
ZFS Demonstration Tutorial

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
USA

Part No:
July 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070719@18135

Contents

1 ZFS Demonstration Tutorial ...5
About this Document ..5

Preparatory Work ...5
About this Demonstration ...8

ZFS Command Summary ..8
Setting Up ZFS is Easy ... 10

Creating a ZFS Storage Pool ... 10
Creating a ZFS File System .. 11
Adding Disks to a ZFS Storage Pool ... 12
Using Redundant ZFS Configurations .. 14

Managing ZFS is Easy ... 14
Adding Additional ZFS File Systems ... 14
Setting Reservations on a ZFS File System .. 15
Setting Quotas on a ZFS File System .. 16
Sharing ZFS File Systems .. 17
ZFS Snapshots for Data Recovery .. 18
ZFS Property Inheritance .. 20
Transferring ZFS Data ... 22
Transforming ZFS Data (Compression) ... 23
Advanced Management (ZFS Clones) ... 24
Migrating ZFS Storage Pools .. 26
Replacing Devices in Your ZFS Storage Pool .. 28
Scrubbing a ZFS Storage Pool ... 30
ZFS Checksum Recovery .. 31

Using ZFS with Solaris Zones .. 34
Using ZFS Volumes ... 37
ZFS Demonstration Clean Up ... 39

3

4

ZFS Demonstration Tutorial

This demo sequence has been tested with ZFS on Solaris Nevada release, build 55.

■ “About this Document” on page 5
■ “ZFS Command Summary” on page 8
■ “Setting Up ZFS is Easy” on page 10
■ “Managing ZFS is Easy” on page 14
■ “Using ZFS with Solaris Zones” on page 34
■ “Using ZFS Volumes” on page 37
■ “ZFS Demonstration Clean Up” on page 39

About this Document
This document is intended to provide a demo script of the key features of ZFS and enable you to
demo them on a real ZFS system. The document is structured into a set of features, such as ease
of set up, ease of management, and so on. Each feature description contains the following
sections:

■ Goal of Demo Component
■ What You Need to Do
■ Key Messages
■ Why This Feature is Important

The web-based ZFS management tool is not covered in this tutorial except for the instructions
on how to start it.

You might not want to demo every capability to all customers. They might be overwhelmed.

Preparatory Work
This section describes the preparatory work that should be performed prior to the demo.

1C H A P T E R 1

5

Loading ZFS
You will need to install the SUNWzfsr and SUNWzfsg packages. These packages are in the latest
Solaris Nevada build (Built 27 for the ZFS package, build 28 for the GUI) or from the following
releases:

■ Solaris Express Community Release (SXCR) from opensolaris.org (November 2005 or later)
■ Solaris Express release (December 2005 or later)
■ Solaris 10 6/06 release media distribution (or later)

The ZFS packages are included in a full install of the Solaris OS.

Physical Disks
You need a minimum of four disks, preferably five or more and if possible, all the same size.
However you create the disks, you will need to know their device names. For example, c1t0s2,
or if using files in a UFS file system, their pathname. For example, /zfsdisks/disk1.

The ideal situation is to create a storage pool configuration that consists of multiple physical
disks similar to a real deployment situation. Using physical disks enables you to demonstrate all
the capabilities of ZFS. Even better if the disks have visible activity lights.

If you are going to demonstrate a storage pool configuration that consists of multiple slices,
which is not recommended for real deployment scenarios, then use the format utility to create
some slices.

Make sure to remember the slice details for this additional partition (for example, c0d1p0 or
c1d1p0). You will need them later.

Virtualization
If you are running in a virtualized environment, for example, VMWare, the virtualization
technology might be able to present files in the host operating systems as multiple disks to the
guest operating system. When using VMWare, create the disk drives (VM -> Settings ->
Hardware tab -> Add), then edit the VM Configuration file (vm-name.vmx in the VM directory,
and add the following entry:

disk.locking="FALSE"

This entry removes the protections for multiple virtual machines that access the device and
allows you to simulate external damage to a device.

After you have booted the Solaris environment, you will need to make sure that the devices are
recognized by Solaris (the drvconfig and disks commands help here). Using a virtualization
solution allows you to demonstrate all the features of ZFS, though the performance is clearly
limited by that of the underlying device. It also has the advantage of being able to demonstrate
ZFS with minimal hardware.

About this Document

ZFS Demonstration Tutorial • July 20076

Note that some virtualization solutions allow you to use real physical disks and to allocate them
to the virtual machine. This is better than using virtual disks but does require more hardware.

If you are using a virtual disk or a physical disk through virtualization, you will need create a
second partition to use for ZFS that does not overlap the disks label. Though ZFS itself does
correctly preserve the label in the demo, we will be trashing some of these partitions and that
process might damage the disk label.

Using UFS-Backed Files
If you do not have additional disks or a way of emulating them, you can create files in an
existing UFS file system that ZFS can use as if they were disks.

Use the mkfile command to create the files that will be used as disks. For the purposes of this
demo, the files do not need to be very large. For example:

mkfile 100M /zfsdisks/disk1

Remember the pathname to the file. For example, /zfsdisks/disk1.

You could create sparse files using the -n option if you wished, though, because ZFS writes
anywhere. You are simply trading time of allocation during the mkfile command for the time
during the ZFS write operation.

Zones
One of the advanced demo components examines the use of ZFS with zones. To do this, you
must have a zone available.

If you do not have a zone, the following sequence of steps creates a very simple zone that is
suitable for the demo. You should probably create the zone prior to the demo. (This assumes
you have sufficient space in the root file system (/). If not, use another path.

Zones are really neat to use. After you have done your ZFS run through, I can thoroughly
recommend that you look at zones in more detail.

After your zone is up and running, you can reuse it for subsequent demos. You don't have to
create a zone each time. Instructions on how to delete a zone are at the end of this demo script.

Note – Remember the name of your zone and also the root password.

Web-Based ZFS Management Tool
A web-based ZFS management tool is available to perform many administrative actions. With
this tool, you can perform the following tasks:

■ Create a new storage pool

About this Document

Chapter 1 • ZFS Demonstration Tutorial 7

■ Add capacity to an existing pool
■ Add capacity to an existing pool
■ Add capacity to an existing pool
■ Move (export) a storage pool to another system
■ Import a previously exported storage pool to make it available on another system
■ View information about storage pools
■ Create a file system
■ Create a volume
■ Take a snapshot of a file system or a volume
■ Roll back a file system to a previous snapshot

You can access the ZFS Administration console through a secure web browser at the following
URL:

https://system-name:6789/zfs

If you type the appropriate URL and are unable to reach the ZFS Administration console, the
server might not be started. To start the server, run the following command:

/usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

/usr/sbin/smcwebserver enable

About this Demonstration
Demonstrating a file system in and of itself, beyond saying things like ls -l, is difficult because
very little is visible. Therefore, this demo focuses on the areas that are different from previous
file systems, and in particular, aspects that are seen by system administrators.

ZFS Command Summary
The following command summary provides a cheat sheet for running the demo. They
encompass the major commands you need to use. These commands do not address using ZFS
with zones. Note that devices do not include the slice. For example, use c0t1d0, not c0t1d0s0.

