
Solaris ZFSAdministrationGuide

SunMicrosystems, Inc.
4150Network Circle
Santa Clara, CA95054
U.S.A.

Part No: 819–5461–11
November 2006

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. All rights reserved.

SunMicrosystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one ormore U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the SunMicrosystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distributionmay includematerials developed by third parties.

Parts of the product may be derived fromBerkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, SunMicrosystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by SunMicrosystems, Inc. Legato
NetWorker is a trademark or registered trademark of Legato Systems, Inc.

TheOPEN LOOK and SunTMGraphical User Interface was developed by SunMicrosystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license fromXerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOKGUIs and otherwise comply with Sun’s written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws andmay be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclearmaritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified onU.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS”ANDALLEXPRESSOR IMPLIEDCONDITIONS, REPRESENTATIONSANDWARRANTIES, INCLUDINGANY
IMPLIEDWARRANTYOFMERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEORNON-INFRINGEMENT,AREDISCLAIMED, EXCEPTTO
THE EXTENTTHAT SUCHDISCLAIMERSAREHELDTOBE LEGALLY INVALID.

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. Tous droits réservés.

SunMicrosystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis et
dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est unemarque déposée aux
Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, SunMicrosystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont desmarques de fabrique ou desmarques déposées de
SunMicrosystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont desmarques de fabrique ou desmarques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
SunMicrosystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par SunMicrosystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient
une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun quimettent en place l’interface
d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine enmatière de contrôle des exportations et
peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
desmissiles, des armes chimiques ou biologiques ou pour le nucléairemaritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais demanière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine enmatière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LADOCUMENTATIONEST FOURNIE "EN L’ETAT" ET TOUTESAUTRES CONDITIONS, DECLARATIONS ETGARANTIES EXPRESSESOUTACITES
SONT FORMELLEMENTEXCLUES, DANS LAMESUREAUTORISEE PAR LALOIAPPLICABLE, YCOMPRISNOTAMMENTTOUTEGARANTIE
IMPLICITE RELATIVEALAQUALITEMARCHANDE,AL’APTITUDEAUNEUTILISATIONPARTICULIEREOUAL’ABSENCEDECONTREFACON.

061030@15490

Contents

Preface ... 9

1 Solaris ZFS File System (Introduction) ...13
What’s New in ZFS? ...13

Support for ZFS in the Sun Cluster 3.2 Release ...14
Recursive ZFS Snapshots ...14
Double Parity RAID-Z (raidz2) ...14
Hot Spares for ZFS Storage Pool Devices ...14
Replacing a ZFS File SystemWith a ZFS Clone (zfs promote) ...15
Upgrading ZFS Storage Pools (zpool upgrade) ..15
ZFS Backup and Restore Commands are Renamed ...15
Recovering Destroyed Storage Pools ..15
ZFS is IntegratedWith FaultManager ...15
New zpool clearCommand ..16
Compact NFSv4ACLFormat ...16
File SystemMonitoring Tool (fsstat) ...16
ZFSWeb-BasedManagement ...17

What Is ZFS? ...17
ZFS Pooled Storage ...18
Transactional Semantics ..18
Checksums and Self-Healing Data ...19
Unparalleled Scalability ...19
ZFS Snapshots ...19
SimplifiedAdministration ...19

ZFS Terminology ..20
ZFS Component Naming Requirements ...21

3

2 Getting StartedWith ZFS ..23
ZFSHardware and Software Requirements and Recommendations ...23
Creating a Basic ZFS File System ..24
Creating a ZFS Storage Pool ..25

� Identifying Storage Requirements ..25
� Creating the ZFS Storage Pool ...25

Creating a ZFS File SystemHierarchy ..26
� Determining the ZFS File SystemHierarchy ...26
� Creating ZFS File Systems ..27

3 ZFS and Traditional File SystemDifferences ..29
ZFS File SystemGranularity ..29
ZFS SpaceAccounting ...30

Out of Space Behavior ..30
Mounting ZFS File Systems ...31
Traditional VolumeManagement ...31
New SolarisACLModel ...31

4 Managing ZFS Storage Pools ...33
Components of a ZFS Storage Pool ..33

Using Disks in a ZFS Storage Pool ..33
Using Files in a ZFS Storage Pool ..35
Virtual Devices in a Storage Pool ..35

Replication Features of a ZFS Storage Pool ...36
Mirrored Storage Pool Configuration ..36
RAID-Z Storage Pool Configuration ..36
Self-Healing Data in a Replicated Configuration ..37
Dynamic Striping in a Storage Pool ..37

Creating andDestroying ZFS Storage Pools ..38
Creating a ZFS Storage Pool ..38
Handling ZFS Storage Pool Creation Errors ...39
Destroying ZFS Storage Pools ...42

Managing Devices in ZFS Storage Pools ..43
Adding Devices to a Storage Pool ...43
Attaching andDetaching Devices in a Storage Pool ...44
Onlining andOfflining Devices in a Storage Pool ..44

Contents

Solaris ZFSAdministration Guide • November 20064

Clearing Storage Pool Devices ...46
Replacing Devices in a Storage Pool ...46
DesignatingHot Spares in Your Storage Pool ...47

Querying ZFS Storage Pool Status ..50
Basic ZFS Storage Pool Information ...50
ZFS Storage Pool I/O Statistics ..52
Health Status of ZFS Storage Pools ...54

Migrating ZFS Storage Pools ...56
Preparing for ZFS Storage PoolMigration ..56
Exporting a ZFS Storage Pool ..57
DeterminingAvailable Storage Pools to Import ...57
Finding ZFS Storage Pools FromAlternate Directories ...59
Importing ZFS Storage Pools ..60
Recovering Destroyed ZFS Storage Pools ..61
Upgrading ZFS Storage Pools ..63

5 Managing ZFS File Systems ..65
Creating andDestroying ZFS File Systems ..66

Creating a ZFS File System ..66
Destroying a ZFS File System ..66
Renaming a ZFS File System ..67

ZFS Properties ...68
Read-Only ZFS Properties ...73
Settable ZFS Properties ..73

Querying ZFS File System Information ...75
Listing Basic ZFS Information ..75
Creating Complex ZFSQueries ..76

Managing ZFS Properties ..77
Setting ZFS Properties ..77
Inheriting ZFS Properties ..78
Querying ZFS Properties ...79
Querying ZFS Properties for Scripting ...81

Mounting and Sharing ZFS File Systems ...81
Managing ZFSMount Points ..81
Mounting ZFS File Systems ...83
TemporaryMount Properties ...84

Contents

5

Unmounting ZFS File Systems ..85
Sharing ZFS File Systems ...85

ZFSQuotas and Reservations ...87
Setting Quotas on ZFS File Systems ..87
Setting Reservations on ZFS File Systems ..88

6 WorkingWith ZFS Snapshots and Clones ..91
ZFS Snapshots ...91

Creating andDestroying ZFS Snapshots ...92
Displaying andAccessing ZFS Snapshots ..93
Rolling Back to a ZFS Snapshot ...94

ZFS Clones ...95
Creating a ZFS Clone ..95
Destroying a ZFS Clone ...96
Replacing a ZFS File SystemWith a ZFS Clone ...96

Saving and Restoring ZFSData ...97
Saving ZFSDataWithOther Backup Products ...98
Saving a ZFS Snapshot ..98
Restoring a ZFS Snapshot ..98
Remote Replication of ZFSData ...99

7 UsingACLs to Protect ZFS Files ...101
New SolarisACLModel ...101

Syntax Descriptions for SettingACLs ..102
ACL Inheritance ..105
ACLPropertyModes ..106

SettingACLs on ZFS Files ..107
Setting andDisplayingACLs on ZFS Files in Verbose Format ...109

SettingACL Inheritance on ZFS Files in Verbose Format .. 115
Setting andDisplayingACLs on ZFS Files in Compact Format ...122

8 ZFSAdvanced Topics ...127
Emulated Volumes ..127

Emulated Volumes as Swap or DumpDevices ..128
Using ZFS on a Solaris SystemWith Zones Installed ...128

Adding ZFS File Systems to a Non-Global Zone ..128

Contents

Solaris ZFSAdministration Guide • November 20066

Delegating Datasets to a Non-Global Zone ...129
Adding ZFS Volumes to a Non-Global Zone ...130
Using ZFS Storage PoolsWithin a Zone ..130
PropertyManagementWithin a Zone ...130
Understanding the zoned Property ..131

ZFSAlternate Root Pools ...132
Creating ZFSAlternate Root Pools ...132
ImportingAlternate Root Pools ..133

ZFS Rights Profiles ..133

9 ZFS Troubleshooting and Data Recovery ..135
ZFS FailureModes ..135

Missing Devices in a ZFS Storage Pool ...136
DamagedDevices in a ZFS Storage Pool ..136
Corrupted ZFSData ...136

Checking ZFSData Integrity ...137
Data Repair ..137
Data Validation ...137
Controlling ZFSData Scrubbing ..137

Identifying Problems in ZFS ...139
Determining if Problems Exist in a ZFS Storage Pool ..139
Understanding zpool statusOutput ..140
SystemReporting of ZFS ErrorMessages ..142

Repairing a Damaged ZFS Configuration ...143
Repairing aMissing Device ...143

Physically Reattaching the Device ..144
Notifying ZFS of DeviceAvailability ..145

Repairing a DamagedDevice ..145
Determining the Type of Device Failure ..145
Clearing Transient Errors ..146
Replacing a Device in a ZFS Storage Pool ..147

Repairing DamagedData ...150
Identifying the Type of Data Corruption ...150
Repairing a Corrupted File or Directory ..151
Repairing ZFS Storage Pool-Wide Damage ...152

Repairing anUnbootable System ...152

Contents

7

Index ..153

Contents

Solaris ZFSAdministration Guide • November 20068

Preface

The Solaris ZFS Administration Guide provides information about setting up andmanaging
SolarisTM ZFS file systems.

This guide contains information for both SPARC® based and x86 based systems.

Note –This Solaris release supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC®, SPARC64,AMD64, Pentium, and Xeon EM64T. The supported systems
appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This
document cites any implementation differences between the platform types.

In this document these x86 termsmean the following:

� “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
� “x64” points out specific 64-bit information aboutAMD64 or EM64T systems.
� “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

WhoShouldUse This Book
This guide is intended for anyone who is interested in setting up andmanaging Solaris ZFS file
systems. Experience using the Solaris Operating System (OS) or another UNIX® version is
recommended.

HowThis Book IsOrganized
The following table describes the chapters in this book.

Chapter Description

Chapter 1 Provides an overview of ZFS and its features and benefits. It also covers some
basic concepts and terminology.

9

http://www.sun.com/bigadmin/hcl

Chapter Description

Chapter 2 Provides step-by-step instructions on setting up simple ZFS configurations
with simple pools and file systems. This chapter also provides the hardware
and software required to create ZFS file systems.

Chapter 3 Identifies important features that make ZFS significantly different from
traditional file systems. Understanding these key differences will help reduce
confusion when using traditional tools to interact with ZFS.

Chapter 4 Provides a detailed description of how to create and administer storage
pools.

Chapter 5 Provides detailed information aboutmanaging ZFS file systems. Included are
such concepts as hierarchical file system layout, property inheritance, and
automatic mount point management and share interactions.

Chapter 6 Describes how to create and administer ZFS snapshots and clones.

Chapter 7 Describes how to use access control lists (ACLs) to protect your ZFS files by
providingmore granular permissions then the standardUNIX permissions.

Chapter 8 Provides information on using emulated volumes, using ZFS on a Solaris
systemwith zones installed, and alternate root pools.

Chapter 9 Describes how to identify ZFS failuremodes and how to recover from them.
Steps for preventing failures are covered as well.

RelatedBooks
Related information about general Solaris system administration topics can be found in the
following books:

� Solaris SystemAdministration: Basic Administration
� Solaris SystemAdministration: Advanced Administration
� Solaris SystemAdministration: Devices and File Systems
� Solaris SystemAdministration: Security Services
� Solaris VolumeManager Administration Guide

Documentation, Support, andTraining
The Sunweb site provides information about the following additional resources:

� Documentation (http://www.sun.com/documentation/)
� Support (http://www.sun.com/support/)
� Training (http://www.sun.com/training/)

Preface

Solaris ZFSAdministration Guide • November 200610

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1TypographicConventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in theUser’s Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in CommandExamples
The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

11

12

Solaris ZFS File System (Introduction)

This chapter provides an overview of the SolarisTM ZFS file system and its features and benefits. This
chapter also covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

� “What’s New in ZFS?” on page 13
� “What Is ZFS?” on page 17
� “ZFS Terminology” on page 20
� “ZFS Component Naming Requirements” on page 21

For information about ZFS training courses, see the following descriptions:

http://www.sun.com/training/catalog/courses/SA-229-S10.xml

http://www.sun.com/training/catalog/courses/VC-SA-229-S10.xml

What’sNew inZFS?
This section summarizes new features in the ZFS file system that were added after the initial Solaris
Express December 2005 release.

