

Legal Notice
Copyright (c) 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054,
U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Micro-
systems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of
California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed
through X/Open Company, Ltd. This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/).

Portions Copyright (c) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB.

Sun, Sun Microsystems, the Sun logo, Java, JVM, Solaris, iPlanet, Sun ONE, Sun ONE Active
Server Pages, and Sun ONE Web Server are trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the U.S. and other countries.

Adobe is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S.
Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to
entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons
and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRE-
SENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

. .

 .

. .Contents

1 Introduction 1

New in This Release . 2

UNIX and Linux. 2

Microsoft Windows NT and Windows 2000. 3

Other Features. 4

Supported in This Release . 5

Before You Begin . 6

UNIX and Linux. 7

Microsoft Windows NT and Windows 2000. 7

About This Guide. 8

What the Guide Contains . 9

How the Guide is Accessed . 11

Guide Conventions . 12

Other Resources . 13

Product Home Page . 13

Diagnostic Applications . 13

Knowledge Base . 14

Support Forum . 15

Developer Web Site. 15

About ASP . 15

Benefits of ASP . 15

2 Using the Administration Console 17

Accessing the Administration Console . 18

Starting and Stopping the Administration Web Server . 20

Configuring Usernames and Passwords . 21

Accessing Product Documentation . 23

Viewing the README File. 24

Contacting Customer Support . 25

Installing a New Serial Number . 27

Checking for Product Updates . 28

Enabling External Components . 30

IV SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Enabling Database Tools . 32

3 Managing the ASP Server 35

Server Management Overview (ASP) . 36

Changing ASP Server Settings . 37

Stopping and Restarting the ASP Server (Admin Console) . 41

Enabling Session State . 42

Configuring International Support . 43

Creating Database Connections (ASP Server) . 44

Defining ASP Applications (ASP Server) . 46

Configuring ASP Applications . 47

Adding ASP Applications . 48

Removing ASP Applications . 51

Editing ASP Application Settings . 52

Enabling ASP for a Virtual Host . 54

Securing the Server . 55

Configuring File System Access . 56

Setting the Security Mode . 57

Disabling Performance Monitoring . 60

Viewing Information about the ASP Server. 60

Monitoring ASP Server Performance . 61

Enabling ASP Errors Logging . 63

Viewing the ASP Errors Log . 64

Viewing Server Diagnostics . 65

Optimizing ASP Server Performance . 66

Enabling Scripts Buffering . 66

Changing the Session Timeout Value. 67

Changing the Script Timeout Value . 68

Configuring Engine Deadlock Recovery . 69

Configuring Multi-threading . 71

Precompiling ASP Pages . 72

Pooling Database Connections . 72

Load Balancing . 72

Shared Web Hosting Environments . 73

Creating Database Connections in a Shared Environment . 73

Defining Applications in a Shared Environment . 74

Using the User Configuration File . 74

Using the FrontPage Services File. 75

CONTENTS V

 .
. .
4 Managing the Web Server 77

Server Management Overview (Web) . 77

Starting and Stopping the Web Server. 78

Configuring the Web Server after Installation. 79

Changes to Web Server Configuration Files . 80

Changes to Sun ONE Web Server Configuration Files . 80

Changes to Apache Configuration Files . 81

Enabling FrontPage Publishing. 82

5 Command-line Management 83

Command-line Help . 84

Using configure-server . 84

Stop/Start/Status ASP Server (Command Line). 84

Stop/Start/Status: configure-server . 85

Stop/Start/Status: caspctrl . 85

Add/Delete/Reconfigure ASP Servers . 86

Changing the Linkage . 87

Add ASP Server . 88

Delete ASP Server . 89

Reconfigure ASP Server . 90

Starting on System Boot . 90

Changing casp.cnfg Settings . 91

Examples: Listing casp.cnfg Settings . 92

Examples: Changing casp.cnfg Settings. 93

Deleting casp.cnfg Settings . 94

Add/Remove ASP in Virtual Hosts. 94

Example: Adding Virtual Hosts. 95

Examples: Removing Virtual Hosts . 96

Add/Remove Applications . 96

Examples: Adding Applications . 97

Examples: Removing Applications . 98

List/View/Add/Edit/Delete ODBC DSNs . 98

Show Database Types . 99

List all DSNs . 99

View Specific DSNs . 99

Add/Edit DSNs . 100

Delete DSNs . 100

Uninstalling Sun ONE ASP . 101

VI SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
6 Configuring a Database 103

Viewing the List of ODBC Drivers. 104

Configuring Data Source Names (DSNs) . 105

Adding a DSN . 106

Removing a DSN. 109

Editing a DSN . 110

Testing a DSN . 111

Configuring the Database Environment . 112

Setting Oracle Environment Variables . 113

Setting Informix Environment Variables . 114

Configuring Database Parameters . 115

DB2 Parameters. 116

dBASE Parameters . 117

Informix Parameters . 118

Informix Parameters (With Client): UNIX Only . 118

Informix Parameters (Without Client): UNIX and Linux . 119

Microsoft SQL Server Parameters . 121

MySQL Parameters . 122

Oracle Parameters . 123

Oracle Parameters (With Client) . 123

Oracle Parameters (Without Client) . 124

PostgreSQL Parameters . 126

SequeLink Parameters . 128

Configuring SequeLink . 128

Sybase Parameters. 130

Text Parameters . 131

Configuring ADO Connections . 131

Setting the ADO Connection Pool Size . 131

Enabling and Disabling ADO Logging . 133

7 Using Database Tools 135

Database Publisher . 135

Administering Database Publisher . 136

Installing Database Publisher . 138

Using the Database Publisher Wizard. 138

Opening the Database Publisher Wizard . 139

Selecting the Access File . 140

Resolving Invalid Names . 140

Verifying the Authorization Key . 142

CONTENTS VII

 .
. .
Fatal Error Screen . 143

Specifying the Destination Database . 144

Conflicting Tables . 145

Publishing the Database . 146

DBMS . 148

Administering DBMS . 149

Accessing DBMS . 151

DBMS Conventions . 152

Connecting to a Database (DBMS) . 152

DSN-based Database Connections (DBMS) . 154

DSN-less Database Connections (DBMS). 159

Working with Tables . 165

Data Validation . 165

Adding New Tables. 166

Updating Existing Tables. 168

Deleting Tables . 173

Working with SQL Statements. 174

Adding SQL Statements . 174

Editing SQL Statements. 176

Executing SQL Statements . 178

Deleting SQL Statements . 179

8 Building Sun ONE ASP Applications 181

Creating the Basic ASP Application . 182

Choosing an Authoring Tool . 183

Creating an ASP Page . 183

Adding Scripts. 184

Changing the Scripting Language . 185

Using @Directives . 186

@CODEPAGE Directive . 186

@ENABLESESSIONSTATE Directive . 187

@LANGUAGE Directive . 187

@LCID Directive . 187

Using Server-side Includes . 188

Defining the Application . 189

Using the Global.asa File . 189

Specifying Application Events . 190

Managing User Sessions . 192

Saving Changes to the Global.asa File . 194

VIII SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Using Sun ONE ASP Built-in Objects . 194

Using Sun ONE ASP Installed Components . 195

Using Java Objects and Classes . 196

Using Custom Server Components . 196

Connecting to a Database . 197

Creating Connection Strings . 197

Using System DSNs. 199

Using DSN-less Connection Strings . 200

Using File DSNs. 203

Opening the Database Connection . 208

Using FrontPage Database Features . 209

Using FrontPage Database Connections . 209

Displaying Data on a Web Page with FrontPage . 210

Migrating an Access Database to MySQL or dBASE . 211

Developing International Applications . 212

Japanese Character Support . 212

DB2 and Locale . 212

Understanding Code Pages . 213

Publishing a Sun ONE ASP Application . 213

9 ASP Built-in Objects Reference 215

ASP Application Object . 216

Syntax: ASP Application Object . 216

ASP Application Object Collections . 216

ASP Application Object Contents Collection . 216

ASP Application Object StaticObjects Collection . 217

ASP Application Object Methods . 218

ASP Application Contents.Remove Method . 219

ASP Application Contents.RemoveAll Method . 220

ASP Application Object Lock Method . 220

ASP Application Object Unlock Method . 220

ASP Application Object Events. 220

ASP Application Object Examples . 221

ASPError Object . 222

Syntax: ASPError Object . 222

ASPError Object Properties . 222

ASPError Object Example. 223

ASP Request Object . 224

Syntax: ASP Request Object. 224

CONTENTS IX

 .
. .
ASP Request Object Collections . 224

ASP Request Object Cookies Collection . 224

ASP Request Object Form Collection . 226

ASP Request Object QueryString Collection . 228

ASP Request Object ServerVariables Collection . 229

ASP Request Object Properties. 233

ASP Request Object TotalBytes Property . 233

ASP Request Object Methods . 234

ASP Request Object BinaryRead Method . 234

ASP Response Object . 235

Syntax: ASP Response Object . 235

ASP Response Object Collections. 235

ASP Response Object Cookies Collection . 235

ASP Response Object Properties . 238

ASP Response Object Buffer Property . 238

ASP Response Object CacheControl Property . 239

ASP Response Object Charset Property . 239

ASP Response Object CodePage Property . 240

ASP Response Object ContentType Property . 241

ASP Response Object Expires Property. 241

ASP Response Object ExpiresAbsolute Property . 242

ASP Response Object IsClientConnected Property . 243

ASP Response Object LCID Property . 243

ASP Response Object PICS Property . 244

ASP Response Object Status Property . 245

ASP Response Object Methods . 246

ASP Response Object AddHeader Method. 246

ASP Response Object AppendToLog Method . 248

ASP Response Object BinaryWrite Method . 248

ASP Response Object Clear Method . 249

ASP Response Object End Method . 249

ASP Response Object Flush Method . 249

ASP Response Object Redirect Method . 250

ASP Response Object Write Method . 250

ASP Server Object . 251

Syntax: ASP Server Object . 251

ASP Server Object Properties . 251

ASP Server Object ScriptTimeout Property. 252

ASP Server Object Methods. 252

X SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Server Object CreateObject Method. 253

ASP Server Object Execute Method . 254

ASP Server Object GetLastError Method . 255

ASP Server Object HTMLEncode Method . 258

ASP Server Object MapPath Method . 258

ASP Server Object Transfer Method. 260

ASP Server Object URLEncode Method . 261

ASP Session Object . 261

Syntax: ASP Session Object . 262

ASP Session Object Collections . 262

ASP Session Object Contents Collection . 262

ASP Session Object StaticObjects Collection . 263

ASP Session Object Properties . 264

ASP Session Object CodePage Property. 264

ASP Session Object LCID Property . 265

ASP Session Object SessionID Property . 265

ASP Session Object Timeout Property . 266

ASP Session Object Methods . 267

ASP Session Object Abandon Method . 267

ASP Session Object Contents.Remove Method . 268

ASP Session Object Contents.RemoveAll Method . 269

ASP Session Object Events . 269

Remarks: ASP Session Object . 269

10 ASP Component Reference 271

ASP Ad Rotator Component . 272

Registry Settings: ASP Ad Rotator Component. 272

Syntax: ASP Ad Rotator Component . 272

ASP Ad Rotator Component Rotator Schedule File . 272

Syntax: ASP Ad Rotator Component Rotator Schedule File . 273

Parameters: ASP Ad Rotator Component Rotator Schedule File . 273

Remarks: ASP Ad Rotator Component Rotator Schedule File . 274

Example: ASP Ad Rotator Component Rotator Schedule File . 274

ASP Ad Rotator Component Redirection File . 275

Example: ASP Ad Rotator Component Redirection File . 275

ASP Ad Rotator Component Properties . 275

ASP Ad Rotator Component Border Property. 275

ASP Ad Rotator Component Clickable Property . 275

ASP Ad Rotator Component TargetFrame Property . 276

CONTENTS XI

 .
. .
ASP Ad Rotator Component Methods . 276

ASP Ad Rotator Component GetAdvertisement Method . 276

ASP Browser Capabilities Component . 278

Syntax: ASP Browser Capabilities Component . 278

Remarks: ASP Browser Capabilities Component . 278

Browsecap.ini File: ASP Browser Capabilities Component . 279

Syntax: Browsecap.ini File HTTPUserAgentHeader Section. 279

Browsecap.ini File Default Section . 280

Examples: Browsecap.ini File Default Section. 280

ASP Content Linking Component . 282

Registry Settings: ASP Content Linking Component. 282

Syntax: ASP Content Linking Component . 282

Examples: ASP Content Linking Component . 283

ASP Content Linking Component Content Linking List File . 283

Syntax: ASP Content Linking Component Content Linking List File . 283

Parameters: ASP Content Linking Component Content Linking List File. 284

Example: ASP Content Linking Component Content Linking List File. 284

ASP Content Linking Component Properties . 284

ASP Content Linking Component Methods . 284

ASP Content Linking Component GetListCount Method . 285

ASP Content Linking Component GetListIndex Method . 285

ASP Content Linking Component GetNextDescription Method. 285

ASP Content Linking Component GetNextURL Method . 286

ASP Content Linking Component GetNthDescription Method . 286

ASP Content Linking Component GetNthURL Method . 287

ASP Content Linking Component GetPreviousDescription Method . 287

ASP Content Linking Component GetPreviousURL Method . 287

ASP Content Rotator Component . 288

Registry Settings: ASP Content Rotator Component . 288

Syntax: ASP Content Rotator Component . 288

ASP Content Rotator Component Content Schedule File . 288

Syntax: ASP Content Rotator Component Content Schedule File . 289

Parameters: ASP Content Rotator Component Content Schedule File 289

ASP Content Rotator Component Properties . 290

ASP Content Rotator Component Methods . 290

ASP Content Rotator Component ChooseContent Method . 290

ASP Content Rotator Component GetAllContent Method . 291

ASP Counters Component . 293

Registry Settings: ASP Counters Component . 293

XII SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Counters Component . 293

ASP Counters Component Properties . 293

ASP Counters Component Methods . 294

ASP Counters Component Get Method. 294

ASP Counters Component Increment Method . 295

ASP Counters Component Remove Method . 295

ASP Counters Component Set Method . 296

ASP MyInfo Component . 296

Registry Settings: ASP MyInfo Component . 297

Syntax: ASP MyInfo Component . 297

ASP MyInfo Component Properties . 297

ASP MyInfo Component Methods . 297

ASP Tools Component . 297

Registry Settings: ASP Tools Component . 297

Syntax: ASP Tools Component . 298

ASP Tools Component Properties . 298

ASP Tools Component Methods . 298

ASP Tools Component FileExists Method. 298

ASP Tools Component Owner Method . 299

ASP Tools Component PluginExists Method . 299

ASP Tools Component ProcessForm Method. 299

ASP Tools Component Random Method . 300

11 ADO Component Reference 301

ADO Overview . 301

ADO Objects . 302

ADO Command Object . 303

ADO Command Object Collections. 303

ADO Command Object Methods . 304

ADO Command Object Properties . 310

ADO Command Object Remarks. 317

ADO Connection Object . 318

ADO Connection Object Collections . 318

ADO Connection Object Methods . 318

ADO Connection Object Properties. 331

ADO Connection Object Remarks . 345

ADO Error Object . 346

ADO Error Object Properties . 346

ADO Error Object Remarks . 350

CONTENTS XIII

 .
. .
ADO Field Object . 351

ADO Field Object Collections . 351

ADO Field Object Methods . 351

ADO Field Object Properties . 353

ADO Field Object Remarks . 364

ADO Parameter Object . 364

ADO Parameter Object Collections . 365

ADO Parameter Object Methods. 365

ADO Parameter Object Properties . 366

ADO Parameter Object Remarks . 372

ADO Property Object . 373

ADO Property Object Properties . 373

ADO Property Object Remarks . 378

ADO Recordset Object . 379

ADO Recordset Object Collections . 379

ADO Recordset Object Methods . 379

UpdateBatch Method Remarks . 420

ADO Recordset Object Properties . 420

ADO Recordset Object Remarks . 451

ADO Collections . 453

ADO Errors Collection . 454

ADO Errors Collection Remarks . 454

ADO Fields Collection . 455

ADO Fields Collection Remarks . 455

ADO Parameters Collection . 455

ADO Parameters Collection Remarks . 455

ADO Properties Collection . 456

ADO Properties Collection Remarks. 456

ADO Collections Methods . 456

ADO Collections Append Method . 456

ADO Collections Clear Method . 458

ADO Collections Delete Method . 459

ADO Collections Item Method . 459

ADO Collections Refresh Method . 460

ADO Collections Properties . 463

ADO Collections Count Property . 463

12 Chili!Beans Component Reference 465

Enabling Chili!Beans . 466

XIV SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Using Null Objects with Chili!Beans . 467

Iterating a Collection with Chili!Beans . 468

Accessing Methods and Fields with Chili!Beans . 468

Limitations of Chili!Beans Objects . 468

Supplying Java Virtual Machine Settings . 469

Constructing Java Objects with Chili!Beans . 469

Accessing a Java Class via Chili!Beans. 470

Registering a Java Class as a COM Component on Linux and UNIX . 470

Returning a Java Class from a Method Call or Field Access . 471

ASP Servlet Interface . 472

Object Mapping . 473

Programmatic Access . 473

Functionality Not Implemented. 476

ServletContext . 476

HttpServletRequest . 477

HttpServletResponse . 477

HttpSession. 477

13 XML Support 479

About the Sun ONE ASP XML Control . 479

Functionality Not Implemented . 480

Node Interface . 480

Document Interface . 480

XMLHTTPRequest Object . 481

14 SpicePack Component Reference 483

Enabling SpicePack Components . 483

Chili!Mail (SMTP). 484

Chili!Mail Registry Settings . 485

Chili!Mail Syntax . 485

Chili!Mail Properties . 485

Chili!Mail Bcc Property (String: Read/Write) . 486

Chili!Mail Body Property (String: Read/Write) . 486

Chili!Mail BodyFormat Property (Long: Write only) . 486

Chili!Mail Cc Property (String: Read/Write) . 487

Chili!Mail Charset Property (String: Read/Write) . 487

Chili!Mail CodePage Property (Integer: Read/Write) . 487

Chili!Mail From Property (String: Read/Write) . 488

Chili!Mail Host Property (String: Read/Write) . 488

Chili!Mail Importance Property (Long: Read/Write) . 488

CONTENTS XV

 .
. .
Chili!Mail Retain Property (BOOLEAN: Read/Write) . 488

Chili!Mail Subject Property (String: Read/Write) . 488

Chili!Mail To Property (String: Read/Write) . 488

Chili!Mail Value Property (Read/Write) . 489

Chili!Mail WrapLength (Read/Write) . 489

Chili!Mail Methods . 489

Chili!Mail AttachFile Method. 489

Chili!Mail Send Method . 490

Chili!POP3 (POP3) . 491

Chili!POP3 Registry Settings . 491

Chili!POP3 Syntax . 491

Chili!POP3 POP3 Interface. 491

POP3 Interface Properties . 491

POP3 Interface Collections . 492

POP3 Interface Methods . 492

Chili!POP3 Message Interface . 493

Message Interface Properties . 494

Message Interface Collections . 495

Message Interface Methods. 496

Chili!POP3 Attachment Interface . 497

Attachment Interface Properties . 497

Attachment Interface Methods . 498

Chili!Upload (File Upload) . 499

Chili!Upload Registry Settings . 499

Chili!Upload Syntax. 499

Chili!Upload Properties . 499

Chili!Upload AllowOverwrite Property (Read /Write) . 500

Chili!Upload FileSize Property (Read-Only) . 500

Chili!Upload SizeLimit Property (Read/Write). 500

Chili!Upload SourceFileExtension Property (Read-Only) . 500

Chili!Upload Version Property (Read-Only) . 500

Chili!Upload Collections . 500

Chili!Upload FormData Collection . 500

Chili!Upload Methods . 501

Chili!Upload SaveToFile Method . 501

Chili!Upload SourceFileName Method (Read-Only) . 501

Chili!Upload Methods Examples . 501

XVI SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
15 Scripting Languages Reference 503

Sun ONE ASP VBScript Reference. 503

Sun ONE ASP JavaScript Reference. 503

A Errors Reference 505

Sun ONE ASP Errors. 505

Sun ONE ASP VBScript Errors . 511

Sun ONE ASP JavaScript Errors . 511

ADO Errors . 511

B Troubleshooting 513

C Advanced Administration Options 515

Editing the Windows Registry . 515

Editing the Sun ONE ASP Configuration File . 517

[machines] . 518

[default machine] . 519

[virtual hosts] . 521

[default application] . 521

[ADO] . 523

[admin] . 523

[applications] . 524

[Components Security] . 525

[Product Update]. 525

Defining Applications on UNIX . 525

Defining an Application on Sun ONE Web Server . 527

Defining an Application on Apache Web Server. 527

Relocating the System Files for a Shared Installation. 528

Relocating the Registry File . 528

Relocating Sun ONE Active Server Pages PID Files . 529

Configuring a Non-DSO Apache Web Server . 530

Starting the Apache Web Server in SSL Mode . 532

Glossaries 533

General Glossary . 533
Administration Console Glossary . 557

Index 583

. .

 .

. .1 Introduction

Welcome to SunTM ONE Active Server Pages software, formerly known as Sun
Chili!Soft ASP. Sun ONE Active Server Pages 4.0 is Sun’s latest ASP engine for the
SunTM ONE Web Server (formerly iPlanetTM Web Server, Enterprise Edition) and the
Apache Web Server.

Sun ONE Active Server Pages is a platform-independent implementation of ASP
technology, providing:

� An internationalized, cross-platform ASP application environment designed
for the seamless deployment of ASP code on a variety of Web servers and
platforms.

� A flexible and intuitive Web-based administration console designed to
simplify management of ASP applications.

� New XML and JavaTM technology extensions designed to extend ASP to other
platforms, XML, and Web services.

This chapter provides an introduction to Sun ONE Active Server Pages (also referred
to as Sun ONE ASP), and includes a description of what’s new and supported in this
release, a list of issues you should be aware of before running your installation, an
overview of this guide and other helpful resources, and a general introduction to ASP.

Note

The online version of this documentation was developed to meet Section 508
accessibility guidelines. You may wish to adjust text size and other browser
settings to suit your personal preferences. To familiarize yourself with this
documentation and the information each chapter provides, be sure to review
“What the Guide Contains” on page 9.

In this chapter:

“New in This Release” on page 2

“Other Features” on page 4

“Supported in This Release” on page 5

“Before You Begin” on page 6

“About This Guide” on page 8

“Other Resources” on page 13

“About ASP” on page 15

2 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. New in This Release
This section describes the new features in Sun ONE Active Server Pages 4.0. The
features are listed by platform.

UNIX and Linux
Sun ONE Active Server Pages for UNIX and Linux includes the following new
features:

� ASP 3.0 functionality: Sun ONE ASP includes implementation of the ASP
3.0 functionality listed below (for more information, see “Chapter 9, ASP
Built-in Objects Reference” on page 215).

❑ Application.Contents.Remove (method)

❑ Application.Contents.RemoveAll (method)

❑ ASPError object (intrinsic ASP object)

❑ Server.Execute (method)

❑ Server.GetLastError (method)

❑ Server.Transfer (method)

❑ Session.CodePage (property)

❑ Session.Contents.Remove (method)

❑ Session.Contents.RemoveAll (method)

� VBScript and JScript 5.5 support: Sun ONE ASP includes support for
version 5.5 of Microsoft VBScript and JScript (for more information, see
“Chapter 15, Scripting Languages Reference” on page 503).

� Enhanced language support: Sun ONE ASP now includes support for
English, Dutch, French, German, Japanese Shift-JIS, Simplified Chinese, and
Spanish (for more information, see “Configuring International Support” on
page 43 and “Developing International Applications” on page 212).

� Multiple virtual server support: Sun ONE ASP now supports the
multiple virtual server feature of Sun ONE Web Server. This supplements
existing support for virtual hosts on the Apache Web server. For related
information, see “Defining Applications in a Shared Environment” on page
74 and “Enabling ASP for a Virtual Host” on page 54.

� Engine deadlock recovery: Sun ONE ASP provides improved server
stability. Failed processes, whether from malformed ASP code or locked
database connections, are automatically restarted (for more information, see
“Configuring Engine Deadlock Recovery” on page 69).

� Command-line administration: In addition to the Sun ONE ASP
Administration Console, a browser-based GUI, many administrative tasks can
now be performed from the command line (for more information, see
“Chapter 5, Command-line Management” on page 83).

INTRODUCTION 3

 .
. .
� Database publishing and administration tools: Sun ONE ASP includes
two database tools: Sun ONE ASP Database Publisher (Database Publisher),
and Sun ONE ASP Database Management System for MySQL (DBMS).

Database Publisher is a client/server application that enables a Microsoft
Access database running on Windows to be published to a MySQL database
running on the UNIX® or Linux platforms (with Sun ONE ASP installed).
DBMS is a database administration system for MySQL, enabling MySQL data-
bases to be administered from a user-friendly administration console instead
of strictly from the command line. For more information about these tools,
see “Database Publisher” on page 135 and “DBMS” on page 148.

� Enhanced COM-to-Java bridge: Developers looking to create highly
portable ASP applications can integrate cross-platform Java components into
their applications directly from ASP scripting (for more information, see
“Chapter 12, Chili!Beans Component Reference” on page 465).

� XML support: Developers can take advantage of built-in support for XML.
Sun ONE ASP enables developers to incorporate pages using the DOM and
HTTP features of MSXML 1.0 (Microsoft’s XML parser) into their Sun ONE
ASP applications, with minimal changes to code (for more information, see
“Chapter 13, XML Support” on page 479).

See also:

“Other Features” on page 4

“Supported in This Release” on page 5

“Before You Begin” on page 6

Microsoft Windows NT and Windows 2000
Sun ONE Active Server Pages for Windows includes the following new features:

� ASP 3.0 functionality (see “Chapter 9, ASP Built-in Objects Reference” on
page 215)

� VBScript and JScript 5.5 support (see “Chapter 15, Scripting Languages
Reference” on page 503)

� Multiple virtual server support (Sun ONE Web Server)

� Sun ONE ASP Chili!Beans (see “Chapter 12, Chili!Beans Component
Reference” on page 465)

� Chili!POP3 and Chili!Upload SpicePack components (see “Chapter
14, SpicePack Component Reference” on page 483)

� Sun ONE Web Server 6.0 and Apache Web Server 2.0.43 support (see
“Supported in This Release” on page 5)

� Product updates (see the note pertaining to Windows in “Checking for
Product Updates” on page 28)

4 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See also:

“Before You Begin” on page 6

. Other Features
Sun ONE Active Server Pages is designed for the easy setup, administration, and
deployment of ASP on the SolarisTM, Linux, and Windows platforms. In addition to
the features listed in “New in This Release” on page 2, Sun ONE ASP also includes the
following:

� 100% pure Active Server Pages support: Sun ONE ASP supports the
most common and frequently used ASP standards, such as ASP 3.0 and
version 5.5 of the VBScript and JScript scripting languages. New or existing
ASP applications can be deployed with few or no changes to code. For more
information, see “Chapter 9, ASP Built-in Objects Reference” on page 215 and
“Chapter 15, Scripting Languages Reference” on page 503.

� Database connectivity tools suite: Sun ONE ASP includes support for
ADO 2.0, and provides DataDirect Connect 4.1 ODBC drivers for all major
databases (UNIX and Linux product versions only). Everything needed to
integrate data with an ASP application is provided; drivers do not need to be
purchased separately.

For information about the ODBC drivers installed with Sun ONE ASP, see
“Supported in This Release” on page 5. For information about configuring the
drivers for the data source being used, see “Chapter 6, Configuring a Data-
base” on page 103.

� Powerful and scalable ASP processing: Sun ONE ASP includes a
browser-based Administration Console for the easy management and
configuration of the ASP Server engine (UNIX and Linux product versions
only). It also provides server monitoring and diagnostic tools for real-time
tracking and monitoring of server performance and availability, as well as ASP
error logging for quick detection and diagnosis of server errors. For more
information, see “Chapter 2, Using the Administration Console” on page 17
and “Chapter 3, Managing the ASP Server” on page 35.

� Web application developer tool integration: Sun works directly with
leading Web application development tool vendors such as Macromedia and
Adobe® to ensure that applications work seamlessly with Sun ONE ASP.

� World-class support: Sun ONE ASP is backed by Sun’s global support
network and its world-class support. For more information, see “Contacting
Customer Support” on page 25.

See also:

“New in This Release” on page 2

“Supported in This Release” on page 5

INTRODUCTION 5

 .
. .
. Supported in This Release
The following table lists the platforms, Web servers, and ODBC-compliant databases
supported in this release of Sun ONE Active Server Pages. The ODBC drivers listed in
the Databases column are installed with Sun ONE ASP.

Version Platform Web Servers Databases

Sun ONE
ASP for
Solaris

Solaris 8 and 9 - Sun ONE Web Server,
Enterprise Edition 6.0 SP5*
- Apache 1.3.27 DSO
- Apache 2.0.43 DSO
*Formerly iPlanet

DataDirect Connect ODBC 4.1
Wire Protocol drivers
- DB2 Universal Database (UDB) 7.1
- dBASE 5
- Informix Dynamic Server 9.x
- Informix Dynamic Server 2000
(9.20)
- Microsoft SQL Server 7.0 SP1
- Microsoft SQL Server 2000 SP1
- Oracle 8i (8.1.7)
- Oracle 9i
- Sybase Adaptive Server Enterprise
11.9.2 and higher
- Sybase Adaptive Server Enterprise
12.5
- Text Files
DataDirect SequeLink 5.3
- Microsoft SQL Server 6.5
- Microsoft Access 2000, 97, and 95
Open Source
- MySQL 3.23
- PostgreSQL 7.1.3

6 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

Sun ONE Active Server Pages may function with other versions of the
supported Web servers and databases listed in the table above. However,
versions not listed have not been certified to run with Sun ONE ASP, and
their use is not supported by Customer Support. Zeus Web servers are not
supported in this release of Sun ONE ASP.

See also:

“New in This Release” on page 2

“Other Features” on page 4

“Viewing the List of ODBC Drivers” on page 104

. Before You Begin
There are certain issues you should be aware of before running your installation of
Sun ONE Active Server Pages. This section addresses those issues by platform.

Sun ONE
ASP for
Linux

- Red Hat Linux
7.3
- SuSE 8.0
Professional
Note: 2.4 kernel;
glibc 2.2.5
Sun ONE ASP
may be functional
with other Linux
distributions
supporting the
2.4 kernel and
glibc 2.2.5.
However, their
use is not
supported by
Customer
Support.

- Sun ONE Web Server,
Enterprise Edition 6.0 SP5*
- Apache 1.3.27 DSO
- Apache 2.0.43 DSO
- Red Hat Secure Server 7.0
*Formerly iPlanet

DataDirect Connect ODBC 4.1
Wire Protocol drivers
- DB2 Universal Database (UDB) 7.1
- dBASE 5
- Informix Dynamic Server 2000
(9.20)
- Microsoft SQL Server 7.0 SP1
- Microsoft SQL Server 2000 SP1
- Oracle 8i (8.1.7)
- Oracle 9i
- Sybase Adaptive Server Enterprise
11.9.2 and higher
- Sybase Adaptive Server Enterprise
12.5
- Text Files
DataDirect SequeLink 5.3
- Microsoft SQL Server 6.5
- Microsoft Access 2000, 97, and 95
Open Source:
- MySQL 3.23
- PostgreSQL 7.1.3

Sun ONE
ASP for
Windows

- Windows NT
Server 4.0 SP6
- Windows 2000
Server SP2

- Sun ONE Web Server,
Enterprise Edition 6.0 SP5*
- Apache 1.3.27
- Apache 2.0.43
*Formerly iPlanet

ODBC drivers are not provided or
certified on Windows.

Version Platform Web Servers Databases

INTRODUCTION 7

 .
. .
UNIX and Linux
Before running your installation of Sun ONE Active Server Pages for UNIX or Linux,
please take note of the following:

� If you chose the default configuration for the Sun ONE ASP Administration
Console, the administrator username is configured as "admin" and the
password as "root." To protect the security of your server, change the
username and password as soon as possible following installation. For more
information, see “Configuring Usernames and Passwords” on page 21.

� If you chose not to configure a Web server to run with Sun ONE ASP during
installation, you will be prompted to do so the first time you open the Sun
ONE ASP Administration Console. For more information, see “Configuring
the Web Server after Installation” on page 79.

� Certain Sun ONE ASP settings have important implications for the security of
the ASP Server. See “Securing the Server” on page 55 to ensure that the
settings are configured appropriately for your specific environment.

� After the installation of Sun ONE ASP, use the diagnostic applications to
verify that your installation is functioning correctly. Diagnostics can be
accessed from the following URL:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP.

� Important summary information about the installation is located in the
following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun ONE
ASP (/opt/casp by default).

Be sure to print this information for future reference.

Microsoft Windows NT and Windows 2000
Before running your installation of Sun ONE Active Server Pages for Windows, please
take note of the following:

� Sun ONE ASP runs automatically whenever an ASP page is requested by a user
(provided the Web server is running). Sun ONE ASP runs until the Web server
is stopped. When the Web server is restarted, Sun ONE ASP will not run until
an ASP page is requested by a user.

� The Sun ONE ASP Administration Console is referenced throughout this
documentation. The Administration Console is available for the UNIX and
Linux versions of the product only. With Sun ONE ASP for Windows, all
configuration is performed during installation. Some of the configuration
information is stored in registry settings, however, and expert users can use
regedit to edit those settings. For more information, see “Editing the
Windows Registry” on page 515.

8 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� With Sun ONE ASP for Windows, ASP applications are defined by adding
aliases or virtual directories to the Web server. Sun ONE ASP treats each alias
or virtual directory as an ASP application. With Sun ONE Web Server, ASP
applications are defined by adding an "additional document directory" using
the server’s Administration tool. With the Apache Web server, ASP
applications are defined by adding an alias to the httpd.conf file.

� ODBC drivers are not installed with Sun ONE ASP for Windows. Use the
Windows ODBC Data Source Administrator (accessed from the Control Panel)
to view installed ODBC drivers, and to create and manage DSNs. Consult
Microsoft documentation for more information.

See also:

“Defining ASP Applications (ASP Server)” on page 46

“Creating Database Connections (ASP Server)” on page 44

. About This Guide
This guide provides information about the configuration and use of Sun ONE Active
Server Pages. It also provides basic information about building ASP applications, as
well as developer reference information.

Two versions of the guide are included with the product: one in HTML format
optimized for online viewing, and one in Adobe® PDF format optimized for printing.
To view and print the PDF version, Adobe Acrobat Reader must be installed. To
obtain a free copy of Acrobat Reader, go to:

http://www.adobe.com/products/acrobat/readstep2.html

We would like to know what you found useful in this documentation, and what you
think could be improved. Please use the form at the following URL to provide your
comments:

http://developer.chilisoft.com/feedback/documentation.asp

Note

The online version of this documentation was developed to meet Section 508
accessibility guidelines. You may wish to adjust text size and other browser
settings to suit your personal preferences. To familiarize yourself with this
documentation and the information each chapter provides, be sure to review
“What the Guide Contains” on page 9.

http://developer.chilisoft.com/feedback/documentation.asp
http://www.adobe.com/products/acrobat/readstep2.html

INTRODUCTION 9

 .
. .
What the Guide Contains
The following table describes the contents of each chapter in this guide, and the users
who will benefit most from reading them. The first half of the guide contains
information about the configuration and use of Sun ONE Active Server Pages. The
second half provides developer reference information (starting with "ASP Built-in
Objects Reference").

Note

This guide does not include installation instructions. Detailed installation
and getting started information can be found in the QuickStart Guide
included with Sun ONE ASP. The most current application notes are found in
the README file included with the product, and you should review the
README before using Sun ONE ASP. For more information about accessing
documentation resources, see “How the Guide is Accessed” on page 11.

Chapter Audience Description

“Chapter 1,
Introduction” on page 1

System administrators
and Web developers

Provides an overview of Sun ONE ASP
and this documentation, including
information about new features,
supported platforms, and steps you
should take before running your
installation of Sun ONE ASP.

“Chapter 2, Using the
Administration Console”
on page 17

System administrators Describes how to access and use the Sun
ONE ASP Administration Console for
basic tasks such as configuring
usernames and passwords, contacting
Customer Support, and viewing the
README. The Administration Console is
the browser-based application used for
managing Sun ONE ASP.

“Chapter 3, Managing
the ASP Server” on page
35

System administrators Provides information about
administering Sun ONE ASP from the
Sun ONE ASP Administration Console,
including information about changing
ASP Server configuration settings,
configuring security, and optimizing
server performance. Also provides
overview information about creating
database connections and enabling
users to publish ASP applications to the
Web server.

“Chapter 4, Managing
the Web Server” on page
77

System administrators Provides information about managing
certain Web server settings from the Sun
ONE ASP Administration Console (note
that most Web server management is
handled through the Web server’s own
management interface).

“Chapter 5, Command-
line Management” on
page 83

System administrators Provides information about performing
management tasks from the command
line.

10 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Chapter 6, Configuring
a Database” on page 103

System administrators Describes how to create and edit Data
Source Names (DSNs), and how to
configure the ASP Server to connect with
supported databases.

“Chapter 7, Using
Database Tools” on page
135

System administrators
and Web developers

Describes the Sun ONE ASP Database
Publisher and DBMS tools.
Database Publisher enables a Microsoft
Access database running on Windows to
be published to a MySQL database
running on UNIX or Linux (with Sun
ONE ASP installed). DBMS enables
MySQL databases to be administered
from an administration console instead
of strictly from the command line.

 “Chapter 8, Building Sun
ONE ASP Applications”
on page 181

System administrators
and Web developers

Introduces the basics of developing ASP
applications, including information
about creating an ASP page, adding
scripts and server-side includes, defining
the application on the server, and
developing international applications.
Also discusses how to extend ASP
applications by using objects and
components, how to connect to a
database, and how to publish a Sun ONE
ASP application.

“Chapter 9, ASP Built-in
Objects Reference” on
page 215

Web developers
(reference chapter)

Provides reference information about
built-in (intrinsic) ASP objects.

“Chapter 10, ASP
Component Reference”
on page 271

Web developers
(reference chapter)

Provides reference information about
ASP components.

“Chapter 11, ADO
Component Reference”
on page 301

Web developers
(reference chapter)

Provides reference information about
ADO (ActiveX Data Objects).

“Chapter 12, Chili!Beans
Component Reference”
on page 465

Web developers
(reference chapter)

Provides reference information about the
Sun ONE ASP Chili!Beans ActiveX
control, a wrapper that enables Java
objects to be used by COM controllers.
Also provides reference information
about the new ASP servlet interface,
which enables Java objects designed for
use in JSPs to be integrated into Sun
ONE ASP applications directly from ASP
scripting.

“Chapter 13, XML
Support” on page 479

Web developer
(reference chapter)

Provides reference information about
XML support provided in Sun ONE ASP.

“Chapter 14, SpicePack
Component Reference”
on page 483

Web developers
(reference chapter)

Provides reference information about the
Sun ONE ASP SpicePack components, a
set of COM components that handle
commonly used ASP application
functionality.

Chapter Audience Description

INTRODUCTION 11

 .
. .
See also:

“How the Guide is Accessed” on page 11

“Other Resources” on page 13

How the Guide is Accessed
Sun ONE Active Server Pages documentation can be accessed in a number of ways:

� From the Sun ONE ASP Administration Console, as described in “Accessing
Product Documentation” on page 23 (UNIX and Linux only).

� From your Web server, if you chose the option to install documentation
during installation. With your Web server running, go to:

http://[HOSTNAME]/caspdoc/ (for online documentation)

- or -

http://[HOSTNAME]/caspdoc/pdf/SunONEActiveServerPages4.pdf (for the
PDF)

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP.

� From the Sun ONE ASP developer Web site at:

http://developer.chilisoft.com/caspdoc/

� From the Sun ONE ASP product home page. With your Web server running,
go to:

http://[HOSTNAME]/caspsamp

“Chapter 15, Scripting
Languages Reference” on
page 503

Web developers
(reference chapter)

Provides reference information about
Microsoft VBScript and JScript, and
about Sun ONE ASP VBScript and Sun
ONE ASP JavaScript (the Sun ONE ASP
scripting engines).

“Appendix A, Errors
Reference” on page 505

System administrators
and Web developers

Explains error messages you might
encounter when using Sun ONE ASP.

“Appendix B,
Troubleshooting” on
page 513

System administrators
and Web developers

Provides access to troubleshooting
information, most of which is available
from the Sun ONE ASP knowledge base.

“Appendix C, Advanced
Administration Options”
on page 515

System administrators
and Web developers

Describes advanced administration
options for expert users of Sun ONE ASP.

“Glossaries” on page 533 System administrators
and Web developers

Contains two glossaries: A general
glossary with terms you might
encounter when administering Sun ONE
ASP and developing ASP applications,
and a user interface glossary with terms
specific to the Sun ONE ASP
Administration Console GUI.

Chapter Audience Description

http://developer.chilisoft.com/caspdoc/

12 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP (see “Product Home Page” on page 13).

In addition to the complete product documentation, two other Sun ONE ASP
documentation resources will also be helpful to you:

� The QuickStart Guide, a text file that provides installation and migration
instructions, and information about getting started with Sun ONE ASP. The
guide is included on the installation CD-ROM. If you downloaded Sun ONE
ASP from the Web, the guide is included in the installation files extracted
from the tar file. The QuickStart Guide can also be accessed from the Sun
ONE ASP developer Web site at:

http://developer.chilisoft.com/caspdoc/

� The README, a text file that contains the latest product information and
application notes. The README is included with the product and can be
accessed as described in “Viewing the README File” on page 24. The most
current README can be accessed from the Sun ONE ASP developer Web site
at the URL listed above.

See also:

“What the Guide Contains” on page 9

“Other Resources” on page 13

Guide Conventions
The following table lists the typographic conventions used in this guide.

See also:

“About This Guide” on page 8

“What the Guide Contains” on page 9

“How the Guide is Accessed” on page 11

Convention Used for

Bold - User interface elements
- Objects, methods, properties
- Emphasis

Monospace font - Code
- Command-line commands that must be typed
exactly as shown

Italics - Placeholders representing conditional information
that must be inserted (such as <install directory>)
- Parameters
- Variables
- Emphasis

http://developer.chilisoft.com/caspdoc/

INTRODUCTION 13

 .
. .
. Other Resources
In addition to the product documentation, the resources listed below will also be
helpful to you.

Product Home Page
The Sun ONE Active Server Pages product home page (referred to as the Start Page in
earlier releases) provides links to resources that will help you get the most out of Sun
ONE ASP. The page provides access to diagnostics, the 10-step Tour, product
documentation, developer references, and Customer Support. The product home
page can be accessed from:

� http://[HOSTNAME]/caspsamp

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP.

� The following URL:

http://developer.chilisoft.com/caspsamp

� The Product Home Page link at the top of each page in the online version
of the Sun ONE ASP product documentation.

Note

To use ASP functionality in diagnostics and the 10-step Tour, Allow session
state must be set to yes on the Server Settings page in the Sun ONE ASP
Administration Console. For more information about this setting, see
“Enabling Session State” on page 42. For Windows systems, see “Editing the
Windows Registry” on page 515.

“Diagnostic Applications” on page 13

“Knowledge Base” on page 14

“Support Forum” on page 15

“Developer Web Site” on page 15

Diagnostic Applications
Diagnostic applications are used to verify that your ASP environment is working
correctly. Following installation, and with your Web server running, diagnostic
applications can be accessed from:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of the Web server configured to run with Sun
ONE ASP.

http://developer.chilisoft.com/caspsamp

14 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
The following tables lists the diagnostic applications installed with Sun ONE Active
Server Pages.

Note

To use ASP functionality in the diagnostic applications, Allow session state
must be set to yes on the Server Settings page in the Sun ONE ASP
Administration Console. For more information about this setting, see
“Enabling Session State” on page 42. For Windows systems, see “Editing the
Windows Registry” on page 515.

See also:

“Product Home Page” on page 13

“Other Resources” on page 13

Knowledge Base
The Sun ONE Active Server Pages knowledge base is a valuable technical resource,
providing troubleshooting information, answers to frequently asked questions, and
useful "how-to" tips. To access the knowledge base, go to:

http://developer.chilisoft.com/kb/

See also:

“Other Resources” on page 13

Diagnostic Used for

HELLO Tests the functionality of ASP and VBScript by using a
simple "Hello World" script.

JSCRIPT Tests the functionality of JScript.

SERVER Tests the ASP Server-to-Web server connection by
retrieving the standard Web server variables.

COMPONENTS Tests the functionality of additional components
installed with Sun ONE ASP.

ADO Accesses ADO from VBScript. Connects to a sample
database by using ODBC to test the functionality of
ADO and the dBASE ODBC driver.

JSADO Performs the same test as the ADO diagnostic, but
accesses ADO from JScript rather than from VBScript.

SQLEXECUTE Uses ADO to execute a SQL statement and display the
results. To use this application, you must first create a
system DSN for your database on the ASP Server (see
“Adding a DSN” on page 106).

http://developer.chilisoft.com/kb/

INTRODUCTION 15

 .
. .
Support Forum
The Sun ONE Active Server Pages Support Forum is a great way to interact with other
members of the Sun ONE ASP community, sharing tips, experiences, and expertise.
To access the Support Forum, go to:

http://developer.chilisoft.com/forum/

See also:

“Other Resources” on page 13

Developer Web Site
The Sun ONE Active Server Pages developer Web site provides many helpful
development resources, including sample ASP applications that demonstrate the
basics of building Sun ONE ASP applications. To access the developer Web site, go to:

http://developer.chilisoft.com

See also:

“Other Resources” on page 13

. About ASP
Active Server Pages (ASP) is a specification for a dynamically created Web page with
an .asp extension. ASP technology provides an open, compile-free application
environment in which Web developers can combine HTML, scripts, and reusable
Active Server components. Sun ONE Active Server Pages is a platform-independent
implementation of ASP technology, enabling ASP applications to be run on a variety
of Web servers running under UNIX, Linux, and Windows.

An ASP application consists of ASP pages published on a Web site. An ASP page is
simply a plain text file with the .asp file name extension. ASP pages can contain
HTML code, client-side scripts, and server-side scripts. A Sun ONE ASP page uses
VBScript or JScript code to access the ASP object model, which exposes functionality
often used in Web application environments. When a user requests an ASP page, the
Web server passes execution to the Sun ONE ASP Server, which processes the scripts,
generates an HTML page, and sends it back to the browser.

Benefits of ASP
ASP was designed as a faster and easier alternative to CGI scripting using Perl or C. It
provides an easy-to-learn scripting interface (including native support for VBScript
and JScript), along with a number of predefined objects that simplify many
development tasks, such as maintaining user state and defining global variables
within an application. ADO components can be used to perform additional

http://developer.chilisoft.com/forum/
http://developer.chilisoft.com

16 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
functions, including accessing ODBC-compliant databases, and outputting data to
text files. Java components and XML can be used to extend ASP scripts.

Additional benefits include the following:

� ASP runs as a service of the Web server, and is optimized for multiple threads
and multiple users. This means that ASP is fast and easy to implement.

� ASP enables you to separate the design of your Web page from the details of
programming access to databases and applications, allowing programmers
and Web designers to focus exclusively on what they do best.

� Server-side ASP scripts can be used to store HTML form information in a
database, personalize Web sites according to visitor preferences, or use
different HTML features based on the browser. Because scripts can run on the
server rather than on the client, the Web server can do much of the work
involved in generating the HTML pages sent to browsers. Server-side scripts
cannot be readily copied because only the result of the script is returned to
the browser; users cannot view the script commands that created the page
they are viewing.

� For the HTML author, ASP is an easy way to begin creating Web applications.
To process user input on the Web server with CGI applications, a
programming language such as Perl or C must be learned. With ASP, however,
you can collect HTML form information and pass it to a database by using
simple server-side scripts written in VBScript of JScript that are embedded
directly in your HTML documents.

� ASP is language-neutral, so if you’re skilled at a scripting language such as
VBScript or JScript, you already know how to use ASP.

� If you develop Web applications by using a programming language such as
Java, Visual Basic, or C++, you will appreciate the flexibility of ASP. In
addition to using scripts to create an engaging HTML interface for your
application, you can also use Java components to encapsulate your
application's business logic into reusable modules that can be called from a
script, from another component, or from another program.

. .

 .

. .2 Using the Administration Console

The Sun ONE Active Server Pages Administration Console is a browser-based
application used for managing Sun ONE ASP. It enables administrators to configure
and control the Sun ONE ASP Server and its bindings to Web servers and database
servers from a Web browser, either locally or remotely.

Most product configuration settings are accessible from the Administration Console.
Whenever possible, the Administration Console should be used for product
configuration.

This chapter describes how to access and use the Administration Console for basic
tasks. Subsequent sections describe the use of the Administration Console for server
management and configuration.

Note

Expert users can also perform certain tasks from the command line. For more
information, see “Chapter 5, Command-line Management” on page 83.

In this chapter:

“Accessing the Administration Console” on page 18

“Starting and Stopping the Administration Web Server” on page 20

“Configuring Usernames and Passwords” on page 21

“Accessing Product Documentation” on page 23

“Viewing the README File” on page 24

“Contacting Customer Support” on page 25

“Installing a New Serial Number” on page 27

“Checking for Product Updates” on page 28

“Enabling External Components” on page 30

“Enabling Database Tools” on page 32

See also:

“Chapter 3, Managing the ASP Server” on page 35

“Chapter 4, Managing the Web Server” on page 77

“Chapter 6, Configuring a Database” on page 103

18 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Accessing the Administration Console
The Sun ONE Active Server Pages Administration Console is hosted by the
Administration Web site, which is installed on the computer running the ASP Server.
The Administration Web site consists of its own Apache Web Server and its own ASP
Server. By default, the Administration Web site is configured to start when the
computer running Sun ONE ASP is started.

To access the Administration Console, you must know the hostname of the Web
server configured to run with Sun ONE ASP, and the port on which the
Administration Console is running (5100 by default).

If you did not configure a Web server to run with Sun ONE ASP during installation,
you will be prompted to do so the first time you open the Administration Console.

To access the Administration Console

1. In your browser address bar, enter the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

2. When prompted, type the username and password specified during installa-
tion. If you chose the default configuration for the Administration Console
during installation, the username is configured as "admin" and the password
as "root." You should change these from the defaults as soon as possible, as
described in “Configuring Usernames and Passwords” on page 21

After typing the username and password, the Administration Console opens
and displays the Server Management page. This page is used to access con-
figuration settings for Sun ONE ASP, view information about the installation,
and start and stop the associated Web server.

USING THE ADMINISTRATION CONSOLE 19

 .
. .
Note

When Sun ONE ASP is installed and your Web server is running, you can also
access the Administration Console from the Sun ONE ASP product home
page at:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP.

To access the Sun ONE ASP Administration Console using a URL, you must specify its
port number. While the default port number is 5100, this number might be different
if 5100 was already in use when you installed Sun ONE ASP, or if you specified a
different port number for the Administration Web site during installation. If you
don’t know the correct port number, this information can be found in the Sun ONE
ASP installation summary file. This file is named install_summary.

On UNIX and Linux platforms, the installation summary file is found in the
following location:

/[C-ASP_INSTALL_DIR]/logs/

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun ONE ASP.

The entry reads as follows:

Administration console installed:

URL: http://[YOUR_WEB_SERVER_HOSTNAME]:[PORT_NUMBER]

Port: [PORT_NUMBER}

20 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Starting and Stopping the Administration Web Server
An administration Web server is installed with Sun ONE Active Server Pages, and
hosts the Sun ONE ASP Administration Console. By default, the administration Web
server is configured to start when the computer running Sun ONE ASP is started.
Although you can start and stop the ASP Server by using the Administration Console
(as described in “Stopping and Restarting the ASP Server (Admin Console)” on page
41), to start or stop the administration Web server, you must use the command-line
utility, admtool, which is installed with Sun ONE ASP.

To start or stop the administration Web server

1. Telnet or log in to the computer running Sun ONE ASP as root.

2. Change directories (cd) to the root installation directory (/opt/casp by
default).

3. Start the admtool utility with the following command:

./admtool

When you start the admtool utility, the following list of options displays:

1 (Start admin server) Starts the administration Web server.

2 (Stop admin server) Stops the administration Web server.

3 (Admin server status) Indicates whether the administration Web server
is running or stopped.

4 (Add a user) Adds a new administrator username and password or
changes the password for an existing username.

5 (Remove a user) Removes a username.

6 (List users) Shows a list of all usernames currently configured for the
Administration Console.

7 (Quit) Saves any changes and exits the admtool utility.

4. To start the administration Web server, enter 1 (Start admin server)

– or –

To stop the administration Web, enter 2 (Stop admin server).

5. When prompted, press Enter to continue.

6. To save any changes and exit, enter 7 (Quit).

USING THE ADMINISTRATION CONSOLE 21

 .
. .
. Configuring Usernames and Passwords
During installation a username and password is created to restrict access to the Sun
ONE ASP Administration Console. The Administration Console can be used to add,
edit, and delete usernames and passwords as follows:

� Any administrator can add or delete any other administrator user.

� Any administrator can change his or her own password, but not that of any
other administrator.

Caution

If you chose the default configuration for the Administration Console during
installation, the administrator username is configured as "admin" and the
password as "root." To protect the security of your server, you should change
these from the defaults as soon as possible.

To configure usernames and passwords

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Users.

The Users page displays.

22 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. Perform the desired action:

❑ To change your password, click change password. In the Change
Password dialog that displays, provide password information, and then
click OK. You can change your own password, but not that of any other
user.

- or -

❑ To add a user, specify the username, password, and password confirma-
tion in the corresponding boxes on the Users screen, and then click Add
user.

- or -

❑ To delete a user, select the check box that corresponds to the user and
click Delete selected user(s).

Note

It is not necessary to restart the ASP Server after making these changes.

See also:

“Accessing the Administration Console” on page 18

USING THE ADMINISTRATION CONSOLE 23

 .
. .
. Accessing Product Documentation
As described in “How the Guide is Accessed” on page 11, there are several ways to
access product documentation. This section describes how to access documentation
from the Sun ONE ASP Administration Console.

To access documentation from the Administration Console

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Documentation.

Online documentation displays.

See also:

“What the Guide Contains” on page 9

“Viewing the README File” on page 24

“Other Resources” on page 13

24 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Viewing the README File
A README file is installed on your computer during the installation of Sun ONE
Active Server Pages. The README file provides the most current product information
and application notes. The README file can be accessed from the Sun ONE ASP
Administration Console, as described in the following procedure. The README file
can also be found in the following directory:

/[C-ASP_INSTALL_DIR]/

where [C-ASP_INSTALL_DIR] is the path name of the Sun ONE ASP installation
directory (/opt/casp by default on UNIX and Linux).

The most current README file can also be found on the Sun ONE ASP developer Web
site at the following URL:

http://developer.chilisoft.com/caspdoc/

Note

In addition to the README file and product documentation, a number of
other resources are available to assist you with the use and configuration of
Sun ONE ASP. For more information, see “Other Resources” on page 13.

To view the README file

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Customer Support.

http://developer.chilisoft.com/caspdoc/

USING THE ADMINISTRATION CONSOLE 25

 .
. .
The README file displays.

. Contacting Customer Support
Use the following procedure to contact Customer Support if you encounter problems
while using Sun ONE Active Server Pages.

To contact Customer Support

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

26 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
2. In the left navigation pane, click Customer Support.

3. On the Customer Support page, click the Submit a question tab.

The Submit a question page displays.

4. In the text boxes, type your name, e-mail address, and a description of the
problem.

5. Click Submit.

USING THE ADMINISTRATION CONSOLE 27

 .
. .
Note

If you are unable to submit your problem as described in the previous steps,
contact Customer Support using the Web form at the following URL:

http://developer.chilisoft.com/support/supportrequest.asp

If you do this, be sure to include the license number that is displayed on the
ASP Server Licensing page. To view this page, click Server Licensing in
the left navigation pane of the Sun ONE ASP Administration Console.

. Installing a New Serial Number
There may be times when you need to install a new serial number, such as when
you’re upgrading your product license. This serial number is provided by Sun.

To install a new serial number

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Server Licensing.

The ASP Server Licensing page displays with license information.

http://developer.chilisoft.com/support/supportrequest.asp

28 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. In the Product drop-down list, select the product. In the Serial Number
box, type the new serial number, and then click Install.

4. To put your changes into effect, restart the ASP Server by clicking Restart on
the Server Management page

Note

Restarting the ASP Server resets all Session and Application
variables.

. Checking for Product Updates
Product updates and fixes are occasionally provided to enhance the security and
performance of Sun ONE Active Server Pages software. When using the Sun ONE ASP
Administration Console (UNIX and Linux versions), you will see periodic prompts
asking if you want to check for updates. You can also check for updates on demand,
to quickly determine if your specific installation of Sun ONE ASP is current. Use the
following procedure to check for updates on demand from the Sun ONE ASP
Administration Console.

Configuration information transmitted while checking for updates DOES NOT
contain any personal or company identifying information.

Note

You can also check for product updates with Sun ONE Active Server Pages for
Windows. To do so, go to the Sun ONE ASP product Web page and click

USING THE ADMINISTRATION CONSOLE 29

 .
. .
Check For Updates. The product page can be accessed from Start > Sun
ONE ASP > Samples.

To check for product updates

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Check for Updates.

The Sun ONE ASP Product Update page displays, listing information
about your Sun ONE ASP installation.

3. Make your desired selection:

❑ Select Check for update now to check our Web site for updates and
transmit your installation information.

- or -

❑ Select Do not ask for 90 days to be prompted to check for updates
again in 90 days.

30 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Enabling External Components
The Sun ONE ASP Administration Console provides access to external Sun ONE ASP
SpicePack and Chili!Beans components. The SpicePack is a set of COM components
that handle commonly used ASP application functionality. The components are
Chili!Mail, Chili!POP3, and Chili!Upload. The Chili!Beans ActiveX control is a
wrapper that enables Java objects to be used by COM controllers, such as ActiveX
scripting engines like VBScript.

To enable external components

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to
display when you open the console), click Components.

The Components page displays.

USING THE ADMINISTRATION CONSOLE 31

 .
. .
3. Click to select or clear (enable or disable) the components as desired (for spe-
cific information about these components and any additional settings, see
the "See also" references listed after this procedure).

4. When finished, click Save to save your changes, or Cancel to revert to the
settings that were last saved.

The Server Management page displays.

5. If you changed the status of the Chili!Beans or Chili!Upload components,
you must restart the ASP Server by clicking Restart on the Server Manage-
ment page. You do not need to restart the ASP Server if you changed the sta-
tus of the Chili!Mail or Chili!POP3 components.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Enabling SpicePack Components” on page 483

“SpicePack Component Reference” on page 483

“Enabling Chili!Beans” on page 466

“Chili!Beans Component Reference” on page 465

32 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Enabling Database Tools
Sun ONE Active Server Pages includes two database tools: Sun ONE ASP Database
Publisher (Database Publisher), and Sun ONE ASP Database Management System
(DBMS).

Database Publisher is a client/server application that enables a Microsoft Access
database running on Windows to be published to a MySQL database running on
UNIX or Linux (with Sun ONE ASP installed). DBMS is a database administration
system for MySQL, enabling MySQL databases to be administered from a user-
friendly administration console instead of strictly from the command line.

Both Database Publisher and DBMS are enabled and administered from the Tools
page in the Sun ONE ASP Administration Console.

To enable or disable database tools

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Tools.

The Tools page displays.

USING THE ADMINISTRATION CONSOLE 33

 .
. .
3. Click the Enable check box to select or clear (enable or disable) the tools as
desired.

4. When finished, click Save to save your changes, or Cancel to revert to the
settings that were last saved.

It is not necessary to restart the ASP Server.

Note

For information about the administration and use of these tools, see
“Database Publisher” on page 135 and “DBMS” on page 148.

34 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .3 Managing the ASP Server

Sun ONE Active Server Pages includes an ASP Server that processes ASP page requests.
The ASP Server is managed from the Sun ONE ASP Administration Console. Most
configuration settings are accessible from the Administration Console, and it is
strongly recommended that the Administration Console be used for product
configuration.

This chapter describes how to manage the ASP Server from the Sun ONE ASP
Administration Console.

Note

While it is strongly recommended that the Administration Console be used
for product configuration, expert users can also perform certain tasks from
the command line. For more information, see “Chapter 5, Command-line
Management” on page 83.

In this chapter:

“Server Management Overview (ASP)” on page 36

“Changing ASP Server Settings” on page 37

“Stopping and Restarting the ASP Server (Admin Console)” on page 41

“Enabling Session State” on page 42

“Configuring International Support” on page 43

“Creating Database Connections (ASP Server)” on page 44

“Defining ASP Applications (ASP Server)” on page 46

“Securing the Server” on page 55

“Viewing Information about the ASP Server” on page 60

“Optimizing ASP Server Performance” on page 66

“Shared Web Hosting Environments” on page 73

See also:

“Chapter 4, Managing the Web Server” on page 77

36 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Server Management Overview (ASP)
The ASP Server is managed from the Server Management page in the Sun ONE
Active Server Pages Administration Console. This page has two tabs, ASP Server and
Web Server, which are used to access settings for the ASP Server and the Web server.
This section discusses basic management of the ASP Server. For information about
managing the Web server, see “Chapter 4, Managing the Web Server” on page 77.

The ASP Server tab of the Server Management page displays when you open the
Administration Console.

The following items are displayed on the ASP Server tab:

� Status indicates whether the ASP Server is running or stopped.

� Uptime indicates the length of time since the ASP Server was started or
restarted.

� Location indicates the directory in which the ASP Server is installed.

� Stop, Start, and Restart buttons enable you to stop, start, and restart the
ASP Server. For more information, see “Stopping and Restarting the ASP
Server (Admin Console)” on page 41.

� The ASP Applications link displays settings for adding, removing, and
configuring ASP applications. For more information, see “Configuring ASP
Applications” on page 47.

� The Components link provides access to settings for the Sun ONE ASP
SpicePack and Chili!Beans components, and displays the page where the
components are enabled or disabled. For more information, see “Enabling
External Components” on page 30.

� The Databases link displays database configuration settings. For more
information, see “Chapter 6, Configuring a Database” on page 103.

MANAGING THE ASP SERVER 37

 .
. .
� The Settings link displays general ASP Server settings. For more information,
see “Changing ASP Server Settings” on page 37.

� The View Logs link provides access to pages from which the log files
enabled for the ASP Server can be viewed. For more information, see
“Viewing the ASP Errors Log” on page 64.

Note

While most settings for Sun ONE ASP should be configured in the
Administration Console, expert users can perform certain tasks from the
command line. For more information, see “Chapter 5, Command-line
Management” on page 83.

See also:

“Server Management Overview (Web)” on page 77

. Changing ASP Server Settings
The Sun ONE Active Server Pages Administration Console Server Settings page
provides access to the basic configuration settings for the ASP Server. The following
procedure describes how to change server settings. To put any changes into effect,
you must restart the ASP Server.

To change ASP Server settings

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

38 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. Configure the settings as desired (settings are described in the following
table).

4. When finished, click Save to save your changes, or Cancel to revert to the
settings that were last saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

The following table describes ASP Server settings.

Setting Explanation

Scripts buffering on Yes enables scripts buffering. The ASP Server processes
an entire ASP page before returning its HTML output
to the browser, yielding better server performance.
No disables scripts buffering. The ASP Server returns
the HTML output for an ASP page to the browser
incrementally, as soon as the HTML is processed, which
makes debugging easier.
This setting is yes by default. For more information,
see “Enabling Scripts Buffering” on page 66.

MANAGING THE ASP SERVER 39

 .
. .
Session timeout This specifies the number of minutes the ASP Server
maintains a user’s session information since the last
page request. When a user does not submit a page
request for the specified length of time, the server
cancels the session and discards its information. If a
value for SessionTimeout is specified in the script, it
overrides this setting. This setting is 20 minutes by
default. For more information, see “Changing the
Session Timeout Value” on page 67.

Script timeout This specifies the number of seconds the ASP Server
waits for a page to finish processing before canceling
the page request. A value for ScriptTimeout specified in
a script will always override this value. This setting is
90 seconds by default. For more information, see
“Changing the Script Timeout Value” on page 68.
Note: If the deadlock timeout (below) is set to a value
lower than the script timeout, the ASP engine will
restart once the time specified for the deadlock
timeout has elapsed.

Deadlock timeout This specifies the number of seconds that should elapse
before the ASP Server is considered deadlocked and
the engine is restarted. This setting is 600 seconds (10
minutes) by default. For more information, see
“Configuring Engine Deadlock Recovery” on page 69.
Note: If the deadlock timeout is set to a value lower
than the script timeout (above), the ASP engine will
restart once the time specified for the deadlock
timeout has elapsed.

Allow session state This specifies whether the ASP Server maintains session
state. This setting must be enabled (yes) in order for
Session objects in scripts to function. This setting is
yes by default. For more information, see “Enabling
Session State” on page 42.

ASP errors logging file To enable logging for the ASP Server and specify the
location of the log file, type the absolute path name of
the log file in this text box. Sun ONE ASP creates the
log file in the directory you specify. You cannot give
the log file the same name as a file that already exists in
that directory. If the ASP errors logging file text
box is empty (the default), no logging is performed.
For more information, see “Enabling ASP Errors
Logging” on page 63.

Number of threads This specifies the number of threads the ASP Server
handles simultaneously. The default is 5. If you have
many ASP pages that include blocking operations
(database access, for example), it is best to increase
this number. However, keep in mind that increasing
the number of threads also increases system overhead.
A maximum number of up to 20 threads is
recommended. DO NOT set this to a number greater
than 20. For more information, see “Configuring
Multi-threading” on page 71.

Setting Explanation

40 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Inherit user security This setting enables you to specify the security mode
under which the ASP Server runs, and can have a
serious impact on the security of your server, especially
if you are running Sun ONE Web Server.
When Inherit user security is set to yes (Inherit User
Security mode), the ASP Server runs with the
permissions of the Apache Web server or the virtual
host defined in the Apache Web server’s httpd.conf
file. This is the default security mode for Sun ONE ASP
and is available only for Sun ONE ASP running with the
Apache Web server (for Sun ONE Web Server, see the
following discussion of the Defined User Security
mode).
When Inherit user security is set to no (Defined
User Security mode), the ASP Server runs with the
permissions of the user who started the ASP Server,
unless a different user and group is specified in the Sun
ONE ASP configuration file (casp.cnfg). This can create
a security risk for your server. If Inherit user security
is set to no (or if you are running Sun ONE Web
server), be sure to define a user and group in
casp.cnfg, as described in “Editing the Sun ONE ASP
Configuration File” on page 517 (see the [default
machine] keyword). The ASP Server will then run
with the permissions of that user and group. Defined
User Security mode is available for Sun ONE ASP
running with both the Apache and Sun ONE Web
servers.
For more information about the security modes and
their implications, see “Setting the Security Mode” on
page 57.
Note: ADO logging will not be functional if Inherit
user security is set to yes. Also note that the Inherit
user security setting does not add any restrictions to
executing Java code. For example, if you want to
restrict Java code to access files within the application
directory, the proper permissions should be in the
bean.policy file.

Locale This specifies the locale setting. The ASP Server uses
the appropriate code page for the language associated
with the locale specified. It also correctly formats dates,
numbers, and currency according to the locale. For
more information, see “Configuring International
Support” on page 43. Supported locales vary by
platform.

Setting Explanation

MANAGING THE ASP SERVER 41

 .
. .
Stopping and Restarting the ASP Server (Admin

. Console)
There are times when you must stop and restart the ASP Server, such as when you’re
performing a product upgrade or putting configuration settings into effect. Use the
following procedure to stop or restart the ASP Server. Stopping, starting, or restarting
can take from several seconds to about one minute to execute. Restarting the ASP
Server resets all Session and Application variables.

To stop, start, or restart the ASP Server

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the Server Management page, click Stop, Start, or Restart.

Enable parent paths This enables file system access by an ASP application to
a directory in the file system that is not contained in
the ASP application root directory or its subdirectories.
By default, Enable parent paths is set to no. This is
the most secure setting and is appropriate for most
shared Web hosting environments. Changing Enable
parent paths to yes can affect the security of your
server. For more information, see “Configuring File
System Access” on page 56.
Note: The Enable parent paths setting does not
add any restrictions to executing Java code. For
example, if you want to restrict Java code to access files
within the application directory, the proper
permissions should be in the bean.policy file.

Setting Explanation

42 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

While use of the Administration Console is strongly recommended, expert
users can also stop and start the ASP Server from the command line. For more
information, see “Stop/Start/Status ASP Server (Command Line)” on page 84.

. Enabling Session State
You can specify whether the ASP Server maintains session state (session state is
enabled by default). To conserve system resources, you might want to disable this
feature. However, in order for the Session object used in scripts to function, session
state must be enabled.

To enable or disable session state

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

3. In the Allow session state drop-down list, select yes or no.

4. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

The Server Management page displays.

MANAGING THE ASP SERVER 43

 .
. .
5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“ASP Session Object” on page 261

. Configuring International Support
You might want to use the Sun ONE ASP Server to serve Web pages in languages other
than United States (US) English, or in countries other than the United States. If so,
you can change the locale setting. When you do this, the ASP Server uses the
appropriate code page for the language associated with the locale specified. It also
correctly formats dates, numbers, and currency according to the locale. Depending
on your platform, you can specify locales for a number of languages.

The following table lists supported languages, and the corresponding LCIDs (Local
Language Identifiers) and code pages. The table is followed by the procedure that
describes how to configure international support.

To configure international support

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

Language LCID Code page

English - US 1033 1252

English - British 2057 1252

Dutch 1043 1252

French 1036 1252

German 1031 1252

Japanese Shift-JIS 1041 932

Simplified Chinese 2052 936

Spanish 1034 1252

44 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. In the Locale drop-down list, select the desired locale (the locales listed are
the locales that are installed on the server). Click Save to save your changes,
or Cancel to revert to the settings that were last saved.

The Server Management page displays.

4. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Developing International Applications” on page 212

. Creating Database Connections (ASP Server)
Sun ONE Active Server Pages enables you to easily display and manipulate
information stored in a database from an ASP page. To enable an ASP application to
retrieve data from a database, the system administrator must first configure the Sun
ONE ASP Server to connect to the database. Then the developer can create and
initialize a connection to the database from within the application. This topic
provides overview information about enabling a connection on the ASP Server. For
more detailed information, see “Chapter 6, Configuring a Database” on page 103.

Sun ONE ASP provides a built-in ADO (ActiveX Data Object) control that developers
can use from within an ASP application to initialize a database connection for

MANAGING THE ASP SERVER 45

 .
. .
retrieving and manipulating data. ADO provides the interface through which ODBC
(Open Database Connectivity) drivers are called, and provides "containers" for storing
the information that is passed to and from the database. The most common
container is a Recordset object, which stores the results of a SELECT SQL query. The
ADO Connection object establishes connections to databases by using ODBC
drivers. For detailed information about ADO, see “ADO Component Reference” on
page 301.

For UNIX and Linux versions of Sun ONE ASP, the setup program automatically
installs ODBC drivers for a number of different databases (ODBC drivers are not
installed with Sun ONE ASP for Windows). The list of installed drivers can be viewed
from the Sun ONE ASP Administration Console, as described in “Viewing the List of
ODBC Drivers” on page 104. For Windows systems, the list of installed ODBC drivers
can be viewed from the Windows Control Panel. See Microsoft documentation for
more information.

Sun ONE ASP includes DataDirect SequeLink 5.3, which enables connections to
remote computers running Microsoft Access or Microsoft SQL Server 6.5. For more
information, see “Configuring SequeLink” on page 128.

ADO and either the appropriate ODBC driver or SequeLink are required to create a
connection to a particular database. ADO uses connection information and the
ODBC driver manager to create an instance of the required ODBC driver, which in
turn connects to the database.

With Sun ONE ASP, Web developers can specify the connection information for the
database by using system DSNs (data source names), file DSNs, or DSN-less
connection strings. The appropriate method depends on user preferences, and the
environment in which Sun ONE ASP is running. For more information, see
“Connecting to a Database” on page 197.

For enterprise applications, it is recommended that ASP developers use system DSNs.
The system administrator can use the Sun ONE ASP Administration Console to create
system DSNs, which can be referenced from within an ASP application for initializing
the database connection. For more information about creating a system DSN, see
“Configuring Data Source Names (DSNs)” on page 105.

In a shared Web hosting environment, such as with an Internet Service Provider,
using system DSNs poses two problems as follows:

� A DSN that includes a username and password for the database makes the
data source accessible from any ASP page on the server, representing a
security risk.

� Creating DSNs for each customer can be a significant administrative burden
for the Web hosting provider. Because Web developers can create them and
the database username and password information can be restricted to a
specific ASP application, using file DSNs and DSN-less connection strings is
more appropriate in a Web hosting environment.

Note

It is strongly recommended that you validate your database connection
parameters prior to creating a database connection with Sun ONE ASP. An
ODBC driver can bring down your ASP Server if incorrect parameters are

46 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
being passed. You should test your database connections on a nonproduction
server.

The following example illustrates the relationship between Sun ONE ASP, ADO,
ODBC drivers, and databases.

A connection string on the ASP page specifies the information required by both ADO
and the ODBC driver manager for connecting to the database. The following example
uses a DSN-less connection string:

connect_string = "Driver={ODBC_driver_name}; Database=[database_name];
UID=[username]; PWD=[password]"

The next line of code creates an instance of the ADO Connection object:

set dbConn = server.createObject ("ADODB.connection")

The following code calls the Open method of the ADO Connection object, which
takes the connection_string parameter. In this step, ADO requests that the ODBC
driver manager create an instance of the specified ODBC driver. ADO passes the
remainder of the connection string to the ODBC driver, which uses this information
to connect to the database.

open dbConn connect_string

. Defining ASP Applications (ASP Server)
Sun ONE Active Server Pages includes the concept of an ASP application, which
comprises a hierarchical set of directories that contain the ASP pages and other files
used by the application. The root directory of an ASP application contains an
optional global.asa file, which stores application state information along with
application and session information. Using the Application and Session objects
with the global.asa file is explained in “Using the Global.asa File” on page 189. For
information about accessing sample applications, which demonstrate the basics of
building Sun ONE ASP applications, see “Developer Web Site” on page 15.

For an ASP application to be processed, it must be defined on the ASP Server. There
are several ways to define an application:

� Add the application from the Administration Console, as described in
“Adding ASP Applications” on page 48.

� Enable ASP processing for a virtual host (referred to as virtual servers on Sun
ONE Web Server), as described in “Enabling ASP for a Virtual Host” on page
54 and “Defining Applications in a Shared Environment” on page 74.

� Use the FrontPage Services file, as described in “Using the FrontPage Services
File” on page 75.

� Add an application from within the Sun ONE ASP configuration file, or add
an alias from within the Web server configuration files. These are advanced
administration options for expert users, and are described in “Defining
Applications on UNIX” on page 525.

MANAGING THE ASP SERVER 47

 .
. .
Note

On Windows NT and Windows 2000, ASP applications are defined by adding
aliases or virtual directories to the Web server. Sun ONE ASP treats each alias
or virtual directory as an ASP application. With Sun ONE Web Server, ASP
applications are defined by adding an "additional document directory" using
the Web server’s Administration tool. With Apache Web Server, ASP
applications are defined by adding an alias to the httpd.conf file.

In this section:

“Configuring ASP Applications” on page 47

“Adding ASP Applications” on page 48

“Removing ASP Applications” on page 51

“Editing ASP Application Settings” on page 52

“Enabling ASP for a Virtual Host” on page 54

Configuring ASP Applications
An ASP application must be defined on the ASP Server in order for the application to
be recognized and processed when a user requests an ASP page. The easiest way to
define and configure an application is by using the Sun ONE ASP Administration
Console, as discussed in this section. However, if you need to configure an
application in a hosted environment, see “Defining Applications in a Shared
Environment” on page 74. For more information about defining FrontPage
applications, see “Using the FrontPage Services File” on page 75.

You can define and configure an ASP application from the Administration Console
Applications page, which displays when you click the ASP Applications link on
the Server Management page.

48 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
The Applications page displays the list of ASP applications that are currently
defined on the ASP Server, and provides access to settings for adding, removing, and
configuring ASP applications:

� Add a new application creates a new application and associates it with
the physical directory containing the global.asa file. See “Adding ASP
Applications” on page 48.

� remove removes an ASP application from the ASP Server. See “Removing ASP
Applications” on page 51.

� configure associates an ASP application with a physical directory
containing the global.asa file. See “Editing ASP Application Settings” on page
52.

Note

On Windows NT and Windows 2000, ASP applications are defined by adding
aliases or virtual directories to the Web server. Sun ONE Active Server Pages
treats each alias or virtual directory as an ASP application. With Sun ONE
Web Server, ASP applications are defined by adding an "additional document
directory" using the server’s Administration tool. With Apache Web Server,
ASP applications are defined by adding an alias to the httpd.conf file.

See also:

“Defining ASP Applications (ASP Server)” on page 46

Adding ASP Applications
For the ASP Server to process an ASP application when a user requests an ASP page,
the ASP application must be defined on the ASP Server. The easiest way to do this is
by using the Sun ONE Active Server Pages Administration Console. From the console,
you add an application by giving the application a name, and by specifying the
physical directory containing the application files and the global.asa file. When you
do this, a virtual directory for the application is created on the Web server and
associated with the physical directory containing the application files.

To define an application for a virtual host (referred to as virtual servers on Sun ONE
Web Server), do not use the following procedure. Instead, use the instructions in
“Enabling ASP for a Virtual Host” on page 54. If the Web developers you support use
FrontPage, see the description of FrontPage applications in “Using the FrontPage
Services File” on page 75.

Note

On Windows NT and Windows 2000, ASP applications are defined by adding
aliases or virtual directories to the Web server. Sun ONE Active Server Pages
treats each alias or virtual directory as an ASP application. With Sun ONE
Web Server, ASP applications are defined by adding an "additional document

MANAGING THE ASP SERVER 49

 .
. .
directory" using the Web server’s Administration tool. With the Apache Web
Server, ASP applications are defined by adding an alias to the httpd.conf file.

To define an ASP application that will not be served by a virtual host or virtual server,
use the following procedure.

To add an ASP application

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click ASP
Applications.

The Applications page displays, showing a list of currently configured ASP
applications.

3. Click Add a new application.

The Add application page displays.

50 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
4. In the Application name box, type the name of the virtual directory to cre-
ate and enable as an ASP application.

5. In the Directory box, type the absolute path name of the application direc-
tory. The application directory is the top-level physical directory that con-
tains the application ASP files, the global.asa file (if one is being used for this
application), and any application subdirectories.

6. Click Save, or click Cancel to cancel any entries.

The Applications page displays.

7. In the left navigation pane, click Server Management.

The Server Management page displays.

8. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Defining ASP Applications (ASP Server)” on page 46

“Configuring ASP Applications” on page 47

“Editing ASP Application Settings” on page 52

“Removing ASP Applications” on page 51

MANAGING THE ASP SERVER 51

 .
. .
Removing ASP Applications
If you want the ASP Server to stop processing an ASP application, the ASP application
must be removed from the ASP Server. This deletes the virtual directory for the
application from the Web server. It does not delete the physical directory containing
the application files. For more information about ASP applications, see “Configuring
ASP Applications” on page 47.

To remove an ASP application

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click ASP
Applications.

The Applications page displays, showing a list of currently configured ASP
applications.

3. In line with the application you want to remove, click remove.

4. When prompted to confirm removal, click Yes.

The Applications page displays.

5. In the left navigation pane, click Server Management.

6. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Defining ASP Applications (ASP Server)” on page 46

52 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Configuring ASP Applications” on page 47

“Editing ASP Application Settings” on page 52

“Adding ASP Applications” on page 48

Editing ASP Application Settings
For the ASP Server to process an ASP application when a user requests an ASP page,
you must first add it to the ASP Server, as described in “Adding ASP Applications” on
page 48. Later, if you want to change the application name (for example, the virtual
directory name) or the physical directory associated with the application, you can use
the following procedure to do so. For more information about ASP applications, see
“Configuring ASP Applications” on page 47.

To edit ASP application settings

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click ASP
Applications.

The Applications page displays, showing a list of currently configured ASP
applications.

MANAGING THE ASP SERVER 53

 .
. .
3. In line with the application you want to edit, click configure.

The Configure application page displays.

4. If you want to change the application name, type the new name in the
Application name box.

5. If you want to change the physical directory associated with the application,
type the absolute path name of the new directory in the Directory box. The
application directory is the top-level directory that contains the application
files, the optional global.asa file, and any application subdirectories.

6. Click Save, or click Cancel to cancel any changes.

The Applications page displays.

54 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
7. In the left navigation pane, click Server Management.

8. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Defining ASP Applications (ASP Server)” on page 46

“Configuring ASP Applications” on page 47

“Adding ASP Applications” on page 48

“Removing ASP Applications” on page 51

“Starting and Stopping the Web Server” on page 78

Enabling ASP for a Virtual Host
In a Web hosting environment that makes use of virtual hosts (referred to as virtual
servers on Sun ONE Web Server), ASP applications are defined in a different manner
than that described in “Adding ASP Applications” on page 48. This is because the ASP
Server automatically recognizes ASP applications for each virtual host defined for the
Web server.

This section describes how to use the Sun ONE ASP Administration Console to
selectively enable or disable ASP processing for each virtual host. In this scenario, the
ASP application files must be located in the document root directory of the Web
server or virtual host. In addition, the directory containing the global.asa file cannot
be below the top-level directory of the Web server or virtual host document root (for
more information about ASP applications and the global.asa file, see “Configuring
ASP Applications” on page 47).

To enable or disable ASP processing for a virtual host

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the Server Management page (the first page to display when you open
the Administration Console), click the Web Server tab.

The Web Server tab displays.

MANAGING THE ASP SERVER 55

 .
. .
3. Click Virtual Hosts.

4. Select or clear the check box of each virtual host for which you want to
enable or disable ASP processing.

5. Click Server Management in the left navigation pane.

6. Restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Defining Applications in a Shared Environment” on page 74

“Add/Remove ASP in Virtual Hosts” on page 94 (CLI)

“Virtual Hosts” on page 581

. Securing the Server
Certain Sun ONE Active Server Pages settings have important implications for the
security of the ASP Server. This section addresses security issues for the server, and
provides information to help ensure that settings are configured appropriately for
your specific environment.

In this section:

“Configuring File System Access” on page 56

“Setting the Security Mode” on page 57

56 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Disabling Performance Monitoring” on page 60

Configuring File System Access
You might want to enable access by an ASP application to a directory in the file
system that is not contained in the ASP application root directory or its
subdirectories. This type of access is configured from the Sun ONE Active Server Pages
Administration Console using the Enable parent paths setting.

By default, Enable parent paths is set to no. When Enable parent paths is set
to no, a FileSystemObject object instantiated by an ASP application is limited to
that application’s defined directory. In this case, #include statements cannot use the
"../" syntax to access files outside the ASP application root directory. This is the
most secure setting, and is appropriate for most shared Web hosting environments.
(Unlike Sun ONE ASP, with Microsoft ASP, when Enable parent paths is set to no,
a text file can still be created outside of the application directory.)

When Enable parent paths is set to yes, the FileSystemObject object can access
files outside the ASP application directory. In this scenario, ASP developers can use
the "../" syntax in #include statements to access any file outside of the Web
directory that the ASP Server has file system permission to read.

Caution

Changing Enable parent paths to yes can affect the security of your
server. Before you change this setting, make sure that your ASP Server has
permission to access only the files you want to be publicly accessible, and
that it does not have access to sensitive files containing configuration or
password information. You can restrict the permissions of the ASP Server by
defining the user it runs under, and by making sure that that user has
appropriately restricted file system permissions. For more information, see
“Setting the Security Mode” on page 57.

Note

The Enable parent paths setting does not add any restrictions to executing
Java code. For example, if you want to restrict Java code to access files within
the application directory, the proper permissions should be in the
bean.policy file.

To configure file system access

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

MANAGING THE ASP SERVER 57

 .
. .
3. In the Enable parent paths drop-down list, select yes or no.

See also:

“Defining ASP Applications (ASP Server)” on page 46

“Using Server-side Includes” on page 188

Setting the Security Mode
You can configure the Sun ONE ASP Server to run under Defined User Security mode
or Inherit User Security mode (UNIX and Linux product versions). The appropriate
mode depends on your Web hosting environment, and has important security
implications for your server.

Caution

Be sure to read this section carefully, especially if you are running Sun ONE
Web Server.

Inherit User Security Mode

Inherit User Security mode is available only for Sun ONE ASP running with the
Apache Web server.

This mode is useful in shared Web hosting environments because the ASP Server runs
with the permissions of the user defined for the Apache Web server. In a Web hosting
environment using virtual hosts, the ASP Server runs as the user configured for the
virtual host. For example, if the Web server is configured to run as user "john," when

58 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
someone accesses the virtual server www.johns-site.com, the ASP Server runs under
the account "john" when processing ASP page requests for www.johns-site.com. You
can enable this mode from the Sun ONE ASP Administration Console, as described
later in this section.

Sun ONE Web Server does not support Inherit User Security mode (the Inherit user
security setting is not displayed in the Administration Console). To protect the
security of your server when running Sun ONE ASP with Sun ONE Web Server, you
should specify a user and group in the casp.cnfg file, as described in “Editing the Sun
ONE ASP Configuration File” on page 517 (see the [default machine] keyword). The
ASP Server then runs with the permissions of that user and group.

Defined User Security mode

Defined User Security mode mode is available for Sun ONE Active Server Pages
running with both the Sun ONE and Apache Web servers, and is appropriate for most
corporate or dedicated Web hosting environments.

In this mode, the ASP Server runs with the permissions of the user and group defined
in the Sun ONE ASP configuration file, casp.cnfg. The user and group account under
which the ASP Server is configured to run should have access rights to all *.asp and
*.asa pages, and should also have rights to Sun ONE ASP configuration files, such as
casp.cnfg and odbc.ini. You enable this mode by setting Inherit user security to
no in the Sun ONE ASP Administration Console (Apache) and then specifying a user
and group in the casp.cnfg file (Apache and Sun ONE Web Server), as described in
“Editing the Sun ONE ASP Configuration File” on page 517 (see the [default
machine] section).

Caution

If you set Inherit user security to no and do not specify a user and group
in the casp.cnfg file, the ASP Server runs as root. This can compromise the
security of your server.

Note the following:

� Even if a user and group is specified in casp.cnfg, if Inherit user security is
set to yes in the Administration Console, the ASP Server runs under Inherit
User Security mode.

� ADO logging will not be functional if Inherit user security is set to yes.
For information about ADO logging, see “Enabling and Disabling ADO
Logging” on page 133.

� The Inherit user security setting does not add any restrictions to
executing Java code. For example, if you want to restrict Java code to access
files within the application directory, the proper permissions should be in the
bean.policy file.

MANAGING THE ASP SERVER 59

 .
. .
To set the security mode

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

3. In the Inherit user security drop-down list, select yes to run under Inherit
User Security mode, or no to run under Defined User Security mode.

Caution

If you select no, you should edit the casp.cnfg file to add a user and
group for the ASP Server to run under, as described in “Editing the
Sun ONE ASP Configuration File” on page 517. If you do not make
that change, the ASP Server runs as root, which can compromise the
security of your server. You should always run Web servers other than
Apache under Defined User Security Mode.

4. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

60 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Configuring File System Access” on page 56

Disabling Performance Monitoring
If you are running Sun ONE Active Server Pages for UNIX or Linux in a shared Web
hosting environment, it is strongly recommended that you disable server
performance monitoring to protect the security of your server.

Note

This feature is not available on Windows systems.

By default, Sun ONE ASP monitors server performance and displays this information
on the Sun ONE ASP Administration Console Server Monitoring page, as
described in “Monitoring ASP Server Performance” on page 61.

Sun ONE ASP stores the server performance information in the following files:

/tmp/.casp[PORT]/chili-psm

/tmp/.casp[PORT]/.pm-chili-psm

/tmp/.pm-chili-psm

/tmp/chili-psm

These files are created with world-readable permissions that might not be appropriate
in a shared Web hosting environment. Performance monitoring and the creation of
these log files can be disabled by editing the enablemonitoring setting in the
[default machine] section of the Sun ONE ASP configuration file, casp.cnfg.
When you do this, server performance information is no longer displayed on the
Server Monitoring page of the Administration Console. For more information
about editing the casp.cnfg file, see “Editing the Sun ONE ASP Configuration File” on
page 517.

. Viewing Information about the ASP Server
Sun ONE Active Server Pages provides several options for viewing information about
the ASP Server. This section describes how to monitor real-time performance data,
view diagnostic information, and log ASP errors.

In this section:

“Monitoring ASP Server Performance” on page 61

“Enabling ASP Errors Logging” on page 63

MANAGING THE ASP SERVER 61

 .
. .
“Viewing the ASP Errors Log” on page 64

“Viewing Server Diagnostics” on page 65

See also:

“Optimizing ASP Server Performance” on page 66

“Diagnostic Applications” on page 13

Monitoring ASP Server Performance
Real-time information about ASP Server performance is displayed on the the Server
Monitoring page of the Sun ONE ASP Administration Console.

If performance monitoring has been disabled as described in “Disabling Performance
Monitoring” on page 60, you cannot view this server performance information.
Disabling server performance monitoring is a recommended security precaution if
you are running Sun ONE ASP in a shared Web hosting environment.

Note

This feature is not available with Sun ONE Active Server Pages for Windows.
On Windows systems, performance monitoring information is available via
the Windows NT or Windows 2000 Performance Monitor. See Microsoft
documentation for more information.

To view real-time information about the ASP Server

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

The Server Management page displays.

2. In the left navigation pane, click Monitor Server.

62 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
The Server Monitoring page displays.

3. To continuously monitor the server, click live monitoring. This opens a
separate window and displays information that is constantly updated.

The following table lists the information displayed on the Server Monitoring page.

See also:

“Changing ASP Server Settings” on page 37

“Viewing Information about the ASP Server” on page 60

Item Explanation

Total requests Total number of requests since the ASP Server was started.

Requests per second Number of requests per second being processed by the ASP
Server.

Total errors received Number of ASP Server errors logged since the server was
started.

Current number of
sessions

Number of sessions currently active on the ASP Server.

Active virtual hosts Number of virtual hosts that currently have one or more
active sessions.

Total memory in use System memory (RAM) currently being used by the ASP
Server.

Uptime Length of time the ASP Server has been running since the last
restart.

MANAGING THE ASP SERVER 63

 .
. .
Enabling ASP Errors Logging
For Sun ONE Active Server Pages to log ASP errors, you must first enable logging. For
information about viewing the log file, see “Viewing the ASP Errors Log” on page 64.

To enable ASP errors logging

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

3. In the ASP errors logging file box, enter the name of the log file to which
you want ASP errors logged. You cannot give the log file the same name as a
file that already exists in the directory. If the ASP errors logging file box is
empty (the default), no logging is performed.

4. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart on
the Server Management page.

Note

Restarting the ASP Server resets all Session and Application
variables.

64 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
A log file with the name you specified is created in the following directory:

/[C-ASP_INSTALL_DIR]/logs

where [C-ASP_INSTALL_DIR] is the path name of the Sun ONE ASP installation
directory (/opt/casp by default).

See also:

“Monitoring ASP Server Performance” on page 61

“Optimizing ASP Server Performance” on page 66

“Viewing Information about the ASP Server” on page 60

Viewing the ASP Errors Log
You can view the ASP errors log from the ASP Server tab of the Server
Management page of the Sun ONE Active Server Pages Administration Console. To
log ASP errors and view the logging information, you must first enable logging as
described in “Enabling ASP Errors Logging” on page 63.

To view the ASP errors log

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click View
Logs.

The Server Logs Files page displays, showing the ASP errors that have been
logged.

MANAGING THE ASP SERVER 65

 .
. .
See also:

“Monitoring ASP Server Performance” on page 61

“Optimizing ASP Server Performance” on page 66

“Viewing Information about the ASP Server” on page 60

Viewing Server Diagnostics
You can view diagnostic information about the ASP Server from the Server Logs
Files page of the Sun ONE Active Server Pages Administration Console, including
when ASP engines were started and stopped, and what configuration changes have
been made since Sun ONE ASP was installed.

To view server diagnostics

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click View
Logs.

The Server Logs Files page displays.

3. Click the Server Diagnostics tab.

Server diagnostic information displays.

See also:

“Enabling ASP Errors Logging” on page 63

“Monitoring ASP Server Performance” on page 61

“Optimizing ASP Server Performance” on page 66

66 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Viewing Information about the ASP Server” on page 60

“Diagnostic Applications” on page 13

. Optimizing ASP Server Performance
Sun ONE Active Server Pages has many features that enhance its scalability and
performance. This section describes those features.

In this section:

“Enabling Scripts Buffering” on page 66

“Changing the Session Timeout Value” on page 67

“Changing the Script Timeout Value” on page 68

“Configuring Engine Deadlock Recovery” on page 69

“Configuring Multi-threading” on page 71

“Precompiling ASP Pages” on page 72

“Pooling Database Connections” on page 72

“Load Balancing” on page 72

See also:

“Enabling ASP Errors Logging” on page 63

“Monitoring ASP Server Performance” on page 61

“Viewing Information about the ASP Server” on page 60

“Viewing the ASP Errors Log” on page 64

Enabling Scripts Buffering
Sun ONE Active Server Pages enables you to buffer ASP scripts to improve server
performance. When scripts buffering is enabled, the ASP Server waits until the entire
ASP page is processed before returning the results to the browser. When scripts
buffering is disabled, the ASP Server returns the HTML output for an ASP page to the
browser incrementally, as soon as it is processed. For a production server, it is best to
enable scripts buffering. During development, however, you might want to disable
scripts buffering to make it easier to debug problems with your ASP pages.

To enable or disable scripts buffering

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

MANAGING THE ASP SERVER 67

 .
. .
3. In the Scripts buffering on drop-down list, select yes or no.

4. Click Save, and then restart the ASP Server by clicking Restart on the
Server Management page.

Note

Restarting the ASP Server resets all Session and Application
variables.

Changing the Session Timeout Value
You can specify the number of minutes the ASP Server maintains a user's session
information since the last page request. When the user does not submit a request for
the specified length of time, the server cancels the session and discards its stored
information. Enabling the ASP Server to discard user information frees up resources
for another session. The session timeout value is 20 minutes by default.

Note

A value specified for SessionTimeout in a script overrides this setting.

To change the session timeout value

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

68 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. In the Session timeout box, specify the number of minutes of inactivity
after which a user session times out.

4. Click Save, and then restart the ASP Server by clicking Restart on the
Server Management page.

Note

Restarting the ASP Server resets all Session and Application
variables.

Changing the Script Timeout Value
You can specify the number of seconds the ASP Server waits for an ASP page to finish
processing before canceling the page request. Setting a script timeout prevents a
malfunctioning ASP page from indefinitely engaging server resources. Enabling the
ASP Server to cancel a page request frees up resources for another session. The script
timeout value is 90 seconds by default.

If the deadlock timeout is set to a value lower than the script timeout, the ASP engine
will restart once the time specified for the deadlock timeout has elapsed. For more
information about the deadlock timeout and deadlock recovery, see “Configuring
Engine Deadlock Recovery” on page 69.

MANAGING THE ASP SERVER 69

 .
. .
To change the script timeout value

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

 The Server Settings page displays.

3. In the Script timeout box, specify the number of seconds after which a
script should time out.

If the deadlock timeout is set to a value lower than the script timeout, the ASP
engine will restart after the time specified for the deadlock timeout has
elapsed.

4. Click Save, and then restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

Configuring Engine Deadlock Recovery
You can configure the amount of time that should elapse before the ASP Server is
considered deadlocked and the engine is restarted. This functionality helps to
alleviate potential problems caused if an ASP engine becomes completely deadlocked
and stops servicing requests, a condition that could result from failed processes,
thread contention, locked database connections, and so on. The deadlock timeout
value is set to 600 seconds (10 minutes) by default.

70 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note of the following:

� If the deadlock timeout is set to a value lower than the script timeout, the ASP
engine will restart once the time specified for the deadlock timeout has
elapsed. For more information about the script timeout value, see “Changing
the Script Timeout Value” on page 68.

� The default of 600 seconds may or may not be the best setting for you.
Selecting the "correct" deadlock timeout value is not an exact science and
depends on your specific circumstances. Web sites that pass around large
amounts of data from databases will require a different timeout value than
those with pages that merely manipulate a few user-specified strings.

� Be careful about setting the timeout value too high. A deadlock condition
exists until the deadlock timeout has elapsed and the ASP Server is restarted,
so your Web site could potentially be down for the length of time specified
for the deadlock timeout.

To change the deadlock timeout value

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

3. In the Deadlock timeout box, specify the number of seconds that should
elapse before the ASP Server is considered deadlocked and the engine is
restarted.

If the deadlock timeout is set to a value lower than the script timeout, the ASP
engine will restart after the time specified for the deadlock timeout has
elapsed.

MANAGING THE ASP SERVER 71

 .
. .
4. Click Save, and then restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

Configuring Multi-threading
By default, the number of threads handled simultaneously by the Sun ONE ASP
Server is 5 for both Solaris and Linux. If you have many ASP pages that include
blocking operations (database access, for example) it is a good idea to increase this
number. Keep in mind, however, that doing so creates more system overhead. A
maximum number of up to 20 threads is recommended. DO NOT set this to a
number greater than 20.

To configure multi-threading

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Settings.

The Server Settings page displays.

3. In the Number of threads box, enter the maximum number of threads you
want to have running at once. The default is 10 for Solaris, and 5 for Linux.

72 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
4. Click Save, and then click Yes when the Server Management page dis-
plays to restart the Web server and ASP Server.

Note

Restarting the ASP Server resets all Session and Application
variables.

Precompiling ASP Pages
The Sun ONE ASP Server automatically precompiles ASP pages to improve server
performance. When the ASP Server receives a page request, it compiles the page into
bytecode that can be processed more quickly in response to subsequent requests, and
saves the bytecode.

Pooling Database Connections
In terms of server resources, accessing a database is one of the most expensive
operations of a Web application. Typically, for each request, the Web application
must open a connection to the database, retrieve the data, and then close the
connection. Repeatedly opening and closing the database adversely impacts server
performance.

To reduce this impact on server performance, you can configure the Sun ONE ASP
Server to share open database connections among multiple users accessing the Web
application. This is called database connection pooling. With connection pooling,
the ASP Server uses a connection that is already open, rather than opening and
closing a database connection for each individual request. Database connection
pooling dramatically improves the performance of applications that rely heavily on
database operations.

To configure database connection pooling, use the procedure in “Setting the ADO
Connection Pool Size” on page 131.

Load Balancing
Sun ONE Active Server Pages supports various models for horizontal scalability and
load balancing, including both software- and hardware-based solutions.

The classic model for providing horizontal scalability is to add additional servers to
an overall "farm" of servers. The addition of user sessions, however, adds an element
of complexity to the horizontal scalability picture. For ASP to maintain session
information for a specific user, the user’s requests must consistently be routed back to
the same machine with which the initial session was created. This is called "session-
aware load balancing," and can be done using either software or hardware solutions.

Sun ONE ASP supports both hardware- and software-based session-aware load
balancing solutions. Software options are based primarily on round-robin DNS and
clustering software, while hardware solutions include the use of "intelligent routers"

MANAGING THE ASP SERVER 73

 .
. .
(also referred to as "sticky sessions"). Intelligent routers are capable of routing a user’s
request back to the same machine with which the initial session was created.

. Shared Web Hosting Environments
Sun ONE Active Server Pages supports the scenario in which users share physical
hardware and a Web server, such as with an Internet Service Provider. In a shared
Web hosting environment, a single Web server installation answers requests for
multiple domain names by using virtual hosts (referred to as virtual servers on Sun
ONE Web Server).

This section provides information about running Sun ONE ASP in a shared Web
hosting environment.

In this section:

“Creating Database Connections in a Shared Environment” on page 73

“Defining Applications in a Shared Environment” on page 74

“Using the User Configuration File” on page 74

“Using the FrontPage Services File” on page 75

See also:

“Securing the Server” on page 55

“Chapter C, Advanced Administration Options” on page 515

Creating Database Connections in a Shared Environment
With Sun ONE Active Server Pages, ASP developers can specify the connection
information for a database by using either system DSNs (data source names), file
DSNs, or DSN-less connection strings. The appropriate method depends on user
preferences and the environment in which Sun ONE ASP is running.

In enterprises and other dedicated hosting environments, it is recommended that
ASP developers use system DSNs. The system administrator uses the Sun ONE ASP
Administration Console to create system DSNs, which then can be referenced from
within an ASP application for initializing a database connection. For more
information, see “Configuring Data Source Names (DSNs)” on page 105.

However, in a shared Web hosting environment, such as with an Internet Service
Provider, system DSNs pose two problems:

� A DSN that includes a username and password for the database makes the
data source accessible from any ASP page on the server, representing a
security risk.

� Creating DSNs for each customer can be a significant administrative burden
for the Web hosting provider. Because Web developers can create them and
the database username and password information can be restricted to a

74 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
specific ASP application, using file DSNs and DSN-less connection strings is
more appropriate in a Web hosting environment.