ZFS Command Summary

ZFS Demonstration Tutorial • July 20078

ZFS Command Example

Create a ZFS storage pool # zpool create mpool mirror c1t0d0 c2t0d0

Add capacity to a ZFS storage pool # zpool add mpool mirror c5t0d0 c6t0d0

Add hot spares to a ZFS storage pool # zpool add mypool spare c6t0d0 c7t0d0

Replace a device in a storage pool # zpool replace mpool c6t0d0 [c7t0d0]

Display storage pool capacity # zpool list

Display storage pool status # zpool status

Scrub a pool # zpool scrub mpool

Remove a pool # zpool destroy mpool

Create a ZFS file system # zfs create mpool/devel

Create a child ZFS file system # zfs create mpool/devel/data

Remove a file system # zfs destroy mpool/devel

Take a snapshot of a file system # zfs snapshot mpool/devel/data@today

Roll back to a file system snapshot # zfs rollback -r mpool/devel/data@today

Create a writable clone from a
snapshot

zfs clone mpool/devel/data@today mpool/clones/devdata

Remove a snapshot # zfs destroy mpool/devel/data@today

Enable compression on a file system # zfs set compression=on mpool/clones/devdata

Disable compression on a file system # zfs inherit compression mpool/clones/devdata

Set a quota on a file system # zfs set quota=60G mpool/devel/data

Set a reservation on a new file system # zfs create -o reserv=20G mpool/devel/admin

Share a file system over NFS # zfs set sharenfs=on mpool/devel/data

Create a ZFS volume # zfs create -V 2GB mpool/vol

Remove a ZFS volume # zfs destroy mpool/vol

ZFS Command Summary

Chapter 1 • ZFS Demonstration Tutorial 9

Setting Up ZFS is Easy
ZFS is explicitly designed to make it easy to setup. So, very little configuration is required. This
set of demo components show how simple ZFS is to set up.

Note – Safety – The zpool command used in several of the demo components do not allow you
to use a device that is already in use on the system. For example, if the device contains a
mounted file system even if the device appears to contain data.

For example, if a device contains a UFS file system that is not mounted, the zpool create or
add commands will not use the device unless you use the -f flag. The zpool command does not
test for all possible data types. You may want to deliberately configure your disks with existing
UFS file systems, possibly mounted UFS file systems, to demonstrate the device-in-use checking
feature.

Creating a ZFS Storage Pool
Goal of Demo Component – Show how easy it is to create a storage pool and add disks to the
pool. Depending on what is already on the disks, you might also demonstrate the steps taken in
ZFS to help prevent you from making muppet mistakes.

What You Need to Do – Create a storage pool called mypool that contains a single mirror. The
command to create a pool is flexible so an entire pool with many devices could be created in a
single operation. Note that the zpool command is designed to be very easy to use and intuitive,
unlike most UNIX commands. For example:

zpool create mypool mirror c1t0d0 c2t0d0

Note that you can specify the entire disk, in which case ZFS takes over and uses the entire
device. No need to identify a specific partition unless you want to restrict ZFS to just that
partition. When it has access to the whole device, ZFS can operate with enhanced performance
as it can schedule operations more efficiently.

If the command succeeds, you get the command line prompt again. If a problem occurs, you get
an error message with details.

You might need to use the -f flag. As you can see, the creating a pool is a very fast operation. In
fact, all ZFS administration commands are equally fast. It is rare for an administration option to
take more than a second.

You can review the storage pool with the zpool list command. The size, of course, reflects the
mirrored nature of the pool, the raw disk capacity used is twice as large. The health column tells
us that all of the devices in the pool are fully operational. If this command reports a degraded

Setting Up ZFS is Easy

ZFS Demonstration Tutorial • July 200710

mode, it would mean that the storage pool had one or more device failures. But, that actual data
is still available. If a sufficient number of devices fail, the data not be available, and the pool
status would be reported as faulted.

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

mypool 95.5M 89K 95.4M 0% ONLINE -

You can also show the detailed structure of the storage pool by using the zpool status
command. In this case, everything is online. This pool contains mirrored devices, so if one of
the devices was faulted, the pool would still be usable. However, the status would report a
degraded mode as the redundancy protection would be lower.

zpool status

pool: mypool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

errors: No known data errors

The basis of the ZFS architecture is the storage pool. This is a collection of devices that can be
real or virtual devices, such as mirrors. The only device-level management that needs to be done
in ZFS is to allocate a device to a pool at the redundancy level you want. After that, ZFS deals
with all of the device management, freeing the storage administrator from having to worry
about the state of the individual components again.

In addition

Why This Feature is Important – Doing the initial setup and configuration of storage is a time
consuming task that often requires specialized expertise. In particular, constructing traditional
volume management products of the right configuration is a painful exercise. ZFS reduces the
time to virtually zero and also significantly reduces the required skills to manage storage.

Creating a ZFS File System
Goal of Demo Component – Show that creating a file system is very fast and a single-step
operation compared to a multiple-step operation. Show that file systems are easy to create.

Setting Up ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 11

What You Need to Do
In ZFS, the design goals are that file systems should be almost as easy to create as directories.
You don't have to create volumes or work out an incantation of magic parameters. In fact, you
don't even need to know anything about the devices that form the pool. All you need to know is
the pool name and the file system name you want to use.

zfs create mypool/myfs

The file system we have just created is ready to go. It's automatically mounted and set up to be
mounted at every boot. No need to do any other actions to set up the file system for use.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 115K 63.4M 24.5K /mypool

mypool/myfs 24.5K 63.4M 24.5K /mypool/myfs

Note that the AVAIL size from the zpool list and zfs list commands may vary slightly
because the zfs list command accounts for a small amount of space reserved for the file
system level operations that is not visible from the zpool list command.

Key Messages – After you have the storage pool up and running, creating a files system in the
pool is very simple and like pool creation, is a very fast operation. This also means a fast
response time to changes.

Why This Feature is Important – Doing the initial setup and configuration of file systems is a
time-consuming task that often requires specialized expertise. Specifically identifying the right
configuration parameters for the file systems can take a lot of planning to get right. ZFS reduces
the time to virtually zero and because ZFS operates dynamically. No need to predefine items like
inode density and other factors that can impact the file system.

Adding Disks to a ZFS Storage Pool
Goal of Demo Component – Show that adding additional disk capacity is trivial in terms of the
work involved and also the time taken. Depending on what is already on the disks, it may also
demonstrate the steps taken in ZFS to help prevent you from making muppet mistakes.

What You Need to Do – Add two devices to the pool.

zpool add mypool mirror c3t0d0 c4td0

You may need to use the -f option if the disks were previously in use.

Confirm that the capacity of the storage pool has increased.

Setting Up ZFS is Easy

ZFS Demonstration Tutorial • July 200712

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

mpool 136G 226K 136G 0% ONLINE -

mypool 191M 122K 191M 0% ONLINE -

You can also display detailed structure of the storage pool by using the zpool status -v
command.

zpool status -v

pool: mypool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c4t0d0 ONLINE 0 0 0

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

In addition, it is a good idea to add hot spares to your redundant ZFS storage pool.

Key Messages – Occasionally, you might need to add additional storage capacity to your file
systems. With traditional volume management products, this is achieved by the following
process:

■ Adding the disks to the volume manage
■ Assigning some of all of their capacity to a disk set (disk group for VxVM)
■ Growing the volume itself and finally increasing the size of the actual file system

Of course, if you want to increase the capacity of several file systems you would have to at least
perform volume and file system grow operations for every file system. And, quite possibly,
adding disks, and so on, for each file system as well. With ZFS, this becomes a trivial exercise
that takes very little time and the additional storage is immediately available to all of the file
systems in the pool.