� “Support for ZFS in the Sun Cluster 3.2 Release” on page 14
� “Recursive ZFS Snapshots” on page 14
� “Double Parity RAID-Z (raidz2)” on page 14
� “Hot Spares for ZFS Storage Pool Devices” on page 14
� “Replacing a ZFS File SystemWith a ZFS Clone (zfs promote)” on page 15
� “Upgrading ZFS Storage Pools (zpool upgrade)” on page 15
� “ZFS Backup and Restore Commands are Renamed” on page 15
� “Recovering Destroyed Storage Pools” on page 15
� “ZFS is IntegratedWith FaultManager” on page 15
� “New zpool clear Command” on page 16
� “Compact NFSv4ACLFormat” on page 16
� “File SystemMonitoring Tool (fsstat)” on page 16

1C H A P T E R 1

13

http://www.sun.com/training/catalog/courses/SA-229-S10.xml
http://www.sun.com/training/catalog/courses/VC-SA-229-S10.xml

� “ZFSWeb-BasedManagement” on page 17

Support for ZFS in the SunCluster 3.2 Release
ZFS is supported as a highly available local file system in the Sun Cluster 3.2 release. ZFS with SunTM

Cluster offers a best-class file-system solution combining high availability, data integrity,
performance, and scalability, covering the needs of themost demanding environments.

Formore information, see Sun Cluster Data Services Planning and Administration Guide for Solaris
OS.

Recursive ZFS Snapshots
Solaris 10 11/06 Release:When you use the zfs snapshot command to create a file system
snapshot, you can use the -r option to recursively create snapshots for all descendant file systems. In
addition, using the -r option recursively destroys all descendant snapshots when a snapshot is
destroyed.

Recursive ZFS snapshots are created extremely quickly and as one atomic operation, either all at once
or none at all. The benefit of atomic snapshot operations is that the snapshot data is always from one
consistent point in time, even across many descendant file systems.

Formore information, see “Creating andDestroying ZFS Snapshots” on page 92.

Double Parity RAID-Z (raidz2)
Solaris 10 11/06 Release:Areplicated RAID-Z configuration can now have either single- or
double-parity, whichmeans that one or two device failures can be sustained respectively, without any
data loss. You can specify the raidz2 keyword for a double-parity RAID-Z configuration. Or, you
can specify the raidz or raidz1 keyword for a single-parity RAID-Z configuration.

Formore information, see “Creating a Double-Parity RAID-Z Storage Pool” on page 39 or
zpool(1M).

Hot Spares for ZFS StoragePoolDevices
Solaris 10 11/06 Release:The ZFS hot spares feature enables you to identify disks that could be used
to replace a failed or faulted device in one ormore storage pools. Designating a device as a hot spare
means that if an active device in the pool fails, the hot spare automatically replaces the failed device.
Or, you canmanually replace a device in a storage pool with a hot spare.

Formore information, see “DesignatingHot Spares in Your Storage Pool” on page 47 and
zpool(1M).

What’s New in ZFS?

Solaris ZFSAdministration Guide • November 200614

Replacing aZFS File SystemWith aZFSClone (zfs
promote)
Solaris 10 11/06 Release: The zfs promote command enables you to replace an existing ZFS file
systemwith a clone of that file system. This feature is helpful when you want to run tests on an
alternative version of a file system and then, make that alternative version of the file system the active
file system.

Formore information, see “Replacing a ZFS File SystemWith a ZFS Clone” on page 96 and
zfs(1M).

Upgrading ZFS Storage Pools (zpool upgrade)
Solaris 10 6/06 Release:You can upgrade your storage pools to a newer version to take advantage of
the latest features by using the zpool upgrade command. In addition, the zpool status command
has beenmodified to notify you when your pools are running older versions.

Formore information, see “Upgrading ZFS Storage Pools” on page 63 and zpool(1M).

ZFSBackupandRestore Commands areRenamed
Solaris 10 6/06 Release: In this Solaris release, the zfs backup and zfs restore commands are
renamed to zfs send and zfs receive to more accurately describe their function. The function of
these commands is to save and restore ZFS data stream representations.

Formore information about these commands, see “Saving and Restoring ZFSData” on page 97.

RecoveringDestroyedStoragePools
Solaris 10 6/06 Release: This release includes the zpool import -D command, which enables you to
recover pools that were previously destroyed with the zpool destroy command.

Formore information, see “Recovering Destroyed ZFS Storage Pools” on page 61.

ZFS is IntegratedWith FaultManager
Solaris 10 6/06 Release:This release includes the integration of a ZFS diagnostic engine that is
capable of diagnosing and reporting pool failures and device failures. Checksum, I/O, device, and
pool errors associated with pool or device failures are also reported.

The diagnostic engine does not include predictive analysis of checksum and I/O errors, nor does it
include proactive actions based on fault analysis.

What’s New in ZFS?

Chapter 1 • Solaris ZFS File System (Introduction) 15

In the event of the ZFS failure, youmight see amessage similar to the following from fmd:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Fri Mar 10 11:09:06 MST 2006

PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: b55ee13b-cd74-4dff-8aff-ad575c372ef8

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

By reviewing the recommended action, which will be to follow themore specific directions in the
zpool status command, you will be able to quickly identify and resolve the failure.

For an example of recovering from a reported ZFS problem, see “Repairing aMissing Device”
on page 143.

New zpool clear Command
Solaris 10 6/06 Release: This release includes the zpool clear command for clearing error counts
associated with a device or the pool. Previously, error counts were cleared when a device in a pool was
brought online with the zpool online command. For more information, see zpool(1M) and
“Clearing Storage Pool Devices” on page 46.

CompactNFSv4ACLFormat
Solaris 10 6/06 Release: In this release, three NFSv4ACL formats are available: verbose, positional,
and compact. The new compact and positionalACL formats are available to set and displayACLs.
You can use the chmod command to set all 3ACL formats. You can use the ls -V command to display
compact and positionalACL formats and the ls -v command to display verboseACL formats.

Formore information, see “Setting andDisplayingACLs on ZFS Files in Compact Format” on page
122, chmod(1), and ls(1).

File SystemMonitoring Tool (fsstat)
Solaris 10 6/06 Release:Anew file systemmonitoring tool, fsstat, is available to report file system
operations.Activity can be reported bymount point or by file system type. The following example
shows general ZFS file system activity.

$ fsstat zfs

new name name attr attr lookup rddir read read write write

file remov chng get set ops ops ops bytes ops bytes

7.82M 5.92M 2.76M 1.02G 3.32M 5.60G 87.0M 363M 1.86T 20.9M 251G zfs

What’s New in ZFS?

Solaris ZFSAdministration Guide • November 200616

Formore information, see fsstat(1M).

ZFSWeb-BasedManagement
Solaris 10 6/06 Release:Aweb-based ZFSmanagement tool is available to performmany
administrative actions.With this tool, you can perform the following tasks:

� Create a new storage pool.
� Add capacity to an existing pool.
� Move (export) a storage pool to another system.
� Import a previously exported storage pool tomake it available on another system.
� View information about storage pools.
� Create a file system.
� Create a volume.
� Take a snapshot of a file system or a volume.
� Roll back a file system to a previous snapshot.

You can access the ZFSAdministration console through a secure web browser at the following URL:

https://system-name:6789/zfs

If you type the appropriate URLand are unable to reach the ZFSAdministration console, the server
might not be started. To start the server, run the following command:

/usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

/usr/sbin/smcwebserver enable

Note –You cannot use the SolarisManagement Console (smc) tomanage ZFS storage pools or file
systems.

What Is ZFS?
The Solaris ZFS file system is a revolutionary new file system that fundamentally changes the way file
systems are administered, with features and benefits not found in any other file system available
today. ZFS has been designed to be robust, scalable, and simple to administer.

What Is ZFS?

Chapter 1 • Solaris ZFS File System (Introduction) 17

ZFSPooled Storage
ZFS uses the concept of storage pools tomanage physical storage. Historically, file systems were
constructed on top of a single physical device. To address multiple devices and provide for data
redundancy, the concept of a volumemanagerwas introduced to provide the image of a single device
so that file systems would not have to bemodified to take advantage of multiple devices. This design
added another layer of complexity and ultimately prevented certain file system advances, because the
file system had no control over the physical placement of data on the virtualized volumes.

ZFS eliminates the volumemanagement altogether. Instead of forcing you to create virtualized
volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical
characteristics of the storage (device layout, data redundancy, and so on,) and acts as an arbitrary
data store fromwhich file systems can be created. File systems are no longer constrained to
individual devices, allowing them to share space with all file systems in the pool. You no longer need
to predetermine the size of a file system, as file systems grow automatically within the space allocated
to the storage pool.When new storage is added, all file systems within the pool can immediately use
the additional space without additional work. Inmany ways, the storage pool acts as a virtual
memory system.When amemory DIMM is added to a system, the operating system doesn’t force
you to invoke some commands to configure thememory and assign it to individual processes.All
processes on the system automatically use the additional memory.

Transactional Semantics
ZFS is a transactional file system, whichmeans that the file system state is always consistent on disk.
Traditional file systems overwrite data in place, whichmeans that if themachine loses power, for
example, between the time a data block is allocated and when it is linked into a directory, the file
systemwill be left in an inconsistent state. Historically, this problemwas solved through the use of
the fsck command. This commandwas responsible for going through and verifying file system state,
making an attempt to repair any inconsistencies in the process. This problem caused great pain to
administrators and was never guaranteed to fix all possible problems.More recently, file systems
have introduced the concept of journaling. The journaling process records action in a separate
journal, which can then be replayed safely if a system crash occurs. This process introduces
unnecessary overhead, because the data needs to be written twice, and often results in a new set of
problems, such as when the journal can’t be replayed properly.

With a transactional file system, data is managed using copy on write semantics. Data is never
overwritten, and any sequence of operations is either entirely committed or entirely ignored. This
mechanismmeans that the file system can never be corrupted through accidental loss of power or a
system crash. So, no need for a fsck equivalent exists.While themost recently written pieces of data
might be lost, the file system itself will always be consistent. In addition, synchronous data (written
using the O_DSYNC flag) is always guaranteed to be written before returning, so it is never lost.

What Is ZFS?

Solaris ZFSAdministration Guide • November 200618

ChecksumsandSelf-HealingData
With ZFS, all data andmetadata is checksummed using a user-selectable algorithm. Traditional file
systems that do provide checksumming have performed it on a per-block basis, out of necessity due
to the volumemanagement layer and traditional file system design. The traditional designmeans
that certain failuremodes, such as writing a complete block to an incorrect location, can result in
properly checksummed data that is actually incorrect. ZFS checksums are stored in a way such that
these failuremodes are detected and can be recovered from gracefully.All checksumming and data
recovery is done at the file system layer, and is transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of data
redundancy, includingmirroring and a variation on RAID-5.When a bad data block is detected, ZFS
fetches the correct data from another replicated copy, and repairs the bad data, replacing it with the
good copy.

Unparalleled Scalability
ZFS has been designed from the ground up to be themost scalable file system, ever. The file system
itself is 128-bit, allowing for 256 quadrillion zettabytes of storage.All metadata is allocated
dynamically, so no need exists to pre-allocate inodes or otherwise limit the scalability of the file
systemwhen it is first created.All the algorithms have been written with scalability inmind.
Directories can have up to 248 (256 trillion) entries, and no limit exists on the number of file systems
or number of files that can be contained within a file system.

ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and easily.
Initially, snapshots consume no additional space within the pool.

As data within the active dataset changes, the snapshot consumes space by continuing to reference
the old data.As a result, the snapshot prevents the data from being freed back to the pool.

SimplifiedAdministration
Most importantly, ZFS provides a greatly simplified administrationmodel. Through the use of
hierarchical file system layout, property inheritance, and automanagement of mount points andNFS
share semantics, ZFSmakes it easy to create andmanage file systems without needingmultiple
commands or editing configuration files. You can easily set quotas or reservations, turn compression
on or off, or managemount points for numerous file systems with a single command. Devices can be
examined or repaired without having to understand a separate set of volumemanager commands.
You can take an unlimited number of instantaneous snapshots of file systems. You can backup and
restore individual file systems.

What Is ZFS?

Chapter 1 • Solaris ZFS File System (Introduction) 19

ZFSmanages file systems through a hierarchy that allows for this simplifiedmanagement of
properties such as quotas, reservations, compression, andmount points. In this model, file systems
become the central point of control. File systems themselves are very cheap (equivalent to a new
directory), so you are encouraged to create a file system for each user, project, workspace, and so on.
This design allows you to define fine-grainedmanagement points.

ZFS Terminology
This section describes the basic terminology used throughout this book:

checksum A256-bit hash of the data in a file system block. The checksum capability can
range from the simple and fast fletcher2 (the default) to cryptographically strong
hashes such as SHA256.

clone Afile systemwhose initial contents are identical to the contents of a snapshot.

For information about clones, see “ZFS Clones” on page 95.

dataset Ageneric name for the following ZFS entities: clones, file systems, snapshots, or
volumes.

Each dataset is identified by a unique name in the ZFS namespace. Datasets are
identified using the following format:

pool/path[@snapshot]

pool Identifies the name of the storage pool that contains the dataset

path Is a slash-delimited path name for the dataset object

snapshot Is an optional component that identifies a snapshot of a dataset

Formore information about datasets, see Chapter 5.

file system Adataset that contains a standard POSIX file system.