See also:

“Chapter 6, Configuring a Database” on page 103

“Creating Database Connections (ASP Server)” on page 44

“Using DSN-less Connection Strings” on page 200

Defining Applications in a Shared Environment
For the ASP Server to process an ASP application, the set of directories and files
comprising the application must be defined as an ASP application. In dedicated Web
hosting environments, an ASP application is defined by "adding" it to the ASP Server,
as described in “Configuring ASP Applications” on page 47.

However, in a shared Web hosting environment in which virtual hosts are being used
(referred to as virtual servers on Sun ONE Web Server), such as with an Internet
Service Provider, applications are not "added" in this manner. Instead, the top-level,
or root, directory of each virtual host defined on your Web server is automatically
defined as an ASP application. No other steps are necessary to enable ASP processing
for the application.

There may be some situations, however, in which you want to enable or disable ASP
processing for a particular virtual host. You can do this as described in “Enabling ASP
for a Virtual Host” on page 54. FrontPage users can also define an application as
described in “Using the FrontPage Services File” on page 75.

Using the User Configuration File
In a shared Web hosting environment, rather than requiring the system
administrator to define each ASP application (as described in “Adding ASP
Applications” on page 48), you can enable ASP developers to define their own ASP
applications in a User Configuration file. To do this, the system administrator must
first edit the Sun ONE ASP configuration file, casp.cnfg, so that the ASP Server
recognizes applications that are defined in the User Configuration file. Then ASP
developers can create the file and define their ASP applications within it.

To enable developers to define their own ASP applications, take the following steps:

1. In the [applications] section of the Sun ONE ASP configuration file,
casp.cnfg, specify the path name of the User Configuration file (.aspconf)
that defines the ASP applications.

[applications]

config_name=.aspconf

When you do this, the ASP Server looks for this file in the document root of
the Web server and each virtual host. For more information about editing
casp.cnfg, see “Editing the Sun ONE ASP Configuration File” on page 517.

MANAGING THE ASP SERVER 75

 .
. .
2. Create a User Configuration file. It should be a plain text file named .aspconf.
Within this file, specify the ASP application name to define as follows:

[applications]

/[appname]

where [appname] is the ASP application name. The ASP application name
must be the same as the name of the ASP application root directory, which is
contained in the document root of the virtual host.

Any applications defined in the User Configuration file are dynamically rec-
ognized, without requiring the ASP Server to be restarted.

There are two limitations on applications defined in the User Configuration file:

� The application directory containing the global.asa file must be directly
below the top-level directory of the Web server or virtual host document root.

� If the User Configuration file appears in the document root of a virtual host,
the ASP applications are applied only to that virtual host, and not to others.

See also:

“Configuring ASP Applications” on page 47

Using the FrontPage Services File
In a shared Web hosting environment, you can enable developers to define new ASP
applications by using FrontPage. You can use FrontPage to create new global.asa files
and ASP applications. FrontPage stores the definitions of these new applications in
the FrontPage services.cnf file in the /_vti_pvt subdirectory.

Sun ONE Active Server Pages automatically looks for the services.cnf file in the
/_vti_pvt subdirectory, and treats the entries it finds in this file as ASP applications.
Applications defined in the services.cnf file are dynamically recognized by Sun ONE
ASP, and do not require the ASP Server to be restarted. Sun ONE ASP looks for this
filename in the document root directory of the Web server (and each virtual host).
Entries in the services.cnf file use the following format:

/[appname] = "/path/to/app/home/directory"

If the services.cnf file and the /_vti_pvt subdirectory appear in the document root
directory of a virtual host, then the ASP applications are applied only to that virtual
host, and not to others. There are two limitations on applications defined in the
services.cnf file:

� The files in the application must be located within the document root
directory of the Web server (or virtual host).

� The directory containing the global.asa file cannot be below the top-level
directory of the Web server (or virtual host) document root. For more
information about ASP applications and the global.asa file, see “Configuring
ASP Applications” on page 47.

See also:

“Defining Applications in a Shared Environment” on page 74

76 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .4 Managing the Web Server

Sun ONE Active Server Pages is configured to run with a Web server, which receives
page requests and transfers them to the ASP Server for processing. Most Web server
management is handled through the Web server's own management interface, but
some settings can be accessed from the Sun ONE ASP Administration Console.

This chapter describes how to manage the Web server from the Administration
Console.

In this chapter:

“Server Management Overview (Web)” on page 77

“Starting and Stopping the Web Server” on page 78

“Configuring the Web Server after Installation” on page 79

“Changes to Web Server Configuration Files” on page 80

“Enabling FrontPage Publishing” on page 82

See also:

“Chapter 3, Managing the ASP Server” on page 35

. Server Management Overview (Web)
Certain settings for the Web server can be managed from the Web Server tab on the
Server Management page in the Sun ONE ASP Administration Console.

78 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
On this tab you can view information about the Web server, start and stop the Web
server, and enable ASP processing for individual virtual hosts (referred to as virtual
servers on Sun ONE Web Server).

The Web Server tab displays the following items:

� Status indicates whether the Web server is running or stopped.

� Name is the Web server hostname.

� Port is the port the Web server is using.

� Stop, Start, and Restart buttons enable you to stop, start, and restart the
Web server. For more information, see “Starting and Stopping the Web
Server” on page 78.

� The Virtual Hosts link displays an option for enabling and disabling ASP
processing for individual virtual hosts. For more information, see “Enabling
ASP for a Virtual Host” on page 54 and “Defining Applications in a Shared
Environment” on page 74.

See also:

“Configuring the Web Server after Installation” on page 79

“Changing the Linkage” on page 87

“Server Management Overview (ASP)” on page 36

. Starting and Stopping the Web Server
The Sun ONE Active Server Pages Administration Console can be used to start, stop,
and restart the Web server with which the Sun ONE ASP Server is configured to run.
You can also view the status of the Web server (whether it’s stopped or running).

To start, stop, and restart the Web Server

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the Server Management page, click the Web Server tab.

The Web Server tab displays.

3. Click Start, Stop, or Restart.

See also:

“Chapter 4, Managing the Web Server” on page 77

MANAGING THE WEB SERVER 79

 .
. .
. Configuring the Web Server after Installation
If you chose not to configure a Web server to run with Sun ONE Active Server Pages
during installation, you will be prompted to install one the first time you open the
Sun ONE ASP Administration Console.

To configure a Web server after installation

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

The Administration Console Add ASP Server page displays a list of Web
servers that have been detected on this computer.

2. Perform the desired action:

❑ Select the option button of the Web server you want to configure, and
then click OK.

- or -

❑ Click Search Web servers to refresh the list of detected Web servers,
and then go to step 3.

- or -

❑ Type the absolute path name of the configuration file for the Web server
you want to configure, and then click OK.

3. The Search Web servers page displays, along with a Web servers search
popup box. When the search is finished, the popup box displays the message
Done. When you see this message, click Add a Server on the Search Web
servers page, and then follow the instructions in step 2.

After completing the previous steps, the Administration Console Server
Management page appears. From this page, you can configure the ASP Server and
Web server, as described in “Chapter 3, Managing the ASP Server” on page 35 and
“Chapter 4, Managing the Web Server” on page 77 (and other related sections).

Note

Restarting the ASP Server resets all Session and Application variables.

See also:

“Changing the Linkage” on page 87

80 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Changes to Web Server Configuration Files
When a Web server is configured to run with Sun ONE Active Server Pages (either
during installation or after), the setup program makes certain changes to Web server
configuration files. These changes are described in this section.

In this section:

“Changes to Sun ONE Web Server Configuration Files” on page 80

“Changes to Apache Configuration Files” on page 81

Changes to Sun ONE Web Server Configuration Files
When Sun ONE Active Server Pages is installed on a computer running Sun ONE Web
Server (formerly iPlanet Web Server, Enterprise Edition), the following changes are
made to the Web server configuration files:

� Lines are added to the beginning of the obj.conf file (for Sun ONE Web Server
4.1) or the magnus.conf file (for Sun ONE Web Server 6.0) as follows:

On Solaris:

In obj.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans" shlib=

"[C-ASP_INSTALL_DIR]/module/sunos5_optimized/netscape_6.x/nes_casp
2.sl"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-[server]-
[PORT]"

In magnus.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans" shlib=

"[C-ASP_INSTALL_DIR]/module/sunos5_optimized/netscape_6.x/nes_casp
2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-[server]-
[PORT]"

On Linux:

In obj.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans" shlib=

"[C-ASP_INSTALL_DIR]/module/linux2_optimized/netscape_6.x/nes_casp
2.sl"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-[server]-
[PORT]"

In magnus.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans" shlib=

"[C-ASP_INSTALL_DIR]/module/linux2_optimized/netscape_6.x/nes_casp
2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-[server]-

MANAGING THE WEB SERVER 81

 .
. .
[PORT]"

� The following lines are added to the default object section of obj.conf:

<Object name=default>

NameTrans fn="casptrans"

Service method=(GET|POST) type="chilisoft-internal/active-server-
page"

fn="caspreq" casplib="[C-ASP_INSTALL_DIR]/asp-[server]-[PORT]"

</Object>

� The following lines are added to the MIME-types file:

type=chilisoft-internal/active-server-page exts=asp,asa

[C-ASP_INSTALL_DIR] resembles: /opt/casp

[SERVER] resembles: netscape

[PORT] resembles: 3000

� Support for ASAP WebShow is commented out in the MIME-types file because
it also uses the .asp extension:

by Chili!Soft ASP install: type=application/x-asp exts=asp

Note

Sun ONE Active Server Pages supports only one instance of LoadObjects in
the Sun ONE Web Server magnus.conf file.

Changes to Apache Configuration Files
When Sun ONE Active Server Pages is installed on a computer running Apache Web
Server, the following changes are made to the Web server configuration file
(httpd.conf):

� These lines are added:

AddHandler chiliasp .asp

AddHandler chiliasp .asa

CaspLib [C-ASP_INSTALL_DIR]/asp-[server]-[PORT]

� These lines are added:

On Solaris:

LoadModule casp2_module

[C-ASP_INSTALL_DIR]/module/sunos5_optimized/apache_[VERSION]/

[API]/mod_casp2.so

On Linux:

LoadModule casp2_module

[C-ASP_INSTALL_DIR]/module/linux2_optimized/apache_[VERSION]/

[API]/mod_casp2.so

82 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� This line is added:

MaxRequestsPerChild 30000

. Enabling FrontPage Publishing
FrontPage Server Extensions are a set of server-side applications (CGI programs) that
enable you to publish Web pages and applications to UNIX- or Linux-based Web
servers, or to Windows NT- and Windows 2000-based computers running a Web
server other than IIS (Internet Information Server). To enable this capability,
FrontPage Server Extensions must be installed, and FrontPage authoring must be
enabled on the Web server.

Sun ONE ASP supports but does not install FrontPage Server Extensions. You must
obtain them from Microsoft, and can do so at:

http://msdn.microsoft.com/library/en-us/dnservext/html/fpse02unix.asp

Once the extensions are installed, you must take additional steps to enable users to
publish their pages to the server. For information about using FrontPage in a shared
environment, see “Using the FrontPage Services File” on page 75.

Note

While Sun ONE ASP enables you to run ASP pages generated by FrontPage,
specific questions about the installation, configuration, and use of FrontPage
and FrontPage Server Extensions should be directed to Microsoft or its
representatives.

When publishing ASP pages created with FrontPage, be aware that Enable parent
paths is set to no by default. With this configuration,
CreateObject("Scripting.FileSystemObject") calls generated in the global.asa file
by FrontPage will not work. This means that you must either change Enable parent
paths to yes, or ASP developers must change the code that FrontPage generated in
the global.asa file to Server.CreateObject("Scripting.FileSystemObject").
However, be aware that changing this setting from the default can create a security
risk for your server. For more information, see “Configuring File System Access” on
page 56.

See also:

“Using the FrontPage Services File” on page 75

http://msdn.microsoft.com/library/en-us/dnservext/html/fpse02unix.asp

. .

 .

. .5 Command-line Management

Most settings for Sun ONE Active Server Pages should be configured from the
Administration Console, a browser-based GUI used for managing Sun ONE ASP.
However, while it is strongly recommended that the Administration Console be used
for product configuration, expert users do have the option to perform certain tasks
from the command line.

Some command-line functionality is provided in both an interactive and a non-
interactive mode. As the names imply, the interactive mode requires users to respond
to prompts, while the non-interactive mode requires no interaction beyond issuing
commands that specify path information, file locations, and so on. Functionality for
both modes is provided by a singleton master script called configure-server, which
serves as the primary entry point for managing the ASP Server. The configure-
server script is located in the Sun ONE ASP installation directory (/opt/casp by
default).

This chapter describes some but not all of the command-line functionality provided
in this release of Sun ONE Active Server Pages. Complete command-line
documentation is available, however, and can be accessed as described in
“Command-line Help” on page 84.

Caution

This functionality is for expert users of Sun ONE Active Server Pages. Take
great care when making the changes described in this chapter. Changes you
make could require a complete reinstall of Sun ONE ASP and could void your
eligibility for customer support. You should back up your data before making
any changes.

In this chapter:

“Command-line Help” on page 84

“Using configure-server” on page 84

“Stop/Start/Status ASP Server (Command Line)” on page 84

“Add/Delete/Reconfigure ASP Servers” on page 86

“Starting on System Boot” on page 90

“Changing casp.cnfg Settings” on page 91

“Add/Remove ASP in Virtual Hosts” on page 94

“Add/Remove Applications” on page 96

“List/View/Add/Edit/Delete ODBC DSNs” on page 98

“Uninstalling Sun ONE ASP” on page 101

84 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Command-line Help
Not all command-line functionality provided in this release of Sun ONE Active Server
Pages is documented in this guide. Complete command-line documentation can be
accessed from the Sun ONE ASP installation directory (/opt/casp by default) by
typing the following at the command prompt:

./configure-server -help

The Help page provides complete documentation for command-line functionality,
indicating what each function does and any necessary parameters. If you are
performing command-line management, it is strongly recommended that you
consult this resource.

. Using configure-server
The configure-server script serves as the primary entry point for command-line
management of the ASP Server. The configure-server script is located in the Sun
ONE Active Server Pages installation directory (/opt/casp by default).

To use configure-server

From the Sun ONE ASP installation directory, type the following at the command
prompt:

./configure-server

and then the desired command(s), as specified in the remainder of this chapter.

Note

If you make any changes to casp.cnfg, you must restart the Sun ONE ASP
Server. If you make any changes to the [default application] section in
casp.cnfg, you must restart both the Sun ONE ASP Server and the Web server.

. Stop/Start/Status ASP Server (Command Line)
This functionality is used to stop, start, and query the status of the ASP Server.

Note

For information about performing these tasks from the Sun ONE
Administration Console, see “Stopping and Restarting the ASP Server (Admin
Console)” on page 41.

COMMAND-LINE MANAGEMENT 85

 .
. .
Stop/Start/Status: configure-server
This section describes the use of the configure-server script to stop, start, and query
the status of the ASP Server. The scriptable interface is described in the following
table.

Example Usage

cd <install dir>

./configure-server function=enginectl engine=asp-server-3000 restart

if ./configure-server function=enginectl engine=asp-server-3000 start;

then

 echo "The server successfully started."

else

 echo "The server failed to start."

fi

Stop/Start/Status: caspctrl
Some tasks can also be performed using the caspctrl script. This section describes how
to use the script, and lists available options.

To use the caspctrl script

From the Sun ONE Active Server Pages installation directory (in /opt/casp/asp-server-
xxxx), type the following at the command prompt:

Function Explanation

function=enginectl Allows you to stop and start a specific ASP engine, and
to retrieve its status.

Parameters

engine=<path/name>
(user specified)

If a path is specified, the full path information will be
used to identify the ASP engine being modified. If a
name is specified (such as asp-server-3000), the path is
assumed to reside within the current installation.

restart Restarts the associated engine. Has an exit code of 0 if
the operation succeeds, non-0 if the operation fails.

start Starts the associated engine. Has an exit code of 0 if
the operation succeeds, non-0 if the operation fails.

stop Stops the associated engine. Has an exit code of 0 if
the operation succeeds, non-0 if the operation fails.

status Returns the status of the associated engine. Has an exit
code of 0 if the ASP server is running, non-0 if it isn’t.

86 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
./caspctrl

followed by the desired option(s). The correct format is as follows:

./caspctrl (-v|version) (-vc|verbose) [-]

(startdaemon|stopdaemon|starteng|stopeng|startall|stopall|viewlog|

clearlog|status)

The following table lists the options provided by caspctrl.

. Add/Delete/Reconfigure ASP Servers
In certain cases you might want to change the Web server with which Sun ONE
Active Server Pages is configured to run. This association is referred to as the ASP
Server-to-Web server linkage, and was specified during the installation of Sun ONE
ASP.

This section describes how to change the ASP Server-to-Web Server linkage from the
command line (both interactive and noninteractive), and includes information
about:

� Adding an ASP engine to an installation

� Deleting an ASP engine from an installation

� Reconfiguring an ASP engine within an installation

Option Explanation

version Reports the version of Sun ONE ASP.

verbose Enables the Sun ONE ASP engine to output status
messages to stdout.

startdaemon Starts the Sun ONE ASP Server daemon.

stopdaemon Stops the Sun ONE ASP Server daemon (plus any
running ASP engines).

starteng Starts Sun ONE ASP engine(s) on all Sun ONE ASP
computers in the configuration with running daemons.

stopeng Stops the Sun ONE ASP engine(s) on all computers
running Sun ONE ASP in the configuration with
running daemons.

startall Starts the Sun ONE ASP daemon and engine(s) on
single-computer installations of Sun ONE ASP.

viewlog Enables you to view the Sun ONE ASP Server log.

clearlog Clears the Sun ONE ASP Server log.

status Reports the status of each Sun ONE ASP Server in the
configuration.

COMMAND-LINE MANAGEMENT 87

 .
. .
See also:

 “Starting on System Boot” on page 90

Changing the Linkage
Use the following procedure to change the ASP Server-to-Web Server linkage that was
specified during the installation of Sun ONE Active Server Pages. Settings will not be
migrated.

Note

If reconfiguration fails for any reason, the current association is left
unchanged.

To change the ASP Server-to-Web server linkage

1. From the Sun ONE ASP installation directory (/opt/casp by default), type the
following at the command prompt:

./configure-server

2. At the prompt, select Configure Sun ONE ASP.

3. Select Change the Web server-to-Sun ONE ASP association.

4. At the prompt, select the Web server you want to change, or select Cancel to
exit.

Note: If no Web servers are installed, you will be prompted to add a server.

5. At the prompt, enter y (yes) if the ASP Server information is correct, or enter
n (no) to return to the previous screen.

6. At the prompt, select a Web server from the list, or make another selection:

❑ Select Specify the Web server to specify the Web server manually, and
then make your selections as prompted.

- or -

❑ Select Attempt to auto-detect more Web servers to direct the sys-
tem to search for (auto-detect) installed Web servers from which to select,
and then make your selection.

- or -

❑ Select Do not configure a Web server to cancel the operation alto-
gether. Choosing this option returns you to step 2.

7. At the prompt on the Verify Web Server Information screen, enter y
(yes) if the Web server information is correct.

Note: If the information is incorrect, enter n (no) to return to the previous
screen.

8. At the prompt, select the desired configuration option:

❑ Choose 1. Default configuration to use the default configuration set-
tings and finish the reconfiguration of the Web server. This option is

88 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
strongly recommended for all but the most experienced users of Sun ONE
ASP.

- or -

❑ Choose 2. Custom configuration if you are an experienced user of Sun
ONE ASP and want to customize a number of settings. If you select this
option, you will also receive a prompt asking you if you want the Web
server restarted. If you enter y (yes), the Web server will be restarted and
configured. If you enter n (no), you will be prompted to restart the Web
server manually.

- or -

❑ Choose 3. Choose another Web server to install to if you do not
want to reconfigure the Sun ONE ASP Server-to-Web server association.
Choosing this option returns you to step 4.

Caution

If you select the first or second option, any current Sun ONE ASP
Server-to-Web server association will be lost, disabling the previously
associated Web server from serving up ASP content. If you do not
want to reconfigure this association, choose the third option (choose
another Web server).

Add ASP Server
This functionality is used to add an ASP engine to an installation. The scriptable
interface (configure-server) is described in the following table.

Function Explanation

function=add-server Creates a new Sun ONE ASP-to-Web server linkage.

Parameters

webserver_conf=<file path>
(user specified)

Specifies the location of the Web server configuration
file, used to create the ASP Server-to-Web server
linkage.

webserver_binary=<file path>
(default=auto-detect)

Specifies the location of the Web server binary file.

webserver_restart=<yes|no>
(default=yes)

Specifies whether to restart the Web server once Sun
ONE ASP has been configured.

webserver_overwrite=<yes|no>
(default=no)

Specifies whether to overwrite any previous Sun ONE
ASP installation currently linked to the specified Web
server.

install_docs=<yes|no>
(default=yes)

Specifies whether Sun ONE ASP documentation should
be made visible to the Web server (/caspdoc).

COMMAND-LINE MANAGEMENT 89

 .
. .
Example Usage

cd <install dir>

./configure-server function=add-server

 webserver_conf=/etc/httpd/conf/httpd.conf

./configure-server function=add-server

 webserver_conf=/home/deanb/my-httpd.conf

 webserver_binary=/usr/bin/httpd start_asp_onboot=no

Delete ASP Server
This functionality is used to delete an ASP engine from an installation. The scriptable
interface (configure-server) is described in the following table.

Example Usage

cd <install dir>

./configure-server function=delete-server engine=asp-server-3000

start_asp=<yes|no>
(default=yes)

Specifies whether Sun ONE ASP should be started once
configuration is complete.

start_asp_onboot=<yes|no> Specifies whether Sun ONE ASP should be started on
system reboot. For interactive command-line
functionality for this setting, see “Starting on System
Boot” on page 90.

Function Explanation

Function Explanation

function=delete-server Deletes an existing Sun ONE ASP-to-Web server
linkage.

Parameters

engine=<path|name>
(user specified)

If a path is specified, the full path information will be
used to identify the ASP engine being modified. If a
name is specified (such as asp-server-3000), the path is
assumed to reside within the current installation.

90 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Reconfigure ASP Server
This functionality is used to reconfigure an ASP engine within the installation. The
scriptable interface (configure-server) is described in the following table.

Example Usage

cd <install dir>

./configure-server function=change-server engine=asp-server-3000

 webserver_conf=/etc/httpd/conf/httpd.conf

./configure-server function=change-server engine=asp-server-3000

 webserver_conf=/etc/httpd/conf/httpd.conf

 webserver_binary=/usr/bin/httpd

. Starting on System Boot
The option to automatically start the Sun ONE ASP Server on system boot is
configured during installation (the default is to start on system boot). To enable or
disable the "start on system boot" functionality, use the following procedure.

Note

For a related command-line option, see “Add ASP Server” on page 88.

Function Explanation

function=change-server Creates a new Sun ONE ASP-to-Web server linkage.

Parameters

engine=<path|name>
(user specified)

If a path is specified, the full path information will be
used to identify the ASP engine being modified. If a
name is specified (such as asp-server-3000), the path is
assumed to reside within the current installation.

webserver_conf=<file path>
(user specified)

Specifies the location of the Web server configuration
file to which you want to reconfigure the specified ASP
engine.

webserver_binary=<file path>
(default=auto-detect)

Specifies the location of the Web server binary file.

webserver_restart=<yes|no>
(default=yes)

Specifies whether to restart the Web server once Sun
ONE ASP has been configured.

COMMAND-LINE MANAGEMENT 91

 .
. .
To start Sun ONE ASP on system boot

1. From the Sun ONE ASP installation directory (/opt/casp by default), type the
following at the command prompt:

./configure-server

2. At the prompt, select Configure the ASP Server.

3. Select Enable or disable the 'start on system boot functionality'
and then make your desired selection. If this option is enabled, the Sun ONE
ASP Server will start on system boot.

. Changing casp.cnfg Settings
The noninteractive functionality described in this section is used to list, modify,
create, and delete settings in casp.cnfg, the Sun ONE Active Server Pages
configuration file. This functionality is useful primarily for Internet Service Providers
and other users who need to make changes to several ASP engines quickly and
simultaneously.

For most users, modifications to casp.cnfg should be made using the Sun ONE ASP
Administration Console. For more information about using the Administration
Console to manage the ASP Server, see “Chapter 3, Managing the ASP Server” on page
35. Expert users of Sun ONE ASP can also make manual changes to casp.cnfg, as
described in “Editing the Sun ONE ASP Configuration File” on page 517.

Note

If you make any changes to casp.cnfg, you must restart the Sun ONE ASP
Server. If you make any changes to the [default application] section in
casp.cnfg, you must restart both the Sun ONE ASP Server and the Web server.

The scriptable interface (configure-server) is described in the following table.

Function Explanation

function=configure-engine Allows you to change casp.cnfg settings.

Parameters

engine [0-9]*=
<path|name>
(user specified)

If a path is specified, the full path information will be
used to identify the ASP engine being modified. If a
name is specified (such as asp-server-3000), the path is
assumed to reside within the current installation.

section
(user specified)

This is the section within casp.cnfg (such as
section=default machine) that contains the key you
want to add, delete, modify, or view.

key
(user specified)

This is the key in the specified section that you want to
add, delete, modify, or view.

value
(user specified)

This is the value for the key.

92 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See also:

“Editing the Sun ONE ASP Configuration File” on page 517

“Add/Remove ASP in Virtual Hosts” on page 94

“Add/Remove Applications” on page 96

Examples: Listing casp.cnfg Settings
The following examples demonstrate listing casp.cnfg settings.

Example 1

./configure-server function=configure-engine engine=asp-server-3209

 mode=view 'section=default application' key=bufferingon

Result

/opt/casp.johnd6/asp-server-3209/casp.cnfg: default application:

 bufferingon: yes

Example 2

./configure-server function=configure-engine engine0=asp-server-3209

mode=<add|del|view>
(default=add)

Determines which action(s) to take with the provided
parameters:
- The "add" mode adds the specified key/value under
the specified section. If that key is already associated
with a value, it will be overwritten.
- The "del" mode removes any entry with the specified
key under the specified section.
- The "view" mode prints the current contents of the
specified key to stdout, in the following format:
<casp.cnfg>: <section>: <key>: <value>
Caution: Using mode=del could prevent the ASP
engine from starting. It is strongly recommended that
mode=del be used sparingly, if at all. Appropriate uses
are listed in “Deleting casp.cnfg Settings” on page 94.

override=<yes|no> This parameter specifies whether error checking should
be provided when modifying a section/key value. This
checking disallows creating new keys or modifying or
viewing keys that are not user configurable.
Caution: It is strongly recommended that you do not
use override=yes. Doing so could render your server
inoperable.

Function Explanation

COMMAND-LINE MANAGEMENT 93

 .
. .
 engine1=asp-server-3224 mode=view

 'section=default application' key=bufferingon

Result

/opt/casp.johnd6/asp-server-3209/casp.cnfg: default application:

 bufferingon: yes

/opt/casp.johnd6/asp-server-3224/casp.cnfg: default application:

 bufferingon: yes

Examples: Changing casp.cnfg Settings
The following examples demonstrate changing casp.cnfg settings.

Example 1

./configure-server function=configure-engine engine=asp-server-3209

 mode=add 'section=default application' key=bufferingon value=no

./configure-server function=configure-engine engine=asp-server-3224

 mode=add 'section=default application' key=bufferingon value=no

./configure-server function=configure-engine engine0=asp-server-3209

 engine1=asp-server-3224 mode=view 'section=default application'

 key=bufferingon

Result

/opt/casp.deanb4/asp-server-3209/casp.cnfg: default application:

 bufferingon: no

/opt/casp.deanb4/asp-server-3224/casp.cnfg: default application:

 bufferingon: no

Example 2

./configure-server function=configure-engine engine0=asp-server-3209

 engine1=asp-server-3224 mode=add 'section=default application'

 key=bufferingon value=yes

./configure-server function=configure-engine engine0=asp-server-3209

 engine1=asp-server-3224 mode=view 'section=default application'

 key=bufferingon

94 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Result

/opt/casp.janed6/asp-server-3209/casp.cnfg: default application:

 bufferingon: yes

/opt/casp.janed6/asp-server-3224/casp.cnfg: default application:

 bufferingon: yes

Deleting casp.cnfg Settings

Caution

Using mode=del could prevent the ASP engine from starting. It is strongly
recommended that mode=del be used sparingly, if at all.

Using mode=del is really only appropriate for such actions as removing vir-
tual hosts or applications from the casp.cnfg file, because those actions can
be considered both common and relatively safe.

. Add/Remove ASP in Virtual Hosts
The noninteractive functionality described in this section is used to enable and
disable ASP in virtual hosts. The scriptable interface (configure-server) is described
in the following table.

Note

To enable or disable ASP processing for a virtual host using the Sun ONE ASP
Administration Console, see “Enabling ASP for a Virtual Host” on page 54.
Expert users of Sun ONE ASP can also make manual changes to casp.cnfg, as
described in “Editing the Sun ONE ASP Configuration File” on page 517.

Function Explanation

function=configure-engine Allows you to change casp.cnfg settings.

Parameters

engine [0-9]*=
<path|name>
(user specified)

If a path is specified, the full path information will be
used to identify the ASP engine being modified. If a
name is specified (such as asp-server-3000), the path is
assumed to reside within the current installation.

section
(user specified)

This is the section within casp.cnfg (such as
section=default machine) that contains the key you
want to add, delete, modify, or view.

key
(user specified)

This is the key in the specified section that you want to
add, delete, modify, or view.

COMMAND-LINE MANAGEMENT 95

 .
. .
Example: Adding Virtual Hosts
The following example demonstrates adding a virtual host.

Example

./configure-server function=configure-engine engine=asp-server-3209

 mode=add 'section=virtual hosts' key='allow_all' value='no'

./configure-server function=configure-engine engine=asp-server-3209

 mode=add 'section=virtual hosts' key='www.foobar.com'

Result

Your ASP engine will be accessible only on virtual host www.foobar.com.

value
(user specified)

This is the value for the key.

mode=<add|del|view>
(default=add)

Determines which action(s) to take with the provided
parameters:
- The "add" mode adds the specified key/value under
the specified section. If that key is already associated
with a value, it will be overwritten.
- The "del" mode removes any entry with the specified
key under the specified section.
- The "view" mode prints the current contents of the
specified key to stdout, in the following format:
<casp.cnfg>: <section>: <key>: <value>
Caution: Using mode=del could prevent the ASP
engine from starting. It is strongly recommended that
mode=del be used sparingly, if at all. Appropriate uses
are listed in “Deleting casp.cnfg Settings” on page 94.

override=<yes|no> This parameter specifies whether error checking should
be provided when modifying a section/key value. This
checking disallows creating new keys or modifying
keys that are not user configurable.
Caution: It is strongly recommended that you do not
use override=yes. Doing so could render your server
inoperable.

Function Explanation

96 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Examples: Removing Virtual Hosts
The following examples demonstrate removing virtual hosts.

Example 1

./configure-server function=configure-engine engine=asp-server-3209

 mode=add 'section=virtual hosts' key='allow_all' value='yes'

Result

Your ASP engine will be accessible to any virtual host.

Example 2

./configure-server function=configure-engine engine=asp-server-3209

 mode=del 'section=virtual hosts' key='www.foobar.com'

Result

This removes the "www.foobar.com" entry from the casp.cnfg file, as it no longer has
any affect on the server.

. Add/Remove Applications
This functionality is used to add and remove applications. The scriptable interface
(configure-server) is described in the following table.

Note

For information about adding and remove applications using the Sun ONE
ASP Administration Console, see “Defining ASP Applications (ASP Server)” on
page 46.

Function Explanation

function=configure-engine Allows you to change casp.cnfg settings.

Parameters

engine [0-9]*=
<path|name>
(user specified)

If a path is specified, the full path information will be
used to identify the ASP engine being modified. If a
name is specified (such as asp-server-3000), the path is
assumed to reside within the current installation.

COMMAND-LINE MANAGEMENT 97

 .
. .
Examples: Adding Applications
The following examples demonstrate adding applications.

Example 1

./configure-server function=configure-engine engine=asp-server-3209

 mode=add 'section=applications' key=/tmp value=/tmp

Result

Your ASP engine will associate the /tmp virtual URI with the /tmp local directory.

section
(user specified)

This is the section within casp.cnfg (such as
section=default machine) that contains the key you
want to add, delete, modify, or view.

key
(user specified)

This is the key in the specified section that you want to
add, delete, modify, or view.

value
(user specified)

This is the value for the key.

mode=<add|del|view>
(default=add)

Determines which action(s) to take with the provided
parameters:
- The "add" mode adds the specified key/value under
the specified section. If that key is already associated
with a value, it will be overwritten.
- The "del" mode removes any entry with the specified
key under the specified section.
- The "view" mode prints the current contents of the
specified key to stdout, in the following format:
<casp.cnfg>: <section>: <key>: <value>
Caution: Using mode=del could prevent the ASP
engine from starting. It is strongly recommended that
mode=del be used sparingly, if at all. Appropriate uses
are listed in “Deleting casp.cnfg Settings” on page 94.

override=<yes|no> This parameter specifies whether error checking should
be provided when modifying a section/key value. This
checking disallows creating new keys or modifying
keys that are not user configurable.
Caution: It is strongly recommended that you do not
use override=yes. Doing so could render your server
inoperable.

Function Explanation

98 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Example 2

./configure-server function=configure-engine engine=asp-server-3209

 mode=add 'section=applications' key=/foobar value=/home/me/foo/bar

Result

Your ASP engine will associate the virtual URI /foobar with the local path
/home/me/foo/bar.

Examples: Removing Applications
The following examples demonstrate removing applications.

Examples

./configure-server function=configure-engine engine=asp-server-3209

 mode=del 'section=applications' key=/tmp

./configure-server function=configure-engine engine=asp-server-3209

 mode=del 'section=applications' key=/foobar

. List/View/Add/Edit/Delete ODBC DSNs
This functionality can be used to do the following:

� Display a list of supported database types and the corresponding DSN
attributes.

� Display a list of all DSN names that have been configured (excluding
template DSNs).

� Show keys and values for all attributes in the DSN.

� Add, edit, and delete DSNs.

Note

For information about configuring DSNs using the Sun ONE ASP
Administration Console, see “Chapter 6, Configuring a Database” on page
103.

COMMAND-LINE MANAGEMENT 99

 .
. .
Show Database Types
This functionality is used to display a list of supported database types and the
corresponding DSN attributes. The scriptable interface (configure-server) is
described in the following table.

Example Usage

./configure-server function=show_dbinfo

List all DSNs
This functionality is used to display a list of all DSN names that have been configured
(excluding template DSNs). The scriptable interface (configure-server) is described
in the following table.

Example Usage

./configure-server function=list_dsns

View Specific DSNs
This functionality is used to show keys and values for all attributes in the DSN. The
scriptable interface (configure-server) is described in the following table.

Function Explanation

function=show_dbinfo
(no parameters)

Displays a list of supported database types, and for
each type, the list of configurable DSN attributes. Has
an exit code of 0 if the operation succeeds, non-0 if the
operation fails.

Function Explanation

function=list_dsns
(no parameters)

Displays a list of all configured DSN names. Does not
include template DSNs.

Function Explanation

function=view_dsn Shows keys and values for all attributes in the DSN,
including both configurable and the default.

Parameter

name=<DSN name>
(user specified)

Name of the DSN as displayed in list_dsns.

100 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Example Usage

./configure-server function=view_dsn name=mysql_test

Add/Edit DSNs
This functionality is used to create a new DSN or modify an existing one. The
scriptable interface (configure-server) is described in the following table.

Example Usage

./configure-server function=new_dsn name=mysql_test type=MySQL

Server=test Database=mysql Port=3306 User=root Password=root

Delete DSNs
This functionality is used to delete a DSN. The scriptable interface (configure-
server) is described in the following table.

Example Usage

./configure-server function=delete_dsn name=mysql_test

Function Explanation

function=new_dsn Allows you to create a new DSN or modify an existing
one. Has an exit code of 0 if the operation succeeds,
non-0 if the operation fails.

Parameters

name=<new DSN name>
(user specified)

This is the name for the new DSN. If a DSN with that
name already exists, it will be replaced.

type=<database type>
(user specified)

This must be one of the database names displayed by
show_dbinfo. If the <value> contains spaces, the
<key>=<value> parameter must be enclosed in spaces.
The numeric index displayed next to the database
name by show_dbinfo may also be passed as the value.

Optional Parameters One or more parameters of the form <key>=<value>,
where <key> is one of the allowable attributes for the
database type displayed by show_dbinfo.

Function Explanation

function=delete_dsn Deletes a previously configured DSN.

Parameter

name=<DSN name>
(user specified)

Name of the DSN as displayed in list_dsns.

COMMAND-LINE MANAGEMENT 101

 .
. .
. Uninstalling Sun ONE ASP
On UNIX and Linux systems, Sun ONE Active Server Pages is uninstalled by running
the script named uninstall, which is located in the Sun ONE ASP installation
directory (/opt/casp by default).

When you run the uninstall program, you can delete all directories and files
contained in the Sun ONE ASP installation directory. Before running the uninstall
program, make copies of any files contained under this directory that you do not
want to lose.

Note

You must be logged in as root on the computer running Sun ONE ASP.

To uninstall Sun ONE ASP

1. From the Sun ONE Active Server Pages installation directory (/opt/casp by
default), type the following at the command prompt:

./uninstall

2. Choose the number of the desired uninstall method:

❑ Choose 1. Uninstall the entire product to remove all Sun ONE ASP
components and all files and directories under the installation directory.
If you choose this option, go to step 5.

- or -

❑ Choose 2. Perform a stage-based uninstall to select the components
to uninstall. If you choose this option, go to step 3.

- or -

❑ Choose 3. Cancel the uninstall to stop the uninstall without remov-
ing any files.

3. If you chose option 2. Perform a stage-based uninstall, you are
prompted to select the components to uninstall. At the prompts, enter the
number of the component(s) you want removed.

4. Uninstall the Web server-Sun ONE ASP association, responding to the
prompts as desired.

5. Delete the directories and files in the Sun ONE ASP installation directory.

102 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .6 Configuring a Database

Sun ONE Active Server Pages enables ASP developers to connect with several types of
databases from within an ASP application. It provides the built-in ADO Connection
object that developers can use to initiate a database connection, along with a set of
ODBC drivers that enable the ASP Server and ODBC Manager to establish and
maintain the connection. (For more information about creating and initializing ADO
database connections from within an ASP application, see “Connecting to a
Database” on page 197.)

For UNIX and Linux versions of Sun ONE ASP, the setup program automatically
installs the ODBC drivers for a number of databases (ODBC drivers are not installed
with Sun ONE ASP for Windows). You can view the list of installed drivers from the
Sun ONE ASP Administration Console, as described in “Viewing the List of ODBC
Drivers” on page 104 (customer support is provided only for ODBC drivers that are
installed with Sun ONE ASP). For some types of databases, however, the system
administrator must take additional steps to configure the ASP Server. For example,
the system administrator must configure SequeLink to enable connections from an
ASP Server running on a UNIX or Linux system to a Microsoft Access and Microsoft
SQL Server 6.5 database running on a Windows system (see “Configuring SequeLink”
on page 128). In addition, the system administrator might want to create system
DSNs to make it easier for developers to connect with databases.

This chapter describes how to create and edit DSNs, and how to configure the ASP
Server to connect with supported databases.

In this chapter:

“Viewing the List of ODBC Drivers” on page 104

“Configuring Data Source Names (DSNs)” on page 105

“Configuring the Database Environment” on page 112

“Configuring Database Parameters” on page 115

“Configuring ADO Connections” on page 131

See also:

“Creating Database Connections (ASP Server)” on page 44

104 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Viewing the List of ODBC Drivers
Sun ONE Active Server Pages enables you to connect to a variety of ODBC-compliant
databases by using the appropriate ODBC driver. To verify whether Sun ONE ASP
supports a specific version of a database, you can view the list of ODBC drivers
included with Sun ONE ASP on the Drivers tab of the Sun ONE ASP Administration
Console Databases page.

Note

Sun ONE Active Server Pages for UNIX and Linux installs the ODBC drivers
for a number of databases. Drivers are not installed with Sun ONE ASP for
Windows. For Windows systems, the list of installed ODBC drivers can be
viewed from the Windows Control Panel. See Microsoft documentation for
more information.

To view the list of ODBC Drivers

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, click the Drivers tab.

The ODBC Drivers page displays, showing the list of installed ODBC driv-
ers, and their locations in the file system.

CONFIGURING A DATABASE 105

 .
. .
See also:

“Supported in This Release” on page 5

. Configuring Data Source Names (DSNs)
To make it easier for developers to connect an ASP application to a database, the
system administrator can add a system DSN (data source name) to the ASP Server.
DSNs store information about a database that the ASP Server and ODBC Manager use
for connecting to it. Developers can use the system DSN in connection strings on ASP
pages to incorporate database information by reference, rather than specifying the
complete set of information in each string.

You can access DSN configuration settings on the Global Data Source Names tab
of the Sun ONE ASP Administration Console Databases page. This tab displays the
list of system DSNs that are currently configured for the ASP Server. It also provides
access to settings for adding a new DSN to the ASP Server, and for removing, editing,
and testing an existing DSN.

Please note the following:

� Expert users can also perform certain DSN-related tasks from the command
line. For more information, see “Chapter 5, Command-line Management” on
page 83.

� To protect the security of your database in a shared Web hosting
environment, you might prefer that developers use DSN-less connection
strings or file DSNs, rather than system DSNs. For a discussion of these
security issues, see “Creating Database Connections (ASP Server)” on
page 44.

106 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� For Windows systems, DSNs are created and managed from the Windows
Control Panel. See Microsoft documentation for more information.

This section describes how to add, remove, edit, and test system DSNs.

In this section:

“Adding a DSN” on page 106

“Removing a DSN” on page 109

“Editing a DSN” on page 110

“Testing a DSN” on page 111

Adding a DSN
Use the following procedure to add a system DSN to the ASP Server. When a DSN is
added, Sun ONE Active Server Pages automatically sets the correct parameters for the
databases. You can edit these parameters if necessary, as described in “Editing a DSN”
on page 110.

Note

For Microsoft Access and Microsoft SQL Server 6.5, Sun ONE ASP includes an
ODBC driver for Microsoft SQL Server 7.0 and 2000, but you must use
SequeLink 5.3 for connecting to Microsoft Access and Microsoft SQL Server
6.5 databases. You can create a DSN for SequeLink using the following
procedure for adding a system DSN.

For Oracle and Informix (with client), after adding a DSN, you must also
define database environment variables, as described in “Configuring the
Database Environment” on page 112. Unless the environment variables have
been previously set, after you finish adding a new DSN, the Sun ONE ASP
Administration Console displays the appropriate page on which to configure
these settings.

CONFIGURING A DATABASE 107

 .
. .
To add a system DSN

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, click Add new DSN in the bottom left of the
screen.

The New Data Source Name page displays.

108 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
4. In the DSN box, type a name for the DSN.

5. In the Description box, type a description of the DSN to help distinguish it
from other DSNs.

6. In the Database type drop-down list, select the type of database for which
you want to configure a DSN (for Microsoft Access and Microsoft SQL Server
6.5 databases, select SequeLink 5.3).

7. In the remaining text boxes, provide the requested information (if necessary,
see the information specific to your database in “Configuring Database
Parameters” on page 115).

8. To save your changes, click Save, and then click Done.

- or -

Click Cancel to revert to the settings that were last saved.

The new DSN displays in the Data Source Names list. After adding a DSN, you
should also test it, as described in “Testing a DSN” on page 111.

Note

For Windows systems, data source names are created and managed from the
Windows Control Panel. See Microsoft documentation for more information.

See also:

“Configuring Data Source Names (DSNs)” on page 105

“Removing a DSN” on page 109

“Editing a DSN” on page 110

“Creating Database Connections (ASP Server)” on page 44

“Add/Edit DSNs” on page 100 (CLI)

CONFIGURING A DATABASE 109

 .
. .
Removing a DSN
A system DSN is removed from the ASP Server by using the Sun ONE Active Server
Pages Administration Console. When you do this, the DSN can no longer be used in
an ASP application to reference database connection information.

To remove a system DSN

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, in line with the DSN you want to remove, click
remove.

4. When prompted to confirm the removal, click Yes, and then click Done.

See also:

“Configuring Data Source Names (DSNs)” on page 105

“Adding a DSN” on page 106

“Editing a DSN” on page 110

“Testing a DSN” on page 111

“Creating Database Connections (ASP Server)” on page 44

“Delete DSNs” on page 100 (CLI)

110 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Editing a DSN
After adding a system DSN to the ASP Server you can change its information, such as
name, description, IP address, username, and password. You can also add values for
parameters that were not configured when you added the DSN.

When you add a new DSN to the ASP Server, Sun ONE Active Server Pages
automatically sets the correct parameters for the database. Changing these
parameters can affect database performance, and is not recommended; the default
settings are sufficient for most applications. Before editing database parameters, see
the descriptions of required parameters for each ODBC driver in “Configuring
Database Parameters” on page 115.

To edit system DSN information

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, in line with the DSN you want to edit, click edit.

The Edit Data Source Name page displays.

CONFIGURING A DATABASE 111

 .
. .
4. Edit the information as desired.

5. To save your changes, click Save and then click Done.

- or -

Click Cancel to revert to the settings that were last saved.

See also:

“Configuring Data Source Names (DSNs)” on page 105

“Adding a DSN” on page 106

“Removing a DSN” on page 109

“Testing a DSN” on page 111

“Add/Edit DSNs” on page 100 (CLI)

Testing a DSN
After adding a new system DSN or editing its parameters, use the following procedure
to verify that the DSN is functioning correctly.

To test a system DSN

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

112 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, in line with the DSN you want to test, click test.

An advisory box opens, displaying information about the connection. If an
error is listed, correct the problem and then retest the connection.

See also:

“Configuring Data Source Names (DSNs)” on page 105

“Adding a DSN” on page 106

“Editing a DSN” on page 110

“Removing a DSN” on page 109

. Configuring the Database Environment
When you configure DSNs for Oracle and Informix databases (with client) for Sun
ONE Active Server Pages, you also must specify additional environment information.
For more information about the settings to use, contact your database administrator.

CONFIGURING A DATABASE 113

 .
. .
For more information about configuring DSNs, see “Configuring Data Source Names
(DSNs)” on page 105.

In this section:

“Setting Oracle Environment Variables” on page 113

“Setting Informix Environment Variables” on page 114

Setting Oracle Environment Variables
When you configure a DSN for an Oracle database (with client), you also must specify
values for the Oracle_Home and Library path environment variables. For
information about the values to set for these variables, contact your database
administrator.

To set Oracle environment variables

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, click the Environment tab.

The Environment Database Specific Variables page displays.

4. Under the Oracle heading, in the ORACLE_HOME and Library path
boxes, type the desired values.

114 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
5. Select the Restart ASP Server after saving check box, and then click
Save.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Chapter 6, Configuring a Database” on page 103

Setting Informix Environment Variables
When you configure a DSN for an Informix database (with client), you also must
specify values for the INFORMIXDIR, INFORMIXSERVER, Temp path, Library
path, and eSQL path environment variables. For information about the values to
set for these variables, contact your database administrator.

To set Informix environment variables

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. On the Databases page, click the Environment tab.

The Environment Database Specific Variables page displays.

CONFIGURING A DATABASE 115

 .
. .
4. Under the Informix heading, in the INFORMIXDIR, INFORMIX-
SERVER, Temp path, Library path, and eSQL path boxes, type the
desired values.

5. Select the Restart ASP Server after saving check box, and then click
Save.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Chapter 6, Configuring a Database” on page 103

. Configuring Database Parameters
To make it easier for Web developers to connect to a database from an ASP page, a
system DSN for the database can be added to the ASP Server, as described in “Adding
a DSN” on page 106. When you do this, Sun ONE Active Server Pages automatically
configures the appropriate parameters for the ODBC driver installed for that
database. The ASP Server and ODBC Manager use this information to establish the
connection.

In most cases you should not change the parameters configured by Sun ONE ASP.
However, there might be times when you do need to edit them. This section provides
reference information about the parameters that are configured for the ODBC drivers
installed with Sun ONE ASP.

Note

Sun ONE Active Server Pages for UNIX and Linux installs the ODBC drivers
for a number of databases (ODBC drivers are not installed with Sun ONE
Active Server Pages for Windows). You can view the list of installed drivers
from the Sun ONE ASP Administration Console, as described in “Viewing the
List of ODBC Drivers” on page 104. Customer Support is provided only for
ODBC drivers that are installed with Sun ONE ASP.

In this section:

“DB2 Parameters” on page 116

“dBASE Parameters” on page 117

“Informix Parameters” on page 118

“Microsoft SQL Server Parameters” on page 121

“MySQL Parameters” on page 122

“Oracle Parameters” on page 123

“PostgreSQL Parameters” on page 126

116 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“SequeLink Parameters” on page 128

“Sybase Parameters” on page 130

“Text Parameters” on page 131

See also:

“Supported in This Release” on page 5

“Chapter 6, Configuring a Database” on page 103

“Editing a DSN” on page 110

DB2 Parameters
The following table describes the DB2 (UDB, v7.1) database parameters available for
configuring system DSNs, as they appear on the Sun ONE ASP Administration
Console New Data Source Name and Edit Data Source Name pages. For more
information, see “Configuring Data Source Names (DSNs)” on page 105.

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.
This must match the catalogued name of the DB2 database.

Description Description of the DSN to distinguish it from others.

Database type* Indicates for which type of database you are configuring this
DSN (DB2).

Driver On the New Data Source Name page, this is the name of
the ODBC driver installed for the type of database selected in
the Database type box (DB2). This is a nonconfigurable
field.
On the Edit Data Source Name page, this is the absolute
path name of the ODBC driver specified for this DSN. This is a
configurable field.

Database* This entry must match the catalogued name of this DB2
database. The data source name (DSN) specified above must
match this entry.

LogonID* Username required for accessing the database. If the
username is not provided when configuring a system DSN,
every connection string using this DSN must include the
username.
Caution: To prevent access to a database by unauthorized
users in shared Web hosting environments, it is recommended
that the username and password be provided in each
connection string, rather than in the system DSN.

CONFIGURING A DATABASE 117

 .
. .
* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

dBASE Parameters
The following table describes the dBASE 5 database parameters available for
configuring system DSNs, as they appear on the Sun ONE ASP Administration
Console New Data Source Name and Edit Data Source Name pages. For more
information, see “Configuring Data Source Names (DSNs)” on page 105.

Password* Password required for accessing the database. If the password
is not provided when configuring a system DSN, every
connection string using the DSN must include the password.
Caution: To prevent access to a database by unauthorized
users in shared Web hosting environments, it is recommended
that the username and password be provided in each
connection string, rather than in the system DSN.

IPAddress* IP address for the database server (DB2).

TcpPort* Port for the database server (DB2).

Location Specify this attribute only if the DB2 database is running on
OS/390.
Location is a path that specifies the DB2 location name. Use
the name that was defined during the local DB2 installation.

Collection Specify this attribute only if the DB2 database is running on
OS/390.
Collection is the name that identifies a group of packages.
These packages include the Connect ODBC for DB2 Wire
Protocol driver packages. The default is DATADIRECTOO.

Package Package created by the DataDirect driver that reflects all
parameters associated with a specific database (the
parameters you specified).
Package is displayed in the Sun ONE ASP Administration
Console only when you are editing an existing DSN, not
adding a new one.
Note: Do not edit this package. The package is unique to a
specific database.

Parameter Explanation

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

118 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Informix Parameters
This section describes the Informix database parameters available for configuring
system DSNs as they appear in the Sun ONE ASP Administration Console. It specifies
parameters for Informix 7 or 9 (with client) and Informix 2000 (without client)

In this section:

“Informix Parameters (With Client): UNIX Only” on page 118

“Informix Parameters (Without Client): UNIX and Linux” on page 119

Informix Parameters (With Client): UNIX Only

The following table describes the Informix 7 or 9 (with client) database parameters
available for configuring system DSNs, as they appear on the Sun ONE ASP
Administration Console New Data Source Name and Edit Data Source Name
pages. For more information, see “Configuring Data Source Names (DSNs)” on page
105.

Note

This driver is not installed with Sun ONE Active Server Pages for Linux.
Parameters for the Informix driver that is installed with Sun ONE ASP for

Database type* Indicates for which type of database you are configuring this DSN
(dBASE 5).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (dBASE 5). This is a nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

Database* Path name of the directory in which the DBF files reside.

IntlSort Determines the order in which records are retrieved when you issue
a SELECT statement with an ORDER BY clause. When set to 0 (the
default), ASCII sort order is used. Items are sorted alphabetically,
with uppercase letters preceding lowercase letters (for example, "A,
b, C" would be sorted as "A, C, b").
When set to 1, international sort order is used, as defined by your
operating system. The order is always alphabetic, regardless of case.

Parameter Explanation

CONFIGURING A DATABASE 119

 .
. .
Linux are listed below in “Informix Parameters (Without Client): UNIX and
Linux” on page 119.

* Required parameters

See also:

“Informix Parameters (Without Client): UNIX and Linux” on page 119

Informix Parameters (Without Client): UNIX and Linux

The following table describes the Informix 2000 (without client) database parameters
available for configuring system DSNs, as they appear on the Sun ONE ASP
Administration Console New Data Source Name and Edit Data Source Name
pages. For more information, see “Configuring Data Source Names (DSNs)” on page
105.

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

Database type* Indicates for which type of database you are configuring this DSN
(Informix).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (Informix). This is a nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

ServerName* Name of the database server as it appears in the sqlhosts file.

HostName* Name of the computer on which the Informix server resides.

Database* Because there can be multiple installations of a database running on
one computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring
this DSN.

LogonID Username required for accessing the database. If the username is not
provided when configuring a system DSN, every connection string
using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password Password required for accessing the database. If the password is not
provided when configuring a system DSN, every connection string
using this DSN must include the password.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

120 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

On Linux, only one Informix driver is listed in the Sun ONE Active Server
Pages Administration Console.

* Required parameters

See also:

“Informix Parameters (With Client): UNIX Only” on page 118

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

Database type* Indicates for which type of database you are configuring this DSN
(Informix).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (Informix). This is a nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

Database* Because there can be multiple installations of a database running on
one computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring
this DSN.

LogonID Username required for accessing the database. If the username is not
provided when configuring a system DSN, every connection string
using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password Password required for accessing the database. If the password is not
provided when configuring a system DSN, every connection string
using this DSN must include the password.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

HostName* Name of the computer on which the Informix server resides.

PortNumber* Port on which the database server is configured to listen. Ask your
database administrator for this information.

ServerName* Name of the database server as it appears in the sqlhosts file.

CONFIGURING A DATABASE 121

 .
. .
Microsoft SQL Server Parameters
The following table describes the Microsoft SQL Server 7.0 and 2000 database
parameters available for configuring system DSNs, as they appear on the Sun ONE
ASP Administration Console New Data Source Name and Edit Data Source
Name pages. For more information, see “Configuring Data Source Names (DSNs)” on
page 105.

* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

Database type* Indicates for which type of database you are configuring this DSN
(Microsoft SQL Server).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (Microsoft SQL Server). This is a
nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

Database* Because there can be multiple installations of a database running on
one computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring
this DSN.

ServerIPAddress* IP address of the SQL Server 7.0 or 2000 database server.

ServerPortNumber* Port on which the SQL Server 7.0 or 2000 database server is
configured to listen. The default is 1433.

LogonID Username required for accessing the database. If the username is not
provided when configuring a system DSN, every connection string
using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password Password required for accessing the database. If the password is not
provided when configuring a system DSN, every connection string
using the DSN must include the password.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

122 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
MySQL Parameters
The following table describes the MySQL 3.23 database parameters available for
configuring system DSNs, as they appear on the Sun ONE ASP Administration
Console New Data Source Name and Edit Data Source Name pages. For more
information, see “Configuring Data Source Names (DSNs)” on page 105.

* Required parameters

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

Database type* Indicates for which type of database you are configuring this DSN
(MySQL).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (MySQL). This is a nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

Server* IP address or name of the MySQL database server. If this field is
empty, the server is assumed to be running on the local computer.

Port* Port on which the MySQL database server is configured to listen. The
default is 3306.

Database* Because there can be multiple installations of a database running on
one computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring
this DSN.

User Username required for accessing the database. If the username is not
provided when configuring a system DSN, every connection string
using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password Password required for accessing the database. If the password is not
provided when configuring a system DSN, every connection string
using the DSN must include the password.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

UseCursorLib UseCursorLib is displayed in the Sun ONE ASP Administration
Console only when you are editing an existing DSN, not adding a
new one.
When this option is enabled (the check box is selected), ODBC
Manager cursor support overrides ODBC driver cursor support. This
enables RecordSet.Update, which is not supported in the default
MyODBC driver. This parameter is enabled by default.

CONFIGURING A DATABASE 123

 .
. .
See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Oracle Parameters
This section describes the Oracle database parameters available for configuring
system DSNs as they appear in the Sun ONE ASP Administration Console. It specifies
parameters for Oracle 7 and 8.05 (with client), and Oracle 8i (8.1.6 and 8.1.7) and 9i
(without client).

In this section:

“Oracle Parameters (With Client)” on page 123

“Oracle Parameters (Without Client)” on page 124

Oracle Parameters (With Client)

The following table describes the Oracle 7 and 8.05 (with client) database parameters
available for configuring system DSNs, as they appear on the Sun ONE ASP
Administration Console New Data Source Name and Edit Data Source Name
pages. For more information, see “Configuring Data Source Names (DSNs)” on page
105.

Note

This information applies to Solaris only.

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description* Description of the DSN to help distinguish it from others.

Database type Indicates for which type of database you are configuring this DSN
(Oracle).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (Oracle). This is a nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

ServerName* TNS name as defined in the tnsnames.ora file by the Oracle
database client utility.

124 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
* Required parameters

See also:

“Oracle Parameters (Without Client)” on page 124

Oracle Parameters (Without Client)

The following table describes the Oracle 8i (8.1.6 and 8.1.7) and 9i database
parameters (without client) available for configuring system DSNs, as they appear on
the Sun ONE ASP Administration Console New Data Source Name and Edit Data
Source Name pages. For more information, see “Configuring Data Source Names
(DSNs)” on page 105.

LogonID Username required for accessing the database. If the username is
not provided when configuring a system DSN, every connection
string using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users
in shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password Password required for accessing the database. If the password is
not provided when configuring a system DSN, every connection
string using the DSN must include the password.
Caution: To prevent access to a database by unauthorized users
in shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

EnableDescribeParam EnableDescribeParam is displayed in the Sun ONE ASP
Administration Console only when you are editing an existing
DSN, not adding a new one.
When this option is enabled (the check box is selected), all
StoreProcedure arguments are returned as string types. This
parameter is enabled by default.

ProcedureRetResults ProcedureRetResults is displayed in the Sun ONE ASP
Administration Console only when you are editing an existing
DSN, not adding a new one.
When this option is enabled (the check box is selected), Oracle
returns record sets from a StoredProcedure call. This parameter is
enabled by default.

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description* Description of the DSN to help distinguish it from others.

Database type Indicates for which type of database you are configuring
this DSN (Oracle).

Parameter Explanation

CONFIGURING A DATABASE 125

 .
. .
Driver* On the New Data Source Name page, this is the name of
the ODBC driver installed for the type of database selected
in the Database type box (Oracle). This is a
nonconfigurable field.
On the Edit Data Source Name page, this is the absolute
path name of the ODBC driver specified for this DSN. This
is a configurable field.

HostName Computer on which the Oracle server resides. If your
network supports named servers, you can specify a host
name (such as Oracleserver). Otherwise, specify an IP
address.

PortNumber Port on which the database server is configured to listen.
Ask your database administrator for this information.

SID Oracle System Identifier that refers to the instance of
Oracle running on the server. You must provide this
information when connecting to servers that support more
than one instance of an Oracle database.

LogonID Username required for accessing the database. If the
username is not provided when configuring a system DSN,
every connection string using this DSN must include the
username.
Caution: To prevent access to a database by unauthorized
users in shared Web hosting environments, it is
recommended that the username and password be
provided in each connection string, rather than in the
system DSN.

Password Password required for accessing the database. If the
password is not provided when configuring a system DSN,
every connection string using the DSN must include the
password.
Caution: To prevent access to a database by unauthorized
users in shared Web hosting environments, it is
recommended that the username and password be
provided in each connection string, rather than in the
system DSN.

EnableDescribeParam EnableDescribeParam is displayed in the Sun ONE ASP
Administration Console only when you are editing an
existing DSN, not adding a new one.
When this option is enabled (the check box is selected), all
StoredProcedure arguments are returned as string types.
This parameter is enabled by default.

ProcedureRetResults ProcedureRetResults is displayed in the Sun ONE ASP
Administration Console only when you are editing an
existing DSN, not adding a new one.
When this option is enabled (the check box is selected),
Oracle returns record sets from a StoredProcedure call. This
parameter is enabled by default.

Parameter Explanation

126 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
* Required parameters

See also:

“Oracle Parameters (With Client)” on page 123

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

PostgreSQL Parameters
The following table describes the PostgreSQL 6.5.2 and 7.1.3 database parameters
available for configuring system DSNs, as they appear on the Sun ONE ASP
Administration Console New Data Source Name and Edit Data Source Name
pages. For more information, see “Configuring Data Source Names (DSNs)” on page
105.

CatalogOptions CatalogOptions is displayed in the Sun ONE ASP
Administration Console only when you are editing an
existing DSN, not adding a new one.
When this option is enabled (the check box is selected), the
result column REMARKS for the catalog functions
SQLTables and SQLColumns, and the result column
COLUMN_DEF for the catalog function SQLColumns, will
have meaning for Oracle. Enabling this option reduces the
performance of your queries. This option is disabled by
default, which returns SQL_NULL_DATA for the result
columns COLUMN_DEF and REMARKS.

EnableStaticCursorsForLong
Data

EnableStaticCursorsForLongData is displayed in the
Sun ONE ASP Administration Console only when you are
editing an existing DSN, not adding a new one.
When this option is enabled (the check box is selected), the
driver supports long columns when using a static cursor.
Enabling this option causes a performance penalty at the
time of execution when reading long data. This option is
disabled by default.

ApplicationUsingThreads ApplicationUsingThreads is displayed in the Sun ONE
ASP Administration Console only when you are editing an
existing DSN, not adding a new one.
When this option is enabled (the check box is selected), the
driver works with multi-threaded applications. When
enabled, the driver is thread-safe. This option is enabled by
default.

Parameter Explanation

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

CONFIGURING A DATABASE 127

 .
. .
* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Database type* Indicates for which type of database you are configuring this DSN
(PostgreSQL).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (PostgreSQL). This is a nonconfigurable
field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

ServerName* IP address of the PostgreSQL database server. If this field is empty,
the server is assumed to be running on the local computer.

Port* Port on which the PostgreSQL database server is configured to
listen. The default is 5432.

Database* Because there can be multiple installations of a database running
on one computer, each database is given its own name. This
parameter indicates the name of the database for which you are
configuring this DSN.

User Username required for accessing the database. If the username is
not provided when configuring a system DSN, every connection
string using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users
in shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password Password required for accessing the database. If the password is
not provided when configuring a system DSN, every connection
string using the DSN must include the password.
Caution: To prevent access to a database by unauthorized users
in shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

ReadOnly* When this option is enabled (the check box is selected), the
database returns all record sets as read-only. This parameter is
disabled by default.

UseCursorLib UseCursorLib is displayed in the Sun ONE ASP Administration
Console only when you are editing an existing DSN, not adding a
new one.
When this option is enabled (the check box is selected), ODBC
Manager cursor support overrides ODBC driver cursor support.
Use this to enable scrollable cursors not supported by the driver.
This parameter is enabled by default.

Parameter Explanation

128 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
SequeLink Parameters
You use SequeLink for connecting to Microsoft Access and Microsoft SQL Server 6.5
databases running on Windows-based computers. The following table describes the
SequeLink database parameters available for configuring system DSNs, as they appear
on the Sun ONE ASP Administration Console New Data Source Name and Edit
Data Source Name pages.

* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Configuring SequeLink

Sun ONE Active Server Pages includes the client portion of DataDirect SequeLink 5.3,
which enables you to connect to a remote Microsoft Access or Microsoft SQL Server
6.5 database running on Windows 95, Windows 98, Windows NT 3.51 or 4.0, or
Windows 2000. The SequeLink client resides on the same computer as the ASP Server
and behaves like an ODBC driver. It communicates with a SequeLink server running
on the remote database server.

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring. It
must match the entry for ServerDataSource (below), which
is the DSN created on the SequeLink server. For more
information, see “Configuring SequeLink” on page 128.

Description* Description of the DSN to help distinguish it from others.

Database type On the New Data Source Name page, select SequeLink
5.3 from the list to configure a DSN for a Microsoft Access or
Microsoft SQL Server 6.5 database.
On the Edit Data Source Name page, SequeLink 5.3
appears in this field.

Driver* On the New Data Source Name page, this is the name of the
database driver configured for this DSN (SequeLink). This is a
nonconfigurable field.
On the Edit Data Source Name page, this is the absolute
path name of the database driver specified for this DSN. This is
a configurable field.

Host IP address of the SequeLink server.

Port Port the SequeLink server is listening on. Default is 19996.

ServerDataSource* Name of the DSN configured on the SequeLink server. For
more information, see “Configuring SequeLink” on page 128.

CONFIGURING A DATABASE 129

 .
. .
Before you can use SequeLink to connect to a remote database, you must take the
following steps:

1. Create a data source on the Windows machine.

2. Install and configure the SequeLink server software on the database server.
The software can be downloaded from the Sun ONE ASP Web site at:

http://developer.chilisoft.com/downloads/register2.asp?target=SEQUELINK

Run setup.exe /v"IPE=No" and install all defaults.

Note: Be sure to install SLSocket. For information about configuring the
SequeLink server, see the following procedure.

3. Add a SequeLink DSN by using the Sun ONE ASP Administration Console, as
described in “Adding a DSN” on page 106. When you do this, be sure to use
the DSN name that you create in the following procedure.

To configure SequeLink

1. On the database server to which SequeLink Server 5.3 is installed, create a
DSN using Windows’ administrative tools (Start > Settings > Control
Panel > Administrative Tools > Data Sources (ODBC).

2. Start SequeLink Server 5.3 for ODBC Sockets (Start > SequeLink Server
5.3 for ODBC Sockets > SequeLink Manager Snapin.

Note: To perform this procedure, SLSocket must be installed.

3. Connect to the SequeLink Service if you’re not already connected, and then
expand SequeLink 5.3 Manager.

4. Expand SequeLink Services > SLSocket53 > Configuration.

5. Right-click Data Source Settings, and then select New > Data source.

6. Name the new data source by typing the name of the DSN you created in step
1 (for example, "test"), expand the node, and then click the Advanced
folder.

7. Double-click DataSourceSOCODBCConnStr.

8. In the Value box, change the value to the connection string you created in
step 1 (for example, "DSN=test"), and then click OK.

9. Expand the User Security node, and then double-click Data Source
Logon Method.

10. Select OSIntegrated.

11. Configure the SequeLink DSN, as described in “Adding a DSN” on page 106.
You will be asked to specify the ServerDataSource. This is the name of the
DSN you just configured (for example, "test").

See also:

“Chapter 6, Configuring a Database” on page 103

“SequeLink Parameters” on page 128

http://developer.chilisoft.com/downloads/register2.asp?target=SEQUELINK

130 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Sybase Parameters
The following table describes the Sybase 11.9.2 or 12.5 database parameters available
for configuring system DSNs, as they appear on the Sun ONE ASP Administration
Console New Data Source Name and Edit Data Source Name pages. For more
information, see “Configuring Data Source Names (DSNs)” on page 105.

* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

Database type* Indicates for which type of database you are configuring this DSN
(Sybase).

Driver On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (Sybase). This is a nonconfigurable field.
On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. This is a
configurable field.

Server* IP address or name of the Sybase database server. If this field is
empty, the server is assumed to be running on the local computer.

Port* Port of the Sybase database server.

Database* Because there can be multiple installations of a database running
on one computer, each database is given its own name. This
parameter indicates the name of the database for which you are
configuring this DSN.

LogonID* Username required for accessing the database. If the username is
not provided when configuring a system DSN, every connection
string using this DSN must include the username.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

Password* Password required for accessing the database. If the password is
not provided when configuring a system DSN, every connection
string using the DSN must include the password.
Caution: To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection string,
rather than in the system DSN.

CONFIGURING A DATABASE 131

 .
. .
Text Parameters
The following table describes the Text parameters available for configuring system
DSNs, as they appear on the Sun ONE ASP Administration Console New Data
Source Name and Edit Data Source Name pages. For more information, see
“Configuring Data Source Names (DSNs)” on page 105.

* Required parameters

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

. Configuring ADO Connections

ADO (ActiveX Data Objects) is the Microsoft standard for database access. Sun ONE
Active Server Pages provides an ADO control, which you can configure by using the
Sun ONE ASP Administration Console. For more information about ADO, see
“Creating Database Connections (ASP Server)” on page 44 and “ADO Component
Reference” on page 301.

In this section:

“Setting the ADO Connection Pool Size” on page 131

“Enabling and Disabling ADO Logging” on page 133

Setting the ADO Connection Pool Size
Sun ONE Active Server Pages supports database connection pooling, which improves
the performance of applications that rely heavily on database operations. With

Parameter Explanation

DSN*
Data Source Name*

Name of the data source name (DSN) you are configuring.

Description Description of the DSN to help distinguish it from others.

Database type* Indicates for which type of database you are configuring this DSN.

Driver* This is the installed ODBC driver specified for this DSN.

Database* Directory in which the text files are stored. If left empty, the current
working directory is used.

TableType Default table type (Comma, Tab, Character, Fixed, or Stream). The
Text driver supports five table-types: comma-separated, tab-
separated, character-separated, fixed length, and stream. The default
table type is used when creating a new table, and opening an
undefined table.

132 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
connection pooling, rather than opening and closing a database connection for each
individual request, Sun ONE ASP uses a connection that is already open.

Sun ONE ASP uses an ADO control to provide database connectivity. The ADO
connection pool size parameter is set in the Sun ONE ASP Administration Console.
The default ADO connection pool size is 25, which can be increased or decreased
according to your requirements. There is no maximum number of connections that
can be pooled. Setting this to 0 (zero) disables connection pooling.

To set the ADO connection pool size

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. Click the ADO Settings tab.

The ActiveX Data Object Connection Setting page displays.

4. In the Connection pool size box, type the number of connections you
want to pool.

5. Click Save, and then click Server Management in the left navigation
pane.

6. Restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Pooling Database Connections” on page 72

CONFIGURING A DATABASE 133

 .
. .
Enabling and Disabling ADO Logging
Sun ONE Active Server Pages uses an ADO (ActiveX Data Objects) control to provide
database connectivity. Logging for ADO is enabled from the Sun ONE ASP
Administration Console by providing an absolute path name for the log file. When
you do this, Sun ONE ASP creates the log file in the directory specified, and begins
logging to it. To disable logging, simply delete the path name of the log file.

ADO logging will not be functional if Inherit user security is set to yes. For
information about this setting, see “Setting the Security Mode” on page 57.

Caution

ADO logging should be used for diagnostic purposes only, and should not be
enabled when running Sun ONE ASP on a production server.

To enable or disable ADO logging

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Data-
bases.

3. Click the ADO Settings tab.

The ActiveX Data Object Connection Setting page displays.

4. In the Logging file box, type the absolute path name of the log file. This
includes the path to the directory containing the file, and the name of the log
file. You cannot use the name of a file that already exists in the directory.

To disable ADO logging, leave the Logging file box empty, or delete existing
text.

134 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
5. Click Save, and then click Server Management in the left navigation
pane.

6. Restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“Configuring ADO Connections” on page 131

. .

 .

. .7 Using Database Tools

SunTM ONE Active Server Pages for Solaris and Linux includes two database tools: Sun
ONE ASP Database Publisher (Database Publisher), and Sun ONE ASP Database
Management System for MySQL (DBMS).

Database Publisher is a client/server application that enables a Microsoft Access
database running on Windows to be published to a MySQL database running on
UNIX or Linux (with Sun ONE ASP installed). DBMS is a database administration tool
that enables MySQL databases to be administered from a browser-based
administration console instead of strictly from the command line.

This chapter describes how to administer and use these tools.

In this chapter:

“Database Publisher” on page 135

“DBMS” on page 148

. Database Publisher
Migrating Web sites from Windows to UNIX or Linux is problematic if existing Web
applications use Microsoft Access databases. The contents of Access database files
must be migrated to a database supported on UNIX or Linux, but no ODBC drivers
exist that can read or write Access files on those platforms. Sun ONE Active Server
Pages Database Publisher (Database Publisher) addresses this problem.

Database Publisher is a client/server application that enables a Microsoft Access
database running on Windows to be published to a MySQL database running on
UNIX or Linux (with Sun ONE ASP installed). The application captures the schema
and data of an Access database on a Windows machine, and then transmits those
contents in the bodies of HTTP requests to a MySQL database on a UNIX or Linux
machine. The contents of the Access database are read from the HTTP requests and
used to create a copy of the original Access database on the MySQL database server.

Database Publisher is administered from the Sun ONE ASP Administration Console,
which is installed with Sun ONE Active Server Pages. The client component is an
executable file that is downloaded from the Web and installed on the Windows
machine. Database Publisher is a wizard-like application that guides you through
each step of the publishing process.

This section describes how to administer and use Database Publisher, and assumes a
working knowledge of both Access and MySQL.

In this section:

“Administering Database Publisher” on page 136

“Installing Database Publisher” on page 138

136 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Using the Database Publisher Wizard” on page 138

Administering Database Publisher
Database Publisher is administered from the Sun ONE ASP Administration Console.
Administrators use the Administration Console to enable Database Publisher, specify
an authorization key that unlocks the application for use, and specify global Create
privileges.

To make Database Publisher available for users, administrators must do the following:

� Enable the Database Publisher application for use in the Sun ONE ASP
Administration Console.

� Create a database account for each user of Database Publisher, and furnish
each user with a user ID and password for the MySQL server.

� Choose an authorization key and provide it to users. This key unlocks the
application for use (the key will be the same for all users).

� Specify global Create privileges for the MySQL server. If users are not allowed
to create a new database, a database must be supplied on the MySQL server
for which users have all permissions.

Note

All database security is governed by the privileges assigned to the user
account by the MySQL database administrator. For more information about
MySQL security, see documentation on the MySQL Web site pertaining to the
privilege system (go to http://www.mysql.com/documentation).

To administer Database Publisher

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Tools.

The Tools page displays.

http://www.mysql.com/documentation

USING DATABASE TOOLS 137

 .
. .
3. To enable or disable Database Publisher, select or clear the Enable box for
DB Publisher (Database Publisher is enabled by default).

4. In the Key box for Database Publisher, specify the authorization key that
unlocks the application for use. This authorization key must be supplied to
each user of the application. The key is configured as "password" by default. A
new key should be chosen as soon as possible.

5. Select or clear the Create database box to specify global Create privileges:

❑ If this box is selected, client-side users with appropriate privileges can cre-
ate a new database on the MySQL server to which to publish an Access
database.

❑ If this box is cleared, all users are barred from creating a new database on
the MySQL server, regardless of other user privileges. If users are not
allowed to create a new database, a database must be supplied on the
MySQL server for which users have all permissions.

6. In the Log file box, specify the path for application logging information. If
this box is empty, logging for the application will be disabled.

7. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

See also:

“Installing Database Publisher” on page 138

“Using the Database Publisher Wizard” on page 138

138 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Installing Database Publisher
The client component of Database Publisher is an executable program installed on
the Windows machine. The executable (.exe) file is downloaded from the Sun ONE
ASP download site.

To install Database Publisher

1. Download the PublisherWizard_setup.exe file from the following location:

http://developer.chilisoft.com/downloads

2. Open the file.

3. Perform the installation as prompted by the setup program.

Note

To uninstall Database Publisher, use the Add/Remove functionality in
Windows.

See also:

“Using the Database Publisher Wizard” on page 138

Using the Database Publisher Wizard
The Database Publisher wizard is used to publish an Access database to MySQL. The
wizard is installed on the Windows (client) machine as described in “Installing
Database Publisher” on page 138, and walks you through each step of the publishing
process. In general, you will take the following steps:

� Select the Access file you want to publish.

� Verify that table, index, and column names in the Access database are valid in
MySQL, and fix any names that are invalid.

� Provide an authorization key and other information needed to unlock the
application for use.

� Specify the destination (MySQL) database to which you want to publish the
Access database.

� Review conflicting (duplicate) tables in the Access and MySQL databases, if
any, and take desired actions.

� Publish the Access database to MySQL.

Before you begin, make sure you have the following information:

� Name of the Microsoft Access file you want to publish.

� Name and port number for the Web server to which the Sun ONE ASP
Administration Console is installed (used to verify the authorization key). If a
proxy server is in use, you must know the name and port number for the
proxy server.

� Authorization key (unlocking password) for Database Publisher.

http://developer.chilisoft.com/downloads

USING DATABASE TOOLS 139

 .
. .
� Server name and port number for the destination (MySQL) database.

� User ID and password for the MySQL server.

This section describes how to perform each step of the publishing process.

In this section:

“Opening the Database Publisher Wizard” on page 139

“Selecting the Access File” on page 140

“Resolving Invalid Names” on page 140

“Verifying the Authorization Key” on page 142

“Specifying the Destination Database” on page 144

“Publishing the Database” on page 146

See also:

“Installing Database Publisher” on page 138

Opening the Database Publisher Wizard

Use the following procedure to open the Database Publisher wizard. The wizard is
used to publish an Access database to MySQL. To use the wizard, Database Publisher
must be enabled in the Sun ONE ASP Administration Console (see “Administering
Database Publisher” on page 136).

To open the Database Publisher wizard

� Double-click the Database Publisher icon on your desktop, or choose Start >
Programs > Sun ONE ASP > Database Publisher > SOA DB Publisher.

The Database Publisher wizard opens, and you are ready to proceed with pub-
lishing.

See also:

“Using the Database Publisher Wizard” on page 138

140 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Selecting the Access File

The first step in the publishing process is to specify the Access file you want to
publish. This specification is made on the first screen to display when you open the
Database Publisher wizard.

To select the Access file

1. Open the Database Publisher wizard (see “Opening the Database Publisher
Wizard” on page 139).

2. Specify the Access file to be published.

If the Access file is password protected, click Advanced. In the File Pass-
word dialog that displays, select the check box, type the database password
in the Password text box, and then click OK.

3. Click Next to proceed with publishing, or Cancel to exit the wizard.

See also:

“Using the Database Publisher Wizard” on page 138

Resolving Invalid Names

Table, column, and index names that are valid in Access might be invalid in MySQL.
Database Publisher detects invalid names and lists them on the Invalid Names
screen in the wizard, providing an explanation of why the names are invalid and
suggestions for correction. The invalid names must be corrected in the Access
database before the database can be published to MySQL.

USING DATABASE TOOLS 141

 .
. .
If no invalid names are detected, the No Conflicts screen displays in the wizard, and
you can click Next to proceed with publishing.

The following procedure lists the general steps for resolving invalid names.

To resolve invalid names

1. On the Invalid Names screen, click Save As to save the information to a
file.

142 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
2. Click Cancel to exit the Database Publisher wizard.

3. Correct the Access database.

4. Rerun the Database Publisher wizard (see “Opening the Database Publisher
Wizard” on page 139).

See also:

“Using the Database Publisher Wizard” on page 138

Verifying the Authorization Key

Before you can publish a database, you must provide a valid authorization key. This
key unlocks the application for use, and is configured and provided by your Sun ONE
ASP administrator (see “Administering Database Publisher” on page 136). You cannot
publish a database without a valid authorization key. If you do not have this key,
contact your administrator.

The authorization key is specified on the Verify Authorization Key screen in the
Database Publisher wizard. You must also provide information about the Web server
to which the Sun ONE ASP Administration Console is installed (this information is
used for key verification).

To verify the authorization key

1. On the Verify Authorization Key screen, specify information about the
Web server to which the Sun ONE ASP Administration Console is installed:

❑ In the ASP Admin Server box, specify the hostname for the Web server.

❑ In the Port box, specify the port number for the Web server.

USING DATABASE TOOLS 143

 .
. .
❑ If a proxy server is in use, click Use Proxy. In the Proxy Server dialog
that displays, select the Use HTTP Proxy check box, provide the host-
name and port number for the proxy server, and then click OK to return
to the Verify Authorization Key screen (or Cancel to exit this dia-
log).

2. In the Key box, specify the authorization key. If you do not have this key,
contact your administrator.

3. Click Next to proceed with publishing, Cancel to exit the wizard, or Back
to return to a previous screen.

See also:

“Using the Database Publisher Wizard” on page 138

Fatal Error Screen

The Fatal Error screen pertains to the file size limit for blob columns. It displays
following the Verify Authorization Key screen if the data passed to a database
exceeds the maximum long field length set in the Sun ONE ASP configuration file,
casp.cnfg. The maxlongfieldlength setting in casp.cnfg specifies the maximum long
field length in bytes, and is set to 65535 by default.

To proceed with publishing, do one of the following:

� Click Back in the wizard and choose a Web server for which this value is
appropriately set.

� Delete fields from the Access database, or reduce their size.

� Ask your Sun ONE ASP administrator to increase the maxlongfieldlength
value in casp.cnfg (see the [ADO] keyword).

144 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Caution

Setting maxlongfieldlength to an extreme value (greater than 50 MB,
for example) could cause the MySQL database server to crash and the
Database Publisher application to fail.

See also:

“Using the Database Publisher Wizard” on page 138

Specifying the Destination Database

You must provide information about the MySQL database to which the Access
database will be published. This information is provided on the Specify
Destination Database screen in the Database Publisher wizard.

To specify the destination database

1. On the Specify Destination Database screen, in the Server box, specify
the hostname or IP address for the MySQL server.

2. In the Port box, specify the port for the MySQL server (3306 by default).

3. In the Database Name box, specify the name of the destination (MySQL)
database.

If you receive an error message pertaining to an "unknown database," that
means the database you have specified does not exist on the MySQL server
and must be created. See the following note.

USING DATABASE TOOLS 145

 .
. .
Note

If you have appropriate privileges for the database server, and Create
database has been enabled by the administrator on the Tools page
in the Sun ONE ASP Administration Console, the Create Database
check box is also available on this screen. Select the check box to
create a new database to which to publish, and specify the name of
the new database in the Database Name box.

4. In the User ID box, specify the user name for the MySQL database server, as
provided by the database administrator.

5. In the Password box, specify the password for the MySQL database server, as
provided by the database administrator.

6. Click Next to proceed with publishing, Cancel to exit the wizard, or Back
to return to a previous screen.

See also:

“Using the Database Publisher Wizard” on page 138

Conflicting Tables

Database Publisher creates tables in the MySQL database with the same names as
those in the Access database, and then populates those tables with the source (Access)
data. If duplicate table names exist, the table with the same name in the MySQL
database will be replaced with the table in the Access database.

The Conflicting tables screen in the Database Publisher wizard lists any such
conflicts.

146 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
This screen simply advises you that the MySQL tables will be replaced. If you click
Next on this screen, you will be asked if you want to continue, even though the
conflicting tables in MySQL will be replaced during publishing.

See also:

“Using the Database Publisher Wizard” on page 138

Publishing the Database

The Summary of Actions screen in the Database Publisher wizard is the final
screen to display before publishing the Access database to MySQL.

This screen summarizes all actions that will be taken during publishing, and is your
last chance to cancel the process and cleanly exit the publishing wizard before data in
the MySQL database has been altered.

After a database is published, an association is created between the original Windows
file name and a connection string that connects to the new database. The association
is used by the ADO control.

Caution

Before publishing, be sure to back up the MySQL database to which you are
publishing.

USING DATABASE TOOLS 147

 .
. .
To publish the database

1. Verify all actions listed on the Summary of Actions screen. To make
changes, click Back to return to a previous screen. If desired, click Save As
to save this information to a file.

2. Start or cancel publishing:

❑ To proceed with publishing, click Publish. Publishing begins and the
Publishing dialog displays, showing progress.

- or -

❑ Click Cancel to exit the wizard and cancel publishing before data in the
MySQL destination database has been altered. Do not wait to click Can-
cel in the Publishing dialog after publishing has begun. That action
will have unpredictable results for the destination (MySQL) database.

See also:

“Using the Database Publisher Wizard” on page 138

148 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. DBMS
The Sun ONE Active Server Pages Database Management System for MySQL (DBMS)
is a database administration system for MySQL databases. The tool enables MySQL
databases to be administered from a browser-based administration console instead of
strictly from the command line. This user-friendly approach greatly simplifies the
administration of MySQL databases, allowing a graphical user interface (GUI) to be
used to perform database administration.

The DBMS application is installed with Sun ONE Active Server Pages and is
administered from the Sun ONE ASP Administration Console, where it runs as an ASP
application. A client Web browser is used to access DBMS, and to connect to and
administer a database on the MySQL database server.

This section describes how to administer and use the DBMS application, and assumes
a working knowledge of MySQL. It does not provide detailed information about
MySQL, or about relational database concepts in general. For specific information
about the installation, configuration, and use of MySQL, please refer to MySQL
documentation at the following URL:

http://www.mysql.com/documentation

Please note the following:

� You cannot use this tool to create a new database. It is assumed that a MySQL
server is available to which you can connect, and that a database exists on
that server.

� The information displayed and the actions you can take in DBMS are
governed solely by the privileges granted to you by the Sun ONE ASP and
MySQL administrators.

� If information does not display as you think it should when using DBMS (for
example, you update a table and your changes are not reflected in the user
interface), you may need to refresh your browser by right-clicking in the pane
and then clicking Refresh.

In this section:

“Administering DBMS” on page 149

“Accessing DBMS” on page 151

“DBMS Conventions” on page 152

“Connecting to a Database (DBMS)” on page 152

“Working with Tables” on page 165

“Working with SQL Statements” on page 174

http://www.mysql.com/documentation

USING DATABASE TOOLS 149

 .
. .
Administering DBMS
The DBMS application is administered from the Sun ONE ASP Administration
Console. Administrators use the Administration Console to enable DBMS for use,
specify an authorization key that unlocks the application, and specify the blob file-
size limit.

To make DBMS available for users, Sun ONE ASP administrators must do the
following:

� Enable the DBMS application in the Sun ONE ASP Administration Console.

� Choose an authorization key and provide it to users. This key unlocks the
application for use (the key will be the same for all users).

The session timeout is set to 20 minutes by default. If the session expires,
users will be prompted to log back in. This timeout setting is configured in
the global.asa file for DBMS. Likewise, if the Sun ONE ASP administrator
changes the authorization key, users will be prompted to log back in with the
new key.

� Specify the blob file-size limit.

� Provide users with the URL needed to access DBMS. Typically this will be:

//[HOSTNAME]/dbms

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP.

The DBMS application cannot be used to create a new database. It is assumed that a
MySQL server is available to which users can connect, and that a database exists on
that server.

Note

Database security is governed solely by privileges assigned to the user account
by the MySQL database administrator. For more information about MySQL
security, see documentation on the MySQL Web site pertaining to the
privilege system.

To administer DBMS

1. Open the Sun ONE ASP Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of the Web server configured to run
with Sun ONE ASP, and [PORT] is the port on which the Administration Con-
sole is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click Tools.

The Tools page displays.

150 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. To enable or disable DBMS, select or clear the Enable box for DBMS (DBMS is
enabled by default).

4. In the Key box for DBMS, specify the authorization key that unlocks the
application for use. This authorization key must be supplied to each user of
the application. The key is configured as "password" by default. A new key
should be chosen as soon as possible.

5. In the File size limit for blob column (bytes) box, specify the blob file-
size limit. This setting limits the size of files users can upload into their data-
bases.

This value defaults to the smaller of the following two values:

❑ The maxlongfieldlength parameter for ADO in the Sun ONE ASP config-
uration file, casp.cnfg, which specifies the maximum long field length in
bytes (see the [ADO] keyword). This value is set to 65535 by default. If the
data passed to a database exceeds this limit, ADO will throw an error.

❑ The Max. Transfer Size (Bytes) setting on the Components page in
the Sun ONE ASP Administration Console. This setting specifies the max-
imum transfer size (in bytes) that can be uploaded using the Chili!Upload
component. This value is set to 1000000 by default.

Caution

Severe problems will result if either of these values is set extremely
high (such as 50 MB for maxlongfieldlength or 30 MB for Max.
Transfer Size).

6. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

See also:

“Accessing DBMS” on page 151

USING DATABASE TOOLS 151

 .
. .
Accessing DBMS
DBMS allows you to administer MySQL databases from a GUI accessed with a client
browser. To use DBMS, the tool must be enabled in the Sun ONE ASP Administration
Console. Users logging in to the DBMS application will be asked to provide an
authorization key.

The authorization key unlocks DBMS for use, and is configured by your Sun ONE ASP
administrator in the Sun ONE ASP Administration Console (see “Administering
DBMS” on page 149). You cannot use the application without a valid authorization
key. If you do not have this key, contact your administrator.

The session timeout is set to 20 minutes by default. If your DBMS session expires, you
will be prompted to log back in. Likewise, if the Sun ONE ASP administrator changes
the authorization key, you will be prompted to log back in with the new key. Contact
your Sun ONE ASP administrator if you feel the session timeout is too short, or if you
are having trouble logging in.

Caution

Do not use this application from a public computer. Doing so could expose
your information to other users of the shared computer. If you must use a
public computer, it is strongly recommended that you delete database
connections before closing the application or browser, as described in
“Deleting a DSN-based Connection (DBMS)” on page 158 and “Deleting a
DSN-less Connection (DBMS)” on page 164.

To access DBMS

� Access DBMS using the information provided by your Sun ONE ASP
administrator.

The DBMS user interface defaults to the "last visited" view, and displays two
primary panes. The left pane is the navigation pane and provides a tree view
of the database structure hierarchy. The right pane is the content pane and
displays node properties, user forms, or query execution results. Connection
nodes in the left pane can be expanded by clicking text, or by clicking the
plus (+) sign.

152 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
If you are using DBMS for the first time, your first step is to create and estab-
lish a connection to the MySQL database, as described in “Connecting to a
Database (DBMS)” on page 152.

Note

If information does not display as you think it should when using DBMS (for
example, you update a table and your changes are not reflected in the user
interface), you may need to refresh your browser by right-clicking in the pane
and then clicking Refresh.

See also:

“Connecting to a Database (DBMS)” on page 152

DBMS Conventions
The Sun ONE ASP DBMS application is used to administer MySQL databases only.
Syntax, column types, and naming conventions adhere to MySQL specifications.
When using DBMS, you must use MySQL conventions or errors will result.

This documentation is not intended to serve as a MySQL language reference. For
detailed information about MySQL conventions and rules, consult the
documentation on the MySQL Web site at the following URL (particularly the
language reference section):

http://www.mysql.com/documentation

Connecting to a Database (DBMS)
MySQL databases are administered via database connections configured in DBMS.
These connections are comprised of a title and the actual connection string used to
connect to a database, and can be configured using DSN-based or DSN-less

http://www.mysql.com/documentation

USING DATABASE TOOLS 153

 .
. .
connection strings (data source names are collections of information required for
connecting to a specific database).

Your first step in using DBMS is to create and establish a connection to a MySQL
database. Once a connection is successfully established, DBMS can then be used to
perform such tasks as creating and designing tables, adding and editing data, and
querying the database using SQL statements. The tasks you can perform are
determined by privileges granted by the database administrator.

Connection strings used to connect to a database are configured on the Add a DSN
forms in DBMS.

Once successfully added, database connections are displayed in the left pane in the
DBMS user interface, along with the tables and SQL statements associated with the
connection.

154 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
A database connection node represents a DSN or connection string used to connect
to a database. A connection is active if an ADO connection can be established using
the parameters provided.

After connections have been added, clicking the words Database connections in
the left pane displays a list of database connections and their connection status
(connected or not). You can also click a specific connection.

Note

You can only connect to an existing MySQL database on the MySQL server.
The DBMS application cannot be used to create a new database.

This section describes how to add, edit, and delete DSN-based and DSN-less database
connections.

In this section:

“DSN-based Database Connections (DBMS)” on page 154

“DSN-less Database Connections (DBMS)” on page 159

DSN-based Database Connections (DBMS)

Data source names (DSNs) are collections of information required for connecting to
specific databases. They make it easier to connect to a database because all
information can be provided by referencing the DSN rather than providing the entire
connection string. The DBMS tool allows you to connect to a database using DSN-
based or DSN-less connections. This section discusses the configuration of DSN-based
connections.

Note

To use a DSN-based connection, the DSN must reside on the same ASP Server
as the DBMS application (for example, the DSN cannot reside on solaris-02
and the DBMS application on solaris-03). Otherwise, a DSN-less connection
must be used.

In this section:

“Adding a DSN-based Connection (DBMS)” on page 155

“Editing a DSN-based Connection (DBMS)” on page 157

“Deleting a DSN-based Connection (DBMS)” on page 158

See also:

“DSN-less Database Connections (DBMS)” on page 159

USING DATABASE TOOLS 155

 .
. .
Adding a DSN-based Connection (DBMS)

DSN-based connections can be added by specifying parameters in an HTML form that
are then used to construct a connection string, or by entering the entire connection
string. Use the following procedure to add a DSN-based connection. Click Cancel at
any time to cancel the action.

To add a DSN-based connection (DBMS)

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click Add a DSN-based Connection in the left pane.

The Add a DSN-based Connection form displays.

3. In the Title box, type the title for the connection string. This title represents
the connection string and will be displayed in the DBMS interface.

4. In the Description box, type a description of the connection to help distin-
guish it from others.

5. Provide connection information. Either:

❑ Use the form to provide connection information, as described in the
remaining steps.

- or -

❑ Enter the entire connection string directly in the Connection string
box, and then go to step 9.

6. In the DSN box, type the name of the DSN.

7. In the Username box, type the username to be used for accessing the data-
base.

156 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
8. In the Password box, type the password to be used for accessing the data-
base.

9. To preview the connection string before using it to connect to the database,
click Preview.

A connection string is generated and displayed in the Connection string
box.

10. To establish a connection using the connection string, click Submit. The
connection will either succeed or fail:

❑ If the string information is correct, a database connection is established,
and the connection is displayed in the left pane in the DBMS interface.

❑ If the string information is incorrect, the connection will fail, and you
will be advised of the error.

You can do one of the following:

Try to connect again by making changes in the form and then clicking
Retry.

- or -

Save the connection string anyway by clicking Save Anyway. The inac-
tive connection will be saved and displayed in the DBMS interface with a
red X, indicating a connection cannot be established with the parameters
provided.

USING DATABASE TOOLS 157

 .
. .
Changes to the connection string can be made at a later time, as
described in “Editing a DSN-based Connection (DBMS)” on page 157.

See also:

“DSN-based Database Connections (DBMS)” on page 154

“Editing a DSN-based Connection (DBMS)” on page 157

“Deleting a DSN-based Connection (DBMS)” on page 158

Editing a DSN-based Connection (DBMS)

Use the following procedure to edit a DSN-based connection after it has been created.
Click Cancel at any time to cancel the action and revert to the settings that were last
saved.

To edit a DSN-based connection (DBMS)

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click Database connections in the left pane, or click a specific connection.

Connection information displays in the right pane.

3. In line with the database connection you want to edit, click Edit.

158 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
The Edit DSN-based Connection form displays. (If you are working with
an inactive connection, as indicated by a red X, you can also click Connect
to display the edit form.)

4. Change the information as desired, and then click Preview to preview the
changes, or Save to save and submit them. The connection will either suc-
ceed or fail:

❑ If the changes are valid, a database connection is established, and the
edited connection is displayed in the left pane in the DBMS interface.

❑ If the changes are invalid, the connection will fail, and you will be
advised of the error. You can do one of the following:

Try to connect again by making changes in the form and then clicking
Retry.

- or -

Save the edited connection string anyway by clicking Save Anyway. The
inactive connection will be saved and displayed in the DBMS interface
with a red X, indicating a connection cannot be established with the
parameters provided. Changes to the connection string can be made at a
later time.

See also:

“DSN-based Database Connections (DBMS)” on page 154

“Adding a DSN-based Connection (DBMS)” on page 155

“Deleting a DSN-based Connection (DBMS)” on page 158

Deleting a DSN-based Connection (DBMS)

Use the following procedure to delete a DSN-based connection. A connection cannot
be recovered after it has been deleted.

USING DATABASE TOOLS 159

 .
. .
Note

Deleting a connection does not affect the data in your database, but all SQL
statements (if any) will be lost.

To delete a DSN-based connection (DBMS)

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click Database connections in the left pane, or click a specific connection.

Connection information displays in the right pane.

3. In line with the database connection you want to delete, click Delete.

A message displays, asking you to confirm deletion. A connection cannot be
recovered after it has been deleted.

See also:

“DSN-based Database Connections (DBMS)” on page 154

“Adding a DSN-based Connection (DBMS)” on page 155

“Editing a DSN-based Connection (DBMS)” on page 157

DSN-less Database Connections (DBMS)

DSN-less connections use connection strings that include all information needed to
connect to a database, rather than incorporating the information by referencing a
DSN. The DBMS tool allows you to connect to a database using DSN-less and DSN-
based connections. This section discusses the configuration of DSN-less connections.

In this section:

“Adding a DSN-less Connection (DBMS)” on page 160

“Editing a DSN-less Connection (DBMS)” on page 162

“Deleting a DSN-less Connection (DBMS)” on page 164

160 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See also:

“DSN-based Database Connections (DBMS)” on page 154

Adding a DSN-less Connection (DBMS)

DSN-less connections can be added by specifying parameters in an HTML form that
are then used to construct a connection string, or by entering the entire connection
string. Use the following procedure to add a DSN-less connection. Click Cancel at
any time to cancel the action.

To add a DSN-less connection (DBMS)

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click Add a DSN-less Connection in the left pane.

The Add a DSN-less Connection form displays.

3. In the Title box, type the title for the connection string. This title represents
the connection string and will be displayed in the DBMS interface.

4. In the Description box, type a description of the connection to help distin-
guish it from others.

5. Provide connection information. Either:

❑ Use the form to provide connection information, as described in the
remaining steps.

- or -

USING DATABASE TOOLS 161

 .
. .
❑ Enter the entire connection string directly in the Connection string
box, and then go to step 11.

6. In the Server box, type the name of the database server.

7. In the Database box, type the database name.

8. In the Port number box, specify the port on which the database server is
configured to listen (3306 by default).

9. In the Username box, type the username to be used for accessing the data-
base.

10. In the Password box, type the password to be used for accessing the data-
base.

11. To preview the connection string before using it to connect to the database,
click Preview.

A connection string is generated and displayed in the Connection string
box.

12. To establish a connection using the connection string, click Submit. The
connection will either succeed or fail:

❑ If the string information is correct, a database connection is established,
and the connection is displayed in the left pane in the DBMS interface.

❑ If the string information is incorrect, the connection will fail, and you
will be advised of the error.

162 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
You can do one of the following:

Try to connect again by making changes in the form and then clicking
Retry.

- or -

Save the connection string anyway by clicking Save Anyway. The inac-
tive connection will be saved and displayed in the DBMS interface with a
red X, indicating a connection cannot be established with the parameters
provided.

Changes to the connection string can be made at a later time, as
described in “Editing a DSN-based Connection (DBMS)” on page 157.

See also:

“DSN-less Database Connections (DBMS)” on page 159

“Editing a DSN-less Connection (DBMS)” on page 162

“Deleting a DSN-less Connection (DBMS)” on page 164

Editing a DSN-less Connection (DBMS)

Use the following procedure to edit a DSN-less connection after it has been created.
Click Cancel at any time to cancel the action and revert to the settings that were last
saved.

To edit a DSN-less connection (DBMS)

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click Database connections in the left pane, or click a specific connection.

Connection information displays in the right pane.

USING DATABASE TOOLS 163

 .
. .
3. In line with the database connection you want to edit, click Edit.

The Edit DSN-less Connection form displays. (If you are working with an
inactive connection, as indicated by a red X, you can also click Connect to
display the edit form.)

4. Change the information as desired, and then click Preview to preview the
changes, or Save to save and submit them. The connection will either suc-
ceed or fail:

❑ If the changes are valid, a database connection is established, and the
edited connection is displayed in the left pane in the DBMS interface.

❑ If the changes are invalid, the connection will fail, and you will be
advised of the error. You can do one of the following:

164 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Try to connect again by making changes in the form and then clicking
Retry.

- or -

Save the edited connection string anyway by clicking Save Anyway. The
inactive connection will be saved and displayed in the DBMS interface
with a red X, indicating a connection cannot be established with the
parameters provided. Changes to the connection string can be made at a
later time.

See also:

“DSN-less Database Connections (DBMS)” on page 159

“Adding a DSN-less Connection (DBMS)” on page 160

“Deleting a DSN-less Connection (DBMS)” on page 164

Deleting a DSN-less Connection (DBMS)

Use the following procedure to delete a DSN-less connection. A connection cannot be
recovered after it has been deleted.

Note

Deleting a connection does not affect the data in your database, but all SQL
statements (if any) will be lost.

To delete a DSN-less connection (DBMS)

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click Database connections in the left pane, or click a specific connection.

