1 Name space bindings
The configured bindings feature allows objects to be added to the name space
using the administrative console. An administrator can now explicitly add
bindings to the cell name space without having to write code. With this feature,
an administrator can configure an alias in a persistent name space for a
reference in one of the local name spaces.

Name space bindings can be created for the following four object types:

� String
� EJB
� CORBA
� Indirect

As an example, look at Figure 11-8. In this scenario, an alias is configured to
allow an application using the WebSphere V4 naming style to access an EJB
while running on WebSphere V6. Because the V4 application code does not
specify a path to the named object, a binding is added to the cell persistent root
to redirect the client to the JNDI entry in the local name space.

Figure 11-9 WebSphere Application Server V4 client

hostname=h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

R4.0 J2EE Client
Provider URL: iiop://h01:2809
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

Configured Binding
Type: EJB
Scope: Cell
NameInNamespace: CustHome
Node: h01Node
Server: Server2
JNDI Name: CustomerHome
 Chapter 11. WebSphere naming implementation 785

To create the binding, do the following:

1. Select Environment → Naming → Name Space Bindings.

2. Set the scope to cell.

3. Click New. See Figure 11-10.

Figure 11-10 Name Space Binding window

4. Choose EJB and click Next.

5. Enter the values shown in Figure 11-11.

– Binding identifier is a unique identifier for the binding.

– Name in Name Space matches the JNDI name used in the application
code.

– Enterprise Bean Location is the cluster or node where the EJB resides.

– Server is the name of the server where the EJB resides.

– JNDI Name is the JNDI name of the deployed EJB. Use the name in the
enterprise beans bindings, not the java:comp name.
786 WebSphere Application Server V6.1: System Management and Configuration

Figure 11-11 Defining an EJB name space binding

6. Click Next.

7. Click Finish and save your changes.

Note: Name space bindings can be configured at the cell, node, and server
scope:

� Bindings configured at the cell scope are included in the local run time
name space of all application servers in that cell.

� Bindings configured at the node scope area included in the local run time
name space of all application servers in that node.

� Bindings configured at the server scope are included in the local run time
name space of only that application server.
 Chapter 11. WebSphere naming implementation 787

11.12.2 Foreign cell bindings
To create the binding, do the following:

1. Select Environment → Naming → Foreign Cell Bindings. See
Figure 11-12.

Figure 11-12 Add new foreign cell binding

2. Click New. Supply the name of the foreign cell. This must be different to the
name of the local cell.

3. Click Next. See Figure 11-13.
788 WebSphere Application Server V6.1: System Management and Configuration

Figure 11-13 Configuring bootstrap addresses for a foreign cell binding

4. Enter the host name of the deployment manager, node agent, server, or
cluster member in the foreign cell that is used for bootstrapping.

5. Enter the bootstrap port number that is used in conjunction with the previously
specified host name.

6. Click Apply. Your settings will appear in the list at the bottom of the window.
You may configure multiple bootstrap addresses for the foreign cell binding.

7. When you are finished, click OK and save your changes.

11.12.3 CORBA naming service users and groups

The J2EE role-based authorization concept has been extended to protect the
WebSphere CosNaming service. CosNaming security offers increased
granularity of security control over CosNaming functions, which affects the
content of the WebSphere name space. There are generally two ways in which
 Chapter 11. WebSphere naming implementation 789

client programs will make a CosNaming call. The first is through the JNDI
interfaces. The second is CORBA clients invoking CosNaming methods directly.

You can design authorization based on users and groups of users defined to the
active user registry. Design the authorization by assigning an authority level to
one of the following:

� User

� Group

� ALL_AUTHENTICATED (special subject that acts as a group)

This means any user who authenticates by entering a valid user ID and
password.

� EVERYONE (special subject that acts as a group)

All users are authorized. No authentication is necessary.

The roles now have authority level from low to high as follows:

� Users assigned the CosNamingRead role are allowed to do queries of the
WebSphere Name Space, such as through the JNDI lookup method. The
special subject “Everyone” is the default policy for this role.

� Users assigned to the CosNamingWrite role are allowed to do write
operations, such as JNDI bind, rebind, or unbind, plus CosNamingRead
operations. The special subject All_Authenticated is the default policy for this
role.

� Users assigned to the CosNamingCreate role are allowed to create new
objects in the Name Space through such operations as JNDI
createSubcontext, plus CosNamingWrite operations. The special subject,
All_Authenticated, is the default policy for this role.

� Users assigned to the CosNamingDelete role are able to destroy objects in
the Name Space, for example, using the JNDI destroySubcontext method, as
well as CosNamingCreate operations.

By default, you have the following:

� The ALL_AUTHENTICATED group has the following role privileges:
CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete.

Note: The authorization policy is only enforced when administrative security is
enabled. Before enabling security, you should design your entire security
solution. See WebSphere Application Server V6.1 Security Handbook,
SG24-6316 for information about designing and implementing WebSphere
security.
790 WebSphere Application Server V6.1: System Management and Configuration

� The EVERYONE group has CosNamingRead privileges only.

Working with the CORBA naming service authorization is straightforward.

Working with CORBA naming service users
To work with users, do the following:

1. Select Environment → Naming → CORBA Naming Service Users. See
Figure 11-14.

Figure 11-14 Add CORBA naming service users

2. Click Add.

Enter a case-sensitive user ID and select an authorization level. The user
must be a valid user in the active user registry. If you have not activated
administrative security, the local operating system user registry will be used.

Note: Before these settings take effect, you will have to enable and
configure WebSphere administrative security.
 Chapter 11. WebSphere naming implementation 791

To specify multiple roles, hold the Ctrl key while you click the applicable roles.
See Figure 11-15.

Figure 11-15 Assign an authorization level

3. Click Apply.

4. Click OK and save your changes.

Working with CORBA naming service groups
To work with groups, do the following:

1. Select Environment → Naming → CORBA Naming Service Groups.
Notice that the default settings are defined. Figure 11-16 on page 793 shows
the initial settings.
792 WebSphere Application Server V6.1: System Management and Configuration

Figure 11-16 Default settings for CORBA naming service groups

Note: The special group EVERYONE is already defined and has roles
assigned. To change the roles assigned to the special group, click the
group name link.
 Chapter 11. WebSphere naming implementation 793

2. To add a new group, click Add. See Figure 11-17 on page 794.

Figure 11-17 Assign an authorization level

3. Select the Specify Group button, enter a case-sensitive group name and
select an authorization level, or role. The group must be a valid user in the
active user registry. If you have not activated administrative security, the local
operating system user registry will be used. Remember, before these settings
take effect, you will have to enable and configure WebSphere administrative
security.

To specify multiple roles, hold the Ctrl key while you click the applicable roles.

4. Click Apply.

5. Click OK and save your changes.
794 WebSphere Application Server V6.1: System Management and Configuration

Chapter 12. Understanding class loaders

Understanding how the Java and WebSphere class loaders work is critical to
packaging and deploying J2EE applications. Failure to set up the class loaders
properly most likely results in a cascade of the infamous class loading exceptions
(such as ClassNotFoundException) when trying to start your application.

This chapter explains class loaders and how to customize the behavior of the
WebSphere class loaders to suit your particular application’s requirements. The
chapter concludes with an example designed to illustrates these concepts.

This chapter includes the following topics:

� A brief introduction to Java class loaders
� WebSphere class loaders overview
� Configuring WebSphere for class loaders
� Class loader viewer
� Learning class loaders by example
� Additional class loader diagnostics

12
© Copyright IBM Corp. 2006. All rights reserved. 795

12.1 A brief introduction to Java class loaders
Class loaders enable the Java virtual machine (JVM) to load classes. Given the
name of a class, the class loader locates the definition of this class. Each Java
class must be loaded by a class loader.

When you start a JVM, you use three class loaders: the bootstrap class loader,
the extensions class loader, and the application class loader.

� The bootstrap class loader is responsible for loading only the core Java
libraries, that is vm.jar, core.jar, and so on, in the <JAVA_HOME>/jre/lib
directory. This class loader, which is part of the core JVM, is written in native
code.

� The extensions class loader is responsible for loading the code in the
extensions directories (<JAVA_HOME>/jre/lib/ext or any other directory
specified by the java.ext.dirs system property). This class loader is
implemented by the sun.misc.Launcher$ExtClassLoader class.

� The application class loader is responsible for loading the code that is found
on java.class.path, which ultimately maps to the system CLASSPATH
variable. This class loader is implemented by the
sun.misc.Launcher$AppClassLoader class.

The parent-delegation model is a key concept to understand when dealing with
class loaders. It states that a class loader delegates class loading to its parent
before trying to load the class itself. The parent class loader can be either
another custom class loader or the bootstrap class loader. But what is very
important is that a class loader can only delegate requests to its parent class
loader, never to its child class loaders (it can go up the hierarchy but never down).

The extensions class loader is the parent for the application class loader. The
bootstrap class loader is the parent for the extensions class loader. The class
loaders hierarchy is shown in Figure 12-1 on page 797.

If the application class loader needs to load a class, it first delegates to the
extensions class loader, which, in turn, delegates to the bootstrap class loader. If
the parent class loader cannot load the class, the child class loader tries to find
the class in its own repository. In this manner, a class loader is only responsible
for loading classes that its ancestors cannot load.
796 WebSphere Application Server V6.1: System Management and Configuration

Figure 12-1 Java class loaders hierarchy

This behavior can lead to some interesting problems if a class is loaded from a
class loader that is not on a leaf node in the class loader tree. Consider
Example 12-1. A class called WhichClassLoader1 loads a class called
WhichClassLoader2, in turn invoking a class called WhichClassLoader3.

Example 12-1 WhichClassLoader1 and WhichClassLoader2 source code

public class WhichClassLoader1 {

public static void main(String[] args) throws javax.naming.NamingException
{

// Get classpath values
String bootClassPath = System.getProperty("sun.boot.class.path");
String extClassPath = System.getProperty("java.ext.dirs");
String appClassPath = System.getProperty("java.class.path");

// Print them out
System.out.println("Bootstrap classpath =" + bootClassPath + "\n");
System.out.println("Extensions classpath =" + extClassPath + "\n");
System.out.println("Application classpath=" + appClassPath + "\n");

// Load classes
Object obj = new Object();
WhichClassLoader1 wcl1 = new WhichClassLoader1();
WhichClassLoader2 wcl2 = new WhichClassLoader2();

// Who loaded what?
System.out.println("Object was loaded by "

+ obj.getClass().getClassLoader());
System.out.println("WCL1 was loaded by "

Bootstrap Classloader

Extensions Classloader

Application Classloader
 Chapter 12. Understanding class loaders 797

+ wcl1.getClass().getClassLoader());
System.out.println("WCL2 was loaded by "

+ wcl2.getClass().getClassLoader());

wcl2.getTheClass();
}

}
==
public class WhichClassLoader2 {

// This method is invoked from WhichClassLoader1
public void getTheClass() {

WhichClassLoader3 wcl3 = new WhichClassLoader3();
System.out.println("WCL3 was loaded by "

+ wcl3.getClass().getClassLoader());
}

}

If all WhichClassLoaderX classes are put on the application class path, the three
classes are loaded by the application class loader, and this sample runs just fine.

Now suppose you package the WhichClassLoader2.class file in a JAR file that
you store under <JAVA_HOME>/jre/lib/ext directory. You see the output in
Example 12-2.

Example 12-2 NoClassDefFoundError exception trace

Bootstrap classpath
=C:\WebSphere\AppServer\java\jre\lib\vm.jar;C:\WebSphere\AppServer\java\jre\lib
\core.jar;C:\WebSphere\AppServer\java\jre\lib\charsets.jar;C:\WebSphere\AppServ
er\java\jre\lib\graphics.jar;C:\WebSphere\AppServer\java\jre\lib\security.jar;C
:\WebSphere\AppServer\java\jre\lib\ibmpkcs.jar;C:\WebSphere\AppServer\java\jre\
lib\ibmorb.jar;C:\WebSphere\AppServer\java\jre\lib\ibmcfw.jar;C:\WebSphere\AppS
erver\java\jre\lib\ibmorbapi.jar;C:\WebSphere\AppServer\java\jre\lib\ibmjcefw.j
ar;C:\WebSphere\AppServer\java\jre\lib\ibmjgssprovider.jar;C:\WebSphere\AppServ
er\java\jre\lib\ibmjsseprovider2.jar;C:\WebSphere\AppServer\java\jre\lib\ibmjaa
slm.jar;C:\WebSphere\AppServer\java\jre\lib\ibmjaasactivelm.jar;C:\WebSphere\Ap
pServer\java\jre\lib\ibmcertpathprovider.jar;C:\WebSphere\AppServer\java\jre\li
b\server.jar;C:\WebSphere\AppServer\java\jre\lib\xml.jar
Extensions classpath =C:\WebSphere\AppServer\java\jre\lib\ext
Application classpath=.

Exception in thread "main" java.lang.NoClassDefFoundError: WhichClassLoader3
 at java.lang.J9VMInternals.verifyImpl(Native Method)
 at java.lang.J9VMInternals.verify(J9VMInternals.java:59)
 at java.lang.J9VMInternals.initialize(J9VMInternals.java:120)
 at WhichClassLoader1.main(WhichClassLoader1.java:17)
798 WebSphere Application Server V6.1: System Management and Configuration

As you can see, the program fails with a NoClassDefFoundError exception,
which might sound strange because WhichClassLoader3 is on the application
class path. The problem is that it is now on the wrong class path.

What happened was that the WhichClassLoader2 class was loaded by the
extensions class loader. In fact, the application class loader delegated the load of
the WhichClassLoader2 class to the extensions class loader, which in turn
delegated the request to the bootstrap class loader. Because the bootstrap class
loader could not find the class, the class loading control was returned to the
extensions class loader. The extensions class loader found the class on its class
path and loaded it.

Now, when a class has been loaded by a class loader, any new classes that the
class needs reuse the same class loader to load them (or goes up the hierarchy
according to the parent-delegation model). So when the WhichClassLoader2
class needed to access the WhichClassLoader3 class, it is the extensions class
loader that first gets the request to load it. The extensions class loader first
delegates the request to the Bootstrap class path, which cannot find the class,
and then tries to load it itself but does not find it either because
WhichClassLoader3 is not on the extensions class path but on the application
classpath. And because the extensions class loader cannot delegate the request
to the application class loader (a delegate request can only go up the hierarchy,
never down), a NoClassDefFoundError exception is thrown.

Note: Remember that developers very often also load property files through
the class loader mechanism using the following syntax:

Properties p = new Properties();
p.load(MyClass.class.getClassLoader().getResourceAsStream("myApp.properties"
));

This means, if the class MyClass is loaded by the extensions class loader and
the myApp.properties file is only seen by the application class loader, the
loading of the property file fails.
 Chapter 12. Understanding class loaders 799

12.2 WebSphere class loaders overview

WebSphere provides several custom delegated class loaders, as shown in
Figure 12-2 on page 800.

Figure 12-2 WebSphere class loaders hierarchy

The top box represents the Java (bootstrap, extensions, and application) class
loaders. WebSphere loads just enough here to get itself bootstrapped and
initialize the WebSphere extensions class loader.

Note: Keep in mind when reading the following discussion that each JVM has
its own setup of class loaders. In a WebSphere environment hosting multiple
application servers (JVMs), this means the class loaders for the JVMs are
completely separated even if they are running on the same physical machine.

Also note that the Java Virtual Machine (JVM) uses class loaders called the
extensions and application class loaders. As you will see, the WebSphere run
time also uses class loaders called extensions and application class loader,
but despite their names, they are not the same as the JVM ones.

Java class loaders
(Bootstrap, Extensions, Application)

WebSphere Extensions class loader
(3rd party code, JDBC drivers etc.)

Application class loader
(EJBs, RARs, Utility JARs)

Application class loader
(EJBs, RARs, Utility JARs)

WAR
class loader

WAR
class loader

WAR
class loader

WAR
class loader

WebSphere Application Server
OSGi Runtime
800 WebSphere Application Server V6.1: System Management and Configuration

12.2.1 WebSphere extensions class loader

Despite this architectural change in the internals of how WebSphere loads its
own classes, there is no behavioral change as far as your applications are
concerned. They still have the same visibility, and the same class loading options
still exist for your application.

The class path used by the extensions class loader is retrieved from the
ws.ext.dirs system property, which is initially derived from the WAS_EXT_DIRS
environment variable set in the setupCmdLine script file. The default value of
ws.ext.dirs is displayed in Example 12-3.

Example 12-3 Default value of we.ext.dirs

SET
WAS_EXT_DIRS=%JAVA_HOME%\lib;%WAS_HOME%\classes;%WAS_HOME%\lib;%WAS_HOME%\insta
lledChannels;%WAS_HOME%\lib\ext;%WAS_HOME%\web\help;%ITP_LOC%\plugins\com.ibm.e
tools.ejbdeploy\runtime

Each directory listed in the ws.ext.dirs environment variable is added to the
WebSphere extensions class loaders class path and every JAR file and ZIP file in
the directory is added to the class path.

As you can see, even though the classes, lib, lib\ext, and installedChannels
directories no longer exist in the <was_home> directory, the setupCmdLine script
still adds them to the extensions class path. This means that if you previously
have added your own JAR files to, for example, the <was_home>\lib directory,
you could create this directory and add your JAR files to it and they would still be
loaded by the extensions class loader. However, this is not recommended and
you should really try to migrate away from such a setup.

New in V6.1: The WebSphere extensions class loader is where WebSphere
itself is loaded. In previous versions of WebSphere, the run time was loaded
by this single class loader. However, beginning with WebSphere Application
Server V6.1, WebSphere is now packaged as a set of OSGi bundles. Each
OSGi bundle is loaded separately by its own class loader. This network of
OSGi class loaders is then connected to the extensions class loader and the
rest of the class loader hierarchy through an OSGi gateway class loader.

New in V6.1: In previous versions of WebSphere Application Server the
WebSphere run time classes files were stored in the classes, lib, lib\ext, and
installedChannels directories in the <was_home> directory. Because of the
OSGi packaging, these directories no longer exist and the run time classes
are now stored in the <was_home>\plugins directory.
 Chapter 12. Understanding class loaders 801

On the other hand, if you have developed Java applications that rely on the
WebSphere JAR files that were previously in the <was_home>\lib directory, you
will need to modify your application to retain compatibility. WebSphere
Application Server V6.1 provides two thin client libraries designed specifically for
such applications: one administrative client library and one Web services client
library. These thin client libraries can be found in the <was_home>\runtimes
directory:

� com.ibm.ws.admin.client_6.1.0.jar

� com.ibm.ws.webservices.thinclient_6.1.0.jar

These libraries provide everything your application might need for connecting to
and working with WebSphere.

The default setting is Allow, meaning that your applications can make
unrestricted calls to non-public internal WebSphere classes. This is not
recommended and may be prohibited in future releases. Therefore, as an
administrator, it is a good idea to switch this setting to Restrict to see if your
applications still work. If they depend on non-public WebSphere internal classes
you will receive a ClassNotFoundException, and in that case you can switch back
to Allow. Your developers should then try to migrate their applications so that they
do not make unsupported calls to the WebSphere internal classes in order to
retain compatibility with future WebSphere Application Server releases.

12.2.2 Application and Web module class loaders
J2EE applications consist of five primary elements: Web modules, EJB modules,
application client modules, resource adapters (RAR files), and utility JARs. Utility
JARs contain code used by both EJBs and servlets. Utility frameworks such as
log4j are good examples of a utility JAR.

EJB modules, utility JARs, resource adapter files, and shared libraries
associated with an application are always grouped together into the same class
loader. This class loader is called the application class loader. Depending on the
class loader policy, this class loader can be shared by multiple applications
(EARs), or be unique for each application, which is the default.

New in V6.1: WebSphere Application Server V6.1 gives you the ability to
restrict access to internal WebSphere classes so that your applications do not
make unsupported calls to WebSphere classes not published in the official
WebSphere Application Server API. This setting is a per-server (JVM) setting
called Access to internal server classes.
802 WebSphere Application Server V6.1: System Management and Configuration

By default, Web modules receive their own class loader, a WAR class loader, to
load the contents of the WEB-INF/classes and WEB-INF/lib directories. You can
modify the default behavior by changing the application's WAR class loader
policy. The default is to Class loader for each WAR file in the application (this
setting was called Module in previous releases). If the WAR class loader policy is
set to Single class loader for application (called Application in previous releases),
the Web module contents are loaded by the application class loader in addition to
the EJBs, RARs, utility JARs, and shared libraries. The application class loader is
the parent of the WAR class loader.

The application and the WAR class loaders are reloadable class loaders. They
monitor changes in the application code to automatically reload modified classes.
You can modify this behavior at deployment time.

12.2.3 Handling JNI code
Because a JVM only has a single address space and native code can only be
loaded once per address space, the JVM specification states that native code
may only be loaded by one class loader in a JVM.

This may cause a problem if, for example, you have an application (EAR file) with
two Web modules that both need to load the same native code through a Java
Native Interface (JNI). Only the Web module that first loads the library will
succeed.

To solve this problem, you can break out just the few lines of Java code that load
the native code into a class on its own and place this file on WebSphere’s
application class loader (in a utility JAR). However, if you would deploy multiple
such applications (EAR files) to the same application server (JVM), you would
have to place the class file on the WebSphere extensions class loader instead to
ensure the native code is only loaded once per JVM.

If the native code is placed on a reloadable class loader (such as the application
class loader or the WAR class loader), it is important that the native code can
properly unload itself should the Java code have to reload. WebSphere has no
control over the native code and if it does not unload and load properly the
application may fail.

If one native library depends on another one, things become even more
complicated. Search for Dependent native library in the Information Center for
more details.
 Chapter 12. Understanding class loaders 803

12.3 Configuring WebSphere for class loaders
In the previous topic, you learned about WebSphere class loaders and how they
work together to load classes. There are settings in WebSphere Application
Server that allow you to influence WebSphere class loader behavior. This section
discusses these options.

12.3.1 Class loader policies
For each application server in the system, the class loader policy can be set to
Single or Multiple.

When the application server class loader policy is set to Single, a single
application class loader is used to load all EJBs, utility JARs, and shared libraries
within the application server (JVM). If the WAR class loader policy then has been
set to Single class loader for application (or Application), the Web module
contents for this particular application are also loaded by this single class loader.

When the application server class loader policy is set to Multiple, the default,
each application will receive its own class loader for loading EJBs, utility JARs,
and shared libraries. Depending on whether the WAR class loader loading policy
is set to Class loader for each WAR file in application (or Module) or Single class
loader for application (or Application), the Web module might or might not receive
its own class loader.

Here is an example to illustrate. You have two applications, Application1 and
Application2, running in the same application server. Each application has one
EJB module, one utility JAR, and two Web modules. If the application server has
its class loader policy set to Multiple, the default, and the class loader policy for
all the Web modules are set to use a class loader for each WAR file in application
(Module), also the default, the result is as shown in Figure 12-3.
804 WebSphere Application Server V6.1: System Management and Configuration

Figure 12-3 Class loader policies: Example 1

Each application is completely separated from the other and each Web module is
also completely separated from the other one in the same application.
WebSphere’s default class loader policies results in total isolation between the
applications and the modules.

WebSphere Extensions class loader

Application1 class loader
EJB1.jar
Util1.jar

WAR1-1
class loader

WAR1-2
class loader

WAR2-1
class loader

Application2 class loader
EJB2.jar
Util2.jar

WAR2-2
class loader
 Chapter 12. Understanding class loaders 805

If we now change the class loader policy for the WAR2-2 module from Class
loader for each WAR file in application (Module) to Single class loader for
application (Application), the result is shown in Figure 12-4 on page 806.

Figure 12-4 Class loader policies: Example 2

Web module WAR2-2 is loaded by Application2’s class loader and classes, for
example, in Util2.jar, are able to see classes in WAR2-2’s /WEB-INF/classes and
/WEB-INF/lib directories.

As a last example, if we change the class loader policy for the application server
from Multiple to Single and also change the class loader policy for WAR2-1 from
Class loader for each WAR file in application (Module) to Single class loader for
application (Application), the result is as shown in Figure 12-5 on page 807.

WebSphere Extensions class loader

Application1 class loader
EJB1.jar
Util1.jar

WAR1-1
class loader

WAR1-2
class loader

WAR2-1
class loader

Application2 class loader
EJB2.jar
Util2.jar

WAR2-2.war
806 WebSphere Application Server V6.1: System Management and Configuration

Figure 12-5 Class loader policies: Example 3

There is now only a single application class loader loading classes for both
Application1 and Application2. Classes in Util1.jar can see classes in EJB2.jar,
Util2.jar, WAR2-1.war and WAR2-2.war. The classes loaded by the application
class loader still cannot, however, see the classes in the WAR1-1 and WAR1-2
modules, because a class loader can only find classes by going up the hierarchy,
never down.

12.3.2 Class loading/delegation mode
WebSphere’s application class loader and WAR class loader both have a setting
called the class loader order. This setting determines whether they should follow
the normal Java class loader delegation mechanism, as described in 12.1, “A
brief introduction to Java class loaders” on page 796, or override it.

There are two possible options for the class loading mode:

� Classes loaded with parent class loader first
� Classes loaded with application class loader first

In previous WebSphere releases, these settings were called PARENT_FIRST
and PARENT_LAST, respectively.

The default value for class loading mode is Classes loaded with parent class
loader first (PARENT_FIRST). This mode causes the class loader to first
delegate the loading of classes to its parent class loader before attempting to

WebSphere Extensions class loader

WAR1-1
class loader

WAR1-2
class loader

EJB1.jar
Util1.jar

EJB2.jar
Util2.jar

WAR2-1.war
WAR2-2.war

Application class loader
 Chapter 12. Understanding class loaders 807

load the class from its local class path. This is the default policy for standard
Java class loaders.

If the class loading policy is set to Classes loaded with application class loader
first (PARENT_LAST), the class loader attempts to load classes from its local
class path before delegating the class loading to its parent. This policy allows an
application class loader to override and provide its own version of a class that
exists in the parent class loader.

Assume you have an application, similar to Application1 in the previous
examples, and it uses the popular log4j package to perform logging from both the
EJB module and the two Web modules. Also assume that each module has its
own, unique, log4j.properties file packaged into the module. It is tempting to
configure log4j as a utility JAR so you only have a single copy of it in your EAR
file.

However, if you do that, you might be surprised to see that all modules, including
the Web modules, load the log4j.properties file from the EJB module. The reason
is that when a Web module initializes the log4j package, the log4j classes are
loaded by the application class loader. Log4j is configured as a utility JAR. Log4j
then looks for a log4j.properties file on its class path and finds it in the EJB
module.

Even if you do not use log4j for logging from the EJB module and the EJB
module does not, therefore, contain a log4j.properties file, log4j does not find the
log4j.properties file in any of the Web modules anyway. The reason is that a
class loader can only find classes by going up the hierarchy, never down.

To solve this problem, you can either:

� Create a separate file, for example, Resource.jar, configure it as a utility JAR,
move all log4j.properties files from the modules into this file, and make their
names unique (like war1-1_log4j.properties, war1-2_log4j.properties, and
ejb1_log4j.properties). When initializing log4j from each module, tell it to load
the proper configuration file for the module instead of the default
(log4j.properties).

Note: The administrative console is a bit confusing at this point. On the
settings page for a Web module, the two options for class loader order are
Classes loaded with parent class loader first and Classes loaded with
application class loader first. However, in this context, the “application class
loader” really refers to the WAR class loader, so the option Classes loaded
with application class loader first should really be called Classes loaded with
WAR class loader first.
808 WebSphere Application Server V6.1: System Management and Configuration

� Keep the log4j.properties for the Web modules in their original place
(/WEB-INF/classes), add log4j.jar to both Web modules (/WEB-INF/lib) and
set the class loading mode for the Web modules to Classes loaded with
application class loader first (PARENT_LAST). When initializing log4j from a
Web module, it loads the log4j.jar from the module itself and log4j would find
the log4j.properties on its local classpath, the Web module itself. When the
EJB module initializes log4j, it loads from the application class loader and it
finds the log4j.properties file on the same class path, the one in the EJB1.jar
file.

� Merge, if possible, all log4j.properties files into one and place it on the
Application class loader, in a Resource.jar file, for example).

12.3.3 Shared libraries
Shared libraries are files used by multiple applications. Examples of shared
libraries are commonly used frameworks like Apache Struts or log4j. You use
shared libraries typically to point to a set of JARs and associate those JARs to an
application, a Web module, or the class loader of an application server. Shared
libraries are especially useful when you have different versions of the same
framework you want to associate to different applications.

Shared libraries are defined using the administration tools. They consist of a
symbolic name, a Java class path, and a native path for loading JNI libraries.
They can be defined at the cell, node, server, or cluster level. However, simply
defining a library does not cause the library to be loaded. You must associate the
library to an application, a Web module, or the class loader of an application
server for the classes represented by the shared library to be loaded. Associating
the library to the class loader of an application server makes the library available
to all applications on the server.

Singletons: The Singleton pattern is used to ensure that a class is
instantiated only once. However, once only means once for each class loader.
If you have a Singleton being instantiated in two separated Web modules, two
separate instances of this class will be created, one for each WAR class
loader. So in a multi-class loader environment, special care must be taken
when implementing Singletons.

Note: If you associate a shared library to an application, do not associate the
same library to the class loader of an application server.
 Chapter 12. Understanding class loaders 809

You can associate the shared library to an application in one of two ways:

� You can use the administration tools. The library is added using the Shared
libraries references link under the References section for the enterprise
application.

� You can use the manifest file of the application and the shared library. The
shared library contains a manifest file that identifies it as an extension. The
dependency to the library is declared in the application’s manifest file by
listing the library extension name in an extension list.

For more information about this method, search for installed optional
packages in the Information Center.

Shared files are associated with the class loader of an application server using
the administrative tools. The settings are found in the Server Infrastructure
section. Expand the Java and Process Management. Select Class loader and
then click the New button to define a new class loader. Once you have defined a
new class loader, you can modify it and, using the Shared library references link,
you can associate it to the shared libraries you need.

See “Step 4: Sharing utility JARs using shared libraries” on page 820 for more
details.

12.4 Class loader viewer

If the Class Loader Viewer Service is not enabled, the Class Loader Viewer only
displays the hierarchy of class loaders and their classpaths, but not the classes
actually loaded by each of the class loaders. This also means that the search
capability of the Class Loader Viewer is lost.

To enable the Class Loader Viewer Service, select Servers → Application
Servers → <server name> and then click the Class Loader Viewer Service
under the Additional Properties link. Then select Enable service at server
startup. You will need to restart the application server for the setting to take
effect.

New in V6.0.2: WebSphere Application Server V6.0.2 introduced a new utility
called the Class Loader Viewer. When activated, this utility can help you
diagnose class loading problems by showing you the different class loaders
involved, their settings, and the classes loaded by each of them.
810 WebSphere Application Server V6.1: System Management and Configuration

In the next section, we give an example of how to work with the different class
loader settings and will then use the Class Loader Viewer also to illustrate the
different results.