Why This Feature is Important – With most traditional file systems, you have to track when
they are getting full and grow the volumes and the file systems when needed. Monitoring scripts
do exist for some file systems. This process assumes that capacity is available in the underlying
volumes themselves. If not, you have to add additional capacity into the volume manager and

Setting Up ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 13

make it available to the volumes before you can grow the volumes to grow the file system. With
ZFS, adding additional capacity is a very simple and fast operation and this automatically makes
space available to the file systems unless they are restricted by quotas.

Using Redundant ZFS Configurations
ZFS supports redundant virtual-device configurations in addition to disks and files:

■ mirrored
■ RAID-Z (enhanced RAID5)
■ double-parity RAID-Z

This demo script uses mirrored disks as they are easier to use with small numbers of disks.

If you have many disks available, you could easily replace the mirror vdev type with raidz,
which is a advanced form of RAID-5 that has dynamic stripe width, checksums, block level
recovery, in addition to the legacy features of basic RAID-5.

When using raidz, the overhead is less than that used for mirroring, though the redundancy
level is lower than a three- or more way mirror.

Managing ZFS is Easy
ZFS is designed to be very easy to administer after it is up and running. This set of demo
components shows how easy ZFS is to manage.

Adding Additional ZFS File Systems
Goal of Demo Component – Show that creating additional file systems in ZFS is just as fast as
creating the first, and that they can be created on top of an existing storage pool without
needing to create one file system per storage pool.

What You Need to Do – Create an additional ZFS file system.

zfs create mypool/myfs2

List the file systems.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 162K 159M 27.5K /mypool

mypool/myfs 24.5K 159M 24.5K /mypool/myfs

mypool/myfs2 24.5K 159M 24.5K /mypool/myfs2

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200714

Note that new file system is in the same pool, both file systems are sharing the resources of the
same storage pool. The space used by the storage pool has increased and both file systems are
reporting the same amount of space available.

Key Messages – Of course, creating additional file systems with ZFS is just as simple and fast as
creating the first. Even better, you can use the same storage pool so no additional administrative
overhead is incurred. Unlike file systems that use traditional volume managers, you do not need
to find extra devices or create additional volumes.

Why This Feature is Important – For traditional file system and volume manager
configurations, you need to create new volumes, which might involve adding additional storage
and integrating that into the volume manager. With ZFS, you simply create a new file system
and it can share the available storage in its pool. The act of provisioning the storage and creating
the file systems are decoupled, resulting in decreased administration time and a faster response
to business needs. Also, the skill level required to administer ZFS is reduced because people
with volume management skills are not required.

Setting Reservations on a ZFS File System
Goal of Demo Component – Show that it is possible to guarantee that a file system has a certain
level of capacity available to it. Note that you should do this component after you have created
multiple file systems, but before demonstrating the quota section.

What You Need to Do – Determine how much space is available in the pool and then subtract a
few Mbytes to set a reservation on a file system. This process enables you to demonstrate not
just how to specify the reservation, but also what happens when the reservation is reached.

First, work out the total space available.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 162K 159M 27.5K /mypool

mypool/myfs 24.5K 159M 24.5K /mypool/myfs

mypool/myfs2 24.5K 159M 24.5K /mypool/myfs2

Set the reservation on the first file system.

zfs set reservation=157m mypool/myfs

Check that the reservation has been applied.

zfs get reservation mypool/myfs

NAME PROPERTY VALUE SOURCE

mypool/myfs reservation 157M local

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 15

Note – The local value in the source column means that a property is specified for the actual file
system. It is also possible to inherit some properties (though not reservations or quotas) from a
parent file system. Property inheritance is described later in this document. You can double
check this amount through the zfs list command. This command shows that one file system
(myfs) has far more space available than (myfs2) because reserving space for one file system
means that there is less space available for other file systems.

If you copy data to a file system that exceeds existing allocated space, ZFS actually rolls back the
data that was copied over so you will not hit a full file system situation. For example, if you copy
a large file to the myfs2, then operation fails.

cp /platform/‘uname -m‘/kernel/‘isainfo -k‘/genunix /mypool/myfs2/genunix1

cp: /mypool/myfs2/genunix1: No space left on device

Remove the reservation.

zfs set reservation=none mypool/myfs

Key Messages – One risk of sharing a multiple file systems between one pool is that one file
system could take over all of the capacity in a pool. To prevent this scenario, ZFS has
reservations and quotas. Here we are going to look at reservations, which will guarantee that a
file system has a minimum amount of space available to it.

Why This Feature is Important – ZFS file systems are not implicitly restricted in size due to the
size of their underlying storage. This feature enables you to restrict shared resources between
many users, such as in university environment.

Setting Quotas on a ZFS File System
Goal of Demo Component – Show that it is possible to specify a maximum limit on the size a
file system to prevent it from using all of the resources in the storage pool, starving other file
systems and their users of storage capacity.

What You Need to Do – Set a quota on a file system.

zfs set quota=3M mypool/myfs2

Then, check that the quota has been applied and assuming that the reservation has been
removed from mypool/myfs.

zfs get quota mypool/myfs2

Now, try copying a file to this file system.

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200716

cp /platform/‘uname -m‘/kernel/‘isainfo -k‘/genunix /mypool/myfs2/

cp: /platform/sun4u/kernel/sparcv9/genunix: Disc quota exceeded

As with reservations, ZFS undoes the effects of the copy as it did not complete.

Remove the quota on myfs2.

zfs set quota=none mypool/myfs2

Key Messages – In some environments, you might want to limit the amount of space that can be
used by a file system. Historically, this has been achieved by applying end-user quotas on top of
a fixed size volume. Having a shared storage pool is a different approach, which is to limit ZFS
file system use by quotas.

In addition, ZFS file systems are points of administration for users, projects, groups, and so on.
Per-user quotas are not implemented because the administrative model of ZFS is such that each
user or project would have a separate file system. Per-user quotas do not match this
administrative model.

Why This Feature is Important – In some situations a system administrator might want to
guarantee a minimum level of space is available to a file system. Quotas allow that guarantee to
be made.

Sharing ZFS File Systems
Goal of Demo Component – Demonstrate that ZFS even makes NFS administration easier.

What You Need to Do – Use the share command to see what is currently being shared on your
system. should be no output from the share command. Now, set the sharenfs property on a
ZFS file system to be shared.

zfs set sharenfs=on mypool/myfs

Confirm that the property is set.

zfs get sharenfs mypool/myfs

NAME PROPERTY VALUE SOURCE

mypool/myfs sharenfs on local

Show that NFS is now sharing the file system.

share

-@mypool/myfs /mypool/myfs rw ""

Finally, set the sharenfs property to off.

zfs set sharenfs=off mypool/myfs

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 17

Key Messages – ZFS reduces the cost of configuring NFS and is especially useful for home
directory situations where each user might have their own ZFS file system. When used with
property inheritance (more later) this becomes especially simple.

Why This Is Important – Setting up NFS shares can take additional effort and time. ZFS
automatically shares file systems, which reduces effort and time.

ZFS Snapshots for Data Recovery
Goal of Demo Component – Show snapshots can be taken quickly and with minimal
overhead. Demonstrate accessing data by using a ZFS snapshot.