Connection information displays in the right pane.

3. In line with the database connection you want to delete, click Delete.

A message displays, asking you to confirm deletion. A connection cannot be
recovered after it has been deleted.

USING DATABASE TOOLS 165

 .
. .
See also:

“DSN-less Database Connections (DBMS)” on page 159

“Adding a DSN-less Connection (DBMS)” on page 160

“Editing a DSN-less Connection (DBMS)” on page 162

Working with Tables
The DBMS application can be used to perform data maintenance and query a
database using SQL statements. Users with full access to the MySQL database can add,
update, and delete tables.

Table names are displayed in the left pane of the DBMS interface, and corresponding
properties are displayed in the right pane. Clicking the word Tables in the interface
displays a list of tables that have been created and saved.

You can also click the plus (+) sign to expand the list of tables. Clicking a specific
table displays that table. This section describes how to add, update, and delete tables.

Note

The tables displayed and the actions you can take in DBMS are governed
solely by the privileges granted to you by the MySQL database administrator.

In this section:

“Adding New Tables” on page 166

“Updating Existing Tables” on page 168

“Deleting Tables” on page 173

Data Validation

Server-side data validation is performed when adding new records or updating
existing tables. That validation includes NULL checking and numeric validation:

� For NULL validation, an error is reported if a column that is not nullable is
left empty.

� For numeric fields, an error is reported if inputs are not numeric.

166 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� For other errors, an ODBC error description is returned.

Adding New Tables

New tables require a table name and at least one table column. Names and column
types must adhere to MySQL conventions (see “DBMS Conventions” on page 152).
Use the following procedure to add a new table.

Note

You cannot perform this procedure unless corresponding privileges have been
granted by the MySQL database administrator.

To add a new table

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click a database connection in the left pane to expand a node if necessary,
and then expand the Tables node.

Table information displays in the right pane.

3. Click Add new table in the left pane, or in the table in the right pane.

The Add new table page displays, opening on the Design table tab by
default. This page is used to design the table.

USING DATABASE TOOLS 167

 .
. .
4. In the Name box for the new table, type the table name.

5. In the Description box, type a table description.

6. In the Name box for a row, type the column name.

7. In the remaining fields, specify column information as desired. It is strongly
recommended that a primary key be added to the table. Also note the follow-
ing:

❑ The Select box for each row is selected automatically as you work with
the column rows. Selected rows will be included in the table.

❑ To add more columns to the table, click Add more columns at the bot-
tom of the Add new table page. Ten blank rows of input boxes will be
added.

❑ Default settings based on data type are provided for some fields. For
descriptions of each field and detailed information about MySQL conven-
tions and rules, consult MySQL documentation at the following URL
(particularly the language reference section):

http://www.mysql.com/documentation

8. After designing the new table, do one of the following:

❑ Click Save to submit the information for the rows that are selected and
save the table (if the table cannot be saved, an error message displays).

- or -

❑ Click Reset to clear the form.

Note

After a new table has been saved you can add, edit, or remove data as
described in “Updating Existing Tables” on page 168 (assuming
corresponding privileges have been granted by the database administrator).
You can also change table design as described in “Changing Table Design” on
page 168.

See also:

“Working with SQL Statements” on page 174

http://www.mysql.com/documentation

168 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Updating Existing Tables

Users with full access to the MySQL database can change table design, add and edit
data, and delete the table. You cannot perform the procedures in this section unless
corresponding privileges have been granted by the MySQL database administrator.

Note

TIME values in Sun ONE ASP DBMS are displayed in HH:MM:SS format ONLY.
The -HHH:MM:SS to HHH:MM:SS formats supported in MySQL are not
supported in DBMS. Therefore, if you are viewing a MySQL database that uses
these unsupported TIME formats, the time will not display correctly in the
DBMS tool. Likewise, TIME values cannot be entered in unsupported formats;
HH:MM:SS must be used.

In this section:

“Changing Table Design” on page 168

“Adding Data” on page 169

“Editing Data” on page 171

“Deleting Data” on page 172

“Deleting Tables” on page 173

Changing Table Design

Use the following procedure to change table design for an existing table.

To change table design

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Do one of the following:

❑ Expand the Tables node, click a specific table in the left pane, and then
click the Design table tab in the right pane.

- or -

❑ Click the word Tables under a database connection in the left pane, and
then click Design table in the right pane in line with the table you want
to change. The table displays on the Design table tab by default.

The Add new table page displays, opening on the Design table tab by
default. This page is used to design the table.

USING DATABASE TOOLS 169

 .
. .
3. Make changes as desired (columns with changes will be selected by default).
Note the following:

❑ To add more columns to the table, click Add more columns at the bot-
tom of the page. Ten blank rows of input boxes will be added.

❑ Default settings based on data type are provided for some fields. For
descriptions of each field and detailed information about MySQL conven-
tions and rules, consult MySQL documentation at the following URL
(particularly the language reference section):

http://www.mysql.com/documentation

4. Click Save to submit the selected information and save the table, or Reset to
revert to the data that was last saved.

Note

To remove entire columns, select the columns and click Remove selected
fields.

Adding Data

Use the following procedures to add data (records) to an existing table.

Note

TIME values in Sun ONE ASP DBMS are displayed in HH:MM:SS format ONLY.
The -HHH:MM:SS to HHH:MM:SS formats supported in MySQL are not
supported in DBMS. Therefore, if you are viewing a MySQL database that uses
these unsupported TIME formats, the time will not display correctly in the
DBMS tool. Likewise, TIME values cannot be entered in unsupported formats;
HH:MM:SS must be used.

http://www.mysql.com/documentation

170 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
To add data

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Do one of the following:

❑ Expand the Tables node and click a specific table.

- or -

❑ Click the word Tables under a database connection, and then click Edit
data in the right pane in line with the table you want to change.

The table opens on the Edit data tab by default.

3. Click new in the right pane to add a new record.

4. In the form that displays, add record data. As you add data, columns will be
selected by default (the box in the Change column will be selected).

5. Click Insert to submit the selected information and add the new data.

The new data displays on the Edit data tab and your changes will be saved
(if the new data is not visible, you may need to refresh your browser by right-
clicking in the pane and then clicking Refresh).

Note

The Edit data tab also provides a navigation bar used to navigate records.
When a table is open, the first 20 rows of records are displayed by default. To
change the number of records displayed, change the number in the #Shown

USING DATABASE TOOLS 171

 .
. .
box, and then click Refresh. If the total number of records exceeds the
number shown, use the navigation buttons (< > symbols) in the lower right
corner to navigate through the records. Clicking << or >> takes you to the
first or last set of records. Records will be displayed in increments of the
number in the #Shown box.

See also:

“Changing Table Design” on page 168

Editing Data

Use the following procedure to edit data (records) in an existing table.

Note

TIME values in Sun ONE ASP DBMS are displayed in HH:MM:SS format ONLY.
The -HHH:MM:SS to HHH:MM:SS formats supported in MySQL are not
supported in DBMS. Therefore, if you are viewing a MySQL database that uses
these unsupported TIME formats, the time will not display correctly in the
DBMS tool. Likewise, TIME values cannot be entered in unsupported formats;
HH:MM:SS must be used.

To edit data

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Do one of the following:

❑ Expand the Tables node and click a specific table.

- or -

❑ Click the word Tables under a database connection in the left pane, and
then click Edit data in the right pane in line with the table you want to
edit.

The table opens on the Edit data tab by default, displaying record rows.
Each record row has an edit link.

172 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. In line with the record you want to edit, click edit.

4. In the form that displays, make changes as desired and then click Update to
submit the selected changes (records with changes will be selected by
default).

The edited data displays on the Edit data tab and your changes will be saved
(if the changes are not visible, you may need to refresh your browser by right-
clicking in the pane and then clicking Refresh).

Note

The Edit data tab also provides a navigation bar used to navigate records.
When a table is open, the first 20 rows of records are displayed by default. To
change the number of records displayed, change the number in the #Shown
box, and then click Refresh. If the total number of records exceeds the
number shown, use the navigation buttons (< > symbols) in the lower right
corner to navigate through the records. Clicking << or >> takes you to the
first or last set of records. Records are displayed in increments of the number
in the #Shown box.

Deleting Data

Use the following procedure to delete data (records) from an existing table. A record
cannot be recovered after it has been deleted.

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Do one of the following:

❑ Expand the Tables node and click a specific table.

- or -

❑ Click the word Tables under a database connection in the left pane, and
then click Edit data in the right pane in line with the table you want to
change.

The table opens on the Edit data tab by default.

USING DATABASE TOOLS 173

 .
. .
3. Select a specific row or rows, and then click Delete selected rows. To select
all rows, select the check box in the very first row (the box in the title bar not
associated with a record).

A message displays, asking you to confirm deletion. A record cannot be recov-
ered after it has been deleted.

Note

The Edit data tab also provides a navigation bar used to navigate records.
When a table is open, the first 20 rows of records are displayed by default. To
change the number of records displayed, change the number in the #Shown
box, and then click Refresh. If the total number of records exceeds the
number shown, use the navigation buttons (< > symbols) in the lower right
corner to navigate through the records. Clicking << or >> takes you to the
first or last set of records. Records are displayed in increments of the number
in the #Shown box.

See also:

“Changing Table Design” on page 168

Deleting Tables

Use the following procedure to delete a table. A table cannot be recovered after it has
been deleted.

To delete a table

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Do one of the following:

❑ Expand the Tables node, click a specific table, and then click the Delete
table tab in the right pane.

- or -

❑ Click the word Tables under a database connection in the left pane, and
then click Delete in the right pane in line with the table you want to
delete.

In both cases a message displays, asking you to confirm deletion. A table can-
not be recovered after it has been deleted.

174 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Working with SQL Statements
The DBMS interface can be used to query a database using SQL statements. SQL
statements are displayed in the left pane of the DBMS interface, and corresponding
properties are displayed in the right pane. Clicking the words SQL Statements in
the interface displays a list of SQL statements that have been created and saved. You
can also click the plus (+) sign to expand the list of SQL statements. Clicking a
specific SQL statement displays that statement.

SQL statements are computer specific, which means that SQL statements created
when using DBMS on one computer will not be visible when DBMS is accessed from
another computer. You can add, save, and execute the most commonly used SQL
statements (SQL statements are saved in DBMS, not in your database). This section
describes how to add, edit, execute, and delete SQL statements.

Note

The actions you can take are governed solely by the privileges granted to you
by the MySQL database administrator.

In this section:

“Adding SQL Statements” on page 174

“Editing SQL Statements” on page 176

“Executing SQL Statements” on page 178

“Deleting SQL Statements” on page 179

Adding SQL Statements

Use the following procedure to add a new SQL statement. (You can also create a new
SQL statement by saving an existing statement with a new name. For more
information, see “Editing SQL Statements” on page 176.)

USING DATABASE TOOLS 175

 .
. .
To add a new SQL statement

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Click a database connection node in the left pane to expand the node if nec-
essary, and then expand the SQL Statements node.

SQL statement information displays in the right pane.

3. Click Add new SQL in the left pane, or in the table in the right pane.

The Add New SQL Statement page displays.

The page is divided into two panes. The top pane contains a form for entering
the SQL statement. The lower pane displays a message box where query
results and execution or error messages are displayed.

4. In the Name box, type the name of the SQL statement.

176 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
5. Do one of the following:

❑ Type the SQL statement in the SQL statement box. Only SQL state-
ments permitted in MySQL can be entered, such as a conventional
SELECT statement, or statements specific to MySQL such as DESCRIBE
<Table Name>.

- or -

❑ Use the Reference boxes to create a SELECT statement or view the data
structure of a particular table (the top reference box displays tables, the
lower box displays columns).

6. Do one of the following:

❑ Click Execute to run the query and return results to the Query result
box in the right pane. Results are returned as either a recordset or a mes-
sage. If the query returns a recordset, the result is listed by pages. Other-
wise, a message of some type displays. If the query is unsuccessful, an
error message displays.

- or -

❑ Click Add to add and save the new statement. If the SQL statement is
successfully added, a message to that effect displays. Click OK, and the
new SQL statement appears in the DBMS interface.

Note

The #shown box displayed with query results specifies how many
records should be displayed. This number is set to 20 by default. To
see a different number of records, change the number in the box and
then click Refresh. If the total number of records exceeds the
number shown, use the navigation buttons (< > symbols) in the
lower right corner to navigate through the records. Clicking << or >>
takes you to the first or last set of records. Records are displayed in
increments of the number in the #shown box.

See also:

“Working with SQL Statements” on page 174

Editing SQL Statements

Use the following procedure to edit existing SQL statements.

To edit SQL statements

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Under a connection node in the left pane, do one of the following:

❑ Expand the SQL Statements node and click a specific statement.

- or -

❑ Click the words SQL Statements, and then click Edit in line with the
SQL statement you want to edit.

USING DATABASE TOOLS 177

 .
. .
3. Edit the SQL statement directly in the SQL statement box or by using the
Reference boxes, and then take the desired action:

❑ Click Execute to run the query and return results to the Query result
box in the right pane. Results are returned as either a recordset or a mes-
sage. If the query returns a recordset, the result is listed by pages. Other-
wise, a message of some type displays. If the query is unsuccessful, an
error message displays.

❑ Click Save to save the SQL statement.

❑ Enter a new name in the box to the right of the Save As button, and
then click Save As to save the SQL statement with a new name.

Note

The #shown box displayed with query results specifies how many
records should be displayed. This number is set to 20 by default. To
see a different number of records, change the number in the box and
then click Refresh. If the total number of records exceeds the
number shown, use the navigation buttons (< > symbols) in the
lower right corner to navigate through the records. Clicking << or >>
takes you to the first or last set of records. Records are displayed in
increments of the number in the #shown box.

See also:

“Working with SQL Statements” on page 174

178 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Executing SQL Statements

Use the following procedure to execute SQL statements.

To execute SQL statements

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Do one of the following:

❑ To execute an existing SQL statement, click the words SQL Statements
in the left pane, and then click Execute in the right pane in line with the
SQL statement you want to execute.

You can also click a specific SQL statement in the left pane, and then click
Execute in the right pane.

- or -

❑ To add and execute a new SQL statement at the same time, perform the
procedure described in “Adding SQL Statements” on page 174.

After clicking Execute to run the query, results are returned to the Query
result box in the right pane as either a recordset or a message.

If the query returns a recordset, the result is listed by pages. Otherwise, a mes-
sage of some type displays. If the query is unsuccessful, an error message dis-
plays.

Note

The #shown box displayed with query results specifies how many
records should be displayed. This number is set to 20 by default. To
see a different number of records, change the number in the box and
then click Refresh. If the total number of records exceeds the
number shown, use the navigation buttons (< > symbols) in the
lower right corner to navigate through the records. Clicking << or >>

USING DATABASE TOOLS 179

 .
. .
takes you to the first or last set of records. Records are displayed in
increments of the number in the #shown box.

See also:

“Working with SQL Statements” on page 174

Deleting SQL Statements

Use the following procedure to delete SQL statements. A SQL statement cannot be
recovered after it has been deleted.

To delete SQL statements

1. Open DBMS using the URL provided by your Sun ONE ASP administrator.

2. Under the desired database connection node, click the words SQL State-
ments.

3. In line with the SQL statement you want to delete, click Delete.

A message displays, asking you to confirm deletion. A SQL statement cannot
be recovered after it has been deleted.

180 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .8 Building Sun ONE ASP Applications

ASP enables developers to easily create dynamic Web applications using scripts that
run on the Web server. An ASP page can contain a combination of HTML text, server-
side scripts, and client-side scripts, creating an engaging experience for the Web user.

Sun ONE Active Server Pages enables the scripting logic to interface with built-in ASP
objects, which automatically handle many menial tasks, making application
development easier. In addition to using these basic elements, ASP can be extended
by using the Component Object Model (COM), which enables you to add
sophisticated functionality by using components written in programming languages
such as Java. You can incorporate this functionality into your Web applications by
using scripts as the "glue" to link the COM objects. For example, Sun ONE ASP
includes an ADO component that provides a high-performance interface between
Web pages and databases that adhere to the ODBC standard. In addition, Sun ONE
ASP Chili!Beans support included with Sun ONE ASP enables you to use Java objects
with your ASP applications.

This chapter describes how to build a Sun ONE ASP application. The chapter:

� Details the basics of building a Sun ONE ASP application, which involves
such steps as creating an ASP page, adding server-side scripts and server-side
includes, and defining the application.

� Describes how to extend applications by using objects and components,
connecting to databases, and developing applications to publish in locales
other than the United States.

� Provides information about publishing a Sun ONE ASP application.

Note

This chapter provides basic information about ASP applications. You may
wish to consult additional print and Web resources for more detailed
information about developing ASP applications.

In this chapter:

“Creating the Basic ASP Application” on page 182

“Using Sun ONE ASP Built-in Objects” on page 194

“Using Sun ONE ASP Installed Components” on page 195

“Using Java Objects and Classes” on page 196

“Connecting to a Database” on page 197

“Developing International Applications” on page 212

“Publishing a Sun ONE ASP Application” on page 213

182 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Creating the Basic ASP Application
Sun ONE Active Server Pages combines ASP technology with server-side object-
oriented components to provide an integrated Web development environment. A
Sun ONE ASP application consists of the following elements:

� ASP files (or pages), which are plain text files with an .asp extension. ASP
pages are a combination of standard HTML and scripting, written in either
VBScript or JScript.

� Optional components written in a variety of languages. On Windows, Sun
ONE ASP server components can be written in any language that supports
COM, including Java, Visual Basic, and C++. On UNIX, Sun ONE ASP server
components can be written in Java.

� An optional global.asa file that contains global application information and
session information for individual users.

Web servers normally send HTML files directly to the client's Web browser in
response to HTTP requests. When a browser requests an ASP page, the Web server
calls the Sun ONE ASP Server to read through the file. The ASP Server executes the
server-side scripts and commands in the page, executes any components called by
the scripts, and sends the resulting HTML page to the browser.

This section details the basics of building a Sun ONE ASP application.

In this section:

“Choosing an Authoring Tool” on page 183

“Creating an ASP Page” on page 183

“Adding Scripts” on page 184

“Changing the Scripting Language” on page 185

“Using @Directives” on page 186

“Using Server-side Includes” on page 188

“Defining the Application” on page 189

“Using the Global.asa File” on page 189

See also:

“Using Sun ONE ASP Built-in Objects” on page 194

“Using Sun ONE ASP Installed Components” on page 195

“Using Java Objects and Classes” on page 196

“Connecting to a Database” on page 197

“Developing International Applications” on page 212

BUILDING SUN ONE ASP APPLICATIONS 183

 .
. .
Choosing an Authoring Tool
ASP is one of the few technologies that can be used effectively for creating both
sophisticated and entry-level Web applications. Because of the flexibility of ASP, there
are many ASP development tools available for Web developers and authors of varying
skill levels.

You can use any text editor to create *.asp files. As you progress, you may find it more
productive to use an editor with enhanced support for ASP, such as Macromedia
Dreamweaver UltraDev or Adobe GoLive.

Sun ONE Active Server Pages, combined with one or more of these development
tools, provides a common Web application platform for:

� Applications that are large and small, simple or complex.

� Different Web servers and operating systems.

� Developers and page creators with widely varying skill levels.

Note

Sun ONE ASP enables you to run ASP pages generated by a variety of
development tools. However, questions about the installation, configuration,
and use of a specific tool should be directed to the tool’s manufacturer.

Creating an ASP Page
The first step in building an ASP application is to create an ASP page. ASP pages are
plain text files with an .asp file name extension. An ASP page contains optional text
(usually HTML and/or client-side scripts), interspersed with one or more ASP script
blocks for interpretation by the server.

Any valid HTML page can be a valid ASP page, enabling Web developers to easily
transform a static Web site into a dynamic one by adding ASP scripts to existing
HTML page. With Sun ONE Active Server Pages, you can write scripts in VBScript or
JScript. Saving the page with an *.asp file name extension tells the Web server how to
process the script commands.

See also:

“Creating the Basic ASP Application” on page 182

“Adding Scripts” on page 184

“Using Server-side Includes” on page 188

“Using @Directives” on page 186

184 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Adding Scripts
Once you have created an ASP page, as described in “Creating an ASP Page” on page
183, you can use a text editor or other authoring tool to insert script commands into
the page. ASP pages can include both client-side scripts, which are processed by the
browser, and server-side scripts (or ASP scripts), which are processed by the ASP
Server.

ASP scripts enable you to dynamically create HTML responses based on the user's
identity, parameters in the HTTP request, and interactions with other objects, such as
ASP built-in objects, components, and databases. ASP enables you to assign values to
variables, request information from the server, or combine any set of commands into
procedures.

For example, a common use of Web applications is to process a form submitted by a
browser. With ASP, you can embed scripts directly into an HTML file to process the
form. The ASP Server processes the HTML and script commands and returns the
results to the browser.

Within the ASP page, script blocks are set off from other text by using delimiters. You
must use different script delimiters to distinguish between client-side and server-side
scripts. You enclose client-side scripts between the <script> and </script> tags. You
enclose server-side scripts between the delimiters <% and %>.

You can write ASP scripts in either VBScript or JScript. The default scripting language
for Sun ONE ASP is VBScript, but you can specify the scripting language for each ASP
page. Your system administrator can also change the default scripting language for
the ASP Server. For more information, see “Changing the Scripting Language” on
page 185.

As the ASP Server processes each ASP script block, it creates HTML text that is
returned to the Web server for rendering. Unlike with client-side scripts, with server-
side ASP scripts you do not need to worry about the capabilities of the browser; all
processing is done at the server and only standard HTML is returned.

Users cannot copy server-side scripts because only the output is returned to the
browser. Consequently, to view the results of a script you have added to an ASP page,
you must first publish the page to an ASP Server and then request the page by using a
Web browser.

The following example shows how you can combine standard HTML tags with a
simple script that provides the current time of day:

<%@ LANGUAGE="VBSCRIPT" %>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Adobe GoLive">

<META HTTP-EQUIV="Content-Type" content="text/html; charset=iso-8859-
1">

<TITLE>An ASP Page</TITLE>

</HEAD>

<BODY>

 The time is now <%Response.Write Now%>

BUILDING SUN ONE ASP APPLICATIONS 185

 .
. .
</BODY>

</HTML>

Both VBScript and JScript support the If-Then-Else construct, enabling you to embed
some real logic into your HTML. The following example shows how you can set the
greeting shown based upon the time of day:

<%If Time >= #12:00:00 AM# And Time < #12:00:00 PM# Then%>

Good Morning!

<%Else%>

Hello!

<%End If%>

See also:

“Creating the Basic ASP Application” on page 182

“Creating an ASP Page” on page 183

“Using Server-side Includes” on page 188

“Using @Directives” on page 186

Changing the Scripting Language
Sun ONE Active Server Pages provides script interpreters to process the commands in
an ASP script. Sun ONE ASP includes the Sun scripting engines, Sun ONE ASP
VBScript and Sun ONE ASP JavaScript, which provide functionality equivalent to
version 5.5 of Microsoft VBScript and JScript (see “Chapter 15, Scripting Languages
Reference” on page 503 for more information about the scripting engines).

The default scripting language is VBScript, but you can change this to JavaScript for
an ASP page by using the @LANGUAGE directive at the beginning of your ASP file,
as described in “Using @Directives” on page 186.

You can change the scripting language for a single block of script by enclosing the
block in <SCRIPT> ... </SCRIPT> tags. Normally, a block of code enclosed in
<SCRIPT> tags runs on the client side, but you can force the block to run on the server
by including the runat=server attribute, as shown in the following example:

<SCRIPT language=JavaScript runat=server>

Alternatively, your system administrator can change the default scripting language to
either VBScript or JavaScript on the ASP Server. For Windows systems, see “Editing
the Windows Registry” on page 515. For UNIX and Linux systems, see “Editing the
Sun ONE ASP Configuration File” on page 517.

See also:

“Adding Scripts” on page 184

186 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Using @Directives
Sun ONE Active Server Pages provides @ processing directives, in addition to the
available scripting commands. These directives provide information to the Web
server about how an .asp file should be processed. The directives listed below are
implemented in Sun ONE ASP (the @TRANSACTION directive is not implemented).

� @CODEPAGE

� @ENABLESESSIONSTATE

� @LANGUAGE

� @LCID

Note

Regarding syntax, there must be a space between the @ and the keyword.
More than one keyword can be specified in a directive; each keyword/value
pair must be separated by a space. Do not put spaces around the equal sign
(=).

See also:

“Creating the Basic ASP Application” on page 182

“Creating an ASP Page” on page 183

“Using Server-side Includes” on page 188

@CODEPAGE Directive

This directive specifies how literal (static) strings are encoded in a Web page. Code
pages are character sets and are important in international applications. Code pages
are not the same for all languages. Setting the @CODEPAGE directive explicitly affects
literal strings in a single response.

The syntax for this directive is as follows:

<%@ CODEPAGE=codepage %>

The parameters are as follows:

codepage

An integer that represents the character formatting code page. For a list of the code
page integers for the languages supported by Sun ONE ASP, see “Configuring
International Support” on page 43.

Take note of the following:

❑ @CODEPAGE affects literal (static) strings in a single response.

❑ Response.CodePage affects dynamic strings in a single response.

❑ Session.CodePage affects dynamic strings in all responses in a session.

See also:

“Developing International Applications” on page 212

BUILDING SUN ONE ASP APPLICATIONS 187

 .
. .
“Configuring International Support” on page 43

“ASP Session Object CodePage Property” on page 264

@ENABLESESSIONSTATE Directive

This directive turns session tracking on and off for an ASP page. If your page does not
rely on session information, turning session tracking off can decrease the time it
takes Sun ONE ASP to process the script. By default, sessions are enabled. For more
information, see “Managing User Sessions” on page 192.

The syntax for this directive is as follows:

<%@ ENABLESESSIONSTATE=True|False %>

@LANGUAGE Directive

By default, the primary scripting language for Sun ONE ASP is Sun ONE ASP VBScript,
but this can be changed to Sun ONE ASP JavaScript for each ASP page by using the
@LANGUAGE directive at the beginning of the ASP file.

The syntax for this directive is as follows:

<%@ LANGUAGE=scriptengine %>

The parameters are as follows:

scriptengine

The script engine that should process the script (VBScript or JavaScript).

See also:

“Chapter 15, Scripting Languages Reference” on page 503

@LCID Directive

This directive specifies how dates, times, and currencies are formatted for different
locales. A Local Language Identifier (LCID) is a 32-bit value that identifies a
geographic locale.

The syntax for this directive is as follows:

<%@ LCID=localeidentifier %>

The parameters are as follows:

localeidentifier

A valid Locale Indentifier (LCID) number. For a list of valid values, see “Configuring
International Support” on page 43.

Take note of the following:

❑ @LCID affects literal (static) strings in a single response.

❑ Response.LCID affects dynamic strings in a single response.

❑ Session.LCID affects dynamic strings in all responses in a session.

188 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See also:

“Developing International Applications” on page 212

“Configuring International Support” on page 43

“ASP Session Object LCID Property” on page 265

Using Server-side Includes
A server-side include directive is used to import a file into an ASP page during
processing. Any text file can be imported (or "included"). The contents of the
included file are placed on the page at the location of the server-side include
directive.

You can include files that themselves contain included files. In the event of a loop, in
which the first file contains an included file that in turn includes the first file, ASP
reports an error. Included files can also be ASP files; the results of an included ASP file
are placed at the position of the #include statement. You cannot build a server-side
include statement programmatically because ASP processes #include directives
before processing any script.

The syntax for a server-side include is as follows:

<!--#INCLUDE VIRTUAL|FILE="filename"-->

To specify the path, use the virtual keyword to indicate a path name beginning with
a virtual directory. Use the file keyword to indicate a relative path name that begins
with the directory containing the include file. For example, if a file is in the directory
Dir1, and the file header1.inc is in Dir1/Headers, the following code would insert
header1.inc in your file:

<!--#INCLUDE FILE="Headers/header1.inc"-->

Note

If the EnableParentPaths configuration setting is set to yes, you can also
use the File parameter with ../ syntax to include a file from a parent
(higher-level) directory. By default, EnableParentPaths is set to no. In this
case, the CreateObject ("Scripting.FileSystemObject") calls generated in
the global.asa file by FrontPage do not work. Your system administrator must
change EnableParentPaths to yes, or you must change the code generated
by FrontPage in the global.asa file to Server.CreateObject
("Scripting.FileSystemObject"). For more information, see “Configuring
File System Access” on page 56.

There is no real performance penalty for using server-side includes. ASP saves files in
memory in a compiled form after processing them. Processing only occurs the first
time a file is accessed.

Within an included ASP file, script commands and procedures must be entirely
contained within the script delimiters <% and %>, the HTML tags <SCRIPT> and
</SCRIPT>, or the HTML tags <OBJECT> and </OBJECT>. That is, you cannot open a
script delimiter in an included ASP file, and then close the delimiter in the
referencing file. The script or script command must be a complete unit.

BUILDING SUN ONE ASP APPLICATIONS 189

 .
. .
Note

The ASP Server caches the contents of ASP pages and the pages they include
(known as include files). In previous versions of Sun ONE ASP (Sun Chili!Soft
ASP), once an ASP page with include files had been cached, the only way to
refresh it was to change the top ASP page or reset the ASP application. This
functionality has changed. Now, when an include file is changed, the ASP
Server automatically refreshes the cache the next time the file is accessed.

Note

Do not use an @LANGUAGE directive in a server-side include unless you are
certain that an @LANGUAGE directive has not been used in the parent file.
The existence of two @LANGUAGE directives could produce an error.

See also:

“Creating the Basic ASP Application” on page 182

“Creating an ASP Page” on page 183

“Using @Directives” on page 186

Defining the Application
An ASP application is synonymous with a directory structure. It represents a
collection of files and virtual directories that are intended to work together to create a
Web-based application. An application is defined by flagging a directory as the
application start point. The application scope then includes all items within the
directory and the sub-directories, except those that are included in another
application. Applications can include a global.asa file that contains global
application information and user session information.

For the Sun ONE ASP Server to recognize and process an ASP application, your
administrator must first define the application on the server, as described in
“Configuring ASP Applications” on page 47.

See also:

“Using the Global.asa File” on page 189

“Creating the Basic ASP Application” on page 182

“Creating an ASP Page” on page 183

Using the Global.asa File
The global.asa file is an optional file that stores script procedures and objects used
globally by an application. There can only be one global.asa file per ASP application.
The file must be named global.asa, and must be stored in the root directory of the
application (the top-level directory containing all application files and sub-
directories).

190 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
The only script procedures you can declare in the global.asa file are listed below, and
described in this section:

� Application_OnStart event

� Application_OnEnd event

� Session_OnStart event

� Session_OnEnd event

Note

Scripts that do not have session or application scope cause the server to
return an error. Global.asa files that do not specify Application and
Session events are ignored.

Script procedures declared in the global.asa file cannot be called from ASP
pages in an application.

Specifying Application Events

An ASP application starts the first time the Web server receives a request for one of
the ASP pages contained in the application directory. The application ends when the
Web server is shut down (on Windows), or when the ASP Server is shut down (on
UNIX and Linux). You can create global data for an application using the built-in ASP
Application object. You can assign variables and object instances to application
variables so that they are available to all pages of an application.

When an application starts, the Application_OnStart event occurs. The
Application_OnEnd event occurs when the application shuts down. When the
application starts or stops, the server looks in the global.asa file to find the event
scripts.

ASP Application_OnStart Event

The Application_OnStart event occurs before the first session is created, before
the Session_OnStart event occurs. Only the Server and Application built-in
objects are available. Referencing the Session, Request, or Response object in the
Application_OnStart event generates an error.

Syntax: ASP Application_OnStart Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Application_OnStart

. . .

End Sub

</SCRIPT>

Parameters: ASP Application_OnStart Event

ScriptLanguage

BUILDING SUN ONE ASP APPLICATIONS 191

 .
. .
Specifies the scripting language used to write the event script, either Sun ONE ASP
VBScript or Sun ONE ASP JavaScript. If more than one event uses the same scripting
language, the events can be enclosed within a single set of <SCRIPT> tags.

Runat

Must be Server.

See also:

“Chapter 15, Scripting Languages Reference” on page 503

ASP Application_OnEnd Event

The Application_OnEnd event occurs when the application ends, after the
Session_OnEnd event (see below). Only the Server and Application objects are
available.

Syntax: ASP Application_OnEnd Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Application_OnEnd

. . .

End Sub

</SCRIPT>

Parameters: ASP Application_OnEnd Event

ScriptLanguage

Specifies the scripting language used to write the event script, either Sun ONE ASP
VBScript or Sun ONE ASP JavaScript. If more than one event uses the same scripting
language, the events can be enclosed within a single set of <SCRIPT> tags.

Runat

Must be Server.

See also:

“Managing User Sessions” on page 192

“Using the Global.asa File” on page 189

“Saving Changes to the Global.asa File” on page 194

“Chapter 15, Scripting Languages Reference” on page 503

192 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Managing User Sessions

Communication between a browser and a Web server uses the HTTP protocol. This
protocol is stateless, meaning that no information is retained when a user goes from
one page to another. In a real-world application, it is usually necessary to retain
information between pages visited by the same user. The use of an application by a
single user is called a session.

Sun ONE Active Server Pages includes the built-in Session object for retaining
session information. When a new session starts, an instance of the Session object is
created automatically. You can assign variables and object instances to session
variables so that they are available to all pages of the application visited by the same
user.

The global.asa file can contain the following handlers for two session-level events:
Session_OnStart and Session_OnEnd, which are described later in this topic.
These subroutines are automatically executed the first time a user accesses an ASP
page within the application. Sessions exist until one of the following occurs:

� The user closes the browser

� The session times out (configurable by the ASP developer)

� The session is explicitly abandoned (Session.Abandon)

Turning Session Tracking On and Off

The @ENABLESESSIONSTATE directive turns session tracking off for a page. If your page
does not rely on session information, turning session tracking off can decrease the
time it takes Sun ONE ASP to process the script. By default, sessions are enabled.

The syntax is as follows:

<%@ ENABLESESSIONSTATE=True|False %>

ASP Session_OnStart Event

The Session_OnStart event occurs when the server creates a new session. The server
processes this script prior to executing the requested page. With the
Session_OnStart event, when session-wide variables are set, those variables will be
set before any pages are accessed. All of the built-in objects are available and can be
referenced in the Session_OnStart event script.

Syntax: Session_OnStart Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Session_OnStart

. . .

End Sub

</SCRIPT>

BUILDING SUN ONE ASP APPLICATIONS 193

 .
. .
Parameters: Session_OnStart Event

ScriptLanguage

Specifies the scripting language used to write the event script, either Sun ONE ASP
VBScript or Sun ONE ASP JavaScript. If more than one event uses the same scripting
language, the events can be enclosed within a single set of <SCRIPT> tags.

Runat

Must be Server.

See also:

“Chapter 15, Scripting Languages Reference” on page 503

ASP Session_OnEnd Event

The Session_OnEnd event occurs when a session is abandoned or times out. Only
the Application, Server, and Session built-in objects are available.

Syntax: ASP Session_OnEnd Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Session_OnEnd

. . .

End Sub

</SCRIPT>

Parameters: ASP Session_OnEnd Event

ScriptLanguage

Specifies the scripting language used to write the event script, either Sun ONE ASP
VBScript or Sun ONE ASP JavaScript. If more than one event uses the same scripting
language, the events can be enclosed within a single set of <SCRIPT> tags.

Runat

Must be Server.

See also:

“Using @Directives” on page 186

“Specifying Application Events” on page 190

“Using the Global.asa File” on page 189

“Saving Changes to the Global.asa File” on page 194

“Chapter 15, Scripting Languages Reference” on page 503

194 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Saving Changes to the Global.asa File

When you make changes to the global.asa file and then save them, the Sun ONE ASP
Server reloads and compiles the file. Note that the ASP Server processes all current
application requests before it recompiles. During that time additional requests are
refused, returning the message, "The request cannot be processed while the
application is being restarted."

See also:

“Using the Global.asa File” on page 189

“Specifying Application Events” on page 190

“Managing User Sessions” on page 192

. Using Sun ONE ASP Built-in Objects
Sun ONE Active Server Pages includes built-in objects that handle many common
programming tasks. These objects enable you to avoid much of the overhead
associated with complex Web programming. The following table lists and briefly
describes the built-in objects included with Sun ONE ASP. Complete reference
information can be found in “Chapter 9, ASP Built-in Objects Reference” on page
215.

Object Description

“ASP Application Object” on page
216

The Application object shares application-level
information and control settings for the lifetime of the
ASP application, which is generally the entire time that
the Web server is running.
The Application object is a good place to store
information that must exist for more than one user
(such as a page counter). However, because a new
instance of this object is not created for each user,
errors that might not show up when the code is called
once might show up when it is called many times in a
row.

“ASPError Object” on page 222 The ASPError object reports error information, and
can be used to obtain information about an error
condition that has occurred in script in an ASP page.
The ASPError object is returned by the
Server.GetLastError method. It has no methods but
exposes several read-only properties, which provide
specific information about the error the object
represents.

“ASP Request Object” on page 224 The Request object is used to get information from
the user that is passed along in an HTTP request.

“ASP Response Object” on page 235 The Response object is used to send information to
the user.

BUILDING SUN ONE ASP APPLICATIONS 195

 .
. .
Sun ONE ASP objects use methods to perform some type of procedure, and properties
to store object attributes (such as color, font, or size). Some of the objects also contain
collections (bits of information that are accessed in the same way).

For Web applications requiring more powerful programming, Sun ONE ASP uses Java
as the primary method for extending the ASP architecture into the enterprise
environment. Sun ONE ASP supports JavaBeans and Enterprise JavaBeans (EJB), as
well as Common Object Request Broker Architecture (CORBA) objects. Component
Object Model (COM) objects can also be used to process data and deliver output,
with scripts acting as the "glue" to link COM objects.

. Using Sun ONE ASP Installed Components
In addition to the built-in objects described in “Using Sun ONE ASP Built-in Objects”
on page 194, Sun ONE Active Server Pages automatically installs a number of
components that you can use to build dynamic Web pages. The following table lists
and briefly describes these installed components. For more information about using
them, see “ASP Component Reference” on page 271.

“ASP Server Object” on page 251 The Server object provides high-level access to the
ASP Server. Along with the Application object, the
Server object provides ASP applications with global
data (information that applies to all users of the
application).
The Server object gives you programmatic control of
the Web server, providing access to HTTP services that
you would otherwise need to code for each
application. By using Server object properties and
methods, you can create objects, execute scripts on
other ASP pages, translate virtual path names to
physical path names, and perform server-side redirects.

“ASP Session Object” on page 261 The Session object is used to store information about
the current user's session. Variables stored with this
object exist as long as the user's session is active, even
if more than one application is used.

Object Description

Component Description

“ASP Ad Rotator
Component” on page 272

Creates an AdRotator object that automates the rotation of
advertisement images on a Web page.

“ASP Browser Capabilities
Component” on page 278

Creates a BrowserType object that determines the type,
version, and capabilities of every browser that visits your site.

“ASP Content Linking
Component” on page 282

Creates a NextLink object that manages a list of URLs so that
you can treat the pages in your Web site like the pages in a
book.

“ASP Content Rotator
Component” on page 288

Creates a ContentRotator object that automatically rotates
HTML content strings on a Web page.

196 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Using Java Objects and Classes
Through Sun ONE ASP Chili!Beans, Sun ONE Active Server Pages provides support for
Java objects and classes. Chili!Beans is an ActiveX control that acts as a wrapper to
enable Java objects to be used by COM controllers (such as ActiveX scripting engines
like VBScript). Chili!Beans is designed to work with Java virtual machine (JVM)
versions 1.4 or greater.

For more information, see “Chili!Beans Component Reference” on page 465.

. Using Custom Server Components
On Windows and UNIX systems, Sun ONE Active Server Pages provides support for
custom server components, which can be useful when your Web applications require
complex business logic. Application developers may find it more efficient to
encapsulate this business logic in a custom server component written in an advanced
language such as Java or C++ (on Windows), rather than trying to implement it with
script. Sun ONE ASP uses Java as the primary method for extending the ASP
architecture into the enterprise environment.

Note

Sun ONE ASP uses an implementation of COM for UNIX developed
internally. At this time there is no compiler or API available to port custom
objects to UNIX platforms. If you are developing your components in Java,
you can use Sun ONE ASP Chili!Beans technology instead.

On Windows, Sun ONE ASP server components can be written in any language that
supports COM, including Java, Visual Basic, and C++. On UNIX, Sun ONE ASP server
components can be written in Java. If you develop your components in Java,
Chili!Beans shields you from many of the details of COM. For more information, see
“Chili!Beans Component Reference” on page 465.

“ASP Counters Component”
on page 293

Creates a Counters object that can create, store, increment,
and retrieve any number of individual counters.

“ASP MyInfo Component” on
page 296

Creates a MyInfo object that keeps track of personal
information, such as the site administrator's name, address,
and display choices.

“ASP Tools Component” on
page 297

Creates a Tools object that provides utilities that enable you to
easily add sophisticated functionality to your Web pages.

Component Description

BUILDING SUN ONE ASP APPLICATIONS 197

 .
. .
. Connecting to a Database
This section takes you through the two basic steps required for connecting to a
database from an ASP page: creating a connection string, and opening a database
connection. This section also explains how to use FrontPage database features with
Sun ONE Active Server Pages, and how to migrate a Microsoft Access database
running on a Windows-based computer to a MySQL or dBASE database running on a
UNIX or Linux system (detailed information about migrating an Access database to
MySQL is also provided in “Chapter 7, Using Database Tools” on page 135).

A connection string provides information required by the Sun ONE ASP Server to
establish the connection. Within a connection string, you can use one of three ways
to specify information about a database, as described later in this section: a system
DSN, a DSN-less connection string, and a file DSN.

A database connection is opened by using the ADO Connection object included
with Sun ONE ASP. You can then use other ADO objects to display and manipulate
data on the ASP page. For more information about using ADO objects, see “ADO
Component Reference” on page 301.

Note

If you are going to pass data exceeding 64,000 bytes to a database, your
system administrator should increase the maxlongfieldlength parameter for
ADO, as described in “Editing the Sun ONE ASP Configuration File” on page
517 (see the [ADO] keyword).

In this section:

“Creating Connection Strings” on page 197

“Opening the Database Connection” on page 208

“Using FrontPage Database Features” on page 209

“Migrating an Access Database to MySQL or dBASE” on page 211

Creating Connection Strings
When you want to connect to a database from an ASP page, the first step is to create
the connection string. This provides information (in the form of parameters and
their values) that is required for the server to establish the connection.

Each type of database has a specific set of parameters for which you must specify
values; these are the required parameters. Some databases also provide optional
parameters that you can specify to implement special features.

Exactly what you must include in a connection string depends on the type of
database and the approach you use to specify its parameters. Sun ONE Active Server
Pages supports the following three approaches to specifying parameters in a
connection string:

� System DSN: With a system DSN, all you need to provide in the connection
string is the name of the DSN that your system administrator has configured
for the database on the ASP Server.

198 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� File DSNs: A file DSN is similar to a system DSN, except the database
information is contained in a file (*.dsn) that can be stored in the root
directory for a virtual host, rather than being stored centrally by the ASP
Server. File DSNs are useful in shared Web hosting environments because a
system administrator does not need to configure each file DSN; users can
configure their own.

� DSN-less connection strings: With a DSN-less connection string, you
specify all of the required database information in the connection string.

This section describes each approach listed above. In this section:

“Using System DSNs” on page 199

“Using DSN-less Connection Strings” on page 200

“Syntax for DSN-less Connection Strings” on page 201

“Using File DSNs” on page 203

“Parameters for File DSNs” on page 205

Note

Connection strings must be constructed according to the requirements of the
ODBC driver being used. Sun ONE ASP for Windows uses standard Windows
ODBC drivers, so connection strings you developed for Windows will work.
However, the ODBC drivers for UNIX and Linux platforms are different than
for Windows, so before you can use Windows connection strings with Sun
ONE Active Server Pages for UNIX or Linux, you may need to use the syntax
described in this section.

When creating file system references in ASP applications, keep in mind that
UNIX and Linux are case-sensitive operating systems. Be sure to use the cor-
rect capitalization in all references to files and directories.

Ask your server administrator which approach you should use in your specific Web
server environment.

Once you have created the connection string in your ASP page, you can add the code
needed to open a database connection, as described in “Opening the Database
Connection” on page 208.

Note

On UNIX and Linux systems, Sun ONE ASP installs the ODBC drivers to
support a number of databases. However, it does not support all databases on
all platforms. To see the list of installed drivers for your platform, see
“Supported in This Release” on page 5.

BUILDING SUN ONE ASP APPLICATIONS 199

 .
. .
Using System DSNs

As discussed in “Creating Connection Strings” on page 197, using a system DSN is
one way to specify database information in a connection string.

Before you can use a system DSN in a connection string your administrator must first
add it to the ASP Server, as described in “Adding a DSN” on page 106. This saves
information on the ASP Server about all parameters required for connecting to the
database.

Note

On UNIX and Linux systems, Sun ONE Active Server Pages installs the ODBC
drivers to support a number of databases. However, it does not support all
databases on all platforms. To see the list of installed drivers for your
platform, go to “Supported in This Release” on page 5.

Once a system DSN is configured, rather than specifying all of the database
information in the connection string as you do with DSN-less connection strings,
you can simply reference the system DSN name. When you do this, the ASP Server
uses the information stored in the system DSN to establish the connection.

Often, all you need to provide in the connection string is the name of the DSN that
your system administrator has configured for the database. In this case, use the
following syntax:

connect_string = "dsn=[dsn_name]"

where [dsn_name] is the name your system administrator defined for the DSN.

However, if the username and password required for connecting to the database are
not specified in the system DSN, you must include them in the connection string.
Ask your database administrator for this information. Be sure to use the correct
syntax for your type of database, as follows:

connect_string = "dsn=[dsn_name]; UID=[username]; PWD=[password]"

Note

dBASE does not require a username and password.

If your system administrator asks you to use file DSNs or DSN-less connection strings
rather than system DSNs, see “Using File DSNs” on page 203 and “Using DSN-less
Connection Strings” on page 200. However, you must use system DSNs for
connecting to Microsoft Access and Microsoft SQL Server 6.5 databases. You cannot
use DSN-less connection strings or file DSNs for connecting to these databases.

See also:

“Connecting to a Database” on page 197

“Using FrontPage Database Features” on page 209

200 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Using DSN-less Connection Strings

As discussed in “Creating Connection Strings” on page 197, using a DSN-less
connection is one way to specify the information (in the form of parameters and
their values) that is needed to establish a database connection. Unlike system DSNs
and file DSNs, which incorporate this information by reference, DSN-less connection
strings include all required database parameters.

You use the following syntax for a connection string:

connect_string = "[parameter_1=value_1; parameter_2=value_2;
parameter_3=value_3]"

where [parameter_1=value1; parameter_2=value_2; parameter_3=value_3]
specifies the required parameters for the given database.

The following example shows a DSN-less connection string for a MySQL database:

connect_string = "Driver={Mysql}; Server=[server_name];

Port=[port_number]; Database=[database_name];

UID=[username]; PWD=[password]"

where [server_name] is the name of the database server, [port_number] is the port
for the database server, [database_name] is the name of the database, and
[username] and [password] are the username and password required for accessing
the database.

Different types of databases can require that you specify different parameters. The
parameters to configure for each database in DSN-less connection strings are
provided in “Syntax for DSN-less Connection Strings” on page 201.

Connection strings must be constructed according to the requirements of the ODBC
driver being used. Sun ONE ASP for Windows uses standard Windows ODBC drivers,
so connection strings you developed for Windows will work. However, the ODBC
drivers for UNIX and Linux platforms are different than for Windows, so before you
can use Windows connection strings with Sun ONE ASP for UNIX or Linux, you may
need to edit them to use the syntax described in this section.

With Sun ONE ASP for UNIX or Linux you cannot use DSN-less connection strings or
file DSNs for connecting to Microsoft Access or Microsoft SQL Server 6.5 databases;
you must use system DSNs for connecting to these databases.

Note

On UNIX and Linux systems, Sun ONE ASP installs the ODBC drivers to
support a number of databases. However, it does not support all databases on
all platforms. To see the list of installed drivers for your platform, see
“Supported in This Release” on page 5.

See also:

“Connecting to a Database” on page 197

“Creating Connection Strings” on page 197

BUILDING SUN ONE ASP APPLICATIONS 201

 .
. .
Syntax for DSN-less Connection Strings

The following table lists the parameters to define and the syntax to use for each type
of database in DSN-less connection strings.

Type Syntax

DB2 connect_string = "Driver={DB2};
IpAddress=[ip_address];

Port=[port_number]; Database=[database_name];

UID=[username]; PWD=[password]"

where [ip_address] is the IP address of the database server,
[port_number] is the port for the database server, [database_name]
is the name of the database, and [username] and [password] are the
username and password required for accessing the database.

dBASE 5 connect_string = "Driver={Dbase}; DBQ=[pathname];

defaultDir=[default_directory]"

where [pathname] is the absolute path name of the directory
containing the database file and [default_directory] is the default
directory for the database.

Informix 7, 9 connect_string = "Driver={Informix};

ServerName=[server_name]; Database=[database_name];

UID=[username]; PWD=[password]"

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Informix 2000 connect_string = "Driver={Informix};

HostName=[host_name]; ServerName=[server_name];

Port=[port_number]; Database=[database_name];

UID=[username]; PWD=[password]"

where [host_name] is the name of the computer on which the
database server resides, [server_name] is the name of the database
server as it appears in the sqlhosts file, [port_number] is the port on
which the database server is configured to listen, [database_name] is
the name of the database, and [username] and [password] are the
username and password required for accessing the database.

Microsoft Access DSN-less connection strings and file DSNs are not supported for
Microsoft Access databases. You must use system DSNs.

Microsoft SQL
Server 6.5

DSN-less connection strings and file DSNs are not supported for
Microsoft SQL Server 6.5 databases. You must use system DSNs.

202 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Microsoft SQL
Server 7.0 and 2000

connect_string = "Driver={SQL Server};

Database=[database_name];

Address=[ip_address],[port_number];

UID=[username]; PWD=[password]"

where [database_name] is the name of the database,
[ip_address],[port_number] is the IP address of the database
server and the port on which the database server is configured to listen,
and [username] and [password] are the username and password
required for accessing the database.

MySQL connect_string = "Driver={Mysql};
Server=[server_name];

Database=[database_name]; UID=[username];
PWD=[password]"

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Oracle 7, 8 connect_string = " Driver={Oracle};
Server=[TNS_name];

UID=[username]; PWD=[password]"

where [TNS_name] is the TNS name as defined in the tnsnames.ora file,
and [username] and [password] are the username and password
required for accessing the database.

Oracle 8i, 9i connect_string = " Driver={Oracle};
Host=[host_name];

Port=[port_number]; SID=[oracle_SID];

UID=[username]; PWD=[password]"

where [host_name] is the computer on which the database server
resides, [port_number] is the port on which the database server is
configured to listen, [oracle_SID] is the Oracle System Identifier that
refers to the instance of Oracle running on the server, and [username]
and [password] are the username and password required for
accessing the database.

PostgreSQL connect_string = " Driver={Postgres};
Server=[server_name];

Port=[port_number]; Database=[database_name];

UID=[username]; PWD=[password]"

where [server_name] is the name of the database server,
[port_number] is the port on which the database server is configured
to listen, [database_name] is the name of the database, and
[username] and [password] are the username and password
required for accessing the database.

Type Syntax

BUILDING SUN ONE ASP APPLICATIONS 203

 .
. .
See also:

“Using DSN-less Connection Strings” on page 200

Using File DSNs

As discussed in “Creating Connection Strings” on page 197, using file DSNs is one
way to specify the information needed for establishing a connection to a database
from an ASP application. This section explains how to create a file DSN and reference
it from within a connection string.

When you have a number of connection strings referencing the same database, file
DSNs can be quicker to implement than DSN-less connection strings. File DSNs can
also make ASP applications easier to port from the development environment to the
production server because you can edit the database information in a single file,
rather than editing multiple connection strings.

To use file DSNs, the first step is to create a file containing the required parameters
and values for the database with which you want to connect. Then you simply
reference the file from within the connection string, rather than duplicating the
database information each time.

To create a file DSN, open a plain text file and specify the parameters for the database
to which you want to connect by using the following general syntax:

[ODBC]

a=b

c=d

e=f

where a=b, c=d, and e=f are the key-value pairs that define the database parameters
and their values. One of the key-value pairs must specify the name of the ODBC
driver for the database. The parameters that must be configured for each database are
provided in “Parameters for File DSNs” on page 205.

Sybase connect_string = " Driver={Sybase};

NetworkAddress=[host_name],[port_number];

Database=[database_name]; UID=[username];
PWD=[password]"

where [host_name],[port_number] is the IP address of the database
server and the port on which the database server is configured to listen,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Text connect_string = " Driver={Text};

Database=[database_location]"

where [database_location] is the directory in which the text files
are stored.

Type Syntax

204 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

File DSNs and connection strings must be constructed according to the
requirements of the ODBC driver being used. On Windows, Sun ONE Active
Server Pages uses the same ODBC drivers as Microsoft ASP, so you do not need
to change any file DSNs or connection strings to use them. However, the
ODBC drivers available for UNIX and Linux platforms are different than for
Windows. To connect to a database from an ASP application that you
developed for Windows on Sun ONE ASP for UNIX or Linux, you must edit
your file DSNs and connection strings to use the syntax described in this
topic.

Also, when porting file DSNs to UNIX or Linux systems, be sure to remove
the "control-M" characters that Windows inserts at the end of each line.

When finished defining parameters, give the file a DSN file name extension (*.dsn)
and save it in the document root of your Web server or virtual host.

Once you have created the file DSN, you can refer to it from within a connection
string. The syntax to use is as follows:

connect_string = "FileDSN=[MyFileDSN.dsn]"

- or -

connect_string = "File_Name=[MyFileDSN.dsn]"

where [MyFileDSN.dsn] is the absolute path name of the file DSN (*.dsn) containing
the database parameters and values.

In a shared Web hosting environment, such as with an Internet Service Provider, you
might not know the directory structure above the document root for your virtual
host. In this situation, you cannot specify the absolute path name of the file DSN, so
you must use the Server.mapPath directive instead. The following example uses a
file DSN that is stored in the document root of the virtual host:

dim myConnFile,connection_string

myConnFile = Server.mapPath("/") & "/" & "MyFileDSN.dsn"

connect_string = "FileDSN=" & myConnFile

Note

On UNIX and Linux systems, Sun ONE ASP installs the ODBC drivers to
support a number of databases. However, it does not support all databases on
all platforms. To see the list of installed drivers for your platform, see
“Supported in This Release” on page 5.

You cannot use DSN-less connection strings or file DSNs for connecting to
Microsoft Access or Microsoft SQL Server 6.5 databases from Sun ONE ASP for
UNIX or Linux; you must use system DSNs.

See also:

“Connecting to a Database” on page 197

“Creating Connection Strings” on page 197

“Using System DSNs” on page 199

BUILDING SUN ONE ASP APPLICATIONS 205

 .
. .
“Using FrontPage Database Features” on page 209

Parameters for File DSNs

The following table lists the parameters you must define in a file DSN for each type of
database. In each case, use the driver name for your database that is provided in the
table.

Type Parameters

DB2 Driver={DB2}

IpAddress=[ip_address]

Port=[port_number]

Database=[database_name]

UID=[username]

PWD=[password]

where [ip_address] is the IP address of the database server,
[port_number] is the port for the database server, [database_name]
is the name of the database, and [username] and [password] are the
username and password required for accessing the database.

dBASE 5 Driver={Dbase}

DBQ=[pathname]

defaultDir=[default_directory]

where [pathname] is the absolute path name of the directory
containing the database file and [default_directory] is the default
directory for the database.

Informix 7, 9 Driver={Informix}

Server=[server_name]

Database=[database_name]

UID=[username]

PWD=[password]

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

206 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Informix 2000 Driver={Informix}

HostName=[host_name]

Server=[server_name]

Port=[port_number]

Database=[database_name]

UID=[username]

PWD=[password]

where [host_name] is the name of the computer on which the
database server resides, [server_name] is the name of the database
server as it appears in the sqlhosts file, [port_number] is the port on
which the database server is configured to listen, [database_name] is
the name of the database, and [username] and [password] are the
username and password required for accessing the database.

Microsoft Access DSN-less connection strings and file DSNs are not supported for
Microsoft Access databases. You must use system DSNs.

Microsoft SQL
Server 6.5

DSN-less connection strings and file DSNs are not supported for
Microsoft SQL Server 6.5 databases. You must use system DSNs.

Microsoft SQL
Server 7.0 and 2000

Driver={SQL Server}

Address=[ip_address],[port_number]

Database=[database_name]

UID=[username]

PWD=[password]

where [database_name] is the name of the database;
[ip_address],[port_number] is the IP address of the database
server and the port on which the database server is configured to listen,
and [username] and [password] are the username and password
required for accessing the database.

MySQL Driver={Mysql}

Server=[server_name]

Database=[database_name]

UID=[username]

PWD=[password]

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Type Parameters

BUILDING SUN ONE ASP APPLICATIONS 207

 .
. .
Oracle 7, 8 Driver={Oracle}

Server=[TNS_name]

UID=[username]

PWD=[password]

where [TNS_name] is the TNS name as defined in the tnsnames.ora file,
and [username] and [password] are the username and password
required for accessing the database.

Oracle 8i, 9i Driver={Oracle}

Host=[host_name]

Port=[port_number]

SID=[oracle_SID]

Server=[TNS_name]

UID=[username]

PWD=[password]

where [host_name] is the computer on which the database server
resides, [port_number] is the port on which the database server is
configured to listen, [oracle_SID] is the Oracle System Identifier that
refers to the instance of Oracle running on the server, and [username]
and [password] are the username and password required for
accessing the database.

PostgreSQL Driver={Postgres}

Server=[server_name]

Port=[port_number]

Database=[database_name]

UID=[username]

PWD=[password]

where [server_name] is the name of the database server,
[port_number] is the port on which the database server is configured
to listen, [database_name] is the name of the database, and
[username] and [password] are the username and password
required for accessing the database.

Type Parameters

208 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See also:

“Using File DSNs” on page 203

Opening the Database Connection
Sun ONE Active Server Pages includes an ADO control that developers can use for
initializing connections to databases and for retrieving and manipulating data on a
Web page. The ADO Connection object opens and closes database connections by
using ODBC drivers. Other ADO objects act as containers for storing information that
is passed to and from the database. The most common container is a Recordset
object, which stores the results of a SELECT SQL query.

“Creating Connection Strings” on page 197 explains the first step to take to connect
an ASP page to a database. After creating the connection string, your next step is to
use the ADO control included with Sun ONE ASP to open a database connection.

Note

On UNIX and Linux systems, Sun ONE ASP installs the ODBC drivers to
support a number of databases. However, it does not support all databases on
all platforms. To see the list of installed drivers for your platform, see
“Supported in This Release” on page 5.

To open a database connection, you first add code for creating an instance of the
ADO Connection object, as shown in the following example:

set dbConn = server.createObject("ADODB.connection")

Sybase Driver={Sybase}

NetworkAddress=[host_name],[port_number]

Database=[database_name]

UID=[username]

PWD=[password]

where [host_name],[port_number] is the IP address of the database
server and the port on which the database server is configured to listen,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Text Driver={Text}

Database=[database_location]

where [database_location] is the directory in which the text files
are stored.

Type Parameters

BUILDING SUN ONE ASP APPLICATIONS 209

 .
. .
Next, you add code to call the Connection object Open method, which takes the
connect_string parameter, as shown in the next example:

dbConn.open connect_string

This sends a request to the ODBC Manager to create an instance of the ODBC driver
specified by the connection string that you previously created. ADO then passes the
remainder of the connection string to the ODBC driver, which uses this information
for connecting to the database.

Once you have established the connection, you can use the other ADO objects to
retrieve, display, and manipulate data on your Web page, as described in “ADO
Component Reference” on page 301.

If desired, you can also use FrontPage to create connection strings and display data
on a Web page, as described in “Using FrontPage Database Features” on page 209.

Note

Before you create a database connection, it is recommended that you ask your
system administrator to verify that the appropriate ODBC driver for your
database is configured and functioning properly. Also, be sure to test the
driver on a nonproduction server. A malfunctioning ODBC driver can bring
down your ASP Server.

See also:

“Connecting to a Database” on page 197

Using FrontPage Database Features
This section describes Sun ONE Active Server Pages support for the database
connectivity features of FrontPage.

Note

While Sun ONE ASP enables you to run ASP pages generated by FrontPage,
specific questions about the installation, configuration, and use of FrontPage
and FrontPage Server Extensions should be directed to Microsoft or its
representatives.

Using FrontPage Database Connections

To create a database connection in FrontPage, you must enter information about the
database, such as its name, ODBC driver, username, and password. FrontPage then
writes this information to the global.asa file as a connection string.

However, connection strings must be constructed according to the ODBC driver
being used, and the ODBC drivers are different on UNIX and Linux than on
Windows. For this reason, before you can use Windows connections with Sun ONE
Active Server Pages for UNIX or Linux, you may need to first edit them so they use
the syntax described in “Creating Connection Strings” on page 197.

210 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
In addition, when you use Microsoft SQL Server 6.5 or Microsoft Access databases
with Sun ONE ASP for UNIX or Linux, you must use system DSNs in connection
strings; you cannot use DSN-less connection strings or file DSNs. To use a system DSN
for connecting to a particular database, your administrator must create a DSN for the
database on the ASP Server. In addition, for SQL Server 6.5 and Access, your system
administrator must configure SequeLink, as described in “Configuring SequeLink” on
page 128.

When you are using Sun ONE ASP for UNIX or Linux, consider migrating your
Microsoft Access databases to MySQL, as described in “Database Publisher” on page
135, or to dBASE, as described in “Migrating an Access Database to MySQL or dBASE”
on page 211. dBASE is relatively easy to learn and use and eliminates some of the
platform compatibility problems you might otherwise experience.

For Microsoft SQL Server 7.0 or 2000 databases, in addition to system DSNs, you can
also use DSN-less connection strings and file DSNs. You should verify that your
connection strings follow the syntax described in “Creating Connection Strings” on
page 197.

For all other databases supported by Sun ONE ASP, you can use system DSNs, file
DSNs, and DSN-less connection strings.

See also:

“Using FrontPage Database Features” on page 209

“Connecting to a Database” on page 197

Displaying Data on a Web Page with FrontPage

With Sun ONE Active Server Pages, FrontPage developers can continue to use
FrontPage features for connecting to a database and displaying its information on an
ASP page. Sun ONE ASP supports all methods for displaying database data that are
generated by the FrontPage Database Results Wizard, including:

� Table format

� List format

� Drop-down menu format

By using the Database Results Wizard, developers can easily present the most recent
data each time a user views and refreshes a page. Sun ONE ASP also supports the
FrontPage "Send To Database" HTML form handler feature, and the Recordset
navigation toolbar generated by the Database Results Wizard for moving quickly
through the pages of records returned by a query.

Note

When using the FrontPage Database Results Wizard, you must first create the
ASP pages locally on your workstation, and then publish them on the server
running the ASP Server and FrontPage Server Extensions. After moving the
ASP pages, you can later use FrontPage to edit them on the server. Note that
you must change the connection strings created by FrontPage for them to

BUILDING SUN ONE ASP APPLICATIONS 211

 .
. .
work with Sun ONE ASP for UNIX or Linux. For more information, see “Using
FrontPage Database Connections” on page 209.

See also:

“Using FrontPage Database Connections” on page 209

“Connecting to a Database” on page 197

Migrating an Access Database to MySQL or dBASE
Microsoft Access databases are compatible with Sun ONE Active Server Pages running
on Windows, but these databases do not run on UNIX or Linux systems. There are
several options for connecting to a Microsoft Access database with Sun ONE ASP for
UNIX or Linux, as described below.

� Use SequeLink. The necessary steps for creating the connection string are
described in “Creating Connection Strings” on page 197. The steps the
system administrator must take are described in “Configuring SequeLink” on
page 128.

� Use the Sun ONE ASP Database Publisher tool to migrate an Access database
to MySQL. For more information, see “Database Publisher” on page 135.

� If you use FrontPage, you can easily migrate your Microsoft Access database
to dBASE by using the Microsoft Access Export Table feature. You can then
import the resulting folder of files to your FrontPage Web and use the
Database Results Wizard. The dBASE database management system is
relatively easy to learn and use. If you have moved a dBASE-based Web
application to UNIX and then find that Sun ONE ASP cannot open the
database, make sure that the file extensions of your dBASE files are in all
capital letters (that is, *.DBF).

Note

dBASE databases do not support multi-table joins on UNIX.

See also:

“Connecting to a Database” on page 197

“Using FrontPage Database Features” on page 209

212 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Developing International Applications
The default locale is selected during the installation of Sun ONE Active Server Pages.
If you want to deliver ASP applications in different locales and languages, your
administrator can change the locale specified for the ASP Server, as described in
“Configuring International Support” on page 43. This ensures that the characters in
the specified language display properly and that date, time, and currency formats are
correct. Ask your administrator which locales are available.

Regardless of the locale for which your server is configured, you can dynamically
change how certain content (such as date, time, and currency) is formatted so that it
is appropriate for a given locale. You can do this from within an ASP page by
changing the value of the Session.LCID property. The following example shows
how to display the current date first in German and then in English, using the
Session.LCID property:

<%

Session.LCID = &H0407 ' specify Germany/German

Response.Write FormatDateTime(Date, vbLongDate) & "
" & vbNewLine

Session.LCID = &H0409 ' specify USA/English

Response.Write FormatDateTime(Date, vbLongDate) & "
" & vbNewLine

%>

You can also change code pages by using the Session.CodePage property. For more
information about the Session.LCID and Session.CodePage properties, see “ASP
Session Object Properties” on page 264.

Japanese Character Support
Sun ONE Active Server Pages supports only the Shift-JIS encoding of Japanese
characters and does not support "extended" or "user-defined" characters. Please note
that this applies to all Japanese usage in an ASP page, including literal strings in the
source files, text stored to files via the Scripting.FileSystemObject, and text stored
to databases via the various ADODB objects and methods. (The implementation of
ADO used with Sun ONE ASP is called ADODB.) Similarly, all output from ASP to
browsers is in Shift-JIS only.

If a field is created as VarChar(nn) or Char(nn), then nn actually represents the
number of bytes of data that can be stored in that field. Since the majority of Shift-JIS
characters occupy two bytes of memory, fields should be specified with a size that is
twice the maximum number of Shift-JIS characters that they need to hold.

DB2 and Locale
You must connect to a DB2 database that was created in the same locale in which the
Web server and the Sun ONE ASP Server are running. If you do not, upon attempting
to make the database connection from an ASP page, you might receive the following
error message:

BUILDING SUN ONE ASP APPLICATIONS 213

 .
. .
"There is no available conversion for the source code page "932" to the target code
page "1252." Reason Code "1". SQLSTATE=57017"

To address this problem, create and connect to a database that is in the appropriate
locale.

See also:

“Understanding Code Pages” on page 213

Understanding Code Pages
When you are building an ASP application that must support non-US-English users,
the application must support character set conversions. Internally, ASP and the
language engine it calls speak in Unicode strings. However, Web page content can be
in ANSI, DBCS, or another character-encoding scheme. Therefore, when an HTTP
request from a browser includes either form or query string values, they must be
converted from the character set used by the browser into Unicode for processing by
an ASP script. These conversions map characters from one code page, which is a set of
characters organized in some scheme, such as ANSI, to another. For example, the
value that refers to the letter "a" in ANSI is converted to the different value that refers
to that same letter "a" in Unicode. Similarly, when output is sent back to the browser,
any strings returned by scripts must be converted from Unicode back to the code
page used by the client.

These internal conversions are done using the default code page of the Web server.
This works great if the users and the server are all speaking the same language (more
precisely, if they use the same code page). However, for example, if you have a
Japanese client hitting an English server, the code page translations do not work
because ASP treats Japanese characters as if they are English.

See also:

“Developing International Applications” on page 212

. Publishing a Sun ONE ASP Application
To publish an ASP application, you save the application files in the directory defined
for that application on your Web server (be sure that the directory has either Script
or Execute permission enabled). Your administrator can set up the ASP application
directory on the server by using the procedure in “Adding ASP Applications” on page
48. For more information about how ASP applications are structured, see “Creating
the Basic ASP Application” on page 182.

To verify that an ASP page is displaying properly, you can request the page with your
browser by typing its URL. (Remember, ASP pages must be served, so you cannot
request an *.asp file by typing its physical path.) After the page loads in your browser,
you will notice that the server has returned an HTML page. This may seem strange at
first, but remember that the ASP Server parses and executes all server-side scripts prior
to sending the file. The user always receives standard HTML.

214 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

When publishing ASP pages created in FrontPage, be aware that if the
EnableParentPaths configuration setting is no, the default, CreateObject
("Scripting.FileSystemObject") calls generated in the global.asa file by
FrontPage will not work. Your system administrator must either change
EnableParentPaths to yes, or else you must change the code that
FrontPage generated in the global.asa file to Server.CreateObject
("Scripting.FileSystemObject"). For more information about the
EnableParentPaths setting, see “Configuring File System Access” on page
56.

. .

 .

. .9 ASP Built-in Objects Reference

Sun ONE Active Server Pages includes built-in or intrinsic objects that handle many
common programming tasks. The objects included in Sun ONE ASP are
Application, ASPError, Request, Response, Server, and Session. Built-in
objects are included on all ASP pages, and do not need to be created before they can
be used. These objects enable you to avoid much of the overhead associated with
complex Web programming, simplifying development by solving Web-protocol
programming issues.

The built-in objects and their roles are listed in the following table, and discussed in
this chapter. This chapter provides basic reference information about the ASP
intrinsic objects. You may wish to consult additional print and Web resources for
more detailed ASP reference information.

Note

ASP intrinsic objects can now be accessed directly from Java code using Sun
ONE ASP Chili!Beans technology. For more information, see “ASP Servlet
Interface” on page 472.

Object Description

“ASP Application Object”
on page 216

Stores information (variables and objects) needed for all users of a
particular application. Information stored in the Application
object persists for the lifetime of the application.

“ASPError Object” on
page 222

Reports error information.

“ASP Request Object” on
page 224

Provides access to values passed to the server by the client.

“ASP Response Object”
on page 235

Controls the output from an ASP script to the requesting client.

“ASP Server Object” on
page 251

Provides access to methods and properties on the server. These
methods and properties typically serve as utility functions.

“ASP Session Object” on
page 261

Stores information (variables and objects) needed for a particular
user session. Information stored in the Session object is not
discarded when the user jumps between pages in the application,
but instead persists for the entire user session.

216 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

ASP scripts provided in examples are assumed to be enclosed in script
delimiters. The <% %> and <SCRIPT> delimiters are generally not shown.

See also:

“Using Sun ONE ASP Built-in Objects” on page 194

. ASP Application Object
The ASP Application object shares information among all users of a given
application. An ASP-based application is defined as all .asp files in a virtual directory
and associated sub-directories. Because the Application object can be shared by
more than one user, Lock and Unlock methods are provided to ensure that multiple
users cannot alter a property simultaneously.

Syntax: ASP Application Object
Application.method

ASP Application Object Collections
ASP Application object collections are listed in the following table.

ASP Application Object Contents Collection

The Application.Contents collection contains all items added to the application
through script commands. The Contents collection can be used to obtain a list of
items that have been given application scope, or to specify an item to be the target of
an operation. The Contents.Remove and Contents.RemoveAll methods can be
used to remove some or all of the items from the collection.

Syntax: ASP Application Object Contents Collection

Application.Content(key)

Collection Description

“ASP Application Object Contents
Collection” on page 216

Contains all items added to the application through
script commands.

“ASP Application Object StaticObjects
Collection” on page 217

Contains all objects added to the session with the
<OBJECT> tag.

ASP BUILT-IN OBJECTS REFERENCE 217

 .
. .
Parameters: ASP Application Object Contents Collection

key

The name of the item to retrieve.

Remarks: ASP Application Object Contents Collection

The Application.Contents collection contains all items that have been declared at
the application level without using the <OBJECT> tag. This includes objects created
with Server.CreateObject, and scalar variables established through an
Application declaration.

Example: ASP Application Object Contents Collection

In the following script, objFSO, strHello, and Start_Time are members of the
Application.Contents collection:

<%

Set Application("objFso") =
Server.CreateObject("Scripting.FileSystemObject")

Application("strHello") = "Hello"

Application("Start_Time") = CStr(Now)

%>

The Application.Contents collection supports For...Each and For...Next
iteration, as illustrated below.

<%

 For Each Key in Application.Contents

 Response.Write Key + " = " + Application(Key) + "
"

 Next

%>

<%

 For intItem = 1 to Application.Contents.Count

 Response.Write CStr(intItem) + " = "

 Response.Write Application.Contents(intItem) + "
"

 Next

%>

ASP Application Object StaticObjects Collection

The Application.StaticObjects collection contains all objects added to the session
with the <OBJECT> tag. The collection can be used to retrieve the value of a specific
property for an object, or to retrieve all properties for all static objects.

218 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Application Object StaticObjects Collection

Application.StaticObjects(key)

Parameters: ASP Application Object StaticObjects Collection

key

The name of the item to retrieve.

Remarks: ASP Application Object StaticObjects Collection

An iterating control structure can be used to loop through the keys of the
StaticObjects collection.

Example: ASP Application Object StaticObjects Collection

An interating control structure can be used to loop through the keys of the
StaticObjects collection, as shown in the following example.

<%

 Dim Key

 For Each Key In Application.StaticObjects

 Response.Write Key & " = <i>(object)</i>
"

 Next

%>

ASP Application Object Methods
ASP Application object methods are listed in the following table.

Method Description

“ASP Application Contents.Remove
Method” on page 219

Removes a single item from the Application object
Contents collection.

“ASP Application Contents.RemoveAll
Method” on page 220

Removes all items from the Application object
Contents collection.

“ASP Application Object Lock
Method” on page 220

Prevents script from modifying object properties.

“ASP Application Object Unlock
Method” on page 220

Enables script to modify object properties after
execution of the Lock method.

ASP BUILT-IN OBJECTS REFERENCE 219

 .
. .
ASP Application Contents.Remove Method

The Application.Contents.Remove method removes a single application variable
from the Application object Contents collection.

Syntax: ASP Application Object Contents.Remove Method

Application.Contents.Remove(name | index)

Parameters: ASP Application Object Contents.Remove Method

name

The identifier for the application variable to remove.

index

An index offset indicating which application variable in the list to remove.

Remarks: ASP Application Object Contents.Remove Method

The Contents.Remove method takes a string or an integer as an input parameter. If
the input parameter is a string, the method searches the Contents collection for an
application variable with that name and removes it. If the input parameter is an
integer, the method counts that number of application variables from the start of the
collection, and removes the corresponding variable.

Example: ASP Application Object Contents.Remove Method

The following code includes members of the Application.Contents collection:

<%

Set Application("objFso") =
Server.CreateObject("Scripting.FileSystemObject")

Application("strHello") = "Hello"

Application("Start_Time") = CStr(Now)

%>

The following code removes the second item in the collection ("strHello") using an
integer.

<%

Application.Contents.Remove(2)

%>

The following code removes the second item in the collection ("strHello") using the
variable name.

<%

Application.Contents.Remove("strHello")

%>

220 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Application Contents.RemoveAll Method

The Application.Contents.RemoveAll method removes all application variables
from the Application object Contents collection.

Syntax: ASP Application Object Contents.RemoveAll Method

Application.Contents.RemoveAll()

ASP Application Object Lock Method

The Lock method blocks other clients from modifying variables stored in the
Application object, ensuring that only one client at a time can alter or access the
application variables. If the Unlock method is not called explicitly, the server
unlocks the locked Application object when the script ends or times out.

Syntax: ASP Application Object Lock Method

Application.Lock

ASP Application Object Unlock Method

The Unlock method enables other clients (via an ASP page) to modify the variables
stored in the Application object after it has been locked using the Lock method. If
the Unlock method is not called explicitly, the server unlocks the locked
Application object when the script ends or times out.

Syntax: ASP Application Object Unlock Method

Application.Unlock

ASP Application Object Events
ASP Application object events are listed in the following table.

Values can be stored in the Application object. These values are available
throughout the application and have application scope.

Objects can be created within the Application_OnStart script and assigned to the
Application object. You cannot, however, store a built-in object in the
Application object. Each of the following lines will return an error:

Event Description

Application_OnStart Runs when an ASP page belonging to the application is accessed
for the first time.

Application_OnEnd Runs when the Web server is shut down on Windows, and when
the ASP Server is shut down on UNIX and Linux.

ASP BUILT-IN OBJECTS REFERENCE 221

 .
. .
Set Application("var1") = Session

Set Application("var2") = Request

Set Application("var3") = Response

Set Application("var4") = Server

Set Application("var5") = Application

Before you store an object in the Application object, you must know what
threading model it uses. Only objects marked as both free and apartment-threaded
can be stored in the Application object.

The Application object is implemented as a collection. If you store an array in an
Application object, you should not attempt to alter elements of the stored array
directly. For example, the following script does not work:

Application("StoredArray") (3) = "new value"

Instead of storing the value "new value" in StoredArray(3) the value is stored in the
Application collection, overwriting any information stored at Application(3).

Note

If you store an array in the Application object, it is strongly recommended
that you retrieve a copy of the array before retrieving or changing any
elements of the array. When you are done making changes to the array, store
the array back into the Application object to save changes. This is
demonstrated in the following examples.

ASP Application Object Examples
You can store different types of variables:

Application("greeting") = "Welcome to My Web World"

Application("num") = 25

You must use the Set keyword when storing objects:

Set Application("Obj1") = Server.CreateObject("MyComponent")

You can use methods and properties on subsequent ASP pages by using the following:

Application("Obj1").MyObjMethod

As an alternative, you can extract a local copy of the object:

Set MyLocalObj1 = Application("Obj1")

MyLocalObj.MyObjMethod

The next example demonstrates using an application variable called NumVisits to
store the number of times a particular page has been accessed. The Lock method is
called to ensure that only the current client can access or alter NumVisits. Calling the
Unlock method then enables other clients to access the application object.

Application.Lock

Application("NumVisits") = Application("NumVisits") + 1

Application.Unlock

222 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
This application page has been visited <%= Application("NumVisits") %>
times!

The next three examples demonstrate storing and manipulating an array in the
Application object. The Lock and Unlock methods are used to control access to
the Application object.

Application.Lock

Application("StoredArray") = MyArray

Application.Unlock

To retrieve the array from the Application object and modify its elements:

LocalArray = Application("StoredArray")

LocalArray(0) = "Hello"

LocalArray(1) = "there"

Next you need to restore the array in the Application object. This overwrites the
values in StoredArray with new values.

Application.Lock

Application("StoredArray") = LocalArray

Application.Unlock

. ASPError Object
The ASPError object reports error information, and can be used to obtain
information about an error condition that has occurred in script in an ASP page. The
ASPError object is returned by the Server.GetLastError method. It has no
methods but exposes several read-only properties, which provide specific
information about the error the object represents.

Syntax: ASPError Object
ASPError.property

ASPError Object Properties
The ASPError object has no methods but exposes several read-only properties,
which provide specific information about the error the object represents. Those
properties are listed in the following table.

Property Description

ASPCode Returns an error code generated by IIS.

Number Returns the standard COM error code.

ASP BUILT-IN OBJECTS REFERENCE 223

 .
. .
ASPError Object Example
The following example illustrates information exposed by the ASPServer object:

<%

'The following line of code will give an error

Set Application("objFso") = Server.CreateObject("")

'Call the GetLastError() method to trap the error

set objErr=Server.GetLastError()

Response.Write("ASP Code=" & objErr.ASPCode & "
")

Response.Write("Number=" & objErr.Number & "
")

Response.Write("Source=" & objErr.Source & "
")

Response.Write("Category=" & objErr.Category & "
")

Response.Write("File=" & objErr.File & "
")

Response.Write("Line=" & objErr.Line & "
")

Response.Write("Column=" & objErr.Column & "
")

Response.Write("Description=" & objErr.Description & "
")

Response.Write("ASPDescription=" & objErr.ASPDescription & "
")

%>

Source Returns the actual source code (when available)
of the line that caused the error.

Category Indicates if the source of the error was internal
to ASP, to the scripting language, or to an
object.

File Indicates the name of the .asp file that was
being processed when the error occurred.

Line Indicates the line within the .asp file that
generated the error.

Column Indicates the column position within the .asp
file that generated the error.

Description Returns a short description of the error.

ASPDescription Returns a more detailed description of the error
if it relates to ASP.

Property Description

224 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. ASP Request Object
The Request object retrieves the values that the browser passed to the server during
an HTTP request.

Syntax: ASP Request Object
Request.[collection | property | method](variable)

ASP Request Object Collections
ASP Request object collections are listed in the following table.

Note

Due to widely differing Web-server support for client-side certificates, Sun
ONE ASP does not implement the ClientCertificate collection.

ASP Request Object Cookies Collection

The Cookies collection allows you to retrieve the values of the cookies sent in an
HTTP request.

Syntax: ASP Request Object Cookies Collection

Request.Cookies(cookie)[(key)|.attribute]

Collection Description

“ASP Request Object Cookies Collection” on
page 224

The value of cookies sent in the HTTP request.

“ASP Request Object Form Collection” on
page 226

The values of form elements sent in the HTTP
request body.

“ASP Request Object QueryString
Collection” on page 228

The value of variables in the HTTP query string.

“ASP Request Object ServerVariables
Collection” on page 229

The value of predetermined environment
variables.

ASP BUILT-IN OBJECTS REFERENCE 225

 .
. .
Parameters: ASP Request Object Cookies Collection

cookie

Specifies the cookie whose value should be received.

key

An optional parameter used to retrieve subkey values from cookie dictionaries.

attribute

Specifies information about the cookie itself. The attribute value can be as follows:
HasKeys, which is read-only and specifies whether the cookie contains keys.

Remarks: ASP Request Object Cookies Collection

Access the subkeys of a cookie dictionary by including a value for key. If a cookie
dictionary is accessed without specifying a key, all keys are returned as a single query
string. For example, if MyCookie has two keys, First and Second, and you do not
specify either of these keys in a call to Request.Cookies, the following string is
returned.

First=firstkeyvalue&Second=secondkeyvalue

If two cookies with the same name are sent by the client browser, Request.Cookies
returns the one with the deeper path structure. For example, if two cookies had the
same name but one had a path attribute of /www/ and the other of /www/home/, the
client browser would send both cookies to the /www/home/ directory, but
Request.Cookies would only return the second cookie.

To determine whether a cookie is a cookie dictionary (whether the cookie has keys),
use the following script.

<%= Request.Cookies("myCookie").HasKeys %>

If myCookie is a cookie dictionary, the preceding value evaluates to TRUE; otherwise, it
evaluates to FALSE.

An iterator can be used to cycle through all cookies in the Cookie collection, or all
keys in a cookie. However, iterating through keys on a cookie that does not have keys
will not produce any output. You can avoid this situation by first checking to see
whether a cookie has keys by using the HasKeys attribute.

Examples: ASP Request Object Cookies Collection

The first example shows how to print the entire cookie collection:

<%

'Print out the entire cookie collection.

For Each cookie in Request.Cookies

 If Not cookie.HasKeys Then

 'Print out the cookie string

%>

 <%= cookie %> = <%= Request.Cookies(cookie) %>

226 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
<%

 Else

 'Print out the cookie collection

 For Each key in Request.Cookies(cookie) %>

 <%= cookie %> (<%= key %>) = <%= Request.Cookies(cookie)(key) %>

<%

 Next

 End If

Next

%>

The next example prints the value of a cookie variable called "myCookie":

<%= Request.Cookies("myCookie") %>

ASP Request Object Form Collection

The Form collection retrieves the values of form elements posted to the HTTP
request body by a form using the POST method.

Syntax: ASP Request Object Form Collection

Request.Form(element)[(index)|.Count]

Parameters: ASP Request Object Form Collection

element

Specifies the name of the form element from which the collection is to retrieve
values.

index

An optional parameter that enables you to access one of multiple values for a
parameter. It can be any integer in the range 1 to Count.

Remarks: ASP Request Object Form Collection

The Form collection is indexed by the names of the parameters in the request body.
The value of Request.Form(parameter) is an array of all values of parameter that
occur in the request body. You can determine the number of values of a parameter by
calling Request.Form(parameter).Count. If a parameter does not have multiple
values associated with it, the count is 1. If the parameter is not bound, the count is 0.

To reference a single value of a form element that has multiple values, you must
specify a value for the index. The index parameter may be any number between 1 and
Request.Form(parameter).Count. If you reference one of multiple form parameters
without specifying a value for index, the data is returned as a comma-delimited string.

When you use parameters with Request.Form, the Web server parses the HTTP
request body and returns the specified data. If your application requires unparsed

ASP BUILT-IN OBJECTS REFERENCE 227

 .
. .
data from the form, you can access it by calling Request.Form without any
parameters.

Examples: ASP Request Object Form Collection

In this example an iterator is used to loop through all data values in a form request.
Assume that a user fills out a form by specifying two values (Chocolate and
Butterscotch) for the FavoriteFlavor parameter. The following script will retrieve
these values:

For Each item In Request.Form("FavoriteFlavor")

Response.Write item & "
"

Next

This displays the following:

Chocolate

Butterscotch

The same output can be generated with a For...Next loop, as shown in the following
script:

For I = 1 To Request.Form("FavoriteFlavor").Count

Response.Write Request.Form("FavoriteFlavor")(I) & "
"

Next

This iterator can display the parameter name, as shown in the following script.

<% For Each x In Request.Form %>

Request.Form(<%= x %>) = <%= Request.Form(x) %>

<% Next %>

This displays the following:

FavoriteFlavor = Chocolate

FavoriteFlavor = Butterscotch

The next example uses the following form to solicit information from a user:

<FORM ACTION = "/scripts/submit.asp" METHOD = "post">

<P>Your first name: <INPUT NAME = "firstname" SIZE = 48>

<P>What is your favorite ice cream flavor: <SELECT NAME = "flavor">

<OPTION>Vanilla

<OPTION>Strawberry

<OPTION>Chocolate

<OPTION>Rocky Road</SELECT>

<p><INPUT TYPE = SUBMIT>

</FORM>

From that form, the following request body might be sent to the client:

firstname=James&flavor=Rocky+Road

The following script can then be used:

228 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Welcome, <%= Request.Form("firstname") %>.

Your favorite flavor is <%= Request.Form("flavor") %>.

The unparsed form data is: <%= Request.Form %>

This displays the following:

"Welcome, James. Your favorite flavor is Rocky Road."

The unparsed form data is: firstname=James&flavor=Rocky+Road

ASP Request Object QueryString Collection

The QueryString collection retrieves the values of the variables in the HTTP query
string. That is, it retrieves the values encoded after the question mark (?) in an HTTP
request. For example, it parses the values sent by a form using the GET method.

Syntax: ASP Request Object QueryString Collection

Request.QueryString(variable)[(index)|.Count]

Parameters: ASP Request Object QueryString Collection

variable

Specifies the name of the variable in the HTTP query string to retrieve.

ASP Request Object QueryString Collection Index

An optional parameter that enables you to retrieve one of multiple values for variable.
It can be any integer value in the range 1 to
Request.QueryString(variable).Count.

Remarks: ASP Request Object QueryString Collection

The QueryString collection is a parsed version of the QUERY_STRING variable in
the ServerVariables collection. It enables you to retrieve the QUERY_STRING
variables by name. The value of Request.QueryString(parameter) is an array of all
values of parameter that occur in QUERY_STRING.

You can determine the number of values of a parameter by calling
Request.QueryString(parameter).Count. If a variable does not have multiple data
sets associated with it, the count is 1. If the variable is not found, the count is 0.

To reference a QueryString variable in one of multiple data sets, you specify a value
for index. The index parameter may be any value between 1 and
Request.QueryString(variable).Count. If you reference one of multiple
QueryString variables without specifying a value for index, the data is returned as a
comma-delimited string.

When you use parameters with Request.QueryString, the server parses the
parameters sent to the request and returns the specified data. If your application
requires unparsed QueryString data, you can retrieve it by calling
Request.QueryString without any parameters.

ASP BUILT-IN OBJECTS REFERENCE 229

 .
. .
Examples: ASP Request Object QueryString Collection

An iterator can be used to loop through all data values in a query string. For example,
if the following request is sent:

http://NAMES.ASP?Q=Fred&Q=Sally

and NAMES.ASP contained the following script:

For Each item In Request.QueryString("Q")

 Response.Write item & "
"

Next

NAMES.ASP would display the following:

Fred

Sally

Instead of using For Each, you can loop through data values in a query string using
the Count variable:

For I = 1 To Request.QueryString("Q").Count

Response.Write Request.QueryString("Q")(I) & "
"

Next

The following client request:

/scripts/directory-lookup.asp?name=fred&age=22

results in the QUERY_STRING value:

name=fred&age=22.

The QueryString collection would then contain two members, name and age.

Welcome, <%= Request.QueryString("name") %>.

Your age is <%= Request.QueryString("age") %>.

This script displays:

"Welcome, Fred. Your age is 22."

ASP Request Object ServerVariables Collection

The ServerVariables collection retrieves the values of environment variables.

Syntax: Request Object ServerVariables Collection

Request.ServerVariables(variable)

Parameters: Request Object ServerVariables Collection

variable

This specifies the name of the server environment variable to retrieve. It can be one
of the values listed in the following table.

230 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Value Description

ALL_RAW All headers in raw form as sent by the client.

APPL_MD_PATH* Retrieves the metabase path for the application.

APPL_PHYSICAL_PATH Retrieves the physical path corresponding to the metabase
path.

ASP_VERSION Version number of the Sun ONE ASP server.

ASP_VERSION_MAJOR The major version number of the Sun ONE ASP server.

ASP_VERSION_MINOR The minor version number of the Sun ONE ASP server.

ASP_OS The operating system the server is running on.

ASP_LICENSE License information for the Sun ONE ASP server.

AUTH_PASSWORD The password corresponding to REMOTE_USER as supplied
by the client.

AUTH_TYPE If the server supports user authentication and the script is
protected, this is the protocol-specific authentication
method used to validate the user.

AUTH_USER Raw authenticated user name.

CERT_COOKIE* Unique ID for the client certificate, returned as a string.

CERT_FLAGS* bit0 is set to 1 if the client certificate is present. bit1 is set to
1 if the Certifying Authority of the client certificate is invalid
(not in the list of recognized CA on the server).

CERT_ISSUER* Issuer field of the client certificate.

CERT_KEYSIZE* Number of bits in the Secure Sockets Layer connection key
size, for example, 128.

CERT_SECRETKEYSIZE* Number of bits in the server certificate private key, for
example 1024.

CERT_SERIALNUMBER* Serial number field of the client certificate.

CERT_SERVER_ISSUER* Issuer field of the server certificate.

CERT_SERVER_SUBJECT* Subject field of the server certificate.

CERT_SUBJECT* Subject field of the client certificate.

CONTENT_LENGTH The length of content as given by the client.

CONTENT_TYPE The data type of the content in queries that have attached
information, such as HTTP GET, POST, and PUT.

GATEWAY_INTERFACE The revision of the CGI specification used by the server.
Format: CGI/revision.

ASP BUILT-IN OBJECTS REFERENCE 231

 .
. .
HTTP_<HeaderName> The value stored in the header HeaderName. Any header
other than those listed in this table must be prefixed by
"HTTP_" for the ServerVariables collection to retrieve its
value. The server interprets any underscore (_) characters in
HeaderName as dashes in the actual header. For example, if
you specify HTTP_MY_HEADER, the server searches for MY-
HEADER.

HTTPS Returns "on" if the request came in through a secure
channel, or "off" if the request is for a non-secure channel.

HTTPS_KEYSIZE Number of bits in Secure Sockets Layer key size, for
example, 128.

HTTPS_SECRET_KEYSIZE Number of bits in the server certificate private key, for
example, 1024.

HTTPS_SERVER_ISSUER Issuer field of the server certificate.

HTTPS_SERVER_SUBJECT Subject field of the server certificate.

INSTANCE_ID The ID for the instance in textual format. If the instance ID is
1, it appears as a string. Under IIS you can use this variable
to retrieve the ID of the Web-server instance (in the
metabase) to which the request belongs.
Note: Not supported by Sun ONE ASP for UNIX.

INSTANCE_META_PATH* The metabase path for the instance of IIS that responds to
the request.

LOCAL_ADDR Returns the Server Address on which the request came in.
This is important on multi-homed machines where there can
be multiple IP addresses bound to a machine and you want
to find out which address the request used.

LOGON_USER The Windows account the client user is logged into.
Note: Not supported by Sun ONE ASP for UNIX.

PATH_INFO The extra path information, as given by the client. Scripts
can be accessed by using their virtual path and the
PATH_INFO server variable. If this information comes from a
URL, it is decoded by the server before it is passed to the
script.

PATH_TRANSLATED A translated version of PATH_INFO that takes the path and
performs any virtual to physical mapping.

QUERY_STRING Query information in the string following the question mark
(?) in the HTTP request.

REMOTE_ADDR The IP address of the remote host making the request.

REMOTE_HOST The name of the host making the request. If the server does
not have this information, it will set REMOTE_ADDR and
leave this empty.

REMOTE_USER If the server supports user authentication and the script is
protected, this is the username by which the user is
authenticated.

Value Description

232 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
* These server variables are only valid when running Sun ONE ASP with Microsoft
Internet Information Server. When using other Web servers they will always be
empty.

Remarks: Request Object ServerVariables Collection

If a client sends a header other than those specified in the preceding table, you can
retrieve the value of the header by prefixing the header name with "HTTP_" in the
call to Request.ServerVariables. For example, if the client sent the following
header:

SomeNewHeader:SomeNewValue

you could retrieve SomeNewValue by using the following:

<% Request.ServerVariables("HTTP_SomeNewHeader") %>

Examples: Request Object ServerVariables Collection

An iterator can be used to loop through each server variable name. For example, the
following script prints all server variables in a table:

<TABLE>

<TR><TH>Server Variable</TH><TH>Value</TH></TR>

<% for each name in Request.ServerVariables %>

<TR>

 <TD><%= name %></TD>

 <TD><%= Request.ServerVariables(name) %></TD>

</TR>

REQUEST_METHOD The method used to make the request. For HTTP, this would
be GET, HEAD, POST, etc.

SCRIPT_NAME A virtual path to the script being executed. This is used for
self-referencing URLs.

SERVER_NAME The server’s host name, DNS alias, or IP address as it would
appear in self-referencing URLs.

SERVER_PORT The port number to which the request was sent.

SERVER_PORT_SECURE A string that contains either 0 or 1. If the request is being
handled on the secure port, then this will be 1; otherwise it
will be 0.

SERVER_PROTOCOL The name and revision of the information protocol. Format:
protocol/revision.

SERVER_SOFTWARE The name and version of the server software answering the
request and running the gateway. Format: name/version.

URL Gives the base portion of the URL.

Value Description

ASP BUILT-IN OBJECTS REFERENCE 233

 .
. .
<% Next %>

</TABLE>

The following example demonstrates using Request.ServerVariables to insert the
name of a server into a hyperlink:

<A HREF="http://<%= Request.ServerVariables("SERVER_NAME")%>

 /scripts/MyPage.asp">Link to MyPage.asp

ASP Request Object Properties
The ASP Request object has one property, which is listed below.

ASP Request Object TotalBytes Property

The TotalBytes property contains the total number of bytes sent by the client in the
body of the request. The property is read-only.

Syntax: ASP Request Object TotalBytes Property

Counter = Request.TotalBytes

Parameters: ASP Request Object TotalBytes Property

counter

A variable to hold the total number of bytes the client sent in the request.

Examples: ASP Request Object TotalBytes Property

The following example sets a variable equal to the total number of bytes included in
a request object:

<%

dim bytecount

bytecount = Request.TotalBytes

%>

“ASP Request Object TotalBytes
Property” on page 233

The total number of bytes the client is sending in the
body of the request.

234 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Request Object Methods
The ASP Request object has one method, which is listed below.

Variable parameters are strings that identify the item to be retrieved from a collection
or a value to be passed to a property or method. For more information about the
variable parameter, see the individual collection descriptions. If the specified variable
is not in one of the collections, the Request object returns EMPTY.

All variables can be accessed directly by calling Request(variable) without a
collection name. In this case, the Web server searches the collections in the following
order:

� QueryString

� Form

� Cookies

� ServerVariables

If the same variable exists in more than one collection, the first one encountered will
be used. It is strongly recommended that you use the collection name. For example,
instead of Request.(AUTH_USER), use Request.ServerVariables(AUTH_USER).

ASP Request Object BinaryRead Method

The BinaryRead method reads information sent from the client to the server as part
of a POST request. The data is returned as a SafeArray that contains information
about the dimensions of the array.

Syntax: ASP Request Object BinaryRead Method

variant = Request.BinaryRead(count)

Parameters: ASP Request Object BinaryRead Method

variant

An array of unsigned bytes returned by this method.

count

Before the read, the number of bytes to read from the client. After execution, the
actual number of bytes successfully read from the client. The number of bytes that
will be read is less than or equal to Request.TotalBytes.

“ASP Request Object BinaryRead
Method” on page 234

Retrieves data sent to the server from the client as part
of a POST request.

ASP BUILT-IN OBJECTS REFERENCE 235

 .
. .
Remarks: ASP Request Object BinaryRead Method

The BinaryRead method is used to read the raw data sent by a POST request. This
provides low-level access as opposed to the formatted data provided by the
Request.Form collection. Once you have used the BinaryRead method, any call
to a variable in the Request.Form collection will cause an error. Conversely, calling
BinaryRead after accessing the Request.Form collection will also cause an error.
Remember, if you access a variable in the Request object without specifying a
collection, the Request.Form collection may be accessed, bringing this rule into
force.

Examples: ASP Request Object BinaryRead Method

The following example uses the BinaryRead method to place the contents of a
Request object into a safe array.

<%

dim bytecount

dim binread

bytecount = Request.TotalBytes

binread = Request.BinaryRead(bytecount)

%>

. ASP Response Object
The Response object controls sending output to the browser.

Syntax: ASP Response Object
Response.collection | property | method

ASP Response Object Collections
The ASP Response object has one collection, which is listed below.

ASP Response Object Cookies Collection

The Cookies collection sets the value of a cookie. If a specified cookie does not exist,
it is created. If it does exist, the cookie takes on the new value and the old value is
discarded.

“ASP Response Object Cookies Collection” on
page 235

You can use this collection to set cookie
values to send to the client browser.

236 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Response Object Cookies Collection

Response.Cookies(cookie)[(key)| .attribute] = value

Parameters: ASP Response Object Cookies Collection

cookie

The name of the cookie.

key

Optional. If key is specified, the cookie is a dictionary and key is set to value.

attribute

Specific information about the cookie itself. This can be one of the attributes listed in
the following table.

value

Specifies the value to assign to key or attribute.

Remarks: ASP Response Object Cookies Collection

If a cookie with keys is created, as in the following script:

Response.Cookies("myCookie")("type1") = "sugar"

Response.Cookies("myCookie")("type2") = "ginger snap"

the following header is sent:

SET-COOKIE:MYCOOKIE=TYPE1=sugar&TYPE2=ginger+snap

Any subsequent assignment to myCookie that does not include a key would destroy
type1 and type2. The following example discards the values type1 and type2 and
replaces them with the value "chocolate chip":

Response.Cookies("myCookie") = "chocolate chip"

Conversely, calling a cookie with a key destroys any non-key values the cookie might
contain. The following code will discard the value "chocolate chip" and insert the
key value instead:

Response.Cookies("myCookie") ("NewType") = "peanut butter"

To check to see if a cookie has key values, use the following:

Attribute Description

Expires The date on which the cookie expires. This attribute must be set to a date
later than the current date to store the cookie on the client disk after the
current session ends. Write-only.

HasKeys Indicates that the cookie has keys. Read-only.

Path If set, the cookie is only sent to requests on this path. If the attribute is not
set, the application path is used. Write-only.

Secure Indicates that the cookie is secure. Write-only.

ASP BUILT-IN OBJECTS REFERENCE 237

 .
. .
Response.Cookies("myCookie").HasKeys

If myCookie is a dictionary and has keys, the previous script will evaluate to TRUE,
otherwise it will be FALSE.

An iterator can be used to set cookie attributes. The following example sets all cookies
in a collection to expire on Dec. 31, 2003:

<%

For each cookie in Response.Cookies

 Response.Cookies(cookie).ExpiresAbsolute = #Dec. 31, 2002#

Next

%>

An iterator can also be used to set the values of all cookies in a collection, or all keys
in a cookie. However, when using an iterator to retrieve cookie values, the cookies
must have keys or the iterator will not execute. Use the HasKeys property to check
to see whether a cookie has any keys. This is demonstrated in the following example.

<%

If Not cookie.HasKeys Then

 'Set the value of the cookie

 Response.Cookies(cookie) = ""

Else

 'Set the value for each key in the cookie collection

 For Each key in Response.Cookies(cookie)

 Response.Cookies(cookie)(key) = ""

 Next key

%>

Examples: ASP Response Object Cookies Collection

The following example shows how you can set cookie values and their attributes:

<%

Response.Cookies("Type") = "Chocolate Chip"

Response.Cookies("Type").Expires = "July 31, 1997"

Response.Cookies("Type").Domain = "msn.com"

Response.Cookies("Type").Path = "/www/home/"

Response.Cookies("Type").Secure = FALSE

%>

238 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Response Object Properties
ASP Response object properties are listed in the following table.