12.5 Learning class loaders by example
We have now described all the different options for influencing class loader
behavior. In this section, we take an example and use all the different options we
have discussed to this point so that you can better evaluate the best solution for
your applications.

We have created a very simple application, with one servlet and one EJB. Both
call a class, VersionChecker, shown in Example 12-4. This class can print which
class loader was used to load the class. The VersionChecker class also has an
internal value that can be printed to check which version of the class we are
using. This will be used later to demonstrate the use of multiple versions of the
same utility JAR.

Example 12-4 VersionChecker class source code

package com.itso.classloaders;

public class VersionChecker {
static final public String classVersion = "v1.0";

public String getInfo() {
return ("VersionChecker is " + classVersion +

". Loaded by " + this.getClass().getClassLoader());
}

}

 Chapter 12. Understanding class loaders 811

Once installed, the application can be invoked through
http://localhost:9080/ClassloaderExampleWeb/ExampleServlet. This invokes
the ExampleServlet which calls VersionChecker and then displays the sample
information in Example 12-5.

Example 12-5 Invoking ExampleServlet

VersionChecker is v1.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@71827182

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\classes;C:\W
ebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\Cl
assloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\lib\VersionCheck
erV1.jar;C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8
Node02Cell\ClassloaderExample.ear\ClassloaderExampleWeb.war

Delegation Mode: PARENT_FIRST

The VersionCheckerV1.jar file contains the VersionChecker class file that returns
Version number 1.0. For all the following tests, we have, unless otherwise noted,
left the class loader policies and loading modes to their defaults. In other words,
we have one class loader for the application and one for the WAR file. Both have
their delegation modes set to Classes loaded with parent class loader first
(PARENT_FIRST). We assume the application has been deployed to an
application server called AppSrv02.

12.5.1 Step 1: Simple Web module packaging
Start with the following assumption: our utility class is only used by a servlet. We
have placed the VersionCheckerV1.jar file under the WEB-INF/lib directory of the
Web module.

When we run the application in such a configuration, we obtain the results shown
in Example 12-6.

Tip: You place JAR files used by a single Web module, or a JAR file that only
this Web module should see under WEB-INF/lib.
812 WebSphere Application Server V6.1: System Management and Configuration

Example 12-6 Class loader: Example 1

VersionChecker called from Servlet
VersionChecker is v1.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@71827182

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\classes;C:\W
ebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\Cl
assloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\lib\VersionCheck
erV1.jar;C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8
Node02Cell\ClassloaderExample.ear\ClassloaderExampleWeb.war

Delegation Mode: PARENT_FIRST

There are a few things we can learn from this trace:

1. The type of the WAR class loader is
com.ibm.ws.classloader.CompoundClassLoader.

2. It searches classes in the following order:

ClassloaderExampleWeb.war\WEB-INF\classes
ClassloaderExampleWeb.war\WEB-INF\lib\VersionCheckerV1.jar
ClassloaderExampleWeb.war

The WEB-INF/classes folder holds unpacked resources (such as servlet classes,
plain Java classes, and property files), while the WEB-INF/lib holds resources
packaged as JAR files. You can choose to package your Java code in JAR files
and place them in the lib directory or you can put them unpacked in the classes
directory. They will both be on the same classpath. Because our sample
application was developed and exported from the Application Server Toolkit, our
servlet goes into the classes folder, because the toolkit does not package the
Java classes in a JAR file when exporting an application.

The root of the WAR file is the next place where you can put code or properties,
but you really should not do that because that folder is the document root for the
Web server (if the File Serving Servlet capabilities are enabled, which they are by
default) so anything that is in that folder is accessible from a browser. According
to the J2EE specification, though, the WEB-INF folder is protected, which is why
the classes and lib folders are under WEB-INF.

The class loader class path is dynamically built at application startup.
 Chapter 12. Understanding class loaders 813

We can now also use the Class Loader Viewer to display the class loader. In the
administrative console, select Troubleshooting → Class Loader Viewer. Then
expand server1 → Applications → ClassloaderExample → Web modules
and click the ClassloaderExampleWeb.war, as shown in Figure 12-6.

Figure 12-6 Class Loader Viewer showing applications tree

When the Web module is expanded, the Class Loader Viewer shows the
hierarchy of class loaders all the way from the JDK Extensions and JDK
application class loaders at the top to the WAR class loader at the bottom, called
the compound class loader. See Figure 12-7.
814 WebSphere Application Server V6.1: System Management and Configuration

Figure 12-7 Class Loader Viewer showing class loader hierarchy

If you expand the classpath for the WAS Module - Compound Class Loader, you
see the same information as our VersionChecker class prints. See
Example 12-7.

Example 12-7 Class Loader Viewer showing class path for WAR class loader

file:/C:/WebSphere/AppServer/profiles/AppSrv02/installedApps/kcgg1d8Nod
e02Cell/ClassloaderExample.ear/ClassloaderExampleWeb.war/WEB-INF/classe
s
file:/C:/WebSphere/AppServer/profiles/AppSrv02/installedApps/kcgg1d8Nod
e02Cell/ClassloaderExample.ear/ClassloaderExampleWeb.war/WEB-INF/lib/Ve
rsionCheckerV1.jar
file:/C:/WebSphere/AppServer/profiles/AppSrv02/installedApps/kcgg1d8Nod
e02Cell/ClassloaderExample.ear/ClassloaderExampleWeb.war
 Chapter 12. Understanding class loaders 815

The Class Loader Viewer also has a table view that displays all the class loaders
and the classes loaded by each of them on a single page. The table view also
displays the Delegation mode. True means that classes are loaded with parent
class loader first (PARENT_FIRST), while false means that classes are loaded
with application class loader first (PARENT_LAST), or the WAR class loader in
the case of a Web module. See Figure 12-8.

Figure 12-8 Class Loader Viewer table view

As you can see, the WAR class loader has loaded our example servlet and the
VersionChecker class, just as expected.

The Class Loader Viewer also has a search feature where you can search for
classes, JAR files, folders, and so on. This can be particularly useful if you do not
know which of the class loaders loaded a class you are interested in. The search
feature is case sensitive but allows wild cards, so a search for *VersionChecker*
finds our VersionChecker class.

Note: For the Class Loader Viewer to display the classes loaded, the Class
Loader Viewer Service must be enabled as described in “Class loader viewer”
on page 810.
816 WebSphere Application Server V6.1: System Management and Configuration

12.5.2 Step 2: Adding an EJB module and Utility jar
Next, we decided to add an EJB to our application, which also depends on our
VersionChecker JAR file. For this task, we added a VersionCheckerV2.jar file to
the root of our EAR. The VersionChecker class in this JAR file returns Version
2.0. To make it available as a utility JAR on the extensions class loader, we
added a reference to it in the EJB module’s manifest file, as shown in
Example 12-8.

Example 12-8 Updated MANIFEST.MF for EJB module

Manifest-Version: 1.0
Class-Path: VersionCheckerV2.jar

The result is that we now have a Web module with a servlet in the
WEB-INF/classes folder and the VersionCheckerV1.jar file in the WEB-INF/lib
folder. We also have an EJB module that references the VersionCheckerV2.jar
Utility JAR in the root of the EAR. Which version of the VersionChecker class file
would you expect the Web module to load? Version 1.0 from the WEB-INF/lib or
version 2.0 from the Utility JAR?

The test results are then as shown in Example 12-9.

Example 12-9 Class loader: Example 2

VersionChecker called from Servlet
VersionChecker is v2.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@26282628

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleEJB.jar;C:\WebSphere\AppServ
er\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\ClassloaderExample
.ear\VersionCheckerV2.jar

Delegation Mode: PARENT_FIRST

VersionChecker called from EJB
VersionChecker is v2.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@26282628

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
 Chapter 12. Understanding class loaders 817

l\ClassloaderExample.ear\ClassloaderExampleEJB.jar;C:\WebSphere\AppServ
er\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\ClassloaderExample
.ear\VersionCheckerV2.jar

Delegation Mode: PARENT_FIRST

As you can see, the VersionChecker is Version 2.0 when called both from the
EJB module and the Web module. The reason is, of course, that the WAR class
loader delegates the request to its parent class loader instead of loading it itself,
so the Utility JAR is loaded by the same class loader regardless of if it was called
from the servlet or the EJB.

12.5.3 Step 3: Changing the WAR class loader delegation mode
What if we now wanted the Web module to use the VersionCheckerV1.jar file
from the WEB-INF/lib folder? For that task, we would have to change the class
loader delegation from parent first to parent last.

Set the delegation mode to PARENT_LAST, using the following steps:

1. Select the Enterprise Applications entry in the navigation area.

2. Select the ClassloaderExample application.

3. Select Manage modules under the Modules section.

4. Select the ClassloaderExampleWeb module.

5. Change the Class loader order to Classes loaded with application class
loader first (PARENT_LAST). Remember, this entry should really be called
Classes loaded with WAR class loader first, as noted in “Class
loading/delegation mode” on page 807.

6. Click OK.

7. Save the configuration.

8. Restart the application.

The VersionCheckerV1 in WEB-INF/lib returns a class version of 1.0. You can
see in Example 12-10 on page 819 that this is the version now used by the WAR
file.
818 WebSphere Application Server V6.1: System Management and Configuration

Example 12-10 Class loader: Example 3

VersionChecker called from Servlet

VersionChecker is v1.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@4d404d40

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\classes;C:\W
ebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\Cl
assloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\lib\VersionCheck
erV1.jar;C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8
Node02Cell\ClassloaderExample.ear\ClassloaderExampleWeb.war

Delegation Mode: PARENT_LAST

VersionChecker called from EJB

VersionChecker is v2.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@37f437f4

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleEJB.jar;C:\WebSphere\AppServ
er\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\ClassloaderExample
.ear\VersionCheckerV2.jar

Delegation Mode: PARENT_FIRST

Tip: Use this to specify that a Web module should use a specific version of a
library, such as Struts, or to override classes coming with the WebSphere run
time. Put the common version at the top of the hierarchy, and the specialized
version in WEB-INF/lib.

The J2EE specification does not provide a standard option to specify the
delegation mode in the EAR file, but by using a WebSphere Extended EAR
file, you can specify this so you do not have to change it every time you
redeploy your application.
 Chapter 12. Understanding class loaders 819

If you use the search feature of the Class Loader Viewer to search for
VersionChecker, you would see the two entries in Figure 12-9.

Figure 12-9 Class Loader Viewer search feature

The screen is too wide to capture, but the code source is shown
inExample 12-11.

Example 12-11 Class Loader Viewer search feature

WAS Module Compound Class Loader (WAR class loader):
file: / C: / WebSphere / AppServer / profiles / AppSrv02 /
installedApps / kcgg1d8Node02Cell / ClassloaderExample.ear /
ClassloaderExampleWeb.war / WEB-INF / lib / VersionCheckerV1.jar

WAS Module Jar Class Loader (Application class loader):
file: / C: / WebSphere / AppServer / profiles / AppSrv02 /
installedApps / kcgg1d8Node02Cell / ClassloaderExample.ear /
VersionCheckerV2.jar

12.5.4 Step 4: Sharing utility JARs using shared libraries

In this situation, the VersionCheckerV2.jar file is used by a single application.
What if you wanted to share it among multiple applications? Of course, you could
package it within each EAR file. But changes to this utility JAR file require
redeploying all applications again. To avoid this, you can externalize global utility
JARs using a shared library.

Shared libraries can be defined at the cell, node, application server, and cluster
levels. Once you have defined a shared library, you must associate it to the class
loader of an application server, an application, or an individual Web module.
Depending on the target the shared library is assigned to, WebSphere will use
the appropriate class loader to load the shared library.

You can define as many shared libraries as you want. You can also associate
multiple shared libraries with an application, Web module, or application server.
820 WebSphere Application Server V6.1: System Management and Configuration

Using shared libraries at the application level
To define a shared library named VersionCheckerV2_SharedLib and associate it
to our ClassloaderTest application, do the following:

1. In the administrative console, select Environment → Shared Libraries.

2. Select the scope at which you want this shared library to be defined, such as
Cell, and click New.

3. Specify the properties shown in Figure 12-10 on page 821.

Figure 12-10 Shared library configuration
 Chapter 12. Understanding class loaders 821

– Name: Enter VersionCheckerV2_SharedLib.

– Class path: Enter the list of entries on the class path. Press Enter between
each entry. We highly recommend that if you need to provide an absolute
path that you use WebSphere variables, such as
%FRAMEWORK_JARS%/VersionCheckerV2.jar. Make sure that you
declare this variable at the same scope as the shared library for cell, node,
server, or cluster.

– Native library path: Enter a list of DLLs and .so files for use by the JNI
code.

4. Click OK.

5. Select Applications → Enterprise Applications.

6. Select the ClassloadersExample application.

7. In References, select Shared library references.

8. Select ClassloaderExample in the Application row.

9. Click Reference shared libraries.

10.Select the VersionCheckerV2_SharedLib and click the >> button to move it
to the Selected column, as shown in Figure 12-11.
822 WebSphere Application Server V6.1: System Management and Configuration

Figure 12-11 Assigning a shared library

11.Click OK.
 Chapter 12. Understanding class loaders 823

12.The shared library configuration window for the ClassloaderExample
application should now look like Figure 12-12.

Figure 12-12 Shared library assigned to ClassloaderExample application

13.Click OK and then save the configuration.

If we now remove the VersionCheckerV2.jar file from the root of the EAR file, and
remove the reference to it from the EJB module’s manifest file, and restart the
application server, we see the results in Example 12-12. Remember the class
loader order for the Web module is still Classes loaded with application class
loader first (PARENT_LAST).

Example 12-12 Class loader: Example 5

VersionChecker called from Servlet

VersionChecker is v1.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@2e602e60

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\classes;C:\W
ebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\Cl
assloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\lib\VersionCheck
erV1.jar;C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8
Node02Cell\ClassloaderExample.ear\ClassloaderExampleWeb.war

Delegation Mode: PARENT_LAST
824 WebSphere Application Server V6.1: System Management and Configuration

VersionChecker called from EJB

VersionChecker is v2.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@19141914

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleEJB.jar;C:\henrik\VersionChe
ckerV2.jar

Delegation Mode: PARENT_FIRST

As expected, because of the delegation mode for the Web module, the
VersionCheckerV1.jar file was loaded when the servlet needed the
VersionChecker class. When the EJB needed the VersionChecker class, it was
loaded from the shared library, which points to C:\henrik\VersionCheckerV2.jar.

If we would like the Web module to also use the shared library, we would just
restore the class loader order to the default, Classes loaded with parent class
loader first, for the Web module.

Using shared libraries at the application server level
A shared library can also be associated to an application server. All applications
deployed on this server see the code listed on that shared library. To associate a
shared library to an application server, you must first create an additional class
loader for the application server as follows:

1. Select an application server.

2. In the Server Infrastructure section, expand the Java and Process
Management. Select Class loader.

3. Choose New, and select a class loader order for this class loader, Classes
loaded with parent class loader first (PARENT_FIRST) or Classes loaded with
application class loader first (PARENT_LAST). Click Apply.

4. Click the class loader that is created.

5. Click Shared library references.

6. Click Add, and select the library you want to associate to this application
server. Repeat this operation to associate multiple libraries to this class
loader. For our example, we selected the VersionCheckerV2_SharedLib
entry.

7. Click OK.
 Chapter 12. Understanding class loaders 825

8. Save the configuration.

9. Restart the application server for the changes to take effect.

Because we have now attached the VersionCheckerV2 shared library to the
class loader of the application server, we obtain the results in Example 12-13.

Example 12-13 Class loader: Example 6

VersionChecker called from Servlet

VersionChecker is v1.0.

Loaded by com.ibm.ws.classloader.CompoundClassLoader@40c240c2

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cel
l\ClassloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\classes;C:\W
ebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8Node02Cell\Cl
assloaderExample.ear\ClassloaderExampleWeb.war\WEB-INF\lib\VersionCheck
erV1.jar;C:\WebSphere\AppServer\profiles\AppSrv02\installedApps\kcgg1d8
Node02Cell\ClassloaderExample.ear\ClassloaderExampleWeb.war

VersionChecker called from EJB

VersionChecker is v2.0.

Loaded by com.ibm.ws.classloader.ExtJarClassLoader@7dee7dee

Local ClassPath: C:\henrik\VersionCheckerV2.jar

Delegation Mode: PARENT_FIRST

The new class loader we defined is called the ExtJarClassLoader and it has
loaded the VersionCheckerV2.jar file when requested by the EJB module.

The WAR class loader still continues to load its own version due to the delegation
mode.
826 WebSphere Application Server V6.1: System Management and Configuration

12.6 Additional class loader diagnostics

JVM Version 5.0 provides some additional options that can be useful when
troubleshooting class loading problems. These options are set as command line
arguments for the JVM. Select Servers → Application Servers →
<server_name> and then expand the Java and process management section
under the Server Infrastructure heading. Click the Process Definition link and
then the Java Virtual Machine link. Enter the options below in the Generic JVM
arguments field:

� -verbose:dynload

This option provides detailed information about classes being loaded.
Information includes the class name and package, the JAR file name if the
class is packaged in a JAR file, the size of the class, and the time it takes to
load the class. The information is written to the native_stderr.log file. An
example output looks like:

<Loaded com/itso/classloaders/VersionChecker>
< Class size 817; ROM size 728; debug size 0>
< Read time 0 usec; Load time 40 usec; Translate time 89 usec>

� -Dibm.cl.verbose=<name>

This option allows you to trace the way the class loaders find and load a given
class. The name is the full name of the class, including the package name. By
specifying -Dibm.cl.verbose=com.itso.classloaders.VersionChecker, the
following output is printed to the SystemOut.log file when the VersionChecker
class is loaded (note that the output has been truncated to fit):

[8/4/06 10:29:48:639 EDT] 00000024 SystemOut O ExtClassLoader
attempting to find com.itso.classloaders.VersionChecker
[8/4/06 10:29:48:639 EDT] 00000024 SystemOut O ExtClassLoader
using classpath
C:\WebSphere\AppServer\java\jre\lib\ext\CmpCrmf.jar;....C:\WebSphere
\AppServer\java\jre\lib\ext\whichclassloader2.jar;C:\WebSphere\AppSe
rver\java\jre\lib\ext\whichclassloader3.jar
[8/4/06 10:29:48:639 EDT] 00000024 SystemOut O ExtClassLoader
could not find com/itso/classloaders/VersionChecker.class in
C:\WebSphere\AppServer\java\jre\lib\ext\CmpCrmf.jar
...
...
[8/4/06 10:29:48:639 EDT] 00000024 SystemOut O ExtClassLoader
could not find com.itso.classloaders.VersionChecker
[8/4/06 10:29:48:639 EDT] 00000024 SystemOut O AppClassLoader
attempting to find com.itso.classloaders.VersionChecker
 Chapter 12. Understanding class loaders 827

[8/4/06 10:29:48:639 EDT] 00000024 SystemOut O AppClassLoader
using classpath
C:\WebSphere\AppServer\profiles\AppSrv02\properties;....
[8/4/06 10:29:48:649 EDT] 00000024 SystemOut O AppClassLoader
could not find com/itso/classloaders/VersionChecker.class in
C:\WebSphere\AppServer\profiles\AppSrv02\properties
...
...
[8/4/06 10:29:48:649 EDT] 00000024 SystemOut O AppClassLoader
could not find com.itso.classloaders.VersionChecker
[8/4/06 10:29:48:649 EDT] 00000024 SystemOut O
com.ibm.ws.bootstrap.ExtClassLoader attempting to find
com.itso.classloaders.VersionChecker
[8/4/06 10:29:48:649 EDT] 00000024 SystemOut O
com.ibm.ws.bootstrap.ExtClassLoader using classpath
C:\WebSphere\AppServer\java\lib;....
...
...
com.ibm.ws.bootstrap.ExtClassLoader could not find
com/itso/classloaders/VersionChecker.class in
C:\WebSphere\AppServer\java\lib
...
...
828 WebSphere Application Server V6.1: System Management and Configuration

Chapter 13. Packaging applications

In this chapter, we show you how to perform some common tasks involved in
packaging a J2EE application. For this purpose, we will use the Plants by
WebSphere sample application that ships with WebSphere Application Server
and the Application Server Toolkit.

This chapter includes the following topics:

� Plants by WebSphere sample application
� Packaging using the Application Server Toolkit
� Setting application bindings
� IBM EJB extensions: EJB caching options
� IBM EJB extensions: EJB access intents
� IBM EJB extensions: inheritance relationships
� IBM Web module extensions
� IBM EAR extensions: Sharing session context
� Exporting the PlantsByWebSphere EAR file
� WebSphere Enhanced EAR
� Packaging recommendations

13
© Copyright IBM Corp. 2006. All rights reserved. 829

13.1 Plants by WebSphere sample application

Plants by WebSphere is an Internet storefront that specializes in the sale of
plants and gardening tools. This Sample application uses many of the Java 2
Platform, Enterprise Edition (J2EE) and WebSphere Application Server
functions, including enterprise beans, servlets, and JavaServer Pages (JSP)
technology.

Using the Plants by WebSphere storefront, customers can open accounts,
browse for items to purchase, view product details, and place orders. The Plants
by WebSphere application uses container-managed persistence (CMP),
container-managed relationships (CMR), stateless session beans, a stateful
session bean, JSP pages, and servlets.

We will not go into details on how Plants by WebSphere application works. For
more detailed information, refer to the WebSphere Information Center. If you
have installed the sample applications on your system, you can also find
information at:

http://localhost:9080/WSsamples

When Plants by WebSphere is installed and configured properly, it can be
invoked at:

http://localhost:9080/PlantsByWebSphere

The Plants by WebSphere EAR file consists of the modules show in Figure 13-1.

Figure 13-1 Plants By WebSphere modules

The Plants by WebSphere EAR file has one EJB module, and two Web modules.
The PlantsByWebSphereWEB is the Web module where the servlets, JSPs, and

PlantsByWebSphereEJB

PlantsByWebSphereWEB PlantsGalleryWEB
830 WebSphere Application Server V6.1: System Management and Configuration

http://localhost:9080/WSsamples
http://localhost:9080/WSsamples
http://localhost:9080/WSsamples
http://localhost:9080/WebSphereBank

images are kept. The PlantsGalleryWEB module contains documentation for the
sample, but no executables or Java code.

13.1.1 Plants by WebSphere resources used
To run successfully, Plants by WebSphere requires the following resources to be
configured:

� JAAS authentication alias

– Scope: Cell level

– Name: <cellname>/samples

– User ID: samples

– Password: s1amples

� JDBC provider

– Scope: Server level

– Name: Samples Derby JDBC Provider (XA)

– Implementation class: org.apache.derby.jdbc.EmbeddedXADataSource

� Data source

– Scope: Server level

– JDBC provider: Samples Derby JDBC Provider (XA)

– Name: PLANTSDB

– JNDI name: jdbc/PlantsByWebSphereDataSource

– Database name:
${APP_INSTALL_ROOT}/${CELL}/PlantsByWebSphere.ear/Database/PLANTS
DB

� Mail session:

– Scope: Server level

– Name: PlantsByWebSphere Mail Session

– JNDI name: mail/PlantsByWebSphere

– Type: javax.mail.Session

These are the resources configured when you install the samples during
installation of WebSphere. Because we will change the Plants by WebSphere
application to use an IBM DB2 database instead of the default Derby
(Cloudscape) database, our resources will look a little bit different.
 Chapter 13. Packaging applications 831

13.2 Packaging using the Application Server Toolkit

To illustrate packaging techniques, we will import the source code for the Plants
by WebSphere into the Application Server Toolkit, build it, and go through the
various aspects of packaging an application for deployment. The application can
then be exported as an EAR file for deployment.

The samples must be selected for installation during the WebSphere install. If
you have installed the samples, the source code can be found in
<was_home>\samples\src\PlantsByWebSphere.

13.2.1 Import source code
To work with the Plants by WebSphere sample application in the Application
Server Toolkit, we first need to create an Enterprise Application project and then
import the source code.

1. Select Start → Programs → IBM WebSphere → Application Server
Toolkit V6.1 → Application Server Toolkit.

2. When asked for a default location for a workspace, browse to a suitable
directory and then click OK. Do not check the Use this as the default and do
not ask again check box.

3. When the toolkit has launched, close the Welcome page by clicking the X in
the Welcome tab, as in Figure 13-2.

Figure 13-2 Welcome page

New in V6.1: The Application Server Toolkit shipped with V6.1 is now a
full-blown integrated development environment (IDE). It can be used to build,
test, and deploy J2EE applications on a WebSphere Application Server V6.1
environment (but not on any previous release). It has support for all J2EE
artifacts supported by WebSphere Application Server V6.1, such as servlets,
JSPs, EJBs, XML, Web services, and so on, and includes support for
developing Java 5.0 applications.
832 WebSphere Application Server V6.1: System Management and Configuration

4. Select File → New → Other.

5. Expand J2EE, select Enterprise Application Project, and then click Next.

6. In the Project name field, enter PlantsByWebSphere, and then click Next.

7. On the Select Project Facets page, keep the defaults (EAR, WebSphere
Application Co-existence, and WebSphere Application Extended), and click
Next.

8. On the J2EE Modules to Add to the EAR page, click New Module.

9. On the New J2EE Module page, deselect the Application client module and
Connector module. Keep the PlantsByWebSphereEJB and
PlantsByWebSphereWeb projects as is. Then click Finish.

10.Back on the J2EE Modules to Add to the EAR, click Finish.

11.When the projects have been created, click Yes on the dialog box asking you
to switch to the J2EE perspective.
 Chapter 13. Packaging applications 833

You should now see the J2EE perspective with the Project Explorer view, as
shown in Figure 13-3 on page 834.

Note that we did not create a project for the PlantsGalleryWeb module, because
that only holds documentation and we do not need that for our example.

Figure 13-3 Project Explorer view with PlantsByWebSphere projects created

When the necessary projects are created, it is time to import the source code.

The defaults for Web modules is to keep source code in the src folder and the
compiled Java classes in the build folder. For EJB projects, the source code is
kept in the ejbModule folder and the compiled classes in the build folder.
834 WebSphere Application Server V6.1: System Management and Configuration

We will start with the EJB source code first:

1. Select File → Import.

2. Select File system from the list, and then click Next.

3. For the From directory field, click Browse and select the
<was_home>\samples\src\PlantsByWebSphere\PlantsByWebSphereEJB\ejb
Module directory, and then click OK.

4. Select the ejbModule in the left pane.

5. For the Into folder field, click Browse and select the
PlantsByWebSphereEJB/ejbModule folder, and click OK.

6. Keep the other options as is (Create selected folders only is selected only)
and then click Finish. See Figure 13-4.

Figure 13-4 Importing EJB module source code
 Chapter 13. Packaging applications 835

7. When the question about overwriting existing resources appear, click Yes To
All.

8. Repeat the process to import the Web module source code from
<was_home>\samples\src\PlantsByWebSphere\PlantsByWebSphereWEB\Ja
vaSource into the PlantsByWebSphereWeb/src folder, and the Web content
from
<was_home>\samples\src\PlantsByWebSphere\PlantsByWebSphereWEB\W
ebCointent into the PlantsByWebSphereWeb/WebContent folder

If you click the Problems tab, you see that the workspace has a lot of problems.
This is because the Web module depends on classes in the EJB module, but
because we imported the source code, this meta data was not included, so we
now need to set up the J2EE dependencies for the Web module to find its
required classes.

1. In the Project Explorer, right-click the PlantsByWebSphereWeb project and
select Properties.

2. Select the J2EE Module Dependencies section.

3. Select the PlantsByWebSphereEJB.jar option in the dialog. When selected,
the Manifest Class-Path is updated so that the Web project references the
EJB project. See Figure 13-5. Click OK when done.

Note: When you import source code or an EAR file, the workspace
rebuilds the project. The build process runs as a separate background
thread and can take a minute or two, depending on the application. In the
lower right corner of the Application Server Toolkit window, a progress
indicator tells you what is happening. When rebuild is complete, any error
messages will appear in the Problems view.
836 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-5 Configuring J2EE Module Dependencies

When the class path has been set up correctly and the project rebuilt, all errors in
the Problems view should be gone. Still, there are a lot of warning messages.

None of these warnings are critical, though, so you do not need to bother about
them. However, if you do want to get rid of them, you can select Window →
Preferences → Java → Compiler → Errors/Warnings. Then expand the
Unnecessary code section and change the settings for Local variable never
read and Unused local or private members settings to Ignore.
 Chapter 13. Packaging applications 837

The Application Server Toolkit will still warn you about a serialVersionUID field
missing from several classes. This is because the toolkit now warns if a class is
Serializable (implements java.io.Serializable interface) but does not have a line
like:

private static final long serialVersionUID = 12345678L;

To fix this warning, you would add the above line to all serializable classes where
it is missing. We will not do that here because the warning is not a severe one, so
instead expand the Potential programming problems section and change the
setting for Serializable class without serialVersionUID to Ignore. After a full
rebuild of the workspace, there should be no warnings in the Problems view.

13.2.2 Working with deployment descriptors
Information describing a J2EE application and how to deploy it into a J2EE
container is stored in XML files called deployment descriptors. An EAR file
normally contains multiple deployment descriptors, depending on the modules it
contains. Figure 13-6 shows a schematic overview of a J2EE EAR file. In this
figure, the various deployment descriptors are designated with DD after their
name.

Note: The serialVersionUID is used for “version control” of serializable
classes. Whenever you make a change to the class that is incompatible with
the previous version, you should also change this number. Best practices
dictates you should run the serialver utility (found in the JDK bin directory) to
generate the number, but it is perfectly fine just to pick a number out of thin air.
If the serialVersionUID line is not present, there is a small performance hit,
because the JVM then needs to generate a number on the fly when the class
is used.

Tip: When using the Application Server Toolkit, keep in mind the following:

� To perform a complete rebuild of your project(s), select Project → Clean
and then select either to clean current or all projects. This will remove all
build problems from the Problems view and perform a complete re-build of
the selected projects. This sometimes removes errors and warnings in the
Problems view.

� As you update and save modules in the toolkit, the contents of the modules
are automatically validated and problems are listed in the Tasks view. You
can also manually invoke validation of modules by selecting any module
and choosing Run Validation from the context menu. To verify the settings
for validation, select Window → Preferences and click Validation.
838 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-6 J2EE EAR file structure

The deployment descriptor of the EAR file itself is stored in the META-INF
directory in the root of the EAR and is called application.xml. It contains
information about the modules that make up the application.

The deployment descriptors for each module are stored in the META-INF
directory of the module and are called web.xml (for Web modules), ejb-jar.xml
(for EJB modules), ra.xml (for resource adapter modules), and
application-client.xml (for application client modules). These files describe the
contents of a module and allow the J2EE container to configure things like
servlet mappings, JNDI names, and so forth.