Formore information about file systems, see Chapter 5.

mirror Avirtual device that stores identical copies of data on two ormore disks. If any
disk in amirror fails, any other disk in that mirror can provide the same data.

pool A logical group of devices describing the layout and physical characteristics of the
available storage. Space for datasets is allocated from a pool.

Formore information about storage pools, see Chapter 4.

RAID-Z Avirtual device that stores data and parity onmultiple disks, similar to RAID-5.
Formore information about RAID-Z, see “RAID-Z Storage Pool Configuration”
on page 36.

ZFS Terminology

Solaris ZFSAdministration Guide • November 200620

resilvering The process of transferring data from one device to another device is known as
resilvering. For example, if a mirror component is replaced or taken offline, the
data from the up-to-datemirror component is copied to the newly restoredmirror
component. This process is referred to asmirror resynchronization in traditional
volumemanagement products.

Formore information about ZFS resilvering, see “Viewing Resilvering Status”
on page 148.

snapshot Aread-only image of a file system or volume at a given point in time.

Formore information about snapshots, see “ZFS Snapshots” on page 91.

virtual device A logical device in a pool, which can be a physical device, a file, or a collection of
devices.

Formore information about virtual devices, see “Virtual Devices in a Storage
Pool” on page 35.

volume Adataset used to emulate a physical device. For example, you can create an
emulated volume as a swap device.

Formore information about emulated volumes, see “Emulated Volumes” on page
127.

ZFSComponentNamingRequirements
Each ZFS componentmust be named according to the following rules:

� Empty components are not allowed.
� Each component can only contain alphanumeric characters in addition to the following four

special characters:
� Underscore (_)
� Hyphen (-)
� Colon (:)
� Period (.)

� Pool namesmust begin with a letter, except that the beginning sequence c[0-9] is not allowed. In
addition, pool names that begin with mirror, raidz, or spare are not allowed as these name are
reserved.

� Dataset namesmust begin with an alphanumeric character.

ZFS Component Naming Requirements

Chapter 1 • Solaris ZFS File System (Introduction) 21

22

Getting StartedWith ZFS

This chapter provides step-by-step instructions on setting up simple ZFS configurations. By the end
of this chapter, you should have a basic idea of how the ZFS commands work, and should be able to
create simple pools and file systems. This chapter is not designed to be a comprehensive overview
and refers to later chapters formore detailed information.

The following sections are provided in this chapter:

� “ZFSHardware and Software Requirements and Recommendations” on page 23
� “Creating a Basic ZFS File System” on page 24
� “Creating a ZFS Storage Pool” on page 25
� “Creating a ZFS File SystemHierarchy” on page 26

ZFSHardware andSoftwareRequirements and
Recommendations

Make sure you review the following hardware and software requirements and recommendations
before attempting to use the ZFS software:

� ASPARC® or x86 system that is running the Solaris 10 6/06 release or later release.
� Theminimumdisk size is 128Mbytes. Theminimum amount of disk space required for a storage

pool is approximately 64Mbytes.
� Currently, theminimum amount of memory recommended to install a Solaris system is 512

Mbytes. However, for good ZFS performance, at least one Gbyte ormore of memory is
recommended.

� If you create amirrored disk configuration, multiple controllers are recommended.

2C H A P T E R 2

23

Creating aBasic ZFS File System
ZFS administration has been designed with simplicity inmind.Among the goals of the ZFS design is
to reduce the number of commands needed to create a usable file system.When you create a new
pool, a new ZFS file system is created andmounted automatically.

The following example illustrates how to create a storage pool named tank and a ZFS file system
name tank in one command.Assume that the whole disk /dev/dsk/c1t0d0 is available for use.

zpool create tank c1t0d0

The new ZFS file system, tank, can use asmuch of the disk space on c1t0d0 as needed, and is
automatically mounted at /tank.

mkfile 100m /tank/foo

df -h /tank

Filesystem size used avail capacity Mounted on

tank 80G 100M 80G 1% /tank

Within a pool, you will probably want to create additional file systems. File systems provide points of
administration that allow you tomanage different sets of data within the same pool.

The following example illustrates how to create a file system named fs in the storage pool tank.
Assume that the whole disk /dev/dsk/c1t0d0 is available for use.

zpool create tank c1t0d0

zfs create tank/fs

The new ZFS file system, tank/fs, can use asmuch of the disk space on c1t0d0 as needed, and is
automatically mounted at /tank/fs.

mkfile 100m /tank/fs/foo

df -h /tank/fs

Filesystem size used avail capacity Mounted on

tank/fs 80G 100M 80G 1% /tank/fs

Inmost cases, you will probably want to create and organize a hierarchy of file systems that matches
your organizational needs. Formore information about creating a hierarchy of ZFS file systems, see
“Creating a ZFS File SystemHierarchy” on page 26.

Creating a Basic ZFS File System

Solaris ZFSAdministration Guide • November 200624

Creating aZFS StoragePool
The previous example illustrates the simplicity of ZFS. The remainder of this chapter demonstrates a
more complete example similar to what you would encounter in your environment. The first tasks
are to identify your storage requirements and create a storage pool. The pool describes the physical
characteristics of the storage andmust be created before any file systems are created.

� Identifying StorageRequirements
Determine available devices.

Before creating a storage pool, youmust determine which devices will store your data. These devices
must be disks of at least 128Mbytes in size, and theymust not be in use by other parts of the
operating system. The devices can be individual slices on a preformatted disk, or they can be entire
disks that ZFS formats as a single large slice.

For the storage example used in “Creating the ZFS Storage Pool” on page 25, assume that the whole
disks /dev/dsk/c1t0d0 and /dev/dsk/c1t1d0 are available for use.

Formore information about disks and how they are used and labeled, see “Using Disks in a ZFS
Storage Pool” on page 33.

Choose data replication.

ZFS supports multiple types of data replication, which determines what types of hardware failures
the pool can withstand. ZFS supports nonredundant (striped) configurations, as well as mirroring
and RAID-Z (a variation on RAID-5).

For the storage example used in “Creating the ZFS Storage Pool” on page 25, basic mirroring of two
available disks is used.

Formore information about ZFS replication features, see “Replication Features of a ZFS Storage
Pool” on page 36.

� Creating theZFS StoragePool
Become root or assumean equivalent rolewith the appropriate ZFS rights profile.

Formore information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 133.

Pick a pool name.

The pool name is used to identify the storage pool when you are using the zpool or zfs commands.
Most systems require only a single pool, so you can pick any name that you prefer, provided it
satisfies the naming requirements outlined in “ZFS Component Naming Requirements” on page 21.

1

2

1

2

Creating a ZFS Storage Pool

Chapter 2 • Getting StartedWith ZFS 25

Create the pool.
For example, create amirrored pool that is named tank.
zpool create tank mirror c1t0d0 c1t1d0

If one ormore devices contains another file system or is otherwise in use, the command cannot
create the pool.

Caution –Do not add a disk that is currently configured as a SunCluster quorumdevice to a ZFS
storage pool.After the disk is added to a storage pool, then the disk can be configured as a quorum
device.

Formore information about creating storage pools, see “Creating a ZFS Storage Pool” on page 38.

Formore information about how device usage is determined, see “Detecting in Use Devices”
on page 39.

View the results.
You can determine if your pool was successfully created by using the zpool list command.
zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 80G 137K 80G 0% ONLINE -

Formore information about viewing pool status, see “Querying ZFS Storage Pool Status” on page
50.

Creating aZFS File SystemHierarchy
After creating a storage pool to store your data, you can create your file system hierarchy. Hierarchies
are simple yet powerful mechanisms for organizing information. They are also very familiar to
anyone who has used a file system.

ZFS allows file systems to be organized into arbitrary hierarchies, where each file system has only a
single parent. The root of the hierarchy is always the pool name. ZFS leverages this hierarchy by
supporting property inheritance so that common properties can be set quickly and easily on entire
trees of file systems.

� Determining theZFS File SystemHierarchy
Pick the file systemgranularity.
ZFS file systems are the central point of administration. They are lightweight and can be created
easily.Agoodmodel to use is a file system per user or project, as this model allows properties,
snapshots, and backups to be controlled on a per-user or per-project basis.

Two ZFS file systems, bonwick and billm, are created in “Creating ZFS File Systems” on page 27.

3

4

1

Creating a ZFS File SystemHierarchy

Solaris ZFSAdministration Guide • November 200626

Formore information onmanaging file systems, see Chapter 5.

Group similar file systems.

ZFS allows file systems to be organized into hierarchies so that similar file systems can be grouped.
This model provides a central point of administration for controlling properties and administering
file systems. Similar file systems should be created under a common name.

For the example in “Creating ZFS File Systems” on page 27, the two file systems are placed under a
file system named home.

Choose the file systemproperties.

Most file system characteristics are controlled by using simple properties. These properties control a
variety of behavior, including where the file systems aremounted, how they are shared, if they use
compression, and if any quotas are in effect.

For the example in “Creating ZFS File Systems” on page 27, all home directories aremounted at
/export/zfs/user, are shared by using NFS, and with compression enabled. In addition, a quota of
10 Gbytes on bonwick is enforced.

Formore information about properties, see “ZFS Properties” on page 68.

� CreatingZFS File Systems
Become root or assumean equivalent rolewith the appropriate ZFS rights profile.

Formore information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 133.

Create the desired hierarchy.

In this example, a file system that acts as a container for individual file systems is created.
zfs create tank/home

Next, individual file systems are grouped under the home file system in the pool tank.

Set the inherited properties.

After the file system hierarchy is established, set up any properties that should be shared among all
users:
zfs set mountpoint=/export/zfs tank/home

zfs set sharenfs=on tank/home

zfs set compression=on tank/home

zfs get compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression on local

Formore information about properties and property inheritance, see “ZFS Properties” on page 68.

2

3

1

2

3

Creating a ZFS File SystemHierarchy

Chapter 2 • Getting StartedWith ZFS 27

Create the individual file systems.

Note that the file systems could have been created and then the properties could have been changed
at the home level.All properties can be changed dynamically while file systems are in use.
zfs create tank/home/bonwick

zfs create tank/home/billm

These file systems inherit their property settings from their parent, so they are automatically
mounted at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

Formore information about creating file systems, see “Creating a ZFS File System” on page 66.

Formore information aboutmounting and sharing file systems, see “Mounting and Sharing ZFS File
Systems” on page 81.

Set the file system-specific properties.

In this example, user bonwick is assigned a quota of 10 Gbytes. This property places a limit on the
amount of space he can consume, regardless of howmuch space is available in the pool.
zfs set quota=10G tank/home/bonwick

View the results.

View available file system information by using the zfs list command:
zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 92.0K 67.0G 9.5K /tank

tank/home 24.0K 67.0G 8K /export/zfs

tank/home/billm 8K 67.0G 8K /export/zfs/billm

tank/home/bonwick 8K 10.0G 8K /export/zfs/bonwick

Note that the user bonwick only has 10 Gbytes of space available, while the user billm can use the full
pool (67 Gbytes).

Formore information about viewing file system status, see “Querying ZFS File System Information”
on page 75.

Formore information about how space is used and calculated, see “ZFS SpaceAccounting” on page
30.

4

5

6

Creating a ZFS File SystemHierarchy

Solaris ZFSAdministration Guide • November 200628

ZFS andTraditional File SystemDifferences

This chapter discusses some significant differences between ZFS and traditional file systems.
Understanding these key differences can help reduce confusion when using traditional tools to
interact with ZFS.

The following sections are provided in this chapter:

� “ZFS File SystemGranularity” on page 29
� “ZFS SpaceAccounting” on page 30
� “Out of Space Behavior” on page 30
� “Mounting ZFS File Systems” on page 31
� “Traditional VolumeManagement” on page 31
� “New SolarisACLModel” on page 31

ZFS File SystemGranularity
Historically, file systems have been constrained to one device so that the file systems themselves have
been constrained to the size of the device. Creating and re-creating traditional file systems because of
size constraints are time-consuming and sometimes difficult. Traditional volumemanagement
products helpedmanage this process.

Because ZFS file systems are not constrained to specific devices, they can be created easily and
quickly, similar to the way directories are created. ZFS file systems grow automatically within the
space allocated to the storage pool.

Instead of creating one file system, such as /export/home, to managemany user subdirectories, you
can create one file system per user. In addition, ZFS provides a file system hierarchy so that you can
easily set up andmanagemany file systems by applying properties that can be inherited by file
systems contained within the hierarchy.

For an example of creating a file system hierarchy, see “Creating a ZFS File SystemHierarchy”
on page 26.

3C H A P T E R 3

29

ZFS SpaceAccounting
ZFS is based on a concept of pooled storage. Unlike typical file systems, which aremapped to
physical storage, all ZFS file systems in a pool share the available storage in the pool. So, the available
space reported by utilities such as dfmight change even when the file system is inactive, as other file
systems in the pool consume or release space. Note that themaximumfile system size can be limited
by using quotas. For information about quotas, see “Setting Quotas on ZFS File Systems” on page
87. Space can be guaranteed to a file system by using reservations. For information about
reservations, see “Setting Reservations on ZFS File Systems” on page 88. This model is very similar
to the NFSmodel, wheremultiple directories aremounted from the same file system (consider
/home).