ASP Response Object Buffer Property

The Buffer property determines whether to buffer page output. When page output
is buffered, HTML output is not sent to the client until the script on the page has
been processed, or until the Response object Flush or End methods are called.

Property Description

“ASP Response Object Buffer Property” on page
238

Indicates whether to buffer page output.

“ASP Response Object CacheControl Property”
on page 239

Determines if proxy servers are allowed to
cache the output generated by ASP.

“ASP Response Object Charset Property” on page
239

Appends the name of the character set to
the Content-Type header.

“ASP Response Object CodePage Property” on
page 240

Sets the code page for one response.

“ASP Response Object ContentType Property” on
page 241

Specifies the HTTP content type for the
response.

“ASP Response Object Expires Property” on page
241

Specifies the length of time until the page
cached on a browser expires.

“ASP Response Object ExpiresAbsolute Property”
on page 242

Specifies the date and time a page cached
on a browser expires.

“ASP Response Object IsClientConnected
Property” on page 243

Indicates if the client is still connected to
the server.

“ASP Response Object LCID Property” on page
243

Sets the LCID for data for one response.

“ASP Response Object PICS Property” on page
244

Adds the value of a PICS (Platform for
Internet Content System) label to the pics-
label field of the response header.

“ASP Response Object Status Property” on page
245

The value of the status line returned by the
server.

ASP BUILT-IN OBJECTS REFERENCE 239

 .
. .
The Buffer property cannot be set after the server has sent output to the client. For
this reason, you should set the Buffer property on the first line of the script.

Syntax: ASP Response Object Buffer Property

Response.Buffer [= flag]

Parameters: ASP Response Object Buffer Property

flag

Specifies whether to buffer page output. It can be one of the values listed below:

Remarks: ASP Response Object Buffer Property

If the current ASP script has buffering set to TRUE and does not call the Flush
method, the server will honor Keep-Alive requests made by the client. This saves time
because the server does not need to create a new connection for each client request.

However, buffering prevents any of the response from being displayed to the client
until the server has finished all script processing for the current page. For long scripts,
this may cause a perceptible delay.

ASP Response Object CacheControl Property

The CacheControl property overrides the default Private value. Setting this
property to Public allows proxy servers to cache the output generated by ASP.

Syntax: ASP Response Object CacheControl Property

Response.CacheControl [= Cache Control Header]

Parameters: ASP Response Object CacheControl Property

Cache Control Header

A cache control header that will be either Public or Private.

ASP Response Object Charset Property

The Charset property appends the name of the character set (for example, ISO-
LATIN-7) to the Content-Type header in the Response object.

TRUE Output is buffered. The server does not send output from the script on the page
until all of the script has been processed or until the Flush or End method is
called.

FALSE Output is not buffered. The server sends output from the script on the page as the
script is processed.

240 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Response Object Charset Property

Response.Charset(CharsetName)

Parameters: ASP Response Object Charset Property

CharsetName

A string that specifies a character set for the page. The character set name will be
appended to the Content-Type header in the Response object.

Examples: ASP Response Object Charset Property

For an ASP page that did not include the Response.Charset property, the Content-
Type header would be:

content-type:text/html

If the same .asp file included:

<% Response.Charset("ISO-LATIN-7") %>

the Content-Type header would be:

content-type:text/html; charset=ISO-LATIN-7

Remarks: ASP Response Object Charset Property

This function inserts any string in the header, whether it represents a valid character
set or not.

If a single page contains multiple tags containing Response.Charset, each
Response.Charset will replace the previous CharsetName. As a result, the
character set will be set to the value specified by the last instance of
Response.Charset in the page.

ASP Response Object CodePage Property

Response.CodePage sets the code page for one response. Code pages tell the server
how to encode characters for different languages. The code page is a numeric value of
the character set. Different languages and locales may use different code pages.

Syntax: ASP Response Object CodePage Property

Response.CodePage [= CodePageID]

Parameters: ASP Response Object CodePage Property

CodePageID

An integer that represents the character formatting code page. For a list of the code
page integers for the languages supported by Sun ONE ASP, see “Configuring
International Support” on page 43.

ASP BUILT-IN OBJECTS REFERENCE 241

 .
. .
Remarks: ASP Response Object CodePage Property

Response.CodePage explicitly affects a single page, whereas Session.CodePage
affects all responses in a session.

If the code page is set in a page, then Response.Charset should also be set. The
code page value tells the server how data should be encoded when building the
response, and the charset value tells the browser how the data should be decoded
when displaying the response. CharsetName of Response.Charset must match the
code page value. If they do not match, mixed characters will be displayed in the
browser.

“ASP Session Object CodePage Property” on page 264

“ASP Response Object Charset Property” on page 239

ASP Response Object ContentType Property

The ContentType property specifies the HTTP content type for the response. If not
specified, the default is "text/HTML."

Syntax: ASP Response Object ContentType Property

Response.ContentType [= ContentType]

Parameters: ASP Response Object ContentType Property

ContentType

A string describing the content type. This string is usually formatted type/subtype,
where type is the general content category and subtype is the specific content type. For
a full list of supported content types, see your Web browser documentation or the
current HTTP specification.

Examples: ASP Response Object ContentType Property

The following example sets the content type to non-HTML encoded text. This means
the client will not interpret any HTML tags in the text:

<% Response.ContentType="text/plain"

The following example shows other common content types:

<% Response.ContentType = "text/html" %>

<% Response.ContentType = "image/GIF" %>

<% Response.ContentType = "image/JPEG" %>

ASP Response Object Expires Property

The Expires property sets the length of time a page will be cached on a client
browser. If the user returns to the page before it expires, the cached version will be
displayed.

242 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Response Object Expires Property

Response.Expires [= number]

Parameters: ASP Response Object Expires Property

number

The number of minutes until the page expires. Set this to zero (0) to have the cached
page expire immediately.

Remarks: ASP Response Object Expires Property

If the property is set more than once on a page, the shortest time is used.

ASP Response Object ExpiresAbsolute Property

The ExpiresAbsolute property specifies the date and time at which a page cached
on a browser expires. If the user returns to the same page before that date and time,
the cached version is displayed. If a time is not specified, the page expires at
midnight of that day. If a date is not specified, the page expires at the given time on
the day that the script is run.

Syntax: ASP Response Object ExpiresAbsolute Property

Response.ExpiresAbsolute [= [date] [time]]

Parameters: ASP Response Object ExpiresAbsolute Property

date

Specifies the date on which the page will expire. The value sent in the Expires header
conforms to the RFC-1123 date format.

time

Specifies the time at which the page will expire. This value is converted to GMT
before the header is sent.

Remarks: ASP Response Object ExpiresAbsolute Property

If this property is set more than once on a page, the earliest time is used.

Examples: ASP Response Object ExpiresAbsolute Property

The following example sets the page to expire 15 seconds after 1:30 p.m. on May 31,
2003:

Response.ExpiresAbsolute = #May 31, 2003 13:30:15#

ASP BUILT-IN OBJECTS REFERENCE 243

 .
. .
ASP Response Object IsClientConnected Property

The IsClientConnected property is a read-only property that indicates if the client
has disconnected since the last call to Response.Write.

Note

Response.IsClientConnected is not supported in this release of Sun ONE
ASP.

Syntax: ASP Response Object IsClientConnected Property

Response.IsClientConnected()

Remarks: ASP Response Object IsClientConnected Property

This property allows you greater control over circumstances in which the client may
have disconnected from the server. For example, if a long period of time has elapsed
between a client request and the server response, it may be beneficial to make sure
the client is still connected before continuing to process the script.

Examples: ASP Response Object IsClientConnected Property

<%

'check to see if the client is connected

If Not Response.IsClientConnected Then

 'get the sessionid to send to the shutdown function

 Shutdownid = Session.SessionID

'perform shutdown processing

 Shutdown(Shutdownid)

 End If

%>

ASP Response Object LCID Property

The Response.LCID property enables you to set or get a Locale Identifier (LCID)
that specifies how dates, times, and currencies are formatted for specific geographic
locales. Response.LCID sets the LCID for data for one response.

Syntax: ASP Response Object LCID Property

Response.LCID [= LCIDnumber]

244 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Parameters: ASP Response Object LCID Property

LCIDnumber

A valid Locale Identifier (LCID) number. For a list of valid values, see “Configuring
International Support” on page 43.

Remarks: ASP Response Object LCID Property

Response.LCID sets the LCID for one response, whereas Session.LCID sets the
LCID for an entire session. For usage and limitations, see “Developing International
Applications” on page 212.

See also:

“ASP Session Object LCID Property” on page 265

ASP Response Object PICS Property

The PICS property adds a value to the pics-label field of the response header (PICS
stands for Platform for Internet Content System).

Syntax: ASP Response Object PICS Property

Response.PICS(PICSLabel)

Parameters: ASP Response Object PICS Property

PICSLabel

A string that is a properly formatted PICS label. The value will be appended to the
pics-label field in the response header.

Remarks: ASP Response Object PICS Property

The Response.PICS property inserts any string into the response header, whether or
not it is a valid PICS label.

If a single page sets Response.PICS multiple times, each setting will replace the
previous one. As a result, the PICS label will be set to the last Response.PICS
instance on the page.

Because PICS labels contain quotes, quotes must be replaced with " & chr(34) & ".

Examples: ASP Response Object PICS Property

For an .asp file that includes:

<%

Response.PICS("(PICS-1.1 <http://www.rsac.org/ratingv01.html>

labels on " & chr(34) & "1997.01.05T08:15-0500" & chr(34) &

ASP BUILT-IN OBJECTS REFERENCE 245

 .
. .
" until" & chr(34) & "1999.12.31T23:59-0000" & chr(34) &

" ratings (v 0 s 0 l 0 n 0))")

%>

the following header would be added:

PICS-label:(PICS-1.1 <http://www.rsac.org/ratingv01.html>

labels on "1997.01.05T08:15-0500"

until "1999.12.31T23:59-0000"

ratings (v 0 s 0 l 0 n 0))

ASP Response Object Status Property

The Status property sets the value of the status line returned by the server. Status
values are defined in the HTTP specification.

Syntax: ASP Response Object Status Property

Response.Status = [StatusDescription]

Parameters: ASP Response Object Status Property

StatusDescription

A string that contains a three-digit status code and a brief explanation of that status.
For example, "310 Move Permanently."

Remarks: ASP Response Object Status Property

Use this property to modify the status line returned by the server.

Examples: ASP Response Object Status Property

The following example sets the response status:

Response.Status = "401 Unauthorized"

246 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Response Object Methods
ASP Response object methods are listed in the following table.

ASP Response Object AddHeader Method

The AddHeader method adds an HTML header with a specified value. This method
always adds a new HTTP header to the response. It will not replace an existing header
of the same name. Once a header has been added, it cannot be removed.

This method is for advanced use only. If another Response method will provide the
functionality you require, it is recommended that you use that method instead.

Syntax: ASP Response Object AddHeader Method

Response.AddHeader name, value

Parameters: ASP Response Object AddHeader Method

name

The name of the header variable.

Method Description

“ASP Response Object AddHeader Method” on
page 246

Set the HTML header name to value.

“ASP Response Object AppendToLog Method” on
page 248

Adds a string to the end of the Web server
log entry for this request.

“ASP Response Object BinaryWrite Method” on
page 248

Writes the given information to the current
HTTP output without any character set
conversion.

“ASP Response Object Clear Method” on page
249

Erases any buffered HTML output.

“ASP Response Object End Method” on page 249 Stops processing the .asp file and returns
the current results.

“ASP Response Object Flush Method” on page
249

Sends any buffered HTML output
immediately.

“ASP Response Object Redirect Method” on page
250

Sends a redirect message to the browser,
causing it to attempt to connect to a
different URL.

“ASP Response Object Write Method” on page
250

Writes a variable to the current HTML
output as a string.

ASP BUILT-IN OBJECTS REFERENCE 247

 .
. .
value

The value assigned to the header variable.

Remarks: ASP Response Object AddHeader Method

To avoid any name ambiguity, the name of the header should not contain any
underscores (_). The Request.ServerVariables collection interprets underscores as
dashes in the header name. The following script causes a search for a header named
"My-Header":

<% Request.ServerVariables("HTTP_MY_HEADER") %>

Because HTTP requires that all headers be sent before content, you must call the
AddHeader method in your script before any output (such as that generated by
HTML code or the Response object Write method) is sent to the client. The
exception to this rule is when the Response object Buffer property is set to TRUE. If
the output is buffered, you can call the AddHeader method at any point in the
script, as long as it precedes any calls to the Response object Flush method.
Otherwise, the call to AddHeader will generate a run-time error.

The following two examples illustrate this. In the first example, the page is not
buffered. The script works, however, because the AddHeader method is called
before the server sends the Web page to the client. If the order was reversed, the call
to the AddHeader method would generate a run-time error.

<% Response.AddHeader "WARNING", "Error Message Text" %>

<HTML>

Some text on the Web page.

</HTML>

In the next example, the page is buffered, and as a result, the server will not send
output to the client until all the ASP scripts on the page have been processed or until
the Flush method is called. With buffered output, calls to the AddHeader method
can appear anywhere the script, so long as they precede any calls to the Flush
method. If the call to the AddHeader method appeared below the call to the Flush
method in the preceding example, the script would generate a run-time error.

<% Response.Buffer = TRUE %>

' Here is some text on your Web page.

<% Response.AddHeader "WARNING", "Error Message Text" %> Here's some
more interesting and illuminating text.

<% Response.Flush %>

<%= Response.Write("some string") %>

Examples: ASP Response Object AddHeader Method

The following example uses the AddHeader method to request that the client use
BASIC authentication.

<% Response.Addheader "WWW-Authenticate", "BASIC" %>

248 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

The preceding script merely informs the client browser which authentication
to use. If you use this script in your Web applications, you should ensure that
the Web server has BASIC authentication enabled.

ASP Response Object AppendToLog Method

The AppendToLog method adds a string to the end of the Web log entry for this
page request. You can call it multiple times during the execution of a page; each time
the string is appended to the existing entry.

Syntax: ASP Response Object AppendToLog Method

Response.AppendToLog string

Parameters: ASP Response Object AppendToLog Method

string

The text to append to the log. Because fields in Web server logs are often comma-
delimited, this string cannot contain any commas. The maximum length of the
string is 80 characters.

ASP Response Object BinaryWrite Method

The BinaryWrite method writes the specified information to the current HTTP
output without any character conversion. It is useful for sending non-string
information, such as binary data required by custom applications.

Syntax: ASP Response Object BinaryWrite Method

Response.BinaryWrite data

Parameters: ASP Response Object BinaryWrite Method

data

The binary information to be sent.

ASP BUILT-IN OBJECTS REFERENCE 249

 .
. .
Examples: ASP Response Object BinaryWrite Method

If you have an object that creates an array of bytes, you can send the results using the
BinaryWrite method:

<%

Set bg = Server.CreateObject(MY.BinaryGenerator)

Pict = bg.MakePicture

Response.BinaryWrite Pict

%>

ASP Response Object Clear Method

The Clear method erases any buffered HTML output. It only erases the response
body, it does not affect headers. You can use this method to handle error messages.
Calling Clear will cause an error if Response.Buffer is not TRUE.

Syntax: ASP Response Object Clear Method

Response.Clear

ASP Response Object End Method

The End method stops the Web server from processing additional script and sends
the current result. The remaining contents of the file are not processed.

Syntax: ASP Response Object End Method

Response.End

Remarks: ASP Response Object End Method

If Response.Buffer is set to TRUE, End flushes the buffer. If you do not want the
result sent to the client, use the following:

Response.Clear

Response.End

ASP Response Object Flush Method

The Flush method sends buffered output immediately. Flush will cause a run-time
error if called when Response.Buffer is not TRUE.

Syntax: ASP Response Object Flush Method

Response.Flush

250 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Remarks: ASP Response Object Flush Method

If Flush is called on an ASP page, the server does not honor Keep-Alive requests for
that page.

ASP Response Object Redirect Method

The Redirect method causes the browser to attempt to connect to a different URL.

Syntax: ASP Response Object Redirect Method

Response.Redirect URL

Parameters: ASP Response Object Redirect Method

URL

The Uniform Resource Locator the client is redirected to.

Remarks: ASP Response Object Redirect Method

Response body content set explicitly in the page is ignored. However, the method
does send to the client other HTTP headers set by this page. An automatic response
body containing the redirect URL as a link is generated.

The Redirect method sends the following explicit header:

HTTP/1.0 302 Object Moved

Location URL

ASP Response Object Write Method

The Write method writes a specified string to the current output.

Syntax: ASP Response Object Write Method

Response.Write variant

Parameters: ASP Response Object Write Method

variant

The data to write. This parameter can be any data type supported by the Visual Basic
Variant data type, including characters, strings, and integers. This value cannot
contain the character combination "%>"; instead you should use the escape sequence
"%\>." The Web server will translate the escape sequence when it processes the script.

ASP BUILT-IN OBJECTS REFERENCE 251

 .
. .
Remarks: ASP Response Object Write Method

VBScript limits the size of string literals to 1022 bytes, therefore variant cannot be a
string literal of more than 1022 bytes. You can, however, specify variant as the name
of a variable containing more than 1022 bytes.

Examples: ASP Response Object Write Method

The following VBScript, in which"a" is repeated 1023 times in the string literal, will
fail:

<% Response.Write "aaaaaaaaaaaa...aaaaaaaaaaaaaaaaaa"

The following VBScript, in which "a" is repeated 4096 times in the string variable, will
succeed:

AVeryLongString = String(4096, "a")

Response.Write(AVeryLongString)

Using the Response.Write method to send output to the client:

I just want to say <% Response.Write "Hello World." %>

Your name is: <% Response.Write Request.Form("name") %>

The following script demonstrates adding an HTML tag to the Web page output.
Because the string returned by the Write method cannot contain the character
combination "%>" the escape "%\>" has been used instead:

<% Response.Write "<TABLE WIDTH = 100%\>" %>

The script outputs:

<TABLE WIDTH = 100%>

. ASP Server Object
The Server object provides access to methods and properties on the server. Most of
its methods and properties serve as utility functions.

Syntax: ASP Server Object
Server.property property | method

ASP Server Object Properties
The ASP Server object has one property, which is listed below.

“ASP Server Object ScriptTimeout
Property” on page 252

The length of time a script runs before it is
terminated.

252 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Server Object ScriptTimeout Property

The ScriptTimeout property specifies the maximum amount of time a script can
run before it is terminated. The delay before scripts are ended is 90 seconds by
default. This will not take effect while a server component is processing.

Syntax: ASP Server Object ScriptTimeout Property

Server.ScriptTimeout = NumSeconds

Parameters: ASP Server Object ScriptTimeout Property

NumSeconds

Specifies the maximum number of seconds that a script can run before the server
terminates it. The default value is 90 seconds.

Note

The ScriptTimeout property cannot be set to a value less than that
specified in the registry settings or configuration file. For example, if
NumSeconds is set to 10, and the registry setting or configuration file contains
the default value of 90 seconds, scripts will time out after 90 seconds.
However, if NumSeconds was set to 100, the scripts would time out after 100
seconds.

Examples: ASP Server Object ScriptTimeout Property

The following example causes scripts to time out if the server takes longer than 30
seconds to process them.

<% Server.ScriptTimeout = 30 %>

The following example retrieves the current value of the ScriptTimeout property
and stores it in the variable TimeOut.

<% TimeOut = Server.ScriptTimeout %>

ASP Server Object Methods
ASP Server object methods are listed in the following table.

Method Description

“ASP Server Object CreateObject
Method” on page 253

Creates an instance of a server component.

“ASP Server Object Execute Method” on
page 254

Executes an .asp file.

ASP BUILT-IN OBJECTS REFERENCE 253

 .
. .
ASP Server Object CreateObject Method

The CreateObject method creates an instance of a server component. If the
component has implemented the OnStartPage and OnEndPage methods, the
OnStartPage method is called at this time.

Syntax: ASP Server Object CreateObject Method

Obj = Server.CreateObject(progID)

Parameters: ASP Server Object CreateObject Method

Obj

A variable name for the object

progID

Specifies the type of object to create. The format for progID is
[vendor.]component[.version].

Remarks: ASP Server Object CreateObject Method

By default, objects created by the Server.CreateObject method have page scope.
This means that they are automatically destroyed by the server when it finishes
processing the current ASP page.

To create an object with session or application scope, you can either use the <OBJECT>
tag and set the SCOPE parameter to SESSION or APPLICATION, or store the object in a
session or application variable.

“ASP Server Object GetLastError Method”
on page 255

Returns an ASPError object that describes the
error condition.

“ASP Server Object HTMLEncode
Method” on page 258

Applies HTML encoding to a specified string.

“ASP Server Object MapPath Method” on
page 258

Maps the specified virtual path, either the absolute
path on the current server or the path relative to
the current page, into a physical path.

“ASP Server Object Transfer Method” on
page 260

Sends all current state information to another .asp
file for processing.

“ASP Server Object URLEncode Method”
on page 261

Applies URL encoding rules, including escape
characters, to a string.

Method Description

254 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Examples: ASP Server Object CreateObject Method

You can destroy an object by setting the variable to NOTHING or setting the variable to
a new value, as shown below. The first example releases the object “ad.“ The second
replaces “ad“ with a string:

<% Session("ad") = Nothing %>

<% Session("ad") = "some other value" %>

You cannot create an object with the same name as a built-in object. The following
example will cause an error:

<% Set Response = Server.CreateObject("Response") %>

The following example creates an instance of the MSWC.BrowserType
component. This component can be used to determine the capabilities of the browser
requesting the page.

<% Set MyB = Server.CreateObject("MSWC.BrowserType") %>

ASP Server Object Execute Method

The Execute method calls an .asp file and processes it as if it were part of the calling
ASP script (similar to a procedure call in many programming languages).

Syntax: ASP Server Object Execute Method

Server.Execute(path)

Parameters: ASP Server Object Execute Method

Server.Execute takes a single parameter, which is the path to another .asp page.

path

A string that specifies the location of the .asp file to execute. The parameter is either
an absolute or relative path. If the path is absolute, path must map to an ASP script in
the same application as the calling .asp file. The path parameter can be a string
variable name that is set at run-time.

Remarks: ASP Server Object Execute Method

The Server.Execute method provides a way to divide complex applications into
individual modules. You can use Server.Execute to run ASP code on another page,
returning to the original page when the code has finished executing.

By employing the Server.Execute method, a library of .asp files can be developed
and then called as needed. This approach is similar to server-side includes, with the
only major difference being that Server.Execute allows you to dynamically call an
.asp file. Because Server.Execute is an ASP method rather than an HTML comment,
it can be used to conditionally execute scripts and avoid including huge include files.
Server-side includes are executed prior to any ASP code and thus can’t be executed
conditionally.

ASP BUILT-IN OBJECTS REFERENCE 255

 .
. .
Server.Execute does have some potential drawbacks, which are listed below. In
many situations, though, using Server.Execute is a better choice than using server-
side includes.

Potential drawbacks to Server.Execute:

� Server.Execute cannot call a particular procedure on the included page. It
starts running code at the top of the executed page and continues until the
executed page ends, at which point it returns to the original page.

� Page-scope variables are not shared between the original page and the
executed page. This isn’t an issue with server-side includes because the
include file code is incorporated into the original page before being executed.

Examples: ASP Server Object Execute Method

The following code illustrates use of the Server.Execute method:

File1.asp:

<%

Response.Write("This is File 1!
")

Server.Execute("file2.asp")

Response.Write("This is File 1 again!")

%>

 File2.asp:

<%

Response.Write("This is File 2!
")

%>

Output would be as follows:

This is File 1!

This is File 2!

This is File 1 again!

ASP Server Object GetLastError Method

The GetLastError method returns an ASPError object that describes the error
condition, and is available only before the .asp file has sent content to the client. The
ASPError object has a number of properties that return information about the most
recent error that occurred before GetLastError was called.

See also:

“ASPError Object” on page 222

256 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Server Object GetLastError Method

Server.GetLastError()

Remarks: ASP Server Object GetLastError Method

The correct functionality of the Server.GetLastError method depends on the
behavior of the Web server. Because the dependent behavior is implemented only on
Microsoft’s IIS Web server, and not on other Web servers such as the Apache Web
Server or Sun ONE Web Server (formerly iPlanet), Sun ONE ASP is not in complete
compliance with Microsoft ASP 3.0 functionality for this method.

On IIS, when an ASP page gets an unhandled error (parsing or run time), page control
is transferred to a predefined error page. For 500:100 errors, this page is another ASP
page that displays specific information about the error that was received. The error-
handling page uses the Server.GetLastError method to retrieve the ASPError
object to access specific information about the error that just occurred. When the
unhandled error occurs, IIS relies on the Server.Transfer mechanism built into the
ASP server to transfer control to the error-handling page.

Because the Sun ONE and Apache Web servers use their own mechanisms for
displaying unhandled errors, that functionality is implemented inside the ASP Server.
To implement this functionality, a directive has been added to the Sun ONE ASP
Server’s configuration file (casp.cnfg). The directive tells the ASP server where to
transfer control when an unhandled error occurs. The name of the new directive is
500errordocument=<path> and it is located in the [default application] section in
casp.cnfg. There are two possible values for this directive. If the directive contains the
path to a valid ASP or HTML file, that file will be returned when the ASP server
encounters a 500 error. If the directive is left blank, the ASP server uses a custom 500
error page installed with the product.

The custom page installed with Sun ONE ASP is identical to the custom page installed
with Microsoft IIS 5.0. When an unhandled error occurs on the Sun ONE ASP server,
control is transferred (using the Server.Transfer method) to the page listed in
casp.cnfg. This page uses the Server.GetLastError method to display detailed
information about the error that just occurred.

In addition, a 500-15errordocument=<path> directive has also been added to
casp.cnfg. When the browser requests the global.asa file and an error is encountered,
the server redirects to this custom error page.

For more information about these casp.cnfg settings, see the settings listed in
“[default application]” on page 521.

Examples: ASP Server Object GetLastError Method

The following examples demonstrate different sorts of errors that will generate a
500:100 custom error. The three types of errors are:

� Pre-processing errors

� Syntax errors

� Run-time errors

ASP BUILT-IN OBJECTS REFERENCE 257

 .
. .
Example 1

The following example produces a pre-processing error. The error will be generated
because the #include statement is missing the file parameter for the statement.

<!--#include f="header.inc" -->

<%

Response.Write("sometext")

%>

Example 2

The following example produces VBScript syntax error 1028: "Expected 'While',
'Until' or end of statement."

<%

 Dim A

 A = 0

 i = 0

 Do i < 10

 A = A + i

 i = i + 1

 Loop

%>

Example 3

The following example produces VBScript runtime error 450: "Wrong number of
arguments or invalid property assignment."

<%

Dim A

A = 10

Function foo(x)

 foo = x + 1

End Function

A = foo()

%>

258 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Server Object HTMLEncode Method

The HTMLEncode method applies HTML encoding to a specified string.

Syntax: ASP Server Object HTMLEncode Method

Server.HTMLEncode(string)

Parameters: ASP Server Object HTMLEncode Method

string

Specifies the string to encode.

Examples: ASP Server Object HTMLEncode Method

The following script:

<% Server.HTMLEncode("The paragraph tag <P>" %>

produces the following output:

The paragraph tag <P>

The preceding text will be displayed on a Web browser as:

The paragraph tag <P>

You can view the source to see the encoded HTML.

ASP Server Object MapPath Method

The MapPath method maps the specified relative or virtual path to the
corresponding physical directory on the server.

Syntax: ASP Server Object MapPath Method

Server.MapPath(path)

Parameters: ASP Server Object MapPath Method

path

Specifies the relative or virtual path to map to a physical directory. If path starts with
either a forward or backward slash, the MapPath method returns a path as if path is
a full virtual path. If path doesn't start with a slash, the MapPath method returns a
path relative to the directory of the .asp file being processed.

ASP BUILT-IN OBJECTS REFERENCE 259

 .
. .
Note

The path parameter can contain relative paths (../../Scripts/, for
example).

Remarks: ASP Server Object MapPath Method

The MapPath method does not check whether the path it returns is valid or exists
on the server. Because the MapPath method maps a path regardless of whether the
specified directories currently exist, you can use the MapPath method to map a
path to a physical directory structure, and then pass that path to a component that
creates the specified directory or file on the server.

Examples: ASP Server Object MapPath Method

For the examples below, the data.txt and test.asp files are located in the
c:\inetpub\wwwroot\script directory. The test.asp file contains scripts. The
c:\inetpub\wwwroot directory is set as the server's home directory.

The following example uses the server variable PATH_INFO to map the physical path
to the current file:

<%= server.mappath(Request.ServerVariables("PATH_INFO"))%>

This script produces the following:

c:\inetpub\wwwroot\script\test.asp

Because the path parameters in the following examples do not start with a slash
character, they are mapped relative to the current directory, in this case
c:\inetpub\wwwroot\script.

<%= server.mappath("data.txt")%>

<%= server.mappath("script/data.txt")%>

This script outputs the following:

c:\inetpub\wwwroot\script\data.txt

c:\inetpub\wwwroot\script\script\data.txt

The next two scripts use the slash characters to specify that the paths returned should
be looked up as complete virtual paths on the server:

<%= server.mappath("/script/data.txt")%>

<%= server.mappath("\script")%>

This script outputs the following:

c:\inetpub\script\data.txt

c:\inetpub\script

The following examples demonstrate how you can use either a forward slash or a
backslash to return the physical path to the home directory. The following script:

<%= server.mappath("/")%>

<%= server.mappath("\")%>

260 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
produces the following output:

c:\inetpub\wwwroot

c:\inetpub\wwwroot

ASP Server Object Transfer Method

The Transfer method sends all current state information to another .asp file for
processing.

Syntax: ASP Server Object Transfer Method

Server.Transfer(path)

Parameters: ASP Server Object Transfer Method

path

The location of the .asp file to which control should be transferred.

Remarks: ASP Server Object Transfer Method

The Transfer method is an alternative to using Response.Redirect. When
Server.Transfer is called, state information for all ASP built-in objects is included
in the transfer from one .asp file to another. The transfer takes place on the server,
instead of forcing the browser to redirect to a new page.

When Server.Transfer is called, execution of the first page is terminated and
execution of the second page begins. If the first page has started writing to the
response buffer, the second page appends to the buffer instead of replacing it. If
buffering is on, then HTTP headers can be modified by the ASP file receiving the
transfer. If buffering is off, the HTTP headers are not modifiable by the ASP file
receiving the transfer, unless content has not yet been sent by ASP. Multiple transfers
can be called in succession, thus chaining pages together.

The only data transferred to a second ASP page is the ASP built-in objects and
ASPError object values from the first request. Variables declared by the first ASP
page are not available in the second ASP page.

When you transfer to a page in another application, the Application and Session
objects contain information from the originating application. Accordingly, the ASP
page receiving the transfer is treated as part of the originating application.

Examples: ASP Server Object Transfer Method

The following code illustrates use of the Server.Transfer method:

File1.asp:

<%

Response.Write("This is line 1 in File1.asp
")

Server.Transfer("file2.asp")

ASP BUILT-IN OBJECTS REFERENCE 261

 .
. .
Response.Write("This is line 2 in File1.asp")

%>

File2.asp:

<%

Response.Write("This is line 1 in File2.asp
")

Response.Write("This is line 2 in File2.asp
")

%>

Output would be as follows:

This is line 1 in File1.asp

This is line 1 in File2.asp

This is line 2 in File2.asp

ASP Server Object URLEncode Method

The URLEncode method applies URL encoding rules, including escape characters,
to a specified string.

Syntax: ASP Server Object URLEncode Method

Server.URLEncode(string)

Parameters: ASP Server Object URLEncode Method

string

Specifies the string to encode.

Examples: ASP Server Object URLEncode Method

The following example encodes the paragraph tag:

<%= Server.URLEncode("The paragraph tag: <P>") %>

The script produces the following:

The+paragraph+tag%3A+%3CP%3E

. ASP Session Object
The Session object stores information needed for a particular user-session.

Variables stored in the Session object are not discarded when the user jumps
between pages in the application, but rather persist for the entire user-session. The
Web server automatically creates a Session object when a Web page (from a server

262 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
application) is requested by a user who does not already have a session. The server
destroys the Session object when the session expires or is abandoned.

The AllowSessionState registry or configuration file setting controls the creation
of Session objects. If AllowSessionState is set to FALSE, the Session object cannot
be used. The default is to use Sessions.

Session object event scripts are declared in the global.asa.

Note

Session state is only maintained for browsers that support cookies.

Syntax: ASP Session Object
Session.collection | property | method

ASP Session Object Collections
ASP Session object collections are listed in the following table.

ASP Session Object Contents Collection

The Contents collection contains all of the items that have been created for a
session without using the <OBJECT> tag. The collection can be used to determine the
value of a specific item, or to iterate over all the items in the session. The
Contents.Remove and Contents.RemoveAll methods can be used to remove
items from the collection.

Syntax: ASP Session Object Contents Collection

Session.Contents(key)

Parameters: ASP Session Object Contents Collection

key

The name of the item to retrieve.

Collection Description

“ASP Session Object Contents
Collection” on page 262

Contains the items you have added to the session with
script commands.

“ASP Session Object StaticObjects
Collection” on page 263

Contains items created in global.asa using the <OBJECT>
tag and given session scope.

ASP BUILT-IN OBJECTS REFERENCE 263

 .
. .
Methods: ASP Session Object Contents Collection

ASP Session object Contents collection methods are listed in the following table.

Remarks: ASP Session Object Contents Collection

An iterating control structure can be used to loop through the keys of the Contents
collection. This is demonstrated in the following example.

<%

Dim sessitem

For Each sessitem in Session.Contents

 Response.write(sessitem & " : " & Session.Contents(sessitem) &
"
")

Next

%>

ASP Session Object StaticObjects Collection

The StaticObjects collection contains all objects created in global.asa with the
<OBJECT> tag and given session scope. The collection can be used to retrieve the value
of a specific item, or an iterator can be used to retrieve all items in the collection.

Syntax: ASP Session Object StaticObjects Collection

Session.StaticObjects(key)

Parameters: ASP Session Object StaticObjects Collection

key

The item to retrieve.

Remarks: ASP Session Object StaticObjects Collection

An iterating control structure can be used to loop through the keys of the
StaticObjects collection. This is demonstrated in the following example.

<%

Method Description

“ASP Session Object
Contents.Remove Method” on
page 268

Removes an item from the collection.

“ASP Session Object
Contents.RemoveAll Method” on
page 269

Removes all items from the collection.

264 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Dim objprop

For Each objprop in Session.StaticObjects

 Response.write(objproperty & " : " & Session.StaticObjects(objprop)
& "
")

Next

%>

ASP Session Object Properties
ASP Session object properties are listed in the following table.

ASP Session Object CodePage Property

Session.CodePage sets the code page for an entire session. Code pages tell the
server how to encode characters for different languages. The code page is a numeric
value of the character set. Different languages and locales may use different code
pages.

Syntax: ASP Session Object CodePage Property

Session.CodePage [= CodePageID]

Parameters: ASP Session Object CodePage Property

CodePageID

An integer that represents the character formatting code page. For a list of the code
page integers for the languages supported by Sun ONE ASP, see “Configuring
International Support” on page 43.

Property Description

“ASP Session Object CodePage
Property” on page 264

Sets the code page for an entire session.

“ASP Session Object LCID Property”
on page 265

Sets or gets a Locale Identifier (LCID) that determines
how certain content such as date, time, and currency is
formatted.

“ASP Session Object SessionID
Property” on page 265

Returns the session identifier for this client. Each session
has a unique identifier.

“ASP Session Object Timeout
Property” on page 266

The timeout period, in minutes, for session state for this
application.

ASP BUILT-IN OBJECTS REFERENCE 265

 .
. .
Remarks: ASP Session Object CodePage Property

Session.CodePage affects all responses in a session, whereas Response.CodePage
affects a single response.

If the code page is set in a page, then Response.Charset should also be set. The
code page value tells the server how data should be encoded when building the
response, and the charset value tells the browser how the data should be decoded
when displaying the response. CharsetName of Response.Charset must match the
code page value. If they do not match, mixed characters will be displayed in the
browser.

See also:

“ASP Response Object CodePage Property” on page 240

“ASP Response Object Charset Property” on page 239

ASP Session Object LCID Property

The Session.LCID property enables you to set or get a Locale Identifier (LCID) that
specifies how dates, times, and currencies are formatted for specific geographic
locales. Session.LCID sets the LCID for data for an entire session.

Syntax: ASP Session Object LCID Property

Session.LCID [= LCIDnumber]

Parameters: ASP Session Object LCID Property

LCIDnumber

A valid Locale Identifier (LCID) number. For a list of valid values, see “Configuring
International Support” on page 43.

Remarks: ASP Session Object LCID Property

Session.LCID sets the LCID for an entire session, whereas Response.LCID sets the
LCID for one response. For usage and limitations, see “Developing International
Applications” on page 212.

See also:

“ASP Response Object LCID Property” on page 243

ASP Session Object SessionID Property

The SessionID property returns the session identification for this user. Each session
has a unique identifier that is generated by the server when the session is created.
The session ID is returned as data type LONG.

266 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Session Object SessionID Property

Session.SessionID

Remarks: ASP Session Object SessionID Property

Do not use the SessionID property to generate primary key values for a database
application. This is because if the Web server is restarted, some SessionID values
may be the same as those generated before the server was stopped. Instead, you
should use an auto-increment column data type.

Also, keep in mind that the session identifier persists as long as the current Web
server session is running. If the Web server service is shut down, the identifiers
restart. Therefore, it is not a good idea to use the session identifier to create logon
IDs, because you could end up with duplicates.

ASP Session Object Timeout Property

The Timeout property specifies the timeout period for the Session object for this
application, in minutes. If the user does not refresh or request a page within the
timeout period, the session ends.

Syntax: ASP Session Object Timeout Property

Session.Timeout [= nMinutes]

Parameters: ASP Session Object Timeout Property

nMinutes

The number of minutes that a session can remain idle before the server terminates it
automatically. The default is 20 minutes.

Remarks: ASP Session Object Timeout Property

The SessionTimeout registry or configuration file setting controls the default value
of the Timeout property for an ASP application.

ASP BUILT-IN OBJECTS REFERENCE 267

 .
. .
ASP Session Object Methods
ASP Session object methods are listed in the following table.

ASP Session Object Abandon Method

The Abandon method destroys all objects stored in a Session object and releases
their resources. If the Abandon method is not called explicitly, the server destroys
these objects when the session times out.

Syntax: ASP Session Object Abandon Method

Session.Abandon

Remarks: ASP Session Object Abandon Method

When the Abandon method is called, the current Session object is queued for
deletion, but is not actually deleted until all script commands on the current page
have been processed. This means that you can access variables stored in the Session
object on the same page as the call to Abandon, but not in any subsequent Web
pages.

For example, in the following script, the third line prints the value Mary. This is
because the Session object is not destroyed until the server has finished processing
the script.

Session.Abandon

Session("MyName") = "Mary"

Response.Write(Session("MyName"))

If you access the variable MyName on a subsequent Web page, it is empty. This is
because MyName was destroyed with the previous Session object when the page
containing the above example finished processing.

The server creates a new Session object when you open a subsequent Web page after
abandoning a session. You can store variables and objects in this new Session object.

“ASP Session Object Abandon
Method” on page 267

Destroys a Session object and all objects stored in it,
and releases their resources.

“ASP Session Object
Contents.Remove Method” on
page 268

Removes a single session variable from the Session
object Contents collection.

“ASP Session Object
Contents.RemoveAll Method” on
page 269

Removes all session variables from the Session object
Contents collection.

268 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Session Object Contents.Remove Method

The Session.Contents.Remove method removes a single session variable from the
Session object Contents collection.

Syntax: ASP Session Object Contents.Remove Method

Session.Contents.Remove(name | index)

Parameters: ASP Session Object Contents.Remove Method

name

The identifier for the session variable to remove.

index

An index offset indicating which session variable in the list to remove.

Remarks: ASP Session Object Contents.Remove Method

The Contents.Remove method takes a string or an integer as an input parameter. If
the input parameter is a string, the method searches the Contents collection for an
application variable with that name and removes it. If the input parameter is an
integer, the method counts that number of application variables from the start of the
collection and removes the corresponding variable.

Example: ASP Session Object Contents.Remove Method

The following code includes members of the Session.Contents collection:

<%

Set Session("ASPAdRotator") = Server.CreateObject("MSWC.AdRotator")

Session("strHello") = "Hello"

Session("Start_Time") = CStr(Now)

%>

The following code removes the second item in the collection ("strHello") using an
integer.

<%

Session.Contents.Remove(2)

%>

The following code removes the second item in the collection ("strHello") using the
variable name.

<%

Session.Contents.Remove("strHello")

%>

ASP BUILT-IN OBJECTS REFERENCE 269

 .
. .
ASP Session Object Contents.RemoveAll Method

The Session.Contents.RemoveAll method removes all session variables from the
Session object Contents collection.

Syntax: ASP Session Object Contents.RemoveAll Method

Session.Contents.RemoveAll()

ASP Session Object Events
ASP Session object events are listed in the following table. Session object events are
defined in the global.asa file.

Remarks: ASP Session Object
Values can be stored in the Session object. Information stored in the Session object
is available for the entire session and has session scope. The following script
demonstrates how two types of variables are stored:

Session("username") = "Janine"

Session("age") = 42

If you are using VBScript as your scripting language, you must use the Set keyword to
store an object in the Session object, as shown in the following example:

<% Set Session("Obj1") = Server.CreateObject("MyComponent") %>

You can then call the methods and properties of Obj1 on subsequent Web pages by
using the following syntax:

<% Session("Obj1").MyObjMethod %>

As an alternative, you can extract a local copy of the object:

Set MyLocalObj = Session("Obj1")

MyLocalObj.MyObjMethod

A built-in object cannot be stored in a Session object. Each of the following lines will
return an error:

Set Session("var1") = Session

Set Session("var2") = Request

Set Session("var3") = Response

Set Session("var4") = Server

Event Description

Session_OnStart Occurs when the server creates a new session. It runs before executing
the requested page.

Session_OnEnd Occurs when the session is abandoned or times out.

270 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Set Session("var5") = Application

Before you store an object in the Session object, you must know the threading
model it uses. Only objects marked as both free and apartment-threaded can be
stored in the Session object.

The Session object is implemented as a collection. If you store an array in an
Session object, you should not attempt to alter elements of the stored array directly.
For example, the following script does not work:

Session("StoredArray") (3) = "new value"

Instead of storing the value "new value" in StoredArray(3), the value is stored in the
Session collection, overwriting any information stored at Session(3).

See “ASP Application Object Examples” on page 221 for an example of storing an
array.

. .

 .

. .10 ASP Component Reference

Sun ONE Active Server Pages automatically installs a number of components that can
be used to build dynamic Web pages. The components installed with Sun ONE ASP
are listed in the following table, and discussed in this chapter.

Note

This chapter provides basic reference information about ASP components.
You may wish to consult additional print and Web resources for more
detailed ASP reference information.

Component Description

“ASP Ad Rotator
Component” on
page 272

Creates an AdRotator object that automates the rotation of
advertisement images on a Web page.

“ASP Browser
Capabilities
Component” on
page 278

Creates a BrowserType object that determines the type, version, and
capabilities of every browser that visits your site.

“ASP Content
Linking
Component” on
page 282

Creates a NextLink object that manages a list of URLs so that you can
treat the pages in your Web site like the pages in a book.

“ASP Content
Rotator
Component” on
page 288

Creates a ContentRotator object that automatically rotates HTML
content strings on a Web page.

“ASP Counters
Component” on
page 293

Creates a Counters object that can create, store, increment, and
retrieve any number of individual counters.

“ASP MyInfo
Component” on
page 296

Creates a MyInfo object that keeps track of personal information such as
the site administrator's name, address, and display choices.

“ASP Tools
Component” on
page 297

Creates a Tools object that provides utilities that enable you to easily
add sophisticated functionality to your Web pages.

272 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. ASP Ad Rotator Component
The Ad Rotator component creates an AdRotator object that automates the
rotation of advertisement images on a Web page. The AdRotator object relies on
two additional files for parameters and functionaliy:

� The rotator schedule file, a text file that contains the display schedule and file
information for advertisements. This file must be available on a Web server
virtual path (see “ASP Ad Rotator Component Rotator Schedule File” on page
272).

� The redirection file, an optional file that implements redirection, and enables
you to record how many users click each advertisement (see “ASP Ad Rotator
Component Redirection File” on page 275).

Each time a user opens or reloads the Web page, the AdRotator object displays a
new advertisement based on the information specified in the rotator schedule file.
The number of users who click each advertisement can be recorded by setting the
URL parameter in the rotator schedule file to direct users to the redirection file.
When this parameter is specified, each jump to an advertiser’s URL is recorded in the
Web server activity logs.

Registry Settings: ASP Ad Rotator Component
The Ad Rotator component does not use registry settings.

Syntax: ASP Ad Rotator Component
The Ad Rotator control is registered with the ProgId of "MSWC.AdRotator." The
following VBScript excerpt creates an instance of the control.

Set adRot = Server.CreateObject("MSWC.AdRotator")

ASP Ad Rotator Component Rotator Schedule File
The rotator schedule file contains information that the Ad Rotator component uses
to manage and display the various advertisement images. In it you can specify the
details for the advertisements such as the size of the advertisement space, the image
files to use, and the percentage of time each file should be displayed.

The rotator schedule file has two sections. The first section sets parameters that apply
to all advertisement images in the rotation schedule. The second section specifies file
and location information for each individual advertisement, and the percentage of
display time each advertisement should receive. The two sections are separated by a
line containing only an asterisk (*).

In the first section there are four global parameters, each consisting of a keyword and
a value. All are optional. If you do not specify values for the global parameters,
default values are used. In this case, the first line of the file must contain only an
asterisk (*).

ASP COMPONENT REFERENCE 273

 .
. .
Syntax: ASP Ad Rotator Component Rotator Schedule File

[REDIRECT URL]

[WIDTH numWidth]

[HEIGHT numHeight]

[BORDER numBorder]

*

adURL

adHomePageURL

altText

impressions

Parameters: ASP Ad Rotator Component Rotator Schedule File

URL

Specifies the path to the dynamic-link library (.dll) or application file (.asp) that
implements redirection.

This path can be specified fully (http://MyServer/MyDir/redirect.asp), or relative to
the virtual directory (/MyDir/redirect.asp).

numWidth

Specifies the width of the advertisement on the page, in pixels. The default is 440
pixels.

numHeight

Specifies the height of the advertisement on the page, in pixels. The default is 60
pixels.

numBorder

Specifies the thickness of the hyperlink border around the advertisement, in pixels.
The default is a 1-pixel border. Set this parameter to 0 for no border.

adURL

The location of the advertisement image file.

adHomePageURL

The location of the advertiser’s home page. If the advertiser does not have a home
page, put a hyphen (-) on this line to indicate that there is no link for this ad.

altText

Alternate text that is displayed if the browser does not support graphics, or has its
graphics capabilities turned off.

impressions

A number between 0 and 10000 that indicates the relative weight of the
advertisement.

274 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
For example, if a rotator schedule file contains three ads with impressions set to 2, 3,
and 5, the first advertisement is displayed 20 percent of the time, the second 30
percent of the time, and the third 50 percent of the time.

Remarks: ASP Ad Rotator Component Rotator Schedule File

If the sum of the impressions parameters for all items exceeds 10000, an error will be
generated the first time the rotator schedule file is accessed by a call to the
GetAdvertisement method.

Example: ASP Ad Rotator Component Rotator Schedule File

The following script demonstrates the use of a rotator schedule file to display a
variety of advertisements, and how to include a redirection file.

REDIRECT /scripts/adredir.asp

WIDTH 440

HEIGHT 60

BORDER 1

*

http://kabaweb/ads/homepage/chlogolg.gif

http://www.bytecomp.com/

Check out the ByteComp Technology Center

20

http://kabaweb/ads/homepage/gamichlg.gif

-

Sponsored by Flyteworks

20

http://kabaweb/ads/homepage/ismodemlg.gif

http:// www.proelectron.com/

28.8 internal PC modem, only $99

80

http://kabaweb/ads/homepage/spranklg.gif

http://www.clocktower.com/

The #1 Sports site on the net

10

ASP COMPONENT REFERENCE 275

 .
. .
ASP Ad Rotator Component Redirection File
The redirection file is a file that you create. It usually includes script to parse the
query string sent by the AdRotator object, and to redirect the user to the URL
associated with the advertisement he or she clicked.

Script can also be included in the redirection file to count the number of users that
have clicked on a particular advertisement, and then save this information to a file
on the server.

Example: ASP Ad Rotator Component Redirection File

The following example redirects the user to the advertiser’s home page.

---ADREDIR.ASP---

<% Response.Redirect(Request.QueryString("url")) %>

ASP Ad Rotator Component Properties
The Ad Rotator component exposes the properties listed below:

� Border

� Clickable

� TargetFrame

ASP Ad Rotator Component Border Property

The Border property specifies whether advertisements should be displayed with a
border.

Syntax: ASP Ad Rotator Component Border Property

Border = size

Parameters: ASP Ad Rotator Component Border Property

size

Specifies the thickness of the border that surrounds the displayed advertisement. The
default is the value set in the header of the rotator schedule file. 0 specifies no border.

ASP Ad Rotator Component Clickable Property

The Clickable property specifies whether advertisements are to be displayed as
hyperlinks.

276 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Ad Rotator Component Clickable Property

Clickable = value

Parameters: ASP Ad Rotator Component Clickable Property

value

Specifies whether the advertisement should be a hyperlink. This parameter can be set
to TRUE or FALSE. If FALSE, only the image is displayed without a click-through
hyperlink. The default value is TRUE.

ASP Ad Rotator Component TargetFrame Property

The TargetFrame property specifies the target frame into which the link should be
loaded. This property fulfills the same function as the TARGET parameter in an HTML
anchor statement.

Syntax: ASP Ad Rotator Component TargetFrame Property

TargetFrame = frame

Parameters: ASP Ad Rotator Component TargetFrame Property

frame

Specifies the name of the frame in which to display the advertisement. This
parameter can also be one of the HTML frame keywords, such as _TOP, NEW, CHILD,
_SELF, _PARENT, or _BLANK. The default value is NO FRAME.

ASP Ad Rotator Component Methods
The Ad Rotator component provides the following method:

� GetAdvertisement

ASP Ad Rotator Component GetAdvertisement Method

The GetAdvertisement method retrieves the next advertisement from the rotator
schedule file. Each time the script is run, such as when a user opens or refreshes a
page, the method retrieves the next scheduled advertisement.

Arguments: ASP Ad Rotator Component GetAdvertisement Method

rotationSchedulePath Specifies the location of the rotator schedule file relative to the
virtual directory. For example, if the physical path is
C:\Inetpub\wwwroot\ads\adrot.txt (where wwwroot is the "/"
virtual directory), you would specify the path /ads/adrot.txt.

ASP COMPONENT REFERENCE 277

 .
. .
Return Values: ASP Ad Rotator Component GetAdvertisement Method

Returns HTML that displays the advertisement in the current page.

Example: ASP Ad Rotator Component GetAdvertisement Method

The following example gets an advertisement from the adrot.txt file in the /ads/
virtual directory.

<% Set NextAd = Server.CreateObject("MSWC.AdRotator") %>

<%= NextAd.GetAdvertisement("/ads/adrot.txt") %>

Example: ASP Ad Rotator Component GetAdvertisement Method HTML
Output

Assuming the following fragment of a redirection file is chosen by the control:

REDIRECT /foo/bar.asp

WIDTH 300

HEIGHT 40

BORDER 1

*

/ads/picture.gif

http://www.chilisoft.com/info/index.html

Hello from Chilisoft.

90

The HTML output is:

<A HREF=
"/foo/bar.asp?url=http://www.chilisoft.com/info/index.html&image=/ads/
picture.gif TARGET="_blank">

<IMG SRC="/ads/picture.gif" ALT="Hello from Chilisoft" WIDTH=300
HEIGHT=40 BORDER=1>

The redirect script "foo/bar.asp" is invoked and can record click-through information
before redirecting the client browser to the user’s desired location.

278 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. ASP Browser Capabilities Component
The Browser Capabilities component determines which features a browser supports.
This component uses two files: browscap.ini and browscap.dll (libchilicap.so and
libchilicap.ini on UNIX).

Syntax: ASP Browser Capabilities Component
Set BrowserType = Server.CreateObject("MSWC.BrowserType")

The parameters are as follows:

BrowserType

Specifies the name of the object created by the call to Server.CreateObject.

Remarks: ASP Browser Capabilities Component
When a client requests a page from the server, the HTTP header includes a User Agent
ASCII string that specifies the browser software name and version. The Browser
Capabilities component searches for this string in the Browser Capabilities
component Browsecap.ini file. When it finds a match, the properties of the client
browser are read and the server adopts the properties of the browser.

The following table lists the minimum set of properties that ASP always checks.

Property Description

ActiveXControls Support for Active X Controls

Backgroundsounds Support for background sounds

Beta Browser beta software

Browser Browser name

Cookies Support for cookies

Frames Support for frames

Javaapplets Support for Java applets

Javascript Support for JavaScript

Majorver Major version number of the browser

Minorver Minor version number of the browser

Parent Parent browser (as defined in browscap.ini)

Platform User's operating system

Tables Support for HTML tables

Vbscript Support for VBScript

ASP COMPONENT REFERENCE 279

 .
. .
Browsecap.ini File: ASP Browser Capabilities Component
The browscap.ini file (called libchilicap.ini on UNIX) contains information about
each known browser. It is a standard text file that lists the features a browser
supports. The browscap.ini file maps browser capabilities to the HTTP User Agent
header.

Be sure to keep your browscap.ini or libchilicap.ini file up to date. When new
browsers are released their capabilities are unknown to the current file, and pages
that rely on browser detection may fail. You can obtain updates to browscap.ini at:

http://www.cyscape.com/browscap/

To use the browscap.ini file on UNIX, you must convert the text file to UNIX format
and rename it "libchilicap.ini." You should rename your existing libchilicap.ini file
"libchilicap.old" before installing the updated version.

You can also maintain the browscap.ini file by editing it. A default section of the
browscap.ini file is used when the browser details don't match any of the ones
specified. If the browser in use doesn't match any in the browscap.ini file, and no
default browser settings are specified, all properties are set as "UNKNOWN."

Note

The browscap.ini or libchilicap.ini file must be in the same directory as
browscap.dll or libchilicap.so.

To use the Browser Capabilities component, it is necessary to create an
instance of it and refer to its properties. To avoid having the browscap.ini file
accessed every time, read the value once and assign it to a variable:

Set objBCap = Server.CreateObject("MSWC.BrowserType")

Syntax: Browsecap.ini File HTTPUserAgentHeader Section

The HTTPUserAgentHeader section of browscap.ini (libchilicap.ini on UNIX) defines
the properties for a particular browser. The syntax is as follows:

[HTTPUserAgentHeader]

parent = browserDefinition

property1 = value 1

property2 = value 2

.

.

.

Version Full version number of the browser

Property Description

http://www.cyscape.com/browscap/

280 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
parent

Another definition contains more information for that browser.

value 1

A number used to map a capability for the first property listed.

value 2

A number used to map a capability for the second property listed.

Browsecap.ini File Default Section

The Default section of browscap.ini (libchilicap.ini on UNIX) lists the properties and
values to be used if the current browser isn't listed in its own section (or, if listed, not
all properties are supplied). The syntax for the default section of the browscap.ini file
is as follows:

[Default Browser Capability Settings]

defaultProperty1 = default value 1

defaultProperty2 = default value 2

.

.

.

default value 1

A number used to map a default capability for the first property listed.

default value 2

A number used to map a default capability for the second property listed.

Examples: Browsecap.ini File Default Section

This example shows some of the entries for Internet Explorer (IE) 5.0. Since it has no
parent line, the only properties it has (other than those defined in the default
section) are those explicitly defined:

[IE 5.0]

browser=IE

Version=5.0

majorver=#5

minorver=#0

frames=TRUE

tables=TRUE

cookies=TRUE

vbscript=TRUE

javascript=TRUE

ActiveXControls=TRUE

ASP COMPONENT REFERENCE 281

 .
. .
In the following example, IE 5.0 is specified as the parent for the browser. The
properties explicitly provided will replace, or add to, those values in the parent's
definition:

[Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)*]

parent=IE 5.0

platform=Windows 2000

version=5.0

minorver=01

[IE 5.0]

browser=IE

frames=TRUE

tables=TRUE

cookies=TRUE

backgroundsounds=TRUE

vbscript= TRUE

javascript= TRUE

. . .

To determine if a browser supports JavaScript, use the following code:

Set bc = Server.CreateObject("MSWC.BrowserType")

if bc.javascript = 0 then

 Response.Write "This browser does not support JavaScript."

else

 REM The browser supports JavaScript so simply continue.

end if

The following example determines if a browser supports tables:

Set bc = Server.CreateObject("MSWC.BrowserType")

if bc.tables = 0 then

 Response.Write "This browser does not support tables."

. . .

The following example uses the Browser Capabilities component to display a table
showing some of the capabilities of the current browser:

<% Set bc = Server.CreateObject("MSWC.BrowserType") %>

<table border=1>

<tr><td>Browser</td><td> <%= bc.browser %>

<tr><td>Version</td><td> <%= bc.version %> </td></tr>

<tr><td>Frames</td><td>

<% if (bc.frames = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></tr>

<tr><td>Tables</td><td>

282 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
<% if (bc.tables = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></tr>

<tr><td>BackgroundSounds</td><td>

<% if (bc.BackgroundSounds = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></tr>

<tr><td>VBScript</td><td>

<% if (bc.vbscript = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></tr>

<tr><td>JavaScript</td><td>

<% if (bc.javascript = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></tr>

</table>

. ASP Content Linking Component
The Content Linking component creates a NextLink object that manages a list of
URLs so that pages in a Web site can be treated like pages in a book. The Content
Linking component can be used to automatically generate and update tables of
contents and navigational links to previous and subsequent Web pages. This is ideal
for applications such as online newspapers and forum message listings.

The Content Linking component references a Content Linking List file that contains
the list of the linked Web pages. This list is stored on the Web server and must be
available on a Web server virtual path.

Registry Settings: ASP Content Linking Component
The Content Linking component does not use registry settings.

Syntax: ASP Content Linking Component
The Content Linking component is registered with the ProgId of "MSWC.NextLink."
The following VBScript excerpt creates an instance of the control.

Set cLinker = Server.CreateObject("MSWC.NextLink")

ASP COMPONENT REFERENCE 283

 .
. .
Examples: ASP Content Linking Component

The following example builds a table of contents.

<%

 Set NextLink = Server.CreateObject ("MSWC.NextLink")

 count = NextLink.GetListCount ("/data/nextlink.txt")

 I = 1

%>

<% Do While (I <= count) %>

<A HREF=" <%= NextLink.GetNthURL ("/data/nextlink.txt", I) %> ">

<%= NextLink.GetNthDescription ("/data/nextlink.txt", I) %>

<%

 I = (I + 1)

 Loop

%>

The following script adds the next-page and previous-page buttons to an HTML file.

<%

 Set NextLink = Server.CreateObject ("MSWC.NextLink")

 If (NextLink.GetListIndex ("/data/nextlink.txt") > 1)

 Then

%>

<A HREF=" <%= NextLink.GetPreviousURL ("/data/nextlink.txt") %> ">

Previous Page

<% End If %>

<A HREF=" <%= NextLink.GetNextURL ("/data/nextlink.txt") %> ">Next
Page

ASP Content Linking Component Content Linking List File
The Content Linking List file contains one line of text for each URL in the list. Each
line ends in a carriage return, and each item on a line is separated by a TAB character.

Syntax: ASP Content Linking Component Content Linking List File

Web-page-URL [text-description [comment]]

284 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Parameters: ASP Content Linking Component Content Linking List File

Web-page-URL

The virtual or relative URL of the Web page in the format filename or
directory\filename. Absolute URLs, those that start with http, //, or \\ are not
supported and will not be processed by methods such as GetNextURL and
GetListIndex. When building the content path, make sure that no collisions or
infinite loops can occur.

text-description

A value containing text that describes Web-page-URL.

comment

Explanatory text not processed by the component.

Example: ASP Content Linking Component Content Linking List File

The following text file creates a list of URLs that can be used by the Content Linking
component.

---NEXTLINK.TXT---

story1.htm Highlights from the Baseball Playoffs

story2.htm New Health Initiative Passes

story3.htm Hot Recipes for Cool Nights

story4.htm Nice Weather on the Way

story5.htm Reducing Stress on the Job

main.htm Return to the table of contents

ASP Content Linking Component Properties
None

ASP Content Linking Component Methods
The Content Linking component provides the following methods:

� GetListCount

� etListIndex

� GetNextDescription

� GetNextURL

� GetNthDescription

� GetNthURL

� GetPreviousDescription

ASP COMPONENT REFERENCE 285

 .
. .
� GetPreviousURL

ASP Content Linking Component GetListCount Method

The GetListCount method retrieves the total number of Web pages listed in the
Content Linking List file.

Arguments: ASP Content Linking Component GetListCount Method

Return Values: ASP Content Linking Component GetListCount Method

This method returns an integer.

ASP Content Linking Component GetListIndex Method

The GetListIndex method retrieves the index number of the current item in the
Content Linking List file.

Arguments: ASP Content Linking Component GetListIndex Method

Return Values: ASP Content Linking Component GetListIndex Method

The GetListIndex method returns an integer index value specifying the current
page’s position on the file list. The index number of the first item is 1. The method
returns 0 if the current page is not in the Content Linking List file.

ASP Content Linking Component GetNextDescription Method

The GetNextDescription method retrieves the text description of the next item in
the Content Linking List file.

Arguments: ASP Content Linking Component GetNextDescription Method

listURL The location of the Content Linking List file.

listURL The location of the Content Linking List file.

listURL The location of the Content Linking List file.

286 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Return Values: ASP Content Linking Component GetNextDescription
Method

The GetNextDescription method returns an ASCII string describing the next item
in the Content Linking List file. If the current page is not found in the list file,
GetNextDescription returns the string description of the last page on the list.

ASP Content Linking Component GetNextURL Method

The GetNextURL method retrieves the URL of the next item in the Content Linking
List file.

Arguments: ASP Content Linking Component GetNextURL Method

Return Values: ASP Content Linking Component GetNextURL Method

This method returns the URL of the next page specified in the Content Linking List
file. If the current page is not specified in the Content Linking List file, GetNextURL
returns the URL of the last page on the list.

Example: ASP Content Linking Component GetNextURL Method

The following example uses the GetNextURL method to embed a link to the next
page in the Content Linking List file. The advantage of using GetNextURL is that
when you change the order or number of the content pages, you only need to update
the list in the Content Linking List file and do not need to update the navigational
links on each page.

<% Set NextLink = Server.CreateObject ("MSWC.NextLink") %>

<A HREF="<%= NextLink.GetNextURL ("/data/nextlink.txt") %>">Next Page

ASP Content Linking Component GetNthDescription Method

The GetNthDescription method retrieves a text description of the Nth item in the
Content Linking List file.

Arguments: ASP Content Linking Component GetNthDescription Method

listURL The location of the Content Linking List file.

listURL The location of the Content Linking List file.

index The index number of an item in the Content Linking List file.

ASP COMPONENT REFERENCE 287

 .
. .
Return Values: ASP Content Linking Component GetNthDescription Method

This method returns a string.

ASP Content Linking Component GetNthURL Method

The GetNthURL method returns the URL of the Nth item in the Content Linking
List file.

Arguments: ASP Content Linking Component GetNthURL Method

Return Values: ASP Content Linking Component GetNthURL Method

This method returns a string.

ASP Content Linking Component GetPreviousDescription Method

The GetPreviousDescription method retrieves a text description of the previous
item in the Content Linking List file.

Arguments: ASP Content Linking Component GetPreviousDescription
Method

Return Values: ASP Content Linking Component GetPreviousDescription
Method

This method returns a string describing either the previous item in the Content
Linking List file or, if the current page is not in the file, the first item on the list.

ASP Content Linking Component GetPreviousURL Method

The GetPreviousURL method returns the URL of the previous item in the Content
Linking List file.

Arguments: ASP Content Linking Component GetPreviousURL Method

listURL The location of the Content Linking List file.

index The index number of an item in the Content Linking List file.

listURL The location of the Content Linking List file.

listURL The location of the Content Linking List file.

288 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Return Values: ASP Content Linking Component GetPreviousURL Method

This method returns a string containing the URL of the previous item in the Content
Linking List file. If the current page is not specified in the Content Linking List file,
GetPreviousURL returns the URL of the first page in the file.

. ASP Content Rotator Component
The Content Rotator component creates a ContentRotator object that
automatically rotates HTML content strings on a Web page. Each time a user requests
the Web page, the object retrieves or displays a new HTML content string based upon
information specified in a Content Schedule file.

Because the content strings can contain HTML tags, you can display any type of
content that HTML can represent: text, images, or hyperlinks. For example, you can
use this component to rotate through a list of daily quotations or hyperlinks, or to
change text and background colors each time the Web page is opened.

Because the ContentRotator object uses a random generator to select which of the
weighted content strings is displayed, a string may be repeated. This is most likely to
occur if there are few entries in the Content Schedule file, or if one entry is weighted
much higher than the others.

Registry Settings: ASP Content Rotator Component
The ASP Content Rotator component does not use registry settings.

Syntax: ASP Content Rotator Component
The Content Rotator component is registered with the ProgId of
"MSWC.ContentRotator." The following VBScript creates an instance of the control.

Set NextTip = Server.CreateObject("MSWC.ContentRotator")

ASP Content Rotator Component Content Schedule File
The Content Schedule file contains information that the ContentRotator object
uses to manage and display the specified content. In this file you include any number
of HTML content string entries. Each entry consists of two parts: a line that begins
with double percentage signs (%%) and contains both the relative weight and any
comments, and a second part that contains the HTML content string itself.

ASP COMPONENT REFERENCE 289

 .
. .
Syntax: ASP Content Rotator Component Content Schedule File

%% [#Weight] [//Comments]

ContentString

Parameters: ASP Content Rotator Component Content Schedule File

The Content Rotator component Content Schedule file parameters are listed below.

Weight

This optional parameter specifies a number between 0 and 10000 that indicates the
relative weight of the HTML content string. The probability of a particular content
string being displayed by the ContentRotator object can be expressed as the Weight
of that content string divided by the sum of Weight values for all entries in the
Content Schedule file.

For example, if a Content Schedule file contains three content strings with respective
weights of 1, 3, and 4, the Content Rotator displays the first content string one-
eighth of the time, the second string three-eighths of the time, and the third string
half of the time.

A Weight of 0 will cause a content entry to be ignored.

If Weight is not specified, the default value is 1.

If the sum of all weight values exceeds 10000, an error will be generated when the
schedule file is accessed by a call to either the GetAllContent or ChooseContent
methods.

Comments

This optional parameter contains comments about the entry. These comments are for
development use only and are not displayed to the user. If you require more than one
line of comments, you must start each additional comment line with a line delimiter
(%%) followed by a comment delimiter (//).

ContentString

This is the HTML content that the ContentRotator object displays. For example,
you can present a line of text, an image, or a sound.

ContentString may include one or more lines. The ContentRotator object treats
everything between blocks of double percentage signs (%%) as a single HTML content
string.

Example: ASP Content Rotator Component Content Schedule File
Parameters

Following is an example of a Content Schedule file.

290 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

Because the content strings can contain HTML tags, you can display any type
of content that can be represented with HTML, including text, images, and
hyperlinks.

-------------Content.txt--------------------

%% // Because no value is set for Weight, the default value is 1.

Don’t run with scissors.

%% #2 // Content can be more than one line long.

%% // Additional line of comments.

%% // Yet another line of comments.

 Let a

 <H1>smile</H1>

 be your umbrella.

%% #3 // This is our favorite image, so show it most often.

%%

Here’s the secret link.

ASP Content Rotator Component Properties
None

ASP Content Rotator Component Methods
The Content Rotator component provides the following methods:

� ChooseContent

� GetAllContent

ASP Content Rotator Component ChooseContent Method

The ChooseContent method retrieves an HTML content string from the Content
Schedule file. The method retrieves a new content string each time the script is run,
such as when a user opens or reloads a page.

ASP COMPONENT REFERENCE 291

 .
. .
Arguments: ASP Content Rotator Component ChooseContent Method

This parameter can be specified either as a relative or virtual path. For example, if the
Content Schedule file, Content.txt, and the .asp file that called ChooseContent
both reside in the directory /MyApp/Tips/, where MyApp is a virtual directory on the
server, then either the full virtual path (/MyApp/Tips/Content.txt) or the relative
path (Content.txt) could be specified for content-schedule-path.

The ContentRotator object calls the Server.MapPath method to map the
specified path to a physical directory. For more information, see “ASP Server Object
MapPath Method” on page 258.

Return Value: ASP Content Rotator Component ChooseContent Method

Returns an HTML content string from the Content Schedule file.

Example: ASP Content Rotator Component ChooseContent Method

The following example gets a new tip from the Content.txt file in the /Tips/ virtual
directory.

<%

 Set NextTip = Server.CreateObject("MSWC.ContentRotator")

 Tip = NextTip.ChooseContent("/MyApp/Tips/Content.txt")

 Response.Write Tip

%>

ASP Content Rotator Component GetAllContent Method

The GetAllContent method retrieves all HTML content strings from the Content
Schedule file and writes them directly to the Web page as a list with an <HR> tag after
each entry.

This method is typically used during authoring, to proofread the Content Schedule
file.

Arguments: ASP Content Rotator Component GetAllContent Method

This parameter can be specified as a relative or virtual path. For example, if the
Content Schedule file, Content.txt, and the .asp file that called GetAllContent both
reside in the directory /MyApp/Tips/, where MyApp is a virtual directory on the
server, then either the full virtual path (/MyApp/Tips/Content.txt) or the relative
path (Content.txt) could be specified for content-schedule-path.

content-schedule-
path

Specifies the location of the Content Schedule file.

content-
schedule-path

Specifies the location of the Content Schedule file.

292 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
The ContentRotator object calls the Server.MapPath method to map the
specified path to a physical directory. For more information, see “ASP Server Object
MapPath Method” on page 258.

Remarks: ASP Content Rotator Component GetAllContent Method

The Content Rotator component uses the Response.Write method to write output
directly to the .asp page that called the GetAllContent method. For more
information, see “ASP Response Object Write Method” on page 250.

Examples: ASP Content Rotator Component GetAllContent Method

The following example uses the GetAllContent method to display all entries in the
Content Schedule file.

<H1>Tips Stored in the Content Schedule File:</H1>

<%

 Set Tips = Server.CreateObject("MSWC.ContentRotator")

 Tips.GetAllContent("/MyApp/Tips/Content.txt")

%>

The preceding example produces HTML output such as the following:

<H1>Tips Stored in the Content Schedule File:</H1>

<HR>

Don’t run with scissors.

<HR>

 Let a

 <H1>smile</H1>

 be your umbrella.

<HR>

<HR>

Here’s the secret link.

<HR>

ASP COMPONENT REFERENCE 293

 .
. .
. ASP Counters Component
The Counters component creates a Counters object that can create, store,
increment, and retrieve any number of individual counters.

A counter is a persistent value that contains an integer. You can manipulate a counter
with the Get, Increment, Set, and Remove methods of the Counters object.
Once you create the counter, it persists until it is removed.

Counters do not automatically increment on an event like a page hit. You must
manually set or increment counters using the Set and Increment methods.

Counters are not limited in scope. Once you create a counter, any page on your site
can retrieve or manipulate its value. For example, if you increment and display a
counter named hits in a page called Page1.asp, and you increment hits in another
page called Page2.asp, both pages will increment the same counter. If you hit
Page1.asp and increment hits to 34, hitting Page2.asp will increment hits to 35. The
next time you hit Page1.asp, hits will increment to 36.

All counters are stored in a single text file, Counter.txt.

Only create one Counters object in your site. This single Counters object can
create any number of individual counters.

Registry Settings: ASP Counters Component
The Counters component does not use registry settings.

Syntax: ASP Counters Component
The Counters control is registered with the ProgId of "MSWC.Counters." Create the
Counters object one time on your site by adding the following to the global.asa file:

<OBJECT

RUNAT=Server

SCOPE=Application

ID=Counter

PROGID="MSWC.Counters">

</OBJECT>

ASP Counters Component Properties
None

294 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Counters Component Methods
The Counters component provides the following methods:

� Get

� Increment

� Remove

� Set

ASP Counters Component Get Method

The Get method takes the name of a counter and returns the current value of the
counter. If the counter doesn’t exist, the method creates it and sets it to 0.

Arguments: ASP Counters Component Get Method

Examples: ASP Counters Component Get Method

Display the value of a counter with:

<%= Counters.Get(CounterName) %>

Assign the value of the counter to a variable with:

<% countervar = Counters.Get(CounterName) %>

The following script displays the vote tally from a poll about favorite colors.

<%

 If colornumber = "1" Then

 Counters.Increment("greencounter")

 Else

 If colornumber = "2" Then

 Counters.Increment("bluecounter")

 Else

 If colornumber = "0" Then

 Counters.Increment("redcounter")

 End If

 End If

 End If

%>

<P>Current vote tally:

<P>red: <% = Counters.Get("redcounter") %>

<P>green: <% = Counters.Get("greencounter") %>

CounterName A string containing the name of the counter.

ASP COMPONENT REFERENCE 295

 .
. .
<P>blue: <% = Counters.Get("bluecounter") %>

ASP Counters Component Increment Method

The Increment method takes the name of a counter, adds 1 to the current value of
the counter, and returns the counter's new value. If the counter doesn't exist, the
method creates it and sets its value to 1.

Arguments: ASP Counters Component Increment Method

Examples: ASP Counters Component Increment Method

Increment the value of a counter with:

<% Counters.Increment(CounterName) %>

Increment and display the value of a counter with:

<%= Counters.Increment(CounterName) %>

To retrieve the value of a counter, use Counters.Get. To set a counter to a specific
value, use Counters.Set.

The following code implements a one-line page-hit counter.

<P>There have been <%= Counters.Increment("hits") %> visits to this
Web page. </P>

In this example, Counters.Increment increases the counter by one each time the
client requests the page from the server.

ASP Counters Component Remove Method

The Remove method takes the name of a counter, removes the counter from the
Counters object, and deletes the counter from the Counter.txt file.

Arguments: ASP Counters Component Remove Method

Example: ASP Counters Component Remove Method

The following code removes the counter hitscounter from the Counter.txt file.

<% Counters.Remove(hitscounter) %>

CounterName A string containing the name of the counter.

CounterName A string containing the name of the counter.

296 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP Counters Component Set Method

The Set method takes the name of a counter and an integer, sets the counter to the
value of the integer, and returns the new value. If the counter doesn’t exist,
Counters.Set creates it and sets it to the value of the integer.

Arguments: ASP Counters Component Set Method

Example: ASP Counters Component Set Method

The following code resets the hit counter pageHits to 0:

<% Counters.Set(pageHits, 0) %>

. ASP MyInfo Component
The MyInfo component creates a MyInfo object that keeps track of personal
information, such as the site administrator's name, address, and display choices. The
administrator typically types this information directly into the Web server interface.
However, the values of the properties can be set directly by using a script in an ASP
page.

Note

Sun ONE ASP does not implement the default properties available under
Windows Personal Web Services.

Each property of a MyInfo object returns a string. If a MyInfo property has no
value set, the property returns an empty string.

Create new MyInfo properties for values that remain consistent throughout a site.
You can create new MyInfo properties by simply assigning a string value to them.
The following example creates the new properties DogName and DogBreed. These
new properties are stored persistently along with other MyInfo properties.

<%

 MyInfo.DogName = "Snoopy"

 MyInfo.DogBreed = "Beagle"

%>

The values of MyInfo properties are stored in the text file, libmyinfo.ini. On UNIX
systems, this file is located in [C-ASP_INSTALL_DIR]/server/lib/sunos5_optimized
(platform-specific), where [C-ASP_INSTALL_DIR] is the complete directory path of
the Sun ONE ASP installation directory.

CounterName A string containing the name of the counter.

int The new integer value for CounterName.

ASP COMPONENT REFERENCE 297

 .
. .
The Sun ONE ASP implementation of the MyInfo component is compatible with the
MyInfo.xml file produced by the Microsoft implementation; however, Microsoft
implements the text file as an XML file, while Sun ONE ASP does not.

Registry Settings: ASP MyInfo Component
The MyInfo component does not use registry settings.

Syntax: ASP MyInfo Component
The MyInfo component is registered with the ProgID of "MSWC.MyInfo."

The following code in the global.asa file creates one instance of the MyInfo object.
In this example, the object is given session scope, but a MyInfo object could also be
given application scope:

<OBJECT

RUNAT=Server

SCOPE=Session

ID=MyInfo

PROGID="MSWC.MyInfo">

</OBJECT>

ASP MyInfo Component Properties
The Sun ONE implementation does not implement the default properties available
under Windows Personal Web Services. You create your own properties as described
in this section.

ASP MyInfo Component Methods
None

. ASP Tools Component
The Tools component creates a Tools object that provides utilities that enable you to
easily add sophisticated functionality to your Web pages.

Registry Settings: ASP Tools Component
The Tools component does not use registry settings.

298 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Syntax: ASP Tools Component
The Tools component is registered with the ProgId of "MSWC.Tools." The following
VBScript excerpt creates an instance of the control.

Set Tools = Server.CreateObject("MSWC.Tools")

The Tools component exposes the following properties and methods.

ASP Tools Component Properties
None

ASP Tools Component Methods
The Tools component provides the following methods:

� FileExists

� Owner

� PluginExists

� ProcessForm

� Random

ASP Tools Component FileExists Method

The FileExists method checks the existence of a file. It returns TRUE if the specified
URL exists within a published directory, and FALSE if the file does not exist.

Arguments: ASP Tools Component FileExists Method

Remarks: ASP Tools Component FileExists Method

FileExists only checks the existence of files published on your site. Therefore, it
takes a relative URL rather than an absolute URL.

URL A string that specifies the relative URL of the file you are checking.

ASP COMPONENT REFERENCE 299

 .
. .
Example: ASP Tools Component FileExists Method

The following example demonstrates using the FileExists property to create a link if
a particular file is present.

<% If Tools.FileExists("ie_animated.gif") Then %>

 <p> <img
src="ie_animated.gif">

<% End If %>

ASP Tools Component Owner Method

The Sun ONE ASP implementation of this method always returns False.

ASP Tools Component PluginExists Method

The Sun ONE ASP implementation of this method always returns False.

ASP Tools Component ProcessForm Method

The ProcessForm method processes the contents of a form that has been submitted
by a visitor to the Web site.

Arguments: ASP Tools Component ProcessForm Method

Remarks: ASP Tools Component ProcessForm Method

The template files can contain ASP scripts. A script between <% and %> delimiters is
treated just like other text in the template and copied into the output file. If the
output file is an ASP document, the script will run when the output file is accessed.
Scripts in template files can also be put between special <%% and %%> delimiters, which
cause the script to execute while Tools.ProcessForm is executing. Since these
scripts are executed before the template data is saved in the output file, the results get
saved in the output file, usually as standard text.

The scripts can use any of the ASP built-in objects for the page executing the
ProcessForm method except the Response objects. Instead, the miniscripts have
their own Response objects with implementations of Write and BinaryWrite that
write to the output file instead of the Web server output stream.

OutputFileURL A string containing the relative URL of the file to which the
processed data is written.

TemplateURL A string containing the relative URL of the file that contains the
template, or instructions, for processing the data.

InsertionPoint An optional parameter indicating where in the output file to insert
the process data. This parameter has not been implemented. If you
include a value for this parameter it will be ignored.

300 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
If the InsertionPoint parameter does not exist, Tools.ProcessForm replaces the entire
output file. If the InsertionPoint parameter exists, and does not begin with an asterisk
(*), Tools.ProcessForm finds the InsertionPoint string in the output file and inserts
the data immediately after it. If the InsertionPoint string begins with an asterisk (*),
Tools.ProcessForm finds the InsertionPoint string in the output file and inserts the
data immediately before it. If the InsertionPoint string exists, but is not found in the
output file, the data is appended to the end of the file.

InsertionPoint is not supported in this release of Sun ONE ASP.

Example: ASP Tools Component ProcessForm Method

The following code demonstrates calling an .asp file to process a form.

<%

Tools.ProcessForm("/$Received
Messages/default.asp","MessageInsert.process")

%>

ASP Tools Component Random Method

The Random method returns an integer between –32768 and 32767.

Arguments: ASP Tools Component Random Method

None

Remarks: ASP Tools Component Random Method

This method is similar to the Rnd function, but returns an integer. To get a positive
random integer, use the Abs function. To get a random integer below a specific value,
use the Mod function.

Example: ASP Tools Component Random Method

<% = Tools.Random %> displays a random integer between -32768 to 32767.

For example, -13067.

<% = (Abs(Tools.Random)) %> displays a positive random integer.

For example, 23054.

<% = (Abs(Tools.Random)) Mod 100 %> displays a random integer

between 0 and 99. For example, 63.

. .

 .

. .11 ADO Component Reference

Sun ONE Active Server Pages includes ActiveX Data Objects (ADO) for connecting
ASP applications to databases. ADO is a set of objects that provide a mechanism to
access information from ODBC-compliant data sources.

This chapter provides ADO reference information.

In this chapter:

“ADO Overview” on page 301

“ADO Objects” on page 302

“ADO Collections” on page 453

. ADO Overview
The implementation of ADO used with Sun ONE ASP is called ADODB. ADO enables
client applications to access and manipulate data in a database server from a variety
of different vendors in the same manner. With ADO, data is updated and retrieved
using a variety of existing methods (including SQL). In the context of ASP, using ADO
typically involves writing script procedures that interact with a database and use
HTML to display information from data sources.

In ADO, the Recordset object is the main interface to data. An example of the
minimal VBScript code to generate a recordset from an ODBC data source is as
follows:

set rstMain = CreateObject("ADODB.Recordset")

rstMain.Open "SELECT * FROM authors", _

"DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"

This generates a forward-only, read-only Recordset object useful for scanning data.
A slightly more functional recordset can be generated as follows:

set rstMain = CreateObject("ADODB.Recordset")

rstMain.Open "SELECT * FROM authors", _

"DATABASE=pubs;UID=sa;PWD=;DSN=Publishers",

adOpenKeyset, adLockOptimistic

This creates a fully scrollable and updateable recordset.

Note

Adovbs.inc & Adojavas.inc: For applications that use VBScript (for example,
Active Server Pages), you must include the Adovbs.inc file in your code in
order to call ADO constants by name (use Adojavas.inc for JScript). Always

302 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
refer to constants by name rather than by value since the values may change
from one version to the next.

Note

Updatable Cursor support: Microsoft and Sun use the Positioned Update and
Positioned SQL features of ODBC to implement the AddNew, Update, and
Delete methods of the ADO Recordset Object . For some of the supplied
ODBC drivers these features are not implemented at all (MySQL, PostgreSQL).
For these drivers, Sun uses the implementation of updatable cursors in the
ODBC Manager to supply the missing functionality. This works well for
recordsets whose fields contain string or numeric data as well as a primary
key, auto-increment, or timestamp fields. However, in recordsets containing
binary fields or recordsets with duplicate rows, updates, inserts and deletes
should be done using the Execute method of the Connection object.
Connection.Execute will execute any SQL statement recognized by the
database regardless of the capabilities of the ODBC driver.

Note

Linux and multiple SELECT statements: On Linux, ADO does not support
stored procedures with multiple SELECT statements.

In ADO, the object hierarchy is de-emphasized. Unlike Data Access Objects (DAO) or
Remote Data Objects (RDO), you do not have to navigate through a hierarchy to
create objects, because most ADO objects can be independently created. This allows
you to create and track only the objects you need. This model also results in fewer
ADO objects, and thus a smaller working set.

ADO supports the following key features for building client/server and Web-based
applications:

� Independently created objects.

� Support for stored procedures with in/out parameters and return values.

� Different cursor types, including the potential for support of back-end-
specific cursors.

� Advanced recordsetcache management.

� Support for limits on number of returned rows and other query goals.

. ADO Objects
ADO provides two objects for managing connections with data sources (Connection
and Command), two objects for managing the data returned from a data source
(Field and Recordset) and three secondary objects (Parameters, Properties, and
Errors) for managing information about ADO.

ADO COMPONENT REFERENCE 303

 .
. .
Note

ADO objects cannot be stored in application variables.

ADO Command Object
The Command object defines a specific command to execute against a data source.

ADO Command Object Collections

Object Description

“ADO Command Object”
on page 303

Defines a specific command to execute against a data source.

“ADO Connection Object”
on page 318

Represents an open connection to a data source.

“ADO Error Object” on
page 346

Provides specific details about each ADO error.

“ADO Field Object” on
page 351

Represents a column of data with a common data type.

“ADO Parameter Object”
on page 364

Represents a parameter or argument associated with a
Command object based on a parameterized query or stored
procedure.

“ADO Property Object” on
page 373

Represents a dynamic characteristic of an ADO object that is
defined by the provider. This object is not currently supported on
UNIX.

“ADO Recordset Object”
on page 379

Represents the entire set of records from a database table or the
results of an executed command.

Collection Description

“ADO Parameters Collection” on
page 455

Contains all the Parameter objects of a Command
object.

“ADO Properties Collection” on
page 456

Contains all the Property objects for a specific instance
of a Command object. This collection is not currently
supported on UNIX.

304 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Command Object Methods

ADO Command Object CreateParameter Method

Creates a new Parameter object with the specified properties.

CreateParameter Method Syntax (ADO Command Object)

Set parameter = command.CreateParameter (

 Name, Type, Direction, Size, Value)

CreateParameter Method Parameters (ADO Command Object)

parameter

The new ADO Parameter Object.

Name

An optional String representing the name of the Parameter object.

Type

An optional Long value specifying the data type of the Parameter object. See the
“ADO Parameter Object Type Property” on page 370 for valid settings.

Direction

An optional Long value specifying the type of Parameter object. See the “ADO
Parameter Object Direction Property” on page 368 for valid settings.

Size

An optional Long value specifying the maximum length for the parameter value in
characters or bytes.

Value

An optional varValue specifying the value for the Parameter object.

CreateParameter Method Return Value (ADO Command Object)

Returns a Parameter object.

Method Description

“ADO Command Object
CreateParameter Method” on page
304

Creates a new Parameter object with the specified
properties.

“ADO Command Object Execute
Method” on page 305

Executes the query, SQL statement, or stored procedure
specified in the CommandText property.

ADO COMPONENT REFERENCE 305

 .
. .
CreateParameter Method Remarks (ADO Command Object)

Use the CreateParameter method to create a new ADO Parameter Object with the
specified name, type, direction, size, and value. Any values you pass in the arguments
are written to the corresponding Parameter properties.

This method does not automatically append the Parameter object to the ADO
Parameters Collection of a Command object. This lets you set additional properties
whose values ADO will validate when you append the Parameter object to the
collection.

If you specify a variable-length data type in the Type argument, you must either pass
a Size argument or set the ADO Parameter Object Size Property of the Parameter
object before appending it to the Parameters collection; otherwise, an error occurs.

CreateParameter Method Examples (ADO Command Object)

See the “ADO Collections Append Method” on page 456 example.

ADO Command Object Execute Method

Executes the query, SQL statement, or stored procedure specified in the
CommandText property.

Object Execute Method Syntax (ADO Command Object)

For a row-returning Command:

Set recordset = command.Execute(

 RecordsAffected, Parameters, Options)

For a non-row-returning Command:

command.Execute RecordsAffected, Parameters, Options

Object Execute Method Parameters (ADO Command Object)

RecordsAffected

An optional Long variable to which the provider returns the number of records that
the operation affected.

Parameters

An optional Variant array of parameter values passed with an SQL statement. (Output
parameters will not return correct values when passed in this argument.)

Options

An optional Long value that indicates how the provider should evaluate the
CommandText property of the Command object:

Constant Description

adCmdText The provider should evaluate CommandText as a textual definition of
a command, such as a SQL statement.

306 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See the “ADO Command Object CommandType Property” on page 313 for a more
detailed explanation of the four constants in this list.

Object Execute Method Remarks (ADO Command Object)

Using the Execute method on a Command object executes the query specified in
the CommandText property of the object. If the CommandText property
specifies a row-returning query, any results the execution generates are stored in a
new ADO Recordset Object. If the command is not a row-returning query, the
provider returns a closed Recordset object. Some application languages allow you to
ignore this return value if no recordset is desired.

If the query has parameters, the current values for the Command object's
parameters are used unless you override these with parameter values passed with the
Execute call. You can override a subset of the parameters by omitting new values for
some of the parameters when calling the Execute method. The order in which you
specify the parameters is the same order in which the method passes them. For
example, if there were four (or more) parameters and you wanted to pass new values
for only the first and fourth parameters, you would pass Array(var1,,,var4) as the
Parameters argument.

Note

Output parameters will not return correct values when passed in the
Parameters argument.

Object Execute Method Return Values (ADO Command Object)

Returns a Recordset object reference.

Object Execute Method Examples (ADO Command Object)

This VBScript example demonstrates the Execute method when run from both a
Command object and an ADO Connection Object. It also uses the ADO Recordset
Object Requery Method to retrieve current data in a recordset, and the ADO
Collections Clear Method to clear the contents of the ADO Errors Collection. The
ExecuteCommand and PrintOutput procedures are required for this procedure to run.

<!-- #Include file="ADOVBS.INC" -->

<HTML><HEAD>

<TITLE>ADO 1.5 Execute Method</TITLE></HEAD>

<BODY>

<Center><H3>ADO Execute Method</H3><H4>Recordset Retrieved Using

adCmdTable The provider should evaluate CommandText as a table name.

adCmdStoredProc The provider should evaluate CommandText as a stored procedure.

adCmdUnknown The type of command in CommandText is not known.

Constant Description

ADO COMPONENT REFERENCE 307

 .
. .
Connection Object</H4>

<TABLE WIDTH=600 BORDER=0>

<TD VALIGN=TOP ALIGN=LEFT COLSPAN=3>

<!--- Recordsets retrieved using Execute method of Connection and
Command Objects-->

<%

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

SQLQuery = "SELECT * FROM Customers"

'First Recordset RSCustomerList

Set RSCustomerList = OBJdbConnection.Execute(SQLQuery)

Set OBJdbCommand = Server.CreateObject("ADODB.Command")

Set OBJdbCommand.ActiveConnection = OBJdbConnection

SQLQuery2 = "SELECT * From Products"

OBJdbCommand.CommandText = SQLQuery2

Set RsProductList = OBJdbCommand.Execute

%>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact Name

</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

E-mail
address

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD></TR>

<!--Display ADO Data from Customer Table-->

<% Do While Not RScustomerList.EOF %>

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

308 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

RScustomerList.Close

%>

</TABLE><HR>

<H4>Recordset Retrieved Using Command Object</H4>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Product List Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#800000">

Product Type

</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Product Name

</TD>

<TD ALIGN=CENTER WIDTH=350 BGCOLOR="#800000">

Product
Description

ADO COMPONENT REFERENCE 309

 .
. .
</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Unit Price

</TD></TR>

<!-- Display ADO Data Product List-->

<% Do While Not RsProductList.EOF %>

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductType")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductDescription")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("UnitPrice")%>

</TD>

<!-- Next Row = Record -->

<%

RsProductList.MoveNext

Loop

'Remove objects from memory to free resources

RsProductList.Close

OBJdbConnection.Close

Set ObJdbCommand = Nothing

Set RsProductList = Nothing

Set OBJdbConnection = Nothing

%>

</TABLE></Center></BODY></HTML>

310 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Command Object Properties

ADO Command Object ActiveConnection Property

Specifies to which Connection object the specified Command object currently
belongs.

ActiveConnection Property Return Values (ADO Command Object)

Sets or returns a String containing the definition for a connection or a Connection
object. Default is a Null object reference.

ActiveConnection Property Remarks (ADO Command Object)

Use the ActiveConnection property to determine the Connection object over
which the specified Command object will execute.

For Command objects, the ActiveConnection property is read/write. If you
attempt to call the ADO Command Object Execute Method on a Command object
before setting this property to an open ADO Connection Object or valid connection
string, an error occurs. Setting the ActiveConnection property to Nothing
disassociates the Command object from the current Connection and causes the

Property Description

“ADO Command Object
ActiveConnection Property” on
page 310

The Connection object to which the specified
Command object currently belongs.

“ADO Command Object
CommandText Property” on page
312

The text of a command that you want to issue against a
provider.

“ADO Command Object
CommandTimeout Property” on
page 313

How long to wait while executing a command before
terminating the command and issuing an error.

“ADO Command Object
CommandType Property” on page
313

The type of Command object.

“ADO Command Object Name
Property” on page 314

The name of a specific Command object. This property
is not currently supported on UNIX.

“ADO Command Object Prepared
Property” on page 314

Whether or not to save a compiled version of a
command before execution. This property is not currently
supported on UNIX.

“ADO Command Object State
Property” on page 316

The current state of the Command object. This property
is not currently supported on UNIX.

ADO COMPONENT REFERENCE 311

 .
. .
provider to release any associated resources on the data source. You can then
associate the Command object with the same or another Connection object. Some
providers allow you to change the property setting from one Connection to
another, without having to first set the property to Nothing.

If the ADO Parameters Collection of the Command object contains parameters
supplied by the provider, the collection is cleared if you set the ActiveConnection
property to Nothing or to another Connection object. If you manually create ADO
Parameter Object objects and use them to fill the Parameters collection of the
Command object, setting the ActiveConnection property to Nothing or to
another Connection object leaves the Parameters collection intact.

Closing the Connection object with which a Command object is associated sets
the ActiveConnection property to Nothing. Setting this property to a closed
Connection object generates an error.

ActiveConnection Property Example (ADO Command Object)

This Visual Basic example uses the ActiveConnection, ADO Command Object
CommandText Property, CommandTimeout, ADO Command Object
CommandType Property, ADO Field Object ActualSize Property, and ADO Parameter
Object Direction Property properties to execute a stored procedure:

Public Sub ActiveConnectionX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Dim prmByRoyalty As ADODB.Parameter

Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

` Define a command object for a stored procedure.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set cmdByRoyalty = New ADODB.Command

Set cmdByRoyalty.ActiveConnection = cnn1

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

cmdByRoyalty.CommandTimeout = 15

` Define the stored procedure's input parameter.

intRoyalty = Trim(InputBox(_

"Enter royalty:"))

Set prmByRoyalty = New ADODB.Parameter

312 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
prmByRoyalty.Type = adInteger

prmByRoyalty.Size = 3

prmByRoyalty.Direction = adParamInput

prmByRoyalty.Value = intRoyalty

cmdByRoyalty.Parameters.Append prmByRoyalty

` Create a recordset by executing the command.

Set rstByRoyalty = cmdByRoyalty.Execute()

` Open the Authors table to get author names for display.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", strCnn, , , adCmdTable

` Print current data in the recordset, adding

` author names from Authors table.

Debug.Print "Authors with " & intRoyalty & _

" percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print , rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & _

rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

End Sub

ADO Command Object CommandText Property

Contains the text of a command that you want to issue against a provider.

CommandText Property Return Values

Sets or returns a String value containing a provider command, such as an SQL
statement, a table name, or a stored procedure call. Default is "" (zero-length string).

CommandText Property Remarks

Use the CommandText property to set or return the text of a Command object.
Usually, this will be an SQL statement, but can also be any other type of command
statement recognized by the provider, such as a stored procedure call. An SQL
statement must be of the particular dialect or version supported by the provider's
query processor.

ADO COMPONENT REFERENCE 313

 .
. .
If the ADO Command Object Prepared Property of the Command object is set to
True and the Command object is bound to an open connection when you set the
CommandText property, ADO prepares the query (that is, a compiled form of the
query is stored by the provider) when you call the ADO Command Object Execute
Method or ADO Connection Object Open Method methods. The Prepared property
is not currently supported on UNIX.

Depending on the ADO Command Object CommandType Property setting, ADO
may alter the CommandText property. You can read the CommandText property
at any time to see the actual command text that ADO will use during execution.

CommandText Property Example

See the ActiveConnection property.

ADO Command Object CommandTimeout Property

How long to wait while executing a command before terminating the attempt and
generating an error.

CommandTimeout Property Return Values (ADO Command Object)

Sets or returns a Long value that specifies, in seconds, how long to wait for a
command to execute. Default is 30.

CommandTimeout Property Remarks (ADO Command Object)

Use the CommandTimeout property on a Command object to allow the
cancellation of an ADO Command Object Execute Method call due to delays from
network traffic or heavy server use. If the interval set in the CommandTimeout
property elapses before the command completes execution, an error occurs and ADO
cancels the command. If you set the property to zero, ADO will wait indefinitely
until the execution is complete. Make sure the provider and data source to which you
are writing code supports the CommandTimeout functionality.

The CommandTimeout setting on a Connection object has no effect on the
CommandTimeout setting on a Command object on the same Connection; that
is, the Command object's CommandTimeout property does not inherit the value
of the Connection object's CommandTimeout value.

CommandTimeout Property Examples (ADO Command Object)

See the ActiveConnection property.

ADO Command Object CommandType Property

The type of a Command object.

CommandType Property Return Values (ADO Command Object)

Sets or returns one of the following CommandTypeEnum values:

314 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
CommandType Property Remarks (ADO Command Object)

Use the CommandType property to optimize evaluation of the ADO Command
Object CommandText Property.

If the CommandType property value equals adCmdUnknown (the default value),
you may experience diminished performance because ADO must make calls to the
provider to determine if the CommandText property is an SQL statement, a stored
procedure, or a table name. If you know what type of command you're using, setting
the CommandType property instructs ADO to go directly to the relevant code. If
the CommandType property does not match the type of command in the
CommandText property, an error occurs when you call the ADO Command Object
Execute Method.

CommandType Property Example (ADO Command Object)

See the ActiveConnection property.

ADO Command Object Name Property

The name of an object. This property is not currently supported on UNIX.

Name Property Return Values (ADO Command Object)

Sets or returns a String value. The value is read/write.

Name Property Remarks (ADO Command Object)

Use the Name property to assign a name to or retrieve the name of a Command
object.

ADO Command Object Prepared Property

Determines whether or not the provider saves a compiled version of a command
before execution. This property is not currently supported on UNIX.

Prepared Property Return Values

Sets or returns a Boolean value.

Constant Description

adCmdText Evaluates CommandText as a textual definition of a command.

adCmdTable Evaluates CommandText as a table name.

adCmdStoredProc Evaluates CommandText as a stored procedure.

adCmdUnknown (Default) The type of command in the CommandText property is
not known.

ADO COMPONENT REFERENCE 315

 .
. .
Prepared Property Remarks

Use the Prepared property to have the provider save a prepared (or compiled)
version of the query specified in the ADO Command Object CommandText Property
before a Command object's first execution. This may slow a command's first
execution, but once the provider compiles a command, the provider will use the
compiled version of the command for any subsequent executions, which will result
in improved performance.

If the property is False, the provider will execute the Command object directly
without creating a compiled version.

If the provider does not support command preparation, it may return an error as
soon as this property is set to True. If it does not return an error, it simply ignores
the request to prepare the command and sets the Prepared property to False.

Prepared Property Example

This Visual Basic example demonstrates the Prepared property by opening two
Command objects: one prepared and one not prepared.

Public Sub PreparedX()

Dim cnn1 As ADODB.Connection

Dim cmd1 As ADODB.Command

Dim cmd2 As ADODB.Command

Dim strCnn As String

Dim strCmd As String

Dim sngStart As Single

Dim sngEnd As Single

Dim sngNotPrepared As Single

Dim sngPrepared As Single

Dim intLoop As Integer

` Open a connection.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

` Create two command objects for the same

` command -- one prepared and one not prepared.

strCmd = "SELECT title, type FROM titles ORDER BY type"

Set cmd1 = New ADODB.Command

Set cmd1.ActiveConnection = cnn1

cmd1.CommandText = strCmd

Set cmd2 = New ADODB.Command

Set cmd2.ActiveConnection = cnn1

cmd2.CommandText = strCmd

316 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
cmd2.Prepared = True

` Set timer, then execute unprepared command 20 times.

sngStart = Timer

For intLoop = 1 To 20

cmd1.Execute

Next intLoop

sngEnd = Timer

sngNotPrepared = sngEnd - sngStart

` Reset the timer, then execute the prepared

` command 20 times.

sngStart = Timer

For intLoop = 1 To 20

cmd2.Execute

Next intLoop

sngEnd = Timer

sngPrepared = sngEnd - sngStart

` Display performance results.

MsgBox "Performance Results:" & vbCr & _

" Not Prepared: " & Format(sngNotPrepared, _

"##0.000") & " seconds" & vbCr & _

" Prepared: " & Format(sngPrepared, _

"##0.000") & " seconds"

cnn1.Close

End Sub

ADO Command Object State Property

Describes the current state of an object. This property is not currently supported on UNIX.

State Property Return Values (ADO Command Object)

Sets or returns a Long value that can be one of the following constants:

State Property Remarks (ADO Command Object)

You can use the State property to determine the current state of a given object at any
time.