Classpath information specifying which other modules and utility JARs are
needed for a particular module to run is stored in the manifest.mf file also in the
META-INF directory of the modules.

In addition to the standard J2EE deployment descriptors, EAR files produced by
the Application Server Toolkit can also include additional WebSphere-specific
information used when deploying applications to WebSphere environments. This
supplemental information is stored in files called ibm-xxx-xxx-xxx.xmi, also in the
META-INF directory of the respective modules. Examples of information in the

Web
DD

EJB
Module
JAR file

EJB
Module
JAR file

Web
Module

WAR file

Web
Module

WAR file

Client
Module
JAR file

Client
Module
JAR file

J2EE
Application

EAR file
Installed

RARs
Installed

RARs

IBM Bind

Schema
Map

Schema
Attributes

Table
Creation

was.policy
(Java2 Sec)

IBM
Bind/Ext

HTML,
GIFs,
etc.

HTML,
GIFs,
etc.

Servlet
JSP

Servlet
JSP

Application
DD

Web
Services

DD
Client

Classes
Client

Classes

EJBsEJBs

IBM
Bind/Ext

IBM
Bind/Ext

EJB
DD

WS IBM
Bind/Ext

Web
Services

DD

Client
DD

WS Client
IBM Bind/Ext

WSDL <-> Java
Mapping Files

WSDL <-> Java
Mapping Files

WS Client IBM
Bind/Ext

WS IBM
Bind/Ext

WS Client IBM
Bind/Ext

WSDL <-> Java
Mapping Files
 Chapter 13. Packaging applications 839

IBM-specific files are IBM extensions like servlet reloading and EJB access
intents.

WebSphere Application Server V6.0 and V6.1 can also store deployment-related
information (such as data sources, class loader settings, and so on) as part of an
Enhanced EAR file. This information is stored in an ibmconfig subdirectory of the
EAR file’s META-INF directory.

The Application Server Toolkit has easy-to-use editors for working with all
deployment descriptors. The information that goes into the different files are
shown on one page in the GUI, eliminating the need to be concerned about what
information is put into what file. However, if you are interested, you can click the
Source tab of the deployment descriptor editor to see the text version of what is
stored in that descriptor. For example, if you open the EJB deployment
descriptor, you will see settings that are stored across multiple deployment
descriptors for the EJB module, including:

� The EJB deployment descriptor, ejb-jar.xml
� The extensions deployment descriptor, ibm-ejb-jar-ext.xmi
� The bindings file, ibm-ejb-jar-bnd.xmi files
� The access intent settings, ibm-ejb-access-bean.xmi

To work with a deployment descriptor, do the following:

1. Open the J2EE perspective.

2. In the J2EE Project Explorer view, expand the project category (Enterprise
Applications, EJB Projects, Dynamic Web Projects, and so on), and then
expand the module you want to work with.

3. Double-click the deployment descriptor to open the editor for it. The
deployment descriptor is module name with a version number in front. The
version number refers to the J2EE specification level for the module. See
Figure 13-7.

Figure 13-7 EJB deployment descriptor
840 WebSphere Application Server V6.1: System Management and Configuration

4. Figure 13-8 on page 841 shows the deployment descriptor for the
PlantsByWebSphere EJB module open with the deployment descriptor editor.

Figure 13-8 EJB deployment descriptor

The editor shows you information stored in all the relevant deployment descriptor
files on the appropriate tabs. The descriptor files are kept in the META-INF
directory of the module you are editing.

When you have made changes to a deployment descriptor, save it by pressing
Ctrl+S and then close it.
 Chapter 13. Packaging applications 841

13.3 Setting application bindings
At packaging time, you create references to resources. For an application to run,
you need to bind these references to the real resources, such as JDBC data
sources, created from the administrative console. This needs to be done for EJB
references and resource references. You also need to define the enterprise
bean’s JNDI names, and security roles.

Bindings can be defined at development or deployment time. Most likely,
developers will deliver a preconfigured EAR file that will then be modified at
deployment time by the deployment team to suit the target environment.

All binding definitions are stored in the ibm-xxx-bnd.xmi files, where xxx can be
ejb-jar, Web, application, or application-client.

In the next steps, you define the following bindings using the Application Server
Toolkit:

� EJB JNDI names
� EJB references
� Data source for entity beans

All sections below assume that you have started the Application Server Toolkit
and imported the Plants by WebSphere source, as described in “Import source
code” on page 832.

13.3.1 Defining EJB JNDI names
For each session and entity bean, you must specify a JNDI name. This name is
used to bind the EJB home object to an entry in the global JNDI name space.
The bind happens automatically when the application server starts.

You can bind your EJBs anywhere you want in the JNDI name space, but best
practice dictates they should be bound under the ejb subcontext, such as
ejb/Order for the Order EJB. However, the Plants by WebSphere binds its EJBs
to the plantsby subcontext in the JNDI root, so this is what we will show you here.

For clarity, however, when developing your own application, we recommend that
you place all enterprise bean JNDI names for an application in a separate
subcontext, such as ejb/PlantsBy. You can find the JNDI names for the Plants by
WebSphere session and entity EJBs in Table 13-1.
842 WebSphere Application Server V6.1: System Management and Configuration

Table 13-1 Plants by WebSphere enterprise bean JNDI names

Use this table and the instructions below to define a JNDI name for each Plants
by WebSphere enterprise bean:

1. In the Project Explorer view, expand the EJB Projects section.

2. Expand the PlantsByWebSphereEJB project and then double-click the
Deployment Descriptor (2.1 PlantsByWebSphere EJB Module).

EJB Name JNDI Name

BackOrder entity bean plantsby/BackOrderHome

Customer entity bean plantsby/CustomerHome

IdGenerator entity bean plantsby/IdGeneratorHome

Inventory entity bean plantsby/InventoryHome

Order entity bean plantsby/OrderHome

OrderItem entity bean plantsby/OrderItemHome

Supplier entity bean plantsby/SupplierHome

Back Order Stock Session EJB plantsby/BackOrderStockHome

Catalog Session EJB plantsby/CatalogHome

Login Session EJB plantsby/LoginHome

Mailer Session EJB plantsby/MailerHome

Report Generator Session EJB plantsby/ReportGeneratorHome

Reset Database Session EJB plantsby/ResetDBHome

Shopping Cart Session EJB plantsby/ShoppingCartHome

Suppliers plantsby/SuppliersHome
 Chapter 13. Packaging applications 843

3. Click the Bean tab, and then click the BackOrder EJB. The EJB deployment
descriptor is shown in Figure 13-9.

4. Look for the WebSphere Bindings section in the editor. In the JNDI name
field, enter plantsby/BackOrderHome.

Figure 13-9 Defining EJB JNDI names

5. Repeat these steps for each of the session and entity enterprise beans in the
EJB module.

6. Save the deployment descriptor.

13.3.2 Binding EJB and resource references
An EJB client can define EJB references, logical names, or nicknames, used by
the client to find the EJB homes. When using references, the client can hard
code the name of the reference. Then, during deployment, the reference is
mapped to the real name in the JNDI namespace to which the EJB is bound. A
reference to an EJB specifies either the local or remote home of the EJB.

For remote home interfaces, using EJB references is an option, but also a best
practice. For local home interfaces, however, it is a must, because using an EJB
reference is the only way an EJB client can look up a local home interface.
844 WebSphere Application Server V6.1: System Management and Configuration

J2EE applications also use other kinds of references, such as resource
references to look up data sources.

Table 13-2 on page 845 lists some of the EJB references used by the Plants by
WebSphere sample.

Table 13-2 EJB and resource references: JNDI names list

For example, to log on a user, the Login Session EJB uses the Customer EJB to
find the user in a database. The Login Session EJB looks up the ejb/Customer
entry in the JNDI name space. This is then mapped to plantsby/CustomerHome,
which is the JNDI name the Customer EJB is bound to.

So the EJB reference is an alias used to find the target EJB. When using EJB
references, the name of the reference must be prefixed with java:comp/env. So
the Login Session EJB would do a JNDI lookup with the name
java:comp/env/ejb/Customer to get the EJB reference for Customer.

Follow these steps to bind an EJB to a JNDI name:

1. In the EJB Deployment Descriptor for the PlantsByWebSphereEJB module
(see Figure 13-9 on page 844), click the References tab.

EJB name Reference name JNDI Name

BackOrder ejb/Inventory plantsby/InventoryHome

BackOrder ejb/IdGenerator plantsby/IdGeneratorHome

Inventory ejb/BackOrderStock plantsby/BackOrderStockHome

Order ejb/OrderItem plantsby/OrderItemHome

Order ejb/IdGenerator plantsby/IdGeneratorHome

Login Session EJB ejb/Customer plantsby/CustomerHome
 Chapter 13. Packaging applications 845

2. Click the plus sign next to the Login Session EJB and select the
ejb/Customer reference, as shown in Figure 13-10.

Figure 13-10 Setting EJB References bindings

3. In the WebSphere bindings section, specify plantsby/CustomerHome.

4. Save the deployment descriptor.

13.3.3 Defining data sources for entity beans
The entity beans in the Plants by WebSphere application are container-managed
(CMP) EJBs. The EJB container handles the persistence of the EJB attributes in
the underlying persistent store. You must specify which data store to use. This is
done by binding an EJB module or an individual EJB to a data source. If you bind
the EJB module to a data source, all EJBs in that module use the same data
source for persistence. If you specify the data source at the EJB level, then this
data source is used instead.

Note: EJB reference bindings can be defined or overridden at deployment
time in the administrative console for all modules except for application clients,
for which you must use the Application Server Toolkit.
846 WebSphere Application Server V6.1: System Management and Configuration

For the Plants by WebSphere application, the data source is bound at the EJB
module level. The data source configured for the EJB must match the data
source configured in the WebSphere environment. The JNDI name for this data
source is eis/jdbc/PlantsByWebSphereDataSource_CMP. When a data source is
defined in WebSphere, it can be marked as for use by container-manager
persistence. If this option is selected the data source is then also mapped into
the JNDI name space with a name like this.

To bind the Plants by WebSphere EJB module to this data source, follow these
steps:

1. In the EJB Deployment Descriptor for the PlantsByWebSphereEJB module
(see Figure 13-9 on page 844), click the Overview tab.

2. In the Overview tab, scroll down and find the WebSphere bindings section, as
in Figure 13-11.

Figure 13-11 Specifying the default CMP data source for the EJB module
 Chapter 13. Packaging applications 847

Check the following fields:

– Backend ID

In EJB 2.x, mapping and schema files make up a back end for EJB 2.x
projects. The Plants by WebSphere sample ships with a Cloudscape back
end defined. Leave this for now, though in “Creating a new database
mapping and schema” on page 848, we will create a new back end for
DB2 and change this binding to point it.

– JNDI name

Enter eis/jdbc/PlantsByWebSphereDataSource_CMP in the JNDI name
field. This is the value the application uses to access the database. Note
that this is the same, regardless of which back-end ID is used.

– Container authorization type

Select Per_Connection_Factory for the Container authorization type.

3. Save the deployment descriptor.

Creating a new database mapping and schema
The Plants by WebSphere sample is configured to run against a Cloudscape
database. However, for the purpose of showing how to create a new database
back end and deployed code, we will configure it so it can also run against a DB2
database.

New in V6.1: The embedded Cloudscape has a Cloudscape v10.1.x code
base, referred to as Derby. Derby is a product of the Apache Software
Foundation (ASF) open source relational database project. The new
Cloudscape includes Derby without any modification to the underlying
source code. Learn more about Derby code at the Apache Derby Web site:

http://db.apache.org/derby/

Tip: An EJB JAR can contain database mappings and EJB deployment code
for multiple databases. Because we imported the source code for the Plants
by WebSphere sample, there is currently no deployed code, but we will
generate it for DB2 UDB. You can set which back-end ID will be used at run
time in the WebSphere bindings section. This choice can also be overridden at
deployment time.
848 WebSphere Application Server V6.1: System Management and Configuration

http://db.apache.org/derby/

Creating the database mapping
First, you need to create a database mapping using the EJB project. To do this,
perform the following steps:

1. Expand the EJB Projects section in the Project Navigator view and then
expand the PlantsByWebSphereEJB project.

2. Right-click the deployment descriptor and select EJB to RDB Mapping →
Generate Map.

3. Select Create a new backend folder and click Next.

4. Select Top-down and click Next.

5. On the Top-down mapping options page, select DB2 UDB V8.2, or the
corresponding DB2 product and version you are using as the target database.
Enter database name PLANTS and leave NULLID as the schema name. See
Figure 13-12 on page 849.

Figure 13-12 Generating a DB2 mapping
 Chapter 13. Packaging applications 849

6. Click Finish.

The Application Server Toolkit database mapping editor (Map.mapxmi editor)
opens, allowing you to make adjustments to the mapping between the fields
of the entity EJBs and the database columns. We do not need to do that, so
close the editor.

A Table.ddl file containing the script to set up the DB2 tables is created in the
PlantsByWebSphereEJB\ejbModule\META-INF\backends\DB2UDBNT_V82_
1 directory of the Application Server Toolkit workspace. You will need this
script when creating the DB2 PLANTS database before deploying Plants by
WebSphere.

The sample application stores images of the products you can buy in the
INVENTORY table in the database. The field of the EJB that holds the image
data is declared as a byte array (byte[]) and the Application Server Toolkit
maps this to a DB2 type of VARCHAR (1000) FOR BIT DATA (as you can see
if you open the database mapping editor on Map.mapxmi). We did not get this
data type to work, so we changed it to a 100 KB large BLOB instead. To do
this, you need to open the Database Table Editor. If you are familiar with the
Application Server Toolkit or Rational Application Developer, you should pay
attention, because in the Application Server Toolkit V6.1, it is not accessed in
the same way.

7. Double-click the PLANTS.dbm file in the
PlantsByWebSphereEJB\ejbModule\META-INF\backends\DB2UDBNT_V82_
1 folder.

8. Click the plus sign that appears in front of PLANTS.dbm and expand the tree
all the way down to the INVENTORY table and then expand the INVENTORY
table as well.

9. Select the IMGBYTES column.

10.In the Properties view, click the Type tab, as shown Figure 13-13.
850 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-13 Table Editor

11.For data type, select BLOB. Then enter 100000 in the length field. Press
Ctrl-S to save the change to the PLANTS.dbm file.

12.Because the mapping now has changed, we need to update the Table.ddl file.
Right-click the Deployment Descriptor (2.1 PlantsByWebSphere EJB
Module) project and select EJB to RDB Mapping → Generate Schema
DDL.
 Chapter 13. Packaging applications 851

13.The Table.ddl file in the
PlantsByWebSphereEJB\ejbModule\META-INF\backends\DB2UDBNT_V82_
1 folder is now updated. Example 13-1 shows part of the file.

Example 13-1 Plants by WebSphere Table.ddl

CREATE TABLE CUSTOMER (
CUSTOMERID VARCHAR(250) NOT NULL,
PASSWORD1 VARCHAR(250),
FIRSTNAME VARCHAR(250),
LASTNAME VARCHAR(250),
ADDR1 VARCHAR(250),
ADDR2 VARCHAR(250),
ADDRCITY VARCHAR(250),
ADDRSTATE VARCHAR(250),
ADDRZIP VARCHAR(250),
PHONE VARCHAR(250)

);
CREATE TABLE INVENTORY (

INVENTORYID VARCHAR(250) NOT NULL,
NAME VARCHAR(250),
HEADING VARCHAR(250),
DESCRIPTION VARCHAR(250),
PKGINFO VARCHAR(250),
IMAGE VARCHAR(250),
IMGBYTES BLOB(100000),
PRICE REAL NOT NULL,
COST REAL NOT NULL,
CATEGORY INTEGER NOT NULL,
QUANTITY INTEGER NOT NULL,
NOTES VARCHAR(250),
ISPUBLIC INTEGER NOT NULL,
MINTHRESHOLD INTEGER NOT NULL,
MAXTHRESHOLD INTEGER NOT NULL

);
...
...
ALTER TABLE CUSTOMER ADD CONSTRAINT PK_CUSTOMER PRIMARY KEY
(CUSTOMERID);
ALTER TABLE INVENTORY ADD CONSTRAINT PK_INVENTORY PRIMARY KEY
(INVENTORYID);

14.We can now generate the EJB deployment code necessary to support our
DB2 database. Right-click the deployment descriptor for the
PlantsByWebSphere EJB module and select Deploy to generate the EJB
deployment code.
852 WebSphere Application Server V6.1: System Management and Configuration

If you get any errors in the Problems view, you can try a Clean operation, as
this sometimes eliminates them.

Change the back-end ID
Because we have created a new database back-end map, we can set the default
back-end map for the EJB to the newly created DB2 map. To map to the new
DB2 map, do the following:

1. Open the deployment descriptor for the EJB module, scroll down to the
bottom of the Overview tab and select DB2UDBNT_V82_1 as the Current
Backend ID, as shown in Figure 13-14.

Figure 13-14 Setting default backend id for EAR file

2. Press Ctrl-S to save the deployment descriptor.

13.3.4 Setting the context root for Web modules

The context root is the part of the URL that comes after the protocol and address
but before the path to servlets, JSPs, and so on. In a URL such as
http://www.plantsbywebsphere.com/PlantsByWebSphere/servlet/ShoppingServ
let, the context root is PlantsByWebSphere. It is used to separate Web modules
from each other so that the Web container can dispatch Web requests to the right
Web module.

When we created the PlantsByWebSphereWeb module, the Application Server
Toolkit assigned it a context root with the same path, PlantsByWebSphereWeb.
Because the sample application shipped and installed with WebSphere (if you
install the samples) uses a context root of PlantsByWebSphere, we will change
the context root also for our module to match.

1. Expand the Dynamic Web Projects section. Right-click the
PlantsByWebSphereWeb module and select Properties.

2. Select the J2EE tab.
 Chapter 13. Packaging applications 853

3. Change the context root to PlantsByWebSphere, as shown in Figure 13-15.

Figure 13-15 Setting context root for Web module

Click OK.

13.4 IBM EJB extensions: EJB caching options
This section discusses the caching options for entity and stateful session beans.

13.4.1 EJB container caching option for entity beans
The Enterprise JavaBeans specification defines three EJB caching options:
options A, B, or C. Those options define how the EJB container handles entity
bean instances between transactions. EJB caching options are set at the bean
level, and are part of the IBM extensions deployment descriptor.

Caching option A
With caching option A, you assume that the entity bean has exclusive access to
the underlying persistent store. In other words, between transactions, no one will
modify the data. This includes a batch program updating the data, a Java
application updating the data, or even the same entity bean running in a different
container. This implies option A cannot be used in a clustered environment
854 WebSphere Application Server V6.1: System Management and Configuration

(WLM). Note that it is your responsibility to ensure no other application will
modify the data, as the EJB container has no way to control write access to the
underlying database from other servers.

When caching option A is used, the entity bean instance is kept in a memory
cache across transactions. At transaction commit, the entity bean attributes are
synchronized with the underlying persistent store, and the bean instance remains
cached in memory.

If you were tracing the calls made by the container, you would see something
similar to Example 13-2. The first time the entity bean is used, its run time
context is set (step 1), a bean is taken from the entity beans instance pool (step
2), the bean instance attributes are synchronized with the underlying data store
(step 3), the method setBalance is invoked on the bean (step 4), and, finally, the
bean attributes are saved back to the database (step 5). The bean is not returned
to the pool. On subsequent calls, the setBalance method is invoked directly on
the cached bean instance, and the bean attributes are synchronized with the
underlying persistent data store.

Example 13-2 Entity beans call trace with option A caching

Transaction 1 (Begin)
Step 1: 1c9585f1 BranchAccount E called setEntityContext() method
Step 2: 1c9585f1 BranchAccount E called ejbActivate() method
Step 3: 1c9585f1 BranchAccount E called ejbLoad() method
Step 4: 1c9585f1 BranchAccount E called setBalance() method
Step 5: 1c9585f1 BranchAccount E called ejbStore() method
Transaction 1 (Commit)

Transaction 2 (Begin)
Step 1: 284485f1 BranchAccount E called setBalance() method
Step 2: 284485f1 BranchAccount E called ejbStore() method
Transaction 2 (Commit)

Using caching option A can provide some performance enhancements at the
expense of higher memory usage. You should only use it if you do not intend to
use WebSphere clustering capabilities and you mostly access data in read
mode.

Caching option B
With caching option B, you assume that you have shared access to the
underlying database. This means the data could be changed by another
application between transactions. When option B is used, the bean instance
attributes are always synchronized with the underlying back-end data store at the
beginning of every transaction. Similar to Option A, the bean is kept in the cache
 Chapter 13. Packaging applications 855

between transactions. Therefore, if you were tracing the different calls made in
Option B, you would obtain the trace shown in Example 13-3.

Example 13-3 Entity beans call trace with option B caching

Transaction 1 (Begin)
Step 1: 1c9585f1 BranchAccount E called setEntityContext() method
Step 2: 1c9585f1 BranchAccount E called ejbActivate() method
Step 3: 1c9585f1 BranchAccount E called ejbLoad() method
Step 4: 1c9585f1 BranchAccount E called setBalance() method
Step 5: 1c9585f1 BranchAccount E called ejbStore() method
Transaction 1 (Commit)

Transaction 2 (Begin)
Step 1: 284485f1 BranchAccount E called ejbLoad() method
Step 2: 284485f1 BranchAccount E called setBalance() method
Step 3: 284485f1 BranchAccount E called ejbStore() method
Transaction 2(Commit)

Caching option B can be safely used in a clustered environment, or when you are
not sure if you have exclusive access to data. You are assured that you always
work with the last committed data. Option B memory usage is the same as for
option A. The performance of both options can slightly differ depending on the
nature of your application.

Caching option C
Similar to option B, caching option C assumes shared access to the database.
Unlike option B or A, the bean instance is returned to the entity beans pool at the
end of the transaction. A new bean instance is used at the beginning of every
transaction. Each transaction results in the sequence of calls shown in
Example 13-4.

Example 13-4 Entity beans call trace with option C caching

Transaction (Begin)
Step 1: 1c9585f1 BranchAccount E called setEntityContext() method
Step 2: 1c9585f1 BranchAccount E called ejbActivate() method
Step 3: 1c9585f1 BranchAccount E called ejbLoad() method
Step 4: 1c9585f1 BranchAccount E called setBalance() method
Step 5: 1c9585f1 BranchAccount E called ejbStore() method
Step 6: 1c9585f1 BranchAccount E called ejbPassivate() method
Step 7: 1c9585f1 BranchAccount E called unsetEntityContext() method
Transaction (Commit)

Caching option C has the best memory usage at the expense of a larger number
of methods calls. This is the default behavior.
856 WebSphere Application Server V6.1: System Management and Configuration

How to set the EJB caching option
You must combine the Activate at and Load at options to set the EJB caching
option to A, B, or C. Use Table 13-3 to choose the right combination.

Table 13-3 Setting entity EJB caching properties

To set the EJB caching option, do the following:

1. Open the EJB deployment descriptor.

2. Switch to the Bean tab.

3. Select the entity bean in the window to the left, then scroll down the options at
right until you see the Bean Cache settings under the WebSphere extensions
section, as in Figure 13-16.

Figure 13-16 Setting the activate and load settings for entity beans

Option Activate at must be set to Load at must be set to

Option A Once Activation

Option B Once Transaction

Option C (default) Transaction Transaction
 Chapter 13. Packaging applications 857

4. Select the Activate at and Load at options according to Table 13-3 on
page 857.

5. Close and save the deployment descriptor.

The settings are saved in the ibm-ejb-jar-ext.xmi file. They correspond to the
following line:

<beanCache xmi:id="BeanCache_1" activateAt="ONCE" loadAt="TRANSACTION"/>

There is one line for each entity bean for which you have set this option.

In addition to the two standard options for EJB activation and data loading,
WebSphere also supports some additional options, such as activate at activity
session and to load data on a daily, weekly, or other interval basis. For more
information about these WebSphere extensions, refer to the WebSphere
IntoCenter (search for bean cache settings).

13.4.2 EJB container caching option for stateful session beans
Similarly to entity beans, you can specify which caching strategy to use for
stateful session beans. This caching option specifies the point at which an
enterprise bean is activated and placed in the cache. Removal from the cache
and passivation are also governed by this setting. Valid values are:

� Once (default)

Choosing Once indicates that the bean is activated when it is first accessed in
the server process. It is passivated and removed from the cache at the
discretion of the container, for example, when the cache becomes full.

� Transaction

Choosing Transaction indicates that the bean is activated at the start of a
transaction. It is passivated and removed from the cache at the end of the
transaction.

You can set this caching option by opening the EJB deployment descriptor for
the EJB module. The Activate at setting is found on the Bean tab (Figure 13-17).
Select the bean and scroll down to the Bean Cache category.

Note: Although the Application Server Toolkit and Rational Application
Developer allow you to set the Activate at and Load at options also for
stateless session EJBs, they have no effect.
858 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-17 Activate settings for stateful session beans

13.4.3 Stateful EJB timeout option
Additionally, you can specify a timeout value for stateful session beans. A bean
can time out in the METHOD_READY or in the PASSIVATED state. If you try to
access a bean that has timed out, you see an exception similar to that in
Example 13-5.

Example 13-5 Stateful EJB timed out exception

com.ibm.ejs.container.SessionBeanTimeoutException: Stateful bean
StatefulBeanO(BeanId(Webbank#webbankEJBs.jar#Transfer, ebf64d846a), state =
METHOD_READY) timed out.

Session beans that have timed out can be removed by the container, for
example, if it needs to free memory. However, a well-written application should
not rely on beans to time out to free memory. Instead, it is important that the

Note: The Load at option does not have any effect on Stateful Session EJBs.
 Chapter 13. Packaging applications 859

developer explicitly calls remove() on a bean when this stateful bean is not
needed anymore.

The default timeout is 600 seconds. You can set the timeout integer value as a
parameter of a stateful session bean by opening the EJB deployment descriptor
and selecting the Bean tab, as in Figure 13-17 on page 859. By specifying a
value of 0, you set the bean to never expire.

Setting this timeout inserts the following property in the ejbExtensions tag of the
IBM bindings file:

<ejbExtensions xmi:type="ejbext:SessionExtension"
xmi:id="Session_1_Ext" timeout="120">

13.5 IBM EJB extensions: EJB access intents
Access intents are used to optimize the access to relational data. Access intents
are only applicable to EJB 2.x beans. For EJB 1.1 beans, you still use the old
method of setting the transaction isolation level at the method level, as well as
mark methods as read-only. In this section, we only cover access intents for EJB
2.x beans.

Access intent policies are specifically designed to supplant the use of isolation
level and read-only, method-level modifiers found in the extended deployment
descriptor for EJB Version 1.1 enterprise beans. You cannot specify isolation
level and read-only modifiers for EJB Version 2.x enterprise beans. The
WebSphere persistence manager uses access intent hints to make decisions
about isolation level, cursor management, and more.

13.5.1 Transaction isolation levels overview
Transaction isolation levels provide a trade-off between accuracy of reads versus
concurrent readers. The levels can best be described by the types of read
anomalies they permit and forbid. Consider the read anomalies that can occur
with two concurrent transactions, T1 and T2:

� Dirty read

T1 reads data that has been modified by T2, before T2 commits.

Note: If a bean times out in the METHOD_READY state and is consequently
removed by the container, the ejbRemove() method is called on the bean
instance. If a bean times out in the passivated state, ejbRemove() is not
called, according to the EJB specification.
860 WebSphere Application Server V6.1: System Management and Configuration

� Non-repeatable read

Non-repeatable read is caused by fine-grained locks.

– T1 reads a record and drops its lock.

– T2 updates.

– T1 re-reads different data.

� Phantom read

This is a non-repeatable read involving a range of data and inserts or deletes
on the range.

– T1 reads a set of records that match some criterion.

– T2 inserts a record that matches the criterion.

– T1 continues processing the set, which now includes records that were not
part of the original matching set.

There are four possible settings for the transaction isolation level:

� Repeatable read (TRANSACTION_REPEATABLE_READ)

This setting permits phantom reads and forbids both dirty and unrepeatable
reads.

� Read committed (TRANSACTION_READ_COMMITTED)

This setting permits non-repeatable and phantom reads and forbids dirty
reads.

� Read uncommitted (TRANSACTION_READ_UNCOMMITTED)

This setting permits all the read anomalies, including dirty reads,
non-repeatable reads, and phantom reads.

� Serializable (TRANSACTION_SERIALIZABLE)

This setting forbids all the read anomalies.

The container applies the isolation level as follows:

� For entity beans with container managed persistence (CMP), the container
generates code that ensures the desired level of isolation for each database
access.

� For session beans and bean-managed persistence(BMP) entity beans, the
container sets the isolation level at the start of each transaction, for each
database connection.

The transaction isolation level is tied to a database connection. The connection
uses the isolation level specified in the first bean that uses the connection. The
 Chapter 13. Packaging applications 861

container throws an IsolationLevelChangeException whenever the connection is
used by another bean method that has a different isolation level.

Not all databases support all JDBC isolation levels. Moreover, JDBC definitions
for isolation levels might not match the database definition of isolation levels. As
an example, DB2 definitions for isolation levels follow the naming conventions
used in Transaction Processing: Concepts and Techniques by Gray. Table 13-4
shows a mapping between EJB and DB2 isolation levels.

Table 13-4 Mapping JDBC isolation levels to DB2 isolation levels

To learn more, refer to the documentation provided by your database product.

13.5.2 Concurrency control
Concurrency control is the management of contention for data resources. A
concurrency control scheme is considered pessimistic when it locks a given
resource early in the data-access transaction and does not release it until the
transaction is closed. A concurrency control scheme is considered optimistic
when locks are acquired and released over a very short period of time at the end
of a transaction.

The objective of optimistic concurrency is to minimize the time over which given
resource is unavailable for use by other transactions. This is especially important
with long-running transactions, which under a pessimistic scheme would lock up
a resource for unacceptably long periods of time.

WebSphere uses an overqualified update scheme to test whether the underlying
data source has been updated by another transaction since the beginning of the
current transaction. With this scheme, the columns marked for update and their
original values are added explicitly through a WHERE clause in the UPDATE
statement so that the statement fails if the underlying column values have been
changed. As a result, this scheme can provide column-level concurrency control;
pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a
transaction. If the underlying columns have not been updated since the

JDBC isolation level DB2 isolation level

TRANSACTION_SERIALIZABLE Repeatable Read

TRANSACTION_REPEATABLE_READ Read Stability

TRANSACTION_READ_COMMITTED Cursor Stability

TRANSACTION_READ_UNCOMMITTED Uncommitted Read
862 WebSphere Application Server V6.1: System Management and Configuration

beginning of the transaction, pending updates to container-managed persistence
fields are committed and the locks are released. If locks cannot be acquired or if
some other transaction has updated the columns since the beginning of the
current transaction, the transaction is rolled back and all work performed within
the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction
isolation levels. Enterprise beans that participate in the same transaction and
require different concurrency control schemes cannot operate on the same
underlying data connection unless the connection is able to change its isolation
level on an individual-query basis. Some, but not all, JDBC drivers can do this.
For those JDBC drivers that cannot, mixing concurrency controls requires the
use of multiple connections within a transaction.