What You Need to Do – Copy two files to an empty ZFS file system. For example:

cp /usr/dict/words /mypool/myfs/words

cp /etc/passwd /mypool/myfs/pw

Confirm the copy was successful.

ls -l /mypool/myfs

total 520

-rw-r--r-- 1 root root 669 Feb 15 11:43 pw

-r--r--r-- 1 root root 206663 Feb 15 11:42 words

Take a snapshot and list the file systems.

zfs snapshot mypool/myfs@first

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 456K 159M 27.5K /mypool

mypool/myfs 284K 159M 284K /mypool/myfs

mypool/myfs@first 0 - 284K -

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

The snapshot is currently using 0 Kbytes of storage, but it is referencing 266 Kbytes of storage
(the amount that du -sk would return). Both the myfs and myfs@first snapshot are
referencing the same storage. Also, the snapshot is not currently mounted or visible. It is
mounted on demand.

Create a new file in the file system.

cp /etc/inetd.conf /mypool/myfs

Confirm that the copy is successful.

ls -l /mypool/myfs

total 525

-r--r--r-- 1 root root 1921 Feb 15 11:50 inetd.conf

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200718

-rw-r--r-- 1 root root 669 Feb 15 11:43 pw

-r--r--r-- 1 root root 206663 Feb 15 11:42 words

All snapshots are visible through the /pool/filesystem/.zfs/snapshot/ directory in the file
system where the snapshot was taken. This allows multiple snapshots to be taken and be
accessible by users, although visibility of a snapshot can be disabled. You can see that the new
file is not added to the snapshot.

ls -l /mypool/myfs/.zfs/snapshot/first

total 520

-rw-r--r-- 1 root root 669 Feb 15 11:43 pw

-r--r--r-- 1 root root 206663 Feb 15 11:42 words

Display the zfs list output.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 492K 159M 27.5K /mypool

mypool/myfs 310K 159M 286K /mypool/myfs

mypool/myfs@first 23.5K - 284K -

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

The results are slightly different. The snapshot is now showing 7.5 Kbytes used as it has a
different copy of the directory structure, one without the inetd.conf file entry. This is the only
difference. The snapshot is still referencing 266 Kbytes of data, however.

The file system itself is referencing 268 Kbytes of data (to allow for the contents of the
inetd.conf file). Now, edit the pw file in the original file system, remove a couple of lines
(suggest using vi and removing the uucp lines).

Review the zfs list output.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 494K 159M 27.5K /mypool

mypool/myfs 311K 159M 286K /mypool/myfs

mypool/myfs@first 24.5K - 284K -

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

The snapshot is now taking up slightly more space as it not only has a unique view of the
directory structure difference but also the pw file. Do a diff on the two versions of the pw file,
one in the file system and one in the snapshot.

diff /mypool/myfs/pw /mypool/myfs/.zfs/snapshot/first/pw

6a7,8

> uucp:x:5:5:uucp Admin:/usr/lib/uucp:

> nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 19

Finally, show that it is possible to roll back the file system to the snapshot, note that you need to
use the -R flag to roll back to a snapshot older then the original one.

zfs rollback mypool/myfs@first

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 458K 159M 27.5K /mypool

mypool/myfs 284K 159M 284K /mypool/myfs

mypool/myfs@first 0 - 284K -

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

The snapshot is now taking no additional space though it still exists and it will track the changes
that happen again. Of course the file system has now returned back to it's original state.

ls -l /mypool/myfs

total 520

-rw-r--r-- 1 root root 669 Feb 15 11:43 pw

-r--r--r-- 1 root root 206663 Feb 15 11:42 words

Destroy the snapshot.

zfs destroy mypool/myfs@first

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 458K 159M 27.5K /mypool

mypool/myfs 284K 159M 284K /mypool/myfs

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

Key Messages – Snapshots allow you to capture a view of your data at a point in time, ZFS
allows an almost unlimited number of snapshots to be taken. This provides a simple and easy
way to recover from Oops, I didn't mean to do that type of mistakes or recovering from
malicious damage to your data by rolling back your entire file system to the pre-damaged state.
Snapshots are space efficient because they only record changes. Snapshots can be accessed
directly through the file system without any special tools or suffering the time impact of
recovering from tape.

Why This Feature is Important – The ability to easily access older versions of data without
having to recover them from backup tapes allows users to handle their own Oops moments.
Creating a snapshot provides a consistent backup without having to suspend operations during
the backup process. The space efficient mechanism (only tracking changes) means that it is
possible to create far more snapshots than the traditional way of creating a daily backup tape.

ZFS Property Inheritance
Goal of Demo Component – Show that inheritance can be used to apply properties to multiple
ZFS file systems simultaneously.

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200720

What You Need to Do – Create a parent file system.

zfs create mypool/homedirs

Then, create descendant file systems.

zfs create mypool/homedirs/user1

zfs create mypool/homedirs/user2

zfs create mypool/homedirs/user3

Display the compression property value on these file systems.

zfs get -r compression mypool/homedirs

NAME PROPERTY VALUE SOURCE

mypool/homedirs compression off default

mypool/homedirs/user1 compression off default

mypool/homedirs/user2 compression off default

mypool/homedirs/user3 compression off default

Set the compression property on the parent file system. Then, display the compression property
value for these file systems.

zfs get -r compression mypool/homedirs

NAME PROPERTY VALUE SOURCE

mypool/homedirs compression on local

mypool/homedirs/user1 compression on inherited from mypool/homedirs

mypool/homedirs/user2 compression on inherited from mypool/homedirs

mypool/homedirs/user3 compression on inherited from mypool/homedirs

You can override the property for a specific file system even if it has been inherited.

zfs set compression=off mypool/homedirs/user3

zfs get -r compression mypool/homedirs

NAME PROPERTY VALUE SOURCE

mypool/homedirs compression on local

mypool/homedirs/user1 compression on inherited from mypool/homedirs

mypool/homedirs/user2 compression on inherited from mypool/homedirs

mypool/homedirs/user3 compression off local

If you have a local property set and you want to use inheritance again, this can be applied as
follows:

zfs inherit compression mypool/homedirs/user3

zfs get -r compression mypool/homedirs

NAME PROPERTY VALUE SOURCE

mypool/homedirs compression on local

mypool/homedirs/user1 compression on inherited from mypool/homedirs

mypool/homedirs/user2 compression on inherited from mypool/homedirs

mypool/homedirs/user3 compression on inherited from mypool/homedirs

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 21

Key Messages – ZFS home directories might well move from being a directory within
/export/home to individual file systems. This model allows the use of quotas and reservations
to be applied to each users file system and for properties to be set individually,

In many cases, a system administrator might want to set a property on all of the users file
systems, rather than doing so individually. If the file systems are created within a ZFS file system
hierarchy, applying the property to the parent file system results in the property being inherited
by all descendant file systems. You can nest file systems as deep as you want. Inheritance can be
specified at file system level, so a multiple-level properly management approach is simple and
feasible in ZFS.

Why This Feature is Important– ZFS provide a hierarchical file system model where
individual file systems can be points of administration. In addition, file system property
inheritance reduces time and errors from repetitive administrative actions.

Transferring ZFS Data
Goal of Demo Component – Demonstrate that a simple way to transfer ZFS data is by using
the zfs send and zfs receive commands.