Constant Description

adStateClosed The object is closed. Default.

adStateOpen The object is open.

ADO COMPONENT REFERENCE 317

 .
. .
ADO Command Object Remarks

A Command object is used to query a database, return records in a ADO Recordset
Object, execute bulk operations, or manipulate the structure of a database. It is a
definition of a specific command that you intend to execute against a data source.

The collections, methods, and properties of a Command object are used to:

� Define the executable text of the command (for example, an SQL statement)
with the ADO Command Object CommandText Property.

� Define parameterized queries or stored procedure arguments with ADO
Parameter Object objects and the ADO Parameters Collection.

� Execute a command and return a ADO Recordset Object if appropriate with
the ADO Command Object Execute Method.

� Specify the type of command with the ADO Command Object
CommandType Property prior to execution to optimize performance.

� Set the number of seconds a provider will wait for a command to execute
with the CommandTimeout property.

� Associate an open connection with a Command object by setting its
property.

� Set the ADO Command Object Name Property to identify the Command
object as a method on the associated ADO Connection Object.

� Pass a Command object to the ADO Recordset Object Source Property of an
ADO Recordset Object in order to obtain data.

To execute a query without using a Command object, pass a query string to the
ADO Connection Object Execute Method of an ADO Connection Object or to the
ADO Recordset Object Open Method of an ADO Recordset Object. However, a
Command object is required when you want to retain the command text and re-
execute it, or use query parameters.

To create a Command object independently of a previously defined Connection
object, set its ActiveConnection property to a valid connection string. ADO still
creates a Connection object, but it doesn't assign that object to an object variable.
However, if you are associating multiple Command objects with the same
connection, you should explicitly create and open a Connection object; this assigns
the Connection object to an object variable. If you do not set the Command
object’s ActiveConnection property to this object variable, ADO creates a new
Connection object for each Command object, even if you use the same
connection string.

To execute a Command, simply call it by its ADO Command Object Name Property
on the associated Connection object. The Command must have its
ActiveConnection property set to the Connection object. If the Command has
parameters, pass values for them as arguments to the method.

Depending on the functionality of the provider, some Command collections,
methods, or properties may generate an error when referenced.

318 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Connection Object
A Connection object represents an open connection to a data source.

ADO Connection Object Collections

ADO Connection Object Methods

ADO Connection Object Close Method

Closes an open object and any dependent objects.

Close Method Syntax (ADO Connection Object)

object.Close

Collection Description

“ADO Errors Collection” on
page 454

Contains all stored Error objects that pertain to an ADO
operation.

“ADO Properties Collection”
on page 456

All Property objects for a specific instance of a Connection
object. This collection is not currently supported on UNIX.

Method Description

“ADO Connection Object
Close Method” on page 318

Closes an open Connection object and any dependent
objects.

“ADO Connection Object
Execute Method” on page
322

Executes the specified query, SQL statement, stored procedure,
or provider-specified text.

“ADO Connection Object
Open Method” on page 327

Opens a connection to a data source.

“ADO Connection Object
OpenSchema Method” on
page 323

Obtains database schema information from the provider. This
method is not currently supported on UNIX.

“ADO Connection Object
BeginTrans, CommitTrans,
and RollbackTrans Methods”
on page 328

Cancels any changes made during the current transaction and
ends the transaction. It may also start a new transaction.

ADO COMPONENT REFERENCE 319

 .
. .
Close Method Remarks (ADO Connection Object)

Use the Close method to close a Connection object to free any associated system
resources. Closing an object does not remove it from memory; you may change its
property settings and open it again later. To completely eliminate an object from
memory, set the object variable to Nothing.

Using the Close method to close a Connection object also closes any active
Recordset objects associated with the connection. An ADO Command Object
associated with the Connection object you are closing will persist, but it will no
longer be associated with a Connection object; that is, its ActiveConnection
property will be set to Nothing. Also, the Command object's ADO Parameters
Collection will be cleared of any provider-defined parameters.

You can later call the ADO Connection Object Open Method to reestablish the
connection to the same or another data source. While the Connection object is
closed, calling any methods that require an open connection to the data source
generates an error.

Closing a Connection object while there are open ADO Recordset Object objects on
the connection rolls back any pending changes in all of the Recordset objects.
Explicitly closing a Connection object (calling the Close method) while a
transaction is in progress generates an error. If a Connection object falls out of scope
while a transaction is in progress, ADO automatically rolls back the transaction.

Close Method Examples (ADO Connection Object)

This VBScript example uses the Open and Close methods on both Recordset and
Connection objects that have been opened.

<!-- #Include file="ADOVBS.INC" -->

<HTML><HEAD>

<TITLE>ADO 1.5 Open Method</TITLE>

</HEAD><BODY>

<Center><H3>ADO Open Method</H3>

<TABLE WIDTH=600 BORDER=0>

<TD VALIGN=TOP ALIGN=LEFT COLSPAN=3>

<!--- ADO Connection used to create 2 recordsets-->

<%

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

SQLQuery = "SELECT * FROM Customers"

'First Recordset RSCustomerList

Set RSCustomerList = OBJdbConnection.Execute(SQLQuery)

'Second Recordset RsProductist

Set RsProductList = Server.CreateObject("ADODB.Recordset")

RsProductList.CursorType = adOpenDynamic

RsProductList.LockType = adLockOptimistic

320 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
RsProductList.Open "Products", OBJdbConnection

%>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

E-mail
address</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province</TD></TR>

<!--Display ADO Data from Customer Table-->

<% Do While Not RScustomerList.EOF %>

<TR><TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD></TR>

ADO COMPONENT REFERENCE 321

 .
. .
<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

RScustomerList.Close

OBJdbConnection.Close

%>

</TABLE>

<HR>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Product List Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#800000">

Product
Type</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Product
Name</TD>

<TD ALIGN=CENTER WIDTH=350 BGCOLOR="#800000">

Product
Description</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Unit
Price</TD></TR>

<!-- Display ADO Data Product List-->

<% Do While Not RsProductList.EOF %>

<TR> <TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductType")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductDescription")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("UnitPrice")%>

</TD>

322 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
<!-- Next Row = Record -->

<%

RsProductList.MoveNext

Loop

'Remove Objects from Memory Freeing

Set RsProductList = Nothing

Set OBJdbConnection = Nothing

%>

</TABLE></Center></BODY></HTML>

ADO Connection Object Execute Method

Executes the specified query, SQL statement, stored procedure, or provider-specific
text.

Execute Method Syntax (ADO Connection Object)

For a non-row-returning command string:

connection.Execute CommandText, RecordsAffected, Options

For a row-returning command string:

Set recordset = connection.Execute (

 CommandText, RecordsAffected, Options)

Execute Method Parameters (ADO Connection Object)

CommandText

A String containing the SQL statement, table name, stored procedure, or provider-
specific text to execute.

RecordsAffected

An optional Long variable to which the provider returns the number of records that
the operation affected.

Options

An optional Long value that indicates how the provider should evaluate the
CommandText argument:

Constant Description

adCmdText The provider should evaluate CommandText as a textual definition of a
command.

adCmdTable The provider should evaluate CommandText as a table name.

adCmdStoredProc The provider should evaluate CommandText as a stored procedure.

adCmdUnknown The type of command in the CommandText argument is not known.

ADO COMPONENT REFERENCE 323

 .
. .
See the “ADO Command Object CommandType Property” on page 313 for a more
detailed explanation of the four constants in this list.

Execute Method Return Values (ADO Connection Object)

Returns an ADO Recordset Object reference.

Execute Method Remarks (ADO Connection Object)

Using the Execute method on a Connection object executes whatever query you
pass to the method in the CommandText argument on the specified connection. If the
CommandText argument specifies a row-returning query, any results the execution
generates are stored in a new Recordset object. If the command is not a row-
returning query, the provider returns a closed Recordset object.

The returned Recordset object is always a read-only, forward-only cursor. If you
need a Recordset object with more functionality, first create a Recordset object
with the desired property settings, then use the Recordset object's ADO Recordset
Object Open Method to execute the query and return the desired cursor type.

The contents of the CommandText argument are specific to the provider and can be
standard SQL syntax or any special command format that the provider supports.

Execute Method Examples (ADO Connection Object)

See the Command “ADO Command Object Execute Method” on page 305.

ADO Connection Object OpenSchema Method

Obtains database schema information from the provider.

OpenSchema Method Syntax

Set recordset = connection.OpenSchema (QueryType,

 Criteria, SchemaID)

OpenSchema Method Parameters

QueryType

The type of schema query to run. Can be any of the constants listed below.

Criteria

Optional array of query constraints for each QueryType option, as listed below:

QueryType values Criteria values

adSchemaAsserts CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
Not currently supported on UNIX.

324 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
adSchemaCatalogs CATALOG_NAME
Not currently supported on UNIX.

asSchemaCharacterSets CHARACTER_SET_CATALOG
CHARACTER_SET_SCHEMA
CHARACTER_SET_NAME
Not currently supported on UNIX.

adSchemaCheckConstraints CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
Not currently supported on UNIX.

adSchemaCollations COLLATION_CATALOG
COLLATION_SCHEMA
COLLATION_NAME
Not currently supported on UNIX.

adSchemaColumnDomainUsage DOMAIN_CATALOG
DOMAIN_SCHEMA
DOMAIN_NAME
COLUMN_NAME
Not currently supported on UNIX.

adSchemaColumnPrivileges TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
GRANTOR
GRANTEE
Not currently supported on UNIX.

adSchemaColumns TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
Supported on UNIX.

adSchemaConstraintTableUsage TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
Not currently supported on UNIX.

adSchemaForeignKeys PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME
FK_TABLE_CATALOG
FK_TABLE_SCHEMA
FK_TABLE_NAME
Not currently supported on UNIX.

adSchemaIndexes TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TYPE
TABLE_NAME
Not currently supported on UNIX.

QueryType values Criteria values

ADO COMPONENT REFERENCE 325

 .
. .
adSchemaKeyColumnUsage CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
Not currently supported on UNIX.

adSchemaPrimaryKeys PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME
Not currently supported on UNIX.

adSchemaProcedureColumns PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
COLUMN_NAME
Not currently supported on UNIX.

adSchemaProcedures PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PARAMETER_TYPE
Not currently supported on UNIX.

adSchemaProviderSpecific see Remarks
Not currently supported on UNIX.

adSchemaProviderTypes DATA_TYPE
BEST_MATCH
Supported on UNIX.

adSchemaReferentialConstraints CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
Not currently supported on UNIX.

adSchemaSchemata CATALOG_NAME
SCHEMA_NAME
SCHEMA_OWNER
Not currently supported on UNIX.

adSchemaSQLLanguages <none>
Not currently supported on UNIX.

adSchemaStatistics TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
Not currently supported on UNIX.

QueryType values Criteria values

326 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
SchemaID

The GUID for a provider-schema schema query is not defined by the OLE DB 1.1
specification. This parameter is required if QueryType is set to
adSchemaProviderSpecific; otherwise, it is not used.

OpenSchema Method Return Values

Returns an ADO Recordset Object that contains schema information.

adSchemaTableConstraints CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
CONSTRAINT_TYPE
Not currently supported on UNIX.

adSchemaTablePrivileges TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
Not currently supported on UNIX.

adSchemaTables TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE
Supported on UNIX.

adSchemaTranslations TRANSLATION_CATALOG
TRANSLATION_SCHEMA
TRANSLATION_NAME
Not currently supported on UNIX.

adSchemaUsagePrivileges OBJECT_CATALOG
OBJECT_SCHEMA
OBJECT_NAME
OBJECT_TYPE
GRANTOR
GRANTEE
Not currently supported on UNIX.

adSchemaViewColumnUsage VIEW_CATALOG
VIEW_SCHEMA
VIEW_NAME
Not currently supported on UNIX.

adSchemaViewTableUsage VIEW_CATALOG
VIEW_SCHEMA
VIEW_NAME
Not currently supported on UNIX.

adSchemaViews TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
Not currently supported on UNIX.

QueryType values Criteria values

ADO COMPONENT REFERENCE 327

 .
. .
OpenSchema Method Remarks

The OpenSchema method returns information about the data source, such as
information about the tables on the server and the columns in the tables.

The Criteria argument is an array of values that can be used to limit the results of a
schema query. Each schema query has a different set of parameters that it supports.
The actual schemas are defined by the OLE DB specification under the
"IDBSchemaRowset" interface. The ones supported in ADO 1.5 are listed above.

The constant adSchemaProviderSpecific is used for the QueryType argument if
the provider defines its own non-standard schema queries outside those listed above.
When this constant is used, the SchemaID argument is required to pass the GUID of
the schema query to execute. If QueryType is set to adSchemaProviderSpecific but
SchemaID is not provided, an error will result.

Providers are not required to support all of the OLE DB standard schema queries.
Specifically, only adSchemaTables, adSchemaColumns and
adSchemaProviderTypes are required by the OLE DB specification. However, the
provider is not required to support the Criteria constraints listed above for those
schema queries.

OpenSchema Method Example

This Visual Basic example uses the OpenSchema method to display the name and
type of each table in the Pubs database.

Public Sub OpenSchemaX()

Dim cnn1 As ADODB.Connection

Dim rstSchema As ADODB.Recordset

Dim strCnn As String

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set rstSchema = cnn1.OpenSchema(adSchemaTables)

Do Until rstSchema.EOF

Debug.Print "Table name: " & _

rstSchema!TABLE_NAME & vbCr & _

"Table type: " & rstSchema!TABLE_TYPE & vbCr

rstSchema.MoveNext

Loop

rstSchema.Close

cnn1.Close

End Sub

ADO Connection Object Open Method

Opens a connection to a data source.

328 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Open Method Syntax (ADO Connection Object)

connection.Open ConnectionString, UserID, Password

Open Method Parameters (ADO Connection Object)

ConnectionString

An optional String containing connection information. See the ConnectionString
property for details on valid settings.

UserID

An optional String containing a user name to use when establishing the connection.

Password

An optional String containing a password to use when establishing the connection.

Open Method Remarks (ADO Connection Object)

Using the Open method on a Connection object establishes the physical
connection to a data source. After this method successfully completes, the
connection is live and you can issue commands against it and process results.

Use the optional ConnectionString argument to specify a connection string containing
a series of argument = value statements separated by semicolons. The
ConnectionString property automatically inherits the value used for the
ConnectionString argument. Therefore, you can either set the ConnectionString
property of the Connection object before opening it, or use the ConnectionString
argument to set or override the current connection parameters during the Open
method call.

If you pass user and password information both in the ConnectionString argument and
in the optional UserID and Password arguments, the results may be unpredictable; you
should only pass such information in either the ConnectionString argument or the
UserID and Password arguments.

When you have concluded your operations over an open Connection, use the ADO
Connection Object Close Method to free any associated system resources. Closing an
object does not remove it from memory; you may change its property settings and
use the Open method to open it again later. To completely eliminate an object from
memory, set the object variable to Nothing.

Open Method Examples (ADO Connection Object)

See the “ADO Connection Object Close Method” on page 318.

ADO Connection Object BeginTrans, CommitTrans, and RollbackTrans
Methods

The transaction methods manage transaction processing within a Connection
object.

These transaction methods are summarized as follows:

ADO COMPONENT REFERENCE 329

 .
. .
BeginTrans, CommitTrans, and RollbackTrans Methods Syntax

level = connection.BeginTrans()

connection.BeginTrans

connection.CommitTrans

connection.RollbackTrans

BeginTrans, CommitTrans, and RollbackTrans Methods Remarks

Use these methods with a Connection object when you want to save or cancel a
series of changes made to the source data as a single unit. For example, to transfer
money between accounts, you subtract an amount from one and add the same
amount to the other. If either update fails, the accounts no longer balance. Making
these changes within an open transaction ensures either all or none of the changes
goes through.

Not all providers support transactions. Check that the provider-defined property
"Transaction DDL" appears in the Connection object's ADO Properties Collection,
indicating that the provider supports transactions. If the provider does not support
transactions, calling one of these methods will return an error.

Once you call the BeginTrans method, the provider will no longer instantaneously
commit any changes you make until you call CommitTrans or RollbackTrans to
end the transaction.

For providers that support nested transactions, calling the BeginTrans method
within an open transaction starts a new, nested transaction. The return value
indicates the level of nesting: a return value of "1" indicates you have opened a top-
level transaction (that is, the transaction is not nested within another transaction),
"2" indicates that you have opened a second-level transaction (a transaction nested
within a top-level transaction), and so forth. Calling CommitTrans or
RollbackTrans affects only the most recently opened transaction; you must close
or rollback the current transaction before you can resolve any higher-level
transactions.

Calling the CommitTrans method saves changes made within an open transaction
on the connection and ends the transaction. Calling the RollbackTrans method
reverses any changes made within an open transaction and ends the transaction.
Calling either method when there is no open transaction generates an error.

Depending on the Connection object's ADO Connection Object Attributes
Property, calling either the CommitTrans or RollbackTrans methods may
automatically start a new transaction. If the Attributes property is set to
adXactCommitRetaining, the provider automatically starts a new transaction
after a CommitTrans call. If the Attributes property is set to

Method Description

BeginTrans Begins a new transaction

CommitTrans Saves any changes and ends the current transaction. It may also start a
new transaction.

RollbackTrans Cancels any changes made during the current transaction and ends the
transaction. It may also start a new transaction.

330 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
adXactAbortRetaining, the provider automatically starts a new transaction after a
RollbackTrans call.

BeginTrans, CommitTrans, and RollbackTrans Methods Return Value

BeginTrans can be called as a function that returns a Long variable indicating the
nesting level of the transaction.

BeginTrans, CommitTrans, and RollbackTrans Methods Examples

This Visual Basic example changes the book type of all psychology books in the
Titles table of the database. After the BeginTrans method starts a transaction that
isolates all the changes made to the Titles table, the CommitTrans method saves
the changes. Notice that you can use the RollbackTrans method to undo changes
that you saved using the ADO Recordset Object Update Method.

Public Sub BeginTransX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

Dim strTitle As String

Dim strMessage As String

` Open connection.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

` Open titles table.

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenDynamic

rstTitles.LockType = adLockPessimistic

rstTitles.Open "titles", cnn1, , , adCmdTable

rstTitles.MoveFirst

cnn1.BeginTrans

` Loop through recordset and ask user if she wants

` to change the type for a specified title.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

strTitle = rstTitles!Title

strMessage = "Title: " & strTitle & vbCr & _

"Change type to self help?"

` Change the title for the specified employee.

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstTitles!Type = "self_help"

ADO COMPONENT REFERENCE 331

 .
. .
rstTitles.Update

End If

End If

rstTitles.MoveNext

Loop

` Ask if the user wants to commit to all the

` changes made above.

If MsgBox("Save all changes?", vbYesNo) = vbYes Then

cnn1.CommitTrans

Else

cnn1.RollbackTrans

End If

` Print current data in recordset.

rstTitles.Requery

rstTitles.MoveFirst

Do While Not rstTitles.EOF

Debug.Print rstTitles!Title & " - " & rstTitles!Type

rstTitles.MoveNext

Loop

' Restore original data

rstTitles.MoveFirst

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "self_help" Then

rstTitles!Type = "psychology"

rstTitles.Update

End If

rstTitles.MoveNext

Loop

rstTitles.Close

cnn1.Close

End Sub

ADO Connection Object Properties

Property Description

“ADO Connection Object
Attributes Property” on page
332

One or more characteristics of an object.

332 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Connection Object Attributes Property

One or more characteristics of an object. This property is read-only on UNIX.

Attributes Property Return Values (ADO Connection Object)

Sets or returns a Long value.

“ADO Connection Object
CommandTimeout Property”
on page 333

How long to wait while executing a command before
terminating the command and issuing and error.

“ADO Connection Object
ConnectionString Property”
on page 334

Contains the information used to establish a connection to a
data source.

“ADO Connection Object
ConnectionTimeout
Property” on page 336

How long to wait while establishing a connection before
terminating the attempt and issuing and error.

“ADO Connection Object
CursorLocation Property” on
page 337

The location of the cursor engine in a recordset.

“ADO Connection Object
DefaultDatabase Property”
on page 338

The default database for the Connection object. This property
is not currently supported on UNIX.

“ADO Connection Object
IsolationLevel Property” on
page 338

The level of isolation for the Connection object.

“ADO Connection Object
Mode Property” on page 340

The available permissions for modifying data in a Connection
object.

“ADO Connection Object
Provider Property” on page
341

The name of a provider for a Connection object. This property
is not available on UNIX.

“ADO Connection Object
State Property” on page 342

Describes the current state of the Connection object.

“ADO Connection Object
Version Property” on page
344

The ADO version number.

Property Description

ADO COMPONENT REFERENCE 333

 .
. .
For a Connection object, the Attributes property is read/write, and its value can
be the sum of any one or more of these XactAttributeEnum values (default is
zero):

Attributes Property Remarks (ADO Connection Object)

Use the Attributes property to set or return characteristics of Connection objects.

When you set multiple attributes, you can sum the appropriate constants. If you set
the property value to a sum including incompatible constants, an error occurs.

Attributes Property Examples (ADO Connection Object)

This Visual Basic example displays the value of the Attributes property for
Connection objects. It uses the ADO Field Object Name Property to display the
name of each Field and Property object.

Public Sub AttributesX

Dim cnn1 As ADODB.Connection

Dim strCnn As String

' Open connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

' Display the attributes of the connection.

Debug.Print "Connection attributes = " & _

cnn1.Attributes

cnn1.Close

End Sub

ADO Connection Object CommandTimeout Property

How long to wait while executing a command before terminating the attempt and
generating an error.

Value Description

adXactCommitRetaining Performs retaining commits, that is, calling the CommitTrans
method automatically starts a new transaction. Not all providers
support this, and it is always zero under UNIX.

adXactAbortRetaining Performs retaining aborts, that is, calling the BeginTrans,
CommitTrans, and RollbackTrans methods automatically
starts a new transaction. Not all providers support this, and it is
always zero under UNIX.

334 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
CommandTimeout Property Return Values (ADO Connection Object)

Sets or returns a Long value that specifies, in seconds, how long to wait for a
command to execute. Default is 30.

CommandTimeout Property Remarks (ADO Connection Object)

Use the CommandTimeout property on a Connection object to allow the
cancellation of an ADO Connection Object Execute Method call, due to delays from
network traffic or heavy server use. If the interval set in the CommandTimeout
property elapses before the command completes execution, an error occurs and ADO
cancels the command. If you set the property to zero, ADO will wait indefinitely
until the execution is complete. Make sure the provider and data source to which you
are writing code supports the CommandTimeout functionality.

The CommandTimeout setting on a Connection object has no effect on the
CommandTimeout setting on a Command object on the same Connection; that
is, the Command object's CommandTimeout property does not inherit the value
of the Connection object's CommandTimeout value.

On a Connection object, the CommandTimeout property remains read/write
after the Connection is opened.

CommandTimeout Property Examples (ADO Connection Object)

See the ActiveConnection property.

ADO Connection Object ConnectionString Property

Contains the information used to establish a connection to a data source.

ConnectionString Property Return Values (ADO Connection Object)

Sets or returns a String value.

ConnectionString Property Remarks (ADO Connection Object)

Use the ConnectionString property to specify a data source by passing a detailed
connection string containing a series of argument = value statements separated by
semicolons.

ADO supports seven arguments for the ConnectionString property; any other
arguments pass directly to the provider without any processing by ADO. The
arguments ADO supports are as follows:

Argument Description

Provider Specifies the name of the provider to use for the connection.

DataSource Specifies the name of a data source for the connection, for example,
an Oracle database registered as an ODBC data source.

UserID Specifies the user name to use when opening the connection.

ADO COMPONENT REFERENCE 335

 .
. .
After you set the ConnectionString property and open the Connection object,
the provider may alter the contents of the property, for example, by mapping the
ADO-defined argument names to their provider equivalents.

The ConnectionString property automatically inherits the value used for the
ConnectionString argument of the ADO Connection Object Open Method, so you can
override the current ConnectionString property during the Open method call.

Because the File Name argument causes ADO to load the associated provider, you
cannot pass both the Provider and File Name arguments.

The ConnectionString property is read/write when the connection is closed and
read-only when it is open.

Remote Data Service Usage: When used on a client-side Connection object, the
ConnectionString property can only include the Remote Provider and Remote Server
parameters.

ConnectionString Property Example (ADO Connection Object)

This Visual Basic example demonstrates different ways of using the
ConnectionString property to open a Connection object. It also uses the
ConnectionTimeout property to set a connection timeout period, and the ADO
Connection Object State Property to check the state of the connections. The
GetState function is required for this procedure to run.

Public Sub ConnectionStringX()

Dim cnn1 As ADODB.Connection

Dim cnn2 As ADODB.Connection

Dim cnn3 As ADODB.Connection

Dim cnn4 As ADODB.Connection

' Open a connection without using a Data Source Name (DSN).

Set cnn1 = New ADODB.Connection

cnn1.ConnectionString = "driver={SQL Server};" & _

"server=bigsmile;uid=sa;pwd=pwd;database=pubs"

cnn1.ConnectionTimeout = 30

cnn1.Open

' Open a connection using a DSN and ODBC tags.

Password Specifies the password to use when opening the connection.

FileName Specifies the name of a provider-specific file (for example, a
persisted data source object) containing preset connection
information.

RemoteProvider Specifies the name of a provider to use when opening a client-side
connection (Remote Data Service only).

RemoteServer Specifies the path name of the server to use when opening a client-
side connection (Remote Data Service only).

Argument Description

336 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Set cnn2 = New ADODB.Connection

cnn2.ConnectionString = "DSN=Pubs;UID=sa;PWD=pwd;"

cnn2.Open

' Open a connection using a DSN and OLE DB tags.

Set cnn3 = New ADODB.Connection

cnn3.ConnectionString = "Data Source=Pubs;User ID=sa;Password=pwd;"

cnn3.Open

' Open a connection using a DSN and individual

' arguments instead of a connection string.

Set cnn4 = New ADODB.Connection

cnn4.Open "Pubs", "sa", "pwd"

' Display the state of the connections.

MsgBox "cnn1 state: " & GetState(cnn1.State) & vbCr & _

"cnn2 state: " & GetState(cnn1.State) & vbCr & _

"cnn3 state: " & GetState(cnn1.State) & vbCr & _

"cnn4 state: " & GetState(cnn1.State)

cnn4.Close

cnn3.Close

cnn2.Close

cnn1.Close

End Sub

Public Function GetState(intState As Integer) As String

Select Case intState

Case adStateClosed

GetState = "adStateClosed"

Case adStateOpen

GetState = "adStateOpen"

End Select

End Function

ADO Connection Object ConnectionTimeout Property

Sets how long to wait while establishing a connection before terminating the attempt
and generating an error.

ConnectionTimeout Property Return Values (ADO Connection Object)

Sets or returns a Long value that specifies, in seconds, how long to wait for the
connection to open. Default is 15.

ADO COMPONENT REFERENCE 337

 .
. .
ConnectionTimeout Property Remarks (ADO Connection Object)

Use the ConnectionTimeout property on a Connection object if delays from
network traffic or heavy server use make it necessary to abandon a connection
attempt. If the time from the ConnectionTimeout property setting elapses prior to
the opening of the connection, an error occurs and ADO cancels the attempt. If you
set the property to zero, ADO will wait indefinitely until the connection is opened.
Make sure the provider to which you are writing code supports the
ConnectionTimeout functionality.

The ConnectionTimeout property is read/write when the connection is closed and
read-only when it is open.

ConnectionTimeout Property Example (ADO Connection Object)

See the ConnectionString property.

ADO Connection Object CursorLocation Property

Sets or returns the location of the cursor engine.

CursorLocation Property Return Values (ADO Connection Object)

Sets or returns a Long value that can be set to one of the following constants:

CursorLocation Property Remarks (ADO Connection Object)

This property allows you to choose between various cursor libraries accessible to the
provider. Usually, you can choose between using a client-side cursor library or one
that is located on the server.

This property setting only affects connections established after the property has been
set. Changing the CursorLocation property has no effect on existing connections.

This property is read/write on a Connection.

Constant Description

adUseClient Uses client-side cursors supplied by a local cursor library. Local cursor
engines will often allow many features that driver-supplied cursors may
not, so using this setting may provide an advantage with respect to
features that will be enabled. For backward-compatibility, the synonym
adUseClientBatch is also supported.
Note: With the Sun ONE ASP implementation of ADO, adUseClient has a
value of 1, and adUseClientBatch has a value of 3.

adUseServer Default. Uses data provider or driver-supplied cursors. These cursors are
sometimes very flexible and allow for some additional sensitivity to
reflecting changes that others make to the actual data source. However,
some features of the Microsoft Client Cursor Provider (such as
disassociated recordsets) cannot be simulated.
Note: With the Sun ONE ASP implementation of ADO, adUseServer has a
value of 2.

338 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
CursorLocation Property Example (ADO Connection Object)

See the AbsolutePosition property example.

ADO Connection Object DefaultDatabase Property

The default database for a Connection object. This property is not currently supported
on UNIX.

DefaultDatabase Property Return Values

Sets or returns a String that evaluates to the name of a database available from the
provider.

DefaultDatabase Property Remarks

Use the DefaultDatabase property to set or return the name of the default database
on a specific Connection object.

If there is a default database, SQL strings may use an unqualified syntax to access
objects in that database. To access objects in a database other than the one specified
in the DefaultDatabase property, you must qualify object names with the desired
database name. Upon connection, the provider will write default database
information to the DefaultDatabase property. Some providers allow only one
database per connection, in which case you cannot change the DefaultDatabase
property.

Some data sources and providers may not support this feature, and may return an
error or an empty string.

Remote Data Service Usage: This property is not available on a client-side
Connection object.

DefaultDatabase Property Example

See “ADO Connection Object Provider Property” on page 341

ADO Connection Object IsolationLevel Property

The level of transaction isolation for a Connection object. Transactions are not
currently supported on UNIX.

IsolationLevel Property Return Values

Sets or returns one of the following IsolationLevelEnum values:

Constant Description

adXactUnspecified The provider is using a different IsolationLevel than
specified, but the level cannot be determined.

adXactChaos You cannot overwrite pending changes from more highly
isolated transactions.

ADO COMPONENT REFERENCE 339

 .
. .
IsolationLevel Property Remarks

Use the IsolationLevel property to set the isolation level of a Connection object.
The IsolationLevel property is read/write. The setting does not take effect until the
next time you call the BeginTrans method. If the level of isolation you request is
unavailable, the provider may return the next greater level of isolation.

IsolationLevel Property Example

This example uses the ADO Connection Object Mode Property to open an exclusive
connection, and the IsolationLevel property to open a transaction that is
conducted in isolation of other transactions.

Public Sub IsolationLevelX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

` Assign connection string to variable.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

` Open connection and titles table.

Set cnn1 = New ADODB.Connection

cnn1.Mode = adModeShareExclusive

cnn1.IsolationLevel = adXactIsolated

cnn1.Open strCnn

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenDynamic

rstTitles.LockType = adLockPessimistic

rstTitles.Open "titles", cnn1, , , adCmdTable

cnn1.BeginTrans

adXactBrowse You can view uncommitted changes from one transaction
in other transactions.

adXactReadUncommitted Same as adXactBrowse.

adXactCursorStability Default. You can view changes in other transactions only
after they have been committed.

adXactReadCommitted Same as adXactCursorStability.

adXactRepeatableRead You cannot see changes in other transactions, but
requerying can bring new Recordset objects.

adXactIsolated Transactions are conducted in isolation of other
transactions.

adXactSerializable Same as adXactIsolated.

Constant Description

340 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
` Display connection mode.

If cnn1.Mode = adModeShareExclusive Then

MsgBox "Connection mode is exclusive."

Else

MsgBox "Connection mode is not exclusive."

End If

` Display isolation level.

If cnn1.IsolationLevel = adXactIsolated Then

MsgBox "Transaction is isolated."

Else

MsgBox "Transaction is not isolated."

End If

` Change the type of psychology titles.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

rstTitles!Type = "self_help"

rstTitles.Update

End If

rstTitles.MoveNext

Loop

` Print current data in recordset.

rstTitles.Requery

Do While Not rstTitles.EOF

Debug.Print rstTitles!Title & " - " & rstTitles!Type

rstTitles.MoveNext

Loop

` Restore original data.

cnn1.RollbackTrans

rstTitles.Close

cnn1.Close

End Sub

ADO Connection Object Mode Property

The available permissions for modifying data in a Connection.

Mode Property Return Values (ADO Connection Object)

Sets or returns one of the following ConnectModeEnum values:

ADO COMPONENT REFERENCE 341

 .
. .
Mode Property Remarks (ADO Connection Object)

Use the Mode property to set or return the access permissions in use by the provider
on the current connection. You can set the Mode property only when the
Connection object is closed.

Mode Property Example (ADO Connection Object)

See the IsolationLevel property example.

ADO Connection Object Provider Property

The name of the provider for a Connection object. This property is not available on
UNIX.

Provider Property Return Values

Sets or returns a String value.

Provider Property Remarks

Use the Provider property to set or return the name of the provider for a
connection. This property can also be set by the contents of the ConnectionString
property or the ConnectionString argument of the ADO Connection Object Open
Method; however, specifying a provider in more than one place while calling the
Open method can have unpredictable results. If no provider is specified, the property
will default to MSDASQL (Microsoft OLE DB Provider for ODBC).

The Provider property is read/write when the connection is closed and read-only
when it is open. The setting does not take effect until you either open the
Connection object or access the ADO Properties Collection of the Connection
object. If the setting is invalid, an error occurs.

Constant Description

adModeUnknown Default. The permissions have not been set or cannot be
determined.

adModeRead Read-only permission.

adModeWrite Write-only permission.

adModeReadWrite Read/write permission.

adModeShareDenyRead Prevents others from opening a connection with read
permission.

adModeShareDenyWrite Prevents others from opening a connection with write
permission.

adModeShareExclusive Prevents others from opening a connection.

adModeShareDenyNone Allows others to open a connection with any permissions.
Neither read nor write access can be denied to others.

342 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Provider Property Example

This Visual Basic example demonstrates the Provider property by opening two
Connection objects using different providers. It also uses the DefaultDatabase
property to set the default database for the Microsoft ODBC Provider.

Public Sub ProviderX()

Dim cnn1 As ADODB.Connection

Dim cnn2 As ADODB.Connection

` Open a connection using the Microsoft ODBC provider.

Set cnn1 = New ADODB.Connection

cnn1.ConnectionString = "driver={SQL Server};" & _

"server=bigsmile;uid=sa;pwd=pwd"

cnn1.Open strCnn

cnn1.DefaultDatabase = "pubs"

` Display the provider.

MsgBox "Cnn1 provider: " & cnn1.Provider

` Open a connection using the Microsoft Jet provider.

Set cnn2 = New ADODB.Connection

cnn2.Provider = "Microsoft.Jet.OLEDB.3.51"

cnn2.Open "C:\Samples\northwind.mdb", "admin", ""

` Display the provider.

MsgBox "Cnn2 provider: " & cnn2.Provider

cnn1.Close

cnn2.Close

End Sub

ADO Connection Object State Property

Describes the current state of an object.

State Property Return Values (ADO Connection Object)

Sets or returns a Long value that can be one of the following constants:

State Property Remarks (ADO Connection Object)

You can use the State property to determine the current state of a given object at any
time.

Constant Description

adStateClosed Default. The object is closed.

adStateOpen The object is open.

ADO COMPONENT REFERENCE 343

 .
. .
State Property Examples (ADO Connection Object)

This Visual Basic example demonstrates different ways of using the
ConnectionString property to open a Connection object. It also uses the
ConnectionTimeout property to set a connection timeout period, and the State
property to check the state of the connections. The GetState function is required for
this procedure to run.

Public Sub ConnectionStringX()

Dim cnn1 As ADODB.Connection

Dim cnn2 As ADODB.Connection

Dim cnn3 As ADODB.Connection

Dim cnn4 As ADODB.Connection

` Open a connection without using a DSN.

Set cnn1 = New ADODB.Connection

cnn1.ConnectionString = "driver={SQL Server};" & _

"server=bigsmile;uid=sa;pwd=pwd;database=pubs"

cnn1.ConnectionTimeout = 30

cnn1.Open

` Open a connection using a DSN and ODBC tags.

Set cnn2 = New ADODB.Connection

cnn2.ConnectionString = "DSN=Pubs;UID=sa;PWD=pwd;"

cnn2.Open

` Open a connection using a DSN and OLE DB tags.

Set cnn3 = New ADODB.Connection

cnn3.ConnectionString = "Data Source=Pubs;User ID=sa;Password=pwd;"

cnn3.Open

` Open a connection using a DSN and individual

` arguments instead of a connection string.

Set cnn4 = New ADODB.Connection

cnn4.Open "Pubs", "sa", "pwd"

` Display the state of the connections.

MsgBox "cnn1 state: " & GetState(cnn1.State) & vbCr &_

"cnn2 state: " & GetState(cnn1.State) & vbCr & _

"cnn3 state: " & GetState(cnn1.State) & vbCr & _

"cnn4 state: " & GetState(cnn1.State)

cnn4.Close

cnn3.Close

cnn2.Close

cnn1.Close

End Sub

Public Function GetState(intState As Integer) As String

344 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Select Case intState

Case adStateClosed

GetState = "adStateClosed"

Case adStateOpen

GetState = "adStateOpen"

End Select

End Function

ADO Connection Object Version Property

The ADO version number.

Version Property Return Values

Returns a String value.

Version Property Remarks

Use the Version property to return the version number of the ADO implementation.
The version of the provider will be available on Windows servers as a dynamic
property in the ADO Properties Collection. The Properties collection is not currently
supported on UNIX.

Version Property Example

This Visual Basic example uses the Version property of a Connection object to
display the current ADO version. It also uses several dynamic properties to show the
current DBMS name and version, OLE DB version, provider name and version, driver
name and version, and driver ODBC version.

Public Sub VersionX()

Dim cnn1 As ADODB.Connection

' Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

strVersionInfo = "ADO Version: " & cnn1.Version & vbCr & _

"DBMS Name: " & cnn1.Properties("DBMS Name") & vbCr & _

"DBMS Version: " & cnn1.Properties("DBMS Version") & vbCr & _

"OLE DB Version: " & cnn1.Properties("OLE DB Version") & vbCr & _

"Provider Name: " & cnn1.Properties("Provider Name") & vbCr & _

"Provider Version: " & cnn1.Properties("Provider Version") & vbCr & _

"Driver Name: " & cnn1.Properties("Driver Name") & vbCr & _

"Driver Version: " & cnn1.Properties("Driver Version") & vbCr & _

ADO COMPONENT REFERENCE 345

 .
. .
"Driver ODBC Version: " & cnn1.Properties("Driver ODBC Version")

MsgBox strVersionInfo

cnn1.Close

End Sub

ADO Connection Object Remarks

A Connection object represents a session with a data source. In the case of a
client/server database system, it may represent an actual network connection to the
server. Depending on the functionality of the provider, some collections, properties,
and methods of the Connection object may not be available.

Use the collections, methods, and properties of a Connection object for:

� configuring the connection before opening it with the ConnectionString,
CommandTimeout, and ADO Connection Object Mode Property
properties.

� setting the CursorLocation property to invoke the Client Cursor Provider,
which supports batch updates. Batch updates are not currently supported on
UNIX.

� setting the default database for the connection with the DefaultDatabase
property.

� setting the level of isolation for the transactions opened on the connection
with the IsolationLevel property. Transactions are not currently supported on
UNIX.

� specifying an OLE DB provider with the ADO Connection Object Provider
Property.

� establishing and breaking the physical connection to the data source with the
ADO Connection Object Open Method and ADO Connection Object Close
Method methods.

� executing a command on the connection with the ADO Connection Object
Execute Method and configuring the execution with the
CommandTimeout property.

� managing transactions on the open connection, including nested
transactions if the provider supports them, with the BeginTrans,
CommitTrans, and RollbackTrans methods and the ADO Connection
Object Attributes Property. The transaction methods are not currently supported
on UNIX.

� examining errors returned from the data source with the ADO Errors
Collection.

� reading the version from the ADO implementation in use with the ADO
Connection Object Version Property.

� obtaining schema information about your database with the ADO
Connection Object OpenSchema Method.

346 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

To execute a query without using a Command object, pass a query string to
the Execute method of a Connection object. However, a Command
object is required when you want to retain the command text and re-execute
it, or use query parameters.

ADO Error Object
The ADO Error object provides specific details about each ADO error.

ADO Error Object Properties

Note

None of the ADO Error object properties listed in this section are currently
supported on UNIX.

ADO Error Object Description Property

A descriptive string associated with an Error object. This property is not currently
supported on UNIX.

Property Description

“ADO Error Object Description Property” on
page 346

A descriptive string associated with an error.

“ADO Error Object HelpContext, HelpFile
Property” on page 348

The help file topic associated with an error.

“ADO Error Object HelpContext, HelpFile
Property” on page 348

The help file associated with an error.

“ADO Error Object NativeError Property” on
page 348

The provider-specific error code for an error.

“ADO Error Object Number Property” on page
349

The number that uniquely identifies an error.

“ADO Error Object Source Property” on page
349

The name of the object or application that
originally generated the error.

“ADO Error Object SQLState Property” on page
350

The SQL state for a given error.

ADO COMPONENT REFERENCE 347

 .
. .
Description Property Return Values (ADO Error Object)

Returns a String value.

Description Property Remarks (ADO Error Object)

Use the Description property to obtain a short description of the error. Display this
property to alert the user to an error that you cannot or do not want to handle. The
string will come from either ADO or a provider.

Providers are responsible for passing specific error text to ADO. ADO adds an Error
object to the ADO Errors Collection for each provider error or warning it receives.
Enumerate the Errors collection to trace the errors that the provider passes.

Description Property Example (ADO Error Object)

This Visual Basic example triggers an error, traps it, and displays the ADO Error
Object Description Property, ADO Error Object HelpContext, HelpFile Property,
ADO Error Object NativeError Property, ADO Error Object Number Property, ADO
Error Object Source Property, and ADO Error Object SQLState Property properties of
the resulting Error object:

Public Sub DescriptionX()

Dim cnn1 As ADODB.Connection

Dim errLoop As ADODB.Error

Dim strError As String

On Error GoTo ErrorHandler

` Intentionally trigger an error.

Set cnn1 = New ADODB.Connection

cnn1.Open "nothing"

Exit Sub

ErrorHandler:

` Enumerate Errors collection and display

` properties of each Error object.

For Each errLoop In cnn1.Errors

strError = "Error #" & errLoop.Number & vbCr & _

" " & errLoop.Description & vbCr & _

" (Source: " & errLoop.Source & ")" & vbCr & _

" (SQL State: " & errLoop.SQLState & ")" & vbCr & _

" (NativeError: " & errLoop.NativeError & ")" & vbCr

If errLoop.HelpFile = "" Then

strError = strError & _

" No Help file available" & _

vbCr & vbCr

Else

strError = strError & _

348 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
" (HelpFile: " & errLoop.HelpFile & ")" & vbCr & _

" (HelpContext: " & errLoop.HelpContext & ")" & _

vbCr & vbCr

End If

Debug.Print strError

Next

Resume Next

End Sub

ADO Error Object HelpContext, HelpFile Property

The help file and topic associated with an Error object. This property is not currently
supported on UNIX.

HelpContext, HelpFile Property Return Values

HelpContextID

Returns a context ID, as a Long value, for a topic in a Microsoft Windows Help file.

HelpFile

Returns a String that evaluates to a fully resolved path to a Help file.

HelpContext, HelpFile Property Remarks

If a Windows Help (.hlp) file is specified in the HelpFile property, the HelpContext
property is used to automatically display the Help topic it identifies. If there is no
relevant help topic available, the HelpContext property returns zero and the
HelpFile property returns a zero-length string ("").

HelpContext, HelpFile Property Examples

See the “ADO Error Object Description Property” on page 346 example.

ADO Error Object NativeError Property

The provider-specific error code for a given Error object. This property is not currently
supported on UNIX.

NativeError Property Return Values

Returns a Long value.

NativeError Property Remarks

Use the NativeError property to retrieve the database-specific error information for
a particular Error object. For example, when using the Microsoft ODBC Provider for
OLE DB with a SQL Server database, native error codes that originate from SQL Server
pass through ODBC and the ODBC Provider to the ADO NativeError property.

ADO COMPONENT REFERENCE 349

 .
. .
NativeError Property Example

See the “ADO Error Object Description Property” on page 346.

ADO Error Object Number Property

The number that uniquely identifies an Error object. This property is not currently
supported on UNIX.

Number Property Return Values

Returns a Long value.

Number Property Remarks

Use the Number property to determine which error occurred. The value of the
property is a unique number that corresponds to the error condition.

Number Property Example

See the “ADO Error Object Description Property” on page 346.

ADO Error Object Source Property

The name of the object or application that originally generated an error. This property
is not currently supported on UNIX.

Source Property Return Values

Returns a String value.

Source Property Remarks

Use the Source property on an Error object to determine the name of the object or
application that originally generated an error. This could be the object's class name or
programmatic ID. For errors in ADODB, the property value will be
ADODB.ObjectName.

Source Property Parameters (ADO Error Object)

ObjectName

The name of the object that triggered the error. The Source property is read-only for
Error objects.

Based on the error documentation from the Source, ADO Error Object Number
Property, and ADO Error Object Description Property properties of Error objects,
you can write code that will handle the error appropriately.

Source Property Example

See the “ADO Error Object Description Property” on page 346 example.

350 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Error Object SQLState Property

The SQL state for a given Error object. This property is not currently supported on UNIX.

SQLState Property Return Values

Returns a five-character String that follows the ANSI SQL standard.

SQLState Property Remarks

Use the SQLState property to read the five-character error code that the provider
returns when an error occurs during the processing of a SQL statement. For example,
when using the Microsoft OLE DB Provider for ODBC with a SQL Server database,
SQL state error codes originate from ODBC based either on errors specific to ODBC or
on errors that originate from Microsoft SQL Server, and are then mapped to ODBC
errors. These error codes are documented in the ANSI SQL standard, but may be
implemented differently by different data sources.

SQLState Property Example

See the “ADO Error Object Description Property” on page 346 example.

ADO Error Object Remarks

Any operation involving ADO objects can generate one or more provider errors. As
each error occurs, one or more Error objects are placed in the ADO Errors Collection
of the ADO Connection Object. When another ADO operation generates an error, the
Errors collection is cleared, and the new set of Error objects are placed in the
Errors collection.

Note

Each Error object represents a specific provider error, not an ADO error. ADO
errors are exposed to the run-time exception handling mechanism. For
example, in Microsoft Visual Basic, the occurrence of an ADO-specific error
will trigger an On Error event and appear in the Err object. For a complete
list of ADO errors, see Appendix B.

Read the Error object's properties to obtain specific details about each error:

� The ADO Error Object Description Property contains the text of the error.

� The ADO Error Object Number Property contains the Long integer value of
the error constant.

� The ADO Error Object Source Property identifies the object that raised the
error. This is particularly useful when you have several Error objects in the
Errors collection following a request to a data source.

� The ADO Error Object HelpContext, HelpFile Property indicate the
appropriate Microsoft Windows Help file and Help topic, respectively (if any
exist), for the error.

� The ADO Error Object SQLState Property and ADO Error Object NativeError
Property properties provide information from SQL data sources.

ADO COMPONENT REFERENCE 351

 .
. .
ADO supports the return of multiple errors by a single ADO operation to allow for
error information specific to the provider. To obtain this error information in an error
handler, use the appropriate error-trapping features of the language or environment
you are working with, then use nested loops to enumerate the properties of each
Error object in the Errors collection.

ADO clears the OLE Error Info object before making a call that could potentially
generate a new provider error. However, the Errors collection on the Connection
object is cleared and populated only when the provider generates a new error, or
when the ADO Collections Clear Method is called.

Some properties and methods return warnings that appear as Error objects in the
Errors collection but do not halt a program's execution. Before you call the ADO
Recordset Object Resync Method, ADO Recordset Object UpdateBatch Method, or
ADO Recordset Object CancelBatch Method methods on an ADO Recordset Object,
or before you set the ADO Recordset Object Filter Property on a Recordset object,
call the ADO Collections Clear Method on the Errors collection so that you can read
the Count property of the Errors collection to test for returned warnings.

If there is no valid Connection object when using Microsoft Visual Basic and
VBScript, retrieve error information from the Err object.

To refer to an Error object in a collection by its ordinal number, use either of the
following syntax forms:

connection.Errors.Item(0)

connection.Errors(0)

ADO Field Object
The ADO Field Object represents a column of data with a common data type.

ADO Field Object Collections

ADO Field Object Methods

“ADO Properties Collection” on
page 456

All Property objects for a specific instance of a Field
object. This collection is not currently supported on UNIX.

Method Description

“ADO Field Object AppendChunk
Method” on page 352

Appends data to a large text or binary data field.

“ADO Field Object GetChunk
Method” on page 352

Returns all or a portion of the contents of a large text or
binary data field.

352 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Field Object AppendChunk Method

Appends data to a large text or binary data Field object.

AppendChunk Method Syntax (ADO Field Object)

object.AppendChunk Data

AppendChunk Method Parameters (ADO Field Object)

object

A Field object.

Data

A Variant containing the data you want to append to the object.

AppendChunk Method Remarks (ADO Field Object)

Use the AppendChunk method on a Field object to fill it with long binary or
character data. In situations where system memory is limited, you can use the
AppendChunk method to manipulate long values in portions rather than in their
entirety.

If the adFldLong bit in the ADO Field Object Attributes Property of a Field object is
set to True, you can use the AppendChunk method for that field.

The first AppendChunk call on a Field object writes data to the field, overwriting
any existing data. Subsequent AppendChunk calls add to existing data. If you are
appending data to one field and then you set or read the value of another field in the
current record, ADO assumes that you are done appending data to the first field. If
you call the AppendChunk method on the first field again, ADO interprets the call
as a new AppendChunk operation and overwrites the existing data. Accessing fields
in other ADO Recordset Object objects (that are not clones of the first Recordset
object) will not disrupt AppendChunk operations.

If there is no current record when you call AppendChunk on a Field object, an
error occurs.

AppendChunk Method Examples (ADO Field Object)

See the “ADO Field Object GetChunk Method” on page 352 example.

ADO Field Object GetChunk Method

Returns all or a portion of the contents of a large text or binary data Field object.

GetChunk Method Syntax (ADO Field Object)

variable = field.GetChunk(Size)

GetChunk Method Parameters (ADO Field Object)

variable

ADO COMPONENT REFERENCE 353

 .
. .
Variant to hold data returned.

Size

A Long expression equal to the number of bytes or characters you want to retrieve.

GetChunk Method Remarks (ADO Field Object)

Use the GetChunk method on a Field object to retrieve part or all of its long binary
or character data. In situations where system memory is limited, you can use the
GetChunk method to manipulate long values in portions rather than in their
entirety.

The data a GetChunk call returns is assigned to variable. If Size is greater than the
remaining data, the GetChunk method returns only the remaining data without
padding variable with empty spaces. If the field is empty, the GetChunk method
returns Null.

Each subsequent GetChunk call retrieves data starting from where the previous
GetChunk call left off. However, if you are retrieving data from one field and then
you set or read the value of another field in the current record, ADO assumes you are
done retrieving data from the first field. If you call the GetChunk method on the
first field again, ADO interprets the call as a new GetChunk operation and starts
reading from the beginning of the data. Accessing fields in other ADO Recordset
Object objects (that are not clones of the first Recordset object) will not disrupt
GetChunk operations.

If the adFldLong bit in the ADO Field Object Attributes Property of a Field object is
set to True, you can use the GetChunk method for that field.

If there is no current record when you use the GetChunk method on a Field object,
error 3021 (no current record) occurs.

GetChunk Method Return Values (ADO Field Object)

Returns a Variant.

GetChunk Method Example (ADO Field Object)

See the “ADO Field Object AppendChunk Method” on page 352.

ADO Field Object Properties

Property Description

“ADO Field Object ActualSize
Property” on page 354

The actual length of a field value.

“ADO Field Object Attributes
Property” on page 355

One or more characteristics of a field. This property is
read-only on UNIX.

354 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Field Object ActualSize Property

The actual length of a field's value.

ActualSize Property Return Values (ADO Field Object)

Returns a Long value. Some providers may allow this property to be set to reserve
space for BLOB data, in which case the default value is 0.

ActualSize Property Remarks (ADO Field Object)

Use the ActualSize property to return the actual length of a Field object's value. For
all fields, the ActualSize property is read-only. If ADO cannot determine the length
of the Field object's value, the ActualSize property returns adUnknown.

The ActualSize and ADO Field Object DefinedSize Property properties are different
as shown in the following example: a Field object with a declared type of
adVarChar and a maximum length of 50 characters returns a DefinedSize
property value of 50, but the ActualSize property value it returns is the length of
the data stored in the field for the current record.

“ADO Field Object DefinedSize
Property” on page 356

The defined size of a field.

“ADO Field Object Name Property”
on page 357

The name of a field.

“ADO Field Object NumericScale
Property” on page 357

The scale of numeric values in a field.

“ADO Field Object OriginalValue
Property” on page 357

The value of a field that existed in the record before any
changes were made. This property is not currently
supported on UNIX.

“ADO Field Object Precision
Property” on page 359

The degree of precision for numeric values in a field.

“ADO Field Object Type Property”
on page 360

The data type of the field.

“ADO Field Object UnderlyingValue
Property” on page 362

The current value of the field in the database. This
property is not currently supported on UNIX.

“ADO Field Object Value Property”
on page 363

The value assigned to the field.

Property Description

ADO COMPONENT REFERENCE 355

 .
. .
ActualSize Property Example (ADO Field Object)

This Visual Basic example uses the ActualSize and DefinedSize properties to
display the defined size and actual size of a field.

Public Sub ActualSizeX()

Dim rstStores As ADODB.Recordset

Dim strCnn As String

' Open a recordset for the Stores table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstStores = New ADODB.Recordset

rstStores.Open "stores", strCnn, , , adCmdTable

' Loop through the recordset displaying the contents

' of the stor_name field, the field's defined size,

' and its actual size.

rstStores.MoveFirst

Do Until rstStores.EOF

MsgBox "Store name: " & rstStores!stor_name & _

vbCr & "Defined size: " & _

rstStores!stor_name.DefinedSize & _

vbCr & "Actual size: " & _

rstStores!stor_name.ActualSize & vbCr

rstStores.MoveNext

Loop

rstStores.Close

End Sub

ADO Field Object Attributes Property

One or more characteristics of an object. This property is read-only on UNIX.

Attributes Property Return Values (ADO Field Object)

Sets or returns a Long value.

Attributes Property Field (ADO Field Object)

For a Field object, the Attributes property is read-only, and its value can be the
sum of any one or more of these FieldAttributeEnum values:

Value Description

adFldMayDefer The field is deferred; that is, the field values are not retrieved
from the data source with the whole record, but only when
you explicitly access them.

356 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Attributes Property Remarks (ADO Field Object)

Use the Attributes property to set or return characteristics of Field objects.

When you set multiple attributes, you can sum the appropriate constants. If you set
the property value to a sum including incompatible constants, an error occurs.

ADO Field Object DefinedSize Property

The defined size of a Field object.

DefinedSize Property Return Values (ADO Field Object)

Returns a Long value that reflects the defined size of a field as a number of bytes.

DefinedSize Property Remarks (ADO Field Object)

Use the DefinedSize property to determine the data capacity of a Field object.

The DefinedSize and ADO Field Object ActualSize Property properties are different.
For example, consider a Field object with a declared type of adVarChar and a
DefinedSize property value of 50, containing a single character. The ActualSize
property value it returns is the length in bytes of the single character.

DefinedSize Property Examples (ADO Field Object)

See the “ADO Field Object ActualSize Property” on page 354 example.

adFldUpdatable The field can be written.

adFldUnknownUpdatable The provider cannot determine if the field can be written.

adFldFixed The field contains fixed-length data.

adFldIsNullable The field accepts Null values.

adFldMayBeNull You can read Null values from the field.

adFldLong The field is a long binary field. Also indicates that you can use
the ADO Field Object AppendChunk Method and ADO Field
Object GetChunk Method methods.

adFldRowID The field contains some kind of record ID (record number,
unique identifier, and so forth).

adFldRowVersion The field contains some kind of time or date stamp used to
track updates.

adFldCacheDeferred The provider caches field values and subsequent reads are
done from the cache.

Value Description

ADO COMPONENT REFERENCE 357

 .
. .
ADO Field Object Name Property

The name of an object.

Name Property Return Values (ADO Field Object)

Sets or returns a String value. The value is read-only on a Field object.

Name Property Remarks (ADO Field Object)

Use the Name property to retrieve the name of a Field object.

The Name property is read-only. Names do not have to be unique within a
collection.

Name Property Examples (ADO Field Object)

See the “ADO Field Object Attributes Property” on page 355 example.

ADO Field Object NumericScale Property

The scale of Numeric values in a Field object.

NumericScale Property Return Values (ADO Field Object)

Sets or returns a Byte value, indicating the number of decimal places to which
numeric values will be resolved

NumericScale Property Remarks (ADO Field Object)

Use the NumericScale property to determine how many digits to the right of the
decimal point will be used to represent values for a numeric Field object.

The NumericScale property is read-only.

ADO Field Object OriginalValue Property

The value of a Field object that existed in the record before any changes were made.
This property is not currently supported on UNIX.

OriginalValue Property Return Values (ADO Field Object)

Returns a Variant value.

OriginalValue Property Remarks (ADO Field Object)

Use the OriginalValue property to return the original field value for a field from
the current record.

In immediate update mode (the provider writes changes to the underlying data
source once you call the ADO Recordset Object Update Method), the OriginalValue
property returns the field value that existed prior to any changes (that is, since the

358 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
last Update method call). This is the same value that the ADO Recordset Object
CancelUpdate Method uses to replace the ADO Field Object Value Property.

In batch update mode (the provider caches multiple changes and writes them to the
underlying data source only when you call the ADO Recordset Object UpdateBatch
Method), the OriginalValue property returns the field value that existed prior to
any changes (that is, since the last UpdateBatch method call). This is the same
value that the ADO Recordset Object CancelBatch Method uses to replace the Value
property. When you use this property with the UnderlyingValue property, you can
resolve conflicts that arise from batch updates. Batch updates are currently not supported
on UNIX.

OriginalValue Property Example (ADO Field Object)

This Visual Basic example demonstrates the OriginalValue and UnderlyingValue
properties by displaying a message if a record's underlying data has changed during a
ADO Recordset Object batch update.

Public Sub OriginalValueX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim fldType As ADODB.Field

Dim strCnn As String

' Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

' Open recordset for batch update.

Set rstTitles = New ADODB.Recordset

Set rstTitles.ActiveConnection = cnn1

rstTitles.CursorType = adOpenKeyset

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles"

' Set field object variable for Type field.

Set fldType = rstTitles!Type

' Change the type of psychology titles.

Do Until rstTitles.EOF

If Trim(fldType) = "psychology" Then

fldType = "self_help"

End If

rstTitles.MoveNext

Loop

' Similate a change by another user by updating

' data using a command string.

ADO COMPONENT REFERENCE 359

 .
. .
cnn1.Execute "UPDATE titles SET type = 'sociology' " & _

"WHERE type = 'psychology'"

'Check for changes.

rstTitles.MoveFirst

Do Until rstTitles.EOF

If fldType.OriginalValue <> _

fldType.UnderlyingValue Then

MsgBox "Data has changed!" & vbCr & vbCr & _

" Title ID: " & rstTitles!title_id & vbCr & _

" Current value: " & fldType & vbCr & _

" Original value: " & _

fldType.OriginalValue & vbCr & _

" Underlying value: " & _

fldType.UnderlyingValue & vbCr

End If

rstTitles.MoveNext

Loop

' Cancel the update because this is a demonstration.

rstTitles.CancelBatch

rstTitles.Close

' Restore original values.

cnn1.Execute "UPDATE titles SET type = 'psychology' " & _

"WHERE type = 'sociology'"

cnn1.Close

End Sub

ADO Field Object Precision Property

The degree of precision for numeric Field objects.

Precision Property Return Values (ADO Field Object)

Sets or returns a Byte value, indicating the maximum total number of digits used to
represent values. The value is read-only on a Field object.

Precision Property Remarks (ADO Field Object)

Use the Precision property to determine the maximum number of digits used to
represent values for a numeric Field object.

Precision Property Example (ADO Field Object)

See the “ADO Field Object NumericScale Property” on page 357.

360 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Field Object Type Property

The operational type or data type of a Field object.

Type Property Return Values (ADO Field Object)

Sets or returns one of the following DataTypeEnum values. The corresponding OLE
DB type indicators are as follows:

Constant Description

adArray Or'd together with another type to indicate that the data is a safe-
array of that type (DBTYPE_ARRAY).

adBigInt An 8-byte signed integer (DBTYPE_I8).

adBinary A binary value (DBTYPE_BYTES).

adBoolean A Boolean value (DBTYPE_BOOL).

adByRef Or'd together with another type to indicate that the data is a pointer
to data of the other type (DBTYPE_BYREF).

adBSTR A null-terminated character string (Unicode) (DBTYPE_BSTR).

adChar A String value (DBTYPE_STR).

adCurrency A currency value (DBTYPE_CY). Currency is a fixed-point number
with 4 digits to the right of the decimal point. It is stored in an 8-
byte signed integer scaled by 10,000.

adDate A date value (DBTYPE_DATE). A date is stored as a Double, the whole
part of which is the number of days since December 30, 1899, and
the fractional part of which is the fraction of a day.

adDBDate A date value (yyyymmdd) (DBTYPE_DBDATE).

adDBTime A time value (hhmmss) (DBTYPE_DBTIME).

adDBTimeStamp A date-time stamp (yyyymmddhhmmss plus a fraction in billionths)
(DBTYPE_DBTIMESTAMP).

adDecimal An exact numeric value with a fixed precision and scale
(DBTYPE_DECIMAL).

adDouble A double-precision floating point value (DBTYPE_R8).

adEmpty No value was specified (DBTYPE_EMPTY).

adError A 32-bit error code (DBTYPE_ERROR).

adGUID A globally unique identifier (GUID) (DBTYPE_GUID).

adIDispatch A pointer to an IDispatch interface on an OLE object
(DBTYPE_IDISPATCH).

adInteger A 4-byte signed integer (DBTYPE_I4).

adIUnknown A pointer to an IUnknown interface on an OLE object
(DBTYPE_IUNKNOWN).

ADO COMPONENT REFERENCE 361

 .
. .
Type Property Remarks (ADO Field Object)

For Field objects, the Type property is read-only.

Type Property Example (ADO Field Object)

This example demonstrates the Type property by displaying the name of the
constant corresponding to the value of the Type property of all the Field objects in
the Employees table. The FieldType function is required for this procedure to run.

Public Sub TypeX()

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim strCnn As String

` Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

Debug.Print "Fields in Employee Table:" & vbCr

` Enumerate Fields collection of Employees table.

For Each fldLoop In rstEmployees.Fields

Debug.Print " Name: " & fldLoop.Name & vbCr & _

" Type: " & FieldType(fldLoop.Type) & vbCr

adNumeric An exact numeric value with a fixed precision and scale
(DBTYPE_NUMERIC).

adSingle A single-precision floating point value (DBTYPE_R4).

adSmallInt A 2-byte signed integer (DBTYPE_I2).

adTinyInt A 1-byte signed integer (DBTYPE_I1).

adUnsignedBigInt An 8-byte unsigned integer (DBTYPE_UI8).

adUnsignedInt A 4-byte unsigned integer (DBTYPE_UI4).

adUnsignedSmallInt A 2-byte unsigned integer (DBTYPE_UI2).

adUnsignedTinyInt A 1-byte unsigned integer (DBTYPE_UI1).

adUserDefined A user-defined variable (DBTYPE_UDT).

adVariant An Automation Variant (DBTYPE_VARIANT).

adVector OR'd together with another type to indicate that the data is a
DBVECTOR structure, as defined by OLE DB, that contains a count of
elements and a pointer to data of the other type (DBTYPE_VECTOR).

adWChar A null-terminated Unicode character string (DBTYPE_WSTR).

Constant Description

362 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Next fldLoop

End Sub

Public Function FieldType(intType As Integer) As String

Select Case intType

Case adChar

FieldType = "adChar"

Case adVarChar

FieldType = "adVarChar"

Case adSmallInt

FieldType = "adSmallInt"

Case adUnsignedTinyInt

FieldType = "adUnsignedTinyInt"

Case adDBTimeStamp

FieldType = "adDBTimeStamp"

End Select

End Function

ADO Field Object UnderlyingValue Property

A Field object's current value in the database. This property is not currently supported on
UNIX.

UnderlyingValue Property Return Values (ADO Field Object)

Returns a Variant value.

UnderlyingValue Property Remarks (ADO Field Object)

Use the UnderlyingValue property to return the current field value from the
database. The field value in the UnderlyingValue property is the value that is
visible to your transaction and may be the result of a recent update by another
transaction. This may differ from the ADO Field Object OriginalValue Property,
which reflects the value that was originally returned to the ADO Recordset Object.

This is similar to using the ADO Recordset Object Resync Method, but the
UnderlyingValue property returns only the value for a specific field from the
current record. This is the same value that the Resync method uses to replace the
ADO Field Object Value Property.

When you use this property with the OriginalValue property, you can resolve
conflicts that arise from batch updates.

UnderlyingValue Property Example (ADO Field Object)

See the “ADO Field Object OriginalValue Property” on page 357 example.

ADO COMPONENT REFERENCE 363

 .
. .
ADO Field Object Value Property

Indicates the value assigned to a Field object.

Value Property Return Values (ADO Field Object)

Sets or returns a Variant value. Default value depends on the ADO Field Object Type
Property.

Value Property Remarks (ADO Field Object)

Use the Value property to set or return data from Field objects. ADO allows setting
and returning long binary data with the Value property.

Value Property Example (ADO Field Object)

This Visual Basic example demonstrates the Value property with Field and
Property objects by displaying field and property values for the Employees table.

Public Sub ValueX()

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim prpLoop As ADODB.Property

Dim strCnn As String

' Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

Debug.Print "Field values in rstEmployees"

' Enumerate the Fields collection of the Employees

' table.

For Each fldLoop In rstEmployees.Fields

` Because Value is the default property of a

` Field object, the use of the actual keyword

` here is optional.

Debug.Print " " & fldLoop.Name & " = " &

fldLoop.Value

Next fldLoop

Debug.Print "Property values in rstEmployees"

' Enumerate the Properties collection of the

' Recordset object.

For Each prpLoop In rstEmployees.Properties

' Because Value is the default property of a

' Property object, the use of the actual keyword

364 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
' here is optional.

Debug.Print " " & prpLoop.Name & " = " &

prpLoop.Value

Next prpLoop

rstEmployees.Close

End Sub

ADO Field Object Remarks

A ADO Recordset Object has an ADO Fields Collection made up of Field objects.
Each Field object corresponds to a column in the recordset. You use the ADO Field
Object Value Property of Field objects to set or return data for the current record.
Depending on the functionality the provider exposes, some collections, methods, or
properties of a Field object may not be available.

The collections, methods, and properties of a Field object are used to:

� return the name of a field with the ADO Field Object Name Property.

� view or change the data in the field with the ADO Field Object Value
Property.

� return the basic characteristics of a field with the ADO Field Object Type
Property, ADO Field Object Precision Property, and ADO Field Object
NumericScale Property properties.

� return the declared size of a field with the ADO Field Object DefinedSize
Property.

� return the actual size of the data in a given field with the ADO Field Object
ActualSize Property.

� determine what types of functionality are supported for a given field with the
ADO Field Object Attributes Property and ADO Properties Collection.

� manipulate the values of fields containing long binary or long character data
with the ADO Field Object AppendChunk Method and ADO Field Object
GetChunk Method methods.

� resolve discrepancies in field values during batch updating with the ADO
Field Object OriginalValue Property and UnderlyingValue properties (if the
provider supports batch updates).

Note

All metadata properties (Name, Type, DefinedSize, Precision, and
NumericScale) are available before opening the Field object's recordset.
Setting them at that time is useful for dynamically constructing forms.

ADO Parameter Object
The ADO Parameter Object represents a parameter or argument associated with a
Command object based on a parameterized query or stored procedure.

ADO COMPONENT REFERENCE 365

 .
. .
ADO Parameter Object Collections

ADO Parameter Object Methods

ADO Parameter Object AppendChunk Method

Appends data to a large text or binary data Parameter object.

AppendChunk Method Syntax (ADO Parameter Object)

object.AppendChunk Data

AppendChunk Method Parameters (ADO Parameter Object)

object

A Parameter object.

Data

A Variant containing the data you want to append to the object.

AppendChunk Method Remarks (ADO Parameter Object)

Use the AppendChunk method on a Parameter object to fill it with long binary
or character data. In situations where system memory is limited, you can use the
AppendChunk method to manipulate long values in portions rather than in their
entirety.

If the adFldLong bit in the ADO Parameter Object Attributes Property of a
Parameter object is set to True, you can use the AppendChunk method for that
parameter.

The first AppendChunk call on a Parameter object writes data to the parameter,
overwriting any existing data. Subsequent AppendChunk calls on a Parameter
object adds to existing parameter data. An AppendChunk call that passes a Null
value generates an error; you must manually set the ADO Parameter Object Value
Property of the Parameter object to a zero-length string ("") in order to clear its
value.

“ADO Properties Collection” on page
456

All the Property objects for a specific instance of a
Parameter object. This collection is not currently
supported on UNIX.

“ADO Parameter Object AppendChunk
Method” on page 365

Appends data to a large text or binary data
parameter.

366 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Parameter Object Properties

ADO Parameter Object Attributes Property

One or more characteristics of an object. This property is read-only on UNIX.

Attributes Property Return Values (ADO Parameter Object)

Sets or returns a Long value.

Attributes Property Parameters (ADO Parameter Object)

For an ADO Parameter Object, the Attributes property is read/write, and its value
can be the sum of any one or more of these ParameterAttributesEnum values:

Property Description

“ADO Parameter Object Attributes
Property” on page 366

One or more characteristics of a parameter. This
property is currently read-only on UNIX.

“ADO Parameter Object Direction
Property” on page 368

Indicates if the parameter is an input parameter, an
output parameter, or both; or if the parameter is the
output of a stored procedure.

“ADO Parameter Object Name
Property” on page 368

The name of the parameter.

“ADO Parameter Object NumericScale
Property” on page 369

The scale of numeric values in the parameter.

“ADO Parameter Object Precision
Property” on page 369

The degree of precision for numeric values in the
parameter.

“ADO Parameter Object Size Property”
on page 369

The maximum size, in bytes or characters, of a
parameter.

“ADO Parameter Object Type
Property” on page 370

The data type of the parameter.

“ADO Parameter Object Value
Property” on page 372

The value assigned to the parameter.

Value Description

adParamSigned Default. The parameter accepts signed values.

adParamNullable The parameter accepts Null values.

ADO COMPONENT REFERENCE 367

 .
. .
Attributes Property Remarks (ADO Parameter Object)

Use the Attributes property to set or return characteristics of Parameter objects.

When you set multiple attributes, you can sum the appropriate constants. If you set
the property value to a sum including incompatible constants, an error occurs.

Attributes Property Examples (ADO Parameter Object)

This Visual Basic example displays the value of the Attributes property for
Connection, Field, and Property objects. It uses the ADO Parameter Object Name
Property to display the name of each Field and Property object.

Public Sub AttributesX

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim proLoop As ADODB.Property

Dim strCnn As String

' Open connection and recordset.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", cnn1, , ,

adCmdTable

' Display the attributes of the connection.

Debug.Print "Connection attributes = " & _

cnn1.Attributes

' Display attributes of the Employee table fields

Debug.Print "Field attributes:"

For Each fldLoop In rstEmployees.Fields

Debug.Print " " & fldLoop.Name & " = " & _

fldLoop.Attributes

Next fldLoop

' Display attributes of the Employee table properties.

Debug.Print "Property attributes:"

For Each proLoop In rstEmployees.Properties

Debug.Print " " & proLoop.Name & " = " & _

adParamLong The parameter accepts long binary data.

Value Description

368 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
proLoop.Attributes

Next proLoop

rstEmployees.Close

cnn1.Close

End Sub

ADO Parameter Object Direction Property

Indicates whether the Parameter object represents an input parameter, an output
parameter, or both, or if the parameter is the return value from a stored procedure.

Direction Property Return Values

Sets or returns one of the following ParameterDirectionEnum values

Direction Property Remarks

Use the Direction property to specify how a parameter is passed to or from a
procedure. The Direction property is read/write; this allows you to work with
providers that do not return this information, or to set this information when you do
not want ADO to make an extra call to the provider to retrieve parameter
information.

Not all providers can determine the direction of parameters in their stored
procedures. In these cases, you must set the Direction property prior to executing
the query.

ADO Parameter Object Name Property

The name of an object.

Name Property Return Values (ADO Parameter Object)

Sets or returns a String value. The value is read/write on a Parameter object.

Name Property Remarks (ADO Parameter Object)

Use the Name property to assign a name to or retrieve the name of a Parameter
object.

Constant Description

AdParamInput Default. Indicates an input parameter.

AdParamOutput Indicates an output parameter.

AdParamInputOutput Indicates a two-way parameter.

AdParamReturnValue Indicates a return value.

ADO COMPONENT REFERENCE 369

 .
. .
For Parameter objects not yet appended to the ADO Parameters Collection, the
Name property is read/write. For appended Parameter objects and all other objects,
the Name property is read-only. Names do not have to be unique within a collection.

ADO Parameter Object NumericScale Property

The scale of Numeric values in a Parameter object.

NumericScale Property Return Values

Sets or returns a Byte value, indicating the number of decimal places to which
numeric values will be resolved.

NumericScale Property Remarks

Use the NumericScale property to determine how many digits to the right of the
decimal point will be used to represent values for a numeric Parameter object.

For Parameter objects, the NumericScale property is read/write.

ADO Parameter Object Precision Property

The degree of precision for Numeric values in a Parameter object.

Precision Property Return Values (ADO Parameter Object)

Sets or returns a Byte value, indicating the maximum total number of digits used to
represent values. The value is read/write on a Parameter object.

Precision Property Remarks (ADO Parameter Object)

Use the Precision property to determine the maximum number of digits used to
represent values for a numeric Parameter object.

ADO Parameter Object Size Property

The maximum size, in bytes or characters, of a Parameter object.

Size Property Return Values (ADO Parameter Object)

Sets or returns a Long value that indicates the maximum size in bytes or characters
of a value in a Parameter object.

Size Property Remarks (ADO Parameter Object)

Use the Size property to determine the maximum size for values written to or read
from the ADO Parameter Object Value Property of a Parameter object. The Size
property is read/write. If you specify a variable-length data type for a Parameter
object, you must set the object's Size property before appending it to the ADO
Parameters Collection; otherwise an error occurs. If you have already appended the

370 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Parameter object to the Parameters collection of an ADO Command Object and
you change its type to a variable-length data type, you must set the Parameter
object's Size property before executing the Command object; otherwise an error
occurs.

If you use the ADO Collections Refresh Method to obtain parameter information
from the provider and it returns one or more variable-length data type Parameter
objects, ADO may allocate memory for the parameters based on their maximum
potential size, which could cause an error during execution. To prevent an error, you
should explicitly set the Size property for these parameters before executing the
command.

Size Property Example (ADO Parameter Object)

See ActiveConnection property example.

ADO Parameter Object Type Property

The operational type or data type of a Parameter object.

Type Property Return Values (ADO Parameter Object)

Sets or returns one of the following DataTypeEnum values. The corresponding OLE
DB type indicators are as follows:

Constant Description

adArray OR'd together with another type to indicate that the data is a safe-
array of that type (DBTYPE_ARRAY).

adBigInt An 8-byte signed integer (DBTYPE_I8).

adBinary A binary value (DBTYPE_BYTES).

adBoolean A Boolean value (DBTYPE_BOOL).

adByRef Or'd together with another type to indicate that the data is a
pointer to data of the other type (DBTYPE_BYREF).

adBSTR A null-terminated character string (Unicode) (DBTYPE_BSTR).

adChar A String value (DBTYPE_STR).

adCurrency A currency value (DBTYPE_CY). Currency is a fixed-point number
with 4 digits to the right of the decimal point. It is stored in an 8-
byte signed integer scaled by 10,000.

adDate A date value (DBTYPE_DATE). A date is stored as a Double, the
whole part of which is the number of days since December 30,
1899, and the fractional part of which is the fraction of a day.

adDBDate A date value (yyyymmdd) (DBTYPE_DBDATE).

adDBTime A time value (hhmmss) (DBTYPE_DBTIME).

adDBTimeStamp A date-time stamp (yyyymmddhhmmss plus a fraction in billionths)
(DBTYPE_DBTIMESTAMP).

ADO COMPONENT REFERENCE 371

 .
. .
adDecimal An exact numeric value with a fixed precision and scale
(DBTYPE_DECIMAL).

adDouble A double-precision floating point value (DBTYPE_R8).

adEmpty No value was specified (DBTYPE_EMPTY).

adError A 32-bit error code (DBTYPE_ERROR).

adGUID A globally unique identifier (GUID) (DBTYPE_GUID).

adIDispatch A pointer to an IDispatch interface on an OLE object
(DBTYPE_IDISPATCH).

adInteger A 4-byte signed integer (DBTYPE_I4).

adIUnknown A pointer to an IUnknown interface on an OLE object
(DBTYPE_IUNKNOWN).

adLongVarBinary A long binary value.

adLongVarChar A long String value.

adLongVarWChar A long null-terminated string value.

adNumeric An exact numeric value with a fixed precision and scale
(DBTYPE_NUMERIC).

adSingle A single-precision floating point value (DBTYPE_R4).

adSmallInt A 2-byte signed integer (DBTYPE_I2).

adTinyInt A 1-byte signed integer (DBTYPE_I1).

adUnsignedBigInt An 8-byte unsigned integer (DBTYPE_UI8).

adUnsignedInt A 4-byte unsigned integer (DBTYPE_UI4).

adUnsignedSmallInt A 2-byte unsigned integer (DBTYPE_UI2).

adUnsignedTinyInt A 1-byte unsigned integer (DBTYPE_UI1).

adUserDefined A user-defined variable (DBTYPE_UDT).

adVarBinary A binary value.

adVarChar A String value.

adVariant An Automation Variant (DBTYPE_VARIANT).

adVector OR'd together with another type to indicate that the data is a
DBVECTOR structure, as defined by OLE DB, that contains a count
of elements and a pointer to data of the other type
(DBTYPE_VECTOR).

adVarWChar A null-terminated Unicode character string.

adWChar A null-terminated Unicode character string (DBTYPE_WSTR).

Constant Description

372 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Type Property Remarks (ADO Parameter Object)

For Parameter objects, the Type property is read/write.

ADO Parameter Object Value Property

Indicates the value assigned to a Parameter object.

Value Property Return Values (ADO Parameter Object)

Sets or returns a Variant value. Default value depends on the ADO Parameter Object
Type Property.

Value Property Remarks (ADO Parameter Object)

Use the Value property to set or return parameter values with Parameter objects.

ADO allows setting and returning long binary data with the Value property.

ADO Parameter Object Remarks

The Properties collection is not currently supported on UNIX.

Many providers support parameterized commands. These are commands where the
desired action is defined once, but variables (or parameters) are used to alter some
details of the command. For example, an SQL SELECT statement could use a
parameter to define the matching criteria of a WHERE clause, and another to define
the column name for a SORT BY clause.

The Parameter objects represent parameters associated with parameterized queries,
or the in/out arguments and the return values of stored procedures. Depending on
the functionality of the provider, some collections, methods, or properties of a
Parameter object may not be available.

The collections, methods, and properties of a Parameter object are used to:

� set or return the name of a parameter with the ADO Parameter Object Name
Property.

� set or return the value of a parameter with the ADO Parameter Object Value
Property.

� set or return parameter characteristics with the ADO Parameter Object
Attributes Property, ADO Parameter Object Direction Property, ADO
Parameter Object Precision Property, ADO Parameter Object NumericScale
Property, ADO Parameter Object Size Property, and ADO Parameter Object
Type Property properties.

� pass long binary or character data to a parameter with the ADO Parameter
Object AppendChunk Method.

If you know the names and properties of the parameters associated with the stored
procedure or parameterized query you wish to call, you can use the
CreateParameter method to create Parameter objects with the appropriate
property settings and use the ADO Collections Append Method to add them to the
ADO Parameters Collection. This lets you set and return parameter values without

ADO COMPONENT REFERENCE 373

 .
. .
having to call the ADO Collections Refresh Method on the Parameters collection to
retrieve the parameter information from the provider, a potentially resource-
intensive operation.

ADO Property Object
The ADO Property object represents a dynamic characteristic of an ADO object that
is defined by the provider. This object is not currently supported on UNIX.

ADO Property Object Properties

ADO Property Object Attributes Property

One or more characteristics of an object.

Attributes Property Return Values (ADO Property Object)

Sets or returns a Long value.

Attributes Property Property (ADO Property Object)

For a Property object, the Attributes property is read-only, and its value can be
the sum of any one or more of these PropertyAttributesEnum values:

Property Description

“ADO Property Object Attributes Property”
on page 373

One or more characteristics of a property.

“ADO Property Object Name Property” on
page 375

The name of the property.

“ADO Property Object Type Property” on
page 375

The operational or data type of the property.

“ADO Property Object Value Property” on
page 377

The value assigned to the property.

Value Description

adPropNotSupported The property is not supported by the provider.

adPropRequired The user must specify a value for this property before the data
source is initialized.

adPropOptional The user does not need to specify a value for this property before
the data source is initialized.

374 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Attributes Property Remarks (ADO Property Object)

Use the Attributes property to set or return characteristics of Property objects.

When you set multiple attributes, you can sum the appropriate constants. If you set
the property value to a sum including incompatible constants, an error occurs.

Attributes Property Examples (ADO Property Object)

This Visual Basic example displays the value of the Attributes property for
Property objects. It uses the ADO Property Object Name Property to display the
name of each Property object.

Public Sub AttributesX

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim proLoop As ADODB.Property

Dim strCnn As String

' Open connection and recordset.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", cnn1, , ,

adCmdTable

' Display attributes of the Employee table properties.

Debug.Print "Property attributes:"

For Each proLoop In rstEmployees.Properties

Debug.Print " " & proLoop.Name & " = " & _

proLoop.Attributes

Next proLoop

rstEmployees.Close

cnn1.Close

End Sub

adPropRead The user can read the property.

adPropWrite The user can set the property.

Value Description

ADO COMPONENT REFERENCE 375

 .
. .
ADO Property Object Name Property

The name of an object.

Name Property Return Values (ADO Property Object)

Sets or returns a String value. The value is read-only on a Property object.

Name Property Remarks (ADO Property Object)

Use the Name property to assign a name to or retrieve the name of a Property
object.

You can retrieve the Name property of an object by an ordinal reference, after which
the object can be referred to directly by name. For example, if
rstMain.Properties(20).Name yields Updatability, you can subsequently refer
to this property as rstMain.Properties("Updatability").

Name Property Examples (ADO Property Object)

See the “ADO Property Object Attributes Property” on page 373 example.

ADO Property Object Type Property

The operational type or data type of a Property object.

Type Property Return Values (ADO Property Object)

Sets or returns one of the following DataTypeEnum values. The corresponding OLE
DB type indicators are as follows:

Constant Description

adArray Or'd together with another type to indicate that the data is a safe-
array of that type (DBTYPE_ARRAY).

adBigInt An 8-byte signed integer (DBTYPE_I8).

adBinary A binary value (DBTYPE_BYTES).

adBoolean A Boolean value (DBTYPE_BOOL).

adByRef Or'd together with another type to indicate that the data is a pointer
to data of the other type (DBTYPE_BYREF).

adBSTR A null-terminated character string (Unicode) (DBTYPE_BSTR).

adChar A String value (DBTYPE_STR).

adCurrency A currency value (DBTYPE_CY). Currency is a fixed-point number
with 4 digits to the right of the decimal point. It is stored in an 8-
byte signed integer scaled by 10,000.

adDate A date value (DBTYPE_DATE). A date is stored as a Double, the whole
part of which is the number of days since December 30, 1899, and
the fractional part of which is the fraction of a day.

376 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
adDBDate A date value (yyyymmdd) (DBTYPE_DBDATE).

adDBTime A time value (hhmmss) (DBTYPE_DBTIME).

adDBTimeStamp A date-time stamp (yyyymmddhhmmss plus a fraction in billionths)
(DBTYPE_DBTIMESTAMP).

adDecimal An exact numeric value with a fixed precision and scale
(DBTYPE_DECIMAL).

adDouble A double-precision floating point value (DBTYPE_R8).

adEmpty No value was specified (DBTYPE_EMPTY).

adError A 32-bit error code (DBTYPE_ERROR).

adGUID A globally unique identifier (GUID) (DBTYPE_GUID).

adIDispatch A pointer to an IDispatch interface on an OLE object
(DBTYPE_IDISPATCH).

adInteger A 4-byte signed integer (DBTYPE_I4).

adIUnknown A pointer to an IUnknown interface on an OLE object
(DBTYPE_IUNKNOWN).

adLongVarBinary A long binary value.

adLongVarChar A long String value.

adLongVarWChar A long null-terminated string value.

adNumeric An exact numeric value with a fixed precision and scale
(DBTYPE_NUMERIC).

adSingle A single-precision floating point value (DBTYPE_R4).

adSmallInt A 2-byte signed integer (DBTYPE_I2).

adTinyInt A 1-byte signed integer (DBTYPE_I1).

adUnsignedBigInt An 8-byte unsigned integer (DBTYPE_UI8).

adUnsignedInt A 4-byte unsigned integer (DBTYPE_UI4).

adUnsignedSmallInt A 2-byte unsigned integer (DBTYPE_UI2).

adUnsignedTinyInt A 1-byte unsigned integer (DBTYPE_UI1).

adUserDefined A user-defined variable (DBTYPE_UDT).

adVarBinary A binary value.

adVarChar A String value.

adVariant An Automation Variant (DBTYPE_VARIANT).

adVector OR'd together with another type to indicate that the data is a
DBVECTOR structure, as defined by OLE DB, that contains a count of
elements and a pointer to data of the other type (DBTYPE_VECTOR).

Constant Description

ADO COMPONENT REFERENCE 377

 .
. .
Type Property Remarks (ADO Property Object)

The Type property is read-only.

ADO Property Object Value Property

Indicates the value assigned to a Property object.

Value Property Return Values (ADO Property Object)

Sets or returns a Variant value. Default value depends on the ADO Property Object
Type Property.

Value Property Remarks (ADO Property Object)

Use the Value property to set or return property settings with Property objects.

Value Property Example (ADO Property Object)

This Visual Basic example demonstrates the Value property with Field and
Property objects by displaying field and property values for the Employees table.

Public Sub ValueX()

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim prpLoop As ADODB.Property

Dim strCnn As String

' Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

Debug.Print "Field values in rstEmployees"

' Enumerate the Fields collection of the Employees

' table.

For Each fldLoop In rstEmployees.Fields

` Because Value is the default property of a

` Field object, the use of the actual keyword

` here is optional.

Debug.Print " " & fldLoop.Name & " = " &

adVarWChar A null-terminated Unicode character string.

adWChar A null-terminated Unicode character string (DBTYPE_WSTR).

Constant Description

378 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
fldLoop.Value

Next fldLoop

Debug.Print "Property values in rstEmployees"

' Enumerate the Properties collection of the

' Recordset object.

For Each prpLoop In rstEmployees.Properties

' Because Value is the default property of a

' Property object, the use of the actual keyword

' here is optional.

Debug.Print " " & prpLoop.Name & " = " &

prpLoop.Value

Next prpLoop

rstEmployees.Close

End Sub

ADO Property Object Remarks

ADO objects have two types of properties: built-in and dynamic. Built-in properties
are those properties implemented in ADO and immediately available to any new
object, using the familiar MyObject.Property syntax.

Built-in properties do not appear as Property objects in an object's ADO Properties
Collection, so while you can change their values, you cannot modify their
characteristics or delete them.

Dynamic properties are defined by the underlying data provider, and appear in the
Properties collection for the appropriate ADO object. For example, a property
specific to the provider may indicate if an ADO Recordset Object supports
transactions or updating. These additional properties will appear as Property
objects in that Recordset object's Properties collection. Dynamic properties can be
referenced only through the collection, using the MyObject.Properties(0) or
MyObject.Properties("Name") syntax.

A dynamic Property object has four built-in properties:

� The ADO Property Object Name Property is a string that identifies the
property.

� The ADO Property Object Type Property is an integer that specifies the
property data type.

� The ADO Property Object Value Property is a Variant that contains the
property setting.

� The ADO Property Object Attributes Property is a long value that indicates
characteristics of the property specific to the provider.

ADO COMPONENT REFERENCE 379

 .
. .
ADO Recordset Object
The Recordset object represents the entire set of records from a database table or the
results of an executed command.

ADO Recordset Object Collections

ADO Recordset Object Methods

Collection Description

“ADO Fields Collection” on page 455 All the stored Field objects of a Recordset object.

“ADO Properties Collection” on page
456

All the Property objects for a specific instance of a
Recordset object. This collection is not currently
supported on UNIX.

Method Description

“ADO Recordset Object AddNew
Method” on page 380

Creates a new record for an updatable Recordset
object.

“ADO Recordset Object CancelBatch
Method” on page 381

Cancels a pending batch update. This method is not
currently supported on UNIX.

“ADO Recordset Object CancelUpdate
Method” on page 384

Cancels any changes made to the current record prior
to calling the Update method.

“ADO Recordset Object Clone
Method” on page 386

Creates a new Recordset object from an existing
Recordset object. This method is not currently
supported on UNIX.

“ADO Recordset Object Close
Method” on page 387

Closes an open Recordset object and any dependent
objects.

“ADO Recordset Object Delete
Method” on page 391

Deletes the current record or group of records from a
Recordset object.

“ADO Recordset Object GetRows
Method” on page 394

Retrieves multiple rows from a Recordset object into
an array.

“ADO Recordset Object Move
Method” on page 397

Moves the position of the current record in a
Recordset object.

380 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Recordset Object AddNew Method

Creates a new record for an updateable Recordset object.

AddNew Method Syntax

recordset.AddNew Fields, Values

AddNew Method Parameters

Fields

An optional single name or an array of names or ordinal positions of the fields in the
new record.

Values

An optional single value or an array of values for the fields in the new record. If
Fields is an array, Values must also be an array with the same number of members;
otherwise, an error occurs. The order of field names must match the order of field
values in each array.

“ADO Recordset Object MoveFirst,
MoveLast, MoveNext, MovePrevious
Methods” on page 402

Moves to the first, first, last, next record in a
Recordset object and makes that record the current
record.

“ADO Recordset Object
NextRecordset Method” on page 406

Clears the current Recordset object and returns the
next recordset by advancing through a series of
commands. This method is not currently supported on
UNIX.

“ADO Recordset Object Open
Method” on page 408

Opens a cursor.

“ADO Recordset Object Requery
Method” on page 411

Updates the data in a recordset by re-executing the
query on which the object is based.

“ADO Recordset Object Resync
Method” on page 411

Refreshes the data in the Recordset object from the
underlying database.

“ADO Recordset Object Supports
Method” on page 413

Determines whether a specified Recordset object
supports a particular type of functionality.

“ADO Recordset Object Update
Method” on page 416

Saves any changes you make to the current record of
a Recordset object.

“ADO Recordset Object UpdateBatch
Method” on page 419

Writes all pending batch updates. This method is not
currently supported on UNIX.

Method Description

ADO COMPONENT REFERENCE 381

 .
. .
AddNew Method Remarks

Use the AddNew method to create and initialize a new record. Use the ADO
Recordset Object Supports Method with adAddNew to verify whether you can add
records to the current Recordset object.

After you call the AddNew method, the new record becomes the current record and
remains current after you call the ADO Recordset Object Update Method. If the
Recordset object does not support bookmarks, you may not be able to access the
new record once you move to another record. Depending on your cursor type, you
may need to call the ADO Recordset Object Requery Method to make the new record
accessible.

If you call AddNew while editing the current record or while adding a new record,
ADO calls the Update method to save any changes and then creates the new record.

The behavior of the AddNew method depends on the updating mode of the
Recordset object and whether or not you pass the Fields and Values arguments.

In immediate update mode (the provider writes changes to the underlying data source
once you call the Update method), calling the AddNew method without arguments
sets the ADO Recordset Object EditMode Property to adEditAdd. The provider
caches any field value changes locally. Calling the Update method posts the new
record to the database and resets the EditMode property to adEditNone. If you
pass the Fields and Values arguments, ADO immediately posts the new record to the
database (no Update call is necessary); the EditMode property value does not
change (adEditNone).

In batch update mode (the provider caches multiple changes and writes them to the
underlying data source only when you call the UpdateBatch method), calling the
AddNew method without arguments sets the EditMode property to adEditAdd.
The provider caches any field value changes locally. Calling the Update method
adds the new record to the current recordset and resets the EditMode property to
adEditNone, but the provider does not post the changes to the underlying database
until you call the ADO Recordset Object UpdateBatch Method. If you pass the Fields
and Values arguments, ADO sends the new record to the provider for storage in a
cache; you need to call the UpdateBatch method to post the new record to the
underlying database. Batch updating is not currently supported on UNIX.

ADO Recordset Object CancelBatch Method

Cancels a pending batch update. This method is not currently supported on UNIX.

CancelBatch Method Syntax

recordset.CancelBatch AffectRecords

CancelBatch Method Parameters

AffectRecords

An optional AffectEnum value that determines how many records the
CancelBatch method will affect. It can be one of the following constants:

382 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
CancelBatch Method Remarks

Use the CancelBatch method to cancel any pending updates in a recordset in batch
update mode. If the recordset is in immediate update mode, calling CancelBatch
without adAffectCurrent generates an error.

If you are editing the current record or are adding a new record when you call
CancelBatch, ADO first calls the ADO Recordset Object CancelUpdate Method to
cancel any cached changes; after that, all pending changes in the recordset are
canceled.

It's possible that the current record will be indeterminable after a CancelBatch call,
especially if you were in the process of adding a new record. For this reason, it is
prudent to set the current record position to a known location in the recordset after
the CancelBatch call. For example, call the ADO Recordset Object MoveFirst,
MoveLast, MoveNext, MovePrevious Methods.

If the attempt to cancel the pending updates fails because of a conflict with the
underlying data (for example, a record has been deleted by another user), the
provider returns warnings to the ADO Errors Collection but does not halt program
execution. A run-time error occurs only if there are conflicts on all the requested
records. Use the Filter property (adFilterAffectedRecords) and the ADO
Recordset Object Status Property to locate records with conflicts.

CancelBatch Method Examples

This Visual Basic example demonstrates the ADO Recordset Object UpdateBatch
Method in conjunction with the CancelBatch method.

Public Sub UpdateBatchX()

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

Dim strTitle As String

Dim strMessage As String

` Assign connection string to variable.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenKeyset

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

Constant Description

adAffectCurrent Cancels pending updates only for the current record.

adAffectGroup Cancels pending updates for records that satisfy the current ADO
Recordset Object Filter Property setting. You must set the Filter property
to one of the valid predefined constants in order to use this option.

adAffectAll Default. Cancels pending updates for all the records in the Recordset
object, including any hidden by the current Filter property setting.

ADO COMPONENT REFERENCE 383

 .
. .
rstTitles.MoveFirst

` Loop through recordset and ask user if she wants

` to change the type for a specified title.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

strTitle = rstTitles!Title

strMessage = "Title: " & strTitle & vbCr & _

"Change type to self help?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstTitles!Type = "self_help"

End If

End If

rstTitles.MoveNext

Loop

` Ask if the user wants to commit to all the

` changes made above.

If MsgBox("Save all changes?", vbYesNo) = vbYes Then

rstTitles.UpdateBatch

Else

rstTitles.CancelBatch

End If

` Print current data in recordset.

rstTitles.Requery

rstTitles.MoveFirst

Do While Not rstTitles.EOF

Debug.Print rstTitles!Title & " - " & rstTitles!Type

rstTitles.MoveNext

Loop

` Restore original values because this is a demonstration.

rstTitles.MoveFirst

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "self_help" Then

rstTitles!Type = "psychology"

End If

rstTitles.MoveNext

Loop

rstTitles.UpdateBatch

rstTitles.Close

End Sub

384 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Recordset Object CancelUpdate Method

Cancels any changes made to the current record or to a new record prior to calling
the Update method.

CancelUpdate Method Syntax

recordset.CancelUpdate

CancelUpdate Method Remarks

Use the CancelUpdate method to cancel any changes made to the current record or
to discard a newly added record.

Note

You cannot undo changes to the current record or to a new record after you
call the ADO Recordset Object Update Method unless the changes are either
part of a transaction that you can roll back with the RollbackTrans method
or part of a batch update that you can cancel with the ADO Recordset Object
CancelBatch Method.

If you are adding a new record when you call the CancelUpdate method,
the record that was current prior to the ADO Recordset Object AddNew
Method call becomes the current record again. If you have not changed the
current record or added a new record, calling the CancelUpdate method
generates an error.

CancelUpdate Method Examples

These Visual Basic examples demonstrate the ADO Recordset Object Update Method
in conjunction with the CancelUpdate method.

Public Sub UpdateX()

Dim rstEmployees As ADODB.Recordset

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

` Open recordset with names from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "SELECT fname, lname " & _

"FROM Employee ORDER BY lname", strCnn, , , adCmdText

` Store original data.

strOldFirst = rstEmployees!fname

ADO COMPONENT REFERENCE 385

 .
. .
strOldLast = rstEmployees!lname

` Change data in edit buffer.

rstEmployees!fname = "Linda"

rstEmployees!lname = "Kobara"

` Show contents of buffer and get user input.

strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _

strOldLast & vbCr & " Data in buffer = " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to replace the original data with " & _

"the buffered data in the Recordset?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstEmployees.Update

Else

rstEmployees.CancelUpdate

End If

` Show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!fname & " " & _

rstEmployees!lname

` Restore original data because this is a demonstration.

If Not (strOldFirst = rstEmployees!fname And _

strOldLast = rstEmployees!lname) Then

rstEmployees!fname = strOldFirst

rstEmployees!lname = strOldLast

rstEmployees.Update

End If

rstEmployees.Close

End Sub

This example demonstrates the Update method in conjunction with the AddNew
method.

Public Sub UpdateX2()

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim strEmpID As String

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

` Open a connection.

Set cnn1 = New ADODB.Connection

386 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

` Open recordset with data from Employee table.

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "employee", cnn1, , , adCmdTable

rstEmployees.AddNew

strEmpID = "B-S55555M"

rstEmployees!emp_id = strEmpID

rstEmployees!fname = "Bill"

rstEmployees!lname = "Sornsin"

` Show contents of buffer and get user input.

strMessage = "AddNew in progress:" & vbCr & _

"Data in buffer = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to save buffer to recordset?"

If MsgBox(strMessage, vbYesNoCancel) = vbYes Then

rstEmployees.Update

` Go to the new record and show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname

Else

rstEmployees.CancelUpdate

MsgBox "No new record added."

End If

` Delete new data because this is a demonstration.

cnn1.Execute "DELETE FROM employee WHERE emp_id = '" & strEmpID & "'"

rstEmployees.Close

End Sub

ADO Recordset Object Clone Method

Creates a duplicate Recordset object from an existing Recordset object. This
method is not currently supported on UNIX.

Clone Method Syntax

Set rstDuplicate = rstOriginal.Clone ()

ADO COMPONENT REFERENCE 387

 .
. .
Clone Method Parameters

rstDuplicate

An object variable identifying the duplicate Recordset object you're creating.

rstOriginal

An object variable identifying the Recordset object you want to duplicate.

Clone Method Remarks

Use the Clone method to create multiple, duplicate Recordset objects, particularly
if you want to be able to maintain more than one current record in a given set of
records. Using the Clone method is more efficient than creating and opening a new
Recordset object with the same definition as the original.

The current record of a newly created clone is set to the first record.

Changes you make to one Recordset object are visible in all of its clones regardless
of cursor type. However, once you execute the ADO Recordset Object Requery
Method on the original Recordset, the clones will no longer be synchronized to the
original.

Closing the original recordset does not close its copies; closing a copy does not close
the original or any of the other copies.

You can only clone a Recordset object that supports bookmarks. Bookmark values
are interchangeable; that is, a bookmark reference from one Recordset object refers
to the same record in any of its clones.

Clone Method Return Values

Returns a Recordset object reference.

ADO Recordset Object Close Method

Closes an open object and any dependent objects.

Close Method Syntax

object.Close

Close Method Remarks

Use the Close method to close a Recordset object to free any associated system
resources. Closing an object does not remove it from memory; you may change its
property settings and open it again later. To completely eliminate an object from
memory, set the object variable to Nothing.

Using the Close method to close a Recordset object releases the associated data and
any exclusive access you may have had to the data through this particular
Recordset object. You can later call the ADO Recordset Object Open Method to
reopen the Recordset with the same or modified attributes. While the Recordset
object is closed, calling any methods that require a live cursor generates an error.

388 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
If an edit is in progress while in immediate update mode, calling the Close method
generates an error; call the ADO Recordset Object Update Method or ADO Recordset
Object CancelUpdate Method first. If you close the Recordset object during batch
updating, all changes since the last ADO Recordset Object UpdateBatch Method call
are lost.