Whether or not to use optimistic concurrency depends on the type of transaction.
Transactions with a high penalty for failure might be better managed with a
pessimistic scheme. For low-penalty transactions, it is often worth the risk of
failure to gain efficiency through the use of an optimistic scheme.

13.5.3 Using EJB 2.x access intents
Access intents policies let you define, in a very flexible and powerful way, how
relational data will be accessed if you use BMP or CMP entity beans.

Important: Although you can set access intents on a BMP, you are
responsible for reading the access intent metadata from your code and
applying the corresponding change to the isolation levels yourself by calling
connection.setTransactionLevel(). The EJB container has no control over your
persistence strategy, and therefore cannot perform the same tasks as it can for
CMPs. Access intent data is valid in the WebSphere naming service for the
time of the transaction. See the Information Center for more coding examples.
 Chapter 13. Packaging applications 863

Access intents policies
Seven access intent policies are available. They cover a wide variety of ways to
access data. They are summarized in Table 13-5 on page 864.

Table 13-5 Access intent policies

Access Intent Policy Concurrency
control

Used for
update

Transaction
isolation level

Notes

wsPessimisticRead Pessimistic No For Oracle,
read
committed.
Otherwise,
repeatable
read.

Read locks are held for the
duration of the transaction.
Updates are not permitted;
the generated SELECT
query does not include
FOR UPDATE.

wsPessimisticUpdate Pessimistic Yes For Oracle,
read
committed.
Otherwise,
repeatable
read.

The generated SELECT
FOR UPDATE query grabs
locks at the beginning of
the transaction.

wsPessimisticUpdate-
Exclusive

Pessimistic Yes Serializable. SELECT FOR UPDATE is
generated; locks are held
for the duration of the
transaction.

wsPessimisticUpdate-
NoCollision

Pessimistic Yes Read
committed.

The generated SELECT
query does not include
FOR UPDATE. No locks
are held, but updates
are permitted.

wsPessimisticUpdate-
WeakestLockAtLoad
(DEFAULT VALUE)

Pessimistic Yes For Oracle,
read
committed,
Otherwise,
repeatable
read.

For Oracle, this is the same
as wsPessimisticUpdate.
Otherwise, the generated
SELECT query does not
include FOR UPDATE;
locks are escalated by the
persistent store at storage
time if updates were made.

wsOptimisticRead Optimistic No Read
committed.
864 WebSphere Application Server V6.1: System Management and Configuration

There are two critical questions to ask yourself when using access intents:

� At which point in my transaction do I access data? This is critical in selecting
on which method you must set the access intent.

� How do I want to access data? This is critical to selecting the best access
intent to apply on the method.

Choosing where to apply the access intent
This is critical because it is at this point that the WebSphere persistence
manager decides which access intent to use. To illustrate this point, we will use
the following example.

Assume a session EJB called Consultation obtains the CustomerAccount
balance using getBranchAccountBalance, as in Example 13-6.

Example 13-6 Obtaining CustomerAccount balance using getBranchAccountBalance

int getCustomerAccountBalance () {
...
custAcct = (CustomerAccountLocal) custAcctHome.findByPrimaryKey(custAcctKey);
return custAcct.getBranchBalance();
}

Imagine you have applied AccessWriteIntent1 on the findByPrimarykey() method
of the CustomerAccount bean, and AccessReadIntent2 on the
getBranchBalance() method. Because the first access to the database in the
transaction started by the call to getCustomerAccountBalance() is done by the
findByPrimaryKey method, then AccessWriteIntent1 is used for all calls within
the transaction. AccessReadIntent2 will be ignored by the persistence manager
and is therefore useless in this case.

This might be satisfactory or not, depending on what you want to achieve. The
critical point here is that you can use the findByPrimaryKey method in read and
update transactions. If you use it in an update transaction, you probably want to

wsOptimisticUpdate Optimistic Yes. Read
committed.

Generated
overqualified-update query
forces failure if CMP
column values have
changed since the
beginning of the
transaction.

Access Intent Policy Concurrency
control

Used for
update

Transaction
isolation level

Notes
 Chapter 13. Packaging applications 865

execute it with, for example, a PessimisticUpdate intent. If you access data only
for reading it, this would be more than you need.

There are two main solutions you can adopt for this problem. The simplest one is
to have two or more versions of your finder methods, specialized by access
intent. You could use the standard findByPrimaryKey in update scenarios and
add another finder method, such as findByPrimaryKeyForRead, and use it in
read-only scenarios. You would set the access intent of the
findByPrimaryKeyForRead finder, say to wsOptimisticRead. The default access
intent (wsPessimisticUpdate-WeakestLockAtLoad) is fine in most cases for the
findByPrimaryKey() method, as well as for other finder or non-finder methods.

Another solution is to run findByPrimaryKey, or another finder, in its own
transaction. Do this by applying a RequiresNew transaction flag on it. Take
another look at the previous sample:

1. The getCustomerAccountBalance method starts a new transaction.

2. findByPrimaryKey is called. The current transaction is paused. The
findByPrimary method executes within its own transaction and, therefore,
own access intent. The call to findByPrimaryKey() returns an unhydrated
instance, which means it has not been activated nor loaded.

3. The transaction initiated by the session bean resumes.

4. getBalance() is called on the instance returned by findByPrimaryKey. The
instance is hydrated and the access intent specified for this method is used.
Any other method calls within the transaction will execute with the same
access intent.

Important: This solution is also well adapted to BMPs. By having a different
findByPrimaryKey method for read and write transactions, you can easily set a
different isolation level in the code for each of them. You can also define a
different SELECT query, one with a FOR UPDATE clause and one without,
then call them from those different methods.

Note: WebSphere Application Server V6.0 and V6.1 also includes a feature
(inherited from WebSphere Application Server V5 Enterprise Edition) that
provides an extension to access intents called Application Profiles, which
handles the problem mentioned above in a powerful way. Application profiles
let you externally specify a set of tasks (that is, a flow of calls in your code),
and specify which access intent should be used for a specific task. For
information about Application Profiles, please refer to the WebSphere
Information Center.
866 WebSphere Application Server V6.1: System Management and Configuration

Choosing the right access intent
The main rule is: keep it simple.

Start with the default setting (wsPessimisticUpdate-WeakestLockAtLoad), and
work from there. Specifying access intents on all your business methods could
lead to a configuration, debugging, and maintenance nightmare. Specify access
intents on a selected number of methods. Also, choose access intents wisely.

� Access intents can be applied to your business methods, to the
findByPrimaryKey() method, as well as the create and remove method. As
much as possible, avoid other methods.

� Make sure that no method is configured with more than one access intent
policy. Applications that are misconfigured in this way will not be runnable
until the configuration errors are fixed.

� For entity beans backed by tables with nullable columns, use optimistic
policies with caution. Nullable columns are automatically excluded from
overqualified updates at deployment time. This means that at commit time,
those columns will not be used in the update statement to check whether the
data has changed or not. Therefore, concurrent changes to a nullable field
might result in lost updates. Using the Application Server Toolkit, you can set
a property on each enterprise bean attribute called OptimisticPredicate, as
shown in Figure 13-18 on page 868. You can change this property by editing
the data mappings of your EJBs. When this property is set, the column, even
if it is nullable, will be reflected in the overqualified update statement that is
generated in the deployment code to support optimistic policies.

WebSphere Application Server supports an optimistic concurrency control
scheme for EJB 2.x CMP entity beans that allows you to add a column for
collision detection in your relational database table. This column is reserved
to determine if a record has been updated. When using a collision detection
column, the overqualified UPDATE statement only needs the collision
detection column and the primary key. To manage the collision detection
column, provide your own database trigger implementation. Using the
collision detection column overcomes the nullable column limitation and the
unsupported optimistic concurrency control data types, such as BLOBs and
CLOBs.

Tip: If you want to check which SQL code is executed for an optimistic
update, check the storeUsingOCC method in the <bean>FunctionSet
generated class.
 Chapter 13. Packaging applications 867

Figure 13-18 Optimistic predicate property

If a bean is loaded for read intent and an update is attempted during that
transaction, then the persistence manager will raise an
UpdateCannotProceedWithIntegrity exception. In other words, if you call
findByPrimaryKeyForRead() and an update is attempted, it will fail.

13.5.4 Using read-ahead hints
Read-ahead schemes enable applications to minimize the number of database
round trips by retrieving a working set of CMP beans for the transaction within
one query. Read-ahead involves activating the requested CMP beans and
caching the data for their related beans, which ensures that data is present for
the beans that are most likely to be needed next by an application.

Important: The behavior described above is true for all access intents except
wsPessimisticUpdate-NoCollision. This access intent will not flag updates,
even if no locks are held. Our recommendation is that you avoid this access
intent in production.
868 WebSphere Application Server V6.1: System Management and Configuration

A read-ahead hint is a canonical representation of the related beans to be read. It
is associated with a finder method for the requested bean type, which must be an
EJB 2.x-compliant CMP entity bean. Currently, only findByPrimaryKey methods
can have read-ahead hints. Only beans related to the requested beans by a
container-managed relationship (CMR), either directly or indirectly through other
beans, can be read ahead.

To set Read-ahead hints, do the following:

1. Open the EJB deployment descriptor editor.

2. Select the Access tab and scroll down to the WebSphere Extensions section.

3. Click the Add button to the right of the Access Intent for Entities 2.x (Method
Level) field. See Figure 13-19.

Figure 13-19 Adding a read ahead hint
 Chapter 13. Packaging applications 869

See Figure 13-20 on page 870.

Figure 13-20 Specifying read-ahead hint

4. Follow the windows in the wizard to select the beans and methods, then click
Finish.

Note: While using read-ahead hints can improve performance by minimizing
the number of database round trips required to retrieve the data for the related
beans, overdoing it can have an adverse effect. For example, using
read-ahead hints on long or complex paths can result in a query that is too
complex to be useful.
870 WebSphere Application Server V6.1: System Management and Configuration

13.5.5 Tracing access intents behavior
You can obtain a very detailed trace of the EJB persistence manager behavior by
specifying the following trace specification for an application server:

com.ibm.ejs.container.*=all=enabled:com.ibm.ejs.persistence.*=all=enabled:
com.ibm.ws.appprofile.*=all=enabled.

13.6 IBM EJB extensions: inheritance relationships
Support for entity beans inheritance, which is not part of the EJB 1.1 nor EJB 2.x
specifications, is also available in the toolkit. Support for enterprise entity beans
relationships for EJB 1.1, although not standard, is also available using this tool.
Refer to the toolkit documentation for more details.
 Chapter 13. Packaging applications 871

13.7 IBM Web module extensions
WebSphere Application Server also provides multiple extensions for Web
modules. To work with these extensions, open the Web deployment descriptor by
double-clicking the Web module in the J2EE Hierarchy view. To see the IBM Web
module extensions, select the Extensions tab, as in Figure 13-21.

Figure 13-21 Web module extensions

13.7.1 File serving servlet
When dealing with static content (HTML pages, images, style sheets, and so on),
you can choose to have these resources served by WebSphere, or have them
served by the HTTP server itself.

If you want WebSphere to serve the static content of your application, you must
enable file servlet, also known as the file serving servlet or file serving enabler.
872 WebSphere Application Server V6.1: System Management and Configuration

This servlet serves up any resource file packaged in the WAR file. The File
serving enabled attribute is set to true by default. By changing it to false, the Web
server plug-in will not send requests for static content to WebSphere, but leave it
up to the HTTP server to serve them.

If you want the Web server to serve static content, you can experience better
performance than using WebSphere in this instance, because the Web server is
serving the content directly. Moreover, a Web server has more customization
options than the file servlet can offer.

However, using the WebSphere file serving servlet has the advantage of keeping
the static content organized in a single, deployable unit with the rest of the
application. Additionally, this allows you to protect the static pages using
WebSphere security.

To enable this option, check the File serving enabled box. Enter attributes used
by the file serving servlet in the File Serving Attributes section.

13.7.2 Web application auto reload
If you check the Reloading enabled option, the class path of the Web
application is monitored and all components, JAR or class files, are reloaded
whenever a component update is detected. The Web module’s class loader is
shut down and restarted. The reload interval is the interval between reloads of
the Web application. It is set in seconds.

The auto reload feature plays a critical role in hot deployment and dynamic
reload of your application.

This option is set to true by default, with the reload interval set to three (3)
seconds. In production mode, you might consider making the reload interval
much higher.

13.7.3 Serve servlets by class name
The invoker servlet can be used to invoke servlets by class name. Note that there
is a potential security risk with leaving this option set in production. It should be
seen as more of a development-time feature, for quickly testing your servlets.

Important: You must set the Reloading enabled option to true for JSP files to
be reloaded when they are changed on the file system. Reloading a JSP does
not trigger the reload of the Web module, because separate class loaders are
used for servlets and JSP.
 Chapter 13. Packaging applications 873

A better alternative than this option is to define servlet mappings in the Web
deployment descriptor for the servlets that should be available.

This option is turned off by default.

13.7.4 Default error page
This page will be invoked to handle errors if no error page has been defined, or if
none of the defined error pages matches the current error.

13.7.5 Directory browsing
This Boolean defines whether it is possible to browse the directory if no default
page has been found.

This option is turned off by default.

13.7.6 JSP attributes
The JSP engines provides several options that can be set to customize its
behavior:

� keepgenerated

If this Boolean is set to true, the source code of the servlet created by
compilation of a JSP page is kept on the file system. Otherwise, it is deleted
as soon as the servlet code has been compiled; only the .class file is
available.

� scratchdir

This string represents the directory in which the generated class files will be
generated. If this string is not set, code is created under:

<profile_root>\temp

� jdkSourceLevel

This setting specifies which JDK level JSPs will be generated and compiled
for. Valid values are 13 (default), 14, and 15. To compile for Java 5.0, use 15.

There are several more options that can be set. Search for “JSP engine
configuration parameters” in the WebSphere InfoCenter for the full list.
874 WebSphere Application Server V6.1: System Management and Configuration

13.7.7 Automatic HTTP request and response encoding
The Web container no longer automatically sets request and response
encodings and response content types. The programmer is expected to set these
values using the methods available in the Servlet 2.4 API. If you want the
application server to attempt to set these values automatically, check the
Automatic Request Encoding enabled option in order to have the request
encoding value set. Similarly, you can check the Automatic Response
Encoding enabled option in order to have the response encoding and content
type set.

The default value of the autoRequestEncoding and autoResponseEncoding
extensions is false, which means that both the request and response character
encoding is set to the Servlet 2.4 specification default of ISO-8859-1. Different
character encodings are possible if the client defines character encoding in the
request header, or if the code uses the setCharacterEncoding(String encoding)
method.

If the autoRequestEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container tries to
determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:

� Looks at the character set (charset) in the Content-Type header.

� Attempts to map the server’s locale to a character set using defined
properties.

� Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one
is set.

� Uses the ISO-8859-1 character encoding as the default.

If you set the autoResponseEncoding value to true and the client:

� The client did not specify character encoding in the request header.

� The code does not include the setCharacterEncoding(String encoding)
method,

The Web container does the following:

� Attempts to determine the response content type and character encoding
from information in the request header.

� Uses the ISO-8859-1 character encoding as the default.
 Chapter 13. Packaging applications 875

13.8 IBM EAR extensions: Sharing session context
In accordance with the servlet 2.4 API specification, the session manager
supports session scoping by Web module only. Only servlets in the same Web
module can access the data associated with a particular session. WebSphere
Application Server provides an option that you can use to extend the scope of the
session attributes to an enterprise application. Therefore, you can share session
attributes across all the Web modules in an enterprise application.

This option can be set in the toolkit in the enterprise application deployment
descriptor.

1. Open the deployment descriptor by double-clicking the enterprise application.

2. Check the Shared session context option in the WebSphere Extensions
section. See Figure 13-22 on page 876.

Figure 13-22 EAR deployment descriptor
876 WebSphere Application Server V6.1: System Management and Configuration

13.9 Exporting the PlantsByWebSphere EAR file
Once you have made all the changes to your application and are ready to deploy,
you need to export the EAR file to a location where it can be picked up for
deployment by the application server.

To export the Plants by WebSphere sample application, do the following:

1. Select File → Export.

2. Select EAR file as the export target and click Next.

3. Select to export the PlantsByWebSphere EAR project and enter a suitable
destination for the EAR file, such as C:\PlantsByWebSphere.ear. Then click
Finish.

13.10 WebSphere Enhanced EAR
The Enhanced EAR, introduced in WebSphere Application Server V6.0, is a
normal J2EE EAR file, but with additional configuration information for resources
required by J2EE applications. While adding this extra configuration information
at packaging time is not mandatory, it can simplify deployment of J2EE
applications to WebSphere if the environments where the application is to be
deployed is similar.

Important: To use this option, you must install all the Web modules in the
enterprise application in the same application server. You cannot use this
option when one Web module is installed in one server and the second Web
module is installed in a different server.

In such split installations, applications might share session attributes across
Web modules using distributed sessions. However, session data integrity is
compromised when concurrent access to a session is made in different Web
modules.

Sharing HTTP session context also severely restricts the use of some session
management features, like time-based writes. For enterprise applications on
which this option is enabled, the session management configuration set at the
Web module level is ignored. Instead, the session management configuration
defined at the enterprise application level is used.
 Chapter 13. Packaging applications 877

Table 13-6 shows the resources supported by the Enhanced EAR and the scope
in which they are created.

Table 13-6 Scope for resources in WebSphere Enhanced EAR file

J2C Resource Adapters can be configured either as embedded or external
resources. An embedded RAR is packaged within an enterprise application
(EAR), deployed as a part of J2EE application installation, and is removed when
the application is uninstalled from the server. An external RAR is packaged as a
stand-alone RAR file, is deployed explicitly on a WebSphere node, and is not
managed as a J2EE application. If an adapter is used only by a single
application, it should be configured as an embedded RAR. If it is to be shared
between multiple applications, it should be an external RAR.

When an Enhanced EAR is deployed to WebSphere Application Server,
WebSphere can automatically configure the resources specified in the Enhanced
EAR. This reduces the number of configuration steps required to set up the
WebSphere environment to host the application.

When an Enhanced EAR is uninstalled, the resources that are defined at the
application level scope are removed as well. However, resources defined at a
scope other than application level are not removed because they might be in use
by other applications.

Resource Scope

JDBC providers Application

Data sources Application

Resource adapters Application

JMS resources Application

Substitution variables Application

Class loader policies Application

Shared libraries Server

JAAS authentication aliases Cell

Virtual hosts Cell

New in V6.1: The Enhanced EAR has been improved with V6.1 to include
support for J2C Resource Adapters (RAR files) and JMS resources.
878 WebSphere Application Server V6.1: System Management and Configuration

Resources created at Application level scope are limited in visibility to only that
application.

To view the application scoped resources, select Applications → Enterprise
Applications → <application>. Select Application scoped resources in the
References section. If there are no application scoped resources, you will not see
this option.

13.10.1 Configuring a WebSphere Enhanced EAR
The supplemental information in an Enhanced EAR is modified by using the
WebSphere Enhanced EAR editor, the Deployment tab of the application
deployment descriptor in the Application Server Toolkit.

To access the Enhanced EAR deployment options, do the following:

1. In the J2EE Project Explorer view, expand Enterprise Applications, and
then the application.

New in V6.1: In WebSphere Application Server V6.0, the administrative
console did not allow you to view or change Application-scope settings. In
V6.1, you can now do this. However, you cannot create new resources at the
application scope using the administrative console. To add new
application-scoped resources you must use the Application Server Toolkit or
Rational Application Developer.

Note: Before adding or removing J2EE modules using the Module page in the
Application Deployment Descriptor editor, do the following:

1. Click the Deployment tab to activate the functions in the deployment page.
2. Add your modules to the Module page.

Complete this task for each application deployment descriptor editor session
that you want to add or remove modules from the Module page.
 Chapter 13. Packaging applications 879

2. Double-click Deployment Descriptor and select the Deployment tab. This
opens up the Enhanced EAR editor, as shown in Figure 13-23.

Figure 13-23 WebSphere Enhanced EAR editor

In the Application section in Figure 13-24, you can see the class loader policies
and class loader mode configured for each of the containing module. Plants by
WebSphere runs fine with the default policies and modes, so they do not need to
be changed.
880 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-24 Configuring class loader mode and class loader policies

In the Enhanced EAR editor, you also configure resources such as JDBC
providers, datasources, JMS resources, class loader policies, JAAS
authentication aliases, virtual hosts, and so forth.

To configure the Plants by WebSphere application, we need to add the following:

� JAAS authentication alias
� JDBC provider for DB2
� Data source for DB2 database

Just to show the editor, we will also configure a new virtual host for a domain
called www.plantsbywebsphere.com.

Configuring a JAAS authentication alias
To configure the JAAS authentication alias, do the following:

1. In the Deployment tab, expand the Authentication section.

2. Click the Add button.

3. In the dialog box that displays, enter:

– plantsbywebsphere as the alias

– A user ID with access to the PLANTS database

– The password for the user ID.

– Plants by WebSphere as the description
 Chapter 13. Packaging applications 881

4. Click OK. See Figure 13-25 on page 882.

Figure 13-25 Configuring JAAS authentication alias for Plants by WebSphere

Configuring a DB2 JDBC provider
To configure the DB2 JDBC provider, do the following:

1. Click the Add button next to the JDBC provider list in the Data Sources
section.

2. In the dialog box:

– Select IBM DB2 as the Database type.

– Select DB2 Universal JDBC Driver Provider (XA) as the JDBC provider
type.

See Figure 13-26 on page 882.

Figure 13-26 Creating a DB2 JDBC Provider
882 WebSphere Application Server V6.1: System Management and Configuration

Click Next.

3. In the next dialog box, enter a name for the JDBC provider (for administration
purposes only) and leave the other properties as the default values. See
Figure 13-27 on page 883.

Figure 13-27 Creating a DB2 JDBC provider

Click Finish.
 Chapter 13. Packaging applications 883

4. Select the Plants by WebSphere DB2 JDBC Provider (XA) you just created
and click the Add button next to the Data source list, as in Figure 13-28.

Figure 13-28 Add a data source

5. In the Create a Data Source dialog box, select DB2 Universal JDBC Driver
Provider (XA) as the JDBC provider type and Version 5.0 data source as
the data source type, as in Figure 13-29.
884 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-29 Creating a DB2 data source

Click Next.
 Chapter 13. Packaging applications 885

6. In the dialog box displayed enter the appropriate values for the DB2 data
source. See Figure 13-30 on page 886.

Figure 13-30 Creating a DB2 data source

– Enter DB2PlantsDS as the name.

– Enter jdbc/PlantsByWebSphereDataSource as the JNDI name.

– Enter DB2 Data Source for Plants by WebSphere as the description.

– Select plantsbywebsphere as the Component-managed authentication
alias.

– Check Use this data source in container manager persistence (CMP).
886 WebSphere Application Server V6.1: System Management and Configuration

Click Next.

7. In the Create Resource Properties dialog box, select databaseName and
enter PLANTS as the value. Then also select the driverType and enter 2 as
the value. See Figure 13-31 on page 887.

Figure 13-31 Setting database properties for DB2 data source

JDBC driver type 2 means that the database is local to the machine running
the WebSphere application, or that it has a DB2 Connect™ client that can
make the database look local.

Click Finish.
 Chapter 13. Packaging applications 887

When you are finished, your data source configuration should look like
Figure 13-32 on page 888.

Figure 13-32 DB2 data source configured

Adding a virtual host
To configure a virtual host, do the following:

1. Expand the Virtual Hosts section of the Deployment tab and click the Add
button next to the Virtual host name list.

2. In the Add Host Name Entry dialog box, enter plantsbywebsphere_host and
click OK. Your new virtual host will appear in the Virtual Hosts list. See
Figure 13-33.
888 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-33 Add a new virtual host

3. Click the Add button next to the Host aliases list.

4. In the Add Host Alias Entry dialog box, enter www.plantsbywebsphere.com
for the host name and 80 for the port number. Click OK.

Repeat the procedure to add port number 9081 as well. We will use this port
when we deploy the application later.

The host aliases will appear in the list (Figure 13-34).

Figure 13-34 Configuring the virtual host for Plants by WebSphere

5. When you are finished, press Ctrl-S to save the deployment descriptor editor.
 Chapter 13. Packaging applications 889

Setting default virtual host for Web modules
Just because we have configured a new virtual host, plantsbywebsphere_host, in
the Enhanced EAR file does not mean that all our Web modules automatically
use it.

The default virtual host for a Web module created in the Application Server
Toolkit or Rational Application Developer is default_host, which is also the case
for the Web module of the Plants by WebSphere application. This setting can be
found in the ibm-web-bdn.xmi file in the /WEB-INF directory of each Web
module.

To configure the Web modules to default to the plantsbywebsphere_host
instead, do the following:

1. Expand Dynamic Web Project in the Project Explorer view.

2. Expand the PlantsByWebSphereWeb project and double-click Deployment
Descriptor.

3. Scroll to the bottom of the Overview page and replace default_host with
plantsbywebsphere_host, as shown in Figure 13-35.

Figure 13-35 Setting default virtual host for a Web module

4. Save the deployment descriptor by pressing Ctrl-S and then close it.

Examining the WebSphere Enhanced EAR file
The information about the resources configured is stored in the ibmconfig
subdirectory of the EAR file’s META-INF directory. Expanding this directory
reveals the well-known directory structure for a cell configuration, as seen in
Figure 13-36 on page 891. You can also see the scope level where each
resource is configured.
890 WebSphere Application Server V6.1: System Management and Configuration

Figure 13-36 Enhanced EAR file contents

After you have re-packaged the application into an Enhanced EAR, export it as
explained in “Exporting the PlantsByWebSphere EAR file” on page 877.

At deployment time, WebSphere Application Server uses this information to
automatically create the resources.

13.11 Packaging recommendations
Here are some basic rules to consider when packaging an enterprise application:

� The EJB JAR modules and Web WAR modules comprising an application
should be packaged together in the same EAR module.

� When a Web module accesses an EJB module, you should not package the
EJB interfaces and stubs in the WAR modules. Thanks to the class loading
architecture, EJB stubs and interfaces are visible by default to WAR modules.
 Chapter 13. Packaging applications 891

� Utility classes used by a single Web module should be placed within its
WEB-INF/lib folder.

� Utility classes used by multiple modules within an application should be
placed at the root of the EAR file as Utility Projects, so they are accessible
both by servlets and EJBs.

� Utility classes used by multiple applications can be placed on a directory
referenced through a shared library definition.

See 12.5, “Learning class loaders by example” on page 811 for more details on
how WebSphere finds and loads classes.
892 WebSphere Application Server V6.1: System Management and Configuration

Chapter 14. Deploying applications

In Chapter 13, “Packaging applications” on page 829, we discuss how to use the
Application Server Toolkit to perform common tasks for packaging an application.
In this chapter, we show you how to deploy the application. We take you through
setting up the environment for the application, and then deploying the application
itself. Next, we explain how to deploy the client part of the application. The
deployment tasks in this chapter can also be automated using command-line
tools, as explained in Chapter 5, “Administration with scripting” on page 249.

WebSphere Application Server V6 supports the J2EE Deployment API
Specification (JSR-88), which defines standard APIs to enable deployment of
J2EE applications and stand-alone modules to J2EE application servers. For
more information about how to use this API, see the WebSphere Information
Center by searching for JSR-88 and browse to the section discussing Installing
J2EE modules with JSR-88.

The topics in this chapter include:

� Preparing the environment
� Generating deployment code
� Deploying the application
� Deploying application clients
� Updating applications

14
© Copyright IBM Corp. 2006. All rights reserved. 893

14.1 Preparing the environment
In this chapter, we show you how to set up a fairly complete environment for the
Plants by WebSphere application and deploy the EAR file. You will not always
need or want to customize the environment as extensively as we do in this
chapter. Some steps are optional. If all you want to do is deploy your application
quickly, using the WebSphere defaults for directory names, log files, and so forth,
skip to 14.3, “Deploying the application” on page 913.

The steps in this section are performed typically by the application deployer. To
deploy the Plants by WebSphere application, do the following:

1. Create the DB2 database for Plants by WebSphere. This step is required.

2. Create an environment variable for Plants by WebSphere server. This step is
optional.

3. Create an application server to host the application. This step is optional.

4. Customize the IBM HTTP Server configuration. This step is optional.

5. Define a JDBC provider, data source, and authentication alias. This step is
required if you are not using an Enhanced EAR.

6. Define virtual hosts. This step is optional and not required if you are using an
Enhanced EAR.

If the application to be deployed is a WebSphere Enhanced EAR file, the
resources configured in the Enhanced EAR file are created automatically when
the application is deployed.

14.1.1 Creating the Plants by WebSphere DB2 database
The WebSphere samples by default use Cloudscape as the database. However,
in this chapter, we will configure Plants by WebSphere to use a DB2 UDB 8.2
database instead.

To set up the DB2 database, make sure you have DB2 installed and running.
Then run the following commands:

1. Select Start → Programs → IBM DB2 → Command Line Tools →
Command Window.

2. Create the database using the commands in Example 14-1 on page 895.
894 WebSphere Application Server V6.1: System Management and Configuration

Example 14-1 Creating the DB2 database

DB2 CREATE DATABASE PLANTS PAGESIZE 16 K
D2B CONNECT TO PLANTS USER <user_id> USING <password>
DB2 -tvf Table.ddl
db2 connect reset

The Table.ddl file is located in the
PlantsByWebSphereEJB\ejbModule\META-INF\backends\DB2UDBNT_V82_
1 directory of your Application Server Toolkit workspace. See “Creating a new
database mapping and schema” on page 848.

14.1.2 Creating an environment variable
We recommend that you use WebSphere environment variables, rather than
hard-coded paths when deploying an application. In the following steps, we
assume you have declared a PLANTSBYWEBSPHERE_ROOT variable. You
will use it when specifying, for example, the JVM log’s location.

Be certain you declare this variable at the right scope. For example, if you define
this variable at the application server scope, it will only be known at that level. As
long as you work with the WebSphere Application Server Base or Express
editions, this is fine. But if you later decide to use the Network Deployment
edition and you create a cluster of application servers, the
PLANTSBYWEBSPHERE_ROOT variable will need to be defined at the cluster
or cell level.

Use the steps in 4.1.10, “Using variables” on page 156 to create a
PLANTSBYWEBSPHERE_ROOT variable with a value of
C:\apps\PlantsByWebSphere.