All metadata in ZFS is allocated dynamically. Most other file systems pre-allocatemuch of their
metadata.As a result, an immediate space cost at file system creation for this metadata is required.
This behavior alsomeans that the total number of files supported by the file systems is
predetermined. Because ZFS allocates its metadata as it needs it, no initial space cost is required, and
the number of files is limited only by the available space. The output from the df -g commandmust
be interpreted differently for ZFS than other file systems. The total files reported is only an
estimate based on the amount of storage that is available in the pool.

ZFS is a transactional file system.Most file systemmodifications are bundled into transaction groups
and committed to disk asynchronously. Until thesemodifications are committed to disk, they are
termed pending changes. The amount of space used, available, and referenced by a file or file system
does not consider pending changes. Pending changes are generally accounted for within a few
seconds. Even committing a change to disk by using fsync(3c) or O_SYNC does not necessarily
guarantee that the space usage information is updated immediately.

Out of SpaceBehavior
File system snapshots are inexpensive and easy to create in ZFS.Most likely, snapshots will be
common inmost ZFS environments. For information about ZFS snapshots, see Chapter 6.

The presence of snapshots can cause some unexpected behavior when you attempt to free space.
Typically, given appropriate permissions, you can remove a file from a full file system, and this action
results inmore space becoming available in the file system. However, if the file to be removed exists
in a snapshot of the file system, then no space is gained from the file deletion. The blocks used by the
file continue to be referenced from the snapshot.

As a result, the file deletion can consumemore disk space, because a new version of the directory
needs to be created to reflect the new state of the namespace. This behaviormeans that you can get an
unexpected ENOSPC or EDQUOTwhen attempting to remove a file.

ZFS SpaceAccounting

Solaris ZFSAdministration Guide • November 200630

MountingZFS File Systems
ZFS is designed to reduce complexity and ease administration. For example, with existing file
systems youmust edit the /etc/vfstab file every time you add a new file system. ZFS has eliminated
this requirement by automatically mounting and unmounting file systems according to the
properties of the dataset. You do not need tomanage ZFS entries in the /etc/vfstab file.

Formore information aboutmounting and sharing ZFS file systems, see “Mounting and Sharing ZFS
File Systems” on page 81.

Traditional VolumeManagement
As described in “ZFS Pooled Storage” on page 18, ZFS eliminates the need for a separate volume
manager. ZFS operates on raw devices, so it is possible to create a storage pool comprised of logical
volumes, either software or hardware. This configuration is not recommended, as ZFS works best
when it uses raw physical devices. Using logical volumesmight sacrifice performance, reliability, or
both, and should be avoided.

NewSolarisACLModel
Previous versions of the Solaris OS supported anACL implementation that was primarily based on
the POSIXACLdraft specification. The POSIX-draft basedACLs are used to protect UFS files.Anew
ACLmodel that is based on the NFSv4 specification is used to protect ZFS files.

Themain differences of the new SolarisACLmodel are as follows:

� Based on the NFSv4 specification and are similar to NT-styleACLs.
� Muchmore granular set of access privileges.
� Set and displayed with the chmod and ls commands rather than the setfacl and getfacl

commands.
� Richer inheritance semantics for designating how access privileges are applied from directory to

subdirectories, and so on.

Formore information about usingACLs with ZFS files, see Chapter 7.

NewSolarisACLModel

Chapter 3 • ZFS and Traditional File SystemDifferences 31

32

Managing ZFS Storage Pools

This chapter describes how to create and administer ZFS storage pools.

The following sections are provided in this chapter:

� “Components of a ZFS Storage Pool” on page 33
� “Creating andDestroying ZFS Storage Pools” on page 38
� “Managing Devices in ZFS Storage Pools” on page 43
� “Querying ZFS Storage Pool Status” on page 50
� “Migrating ZFS Storage Pools” on page 56
� “Upgrading ZFS Storage Pools” on page 63

Components of a ZFS StoragePool
This section provides detailed information about the following storage pool components:

� Disks
� Files
� Virtual devices

UsingDisks in a ZFS StoragePool
Themost basic element of a storage pool is a piece of physical storage. Physical storage can be any
block device of at least 128Mbytes in size. Typically, this device is a hard drive that is visible to the
system in the /dev/dsk directory.

Astorage device can be a whole disk (c1t0d0) or an individual slice (c0t0d0s7). The recommended
mode of operation is to use an entire disk, in which case the disk does not need to be specially
formatted. ZFS formats the disk using an EFI label to contain a single, large slice.When used in this
way, the partition table that is displayed by the format command appears similar to the following:

4C H A P T E R 4

33

Current partition table (original):

Total disk sectors available: 71670953 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 usr wm 34 34.18GB 71670953

1 unassigned wm 0 0 0

2 unassigned wm 0 0 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

7 unassigned wm 0 0 0

8 reserved wm 71670954 8.00MB 71687337

To use whole disks, the disksmust be named using the standard Solaris convention, such as
/dev/dsk/cXtXdXsX. Some third-party drivers use a different naming convention or place disks in a
location other than the /dev/dsk directory. To use these disks, youmustmanually label the disk and
provide a slice to ZFS.

ZFS applies an EFI label when you create a storage pool with whole disks. Disks can be labeled with a
traditional Solaris VTOC label when you create a storage pool with a disk slice.

Slices should only be used under the following conditions:

� The device name is nonstandard.
� Asingle disk is shared between ZFS and another file system, such as UFS.
� Adisk is used as a swap or a dump device.

Disks can be specified by using either the full path, such as /dev/dsk/c1t0d0, or a shorthand name
that consists of the device namewithin the /dev/dsk directory, such as c1t0d0. For example, the
following are valid disk names:

� c1t0d0

� /dev/dsk/c1t0d0

� c0t0d6s2

� /dev/foo/disk

Using whole physical disks is the simplest way to create ZFS storage pools. ZFS configurations
become progressivelymore complex, frommanagement, reliability, and performance perspectives,
when you build pools from disk slices, LUNs in hardware RAID arrays, or volumes presented by
software-based volumemanagers. The following considerationsmight help you determine how to
configure ZFS with other hardware or software storage solutions:

� If you construct ZFS configurations on top of LUNs from hardware RAID arrays, you need to
understand the relationship between ZFS redundancy features and the redundancy features
offered by the array. Certain configurationsmight provide adequate redundancy and
performance, but other configurationsmight not.

Components of a ZFS Storage Pool

Solaris ZFSAdministration Guide • November 200634

� You can construct logical devices for ZFS using volumes presented by software-based volume
managers, such as SolarisTM VolumeManager (SVM) or Veritas VolumeManager (VxVM).
However, these configurations are not recommended.While ZFS functions properly on such
devices, less-than-optimal performancemight be the result.

Disks are identified both by their path and by their device ID, if available. This method allows devices
to be reconfigured on a systemwithout having to update any ZFS state. If a disk is switched between
controller 1 and controller 2, ZFS uses the device ID to detect that the disk hasmoved and should
now be accessed using controller 2. The device ID is unique to the drive’s firmware.While unlikely,
some firmware updates have been known to change device IDs. If this situation happens, ZFS can
still access the device by path and update the stored device ID automatically. If you inadvertently
change both the path and the ID of the device, then export and re-import the pool in order to use it.

Using Files in a ZFS StoragePool
ZFS also allows you to use UFS files as virtual devices in your storage pool. This feature is aimed
primarily at testing and enabling simple experimentation, not for production use. The reason is that
any use of files relies on the underlying file system for consistency. If you create a ZFS pool backed
by files on a UFS file system, then you are implicitly relying onUFS to guarantee correctness and
synchronous semantics.

However, files can be quite useful when you are first trying out ZFS or experimenting withmore
complicated layouts when not enough physical devices are present.All files must be specified as
complete paths andmust be at least 128Mbytes in size. If a file is moved or renamed, the pool must
be exported and re-imported in order to use it, as no device ID is associated with files by which they
can be located.

Virtual Devices in a StoragePool
Each storage pool is comprised of one ormore virtual devices.Avirtual device is an internal
representation of the storage pool that describes the layout of physical storage and its fault
characteristics.As such, a virtual device represents the disk devices or files that are used to create the
storage pool.

Two top-level virtual devices provide data redundancy: mirror and RAID-Z virtual devices. These
virtual devices consist of disks, disk slices, or files.

Disks, disk slices, or files that are used in pools outside of mirrors and RAID-Z virtual devices,
function as top-level virtual devices themselves.

Storage pools typically containmultiple top-level virtual devices. ZFS dynamically stripes data
among all of the top-level virtual devices in a pool.

Components of a ZFS Storage Pool

Chapter 4 • Managing ZFS Storage Pools 35

Replication Features of a ZFS StoragePool
ZFS provides two levels of data redundancy in amirrored and a RAID-Z configuration.

Mirrored StoragePool Configuration
Amirrored storage pool configuration requires at least two disks, preferably on separate controllers.
Many disks can be used in amirrored configuration. In addition, you can createmore than one
mirror in each pool. Conceptually, a simplemirrored configuration would look similar to the
following:

mirror c1t0d0 c2t0d0

Conceptually, a more complexmirrored configuration would look similar to the following:

mirror c1t0d0 c2t0d0 c3t0d0 mirror c4t0d0 c5t0d0 c6t0d0

For information about creating amirrored storage pool, see “Creating aMirrored Storage Pool”
on page 38.

RAID-Z StoragePool Configuration
In addition to amirrored storage pool configuration, ZFS provides a RAID-Z configuration. RAID-Z
is similar to RAID-5.

All traditional RAID-5-like algorithms (RAID-4. RAID-5. RAID-6, RDP, and EVEN-ODD, for
example) suffer from a problem known as the “RAID-5 write hole.” If only part of a RAID-5 stripe is
written, and power is lost before all blocks havemade it to disk, the parity will remain out of sync
with the data, and therefore useless, forever (unless a subsequent full-stripe write overwrites it). In
RAID-Z, ZFS uses variable-width RAID stripes so that all writes are full-stripe writes. This design is
only possible because ZFS integrates file system and devicemanagement in such a way that the file
system’s metadata has enough information about the underlying data replicationmodel to handle
variable-width RAID stripes. RAID-Z is the world’s first software-only solution to the RAID-5 write
hole.

ARAID-Z configuration with N disks of size Xwith P parity disks can hold approximately (N-P)*X
bytes and can withstand one device failing before data integrity is compromised. You need at least
two disks for a single-parity RAID-Z configuration and at least three disks for a double-parity
RAID-Z configuration. For example, if you have three disks in a single-parity RAID-Z configuration,
parity data occupies space equal to one of the three disks. Otherwise, no special hardware is required
to create a RAID-Z configuration.

Conceptually, a RAID-Z configuration with three disks would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0

Replication Features of a ZFS Storage Pool

Solaris ZFSAdministration Guide • November 200636

Amore complex conceptual RAID-Z configuration would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0 c6t0d0 c7t0d0 raidz c8t0d0 c9t0d0 c10t0d0 c11t0d0

c12t0d0 c13t0d0 c14t0d0

If you are creating a RAID-Z configuration withmany disks, as in this example, a RAID-Z
configuration with 14 disks is better split into a two 7-disk groupings. RAID-Z configurations with
single-digit groupings of disks should perform better.

For information about creating a RAID-Z storage pool, see “Creating a Single-Parity RAID-Z
Storage Pool” on page 38 or “Creating a Double-Parity RAID-Z Storage Pool” on page 39

Formore information about choosing between amirrored configuration or a RAID-Z configuration
based on performance and space considerations, see the following blog:

http://blogs.sun.com/roller/page/roch?entry=when_to_and_not_to

Self-HealingData in aReplicatedConfiguration
ZFS provides for self-healing data in amirrored or RAID-Z configuration.

When a bad data block is detected, not only does ZFS fetch the correct data from another replicated
copy, but it also repairs the bad data by replacing it with the good copy.

Dynamic Striping in a StoragePool
For each virtual device that is added to the pool, ZFS dynamically stripes data across all available
devices. The decision about where to place data is done at write time, so no fixed width stripes are
created at allocation time.

When virtual devices are added to a pool, ZFS gradually allocates data to the new device in order to
maintain performance and space allocation policies. Each virtual device can also be amirror or a
RAID-Z device that contains other disk devices or files. This configuration allows for flexibility in
controlling the fault characteristics of your pool. For example, you could create the following
configurations out of 4 disks:

� Four disks using dynamic striping
� One four-way RAID-Z configuration
� Two two-waymirrors using dynamic striping

While ZFS supports combining different types of virtual devices within the same pool, this practice is
not recommended. For example, you can create a pool with a two-waymirror and a three-way
RAID-Z configuration. However, your fault tolerance is as good as your worst virtual device,
RAID-Z in this case. The recommended practice is to use top-level virtual devices of the same type
with the same replication level in each device.