If you use the Clone method to create copies of an open Recordset object, closing
the original or a clone does not affect any of the other copies.

Close Method Examples

This VBScript example uses the Open and Close methods on both Recordset and
Connection objects that have been opened.

<!-- #Include file="ADOVBS.INC" -->

<HTML><HEAD>

<TITLE>ADO 1.5 Open Method</TITLE>

</HEAD><BODY>

<Center><H3>ADO Open Method</H3>

<TABLE WIDTH=600 BORDER=0>

<TD VALIGN=TOP ALIGN=LEFT COLSPAN=3>

<!--- ADO Connection used to create 2 recordsets-->

<%

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

SQLQuery = "SELECT * FROM Customers"

'First Recordset RSCustomerList

Set RSCustomerList = OBJdbConnection.Execute(SQLQuery)

'Second Recordset RsProductist

Set RsProductList = Server.CreateObject("ADODB.Recordset")

RsProductList.CursorType = adOpenDynamic

RsProductList.LockType = adLockOptimistic

RsProductList.Open "Products", OBJdbConnection

%>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

ADO COMPONENT REFERENCE 389

 .
. .
E-mail
address</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province</TD></TR>

<!--Display ADO Data from Customer Table-->

<% Do While Not RScustomerList.EOF %>

<TR><TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD></TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

RScustomerList.Close

OBJdbConnection.Close

%>

</TABLE>

<HR>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

390 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
<!-- BEGIN column header row for Product List Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#800000">

Product
Type</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Product
Name</TD>

<TD ALIGN=CENTER WIDTH=350 BGCOLOR="#800000">

Product
Description</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Unit
Price</TD></TR>

<!-- Display ADO Data Product List-->

<% Do While Not RsProductList.EOF %>

<TR> <TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductType")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductDescription")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("UnitPrice")%>

</TD>

<!-- Next Row = Record -->

<%

RsProductList.MoveNext

Loop

'Remove Objects from Memory Freeing

Set RsProductList = Nothing

Set OBJdbConnection = Nothing

%>

</TABLE></Center></BODY></HTML>

ADO COMPONENT REFERENCE 391

 .
. .
ADO Recordset Object Delete Method

Deletes the current record or a group of records.

Delete Method Syntax

recordset.Delete AffectRecords

Delete Method Parameters

AffectRecords

An optional AffectEnum value that determines how many records the Delete
method will affect. Can be one of the following constants:

Delete Method Remarks

Using the Delete method marks the current record or a group of records in a
Recordset object for deletion. If the Recordset object doesn't allow record
deletion, an error occurs. If you are in immediate update mode, deletions occur in the
database immediately. Otherwise, the records are marked for deletion from the cache
and the actual deletion happens when you call the ADO Recordset Object
UpdateBatch Method. (Use the Filter property to view the deleted records.)

Retrieving field values from the deleted record generates an error. After deleting the
current record, the deleted record remains current until you move to a different
record. Once you move away from the deleted record, it is no longer accessible.

If you nest deletions in a transaction, you can recover deleted records with the
RollbackTrans method. If you are in batch update mode, you can cancel a pending
deletion or group of pending deletions with the ADO Recordset Object CancelBatch
Method.

If the attempt to delete records fails because of a conflict with the underlying data
(for example, a record has already been deleted by another user), the provider returns
warnings to the ADO Errors Collection, but does not halt program execution. A run-
time error occurs only if there are conflicts on all the requested records.

Delete Method Examples

This VBScript example uses the Delete method to remove a specified record from a
recordset.

<!-- #Include file="ADOVBS.INC" -->

<% Language = VBScript %>

<HTML>

Constant Description

adAffectCurrent Default. Delete only the current record.

adAffectGroup Delete the records that satisfy the current ADO Recordset Object Filter
Property setting. You must set the Filter property to one of the valid
predefined constants in order to use this option. The Filter property is not
currently supported on UNIX.

392 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
<HEAD><TITLE>ADO 1.5 Delete Method</TITLE>

</HEAD><BODY>

<Center><H3>ADO Delete Method</H3>

<!--- ADO Connection Object used to create recordset-->

<%

'Create and Open Connection Object

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

'Create and Open Recordset Object

Set RsCustomerList = Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection = OBJdbConnection

RsCustomerList.CursorType = adOpenKeyset

RsCustomerList.LockType = adLockOptimistic

RsCustomerList.Source = "Customers"

RsCustomerList.Open

%>

<!-- Move to designated Record and Delete It -->

<%

If Not IsEmpty(Request.Form("WhichRecord")) Then

`Get value to move from Form Post method

Moves = Request.Form("WhichRecord")

RsCustomerList.Move CInt(Moves)

If Not RsCustomerList.EOF or RsCustomerList.BOF Then

RsCustomerList.Delete 1

RsCustomerList.MoveFirst

Else

Response.Write "Not a Valid Record Number"

RsCustomerList.MoveFirst

End If

End If

%>

<!-- BEGIN column header row for Customer Table-->

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0><TR>

<TD ALIGN=CENTER BGCOLOR="#008080">

Company Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact Name

ADO COMPONENT REFERENCE 393

 .
. .
</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

Phone Number

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD></TR>

<!--Display ADO Data from Customer Table Loop through Recordset

adding one Row to HTML Table each pass-->

<% Do While Not RsCustomerList.EOF %>

<TR><TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("PhoneNumber")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

394 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
%>

</Table></Center>

<!-- Do Client side Input Data Validation Move to named

 record and Delete it -->

<Center>

<H4>Clicking Button Will Remove Designated Record</H4>

<H5>There are <%=RsCustomerList.RecordCount - 1%> Records in this
Set</H5>

<Form Method = Post Action = "Delete.asp" Name = Form>

<Input Type = Text Name = "WhichRecord" Size = 3></Form>

<Input Type = Button Name = cmdDelete Value = "Delete Record"></Center>

</BODY>

<Script Language = "VBScript">

Sub cmdDelete_OnClick

If IsNumeric(Document.Form.WhichRecord.Value) Then

Document.Form.WhichRecord.Value =
CInt(Document.Form.WhichRecord.Value)

Dim Response

Response = MsgBox("Are You Sure About Deleting This Record?", vbYesNo,
"ADO-ASP Example")

If Response = vbYes Then

Document.Form.Submit

End If

Else

MsgBox "You Must Enter a Valid Record Number",,"ADO-ASP Example"

End If

End Sub

</Script>

</HTML>

ADO Recordset Object GetRows Method

Retrieves multiple records of a recordset into an array.

GetRows Method Syntax

array = recordset.GetRows(Rows, Start, Fields)

GetRows Method Parameters

array

Two-dimensional Array containing records.

ADO COMPONENT REFERENCE 395

 .
. .
Rows

An optional Long expression indicating the number of records to retrieve. Default is
adGetRowsRest (-1).

Start

An optional String or Variant that evaluates to the bookmark for the record from
which the GetRows operation should begin. You can also use one of the following
BookmarkEnum values:

Fields

An optional Variant representing a single field name or ordinal position or an array
of field names or ordinal position numbers. ADO returns only the data in these fields.

GetRows Method Return Values

Returns a two-dimensional array.

GetRows Method Remarks

Use the GetRows method to copy records from a recordset into a two-dimensional
array. The first subscript identifies the field and the second identifies the record
number. The array variable is automatically dimensioned to the correct size when the
GetRows method returns the data.

If you do not specify a value for the Rows argument, the GetRows method
automatically retrieves all the records in the Recordset object. If you request more
records than are available, GetRows returns only the number of available records.

If the Recordset object supports bookmarks, you can specify at which record the
GetRows method should begin retrieving data by passing the value of that record's
ADO Recordset Object Bookmark Property.

If you want to restrict the fields the GetRows call returns, you can pass either a
single field name/number or an array of field names/numbers in the Fields argument.

After you call GetRows, the next unread record becomes the current record, or the
ADO Recordset Object BOF, EOF Properties property is set to True if there are no
more records.

GetRows Method Examples

This Visual Basic example uses the GetRows method to retrieve a specified number
of rows from a recordset and to fill an array with the resulting data. The GetRows
method will return fewer than the desired number of rows in two cases: either if EOF
has been reached, or if GetRows tried to retrieve a record that was deleted by

Constant Description

AdBookmarkCurrent Start at the current record.

AdBookmarkFirst Start at the first record.

AdBookmarkLast Start at the last record.

396 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
another user. The function returns False only if the second case occurs. The
GetRowsOK function is required for this procedure to run.

Public Sub GetRowsX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Dim intRows As Integer

Dim avarRecords As Variant

Dim intRecord As Integer

' Open recordset with names and hire dates from employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "SELECT fName, lName, hire_date " & _

"FROM Employee ORDER BY lName", strCnn, , , adCmdText

Do While True

` Get user input for number of rows.

strMessage = "Enter number of rows to retrieve."

intRows = Val(InputBox(strMessage))

If intRows <= 0 Then Exit Do

` If GetRowsOK is successful, print the results,

` noting if the end of the file was reached.

If GetRowsOK(rstEmployees, intRows, _

avarRecords) Then

If intRows > UBound(avarRecords, 2) + 1 Then

Debug.Print "(Not enough records in " & _

"Recordset to retrieve " & intRows & _

" rows.)"

End If

Debug.Print UBound(avarRecords, 2) + 1 & _

" records found."

` Print the retrieved data.

For intRecord = 0 To UBound(avarRecords, 2)

Debug.Print " " & _

avarRecords(0, intRecord) & " " & _

avarRecords(1, intRecord) & ", " & _

avarRecords(2, intRecord)

Next intRecord

Else

ADO COMPONENT REFERENCE 397

 .
. .
` Assuming the GetRows error was due to data

` changes by another user, use Requery to

` refresh the Recordset and start over.

If MsgBox("GetRows failed--retry?", _

vbYesNo) = vbYes Then

rstEmployees.Requery

Else

Debug.Print "GetRows failed!"

Exit Do

End If

End If

` Because using GetRows leaves the current

` record pointer at the last record accessed,

` move the pointer back to the beginning of the

` Recordset before looping back for another search.

rstEmployees.MoveFirst

Loop

rstEmployees.Close

End Sub

Public Function GetRowsOK(rstTemp As ADODB.Recordset, _

intNumber As Integer, avarData As Variant) As Boolean

` Store results of GetRows method in array.

avarData = rstTemp.GetRows(intNumber)

` Return False only if fewer than the desired

` number of rows were returned, but not because the

` end of the Recordset was reached.

If intNumber > UBound(avarData, 2) + 1 And _

Not rstTemp.EOF Then

GetRowsOK = False

Else

GetRowsOK = True

End If

End Function

ADO Recordset Object Move Method

Moves the position of the current record in a Recordset object.

Move Method Syntax

recordset.Move NumRecords, Start

398 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Move Method Parameters

NumRecords

A signed Long expression specifying the number of records the current record
position moves.

Start

An optional String or Variant that evaluates to a bookmark. You can also use one of
the following BookmarkEnum values:

Move Method Remarks

The Move method is supported on all Recordset objects.

If the NumRecords argument is greater than zero, the current record position moves
forward (toward the end of the recordset). If NumRecords is less than zero, the current
record position moves backward (toward the beginning of the recordset).

If the Move call would move the current record position to a point before the first
record, ADO sets the current record to the position before the first record in the
recordset (BOF is True). An attempt to move backward when the ADO Recordset
Object BOF, EOF Properties property is already True generates an error.

If the Move call would move the current record position to a point after the last
record, ADO sets the current record to the position after the last record in the
recordset (EOF is True). An attempt to move forward when the ADO Recordset
Object BOF, EOF Properties property is already True generates an error.

Calling the Move method from an empty Recordset object generates an error.

If you pass the Start argument, the move is relative to the record with this bookmark,
assuming the Recordset object supports bookmarks. If not specified, the move is
relative to the current record.

If you are using the ADO Recordset Object CacheSize Property to locally cache
records from the provider, passing a NumRecords that moves the current record
position outside of the current group of cached records forces ADO to retrieve a new
group of records starting from the destination record. The CacheSize property
determines the size of the newly retrieved group, and the destination record is the
first record retrieved.

If the Recordset object is forward-only, a user can still pass a NumRecords less than
zero as long as the destination is within the current set of cached records. If the
Move call would move the current record position to a record before the first cached
record, an error will occur. Thus, you can use a record cache that supports full
scrolling over a provider that only supports forward scrolling. Because cached records
are loaded into memory, you should avoid caching more records than is necessary.
Even if a forward-only Recordset object supports backward moves in this way,

Constant Description

AdBookmarkCurrent Default. Start at the current record.

AdBookmarkFirst Start at the first record.

AdBookmarkLast Start at the last record.

ADO COMPONENT REFERENCE 399

 .
. .
calling the ADO Recordset Object MoveFirst, MoveLast, MoveNext, MovePrevious
Methods method on any forward-only Recordset object still generates an error.

Move Method Example

This VBScript example uses the Move method to position the record pointer based
on user input. Try entering a letter or non-integer to see the error-handling work.

<!-- #Include file="ADOVBS.INC" -->

<% Language = VBScript %>

<HTML><HEAD>

<TITLE>ADO 1.5 Move Methods</TITLE></HEAD>

<BODY>

<Center>

<H3>ADO Move Methods</H3>

<%

'Create and Open Connection Object

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

'Create and Open Recordset Object

Set RsCustomerList = Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection = OBJdbConnection

RsCustomerList.CursorType = adOpenKeyset

RsCustomerList.LockType = adLockOptimistic

RsCustomerList.Source = "Customers"

RsCustomerList.Open

'Check number of user moves this session

'Increment by amount in Form

Session("Clicks") = Session("Clicks") + Request.Form("MoveAmount")

Clicks = Session("Clicks")

'Move to last known recordset position plus amount passed by Form Post
method

RsCustomerList.Move CInt(Clicks)

'Error Handling

If RsCustomerList.EOF Then

Session("Clicks") = RsCustomerList.RecordCount

Response.Write "This is the Last Record"

RsCustomerList.MoveLast

Else If RsCustomerList.BOF Then

Session("Clicks") = 1

RsCustomerList.MoveFirst

400 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Response.Write "This is the First Record"

End If

End If

%>

<H3>Current Record Number is

<% If Session("Clicks") = 0 Then

Session("Clicks") = 1

End If

Response.Write(Session("Clicks"))%> of
<%=RsCustomerList.RecordCount%></H3>

<HR>

<Center><TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR>

<TD ALIGN=CENTER BGCOLOR="#008080">

Company Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact Name

</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

Phone Number

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD>

</TR>

<!--Display ADO Data from Customer Table-->

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

ADO COMPONENT REFERENCE 401

 .
. .
<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("PhoneNumber")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR> </Table>

<HR>

<Input Type = Button Name = cmdDown Value = "< ">

<Input Type = Button Name = cmdUp Value = " >">

<H5>Click Direction Arrows for Previous or Next Record

 Click Move Amount to use Move Method

Enter Number of Records to Move + or - </H5>

<Table>

<Form Method = Post Action="Move.asp" Name=Form>

<TR><TD><Input Type="Button" Name = Move Value="Move Amount
"></TD><TD></TD><TD>

<Input Type="Text" Size="4" Name="MoveAmount" Value = 0></TD><TR>

</Form></Table></Center>

</BODY>

<Script Language = "VBScript">

Sub Move_OnClick

' Make sure move value entered is an integer

If IsNumeric(Document.Form.MoveAmount.Value)Then

Document.Form.MoveAmount.Value = CInt(Document.Form.MoveAmount.Value)

Document.Form.Submit

Else

MsgBox "You Must Enter a Number", ,"ADO-ASP Example"

Document.Form.MoveAmount.Value = 0

End If

End Sub

Sub cmdDown_OnClick

402 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Document.Form.MoveAmount.Value = -1

Document.Form.Submit

End Sub

Sub cmdUp_OnClick

Document.Form.MoveAmount.Value = 1

Document.Form.Submit

End Sub

</Script>

</HTML>

ADO Recordset Object MoveFirst, MoveLast, MoveNext, MovePrevious
Methods

These methods move to the first, last, next, or previous record in a specified
Recordset object and make that record the current record.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Syntax

recordset.{MoveFirst | MoveLast | MoveNext | MovePrevious}

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Remarks

Use the MoveFirst method to move the current record position to the first record in
the recordset.

Use the MoveLast method to move the current record position to the last record in
the recordset. The Recordset object must support bookmarks or backward cursor
movement; otherwise, the method call will generate an error.

Use the MoveNext method to move the current record position one record forward
(toward the bottom of the recordset). If the last record is the current record and you
call the MoveNext method, ADO sets the current record to the position after the last
record in the recordset (EOF is True). An attempt to move forward when the ADO
Recordset Object BOF, EOF Properties property is already True generates an error.

Use the MovePrevious method to move the current record position one record
backward (toward the top of the recordset). The Recordset object must support
bookmarks or backward cursor movement; otherwise, the method call will generate
an error. If the first record is the current record and you call the MovePrevious
method, ADO sets the current record to the position before the first record in the
recordset (BOF is True). An attempt to move backward when the ADO Recordset
Object BOF, EOF Properties property is already True generates an error. If the
Recordset object does not support either bookmarks or backward cursor movement,
the MovePrevious method will generate an error.

If the recordset is forward-only and you want to support both forward and backward
scrolling, you can use the ADO Recordset Object CacheSize Property to create a
record cache that will support backward cursor movement through the ADO
Recordset Object Move Method. Because cached records are loaded into memory, you
should avoid caching more records than is necessary. You can call the MoveFirst

ADO COMPONENT REFERENCE 403

 .
. .
method in a forward-only Recordset object; doing so may cause the provider to re-
execute the command that generated the Recordset object.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Example

This VBScript example uses the MoveFirst, MoveLast, MoveNext, and
MovePrevious methods to move the record pointer of a recordset based on the
supplied command. The MoveAny function is required for this procedure to run. Try
moving beyond the upper or lower limits of the recordset to see error-handling work.

<!-- #Include file="ADOVBS.INC" -->

<% Language = VBScript %>

<HTML><HEAD>

<TITLE>ADO 1.5 MoveNext MovePrevious MoveLast MoveFirst
Methods</TITLE></HEAD>

<BODY>

<Center>

<H3>ADO Methods
MoveNext MovePrevious MoveLast MoveFirst</H3>

<!-- Create Connection and Recordset Objects on Server -->

<%

'Create and Open Connection Object

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

'Create and Open Recordset Object

Set RsCustomerList = Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection = OBJdbConnection

RsCustomerList.CursorType = adOpenKeyset

RsCustomerList.LockType = adLockOptimistic

RsCustomerList.Source = "Customers"

RsCustomerList.Open

' Check Request.Form collection to see if any moves are recorded

If Not IsEmpty(Request.Form("MoveAmount")) Then

'Keep track of the number and direction of moves this session

Session("Moves") = Session("Moves") + Request.Form("MoveAmount")

Clicks = Session("Moves")

'Move to last known position

RsCustomerList.Move CInt(Clicks)

'Check if move is + or - and do error checking

If CInt(Request.Form("MoveAmount")) = 1 Then

If RsCustomerList.EOF Then

Session("Moves") = RsCustomerList.RecordCount

404 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
RsCustomerList.MoveLast

End If

RsCustomerList.MoveNext

End If

If Request.Form("MoveAmount") < 1 Then

RsCustomerList.MovePrevious

End If

'Check if First Record or Last Record Command Buttons Clicked

If Request.Form("MoveLast") = 3 Then

RsCustomerList.MoveLast

Session("Moves") = RsCustomerList.RecordCount

End If

If Request.Form("MoveFirst") = 2 Then

RsCustomerList.MoveFirst

Session("Moves") = 1

End If

End If

' Do Error checking for combination of Move Button clicks

If RsCustomerList.EOF Then

Session("Moves") = RsCustomerList.RecordCount

RsCustomerList.MoveLast

Response.Write "This is the Last Record"

End If

If RsCustomerList.BOF Then

Session("Moves") = 1

RsCustomerList.MoveFirst

Response.Write "This is the First Record"

End If

%>

<H3>Current Record Number is

<!-- Display Current Record Number and Recordset Size -->

<% If IsEmpty(Session("Moves")) Then

Session("Moves") = 1

End If

%>

<%Response.Write(Session("Moves"))%> of
<%=RsCustomerList.RecordCount%></H3>

<HR>

<Center><TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

ADO COMPONENT REFERENCE 405

 .
. .
<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact Name

</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

Phone Number

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD></TR>

<!--Display ADO Data from Customer Table-->

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("PhoneNumber")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR> </Table>

406 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
<HR>

<Input Type = Button Name = cmdDown Value = "< ">

<Input Type = Button Name = cmdUp Value = " >">

<Input Type = Button Name = cmdFirst Value = "First Record">

<Input Type = Button Name = cmdLast Value = "Last Record">

<H5>Click Direction Arrows to Use MovePrevious or MoveNext

 </H5>

<!-- Use Hidden Form Fields to send values to Server -->

<Form Method = Post Action="MoveOne.asp" Name=Form>

<Input Type="Hidden" Size="4" Name="MoveAmount" Value = 0>

<Input Type="Hidden" Size="4" Name="MoveLast" Value = 0>

<Input Type="Hidden" Size="4" Name="MoveFirst" Value = 0>

</Form></BODY>

<Script Language = "VBScript">

Sub cmdDown_OnClick

'Set Values in Form Input Boxes and Submit Form

Document.Form.MoveAmount.Value = -1

Document.Form.Submit

End Sub

Sub cmdUp_OnClick

Document.Form.MoveAmount.Value = 1

Document.Form.Submit

End Sub

Sub cmdFirst_OnClick

Document.Form.MoveFirst.Value = 2

Document.Form.Submit

End Sub

Sub cmdLast_OnClick

Document.Form.MoveLast.Value = 3

Document.Form.Submit

End Sub

</Script></HTML>

ADO Recordset Object NextRecordset Method

Clears the current Recordset object and returns the next recordset by advancing
through a series of commands. This method is not currently supported on UNIX.

ADO COMPONENT REFERENCE 407

 .
. .
NextRecordset Method Syntax

Set recordset2 = recordset1.NextRecordset(RecordsAffected)

NextRecordset Method Parameters

recordset2

Recordset containing results of command.

RecordsAffected

An optional Long variable to which the provider returns the number of records that
the current operation affected.

NextRecordset Method Return Values

Returns a Recordset object. In the syntax model, recordset1 and recordset2 can be the
same Recordset object, or you can use separate objects.

NextRecordset Method Remarks

Use the NextRecordset method to return the results of the next command in a
compound command statement or of a stored procedure that returns multiple
results. If you open a Recordset object based on a compound command statement
(for example, "SELECT * FROM table1;SELECT * FROM table2") using the ADO
Command Object Execute Method on an ADO Command Object or the ADO
Recordset Object Open Method on a recordset, ADO executes only the first command
and returns the results to recordset. To access the results of subsequent commands in
the statement, call the NextRecordset method.

As long as there are additional results, the NextRecordset method will continue to
return Recordset objects. If a row-returning command returns no records, the
returned Recordset object will be empty; test for this case by verifying that the ADO
Recordset Object BOF, EOF Properties are both True. If a non row-returning
command executes successfully, the returned Recordset object will be closed, which
you can verify by testing the ADO Recordset Object State Property on the recordset.
When there are no more results, recordset will be set to Nothing.

If an edit is in progress while in immediate update mode, calling the NextRecordset
method generates an error; call the ADO Recordset Object Update Method or the
ADO Recordset Object CancelUpdate Method first.

If you need to pass parameters for more than one command in the compound
statement by filling the ADO Parameters Collection or by passing an array with the
original Open or Execute call, the parameters must be in the same order in the
collection or array as their respective commands in the command series. You must
finish reading all the results before reading output parameter values.

When you call the NextRecordset method, ADO executes only the next command
in the statement. If you explicitly close the Recordset object before stepping
through the entire command statement, ADO never executes the remaining
commands.

The NextRecordset method is not available on a client-side (ADOR) Recordset
object.

408 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
NextRecordset Method Example

This Visual Basic example uses the NextRecordset method to view the data in a
recordset that uses a compound command statement made up of three separate
SELECT statements.

Public Sub NextRecordsetX()

Dim rstCompound As ADODB.Recordset

Dim strCnn As String

Dim intCount As Integer

` Open compound recordset.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstCompound = New ADODB.Recordset

rstCompound.Open "SELECT * FROM authors; " & _

"SELECT * FROM stores; " & _

"SELECT * FROM jobs", strCnn, , , adCmdText

` Display results from each SELECT statement.

intCount = 1

Do Until rstCompound Is Nothing

Debug.Print "Contents of recordset #" & intCount

Do While Not rstCompound.EOF

Debug.Print , rstCompound.Fields(0), _

rstCompound.Fields(1)

rstCompound.MoveNext

Loop

Set rstCompound = rstCompound.NextRecordset

intCount = intCount + 1

Loop

End Sub

ADO Recordset Object Open Method

Opens a cursor.

Open Method Syntax

recordset.Open Source, ActiveConnection, CursorType, LockType, Options

Open Method Parameters

Source

An optional Variant that evaluates to a valid Command object variable name, an
SQL statement, a table name, or a stored procedure call.

ADO COMPONENT REFERENCE 409

 .
. .
ActiveConnection

An optional Variant that evaluates to a valid Connection object variable name, or a
String containing ConnectionString parameters.

CursorType

An optional CursorTypeEnum value that determines the type of cursor that the
provider should use when opening the recordset. Can be one of the following
constants (See the ADO Recordset Object CursorType Property for definitions of these
settings.):

LockType

An optional LockTypeEnum value that determines what type of locking
(concurrency) the provider should use when opening the recordset. Can be one of
the following constants (See the LockType property for more information.):

Options

An optional Long value that indicates how the provider should evaluate the Source
argument if it represents something other than a Command object. Can be one of
the following constants (See the CommandType property for a more detailed
explanation of these constants.):

Constant Description

adOpenForwardOnly Default. Opens a forward-only cursor.

adOpenKeyset Opens a keyset cursor.

adOpenDynamic Opens a dynamic cursor.

adOpenStatic Opens a static cursor.

Constant Description

adLockReadOnly Default. Read-only; you cannot alter the data.

adLocPessimistic Pessimistic locking, record by record. The provider does what is
necessary to ensure successful editing of the records, usually by
locking records at the data source immediately upon editing.

adLockOptimistic Optimistic locking, record by record. The provider uses optimistic
locking, locking records only when you call the Update method.

adLockBatchOptimisti
c

Optimistic batch updates. Required for batch update mode as
opposed to immediate update mode.

Constant Description

adCmdText The provider should evaluate Source as a textual definition of a
command.

adCmdTable The provider should evaluate Source as a table name.

adCmdStoredProc The provider should evaluate Source as a stored procedure.

adCmdUnknown The type of command in the Source argument is not known.

410 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
See the “ADO Command Object CommandType Property” on page 313 for a more
detailed explanation of the four constants in this list.

Open Method Remarks

Using the Open method on a Recordset object opens a cursor that represents
records from a base table or the results of a query.

Use the optional Source argument to specify a data source using one of the following:
an ADO Command Object variable, an SQL statement, a stored procedure, or a table
name.

The ActiveConnection argument corresponds to the ActiveConnection property and
specifies in which connection to open the Recordset object. If you pass a
connection definition for this argument, ADO opens a new connection using the
specified parameters. You can change the value of this property after opening the
recordset to send updates to another provider. Or, you can set this property to
Nothing (in Microsoft Visual Basic) to disconnect the recordset from any provider.

For the other arguments that correspond directly to properties of a Recordset object
(Source, CursorType, and LockType), the relationship of the arguments to the properties
is as follows:

� The property is read/write before the Recordset object is opened.

� The property settings are used unless you pass the corresponding arguments
when executing the Open method. If you pass an argument, it overrides the
corresponding property setting, and the property setting is updated with the
argument value.

� After you open the Recordset object, these properties become read-only.

Note

For Recordset objects whose ADO Recordset Object Source Property is set to
a valid Command object, the ActiveConnection property is read-only,
even if the Recordset object isn't open.

If you pass a Command object in the Source argument and also pass an
ActiveConnection argument, an error occurs. The ActiveConnection property of the
Command object must already be set to a valid ADO Connection Object or
connection string.

If you pass something other than a Command object in the Source argument, you
can use the Options argument to optimize evaluation of the Source argument. If the
Options argument is not defined, you may experience diminished performance
because ADO must make calls to the provider to determine if the argument is an SQL
statement, a stored procedure, or a table name. If you know what Source type you're
using, setting the Options argument instructs ADO to jump directly to the relevant
code. If the Options argument does not match the Source type, an error occurs.

If the data source returns no records, the provider sets both the ADO Recordset
Object BOF, EOF Properties to True, and the current record position is undefined.
You can still add new data to this empty Recordset object if the cursor type allows
it.

ADO COMPONENT REFERENCE 411

 .
. .
When you have concluded your operations over an open Recordset object, use the
ADO Recordset Object Close Method to free any associated system resources. Closing
an object does not remove it from memory; you may change its property settings and
use the Open method to open it again later. To completely eliminate an object from
memory, set the object variable to Nothing.

Open Method Examples

See the “ADO Recordset Object Close Method” on page 387.

ADO Recordset Object Requery Method

Updates the data in a Recordset object by re-executing the query on which the
object is based.

Requery Method Syntax

recordset.Requery

Requery Method Remarks

Use the Requery method to refresh the entire contents of a Recordset object from
the data source by reissuing the original command and retrieving the data a second
time. Calling this method is equivalent to calling the ADO Recordset Object Close
Method and ADO Recordset Object Open Method methods in succession. If you are
editing the current record or adding a new record, an error occurs.

While the Recordset object is open, the properties that define the nature of the
cursor (ADO Recordset Object CursorType Property, ADO Recordset Object LockType
Property, ADO Recordset Object MaxRecords Property, and so forth) are read-only.
Thus, the Requery method can only refresh the current cursor. To change any of the
cursor properties and view the results, you must use the Close method so that the
properties become read/write again. You can then change the property settings and
call the Open method to reopen the cursor.

Requery Method Example

See the command “ADO Command Object Execute Method” on page 305.

ADO Recordset Object Resync Method

Refreshes the data in the current Recordset object from the underlying database.

Resync Method Syntax

recordset.Resync AffectRecords

Resync Method Parameters

AffectRecords

412 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
An optional AffectEnum constant that determines how many records the Resync
method will affect. Can be one of the following constants:

Resync Method Remarks

Use the Resync method to re-synchronize records in the current recordset with the
underlying database. This is useful if you are using either a static or forward-only
cursor but you want to see any changes in the underlying database. Calling the
Resync method cancels any pending batch updates.

Unlike the ADO Recordset Object Requery Method, the Resync method does not re-
execute the Recordset object's underlying command; new records in the underlying
database will not be visible.

If the attempt to resynchronize fails because of a conflict with the underlying data
(for example, a record has been deleted by another user), the provider returns
warnings to the ADO Errors Collection, but does not halt program execution. A run-
time error occurs only if there are conflicts on all the requested records. Use the ADO
Recordset Object Filter Property (adFilterAffectedRecords) and the ADO
Recordset Object Status Property to locate records with conflicts.

Resync Method Examples

This Visual Basic example demonstrates using the Resync method to refresh data in
a static recordset.

Public Sub ResyncX()

Dim strCnn As String

Dim rstTitles As ADODB.Recordset

' Open connections.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

' Open recordset for titles table.

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenStatic

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

' Change the type of the first title in the recordset.

rstTitles!Type = "database"

Constant Description

adAffectCurrent Refresh only the current record.

adAffectGroup Refresh the records that satisfy the current Filter property setting. You
must set the Filter property to one of the valid predefined constants in
order to use this option. The Filter property is not currently supported on
UNIX.

adAffectAll Default. Refresh all the records in the Recordset object, including any
hidden by the current Filter property setting.

ADO COMPONENT REFERENCE 413

 .
. .
' Display the results of the change.

MsgBox "Before resync: " & vbCr & vbCr & _

"Title - " & rstTitles!Title & vbCr & _

"Type - " & rstTitles!Type

' Resync with database and redisplay results.

rstTitles.Resync

MsgBox "After resync: " & vbCr & vbCr & _

"Title - " & rstTitles!Title & vbCr & _

"Type - " & rstTitles!Type

rstTitles.CancelBatch

rstTitles.Close

End Sub

ADO Recordset Object Supports Method

Determines whether a specified Recordset object supports a particular type of
functionality.

Supports Method Syntax

boolean = recordset.Supports(CursorOptions)

Supports Method Parameters

CursorOptions

A Long expression that consists of one or more of the following
CursorOptionEnum values:

Value Description

adAddNew The AddNew method adds new records.

adApproxPosition You can read and set the AbsolutePosition and AbsolutePage
properties.

adBookmark The Bookmark property accesses specific records.

adDelete The Delete method deletes records.

adHoldRecords You can retrieve more records or change the next retrieve position
without committing all pending changes.

adMovePrevious The MoveFirst, MovePrevious, Move, and GetRows methods
move the current position backward without requiring bookmarks.

adResync The Resync method modifies existing data.

adUpdate The Update method modifies existing data.

adUpdateBatch The UpdateBatch and CancelBatch methods transmit changes to
the provider in groups.

414 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Supports Method Remarks

Use the Supports method to determine what types of functionality a Recordset
object supports. If the Recordset object supports the features whose corresponding
constants are in CursorOptions, the Supports method returns True. Otherwise, it
returns False.

Note

Although the Supports method may return True for a given functionality,
it does not guarantee that the provider can make the feature available under
all circumstances. The Supports method simply returns whether or not the
provider can support the specified functionality assuming certain conditions
are met. For example, the Supports method may indicate that a Recordset
object supports updates even though the cursor is based on a multi-table join,
some columns of which are not updatable.

Supports Method Examples

This Visual Basic example uses the Supports method to display the options
supported by a recordset opened with different cursor types. The DisplaySupport
function is required for this procedure to run.

Public Sub SupportsX()

Dim aintCursorType(4) As Integer

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

Dim intIndex As Integer

` Open connections.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

` Fill array with CursorType constants.

aintCursorType(0) = adOpenForwardOnly

aintCursorType(1) = adOpenKeyset

aintCursorType(2) = adOpenDynamic

aintCursorType(3) = adOpenStatic

` Open recordset using each CursorType and

` optimitic locking. Then call the DisplaySupport

` procedure to display the supported options.

For intIndex = 0 To 3

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = aintCursorType(intIndex)

rstTitles.LockType = adLockOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

Select Case aintCursorType(intIndex)

Case adOpenForwardOnly

ADO COMPONENT REFERENCE 415

 .
. .
Debug.Print "ForwardOnly cursor supports:"

Case adOpenKeyset

Debug.Print "Keyset cursor supports:"

Case adOpenDynamic

Debug.Print "Dynamic cursor supports:"

Case adOpenStatic

Debug.Print "Static cursor supports:"

End Select

DisplaySupport rstTitles

rstTitles.Close

Next intIndex

End Sub

Public Sub DisplaySupport(rstTemp As ADODB.Recordset)

Dim alngConstants(9) As Long

Dim booSupports As Boolean

Dim intIndex As Integer

' Fill array with cursor option constants.

alngConstants(0) = adAddNew

alngConstants(1) = adApproxPosition

alngConstants(2) = adBookmark

alngConstants(3) = adDelete

alngConstants(4) = adHoldRecords

alngConstants(5) = adMovePrevious

alngConstants(6) = adResync

alngConstants(7) = adUpdate

alngConstants(8) = adUpdateBatch

For intIndex = 0 To 8

booSupports = _

rstTemp.Supports(alngConstants(intIndex))

If booSupports Then

Select Case alngConstants(intIndex)

Case adAddNew

Debug.Print " AddNew"

Case adApproxPosition

Debug.Print " AbsolutePosition and AbsolutePage"

Case adBookmark

Debug.Print " Bookmark"

Case adDelete

Debug.Print " Delete"

416 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Case adHoldRecords

Debug.Print " holding records"

Case adMovePrevious

Debug.Print " MovePrevious and Move"

Case adResync

Debug.Print " resyncing data"

Case adUpdate

Debug.Print " Update"

Case adUpdateBatch

Debug.Print " batch updating"

End Select

End If

Next intIndex

End Sub

ADO Recordset Object Update Method

Saves any changes you make to the current record of a Recordset object.

Note

This method is not available for some databases and ODBC drivers.

Update Method Syntax

recordset.Update Fields, Values

Update Method Parameters

Fields

An optional Variant representing a single name or a Variant array representing names
or ordinal positions of the field or fields you wish to modify.

Values

An optional Variant representing a single value or a Variant array representing values
for the field or fields in the new record.

Update Method Remarks

Use the Update method to save any changes you make to the current record of a
Recordset object since calling the ADO Recordset Object AddNew Method or since
changing any field values in an existing record. The Recordset object must support
updates.

To set field values, do one of the following:

� Assign values to a ADO Field Object object's ADO Field Object Value Property
and call the ADO Recordset Object Update Method.

ADO COMPONENT REFERENCE 417

 .
. .
� Pass a field name and a value as arguments with the Update call.

� Pass an array of field names and an array of values with the Update call.

When you use arrays of fields and values, there must be an equal number of elements
in both arrays. Also, the order of field names must match the order of field values. If
the number and order of fields and values do not match, an error occurs.

If the Recordset object supports batch updating, then you can cache multiple
changes to one or more records locally until you call the ADO Recordset Object
UpdateBatch Method. If you are editing the current record or adding a new record
when you call the UpdateBatch method, ADO will automatically call the Update
method to save any pending changes to the current record before transmitting the
batched changes to the provider. Batch updating is not currently supported on UNIX.

If you move from the record you are adding or editing before calling the Update
method, ADO will automatically call Update to save the changes. You must call the
ADO Recordset Object CancelUpdate Method if you want to cancel any changes
made to the current record or to discard a newly added record.

The current record remains current after you call the Update method.

Update Method Examples

The following Visual Basic examples show how to use the Update method.

The first example demonstrates using the Update method in conjunction with
CancelUpdate method.

Public Sub UpdateX()

Dim rstEmployees As ADODB.Recordset

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

` Open recordset with names from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "SELECT fname, lname " & _

"FROM Employee ORDER BY lname", strCnn, , , adCmdText

` Store original data.

strOldFirst = rstEmployees!fname

strOldLast = rstEmployees!lname

` Change data in edit buffer.

rstEmployees!fname = "Linda"

rstEmployees!lname = "Kobara"

` Show contents of buffer and get user input.

418 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _

strOldLast & vbCr & " Data in buffer = " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to replace the original data with " & _

"the buffered data in the Recordset?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstEmployees.Update

Else

rstEmployees.CancelUpdate

End If

` Show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!fname & " " & _

rstEmployees!lname

` Restore original data because this is a demonstration.

If Not (strOldFirst = rstEmployees!fname And _

strOldLast = rstEmployees!lname) Then

rstEmployees!fname = strOldFirst

rstEmployees!lname = strOldLast

rstEmployees.Update

End If

rstEmployees.Close

End Sub

The following example demonstrates using the Update method in conjunction with
the AddNew method:

Public Sub UpdateX2()

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim strEmpID As String

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

' Open a connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

' Open recordset with data from Employee table.

Set rstEmployees = New ADODB.Recordset

ADO COMPONENT REFERENCE 419

 .
. .
rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "employee", cnn1, , , adCmdTable

rstEmployees.AddNew

strEmpID = "B-S55555M"

rstEmployees!emp_id = strEmpID

rstEmployees!fname = "Bill"

rstEmployees!lname = "Sornsin"

' Show contents of buffer and get user input.

strMessage = "AddNew in progress:" & vbCr & _

"Data in buffer = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to save buffer to recordset?"

If MsgBox(strMessage, vbYesNoCancel) = vbYes Then

rstEmployees.Update

` Go to the new record and show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname

Else

rstEmployees.CancelUpdate

MsgBox "No new record added."

End If

' Delete new data because this is a demonstration.

cnn1.Execute "DELETE FROM employee WHERE emp_id = '" & strEmpID & "'"

rstEmployees.Close

End Sub

ADO Recordset Object UpdateBatch Method

Writes all pending batch updates to disk. This method is not currently supported on
UNIX.

UpdateBatch Method Syntax

recordset.UpdateBatch AffectRecords

UpdateBatch Method Parameters

AffectRecords

An optional AffectEnum value that determines how many records the
UpdateBatch method will affect. Can be one of the following constants:

420 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
UpdateBatch Method Remarks

Use the UpdateBatch method when modifying a Recordset object in batch
update mode to transmit all changes made in a Recordset object to the underlying
database.

If the Recordset object supports batch updating, then you can cache multiple
changes to one or more records locally until you call the UpdateBatch method. If
you are editing the current record or adding a new record when you call the
UpdateBatch method, ADO will automatically call the ADO Recordset Object
Update Method to save any pending changes to the current record before
transmitting the batched changes to the provider.

Note

You should use batch updating only with either a keyset or static cursor.

If the attempt to transmit changes fails because of a conflict with the underlying data
(for example, a record has already been deleted by another user), the provider returns
warnings to the ADO Errors Collection but does not halt program execution. A run-
time error occurs only if there are conflicts on all the requested records. Use the ADO
Recordset Object Filter Property (adFilterAffectedRecords) and the ADO
Recordset Object Status Property to locate records with conflicts.

To cancel all pending batch updates, use the ADO Recordset Object CancelBatch
Method.

UpdateBatch Method Example

See the “ADO Recordset Object CancelBatch Method” on page 381 example.

ADO Recordset Object Properties

Constant Description

AdAffectCurrent Write pending changes only for the current record.

AdAffectGroup Write pending changes for the records that satisfy the current Filter
property setting. You must set the Filter property to one of the valid
predefined constants in order to use this option.

adAffectAll Default. Write pending changes for all the records in the Recordset
object, including any hidden by the current Filter property setting.

Property Description

“ADO Recordset Object AbsolutePage
Property” on page 422

The page in which the current record resides.

ADO COMPONENT REFERENCE 421

 .
. .
“ADO Recordset Object
AbsolutePosition Property” on page
424

The ordinal position of a Recordset object’s current
position.

“ADO Recordset Object
ActiveConnection Property” on page
425

The Connection object to which the Recordset
object currently belongs.

“ADO Recordset Object BOF, EOF
Properties” on page 427

If BOF is True, the current record position is before
the first record in a Recordset object. If EOF is True,
the record position is after the last record in a
Recordset object.

“ADO Recordset Object Bookmark
Property” on page 430

A value that uniquely identifies the current record in a
Recordset object. Setting the Bookmark property
to a valid bookmark changes the current record.

“ADO Recordset Object CacheSize
Property” on page 431

The number of records from a Recordset object that
are cached locally in memory. This property is not
currently supported on UNIX.

“ADO Recordset Object
CursorLocation Property” on page
433

The location of the cursor engine.

“ADO Recordset Object CursorType
Property” on page 433

The type of cursor used in a Recordset object.

“ADO Recordset Object EditMode
Property” on page 436

The editing status of the current record.

“ADO Recordset Object Filter
Property” on page 437

A filter for data in a Recordset object.

“ADO Recordset Object LockType
Property” on page 440

The type of locks placed on records during editing.

“ADO Recordset Object
MarshalOptions Property” on page
441

Which records are to be marshaled back to the server.

“ADO Recordset Object MaxRecords
Property” on page 443

The maximum number of records to return to a
Recordset object from a query.

“ADO Recordset Object PageCount
Property” on page 444

The number of pages of data the Recordset object
contains.

Property Description

422 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Recordset Object AbsolutePage Property

Specifies in which page the current record resides.

AbsolutePage Property Return Values

Sets or returns a Long value from 1 to the number of pages in the Recordset object
(PageCount), or returns one of the following constants:

AbsolutePage Property Remarks

Use the AbsolutePage property to identify the page number on which the current
record is located. Use the ADO Recordset Object PageSize Property to logically divide
the Recordset object into a series of pages, each of which has the number of records
equal to PageSize (except for the last page, which may have fewer records). The
provider must support the appropriate functionality for this property to be available.

Like the AbsolutePosition property, AbsolutePage is 1-based and equals 1 when
the current record is the first record in the recordset. Set this property to move to the
first record of a particular page. Obtain the total number of pages from the ADO
Recordset Object PageCount Property.

“ADO Recordset Object PageSize
Property” on page 444

The number of records that make up one page in the
Recordset object.

“ADO Recordset Object RecordCount
Property” on page 449

The current number of records in a Recordset object.

“ADO Recordset Object Source
Property” on page 447

The source for the data in a Recordset object.

“ADO Recordset Object State
Property” on page 445

Describes the current state of the Recordset object.

“ADO Recordset Object Status
Property” on page 445

The status of the current record with respect to batch
updates or other bulk operations.

Constant Description

adPosUnknown The recordset is empty, the current position is unknown, or the
provider does not support the AbsolutePage property

adPosBOF The current record pointer is at BOF (that is, the BOF property is True).

adPosEOF The current record pointer is at EOF (that is, the EOF property is True).

Property Description

ADO COMPONENT REFERENCE 423

 .
. .
AbsolutePage Property Example

This Visual Basic example uses the AbsolutePage, PageCount, and PageSize
properties to display names and hire dates from the Employees table five records at a
time.

Public Sub AbsolutePageX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Dim intPage As Integer

Dim intPageCount As Integer

Dim intRecord As Integer

` Open a recordset using a client cursor

` for the employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

` Use client cursor to enable AbsolutePosition property.

rstEmployees.CursorLocation = adUseClient

rstEmployees.Open "employee", strCnn, , , adCmdTable

` Display names and hire dates, five records

` at a time.

rstEmployees.PageSize = 5

intPageCount = rstEmployees.PageCount

For intPage = 1 To intPageCount

rstEmployees.AbsolutePage = intPage

strMessage = ""

For intRecord = 1 To rstEmployees.PageSize

strMessage = strMessage & _

rstEmployees!fname & " " & _

rstEmployees!lname & " " & _

rstEmployees!hire_date & vbCr

rstEmployees.MoveNext

If rstEmployees.EOF Then Exit For

Next intRecord

MsgBox strMessage

Next intPage

rstEmployees.Close

End Sub

424 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Recordset Object AbsolutePosition Property

Specifies the ordinal position of a Recordset object's current record.

AbsolutePosition Property Return Values

Sets or returns a Long value from 1 to the number of records in the Recordset
object (RecordCount), or returns one of the following constants:

AbsolutePosition Property Remarks

Use the AbsolutePosition property to move to a record based on its ordinal
position in the Recordset object, or to determine the ordinal position of the current
record. The provider must support the appropriate functionality for this property to
be available.

Like the AbsolutePage property, AbsolutePosition is 1-based and equals 1 when
the current record is the first record in the recordset. You can obtain the total number
of records in the Recordset object from the RecordCount property.

When you set the AbsolutePosition property, even if it is to a record in the current
cache, ADO reloads the cache with a new group of records starting with the record
you specified. The ADO Recordset Object CacheSize Property determines the size of
this group.

Note

You should not use the AbsolutePosition property as a surrogate record
number. The position of a given record changes when you delete a preceding
record. There is also no assurance that a given record will have the same
AbsolutePosition if the Recordset object is requeried or reopened.
Bookmarks are still the recommended way of retaining and returning to a
given position, and are the only way of positioning across all types of
Recordset objects.

AbsolutePosition Property Example

This Visual Basic example demonstrates how the AbsolutePosition property can
track the progress of a loop that enumerates all the records of a recordset. It uses the
CursorLocation property to enable the AbsolutePosition property by setting the
cursor to a client cursor.

Public Sub AbsolutePositionX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Constant Description

adPosUnknown The recordset is empty, the current position is unknown, or the
provider does not support the AbsolutePosition property.

adPosBOF The current record pointer is at BOF (that is, the BOF property is True).

adPosEOF The current record pointer is at EOF (that is, the EOF property is True).

ADO COMPONENT REFERENCE 425

 .
. .
Dim strMessage As String

' Open a recordset for the Employee table

' using a client cursor.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

' Use client cursor to enable AbsolutePosition property.

rstEmployees.CursorLocation = adUseClient

rstEmployees.Open "employee", strCnn, , , adCmdTable

' Enumerate Recordset.

Do While Not rstEmployees.EOF

' Display current record information.

strMessage = "Employee: " & rstEmployees!lName & vbCr & _

"(record " & rstEmployees.AbsolutePosition & _

" of " & rstEmployees.RecordCount & ")"

If MsgBox(strMessage, vbOKCancel) = vbCancel _

Then Exit Do

rstEmployees.MoveNext

Loop

rstEmployees.Close

End Sub

ADO Recordset Object ActiveConnection Property

Specifies to which Connection object the Recordset object currently belongs.

ActiveConnection Property Return Values (ADO Recordset Object)

Sets or returns a String containing the definition for a connection or an ADO
Connection Object. Default is a Null object reference.

ActiveConnection Property Remarks (ADO Recordset Object)

Use the ActiveConnection property to determine the Connection object over
which the specified Command object will execute or the specified recordset will be
opened.

For open Recordset objects or for Recordset objects whose ADO Recordset Object
Source Property is set to a valid ADO Command Object, the ActiveConnection
property is read-only. Otherwise, it is read/write.

You can set this property to a valid Connection object or to a valid connection
string. In this case, the provider creates a new Connection object using this
definition and opens the connection. Additionally, the provider may set this
property to the new Connection object to give you a way to access the Connection
object for extended error information or to execute other commands.

426 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
If you use the ActiveConnection argument of the ADO Recordset Object Open Method
to open a Recordset object, the ActiveConnection property will inherit the value
of the argument.

If you set the Source property of the Recordset object to a valid Command object
variable, the ActiveConnection property of the recordset inherits the setting of the
Command object's ActiveConnection property.

ActiveConnection Property Example (ADO Recordset Object)

This Visual Basic example uses the ActiveConnection, ADO Command Object
CommandText Property, CommandTimeout, ADO Command Object
CommandType Property, ADO Parameter Object Size Property, and ADO Parameter
Object Direction Property properties to execute a stored procedure:

Public Sub ActiveConnectionX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Dim prmByRoyalty As ADODB.Parameter

Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

` Define a command object for a stored procedure.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set cmdByRoyalty = New ADODB.Command

Set cmdByRoyalty.ActiveConnection = cnn1

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

cmdByRoyalty.CommandTimeout = 15

` Define the stored procedure's input parameter.

intRoyalty = Trim(InputBox(_

"Enter royalty:"))

Set prmByRoyalty = New ADODB.Parameter

prmByRoyalty.Type = adInteger

prmByRoyalty.Size = 3

prmByRoyalty.Direction = adParamInput

prmByRoyalty.Value = intRoyalty

cmdByRoyalty.Parameters.Append prmByRoyalty

` Create a recordset by executing the command.

ADO COMPONENT REFERENCE 427

 .
. .
Set rstByRoyalty = cmdByRoyalty.Execute()

` Open the Authors table to get author names for display.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", strCnn, , , adCmdTable

` Print current data in the recordset, adding

` author names from Authors table.

Debug.Print "Authors with " & intRoyalty & _

" percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print , rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & _

rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

End Sub

ADO Recordset Object BOF, EOF Properties

BOF indicates that the current record position is before the first record in a
Recordset object.

EOF indicates that the current record position is after the last record in a Recordset
object.

BOF, EOF Properties Return Values

The BOF and EOF properties return Boolean values.

BOF, EOF Properties Remarks

Use the BOF and EOF properties to determine whether a Recordset object contains
records or whether you've gone beyond the limits of a Recordset object when you
move from record to record.

The BOF property returns True (-1) if the current record position is before the first
record and False (0) if the current record position is on or after the first record.

The EOF property returns True if the current record position is after the last record
and False if the current record position is on or before the last record.

If either the BOF or EOF property is True, there is no current record.

428 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
If you open a Recordset object containing no records, the BOF and EOF properties
are set to True, and the Recordset object's RecordCount property setting is zero.
When you open a Recordset object that contains at least one record, the first record
is the current record and the BOF and EOF properties are False.

If you delete the last remaining record in the Recordset object, the BOF and EOF
properties may remain False until you attempt to reposition the current record.

This table shows which ADO Recordset Object Move Method methods are allowed
with different combinations of the BOF and EOF properties:

Allowing a Move method doesn't guarantee that the method will successfully locate
a record; it only means that calling the specified Move method won't generate an
error.

The following table shows what happens to the BOF and EOF property settings
when you call various Move methods but are unable to successfully locate a record.

BOF, EOF Properties Example

This Visual Basic example uses the BOF and EOF properties to display a message if a
user tries to move past the first or last record of a recordset. It uses the ADO Recordset
Object Bookmark Property to let the user flag a record in a recordset and return to it
later.

Public Sub BOFX()

Dim rstPublishers As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Dim intCommand As Integer

Dim varBookmark As Variant

` Open recordset with data from Publishers table.

MoveFirst
MoveLast

Move Previous
Move < 0

Move 0
Move Next
Move > 0

BOF = True,
EOF = False

Allowed Error Error Allowed

BOF=False
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error

Both False Allowed Allowed Allowed Allowed

 BOF EOF

MoveFirst, MoveLast Set to True Set to True

Move 0 No change No change

MovePrevious, Move < 0 Set to True No change

MoveNext, Move > 0 No change Set to True

ADO COMPONENT REFERENCE 429

 .
. .
strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

` Use client cursor to enable AbsolutePosition property.

rstPublishers.CursorLocation = adUseClient

rstPublishers.Open "SELECT pub_id, pub_name FROM publishers " & _

"ORDER BY pub_name", strCnn, , , adCmdText

rstPublishers.MoveFirst

Do While True

` Display information about current record

` and get user input.

strMessage = "Publisher: " & rstPublishers!pub_name & _

vbCr & "(record " & rstPublishers.AbsolutePosition & _

" of " & rstPublishers.RecordCount & ")" & vbCr & vbCr & _

"Enter command:" & vbCr & _

"[1 - next / 2 - previous /" & vbCr & _

"3 - set bookmark / 4 - go to bookmark]"

intCommand = Val(InputBox(strMessage))

Select Case intCommand

` Move forward or backward, trapping for BOF

` or EOF.

Case 1

rstPublishers.MoveNext

If rstPublishers.EOF Then

MsgBox "Moving past the last record." & _

vbCr & "Try again."

rstPublishers.MoveLast

End If

Case 2

rstPublishers.MovePrevious

If rstPublishers.BOF Then

MsgBox "Moving past the first record." &

_vbCr & "Try again."

rstPublishers.MoveFirst

End If

` Store the bookmark of the current record.

Case 3

varBookmark = rstPublishers.Bookmark

430 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
` Go to the record indicated by the stored

` bookmark.

Case 4

If IsEmpty(varBookmark) Then

MsgBox "No Bookmark set!"

Else

rstPublishers.Bookmark = varBookmark

End If

Case Else

Exit Do

End Select

Loop

rstPublishers.Close

End Sub

ADO Recordset Object Bookmark Property

Returns a bookmark that uniquely identifies the current record in a Recordset
object or sets the current record in a Recordset object to the record identified by a
valid bookmark.

Bookmark Property Return Values

Sets or returns a Variant expression that evaluates to a valid bookmark.

Bookmark Property Remarks

Use the Bookmark property to save the position of the current record and return to
that record at any time. Bookmarks are available only in Recordset objects that
support bookmark functionality.

When you open a Recordset object, each of its records has a unique bookmark. To
save the bookmark for the current record, assign the value of the Bookmark
property to a variable. To quickly return to that record at any time after moving to a
different record, set the Recordset object's Bookmark property to the value of that
variable.

The user may not be able to view the value of the bookmark. Also, users should not
expect bookmarks to be directly comparable—two bookmarks that refer to the same
record may have different values.

If you use the ADO Recordset Object Clone Method to create a copy of a Recordset
object, the Bookmark property settings for the original and the duplicate
Recordset objects are identical and you can use them interchangeably. However,
you can't use bookmarks from different Recordset objects interchangeably, even if
they were created from the same source or command.

ADO COMPONENT REFERENCE 431

 .
. .
Bookmark Property Examples

See the “ADO Recordset Object BOF, EOF Properties” on page 427.

ADO Recordset Object CacheSize Property

The number of records from a Recordset object that are cached locally in memory.
This property is not currently supported on UNIX.

CacheSize Property Return Values

Sets or returns a Long value that must be greater than 0. Default is 1.

CacheSize Property Remarks

Use the CacheSize property to control how many records the provider keeps in its
buffer and how many to retrieve at one time into local memory. For example, if the
CacheSize is 10, after first opening the Recordset object, the provider retrieves the
first 10 records into local memory. As you move through the Recordset object, the
provider returns the data from the local memory buffer. As soon as you move past the
last record in the cache, the provider retrieves the next 10 records from the data
source into the cache.

The value of this property can be adjusted during the life of the Recordset object,
but changing this value only affects the number of records in the cache after
subsequent retrievals from the data source. Changing the property value alone will
not change the current contents of the cache.

If there are fewer records to retrieve than CacheSize specifies, the provider returns
the remaining records; no error occurs.

A CacheSize setting of zero is not allowed and returns an error.

Records retrieved from the cache don't reflect concurrent changes that other users
made to the source data. To force an update of all the cached data, use the ADO
Recordset Object Resync Method.

CacheSize Property Example

This Visual Basic example uses the CacheSize property to show the difference in
performance for an operation performed with and without a 30-record cache.

Public Sub CacheSizeX()

Dim rstRoySched As ADODB.Recordset

Dim strCnn As String

Dim sngStart As Single

Dim sngEnd As Single

Dim sngNoCache As Single

Dim sngCache As Single

Dim intLoop As Integer

Dim strTemp As String

` Open the RoySched table.

432 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstRoySched = New ADODB.Recordset

rstRoySched.Open "roysched", strCnn, , , adCmdTable

` Enumerate the Recordset object twice and record

` the elapsed time.

sngStart = Timer

For intLoop = 1 To 2

rstRoySched.MoveFirst

Do While Not rstRoySched.EOF

' Execute a simple operation for the performance test.

strTemp = rstRoySched!title_id

rstRoySched.MoveNext

Loop

Next intLoop

sngEnd = Timer

sngNoCache = sngEnd - sngStart

' Cache records in groups of 30 records.

rstRoySched.MoveFirst

rstRoySched.CacheSize = 30

sngStart = Timer

` Enumerate the Recordset object twice and record

' the elapsed time.

For intLoop = 1 To 2

rstRoySched.MoveFirst

Do While Not rstRoySched.EOF

` Execute a simple operation for the

` performance test.

strTemp = rstRoySched!title_id

rstRoySched.MoveNext

Loop

Next intLoop

sngEnd = Timer

sngCache = sngEnd - sngStart

' Display performance results.

MsgBox "Caching Performance Results:" & vbCr & _

" No cache: " & Format(sngNoCache, _

"##0.000") & " seconds" & vbCr & _

" 30-record cache: " & Format(sngCache, _

ADO COMPONENT REFERENCE 433

 .
. .
"##0.000") & " seconds"

rstRoySched.Close

End Sub

ADO Recordset Object CursorLocation Property

Sets or returns the location of the cursor engine. This property is read-only on UNIX.

CursorLocation Property Return Values

Sets or returns a Long value that can be set to one of the following constants:

CursorLocation Property Remarks

This property allows you to choose between various cursor libraries accessible to the
provider. Usually, you can choose between using a client-side cursor library or one
that is located on the server.

This property setting only affects connections established after the property has been
set. Changing the CursorLocation property has no effect on existing connections.

This property is read/write on a closed recordset, and read-only on an open recordset.

CursorLocation Property Example

See the AbsolutePosition property example.

ADO Recordset Object CursorType Property

The type of cursor used in a Recordset object.

CursorType Property Return Values

Sets or returns one of the following CursorTypeEnum values:

Constant Description

adUseClient Uses client-side cursors supplied by a local cursor library. Local cursor
engines will often allow many features that driver-supplied cursors may
not, so using this setting may provide an advantage with respect to
features that will be enabled. For backward-compatibility, the synonym
adUseClientBatch is also supported.

adUseServer Default. Uses data-provider or driver-supplied cursors. These cursors are
sometimes very flexible and allow for some additional sensitivity to
reflecting changes that others make to the actual data source. However,
some features of the Microsoft Client Cursor Provider (such as
disassociated recordsets) cannot be simulated.

434 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
CursorType Property Remarks

Use the CursorType property to specify the type of cursor that should be used when
opening the Recordset object. The CursorType property is read/write when the
recordset is closed and read-only when it is open.

If a provider does not support the requested cursor type, the provider may return
another cursor type. The CursorType property will change to match the actual
cursor type in use when the recordset object is open. To verify specific functionality
of the returned cursor, use the ADO Recordset Object Supports Method. After you
close the recordset, the CursorType property reverts to its original setting.

The following chart shows the provider functionality (identified by Supports
method constants) required for each cursor type.

Note

Although Supports(adUpdateBatch) may be true for dynamic and
forward-only cursors, for batch updates you should use either a keyset or
static cursor. Set the ADO Recordset Object LockType Property to
adLockBatchOptimistic, and set the CursorLocation property to

Constant Description

adOpenForwardOnly Forward-only cursor. Default. Identical to a static cursor except that
you can only scroll forward through records. This improves
performance in situations when you only need to make a single pass
through a recordset.

adOpenKeyset Keyset cursor. Like a dynamic cursor, except that you can't see
records that other users add, although records that other users
delete are inaccessible from your recordset. Data changes by other
users are still visible.

adOpenDynamic Dynamic cursor. Additions, changes, and deletions by other users
are visible, and all types of movement through the recordset are
allowed, except for bookmarks if the provider doesn't support
them.

adOpenStatic Static cursor. A static copy of a set of records that you can use to
find data or generate reports. Additions, changes, or deletions by
other users are not visible.

Cursor Type The Supports method must return True for these constants

adOpenForwardOnly none

adOpenKeyset adBookmark, adHoldRecords, adMovePrevious, adResync

adOpenDynamic adMovePrevious

adOpenStatic adBookmark, adHoldRecords, adMovePrevious, adResync

ADO COMPONENT REFERENCE 435

 .
. .
adUseClient (or its synonym, adUseClientBatch) to enable the Microsoft
Client Cursor Engine, which is required for batch updates.

CursorType Property Example

This Visual Basic example demonstrates setting the CursorType and LockType
properties before opening a recordset. It also shows the value of the ADO Recordset
Object EditMode Property under various conditions. The EditModeOutput
function is required for this procedure to run.

Public Sub EditModeX()

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

` Open recordset with data from Employee table.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set rstEmployees = New ADODB.Recordset

Set rstEmployees.ActiveConnection = cnn1

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockBatchOptimistic

rstEmployees.Open "employee", , , , adCmdTable

` Show the EditMode property under different editing

` states.

rstEmployees.AddNew

rstEmployees!emp_id = "T-T55555M"

rstEmployees!fname = "temp_fname"

rstEmployees!lname = "temp_lname"

EditModeOutput "After AddNew:", rstEmployees.EditMode

rstEmployees.UpdateBatch

EditModeOutput "After UpdateBatch:", rstEmployees.EditMode

rstEmployees!fname = "test"

EditModeOutput "After Edit:", rstEmployees.EditMode

rstEmployees.Close

` Delete new record because this is a demonstration.

cnn1.Execute "DELETE FROM employee WHERE emp_id = 'T-T55555M'"

End Sub

Public Function EditModeOutput(strTemp As String, _

intEditMode As Integer)

` Print report based on the value of the EditMode

436 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
` property.

Debug.Print strTemp

Debug.Print " EditMode = ";

Select Case intEditMode

Case adEditNone

Debug.Print "adEditNone"

Case adEditInProgress

Debug.Print "adEditInProgress"

Case adEditAdd

Debug.Print "adEditAdd"

End Select

End Function

ADO Recordset Object EditMode Property

The editing status of the current record.

EditMode Property Return Values

Returns one of the following EditModeEnum values:

EditMode Property Remarks

ADO maintains an editing buffer associated with the current record. This property
indicates whether changes have been made to this buffer, or whether a new record
has been created. Use the EditMode property to determine the editing status of the
current record. You can test for pending changes if an editing process has been
interrupted and determine whether you need to use the ADO Recordset Object
Update Method or ADO Recordset Object CancelUpdate Method.

See the “ADO Recordset Object AddNew Method” on page 380 for a more detailed
description of the EditMode property under different editing conditions.

EditMode Property Example

See the “ADO Recordset Object CursorType Property” on page 433 example.

Constant Description

adEditNone No editing operation is in progress.

adEditInProgress The data in the current record has been modified but not yet saved.

adEditAdd The AddNew method has been invoked and the current record in
the copy buffer is a new record that hasn’t been saved in the
database.

ADO COMPONENT REFERENCE 437

 .
. .
ADO Recordset Object Filter Property

A filter for data in a recordset.

Filter Property Return Values

Sets or returns a Variant value, which can contain one of the following:

Criteria string

A string made up of one or more individual clauses concatenated with AND or OR
operators.

Array of bookmarks

An array of unique bookmark values that point to records in the Recordset object.
This return value is not currently supported on UNIX.

One of the following FilterGroupEnum values:

Filter Property Remarks

Use the Filter property to selectively screen out records in a Recordset object. The
filtered recordset becomes the current cursor. This affects other properties such as
AbsolutePosition, AbsolutePage, RecordCount, and ADO Recordset Object
PageCount Property that return values based on the current cursor, since setting the
Filter property to a specific value will move the current record to the first record that
satisfies the new value.

On UNIX systems the Filter property is implemented for Recordset objects whose
source is a SELECT query. Setting the Filter property will resubmit the query with
the criteria string AND’d with the WHERE clause.

The criteria string is made up of clauses in the form FieldName-Operator-Value (for
example, "LastName = 'Smith'"). You can create compound clauses by
concatenating individual clauses with AND (for example, "LastName = 'Smith'
AND FirstName = 'John'") or OR (for example, "LastName = 'Smith' OR
LastName = 'Jones'"). Use the following guidelines for criteria strings:

FieldName

Must be a valid field name from the recordset. If the field name contains spaces, you
must enclose the name in square brackets.

Constant Description

adFilterNone Removes the current filter and restores all records to view.

adFilterPendingRecords Enables you to view only records that have changed but have
not yet been sent to the server. Only applicable for batch
update mode. Not currently supported on UNIX.

adFilterAffectedRecords Enables you to view only records affected by the last Delete,
Resync, UpdateBatch, or CancelBatch call. Not currently
supported on UNIX.

adFilterFetchedRecords Enables you to view records in the current cache, that is, the
results of the last call to retrieve records from the database.
Not currently supported on UNIX.

438 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Operator

Must be one of the following: <, >, <=, >=, <>, =, LIKE.

Value

The value with which you will compare the field values (for example, 'Smith',
#8/24/95#, 12.345 or $50.00). Use single quotes with strings and pound signs (#)
with dates. For numbers, you can use decimal points, dollar signs, and scientific
notation. If Operator is LIKE, Value can use wildcards. Only the asterisk (*) and
percent sign (%) wildcards are allowed, and they must be the last character in the
string. Value may not be Null.

There is no precedence between AND and OR. Clauses can be grouped within
parentheses. However, you cannot group clauses joined by an OR and then join the
group to another clause with an AND, like this:

(LastName = 'Smith' OR LastName = 'Jones') AND FirstName = 'John'

Instead, you would construct this filter as:

(LastName = 'Smith' AND FirstName = 'John') OR

(LastName = 'Jones' AND FirstName = 'John')

In a LIKE clause, you can use a wildcard at the beginning and end of the pattern (for
example, LastName Like '*mit*'), or only at the end of the pattern (for example,
LastName Like 'Smit*').

The filter constants make it easier to resolve individual record conflicts during batch
update mode by allowing you to view, for example, only those records that were
affected during the last ADO Recordset Object UpdateBatch Method call.

Setting the Filter property itself may fail because of a conflict with the underlying
data (for example, a record has already been deleted by another user); in such a case,
the provider returns warnings to the ADO Errors Collection but does not halt
program execution. A run-time error occurs only if there are conflicts on all the
requested records. Use the ADO Recordset Object Status Property to locate records
with conflicts.

Setting the Filter property to a zero-length string ("") has the same effect as using the
adFilterNone constant.

Whenever the Filter property is set, the current record position moves to the first
record in the filtered subset of records in the recordset. Similarly, when the Filter
property is cleared, the current record position moves to the first record in the
recordset.

See the “ADO Recordset Object Bookmark Property” on page 430 for an explanation
of bookmark values from which you can build an array to use with the Filter
property.

Filter Property Example

This Visual Basic example uses the Filter property to open a new recordset based on
a specified condition applied to an existing recordset. It uses the RecordCount
property to show the number of records in the two recordsets. The FilterField
function is required for this procedure to run.

Public Sub FilterX()

ADO COMPONENT REFERENCE 439

 .
. .
Dim rstPublishers As ADODB.Recordset

Dim rstPublishersCountry As ADODB.Recordset

Dim strCnn As String

Dim intPublisherCount As Integer

Dim strCountry As String

Dim strMessage As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "publishers", strCnn, , , adCmdTable

` Populate the Recordset.

intPublisherCount = rstPublishers.RecordCount

` Get user input.

strCountry = Trim(InputBox(_

"Enter a country to filter on:"))

If strCountry <> "" Then

` Open a filtered Recordset object.

Set rstPublishersCountry = _

FilterField(rstPublishers, "Country", strCountry)

If rstPublishersCountry.RecordCount = 0 Then

MsgBox "No publishers from that country."

Else

` Print number of records for the original

` Recordset object and the filtered Recordset

` object.

strMessage = "Orders in original recordset: " & _

vbCr & intPublisherCount & vbCr & _

"Orders in filtered recordset (Country = '" & _

strCountry & "'): " & vbCr & _

rstPublishersCountry.RecordCount

MsgBox strMessage

End If

rstPublishersCountry.Close

End If

End Sub

Public Function FilterField(rstTemp As ADODB.Recordset, _

strField As String, strFilter As String) As ADODB.Recordset

440 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
` Set a filter on the specified Recordset object and then

` open a new Recordset object.

rstTemp.Filter = strField & " = '" & strFilter & "'"

Set FilterField = rstTemp

End Function

Note

When you know the data you want to select, it's usually more efficient to
open a recordset with an SQL statement. This example shows how you can
create just one recordset and obtain records from a particular country.

Public Sub FilterX2()

Dim rstPublishers As ADODB.Recordset

Dim strCnn As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "SELECT * FROM publishers " & _

"WHERE Country = 'USA'", strCnn, , , adCmdText

` Print current data in recordset.

rstPublishers.MoveFirst

Do While Not rstPublishers.EOF

Debug.Print rstPublishers!pub_name & ", " & _

rstPublishers!country

rstPublishers.MoveNext

Loop

rstPublishers.Close

End Sub

ADO Recordset Object LockType Property

The type of locks placed on records during editing.

LockType Property Return Values

Sets or returns one of the following LockTypeEnum values:

Constant Description

adLockReadOnly Default. Read-only; the data cannot be modified.

ADO COMPONENT REFERENCE 441

 .
. .
LockType Property Remarks

Set the LockType property before opening a recordset to specify what type of
locking the provider should use when opening it. Read the property to return the
type of locking in use on an open Recordset object. The LockType property is
read/write when the recordset is closed and read-only when it is open.

Providers may not support all lock types. If a provider cannot support the requested
LockType setting, it will substitute another type of locking. To determine the actual
locking functionality available in a Recordset object, use the ADO Recordset Object
Supports Method with adUpdate and adUpdateBatch.

LockType Property Example

See the “ADO Recordset Object CursorType Property” on page 433 example.

ADO Recordset Object MarshalOptions Property

Indicates which records are to be marshaled back to the server. This is a client-side only
property.

MarshalOptions Property Return Values

Sets or returns a Long value that can be one of the following constants:

MarshalOptions Property Remarks

When using a client-side (ADOR) recordset, records that have been modified on the
client are written back to the middle-tier or Web server through a technique called
marshaling, the process of packaging and sending interface method parameters across
thread or process boundaries. Setting the MarshalOptions property can improve
performance when modified remote data is marshaled for updating back to the
middle-tier or Web server.

Remote Data Service Usage: This property is only used on a client-side (ADOR)
recordset.

adLockPessimistic Pessimistic locking, record by record. The provider does what is
necessary to ensure successful editing of the records, usually by
locking records at the data source immediately upon editing.

adLockOptimistic Optimistic locking, record by record. The provider uses
optimistic locking, locking records only when you call the
Update method.

adLockBatchOptimistic Optimistic batch updates. Required for batch update mode as
opposed to immediate update mode.

Constant Description

adMarshalAll Default. All rows are returned to the server.

adMarshalModifiedOnly Only modified rows are returned to the server.

Constant Description

442 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
MarshalOptions Property Example

This Visual Basic example uses the MarshalOptions property to specify what rows
are sent back to the server—All Rows or only Modified Rows.

Public Sub MarshalOptionsX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

Dim strMarshalAll As String

Dim strMarshalModified As String

` Open recordset with names from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.CursorLocation = adUseClient

rstEmployees.Open "SELECT fname, lname " & _

"FROM Employee ORDER BY lname", strCnn, , , adCmdText

` Store original data.

strOldFirst = rstEmployees!fname

strOldLast = rstEmployees!lname

` Change data in edit buffer.

rstEmployees!fname = "Linda"

rstEmployees!lname = "Kobara"

` Show contents of buffer and get user input.

strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _

strOldLast & vbCr & " Data in buffer = " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to replace the original data with " & _

"the buffered data in the Recordset?"

strMarshalAll = "Would you like to send all the rows " & _

"in the recordset back to the server?"

strMarshalModified = "Would you like to send only " & _

"modified rows back to the server?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

If MsgBox(strMarshalAll, vbYesNo) = vbYes Then

ADO COMPONENT REFERENCE 443

 .
. .
rstEmployees.MarshalOptions = adMarshalAll

rstEmployees.Update

ElseIf MsgBox(strMarshalModified, vbYesNo) = vbYes Then

rstEmployees.MarshalOptions = adMarshalModifiedOnly

rstEmployees.Update

End If

End If

` Show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!fname & " " & _

rstEmployees!lname

` Restore original data because this is a demonstration.

If Not (strOldFirst = rstEmployees!fname And _

strOldLast = rstEmployees!lname) Then

rstEmployees!fname = strOldFirst

rstEmployees!lname = strOldLast

rstEmployees.Update

End If

rstEmployees.Close

End Sub

ADO Recordset Object MaxRecords Property

The maximum number of records to return to a recordset from a query.

MaxRecords Property Return Values

Sets or returns a Long value. Default is zero (no limit).

MaxRecords Property Remarks

Use the MaxRecords property to limit the number of records the provider returns
from the data source. The default setting of this property is zero, which means the
provider returns all requested records. The MaxRecords property is read/write when
the recordset is closed and read-only when it is open.

MaxRecords Property Example

This Visual Basic example uses the MaxRecords property to open a recordset
containing the 10 most expensive titles in the Titles table.

Public Sub MaxRecordsX()

Dim rstTemp As ADODB.Recordset

Dim strCnn As String

` Open recordset containing the 10 most expensive

` titles in the Titles table.

444 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstTemp = New ADODB.Recordset

rstTemp.MaxRecords = 10

rstTemp.Open "SELECT Title, Price FROM Titles " & _

"ORDER BY Price DESC", strCnn, , , adCmdText

` Display the contents of the recordset.

Debug.Print "Top Ten Titles by Price:"

Do While Not rstTemp.EOF

Debug.Print " " & rstTemp!Title & " - " & rstTemp!Price

rstTemp.MoveNext

Loop

rstTemp.Close

End Sub

ADO Recordset Object PageCount Property

The number of pages of data the Recordset object contains.

PageCount Property Return Values

Returns a Long value.

PageCount Property Remarks

Use the PageCount property to determine how many pages of data are in the
Recordset object. Pages are groups of records whose size equals the ADO Recordset
Object PageSize Property setting. Even if the last page is incomplete, because there are
fewer records than the PageSize value, it counts as an additional page in the
PageCount value. If the Recordset object does not support this property, the value
will be -1 to indicate that the PageCount is indeterminable.

See the PageSize and AbsolutePage properties for more on page functionality.

PageCount Property Example

See the AbsolutePage example.

ADO Recordset Object PageSize Property

The number of records that constitute one page in the recordset.

PageSize Property Return Values (ADO Recordset Object)

Sets or returns a Long value, the number of records on a page. Default is 10.

ADO COMPONENT REFERENCE 445

 .
. .
PageSize Property Remarks (ADO Recordset Object)

Use the PageSize property to determine how many records make up a logical page
of data. Establishing a page size allows you to use the AbsolutePage property to
move to the first record of a particular page. This is useful in Web-server scenarios
when you want to allow the user to page through data, viewing a certain number of
records at a time.

This property can be set at any time, and its value will be used for calculating where
the first record of a particular page is.

PageSize Property Example (ADO Recordset Object)

See the AbsolutePage property example.

ADO Recordset Object State Property

Describes the current state of an object.

State Property Return Values (ADO Recordset Object)

Sets or returns a Long value that can be one of the following constants:

State Property Remarks (ADO Recordset Object)

You can use the State property to determine the current state of a given object at any
time.

ADO Recordset Object Status Property

Indicates the status of the current record with respect to batch updates or other bulk
operations.

Status Property Return Values (ADO Recordset Object)

Returns a sum of one or more of the following RecordStatusEnum values:

Constant Description

AdStateClosed Default. The object is closed.

AdStateOpen The object is open.

Constant Description

adRecOK The record was successfully updated.

adRecNew The record is new.

adRecModified The record was modified.

adRecDeleted The record was deleted.

446 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Status Property Remarks (ADO Recordset Object)

Use the Status property to see what changes are pending for records modified during
batch updating. You can also use the Status property to view the status of records
that fail during bulk operations such as when you call the ADO Recordset Object
Resync Method, ADO Recordset Object UpdateBatch Method, or ADO Recordset
Object CancelBatch Method methods on a Recordset object, or set the ADO
Recordset Object Filter Property on a Recordset object to an array of bookmarks.
With this property, you can determine how a given record failed and resolve it
accordingly.

Status Property Example (ADO Recordset Object)

This example uses the Status property to display which records have been modified
in a batch operation before a batch update has occurred.

Public Sub StatusX()

adRecUnmodified The record was not modified.

adRecInvalid The record was not saved because its bookmark is
invalid.

adRecMultipleChanges The record was not saved because it would have
affected multiple records.

adRecPendingChanges The record was not saved because it refers to a
pending insert.

adRecCanceled The record was not saved because the operation was
canceled.

adRecCantRelease The new record was not saved because of existing
record locks.

adRecConcurrencyViolation The record was not saved because optimistic
concurrency was in use.

adRecIntegrityViolation The record was not saved because the user violated
integrity constraints.

adRecMaxChangesExceeded The record was not saved because there were too
many pending changes.

adRecObjectOpen The record was not saved because of a conflict with
an open storage object.

adRecOutOfMemory The record was not saved because the computer has
run out of memory.

adRecPermissionDenied The record was not saved because the user has
insufficient permissions.

adRecSchemaViolation The record was not saved because it violates the
structure of the underlying database.

adRecDBDeleted The record has already been deleted from the data
source.

Constant Description

ADO COMPONENT REFERENCE 447

 .
. .
Dim rstTitles As ADODB.Recordset

Dim strCnn As String

` Open recordset for batch update.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenKeyset

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

` Change the type of psychology titles.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

rstTitles!Type = "self_help"

End If

rstTitles.MoveNext

Loop

` Display Title ID and status.

rstTitles.MoveFirst

Do Until rstTitles.EOF

If rstTitles.Status = adRecModified Then

Debug.Print rstTitles!title_id & " - Modified"

Else

Debug.Print rstTitles!title_id

End If

rstTitles.MoveNext

Loop

` Cancel the update because this is a demonstration.

rstTitles.CancelBatch

rstTitles.Close

End Sub

ADO Recordset Object Source Property

The source for the data in a Recordset object (Command object, SQL statement,
table name, or stored procedure).

Source Property Return Values (ADO Recordset Object)

Sets a String value or Command object reference; returns only a String value.

448 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Source Property Remarks (ADO Recordset Object)

Use the Source property to specify a data source for a Recordset object using one of
the following: an ADO Command Object variable, an SQL statement, a stored
procedure, or a table name. The Source property is read/write for closed Recordset
objects and read-only for open Recordset objects.

If you set the Source property to a Command object, the ActiveConnection
property of the Recordset object will inherit the value of the ActiveConnection
property for the specified Command object. However, reading the Source property
does not return a Command object; instead, it returns the CommandText
property of the Command object to which you set the Source property.

If the Source property is an SQL statement, a stored procedure, or a table name, you
can optimize performance by passing the appropriate Options argument with the
ADO Recordset Object Open Method call.

Source Property Example (ADO Recordset Object)

This Visual Basic example demonstrates the Source property by opening three
Recordset objects based on different data sources.

Public Sub SourceX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim rstPublishers As ADODB.Recordset

Dim rstTitlesPublishers As ADODB.Recordset

Dim cmdSQL As ADODB.Command

Dim strCnn As String

Dim strSQL As String

` Open a connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

` Open a recordset based on a command object.

Set cmdSQL = New ADODB.Command

Set cmdSQL.ActiveConnection = cnn1

cmdSQL.CommandText = "Select title, type, pubdate " & _

"FROM titles ORDER BY title"

Set rstTitles = cmdSQL.Execute()

` Open a recordset based on a table.

Set rstPublishers = New ADODB.Recordset

rstPublishers.Open "publishers", strCnn, , , adCmdTable

` Open a recordset based on an SQL string.

Set rstTitlesPublishers = New ADODB.Recordset

ADO COMPONENT REFERENCE 449

 .
. .
strSQL = "SELECT title_ID AS TitleID, title AS Title, " & _

"publishers.pub_id AS PubID, pub_name AS PubName " & _

"FROM publishers INNER JOIN titles " & _

"ON publishers.pub_id = titles.pub_id " & _

"ORDER BY Title"

rstTitlesPublishers.Open strSQL, strCnn, , , adCmdText

` Use the Source property to display the source of each recordset.

MsgBox "rstTitles source: " & vbCr & _

rstTitles.Source & vbCr & vbCr & _

"rstPublishers source: " & vbCr & _

rstPublishers.Source & vbCr & vbCr & _

"rstTitlesPublishers source: " & vbCr & _

rstTitlesPublishers.Source

rstTitles.Close

rstPublishers.Close

rstTitlesPublishers.Close

cnn1.Close

End Sub

ADO Recordset Object RecordCount Property

The current number of records in a Recordset object.

RecordCount Property Return Values

Returns a Long value.

RecordCount Property Remarks

Use the RecordCount property to find out how many records are in a Recordset
object. The property returns -1 when ADO cannot determine the number of records.
Reading the RecordCount property on a closed recordset causes an error.

If the Recordset object supports approximate positioning or bookmarks—that is,
ADO Recordset Object Supports Method (adApproxPosition) or Supports
(adBookmark), respectively, returns True—this value will be the exact number of
records in the recordset regardless of whether it has been fully populated. If the
Recordset object does not support approximate positioning, this property may be a
significant drain on resources because all records will have to be retrieved and
counted to return an accurate RecordCount value.

RecordCount Property Example

This Visual Basic example uses the Filter property to open a new recordset based on
a specified condition applied to an existing recordset. It uses the RecordCount

450 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
property to show the number of records in the two recordsets. The FilterField
function is required for this procedure to run.

Public Sub FilterX()

Dim rstPublishers As ADODB.Recordset

Dim rstPublishersCountry As ADODB.Recordset

Dim strCnn As String

Dim intPublisherCount As Integer

Dim strCountry As String

Dim strMessage As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "publishers", strCnn, , , adCmdTable

` Populate the Recordset.

intPublisherCount = rstPublishers.RecordCount

` Get user input.

strCountry = Trim(InputBox(_

"Enter a country to filter on:"))

If strCountry <> "" Then

` Open a filtered Recordset object.

Set rstPublishersCountry = _

FilterField(rstPublishers, "Country", strCountry)

If rstPublishersCountry.RecordCount = 0 Then

MsgBox "No publishers from that country."

Else

` Print number of records for the original

` Recordset object and the filtered Recordset

` object.

strMessage = "Orders in original recordset: " & _

vbCr & intPublisherCount & vbCr & _

"Orders in filtered recordset (Country = '" & _

strCountry & "'): " & vbCr & _

rstPublishersCountry.RecordCount

MsgBox strMessage

End If

rstPublishersCountry.Close

End If

ADO COMPONENT REFERENCE 451

 .
. .
End Sub

Public Function FilterField(rstTemp As ADODB.Recordset, _

strField As String, strFilter As String) As ADODB.Recordset

` Set a filter on the specified Recordset object and then

` open a new Recordset object.

rstTemp.Filter = strField & " = '" & strFilter & "'"

Set FilterField = rstTemp

End Function

Note

When you know the data you want to select, it's usually more efficient to
open a recordset with an SQL statement. This example shows how you can
create just one recordset and obtain records from a particular country.

Public Sub FilterX2()

Dim rstPublishers As ADODB.Recordset

Dim strCnn As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "SELECT * FROM publishers " & _

"WHERE Country = 'USA'", strCnn, , , adCmdText

` Print current data in recordset.

rstPublishers.MoveFirst

Do While Not rstPublishers.EOF

Debug.Print rstPublishers!pub_name & ", " & _

rstPublishers!country

rstPublishers.MoveNext

Loop

rstPublishers.Close

End Sub

ADO Recordset Object Remarks

Use Recordset objects to manipulate data from a provider. In ADO, data is almost
entirely manipulated using Recordset objects. All Recordset objects are
constructed using records (rows) and fields (columns). Depending on the
functionality supported by the provider, some Recordset methods or properties
may not be available.

452 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Recordset objects can also be run remotely. For example, in a Web-based
application, you can open a Recordset on the client, using the progID "ADOR." The
Remote Data Service provides a mechanism for local data caching and local cursor
movement in remote recordset data. A client-side recordset can be used in the same
way as a server-side recordset, and supports almost all of the Recordset object's
normal methods and properties. Recordset methods and properties that are not
supported on a client-side recordset, or that behave differently, are noted in the
topics for those properties and methods.

There are four different cursor types defined in ADO:

Set the ADO Recordset Object CursorType Property prior to opening the recordset to
choose the cursor type, or pass a CursorType argument with the ADO Recordset Object
Open Method. Some providers don't support all cursor types. Check the
documentation for the provider. If you don't specify a cursor type, ADO opens a
forward-only cursor by default.

When used with some providers (such as the Microsoft ODBC Provider for OLE DB in
conjunction with Microsoft SQL Server), you can create Recordset objects
independently of a previously defined ADO Connection Object by passing a
connection string with the Open method. ADO still creates a Connection object,
but it doesn't assign that object to an object variable. However, if you are opening
multiple Recordset objects over the same connection, you should explicitly create
and open a Connection object; this assigns the Connection object to an object
variable. If you do not use this object variable when opening your Recordset
objects, ADO creates a new Connection object for each new recordset, even if you
pass the same connection string.

You can create as many Recordset objects as needed.

When you open a recordset, the current record is positioned to the first record (if
any) and the ADO Recordset Object BOF, EOF Properties are set to False. If there are
no records, the BOF and EOF property settings are True.

Use the ADO Recordset Object MoveFirst, MoveLast, MoveNext, MovePrevious
Methods, as well as the ADO Recordset Object Move Method, and the
AbsolutePosition, AbsolutePage, and ADO Recordset Object Filter Property

Cursor Description

Dynamic Allows you to view additions, changes and deletions by other users, and
allows all types of movement through the recordset that don’t rely on
bookmarks; allows bookmarks if the provider supports them.

Keyset Behaves like a dynamic cursor, except that it prevents you from seeing records
that other users add, and prevents access to records that other users delete.
Data change by other users will still be visible. It always supports bookmarks
and therefore allows all types of movement through the recordset.

Static Provides a static copy of a set of records for you to use to find data or
generate reports. Always allows bookmarks and therefore allows all types of
movement through the recordset. Additions, changes, or deletions by other
users will not be visible. This is the only type of cursor allowed when you open
a client-side (ADOR) Recordset object.

Forward-
only

Behaves identically to a dynamic cursor except that it allows you to scroll only
forward through records. This improves performance in situations where you
need to make only a single pass through a recordset.

ADO COMPONENT REFERENCE 453

 .
. .
properties to reposition the current record, assuming the provider supports the
relevant functionality. Forward-only Recordset objects support only the MoveNext
method. When you use the Move methods to visit each record (or enumerate the
recordset), you can use the BOF and EOF properties to see if you've moved beyond
the beginning or end of the recordset.

Recordset objects may support two types of updating: immediate and batched. In
immediate updating, all changes to data are written immediately to the underlying
data source once you call the ADO Recordset Object Update Method. You can also
pass arrays of values as parameters with the ADO Recordset Object AddNew Method
and Update methods and simultaneously update several fields in a record.

If a provider supports batch updating, you can have the provider cache changes to
more than one record and then transmit them in a single call to the database with
the ADO Recordset Object UpdateBatch Method. This applies to changes made with
the AddNew, Update, and ADO Recordset Object Delete Method methods. After
you call the UpdateBatch method, you can use the ADO Recordset Object Status
Property to check for any data conflicts in order to resolve them. Batch updating is not
currently supported on UNIX.

Note

To execute a query without using an ADO Command Object, pass a query
string to the ADO Recordset Object Open Method of a Recordset object.
However, a Command object is required when you want to retain the
command text and re-execute it, or use query parameters.

. ADO Collections

Collections Description

“ADO Errors Collection” on
page 454

Contains all stored Error objects, all of which pertain to a
single operation involving ADO.

“ADO Fields Collection” on
page 455

Contains all stored Field objects of a Recordset object.

“ADO Parameters Collection”
on page 455

Contains all the Parameter objects of a Command object.

“ADO Properties Collection”
on page 456

Contains all the Property objects for the specific instance of
an object. This collection is not currently supported on UNIX.

Methods

“ADO Collections Append
Method” on page 456

Appends a new object to the Parameters collection.

454 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ADO Errors Collection
The Errors collection contains all stored ADO Error Object objects created in
response to a single failure involving the provider.

ADO Errors Collection Remarks

Any operation involving ADO objects can generate one or more provider errors. As
each error occurs, one or more ADO Error Object objects may be placed in the Errors
collection of the ADO Connection Object. When another ADO operation generates
an error, the Errors collection is cleared, and the new set of Error objects may be
placed in the Errors collection.

Each Error object represents a specific provider error, not an ADO error. ADO errors
are exposed to the run-time exception-handling mechanism. For example, in
Microsoft Visual Basic, the occurrence of an ADO-specific error will trigger an On
Error event and appear in the Err object.

ADO operations that don't generate an error have no effect on the Errors collection.
Use the ADO Collections Clear Method to manually clear the Errors collection.

The set of Error objects in the Errors collection describes all errors that occurred in
response to a single statement. Enumerating the specific errors in the Errors
collection enables your error-handling routines to more precisely determine the
cause and origin of an error, and take appropriate steps to recover.

Some properties and methods return warnings that appear as Error objects in the
Errors collection but do not halt a program's execution. Before you call the ADO
Recordset Object Resync Method, ADO Recordset Object UpdateBatch Method, or

“ADO Collections Clear
Method” on page 458

Clears the contents of an Errors collection.

“ADO Collections Delete
Method” on page 459

Deletes an object from the Parameters collection.

“ADO Collections Item
Method” on page 459

Returns a specific member of a collection by name or ordinal
number.

“ADO Collections Refresh
Method” on page 460

Updates the objects in a collection to reflect objects available
from and specific to the provider.

Properties

“ADO Collections Count
Property” on page 463

The number of objects in a collection.

Collections Description

ADO COMPONENT REFERENCE 455

 .
. .
ADO Recordset Object CancelBatch Method methods on an ADO Recordset Object,
or before you set the ADO Recordset Object Filter Property on a Recordset object,
call the Clear method on the Errors collection so that you can read the Count
Property of the Errors collection to test for returned warnings.

Note

See the “ADO Error Object” on page 346 for a more detailed explanation of
the way a single ADO operation can generate multiple errors.

ADO Fields Collection
The Fields collection contains all the Field objects of a Recordset object.

ADO Fields Collection Remarks

An ADO Recordset Object has a Fields collection made up of ADO Field Object
objects. Each Field object corresponds to a column in the recordset. You can
populate the Fields collection before opening the recordset by calling the ADO
Collections Refresh Method on the collection.

Note

See the “ADO Field Object” on page 351 for a more detailed explanation of
how to use Field objects.

ADO Parameters Collection
The Parameters collection contains all the Parameter objects of a Command
object.

ADO Parameters Collection Remarks

An ADO Command Object has a Parameters collection made up of ADO Parameter
Object objects. Using the ADO Collections Refresh Method on a Command object's
Parameters collection retrieves provider parameter information for the stored
procedure or parameterized query specified in the Command object. Some providers
do not support stored procedure calls or parameterized queries; calling the Refresh
method on the Parameters collection when using such a provider will return an
error.

If you have not defined your own Parameter objects and you access the
Parameters collection before calling the Refresh method, ADO will automatically
call the method and populate the collection for you.

You can minimize calls to the provider to improve performance if you know the
properties of the parameters associated with the stored procedure or parameterized
query you wish to call. Use the CreateParameter method to create Parameter

456 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
objects with the appropriate property settings and use the ADO Collections Append
Method to add them to the Parameters collection. This lets you set and return
parameter values without having to call the provider for the parameter information.
If you are writing to a provider that does not supply parameter information, you
must manually populate the Parameters collection using this method to be able to
use parameters at all. Use the ADO Collections Delete Method to remove Parameter
objects from the Parameters collection if necessary.

ADO Properties Collection
 The Properties collection contains all the Property objects for a specific instance
of an object. The Property collection is not currently supported on UNIX.

ADO Properties Collection Remarks

Some ADO objects have a Properties collection made up of ADO Property Object
objects. Each Property object corresponds to a characteristic of the ADO object
specific to the provider.

Note

See the “ADO Property Object” on page 373 topic for a more detailed
explanation of how to use Property objects.

ADO Collections Methods
This section discusses ADO collections methods.

ADO Collections Append Method

Appends an object to a collection.

Append Method Applies To

ADO Parameters Collection

Append Method Syntax

collection.Append object

Append Method Parameters

object

An object variable representing the object to be appended.

ADO COMPONENT REFERENCE 457

 .
. .
Append Method Remarks

Use the Append method on a collection to add an object to that collection. This
method is available only on the Parameters collection of a ADO Command Object.
You must set the ADO Parameter Object Type Property of an ADO Parameter Object
before appending it to the Parameters collection. If you select a variable-length
data type, you must also set the ADO Parameter Object Size Property to a value
greater than zero.

By describing the parameter yourself, you can minimize calls to the provider and
consequently improve performance when using stored procedures or parameterized
queries. However, you must know the properties of the parameters associated with
the stored procedure or parameterized query you wish to call. Use the
CreateParameter method to create Parameter objects with the appropriate
property settings and use the Append method to add them to the Parameters
collection. This lets you set and return parameter values without having to call the
provider for the parameter information. If you are writing to a provider that does not
supply parameter information, you must manually populate the Parameters
collection using this method to be able to use parameters at all.

Append Method Examples

This Visual Basic example uses the Append and CreateParameter methods to
execute a stored procedure with an input parameter.

Public Sub AppendX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Dim prmByRoyalty As ADODB.Parameter

Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

` Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

cnn1.CursorLocation = adUseClient

` Open command object with one parameter.

Set cmdByRoyalty = New ADODB.Command

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

` Get parameter value and append parameter.

intRoyalty = Trim(InputBox("Enter royalty:"))

458 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Set prmByRoyalty = cmdByRoyalty.CreateParameter("percentage", _

adInteger, adParamInput)

cmdByRoyalty.Parameters.Append prmByRoyalty

prmByRoyalty.Value = intRoyalty

` Create recordset by executing the command.

Set cmdByRoyalty.ActiveConnection = cnn1

Set rstByRoyalty = cmdByRoyalty.Execute

` Open the Authors table to display author names.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", cnn1, , , adCmdTable

` Print current data in the recordset, adding

` author names from Authors table.

Debug.Print "Authors with " & intRoyalty & " percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print " " & rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

End Sub

ADO Collections Clear Method

Removes all of the objects in a collection.

Clear Method Applies To

ADO Errors Collection

Clear Method Syntax

Errors.Clear

Clear Method Remarks

Use the Clear method on the Errors collection to remove all existing ADO Error
Object objects from the collection. When an error occurs, ADO automatically clears
the Errors collection and fills it with Error objects based on the new error.

ADO COMPONENT REFERENCE 459

 .
. .
However, some properties and methods return warnings that appear as Error objects
in the Errors collection but do not halt a program's execution. Before you call the
ADO Recordset Object Resync Method, ADO Recordset Object UpdateBatch Method,
or ADO Recordset Object CancelBatch Method methods on an ADO Recordset Object
or before you set the ADO Recordset Object Filter Property on a Recordset object,
call the Clear method on the Errors collection. Doing so enables you to read the
ADO Collections Count Property of the Errors collection to test for returned
warnings as a result of these specific calls.

Clear Method Examples

See the “ADO Command Object Execute Method” on page 305.

ADO Collections Delete Method

Deletes an object from the Parameters collection.

Delete Method Applies To

ADO Parameters Collection

Delete Method Syntax

object.Parameters.Delete (Index)

Delete Method Parameters

object

A Command object.

Index

A Variant that evaluates either to the name or to the ordinal number of an object in a
collection.

Delete Method Remarks

Using the Delete method on a Parameters collection lets you remove one of the
objects in the collection. This method is available only on the Parameters
collection of an ADO Command Object. You must the use ADO Parameter Object
object’s ADO Parameter Object Name Property or its collection index when calling
the Delete method; an object variable is not a valid argument.

ADO Collections Item Method

Returns a specific member of a collection by name or ordinal number.

460 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Item Method Applies To

ADO Errors Collection, ADO Fields Collection, ADO Parameters Collection, ADO
Properties Collection

Item Method Syntax

Set object = collection.Item (Index)

Item Method Parameters

object

Object reference created.

Index

A Variant that evaluates either to the name or to the ordinal number of an object in a
collection.

Item Method Return Values

Returns an object reference.

Item Method Remarks

Use the Item method to return a specific object in a collection. If the method cannot
find an object in the collection corresponding to the Index argument, an error occurs.
Also, some collections don't support named objects; for these collections, you must
use ordinal number references.

The Item method is the default method for all collections; therefore, the following
syntax forms are interchangeable:

collection.Item (Index)

collection (Index)

ADO Collections Refresh Method

Updates the objects in a collection to reflect objects available from and specific to the
provider.

Refresh Method Applies To

ADO Fields Collection, ADO Parameters Collection, ADO Properties Collection

Refresh Method Syntax

collection.Refresh

ADO COMPONENT REFERENCE 461

 .
. .
Refresh Method Parameters Collection

Using the Refresh method on a ADO Command Object object's Parameters
collection retrieves provider-side parameter information for the stored procedure or
parameterized query specified in the Command object. The collection will be empty
for providers that do not support stored procedure calls or parameterized queries.

You should set the ActiveConnection property of the Command object to a valid
ADO Connection Object, the ADO Command Object CommandText Property to a
valid command, and the ADO Command Object CommandType Property to
adCmdStoredProc before calling the ADO Collections Refresh Method.

If you access the Parameters collection before calling the Refresh method, ADO
will automatically call the method and populate the collection for you.

Note

If you use the Refresh method to obtain parameter information from the
provider and it returns one or more variable-length data type ADO Parameter
Object objects, ADO may allocate memory for the parameters based on their
maximum potential size, which will cause an error during execution. You
should explicitly set the ADO Parameter Object Size Property for these
parameters before calling the ADO Command Object Execute Method to
prevent errors.

Refresh Method Fields Collection

Using the Refresh method on the Fields collection has no visible effect. To retrieve
changes from the underlying database structure, you must use either the ADO
Recordset Object Requery Method or, if the Recordset object does not support
bookmarks, the ADO Recordset Object MoveFirst, MoveLast, MoveNext,
MovePrevious Methods method.

Refresh Method Properties Collection

Using the Refresh method on a Properties collection of some objects populates
the collection with the dynamic properties the provider exposes. These properties
provide information about functionality specific to the provider beyond the built-in
properties ADO supports.

The Refresh method accomplishes different tasks depending on the collection from
which you call it.

Refresh Method Example

This Visual Basic example demonstrates using the Refresh method to refresh the
Parameters collection for a stored procedure Command object.

Public Sub RefreshX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

462 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

' Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

' Open a command object for a stored procedure

' with one parameter.

Set cmdByRoyalty = New ADODB.Command

Set cmdByRoyalty.ActiveConnection = cnn1

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

cmdByRoyalty.Parameters.Refresh

' Get paramater value and execute the command,

' storing the results in a recordset.

intRoyalty = Trim(InputBox("Enter royalty:"))

cmdByRoyalty.Parameters(1) = intRoyalty

Set rstByRoyalty = cmdByRoyalty.Execute()

` Open the Authors table to get author names for display.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", cnn1, , , adCmdTable

' Print current data in the recordset, adding

' author names from Authors table.

Debug.Print "Authors with " & intRoyalty & " percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print " " & rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & _

rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

ADO COMPONENT REFERENCE 463

 .
. .
End Sub

ADO Collections Properties
This section lists ADO collections properties.

ADO Collections Count Property

The number of objects in a collection.

Count Property Applies To

ADO Errors Collection, ADO Fields Collection, ADO Parameters Collection, ADO
Properties Collection

Count Property Return Values

Returns a Long value.