There are several ways to organize WebSphere applications. Some companies
prefer to create a directory for each application, as we do in our example, such
as C:\apps\<application_name>, and keep all resources and directories required
by the application in subdirectories under this directory. This strategy works well
when deploying only one application per application server, again as we do in
our example, because the application server’s log files could then all be changed
to point to c:\apps\<application_name>\logs.

Note: Because the Plants by WebSphere application stores images in the
database using a BLOB, we needed a tablespace with a larger pagesize than
the default of 4 KB. To specify this as the default when the database was
created, we used the PAGESIZE keyword. This is supported on DB2 UDB
8.2.2, also called 8.1 Fix Pack 9, and later. We used DB2 Express 8.2.5
 Chapter 14. Deploying applications 895

Other companies prefer to organize resources by resource type, and so create
directories such as c:\apps\logs\<application_name.log>,
c:\apps\properties\<application_name.properties>, and so on.

And some companies prefer to stick with the vendor defaults as far as possible.
For WebSphere, that means that the applications are installed in the
<profile_home>/installedApps directory and the logs files are written to the
<profile_home>/logs/<server_name> directory.

Which option you choose is a matter of personal preferences and corporate
guidelines.

14.1.3 Creating the Plants by WebSphere application server
In a distributed server environment, you have the option of using a single
application server, or creating multiple application servers or clusters.

The advantages of deploying multiple applications to a single application server
is that it consumes less resources. There is no overhead for any extra application
server processes. Another benefit is that applications can make in-process calls
to each other. For example, servlets in one EAR file could access Local
interfaces of EJBs in another EAR file.

One alternative to using a single application server is to deploy each application
to its own server. The advantages of deploying only one application on an
application server is that it gives you greater control over the environment. The
JVM heap sizes and environment variables are set at application server level, so
all applications running in an application server share the JVM memory given to
the application server and they would all see the same environment variables.
Running each application in its own application server could also make it easier
to perform problem determination. For example, if an application runs amok and
consumes a lot of CPU, you could see which application it is by looking at the
process ID of the application server.

In our example, we create a unique application server on which to run the Plants
by WebSphere sample application.

Note: Make sure you create the target directory you specify for the
PLANTSBYWEBSPHERE_ROOT variable before proceeding. If the directory
is not created, the application server will not start.

Note: For a full discussion of application server properties, see 4.4, “Working
with application servers” on page 170.
896 WebSphere Application Server V6.1: System Management and Configuration

To create an application server, do the following:

1. Select Servers → Application Servers.

2. Click the New button and provide the information shown in Figure 14-1 on
page 897.

Figure 14-1 Creating the WebSphere Bank application server

– Node

Select the node on which the application server will be created.

– Server name

Enter the application server name, such as PlantsByWebSphereServer.

Click Next.

3. In Step 2, select which server template to use as the base for this new
application server. The DeveloperServer template is used when setting up a
server for development use and will cause the JVM to prioritize quick startup
(by disabling bytecode verification, and performing JIT compilations with a
lower optimization level). This option should not be used on a production
server, where long run throughput is more important than early server startup.
If you have not created any templates on your own, then select the
WebSphere default. Otherwise, select the server template you want to use
and click Next.

4. In step 3, you can select, if you want, WebSphere to generate a unique set of
port numbers for this application server. This ensures the ports defined for
 Chapter 14. Deploying applications 897

this server does not conflict with another server currently configured on this
node. Check the Generate Unique Http Ports box and click Next.

5. On the Summary page, click Finish.

Changing the working directory
The next thing we want to do is to change the working directory for the
application server process. This directory is the relative root for searching files.
For example, if you do a File.open(“foo.gif”), foo.gif must be present in the
working directory. This directory will be created by WebSphere if it does not exist.
We recommend that you create a specific working directory for each application
server.

1. Select the server, PlantsByWebSphereServer, you just created.

2. Expand the Java and Process Management in the Server Infrastructure
section and select Process Definition.

3. Scroll down the page and change the working directory from
${USER_INSTALL_ROOT} to
${PLANTSBYWEBSPHERE_ROOT}/workingDir.

4. Click OK.

Changing the logging and tracing options
Next, we want to customize the logging and tracing properties for the new
application server. There are several ways to access the logging and tracing
properties for an application server:

� Select Troubleshooting → Logs and Trace in the navigation bar, then select
a server.

� Select Servers → Application Servers, select a server, and then select
Logging and Tracing from the Troubleshooting section.

� Select Servers → Application Servers, select a server, select Process
definition from the Java and Process Management section. Select Logging
and Tracing from the Additional Properties section.

Because we have just finished updating the application server process definition,
we will take the third navigation path to customize the location of the JVM logs,
the diagnostic trace logs, and the process logs.

1. Select Logging and Tracing.

Note: The working directory will not be created if you use a composed path,
such as C:/apps/PlantsByWebSphere/workingDir. If you want to use such a
path, create it before starting the application server, or the startup sequence
fails.
898 WebSphere Application Server V6.1: System Management and Configuration

2. Select JVM Logs.

This allows you to change the JVM standard output and error file properties.
Both are rotating files. You can choose to save the current file and create a
new one, either when it reaches a certain size, or at a specific moment during
the day. You can also choose to disable the output of calls to
System.out.print() or System.err.print().

We recommend that you specify a new file name, using an environment
variable to specify it, such as:

${PLANTSBYWEBSPHERE_ROOT}/logs/SystemOut.log
${PLANTSBYWEBSPHERE_ROOT}/logs/SystemErr.log

Click OK.

3. Select Diagnostic Trace.

Each component of the WebSphere Application Server is enabled for tracing
with the JRas interface. This trace can be changed dynamically while the
process is running using the Runtime tab, or added to the application server
definition from the Configuration tab. As shown in Figure 14-2, the trace
output can be either directed to memory or to a rotating trace file.

Change the trace output file name so the trace is stored in a specific location
for the server using the PLANTSBYWEBSPHERE_ROOT variable and select
the Log Analyzer format.
 Chapter 14. Deploying applications 899

Figure 14-2 Specifying diagnostic trace service options

Click OK.

4. Select Process Logs.

Messages written by native code (JNI) to standard out and standard error
streams are redirected by WebSphere to process logs, usually called
native_stdout.log and native_stderr.log. Change the native process logs to:

${PLANTSBYWEBSPHERE_ROOT}/logs/native_stdout.log
${PLANTSBYWEBSPHERE_ROOT}/logs/native_stderr.log

Click OK.

5. All log files produced by the application server are now redirected to the
${PLANTSBYWEBSPHERE_ROOT}/logs directory. Save the configuration.
900 WebSphere Application Server V6.1: System Management and Configuration

14.1.4 Defining the Plants by WebSphere virtual host

Web modules need to be bound to a specific virtual host. For our sample, we
chose to bind the PlantsByWebSphereWeb module to a specific virtual host
called plantsbywebsphere_host. This virtual host has the following host aliases:

� www.plantsbywebsphere.com:80
� www.plantsbywebsphere.com:9081

Any request starting with <plantsbywebsphere_host_alias>/PlantsByWebSphere,
such as http://www.plantsbywebsphere.com:9081/PlantsByWebSphere, is
served by the Plants by WebSphere application.

To create the plantsbywebsphere_host virtual host, do the following:

1. Select the Environment → Virtual Hosts entry in the navigation pane.
2. Click New.
3. Enter the virtual host name, plantsbywebsphere_host.
4. Click Apply.
5. Select Host Aliases in the Additional Properties section.

Note: The rest of this example assumes a default HTTP port of 9081 for the
Web container. Before proceeding, check the application server you created
to determine the port you should use:

1. Select Servers → Application Servers.
2. Select the PlantsByWebSphereServer.
3. Select Ports in the Communications section.
4. Scroll down the page and note the port listed for WC_defaulthost.

Enhanced EAR file users: If you are using an Enhanced EAR file, the virtual
host can be defined at packaging time. See “Adding a virtual host” on
page 888.

Tip: You can restrict the list of hosts used to access the Web application by
removing hosts from the virtual host definition.

Imagine you want to prevent users from directly accessing the Plants by
WebSphere application from the WebSphere internal HTTP server when they
invoke http://www.plantsbywebsphere.com:9081/PlantsByWebSphere. In
other words, you want to force all requests to go through the Web server
plug-in. You can achieve this by removing www.plantsbywebsphere.com:9081
from the virtual host aliases list.
 Chapter 14. Deploying applications 901

6. Add the two aliases shown in Figure 14-3 by clicking New, entering the
values, and clicking OK.

Figure 14-3 WebSphere Bank virtual host aliases

7. Click OK.
8. Save the configuration.

14.1.5 Creating the virtual host for IBM HTTP Server and Apache
Now that we have defined a plantsbywebsphere_host virtual host, we need to
configure the Web server to serve the host aliases in the virtual host. The steps
below are valid for both the IBM HTTP Server V6 and Apache 2.0.

Configuring virtual hosting

Creating virtual hosts is done using the VirtualHost directive, as in Example 14-2.

Example 14-2 Using VirtualHost

<VirtualHost www.plantsbywebsphere.com:80>
ServerAdmin webmaster@plantsbywebsphere.com
ServerName www.plantsbywebsphere.com
DocumentRoot "C:\IBM\HTTPServer\htdocs\plantsbywebsphere"
ErrorLog logs/plantsbywebsphere_error.log
TransferLog logs/plantsbywebsphere_access.log

</VirtualHost>

Note: It is not necessary to create a virtual host in httpd.conf. It is required
only if you want to customize the configuration, for example, by separating the
logs for each virtual host. This is not normally done.
902 WebSphere Application Server V6.1: System Management and Configuration

If you want to have multiple virtual hosts for the same IP address, you must use
the NameVirtualHost directive. See Example 14-3.

Example 14-3 Using the NameVirtualHost and VirtualHost directives

NameVirtualHost 9.23.456.789:80

<VirtualHost itso_server:80>
ServerAdmin webmaster@itso_server.com
ServerName itso_server
DocumentRoot "C:\IBM\HTTPServer\htdocs\itso_server"
ErrorLog logs/itso_server_error.log
TransferLog logs/itso_server_access.log

</VirtualHost>

<VirtualHost www.plantsbywebsphere.com:80>
ServerAdmin webmaster@plantsbywebsphere.com
ServerName www.plantsbywebsphere.com
DocumentRoot "C:\IBM\HTTPServer\htdocs\plantsbywebsphere"
ErrorLog logs/plantsbywebsphere_error.log
TransferLog logs/plantsbywebsphere_access.log

</VirtualHost>

The www.plantsbywebsphere.com and the itso_server hosts have the same IP
address, 9.23.456.789. We have set this by inserting the following line in the
machine hosts file, located in %windir%\system32\drivers\etc or in /etc on UNIX
systems):

9.23.456.789 www.plantsbywebsphere.com itso_server

In a real-life environment, this would probably be achieved by creating aliases at
the DNS level. In any event, you must be able to ping the host you have defined,
using commands such as ping www.plantsbywebsphere.com.

As you can see in Example 14-3, each virtual host has a different document root.
Make sure that the directory you specify exists before you start the HTTP server.
While testing the setup, you can place an index.html file at the document root
stating which virtual host is being called. This lets you easily see which virtual
host is being used.

You must restart the IBM HTTP Server to apply these changes. If you are running
a Windows system, we recommend that you try to start the server by running
apache.exe from the command line rather than from the Services window. This
allows you to spot error messages thrown at server startup.

If your virtual hosts are correctly configured, invoking
http://www.plantsbywebsphere.com or http://itso_server returns different
HTML pages.
 Chapter 14. Deploying applications 903

14.1.6 Creating a DB2 JDBC provider and data source

The Plants by WebSphere sample application uses a relational database, via
entity beans, to store information. To access this database, you need to define a
data source and then associate it with the entity beans. The Plants by
WebSphere sample application is configured for Cloudscape by default. In
Chapter 13, “Packaging applications” on page 829, however, we modified the
Plants by WebSphere application to run against a DB2 database instead. We will
now create the DB2 JDBC provider, data source, and JAAS authentication alias
required to run against DB2.

For detailed information about JDBC providers and data sources, refer to 6.2,
“JDBC resources” on page 305.

Configuring environment variables for DB2 JDBC driver
For the DB2 Universal JDBC Provider to find its classes, the
DB2UNIVERSAL_JDBC_DRIVER_PATH and
DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH environment variables must be
set up. To set up these variables, do the following:

1. Select Environment → WebSphere Variables.

2. Locate and click the DB2UNIVERSAL_JDBC_DRIVER_PATH entry.

3. In the value field, enter the path to where the DB2 JDBC driver is located. For
example, for DB2, the location is likely to be:

C:\Program Files\IBM\SQLLIB\java

See Figure 14-4.

Enhanced EAR file users: If you are using an Enhanced EAR file, the JDBC
provider, data source, and J2C authentication entry can be defined at
packaging time. See “Configuring a DB2 JDBC provider” on page 882.
904 WebSphere Application Server V6.1: System Management and Configuration

Figure 14-4 Configuring DB2 Driver Path

Click OK.

4. Repeat the process for the DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH
variable. For DB2, it should use the same path, C:\Program
Files\IBM\SQLLIB\java.

Configuring J2C authentication data
The user ID and password required to access the database are specified in a
J2C authentication data entry.

1. Select Security → Secure administration, applications, and
infrastructure. Expand the Java Authentication and Authorization Service
section and select J2C authentication data.
 Chapter 14. Deploying applications 905

2. Click New, and specify the following information to create the authentication
data. Once completed, the authentication information should be similar to
Figure 14-5.

– Alias

Enter the name of the security information alias, such as webspherebank.

– User ID

Enter a user ID with the proper authority to access the database.

– Password

Enter the password for the user ID.

Figure 14-5 Creating WebSphere Bank JAAS authentication alias

3. Click OK.

Creating the Plants by WebSphere JDBC provider
The following steps take you through the creation of a JDBC provider targeting a
DB2 database. To create a JDBC provider from the administrative console, do
the following:

1. Expand the Resources entry and select the JDBC Providers entry.
906 WebSphere Application Server V6.1: System Management and Configuration

2. Select the scope of this resource. In a stand-alone server environment, it is
sufficient to create the data source at the server level. Otherwise, define it at
the cluster or cell level. A rationale for this is to be able to share the definition
across multiple servers in a cluster. To change this, select the server you are
deploying to in the scopes list and click Apply.

3. Click the New button.

4. In the Configuration dialog box, select the general properties for the JDBC
provider, as shown in Figure 14-6.

Figure 14-6 Creating a DB2 JDBC provider

– Database type: DB2

– Provider type: DB2 Universal JDBC Driver Provider

– Implementation type: XA data source
 Chapter 14. Deploying applications 907

– Name: DB2 Universal JDBC Driver Provider (XA)

5. The next window allows you to change the location for the JDBC driver files,
but because we configured the paths earlier, we do not need to do it again.
Click Next.

6. On the Summary page, click Finish.

Creating the Plants by WebSphere data source
The next step is to create the data source for the Plants by WebSphere DB2
database. To create a data source, do the following:

1. Select Resources → JDBC Providers.

2. Select the DB2 Universal JDBC Driver Provider (XA) and select Data
Sources under Additional Properties.

3. Click New to add the new data source. See Figure 14-7.

Note: We used the DB2 XA-capable JDBC Driver for the Plants by
WebSphere sample. If your application does not require two-phase commit
capabilities, use the regular driver. If using an XA-capable driver, it is a
best practice to indicate that it is an XA-capable driver by including XA in
its name, such as MyJDBCDriverXA.
908 WebSphere Application Server V6.1: System Management and Configuration

Figure 14-7 Plants by WebSphere basic data source properties

– Data source name

Enter the data source name, which must be unique in the administrative
domain or cell. We recommend that you use a value indicating the name of
the database this data source is targeting, such as
“PlantsByWebSphereDS”.

– JNDI name

Enter the name by which applications access this data source. If not
specified, the JNDI name defaults to the data source name prefixed with
jdbc/. For the Plants by WebSphere, set this field to
jdbc/PlantsByWebSphereDataSource. This value can be changed at any
time after the data source has been created.
 Chapter 14. Deploying applications 909

– Component-managed authentication alias

Enter the J2C alias used for connecting to the data source by selecting the
authentication alias created previously, <cell name>/plantsbywebsphere.

4. Click Next. On the second page, enter the information shown in Figure 14-8.

Figure 14-8 Plants by WebSphere database specific properties

– Database name

Enter the name of the database, PLANTS in our example.

– Driver type

Select the driver type to use. In our environment, the database is on the
same machine as our WebSphere installation, so we can use a type 2
driver and do not need to enter the server name. If the database is on a
remote server from the WebSphere machine, you would either use a type

Note: The component-managed authentication alias is used when the
res-auth tag in the deployment descriptor is set to Application and the
application itself does not specify a user ID when obtaining a
connection (that is, when datasource.getConnection() is called). The
container-managed application alias (used when res-auth tag is set to
Container) has been deprecated since WebSphere Application Server
V6.0.
910 WebSphere Application Server V6.1: System Management and Configuration

4 driver (and supply the name of the database server) or you would use a
type 2 driver and catalog the database on the WebSphere machine.

– Use this Data Source in container-managed persistence (CMP)

Check this option to indicate that the Plants by WebSphere data source is
used for persisting the application entity beans.

5. Click Next, and then on the summary page, click OK.

6. Save the configuration.

7. Test the connection by selecting the data source and clicking the Test
Connection button.

14.2 Generating deployment code
At some point, you will need to generate the deployment code for the EJBs. You
can do this in Rational Application Developer, in the Application Server Toolkit,
from the command line, or at deployment time using the install windows in the
WebSphere administrative console. The deployment code should match the
version of the run time target.

For information about how to generate the deployment code using the
Application Server Toolkit, see “Creating a new database mapping and schema”
on page 848.

14.2.1 Using EJBDeploy command-line tool
You can generate the EJB deployment code using the EJBDeploy command-line
tool. The syntax of the EJBDeploy command is shown in Example 14-4.

Example 14-4 EJBDeploy syntax

EJBDeploy (v6.1, o0619.34)

Syntax: EJBDeploy inputEar workingDirectory outputEar [options]
Options:
 -cp "jar1;jar2" List of jar filenames required on classpath
 -codegen Only generate the deployment code, do not run RMIC or Javac
 -bindear:options Bind references within the EAR
 -dbschema schema The name of the schema to create
 -dbvendor DBTYPE Set the database vendor type, to one of:
 DB2UDB_V81 DB2UDB_V82
 DB2UDBOS390_V7 DB2UDBOS390_V8 DB2UDBOS390_NEWFN_V8
 DB2UDBISERIES_V53 DB2UDBISERIES_V54
 DERBY_V10
 INFORMIX_V93 INFORMIX_V94 INFORMIX_V100
 Chapter 14. Deploying applications 911

 MSSQLSERVER_2000 MSSQLSERVER_2005
 ORACLE_V9I ORACLE_V10G
 SYBASE_V1250 SYBASE_V15
 SQL92 (*) SQL99 (*) *Deprecated
 -debug Compile the code with java debug information
 -keep Do not delete the contents of the working directory
 -ignoreErrors Do not halt for compilation or validation errors
 -quiet Only display errors, suppress informational messages
 -nowarn Disable warning and informational messages
 -noinform Disable informational messages
 -rmic "options" Set additional options to use for RMIC
 -trace Trace progress of the deploy tool
 -sqlj Use SQLJ instead of JDBC
 -OCCColumn Add a column for collision detection for WebSphere 6.0

 or later release
 -outer Use OUTER semantics for path expressions in EQL queries

 for J2EE 1.3 applications
 -complianceLevel JDK level for compiler compliance

For a complete description of the EJBDeploy command and its parameters, see
the Information Center. Search for ejbdeploy.

Example 14-5 shows a sample EJBDeploy run using the Plants by WebSphere
EAR file.

Example 14-5 EJBDeploy sample run

C:\WebSphere\AppServer\bin>ejbdeploy c:\PlantsByWebSphereEnhanced.ear c:\temp
c:\PlantsByWebSphereEnhanced_Deployed.ear -dbvendor DB2UDB_V82
Starting workbench.
framework search path: c:\WebSphere\AppServer\deploytool\itp\plugins
Creating the project.
Deploying jar PlantsByWebSphereEJB
Validating
Generating deployment code
Generating DDL
Generating DDL
...
...
Invoking RMIC.
Writing output file
Shutting down workbench.
EJBDeploy complete.
0 Errors, 62 Warnings, 0 Informational Messages
912 WebSphere Application Server V6.1: System Management and Configuration

Not shown in the listing above are the warnings that the validators spot. These
warnings are things like if a local variable has been declared but is not used or if
a Serializable class does not specify a static final long serialVersionUID. These
warnings are not critical.

14.3 Deploying the application
In this section, we show the steps required to deploy the application to
WebSphere Application Server. We show you how to deploy a regular EAR file
as well as an Enhanced EAR file, and then also how to not honor the
configuration information packaged into the Enhanced EAR file.

Follow these steps to deploy the application:

1. Select Applications → Install New Application from the administrative
console navigation bar.

2. Check the Local file system box and click the Browse button to locate the
PlantsbyWebSphere.ear file.

From the install windows, you can install files that are located either on the
same machine as the browser you are using to access the WebSphere
administrative console, the local file system option, or on the WebSphere
Application Server itself, the remote file system option. If you select the Local
file system option, the administrative console automatically uploads the file
you select to the application server, or to the deployment manager if this is a
distributed server environment. If you select the Remote file system check
box, you can browse all the nodes in the cell to find the file. The file is then, if
necessary, uploaded to the application server or deployment manager.

For this example, however, we will explain the options, so select Show me all
installation options and parameters. Then click Next.

3. In the next window, specify default bindings for the application you are
deploying. Unless you check the Override option, bindings already specified

Tip: WebSphere Application Server also provides a set of Ant tasks that you
can use to automate the packaging and deployment of your applications. One
of those tasks allows you to call EJBDeploy. Search for Ant tasks in the
Information Center for more details.

New in V6.1: WebSphere Application Server V6.1 allows you to take a
shortcut when installing an application. If you select the Prompt me only
when additional information is required option, only the windows where
you actually need to fill out some information during installation are shown.
 Chapter 14. Deploying applications 913

in the EAR are not altered. The various bindings you can specify in this page
are documented in Table 14-1 on page 914. If you do choose to override
bindings, select Generate Default Bindings at the top of this window to
apply changes to the application you are deploying.

In this example, the bindings were set in the application EAR file using the
Application Server Toolkit and there is no need to override them. The defaults
are also correct.

Table 14-1 Application default bindings

4. Click Next.

The rest of the wizard is divided into steps. The number of steps depends on
your application, for example, if it contains EJB modules or Web modules, you
will see windows prompting for the information necessary to deploy them.

5. Step 1: Select installation options.

Step 1 gives you a chance to review the installation options. You can specify
various deployment options, such as JSP precompiling, and whether you
want to generate EJB deployment code.

If you are deploying an Enhanced EAR file, this is where you make the
decision whether to use the resource configuration information packaged in

Binding name Detailed information

EJB prefix You can generate default EJB JNDI names using a common
prefix. EJBs for which you did not specify a JNDI name will get a
default name, built by concatenating the prefix and the EJB name.
If you specify a prefix of myApp/ejb, then JNDI names default to
myApp/ejb/EJBName, such as myApp/ejb/Account.

Override Enter whether you want to override the current bindings. By
default, existing bindings are not altered.

EJB 1.1 CMP
bindings

You can bind all EJB 1.1 CMP entity beans to a specific data
source, including user ID and password.

Connection
Factory bindings

You can bind all EJB modules to a specific data source.
You will have to go to the next window to override this setting at
the EJB level.

Virtual host
bindings

You can bind all Web modules to a specific virtual host, such as
plantsbywebsphere_host.

Specify bindings
file

You can also create a specific bindings file using your favorite
editor and load it during application installation by clicking
Browse next to the specific bindings file. For information about
using a bindings file, see 14.3.1, “Using a bindings file” on
page 919.
914 WebSphere Application Server V6.1: System Management and Configuration

the Enhanced EAR file or not. If the EAR file you are installing is an Enhanced
EAR, the install window preselects the Process embedded configuration
check box. If you do not want to use the resource configuration information
packaged in the Enhanced EAR file, you must deselect this check box.

Selecting the Pre-compile JSP option makes WebSphere compile all JSPs in
the EAR file during install time. This causes the time-consuming task of JSP
compilation to be performed during install time instead of during run time,
preventing the first user that accesses the application to pay that penalty.

A second alternative to pre-compile JSPs is to use the JspBatchCompiler
script found in the bin directory of the profile you are using to compile the
JSPs after the application has been installed.

This page also allows you to specify file permissions for files in your
application. To use one of the predefined file permissions, select it, and then
click Set file permissions. You can also specify your own file permissions
using regular expressions.

The following is an example of a version number:

Implementation-Version: Version 1.2.3

To enable this feature, select the corresponding check boxes to allow
dispatching or servicing includes to/from remote resources. For more
information about this feature, search the InfoCenter for Remote request
dispatcher.

Click Next.

6. Step 2: Map modules to servers.

Select the server on which you want each module deployed. For better
performance, we recommend that you deploy all modules from one
application in a single server. Especially, do not separate the EJB clients,
usually servlets in Web modules, from the EJBs themselves.

New in V6.1: The administrative console displays the Application Build ID
of the application being installed. This string is specified in the
MANIFEST.MF file in the EAR file’s META-INF folder and can be set using
the Application Server Toolkit.

New in V6.1: The Remote Request Dispatcher is an extension to the Web
container that allows frameworks, servlets, and JSPs to include content
from outside of the current executing resource’s JVM as part of the
response sent to the client.
 Chapter 14. Deploying applications 915

Click the icon to select all modules in the Plants by WebSphere EAR file.
In the Clusters and Servers box, select PlantsByWebSphereServer. Then
click Apply. This assigns all modules to the PlantsByWebSphereServer
application server. If you deploy to a cluster, select the cluster instead of the
single application server.

See Figure 14-9 on page 916.

Figure 14-9 Mapping modules to application servers

7. Step 3: Select current back-end ID.

A single EAR file can contain multiple database mappings. At deployment
time, you can choose which one you want to use. In this case, set it to
DB2UDBNT_V82_1, because this is the version we are using.

Click Next.

8. Step 4: Provide JSP reloading options for Web modules.

Allows you to configure if and how often WebSphere should check for updates
to JSP files, and if they should be reloaded or not. In a production
environment, you may want to disable this to improve performance.

Click Next.

Web servers: If you have a Web server defined, select both the Web
server and WebSphereBankServer in the server list. Press and hold the
CTRL key to select multiple servers. Mapping Web modules to Web
servers ensures the Web server plug-in will be generated properly.

Note: Steps 3 - 11 allow you to define bindings. We have already taken
care of this using the Application Server Toolkit when we packaged the
EAR file. You can skip directly to Step 11 if you like. See 15 on page 918.
916 WebSphere Application Server V6.1: System Management and Configuration

9. Step 5: Map shared libraries.

If your application depends on shared libraries, you can specify them here.
For more information about using shared libraries, see “Shared libraries” on
page 809.

Click Next.

10.Step 6: Provide JNDI names for beans.

Use this window to bind the enterprise beans in your application or module to
a JNDI name. In 13.3.1, “Defining EJB JNDI names” on page 842, we defined
these values in Table 13-1, so the defaults shown should be correct.

Click Next.

11.Step 7: Map EJB references to beans.

Each EJB reference defined in your application must be mapped to an
enterprise bean. We used the Application Server Toolkit to do this in 13.3.2,
“Binding EJB and resource references” on page 844.

Click Next.

12.Step 8: Map default data source mapping for modules containing 2.x entity
beans.

Specify the default data source for the EJB 2.x module containing 2.x CMP
beans. In 13.3.3, “Defining data sources for entity beans” on page 846, we
defined the JNDI name for the EJBs in the PlantsByWebSphere EJB module
as eis/jdbc/PlantsByWebSphereDataSource_CMP. You see this in the
window.

Click Next.

13.Step 9: Map data sources for all 2.x CMP beans.

Specify an optional data source for each 2.x CMP bean. Mapping a specific
data source to a CMP bean overrides the default data source for the module
containing the enterprise bean (defined in step 8, (12 on page 917). We do
not need to do anything here.

Click Next.

14.Step 10: Map resource references to resources.

Each resource reference defined in the application must be mapped to the
corresponding resource. The PlantsByWebSphere EJB module has several
resource references for data sources, which are shown in this window.

Click Next.

At this step, we now get an Application Resource Warning. What this tells us
is that a resource referenced by the application, mail/PlantsByWebSphere, is
not defined for the scope to which we are installing our application. In fact, it is
 Chapter 14. Deploying applications 917

not defined at all in our environment because we will not send any e-mails
from the Plants by WebSphere. If you would like to do that, you should define
a Mail session with the properties for your mail server and assign it a JNDI
name of mail/PlantsByWebSphere.

Click Continue.

15.Step 11: Map virtual hosts for Web modules.

For each Web module, select the virtual host we created for the application
(plantsbywebsphere_host).

Click Next.

16.Step 12: Map context roots for Web modules.

For each Web module, select the context root to bind the module against.

Click Next.

17.Step 13: Map security roles to users and groups.

Because the Plants by WebSphere EAR file contains security roles, we need
to map them to users and groups in our target environment. However,
because we have not enabled application security, WebSphere will not
authenticate users trying to access the application. As a result, we do not
need to map the roles to users and groups.

Click Next.

18.Step 14: Ensure all unprotected 2.x methods have the correct level of
protection.

By default, EJB methods are unprotected. On this window, you can elect to
refuse all calls to unprotected methods, or specify which methods you want to
exclude.

Again, because we have not enabled J2EE security, WebSphere will not
authenticate users trying to access the EJBs.

Click Next.

19.Step 15: Summary.

The Summary window gives an overview of application deployment settings.
If those settings are fine, click Finish to deploy the application.

20.Save the configuration.

If you are working in a distributed server environment, make sure you
synchronize the changes with the nodes so they application is propagated to
the target application server (s).

21.If you mapped the Web modules to a Web server, make sure the Web server
plug-in is regenerated and propagated to the Web server. For a quick refresh,
restart the Web server.
918 WebSphere Application Server V6.1: System Management and Configuration

Deployment is now complete. You can now launch the Plants by WebSphere
application by pointing your browser to:

http://www.plantsbywebsphere.com:9081/PlantsByWebSphere

Make sure that the host name is one of the names you added to the
plantsbywebsphere_host definition. See 14.1.5, “Creating the virtual host for IBM
HTTP Server and Apache” on page 902.

Because the DB2 PLANTS database is now empty, it must be populated with
data before the application will work. An administrative servlet is supplied for that
purpose.

1. Click the HELP link in the upper right corner of the page, or go directly to
http://www.plantsbywebsphere.com:9081/PlantsByWebSphere/help.jsp.