What You Need to Do – Before you take a snapshot, make sure that the file system is in a stable
state and that applications are not changing the data. Different backup vendors have different
approaches to this, but for ZFS, the best way is to take a snapshot.

zfs snapshot mypool/myfs@copy

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 459K 159M 27.5K /mypool

mypool/myfs 284K 159M 284K /mypool/myfs

mypool/myfs@copy 0 - 284K -

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

Next, send the snapshot to a file. The output could be sent to another computer, perhaps using
ssh to preserve the data confidentiality, but for this demo, we are just going to write the data
into a file in /tmp.

zfs send mypool/myfs@copy > /tmp/zfsdata

If needed, the zfs send command can generate an incremental backup between two snapshots.
Next, we are going to recover the data sent to the file. For the demo, we will reload it into our
second file system but this could be on a different machine. Or, in the case of destruction of the
storage hardware, perhaps a fire took out the data center, the data could be placed into the
original pool.

zfs receive -d mypool/myfs2 < /tmp/zfsdata

zfs list

NAME USED AVAIL REFER MOUNTPOINT

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200722

mypool 751K 158M 27.5K /mypool

mypool/myfs 284K 158M 284K /mypool/myfs

mypool/myfs@copy 0 - 284K -

mypool/myfs2 311K 2.70M 26.5K /mypool/myfs2

mypool/myfs2/myfs 284K 2.70M 284K /mypool/myfs2/myfs

mypool/myfs2/myfs@copy 0 - 284K -

The myfs@copy snapshot is automatically created in myfs2 and the mypool/myfs2/myfs file
system is created. Confirm that there is no difference between the file systems.

diff /mypool/myfs /mypool/myfs2/myfs

ZFS has also created the .zfs/snapshot/copy directories in both locations as well. Remove the
snapshots and the new file system.

zfs destroy mypool/myfs2/myfs@copy

zfs destroy mypool/myfs2/myfs

zfs destroy mypool/myfs@copy

Key messages – You can use the zfs send and zfs receive commands to transfer data from
one ZFS file system to another, and potentially to a file system on a different system.

Why This Feature is Important – EMC Networker 7.3.2 backs up and restores ZFS file systems,
including ZFS ACLs. Veritas Netbackup backs up and restore ZFS files, but ACLs are not
preserved. Check the following resource to identify the last information about ZFS and
third-party backup products:

http://opensolaris.org/os/community/zfs/faq

Snapshots can be used for handling the Oops, I didn't mean to do that situation where files are
removed accidentally. The general ZFS checksum and recovery mechanisms can handle many
device failures, assuming the pool is redundant. The zfs send and zfs receive commands can
be used to store data for possible retrieval.

Transforming ZFS Data (Compression)
Goal of Demo Component – Demonstrate that ZFS can be set to automatically compress data.

What You Need to Do – It is very difficult to show that compressed data results in a shorter
overall time frame, without some serious instrumentation and programs to generate data
without going through the file system. To simulate a demonstration, copy some data and then
do the same copy with compression turned on to see that the file sizes are different.

First check that compression is disabled.

zfs get compression mypool/myfs

NAME PROPERTY VALUE SOURCE

mypool/myfs compression off default

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 23

http://opensolaris.org/os/community/zfs/faq

Copy a file to the file system.

cp /platform/‘uname -m‘/kernel/‘isainfo -k‘/genunix /mypool/myfs2/gu1

Enable compression on the file system and confirm that it is enabled.

zfs set compression=on mypool/myfs

zfs get compression mypool/myfs

NAME PROPERTY VALUE SOURCE

mypool/myfs compression on local

Copy the file over again.

cp /platform/‘uname -m‘/kernel/‘isainfo -k‘/genunix /mypool/myfs/gu2

Compare the amount of disk used by both files.

du -k /mypool/myfs/gu*

5381 /mypool/myfs/gu1

2681 /mypool/myfs/gu2

The compressed version is occupying about 1/2 of the disk space that is used by the
uncompressed version. To see the amount of space actually saved by compression, use the
following command.

zfs get compressratio mypool/myfs

NAME PROPERTY VALUE SOURCE

mypool/myfs compressratio 1.33x -

We only have one compressed file in the pool at the moment but compression ratios on source
code have been seen at greater than 2.5 times. Note that enabling compression ONLY affects
data written after it is enabled. It is not applied retrospectively.

Key Messages – The actual process of conducting I/Os is quite time consuming and many
systems have spare CPU cycles. ZFS can use those spare CPU cycles to compress the data for a
smaller I/Os that results in a shorted overall time to write and read data. This feature also has
the benefit of reducing the amount of disk space that actually used.

Why This Is Important – I/O performance for compressible data can be increased and disk
capacity used can be decreased.

Advanced Management (ZFS Clones)
Goal of Demo Component – Demonstrate the creation of a writeable clone that has an
independent life from the original snapshot.

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200724

What You Need to Do – Normally, when you think about cloning file systems, you would
create a template file system exactly as you wanted it. For example, setting up configuration files,
.cshrc, and so on, as appropriate. For the purposes of this demo, we're going to assume that all
of that is completed.

First, snapshot the original file system to create a starting point for the clones.

zfs snapshot mypool/myfs@snap

Now, create a couple of clones.

zfs clone mypool/myfs@snap mypool/clone1

zfs clone mypool/myfs@snap mypool/clone2

Display the file system information.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 8.03M 159M 28.5K /mypool

mypool/clone1 0 159M 7.90M /mypool/clone1

mypool/clone2 0 159M 7.90M /mypool/clone2

mypool/myfs 7.90M 159M 7.90M /mypool/myfs

mypool/myfs@snap 0 - 7.90M -

Currently, the clones take up zero space even though they refer to everything in the original
snapshot.

Make a change in the original and in the first clone.

echo original > /mypool/myfs/clonetest

echo first clone > /mypool/clone1/clonetest

Display that the original file system and first clone are different.

diff /mypool/myfs/clonetest /mypool/clone1/clonetest

1c1

< original

> first clone

A diff of the second clone doesn't work because the file does not exist.

diff /mypool/myfs/clonetest /mypool/clone2/clonetest

diff: /mypool/clone2/clonetest: No such file or directory

As with ZFS snapshots, clones use storage capacity optimally. They only track the differences
between the clone and the underlying snapshot.

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 25

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 8.09M 159M 28.5K /mypool

mypool/clone1 24K 159M 7.90M /mypool/clone1

mypool/clone2 0 159M 7.90M /mypool/clone2

mypool/myfs 7.92M 159M 7.90M /mypool/myfs

mypool/myfs@snap 23.5K - 7.90M -

Reset the pool by recursively removing the file system snapshot and clones.

zfs destroy -R mypool/myfs@snap

Key Messages – If you need to have a core set of data in multiple file systems and do not want to
have to create a copy of that data all the time (maybe because it is unchanging), consider using
ZFS clones. ZFS clones allow you to create a file system that can be cloned in a space efficient
manner that results in two independent file systems with common data.

Why This Feature is Important – This feature helps set up home directory configurations and
other environments where initially common data is required, but then can be easily changed.

Migrating ZFS Storage Pools
Goal of Demo Component – Show that ZFS file systems and pools can be moved easily from
one machine to another.

What You Need to Do – You will need two systems (or two virtual machines if using VMware)
that have access to the same devices. You must be using devices to do this demo. If you are using
files in a file system to hold ZFS data, this feature cannot be demonstrated.