Replication Features of a ZFS Storage Pool

Chapter 4 • Managing ZFS Storage Pools 37

http://blogs.sun.com/roller/page/roch?entry=when_to_and_not_to

Creating andDestroyingZFS StoragePools
By design, creating and destroying pools is fast and easy. However, be cautious when doing these
operations.Although checks are performed to prevent using devices known to be in use in a new
pool, ZFS cannot always knowwhen a device is already in use. Destroying a pool is even easier. Use
zpool destroywith caution. This is a simple command with significant consequences. For
information about destroy pools, see “Destroying ZFS Storage Pools” on page 42.

Creating aZFS StoragePool
To create a storage pool, use the zpool create command. This command takes a pool name and any
number of virtual devices as arguments. The pool namemust satisfy the naming conventions
outlined in “ZFS Component Naming Requirements” on page 21.

Caution –Do not add a disk that is currently configured as a SunCluster quorumdevice to a ZFS
storage pool.After the disk is added to a storage pool, then the disk can be configured as a quorum
device.

Creating aBasic StoragePool
The following command creates a new pool named tank that consists of the disks c1t0d0 and
c1t1d0:

zpool create tank c1t0d0 c1t1d0

These whole disks are found in the /dev/dsk directory and are labelled appropriately by ZFS to
contain a single, large slice. Data is dynamically striped across both disks.

Creating aMirrored StoragePool
To create amirrored pool, use the mirror keyword, followed by any number of storage devices that
will comprise themirror.Multiple mirrors can be specified by repeating the mirror keyword on the
command line. The following command creates a pool with two, two-waymirrors:

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data is
dynamically striped across bothmirrors, with data being replicated between each disk appropriately.

Creating a Single-Parity RAID-Z StoragePool
Creating a single-parity RAID-Z pool is identical to creating amirrored pool, except that the raidz
keyword is used instead of mirror. The following example shows how to create a pool with a single
RAID-Z device that consists of five disks:

zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

Creating andDestroying ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200638

This example demonstrates that disks can be specified by using their full paths. The
/dev/dsk/c5t0d0 device is identical to the c5t0d0 device.

Asimilar configuration could be created with disk slices. For example:

zpool create tank raidz c1t0d0s0 c2t0d0s0 c3t0d0s0 c4t0d0s0 c5t0d0s0

However, the disksmust be preformatted to have an appropriately sized slice zero.

Formore information about a RAID-Z configuration, see “RAID-Z Storage Pool Configuration”
on page 36.

Creating aDouble-Parity RAID-Z StoragePool
You can create a double-parity RAID-Z configuration by using the raidz2 keyword when the pool is
created. For example:

zpool create -f tank raidz2 c1t0d0 c2t0d0 c3t0d0

zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz2 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

errors: No known data errors

HandlingZFS StoragePool Creation Errors
Pool creation errors can occur formany reasons. Some of these reasons are obvious, such as when a
specified device doesn’t exist, while other reasons aremore subtle.

Detecting inUseDevices
Before formatting a device, ZFS first determines if the disk is in use by ZFS or some other part of the
operating system. If the disk is in use, youmight see errors such as the following:

zpool create tank c1t0d0 c1t1d0

invalid vdev specification

use ’-f’ to override the following errors:

Creating andDestroying ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 39

/dev/dsk/c1t0d0s0 is currently mounted on /. Please see umount(1M).

/dev/dsk/c1t0d0s1 is currently mounted on swap. Please see swap(1M).

/dev/dsk/c1t1d0s0 is part of active ZFS pool zeepool. Please see zpool(1M).

Some of these errors can be overridden by using the -f option, butmost errors cannot. The following
uses cannot be overridden by using the -f option, and youmustmanually correct them:

Mounted file system The disk or one of its slices contains a file system that is currently
mounted. To correct this error, use the umount command.

File system in /etc/vfstab The disk contains a file system that is listed in the /etc/vfstab file,
but the file system is not currently mounted. To correct this error,
remove or comment out the line in the /etc/vfstab file.

Dedicated dumpdevice The disk is in use as the dedicated dump device for the system. To
correct this error, use the dumpadm command.

Part of a ZFS pool The disk or file is part of an active ZFS storage pool. To correct this
error, use the zpool command to destroy the pool.

The following in-use checks serve as helpful warnings and can be overridden by using the -f option
to create the pool:

Contains a file system The disk contains a known file system, though it is not mounted and
doesn’t appear to be in use.

Part of volume The disk is part of an SVM volume.

Live upgrade The disk is in use as an alternate boot environment for Solaris Live
Upgrade.

Part of exported ZFS pool The disk is part of a storage pool that has been exported ormanually
removed from a system. In the latter case, the pool is reported as
potentially active, as the disk might or might not be a
network-attached drive in use by another system. Be cautious when
overriding a potentially active pool.

The following example demonstrates how the -f option is used:

zpool create tank c1t0d0

invalid vdev specification

use ’-f’ to override the following errors:

/dev/dsk/c1t0d0s0 contains a ufs filesystem.

zpool create -f tank c1t0d0

Ideally, correct the errors rather than use the -f option.

Creating andDestroying ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200640

MismatchedReplication Levels
Creating pools with virtual devices of different replication levels is not recommended. The zpool
command tries to prevent you from accidentally creating a pool withmismatched replication levels.
If you try to create a pool with such a configuration, you see errors similar to the following:

zpool create tank c1t0d0 mirror c2t0d0 c3t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: both disk and mirror vdevs are present

zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the -f option, though this practice is not recommended. The
command also warns you about creating amirrored or RAID-Z pool using devices of different sizes.
While this configuration is allowed, mismatched replication levels result in unused space on the
larger device, and requires the -f option to override the warning.

DoingaDryRunof StoragePool Creation
Because creating a pool can fail unexpectedly in different ways, and because formatting disks is such
a potentially harmful action, the zpool create command has an additional option, -n, which
simulates creating the pool without actually writing data to disk. This option performs the device
in-use checking and replication level validation, and reports any errors in the process. If no errors are
found, you see output similar to the following:

zpool create -n tank mirror c1t0d0 c1t1d0

would create ’tank’ with the following layout:

tank

mirror

c1t0d0

c1t1d0

Some errors cannot be detected without actually creating the pool. Themost common example is
specifying the same device twice in the same configuration. This error cannot be reliably detected
without writing the data itself, so the create -n command can report success and yet fail to create
the pool when run for real.

DefaultMount Point for StoragePools
When a pool is created, the default mount point for the root dataset is /pool-name. This directory
must either not exist or be empty. If the directory does not exist, it is automatically created. If the
directory is empty, the root dataset is mounted on top of the existing directory. To create a pool with a
different default mount point, use the -m option of the zpool create command:

Creating andDestroying ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 41

zpool create home c1t0d0

default mountpoint ’/home’ exists and is not empty

use ’-m’ option to specify a different default

zpool create -m /export/zfs home c1t0d0

zpool create home c1t0d0

default mountpoint ’/home’ exists and is not empty

use ’-m’ option to provide a different default

zpool create -m /export/zfs home c1t0d0

This command creates a new pool home and the home dataset with amount point of /export/zfs.

Formore information aboutmount points, see “Managing ZFSMount Points” on page 81.

DestroyingZFS StoragePools
Pools are destroyed by using the zpool destroy command. This command destroys the pool even if
it containsmounted datasets.

zpool destroy tank

Caution – Be very careful when you destroy a pool.Make sure you are destroying the right pool and
you always have copies of your data. If you accidentally destroy the wrong pool, you can attempt to
recover the pool. Formore information, see “Recovering Destroyed ZFS Storage Pools” on page 61.

Destroying aPoolWith FaultedDevices
The act of destroying a pool requires that data be written to disk to indicate that the pool is no longer
valid. This state information prevents the devices from showing up as a potential pool when you
perform an import. If one ormore devices are unavailable, the pool can still be destroyed. However,
the necessary state information won’t be written to these damaged devices.

These devices, when suitably repaired, are reported as potentially activewhen you create a new pool,
and appear as valid devices when you search for pools to import. If a pool has enough faulted devices
such that the pool itself is faulted (meaning that a top-level virtual device is faulted), then the
command prints a warning and cannot complete without the -f option. This option is necessary
because the pool cannot be opened, so whether data is stored there or not is unknown. For example:

zpool destroy tank

cannot destroy ’tank’: pool is faulted

use ’-f’ to force destruction anyway

zpool destroy -f tank

Formore information about pool and device health, see “Health Status of ZFS Storage Pools”
on page 54.

Creating andDestroying ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200642

Formore information about importing pools, see “Importing ZFS Storage Pools” on page 60.

ManagingDevices in ZFS StoragePools
Most of the basic information regarding devices is covered in “Components of a ZFS Storage Pool”
on page 33. Once a pool has been created, you can perform several tasks tomanage the physical
devices within the pool.

AddingDevices to a StoragePool
You can dynamically add space to a pool by adding a new top-level virtual device. This space is
immediately available to all datasets within the pool. To add a new virtual device to a pool, use the
zpool add command. For example:

zpool add zeepool mirror c2t1d0 c2t2d0

The format of the virtual devices is the same as for the zpool create command, and the same rules
apply. Devices are checked to determine if they are in use, and the command cannot change the
replication level without the -f option. The command also supports the -n option so that you can
perform a dry run. For example:

zpool add -n zeepool mirror c3t1d0 c3t2d0

would update ’zeepool’ to the following configuration:

zeepool

mirror

c1t0d0

c1t1d0

mirror

c2t1d0

c2t2d0

mirror

c3t1d0

c3t2d0

This command syntax would addmirrored devices c3t1d0 and c3t2d0 to zeepool’s existing
configuration.

Formore information about how virtual device validation is done, see “Detecting in Use Devices”
on page 39.

ManagingDevices in ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 43

Attaching andDetachingDevices in a StoragePool
In addition to the zpool add command, you can use the zpool attach command to add a new
device to an existingmirrored or non-mirrored device. For example:

zpool attach zeepool c1t1d0 c2t1d0

If the existing device is part of a two-waymirror, attaching the new device, creates a three-way
mirror, and so on. In either case, the new device begins to resilver immediately.

In this example, zeepool is an existing two-waymirror that is transformed to a three-waymirror by
attaching c2t1d0, the new device, to the existing device, c1t1d0.

You can use the zpool detach command to detach a device from a pool. For example:

zpool detach zeepool c2t1d0

However, this operation is refused if there are no other valid replicas of the data. For example:

zpool detach newpool c1t2d0

cannot detach c1t2d0: only applicable to mirror and replacing vdevs

Onlining andOffliningDevices in a StoragePool
ZFS allows individual devices to be taken offline or brought online.When hardware is unreliable or
not functioning properly, ZFS continues to read or write data to the device, assuming the condition is
only temporary. If the condition is not temporary, it is possible to instruct ZFS to ignore the device by
bringing it offline. ZFS does not send any requests to an offlined device.

Note –Devices do not need to be taken offline in order to replace them.

You can use the offline commandwhen you need to temporarily disconnect storage. For example,
if you need to physically disconnect an array from one set of Fibre Channel switches and connect the
array to a different set, you could take the LUNs offline from the array that was used in ZFS storage
pools.After the array was reconnected and operational on the new set of switches, you could then
bring the same LUNs online. Data that had been added to the storage pools while the LUNs were
offline would resilver to the LUNs after they were brought back online.

This scenario is possible assuming that the systems in question see the storage once it is attached to
the new switches, possibly through different controllers than before, and your pools are set up as
RAID-Z ormirrored configurations.

ManagingDevices in ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200644

Taking aDeviceOffline
You can take a device offline by using the zpool offline command. The device can be specified by
path or by short name, if the device is a disk. For example:

zpool offline tank c1t0d0

bringing device c1t0d0 offline

You cannot take a pool offline to the point where it becomes faulted. For example, you cannot take
offline two devices out of a RAID-Z configuration, nor can you take offline a top-level virtual device.

zpool offline tank c1t0d0

cannot offline c1t0d0: no valid replicas

Offlined devices show up in the OFFLINE state when you query pool status. For information about
querying pool status, see “Querying ZFS Storage Pool Status” on page 50.

By default, the offline state is persistent. The device remains offline when the system is rebooted.

To temporarily take a device offline, use the zpool offline -t option. For example:

zpool offline -t tank c1t0d0

bringing device ’c1t0d0’ offline

When the system is rebooted, this device is automatically returned to the ONLINE state.

Formore information on device health, see “Health Status of ZFS Storage Pools” on page 54.

Bringing aDeviceOnline
Once a device is taken offline, it can be restored by using the zpool online command:

zpool online tank c1t0d0

bringing device c1t0d0 online

When a device is brought online, any data that has been written to the pool is resynchronized to the
newly available device. Note that you cannot use device onlining to replace a disk. If you offline a
device, replace the drive, and try to bring it online, it remains in the faulted state.

If you attempt to online a faulted device, a message similar to the following is displayed from fmd:

zpool online tank c1t0d0

Bringing device c1t0d0 online

#

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Thu Aug 31 11:13:59 MDT 2006

PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

ManagingDevices in ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 45

EVENT-ID: e11d8245-d76a-e152-80c6-e63763ed7e4f

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

Formore information on replacing a faulted device, see “Repairing aMissing Device” on page 143.

Clearing StoragePoolDevices
If a device is taken offline due to a failure that causes errors to be listed in the zpool status output,
you can clear the error counts with the zpool clear command.