2. Select the Logging option and click Save Setting. This enables log
messages in the application.

3. Click the (Re)-populate database link. This will load images and product
descriptions from the EAR file and store them in the database.

After the database has been populated, you can test the application.

14.3.1 Using a bindings file
If generating default bindings during deployment, default names suitable for most
applications are used. However, these defaults do not work if:

� You want to explicitly control the global JNDI names of one or more EJB files.

� You need tighter control of data source bindings for container-managed
persistence (CMP) beans. That is, you have multiple data sources and need
more than one global data source.

� You must map resource references to global resource JNDI names that are
different from the java:comp/env name.

In such cases, you can use a specific bindings file to customize the bindings
created.

To use a bindings file when installing an application, load it by clicking Browse
next to the Specific bindings file option. When using this file, only specify
bindings that differ from the defaults, not the full bindings.
 Chapter 14. Deploying applications 919

Example 14-6 is an example showing a bindings file used to change the JNDI
name of an EJB.

Example 14-6 Using a bindings file to change the JNDI of an EJB

<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>helloEjb.jar</jar-name>
<!-- this name must match the module name in the .ear file -->
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>HelloEjb</ejb-name>
<!-- this must match the <ejb-name> entry in the EJB jar DD -->
 <jndi-name>com/acme/ejb/HelloHome</jndi-name>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

14.4 Deploying application clients
To run a Java-based client/server application, the client application executes in a
client container of some kind. You might, for example, use a graphical Swing
application that calls EJBs on an application server. WebSphere Application
Server V6 supports the following five types of application client environments:

� J2EE application client

This client uses services provided by the J2EE client container.

This client is a Java application program that accesses EJBs, JDBC
databases, and JMS queues. The J2EE application client program runs on
client machines. This program allows the same Java programming model as
other Java programs. However, the J2EE application client depends on the
application client run time to configure its execution environment, and it uses
the JNDI name space to access resources, the same as you would in a
normal server application (like a servlet).

The J2EE application client brings the J2EE programming model to the client,
and provides:

– XML deployment descriptors
920 WebSphere Application Server V6.1: System Management and Configuration

– J2EE naming (java:comp/env), including EJB references and resource
references

The J2EE application client is launched using the launchClient script, which
sets up the environment with the necessary classpaths, and so on, for you.

� Thin application client

This client does not use services provided by the J2EE client container.

This client provides a lightweight Java client programming model and is best
suited for use in situations where a Java client application exists, but the
application must be enhanced to make use of EJBs. It can also be used
where the client application requires a thinner, more lightweight environment
than the one offered by the J2EE application client. The Thin application client
includes the IBM JDK. When launching the Thin application client, you must
set up the correct classpaths yourself and make sure that the required
libraries for your application and the WebSphere libraries are included.

� Pluggable application client

This client does not use services provided by the J2EE Client Container.

This client is similar to the Thin application client, but does not include a JVM.
The user is required to provide a JVM. It can also use the Sun JDK instead of
the IBM JDK.

� Applet application client

In the Applet client model, a Java applet embedded in an HTML document
executes in a Web browser. With this type of client, the user accesses an
enterprise bean in the application server through the Java applet in the HTML
document.

� ActiveX® to EJB Bridge application client

The ActiveX application client allows ActiveX programs to access enterprise
beans through a set of ActiveX automation objects. The ActiveX application
client uses the Java Native Interface (JNI) architecture to programmatically
access the Java virtual machine (JVM) API. Therefore, the JVM code exists in
the same process space as the ActiveX application (Visual Basic®, VBScript,
or Active Server Pages files) and remains attached to the process until that
process terminates.

The capabilities of the different application clients are shown in Table 14-2.
 Chapter 14. Deploying applications 921

Table 14-2 Application client features comparison

Available functions J2EE
client

Thin
client

Plugg-
able
client

Applet
client

ActiveX
client

Provides all the benefits of a
J2EE platform.

Yes No No No Yes

Portable across all J2EE
platforms.

Yes No No No No

Provides the necessary run
time support for
communication between a
client and a server.

Yes Yes Yes Yes Yes

Supports the use of
nicknames in the
deployment descriptor files.

Yes No No No Yes

Supports use of the
RMI-IIOP protocol.

Yes Yes Yes Yes Yes

Browser-based application. No No No Yes No

Enables development of
client applications that can
access enterprise bean
references and CORBA
object references.

Yes Yes Yes Yes Yes

Enables the initialization of
the client application run
time environment.

Yes No No No Yes

Supports security
authentication to enterprise
beans.

Yes Yes Yes Limited Yes

Supports security
authentication to local
resources.

Yes No No No Yes

Requires distribution of
application to client
machines.

Yes Yes Yes No Yes
922 WebSphere Application Server V6.1: System Management and Configuration

Install the application client environments from the WebSphere installation
windows by selecting the Launch the installation wizard for WebSphere
Application Clients option. The installation package contains the following
installable components:

� IBM Java Runtime Environment (JRE™), or an optional full Software
Development Kit

� WebSphere Application Server run time for J2EE application client
applications, or Thin application client applications

� An ActiveX to EJB Bridge run time for ActiveX to EJB Bridge application client
applications (only for Windows)

� IBM plug-in for Java platforms for Applet client applications (Windows only)

Enables access to
enterprise beans and other
Java classes through Visual
Basic, VBScript, and Active
Server Pages (ASP) code.

No No No No Yes

Provides a lightweight client
suitable for download.

No Yes Yes Yes No

Enables access JNDI APIs
for enterprise bean
resolution.

Yes Yes Yes Yes Yes

Runs on client machines
that use the Sun Java
Runtime Environment.

No No Yes No No

Supports CORBA services
(using CORBA services can
render the application client
code nonportable).

Yes No No No No

Note: The J2EE client is automatically installed as part of a full WebSphere
install. In other words, if you will run the client application on a machine that
already has WebSphere installed, you do not need to install the WebSphere
J2EE client on top.

Available functions J2EE
client

Thin
client

Plugg-
able
client

Applet
client

ActiveX
client
 Chapter 14. Deploying applications 923

14.4.1 Defining application client bindings
The Plants by WebSphere sample application does not provide any client
application. For the purpose of discussing the client container, we will therefore
use the WebSphere Bank sample application that was shipped with WebSphere
Application Server V6.0 but has been removed in V6.1.

WebSphere Bank provides four client applications: the GetAccounts,
FindAccounts, TransferWS and TransferJMS clients. The various client
applications demonstrate the capabilities of the WebSphere Bank sample
application.

For an application client to be able to access resources, such as EJBs provided
by a J2EE server application, the proper bindings must be set up. You need to
specify the complete naming structure to reach the server where the EJBs are
deployed. For example, the machine where we deployed the application for
testing has the Network Deployment version installed. The WebSphere Bank
application is running in the WebSphereBank application server on node
ITSONode1.

Therefore, the ejb/Bank/Customer EJB reference can be bound to:

cell/nodes/ITSONode1/servers/WebSphereBankServer/ejb/Bank/Customer

If you have created a cluster of application servers, use:

cell/clusters/<clusterName>/ejb/Bank/Customer

You will also need to change the provider URL, according to the target server. If
you are running in a single server environment you can simply use:

ejb/Bank/Customer

When you have configured the proper bindings for the resources, you must
export the EAR file and copy it to the client machine. Although you do not need
the complete contents of the EAR file to run the application client, for example,
the Web modules, it is better to keep a single EAR file. This is mainly for
maintenance purposes.
924 WebSphere Application Server V6.1: System Management and Configuration

14.4.2 Launching the J2EE client
A J2EE client application needs a container to run in. In this example, we will use
the J2EE application client container. This container can be started using the
launchClient program in the <<was_home>>/bin directory. The launchClient
program has the following syntax:

Usage: launchClient [-profileName pName | -JVMOptions options | -help | -?]
<userapp> [-CC<name>=<value>] [app args]

The elements of syntax are:

-profileName This option defines the profile of the Application Server
process in a multi-profile installation. The -profileName
option is not required for running in a single profile
environment or in an Application Clients installation. The
default is default_profile.

-JVMOptions This is a valid Java standard or nonstandard option string.
Insert quotation marks around the option string.

-help, -? Print the usage information.

<userapp.ear> Type the path/name of the .ear file containing the client
application.

The -CC properties are for use by the Application Client run time. There are
numerous parameters available and because of this we only describe the more
commonly used ones. For full explanation of all parameters, execute
launchClient -help.

-CCverbose Use this option with <true | false> to display additional
informational messages. The default is false.

-CCclasspath This property is a classpath value. When an application is
launched, the system classpath is not used. If you need to
access classes that are not in the EAR file or part of the
resource classpaths, specify the appropriate classpath
here. Multiple paths can be concatenated.

-CCjar This is the name of the client JAR file within the EAR file
that contains the application you want to launch. This
argument is only necessary when you have multiple client
JAR files in the EAR file.

-CCBootstrapHost This option is the name of the host server you want to
connect to initially. The format is
your.server.ofchoice.com.

-CCBootstrapPort This option is the server port number. If not specified, the
WebSphere default value (2809) is used.
 Chapter 14. Deploying applications 925

-CCproviderURL This option provides bootstrap server information that the
initial context factory can use to obtain an initial context.
WebSphere Application Server initial context factory can
use either a CORBA object URL or an IIOP URL. CORBA
object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. This value can contain
more than one bootstrap server address. This feature can
be used when attempting to obtain an initial context from
a server cluster. In the URL, you can specify bootstrap
server addresses for all servers in the cluster. The
operation will succeed if at least one of the servers is
running, eliminating a single point of failure. The address
list does not process in a particular order. For naming
operations, this value overrides the -CCBootstrapHost
and -CCBootstrapPort parameters. An example of a
CORBA object URL specifying multiple systems is:
-CCproviderURL=corbaloc:iiop:myserver.mycompany.com
:9810,:mybackupserver.mycompany.com:2809

-CCtrace Use this option with <true|false> to have WebSphere write
debug trace information to a file. The value true is
equivalent to a trace string value of com.*=all=enabled.
Instead of the value true you can specify a trace string, for
example, -CCtrace=com.ibm.ws.client.*=all=enabled.
Multiple trace strings can be specified by separating them
with a colon (:). You might need this information when
reporting a problem to IBM Service. The default is false.

-CCtracefile This option is the name of the file to which to write trace
information. The default is to output to the console.

-CCpropfile This option is the name of a properties file containing
launchClient properties. In the file, specify the properties
without the -CC prefix. For example: verbose=true.

The app args are for use by the client application and are ignored by WebSphere.

To start the WebSphere Bank GetAccounts client using the launchClient
command, execute the command shown in Figure 14-7.
926 WebSphere Application Server V6.1: System Management and Configuration

Example 14-7 Launching WebSphere Bank application client

C:\WebSphere\AppServer\profiles\AppSrv01\bin>launchClient.bat
c:\WebSphereBankClient.ear -CCBootstrapPort=2809 -CCjar=GetAccounts.jar 100

IBM WebSphere Application Server, Release 6.1
J2EE Application Client Tool
Copyright IBM Corp., 1997-2006
WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0035I: Initialization of the J2EE Application Client Environment has
completed.
WSCL0014I: Invoking the Application Client class
com.ibm.websphere.samples.bank.client.GetAccounts
Get the account numbers owned by a certain customer

Getting the customer home...

Done....

Finding the customer....
Done....
Account Number: 101
All done!

Finding the customer from invoke
Account Number: 101
All done!

Get accounts owned by customer from invoke...
Account Number: 101
Account balance: 200.0
Get number of customer accounts from invoke...
Account :1
All done!

Because the WebSphereBank EAR file contains multiple client applications (JAR
files), the -CCjar option must be used to specify which client application to
launch.

The WebSphere Bank GetAccounts client application is a text-mode application
that simply displays the accounts for a certain customer number 100 in our
example.
 Chapter 14. Deploying applications 927

14.5 Updating applications
WebSphere Application Server has features that allow applications to be updated
and restarted at a fine-grained level. It is possible to update only parts of an
application or module and only the necessary parts are restarted. You can:

� Replace an entire application (.ear file).

� Replace, add, or remove a single module (.war, EJB .jar, or connector .rar
file).

� Replace, add, or remove a single file.

� Replace, add and remove multiple files by uploading a compressed file
describing the actions to take.

If the application is running while being updated, WebSphere Application Server
automatically stops the application, or only its affected components, updates the
application, and restarts the application or components.

When updating an application, only the portion of the application code that
changed needs to be presented to the system. The application management
logic calculates the minimum actions that the system needs to execute in order to
update the application. Under certain circumstances, the update can occur
without stopping any portion of the running application.

WebSphere Application Server also has support for managing applications in a
cluster for continuous availability. The action, Rollout Update, sequentially
updates an application installed on multiple cluster members across a cluster.
After you update an application's files or configuration, use the Rollout Update
option to install the application's updated files or configuration on all cluster
members of a cluster on which the application is installed.

Rollout Update does the following for each cluster member in sequence:

1. Saves the updated application configuration.
2. Stops all cluster members on a given node.
3. Updates the application on the node by synchronizing the configuration.
4. Restarts the stopped cluster members on that node.

This action updates an application on multiple cluster members while providing
continuous availability of the application.

14.5.1 Replacing an entire application EAR file
To replace a full EAR with a newer version, do the following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.
928 WebSphere Application Server V6.1: System Management and Configuration

2. On the Preparing for the application installation window, select the Replace
the entire application option.

3. Select either the Local file system or Remote file system option. Click the
Browse button to select the updated EAR file. Click Next.

4. Proceed through the remaining windows and make any changes necessary.
For information about the windows, see “Deploying the application” on
page 913. On the Summary window, click Finish.

5. When the application has been updated in the Master repository, select the
Save link.

6. If you are working in a distributed server environment, make sure that you
also synchronize the changes with the nodes.

7. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed, or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

14.5.2 Replacing or adding an application module
To replace only a module, such as an EJB or Web module of an application, do
the following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation window, select the Replace
or add a single module option.

3. In the Specify the path beginning with the installed application archive file...
field, enter the relative path to the module to replace. For example, if you were
to replace the HelloWeb module, enter HelloWeb. If you enter a path or file
that does not exist in the EAR file, it will be added.

4. Select either the Local file system or Remote file system option and click
the Browse button to select the updated module.

5. For Web modules, also enter the context root (for example, HelloWeb) in the
Context root field.

6. Click Next.

Note: It may take a few seconds for the WebSphere run time to pick up the
changes and restart the application as necessary. If your changes do not
seem to have effect, wait and try again. You can also look at the
SystemOut.log file for the application server to see when it has restarted the
application.
 Chapter 14. Deploying applications 929

7. Proceed through the remaining windows and make any necessary changes.
For information about the windows, see “Deploying the application” on
page 913. On the Summary window, click Finish.

8. When the application has been updated in the Master repository, select the
Save link.

9. If you are working in a distributed server environment, make sure that you
also synchronize the changes with the nodes.

10.If the application update changes the set of URLs handled by the application
(servlet mappings added, removed, or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

14.5.3 Replacing or adding single files in an application or module
To replace a single file, such as a GIF image or a properties file in an application
or module, do the following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation window, select the Replace
or add a single file option.

3. In the Relative path to file field, enter the relative path to the file to replace in
the EAR file. For example, if you were to replace the logo.gif in the images
diectory of the HelloWeb.war Web module, you would enter
HelloWeb.war/images/logo.gif. If you enter a path or file that does not exist in
the EAR file, it will be added.

4. Select either the Local file system or Remote file system option and click
the Browse button to locate the updated file. Click Next.

5. On the Updating Application window, click OK.

6. When the application has been updated in the Master repository, select the
Save link.

Note: If you are adding a module, make sure to select the correct target
server for the module in the Map modules to servers step.

Note: Modules can also be managed using the Manage Modules page. Select
Applications → Enterprise Applications and click the link for the
application. Then click the Manage Modules link in the Modules section.
Select the module to modify and then click the Remove, Update, or Remove
File buttons.
930 WebSphere Application Server V6.1: System Management and Configuration

7. If you are working in a distributed server environment, make sure that you
also synchronize the changes with the nodes.

14.5.4 Removing application content
Files can also easily be removed either from an EAR file or from a module in an
EAR file.

Removing files from an EAR file
To remove a file from an EAR file, do the following:

1. Select Applications → Enterprise Applications. Select the application to
remove the file from and click the Remove File button.

2. In the Remove file dialog box, select the file to be removed and click OK.

3. Save the configuration.

Removing files from a module
To remove a file from a module, do the following:

1. Select Applications → Enterprise Applications and click the link for the
application to which the module belongs.

2. Click the Manage Modules link under the Modules section.

3. Select the module to remove the file from and click the Remove File button.

4. In the Remove a file from a module dialog, select the file to be removed and
click OK.

5. Save the configuration.

14.5.5 Performing multiple updates to an application or module
Multiple updates to an application and its modules can be packaged in a
compressed file, .zip, or .gzip format, and uploaded to WebSphere Application
Server. The uploaded file is analyzed and the necessary actions to update the
application are taken.

Depending on the contents of the compressed file, this method to update an
application can replace files in, add new files to, and delete files from the installed
application all in one single administrative action. Each entry in the compressed
file is treated as a single file, and the path of the file from the root of the
compressed file is treated as the relative path of the file in the installed
application.

� To replace a file, a file in the compressed file must have the same relative
path as the file to be updated in the installed application.
 Chapter 14. Deploying applications 931

� To add a new file to the installed application, a file in the compressed file must
have a different relative path than the files in the installed application.

� To remove a file from the installed application, specify metadata in the
compressed file using a file named META-INF/ibm-partialapp-delete.props at
any archive scope. The ibm-partialapp-delete.props file must be an ASCII file
that lists files to be deleted in that archive with one entry for each line. The
entry can contain a string pattern, such as a regular expression that identifies
multiple files. The file paths for the files to be deleted must be relative to the
archive path that has the META-INF/ibm-partialapp-delete.props file.

� To delete a file from the EAR file (not a module), include a
META-INF/ibm-partialapp-delete.props file in the root of the compressed file.
In the .props file, list the files to be deleted. File paths are relative to the root
of the EAR file.

For example, to delete a file named docs/readme.txt from the root of the
HelloApp.ear file, include the line docs/readme.txt in the
META-INF/ibm-partialapp-delete.props file in the compressed file.

� To delete a file from a module in the EAR, include a
module_uri/META-INF/ibm-partialapp-delete.props file in the compressed file.
The module_uri part is the name of the module, such as HelloWeb.war.

For example, to delete images/logo.gif from the HelloWeb.war module,
include the line images/logo.gif in the
HelloWeb.war/META-INF/ibm-partialapp-delete.props file in the compressed
file.

� Multiple files can be deleted by specifying each file on its own line in the
metadata .props file.

Regular expressions can also be used to target multiple files. For example, to
delete all JavaServer Pages (.jsp files) from the HelloWeb.war file, include the
line .*jsp in the HelloWeb.war/META-INF/ibm-partialapp-delete.props file. The
line uses a regular expression, .*jsp, to identify all .jsp files in the HelloWeb.war
module.

As an example, assume we have prepared the compressed HelloApp_update.zip
file shown in Figure 14-10.
932 WebSphere Application Server V6.1: System Management and Configuration

Figure 14-10 HelloApp_update.zip compressed file

The META-INF/ibm-partialapp-delete.props file contains the following line:

docs/readme.txt

The HelloWeb.war/META-INF/ibm-partialapp-delete.props contains the following
lines:

images/logo.gif

When performing the partial application update using the compressed file,
WebSphere does the following:

� Adds the log4j.jar file to the root of the EAR.

� Updates the entire HelloEJB.jar module.

� Deletes the docs/readme.txt file (if it exists) from the EAR file, but not from
any modules.

� Adds the images/newlogo.jpg file to the HelloWeb.war module.

� Updates the HelloServlet.class file in the
WEB-INF/classes/com/itso/wrd/servlets directory of the HelloWeb.war
module.

� Deletes the images/logo.gif file from the HelloWeb.war module.
 Chapter 14. Deploying applications 933

To perform the actions specified in the HelloWeb_updated.zip file, do the
following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation window, select the Partial
Application option.

3. Select either the Local file system or Remote file system option and click
the Browse button to select the compressed ZIP file with the modifications
you have created. Click Next.

4. On the Updating Application window, click OK.

5. When the application has been updated in the Master repository, select the
Save To Master Configuration link.

6. If in a distributed server environment, make sure the Synchronize changes
with Nodes option is selected so that the application is distributed to all
nodes. Click the Save button. The application is distributed to the nodes,
updated, and restarted as necessary

7. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

14.5.6 Rolling out application updates to a cluster
The new Rollout Update feature allows you to easily roll out a new version of an
application, or part of an application using the techniques described previously,
to a cluster. The Rollout Update feature takes care of stopping the cluster
members, distributing the new application, synchronizing the configuration, and
restarting the cluster members. The operation is done sequentially over all
cluster members in order to keep the application continuously available.

When stopping and starting the cluster members, the Rollout Update feature
works on node level, so all cluster members on a node are stopped, updated,
and then restarted, before the process continues to the next node.

Because the Web server plug-in module is not able to detect that an individual
application on an application server is unavailable, the Rollout Update feature
always restarts the whole application server hosting the application. Because of
this, if HTTP session data is critical to your application, it should either be
persisted to database or replicated to other cluster members using the
memory-to-memory replication feature.

The order in which the nodes are processed and the cluster members are
restarted is the order in which they are read from the cell configuration repository.
934 WebSphere Application Server V6.1: System Management and Configuration

There is no way to tell the Rollout Update feature to process the nodes and
cluster members in any particular order.

Assume we have an environment with two nodes, ITSONode1 and ITSONode2,
and a cluster called HelloCluster, which has one cluster member on each node
(HelloServer1 on ITSONode1 and HelloServer2 on ITSONode2). Assume we
have an application called HelloApp deployed and running on the cluster. To
update this application using the Rollout Update feature we would do the
following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation window, select the
appropriate action depending on the type of update. In this example, we will
update the entire application EAR to a new version, so we select the Replace
the entire application option.

3. Select either the Local file system or Remote file system option and click
the Browse button to select the updated EAR file. Click Next.

4. Proceed through the remaining windows and make any changes necessary.
For information about the windows, see “Deploying the application” on
page 913. On the Summary window, click Finish.
 Chapter 14. Deploying applications 935

5. When the application has been updated in the master repository, the status
window shown in Figure 14-11 on page 936 is displayed.

Figure 14-11 Preparing for application rollout

You then have two options to start the rollout action:

– Click the Rollout Update link.

– Click the Manage Applications link and on the Enterprise Applications
window, select the application and click the Rollout Update button.

Note: Do not click the Save to Master Configuration link or otherwise save
the configuration yourself. The Rollout Update will do that for you. If you
save the configuration yourself, the rollout update action will be canceled
and it will be handled as a normal application update.
936 WebSphere Application Server V6.1: System Management and Configuration

During the rollout, the window in Figure 14-12 on page 937 is displayed in the
status window.

Figure 14-12 Rolling out an application

For each node, the cluster members are stopped, the application is
distributed, and they are restarted. When the rollout has completed (the last
message says “The application rollout succeeded”, click Continue.

6. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed, or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

Note: The automatic file synchronization of the node agent is temporarily
disabled during the rollout process and then re-enabled afterwards, if it was
previously enabled. The Rollout Update feature works regardless of the
automatic file synchronization setting. However, in production systems, the
automatic synchronization is often disabled anyway to give the administrator
greater control over exactly when changes made to the cell configuration are
distributed to the nodes.
 Chapter 14. Deploying applications 937

Although the Rollout Update feature makes it very easy to roll out an application
to a cluster while keeping the application continuously available, make sure that
your application can handle the roll out.

For example, assume you have version 1.0 of an application running in a cluster
consisting of two application servers, server1 and server2, and that HTTP
session data is persisted to a database. When you roll out version 2.0 of the
application and server1 is stopped, the Web server plug-in redirects the users on
server1 to server2. Then, when server1 is started again, bringing up version 2.0
of the application, the plug-in will start distributing requests to server1 again.
Now, if the application update incurred a change in the interface of any class
stored in the HTTP session, when server1 tries to get these session objects from
the database, it might run into a deserialization or class cast exception,
preventing the application from working properly.

Another situation to consider is when the database structure changes between
application versions, as when tables or column names change name or content.
In that case, the whole application might need to be stopped and the database
migrated before the new version can be deployed. The Rollout Update feature
would not be suitable in that kind of scenario.

So it is very important to understand the changes made to your application
before rolling it out.

14.5.7 Hot deployment and dynamic reloading
Hot deployment and dynamic reloading characterize how application updates are
handled when updates to the applications are made by directly manipulating the
files on the server. In either case, updates do not require a server restart, though
they might require an application restart:

� Hot deployment of new components

Hot deployment of new components is the process of adding new
components, such as WAR files, EJB JAR files, EJBs, servlets, and JSP files
to a running application server without having to stop and then restart the
application server.

However, in most cases, such changes require the application itself to be
restarted, so that the application server run time reloads the application and
its changes.
938 WebSphere Application Server V6.1: System Management and Configuration

� Dynamic reloading of existing components

Dynamic reloading of existing components is the ability to change an existing
component without the need to restart the application server for the change to
take effect. Dynamic reloading can involve changes to the:

– Implementation of an application component, such as changing the
implementation of a servlet

– Settings of the application, such as changing the deployment descriptor for
a Web module

To edit the files manually, locate the binaries in use by the server. See
“Repository files used for application execution” on page 44. Although the
application files can be manually edited on one or more of the nodes, these
changes will be overwritten the next time the node synchronizes its configuration
with the deployment manager. Therefore, we recommend that manual editing of
an application’s files should only be performed in the master repository, located
on the deployment manager machine.

There are three settings that affect dynamic reload:

� Reload classes when application files are updated

In order for application files to be reloaded automatically after an update,
Reload classes when application files are updated must be enabled and the
Polling interval for updated files must be greater than 0.

Select Applications → Enterprise Applications, and click the link for the
application. In the Detail properties section, click the Class loading and
update detection link.

� Application Server class loader policy

The application server’s class loader policy should be set to Multiple. If it is set
to Single, the application server will need to be restarted after an application
update.

Select Servers → Application Servers, and click the Server link. The
setting is found in the General Properties section.

� JSP Reload options for Web modules

A Web container reloads a Web module only when this setting is enabled.

Select Applications → Enterprise Applications, and click the link for the
application. In the Web Module Properties section, click the JSP reload

Note: Unless you are familiar with updating applications by directly
manipulating the server files, it might be better to use the administrative
console Update wizard.
 Chapter 14. Deploying applications 939

options for web modules link, and then select the JSP enable class
reloading option and enter a polling interval.

For more information about using hot deployment and dynamic reload, see the
Updating applications and Hot deployment and dynamic reloading topics in the
Information Center.
940 WebSphere Application Server V6.1: System Management and Configuration

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 944. Note that some of the documents referenced here may
be available in softcopy only.