Alternatively, you can show the manually initiated move with a single machine if that is all that
is available to you. First we have to export the pool.

zpool export mypool

You might need to use the -f flag to force the export in case mounts are in use.

Show that the export is successful.

zpool list

no pools available

Show that the file systems are not available.

ls /mypool

/mypool: No such file or directory

Next, see what pools are available to import.

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200726

zpool import

pool: mypool

id: 12795948276703959950

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

mypool ONLINE

mirror ONLINE

c1t0d0 ONLINE

c2t0d0 ONLINE

mirror ONLINE

c3t0d0 ONLINE

c4t0d0 ONLINE

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

Import the pool.

zpool import mypool

All of the devices in the storage pool have been imported and the pool is reconstructed. Display
the pool and file systems status is what we would expect.

zpool status

pool: mypool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE

c1t0d0 ONLINE

c2t0d0 ONLINE

mirror ONLINE

c3t0d0 ONLINE

c4t0d0 ONLINE

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

Show that the file systems are available.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 458K 159M 27.5K /mypool

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 27

mypool/myfs 284K 159M 284K /mypool/myfs

mypool/myfs2 24.5K 2.98M 24.5K /mypool/myfs2

The file systems are remounted. All in a single command.

Key Messages – High availability access to data (as opposed to continuous data access) is
important in many situations. Historically, this has required that complex scripts be created to
rebuild all of the disks in the right configuration to create the volumes. If the original server was
not cleanly shut down, then you have to run consistency checks (or roll the logs for logging file
systems) on all of the file systems that are contained in the volumes before finally creating the
mount points and mounting the file systems onto the new server.

The old process is complex, time consuming and error prone, especially because the disk
identifiers (c?t?d?s?) may have changed during the move. Even with the support in volume
managers for using device IDs, you still have the consistency issues.

With ZFS, this is a simple command and due to the always consistent on disk data format, no
need to do time-consuming consistency checking or log rolling. ZFS also allows movement
between x86 and SPARC systems that have different endian requirements.

Why This Feature is Important – For disaster recovery because the ability to import the data
from one machine to another enables the construction of failover environments that have little
downtime. This also helps provide flexibility.

In addition, you can use the zpool import -D command to recover pools that have been
destroyed.

Replacing Devices in Your ZFS Storage Pool
Goal of Demo Component – Demonstrate that ZFS can handle failed devices and recover once
the device is replaced in a short period of time.

What You Need to Do – Occasionally, you might need to replace a device, perhaps because it is
showing a large number of errors or maybe because it is obsolete and you are replacing it with
newer hardware.

zpool status

pool: mypool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE

c1t0d0 ONLINE

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200728

c2t0d0 ONLINE

mirror ONLINE

c3t0d0 ONLINE

c4t0d0 ONLINE

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

Looking at the storage pool, we can see that no problems exist, but for demo purposes we will
pretend that c4t0d0 has an issue. Let's replace the disk. We could also add a new side to the
mirror with the zfs attach command, then after the resilvering is complete, detach the old
device with the zfs detach command, but this is easier.

zpool replace mypool c4t0d0 c5t0d0

Confirm the status of the pool.

zpool status

pool: mypool

state: ONLINE

scrub: resilver completed with 0 errors on Thu Feb 15 15:17:10 2007

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE

c1t0d0 ONLINE

c2t0d0 ONLINE

mirror ONLINE

c3t0d0 ONLINE

c5t0d0 ONLINE

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

The storage pool reflects the new device. ZFS only resilvers the amount of data, not the entire
100 Mbytes of the actual device. This is because ZFS is aware of the data that is actually in use in
file systems, snapshots, volumes, and so on, and can do an optimal resilvering by duplicating the
actual information in use. Independent file systems and volume manager cannot do this.

Key Messages – Occasionally, a storage device fails. ZFS can provide volume manager like
recovery from this situation, assuming that the data is redundant. Unlike traditional volume
managers, ZFS can do so in an optimal manner because it knows the file system metadata and
data on the underlying storage devices. As such, ZFS only needs to recover the actual data in use

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 29

Why This Feature is Important – Recovering from a failed device is needed to restore
resilience. The optimal recovery by ZFS means that the "window of risk" from multiple failures
is minimized and that the recovery process does not place an unnecessary load on the system.
You may also need to replace a device because it is obsolete or you are simply reorganizing your
storage. In the past this has been difficult. With ZFS, this is a simple and fast operation.

Scrubbing a ZFS Storage Pool
Goal of Demo Component – Demonstrate that ZFS can check the validity of all of the
checksums.

What You Need to Do – Initiate a scrub on a storage pool.

zpool scrub mypool

Review the pool status. If you are quick, a scrub in progress is reported, but given the small
storage pools used for this demo and that the scrub operation is optimal, you might not see a
scrub in progress message.

zpool status

pool: mypool

state: ONLINE

scrub: scrub completed with 0 errors on Thu Feb 15 15:33:58 2007

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE

c1t0d0 ONLINE

c2t0d0 ONLINE

mirror ONLINE

c3t0d0 ONLINE

c5t0d0 ONLINE

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

The scrub has finished and no corruption is reported. Nice to know that your data is not at risk.

Key Messages – ZFS automatically detects data that fails the checksum and if the pool is
redundant, will correct corruption. Rather than waiting for corruption to occur, ask ZFS to
check the data for you and discover any problems in advance. This can also be used for peace of
mind.

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200730

Why This Feature is Important – Disk storage is very reliable, but given increasing amounts of
data, problems will be detected with more frequency. The ability to detect problems and repair
them is built into ZFS. Scrubbing a disk can help confirm the safety of the data, perhaps before
you remove one side of a mirror.

ZFS Checksum Recovery
Goal of Demo Component – Demonstrate that not only can ZFS detect corrupted data but also
recover from corruption provided you have a redundant ZFS storage pool.

Caution – Be aware that this demo can wipe out data or a disk label, which can lead to more
severe problems. Use it at your own risk.

What You Need to Do – You need to have a redundant storage pool. Copy some data into the
pool, but this step is not mandatory.

cp /usr/bin/v* /mypool/myfs

ls -l /mypool/myfs

total 3320

-r-xr-xr-x 1 root root 118984 Feb 22 13:57 vacation

-r-xr-xr-x 1 root root 47856 Feb 22 13:57 vacuumdb

-r-xr-xr-x 1 root root 21624 Feb 22 13:57 vacuumlo

-r-xr-xr-x 1 root root 13092 Feb 22 13:57 vax

-r-xr-xr-x 1 root root 283704 Feb 22 13:57 vedit

-r-xr-xr-x 1 root root 5449 Feb 22 13:57 vgrind

-r-xr-xr-x 1 root root 283704 Feb 22 13:57 vi

-r-xr-xr-x 1 root root 283704 Feb 22 13:57 view

-rwxr-xr-x 1 root root 44420 Feb 22 13:57 vino-preferences

-rwxr-xr-x 1 root root 14368 Feb 22 13:57 vino-session

-r-xr-xr-x 1 root root 65468 Feb 22 13:57 vmstat

-r-xr-xr-x 1 root root 48964 Feb 22 13:57 volcheck

-r-xr-xr-x 1 root root 57172 Feb 22 13:57 volrmmount

-rwxr-xr-x 1 root root 14192 Feb 22 13:57 vsig

-rwxr-xr-x 1 root root 25524 Feb 22 13:57 vte

-rwxr-xr-x 1 root root 25620 Feb 22 13:57 vumeter

Check that your ZFS storage pools are healthy.

zpool status -x

all pools are healthy

Then, destroy the contents of one of the disks by copying the random device. Note that the
transfer size is limited.