If specified with no arguments, this command clears all device errors within the pool. For example:

zpool clear tank

If one ormore devices are specified, this command only clear errors associated with the specified
devices. For example:

zpool clear tank c1t0d0

Formore information on clearing zpool errors, see “Clearing Transient Errors” on page 146.

ReplacingDevices in a StoragePool
You can replace a device in a storage pool by using the zpool replace command.

zpool replace tank c1t1d0 c1t2d0

In this example, the previous device, c1t1d0, is replaced by c1t2d0.

The replacement devicemust be greater than or equal to theminimum size of all the devices in a
mirror or RAID-Z configuration. If the replacement device is larger, the pool size in an unmirrored
or non RAID-Z configuration is increased when the replacement is complete.

Formore information about replacing devices, see “Repairing aMissing Device” on page 143 and
“Repairing a DamagedDevice” on page 145.

ManagingDevices in ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200646

DesignatingHot Spares inYour StoragePool
The hot spares feature enables you to identify disks that could be used to replace a failed or faulted
device in one ormore storage pools. Designating a device as a hot sparemeans that the device is not
an active device in a pool, but if an active device in the pool fails, the hot spare automatically replaces
the failed device.

Devices can be designated as hot spares in the following ways:

� When the pool is created with the zpool create command
� After the pool is created with the zpool add command
� Hot spare devices can be shared betweenmultiple pools

Designate devices as hot spares when the pool is created. For example:

zpool create zeepool mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t2d0 AVAIL

c2t2d0 AVAIL

Designate hot spares by adding them to a pool after the pool is created. For example:

zpool add -f zeepool spare c1t3d0 c2t3d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 AVAIL

ManagingDevices in ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 47

Multiple pools can share devices that are designated as hot spares. For example:

zpool create zeepool mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0

zpool create tank raidz c3t1d0 c4t1d0 spare c1t2d0 c2t2d0

Hot spares can be removed from a storage pool by using the zpool remove command. For example:

zpool remove zeepool c1t2d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

Ahot spare cannot be removed if it is currently used by the storage pool.

Currently, the zpool remove command can only be used to remove hot spares.

Activating andDeactivatingHot Spares inYour StoragePool
Hot spares are activated in the following ways:

� Manually replacement – Replace a failed device in a storage pool with a hot spare by using the
zpool replace command.

� Automatic replacement –When a fault is received, an FMAagent examines the pool to see if it
has any available hot spares. If so, it replaces the faulted device with an available spare.
If a hot spare that is currently in use fails, the agent detachs the spare and thereby cancels the
replacement. The agent then attempts to replace the device with another hot spare, if one is
available. This feature is currently limited by the fact that the ZFS diagnosis engine only emits
faults when a device disappears from the system.
Currently, no automated response is available to bring the original device back online. Youmust
explicitly take one of the actions described in the example below.A future enhancement will allow
ZFS to subscribe to hotplug events and automatically replace the affected device when it is
replaced on the system.

Manually replace a device with a hot spare by using the zpool replace command. For example:

ManagingDevices in ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200648

zpool replace zeepool c2t1d0 c2t3d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed with 0 errors on Fri Jun 2 13:44:40 2006

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

spare ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 INUSE currently in use

errors: No known data errors

Afaulted device is automatically replaced if a hot spare is available. For example:

zpool status -x

pool: zeepool

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-D3

scrub: resilver completed with 0 errors on Fri Jun 2 13:56:49 2006

config:

NAME STATE READ WRITE CKSUM

zeepool DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t2d0 ONLINE 0 0 0

spare DEGRADED 0 0 0

c2t1d0 UNAVAIL 0 0 0 cannot open

c2t3d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 INUSE currently in use

errors: No known data errors

Currently, three ways to deactivate hot spares are available:

� Canceling the hot spare by removing it from the storage pool

ManagingDevices in ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 49

� Replacing the original device with a hot spare
� Permanently swapping in the hot spare

After the faulted device is replaced, use the zpool detach command to return the hot spare back to
the spare set. For example:

zpool detach zeepool c2t3d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed with 0 errors on Fri Jun 2 13:58:35 2006

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t2e0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

c2t3d0 AVAIL

errors: No known data errors

QueryingZFS StoragePool Status
The zpool list command provides a number of ways to request information regarding pool status.
The information available generally falls into three categories: basic usage information, I/O statistics,
and health status.All three types of storage pool information are covered in this section.

Basic ZFS StoragePool Information
You can use the zpool list command to display basic information about pools.

Listing InformationAboutAll StoragePools
With no arguments, the command displays all the fields for all pools on the system. For example:

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

dozer 1.2T 384G 816G 32% ONLINE -

This output displays the following information:

Querying ZFS Storage Pool Status

Solaris ZFSAdministration Guide • November 200650

NAME The name of the pool.

SIZE The total size of the pool, equal to the sum of the size of all top-level virtual
devices.

USED The amount of space allocated by all datasets and internal metadata. Note that
this amount is different from the amount of space as reported at the file system
level.

Formore information about determining available file system space, see “ZFS
SpaceAccounting” on page 30.

AVAILABLE The amount of unallocated space in the pool.

CAPACITY (CAP) The amount of space used, expressed as a percentage of total space.

HEALTH The current health status of the pool.

Formore information about pool health, see “Health Status of ZFS Storage
Pools” on page 54.

ALTROOT The alternate root of the pool, if any.

Formore information about alternate root pools, see “ZFSAlternate Root
Pools” on page 132.

You can also gather statistics for a specific pool by specifying the pool name. For example:

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

Listing Specific StoragePool Statistics
Specific statistics can be requested by using the -o option. This option allows for custom reports or a
quick way to list pertinent information. For example, to list only the name and size of each pool, you
use the following syntax:

zpool list -o name,size

NAME SIZE

tank 80.0G

dozer 1.2T

The column names correspond to the properties that are listed in “Listing InformationAboutAll
Storage Pools” on page 50.

ScriptingZFS StoragePoolOutput
The default output for the zpool list command is designed for readability, and is not easy to use as
part of a shell script. To aid programmatic uses of the command, the -H option can be used to

Querying ZFS Storage Pool Status

Chapter 4 • Managing ZFS Storage Pools 51

suppress the column headings and separate fields by tabs, rather than by spaces. For example, to
request a simple list of all pool names on the system:

zpool list -Ho name

tank

dozer

Here is another example:

zpool list -H -o name,size

tank 80.0G

dozer 1.2T

ZFS StoragePool I/O Statistics
To request I/O statistics for a pool or specific virtual devices, use the zpool iostat command.
Similar to the iostat command, this command can display a static snapshot of all I/O activity so far,
as well as updated statistics for every specified interval. The following statistics are reported:

USED CAPACITY The amount of data currently stored in the pool or device. This figure
differs from the amount of space available to actual file systems by a small
amount due to internal implementation details.

Formore information about the difference between pool space and dataset
space, see “ZFS SpaceAccounting” on page 30.

AVAILABLE CAPACITY The amount of space available in the pool or device.As with the used
statistic, this amount differs from the amount of space available to datasets
by a small margin.

READ OPERATIONS The number of read I/O operations sent to the pool or device, including
metadata requests.

WRITE OPERATIONS The number of write I/O operations sent to the pool or device.

READ BANDWIDTH The bandwidth of all read operations (includingmetadata), expressed as
units per second.

WRITE BANDWIDTH The bandwidth of all write operations, expressed as units per second.

ListingPool-Wide Statistics
With no options, the zpool iostat command displays the accumulated statistics since boot for all
pools on the system. For example:

zpool iostat

capacity operations bandwidth

pool used avail read write read write

Querying ZFS Storage Pool Status

Solaris ZFSAdministration Guide • November 200652

---------- ----- ----- ----- ----- ----- -----

tank 100G 20.0G 1.2M 102K 1.2M 3.45K

dozer 12.3G 67.7G 132K 15.2K 32.1K 1.20K

Because these statistics are cumulative since boot, bandwidthmight appear low if the pool is
relatively idle. You can request amore accurate view of current bandwidth usage by specifying an
interval. For example:

zpool iostat tank 2

capacity operations bandwidth

pool used avail read write read write

---------- ----- ----- ----- ----- ----- -----

tank 100G 20.0G 1.2M 102K 1.2M 3.45K

tank 100G 20.0G 134 0 1.34K 0

tank 100G 20.0G 94 342 1.06K 4.1M

In this example, the command displays usage statistics only for the pool tank every two seconds until
you type Ctrl-C.Alternately, you can specify an additional count parameter, which causes the
command to terminate after the specified number of iterations. For example, zpool iostat 2 3
would print a summary every two seconds for three iterations, for a total of six seconds. If there is a
single pool, then the statistics are displayed on consecutive lines. If more than one pool exists, then
an additional dashed line delineates each iteration to provide visual separation.

ListingVirtual Device Statistics
In addition to pool-wide I/O statistics, the zpool iostat command can display statistics for specific
virtual devices. This command can be used to identify abnormally slow devices, or simply to observe
the distribution of I/O generated by ZFS. To request the complete virtual device layout as well as all
I/O statistics, use the zpool iostat -v command. For example:

zpool iostat -v

capacity operations bandwidth

tank used avail read write read write

---------- ----- ----- ----- ----- ----- -----

mirror 20.4G 59.6G 0 22 0 6.00K

c1t0d0 - - 1 295 11.2K 148K

c1t1d0 - - 1 299 11.2K 148K

---------- ----- ----- ----- ----- ----- -----

total 24.5K 149M 0 22 0 6.00K

Note two important things when viewing I/O statistics on a virtual device basis.

� First, space usage is only available for top-level virtual devices. The way in which space is
allocated amongmirror and RAID-Z virtual devices is particular to the implementation and not
easily expressed as a single number.

Querying ZFS Storage Pool Status

Chapter 4 • Managing ZFS Storage Pools 53

� Second, the numbersmight not add up exactly as you would expect them to. In particular,
operations across RAID-Z andmirrored devices will not be exactly equal. This difference is
particularly noticeable immediately after a pool is created, as a significant amount of I/O is done
directly to the disks as part of pool creation that is not accounted for at themirror level. Over
time, these numbers should gradually equalize, although broken, unresponsive, or offlined
devices can affect this symmetry as well.

You can use the same set of options (interval and count) when examining virtual device statistics.

Health Status of ZFS StoragePools
ZFS provides an integratedmethod of examining pool and device health. The health of a pool is
determined from the state of all its devices. This state information is displayed by using the zpool
status command. In addition, potential pool and device failures are reported by fmd and are
displayed on the system console and the /var/adm/messages file. This section describes how to
determine pool and device health. This chapter does not document how to repair or recover from
unhealthy pools. Formore information on troubleshooting and data recovery, see Chapter 9.

Each device can fall into one of the following states:

ONLINE The device is in normal working order.While some transient errors might still
occur, the device is otherwise in working order.

DEGRADED The virtual device has experienced failure but is still able to function. This state is
most commonwhen amirror or RAID-Z device has lost one ormore constituent
devices. The fault tolerance of the pool might be compromised, as a subsequent
fault in another devicemight be unrecoverable.

FAULTED The virtual device is completely inaccessible. This status typically indicates total
failure of the device, such that ZFS is incapable of sending or receiving data from it.
If a top-level virtual device is in this state, then the pool is completely inaccessible.

OFFLINE The virtual device has been explicitly taken offline by the administrator.

UNAVAILABLE The device or virtual device cannot be opened. In some cases, pools with
UNAVAILABLE devices appear in DEGRADEDmode. If a top-level virtual device is
unavailable, then nothing in the pool can be accessed.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED or
UNAVAILABLE, then the pool is also DEGRADED. If a top-level virtual device is FAULTED or OFFLINE, then
the pool is also FAULTED. Apool in the faulted state is completely inaccessible. No data can be
recovered until the necessary devices are attached or repaired.Apool in the degraded state continues
to run, but youmight not achieve the same level of data replication or data throughput than if the
pool were online.

Querying ZFS Storage Pool Status

Solaris ZFSAdministration Guide • November 200654

Basic StoragePoolHealth Status
The simplest way to request a quick overview of pool health status is to use the zpool status
command:

zpool status -x

all pools are healthy

Specific pools can be examined by specifying a pool name to the command.Any pool that is not in
the ONLINE state should be investigated for potential problems, as described in the next section.

DetailedHealth Status
You can request amore detailed health summary by using the -v option. For example:

zpool status -v tank

pool: tank

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist

for the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t0d0 FAULTED 0 0 0 cannot open

c1t1d0 ONLINE 0 0 0

errors: No known data errors

This output displays a complete description of why the pool is in its current state, including a
readable description of the problem and a link to a knowledge article formore information. Each
knowledge article provides up-to-date information on the best way to recover from your current
problem. Using the detailed configuration information, you should be able to determine which
device is damaged and how to repair the pool.