� IBM WebSphere Application Server V5.1 System Management and
Configuration, SG24-6195

� Planning and Designing for WebSphere Application Server V6.1, SG24-7305

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6: High Availability Solutions, REDP-3971

� WebSphere Application Server V6 Migration Guide, SG24-6369

� WebSphere Application Server V6 Problem Determination for Distributed
Platforms, SG24-6798

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server V6 System Management & Configuration
Handbook, SG24-6451

� WebSphere Application Server V6.1 Security Handbook, SG24-6316

� WebSphere Business Integration Server Foundation V5.1 Handbook,
SG24-6318

� WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864
© Copyright IBM Corp. 2006. All rights reserved. 941

Other publications
These publications are also relevant as further information sources:

� Giotta, et al, Professional JMS, Wrox Press Inc., 2001, ISBN 1861004931

� Gray, et al, Transaction Processing: Concepts and Techniques, Elsevier
Science & Technology Books, 1992, ISBN 1558601902

� Marinescu, et al, EJB Design Patterns, Wiley, John & Sons, Incorporated,
2002, ISBN 0471208310

� Monson-Haefel, et all, Enterprise JavaBeans, Fourth Edition, O’Reilly Media,
Incorporated, 2004, ISBN 059600530X

� Monson-Haefel, et al, Java Message Service, O’Reilly Media, Incorporated,
2000, ISBN 0596000685

� Yusuf, Enterprise Messaging Using JMS and WebSphere, Pearson
Education, 2004, ISBN 0131468634

Online resources
These Web sites are also relevant as further information sources:

� Enterprise JavaBeans Technology

http://java.sun.com/products/ejb/

� IBM alphaWorks emerging technologies

http://www.alphaworks.ibm.com

� IBM developerWorks

http://www.ibm.com/developerworks/

� IBM HTTP Server documentation library

http://www.ibm.com/software/webservers/httpservers/library/

� IBM WebSphere Developer Technical Journal

http://www-106.ibm.com/developerworks/websphere/techjournal/

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/

� Java 2 Platform Enterprise Edition, V1.4 API Specification, found at:

http://java.sun.com/j2ee/1.4/docs/api/index.html

� Java 2 Platform Enterprise Edition Specification, V1.4, found at:

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
942 WebSphere Application Server V6.1: System Management and Configuration

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/
http://www-106.ibm.com/developerworks/websphere/techjournal/
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/connector/
http://www.alphaworks.ibm.com
http://www.alphaworks.ibm.com
http://www.ibm.com/developerworks/
http://www.ibm.com/software/webservers/httpservers/library/

� Java Community Process home

http://www.jcp.org/en/jsr/all

� JavaMail API Specification

http://java.sun.com/products/javamail/reference/api/index.html

� Java Message Service (JMS)

http://java.sun.com/products/jms

� JDBC Technology

http://java.sun.com/products/jdbc/index.html

� MBeanInspector for WebSphere Application Server, found at:

http://www.alphaworks.ibm.com/tech/mbeaninspector

� Persistent Client State HTTP Cookies, found at:

http://home.netscape.com/newsref/std/cookie_spec.html

� Sample Scripts for WebSphere Application Server Versions 5 and 6, found at:

http://www-106.ibm.com/developerworks/websphere/library/samples/Samp
leScripts.html

� Service Data Objects, found at:

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdo
wmt/Commonj-SDO-Specification-v1.0.doc

� Tcl Developer Xchange

http://www.tcl.tk/

� WebSphere Application Server home page

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� WebSphere Application Server support (Fix Packs, fixes, and hints and tips)

http://www.ibm.com/software/webservers/appserv/support.html

� WebSphere Application Server system requirements

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.htm
l

� WebSphere MQ Using Java, found at:

http://www-306.ibm.com/software/integration/mqfamily/library/manuals
a/manuals/crosslatest.html
 Related publications 943

http://www.ibm.com/software/webservers/appserv/support.html
http://www.jcp.org/en/jsr/all
ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.alphaworks.ibm.com/tech/mbeaninspector
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.tcl.tk/
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/javamail/reference/api/index.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://java.sun.com/products/jms
http://home.netscape.com/newsref/std/cookie_spec.html

� WebSphere z/OS V6 -- WSC Sample ND Configuration, found at:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10065
3

� WebSphere for z/OS V6.1 - New Things Encountered During Configuration,
found at:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10078
1

� Worldwide WebSphere User Group

http://www.websphere.org

� XDoclet Attribute Oriented Programming

http://xdoclet.sourceforge.net/xdoclet/index.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
944 WebSphere Application Server V6.1: System Management and Configuration

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.websphere.org
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781
http://xdoclet.sourceforge.net/xdoclet/index.html

Index

Symbols
${DRIVER_PATH} 317
$AdminApp 258–259

edit 293
editInteractive 293
install 291
installInteractive 291
options 291
uninstall 292

$AdminConfig 257, 259, 265–266, 269
create 288, 294
getid 288
modify 288
parent 267
remove 291
save 288, 292

$AdminControl 257, 260, 279
queryNames 260–261
refreshRepositoryEpoch 36
stopServer 280

$AdminTask 258–259, 265, 273
createCluster 276
createSIBus 275
exportServer 247
exportWasprofile 248

$Help 258

A
access intent 860, 863, 865, 867

application profile 866
application profiles 197
tracing 871

access intent policies 860, 864
Activate at option 857
activation.jar 342
ActivationSpec JavaBean 426, 428, 430, 443, 446
Active Server Pages 921
ActiveX to EJB Bridge application client 921, 923
activity session service 198
addNode 86, 201, 204–206, 208, 210
adjunct process 113
admin_host 227
AdminApp 283–284
© Copyright IBM Corp. 2006. All rights reserved.
AdminConfig 259, 290, 296
AdminControl 259, 262, 284
administration services 164, 199
administrative console

deploying during profile creation 59, 68, 112
interrupted session 140
logging in 140
preferences 146
scope 148
securing 159
session timeout 142
starting 138–139

administrative console port 63, 71
administrative console secure port 63, 71
administrative security 59, 62, 68, 70, 75, 78, 140,
159–160

per resource instance 161
administrator role 161
AdminSecurityManager role 161
AdminServer 130
AdminService 27–28
AdminTask 259, 290, 296, 299
AffinityCookie 386
Aged Timeout 324–325
alias destination 549, 588, 640
ALL_AUTHENTICATED 790
Ant tasks 913
Apache 902
apachectl 377
applet application client 921
application

deploying 913
editing with wsadmin 293
exporting 233
finding the URL 238
installation 229, 231, 291
listing 283
multiple updates 931
preventing from starting 234
preventing startup 293
removing files 931
single file update 930
single module update 930
starting 179, 234
 945

starting order 234
starting with wsadmin 284
stopping 234
stopping with wsadmin 284
uninstalling 233
uninstalling with wsadmin 292
updating 928
viewing 235
viewing EJB modules 236

Application Build ID 915
Application class loader 799–800, 807
application class loader 796, 798–800, 802–804,
807–809, 814, 816, 820
application classloader policy 190
application client 9, 920

bindings 924
deployment 920
launching 925

application data repository 39
application module

updating 929
application profiling service 197
Application Resource Warning 917
application scoped resources 149
application security 159
application server

creating 171, 289, 896–897
customizing 188
logs and trace 898
modifying with wsadmin 294
removing 290
restarting 183
run time attributes 185
starting 178, 281
stopping 181, 183, 282

Application Server Facilities 421
application server name 108
application server profile 48–51, 55–56, 67, 91, 94,
97, 125–126, 139, 170–171, 178, 181, 243, 246,
254, 371
application server template 224
Application Server Toolkit 7, 9, 95, 97–98, 832,
838, 840, 846, 890, 895, 911, 914, 916
application.xml 43, 839
application-client.xml 839
applications

deployment
dynamic reload 873
hot deployment 873

managing 230
ARM 134
asynchronous beans 305
asynchronous messaging 401–402
attributes 263, 266, 269
authentication

component managed 361
component-managed 319, 339
container 362
container-managed 319
resource 361

authentication alias 629, 655, 894
auto reload 873
automatic file synchronization 937
Automatic Request Encoding enabled option 875
Automatic Response Encoding enabled option 875
automatic synchronization 33
autoRequestEncoding 875
autoResponseEncoding 875
averaging period 190

B
back-end ID 848, 853, 916
backupConfig 243–244
BBOCCINS 168
bean managed activity session 738
bean managed transaction 738–739
bean managed transactions 442
Bean Scripting Framework (BSF) 250
binding 842, 847

application client bindings 924
compound name 746
configured 742
corbaname 746
CorbaObjectNameSpaceBinding 762
data sources 846
EJB JNDI names 842
EJB references 844
EjbNameSpaceBinding 762
IndirectLookupNameSpaceBinding 762
name 743
overriding defaults 913
simple name 745
StringNameSpaceBinding 762

bindings connection 491–492
bindings file 919
BLOB 850, 867, 895
BMP 861, 863
946 WebSphere Application Server V6.1: System Management and Configuration

boot class path 163
bootstrap 757, 763–764, 766–767, 773–774, 776,
778, 782, 796
bootstrap class loader 796, 799
bootstrap endpoint 655
bootstrap server 521, 523, 534–535, 566, 582
BOOTSTRAP_ADDRESS 203
BootstrapBasicMessaging 566
bootstrapnoderoot 768
bootstrapped client 534
BootstrapSecureMessaging 566
bootstrapserverroot 768
BootstrapTunneledMessaging 566
BootstrapTunneledSecureMessaging 566
both mode 699–700
Built-in Mail Provider 342, 344
bus

including in federation 203
bus connector role 609, 620
bus member 541, 547, 550, 600, 602, 604, 610

adding to the service integration bus 631
bus security 619

C
cache 197, 694, 712, 728–729, 733, 855, 858

EJB 855, 857–858
cache ID 689–690
cache size 197
cached connection handles 469
cached handles 328, 340
cacheGroups 269
caching option 858
caching option A 854
caching option B 855
caching option C 856
Caching Proxy 6, 8
caching strategy 858
CCI 330
cci.jar 332
cell 31, 41, 50, 138
cell name 59, 78, 94, 107
cell persistent root 742, 748, 751, 753, 756, 763,
766–768, 772–773, 780–781

definition of 748
cell profile 96–97
cell root context 770
cellroot 768
central administration 50

central management 48
certificate 116
certificate authority 115
channel 194
character encoding 875
CICS 332
class loader 198–199, 796, 800, 802–803, 807,
811, 818

Java 2 class loaders 796
policies 804
WebSphere class loaders 800

class loader delegation 807
class loader order 807
class loader policies 880
class loader policy 804, 806
class loader tree 797
Class Loader Viewer 810–811, 816
class loader viewer service 200
class loading 163
class loading mode 190
class loading policy 804
class path 163
classloader policy 190
ClassNotFoundException 795, 802
classpath 839

JDBC provider 315
protocol provider 346
resource adapter 337
URL provider 352

clean 838, 853
cleanup interval 197
client connection 491–493
client mode 699
client/server replication 699
client-server topology 702, 707
CLOB 867
clone separator 396
Cloudscape 12, 306, 831, 848, 894
cluster 144, 171, 222, 228, 231, 544, 594, 596,
599–600, 607–608, 610, 729, 854, 856, 895, 916,
924, 928, 934, 937–938

add a server using wsadmin 298–299
adding messaging engines 642
create with wsadmin 296
creating 222
managing with wsadmin 285
message-driven beans 607
messaging engine 596, 602
messaging engines 529
 Index 947

restarting servers 183
starting 285
starting and stopping 226
stopping 285
viewing topology 226

cluster short name 173
cluster.xml 41
CMP 861, 863, 868–869, 917
CMP 2.0 enterprise bean 333
cmpConnectionFactory 333
collision detection 867
com.ibm.scripting.host 253
com.ibm.websphere.rsadapter 309
com.ibm.ws.rsadapter.cci 309
com.ibm.ws.rsadapter.jdbc 309
com.ibm.ws.rsadapter.spi 309
com.ibm.ws.scripting.connectionType 253–254
com.ibm.ws.scripting.defaultLang 253
com.ibm.ws.scripting.traceFile 253
com.ibm.ws.scripting.traceString 253
com.sun.jndi.ldap.LdapCtxFactory 745
command assistance 147, 300
Common Client Interface (CCI) 330
Common Object Request Broker Architecture
(CORBA) 744
communication channel 31
communication settings 199
completeObject 287
completeObjectName 262, 278, 281
component managed authentication 361
component-managed authentication 319, 339
component-managed authentication alias 496,
517, 631, 910
compound class loader 814
concurrency control 862, 864
concurrent message consumers 421
configuration ID 267
configuration reload 615, 618
configurator role 161
connected mode 254
connection factory 332–333, 408, 515, 523, 526,
597

bindings 914
CMP 320
data source 310
J2C 337–338
JCA 331
resource adapter 333
WebSphere MQ 492

connection handles 329
connection management 423
connection management contract 330
Connection object 307, 411
connection pool 732–733
connection pooling 305, 308, 322, 330
connection proximity 528, 530
Connection Timeout 323–324
ConnectionFactory object 411
ConnectionWaitTimeoutException 323–324
connectors

JMX 21
console

See administrative console
console page

preferences 150
container authorization type 848
container-managed activity session 738
container-managed authentication 319, 362
container-managed authentication alias 319
container-managed persistence 320

See also CMP
container-managed persistence (CMP) 830, 863
container-managed relationships (CMR) 830, 869
container-managed transaction 440, 738–739
container-manager persistence (CMP) 847
Content-Type header 875
context 743, 760
context root 233, 238–240, 853, 918, 929
control region 112–113
controller process 112–113
controller region 168
cookies 672, 676, 678–679, 681, 688
CORBA 763, 784, 788

naming service groups 792
naming service users 791
URL 763–764

corbaloc 742, 749, 752–753, 756–758, 764–765,
767, 769, 774, 776–777, 779–780, 784
corbaname 742, 745–746, 757–759, 761–762,
765, 773–774
core group 41, 164, 173, 200, 204, 207
core group policy 597, 644
CosNaming 743, 759, 761, 763, 766, 769, 784

CORBA 769
CORBA interface 744
distributed 759
INS 757
JNDI plug-in 766
948 WebSphere Application Server V6.1: System Management and Configuration

security 789
CosNaming service 757
CosNamingCreate 790
CosNamingDelete 790
CosNamingRead 790
CosNamingWrite 790
createApplicationServer 289
createClusterMember 298
createSubcontext 790
createUsingTemplate 299
CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRE
SS 203
CTRACE parmlib member 110
cursor management 860
custom profile 49, 51, 56, 78–79, 84, 86, 88, 126,
201
custom registry 6
custom services settings 164
custom user registry 117

D
daemon 53, 114, 168, 170
data centric 400
data replication service 698–699, 703
data source 306–308, 311, 326, 629, 831, 847,
881, 884, 888, 894, 904, 908–909, 917, 919

binding using the AAT 846
creating 311, 317
mapping to CMP beans 917
version 4 310
version 5 308

data source classes 307
data store 548, 568, 572, 627–628
DataAccessFunctionSet 309
database mapping 849, 916
database mapping editor 850
database persistence 694, 716
database reauthentication 328
Database servers 12
DataDirect Technologies JDBC Drivers for Web-
Sphere Application Server 9
datagram 404
DataSource object 306–307
DataStoreHelper 309
DB2 9, 306, 894
DB2UNIVERSAL_JDBC_DRIVER_PATH 904
DDL 231
debugging service 200

default application 112
default bindings 914, 919
default context 760
default data source mapping 917
default error page 874
default node group 67
default profile 51, 53, 58, 61, 68–69, 80, 370, 389
default template 89
default virtual host 191
default_host 227, 241–242
DefaultCoreGroup 164, 204
DefaultNodeGroup 219–220
defaultroot 768
defaults 268
delegation 807, 818
deleteClusterMember 299
delivery mode 552
deployer role 161
deployment code 911
deployment descriptor 31, 42–43, 332, 839–841,
854, 860

application 31
EJB module

IBM extensions 871
viewing 237

deployment manager 9, 17–18, 67, 71, 84
starting 128, 139, 166–167, 279
starting on z/OS 168
stopping 166, 168–169, 279
stopping on z/OS 170

deployment manager name 107
deployment manager node 67
deployment manager profile 49–50, 56, 60, 94, 97,
125–126, 162, 164, 166–167, 171
deployment.xml 43
Derby 306, 831, 848
DES 705
destination 401–402, 409, 549

configuration 518
destroySubcontext 790
DeveloperServer template 89, 897
development mode 189
Diagnostic Provider framework 166
Diagnostic Provider service 186
digest 32, 34, 36
directory browsing 874
Directory servers 12
dirty read 860
discovery address 29
 Index 949

distributed 162
distributed discovery 28
distributed process discovery 28
distributed server environment 16–17, 26, 41, 50,
55, 162, 369, 918, 929–931, 934
distributed transaction 421
Distribution and Consistency Services (DCS) 200
dmgr 138

server 751
starting 139

dmgr_profile_home 39
DNS domain 681
dumpNameSpace 199, 782
durable subscription 407, 430, 464, 468, 485
dynamic cache 198, 703
dynamic cache service 195
dynamic caching 137
dynamic reload 873, 938–939
DynamicCache object type 268–269

E
EAR file

changing manually 35
Edge Components 10
editInteractive 293
EIS 330–332, 334
eis/datasourcename_CMP 320
EJB

binding 745
EJB caching 854–856
EJB caching options 854
EJB client 771
EJB container 196, 855
EJB Deploy Tool 911
EJB deployment code 848, 852, 911
EJB home 742–743, 761, 769, 772–774
EJB module

deployment descriptor
IBM extensions 871

viewing 236
EJB prefix 914
EJB reference 842, 844–845, 917
EJB references

mapping to beans 917
EJB timer service 197
ejbCreate 437
EJBDeploy 911–913
ejbExtensions 860

EJBHome 716
ejb-jar.xml 839–840
EJBLocalObject 740
EjbNameSpaceBinding 772
EJBObject 716, 740
ejbRemove 436, 439
ejbRemove() 860
embedded configuration 915
embedded JMS Server 591
end of servlet service 709–710, 721–722
endpoint listener 200
Enhanced EAR 877–881, 890, 894, 901, 913, 915
Enterprise Application project 832
enterprise applications

extensions sharing session context 876
See also application

enterprise beans
isolation level attributes 862

Enterprise Edition management API 19
Enterprise Information Systems (EIS) 329
Enterprise JavaBeans

using EJBDeploy 911
Enterprise JavaBeans (EJB) 7
EntirePool 325
entity beans 842, 846, 854, 856, 858, 861, 863,
867, 869, 871, 904, 914

caching options 854
environment entry 163
environment variables 895

See also variables
epoch 32, 34, 37
EventProvider 25
EVERYONE 790–791
exception destination 579–580
Extensions class loader 796, 800
extensions class loader 796, 799–801, 803, 817
ExtJarClassLoader 826

F
factoryClassname 359, 361
fail back 598–599, 644, 646, 650
FailingConnectionOnly 325
failover 50, 137

hot 698
messaging engine 545

federate 49–51, 56, 79, 82, 86, 201, 370
application server 91, 97
node 86
950 WebSphere Application Server V6.1: System Management and Configuration

federated name space 742–743, 746, 748–750,
752–753, 756, 760, 770, 782
federated repository 6
file permission mode mask 163
file permissions 915
File Serving Enabled 386
File serving enabled option 873
file serving enabler 872
file serving servlet 813, 872
file servlet 872
file store 548, 568, 624, 626

backup and restore 572
deleting 571

file synchronization service 32–33, 213
file-based registry 6
file-based repository 162
file-based user registry 116–117
filter 150
findByPrimaryKey 865, 867, 869
finder method 866
fire and forget 404
First Steps 59, 66–67, 74–75, 77, 84, 182
foreign bus 555–556, 558–561, 581, 588, 590, 615,
650, 653, 655–656

service integration bus 651
WebSphere MQ 584

foreign bus link 650
foreign cell binding 770, 788
foreign destination 550, 666
frequency settings 709
full resynchronize 37

G
garbage collection 163, 729
GenPluginCfg 389–390
getAttribute 263
getConnection() 307, 310
getid 267
getLocalHost() 30
guided activities 144

H
Handle 716
heap size 163, 198, 729, 896
help 158
help portlet 147
heuristic transactions 188
HFS 53, 108, 110

high availability 137
messaging 601, 603, 607
messaging engine 594

high-volume Web sites 732
HLQ field 102
HomeHandle 716
host alias 227–228, 242, 889, 901
hosts file 903
hot deployment 873, 938
hot failover 698
htpasswd 379
HTTP session 701
HTTP session context 877
HTTP transport 191
HttpServletRequest

getHeader 689
getSession 679, 725

HttpServletResponse
encodeRedirectURL 682
encodeURL 682

HttpSession 686, 710–712, 715–716, 719–721,
723–725, 730, 739

getAttribute 721
getId 689
removeAttribute 719
setAttribute 719, 721

I
IBM DB2 12
IBM HTTP Server 6, 9, 380, 385, 894, 902

admin password 379
administration server port 379
NameVirtualHosts 903
remote administration 378
Startup errors 903
VirtualHosts 902

ibm-application-bnd.xmi 43
ibm-application-ext.xmi 43
ibm-ejb-access-bean.xmi 840
ibm-ejb-jar-bnd.xmi files 840
ibm-ejb-jar-ext.xmi 840
ibm-partialapp-delete.props 933
IBMSession

isOverFlow 686
sync 710–711

IIOP 757, 763, 765
URL 763

IMAP 342–343, 349
 Index 951

IMGBYTES 850
immediate stop 183
IMS 12
inactive pool cleanup interval 196
inbound user ID 653, 657
InboundBasicMessaging 563
InboundBasicMQLink 564
InboundSecureMessaging 564
InboundSecureMQLink 564, 587
index.html 903
indings 916
indirect foreign bus 591
indirect routing 557
IndirectLookupNameSpaceBinding 773
InetAddress.getLocalHost() 30
Informix 12, 306
initial context 742–743, 763–764, 766–768, 774,
782–783

default 772–773
initial context factory 763, 765, 769, 773–774, 782
initial root context 768
initial state 197
InitialContext 763, 768
install 291–292
installed optional packages 810
installedApps directory 44
installInteractive 291
interface centric 401
internal server classes 189
Interoperable Naming Service (INS) 742, 757
invoke 264, 280
invoker servlet 873
iscadmins role 162
ISO-8859-1 875
isolation level 860–862, 864
isolation level attributes 862
IsolationLevelChangeException 862
ISPF Customization Dialog 95–96, 122

J
J2C 332, 337
J2C authentication data 905
J2C connection factory 337
J2EE 1.4 19
J2EE application client 920
J2EE client 925
J2EE Connector Architecture (JCA) 7
J2EE security 918

J2SE 1.4 19
JAAS authentication alias 831, 881
JACC authorization provider 6
Jacl 250, 256, 282, 288, 292
Jacl2Jython 251
JAF 342
Java 2 Platform, Enterprise Edition (J2EE) 4
Java 2 security 43
Java 2 Standard Edition (J2SE) 4
Java 5 7, 832
Java Activation Framework (JAF) 342
Java and process management settings 163
Java API for XML Messaging (JAXM) 434
Java Authorization Contract for Containers (JACC)
6
java comp name 786
java comp/env 355
Java DataBase Connectivity 305

See also Resource providers JDBC
Java Management Extensions (JMX) 19
Java Native Interface (JNI) 307
java.net.URLConnection 351
java.net.URLStreamHandler 351, 353
JavaBeans Activation Framework (JAF) 342–343
JavaMail 342–344, 347–348
JavaServer Pages 874
javax.ejb.EJBHome 715
javax.ejb.EJBObject 715
javax.ejb.MessageDrivenBean 436
javax.ejb.MessageDrivenContext 439
javax.jms.JMSException 528
javax.jms.MessageListener 436
javax.mail.Session 831
javax.management.ObjectName 19
javax.naming.Context 715
javax.naming.directory 745
javax.naming.ldap 745
javax.naming.ObjectFactory 359
javax.servlet.http.HttpSessionActivationListener
724
javax.servlet.http.HttpSessionAttributeListener 724
javax.servlet.http.HttpSessionListener 724
javax.transaction.UserTransaction 715
javax.xml.messaging.ReqRespListener 437
JAXM 437
JCA 329, 331, 337
JCA CCI 308, 310
JCA connection manager 308, 330
JCA resource adapter 329
952 WebSphere Application Server V6.1: System Management and Configuration

JDBC driver 307, 904
JDBC driver type 2 887
JDBC isolation level 862
JDBC provider 306, 311, 317, 629, 831, 881–882,
894, 904, 906

configuring with wsadmin 299
creating 311

JMS activation specification 445–446, 452, 455,
482, 484–485, 488, 491, 514
JMS activation specification. See also Activation-
Spec JavaBean
JMS administered object 408, 427, 458, 461, 488
JMS client 520–521, 524, 526, 534, 565
JMS connection 411
JMS connection factory 408, 451, 462, 469–470
JMS destination 409, 428

generic JMS provider configuration 518
JMS domains 407
JMS exception 419
JMS message 413–414
JMS message selector 414
JMS provider 407, 451

default messaging 451, 455, 464, 476, 479,
484, 524
generic 457, 459, 515
WebSphere MQ 455, 491

JMS server 757
JMS session 412–413
JMX 16, 20, 254, 259

agent 21
architecture 19
connectors 21
enabled management application 21
ObjectName 26

JMX connector type 164, 202, 206
JNDI 743, 761, 769, 772–773, 775–777, 779, 781,
783–786, 790

APIs 748
caching 769
client 763
Context.list() 783
EJB Home 761
initial context 783
initial context factory 773–774
javax.naming package 745
javax.naming.provider.url 763
JMS 409–410
objects registered by dmgr server 751
over CosNaming 743

provider URL 742
service provider 773
using to federate name space 769

JNDI binding 745
JNDI name 842, 917
JNI 163, 803, 809, 921
JRas 899
JSESSIONID 679, 681, 689
JSP 194

finding the URL 238
JSP precompile 914
JSP reload 233
JSP reloading options 916
JspBatchCompiler 915
JSR 116 7, 190
JSR 116 specification 6
JSR 168 7, 195
JSR-003 19
JSR-77 19
JSR-88 893
JTA XAResource API 421
JVM log 899
Jython 117, 142, 250
Jython editor 301

L
launchClient 925
LDAP 117, 745, 769
LDAP registry 6
LDAP server 12
leaf binding 743
leaf node 797
leaf object 743
legacyRoot 752–753, 756, 772, 781
listener port 445, 447, 493, 511, 513–515
listTemplates 299
Load at option 857
Load Balancer 6, 8
load balancing 395
local home interface 844
local mode 254
location service daemon 134
Location Service Daemon (LSD) 30
log 165, 179, 183, 377

HTTP 369
startServer 167, 169, 180
stderr 163
stdout 163
 Index 953

stopServer.log 184
Web server 382

Log Analyzer 899
log and trace settings 165
log4j 808
logging 898
logs 895

profile creation 65, 74, 83
startServer.log 66, 75
SystemOut.log 66, 75

long name 107–108
loopback address 30
loose coupling 400
Lotus Domino Enterprise Server 12

M
mail 831
mail from 349
mail provider 343–344
mail store 349
mail transport 349
mail.jar 342
managed application server 170–171
managed node 97, 368–369, 371
managed objects 19, 25
managed process 16, 744, 748–749, 754
managed server 31
ManagedConnectionFactory 310, 332
manageprofiles 123, 126
manageprofiles script 96
map modules to servers 915
master configuration 17, 141
master repository 31

reset 35
save changes to 153, 157

match criteria 598, 648
Max Connections 323–324
maximum failed deliveries 579
maximum in-memory session count 673
Mbean extensions 164
MBean proxy 23
MBean server 21, 23
mbeanIdentifier 261
MBeans 19–21, 25, 27–28, 262, 278

server 20
TraceService 286

mbList 260
mediation 555

mediations authentication alias 609, 620
memory-to-memory replication 223, 673, 698–699,
703–704
message consumer 404, 412, 415, 418, 559, 596,
601
message consumer pattern 405
message endpoint 425, 430–432
message endpoint proxy 432
message listener 418, 420, 426, 441
message listener service 200
message order 450, 553
message point 550, 553
message producer 404, 412, 415, 552–553, 559,
596
message producer pattern 404
message selector 483
message store 548, 568
message-driven beans 200, 425, 430–431,
434–440, 442–449, 452, 482–486, 490, 511, 515,
552, 596, 605, 607

life cycle 437
MessageEndpointFactory 425
messaging client 590
messaging engine 526, 541, 543–544, 567, 594,
600, 605

data store 548, 572–574, 576, 622, 624, 627
failover 545
name 547
policy type 597
preferred server 643
secure communications 568

messaging provider 400, 402
meta-data 269
metadata 46
METHOD_READY state 859–860
Microsoft SQL Server 12
MIME 229, 342
Min Connections 324
missing transaction context 328, 340
monitor role 161
monitoring and tuning 145
monitoring policy 199
mount point 53
MQ client 593
multi-broker domain 704
multibroker.xml

 708
multicast 29–30
multicast address 29
954 WebSphere Application Server V6.1: System Management and Configuration

multi-row persistent session management 733
multi-row schema 717–718
multi-row session support 731
multithreaded access detection 328
multi-threaded garbage collection 729

N
name bindings 743
name server 742
name space 742–743, 745

federation 760, 769
name space bindings 149

configuring 785–786, 788
name space root 768
NameService 759, 765, 767–768
NameServiceCellPersistentRoot 767
NameServiceCellRoot 767
NameServiceNodeRoot 767
NameServiceServerRoot 753, 756, 765, 767
namestore.xml 42
naming clients 743
nanny process 130
native library path 316
native path 337
native_stderr.log 900
native_stdout.log 900
navigation tree 143
nboundBasicMQLink 587
nhanced 840
NoClassDefFoundError 799
node

adding 205
See also addNode

managing 201
removing 209

See also removeNode
rename 212
starting 215
stopping 129, 213, 215, 219
synchronization 213

See also syncNode
node agent 17, 23, 26, 29–31, 33, 41, 67, 84, 88,
94, 129, 138, 179, 205, 260, 281, 742

restarting 219
starting 85, 128, 179, 215, 280
stopping 85, 217, 280
stopping on z/OS 219

node agent name 108

node group 41, 67, 207
node group members 221
node name 59, 78–79
node persistent root 742, 748, 754, 756, 763

definition of 748
node repository

reset 36
non-durable subscription 408, 608
nonpersistent message reliability 466
nonpersistent MQ messages 663
non-repeatable read 861
non-serializable J2EE objects 715
Novell eDirectory 13

O
object pools 305
onMessage 437
operating systems 10
operations 264
operator role 161
optimistic 862
optimistic concurrency 863, 867
OptimisticPredicate 867
Oracle 12, 306, 864
ORB service 164, 198
ORB_LISTENER_ADDRESS 203
OSGi 801
outbound user ID 653, 657
OutboundBasicMQLink 567
OutboundSecureMQLink 567
overwrite session management 673

P
parallel start 189
parent 267
PARENT_FIRST 807, 812
PARENT_LAST 807, 818
PARMLIB 104
partition ID 689
partitioned queue 596
partitioned queues 595
passivated 859–860
passivation 196, 858
peer-to-peer mode 698
peer-to-peer replication 699
peer-to-peer topology 700–701, 707
peferred servers only 648
performance 137
 Index 955

performance monitoring 137
performance monitoring service 188, 199
periodic synchronization 33
persistence 846
persistence manager 309, 860, 865, 868, 871
Persistence Resource Adapter 309
persistent message reliability 466
persistent MQ messages 663
persistent partition 742
persistent session 685–686, 715
persistent session database 731
persistent store 684, 854
pessimistic 862
PessimisticUpdate 866
phantom read 861
pluggable application client 921
plug-in configuration file

automated propagation 393
automatic regeneration 391
propagating 392
regenerating 386, 389
viewing 388

plugin-cfg.xml 385
PMI 145, 199
pmt.bat 57
Point-to-Point domain 419
Point-to-Point messaging model 402–403, 451,
455, 559
poison message 450
policy type 597
POP3 342–343, 349
port

bootstrap 757, 760, 763, 778, 782
CELL_DISCOVERY_ADDRESS 29
NODE_DISCOVERY_ADDRESS 29
NODE_MULTICAST_DISCOVERY_ADDRESS
29
SSL 228

port settings 164
portlet 195
portlet applications 7
portlet container 195
portlet fragment caching 195
ports 60, 62, 68, 70, 78, 90, 113, 192, 199

generate unique 173, 224, 898
pre-compile JSP 915
prefer local 223
preferred server 597–598, 603, 643, 649
preferred servers only 598–599, 603, 644, 646

prepared transactions 188
Problems view 836, 838
process definition 198
process execution 163, 199
process group assignment 163
Process log 900
processor partitioning 163
PROCLIB 104
product information

viewing 188
profile

deleting 126
exporting and importing 246

profile creation wizard 57, 59–60, 67–68, 75, 80,
83, 123–125, 131, 171
profile directory 39
Profile Management Tool 57, 98
profile name 78–79
profile registry 123, 126
profile_home 39, 53
ProfileCreator 57
profiler support 198
profileRegistry.xml 123
profiles 48

about 48
creating 57, 95
types 50

programming model extensions 198, 305
properties file 38
property files 799
protocol adapters 21

JMX 21
protocol provider 342, 347
protocol switch rewriting 683
provider endpoint 522, 581, 597, 655
provider URL 761–762, 765

javax.naming.provider.url 763
proxy_host 227
pseudo-synchronous messaging 405
publication point 551
publish/subscribe broker profile 587
publish/subscribe domain 407, 419
Publish/Subscribe messaging model 402–403,
451, 455, 561
publish/subscribe profile 663
pull mode 404, 416
Purge Policy 325
push mode 404, 417
956 WebSphere Application Server V6.1: System Management and Configuration

Q
queryNames 260–261, 278, 284
queue destination 451, 472, 474, 476, 494,
501–502, 504, 549–550, 593

creating 637
queue manager 560, 566, 584–586, 588, 593, 656,
663
queue point 550
queue sharing group 592
QueueConnectionFactory object 410

R
ra.xml 332, 839
RACF 116, 118
random 395
Rational Application Developer 8–9
Rational Web Developer 9
read ahead 476
read committed 861
read uncommitted 861
read-ahead 868–869
read-ahead hint 869–870
read-only modifiers 860
Reap Time 324–325
Reap Timeout 325
receiver channel 586, 662–663
recycle 155
Redbooks Web site 944