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 31

Caution – Be very careful to ensure you only copy onto one side of a mirror pair and do not copy
to slice 0 or you will overwrite the disk label.

If you are using small disks this is fast, but for large disks you may have quite a wait. Make sure
you copy to the raw device (/dev/rdsk) not the buffered device (/dev/dsk). If you use the
buffered device, the random data is cached and might not get written out to the disk.

dd if=/dev/urandom of=/dev/rdsk/c5t0d0 count=100 bs=512k

100+0 records in

100+0 records out

zpool status -x

all pools are healthy

ls -l mypool/myfs

total 3320

-r-xr-xr-x 1 root root 118984 Feb 22 13:57 vacation

-r-xr-xr-x 1 root root 47856 Feb 22 13:57 vacuumdb

-r-xr-xr-x 1 root root 21624 Feb 22 13:57 vacuumlo

-r-xr-xr-x 1 root root 13092 Feb 22 13:57 vax

-r-xr-xr-x 1 root root 283704 Feb 22 13:57 vedit

-r-xr-xr-x 1 root root 5449 Feb 22 13:57 vgrind

-r-xr-xr-x 1 root root 283704 Feb 22 13:57 vi

-r-xr-xr-x 1 root root 283704 Feb 22 13:57 view

-rwxr-xr-x 1 root root 44420 Feb 22 13:57 vino-preferences

-rwxr-xr-x 1 root root 14368 Feb 22 13:57 vino-session

-r-xr-xr-x 1 root root 65468 Feb 22 13:57 vmstat

-r-xr-xr-x 1 root root 48964 Feb 22 13:57 volcheck

-r-xr-xr-x 1 root root 57172 Feb 22 13:57 volrmmount

-rwxr-xr-x 1 root root 14192 Feb 22 13:57 vsig

-rwxr-xr-x 1 root root 25524 Feb 22 13:57 vte

-rwxr-xr-x 1 root root 25620 Feb 22 13:57 vumeter

To force ZFS to check all of the blocks, use the zpool scrub command to initiate a scan of all
the blocks. Then, use the zpool status command to view the results.

zpool scrub mypool

zpool status

pool: mypool

state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or replace the device with ’zpool replace’.

see: http://www.sun.com/msg/ZFS-8000-9P

scrub: scrub completed with 0 errors on Thu Feb 22 14:03:27 2007

config:

Managing ZFS is Easy

ZFS Demonstration Tutorial • July 200732

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 59

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

zpool clear mypool c5t0d0

zpool status

pool: mypool

state: ONLINE

scrub: scrub completed with 0 errors on Thu Feb 22 14:03:27 2007

config:

NAME STATE READ WRITE CKSUM

mypool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

mirror ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 0

spares

c6t0d0 AVAIL

c7t0d0 AVAIL

errors: No known data errors

Important features about the zpool status output are:
■ No long sequences of arcane error messages are displayed on the console
■ You are informed of unrecoverable errors on a device but that applications are unaffected.

This feature is because ZFS is able to recover the data from the other side of the mirror and
has rebuilt the corrupted data at the same time.

■ In the event that recover was not possible you would be told, and you would not have to
guess the situation. You are told what needs to be done and provided with a URL to go to for
further information. The specific device that is experiencing problems is clearly identified
and the extent of the damage is shown.

Key Messages – Detecting corrupted data is useful but the real benefit comes in being able to
recover from it. When ZFS detects corrupted data and the data has some level of redundancy
(mirror or RAID-Z), it can use the redundancy to recover and rebuild the original data.

Managing ZFS is Easy

Chapter 1 • ZFS Demonstration Tutorial 33

Why This Feature is Important – In the event of data corruption, ZFS can recover the original
data. ZFS allows this at low cost and in advance of traditional volume managers capabilities.

Using ZFS with Solaris Zones
Goal of Demo Component – Demonstrate the interaction of ZFS on a system with Solaris
zones installed.

What You Need to Do – You will need to have a zone configured and running for this
component of the demonstration. These steps must be performed in the global zone. Create a
zone called myzone.

mkdir /zones

mkdir -m 700 /zones/myzone# zonecfg -z myzone

myzone: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:myzone> create

zonecfg:myzone> set zonepath=/zones/myzone

zonecfg:myzone> verify

zonecfg:myzone> exit

zoneadm -z myzone install

Preparing to install zone <myzone>

Creating list of files to copy from the global zone.

Copying <7626> files to the zone.

Initializing zone product registry.

Determining zone package initialization order.

Preparing to initialize <1151> packages on the zone.

Initialized <1151> packages on zone.

Zone <myzone> is initialized.

Installation of these packages generated warnings: <UNWkvm SUNWcsl SUNWcsr SUNWcsu

SUNWesu SUNWcslr SUNWopenssl-libraries SUNWsmapi SUNWpolkit SUNWhal SUNWpapi SUNWpcu

SUNWkrbu SUNWtnfc SUNWtnfd SUNWdoc SUNWaudit SUNWrcmdc SUNWscpu SUNWmdu SUNWippcore

SUNWdhcsu SUNWdmgtu SUNWpool SUNWnisu SUNWarcr SUNWpiclu SUNWman SUNWcpcu SUNWsasnm

SUNWpsu SUNWppm SUNWdhcsb SUNWncau SUNWpoold SUNWpsm-ipp SUNWpsm-lpd SUNWsmedia

SUNWsrh>

The file </zones/myzone/root/var/sadm/system/logs/install_log> contains a log of the

zone installation.

.

.

.

Create a ZFS file system and make it available to the zone. Then, apply a quota to the file system.

zfs create mypool/myzonefs

zfs set quota=10m mypool/myzonefs

zfs list

Using ZFS with Solaris Zones

ZFS Demonstration Tutorial • July 200734

NAME USED AVAIL REFER MOUNTPOINT

mypool 119K 167M 25.5K /mypool

mypool/myzonefs 24.5K 9.98M 24.5K /mypool/myzonefs

Next, update the zone configuration. You have to do this with the zone shutdown otherwise the
zone configuration changes will not be visible in the zone until the next reboot. Again, this must
be done in the global zone. This example assumes that myzone is the name of your non-global
zone.

zonecfg -z myzone

zonecfg:myzone> add dataset

zonecfg:myzone:dataset> set name=mypool/myzonefs

zonecfg:myzone:dataset> end

zonecfg:myzone> commit

zonecfg:myzone> exit

Next, boot the zone.

zoneadm -z myzone boot

For the remainder of this sequence, open multiple terminal window, one in the global zone, and
the other in the non-global zone. Log in to the zone. It may take a few seconds for the zone to
boot.

zlogin myzone

[Connected to zone ’myzone’ pts/1]

Last login: Fri Feb 23 12:55:14 on console

Sun Microsystems Inc. SunOS 5.11 snv_55 October 2007

List the ZFS file systems in the zone.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 8.56M 158M 30.5K /mypool

mypool/myzonefs 24.5K 9.98M 24.5K /mypool/myzonefs

The 10 Mbyte maximum that is set from the external quota and the other file systems in the pool
are not visible from the non-global zone. Administering file systems in the non-global zone is
just like in the global zone. However, you are limited to operating with the mypool/myzonefs
space.