In the above example, the faulted device should be replaced.After the device is replaced, use the
zpool online command to bring the device back online. For example:

zpool online tank c1t0d0

Bringing device c1t0d0 online

zpool status -x

all pools are healthy

If a pool has an offlined device, the command output identifies the problem pool. For example:

Querying ZFS Storage Pool Status

Chapter 4 • Managing ZFS Storage Pools 55

zpool status -x

pool: tank

state: DEGRADED

status: One or more devices has been taken offline by the adminstrator.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Online the device using ’zpool online’ or replace the device with

’zpool replace’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 OFFLINE 0 0 0

errors: No known data errors

The READ and WRITE columns provides a count of I/O errors seen on the device, while the CKSUM
column provides a count of uncorrectable checksum errors that occurred on the device. Both of these
error counts likely indicate potential device failure, and some corrective action is needed. If non-zero
errors are reported for a top-level virtual device, portions of your datamight have become
inaccessible. The errors count identifies any known data errors.

In the example output above, the offlined device is not causing data errors.

Formore information about diagnosing and repairing faulted pools and data, see Chapter 9.

MigratingZFS StoragePools
Occasionally, youmight need tomove a storage pool betweenmachines. To do so, the storage devices
must be disconnected from the original machine and reconnected to the destinationmachine. This
task can be accomplished by physically recabling the devices, or by usingmultiported devices such as
the devices on a SAN. ZFS enables you to export the pool from onemachine and import it on the
destinationmachine, even if themachines are of different endianness. For information about
replicating ormigrating file systems between different storage pools, whichmight reside on different
machines, see “Saving and Restoring ZFSData” on page 97.

Preparing for ZFS StoragePoolMigration
Storage pools should be explicitly exported to indicate that they are ready to bemigrated. This
operation flushes any unwritten data to disk, writes data to the disk indicating that the export was
done, and removes all knowledge of the pool from the system.

Migrating ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200656

If you do not explicitly export the pool, but instead remove the disksmanually, you can still import
the resulting pool on another system. However, youmight lose the last few seconds of data
transactions, and the pool will appear faulted on the original machine because the devices are no
longer present. By default, the destinationmachine refuses to import a pool that has not been
explicitly exported. This condition is necessary to prevent accidentally importing an active pool that
consists of network attached storage that is still in use on another system.

Exporting aZFS StoragePool
To export a pool, use the zpool export command. For example:

zpool export tank

Once this command is executed, the pool tank is no longer visible on the system. The command
attempts to unmount anymounted file systems within the pool before continuing. If any of the file
systems fail to unmount, you can forcefully unmount them by using the -f option. For example:

zpool export tank

cannot unmount ’/export/home/eschrock’: Device busy

zpool export -f tank

If devices are unavailable at the time of export, the disks cannot be specified as cleanly exported. If
one of these devices is later attached to a systemwithout any of the working devices, it appears as
“potentially active.” If emulated volumes are in use in the pool, the pool cannot be exported, even
with the -f option. To export a pool with an emulated volume, first make sure that all consumers of
the volume are no longer active.

Formore information about emulated volumes, see “Emulated Volumes” on page 127.

DeterminingAvailable StoragePools to Import
Once the pool has been removed from the system (either through export or by forcefully removing
the devices), attach the devices to the target system.Although ZFS can handle some situations in
which only a portion of the devices is available, all devices within the pool must bemoved between
the systems. The devices do not necessarily have to be attached under the same device name. ZFS
detects anymoved or renamed devices, and adjusts the configuration appropriately. To discover
available pools, run the zpool import command with no options. For example:

zpool import

pool: tank

id: 3778921145927357706

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

Migrating ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 57

tank ONLINE

mirror ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In this example, the pool tank is available to be imported on the target system. Each pool is identified
by a name as well as a unique numeric identifier. If multiple pools available to import have the same
name, you can use the numeric identifier to distinguish between them.

Similar to the zpool status command, the zpool import command refers to a knowledge article
available on the web with themost up-to-date information regarding repair procedures for a
problem that is preventing a pool from being imported. In this case, the user can force the pool to be
imported. However, importing a pool that is currently in use by another system over a storage
network can result in data corruption and panics as both systems attempt to write to the same
storage. If some devices in the pool are not available but enough redundancy is available to have a
usable pool, the pool appears in the DEGRADED state. For example:

zpool import

pool: tank

id: 3778921145927357706

state: DEGRADED

status: One or more devices are missing from the system.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.

see: http://www.sun.com/msg/ZFS-8000-2Q

config:

tank DEGRADED

mirror DEGRADED

c1t0d0 UNAVAIL cannot open

c1t1d0 ONLINE

In this example, the first disk is damaged ormissing, though you can still import the pool because the
mirrored data is still accessible. If toomany faulted ormissing devices are present, the pool cannot be
imported. For example:

zpool import

pool: dozer

id: 12090808386336829175

state: FAULTED

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://www.sun.com/msg/ZFS-8000-6X

config:

raidz FAULTED

c1t0d0 ONLINE

Migrating ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200658

c1t1d0 FAULTED

c1t2d0 ONLINE

c1t3d0 FAULTED

In this example, two disks aremissing from a RAID-Z virtual device, whichmeans that sufficient
replicated data is not available to reconstruct the pool. In some cases, not enough devices are present
to determine the complete configuration. In this case, ZFS doesn’t knowwhat other devices were
part of the pool, though ZFS does report as much information as possible about the situation. For
example:

zpool import

pool: dozer

id: 12090808386336829175

state: FAULTED

status: One or more devices are missing from the system.

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://www.sun.com/msg/ZFS-8000-6X

config:

dozer FAULTED missing device

raidz ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

c1t2d0 ONLINE

c1t3d0 ONLINE

Additional devices are known to be part of this pool, though their

exact configuration cannot be determined.

FindingZFS StoragePools FromAlternateDirectories
By default, the zpool import command only searches devices within the /dev/dsk directory. If
devices exist in another directory, or you are using pools backed by files, youmust use the -d option
to search different directories. For example:

zpool create dozer /file/a /file/b

zpool export dozer

zpool import

no pools available

zpool import -d /file

pool: dozer

id: 672153753596386982

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

Migrating ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 59

/file/a ONLINE

/file/b ONLINE

zpool import -d /file dozer

If devices exist inmultiple directories, you can specifymultiple -d options.

ImportingZFS StoragePools
Once a pool has been identified for import, you can import it by specifying the name of the pool or its
numeric identifier as an argument to the zpool import command. For example:

zpool import tank

If multiple available pools have the same name, you can specify which pool to import using the
numeric identifier. For example:

zpool import

pool: dozer

id: 2704475622193776801

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t9d0 ONLINE

pool: dozer

id: 6223921996155991199

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t8d0 ONLINE

zpool import dozer

cannot import ’dozer’: more than one matching pool

import by numeric ID instead

zpool import 6223921996155991199

If the pool name conflicts with an existing pool name, you can import the pool under a different
name. For example:

zpool import dozer zeepool

Migrating ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200660

This command imports the exported pool dozer using the new name zeepool. If the pool was not
cleanly exported, ZFS requires the -f flag to prevent users from accidentally importing a pool that is
still in use on another system. For example:

zpool import dozer

cannot import ’dozer’: pool may be in use on another system

use ’-f’ to import anyway

zpool import -f dozer

Pools can also be imported under an alternate root by using the -R option. Formore information on
alternate root pools, see “ZFSAlternate Root Pools” on page 132.

RecoveringDestroyedZFS StoragePools
You can use the zpool import -D command to recover a storage pool that has been destroyed. For
example:

zpool destroy tank

zpool import -D

pool: tank

id: 3778921145927357706

state: ONLINE (DESTROYED)

action: The pool can be imported using its name or numeric identifier. The

pool was destroyed, but can be imported using the ’-Df’ flags.

config:

tank ONLINE

mirror ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In the above zpool import output, you can identify this pool as the destroyed pool because of the
following state information:

state: ONLINE (DESTROYED)

To recover the destroyed pool, issue the zpool import -D command again with the pool to be
recovered and the -f option. For example:

zpool import -Df tank

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

Migrating ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 61

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

If one of the devices in the destroyed pool is faulted or unavailable, youmight be able to recover the
destroyed pool anyway. In this scenario, import the degraded pool and then attempt to fix the device
failure. For example:

zpool destroy dozer

zpool import -D

pool: dozer

id:

state: DEGRADED (DESTROYED)

status: One or more devices are missing from the system.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported. The

pool was destroyed, but can be imported using the ’-Df’ flags.

see: http://www.sun.com/msg/ZFS-8000-2Q

config:

dozer DEGRADED

raidz ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

c1t2d0 UNAVAIL cannot open

c1t3d0 ONLINE

zpool import -Df dozer

zpool status -x

pool: dozer

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-D3

scrub: resilver completed with 0 errors on Fri Mar 17 16:11:35 2006

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

raidz ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c1t2d0 UNAVAIL 0 0 0 cannot open

Migrating ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200662

c1t3d0 ONLINE 0 0 0

errors: No known data errors

zpool online dozer c1t2d0

Bringing device c1t2d0 online

zpool status -x

all pools are healthy

UpgradingZFS StoragePools
If you have ZFS storage pools from a previous Solaris release, such as the Solaris 10 6/06 release, you
can upgrade your pools with the zpool upgrade command to take advantage of the pool features in
the Solaris 10 11/06 release. In addition, the zpool status command has beenmodified to notify
you when your pools are running older versions. For example:

zpool status

pool: test

state: ONLINE

status: The pool is formatted using an older on-disk format. The pool can

still be used, but some features are unavailable.

action: Upgrade the pool using ’zpool upgrade’. Once this is done, the

pool will no longer be accessible on older software versions.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

test ONLINE 0 0 0

c1t27d0 ONLINE 0 0 0

errors: No known data errors

You can use the following syntax to identify additional information about a particular version and
supported releases.

zpool upgrade -v

This system is currently running ZFS version 3.

The following versions are supported:

VER DESCRIPTION

--- --

1 Initial ZFS version

2 Ditto blocks (replicated metadata)

3 Hot spares and double parity RAID-Z

For more information on a particular version, including supported releases, see:

Migrating ZFS Storage Pools

Chapter 4 • Managing ZFS Storage Pools 63

http://www.opensolaris.org/os/community/zfs/version/N

Where ’N’ is the version number.

Then, you can run the zpool upgrade command to upgrade your pools. For example:

zpool upgrade -a

Note – If you upgrade your pools to the latest version, they will not be accessible on systems that run
older ZFS versions.

Migrating ZFS Storage Pools

Solaris ZFSAdministration Guide • November 200664

Managing ZFS File Systems

This chapter provides detailed information aboutmanaging SolarisTM ZFS file systems. Concepts
such as hierarchical file system layout, property inheritance, and automatic mount point
management and share interactions are included in this chapter.

AZFS file system is a lightweight POSIX file system that is built on top of a storage pool. File systems
can be dynamically created and destroyed without requiring you to allocate or format any underlying
space. Because file systems are so lightweight and because they are the central point of administration
in ZFS, you are likely to createmany of them.

ZFS file systems are administered by using the zfs command. The zfs command provides a set of
subcommands that perform specific operations on file systems. This chapter describes these
subcommands in detail. Snapshots, volumes, and clones are alsomanaged by using this command,
but these features are only covered briefly in this chapter. For detailed information about snapshots
and clones, see Chapter 6. For detailed information about emulated volumes, see “Emulated
Volumes” on page 127.

Note –The term dataset is used in this chapter as a generic term to refer to a file system, snapshot,
clone, or volume.

The following sections are provided in this chapter:

� “Creating andDestroying ZFS File Systems” on page 66
� “ZFS Properties” on page 68
� “Querying ZFS File System Information” on page 75
� “Managing ZFS Properties” on page 77
� “Mounting and Sharing ZFS File Systems” on page 81
� “ZFSQuotas and Reservations” on page 87
� “Saving and Restoring ZFSData” on page 97

5C H A P T E R 5

65

Creating andDestroyingZFS File Systems
ZFS file systems can be created and destroyed by using the zfs create and zfs destroy commands.

Creating aZFS File System
ZFS file systems are created by using the zfs create command. The create subcommand takes a
single argument: the name of the file system to create. The file system name is specified as a path
name starting from the name of the pool:

pool-name/[filesystem-name/]filesystem-name

The pool name and initial file system names in the path identify the location in the hierarchy where
the new file systemwill be created.All the intermediate file system namesmust already exist in the
pool. The last name in the path identifies the name of the file system to be created. The file system
namemust satisfy the naming conventions defined in “ZFS Component Naming Requirements”
on page 21.

In the following example, a file system named bonwick is created in the tank/home file system.

zfs create tank/home/bonwick

ZFS automatically mounts the newly created file system if it is created successfully. By default, file
systems aremounted as /dataset, using the path provided for the file system name in the create
subcommand. In this example, the newly created bonwick file system is at /tank/home/bonwick. For
more information about automanagedmount points, see “Managing ZFSMount Points” on page
81.

For more information about the zfs create command, see zfs(1M).

Destroying aZFS File System
To destroy a ZFS file system, use the zfs destroy command. The destroyed file system is
automatically unmounted and unshared. Formore information about automanagedmounts or
automanaged shares, see “AutomaticMount Points” on page 82.

In the following example, the tabriz file system is destroyed.

zfs destroy tank/home/tabriz

Caution –No confirmation prompt appears with the destroy subcommand. Use it with extreme
caution.