Count Property Remarks

Use the Count property to determine how many objects are in a given collection.

Because numbering for members of a collection begins with zero, you should always
code loops starting with the zero member and ending with the value of the Count
property minus one. If you are using Visual Basic and want to loop through the
members of a collection without checking the Count property, use the For
Each...Next command.

If the Count property is zero, there are no objects in the collection.

Count Property Example

This Visual Basic example demonstrates the Count property with two collections in
the Employee database. The property obtains the number of objects in each
collection, and sets the upper limit for loops that enumerate these collections.
Another way to enumerate these collections without using the Count property
would be to use For Each...Next statements.

Public Sub CountX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim intloop As Integer

' Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

464 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

' Print information about Fields collection.

Debug.Print rstEmployees.Fields.Count & _

" Fields in Employee"

For intloop = 0 To rstEmployees.Fields.Count - 1

Debug.Print " " & rstEmployees.Fields(intloop).Name

Next intloop

' Print information about Properties collection.

Debug.Print rstEmployees.Properties.Count & _

" Properties in Employee"

For intloop = 0 To rstEmployees.Properties.Count - 1 Debug.Print " " &
rstEmployees.Properties(intloop).Name

Next intloop

rstEmployees.Close

End Sub

. .

 .

. .12 Chili!Beans Component Reference

The Sun ONE ASP Chili!Beans ActiveX control is a wrapper that enables JavaTM
objects to be used by COM controllers (such as ActiveX scripting engines like
VBScript). The control is designed to work with Java virtual machine (JVMTM)
versions 1.4 or greater.

To use Chili!Beans, a JavaTM runtime environment (JRE) must be installed on the
machine, and Chili!Beans must be enabled from the Sun ONE ASP Administration
Console. JRE 1.4 is installed with Sun ONE ASP by default, and is required for use
with the product.

Chili!Beans technology is also used to implement the ASP servlet interface new to
this release of Sun ONE ASP. Java components designed for use in servlets and JSPs
(Java Server PagesTM) can now be integrated into Sun ONE Active Server Pages
applications directly from ASP scripting (see “ASP Servlet Interface” on page 472 for
more information).

Please note the following:

� When using Chili!Beans with Sun ONE ASP for SolarisTM, you must use the
JVM Native Threads.

� In rare cases it is necessary to supply startup settings to the Java virtual
machine. See “Supplying Java Virtual Machine Settings” on page 469 in this
section.

This chapter provides Chili!Beans reference information.

In this chapter:

“Enabling Chili!Beans” on page 466

“Using Null Objects with Chili!Beans” on page 467

“Iterating a Collection with Chili!Beans” on page 468

“Accessing Methods and Fields with Chili!Beans” on page 468

“Limitations of Chili!Beans Objects” on page 468

“Supplying Java Virtual Machine Settings” on page 469

“Constructing Java Objects with Chili!Beans” on page 469

“ASP Servlet Interface” on page 472

466 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Enabling Chili!Beans
Chili!Beans is enabled from the Components page in the Sun ONE ASP
Administration Console. To use Chili!Beans, a Java runtime environment (JRE) must
be installed on the machine, and Chili!Beans must be enabled in the Administration
Console. JRE 1.4 is installed with Sun ONE ASP by default, and is required for use
with the product.

When Chili!Beans is enabled you have the option to enable or disable the Java virtual
machine (VM) Security Manager (enabled by default). If the Java VM Security
Manager is enabled, its default behavior is to prevent any access to system resources
other than read-only access to the current directory. If the Java VM Security Manager
is disabled, Java code executed by the Chili!Bean will run with unrestricted access to
the file system and other system resources.

Note

For security reasons, the Java VM Security Manager should be enabled in
multi-user environments in which users supply their own Java classes.

To selectively grant other privileges to Java code running in the Chili!Bean,
with Java VM Security Manager enabled, use policytool to change the virtual
machine’s security settings as specified in the Java 2 Security documentation.

To enable or disable Chili!Beans

1. Open the Administration Console (see “Accessing the Administration Con-
sole” on page 18).

2. On the ASP Server tab of the Server Management page, click Compo-
nents.

The Components page displays.

CHILI!BEANS COMPONENT REFERENCE 467

 .
. .
3. On the Components page, click to select or clear the Chili!Beans check
box.

If the Chili!Beans box is selected, the Java VM Security Manager check
box displays and is selected by default. Select or clear this box to enable or
disable the Java VM Security Manager. The User Classpath field also dis-
plays. Use this field to specify a classpath other than the default. Paths can be
separated by semicolons (;).

4. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note

Restarting the ASP Server resets all Session and Application variables.

. Using Null Objects with Chili!Beans
When a Chili!Beans-wrapped Java method returns a Null object, the Null object is
translated to the special value Nothing when returned to the ASP script. If the special
value Nothing is passed from the ASP script to a Chili!Bean, it is converted to a Null
object before being passed to the Java method.

468 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Iterating a Collection with Chili!Beans
If the Java object underlying a Chili!Beans control implements the
java.util.Enumeration interface, it will function like a COM Collection class and
you can use the For...Each...Next statement to iterate the Java object.

. Accessing Methods and Fields with Chili!Beans
All public methods of a class are accessible from their Chili!Beans wrapper. If a class
has multiple methods with the same name, the control will resolve the correct
method at run time based on the arguments passed. In some cases, the mappings of
Variant data types in client scripts to Java data types can result in incorrect resolution
between methods with similar signatures. The Chili!Beans control does not
distinguish between methods or fields whose names differ only by case.

Uncaught exceptions thrown by Java method calls are caught by the control and
reported to the controller as COM exceptions whose Description field is the
toString() value of the Java Exception object thrown. If the CB_STACKTRACE
environment variable is set to 1, a full stack trace for the exception is included in the
description field (the CB_STACKTRACE setting is in javasetup.sh). With Sun ONE ASP
as the controller, this string is reported as part of the run-time error text and will
appear in the browser.

Note

The Chili!Beans control cannot be used to access static methods and fields.

. Limitations of Chili!Beans Objects
The following limitations apply to Chili!Beans objects:

� A Chili!Beans object is accessible to all threads in a Sun ONE ASP application,
and is thread-safe if the underlying Java class is thread-safe. The Chili!Beans
object is marked in the registry with ThreadingModel=both; this means
that Chili!Beans objects stored as Application or Session variables will be
accessed from multiple threads and will certainly fail if their underlying Java
code is not thread-safe.

� The Chili!Beans object does not convert Java arrays, which are elements of
other arrays, to script arrays. There is no support for multi-dimensional arrays
as either arguments or return values. The Chili!Bean converts objects to
strings by calling the Java toString method. The value displayed for the
ARRAY_INT object is the value returned by the toString method.

CHILI!BEANS COMPONENT REFERENCE 469

 .
. .
. Supplying Java Virtual Machine Settings
In rare cases you must supply startup settings to the Java virtual machine (JVM). In a
stand-alone Java application, these settings are passed as command-line arguments.

Note

The mechanism described here is for expert users only.

The startup settings can be passed to the Java virtual machine run by the Chili!Bean
by specifying them in a configuration file. The default path to the file is as follows:

<C-ASP_INSTALL_DIRECTORY>/bean/bean.properties

This path can be customized by exporting the CB_PROPERTIES environment variable
in the javasetup.sh script to the desired path.

Each line in the configuration file will be passed as an argument to the Java virtual
machine at startup. For example, configuring the Chili!Bean with file:

#bean.properties

-Dfoo=bar

-Xint

has the same effect as starting the Java virtual machine from the command line with
the command:

Java –Dfoo=bar –Xint <classname>

The meanings of individual arguments vary with virtual machine versions; consult
the virtual machine’s documentation for more information.

Note

Never use this mechanism to change the startup classpath, unless all of the
directories and JAR files set in the CLASSPATH by the javasetup.sh script are
included.

. Constructing Java Objects with Chili!Beans
The Chili!Beans control is used in scripts in the same way that Microsoft implements
COM wrappers for Java objects with the Microsoft JVM.

An instance of any Java class located on the path in the local CLASSPATH
environment variable can be constructed, any public methods of the resulting object
can be called, and any of its public fields can be accessed.

There are several ways to create a Java object by using Chili!Beans, as discussed in this
section. The recommended (and simplest) way is to use the NewJavaObject
method (see “Accessing a Java Class via Chili!Beans” on page 470).

470 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Accessing a Java Class via Chili!Beans
Sun ONE ASP 4.0 simplifies the creation of Java objects by providing a new
Chili!Beans object method that allows you to instantiate Java classes with a single
line of code. The new method is NewJavaObject. With this method, instantiating
the Chili!Beans object and then calling the Construct method are combined into
one step, so:

Set y = NewJavaObject("foo.bar")

has the same effect as

Set z = Server.CreateObject("Chili.Beans")

Set y = z.Construct("foo.bar")

While use of NewJavaObject is recommended, you can also use the Chili!Beans
object Construct method to create instances of Chili!Beans. With the Construct
method, the first argument is the fully qualified name of the class to be instantiated,
and the remaining arguments are the arguments to be passed to the desired
constructor for that class. For example, if the package Database contains
Table.class, the following script will create a Table object:

Set factory = Server.CreateObject("Chili.Beans")

Set table = factory.Construct "Database/Table", "Employees", CLng(100)

This will create an object named Table, using the constructor whose signature is:

 constructor(String, Int)

If the class name cannot be found on the CLASSPATH, or if there is no public
constructor whose signature matches the arguments passed to Construct, a run-
time error occurs in the script.

To use a Java class with Sun ONE ASP, the .class file must exist in a directory that is
listed in the Java CLASSPATH environment variable, or it must be registered with Sun
ONE ASP as described in “Registering a Java Class as a COM Component on Linux
and UNIX” on page 470 in this section. A classpath can also be specified via the Sun
ONE ASP Administration Console, as described in “Enabling Chili!Beans” on page
466.

Caution

Static variables in a Java class are shared by every user who creates an instance
of that class. This can create unexpected behavior because conflicts can occur
when two instances of a class (even in different scripts) attempt to change the
value.

Registering a Java Class as a COM Component on Linux and UNIX
The chregclass tool included with Sun ONE ASP enables you to register a Java class as
a COM component on Linux and UNIX. You register a Java class by using the
chregclass tool to create a registry entry that maps a given ProgID to the Java class.
The chregclass tool is similar to the javareg tool provided for the Microsoft JVM.

CHILI!BEANS COMPONENT REFERENCE 471

 .
. .
Note

To register a Java class to use with Sun ONE ASP, the .class file must exist in a
directory that is listed in the Java CLASSPATH environment variable.

Any class registered by using chregclass must have a public default construc-
tor to instantiate the class. This applies to all chregclass calls.

To register a Java class as a COM component

1. Log in as root and change directories to the Sun ONE ASP installation direc-
tory.

2. Stop the ASP Server, as described in “Stopping and Restarting the ASP Server
(Admin Console)” on page 41.

3. Map the ProgID to the Java class by running the following command:

chregclass [-f] [ProgID] [JAVA_CLASS]

where [ProgID] is the Prog ID you want to map and [JAVA_CLASS] is the
name of the Java class you want to register. [JAVA_CLASS] should not
include the .class extension. If it does, the mapping will not work.

4. Restart the ASP Server, as described in “Stopping and Restarting the ASP
Server (Admin Console)” on page 41.

For example, to register the Table class in the Database package on the
CLASSPATH, use the following command:

chregclass Db.Table Database/Table

After running this command, you can then construct a Table object in a script as
follows:

Set table = Server.CreateObject("Db.Table")

Returning a Java Class from a Method Call or Field Access
A Java object returned from a Java method call or field access in a script is
automatically wrapped in its own Chili!Beans wrapper. For example, the classes
Table and Record are defined as:

//Table.java

package Database ;

public class Table {

 public Table(String name, int initialSize) {...};

 public int numRecords() {...};

 public Record getEmployee(int employeeNumber)

{...};

 ...

}

//Record.java

package Database ;

472 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
public class Record {

 public Record() {...};

 public String m_LastName ;

 public String m_FirstName ;

 ...

}

The following ASP script will print the names of the employees in Table:

Set t = NewJavaObject("Database/Table", "Employees", 100)

for I = 0 to t.numRecords - 1

 set record = t.getEmployee(I)

 Response.Write(record.m_FirstName & " " _

 & record.m_LastName & "
")

next

The Java objects returned by the getEmployee calls on the Table object are
automatically given Chili!Beans wrappers, and their methods and fields are available
even though they have not been constructed with the CreateObject method.

. ASP Servlet Interface
Sun ONE Active Server Pages 4.0 implements some of the interfaces and classes in the
javax.servlet and javax.servlet.http packages. This means that Java objects
designed for use in Java Server Pages (JSPs) can now be integrated into a Sun ONE ASP
script. The ASP servlet interface implemented in this release is not a full-fledged
servlet container, but instead provides a mapping between servlet container objects
and ASP objects (as described in “Object Mapping” on page 473).

Sun ONE ASP Chili!Beans technology is used to implement this functionality.
Chili!Beans now has the ability to interact with Java classes that use the
ServletContext interface. Java methods taking HttpServletRequest and
HttpServletResponse arguments can be called directly from ASP scripts through
the Chili!Beans wrapper. When methods of classes wrapped by Chili!Beans require
arguments that implement these interfaces, Chili!Beans provides a mechanism that
allows the methods to be called using a syntax similar to method calls from Java or
JSP code.

This section provides information specific to the ASP servlet interface implemented
in Sun ONE ASP. It does not provide a complete developer reference for the
javax.servlet and javax.servlet.http interfaces, or for servlet or JSP technologies
in general. The following URLs are good resources for that information:

� javax.servlet and javax.servlet.http packages

http://java.sun.com/j2ee/1.4/docs/api/

� JavaTM Servlet technology

http://java.sun.com/products/servlet/

� JavaServer PagesTM technology

http://java.sun.com/j2ee/1.4/docs/api/
http://java.sun.com/products/servlet/

CHILI!BEANS COMPONENT REFERENCE 473

 .
. .
http://java.sun.com/products/jsp/

� Glossary of Java-related terms

http://java.sun.com/docs/glossary.html

Object Mapping
The ASP servlet interface is a Java package with classes that map to servlet interfaces.
The package is named com.sun.asp. The ASP servlet interface is not a full-fledged
servlet container, but instead provides a mapping between servlet container objects
and ASP objects. The following table illustrates that mapping.

Calls made to the servlet container object are handled by the equivalent ASP object
(if possible). If the functionality is not supported in ASP, an exception is thrown or
the appropriate error code is returned. This mapping allows servlet methods that
depend on servlet container objects to continue to function when called via
Chili!Beans. However, the servlet will receive no calls to its Listener methods from
the ASP Server.

See also:

“Programmatic Access” on page 473

Programmatic Access
The Java wrappers for the ASP intrinsic objects have two uses:

� The wrappers are used to call methods of existing Java classes designed to be
called from servlets and JSPs. Such methods often take Servlet interface
arguments. These methods can now be called directly from ASP by
substituting the ASP Request and Response objects for the
ServletRequest and ServletResponse arguments to these methods. This
mechanism is illustrated in the first method of the AspTest.asp portion of
the following example.

� Developers can write Java methods intended for use by ASP pages and access
the ASP intrinsic objects directly from Java code. This mechanism is
illustrated in the second and third methods in the AspTest.asp portion of
the following example.

A class called com.sun.asp.AspContext implements javax.servlet.Serv-
letContext on the CLASSPATH of the virtual machine running in the ASP

Servlet Container Object ASP Intrinsic Object

HttpServletContext Application

HttpServletRequest Request

HttpServletResponse Response

HttpSession Session

http://java.sun.com/products/jsp/
http://java.sun.com/docs/glossary.html

474 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
engine. This class has a static method called getScriptingContext, which
returns an instance of AspContext wrapping the ASP intrinsic objects for
the current page. In addition to the ServletContext methods, this class has
getResponse() and getRequest() methods returning HttpServletRe-
quest and HttpServletResponse wrapping the current ASP Request and
Response objects. (The com.sun.asp.AspContext class has no use outside
of ASP, and will not work outside of ASP.)

Example

The following example illustrates ASP servlet functionality. Running AspTest.asp
with the compiled AspTest.class on the classpath will display the contents of
AspTest.asp.html when the request /AspTest.asp?foo=bar is sent to the browser.

AspTest.asp

<%

Set obj = NewJavaObject("AspTest")

'Display the query string using the first method. This Java method

'takes HttpServletRequest and HttpServletResponse arguments, so

'the ASP Response and Request objects are passed.

obj.FirstTest Request, Response

Response.write "

"

'Display the query string using the second method. This Java method

'accesses the ASP Request and Response objects directly from the

'Java code.

obj.SecondTest

Response.Write "

"

'Set a session variable from ASP and display it from Java.

Session("key") = "value"

obj.ThirdTest

%>

AspTest.class

import javax.servlet.*;

import javax.servlet.http.*;

import com.sun.asp.*;

import java.io.IOException;

CHILI!BEANS COMPONENT REFERENCE 475

 .
. .
import java.io.PrintWriter;

public class AspTest {

 public AspTest(){}

 //This method can be called from ASP by passing the ASP Request

 //and Response objects as arguments. The Chili!Bean recognizes

 //those objects and substitutes instances of its own

 //implementations of HttpServletRequest and

 //HttpServletResponse.

 public void FirstTest(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException {

 PrintWriter writer = res.getWriter();

 String queryString = req.getQueryString();

 writer.println("The QueryString is:
");

 writer.println(queryString);

 }

 //This method does the same thing. In this case,

 //instances of HttpServletRequest and HttpServletResponse

 //that wrap the ASP Request and Response objects are

 //obtained in the Java code by calling the AspContext static

 //method getScriptingContext. The returned AspContext

 //object has methods that return the Request and

 //Response wrapper.

 public void SecondTest()

 throws IOException {

 AspContext ctxt = AspContext.getScriptingContext();

 HttpServletRequest req = ctxt.getRequest();

 HttpServletResponse res = ctxt.getResponse();

 FirstTest(req,res);

 }

 //This method displays the value of a session variable.

 //The Java code accesses the session data from the ASP

 //page calling it.

 public void ThirdTest()

476 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
 throws IOException {

 AspContext ctxt = AspContext.getScriptingContext();

 HttpServletRequest req = ctxt.getRequest();

 HttpServletResponse res = ctxt.getResponse();

 HttpSession sess = req.getSession();

 PrintWriter writer = res.getWriter();

 writer.println("The value of the session variable key is " +

 sess.getAttribute("key") + "
");

 }

}

AspTest.asp.html

<html><head></head><body>The QueryString is:

foo=bar

The QueryString is:

foo=bar

The value of the session variable key if
value
</body></html>

Functionality Not Implemented
Not all servlet functionality has been implemented in this release of Sun ONE ASP.
Functionality that has NOT been implemented is listed in the following sections.
Complete reference information for the javax.servlet and javax.servlet.http
interfaces can be found at the following URL:

http://java.sun.com/j2ee/1.4/docs/api/

ServletContext

Class AspServletContext implements Interface javax.servlet.ServletContext.
ServletContext functionality not implemented in AspServletContext:

� getMimeType

� getResourcePaths

Note

Request dispatchers are not supported in this release of Sun ONE ASP.

http://java.sun.com/j2ee/1.4/docs/api/

CHILI!BEANS COMPONENT REFERENCE 477

 .
. .
HttpServletRequest

Class AspServletRequest implements Interface
javax.servlet.http.HttpServletRequest. HttpServletRequest functionality
not implemented in AspServletRequest:

� getRequestedSessionId

� getServletPath

� getUserPrincipal

� isRequestedSessionIdValid

� isUserInRole

HttpServletResponse

Class AspServletResponse implements Interface
javax.servlet.http.HttpServletResponse. HttpServletResponse functionality
not implemented in AspServletResponse:

� containsHeader

Methods Defined in javax.servlet.ServletResponse

Methods defined in javax.servlet.ServletResponse that are not implemented:

� reset

HttpSession

Class AspSession implements interface javax.servlet.http.HttpSession.
HttpSession functionality not implemented in AspSession:

� getCreationTime

� getCreationTime

� getLastAccessedTime

� isNew

478 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .13 XML Support

Sun ONE Active Server Pages provides built-in support for XML, enabling developers
to incorporate pages using the Document Object Model (DOM) and HTTP features of
MSXML 1.0 into their Sun ONE ASP applications with few changes to code. (MSXML
1.0 is a very basic DOM-based XML parser. Support for DOM Level 2 is provided.)

The Sun ONE ASP XML control is based on the Java API for XML Processing (Java
XML) implementation. An MSXML 1.0 DOM compatibility layer allows syntax
written for use with the Microsoft control to function with minimal modification.
The Sun ONE ASP XML control extends the org.w3c.dom interfaces, which are the
interfaces for the DOM that is a component API of the Java XML implementation.

This chapter lists MSXML 1.0 DOM extensions to the W3C DOM that are NOT
implemented in the Sun ONE ASP control. It does not provide a complete developer
reference for the MSXML 1.0 DOM and the org.w3c.dom package or for Java XML,
XML, and so on. Many other resources provide that information, including the
following:

� org.w3c.dom package

http://java.sun.com/webservices/docs/1.0/api/

� Java XML

http://java.sun.com/xml/

� MSXML

MSDN resources

� DOM

http://www.w3.org/DOM/

In this chapter:

“About the Sun ONE ASP XML Control” on page 479

“Functionality Not Implemented” on page 480

. About the Sun ONE ASP XML Control
The Sun ONE ASP XML control is a Java package with interfaces that correspond to
COM interfaces in the MSXML 1.0 DOM implementation. The package is named
com.sun.msxml and does not need to be registered. The following is provided for
each interface in the Microsoft DOM 1.0 implementation:

� A corresponding interface in the com.sun.msxml package that extends an
org.w3c.dom interface and may include Microsoft-specific methods not
found in the base interfaces.

http://java.sun.com/webservices/docs/1.0/api/
http://java.sun.com/xml/
http://www.w3.org/DOM/
http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000438

480 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� An implementation of each interface in the Microsoft package. Not all
Microsoft-specific properties and methods are implemented in the Sun ONE
ASP XML control. Some methods not contained in org.w3c.dom may
throw FeatureNotImplemented exceptions. Others may silently fail, allowing
ASP pages that invoke them to run without error. The behavior of each
interface member with a corresponding method in the W3C specification for
DOM parsers is determined by the W3C specification, without regard to the
behavior of the Microsoft DOM parser. The behavior of Microsoft-specific
methods corresponds as closely as possible to the behavior of the methods in
the Microsoft software.

See also

“Functionality Not Implemented” on page 480

. Functionality Not Implemented
Most but not all of the MSXML 1.0 DOM properties and methods are implemented in
the Sun ONE ASP XML control. Functionality that has NOT been implemented in
this release is listed in the following sections. The properties and methods added to
MSXML since the release of MSXML 1.0 are not implemented.

Node Interface
The following table lists the MSXML 1.0 DOM functionality not implemented in the
Sun ONE ASP XML control.

Document Interface
The following table lists the MSXML 1.0 DOM functionality not implemented in the
Sun ONE ASP XML control.

MSXML 1.0 control Sun ONE ASP XML control

dataType Not implemented. Throws FeatureNotImplemented
exception.

definition Not implemented. Throws FeatureNotImplemented
exception.

MSXML 1.0 control Sun ONE ASP XML control

async Not implemented. Throws FeatureNotImplemented
exception.

abort Not implemented. Throws FeatureNotImplemented
exception.

XML SUPPORT 481

 .
. .
XMLHTTPRequest Object
The following table lists the MSXML 1.0 DOM functionality not implemented in the
Sun ONE ASP XML control.

ondataavailable Not implemented. Throws FeatureNotImplemented
exception.

onreadystatechange Not implemented. Throws FeatureNotImplemented
exception.

ontransformnode Not implemented. Throws FeatureNotImplemented
exception.

MSXML 1.0 control Sun ONE ASP XML control

MSXML 1.0 control Sun ONE ASP XML control

onreadystatechange Not implemented. Throws FeatureNotImplemented
exception.

readyState Not implemented. Throws FeatureNotImplemented
exception.

responseStream Not implemented. Throws FeatureNotImplemented
exception.

482 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .14 SpicePack Component Reference

The Sun ONE ASP SpicePack is a set of COM components that handle commonly
used ASP application functionality. The components are Chili!Mail, Chili!POP3, and
Chili!Upload. These components can be instantiated and called from ASP scripts to
send and receive e-mail and upload files from client browsers.

The components are installed with Sun ONE Active Server Pages and are enabled or
disabled from the Sun ONE ASP Administration Console. This chapter provides
SpicePack reference information.

In this chapter:

“Enabling SpicePack Components” on page 483

“Chili!Mail (SMTP)” on page 484

“Chili!POP3 (POP3)” on page 491

“Chili!Upload (File Upload)” on page 499

. Enabling SpicePack Components
The SpicePack components are enabled or disabled from the Sun ONE Active Server
Pages Administration Console.

To enable or disable SpicePack components

1. If necessary, open the Administration Console (see “Accessing the Adminis-
tration Console” on page 18).

2. On the ASP Server tab of the Server Management page, click Compo-
nents.

The Components page displays.

484 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
3. Select or clear (enable or disable) the Chili!Mail, Chili!POP3, and
Chili!Upload check boxes as desired.

If Chili!Upload is selected, the Max. Transfer Size (Bytes) box displays.
This box specifies the maximum size per transfer (in bytes) that can be
uploaded using the Chili!Upload component.

4. Click Save to save your changes, or Cancel to revert to the settings that were
last saved.

5. If you changed the status of the Chili!Upload component, you must restart
the ASP Server by clicking Restart on the Server Management page. You
do not need to restart the ASP Server if you changed the status of the
Chili!Mail or Chili!POP3 components.

Note

Restarting the ASP Server resets all Session and Application
variables.

See also:

“SpicePack Component Reference” on page 483

“Chili!Mail (SMTP)” on page 484

“Chili!POP3 (POP3)” on page 491

“Chili!Upload (File Upload)” on page 499

. Chili!Mail (SMTP)
The Chili!Mail component enables users to send e-mail messages from an ASP page to
an SMTP e-mail server. The Chili!Mail component is compatible with the NewMail

SPICEPACK COMPONENT REFERENCE 485

 .
. .
object included with the Microsoft Internet Information Services (IIS) CDONTS
component. However, the Chili!Mail component does not support the following
properties and methods of the NewMail object:

� AttachURL

� ContentBase

� ContentLocation

� MailFormat

� SetLocaleIDs

� Version

Any differences between the Microsoft NewMail object and the Chili!Mail
component are listed in the property and method descriptions that follow.

Note

The Chili!Mail component must be enabled in the Sun ONE ASP
Administration Console. For more information, see “Enabling SpicePack
Components” on page 483.

In this section:

“Chili!Mail Registry Settings” on page 485

“Chili!Mail Syntax” on page 485

“Chili!Mail Properties” on page 485

“Chili!Mail Methods” on page 489

Chili!Mail Registry Settings
The Chili!Mail component does not use registry settings.

Chili!Mail Syntax
The Chili!Mail component is registered with the ProgId of "CDONTS.NewMail."

The following ASP script written in VBScript creates an instance of the component:

Set mailer = Server.CreateObject("CDONTS.NewMail")

Chili!Mail Properties
The Chili!Mail component exposes the following properties:

� Bcc

� Body

� BodyFormat

486 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
� Cc

� Charset

� Codepage

� From

� Host

� Importance

� Retain

� Subject

� To

� Value

� WrapLength

Note

The To, From, Subject, and Body Chili!Mail properties can be set as arrays
of bytes obtained from Request.BinaryRead or method calls on other
objects. If one of the string properties is set in this manner, the translation of
bytes in the array to Unicode is not performed. The values of these strings can
be set to the exact bytes ultimately sent to the mail server, which allows
multibyte text not encoded using a supported code page to be sent by the
Chili!Mail component.

Chili!Mail Bcc Property (String: Read/Write)

The Bcc property specifies one or more recipients of a blind copy of the message. A
full messaging address must be provided for each recipient, as shown in the following
example:

"useraddress@company.com"

Addresses must be separated by a semicolon (;), as shown in the following example:

"user1@company1.com;user2@company2.com;user3@company3.com"

Chili!Mail Body Property (String: Read/Write)

The Body property is a string that specifies the content of the message. Line breaks
should be sent as carriage return-linefeed pairs, for example, "Chr(13) & Chr(10)."

Chili!Mail BodyFormat Property (Long: Write only)

The BodyFormat property specifies the message format available for the Chili!Mail
Body property. The values for the BodyFormat property can be set as follows:

� 0 indicates that the Body property can include HTML

� 1 indicates that the Body property can include plain text only (the default)

SPICEPACK COMPONENT REFERENCE 487

 .
. .
Chili!Mail Cc Property (String: Read/Write)

The Cc property specifies one or more recipients of a copy of the message. A full
messaging address must be provided for each recipient, as shown in the following
example:

 "useraddress@company.com"

Addresses must be separated by a semicolon (;), as shown in the following example:

 "user1@company1.com;user2@company2.com;user3@company3.com"

Chili!Mail Charset Property (String: Read/Write)

This property enhances functionality of the Chili!Mail component with non-Roman
character sets, enabling a specific character set to be specified for the e-mail message
being sent.

The Charset property specifies the value to be written in the Content-Type header of
the MIME part containing the message body. The default is “ISO-8559-1” if the
message contains high ASCII characters, otherwise it’s “US-ASCII.” In each header
that contains non-ASCII characters, the value is written in accordance with RFC
2047.

No validation is done to verify that the value of the Charset property as set
represents a valid or recognizable character set. The Charset property has no effect
on the code page used for Unicode/multibyte conversion.

Chili!Mail CodePage Property (Integer: Read/Write)

This property enhances the functionality of the Chili!Mail component with non-
Roman character sets, enabling a specific code page to be used for a single message.

By default, all e-mail messages and headers are encoded using the code page that is
currently in effect. In some cases, however, you may want to use a specific code page
for just a single message.

If set, the value of the CodePage property defines the code page used to convert the
Unicode strings passed to the mail server. The default is the code page currently in
effect, which is determined in the following order:

1. If Response.CodePage is set in the page, then the current value of
Response.CodePage is the effective code page.

2. If Session.CodePage is set in the page, then the current value of Ses-
sion.CodePage is the effective code page.

3. If the page contains an @CODEPAGE directive:

<%@ CODEPAGE=codepage %>

then codepage is the effective code page.

4. If none of the previous conditions exist, the setting in casp.cnfg is the effec-
tive code page (configurable from the Sun ONE ASP Administration Console).

488 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Chili!Mail From Property (String: Read/Write)

The From property is a string that specifies the content of the From field of the
message header. It cannot include spaces.

Note

The From field cannot exceed 255 characters, the limit for a single e-mail
address. There is no character limit for the To, Cc, and Bcc fields.

Chili!Mail Host Property (String: Read/Write)

The Host property is a string that specifies the valid DNS name (for example,
"mail.myorg.com") or IP address of the SMTP mail server. The default is "localhost."

Chili!Mail Importance Property (Long: Read/Write)

The Importance property specifies the importance of the message to be sent. Valid
values are:

� 0 indicates low importance

� 1 indicates normal importance

� 2 indicates high importance

Chili!Mail Retain Property (BOOLEAN: Read/Write)

The Retain property specifies whether message properties are retained after the
Send method is called. If set to TRUE, all properties are retained. If set to FALSE (the
default), all properties are cleared.

Chili!Mail Subject Property (String: Read/Write)

The Subject property is a string that specifies the content of the subject line of the
message. This property may be left empty.

Chili!Mail To Property (String: Read/Write)

The To property specifies one or more message recipients. A full messaging address
must be provided for each recipient, as shown in the following example:

 "useraddress@company.com"

Addresses must be separated by a semicolon (;), as shown in the following example:

 "user1@company1.com;user2@company2.com;user3@company3.com"

If both the To property and the To parameter of the Send method are supplied, the
message is sent to all recipients in both lists.

SPICEPACK COMPONENT REFERENCE 489

 .
. .
Chili!Mail Value Property (Read/Write)

The Value property adds one or more headers to the automatically generated
headers, such as To, From, Subject, and Date. Possibilities for additional headers
include File, Keywords, and Reference.

Certain headers, such as Reply-To, are widely accepted and used by various messaging
systems. For such a header to be recognized by recipients, the character string in the
header name must exactly match the accepted string.

In principle, you can put any combination of ASCII characters in the string, but some
messaging systems might restrict the character set. The safest approach is to limit the
string to alphanumeric characters, dashes, and slashes, and in particular to avoid
spaces.

The Value property can be set more than once. Each setting generates another
header to be included with the existing headers.

Chili!Mail WrapLength (Read/Write)

The WrapLength property applies to message content. It specifies the maximum
number of characters allowed in a line before the line wraps (before it breaks and
continues on the next line). The line breaks at the last space before the specified
maximum number of characters has been reached. The default setting is 76. The
maximum is 990.

Chili!Mail Methods
The Chili!Mail component provides the following methods:

� AttachFile

� Send

Chili!Mail AttachFile Method

The AttachFile method attaches a file to the message. Messages are multi-part
MIME encoded, and attachments follow the text portion of the message.

Chili!Mail AttachFile Method Arguments

Note

This note pertains to CDONTS. All messages are Base64 encoded. There is no
provision for specifying a different encoding method.

Source A string containing the absolute path name of the file to attach.

490 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Chili!Mail Send Method

The Send method sends the message using the properties previously set. All
arguments to this method are optional and override the properties previously set for
the message (except for the To argument, which is combined with any previously set
To property).

Calling the Send method resets all message properties in preparation for the next
message, unless the Retain property is set to TRUE. Multiple messages can be sent
using the same instance of the Chili!Mail component.

Chili!Mail Send Method Arguments

The arguments listed in the following table must be passed in the order given.

Chili!Mail Send Method Examples

Example 1

Set mailmsg = Server.CreateObject("CDONTS.NewMail")

mailmsg.To = "youraccount@yourco.com"

mailmsg.From = "account@someco.com"

mailmsg.Body = "This is a test message." & Chr(13) & Chr(10) _

 & "This is the second line."

mailmsg.Host = "mail.yourco.com"

mailmsg.Send

Example 2

Set mailmsg = Server.CreateObject("CDONTS.NewMail")

Message = "This is a test message." & Chr(13) & Chr(10) _

 & "This is the second line."

mailmsg.Send "myaccount@yourco.com", "youraccount@yourco.com", _

From See the description of the property of the same name: “Chili!Mail From
Property (String: Read/Write)” on page 488.

To See the description of the property of the same name: “Chili!Mail To
Property (String: Read/Write)” on page 488.

Subject See the description of the property of the same name: “Chili!Mail Subject
Property (String: Read/Write)” on page 488.

Body See the description of the property of the same name: “Chili!Mail Body
Property (String: Read/Write)” on page 486.

Importance See the description of the property of the same name: “Chili!Mail
Importance Property (Long: Read/Write)” on page 488.

Host See the description of the property of the same name: “Chili!Mail Host
Property (String: Read/Write)” on page 488.

SPICEPACK COMPONENT REFERENCE 491

 .
. .
"Test Subject", Message, 2, "mail.yourco.com"

. Chili!POP3 (POP3)
The Chili!POP3 component retrieves e-mail messages from a POP3 server from an
ASP script. This component has two main interfaces: The POP3 interface creates and
controls the connection to a POP3 server, and the Message interface exposes all
properties of a single message. Additional interfaces are exposed to support retrieval
of message lists and message attachments.

Note

The Chili!POP3 component must be enabled in the Sun ONE ASP
Administration Console. For more information, see “Enabling SpicePack
Components” on page 483.

In this section:

“Chili!POP3 Registry Settings” on page 491

“Chili!POP3 Syntax” on page 491

“Chili!POP3 POP3 Interface” on page 491

“Chili!POP3 Message Interface” on page 493

“Chili!POP3 Attachment Interface” on page 497

Chili!POP3 Registry Settings
The Chili!POP3 component does not use registry settings.

Chili!POP3 Syntax
The Chili!POP3 component is registered with the ProgId of "CHILI.POP3.1."

The following ASP script written in VBScript creates an instance of the component:

Set pop3 = Server.CreateObject("Chili.Pop3.1")

Chili!POP3 POP3 Interface
The POP3 interface creates and controls a connection to a POP3 server.

POP3 Interface Properties

The POP3 interface exposes no properties.

492 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
POP3 Interface Collections

� Messages

POP3 Interface Messages Collection

The Messages collection is a collection of Message objects, as described in
“Chili!POP3 Message Interface” on page 493. This collection is read-only and does
not support the standard Append or Delete collection methods.

POP3 Interface Methods

The following methods control a network connection to a POP3 server.

� Connect

� Disconnect

� Delete

� Reset

POP3 Interface Connect Method

The Connect method establishes a network connection to a POP3 server.

POP3 Interface Connect Method Arguments

POP3 Interface Connect Method Example

See “POP3 Interface Disconnect Method” on page 492

POP3 Interface Disconnect Method

The Disconnect method disconnects from the POP3 server.

POP3 Interface Disconnect Method Example

Set pop3 = Server.CreateObject("Chili.Pop3.1")

pop3.Connect "mail.foo.com", "myuserid", "mypasswd"

pop3.Disconnect

Host The hostname of the server with which to connect.

Password The password required for connecting with the server.

UserId The User ID required for connecting with the server.

SPICEPACK COMPONENT REFERENCE 493

 .
. .
POP3 Interface Delete Method

The Delete method deletes a message on the POP3 server. This does not delete the
message from the Messages collection.

POP3 Interface Delete Method Arguments

POP3 Interface Reset Method

The Reset method returns the POP3 server to the beginning of the transaction state
(Connected) and ignores any commands and their effect on the connection. For
example, any messages that were deleted from the mailbox are restored to their
undeleted state.

POP3 Interface Reset Method Example

Set pop3 = Server.CreateObject("Chili.Pop3.1")

pop3.Connect "mail.foo.com", "myuserid", "mypasswd"

pop3.Reset

pop3.Disconnect

Chili!POP3 Message Interface
The Chili!POP3 component Message interface provides access to the messages
currently in the mail store on the connected server. The properties, methods, and
collections of the Message object are used to access those messages.

There are varying network costs associated with accessing the different properties of a
message. For POP3 servers that support the optional TOP command, accessing any
header information and the first few lines of the message can be accomplished
without paying the data transfer overhead of moving the entire message from the
server to the client.

Note

When requesting any of the properties that can be gathered without
retrieving the entire message, the component first attempts the TOP
command. If that command fails, the component then attempts to fulfill the
property request via the full message RETR command.

Id 0-based index for the message in the message collection.

494 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Message Interface Properties

In the list of properties below, LW means it can be "lightweight" on POP3 servers
supporting the TOP command.

� Charset (LW)

� DateReceived (LW)

� DateSent (LW)

� From (LW)

� HasAttachments (LW)

� Message

� MsgId (LW)

� MsgUID (LW)

� Size (LW)

� Subject (LW)

Message Interface Charset Property (Read-Only)

After reading the value of Charset, you can set the value of Session.CodePage to
correspond to the charset. That code page will be used to convert the message body
and headers received from the mail server to Unicode strings returned by the object’s
properties.

Message Interface DateReceived Property (Read-Only)

The DateReceived property indicates the date and time that the message was
received.

Message Interface DateSent Property (Read-Only)

The DateSent property indicates the date and time that the message was sent.

Message Interface From Property (Read-Only)

The From property is a string that indicates who sent the e-mail message.

Message Interface HasAttachments Property (Read-Only)

The HasAttachments property provides an "educated guess" based on the message
headers (to be lightweight) as to whether the message has attachments.

Message Interface Message Property (Read-Only)

The Message property is a string that specifies the content of the message.

SPICEPACK COMPONENT REFERENCE 495

 .
. .
Message Interface MsgId Property (Read-Only)

The MsgId property indicates the message ID of the current message in the
collection.

Message Interface MsgUID Property (Read-Only)

The MsgUID property indicates whether the server supports the UIDL command. It
returns 0 if the server does not support this command.

Message Interface Size Property (Read-Only)

The Size property indicates the total size of the current message in bytes.

Message Interface Subject Property (Read-Only)

The Subject property is a string that indicates the subject of the message. It may be
Null (empty string).

Message Interface Collections

The Message interface collections are as follows:

� Attachments

� Cc (LW)

� Headers (LW)

� To (LW)

Note

To, Cc, and Headers are BSTR collections using the Count method to
obtain the total number of items in the collection and the Item method to
obtain each item. The difference is that for To and Cc, the first argument of
Item is a 0-based index, while for Headers, the first argument is a string that
indicates the name of the header item (for example, From, To, and
Subject).

Message Interface Attachments Collection

The Attachments collection is the list of attachments to the current e-mail
message, consisting of file name(s) and description(s). The collection is read-only and
does not support the standard Append or Delete methods.

496 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Message Interface Cc Collection

The Cc collection is the list of e-mail addresses to which the message was sent as a
carbon copy. The collection is read-only and does not support the standard Append
or Delete methods.

Message Interface Headers Collection

The Interface Headers collection is a collection of all message headers for the
current e-mail message. This includes headers that are also accessible via friendly
named fields or other collections, such as To, From, and DateSent. This collection
can be accessed via the header name or index. This collection is read-only and does
not support the standard Append or Delete methods.

Message Interface To Collection

The To collection is the list of e-mail addresses to which the message was sent. The
collection is read-only and does not support the standard Append or Delete
methods.

Message Interface Methods

� PreviewMessage

� SaveAttachments

Message Interface PreviewMessage Method

The PreviewMessage method returns the specified number of lines of the message
body. For servers that support the TOP command, this is performed without
retrieving the entire message body. For messages with attachments or messages that
consist entirely of binary data (which may be ascertained via the Headers
collection) the first N lines of the message might not be meaningful to a human
reader.

Message Interface PreviewMessage Arguments

Message Interface SaveAttachments Method

The SaveAttachments method saves e-mail attachments to a specified directory on
the server.

Lines The number of lines to return.

SPICEPACK COMPONENT REFERENCE 497

 .
. .
Message Interface SaveAttachments Arguments

Note

In a shared Web hosting environment, such as with an ISP, you might not
know the directory structure above the document root for your virtual host.
In this situation, you cannot specify an absolute path name for the file, so
you must use the Server.MapPath directive instead.

Message Interface SaveAttachments Example

Set pop3 = Server.CreateObject("Chili.Pop3.1")

pop3.Connect "mail.foo.com", "myuserid", "mypasswd"

For each item in pop3.Messages

 For each Cc in Item.Cc

 MsgBox Cc

 next

 next

pop3.Reset

pop3.Disconnect

Chili!POP3 Attachment Interface
The Chili!POP3 Attachments collection of the Message object provides access to
the attachments currently in an e-mail. The properties and methods of the
Attachment object are used to access those attachments.

Attachment Interface Properties

� Base64

� ContentType

� FileName

� FileSize

Attachment Interface Base64 Property (Read-Only)

The Base64 property is a Boolean value that indicates whether the attachment is
Base64 encoded.

Directory path on the Server The complete path name to the directory on the server
where attachments are to be saved.

498 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Attachment Interface ContentType Property (Read-Only)

The ContentType property is a string that indicates the content type of the
attachment.

Attachment Interface FileName Property (Read-Only)

The FileName property is a string that indicates the name of the attachment.

Attachment Interface FileSize Property (Read-Only)

The FileSize property is a number that indicates the size of the attachment in bytes.

Attachment Interface Methods

� Read

� SaveToFile

Attachment Interface Read Method

The Read method reads the attachment.

Attachment Interface Read Arguments

Attachment Interface SaveToFile Method

The SaveToFile method saves the attachment on the server.

Attachment Interface SaveToFile Arguments

Note

In a shared Web hosting environment, such as with an Internet Service
Provider, you might not know the directory structure above the document
root for your virtual host. In this situation, you cannot specify an absolute
path name for the file, so you must use the Server.MapPath directive
instead.

Nsize The number of bytes to read from the attachment. This argument is
optional. If missing, the entire attachment is read.

Pbytes A safe array of bytes.

Directory The full directory path on the server.

SPICEPACK COMPONENT REFERENCE 499

 .
. .
. Chili!Upload (File Upload)
The Chili!Upload component enables users to save files uploaded by site visitors to
the server. Chili!Upload supports the simultaneous upload of multiple files. Form
data can also be processed while files are uploading.

Note

The Chili!Upload component must be enabled in the Sun ONE ASP
Administration Console. For more information, see “Enabling SpicePack
Components” on page 483.

In this section:

“Chili!Upload Registry Settings” on page 499

“Chili!Upload Syntax” on page 499

“Chili!Upload Properties” on page 499

“Chili!Upload Collections” on page 500

“Chili!Upload Methods” on page 501

Chili!Upload Registry Settings
The component does not use registry settings.

Chili!Upload Syntax
The Chili!Upload component is registered with the ProgId of "Chili.Upload.1." The
following VBScript excerpt creates an instance of the control.

Set Upload = Server.CreateObject("Chili.Upload.1")

Chili!Upload Properties
The Chili!Upload component exposes the properties listed below. If the uploaded file
contains multiple files, the properties of the first file being uploaded are accessed.

� AllowOverwrite

� FileSize

� SizeLimit

� SourceFileExtension

� Version

500 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Chili!Upload AllowOverwrite Property (Read /Write)

The AllowOverwrite property determines whether the component overwrites
existing files saved with the same absolute path name as the uploaded file.

Chili!Upload FileSize Property (Read-Only)

The FileSize property indicates the size in bytes for the uploaded file.

Chili!Upload SizeLimit Property (Read/Write)

The SizeLimit property sets the maximum file size in bytes of uploaded files.

Chili!Upload SourceFileExtension Property (Read-Only)

The SourceFileExtension property indicates the file extension of the uploaded file.

Chili!Upload Version Property (Read-Only)

The Version property indicates the version of the Chili!Upload component.

Chili!Upload Collections
The Chili!Upload component has the following collection:

� FormData

Chili!Upload FormData Collection

The FormData collection is a collection of FormElement objects that represent all
input items on an HTML form.

Note

Every input element in the body of the HTTP request is included in the
FormData collection, including empty File form fields.

FormElement Object

FormElement object properties are listed in the table below. All properties are read-
only.

Property Description

ContentType String for the content type of the input item (if the item is not a file, the
string will be empty).

SPICEPACK COMPONENT REFERENCE 501

 .
. .
Chili!Upload Methods
The Chili!Upload component exposes the following methods:

� SaveToFile

� SourceFileName

Chili!Upload SaveToFile Method

The SaveToFile method saves the uploaded file to the location specified by the
absolute path name provided by the user.

Chili!Upload SaveToFile Arguments

Chili!Upload SourceFileName Method (Read-Only)

The SourceFileName method returns the full path or file name of the uploaded file.
This method takes an optional Boolean argument. If FALSE, only the file name is
returned. If TRUE (the default), the full path is returned.

Chili!Upload Methods Examples

The following script uploads a file:

<FORM ACTION="fileupld.asp" METHOD="POST" ENCTYPE="multipart/form-
data">

<INPUT TYPE="FILE" NAME="FILE">

<INPUT TYPE="SUBMIT" VALUE="Send">

FileName String for the name of the file (if the item is not a file, the string will be
empty). Also takes an optional Boolean argument. If FALSE, only the file
name is returned. If TRUE (the default), the full path is returned (see
“Chili!Upload SourceFileName Method (Read-Only)” on page 501).

FileNameExt String for the file extension (if the item is not a file, the string will be
empty).

IsFile Boolean value to determine if the item is a file.

Name String for the name of the input item in the form.

Size Integer for the size of the item, in bytes.

Value Safearray of bytes for the value of the input item.

Property Description

Path The absolute path name for the file, which specifies where it is to
be saved.

502 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
</FORM>

The following fileupld.asp script processes the upload:

<%

Response.Expires = 0

Set fbase = Server.CreateObject("Chili.Upload.1")

fbase.SizeLimit = 10000

fbase.SaveToFile("/opt/datafiles/test.dat")

%>

Done writing <%=fbase.FileSize%> bytes from user file
<%=fbase.SourceFileName%>

(of type <%=fbase.SourceFileExtension%>)

In a shared Web hosting environment, such as with an Internet Service Provider, you
might not know the directory structure above the document root for your virtual
host. In this situation, you cannot specify an absolute path name for the file, so you
must use the Server.MapPath directive instead. The following example illustrates
saving the uploaded file to the document root of the virtual host:

<%

Response.Expires = 0

Set fbase = Server.CreateObject("Chili.Upload.1")

fbase.SizeLimit = 10000

fbase.SaveToFile(Server.mapPath("/") & "/" & "test.dat")

%>

Done writing <%=fbase.FileSize%> bytes from user file

<%=fbase.SourceFileName%> (of type <%=fbase.SourceFileExtension%>)

. .

 .

. .15 Scripting Languages Reference

Sun ONE Active Server Pages includes support for version 5.5 of Microsoft VBScript
and JScript. Sun ONE ASP includes its own scripting engines, Sun ONE ASP VBScript
and Sun ONE ASP JavaScript. Most functionality provided in Sun ONE ASP is
equivalent to version 5.5 of Microsoft VBScript and JScript, including error
messaging. Therefore, this section does not provide complete VBScript and JScript
language references, but instead provides pointers to that information.

Differences between the Sun and Microsoft implementations do exist, however, and
are documented in the README file included with Sun ONE ASP. The README file is
the primary reference for this information.

. Sun ONE ASP VBScript Reference
Sun ONE Active Server Pages includes the Sun ONE ASP VBScript scripting engine.
Most but not all of the functionality is equivalent to version 5.5 of Microsoft
VBScript.

� For Microsoft VBScript language reference information, including error
messaging, go to:

VBScript Language Reference (MSDN)

� For a list of differences between the Sun and Microsoft implementations, see
the README file included with Sun ONE ASP. For information about
accessing the README, see “Viewing the README File” on page 24.

. Sun ONE ASP JavaScript Reference
Sun ONE Active Server Pages includes the Sun ONE ASP JavaScript scripting engine.
Most but not all of the functionality is equivalent to version 5.5 of Microsoft JScript.

� For Microsoft JScript language reference information, including error
messasging, go to:

JScript Language Reference (MSDN)

� For a list of differences between the Sun and Microsoft implementations, see
the README file included with Sun ONE ASP. For information about
accessing the README, see “Viewing the README File” on page 24.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vbscripttoc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/js56jslrfJScriptLanguageReference.asp

504 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .A Errors Reference

This appendix explains the error messages you might encounter when using Sun
ONE Active Server Pages.

In this appendix:

“Sun ONE ASP Errors” on page 505

“Sun ONE ASP VBScript Errors” on page 511

“Sun ONE ASP JavaScript Errors” on page 511

“ADO Errors” on page 511

. Sun ONE ASP Errors
The following table describes Sun ONE ASP error messages, listing the error code, the
error name, and an explanation of the error.

Error
Code

Error Name Explanation

100 Out of memory Unable to allocate required memory.

101 Unexpected error The function returned an exception.

102 Expecting string input The function expects a string as input.

103 Expecting numeric input The function expects a number as input.

104 Operation not allowed The operation is not allowed.

105 Index out of range An array index is out of range.

106 Type mismatch An unhandled data type was encountered.

107 Stack overflow The data being processed is over the allowed limit.

108 Create object failed An error occurred while creating an object.

109 Member not found The member was not found.

110 Unknown name The name is unknown.

111 Unknown interface The interface is unknown.

112 Missing parameter A parameter is missing.

506 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
113 Script timed out The maximum amount of time for a script to execute
was exceeded. You can change this limit by specifying
a new value for the property Server.ScriptTimeOut
or by changing the value in the ASP administration
tools.

114 Object not free threaded The application object accepts only free-threaded
objects; object is not free threaded.

115 Unexpected error A trappable error occurred in an external object. The
script cannot continue running.

116 Missing close of script
delimiter

The script block lacks the close of script tag (%>).

117 Missing close of script tag The script block lacks the close of script tag
(</SCRIPT>) or close of tag symbol (>).

118 Missing close of object tag The object block lacks the close of object tag
(</OBJECT>) or close of tag symbol (>).

119 Missing Classid or Progid
attribute

The object instance requires a valid Classid or Progid in
the object tag.

120 Invalid Runat attribute The Runat attribute of the script tag or object tag can
only have the value "Server."

121 Invalid scope in object tag The object instance cannot have application or session
scope. To create the object instance with session or
application scope, place the object tag in the
global.asa file.

122 Invalid scope in object tag The object instance must have application or session
scope. This applies to all objects created in a global.asa
file.

123 Missing Id attribute The required Id attribute of the object tag is missing.

124 Missing Language attribute The required Language attribute of the script tag is
missing.

125 Missing close of attribute The value of the attribute has no closing delimiter.

126 Include file not found The Include file was not found.

127 Missing close of HTML
comment

The HTML comment or server-side include lacks the
close tag (-->).

128 Missing File or Virtual
attribute

The Include file name must be specified using either
the Missing File or Virtual attribute.

129 Unknown scripting
language

The scripting language is not found on the server.

130 Invalid File attribute File attribute cannot start with forward slash or
backslash.

131 Disallowed parent path The Include file cannot contain ".." to indicate the
parent directory.

Error
Code

Error Name Explanation

ERRORS REFERENCE 507

 .
. .
132 Compilation error The Active Server Page could not be processed.

133 Invalid ClassID attribute The object tag has an invalid ClassID attribute.

134 Invalid ProgID attribute The object has an invalid ProgID attribute.

135 Cyclic include The file is included by itself (perhaps indirectly). Please
check Include files for other Include statements.

136 Invalid object instance
name

The object instance is attempting to use a reserved
name. This name is used by Active Server Pages
intrinsic objects.

137 Invalid global script Script blocks must be one of the allowed global.asa
procedures. Script directives within <% ... %> are not
allowed within the global.asa file. The allowed
procedure names are Application_OnStart,
Application_OnEnd, Session_OnStart, or
Session_OnEnd.

138 Nested script block A script block cannot be placed inside another script
block.

139 Nested object An object tag cannot be placed inside another object
tag.

140 Page command out Of
order

The @ command must be the first command within
the Active Server Page.

141 Page command repeated The @ command can only be used once within the
Active Server Page.

142 Thread token error A thread token failed to open.

143 Invalid application name A valid application name was not found.

144 Initialization error The page level objects list failed during initialization.

145 New application failed The new application could not be added.

146 New session failed The new session could not be added.

147 500 server error Server error 500.

148 Server too busy Server too busy to service the request.

149 Application restarting The request cannot be processed while the application
is being restarted.

150 Application directory error The application directory could not be opened.

151 Change notification error The change notification event could not be created.

152 Security error An error occurred while processing a user's security
credentials.

153 Thread error A new thread request failed.

154 Write HTTP header error The HTTP headers could not be written to the client
browser.

Error
Code

Error Name Explanation

508 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
155 Write page content error The page content could not be written to the client
browser.

156 Header error The HTTP headers are already written to the client
browser. Any HTTP header modifications must be
made before writing page content.

157 Buffering on Buffering cannot be turned off once it is already
turned on.

158 Missing URL A URL is required.

159 Buffering off Buffering must be on.

160 Logging failure Failure to write entry to log.

161 Data type error The conversion of a variant to a string variable failed.

162 Cannot modify cookie The cookie "ASPSessionID" cannot be modified. It is a
reserved cookie name.

163 Invalid comma use Commas cannot be used within a log entry. Please
select another delimiter.

164 Invalid TimeOut value An invalid TimeOut value was specified.

165 SessionID error A SessionID string cannot be created.

166 Uninitialized object An attempt was made to access an uninitialized object.

167 Session initialization error An error occurred while initializing the Session object.

168 Disallowed object use An intrinsic object cannot be stored within the
Session object.

169 Missing object information An object with missing information cannot be stored
in the Session object. The threading model
information for an object is required.

170 Delete session error The session did not delete properly.

171 Missing path The Path parameter must be specified for the
MapPath method.

172 Invalid path The Path parameter for the MapPath method must
be a virtual path. A physical path was used.

173 Invalid path character An invalid character was specified in the Path
parameter for the MapPath method.

174 Invalid path character(s) An invalid "/" or "\\" was found in the Path parameter
for the MapPath method.

175 Disallowed path characters The ".." characters are not allowed in the Path
parameter for the MapPath method.

176 Path not found The Path parameter for the MapPath method did
not correspond to a known path.

177 Server.CreateObject failed The call to Server.CreateObject failed.

Error
Code

Error Name Explanation

ERRORS REFERENCE 509

 .
. .
178 Server.CreateObject access
error

The call to Server.CreateObject failed while
checking permissions. Access is denied to this object.

179 Application initialization
error

An error occurred while initializing the Application
object.

180 Disallowed object use An intrinsic object cannot be stored within the
Application object.

181 Invalid threading model An object using the apartment-threading model
cannot be stored within the Application object.

182 Missing object information An object with missing information cannot be stored
in the Application object. The threading model
information for the object is required.

183 Empty cookie key A cookie with an empty key cannot be stored.

184 Missing cookie name A name must be specified for a cookie.

185 Missing default property A default property was not found for the object.

186 Error parsing certificate There was an error parsing the certificate.

187 Object addition conflict Could not add object to application. Application was
locked down by another request for adding an object.

188 Disallowed object use Cannot add objects created using object tags to the
session intrinsic.

189 Disallowed object use Cannot add objects created using object tags to the
application intrinsic.

190 Unexpected error A trappable error occurred while releasing an external
object.

191 Unexpected error A trappable error occurred in the OnStartPage
method of an external object.

192 Unexpected error A trappable error occurred in the OnEndPage
method of an external object.

193 OnStartPage failed An error occurred in the OnStartPage method of an
external object.

194 OnEndPage failed An error occurred in the OnEndPage method of an
external object.

195 Invalid Server method call This method of the Server object cannot be called
during Session_OnEnd and Application_OnEnd.

196 Cannot launch out of
process component

Only InProc server components should be used. If you
want to use LocalServer components, you must set the
AllowOutOfProcCmpnts registry setting. See the
README file for important considerations.

197 Disallowed object use Cannot add object with apartment model behavior to
the application intrinsic object.

199 Disallowed object use Cannot add JScript objects to the session.

Error
Code

Error Name Explanation

510 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
200 Out of range "Expires"
attribute

The date given for "Expires" precedes January 1, 1980,
or exceeds Jan 19, 2038, 3:14:07 GMT.

201 Unknown scripting
language in registry

The scripting language specified in the registry is not
found on the server.

202 Missing code page The code page attribute is missing.

203 Invalid code page The specified code page attribute is invalid.

204 Invalid CodePage value An invalid CodePage value was specified.

205 Change notification Failed to create event for change notification.

206 Cannot call BinaryRead Cannot call BinaryRead after using Request.Form
collection.

207 Cannot use Request.Form Cannot use Request.Form collection after calling
BinaryRead.

208 Cannot use generic
Request collection

Cannot use the generic Request collection after
calling BinaryRead.

210 Method not implemented This method has not yet been implemented.

212 Cannot clear buffer Response.Clear is not allowed after a
Response.Flush while client debugging is enabled.

214 Invalid Path parameter The Path parameter exceeds the maximum length
allowed.

215 Illegal value for SESSION
property

The SESSION property can only be TRUE or FALSE.

217 Invalid scope in object tag Object scope must be Page, Session, or Application.

218 Missing LCID The LCID attribute is missing.

219 Invalid LCID The specified LCID is not available.

221 Invalid @ command
directive

The specified option is unknown or invalid.

222 Invalid TypeLib
specification

METADATA tag contains an invalid Type Library
specification.

223 TypeLib not found METADATA tag contains a Type Library specification
that does not match any registry entry.

224 Cannot load TypeLib Cannot load Type Library specified in the METADATA
tag.

225 Cannot wrap TypeLibs Cannot create a Type Library Wrapper object from
the Type Libraries specified in METADATA tags.

226 Cannot modify
StaticObjects

Illegal assignment. StaticObjects collection cannot
be modified at run time.

299 Unexpected error The ASP engine has not been correctly registered.

Error
Code

Error Name Explanation

ERRORS REFERENCE 511

 .
. .
. Sun ONE ASP VBScript Errors
See “Sun ONE ASP VBScript Reference” on page 503

. Sun ONE ASP JavaScript Errors
See “Sun ONE ASP JavaScript Reference” on page 503

. ADO Errors
The following table describes ADO error messages, listing the constant name, the
number, and a description of the error.

Constant Name Number Description

adErrInvalidArgument 3001 The application is using arguments that are
of the wrong type, are out of acceptable
range, or are in conflict with one another.

adErrNoCurrentRecord 3021 Either BOF or EOF is TRUE, or the current
record has been deleted; the operation
request by the application requires a current
record.

adErrIllegalOperation 3219 The operation requested by the application is
not allowed in this context.

adErrFeatureNotAvailable 3251 The operation requested by the application is
not supported by the provider.

adErrItemNotFound 3265 ADO could not find the object in the
collection corresponding to the name or
ordinal reference requested by the
application.

adErrObjectInCollection 3367 Cannot append. Object already in collection.

adErrObjectNotSet 3420 The object referenced by the application no
longer points to a valid object.

adErrDataConversion 3421 The application is using a value of the wrong
type for the current operation.

adErrObjectClosed 3704 The operation requested by the application is
not allowed if the object is closed.

adErrObjectOpen 3705 The operation requested by the application is
not allowed if the object is open.

adErrProviderNotFound 3706 ADO could not find the specific provider.

512 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
adErrBoundToCommand 3707 The application cannot change the
ActiveConnection property of a
Recordset object with a Command object
as its source.

adErrInvalidParamInfo 3708 The application has improperly defined a
Parameter object.

adErrInvalidConnection 3709 The application requested an operation on
an object with a reference to a closed or
invalid Connection object.

Constant Name Number Description

. .

 .

. .B Troubleshooting

The Sun ONE Active Server Pages knowledge base provides troubleshooting
information for problems you might encounter when using Sun ONE ASP.

The knowledge base is a valuable technical resource, providing an updated list of
product-related articles, answers to frequently asked questions, and useful tips
designed to help you get the most out of Sun ONE ASP.

To access the knowledge base, go to:

http://developer.chilisoft.com/kb/

See also:

“Other Resources” on page 13

http://developer.chilisoft.com/kb/

514 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .C Advanced Administration Options

This appendix describes advanced administration options, and is designed for expert
users of Sun ONE Active Server Pages.

Caution

Take great care when making the changes described in this section. Changes
you make could require a complete reinstall of Sun ONE Active Server Pages
and could void your eligibility for customer support. Back up your data before
making any changes.

For UNIX and Linux systems, most of the configuration settings described in
this section are easily accessed from the Sun ONE ASP Administration Con-
sole. It is strongly recommended that you use the Administration Console
whenever possible. For more information, see “Chapter 2, Using the Adminis-
tration Console” on page 17. Expert users can also perform certain manage-
ment tasks from the command line, as described in “Chapter 5, Command-
line Management” on page 83.

In this appendix:

“Editing the Windows Registry” on page 515

“Editing the Sun ONE ASP Configuration File” on page 517

“Defining Applications on UNIX” on page 525

“Relocating the System Files for a Shared Installation” on page 528

“Configuring a Non-DSO Apache Web Server” on page 530

“Starting the Apache Web Server in SSL Mode” on page 532

. Editing the Windows Registry
Sun ONE Active Server Pages for Windows stores some configuration information in
the system registry. The registry settings used by Sun ONE ASP are listed in the table
below, which provides the key, the default value, and a description. You can use
regedit to edit these settings; regedit is installed with the operating system.

Caution

Take great care when making the changes described in this section. Changes
you make could require a complete reinstall of Sun ONE ASP and could void

516 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
your eligibility for customer support. Back up your data before making any
changes.

Key
Default
Values

Description

AllowOutOfProcCmpnts 0 (False) Controls whether Sun ONE ASP allows Active
Server Components that do not run in the Sun
ONE ASP process space. Out-of-process
components run more slowly than in-process
components, but they are safer because an
individual component cannot bring down the ASP
Server.

AllowSessionState 1 (True) Controls whether the ASP Server maintains session
state. If AllowSessionState is False, the Session
object cannot be used.

BufferingOn 1 (True) Controls whether the ASP Server processes the
entire ASP page before returning HTML
(BufferingOn = True), or whether it returns the
HTML generated from an ASP page as the page is
processed (BufferingOn = False). BufferingOn
provides slightly better performance when set to
True.

DefaultError See
description

This value controls the message returned when the
ASP Server encounters a run-time error and cannot
process a page. It appears if ShowDefaultError =
True. The default error message is: "An error
occurred on the server when processing the URL.
Please contact the system administrator."

DefaultLanguage VBScript This setting determines the language that the ASP
Server assumes is used in ASP pages. The other
option is JavaScript. This setting can be overridden
in individual pages with an @LANGUAGE directive or
<SCRIPT> block.

DefaultScriptLanguage VBScript This registry key is not active. See DefaultLanguage.

Enabled 1 (True) Controls whether the ASP Server processes ASP
pages. If False, when a user requests an ASP page,
the ASP Server returns the message "Sun ONE
Active Server Pages has been disabled and cannot
process your request."

EnableParentPaths 0 (False) This enables file system access by an ASP
application to a directory in the file system that is
not contained in the ASP application root directory
or its subdirectories.
EnableParentPaths = False is the most secure
setting and is appropriate for most shared Web
hosting environments. Changing
EnableParentPaths to True can affect the security of
your server.

LogDirectory See
description

Default value = "c:\WINNT\System32\chiliasp"
This value controls the directory to which the ASP
Server writes the log file if LogToFile is True.

ADVANCED ADMINISTRATION OPTIONS 517

 .
. .
. Editing the Sun ONE ASP Configuration File
UNIX and Linux versions of Sun ONE Active Server Pages include a configuration file,
casp.cnfg, in which expert users can change Sun ONE ASP settings. This section
describes the settings and their parameters. Most of the configuration settings
described in this section are easily accessed from the Sun ONE ASP Administration
Console. It is strongly recommended that you use the Administration Console
whenever possible. For more information about changing server settings using the
Sun ONE ASP Administration Console, see “Changing ASP Server Settings” on page
37.

LogErrors 0 (False) Determines if ASP Server errors should be written
to the Sun ONE ASP log file.

LogToFile 0 (False) This registry entry is set internally by the Sun ONE
ASP engine to control logging of debug
information. Do not modify this setting.

MaxThreads 10 This value controls the maximum number of
threads per CPU that the Sun ONE ASP engine uses
to process requests.

Running 00000001 This registry entry is set internally by the Sun ONE
ASP engine to indicate whether Sun ONE ASP is
running. Do not modify this setting.

ScriptEngineCacheMax ffffffff This value controls the maximum number of script
engines that Sun ONE ASP caches for servicing ASP
page requests. This feature is not completely
implemented. The default setting turns caching on;
any other setting turns caching off.

ScriptTimeout 90 Seconds This is the amount of time the ASP Server waits for
an individual ASP page to finish processing before
canceling the request. The ScriptTimeout value can
be increased in a script, but this value sets the
minimum.

SessionTimeout 20 minutes This value controls how long the ASP Server
maintains Session values for a user without
receiving a page request. If the user is not heard
from in this amount of time, the session is canceled
and its values are discarded. The SessionTimeout
value can be increased in a script, but this value is
the minimum.

ShowDefaultError 0 (False) This value controls ASP Server response to run-time
errors. If True, the ASP Server returns a message in
DefaultError when a run-time error occurs.

StartConnectionPool 1 (True) If True, enables connection pooling when
connecting to a database.

Key
Default
Values

Description

518 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Caution

Take great care when making the changes described in this section. Changes
you make could require a complete reinstall of Sun ONE ASP and could void
your eligibility for customer support. Back up your data before making any
changes.

You can find the casp.cnfg file in the following location:

/[C-ASP_INSTALL_DIR]/asp-server-[PORT]

where [C-ASP_INSTALL_DIR] is the path name of the Sun ONE ASP installation
directory, and [PORT] is the ASP Server port number (resembles 3000).

You can open casp.cnfg in any text editor and make the desired changes. For the
changes to take effect, you must restart the ASP Server, as described in “Stopping and
Restarting the ASP Server (Admin Console)” on page 41 or “Stop/Start/Status ASP
Server (Command Line)” on page 84.

Note

If you make any changes to casp.cnfg, you must restart the Sun ONE ASP
Server. If you make any changes to the [default application] section in
casp.cnfg, you must restart both the Sun ONE ASP Server and the Web server.

The casp.cnfg file is divided into sections by keywords. The keywords and parameters
are described in the following sections.

[machines]
The [machines] keyword defines the computers that are running the Sun ONE ASP
Server. Parameters listed in the following table affect all Sun ONE ASP Servers.

Parameter Explanation

count The number of computers running the ASP Server.

machine1 ... machineN The IP address of each computer running the ASP
Server. The number of entries should be the same as
the number of computers running an ASP Server.

portnumber The base IP port to which the ASP Server control
process listens.

logfile Defines the name and location of the ASP Server status
log file.

mtengine (1) Controls multi-threading in the ASP server. When
mtengine is set to 1, the ASP Server runs one process
with multiple threads to service requests.

disablerestart This setting is useful for Sun ONE ASP diagnostics. If set
to 1, the Sun ONE ASP parent process does not
automatically re-spawn Sun ONE ASP child processes
that fail.

ADVANCED ADMINISTRATION OPTIONS 519

 .
. .
[default machine]
The [default machine] keyword defines a section containing parameters that
control the operation of the ASP Server on each computer. Parameters are listed in
the following table.

Parameter Explanation

serverroot The install root of the ASP Server.
Warning: DO NOT change this parameter.

serverlib ASP Server libraries.
Warning: DO NOT change this parameter.

caspd_pid
(optional)

The name and location of the process ID (PID) file for
the Sun ONE ASP daemon.

license The absolute path name of the directory containing
the Sun ONE ASP license file.

maxprocesses (1 to 20) The maximum number of ASP Server threads that are
used to process pending ASP requests. The number
specified can be between 1 and 20. I/O-heavy scripts
run better with more processes.

inherit_user (1/0) This setting enables you to specify the security mode
under which the ASP Server runs, and can have a
serious impact on the security of your server, especially
if you are running Sun ONE Web Server.
When inherit_user=1 (Inherit User Security mode),
the ASP Server runs with the permissions of the Apache
Web server or the virtual host defined in the Apache
Web server’s httpd.conf file. This is the case even if a
different user and group is specified in the [default
machine] section of casp.cnfg. This mode is available
only for Sun ONE ASP running with the Apache Web
server (for Sun ONE Web server, see below).
When inherit_user=0 (Defined User Security mode),
the ASP Server runs with the permissions of the user
who started the ASP Server, unless a different user and
group is specified in casp.cnfg. This mode is available
for both the Apache and Sun ONE Web servers.
Warning: When inherit_user=0 and no user and
group is specified in the [default machine] section of
casp.cnfg, the ASP Server runs as root. This can create
a security risk for your server. Do not set inherit_user=0
unless you also define a user and group for the ASP
Server to run under.
For more information about the security modes and
their implications, see “Setting the Security Mode” on
page 57.

520 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
user
(optional)

The username for the account under which the ASP
Server runs. Make sure that this user has permission to
open Sun ONE ASP configuration files such as
casp.cnfg and odbc.ini. The user starting the ASP
Server by using caspctrl must have root permissions. If
this attribute is not present and inherit_user=0, the ASP
Server runs under the account of the user who started
the ASP Server.
Note: To start the ASP Server under a non-root user
account, do the following:
- chmod otw [C-ASP_INSTALL_DIR]/asp-server-####
- chmod otw [C-ASP_INSTALL_DIR]/asp-server-

####/casp.cnfg
- chmod otr [C-ASP_INSTALL_DIR]/asp-server-

####/odbc.ini
These steps are required for ADO functionality.

group
(optional)

The group name for the account under which the ASP
Server runs. Make sure that this group has permission
to open Sun ONE ASP configuration files such as
casp.cnfg and odbc.ini. The user starting the ASP
Server by using caspctrl must have greater permissions
than this group. If this attribute is not present and
inherit_user=0, the ASP Server runs under the account
of the user who started the ASP Server.
See the note pertaining to non-root user accounts
under the user parameter (above).

asplogfile
(optional)

The full file path for where ASP errors will be logged.

enablemonitoring (yes/no) Yes, the default, enables creation of performance
counter log files, as follows:
/tmp/.casp[PORT]/chili-psm
/tmp/.casp[PORT]/.pm-chili-psm
/tmp/.pm-chili-psm
/tmp/chili-psm
These files are created with permissions that might not
be appropriate in a shared Web hosting environment.
No disables performance monitoring and the creation
of these files.

javasupport (yes/no) Yes (the default) enables Java support, which is
required for the Sun ONE ASP Chili!Beans wrapper,
and for XML and ASP servlet interface functionality. No
disables Java support. Because Java support can affect
server performance, it is a good idea to enable it only
when using Chili!Beans.

codepage The value for the code page associated with the
specified locale (LCID).

lcid The value for the specified geographic locale (LCID).

Parameter Explanation

ADVANCED ADMINISTRATION OPTIONS 521

 .
. .
[virtual hosts]
(Optional) The [virtual hosts] keyword defines a section in which to configure the
ASP Server to work with virtual hosts or virtual servers. For more information, see
“Defining Applications on UNIX” on page 525, “Enabling ASP for a Virtual Host” on
page 54, and “Defining Applications in a Shared Environment” on page 74.

[default application]
The [default application] keyword defines a section containing parameters that
control the behavior of ASP applications. Parameters are listed in the following table.

Note

If you make any changes to casp.cnfg, you must restart the Sun ONE ASP
Server. If you make any changes to the [default application] section in
casp.cnfg, you must restart both the Sun ONE ASP Server and the Web server.

javasecurity manager (yes/no) Yes, the default, enables the Java virtual machine
Security Manager. No disables it. For security reasons,
the Java virtual machine Security Manager should be
enabled in multi-user environments in which users
supply their own Java classes.

JavaUserClsPath
(optional)

Specifies additional paths to look for Java classes. Full
directory paths can be separated by semicolons (;).

Parameter Explanation

Parameter Explanation

allow_all (yes/no)
(optional)

If allow_all=no, then ASP functionality is only enabled
for the virtual host defined later in the [virtual hosts]
section. If this attribute is omitted (or if allow_all=yes),
ASP is enabled for all virtual hosts defined in the Web
server configuration file.

hostID(s)
(optional)

This setting is a line-delimited list of hostnames that
identify which virtual hosts or virtual servers are
allowed to handle requests for ASP pages. This
attribute becomes active if allow_all=no. If
allow_all=no and no hostIDs are provided, ASP
functionality is disabled for all virtual hosts.

Parameter Explanation

bufferingon (yes/no) Yes (the default) enables script buffering.

sessiontimeout Amount of time in seconds that the ASP Server waits
for a new page request before canceling the session.

522 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
scripttimeout Amount of time in seconds the ASP Server waits for an
ASP page to finish processing before canceling the
request. A value for ScriptTimeout specified in a script
will always override the value set in casp.cnfg.
Note: If deadlocktimeout (below) is set to a value
lower than scripttimeout, the ASP engine will restart
once the time specified for deadlocktimeout has
elapsed.

deadlocktimeout Amount of time, in seconds, that should elapse before
the ASP Server is considered deadlocked and the
engine is restarted.
Note: If deadlocktimeout is set to a value lower than
scripttimeout, the ASP engine will restart once the time
specified for deadlocktimeout has elapsed.

allowsessionstate (yes/no) Yes (the default) enables the use of the Session object
in ASP scripts.

enableparentpaths (yes/no) No, the default, limits file system access by the
FileSystemObject object to the application directory
and subdirectories, and disables the use of "../"
syntax. Yes enables access to the file system by the
FileSystemObject object outside the ASP application
directory and the use of "../" syntax in #INCLUDE
and Server.MapPath statements.
Caution: Changing Enable parent paths to yes can
affect the security of your server. Before you change
this setting, make sure that the ASP Server has
permission to access only the files you want to be
publicly accessible, and that it does not have access to
sensitive files containing configuration or password
information. You can restrict the permissions of the
ASP Server by defining the user it runs under, and
making sure that that user has appropriately restricted
file system permissions.
Note: The Enable parent paths setting does not
add any restrictions to executing Java code. For
example, if you want to restrict Java code to access files
within the application directory, the proper
permissions should be in the bean.policy file.

defaultlanguage
(vbscript or javascript)

Specifies the default script interpreter. This value can
either be vbscript or javascript. (For more
information about scripting engines provided with Sun
ONE ASP, see “Chapter 15, Scripting Languages
Reference” on page 503.)

showdefaulterror (yes/no) When set to Yes, the value of defaulterror (below) is
displayed when the ASP Server encounters a run-time
error.

defaulterror The error message displayed when
showdefaulterror (above) is set to Yes.

500errordocument When a script-parsing or run-time error is
encountered, the server redirects to this custom error
page. The default [C-
ASP_INSTALL_DIR]/admin/sys/500-100.asp page
displays the error information (see “Remarks: ASP
Server Object GetLastError Method” on page 256).

Parameter Explanation

ADVANCED ADMINISTRATION OPTIONS 523

 .
. .
[ADO]
The [ADO] keyword defines a section containing parameters that control the
operation of the ADO component. Parameters are listed in the following table.

[admin]
The [admin] keyword defines a section that controls the operation of the Sun ONE
ASP Administration Console. Parameters are listed in the following table.

500-15errordocument When the browser requests the global.asa file and an
error is encountered, the server redirects to this custom
error page. The default [C-
ASP_INSTALL_DIR]/admin/sys/500-15.htm page
displays the error information (see “Remarks: ASP
Server Object GetLastError Method” on page 256).

Parameter Explanation

Parameter Explanation

connectionpoolsize The number of ADO connections to pool (re-use) to
improve server performance. The default is 25. 0
disables connection pooling.

logpath Absolute path name of the ADO errors log file.
Specifying the path name enables logging. You cannot
use the name of a file that already exists in the
directory. This will not be functional if inherit_user is
set or if the caspeng process doesn’t have permission
to access the file.

connectiontimeout Amount of time to wait for establishing a connection
before terminating the attempt and generating an
error.

maxlongfieldlength Maximum long field length in bytes. By default this
value is 65535. If the data you pass to a database
exceeds this limit, ADO will throw an error. You can
increase this value as needed.

Parameter Explanation

friendlyname Name displayed in the Administration Console Server
Monitoring and Live Monitoring pages.

restart (yes/no) Used by the Administration Console to flag that the
ASP Server needs to be restarted.
Warning: Use the Administration Console to change
this setting. DO NOT change this setting manually.

524 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
[applications]
The [applications] keyword defines a section in which to specify information on
how the ASP Server handles ASP applications. There are several ways to define an ASP
application on the ASP Server. For more information, see “Configuring ASP
Applications” on page 47.

Parameter Explanation

use_aliases (yes/no) If use_aliases=yes, then any virtual directory or alias
defined in the Web server configuration file is treated
as an ASP application. If use_aliases=no, then the
virtual directories or aliases defined in the Web server
configuration file are not treated as ASP applications by
the ASP Server.

config_name
(optional)

This parameter enables you to specify the name of the
ASP User Configuration file. Any applications defined in
this file are dynamically recognized by the ASP Server
without requiring the ASP Server to be restarted. If
config_name=.aspconf, for example, the ASP Server
looks for this file name in the document root directory
of the Web server.
Entries in the config_name file should use the following
format:
/[appname]
There are two limitations on applications defined in the
ASP User Configuration file. First, the files in the
application must be located within the document root
of the Web server. Second, the directory containing the
global.asa file must not be below the top-level
directory of the Web server document root directory.

/casp-sys Location of Administration Console support files and
default error page.

/dbms Sun ONE ASP DBMS for MySQL application.

/caspdoc Absolute path name of the directory containing the
Sun ONE ASP product documentation.

/appname
(optional)

To define an ASP application on the ASP Server, use the
following format:
/[appname]="/[path_name]" (the path name must be
enclosed in double quotes)
where [appname] is the name specified for the
application, and [path_name] is the absolute path
name of the directory containing the application files.
If no applications are defined in the [applications]
section, then the ASP Server treats the document root
directory of the Web server as the location of the
"default" ASP application.

ADVANCED ADMINISTRATION OPTIONS 525

 .
. .
[Components Security]
The [Components Security] keyword defines a section that allows you to enable
components such as the SMTP, POP3, and Upload components. Parameters are listed
in the following table.

[Product Update]
The [Product Update] keyword defines a section that controls when the
Administration Console should automatically check for product updates. Parameters
are listed in the following table.

. Defining Applications on UNIX
This section describes the options that are available for defining Sun ONE Active
Server Pages applications on UNIX-based systems.

Caution

Take great care when making the changes described in this section. Changes
you make could require a complete reinstall of Sun ONE Active Server Pages
and could void your eligibility for customer support. Back up your data before
making any changes.

Most of the configuration settings described in this section are easily accessed
from the Sun ONE ASP Administration Console. It is strongly recommended
that you use the Administration Console whenever possible, as described in
“Chapter 2, Using the Administration Console” on page 17.

Parameter Explanation

CDONTS.NewMail On enables the Sun ONE ASP SMTP component.

Chili.POP3 On enables the Sun ONE ASP POP3 component.

ChiliUpload On enables the Sun ONE ASP Upload component.

MaxTransferSize Specifies the maximum number of bytes that can be
uploaded by the Upload component.

Parameter Explanation

Date The Administration Console will automatically check
for updates when you go to the Server
Management page 90 days after this date.

526 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
With Sun ONE ASP running on a UNIX system with any supported Web server, you
can define an ASP application by using the following methods:

� Using the Sun ONE ASP Administration Console. For more information, see
“Enabling ASP for a Virtual Host” on page 54.

� Adding an entry to the [applications] section of the Sun ONE ASP
configuration file, casp.cnfg. For more information, see “Editing the Sun ONE
ASP Configuration File” on page 517.

� Adding an alias to the Web server configuration file (only if use_aliases=yes
in the [applications] section of casp.cnfg).

� Adding an entry to the services.cnf file generated by FrontPage, located in the
/_vti_pvt subdirectory of the Web server document root directory.

The ASP Server dynamically recognizes ASP applications that are defined in the Sun
ONE ASP User Configuration file or the FrontPage services.cnf file. These applications
must be defined by using the application name (for example, "/appname"). An
application named /customers must correspond to a real top-level directory named
"customers" in the Web server document root directory. The files that make up this
application must all exist within the Web server document root directory. The
global.asa file, if present, must be located in the top-level directory.

The ASP Server does not dynamically recognize ASP applications that are defined in
the Sun ONE ASP configuration file, casp.cnfg, or that are defined by using an alias in
the Web server configuration files. The ASP Server must be restarted to recognize
them. ASP applications defined in the casp.cnfg file or by creating an alias in the Web
server configuration files can include files outside of the Web server document root
directory. The global.asa file, if present, must be located in the top-level directory
referenced by the ASP application.

If there are naming conflicts between ASP applications that are defined in different
directories, the ASP Server honors application definitions in the following order:

1. Web server aliases

2. casp.cnfg file entries

3. FrontPage services.cnf file entries

4. ASP User Configuration file entries

Note

Sun ONE ASP for UNIX- and Linux-based systems dynamically recognizes ASP
applications created by FrontPage, but only if the application is not in a
nested sub-Web. If the application (and its associated global.asa file) is located
in a directory that is not a top-level directory of the Web server document
root directory, you must define this application using either the
[applications] section of Sun ONE ASP casp.cnfg file, or by adding an alias
to your Web server configuration. For more information, see “Editing the Sun
ONE ASP Configuration File” on page 517.

ADVANCED ADMINISTRATION OPTIONS 527

 .
. .
Defining an Application on Sun ONE Web Server
For the purpose of defining Application and Session scope, the ASP Server considers
all .asp files located in a virtual directory to be part of one application. Document
roots are also ASP applications. You can use the NameTrans parameter in the
obj.conf file to define an application. The following example defines an application
called "/dosperros":

NameTrans fn="pfx2dir" from="/dosperros" dir="/opt/casp-
net30/caspsamp/dosperros"

If you are using the Web server’s Administration tool, you can define an ASP
application by adding an "additional document directory" in the Content Mgmt
tab of the Class Manager.

If you have configured support for virtual servers, you can define ASP applications by
adding an entry to the ASP User Configuration file. The name of this file is defined in
the [applications] section of the casp.cnfg file. Sun ONE ASP looks for this file in
the document root directory of each host, "real" or virtual. "Real host" entries apply to
the "real host" only.

Note

This last method does not require a restart of the ASP Server and the
Web server

Defining an Application on Apache Web Server
For the purpose of defining Application and Session scope, the ASP Server considers
all *.asp files located in a virtual directory to be part of one ASP application.
Document roots are also ASP applications. You can use the Alias parameter in
httpd.conf to define an ASP application. The following example defines an
application called "/caspsamp":

Alias /caspsamp "/[C-ASP_INSTALL_DIR]/samples"

where [C-ASP_INSTALL_DIR] is the directory in which Sun ONE Active Server Pages is
installed. An ASP application can also be defined by adding an entry to the
[applications] section of casp.cnfg. This applies to the "real host" only.

If you have configured support for virtual hosts, you can define ASP applications on
Apache Web Server as follows:

� By adding an alias to the Web server configuration file (only if
use_aliases=yes in the [applications] section of casp.cnfg.) If the alias
appears outside a <virtualhost> ... </virtualhost> block, it applies to the
"real host" only. If the alias appears inside a <virtualhost> ...
</virtualhost> block, it applies to the virtual host.

� By adding an entry to the ASP User Configuration file. The name of this file is
defined in the [applications] section of the casp.cnfg file. Sun ONE ASP
looks for this file in the document root directory of each host, "real" or
virtual. "Real host" entries apply to the "real host" only.

528 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Note

This method does not require a restart of both the ASP Server and the
Web server. The other methods listed here do require restarts.

� By adding an entry to the services.cnf file generated by FrontPage. This file is
located in the /_vti_pvt subdirectory of the root directory of each host, "real"
or virtual. "Real host" entries apply to the "real host" only.

. Relocating the System Files for a Shared Installation
For users installing Sun ONE Active Server Pages to shared file systems such as NFS or
AFS (Andrew File System), use the following instructions to relocate the system files.
If you are not installing to a shared file system, you should not alter the locations of
the Sun ONE ASP system files.

Caution

Take great care when making the changes described in this section. Changes
you make could require a complete reinstall of Sun ONE ASP and could void
your eligibility for customer support. Back up your data before making any
changes.

Most of the configuration settings described in this section are easily accessed
from the Sun ONE ASP Administration Console. It is strongly recommended
that you use the Administration Console whenever possible, as described in
“Chapter 2, Using the Administration Console” on page 17.

Relocating the Registry File
One of the key Sun ONE Active Server Pages system files, the registry file
(registry.bin), must be located on a local file system that supports file locking to
ensure proper operation. During Sun ONE ASP installation, the installer creates a
script named chsetup.sh in the Sun ONE ASP installation directory (/opt/casp by
default). Contained within this file is a line of code that resembles the following:

MWREGISTRY=[path name]/registry.bin

where [path name] is the current location of the registry file.

To relocate the registry file

1. Write down the current value of [path name].

2. Create the new directory where you wish to relocate the registry file. This
directory must reside on the local machine in which the file system supports
file locking. For the following steps, this new directory is referred to as <new
path name>.

3. Edit chsetup.sh with a text editor such as vi and change the following line:

MWREGISTRY=[path name]/registry.bin

ADVANCED ADMINISTRATION OPTIONS 529

 .
. .
- to -

MWREGISTRY=[new path name]/registry.bin

4. Copy the registry file from its old location ([path name]/registry.bin) to
its new location ([new path name]/registry.bin).

Relocating Sun ONE Active Server Pages PID Files
For users who want to install Sun ONE Active Server Pages to a shared file system, but
move writeable Sun ONE ASP files to a local file system, Sun ONE ASP provides a
mechanism to allow for this. For single machine Sun ONE ASP installations, this is
not required, but has the added benefit that it may decrease network congestion.

There are three attributes of importance in the casp.cnfg file (which is contained
under each asp-<server>-<port> directory). These are the hashobj_pid and
logfile attributes (located in the [machines] section), and the caspd_pid attribute
(located in the [default machine] section). These attributes allow you to specify the
locations of the two process ID (PID) files. If you need to relocate these files,
remember the following:

If you have several Sun ONE ASP installations on a single physical server (with
separate asp-<server>-<port> directories), then the casp.cnfg file in each directory
may point to common directories for the PID and log files, but must point to
different file names for the PID and log files.

For example, suppose the [machines] and [default machine] sections of your
current casp.cnfg file resemble the following.

[machines]

count=1

machine1=127.0.0.1

portnumber=3000

logfile=/opt/casp/logs/server-3000

mtengine=0

disablerestart=0

hashobj_pid=/opt/casp/logs/asp-apache-3000/hashobj.pid

[default machine]

caspd_pid=/opt/casp/logs/asp-apache-3000/caspd.pid

maxprocesses=1

inherit_user=1

#user=nobody

#group=nobody

In this situation, to relocate all of your files off of the shared /opt directory to a
/usr/local/casp directory, use the following procedure.

530 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
To relocate all files

1. Create the destination directory(ies), for example:

mkdir -p /usr/local/casp/pids

mkdir -p /usr/local/casp/logs

2. Edit the casp.cnfg file to resemble the following example:

[machines]

count=1

machine1=127.0.0.1

portnumber=3000

logfile=/usr/local/casp/logs/server-3000

mtengine=0

disablerestart=0

hashobj_pid=/usr/local/casp/pids/hashobj-3000.pid

[default machine]

caspd_pid=/usr/local/casp/pids/caspd-3000.pid

maxprocesses=1

inherit_user=1

#user=nobody

#group=nobody

3. Copy the server log file and the PID files to the directories you created.

. Configuring a Non-DSO Apache Web Server
This procedure applies if you have installed Sun ONE Active Server Pages on a
computer running an Apache Web server that does not have Dynamic Shared Object
(DSO) support.

Note

As described in “Supported in This Release” on page 5, non-DSO Apache Web
servers have not been certified to run with Sun ONE Active Server Pages, and
their use is not supported by Customer Support.

When you install Sun ONE ASP on a computer running an Apache Web server, the
setup program automatically links Sun ONE ASP to Apache through Apache’s module
facility. The setup program uses pre-built Sun ONE Active Server Pages DSO modules
to set everything up for you. However, if you are running a non-DSO version of
Apache (a version that does not have DSO support), you must use the following
procedure to link Sun ONE ASP to the Apache Web server.

ADVANCED ADMINISTRATION OPTIONS 531

 .
. .
Note

The Sun ONE ASP setup program makes certain changes to the configuration
files for the associated Web server. For more information about changes for
Apache, see “Changes to Apache Configuration Files” on page 81.

To manually link the Sun ONE ASP module to an Apache Web server that does not
have DSO support, install Sun ONE ASP and then use the following procedure. The
steps in this procedure are based on the assumption that Apache is installed and the
source has been saved.

To link the Sun ONE ASP module to Apache Web Server

1. Stop the Apache Web server.

2. Copy the files "module/source/build/mod_casp2.c" and "mod-
ule/source/build/dispint.h" from the Sun ONE ASP installation directory to
the "src/modules/extra" subdirectory of your Apache Web server source tree
directory.

3. From the Apache source tree directory, type the following (note that if you
have a custom configuration of Apache, your settings might vary from this
example):

#> ./configure --prefix=[WEB_SERVER_ROOT_DIR] --activate-
module=src/modules/extra/mod_casp2.c

where [WEB_SERVER_ROOT_DIR] is the root directory for your installed Apache
Web server.

4. When the script has finished running, use a text editor to add "-ldl" to the
EXTRA_LIBS section of src/Makefile.

5. Return to the Apache installation directory, and type the following:

#> make

6. Copy the new Web server files to the appropriate location by typing:

#> make install

7. Installation is automatic. When installation is complete, restart the Apache
Web server, and then start the Sun ONE ASP Server, as described in “Stopping
and Restarting the ASP Server (Admin Console)” on page 41.

532 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
. Starting the Apache Web Server in SSL Mode
The Sun ONE Active Server Pages Administration Console can be used to start, stop,
and restart the Web server with which the Sun ONE ASP Server is configured to run.
Use the following procedure to start the Apache Web server in SSL mode when
Apache is started from the Sun ONE ASP Administration Console.

Note

The steps in this procedure are based on the assumption that the Apache Web
server has been correctly configured with SSL support.

To start the Apache Web server in SSL mode

In the .installed_db file in the CHILI_INSTALL_DIR directory, make the following
changes:

� Change:

webserver_start_script=/<ASP_INSTALL_DIR>/INSTALL/apachectl

"binary=/<APACHE_INSTALL_DIR>/bin/httpd"

"conf=/<APACHE_INSTALL_DIR>/conf/httpd.conf" start

To:

webserver_start_script=/<APACHE_INSTALL_DIR>/bin/apachectl

startssl

� Change:

webserver_stop_script=/<ASP_INSTALL_DIR>/INSTALL/apachectl

"binary=/<APACHE_INSTALL_DIR>/bin/httpd"

"conf=/<APACHE_INSTALL_DIR>/conf/httpd.conf" stop

To:

webserver_stop_script=/<APACHE_INSTALL_DIR>/bin/apachectl stop

. .

 .

. .Glossaries

This chapter includes two glossaries: A glossary with general terms you might
encounter when administering Sun ONE ASP and developing ASP applications, and a
glossary with terms specific to the Sun ONE ASP Administration Console.

In this chapter:

“General Glossary” on page 533

“Administration Console Glossary” on page 557

. General Glossary
This glossary defines general terms you might encounter when administering Sun
ONE ASP and developing ASP applications.

A

Absolute path name
In a computer operating system, a path is the route through a file system to a
particular file. A path name (or pathname in Windows) is the specification of that
path, including the name of the file. An absolute path name (or fully qualified path
name) specifies the complete path name. A relative path name specifies a path relative
to the directory to which the operating system is currently set.

Each operating system has its own format for specifying a path name. The DOS,
Windows, and OS/2 operating systems use this format:

Drive_letter:\directoryname\subdirectoryname\file name.suffix

UNIX-based systems use this format:

/directory/subdirectory/filename

In UNIX, the storage drive location is not an explicit part of the path name.

Active Server component
An Active Server component runs on the server side as part of an ASP application.
Active Server components are activated through ASP (Active Server Pages), but do not
require a Windows interface.

ActiveX
ActiveX is a set of technologies built on the COM (Component Object Model) that
enable software components, regardless of the language in which they were

534 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
developed, to work together in a networked environment. Although ActiveX
technologies are used primarily to develop interactive Web content, they also can be
used in desktop applications and other programs.

ActiveX controls
ActiveX controls are reusable, stand-alone software components that often expose a
subset of the total functionality of a product or application. They were formerly
referred to as OLE controls or OCX. ActiveX controls cannot run stand-alone. They
must be loaded into a control container, such as Visual Basic or Internet Explorer. An
ActiveX control can also be embedded in a Visual C++ resource.

ActiveX scripting
ActiveX scripting controls the integrated behavior of ActiveX controls and/or Java
applets from the server or the browser. To enable server-side scripting, such as with
ASP, ActiveX scripting requires that the appropriate interpreter for the scripting
language be installed on the server. Sun ONE Active Server Pages includes script
interpreters for both VBScript and JScript. These interpreters are Sun ONE ASP
VBScript and Sun ONE ASP JavaScript, which provide functionality equivalent to
version 5.5 of Microsoft VBScript and JScript.

Administration Console
The Sun ONE ASP Administration Console is a browser-based application used for
managing Sun ONE ASP. It enables administrators to configure and control the Sun
ONE ASP Server and its bindings to Web servers and database servers from a Web
browser, either locally or remotely. Most configuration settings are accessible from
the Administration Console. Whenever possible, you should use the Administration
Console for product configuration.

The Administration Console is hosted by the Administration Web site, which is
installed on the computer running the ASP Server. The Administration Web site
consists of its own Apache Web Server and its own ASP Server. By default, the
Administration Web site is configured to start when you start the computer running
Sun ONE ASP.

See “Chapter 2, Using the Administration Console” on page 17.

ADO (ActiveX Data Objects)
ADO is a high-level interface that Microsoft developed for data objects. ADO can be
used to access many different types of data, including Web pages, spreadsheets, and
other types of documents. Within ASP, ADO is most commonly used in conjunction
with ODBC drivers to connect to databases and other data sources available through
ODBC drivers. Sun ONE Active Server Pages includes its own implementation of ADO,
which supports all of the commonly used functionality found in Microsoft ADO 2.0
and some of the popular functionality found in Microsoft ADO 2.5. The
implementation of ADO used with Sun ONE ASP is called ADODB.

See “Chapter 11, ADO Component Reference” on page 301.

Apache Web Server
Apache Web Server is a Web server that is developed and maintained through an
open-source project. For the list of Apache Web Server versions supported in Sun
ONE ASP, see “Supported in This Release” on page 5.

GENERAL GLOSSARY 535

 .
. .
Application object
The Application object is one of the built-in objects included in Sun ONE Active
Server Pages. The Application object stores variables and objects that are available
to scripts running within the scope of an ASP application. A simple example of how
you can use this object would be to store a counter that tracks the number of users
(and thus sessions) currently active for a given ASP application.

See “ASP Application Object” on page 216.

Application server
An application server is a program that handles all Web application operations
between Web browsers and back-end business or database servers. Because many
databases cannot interpret commands written in HTML, the application server works
as a translator by retrieving data from databases and using business logic encapsulated
in code to output dynamically generated HTML code. The Sun ONE ASP Server is an
application server that enables you to use ASP (Active Server Pages) specification to
execute database queries, execute business logic, and generate the presentation layer
for Web applications.

Argument
In object-oriented programming, an argument is a value passed from one function to
another. Methods can take one or more arguments, or none at all. Arguments can be
optional, in which case you do not need to enter anything for an argument. If an
argument is optional, all arguments following it are also optional.

ASP (Active Server Pages)
ASP is a specification for a dynamically created Web page having an .asp extension.
ASP technology provides an open, compile-free application environment in which
Web developers can combine HTML, scripts, and reusable Active Server components.
A Sun ONE Active Server Pages page uses VBScript or JScript code to access the ASP
object model, which exposes functionality that is often used in Web application
environments. When a browser requests an ASP page, the Web server passes execution
to the Sun ONE ASP Server, which processes the scripts, generates an HTML page, and
sends it back to the browser.

ASPError object
The ASPError object is one of the built-in objects included in Sun ONE Active Server
Pages. The ASPError object reports error information, and can be used to obtain
information about an error condition that has occurred in script in an ASP page.

See “ASPError Object” on page 222.

ASP application
An ASP application is a set of Active Server Pages files contained within a single root
directory. For the Sun ONE ASP Server to recognize an ASP application, the root
directory must be defined as an application on the ASP Server or as a virtual directory
on the Web server. The files within the root directory of an ASP application share the
same global.asa file, which must be contained in the root directory itself, rather than
in a subdirectory under the root. All variables and objects for an ASP application are
scoped from the root directory.

536 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ASP component
An ASP component is designed to run on a Web server as part of an ASP application.
ASP components provide key functionality needed for Web applications, such as
database access, so that developers do not need to create and re-create the code to
perform these tasks. ASP components do not require browser-scripting ability, so they
are useful for implementing tasks that are difficult to accomplish with browser
scripting.

ASP engine
The Sun ONE ASP Server uses an ASP engine to execute ASP scripts. A single ASP engine
executes as many threads as are specified in the Sun ONE ASP Administration Console.

ASP page
The first step in building an ASP application is creating an ASP page. An ASP page is
simply a plain text file with the .asp file name extension.

An ASP page contains optional text (usually HTML and/or client-side scripts),
interspersed with one or more script blocks. To create an ASP page, you insert script
commands into an HTML page. With Sun ONE Active Server Pages, you can write
scripts in VBScript or JScript. Any valid HTML page can be a valid ASP page, enabling
Web developers to easily transform a static Web site into a dynamic one by adding ASP
scripts to existing documents. Saving the page with an .asp file name extension tells
the Web server how to process the script commands.

See “Chapter 8, Building Sun ONE ASP Applications” on page 181.

ASP script
An ASP script is a server-side script that is included on an ASP (Active Server Pages)
page. With Sun ONE Active Server Pages, scripts can be written in either VBScript or
JScript.

ASP Server
When a browser requests an ASP page, the Web server passes execution to the Sun
ONE ASP Server, which processes the HTML code and ASP scripts on the page,
generates an HTML page, and sends the page back to the browser.

ASP session
An ASP session is created by using the Sun ONE Active Server Pages built-in Session
object, which uses ASP technology to share information about a user between Web
pages. As the user navigates between the pages of a site, information about the user is
maintained through a cookie.

B

Built-in objects
Sun ONE Active Server Pages includes built-in or intrinsic objects that handle many
common programming tasks. The objects are Application, ASPError, Request,
Response, Server, and Session. These objects enable you to avoid much of the
overhead associated with complex Web programming, so you can focus on creating
interesting, interactive Web content rather than on low-level programming. Built-in
objects are included on all ASP pages, and do not need to be created before they can
be used.

GENERAL GLOSSARY 537

 .
. .
See “Chapter 9, ASP Built-in Objects Reference” on page 215.

C

C++
C++ is a high-level, object-oriented version of the C programming language. C++ is
one of the most popular programming languages for graphical applications that run
on systems that have graphical user interfaces.