Try to create a file system outside of the mypool/myzonefs space.

zfs create mypool/myzonefs1

cannot create ’mypool/myzonefs1’: permission denied

Create a new ZFS file system and list the file systems.

Using ZFS with Solaris Zones

Chapter 1 • ZFS Demonstration Tutorial 35

zfs create mypool/myzonefs/user1

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 8.59M 158M 30.5K /mypool

mypool/myzonefs 49K 9.95M 24.5K /mypool/myzonefs

mypool/myzonefs/user1 24.5K 9.95M 24.5K /mypool/myzonefs/user1

This file system is administered by the zone administrator, not the global administrator.

Apply a quota to the new file system, but it cannot be more than 10 Mbytes because that's the
limit available to all of the file systems below mypool/myzonefs.

zfs set quota=5m mypool/myzonefs/user1

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 8.59M 158M 30.5K /mypool

mypool/myzonefs 50K 9.95M 25.5K /mypool/myzonefs

mypool/myzonefs/user1 24.5K 4.98M 24.5K /mypool/myzonefs/user1

Properties specified in the global zone are inherited by the local zone.

zfs get -r compression mypool

NAME PROPERTY VALUE SOURCE

mypool compression off default

mypool/myzonefs compression off default

mypool/myzonefs/user1 compression off default

In the global zone, set the compression on the file system.

global-zone# zfs set compression=on mypool/myzonefs

In the non-global zone, display the compression property for the file systems.

non-global zone# zfs get -r compression mypool

NAME PROPERTY VALUE SOURCE

mypool compression off default

mypool/myzonefs compression on local

mypool/myzonefs/user1 compression on inherited from mypool/myzonefs

The compression property has been inherited, but the local zone administrator can change it if
desired. The non-global zone administrator can take snapshots, create descendant file systems,
backup and create clones, and so on.

In the non-global zone, take a snapshot of the file system.

zfs snapshot mypool/myzonefs@first

zfs list

NAME USED AVAIL REFER MOUNTPOINT

Using ZFS with Solaris Zones

ZFS Demonstration Tutorial • July 200736

mypool 8.59M 158M 30.5K /mypool

mypool/myzonefs 50K 9.95M 25.5K /mypool/myzonefs

mypool/myzonefs@first 0 - 25.5K -

mypool/myzonefs/user1 24.5K 4.98M 24.5K /mypool/myzonefs/user1

Next, stop the zone, remember to do this in the non-global zone, not the global zone.

halt

[Connection to zone ’myzone’ pts/1 closed]

In the global zone, remove and destroy the zone file system.

zonecfg -z myzone

zonecfg:myzone> remove dataset name=mypool/myzonefs

zonecfg:myzone> commit

zonecfg:myzone> exit

zfs destroy -r mypool/myzonefs

Key Messages – Zones, like ZFS, is great technology. Combining the two is easy and simple to
manage system, but with true separation of resources between the zones.

Why This Feature is Important – Most customers want to increase the utilization of their
resources. Using Solaris zones is a good way to do this. ZFS allows simple and easy management
of file systems within a zone and can support the separation of resources between zones. You
can limit the storage that is used by a single zone, without the complexity of having to manage
multiple storage devices, which has a high risk of breaking security, if incorrectly configured.

Using ZFS Volumes
Goal of Demo Component – Show that ZFS can also present a volume interface for
applications that require raw or block-based data storage, but want to take advantage of the ease
of management, redundancy features, and other ZFS improvements.

What You Need to Do Create a ZFS volume that is 50 Mbytes in size.

zfs create -V 50M mypool/myvol

Confirm that the volume is created.

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 50.1M 109M 25.5K /mypool

mypool/myfs 24.5K 109M 24.5K /mypool/myfs

mypool/myvol 22.5K 159M 22.5K -

Using ZFS Volumes

Chapter 1 • ZFS Demonstration Tutorial 37

Note – No mount point is listed because volumes are not mountable. ZFS guarantees that 50
Mbytes are available. The other file systems' available space has been reduced by 50 Mbytes.

For demo purposes, create a UFS file system on the ZFS volume. For example:

newfs /dev/zvol/rdsk/mypool/myvol

newfs: construct a new file system /dev/zvol/rdsk/mypool/myvol: (y/n)? y

Warning: 2082 sector(s) in last cylinder unallocated

/dev/zvol/rdsk/mypool/myvol: 102366 sectors in 17 cylinders of 48 tracks,

128 sectors

50.0MB in 2 cyl groups (14 c/g, 42.00MB/g, 20160 i/g)

super-block backups (for fsck -F ufs -o b=#) at:

32, 86176,

This UFS file system now benefits from the capabilities of ZFS. For example, the volume is fully
checksummed and protected with redundancy. You can mount the file system (remember to
use the raw block device in /dev/zvol/dsk/mypool/myvol) if you want to really show it's doing
what it claims. Confirm that the space is used by the volume. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 50.1M 109M 25.5K /mypool

mypool/myfs 24.5K 109M 24.5K /mypool/myfs

mypool/myvol 5.05M 154M 5.05M -

Note that the myvol is using approximately 5 Mbytes, which is the amount of data touched by
the newfs command itself. The other file system cannot encroach on the remaining 45 Mbytes
because it is reserved. More on this later.

Lastly, destroy the volume to recover the space.

zfs destroy mypool/myvol

Key Messages – ZFS can present volumes to applications that prefer or require the use of
volumes. The volumes deliver all of the capabilities of ZFS, such as snapshots, checksummed
data, and intelligent prefetch, without the cost and overhead of an additional volume manager.
It is even possible (though not recommended) to create "sparse" volumes.

Why This Feature is Important – Some applications only deal with block based storage,
especially some database applications. The ZFS volume capability allows these applications to
continue to be used (and also benefit from the other ZFS features).

Using ZFS Volumes

ZFS Demonstration Tutorial • July 200738

ZFS Demonstration Clean Up
Destroy your ZFS storage pool to release all of the resources for the next demo.

zpool destroy mypool

zpool list

no pools available

ZFS Demonstration Clean Up

Chapter 1 • ZFS Demonstration Tutorial 39

40

	ZFS Demonstration Tutorial
	ZFS Demonstration Tutorial
	About this Document
	Preparatory Work
	Loading ZFS
	Physical Disks
	Virtualization
	Using UFS-Backed Files
	Zones
	Web-Based ZFS Management Tool

	About this Demonstration

	ZFS Command Summary
	Setting Up ZFS is Easy
	Creating a ZFS Storage Pool
	Creating a ZFS File System
	What You Need to Do

	Adding Disks to a ZFS Storage Pool
	Using Redundant ZFS Configurations

	Managing ZFS is Easy
	Adding Additional ZFS File Systems
	Setting Reservations on a ZFS File System
	Setting Quotas on a ZFS File System
	Sharing ZFS File Systems
	ZFS Snapshots for Data Recovery
	ZFS Property Inheritance
	Transferring ZFS Data
	Transforming ZFS Data (Compression)
	Advanced Management (ZFS Clones)
	Migrating ZFS Storage Pools
	Replacing Devices in Your ZFS Storage Pool
	Scrubbing a ZFS Storage Pool
	ZFS Checksum Recovery

	Using ZFS with Solaris Zones
	Using ZFS Volumes
	ZFS Demonstration Clean Up