Contact us xxii
referenceable 356, 358, 361
RegenerateKey 705
relational resource adapter 308–310
reliability 552
Reloading enabled option 873
remote home interface 844
Remote Request Dispatcher 915
remove() 860
removeNode 126, 209–211
renameNode 212
repeatable read 861
replica 699, 706
replication client 702
replication domain 700, 703–705
replication mode 707
replication server 702
replicationType 270
replicator entry 703–704
repository 17, 29–31, 39–41

application data 42
application execution 44
saving work to 157

request metrics 145
request routing 366
request-reply 404
request-reply pattern 405
reset 275
resource adapter 330–334, 337, 340, 425, 605, 802

deployment descriptor 426
installation 333
life cycle management 423
message inflow management 424
packaging 426
service integration bus 451, 454, 605
transaction inflow management 424
WebSphere Relational Resource Adapter 332
work management 423

Resource Adapter Archive (RAR) 332
resource environment provider 356–358
resource provider

J2C 329, 331, 333, 337
JavaMail 343
JDBC 311, 317
URL 351, 354–355

Configuring URLs 353
resource reference 233, 917, 919
resources 144
resources.xml 312, 333, 356–357
response content type 875
response encoding 875
response file 100, 125
response time 190
res-sharing-scope 329
restoreConfig 243–244
retry interval 395
ripplestart 226
RMI 203, 207, 253
RMI connector 21
RMI/IIOP 207
Rollout Update 928, 934–936, 938
rollout update 231
round robin 395
Runtime Performance Advisor 199

S
SAF 116
SAF EJBROLE 116, 118
 Index 957

SAF keyring name 116
sample applications 76, 112
SAP 332
SBBOEXEC 107
SBBOLD2 107
SBBOLOAD 104, 106
SBBOLPA 106
SBBOMSG 107
scalability 137
schedulers 305
scope 42, 77, 147–148, 153

default 146
Secure Sockets Layer (SSL) 194
security 160, 620

session 725
session management 725

security contract 330
security domain identifier 118
security management 423
security roles 918
sender channel 585–586, 662–663
serializable 861
serialize session access 673
serialver utility 838
serialVersionUID 838, 913
servant process 113
servant region 168
serve servlets by class name 873
server

starting 129, 139
status 129
stopping 129, 183

server ID 690
server mode 699
server root 742, 763
server root context 765–768, 772, 783
server startup 33
server template 68, 897
server weight 224
server.xml 205
server1 49–50
ServerCloneID 396
serverindex.xml 29, 31, 94
servers

database 12
directory 12
Web 11

serverStatus 75, 129, 139, 175–176
service

run deployment manager as 64, 68, 78
service integration 145
service integration bus 41, 92, 145, 200, 203,
206–207, 452, 521, 540

architecture 540
bus member. See bus member
clustering 594
configuration 612
connecting to 520
controlling messaging engine selection 524
creating 616
creating with wsadmin 275
data store 568, 573
destination 549, 638
exception destination 580
foreign bus. See foreign bus
JMS activation specification 445, 455, 482–483
JMS connection factory 451, 462–464
JMS destination 472
JMS queue 474, 477
JMS topic 480
link 581–583
load balancing bootstrapped clients 534
message-driven beans 605, 607
messaging engine. See messaging engine
quality of service 466
reliability 551, 553
resource adapter 445, 451, 453, 455
run time components 561
scalability 546
security 609
SIB service. See SIB service
topic destination 481
topologies 601–602
transport chain 563
WebSphere MQ addressing 588
XA recovery 469

service integration bus link 556
service provider 342
Service Provider Interface (SPI) 330, 745
servlet 194
Servlet 2.2 API 691
servlet caching 191
servlet request and response pooling 191
servlets

finding the URL 238
serve by class name 873

servlets by class name 386
session 190
958 WebSphere Application Server V6.1: System Management and Configuration

performance 726
session administrative object 343
session affinity 676, 678, 688, 729
session attributes 876
session beans 842, 858

caching options 858
session cache 683
session cleanup settings 713
session context 674
session ID 676, 679, 683, 688–689
session identifier 679, 682
Session Initiation Protocol (SIP) 190
session invalidation time 712
session management 190–191

affinity 689–692
cleanup schedule 723
DB2 page sizes 716
HTTP 672
invalidating sessions 723, 729
last access time 709
local 683
maximum in-memory session count 686
multi-row schemas 717
overflow 686
overflow cache 684, 686, 728
persistent 692, 694, 708
properties 672–674
row type 717
security ID 725
security integration 687
serializable requirements 715
serialize session access 688
session affinity 690
session cache size 728
session listeners 723
session object size 727
session size 727
session timeout 729
session tracking mechanism 676
single-row schemas 717
single-row to multi-row migration 718
SSL ID tracking 678
time-based write frequency 711
write contents 719–720
URL rewriting
See also cookies

session management properties
application 673
application server 673, 735–736

Overwrite Session Management 674
Web module 674

session manager 684, 698, 703, 706, 725, 729,
731–733

overflow 684
session object size 727
session persistence 678
session scope 674
session store 690
session timeout 142, 673
session write interval 712
SessionBeanTimeoutException 859
SESSIONS table 717
SessionTableName 694
setAttribute 263, 286–287
setCharacterEncoding 875
setMessageDrivenContext 436, 438
setupCmdLine 205
share session attributes 876
shared libraries 149, 233, 802, 809, 820, 825, 917
shared queue group 592–593
shared session context 674
shared session context option 876
short name 107–108, 173
showall 272, 295
showAttribute 272
SIB JMS Resource Adapter 454, 605
SIB service 521, 561–564, 597, 604, 611, 613–615,
655
sib.client.ssl.properties 568
SIB_ENDPOINT_ADDRESS 523, 563, 614
SIB_ENDPOINT_SECURE_ADDRESS 564, 614
SIB_MQ_ENDPOINT_ ADDRESS 564
SIB_MQ_ENDPOINT_ SECURE_ADDRESS 564
SIB_MQ_ENDPOINT_ADDRESS 663
sibDDLGenerator 577, 629
silent mode 125
Simple WebSphere Authentication Mechanism 725
Singleton pattern 809
Singletons 809
SIP applications 7
SIP container 190
SMS 110
SMTP 342–343
snoop 242
snoop servlet 239
SOAP 207
SOAP connector address 86
SOAP connector port 35, 63, 71, 79, 82, 92, 199
 Index 959

SOAP_CONNECTOR_ADDRESS 201, 204, 206
SOAP_CONNECTOR_PORT 202
special header 396
SPI 310, 330, 745
spilling 548
SQL Server 306
SQL92 conditional expression syntax 414
SSL 115–116, 145, 194, 496, 567–568, 583, 586,
678
SSL ID tracking 672
SSL session ID 676, 678
SSLV3TIMEOUT 678
stand-alone application server 170–171
stand-alone server 50
stand-alone server environment 16, 41, 55
standalone server environment 16, 55
startApplication 284
startManager 67, 128, 133, 139, 166–167, 169
startNode 85, 128
startServer 75, 129, 179, 181, 183
startserver 377
startServer.log 167, 169, 180
stateful session bean 830, 858
stateful session bean failover 703, 734–737
stateful session beans 859

timeout 859
stateless session bean 830
stateless session EJB 858
StateManageable 25
statement cache size 327
StatisticsProvider 25
STEPLIB 107
sticky bean managed unit of work 739
stopApplication 284
stopManager 129, 169
stopNode 85, 129, 213, 216–217
stopServer 77, 129, 182–183, 185, 279
stopServer.log 184
storeUsingOCC 867
Stream Handler Class 352
subscription durability 485
Sun ONE Directory Server 12
sun.misc.Launcher$AppClassLoader 796
SWAM 725
Sybase 12, 306
synchronization 32, 34, 37, 213

forced 33
scheduling 33

synchronize 31, 37, 147, 158

synchronous messaging 401
syncNode 37, 213, 215
system administration 145
system partition 747
SystemOut.log 128, 287

T
Table.ddl 850, 852
target groups 531
target mappings 235
target server 383
taskbar 143
template 89, 125, 172, 224, 299, 897

application server (creating) 174
test connection 911
thin application client 921
thread pool 190, 200
tightly coupled 400
time-based write 711
time-based writes 712
timeout 860

aged 324–325
connection 323–324
ConnectionWaitTimeoutException 323–324
reap 325
session 687, 723, 729
unused 324–325

Tivoli Access Manager 6
Tivoli Access Manager Servers for WebSphere Ap-
plication Server 10
Tivoli Directory Server 6, 12
Tivoli Directory Server for WebSphere Application
Server 9
Tivoli Performance Viewer 145
topic destination 451, 472, 474–475, 479, 494, 501,
503, 508
topic mappings 587
topic space destination 549–550

creating 639
topic space mappings 583, 655, 663
topic subscriber 407
trace 899–900

enabling using wsadmin 286
TraceService 286
tracing 898
transaction

bean managed 442
commit 855
960 WebSphere Application Server V6.1: System Management and Configuration

container managed 440
isolation level 860–861, 864
message-driven beans 439
viewing 187

transaction management 423
transaction management contract 330
transaction service 186, 197
transactions 187–188
transient partition 742
transport 620
transport chain 165, 190, 194, 523, 528, 561,
563–565, 567, 583, 585–586, 617, 619, 621, 626,
662
TRIPLE_DES 705
types 266

U
UDDI 145
UnauthorizedSessionRequestException 725
unique ID 611
unit of work 738
Universal Unique IDentifier (UUID) 571
unmanaged node 368–369, 371
unprotected 2.x methods 918
UriGroup Name 386
URL provider 351, 354
URL rewriting 672, 676, 678, 682–683
Use Binary Configuration field 46
user rights 64, 72
users and groups 145
utility classes 892
utility JAR 802, 808, 817, 820

V
variable 156, 316, 895–896, 904
variable scoped files 42
variables 149, 316–317
variables.xml 42
virtual host 233, 289, 386, 888, 890, 901, 903, 914,
918

admin_host 227
and Web server plug-in 228
architectural overview 227
binding 914
creating 228
creating with wsadmin 294
default_host 227, 241–242
example 901

finding the URL for a servlet or JSP 238, 241
host alias 228, 242
IBM HTTP Server 902
in a cluster 228
managing 227
MIME settings 229
modifying with wsadmin 294
proxy_host 227
scope 228

virtual hosting 902
Virtual hosts

See also IBM HTTP Server VirtualHosts
virtual hosts 902

W
WAR class loader 803–804, 807–809, 814, 816,
818, 820, 826
WAR class loader policy 804
WAR classloader 813
was.policy 43
WAS_EXT_DIRS 801
was_home 51
WAS_USER_SCRIPT 370
wasprofile 53, 123–124, 126
WASService 130–132, 166, 174
WC_defaulthost 901
Web container 191, 875
Web container inbound transport chain 366
Web container transport chain 165
Web module 872, 876

auto reload 873
default error page 874
directory browsing 874
file serving servlet 872
serve servlets by class name 873

Web module extensions 872
Web server 916, 929–930, 934

adding 372
configuration file 380
logs 382
starting and stopping 376
viewing status 376

Web server definition 79
Web server plug-in 6, 9, 164, 201, 227–228, 279,
286, 366–367, 688, 691–692, 729, 873, 916,
929–930, 934

generating 390
regenerating 387
 Index 961

regenerating with wsadmin 286
request routing 393

Web server plug-in configuration service 391
Web servers 11
web.xml 356, 839
WebSphere Application Server - Express 7
WebSphere Application Server Enterprise 305
WebSphere Application Server for z/OS Profile
Management Tool (zPMT) 95
WebSphere Application Server Network Deploy-
ment 8
WebSphere Application Server V6.1 for z/OS 8
WebSphere Business Integration Event Broker 455
WebSphere Business Integration Message Broker
455
WebSphere Business Integration Server Founda-
tion 305
WebSphere Information Integrator 12
WebSphere MQ 6, 455, 556, 588
WebSphere MQ Channel 635
WebSphere MQ client 588
WebSphere MQ client link 591
WebSphere MQ connection factory 492, 498, 515
WebSphere MQ link 584–589, 592–593, 612, 658
WebSphere MQ Server 557, 563, 592–594,
612–613, 622, 633–635
WebSphere Rapid Deployment 229
WebSphere Relational Resource Adapter 332
Windows Active Directory 13
Windows service 64, 72, 94, 130, 132, 174, 207
WLM 108, 855
WLM APPLENV 108
work area partition service 198
work area service 198
working directory 898
workload management 50, 734

EJS WLM 854
messaging 600–601, 603–604, 608
messaging engine 594, 601

workload-managed 596
workspace 143, 145

auto-refresh 146
confirmation on discard 146

ws.ext.dirs 801
wsadmin 18, 229, 249–250

definition 250
getid 267
help 252
interactive 255

list 268
profile 254, 256
properties 252, 254, 256
script files 256
show 271
showattribute 272
starting session 251

WSCallerHelper 309
wsOptimisticRead 864, 866
wsOptimisticUpdate 865
wsPessimisticRead 864
wsPessimisticUpdate 864
wsPessimisticUpdate-NoCollision 868
wsPessimisticUpdate-WeakestLockAtLoad 867
wstemp 141

X
X509 115

Z
z/OS Security Server 12
z/OS.e Security Server 12
zFS 53, 108, 110
zPMT 95–96, 98, 100, 120, 209
962 WebSphere Application Server V6.1: System Management and Configuration

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

W
ebSphere Application Server V6.1:

System
 M

anagem
ent and Configuration

®

SG24-7304-00 ISBN 0738496529

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application
Server V6.1:
System Management and Configuration

Learn about
WebSphere
Application Server

Configure and
administer a
WebSphere system

Deploy applications

This IBM Redbook provides system administrators,
developers, and architects with the knowledge to configure a
WebSphere Application Server V6.1 run time environment, to
package and deploy Web applications, and to perform
ongoing management of the WebSphere environment.

One in a series of handbooks, the entire series is designed to
give you in-depth information about the entire range of
WebSphere Application Server products. In this IBM
Redbook, we provide a detailed exploration of the
WebSphere Application Server V6.1 run time environments
and administration process.

The IBM Redbook includes configuration and administration
information for WebSphere Application Server V6.1 and
WebSphere Application Server Network Deployment V6.1 on
distributed platforms (excluding iSeries) and WebSphere
Application Server for z/OS V6.1.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 The basics
	Chapter 1. WebSphere Application Server
	1.1 Product overview
	1.2 WebSphere Application Server
	1.3 Packaging
	1.4 Supported platforms and software
	1.4.1 Operating systems
	1.4.2 Web servers
	1.4.3 Database servers
	1.4.4 Directory servers

	Chapter 2. System management: A technical overview
	2.1 System management overview
	2.1.1 System management in a stand-alone server environment
	2.1.2 System management in a distributed server environment

	2.2 Java Management Extensions (JMX)
	2.2.1 JMX architecture
	2.2.2 JMX distributed administration
	2.2.3 JMX MBeans
	2.2.4 JMX usage scenarios
	2.2.5 J2EE management

	2.3 Distributed administration
	2.3.1 Distributed process discovery
	2.3.2 Centralized changes to configuration and application data
	2.3.3 File synchronization

	2.4 Configuration and application data repository
	2.4.1 Repository directory structure
	2.4.2 Variable scoped files
	2.4.3 Application data files

	Chapter 3. Getting started with profiles
	3.1 Understanding profiles
	3.1.1 Types of profiles
	3.1.2 Directory structure and default profiles

	3.2 Building a system using profiles
	3.2.1 Stand-alone server environment
	3.2.2 Distributed server environment

	3.3 Creating profiles on distributed systems (non z/OS)
	3.3.1 Creating a deployment manager profile
	3.3.2 Creating an application server profile
	3.3.3 Creating a cell profile
	3.3.4 Creating a custom profile
	3.3.5 Federating a custom node to a cell
	3.3.6 Creating a new application server on an existing node
	3.3.7 Federating an application server profile to a cell

	3.4 Creating profiles on z/OS systems
	3.5 Managing profiles
	3.5.1 Using the manageprofiles command
	3.5.2 Creating a profile
	3.5.3 Deleting profiles

	3.6 Managing the processes
	3.6.1 Starting a distributed server environment
	3.6.2 Stopping the distributed server environment
	3.6.3 Enabling process restart on failure

	Chapter 4. Administration basics
	4.1 Introducing the WebSphere administrative console
	4.1.1 Starting the administrative console
	4.1.2 Logging in to the administrative console
	4.1.3 Changing the administrative console session timeout
	4.1.4 The graphical interface
	4.1.5 Finding an item in the console
	4.1.6 Updating existing items
	4.1.7 Adding new items
	4.1.8 Removing items
	4.1.9 Starting and stopping items
	4.1.10 Using variables
	4.1.11 Saving work
	4.1.12 Getting help

	4.2 Securing the administrative console
	4.3 Working with the deployment manager
	4.3.1 Deployment manager configuration settings
	4.3.2 Starting and stopping the deployment manager

	4.4 Working with application servers
	4.4.1 Creating an application server
	4.4.2 Viewing the status of an application server
	4.4.3 Starting an application server
	4.4.4 Stopping an application server
	4.4.5 Viewing run time attributes of an application server
	4.4.6 Customizing application servers

	4.5 Working with nodes
	4.5.1 Adding (federating) a node
	4.5.2 Removing a node
	4.5.3 Renaming a node
	4.5.4 Node agent synchronization
	4.5.5 Starting and stopping nodes
	4.5.6 Node groups

	4.6 Working with clusters
	4.6.1 Creating clusters
	4.6.2 Viewing cluster topology
	4.6.3 Managing clusters

	4.7 Working with virtual hosts
	4.7.1 Creating a virtual host

	4.8 Managing applications
	4.8.1 Using the administrative console to manage applications
	4.8.2 Installing an enterprise application
	4.8.3 Uninstalling an enterprise application
	4.8.4 Exporting an enterprise application
	4.8.5 Starting an enterprise application
	4.8.6 Stopping an enterprise application
	4.8.7 Preventing an enterprise application from starting on a server
	4.8.8 Viewing application details
	4.8.9 Finding a URL for a servlet or JSP

	4.9 Managing your configuration files
	4.9.1 Backing up a profile
	4.9.2 Restoring a profile
	4.9.3 Exporting and importing profiles

	Chapter 5. Administration with scripting
	5.1 Overview of WebSphere scripting
	5.2 Using wsadmin
	5.2.1 Jacl versus Jython
	5.2.2 Launching wsadmin
	5.2.3 Configuring wsadmin
	5.2.4 Command and script invocation
	5.2.5 Overview of wsadmin objects
	5.2.6 Management using wsadmin objects

	5.3 Common operational tasks using wsadmin
	5.3.1 General approach for operational tasks
	5.3.2 Examples of common administrative tasks
	5.3.3 Managing the deployment manager
	5.3.4 Managing nodes
	5.3.5 Managing application servers
	5.3.6 Managing enterprise applications
	5.3.7 Managing clusters
	5.3.8 Generating the Web server plug-in configuration
	5.3.9 Enabling tracing for WebSphere components

	5.4 Common configuration tasks
	5.4.1 General approach for configuration tasks
	5.4.2 Specific examples of WebSphere configuration tasks

	5.5 Help creating wsadmin scripts
	5.6 Using Java for administration
	Online resources

	Chapter 6. Configuring WebSphere resources
	6.1 WebSphere resources
	6.2 JDBC resources
	6.2.1 What are JDBC providers and data sources?
	6.2.2 WebSphere support for data sources
	6.2.3 Creating a data source
	6.2.4 Creating a JDBC provider
	6.2.5 Creating JDBC data source

	6.3 JCA resources
	6.3.1 WebSphere Application Server JCA support
	6.3.2 Installing and configuring resource adapters
	6.3.3 Configuring J2C connection factories
	6.3.4 Using resource adapters from an application

	6.4 JavaMail resources
	6.4.1 JavaMail sessions
	6.4.2 Configuring the mail provider
	6.4.3 Configuring JavaMail sessions
	6.4.4 Example code

	6.5 URL providers
	6.5.1 Configuring URL providers
	6.5.2 Configuring URLs
	6.5.3 URL provider sample

	6.6 Resource environment providers
	6.6.1 Resource environment references
	6.6.2 Configuring the resource environment provider

	6.7 Resource authentication
	6.8 More information

	Chapter 7. Managing Web servers
	7.1 Web server support overview
	7.1.1 Request routing using the plug-in
	7.1.2 Web server and plug-in management

	7.2 Working with Web servers
	7.2.1 Defining nodes and Web servers
	7.2.2 Viewing the status of a Web server
	7.2.3 Starting and stopping a Web server
	7.2.4 IBM HTTP Server remote administration
	7.2.5 Mapping modules to servers

	7.3 Working with the plug-in configuration file
	7.3.1 Regenerating the plug-in configuration file
	7.3.2 Propagating the plug-in configuration file
	7.3.3 Modifying the plug-in request routing options

	Part 2 Messaging with WebSphere
	Chapter 8. Asynchronous messaging
	8.1 Messaging concepts
	8.1.1 Loose coupling
	8.1.2 Messaging types
	8.1.3 Destinations
	8.1.4 Messaging models
	8.1.5 Messaging patterns

	8.2 Java Message Service
	8.2.1 JMS API history
	8.2.2 JMS providers
	8.2.3 JMS domains
	8.2.4 JMS administered objects
	8.2.5 JMS and JNDI
	8.2.6 JMS Connections
	8.2.7 JMS sessions
	8.2.8 JMS messages
	8.2.9 JMS message producers
	8.2.10 JMS message consumers
	8.2.11 JMS exception handling
	8.2.12 Application Server Facilities
	8.2.13 JMS and J2EE

	8.3 Messaging in the J2EE Connector Architecture
	8.3.1 Message endpoints
	8.3.2 MessageEndpointFactory
	8.3.3 Resource adapters
	8.3.4 JMS ActivationSpec JavaBean
	8.3.5 Message endpoint deployment
	8.3.6 Message endpoint activation
	8.3.7 Message delivery
	8.3.8 Administered objects

	8.4 Message-driven beans
	8.4.1 Message-driven bean types
	8.4.2 Client view of a message-driven bean
	8.4.3 Message-driven bean implementation
	8.4.4 Message-driven bean life cycle
	8.4.5 Message-driven beans and transactions
	8.4.6 Message-driven bean activation configuration properties
	8.4.7 Associating a message-driven bean with a destination
	8.4.8 Message-driven bean best practices

	8.5 Managing WebSphere JMS providers
	8.5.1 Managing the default messaging JMS provider
	8.5.2 Managing the WebSphere MQ JMS provider
	8.5.3 Managing a generic JMS provider

	8.6 Configuring WebSphere JMS administered objects
	8.6.1 Common administration properties
	8.6.2 Configuring the default messaging JMS provider
	8.6.3 Configuring the WebSphere MQ JMS provider
	8.6.4 Configuring listener ports
	8.6.5 Configuring a generic JMS provider

	8.7 Connecting to a service integration bus
	8.7.1 JMS client run time environment
	8.7.2 Controlling messaging engine selection
	8.7.3 Load balancing bootstrapped clients

	8.8 References and resources

	Chapter 9. Default messaging provider
	9.1 Concepts and architecture
	9.1.1 Buses
	9.1.2 Bus members
	9.1.3 Messaging engines
	9.1.4 Message stores
	9.1.5 Destinations
	9.1.6 Mediations
	9.1.7 Foreign buses

	9.2 Run time components
	9.2.1 SIB service
	9.2.2 Service integration bus transport chains
	9.2.3 Message stores
	9.2.4 Exception destinations
	9.2.5 Service integration bus links
	9.2.6 WebSphere MQ links
	9.2.7 WebSphere MQ Servers

	9.3 High availability and workload management
	9.3.1 Cluster bus members for high availability
	9.3.2 Cluster bus members for workload management
	9.3.3 Partitioned queues
	9.3.4 JMS clients connecting into a cluster of messaging engines
	9.3.5 Preferred servers and core group policies
	9.3.6 Best practices

	9.4 Service integration bus topologies
	9.4.1 One server in the cell is a member of one bus
	9.4.2 Every server in the cell is a member of the same bus
	9.4.3 A single cluster bus member and one messaging engine
	9.4.4 A cluster bus member with multiple messaging engines
	9.4.5 Mixture of cluster and server bus members
	9.4.6 Multiple buses in a cell

	9.5 Service integration bus and message-driven beans
	9.5.1 Message-driven beans connecting to the bus
	9.5.2 MDBs and clusters

	9.6 Service integration bus security
	9.7 Problem determination
	9.8 Configuration and management
	9.8.1 SIB service configuration
	9.8.2 Creating a bus
	9.8.3 Configuring bus properties
	9.8.4 Enabling bus security
	9.8.5 Adding a bus member
	9.8.6 Creating a queue destination
	9.8.7 Creating a topic space destination
	9.8.8 Creating an alias destination
	9.8.9 Adding messaging engines to a cluster
	9.8.10 Setting up preferred servers
	9.8.11 Setting up a foreign bus link to a service integration bus
	9.8.12 Setting up a foreign bus link to an MQ queue manager
	9.8.13 Creating a foreign destination

	Part 3 Working with applications
	Chapter 10. Session management
	10.1 HTTP session management
	10.2 Session manager configuration
	10.2.1 Session management properties
	10.2.2 Accessing session management properties

	10.3 Session scope
	10.4 Session identifiers
	10.4.1 Choosing a session tracking mechanism
	10.4.2 SSL ID tracking
	10.4.3 Cookies
	10.4.4 URL rewriting

	10.5 Local sessions
	10.6 General properties for session management
	10.7 Session affinity
	10.7.1 Session affinity and failover

	10.8 Persistent session management
	10.8.1 Enabling database persistence
	10.8.2 Memory-to-memory replication
	10.8.3 Session management tuning
	10.8.4 Persistent sessions and non-serializable J2EE objects
	10.8.5 Larger DB2 page sizes and database persistence
	10.8.6 Single and multi-row schemas (database persistence)
	10.8.7 Contents written to the persistent store using a database

	10.9 Invalidating sessions
	10.9.1 Session listeners

	10.10 Session security
	10.11 Session performance considerations
	10.11.1 Session size
	10.11.2 Reducing persistent store I/O
	10.11.3 Multirow persistent sessions: Database persistence
	10.11.4 Managing your session database connection pool
	10.11.5 Session database tuning

	10.12 Stateful session bean failover
	10.12.1 Enabling stateful session bean failover
	10.12.2 Stateful session bean failover considerations

	Chapter 11. WebSphere naming implementation
	11.1 Features
	11.2 WebSphere naming architecture
	11.2.1 Components
	11.2.2 JNDI support
	11.2.3 JNDI bindings
	11.2.4 Federated name space
	11.2.5 Local name space structure

	11.3 Interoperable Naming Service (INS)
	11.3.1 Bootstrap ports
	11.3.2 CORBA URLs

	11.4 Distributed CosNaming
	11.5 Configured bindings
	11.5.1 Types of objects
	11.5.2 Types of binding references

	11.6 Initial contexts
	11.6.1 Setting initial root context

	11.7 Federation of name spaces
	11.8 Foreign cell bindings
	11.9 Interoperability
	11.9.1 WebSphere V4.0 EJB clients
	11.9.2 WebSphere V4.0 server
	11.9.3 EJB clients hosted by non-WebSphere environment

	11.10 Examples
	11.10.1 Single server
	11.10.2 Two single servers on the same box
	11.10.3 Network Deployment application servers on the same box
	11.10.4 WebSphere Application Server V4 client

	11.11 Naming tools
	11.11.1 dumpNameSpace

	11.12 Configuration
	11.12.1 Name space bindings
	11.12.2 Foreign cell bindings
	11.12.3 CORBA naming service users and groups

	Chapter 12. Understanding class loaders
	12.1 A brief introduction to Java class loaders
	12.2 WebSphere class loaders overview
	12.2.1 WebSphere extensions class loader
	12.2.2 Application and Web module class loaders
	12.2.3 Handling JNI code

	12.3 Configuring WebSphere for class loaders
	12.3.1 Class loader policies
	12.3.2 Class loading/delegation mode
	12.3.3 Shared libraries

	12.4 Class loader viewer
	12.5 Learning class loaders by example
	12.5.1 Step 1: Simple Web module packaging
	12.5.2 Step 2: Adding an EJB module and Utility jar
	12.5.3 Step 3: Changing the WAR class loader delegation mode
	12.5.4 Step 4: Sharing utility JARs using shared libraries

	12.6 Additional class loader diagnostics

	Chapter 13. Packaging applications
	13.1 Plants by WebSphere sample application
	13.1.1 Plants by WebSphere resources used

	13.2 Packaging using the Application Server Toolkit
	13.2.1 Import source code
	13.2.2 Working with deployment descriptors

	13.3 Setting application bindings
	13.3.1 Defining EJB JNDI names
	13.3.2 Binding EJB and resource references
	13.3.3 Defining data sources for entity beans
	13.3.4 Setting the context root for Web modules

	13.4 IBM EJB extensions: EJB caching options
	13.4.1 EJB container caching option for entity beans
	13.4.2 EJB container caching option for stateful session beans
	13.4.3 Stateful EJB timeout option

	13.5 IBM EJB extensions: EJB access intents
	13.5.1 Transaction isolation levels overview
	13.5.2 Concurrency control
	13.5.3 Using EJB 2.x access intents
	13.5.4 Using read-ahead hints
	13.5.5 Tracing access intents behavior

	13.6 IBM EJB extensions: inheritance relationships
	13.7 IBM Web module extensions
	13.7.1 File serving servlet
	13.7.2 Web application auto reload
	13.7.3 Serve servlets by class name
	13.7.4 Default error page
	13.7.5 Directory browsing
	13.7.6 JSP attributes
	13.7.7 Automatic HTTP request and response encoding

	13.8 IBM EAR extensions: Sharing session context
	13.9 Exporting the PlantsByWebSphere EAR file
	13.10 WebSphere Enhanced EAR
	13.10.1 Configuring a WebSphere Enhanced EAR

	13.11 Packaging recommendations

	Chapter 14. Deploying applications
	14.1 Preparing the environment
	14.1.1 Creating the Plants by WebSphere DB2 database
	14.1.2 Creating an environment variable
	14.1.3 Creating the Plants by WebSphere application server
	14.1.4 Defining the Plants by WebSphere virtual host
	14.1.5 Creating the virtual host for IBM HTTP Server and Apache
	14.1.6 Creating a DB2 JDBC provider and data source

	14.2 Generating deployment code
	14.2.1 Using EJBDeploy command-line tool

	14.3 Deploying the application
	14.3.1 Using a bindings file

	14.4 Deploying application clients
	14.4.1 Defining application client bindings
	14.4.2 Launching the J2EE client

	14.5 Updating applications
	14.5.1 Replacing an entire application EAR file
	14.5.2 Replacing or adding an application module
	14.5.3 Replacing or adding single files in an application or module
	14.5.4 Removing application content
	14.5.5 Performing multiple updates to an application or module
	14.5.6 Rolling out application updates to a cluster
	14.5.7 Hot deployment and dynamic reloading

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