CAB (cabinet)
CAB is a technology for compression and distribution of files. When used for Java
applets, the CAB file serves as a single, compressed repository for all .class files and all
audio and image data required by the applet. Only the CAB file is downloaded, so the
time of download is the time it takes to negotiate the transfer and download the
compressed bytes. Once downloaded, the contents of the CAB file are extracted and
installed.

CASP
CASP is a commonly used abbreviation for Sun ONE Active Server Pages, formerly
known as Chili!Soft ASP (thus the "CASP" abbreviation). CASP is used for the default
installation directory name, and for several virtual directories installed by the Sun
ONE ASP setup program.

CGI (Common Gateway Interface)
CGI is a server-side interface for initiating software services. Software that handles
input and output in accordance with the CGI standard is considered a CGI
application. For example, when a user submits a form through a Web browser, the
server executes an application, known as a CGI script, and passes the user's input
information to that application by using CGI. The application then returns
information to the server by using CGI. Active Server Pages technology is a high-
performance alternative to CGI.

Chili!Beans
Sun ONE ASP Chili!Beans enables access to Java classes (including JavaBeans and
Enterprise JavaBeans) from the ASP environment by wrapping Java classes in a COM
layer. This enables Java objects to be used by COM controllers, such as ActiveX
scripting engines like VBScript. The Chili!Beans ActiveX control is included in Sun
ONE Active Server Pages, and is designed to work with Java virtual machine (JVM)
versions 1.4 or greater.

See “Chapter 12, Chili!Beans Component Reference” on page 465.

CIFS (Common Internet File System)
CIFS is an open, cross-platform technology that defines a standard remote file system
access protocol for use over the Internet. CIFS enables groups of users to work together
and share documents across the Internet or within their corporate intranets regardless
of their computer or operating system platform. CIFS runs over TCP/IP and uses the
Internet's global DNS (Domain Naming Service) for scalability. It is specifically
optimized to support slower speed dial-up connections common on the Internet.

538 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Client-side script
A client-side script is part of an HTML document that is downloaded to the user's
browser. The browser interprets and executes the script on the client computer.
Benefits of client-side scripting include increased speed, and the ability to make a page
act more like a real application by connecting embedded components and responding
to events. Client-side scripting can also be used in applications that are not Web-
based, but which use Dynamic HTML. Examples of client-side scripting languages
include VBScript, JScript, and ECMAScript. Unlike server-side scripting, client-side
scripting requires no special implementation on the Web server, but it does require the
appropriate support on the client browser. Sun ONE Active Server Pages applications
involve server-side scripts and can also include client-side scripts.

Code page
A code page is a character set that a computer uses to interpret and display data
properly. Code pages usually correspond to different platforms and languages and are
important in international applications. Your system administrator can use the Sun
ONE Active Server Pages Administration Console to set the correct code page and
LCID for a given language.

See “Configuring International Support” on page 43.

COM (Component Object Model)
COM is a model for binary code developed by Microsoft that enables programmers to
develop objects that can be accessed by any COM-compliant application. Both OLE
and ActiveX are based on COM. In COM, client software accesses an object through a
pointer to an interface, or a related set of functions called methods, on the object. Sun
ONE Active Server Pages supports COM components on Windows. On UNIX and
Linux, components based on JavaTM technology are required (JavaBeansTM).

Component
A component is an object that encapsulates both data and code, and provides a well-
specified set of publicly available services. Components encapsulate the business logic
in your ASP applications. You can create your own components, or buy them "off the
shelf." Once you have a component, you can reuse it wherever it’s needed.

See “Using Custom Server Components” on page 196 and “Chapter 12, Chili!Beans
Component Reference” on page 465.

Connection pooling
To improve server performance, you can configure the Sun ONE ASP Server to share
open database connections among multiple users who are accessing the Web
application. This is called database connection pooling. With connection pooling,
rather than opening and closing a database connection for each individual request,
the ASP Server uses a connection that is already open.

Connection string
A connection string defines the source of data for an external database. On a Sun ONE
ASP page, a connection string must include values for all required parameters for the
database, or one of the following:

� A reference to a system DSN that the system administrator has defined for the
database.

GENERAL GLOSSARY 539

 .
. .
� A reference to a file DSN that defines the required parameters for the
database.

Cookie
A cookie is a file of encoded information, stored on a user's computer, which identifies
the user's computer during current and subsequent visits to a Web site.

CORBA (Common Object Request Broker Architecture)
CORBA enables pieces of applications, called objects, to communicate with one
another, regardless of which programming language they were written in or on which
operating system they're running. CORBA objects can be accessed by using Sun ONE
ASP’s COM-to-Java bridge.

D

Database server
A database server exclusively serves database connections.

Data connection
A data connection is a collection of information required to access a specific database.
This information includes a DSN (data source name) and logon information. For
example, a data connection for a MySQL database consists of the name of the
database, the location of the server on which it resides, network information used to
access that server, a user ID, and a password.

See “Chapter 6, Configuring a Database” on page 103.

DB2
IBM DB2 is a relational database management system for large business computers.
DB2 products are offered for UNIX-based systems and personal-computer operating
systems. DB2 databases can be accessed from any application program by using ADO
and the ODBC interface, the JDBC interface, or a CORBA interface broker. Sun ONE
Active Server Pages includes an ODBC driver for connecting to DB2.

dBASE
dBASE is a database management system. Sun ONE Active Server Pages includes an
ODBC driver for connecting to dBASE 5.

Dedicated hosting
Dedicated hosting refers to the practice of dedicating the resources of an entire server
or group of servers to a specific Web site. This helps to maintain the performance of
high-traffic, high-volume Web sites because server resources are not shared with other
Web sites.

Design-time control
Design-time controls are visual design components written in ActiveX that help
developers construct dynamic Web applications by automatically generating standard
HTML and/or scripting code at design time, instead of at run time. Design-time
controls found in the many development tools that Sun ONE ASP supports generate
code that is compatible with Sun ONE ASP. These tools include Adobe GoLive,
Macromedia UltraDev, and others.

540 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
DLL (dynamic-link library)
A DLL is a code file containing functions that can be called from other executable code
(either an application or another DLL). Programmers use DLLs to reuse code and
parcel out distinct jobs. Unlike an executable (EXE) file, a DLL cannot be directly run.
DLLs must be called from other code that is already executing. DLLs and EXEs apply
only to Windows environments. In UNIX environments, the Sun ONE ASP engine and
all components run on a Windows emulation layer. The equivalent of a DLL on these
emulation layers are files having an *.so (Shared Object) file name extension.

DOM (Document Object Model)
DOM is a programming interface specification of the W3C (World Wide Web
Consortium) that enables programmers to create and modify HTML pages and XML
documents as full-fledged program objects. Currently, HTML and XML can be used to
express a document in terms of a data structure. By defining documents as program
objects, their contents and data can be "hidden" within the object, helping to ensure
control over who can manipulate the document. As objects, documents can carry
with them the object-oriented procedures called methods. DOM is a strategic and
open effort to specify how to provide programming control over documents. It was
inspired in part by the advent of the new HTML capabilities generally called dynamic
HTML, and as a way to encourage consistent browser behavior with Web pages and
their elements.

DSN (data source name)
DSN refers to a collection of information required to connect an ASP application to a
particular ODBC-compliant database. The ODBC Manager uses this information to
create the database connection. Sun ONE Active Server Pages supports two types of
DSNs: system DSNs and file DSNs.

See “Configuring Data Source Names (DSNs)” on page 105 and “Connecting to a
Database” on page 197.

DSN-less connection string
A DSN-less connection string is a connection string that includes all of the
information needed for connecting to a data source, rather than incorporating the
information by reference to a system DSN or a file DSN. DSN-less connection strings
enable you to move the ASP application from one server to another without recreating
a system DSN on the new server. File DSNs provide this advantage as well. Note that
when migrating ASP applications from one environment to another, such as from
Windows to UNIX or Linux, you must make changes to your connection strings for
them to work in the new environment.

See “Creating Connection Strings” on page 197.

DSO (Dynamic Shared Object)
Sun ONE Active Server Pages communicates with Apache Web Server through an
object module. In the DSO version, Apache Web Server object module entries are
loaded on an as-needed basis. Sun ONE ASP 4.0 does not support non-DSO versions of
Apache Web Server.

GENERAL GLOSSARY 541

 .
. .
E

ECMAScript (European Computer Manufacturers Association Script)
ECMAScript is a scripting language based on JavaScript that meets the ECMA-262
standard. ECMA, like other scripting languages, enriches and enlivens Web pages, but
is the only scripting language on the Web based on a standard. The ECMA-262
specification outlines an object-oriented programming language that performs
computations and manipulates objects within a host environment, such as the
browser.

EJB (Enterprise JavaBeans)
Enterprise JavaBeansTM is an architecture for setting up program components written
in the Java programming language that run in the server parts of a computer network
running under the client/server model. Sun ONE Active Server Pages enables ASP
applications to access EJB through Sun ONE ASP’s COM-to-Java bridge.

EJB is built on the JavaBeans technology for distributing program components (called
beans) to clients in a network. With EJB, enterprises can control changes at the server,
instead of having to update each individual client whenever a new program
component is changed or added. EJB components are reusable in multiple
applications. To deploy an EJB or component, it must be part of a specific application,
called a container.

Originated by Sun Microsystems, EJB is roughly equivalent to the Microsoft
Component Object Model/Distributed Component Object Model architecture.
However, like all Java-based architectures, EJB-based applications can be deployed
across all major operating systems, not just Windows. EJB program components are
generally known as servlets (little server programs). The application or container that
runs the servlets is sometimes called an application server. A typical use of servlets is
to replace Web programs that use CGI (Common Gateway Interface) and a Perl script.
Another general use is providing an interface between Web users and a legacy
mainframe application and its database.

With EJB, there are two types of beans: session beans and entity beans. An entity bean
is one that, unlike a session bean, has persistence and can retain its original behavior
or state.

Event
In application programming, an event is a notification that occurs in response to some
action. It can be a change in state; the result of the user clicking or moving the mouse
or pressing a keyboard key; or other actions that are focus-related, element-specific, or
object-specific. Programmers write code that responds to these actions. In Web
development, HTML events are triggered and handled by code that is executed in the
browser, and thus don’t generally apply to ASP. Strictly speaking, only events that
require a round-trip back to the Web server involve ASP code.

Expression
In application programming, expression is any combination of operators, constants,
literal values, functions, names of columns, controls, and properties that result in a
single value.

542 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
F

File DSN (data source name)
File DSN refers to a collection of information, in the form of parameters and their
values, required for connecting an ASP application to a particular database. The
information is contained within a file having a *.dsn file name extension. Developers
can incorporate the database information into a connection string by referring to the
file DSN rather than having to specify the values for each required parameter. A file
DSN can be shared among several users. Sun ONE ASP also supports system DSNs.

See “Configuring Data Source Names (DSNs)” on page 105 and “Connecting to a
Database” on page 197.

FileSystemObject object
In ASP applications, the FileSystemObject object provides access to a computer's file
system. The object can perform simple functions such as opening and closing files.
Various methods can be applied to the FileSystemObject object to affect the
organization and properties of a file system.

File upload
File upload refers to the transmission of a file from one computer system to another.
To upload is to send a file to another computer, and to download is to receive a file.

FrontPage Server Extensions
Sun ONE Active Server Pages supports but does not install Microsoft FrontPage Server
Extensions. FrontPage Server Extensions are a set of server-side applications (i.e., CGI
programs) that enable you to publish Web pages and applications to UNIX- or Linux-
based Web servers, or to Windows NT- and Windows 2000-based computers running
a Web server other than IIS.

Sun ONE ASP enables you to run ASP pages generated by Microsoft FrontPage. Specific
questions about the installation, configuration, and use of FrontPage and FrontPage
Server Extensions should be directed to Microsoft or its representatives.

Function
In application programming, a function is the general term used for a bit of code that
performs a specific, limited task. Functions (also known as subroutines) enable the
programmer to divide complex tasks into smaller, more manageable pieces. Problems
can be isolated more readily because each subroutine or function can be tested
separately.

G

Global.asa
Global.asa is a file that contains information that is global to a specific ASP
application. The file is read and its application and session variables are initialized
before the first ASP page in a given ASP application is read. Global.asa enables
developers to specify event procedures and declare objects that have session or
application scope.

See “Using the Global.asa File” on page 189.

GENERAL GLOSSARY 543

 .
. .
H

Hostname
A hostname is the valid DNS (Domain Naming Service) name for a Web server.

HTML (Hypertext Markup Language)
HTML is the set of markup symbols or codes inserted in a file intended for display on
a Web page. The markup tells the Web browser how to display text and images. Each
individual markup code is referred to as an element or tag. Some elements come in
pairs, which indicate when some display effect is to begin and when it is to end.

HTML is a formal Recommendation by the W3C (World Wide Web Consortium) and
is generally adhered to by the major browsers (although both Internet Explorer and
Netscape do implement some features differently and provide nonstandard
extensions).

HTTP server
An HTTP server, also called a Web server, uses the Hypertext Transfer Protocol (HTTP)
to provide information in hypertext format. Client software relays this input from the
user to the server and displays information from the server in HTTP format. Other
types of Internet-based servers include FTP (File Transfer Protocol) and Gopher. The
Web is a network consisting of these types of servers. Among the most popular HTTP
servers are the Sun ONE Web Server (formerly iPlanet Web Server, Enterprise Edition),
and the Apache Web Server.

I

IIS (Internet Information Server)
IIS is Microsoft’s Web server that runs on the Windows NT and Windows 2000
platforms only.

iPlanet Web Server, Enterprise Edition (Sun ONE Web Server)
iPlanetTM Web Server, Enterprise Edition is Web server software originally developed
by Netscape and now offered by Sun Microsystems. iPlanet Web Server, Enterprise
Edition is now called Sun ONE Web Server.

ISAPI (Internet Services Application Programming Interface)
ISAPI is a specification for extending Web server functionality in the Windows
environment. An ISAPI extension is a DLL that exports specific functions according to
the ISAPI specification. There are two types of ISAPI extensions: ISAPI filters and ISAPI
applications. ISAPI provides comparable functionality to CGI (Common Gateway
Interface), but offers performance improvements on Windows-based Web servers.

J

Java
Developed by Sun Microsystems, JavaTM is an object-oriented programming language,
similar to C++. Java-based applications, or applets, can be quickly downloaded from a
Web site and run using a Java-compatible Web browser such as Netscape Navigator or
Microsoft Internet Explorer.

544 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Java programs, or source code files (.java), are compiled into a format known as
bytecode files (.class). Once compiled, these files can be executed by a Java interpreter.
Most operating systems have Java interpreters and run-time environments known as
Java virtual machines.

Java applet
A Java applet is an HTML-based program built with Java, which a browser temporarily
downloads to and runs from a user's hard disk. Java applets can be downloaded and
run by any Java-interpreting Web browser, such as Netscape Navigator and Microsoft
Internet Explorer. Java applets can be used to add multimedia effects (such as
background music, real-time video displays, and animation), and interactivity (such
as calculators and games) to Web pages.

JavaBeans
JavaBeansTM is an object-oriented programming interface developed by Sun
Microsystems that enables developers to build reusable applications or program
building blocks called components, which can be deployed on any major operating
system platform. Like Java applets, JavaBeans components (called beans) give Web
pages (or other applications) interactive capabilities such as computing interest rates
or varying page content based on user or browser characteristics. Sun ONE Active
Server Pages enables ASP applications to access Java objects and classes through Sun
ONE ASP Chili!Beans.

From a user's point-of-view, a component can be a button that you interact with or a
small calculating program that is initiated when you press the button. From a
developer's point-of-view, the button component and the calculator component are
created separately and can then be used together or in different combinations with
other components in different applications or situations.

When the components or beans are in use, the properties of a bean (for example, the
background color of a window) are visible to other beans. Beans that haven't "met"
before can learn each other's properties dynamically, and interact accordingly.

Beans are developed by using a JavaBeans Development Kit from Sun Microsystems.
They can be run on any major operating system platform inside a number of
application environments (known as containers), including browsers, word
processors, and other applications.

To build a component with JavaBeans, you write language statements using the Java
programming language and include JavaBeans statements that describe component
properties, such as user interface characteristics and events that trigger a bean to
communicate with other beans in the same container or elsewhere in the network.

Beans also have persistence, which is a mechanism for storing the state of a
component in a safe place. This would allow, for example, a component (bean) to
"remember" data that a particular user had already entered in an earlier user session.

JavaBeans gives Java applications the compound document capability that the
OpenDoc and ActiveX interfaces provide.

JavaScript
JavaScript is a scripting language that interacts with HTML source code and is
compatible with the Java programming language. JavaScript is the Netscape
implementation of the ECMA-262 standard.

GENERAL GLOSSARY 545

 .
. .
JDBC (Java Database Connectivity)
JDBC is a data access interface based on ODBC (Open Database Connectivity) and used
with the Java programming language.

JScript
The Microsoft version of JavaScript, JScript is a standard scripting language based on
the ECMA-262 standard. JScript is specifically targeted for the Internet and is built into
Internet Explorer browsers. JScript is implemented as a fast, portable, lightweight
interpreter that processes source code embedded directly in the HTML. JScript code
does not produce stand-alone applets, but it is used to add interactivity to HTML
documents. JScript uses syntax and language features similar to the Java, C, and C++
programming languages.

JVM (Java virtual machine)
The JavaTM virtual machine is the cornerstone of the Sun Microsystem’s Java
programming language. It is the component of the Java technology responsible for
Java's cross-platform delivery, the small size of its compiled code, and its ability to
protect users from malicious programs.

The Java virtual machine is an abstract computing machine. Like a real computing
machine, it has an instruction set and uses various memory areas. It is reasonably
common to implement a programming language using a virtual machine. The best-
known virtual machine may be the P-Code machine of UCSD Pascal. The Java virtual
machine does not assume any particular implementation technology or host
platform. It is not inherently interpreted, and it may just as well be implemented by
compiling its instruction set to that of a real CPU, as for a conventional programming
language. It may also be implemented in microcode, or directly in silicon.

The Java virtual machine knows nothing of the Java programming language, only of
a particular file format, the .class file format. A .class file contains Java virtual machine
instructions (or bytecodes) and a symbol table, as well as other ancillary information.

K

Key
In application programming, a key is the code for deciphering encrypted data.

L

LCID (Local Language Identifier)
An LCID is a 32-bit value that identifies a geographic locale. An LCID consists of a
LangID and a sort key ID. The system administrator can use the Sun ONE ASP
Administration Console to set the LCID.

See “Configuring International Support” on page 43.

Linux
Linux is an open source, UNIX-like operating system that runs on a variety of
hardware platforms and is distributed free or at low cost. Unlike proprietary operating
systems, Linux is publicly open and extendible by contributors. Linux's kernel (the
central part of the operating system) was developed by Linus Torvalds. Linux is also
distributed commercially by a number of companies.

546 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
M

Method
In application programming, a method is a logical operation provided by an object.
In object-oriented programming, an object invokes a method by sending a message
that contains the receiving object and the name of the specific method to invoke.
Often, the name of the method is called a selector. Objects use messages as the
mechanism through which they interact.

MDAC (Microsoft Data Access Components)
Microsoft Data Access Components are comprised of ADO and RDS (Remote Data
Service), ODBC, and the Microsoft OLE DB Provider for ODBC, which are released,
documented, and supported together. Of these, Sun ONE Active Server Pages supports
ADO and ODBC only.

Moniker
A moniker is a name that uniquely identifies a COM object. Monikers support an
operation known as binding, which is the process of locating the object named by the
moniker, activating it or loading it in memory if it isn't already there, and returning
an interface pointer to it.

MTS (Microsoft Transaction Server)
MTS is a component-based transaction processing system available on the Windows
platform only. MTS defines an application-programming model for developing
distributed, components-based applications, and provides a run-time infrastructure
for deploying and managing these applications. Sun ONE Active Server Pages does not
support MTS.

Multi-threading
Multi-threading refers to running several processes in rapid sequence within a single
program, regardless of which logical method of multi-tasking is being used by the
operating system. Because the user's sense of time is much slower than the processing
speed of a computer, the impression of multi-tasking appears simultaneous, even
though only one task at a time can use a computer processing cycle.

MySQL
MySQL is an open source database and relational database management system.
MySQL uses an implementation of SQL (Structured Query Language). Sun ONE Active
Server Pages includes an ODBC driver for connecting to MySQL.

Sun ONE ASP also includes two database tools related to MySQL: Sun ONE ASP
Database Publisher (Database Publisher), and Sun ONE ASP Database Management
System for MySQL (DBMS). Database Publisher is a client/server application that
enables a Microsoft Access database running on Windows to be published to a MySQL
database running on UNIX or Linux. DBMS is a database administration system for
MySQL, enabling MySQL databases to be administered from a user-friendly
administration console instead of strictly from the command line.

For more information about these tools, see “Chapter 7, Using Database Tools” on
page 135.

GENERAL GLOSSARY 547

 .
. .
N

NSAPI
NSAPI is the API for Sun ONE Web servers. NSAPI enables programmers to create Web-
based applications that are more sophisticated and run much faster than applications
based on CGI.

In object-oriented programming, an object is a variable comprising both routines and
data that is treated as a discrete entity. An object is based on a specific model, in which
a client using an object's services gains access to the object's data through an interface
consisting of a set of methods or related functions. The client can then call these
methods to perform desired operations.

O

Object model
In application programming, the object model is the set of rules that makes an object
perform a specific task. The object model is the structural foundation for object-
oriented programming languages, such as C++.

Object-oriented programming
In object-oriented programming, an application is viewed as a collection of discrete
objects (self-contained collections of data structures and routines that interact with
other objects).

ODBC (Open Database Connectivity)
ODBC is a standard protocol for database servers. ODBC provides a common language
for ASP applications to gain access to databases on a network. UNIX and Linux
versions of Sun ONE Active Server Pages include ODBC drivers for a number of
different databases. ODBC drivers enable you to connect to the databases and access
their data.

See “Viewing the List of ODBC Drivers” on page 104 and “Configuring Database
Parameters” on page 115.

ODBC driver
An ODBC driver is a module that enables a database to be accessed through ODBC.
Each type of database (MySQL, Informix, DB2, and so forth) requires its own ODBC
driver. Sun ONE ASP includes ODBC drivers for a number of different databases, and
enables you to specify drivers from the Sun ONE ASP Administration Console.

ODBC Manager
The ODBC Manager manages connections between ODBC drivers and databases by
using information stored in the DSN (data source name).

P

Parameter
In programming, a parameter is a value given to a variable. A parameter acts as
placeholder in a query or stored procedure that can be filled in when the query or
stored procedure is executed. Parameters enable you to use the same query or stored

548 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
procedure many times, each time with different values.

Path name
In a computer operating system, a path is the route through a file system to a
particular file. A path name (or pathname in Windows) is the specification of that
path, including the name of the file. An absolute path name (or fully qualified path
name) specifies the complete path name. A relative path name specifies a path relative
to the directory to which the operating system is currently set.

Each operating system has its own format for specifying a path name. The DOS,
Windows, and OS/2 operating systems use this format:

Drive_letter:directoryname\subdirectoryname\filename.suffix

UNIX-based systems use this format:

/directory/subdirectory/filename

In UNIX, the storage drive location is not an explicit part of the path name.

POP3 (Post Office Protocol)
POP3 is a protocol used to retrieve e-mail from a mail server. Most e-mail applications
(also called e-mail clients) use the POP protocol, although some can use the newer
IMAP (Internet Message Access Protocol). POP3 is supported in Sun ONE ASP’s
SpicePack with the Chili!Mail component.

Port
A TCP/IP port is a "logical connection place." Using the Internet protocol, TCP/IP, a
port enables a client program to specify a particular server program on a computer in
a network. Higher-level applications that use TCP/IP, such as HTTP, have port
numbers that are preassigned by the IANA (Internet Assigned Numbers Authority).
These port numbers are called "well-known ports." Other application processes are
assigned port numbers dynamically for each connection. When a service (or server
program) is started initially, it is said to "bind" to its designated port number. Any
client program that wants to use that server must send a request to bind to the
designated port number.

Port numbers are between 0 and 65536. Ports 0 to 1024 are reserved for use by certain
privileged services. For the HTTP service, port 80 is the default and does not need to
be specified in the URL.

Portability
Portability is a characteristic attributed to a computer application if that application
can run on an operating system other than the one for which it was developed,
without requiring a major rework. Porting software to a different operating system
involves doing any work required to make the computer run in the new environment,
such as resolving programming language differences, converting data, and adapting
to new system procedures for running an application.

In general, applications that use standard APIs (application programming interfaces)
such as the X/Open UNIX 95 standard C language interface, are portable. Ideally, such
applications can simply be compiled for the operating system to which they are being
ported. However, if an application uses operating system extensions or special
capabilities that are not present in the new operating system, these features must be
replaced with comparable ones in the new operating system.

GENERAL GLOSSARY 549

 .
. .
Porting software typically involves some work. However, the Java programming
language and runtime environment makes it possible to develop applications that run
on any operating system supporting the Java standard, without any porting work. Java
applets in the form of precompiled bytecode can be sent from a server program in one
operating system to a client program (such as a Web browser) running on another
operating system without change. Sun ONE Active Server Pages supports Java classes
through Sun ONE ASP Chili!Beans.

For more information about Chili!Beans, see “Chapter 12, Chili!Beans Component
Reference” on page 465.

PostgreSQL
PostgreSQL is a sophisticated Object-Relational Database Management System,
supporting almost all SQL constructs including subselects, transactions, and user-
defined types and functions. Sun ONE Active Server Pages includes an ODBC driver
for connecting to PostgreSQL.

Process
A process is an instance of an application running on a computer. On UNIX and some
other operating systems, a process is started when a program is initiated (either by a
user entering a shell command or by another program). An application that is being
shared by multiple users generally has one process for each user at some stage of
execution.

Property
In application programming, a property is a named attribute of an object. Properties
define object characteristics, such as size and name, or the state of an object, such as
enabled or disabled. Properties do not take any arguments. All properties return a
value; however, some properties are read-only, and some are read/write.

R

Request object
The Request object is a Sun ONE Active Server Pages built-in object that retrieves the
values the client browser passed to the server during an HTTP request.

See “ASP Request Object” on page 224.

Response object
The Response object is a Sun ONE Active Server Pages built-in object that can be used
to control output sent to the client.

See “ASP Response Object” on page 235.

Root directory
A root directory is the point of entry into the directory tree in a disk-based hierarchical
directory structure. Branching from the root are various directories and subdirectories,
each of which can contain one or more files and subdirectories.

550 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
S

Scripting
Scripting is a set of instructions for performing a special task in an application or
utility, or on a Web site. Scripting languages are an intermediate stage between HTML
and programming languages such as Java, C++, and Visual Basic. The primary
difference between scripting languages and programming languages is that the syntax
and rules of scripting languages are less rigid and intricate than those of programming
languages. On the Web, scripts are processed either by the client (client-side scripting)
or the server (server-side scripting). Examples of scripting languages are Perl, VBScript,
and JScript. Sun ONE Active Server Pages supports VBScript and JScript.

SequeLink
SequeLink is server-based middleware provided by DataDirect Technologies. Sun ONE
Active Server Pages includes the SequeLink client for connecting to remote Microsoft
Access and Microsoft SQL Server databases running on Windows systems.

See “Configuring SequeLink” on page 128.

Server-side script
A server-side script is interpreted and executed by the server, and the results are sent
to the browser. ASP scripts are server-side scripts. With Sun ONE Active Server Pages,
when a browser requests an ASP page, the Web server sends the request to the Sun
ONE ASP Server. The Sun ONE ASP Server reads the HTML and interprets and executes
the script code, and then sends the resulting page to the browser.

Unlike client-side scripting, server-side scripting enables you to deliver highly
customized Web pages without requiring any scripting intelligence on the client side.
Server-side scripting enables users to receive customized pages based on browser
capabilities, user preferences, and content from a server-side database.

Servlet
A servlet is a small application that runs on a server. The term was coined in the
context of the Java applet, a small application that is sent as a separate file along with
a Web (HTML) page. Java applets usually run on a client and provide services such as
performing a calculation for a user or positioning an image based on user interaction.

Server Name
Server Name (or ServerName) is a parameter specifying the name given to a specific
database server either on the Internet or within an intranet. Sometimes referred to as
a "friendly name," this name is a string of letters that gives the server an identity and
resolves to the IP address of the computer running the database server.

Server object
The Server object is a Sun ONE Active Server Pages built-in object that provides access
to methods and properties on the server. Most of its methods and properties serve as
utility functions.

See “ASP Server Object” on page 251.

GENERAL GLOSSARY 551

 .
. .
Session object
The Session object is a Sun ONE Active Server Pages built-in object that stores
information needed for a particular user session. Variables stored in the Session
object are not discarded when the user jumps between pages in the application, but
rather persist for the entire user session. The Sun ONE ASP Server automatically creates
a Session object when a user who does not already have a session requests an ASP
page. The server destroys the Session object when the session expires or is
abandoned. The Session object enables developers to:

� Automatically identify and classify requests coming from a single browser
client into a logical application "session" on the server.

� Store session-scoped data on the server for use across multiple browser
requests.

� Use session lifetime management events (OnSessionStart,
OnSessionEnd).

� Automatically release session information if the browser does not revisit an
application after a specified timeout period.

See “ASP Session Object” on page 261.

Session state
Session state refers to information that the Sun ONE ASP Server stores in the ASP
Session object about a sequence of requests that all come from the same browser.
HTTP is a stateless protocol, meaning that it provides no way for the ASP Server to keep
track of session state. As a result, ASP applications that maintain session-state
information (such as shopping carts and data scrolling) require this type of
infrastructure help.

Shared hosting
Shared hosting refers to a Web-hosting environment where multiple Web sites share
the resources of a single server (or group of servers) by means of virtual hosts or virtual
servers. These Web sites may have different domain names, but they all ultimately
resolve to the same IP address on the computer hosting the Web sites.

SMTP (Simple Mail Transfer Protocol)
SMTP is a TCP/IP (Transmission Control Protocol/Internet Protocol) protocol used for
sending and receiving e-mail. However, because SMTP is limited in its ability to queue
messages at the receiving end, it is usually used with one of two other protocols: POP3
(Post Office Protocol 3) or IMAP (Internet Message Access Protocol). Those protocols
enable the user to save messages in a server mailbox and download them periodically
from the server. Messaging applications typically use SMTP for sending e-mail and
either POP3 or IMAP for downloading messages that have been received for them by
the mail server.

SMTP is usually implemented to operate over TCP port 25. You can find the details of
SMTP in Request for Comments 821 of the IETF (Internet Engineering Task Force).

Solaris
The SolarisTM Operating Environment is the platform provided by Sun Microsystems
for its family of Scalable Processor Architecture-based processors and for Intel-based
processors. Sun emphasizes the system's availability, its large number of features, and

552 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
its Internet-savvy design. Sun developed the platform-independent JavaTM
programming language and runtime environment, and Solaris systems include Java
and the JDKTM (Java Development Kit).

SpicePack
The SpicePack is a collection of COM components that handle commonly used ASP
application functionality. The SpicePack is no longer a separate product, but is now
bundled with Sun ONE Active Server Pages. The components are Chili!Mail,
Chili!POP3, and Chili!Upload. These components can be instantiated and called from
ASP pages to send and receive e-mail and upload files from client browsers.

See “Chapter 14, SpicePack Component Reference” on page 483.

SQL (Structured Query Language)
SQL is the international standard database language used in querying, updating, and
managing relational databases. SQL can be used to retrieve, sort, and filter data
extracted from a database.

SQL Server
Microsoft SQL Server is SQL server software offered by Microsoft. Sun ONE Active
Server Pages is fully compatible with Microsoft SQL Server systems.

SSL (Secure Sockets Layer)
SSL is a security standard developed by Netscape Communications to secure
application protocols such as HTTP over the Internet. SSL uses a key exchange method
(RSA is most common) to establish an environment in which all data exchanged is
encrypted with a cipher and hashed to protect it from eavesdropping and alteration.
Primarily used for handling commerce payments, SSL is the most widely deployed
security protocol on the Internet today. The IETF (Internet Engineering Task Force)
has generated a successor of SSL, a network standard called TLS (Transport Layer
Security).

Symbolic link
A symbolic link is a reference to an item that, when accessed, takes the user directly to
that item. For example, a symbolic link in one directory could, when double-clicked,
open a file that is in a completely different directory. In ASP applications, you can use
a symbolic link (also called a virtual link) to redirect the browser to a different HTTP
path name than the URL address provided by the user. This function is useful when
you want Web site visitors to always use the same URL to get the most current
information. A symbolic link can be programmed to refer to any HTTP path name.

System DSN (data source name)
A system DSN stores information, in the form of parameters and their values, that the
ASP Server needs for connecting to a particular database. The system administrator
creates system DSNs by using the Sun ONE Active Server Pages Administration
Console. ASP developers can then incorporate this information in a connection string
simply by referencing the DSN, rather than specifying all of the parameters in the
connection string.

See “Configuring Data Source Names (DSNs)” on page 105 and “Connecting to a
Database” on page 197.

GENERAL GLOSSARY 553

 .
. .
T

Thread
In computer programming, a thread is a process that is part of a larger process or
application. For an application that can handle multiple concurrent users, a thread is
the information needed to serve one individual user or a particular service request. It
is placeholder information associated with a single use of an application that can
handle multiple concurrent users.

Threading refers to the number of processes that are run within a single application.
Multi-threading refers to running several processes in rapid sequence within a single
program, regardless of which logical method of multi-tasking is being used by the
operating system. Because the user's sense of time is much slower than the processing
speed of a computer, the impression of multi-tasking appears simultaneous, even
though only one task can use a computer processing cycle at a time.

V

VB (Visual Basic)
VB is a high-level, visual programming language based on the BASIC (Beginner's All-
purpose Symbolic Instruction Code) language, designed by Microsoft for building
Windows-based applications. VB was one of the first products to provide a graphical
programming environment and a paint metaphor for developing user interfaces. By
dragging and dropping controls, such as buttons and dialog boxes, and then defining
their appearance and behavior, the VB programmer is able to add a substantial amount
of code without getting bogged down in syntactical details.

Although VB is not considered a true object-oriented programming language, it does
embrace an object-oriented philosophy. It is sometimes called an event-driven
language, because each object can react to different events.

VBScript (Visual Basic Scripting Edition)
VBScript is a scripting language developed by Microsoft that is based on the more
complex VB (Visual Basic) programming language. Similar to both JScript and
JavaScript, VBScript enables Web authors to include interactive controls, such as
buttons and scroll bars, on their Web pages. For a VB programmer, VBScript is the
easiest scripting language to learn. (JScript is easier for C/C++ programmers.) Sun ONE
Active Server Pages supports both VBScript and JScript.

Virtual directory
A virtual directory is a URL defined on a Web server that refers to a physical directory
on the server file system. For example, on a Windows-based system, the URL
http://myserver/caspdoc might refer to a physical directory having the path name
c:\my documents\caspdoc. When a browser requests the URL for a virtual directory,
the Web server returns the content contained in the physical directory to which it
refers.

Virtual host
A virtual host is a Web server feature that enables one instance of the Web server to
service multiple hostnames. Depending on the type of Web server, a virtual host
might or might not be given a unique IP address. For more information, consult the
documentation for the Web server you are running. Sun ONE Active Server Pages

554 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
supports virtual hosts (referred to as virtual servers on Sun ONE Web Server).

W

W3C (World Wide Web Consortium)
The W3C was founded in 1994 to develop common standards and protocols for the
World Wide Web. Jointly hosted by the Massachusetts Institute of Technology
Laboratory for Computer Science (MIT/LCS) in the United States, the Keio University
Shonan Fujisawa Campus in Asia, and the Institut National de Recherche en
Informatique et en Automatique (INRIA) in Europe, the W3C is a vendor-neutral
international industry consortium. Working with its staff and the global Web
community, the W3C produces free, interoperable specifications and sample code,
along with reference materials for the World Wide Web.

Web server
A Web server, also called an HTTP server, uses the Hypertext Transfer Protocol (HTTP)
to provide information in hypertext format. Clients relay this input from the user to
the server and display information on the server in the HTTP format. Other types of
Internet-based servers include FTP (File Transfer Protocol) and Gopher. The Web is a
network consisting of these types of servers. HTTP servers are commonly referred to as
Web servers. Among the most popular Web servers are the Sun ONE Web Server
(formerly iPlanet Web Server, Enterprise Edition), and the Apache Web Server.

Web session
Web session defines a period of time during which a user's browser is requesting
information from a Web server. Because HTTP is a stateless protocol, it does not
provide a mechanism to maintain state information between requests from a browser.
With Sun ONE Active Server Pages, developers can use the built-in Session object to
maintain session information for each user, providing consistent user sessions on the
Web.

X

XML (Extensible Markup Language)
XML is a simplified subset of SGML (Standard Generalized Markup Language) that
provides a file format for representing data, a method for describing data structure,
and a mechanism for extending and annotating HTML with semantic information.
Allowing an unlimited set of tags, XML tags indicate what kind of data each tag
contains, rather than indicating how something should look. For instance, a tag might
hold a price, an order number, or a name. The flexibility of XML allows the
document's author to determine what kind of data to use and to choose the tag types
that most fit the author's needs.

As a universal data format, XML provides a standard for the server-to-server transfer of
different types of structured data so that the information can be decoded,
manipulated, and displayed consistently and correctly. In addition, it enables the
development of three-tier Web applications, acting as the data transfer format
between the middle-tier Web server and the client.

XML data type
An XML data type indicates that the contents of an element can be interpreted both

GENERAL GLOSSARY 555

 .
. .
as a string and as a typed value (number, date, and so forth). The data type of an XML
element indicates that the element contents can be parsed or interpreted to yield an
object more specific than a string. Universal Resource Identifiers (URIs) identify data
types. The URI is simply a reference to a section of a document that defines the
appropriate parser and storage format to the element.

There are two main contexts for data types. The first occurs when dealing with
database APIs (application programming interfaces) in which all elements with the
same name typically contain the same type of contents (for example, all sizes contain
integers). The second context occurs when the type of content varies widely from
instance to instance. The frequency and flexibility of this context varies according to
the software being created. For instance, size could contain the integer 6, or the word
"small," or even a formula for computing the size.

XML object model
The XML object model tracks the W3C DOM (Document Object Model). The XML
parser exposes the XML object model, making it possible to access as objects each of
the nodes within an XML tree. Through script, it is then possible to navigate and
manipulate an XML tree.

XSL (Extensible Stylesheet Language)
XSL is a language that defines the rules for mapping structured XML data and
documents. Derived from DSSSL (Document Style Semantics and Specification
Language), XSL also has roots in the SGML (Standard Generalized Markup Language)
community.

Using XSL, an element can be formatted and displayed in multiple places on a Web
page, or rearranged or removed from the page. Developers can then generate a
presentation structure that may be quite different from the original data structure. XSL
does not replace CSS (Cascading Style Sheets), but rather is designed to handle the new
capabilities of XML that CSS cannot.

XSL control
The XSL control is an ActiveX control that enables a Web browser to display output.
In other words, the XSL control enables XML data to be displayed within an HTML
page by using an XSL style sheet.

Z

Zeus Web Server
The Zeus Web Server is a Web server produced by Zeus Technologies. The Zeus Web
Server is not supported in Sun ONE Active Server Pages 4.0.

556 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

ADMINISTRATION CONSOLE GLOSSARY 557

 .
. .
. Administration Console Glossary
This glossary defines elements that appear in the Sun ONE ASP Administration
Console graphical user interface (GUI).

A

�Active virtual hosts� on page 560

�ActiveX Data Object Connection Setting� on page 560

“Add new DSN” on page 561

“Add user” on page 561

�Allow session state� on page 561

�Application name� on page 561

�ApplicationUsingThreads� on page 562

�ASP Applications� on page 562

�ASP errors logging file� on page 562

C

�CatalogOptions� on page 562

“change password” on page 563

�Chili!Beans� on page 563

�Chili!Mail� on page 563

�Chili!POP3� on page 563

�Chili!Upload� on page 564

�Collection� on page 564

�Components� on page 564

�Confirm Password� on page 564

�Connection pool size� on page 565

�Create database� on page 565

�Current number of sessions� on page 565

D

�Data Source Names� on page 565

�Database� on page 566

�Databases� on page 566

�Database type� on page 566

“Deadlock timeout” on page 567

558 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
�Description� on page 567

�Directory� on page 568

�Driver� on page 568

�DSN or Data Source Name� on page 568

E

�Enable� on page 568

�EnableDescribeParam� on page 569

�EnableStaticCursorsForLongData� on page 569

�Enable parent paths� on page 569

�Environment Database Specific Variables� on page 570

F

�File size limit for blob column (bytes)� on page 570

H

�Host� on page 570

�HostName� on page 570

I

�Informix� on page 571

�Inherit user security� on page 571

�IntlSort� on page 571

�IPAddress� on page 572

J

�Java VM Security Manager� on page 572

K

�Key� on page 572

L

�Locale� on page 572

�Location� on page 573

ADMINISTRATION CONSOLE GLOSSARY 559

 .
. .
�Log file� on page 573

�Logging file� on page 573

�LogonID� on page 573

M

“Max. Transfer Size (Bytes)” on page 574

N

�Number of threads� on page 574

O

�ODBC Drivers� on page 574

�Oracle� on page 574

P

�Package� on page 575

�Password� on page 575

�Port� on page 575

�PortNumber� on page 575

�ProcedureRetResults� on page 576

R

�ReadOnly� on page 576

�Requests per second� on page 576

S

�Script timeout� on page 576

�Scripts buffering on� on page 576

�Server� on page 577

“ServerDataSource” on page 577

�ServerIPAddress� on page 577

�ServerName� on page 577

�ServerPortNumber� on page 578

�Session timeout� on page 578

560 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
�Settings� on page 578

�SID� on page 578

T

�TableType� on page 579

�TcpPort� on page 579

�Total errors received� on page 579

�Total memory in use� on page 579

�Total requests� on page 579

U

�Uptime� on page 580

�UseCursorLib� on page 580

�User� on page 580

�User Classpath� on page 580

V

�View Logs� on page 580

�Virtual Hosts� on page 581

Active virtual hosts

This field displays the number of virtual hosts enabled for this ASP Server.

See also:

“Enabling ASP for a Virtual Host” on page 54

“Monitoring ASP Server Performance” on page 61

ActiveX Data Object Connection Setting

ActiveX Data Objects (ADO) provides a set of objects used for connecting to
databases that conform to the ODBC standard. ADO connection settings are
configured on this page.

See also:

“Configuring ADO Connections” on page 131

ADMINISTRATION CONSOLE GLOSSARY 561

 .
. .
Add new DSN

Parameters for new DSNs (data source names) are configured by clicking Add new
DSN, which displays the New Data Source Name page.

A DSN refers to a collection of information used to connect an ASP application to a
particular ODBC-compliant database. The ODBC Manager uses this information to
create the database connection.

See also:

“Configuring Data Source Names (DSNs)” on page 105

“Creating Database Connections (ASP Server)” on page 44

Add user

The Sun ONE ASP Administration Console is used to add, edit, and delete usernames
and passwords. To add a user, specify the username, password, and password
confirmation in the corresponding boxes on the Users screen, and then click Add
user.

See also:

“Configuring Usernames and Passwords” on page 21

Allow session state

Yes (the default) enables the Session object so it can be used in ASP applications.

See also:

“Enabling Session State” on page 42

“Changing ASP Server Settings” on page 37

Application name

Specify the name of the virtual directory to create and enable as an ASP application.
This virtual directory refers to a physical directory in the file system (specified in the
Directory box) that contains the ASP application files.

See also:

“Configuring ASP Applications” on page 47

“Defining Applications in a Shared Environment” on page 74

562 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
ApplicationUsingThreads

When this option is enabled (the check box is selected), the driver works with multi-
threaded applications. When enabled, the driver is thread-safe. This option is enabled
by default.

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ASP Applications

The Administration Console Applications page displays the list of ASP applications
that are currently defined on the ASP Server, and provides access to settings for
adding, configuring, and removing ASP applications.

An ASP application is a set of ASP files contained within a single root directory. For
the ASP Server to recognize an ASP application, the root directory must be defined as
an application on the ASP Server, and as a virtual directory on the Web server. The
files within the root directory of an ASP application share the same global.asa file,
which must be contained in the root directory itself rather than in a subdirectory
under the root. All variables and objects for an ASP application are scoped from the
root directory.

See also:

“Defining ASP Applications (ASP Server)” on page 46

ASP errors logging file

To create a log file and enable ASP error logging, specify the name of the log file. You
cannot use the name of a file that already exists in the directory. If this box is empty,
no logging is performed.

When you specify the name of the log file, the ASP Server creates the file in the
following directory and begins logging to it:

/[C-ASP_INSTALL_DIR]/logs

Where [C-ASP_INSTALL_DIR] is the path name of the Sun ONE ASP installation
directory (/opt/casp by default).

See also:

“Enabling ASP Errors Logging” on page 63

“Changing ASP Server Settings” on page 37

CatalogOptions

When this option is enabled (the check box is selected), the result column
REMARKS for the catalog functions SQLTables and SQLColumns, and the result
column COLUMN_DEF for the catalog function SQLColumns, will have meaning
for Oracle. This option is disabled by default, which returns SQL_NULL_DATA for

ADMINISTRATION CONSOLE GLOSSARY 563

 .
. .
the result columns COLUMN_DEF and REMARKS. Enabling this option reduces
the performance of your queries.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

change password

The Sun ONE ASP Administration Console is used to add, edit, and delete usernames
and passwords. To change the password for an existing user, you must be logged on
as that user (that is, any administrator can change his or her own password, but not
that of any other administrator). On the Users page, click change password. In
the Change Password dialog that displays, specify and confirm the new password,
and then click OK.

See also:

“Configuring Usernames and Passwords” on page 21

Chili!Beans

The Sun ONE ASP Chili!Beans ActiveX control is a wrapper that enables Java objects
to be used by COM controllers, such as ActiveX scripting engines like VBScript. The
control is designed to work with Java virtual machines (JVM) versions 1.4 or greater.
To use Chili!Beans, a Java runtime environment must be installed, and Chili!Beans
must be enabled from the Sun ONE ASP Administration Console.

See also:

“Chili!Beans Component Reference” on page 465

Chili!Mail

Chili!Mail is a Sun ONE ASP SpicePack component that enables users to send e-mail
messages from an ASP page to an SMTP server. The Chili!Mail component is
compatible with the NewMail object included with the Microsoft Internet
Information Services (IIS) CDONTS component. However, there are differences
regarding certain properties and methods of the NewMail object.

See also:

“Chili!Mail (SMTP)” on page 484

Chili!POP3

Chili!POP3 is a Sun ONE ASP SpicePack component that retrieves e-mail messages
from a POP3 server from an ASP script. This component has two main interfaces: the
POP3 interface creates and controls the connection to a POP3 server, and the message

564 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
interface exposes all properties of a single message. Additional interfaces are exposed
to support retrieval of message lists and message attachments.

See also:

“Chili!POP3 (POP3)” on page 491

Chili!Upload

Chili!Upload is a Sun ONE ASP SpicePack component that enables users to save files
uploaded by site visitors to the server. Chili!Upload supports the simultaneous
upload of multiple files. Form data can also be processed while files are uploading.

See also:

“Chili!Upload (File Upload)” on page 499

Collection

Specify this attribute only if the DB2 database is running on OS/390.

This is the name that identifies a group of packages. These packages include the
Connect ODBC for DB2 Wire Protocol driver packages. The default is
DATADIRECT00.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Components

The Administration Console Components page provides access to settings for the
Sun ONE ASP SpicePack and Chili!Beans components. The components are enabled
or disabled on this page.

The SpicePack is a set of COM components that handle commonly used ASP
application functionality. The components are Chili!Mail, Chili!POP3, and
Chili!Upload. The Chili!Beans ActiveX control is a wrapper that enables Java objects
to be used by COM controllers.

See also:

“SpicePack Component Reference” on page 483

“Chili!Beans Component Reference” on page 465

Confirm Password

Retype the password to confirm it.

ADMINISTRATION CONSOLE GLOSSARY 565

 .
. .
Connection pool size

To improve server performance, the ASP Server can be configured to share database
connections among multiple users who are accessing the Web application. This is
called database connection pooling. With connection pooling, rather than opening
and closing a database connection for each individual request, the ASP Server uses a
connection that is already open.

There is no maximum number of connections that can be pooled. Setting this
number to 0 (zero) disables connection pooling. The default is 25.

See also:

“Configuring ADO Connections” on page 131

“Pooling Database Connections” on page 72

Create database

Select or clear the Create database box to specify global Create privileges.

If this box is selected, client-side users with appropriate privileges can create a new
database on the MySQL server to which to publish an Access database.

If this box is cleared, all users are barred from creating a new database, regardless of
user privileges. If users are not allowed to create a new database, a database must be
supplied on the MySQL server for which users have all permissions.

See also:

“Administering Database Publisher” on page 136

“Database Publisher” on page 135

Current number of sessions

This field displays the number of sessions currently being handled by the ASP Server.

See also:

“Monitoring ASP Server Performance” on page 61

Data Source Names

Parameters for system DSNs (data source names) are configured on the
Administration Console Data Source Names page. A system DSN is a collection of
information stored on the ASP Server that is used by the ODBC Manager for
connecting an ASP application to a particular ODBC-compliant database.

See also:

“Configuring Data Source Names (DSNs)” on page 105

“Configuring Database Parameters” on page 115

566 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Creating Database Connections (ASP Server)” on page 44

“Chapter 6, Configuring a Database” on page 103

“Connecting to a Database” on page 197

Database

This field requires different information for different databases:

� For DB2 databases, specify the DSN name of the database. This must be the
same as the catalogued name for the database.

� For dBASE databases, specify the absolute path name of the directory in
which the database files reside.

� For Informix, Microsoft SQL Server, MySQL, PostgreSQL, and Sybase
databases, specify the name of the database.

� For Microsoft Access databases, specify the absolute path name of the Access
MDB file on the Windows server.

� For the Text driver, specify the directory in which the text files are stored. If
left empty, the current working directory is used.

Ask your database administrator for this information.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Databases

The Administration Console Databases page is used to configure DSNs, ODBC
drivers, ADO settings, and database environment variables.

Sun ONE ASP is compatible with and provides ODBC drivers for a number of
databases. Supported databases include DB2, dBASE, Informix, Microsoft Access,
Microsoft SQL Server, MySQL, Oracle, PostgreSQL, and Sybase.

See also:

“Supported in This Release” on page 5

“Viewing the List of ODBC Drivers” on page 104

“Creating Database Connections (ASP Server)” on page 44

“Chapter 6, Configuring a Database” on page 103

Database type

From the drop-down list on the New Data Source Name page, select the type of
database to configure for this DSN. On the Edit Data Source Name page,
Database type simply lists the type of database configured for this DSN.

ADMINISTRATION CONSOLE GLOSSARY 567

 .
. .
Sun ONE ASP supports the following types of databases, and includes their ODBC
drivers:

� DB2 Universal Database (UDB) 7.1

� dBASE 5

� Informix Dynamic Server 9.x

� Informix Dynamic Server 2000 (9.20)

� Microsoft Access 2000, 97, and 95 (via SequeLink 5.3)

� Microsoft SQL Server 7.0 and 2000 (SP1)

� Microsoft SQL Server 6.5 (via SequeLink 5.3)

� MySQL 3.23

� Oracle 8i (8.1.7) and 9i

� PostgreSQL 7.1.3

� Sybase Adaptive Server Enterprise 11.9.2 and 12.5

� Text files

Note

Sun ONE ASP does not support all databases on all platforms. To see the list of
installed drivers for your platform, see “Supported in This Release” on page 5.

See also:

“Chapter 6, Configuring a Database” on page 103

“Configuring Database Parameters” on page 115

Deadlock timeout

This specifies the amount of time, in seconds, that should elapse before the ASP
Server is considered deadlocked and the engine is restarted. The default is 600
seconds (10 minutes).

See also:

“Configuring Engine Deadlock Recovery” on page 69

Description

Specify a description of the DSN to help distinguish it from others.

See also:

“Configuring Data Source Names (DSNs)” on page 105

568 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Directory

Specify the absolute path name of the directory containing the ASP application files.
The virtual directory specified in the Application Name box is associated with this
directory.

See also:

“Configuring ASP Applications” on page 47

“Defining ASP Applications (ASP Server)” on page 46

“Defining Applications in a Shared Environment” on page 74

Driver

This is the installed ODBC driver specified for this DSN. Sun ONE ASP includes ODBC
drivers for a number of databases. An ODBC driver is a module that enables a
database to be accessed through ODBC (Open Database Connectivity). A separate
driver is required for each type of database.

See also:

“Supported in This Release” on page 5

“Viewing the List of ODBC Drivers” on page 104

“Configuring Data Source Names (DSNs)” on page 105

“Configuring Database Parameters” on page 115

DSN or Data Source Name

Specify the name of this DSN (data source name).

A DSN refers to a collection of information used to connect an ASP application to a
particular ODBC-compliant database. The ODBC Manager uses this information to
create the database connection.

See also:

“Configuring Data Source Names (DSNs)” on page 105

Enable

When the Enable box is selected, the Sun ONE ASP Database Publisher and DBMS
applications are enabled for client-side use. If this box is not selected, users will not
be able to use the applications.

See also:

“Administering DBMS” on page 149

“Administering Database Publisher” on page 136

ADMINISTRATION CONSOLE GLOSSARY 569

 .
. .
EnableDescribeParam

When this option is enabled (the check box is selected), all StoredProcedure
arguments are returned as string types. This option is enabled by default.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

EnableStaticCursorsForLongData

When this option is enabled (the check box is selected), the driver supports long
columns when using a static cursor. This option is disabled by default. Enabling this
option causes a performance penalty at the time of execution when reading long
data.

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Enable parent paths

By default, Enable parent paths is set to no. When Enable parent paths is set
to no, a FileSystemObject object instantiated by an ASP application is limited to
that application’s defined directory. This is the most secure setting and is appropriate
for most shared Web hosting environments.

When Enable parent paths is set to yes, the FileSystemObject object can access
files outside the ASP application directory. In this scenario, ASP developers can use
the "../" syntax in #include statements to access any file outside of the Web
directory that the ASP Server has file system permission to read.

Caution

Changing Enable parent paths to yes can affect the security of your
server. Before you change this setting, make sure that the ASP Server has
permission to access only the files you want to be publicly accessible, and
that it does not have access to sensitive files containing configuration or
password information. You can restrict the permissions of the ASP Server by
defining the user it runs under, and making sure that that user has
appropriately restricted file system permissions.

Note

The Enable parent paths setting does not add any restrictions to executing
Java code. For example, if you want to restrict Java code to access files within
the application directory, the proper permissions should be in the
bean.policy file.

See also:

“Configuring File System Access” on page 56

570 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Environment Database Specific Variables

Oracle and Informix database servers require this additional environment
information (with client). Ask your database administrator for more information
about which settings to use.

See also:

“Configuring the Database Environment” on page 112

File size limit for blob column (bytes)

Specify the blob file-size limit in bytes. In most cases you should leave this set to the
default.

Note

This value defaults to the maxlongfieldlength setting in the Sun ONE ASP
configuration file, casp.cnfg, which specifies the maximum long field length
in bytes. By default this value is 65535. If the data passed to a database
exceeds this limit, ADO will throw an error. While it is recommended that
you leave this set to the default, this value can be increased if necessary.

See also:

“Administering DBMS” on page 149

Host

This is the IP address of the SequeLink server. Ask your database administrator for this
information.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

HostName

This field requires different information for different databases:

� For Oracle databases, specify the computer on which the Oracle server
resides. If your network supports named servers, you can specify a host name
(such as Oracleserver). Otherwise, specify an IP address.

� For Informix databases, specify the name of the computer on which the
Informix server resides.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ADMINISTRATION CONSOLE GLOSSARY 571

 .
. .
Informix

This environment information is required to configure the ASP Server to connect to
an Informix database. Ask your database administrator for more information about
which settings to use.

See also:

“Setting Informix Environment Variables” on page 114

Inherit user security

This setting enables you to specify the security mode under which the ASP Server
runs, and can have a serious impact on the security of your server, especially if you
are running Sun ONE Web Server. For more information about the security modes
and their implications, see “Setting the Security Mode” on page 57.

When Inherit user security is set to yes, the ASP Server runs with the permissions
of the Apache Web server or the virtual host defined in the Apache Web server
httpd.conf file. This is the default security mode for Sun ONE ASP. This mode is
available only for Sun ONE ASP running with the Apache Web server.

When Inherit user security is set to no, the ASP Server runs as root, unless a
different user and group is specified in the Sun ONE ASP configuration file, casp.cnfg.
This can create a security risk for your server. If you change Inherit user security
to no, be sure to specify a user and group in casp.cnfg, as described in “Editing the
Sun ONE ASP Configuration File” on page 517 (see the [default machine] section).
This mode is available for both the Sun ONE and Apache Web servers.

See also:

“Changing ASP Server Settings” on page 37

“Securing the Server” on page 55

IntlSort

This field determines the order in which records are retrieved when you issue a
SELECT statement with an ORDER BY clause. When set to 0 (the default), ASCII sort
order is used. Items are sorted alphabetically, with uppercase letters preceding
lowercase letters (for example, "A, b, C" would be sorted as "A, C, b").

When set to 1, international sort order is used, as defined by your operating system.
The order is always alphabetic, regardless of case (for example, "A, b, C" would be
sorted as "A, b, C").

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

572 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
IPAddress

This is the IP address for the DB2 database server.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Java VM Security Manager

When Sun ONE ASP Chili!Beans is enabled, you have the option of enabling the Java
virtual machine (VM) Security Manager. If the Java VM Security Manager is enabled,
its default behavior is to prevent any access to system resources other than read-only
access to the current directory. If the Java VM Security Manager is disabled, Java code
executed by the Chili!Bean will run with unrestricted access to the file system and
other system resources.

Note

For security reasons, the Java VM Security Manager should be enabled in
multi-user environments in which users supply their own Java classes.

To selectively grant other privileges to Java code running in the Chili!Bean,
with Java VM Security Manager enabled, use policytool to change the virtual
machine’s security settings, as specified in the Java 2 Security documentation.

Key

Specify the authorization key for Sun ONE ASP Database Publisher or DBMS. The key
unlocks the applications for use on the client side, and must be supplied to all users
of the applications (the key is the same for all users).

For both tools the key is configured as “password” by default. A new key should be
chosen as soon as possible.

See also:

“Chapter 7, Using Database Tools” on page 135

“Administering Database Publisher” on page 136

“Administering DBMS” on page 149

Locale

The language specified in this box sets the default locale identifier (LCID) and code
page for the ASP Server.

See also:

“Configuring International Support” on page 43

ADMINISTRATION CONSOLE GLOSSARY 573

 .
. .
“Changing ASP Server Settings” on page 37

“Developing International Applications” on page 212

Location

Specify this attribute only if the DB2 database is running on OS/390.

This is a path that specifies the DB2 location name. Use the name that was defined
during the local DB2 installation.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Log file

In the Log file box, specify the path for application logging information. If this field
is empty, no logging is performed.

“Administering Database Publisher” on page 136

“Database Publisher” on page 135

Logging file

To create the ADO log file and enable logging, specify the absolute path name of the
ADO log file. You cannot use the name of a file that already exists in the same
directory. If this box is empty, no logging is performed.

Caution

ADO logging should be used for diagnostic purposes only, and should not be
enabled when running Sun ONE ASP on a production server.

See also:

“Enabling and Disabling ADO Logging” on page 133

LogonID

Specify the username required for accessing the database. If the username is not
provided here, every connection string using this DSN must include the username.
Ask your database administrator for this information.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

574 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Max. Transfer Size (Bytes)

If you select Chili!Upload on the Components page, the Max. Transfer Size
(Bytes) box displays. This box specifies the maximum size per transfer (in bytes) that
can be uploaded using the Chili!Upload component.

See also:

“Enabling SpicePack Components” on page 483

“Chapter 14, SpicePack Component Reference” on page 483

Number of threads

This setting specifies the maximum number of threads handled at the same time by a
single ASP Server. The default is 5.

This is an advanced setting. A maximum number of up to 20 threads is
recommended. DO NOT set this to a number greater than 20.

See also:

“Configuring Multi-threading” on page 71

ODBC Drivers

Sun ONE ASP includes the ODBC drivers for a number of databases. The ODBC
Drivers page displays the ODBC drivers installed for the listed database types. An
ODBC driver is a module that enables a database to be accessed through ODBC (Open
Database Connectivity). A separate driver is required for each type of database.

See also:

“Supported in This Release” on page 5

“Creating Database Connections (ASP Server)” on page 44

“Chapter 6, Configuring a Database” on page 103

“Connecting to a Database” on page 197

Oracle

This environment information is required to configure the ASP Server to connect to
an Oracle database (with client). Ask your database administrator for more
information about which settings to use.

See also:

“Setting Oracle Environment Variables” on page 113

ADMINISTRATION CONSOLE GLOSSARY 575

 .
. .
Package

This is the package created by the DataDirect driver that reflects all parameters
associated with a specific database (the parameters you specified).

Package is displayed in the Administration Console only when you are editing an
existing DSN, not adding a new one.

Caution

Do not edit this package. The package is unique to a specific database.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Password

A password is required for connecting to a database. Ask your database administrator
for this information. If you do not specify a password when configuring a system
DSN, the password must be included in every connection string that uses the DSN.

Port

Specify the port on which the database server is configured to listen.

� For MySQL, the default is 3306.

� For PostgreSQL, the default is 5432.

� For SequeLink, the default is 19996.

� For Sybase, the default is 4100.

Note

For SequeLink, this is the port the SequeLink server is listening on.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

PortNumber

Specify the port on which the database server is configured to listen. Ask your
database administrator for this information. For Oracle (without client), the default is
1521.

See also:

“Chapter 6, Configuring a Database” on page 103

576 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
“Configuring Database Parameters” on page 115

ProcedureRetResults

When this option is enabled (the check box is selected), Oracle returns record sets
from a stored procedure call. This option is enabled by default.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ReadOnly

When this option is enabled (the check box is selected), the database is treated as
read-only. This option is disabled by default.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Requests per second

This field displays the number of requests per second currently being processed by
the ASP Server

See also:

“Monitoring ASP Server Performance” on page 61

Script timeout

This specifies the amount of time the ASP Server waits for an individual ASP page to
finish processing before canceling the request. The default is 90 seconds.

See also:

“Changing the Script Timeout Value” on page 68

“Changing ASP Server Settings” on page 37

Scripts buffering on

Yes enables scripts buffering, which means that the ASP Server processes an entire
ASP page before returning its HTML output to the browser. This yields better server
performance. When scripts buffering is disabled (the value is set to no), the ASP
Server returns the HTML output for an ASP page to the browser incrementally, as

ADMINISTRATION CONSOLE GLOSSARY 577

 .
. .
soon as the HTML is processed. This makes debugging easier. This setting is yes by
default.

See also:

“Enabling Scripts Buffering” on page 66

“Changing ASP Server Settings” on page 37

Server

Specify the database server name or IP address. If this field is empty, the database
server is assumed to be running on the local computer.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ServerDataSource

This is the name of the DSN configured on the SequeLink server. For more
information about server-side configuration, see “Configuring SequeLink” on page
128.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ServerIPAddress

Specify the IP address of the Windows-based database server. Ask your database
administrator for this information.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ServerName

� For Oracle databases, specify the TNS name as defined in the tnsnames.ora
file by the Oracle client utility.

� For PostgreSQL and Sybase databases, specify the IP address of the database
server.

� For Informix, specify the name of the database server as it appears in the
sqlhosts file.

578 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
If this field is empty, the database server is assumed to be running on the local
computer.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ServerPortNumber

Specify the port on which the Windows-based database server is configured to listen.
Ask your database administrator for this information. The default is 1433.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

Session timeout

This specifies the amount of time the ASP server maintains session values for a user
without receiving a page request. The default is 20 minutes.

See also:

“Changing the Session Timeout Value” on page 67

“Changing ASP Server Settings” on page 37

Settings

The Administration Console Settings page provides access to ASP Server
configuration settings. When you change any of these settings, you must restart the
ASP Server.

See also:

“Changing ASP Server Settings” on page 37

SID

This is the Oracle System Identifier that refers to the instance of Oracle running on
the server. You must provide this information when connecting to servers that
support more than one instance of an Oracle database.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

ADMINISTRATION CONSOLE GLOSSARY 579

 .
. .
TableType

Specify the default table type (Comma, Tab, Character, Fixed, or Stream). The Text
driver supports five table types: comma-separated, tab-separated, character-separated,
fixed length, and stream. The default table type is used when creating a new table,
and opening an undefined table.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

TcpPort

This is the port on which the DB2 database server is configured to listen. Ask your
database administrator for this information.

See also:

“Configuring Database Parameters” on page 115

Total errors received

This field displays the number of ASP Server errors.

See also:

“Monitoring ASP Server Performance” on page 61

Total memory in use

This field displays the system memory currently being used by the ASP Server.

See also:

“Monitoring ASP Server Performance” on page 61

“Optimizing ASP Server Performance” on page 66

Total requests

This field displays the total number of requests processed since the ASP Server was
started.

See also:

“Monitoring ASP Server Performance” on page 61

580 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
Uptime

This field displays the length of time the ASP Server has been running since the last
restart.

See also:

“Monitoring ASP Server Performance” on page 61

UseCursorLib

When this option is enabled (the check box is selected), ODBC Manager cursor
support overrides the ODBC driver support, enabling scrollable cursors not supported
by the ODBC driver. This option is enabled by default.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

User

Specify the username required for accessing the database. If the username is not
provided here, every connection string using this DSN must include the username.
Ask your database administrator for this information.

See also:

“Configuring Database Parameters” on page 115

“Chapter 6, Configuring a Database” on page 103

User Classpath

If the Chili!Beans box is selected on the Components page, the User Classpath
field also displays. Use this field to specify a classpath other than the default.

See also:

“Chapter 12, Chili!Beans Component Reference” on page 465

View Logs

The Administration Console View Logs page displays the ASP errors log file and ASP
Server Diagnostics. Logging must enabled for logging data to be displayed, as
described in “Enabling ASP Errors Logging” on page 63.

See also:

“Viewing the ASP Errors Log” on page 64

ADMINISTRATION CONSOLE GLOSSARY 581

 .
. .
Virtual Hosts

Virtual hosts (called virtual servers on Sun ONE Web Server) is a feature that enables a
Web server to service multiple hostnames. Sun ONE ASP automatically processes ASP
applications for any virtual host defined on the Web server.

Settings to enable or disable ASP processing for individual virtual hosts are accessed
on the Web Server tab of the Administration Console Server Management page.

See also:

“Enabling ASP for a Virtual Host” on page 54

“Defining Applications in a Shared Environment” on page 74

582 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .

. .

 .

. .Index

A
Abandon method 267
about ASP 15
about ASP applications 181
about Sun ONE ASP 1
about this guide 8
AbsolutePage property 422
AbsolutePosition property 424
Access databases

configuring SequeLink 128
DSN-less connection strings 201
migrating to dBASE 211
migrating to MySQL 135
supported in this release 5

ActiveConnection property 310, 425
ActiveX Data Objects 131, 534
ActualSize property 354
Ad Rotator component 272

methods 276
properties 275
redirection file 275
registry settings 272
rotator schedule file 272
syntax 272

AddHeader method 246
adding scripts 184
adding/deleting ASP Servers, CLI 86
AddNew method 380
Administration Console

about 17
accessing 18
administration Web server 20
command-line options 83
configuring a database 103
GUI glossary 557
managing the ASP Server 35
managing the Web server 77

admtool 20
ADO 301

collections 453
configuring connections 131
connection pool size 131
error messages 511
logging 133
objects 302
overview 301

reference 301
ADO collections 453

Errors 454
Fields 455
methods 456
Parameters 455
Properties 456
properties 463

ADO objects 302
Command 303
Connection 318
Error 346
Field 351
Parameter 364
Property 373
Recordset 379

ADODB 301
advanced administration 83, 515
AFS 528
allow session state 39, 42
Apache Web Server

configuration file changes 81
defining applications 527
non-DSO 530
starting in SSL mode 532
supported versions 5

Append method 456
AppendChunk method 352, 365
AppendToLog method 248
Application events 190
Application object 216

collections 216
events 220
examples 221
methods 218
syntax 216

Application_OnEnd 191, 220
Application_OnStart 190, 220
ASP 3.0 2
ASP applications

adding/removing, Admin
Console 48
adding/removing, CLI 96
configuring 47
creating 181
defining 46, 74, 189, 525
editing 52

international 43, 212
publishing 213

ASP benefits 15
ASP built-in objects 194, 215

accessing from Java code 472
Application 216
ASPError 222
Request 224
Response 235
Server 251
Session 261

ASP components 195, 271
Ad Rotator 272
Browser Capabilities 278
Content Linking 282
Content Rotator 288
Counters 293
MyInfo 296
Tools 297

ASP errors logging 63
ASP page

creating 15, 183
precompiling 72

ASP processing, virtual hosts 54
ASP Server

advanced administration 83, 515
command-line management 83
configuring 35
creating database connections 44
defining applications 46
diagnostics 65
installation guide 9
international support 43, 212
managing 35
monitoring 60
performance 61
security 55
server settings 37
status 36, 84
stopping and starting 41, 84
uninstalling 101

ASP servlet interface 472
ASPError object 222

example 223
properties 222
syntax 222

Attributes property 332, 355, 366

584 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
authoring tools 4, 183, 539

B
before you begin 6
BinaryRead method 234
BinaryWrite method 248
blob file-size limit 143, 149, 484, 523
BOF, EOF properties 427
Bookmark property 430
Border property 275
Browser Capabilities component 278

browscap.ini file 279
remarks 278
syntax 278

Buffer property 238
built-in ASP objects 194, 215

accessing from Java code 472
Application 216
ASPError 222
Request 224
Response 235
Server 251
Session 261

C
CacheControl property 239
CacheSize property 431
CancelBatch method 381
CancelUpdate method 384
CASP 537
casp.cnfg file, editing 91, 517
casp.cnfg keywords

admin 523
ADO 523
applications 524
Components Security 525
default application 521
default machine 519
machine 518
Product Update 525
virtual hosts 521

caspctrl script 85
CDONTS 484, 489
changing the Web server 87
Charset property 239, 487
Chili!Beans reference 465

accessing a Java class 470
accessing methods and fields 468
ASP servlet interface 472
constructing Java objects 469
limitations 468
NewJavaObject 469
registering a Java class 470
returning a Java class 471
security 466

supplying JVM settings 469
Chili!Mail 484

methods 489
properties 485
registry settings 485
syntax 485

Chili!POP3 491
Attachment interface 497
Message interface 493
POP3 interface 491
registry settings 491
syntax 491

Chili!Soft ASP 1
Chili!Upload 499

collections 500
methods 501
properties 499
registry settings 499
syntax 499

ChooseContent method 290
chregclass 470
Clear method 249, 458
CLI 83
Clickable property 275
Clone method 386
Close method 318, 387
code pages 43, 213, 240, 264
CodePage property 240, 264, 487
collections

ADO 453
ASP 216, 224, 235, 262
SpicePack 492, 495, 500

COM 182, 196, 465, 470, 483
Command object 303

collections 303
methods 304
properties 310
remarks 317

command-line management 83
applications 96
ASP Server 84, 86
casp.cnfg settings 91
caspctrl script 85
configure-server script 84
DSNs 98
Help 84
system boot 90
uninstall Sun ONE ASP 101
virtual hosts 94
Web server 87

CommandText property 312
CommandTimeout property 313,
333
CommandType property 313
components

ASP 195
Chili!Beans 465

COM 470, 483, 538
custom server 196
Java 15, 182, 465
SpicePack 483
testing functionality of 14

COM-to-Java bridge 3, 465
configuration file

Sun ONE ASP 91, 517
Web server 80

configure-server script 83
configuring

applications 47
ASP Server 37
database parameters 115
deadlock recovery 69
DSNs 105
international support 43
non-DSO Apache 530
Web server 79

connecting to a database 44, 131,
197

DBMS 152
Connection object 208, 302, 318

collections 318
methods 318
properties 331
remarks 345

connection strings 197
creating 197
DSN-less 200
parameters 197
system DSNs 199

ConnectionString property 334
ConnectionTimeout 336
Construct method 470
Content Linking component 282

Content Linking List file 283
registry settings 282
syntax 282

Content Rotator component 288
Content Schedule file 288
registry settings 288
syntax 288

Contents collection 216, 262
Contents.Remove method

Application object 219
Session object 268

Contents.RemoveAll method
Application object 220
Session object 269

ContentType property 241
Cookies collection

Request object 224
Response object 235

Count property 463
Counters component 293

methods 294

INDEX 585

 .
. .
properties 293
registry settings 293
syntax 293

CreateObject method 253
CreateParameter method 304
CursorLocation property 337, 433
CursorType property 433
custom server components 196
Customer Support 25

D
data source names (DSNs)

about 197
adding 106
command-line management 98
configuring 105
connecting to a database 44,
103, 197
DBMS 152
DSN-less connection strings 200
editing 110
file DSNs 197, 203
removing 109
system DSNs 44, 199
testing 111
Windows 106

database
connection pooling 72
connections 4, 44, 103, 131,
197, 208
environment 112
migration 211
parameters 115
supported types 5

database drivers
configuring 115
installed with Sun ONE ASP 5
viewing the list of 104
Windows 8, 204

database parameters
configuring 115
DB2 116
dBASE 117
Informix 118
Microsoft SQL Server 121
MySQL 122
Oracle 123
PostgreSQL 126
SequeLink (Access) 128
Sybase 130
text 131

Database Publisher 135
administering 136
authorization key 136, 138, 142
blob columns 143
Create database 137

duplicate tables 145
enabling 136
installing 138
logging 136
MySQL documentation 136
privileges 136, 144
required information 138
security 136
unlocking 136
wizard 138

Database Publisher wizard 138
installing 138
opening 139
step-by-step publishing 138

database tools 135
Database Publisher 135
DBMS for MySQL 148
enabling 32

DB2 parameters 116
dBASE

migrating to 211
parameters 117

DBMS for MySQL 148
accessing 151
administering 149
authorization key 149
blob file-size limit 149
connecting to a database 152
conventions 152
data not displaying 151
data security 151
DSN-based connections 154
DSN-less connections 159
enabling 149
MySQL documentation 152
session timeout 149, 151
shared computers 151
SQL statements 174
tables 165
TIME values, formats of 168
unlocking 151

deadlock recovery 69
deadlock timeout 39
DefaultDatabase property 338
defined user security 40, 57
DefinedSize property 356
defining ASP applications 46, 74,
189, 525
Delete method 391, 459
Description property 346
developer Web site 15
diagnostics 13, 65
Direction property 368
directives 186

@CODEPAGE 186
@ENABLESESSIONSTATE 187
@LANGUAGE 187

@LCID 187
@TRANSACTION 186

Document interface 480
documentation 8

accessing 11, 23
conventions 12
feedback 8
finding what you need 9
installation guide 9
other resources 13
README 12, 24

drivers 104
configuring 115
included in this release 5
viewing the list of 104
Windows 8, 204

DSN-less connection strings 200
DSNs

about 197
adding 106
command-line management 98
configuring 105
connecting to a database 44,
103, 197
DBMS 152
DSN-less connection strings 200
editing 110
file DSNs 197, 203
removing 109
system DSNs 44, 199
testing 111
Windows 106

E
EditMode property 436
enable parent paths 41, 56, 188, 515
enabling

Chili!Beans 466
Database Publisher 136
DBMS 148
SpicePack 483

End method 249
environment 112

Informix 114
Oracle 113

error messages 505
Error object 346

properties 346
remarks 350

Errors collection 454
errors logging 39, 63
errors reference 505

ADO 511
Sun ONE ASP 505
Sun ONE ASP JavaScript 511
Sun ONE ASP VBScript 511

586 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
events
Application object 220
Session object 269

Execute method 254, 305, 322
expert users 83, 515
Expires property 241
ExpiresAbsolute property 242
external components 466, 483

F
features 2
field access 468, 471
Field object 351

collections 351
methods 351
properties 353

Fields collection 455
file DSNs 203
file system access 56, 466
file upload component 499
FileExists method 298
Filter property 437
Flush method 249
Form collection 226
FrontPage 75, 82, 209

G
GetAdvertisement method 276
GetAllContent method 291
GetChunk method 352
GetLastError method 255
GetListCount method 285
GetListIndex method 285
GetNextDescription method 285
GetNextURL method 286
GetNthDescription method 286
GetNthURL method 287
GetPreviousDescription method 287
GetPreviousURL method 287
GetRows method 394
getting started 6
global events 189
global.asa file 189, 194
glossaries 533

Administration Console GUI 557
general 533

H
HTMLEncode method 258
HttpServletContext 473
HttpServletRequest 473, 477
HttpServletResponse 473, 477
HttpSession 473, 477

I
include files 188
Increment method 295
Informix

environment variables 114
parameters 118

inherit user security 40, 57
installation guide 9
installation summary file 7
installed ASP components 195
installed drivers 5, 104
international applications 43, 212,
213
intrinsic objects 215
iPlanet Web Server (Sun ONE)

configuration files 80
supported versions 5

IsClientConnected property 243
IsolationLevel property 338
Item method 459

J
Java

accessing ASP objects 471
Chili!Beans wrapper 465
components 3, 15, 182, 465
file system access 41
Java Server Pages (JSPs) 472
methods, accessing with
Chili!Beans 468
objects and classes 196, 469
runtime environment 465
security 40
servlets 472
virtual machine settings 469
XML 479

Java class
accessing via Chili!Beans 470
registering as a COM component
470
returning from a method call 471
ServletContext interface 472

Java Server Pages (JSPs) 472
Java VM Security Manager 466
javareg 470
JavaScript reference 503
javax.servlet 472
javax.servlet.http 472
javax.servlet.ServletResponse 477
JRE 465
JScript 184, 503, 511
JScript reference 503

K
knowledge base 14, 513

L
language

international support 2, 43, 212
scripting language 2, 185, 503

LCID 43, 212, 243, 265
LCID property

Response object 243
Session object 265

Linux
before you begin 7
new in this release 2
supported versions 5

load balancing 72
locale 40, 43
locale identifier 212
Lock method 220
LockType property 440
logging

ADO 133
ASP 63, 65
Database Publisher 136

M
mail components 483
managing

ASP Server 35
Web server 77

MapPath method 258
MarshalOptions property 441
maximum transfer size 484
maxlongfieldlength 523
MaxRecords property 443
Message interface 493
Mode property 340
monitoring the ASP Server 60
Move method 397
MoveFirst, MoveLast, MoveNext,
MovePrevious methods 402
multi-threading 39, 71
MyInfo component 296

methods 297
properties 297
registry settings 297
syntax 297

MySQL
database administration 148
documentation 152
migrating to 135
parameters 122

N
Name property 314, 357, 368
NativeError property 348
new in this release 2
NewJavaObject 470, 474

INDEX 587

 .
. .
NextRecordset 406
NFS 528
Node interface 480
non-DSO Apache 530
number of threads 39, 71
Number property 349
NumericScale property 357, 369

O
ODBC drivers

configuring 115
included in this release 5
viewing the list of 104
Windows 8, 204

Open method 327, 408
OpenSchema method 323
Oracle

environment variables 113
parameters 123

org.w3c.dom 479
OriginalValue property 357
Owner method 299

P
PageCount property 444
PageSize property 444
Parameter object 364

collections 365
methods 365
properties 366
remarks 372

Parameters collection 455
parameters, database 115
password, changing 7, 21
performance monitoring 60
PICS property 244
PluginExists method 299
policytool 466
POP3 interface 491
PostgreSQL parameters 126
Precision property 359, 369
Prepared property 314
problems with Sun ONE ASP 25, 513
ProcessForm method 299
product home page 13
product updates 28
Properties collection 456
Property object 373

properties 373
remarks 378

Provider property 341
publishing

Access to MySQL 135
ASP applications 213
FrontPage 82

Q
QueryString collection 228
QuickStart guide 9, 12

R
Random method 300
README file 12, 24, 503
RecordCount property 449
Recordset object 208, 302, 379

collections 379
methods 379
properties 420
remarks 451

Redirect method 250
redirection file 275
Refresh method 460
registering a Java class 470
Remove method 295
Requery method 411
Request dispatchers 476
Request object 224

collections 224
methods 234
properties 233
syntax 224

Response object 235
collections 235
methods 246
properties 238
syntax 235

restarting the ASP Server 41
Resync method 411
rotator schedule file 272

S
script timeout 39, 68
scripting languages

changing 185
default 185
differences 503
JavaScript reference 503
JScript reference 503
README file 503
VBScript reference 503

scripts 184
scripts buffering 38, 66
ScriptTimeout property 252
security 40, 55
SequeLink

configuring 128
parameters 128

serial number, installing 27
Server object 251

methods 252
properties 251

syntax 251
server performance 66
server settings 37
server status 36, 78, 84
server-side includes 188
ServerVariables collection 229
servlet container 472
servlet interface 472
ServletContext 476
Session object 192

collections 262
events 269
methods 267
properties 264
remarks 269
syntax 262

session state 39, 42, 192
session timeout 39, 67
Session_OnEnd 193, 269
Session_OnStart 192, 269
SessionID property 265
Set method 296
shared file system 529
shared Web server 73, 75
SID 125
Size property 369
SMTP component 484
Solaris

before you begin 7
new in this release 2
supported versions 5

Source property 349, 447
SpicePack reference 483

Chili!Mail 484
Chili!POP3 491
Chili!Upload 499

SQL Server 121, 128
sqlhosts file 119
SQLState property 350
SSL mode, Apache 532
starting and stopping

administration Web server 20
ASP Server, Admin Console 41
ASP Server, CLI 84
Web server 78

starting Apache in SSL mode 532
starting on system boot 90
State property 316, 342, 445
static methods and fields 468
static variables 470
StaticObjects collection 217, 263
status 36, 78, 84
Status property 245, 445
Sun ONE ASP JavaScript 503
Sun ONE ASP VBScript 503
Sun ONE ASP XML control 479
Sun ONE Web Server

588 SUN ONE ACTIVE SERVER PAGES 4.0

 .
. .
configuration file changes 80
defining applications 527
supported versions 5

Support 25
Support Forum 15
supported platforms 5
Supports method 413
Sybase parameters 130
system boot, starting on 90
system DSNs 44, 199

T
TargetFrame property 276
technical resources 13, 25, 513
testing a DSN 111
testing functionality, ASP 13
text parameters 131
threads 39
Timeout property 266
Tools component 297

methods 298
properties 298
registry settings 297
syntax 298

TotalBytes property 233
Transfer method 260
troubleshooting 513
Type property 360, 370

U
UI glossary 557
UnderlyingValue property 362
uninstalling Sun ONE ASP 101
Unlock method 220
Update method 416
UpdateBatch method 419
updates 28
URLEncode method 261
User Classpath 580
User Configuration file 74
usernames and passwords 7, 21

V
Value property 363, 372, 377
VBScript 184, 503, 511
VBScript reference 503
Version property 344
virtual hosts 54, 74, 521
virtual servers 2

W
Web hosting 54, 60, 73
Web server

changing after installation 87

configuration files 80
configuring after installation 79
managing 77
starting and stopping 78
supported versions 5

Windows
application events 190, 220
before you begin 7
changing the scripting language
185
connection strings 198, 209
custom server components 196
defining ASP applications 47
DSNs 106
migrating databases 135, 197,
211
new in this release 3
ODBC drivers 8, 204
Personal Web Services 296
registry 515
supported versions 5

Write method 250

X
XML support 3, 479

Z
Zeus Web server 6, 555

	Contents
	1 Introduction
	New in This Release
	UNIX and Linux
	Microsoft Windows NT and Windows 2000

	Other Features
	Supported in This Release
	Before You Begin
	UNIX and Linux
	Microsoft Windows NT and Windows 2000

	About This Guide
	What the Guide Contains
	How the Guide is Accessed
	Guide Conventions

	Other Resources
	Product Home Page
	Diagnostic Applications
	Knowledge Base
	Support Forum
	Developer Web Site

	About ASP
	Benefits of ASP

	2 Using the Administration Console
	Accessing the Administration Console
	Starting and Stopping the Administration Web Server
	Configuring Usernames and Passwords
	Accessing Product Documentation
	Viewing the README File
	Contacting Customer Support
	Installing a New Serial Number
	Checking for Product Updates
	Enabling External Components
	Enabling Database Tools

	3 Managing the ASP Server
	Server Management Overview (ASP)
	Changing ASP Server Settings
	Stopping and Restarting the ASP Server (Admin Console)
	Enabling Session State
	Configuring International Support
	Creating Database Connections (ASP Server)
	Defining ASP Applications (ASP Server)
	Configuring ASP Applications
	Adding ASP Applications
	Removing ASP Applications
	Editing ASP Application Settings
	Enabling ASP for a Virtual Host

	Securing the Server
	Configuring File System Access
	Setting the Security Mode
	Disabling Performance Monitoring

	Viewing Information about the ASP Server
	Monitoring ASP Server Performance
	Enabling ASP Errors Logging
	Viewing the ASP Errors Log
	Viewing Server Diagnostics

	Optimizing ASP Server Performance
	Enabling Scripts Buffering
	Changing the Session Timeout Value
	Changing the Script Timeout Value
	Configuring Engine Deadlock Recovery
	Configuring Multi-threading
	Precompiling ASP Pages
	Pooling Database Connections
	Load Balancing

	Shared Web Hosting Environments
	Creating Database Connections in a Shared Environment
	Defining Applications in a Shared Environment
	Using the User Configuration File
	Using the FrontPage Services File

	4 Managing the Web Server
	Server Management Overview (Web)
	Starting and Stopping the Web Server
	Configuring the Web Server after Installation
	Changes to Web Server Configuration Files
	Changes to Sun ONE Web Server Configuration Files
	Changes to Apache Configuration Files

	Enabling FrontPage Publishing

	5 Command-line Management
	Command-line Help
	Using configure-server
	Stop/Start/Status ASP Server (Command Line)
	Stop/Start/Status: configure-server
	Stop/Start/Status: caspctrl

	Add/Delete/Reconfigure ASP Servers
	Changing the Linkage
	Add ASP Server
	Delete ASP Server
	Reconfigure ASP Server

	Starting on System Boot
	Changing casp.cnfg Settings
	Examples: Listing casp.cnfg Settings
	Examples: Changing casp.cnfg Settings
	Deleting casp.cnfg Settings

	Add/Remove ASP in Virtual Hosts
	Example: Adding Virtual Hosts
	Examples: Removing Virtual Hosts

	Add/Remove Applications
	Examples: Adding Applications
	Examples: Removing Applications

	List/View/Add/Edit/Delete ODBC DSNs
	Show Database Types
	List all DSNs
	View Specific DSNs
	Add/Edit DSNs
	Delete DSNs

	Uninstalling Sun ONE ASP

	6 Configuring a Database
	Viewing the List of ODBC Drivers
	Configuring Data Source Names (DSNs)
	Adding a DSN
	Removing a DSN
	Editing a DSN
	Testing a DSN

	Configuring the Database Environment
	Setting Oracle Environment Variables
	Setting Informix Environment Variables

	Configuring Database Parameters
	DB2 Parameters
	dBASE Parameters
	Informix Parameters
	Informix Parameters (With Client): UNIX Only
	Informix Parameters (Without Client): UNIX and Linux

	Microsoft SQL Server Parameters
	MySQL Parameters
	Oracle Parameters
	Oracle Parameters (With Client)
	Oracle Parameters (Without Client)

	PostgreSQL Parameters
	SequeLink Parameters
	Configuring SequeLink

	Sybase Parameters
	Text Parameters

	Configuring ADO Connections
	Setting the ADO Connection Pool Size
	Enabling and Disabling ADO Logging

	7 Using Database Tools
	Database Publisher
	Administering Database Publisher
	Installing Database Publisher
	Using the Database Publisher Wizard
	Opening the Database Publisher Wizard
	Selecting the Access File
	Resolving Invalid Names
	Verifying the Authorization Key
	Fatal Error Screen
	Specifying the Destination Database
	Conflicting Tables
	Publishing the Database

	DBMS
	Administering DBMS
	Accessing DBMS
	DBMS Conventions
	Connecting to a Database (DBMS)
	DSN-based Database Connections (DBMS)
	DSN-less Database Connections (DBMS)

	Working with Tables
	Data Validation
	Adding New Tables
	Updating Existing Tables
	Deleting Tables

	Working with SQL Statements
	Adding SQL Statements
	Editing SQL Statements
	Executing SQL Statements
	Deleting SQL Statements

	8 Building Sun ONE ASP Applications
	Creating the Basic ASP Application
	Choosing an Authoring Tool
	Creating an ASP Page
	Adding Scripts
	Changing the Scripting Language
	Using @Directives
	@CODEPAGE Directive
	@ENABLESESSIONSTATE Directive
	@LANGUAGE Directive
	@LCID Directive

	Using Server-side Includes
	Defining the Application
	Using the Global.asa File
	Specifying Application Events
	Managing User Sessions
	Saving Changes to the Global.asa File

	Using Sun ONE ASP Built-in Objects
	Using Sun ONE ASP Installed Components
	Using Java Objects and Classes
	Using Custom Server Components
	Connecting to a Database
	Creating Connection Strings
	Using System DSNs
	Using DSN-less Connection Strings
	Using File DSNs

	Opening the Database Connection
	Using FrontPage Database Features
	Using FrontPage Database Connections
	Displaying Data on a Web Page with FrontPage

	Migrating an Access Database to MySQL or dBASE

	Developing International Applications
	Japanese Character Support
	DB2 and Locale
	Understanding Code Pages

	Publishing a Sun ONE ASP Application

	9 ASP Built-in Objects Reference
	ASP Application Object
	Syntax: ASP Application Object
	ASP Application Object Collections
	ASP Application Object Contents Collection
	ASP Application Object StaticObjects Collection

	ASP Application Object Methods
	ASP Application Contents.Remove Method
	ASP Application Contents.RemoveAll Method
	ASP Application Object Lock Method
	ASP Application Object Unlock Method

	ASP Application Object Events
	ASP Application Object Examples

	ASPError Object
	Syntax: ASPError Object
	ASPError Object Properties
	ASPError Object Example

	ASP Request Object
	Syntax: ASP Request Object
	ASP Request Object Collections
	ASP Request Object Cookies Collection
	ASP Request Object Form Collection
	ASP Request Object QueryString Collection
	ASP Request Object ServerVariables Collection

	ASP Request Object Properties
	ASP Request Object TotalBytes Property

	ASP Request Object Methods
	ASP Request Object BinaryRead Method

	ASP Response Object
	Syntax: ASP Response Object
	ASP Response Object Collections
	ASP Response Object Cookies Collection

	ASP Response Object Properties
	ASP Response Object Buffer Property
	ASP Response Object CacheControl Property
	ASP Response Object Charset Property
	ASP Response Object CodePage Property
	ASP Response Object ContentType Property
	ASP Response Object Expires Property
	ASP Response Object ExpiresAbsolute Property
	ASP Response Object IsClientConnected Property
	ASP Response Object LCID Property
	ASP Response Object PICS Property
	ASP Response Object Status Property

	ASP Response Object Methods
	ASP Response Object AddHeader Method
	ASP Response Object AppendToLog Method
	ASP Response Object BinaryWrite Method
	ASP Response Object Clear Method
	ASP Response Object End Method
	ASP Response Object Flush Method
	ASP Response Object Redirect Method
	ASP Response Object Write Method

	ASP Server Object
	Syntax: ASP Server Object
	ASP Server Object Properties
	ASP Server Object ScriptTimeout Property

	ASP Server Object Methods
	ASP Server Object CreateObject Method
	ASP Server Object Execute Method
	ASP Server Object GetLastError Method
	ASP Server Object HTMLEncode Method
	ASP Server Object MapPath Method
	ASP Server Object Transfer Method
	ASP Server Object URLEncode Method

	ASP Session Object
	Syntax: ASP Session Object
	ASP Session Object Collections
	ASP Session Object Contents Collection
	ASP Session Object StaticObjects Collection

	ASP Session Object Properties
	ASP Session Object CodePage Property
	ASP Session Object LCID Property
	ASP Session Object SessionID Property
	ASP Session Object Timeout Property

	ASP Session Object Methods
	ASP Session Object Abandon Method
	ASP Session Object Contents.Remove Method
	ASP Session Object Contents.RemoveAll Method

	ASP Session Object Events
	Remarks: ASP Session Object

	10 ASP Component Reference
	ASP Ad Rotator Component
	Registry Settings: ASP Ad Rotator Component
	Syntax: ASP Ad Rotator Component
	ASP Ad Rotator Component Rotator Schedule File
	Syntax: ASP Ad Rotator Component Rotator Schedule File
	Parameters: ASP Ad Rotator Component Rotator Schedule File
	Remarks: ASP Ad Rotator Component Rotator Schedule File
	Example: ASP Ad Rotator Component Rotator Schedule File

	ASP Ad Rotator Component Redirection File
	Example: ASP Ad Rotator Component Redirection File

	ASP Ad Rotator Component Properties
	ASP Ad Rotator Component Border Property
	ASP Ad Rotator Component Clickable Property
	ASP Ad Rotator Component TargetFrame Property

	ASP Ad Rotator Component Methods
	ASP Ad Rotator Component GetAdvertisement Method

	ASP Browser Capabilities Component
	Syntax: ASP Browser Capabilities Component
	Remarks: ASP Browser Capabilities Component
	Browsecap.ini File: ASP Browser Capabilities Component
	Syntax: Browsecap.ini File HTTPUserAgentHeader Section
	Browsecap.ini File Default Section
	Examples: Browsecap.ini File Default Section

	ASP Content Linking Component
	Registry Settings: ASP Content Linking Component
	Syntax: ASP Content Linking Component
	Examples: ASP Content Linking Component

	ASP Content Linking Component Content Linking List File
	Syntax: ASP Content Linking Component Content Linking List File
	Parameters: ASP Content Linking Component Content Linking List File
	Example: ASP Content Linking Component Content Linking List File

	ASP Content Linking Component Properties
	ASP Content Linking Component Methods
	ASP Content Linking Component GetListCount Method
	ASP Content Linking Component GetListIndex Method
	ASP Content Linking Component GetNextDescription Method
	ASP Content Linking Component GetNextURL Method
	ASP Content Linking Component GetNthDescription Method
	ASP Content Linking Component GetNthURL Method
	ASP Content Linking Component GetPreviousDescription Method
	ASP Content Linking Component GetPreviousURL Method

	ASP Content Rotator Component
	Registry Settings: ASP Content Rotator Component
	Syntax: ASP Content Rotator Component
	ASP Content Rotator Component Content Schedule File
	Syntax: ASP Content Rotator Component Content Schedule File
	Parameters: ASP Content Rotator Component Content Schedule File

	ASP Content Rotator Component Properties
	ASP Content Rotator Component Methods
	ASP Content Rotator Component ChooseContent Method
	ASP Content Rotator Component GetAllContent Method

	ASP Counters Component
	Registry Settings: ASP Counters Component
	Syntax: ASP Counters Component
	ASP Counters Component Properties
	ASP Counters Component Methods
	ASP Counters Component Get Method
	ASP Counters Component Increment Method
	ASP Counters Component Remove Method
	ASP Counters Component Set Method

	ASP MyInfo Component
	Registry Settings: ASP MyInfo Component
	Syntax: ASP MyInfo Component
	ASP MyInfo Component Properties
	ASP MyInfo Component Methods

	ASP Tools Component
	Registry Settings: ASP Tools Component
	Syntax: ASP Tools Component
	ASP Tools Component Properties
	ASP Tools Component Methods
	ASP Tools Component FileExists Method
	ASP Tools Component Owner Method
	ASP Tools Component PluginExists Method
	ASP Tools Component ProcessForm Method
	ASP Tools Component Random Method

	11 ADO Component Reference
	ADO Overview
	ADO Objects
	ADO Command Object
	ADO Command Object Collections
	ADO Command Object Methods
	ADO Command Object Properties
	ADO Command Object Remarks

	ADO Connection Object
	ADO Connection Object Collections
	ADO Connection Object Methods
	ADO Connection Object Properties
	ADO Connection Object Remarks

	ADO Error Object
	ADO Error Object Properties
	ADO Error Object Remarks

	ADO Field Object
	ADO Field Object Collections
	ADO Field Object Methods
	ADO Field Object Properties
	ADO Field Object Remarks

	ADO Parameter Object
	ADO Parameter Object Collections
	ADO Parameter Object Methods
	ADO Parameter Object Properties
	ADO Parameter Object Remarks

	ADO Property Object
	ADO Property Object Properties
	ADO Property Object Remarks

	ADO Recordset Object
	ADO Recordset Object Collections
	ADO Recordset Object Methods
	UpdateBatch Method Remarks
	ADO Recordset Object Properties
	ADO Recordset Object Remarks

	ADO Collections
	ADO Errors Collection
	ADO Errors Collection Remarks

	ADO Fields Collection
	ADO Fields Collection Remarks

	ADO Parameters Collection
	ADO Parameters Collection Remarks

	ADO Properties Collection
	ADO Properties Collection Remarks

	ADO Collections Methods
	ADO Collections Append Method
	ADO Collections Clear Method
	ADO Collections Delete Method
	ADO Collections Item Method
	ADO Collections Refresh Method

	ADO Collections Properties
	ADO Collections Count Property

	12 Chili!Beans Component Reference
	Enabling Chili!Beans
	Using Null Objects with Chili!Beans
	Iterating a Collection with Chili!Beans
	Accessing Methods and Fields with Chili!Beans
	Limitations of Chili!Beans Objects
	Supplying Java Virtual Machine Settings
	Constructing Java Objects with Chili!Beans
	Accessing a Java Class via Chili!Beans
	Registering a Java Class as a COM Component on Linux and UNIX
	Returning a Java Class from a Method Call or Field Access

	ASP Servlet Interface
	Object Mapping
	Programmatic Access
	Functionality Not Implemented
	ServletContext
	HttpServletRequest
	HttpServletResponse
	HttpSession

	13 XML Support
	About the Sun ONE ASP XML Control
	Functionality Not Implemented
	Node Interface
	Document Interface
	XMLHTTPRequest Object

	14 SpicePack Component Reference
	Enabling SpicePack Components
	Chili!Mail (SMTP)
	Chili!Mail Registry Settings
	Chili!Mail Syntax
	Chili!Mail Properties
	Chili!Mail Bcc Property (String: Read/Write)
	Chili!Mail Body Property (String: Read/Write)
	Chili!Mail BodyFormat Property (Long: Write only)
	Chili!Mail Cc Property (String: Read/Write)
	Chili!Mail Charset Property (String: Read/Write)
	Chili!Mail CodePage Property (Integer: Read/Write)
	Chili!Mail From Property (String: Read/Write)
	Chili!Mail Host Property (String: Read/Write)
	Chili!Mail Importance Property (Long: Read/Write)
	Chili!Mail Retain Property (BOOLEAN: Read/Write)
	Chili!Mail Subject Property (String: Read/Write)
	Chili!Mail To Property (String: Read/Write)
	Chili!Mail Value Property (Read/Write)
	Chili!Mail WrapLength (Read/Write)

	Chili!Mail Methods
	Chili!Mail AttachFile Method
	Chili!Mail Send Method

	Chili!POP3 (POP3)
	Chili!POP3 Registry Settings
	Chili!POP3 Syntax
	Chili!POP3 POP3 Interface
	POP3 Interface Properties
	POP3 Interface Collections
	POP3 Interface Methods

	Chili!POP3 Message Interface
	Message Interface Properties
	Message Interface Collections
	Message Interface Methods

	Chili!POP3 Attachment Interface
	Attachment Interface Properties
	Attachment Interface Methods

	Chili!Upload (File Upload)
	Chili!Upload Registry Settings
	Chili!Upload Syntax
	Chili!Upload Properties
	Chili!Upload AllowOverwrite Property (Read /Write)
	Chili!Upload FileSize Property (Read-Only)
	Chili!Upload SizeLimit Property (Read/Write)
	Chili!Upload SourceFileExtension Property (Read-Only)
	Chili!Upload Version Property (Read-Only)

	Chili!Upload Collections
	Chili!Upload FormData Collection

	Chili!Upload Methods
	Chili!Upload SaveToFile Method
	Chili!Upload SourceFileName Method (Read-Only)
	Chili!Upload Methods Examples

	15 Scripting Languages Reference
	Sun ONE ASP VBScript Reference
	Sun ONE ASP JavaScript Reference

	A Errors Reference
	Sun ONE ASP Errors
	Sun ONE ASP VBScript Errors
	Sun ONE ASP JavaScript Errors
	ADO Errors

	B Troubleshooting
	C Advanced Administration Options
	Editing the Windows Registry
	Editing the Sun ONE ASP Configuration File
	[machines]
	[default machine]
	[virtual hosts]
	[default application]
	[ADO]
	[admin]
	[applications]
	[Components Security]
	[Product Update]

	Defining Applications on UNIX
	Defining an Application on Sun ONE Web Server
	Defining an Application on Apache Web Server

	Relocating the System Files for a Shared Installation
	Relocating the Registry File
	Relocating Sun ONE Active Server Pages PID Files

	Configuring a Non-DSO Apache Web Server
	Starting the Apache Web Server in SSL Mode

	Glossaries
	General Glossary
	Administration Console Glossary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