If the file system to be destroyed is busy and so cannot be unmounted, the zfs destroy command
fails. To destroy an active file system, use the -f option. Use this option with caution as it can
unmount, unshare, and destroy active file systems, causing unexpected application behavior.

Creating andDestroying ZFS File Systems

Solaris ZFSAdministration Guide • November 200666

zfs destroy tank/home/ahrens

cannot unmount ’tank/home/ahrens’: Device busy

zfs destroy -f tank/home/ahrens

The zfs destroy command also fails if a file system has children. To recursively destroy a file system
and all its descendants, use the -r option. Note that a recursive destroy also destroys snapshots so use
this option with caution.

zfs destroy tank/ws

cannot destroy ’tank/ws’: filesystem has children

use ’-r’ to destroy the following datasets:

tank/ws/billm

tank/ws/bonwick

tank/ws/maybee

zfs destroy -r tank/ws

If the file system to be destroyed has indirect dependents, even the recursive destroy command
described above fails. To force the destruction of all dependents, including cloned file systems
outside the target hierarchy, the -R optionmust be used. Use extreme caution with this option.

zfs destroy -r tank/home/schrock

cannot destroy ’tank/home/schrock’: filesystem has dependent clones

use ’-R’ to destroy the following datasets:

tank/clones/schrock-clone

zfs destroy -R tank/home/schrock

Caution –No confirmation prompt appears with the -f, -r, or -R options so use these options
carefully.

Formore information about snapshots and clones, see Chapter 6.

RenamingaZFS File System
File systems can be renamed by using the zfs rename command. Using the rename subcommand
can perform the following operations:

� Change the name of a file system
� Relocate the file system to a new location within the ZFS hierarchy
� Change the name of a file system and relocate it with the ZFS hierarchy

The following example uses the rename subcommand to do a simple rename of a file system:

zfs rename tank/home/kustarz tank/home/kustarz_old

Creating andDestroying ZFS File Systems

Chapter 5 • Managing ZFS File Systems 67

This example renames the kustarz file system to kustarz_old.

The following example shows how to use zfs rename to relocate a file system.

zfs rename tank/home/maybee tank/ws/maybee

In this example, the maybee file system is relocated from tank/home to tank/ws. When you relocate a
file system through rename, the new locationmust be within the same pool and it must have enough
space to hold this new file system. If the new location does not have enough space, possibly because it
has reached its quota, the renamewill fail.

Formore information about quotas, see “ZFSQuotas and Reservations” on page 87.

The rename operation attempts an unmount/remount sequence for the file system and any
descendant file systems. The rename fails if the operation is unable to unmount an active file system.
If this problem occurs, you will need to force unmount the file system.

For information about renaming snapshots, see “Renaming ZFS Snapshots” on page 93.

ZFSProperties
Properties are themainmechanism that you use to control the behavior of file systems, volumes,
snapshots, and clones. Unless stated otherwise, the properties defined in the section apply to all the
dataset types.

Properties are either read-only statistics or settable properties. Most settable properties are also
inheritable.An inheritable property is a property that, when set on a parent, is propagated down to
all of its descendants.

All inheritable properties have an associated source. The source indicates how a property was
obtained. The source of a property can have the following values:

local Alocal source indicates that the property was explicitly set on
the dataset by using the zfs set command as described in
“Setting ZFS Properties” on page 77.

inherited from dataset-name Avalue of inherited from dataset-namemeans that the
property was inherited from the named ancestor.

default Avalue of defaultmeans that the property setting was not
inherited or set locally. This source is a result of no ancestor
having the property as source local.

The following table identifies both read-only and settable ZFS file system properties. Read-only
properties are identified as such.All other properties are settable.

ZFS Properties

Solaris ZFSAdministration Guide • November 200668

TABLE 5–1ZFSPropertyDescriptions

PropertyName Type Default Value Description

aclinherit String secure Controls howACLentries are inherited when files and
directories are created. The values are discard, noallow,
secure, and passthrough. For a description of these values,
see “ACLPropertyModes” on page 106.

aclmode String groupmask Controls how anACLentry is modified during a chmod
operation. The values are discard, groupmask, and
passthrough. For a description of these values, see “ACL
PropertyModes” on page 106.

atime Boolean on Controls whether the access time for files is updated when they
are read. Turning this property off avoids producing write
traffic when reading files and can result in significant
performance gains, though it might confusemailers and other
similar utilities.

available Number N/A Read-only property that identifies the amount of space
available to the dataset and all its children, assuming no other
activity in the pool. Because space is shared within a pool,
available space can be limited by various factors including
physical pool size, quotas, reservations, or other datasets
within the pool.

This property can also be referenced by its shortened column
name, avail.

Formore information about space accounting, see “ZFS Space
Accounting” on page 30.

checksum String on Controls the checksum used to verify data integrity. The
default value is on, which automatically selects an appropriate
algorithm, currently fletcher2. The values are on, off,
fletcher2, fletcher4, and sha256. Avalue of off disables
integrity checking on user data.Avalue of off is not
recommended.

compression String off Controls the compression algorithm used for this dataset.
Currently, only one algorithm, lzjb, exists.

This property can also be referred to by its shortened column
name, compress.

ZFS Properties

Chapter 5 • Managing ZFS File Systems 69

TABLE 5–1ZFSPropertyDescriptions (Continued)
PropertyName Type Default Value Description

compressratio Number N/A Read-only property that identifies the compression ratio
achieved for this dataset, expressed as amultiplier.
Compression can be turned on by running zfs set
compression=on dataset.

Calculated from the logical size of all files and the amount of
referenced physical data. Includes explicit savings through the
use of the compression property.

creation Number N/A Read-only property that identifies the date and time that this
dataset was created.

devices Boolean on Controls whether device nodes found within this file system
can be opened.

exec Boolean on Controls whether programs within this file system are allowed
to be executed.Also, when set to off, mmap(2) calls with
PROT_EXEC are disallowed.

mounted boolean N/A Read-only property that indicates whether this file system,
clone, or snapshot is currently mounted. This property does
not apply to volumes. Value can be either yes or no.

mountpoint String N/A Controls themount point used for this file system.When the
mountpoint property is changed for a file system, the file
system and any children that inherit themount point are
unmounted. If the new value is legacy, then they remain
unmounted. Otherwise, they are automatically remounted in
the new location if the property was previously legacy or
none, or if they weremounted before the property was
changed. In addition, any shared file systems are unshared and
shared in the new location.

Formore information about using this property, see
“Managing ZFSMount Points” on page 81.

origin String N/A Read-only property for cloned file systems or volumes that
identifies the snapshot fromwhich the clone was created. The
origin cannot be destroyed (even with the -r or -f options) as
long as a clone exists.

Non-cloned file systems have an origin of none.

ZFS Properties

Solaris ZFSAdministration Guide • November 200670

TABLE 5–1ZFSPropertyDescriptions (Continued)
PropertyName Type Default Value Description

quota Number
(or none)

none Limits the amount of space a dataset and its descendents can
consume. This property enforces a hard limit on the amount of
space used, including all space consumed by descendents,
including file systems and snapshots. Setting a quota on a
descendent of a dataset that already has a quota does not
override the ancestor’s quota, but rather imposes an additional
limit. Quotas cannot be set on volumes, as the volsize
property acts as an implicit quota.

For information about setting quotas, see “Setting Quotas on
ZFS File Systems” on page 87.

readonly Boolean off Controls whether this dataset can bemodified.When set to on,
nomodifications can bemade to the dataset.

This property can also be referred to by its shortened column
name, rdonly.

recordsize Number 128K Specifies a suggested block size for files in the file system.

This property can also be referred to by its shortened column
name, recsize. For a detailed description, see “The
recordsize Property” on page 74.

referenced Number N/A Read-only property that identifies the amount of data
accessible by this dataset, whichmight ormight not be shared
with other datasets in the pool.

When a snapshot or clone is created, it initially references the
same amount of space as the file system or snapshot it was
created from, because its contents are identical.

This property can also be referred to by its shortened column
name, refer.

reservation Number
(or none)

none Theminimum amount of space guaranteed to a dataset and its
descendents.When the amount of space used is below this
value, the dataset is treated as if it were using the amount of
space specified by its reservation. Reservations are accounted
for in the parent datasets’ space used, and count against the
parent datasets’ quotas and reservations.

This property can also be referred to by its shortened column
name, reserv.

Formore information, see “Setting Reservations on ZFS File
Systems” on page 88.

ZFS Properties

Chapter 5 • Managing ZFS File Systems 71

TABLE 5–1ZFSPropertyDescriptions (Continued)
PropertyName Type Default Value Description

sharenfs String off Controls whether the file system is available over NFS, and
what options are used. If set to on, the zfs share command is
invoked with no options. Otherwise, the zfs share command
is invoked with options equivalent to the contents of this
property. If set to off, the file system ismanaged by using the
legacy share and unshare commands and the dfstab file.

Formore information on sharing ZFS file systems, see
“Sharing ZFS File Systems” on page 85.

setuid Boolean on Controls whether the setuid bit is honored in the file system.

snapdir String hidden Controls whether the .zfs directory is hidden or visible in the
root of the file system. Formore information on using
snapshots, see “ZFS Snapshots” on page 91.

type String N/A Read-only property that identifies the dataset type as
filesystem (file system or clone), volume, or snapshot.

used Number N/A Read-only property that identifies the amount of space
consumed by the dataset and all its descendants.

For a detailed description, see “The used Property” on page 73.

volsize Number N/A For volumes, specifies the logical size of the volume.

For a detailed description, see “The volsize Property”
on page 75.

volblocksize Number 8 Kbytes For volumes, specifies the block size of the volume. The block
size cannot be changed once the volume has been written, so
set the block size at volume creation time. The default block
size for volumes is 8 Kbytes.Any power of 2 from 512 bytes to
128 Kbytes is valid.

This property can also be referred to by its shortened column
name, volblock.

zoned Boolean N/A Indicates whether this dataset has been added to a non-global
zone. If this property is set, then themount point is not
honored in the global zone, and ZFS cannotmount such a file
systemwhen requested.When a zone is first installed, this
property is set for any added file systems.

Formore information about using ZFS with zones installed,
see “Using ZFS on a Solaris SystemWith Zones Installed”
on page 128.

ZFS Properties

Solaris ZFSAdministration Guide • November 200672

Read-Only ZFSProperties
Read-only properties are properties that can be retrieved but cannot be set. Read-only properties are
not inherited. Some properties are specific to a particular type of dataset. In such cases, the particular
dataset type is mentioned in the description in Table 5–1.

The read-only properties are listed here and are described in Table 5–1.

� available

� creation

� mounted

� origin

� compressratio

� referenced

� type

� used

For detailed information, see “The used Property” on page 73.

Formore information on space accounting, including the used, referenced, and available
properties, see “ZFS SpaceAccounting” on page 30.

The usedProperty
The amount of space consumed by this dataset and all its descendants. This value is checked against
the dataset’s quota and reservation. The space used does not include the dataset’s reservation, but
does consider the reservation of any descendant datasets. The amount of space that a dataset
consumes from its parent, as well as the amount of space that is freed if the dataset is recursively
destroyed, is the greater of its space used and its reservation.

When snapshots are created, their space is initially shared between the snapshot and the file system,
and possibly with previous snapshots.As the file system changes, space that was previously shared
becomes unique to the snapshot, and counted in the snapshot’s space used.Additionally, deleting
snapshots can increase the amount of space unique to (and used by) other snapshots. Formore
information about snapshots and space issues, see “Out of Space Behavior” on page 30.

The amount of space used, available, or referenced does not take into account pending changes.
Pending changes are generally accounted for within a few seconds. Committing a change to a disk
using fsync(3c) or O_SYNC does not necessarily guarantee that the space usage information will be
updated immediately.

Settable ZFSProperties
Settable properties are properties whose values can be both retrieved and set. Settable properties are
set by using the zfs set command, as described in “Setting ZFS Properties” on page 77.With the

ZFS Properties

Chapter 5 • Managing ZFS File Systems 73

exceptions of quotas and reservations, settable properties are inherited. Formore information about
quotas and reservations, see “ZFSQuotas and Reservations” on page 87.

Some settable properties are specific to a particular type of dataset. In such cases, the particular
dataset type is mentioned in the description in Table 5–1. If not specifically mentioned, a property
applies to all dataset types: file systems, volumes, clones, and snapshots.

The settable properties are listed here and are described in Table 5–1.

� aclinherit

For a detailed description, see “ACLPropertyModes” on page 106.
� aclmode

For a detailed description, see “ACLPropertyModes” on page 106.
� atime

� checksum

� compression

� devices

� exec

� mountpoint

� quota

� readonly

� recordsize

For a detailed description, see “The recordsize Property” on page 74.
� reservation

� sharenfs

� setuid

� snapdir

� volsize

For a detailed description, see “The volsize Property” on page 75.
� volblocksize

� zoned

The recordsizeProperty
Specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size records.
ZFS automatically adjust block sizes according to internal algorithms optimized for typical access
patterns. For databases that create very large files but access the files in small random chunks, these
algorithmsmay be suboptimal. Specifying a recordsize greater than or equal to the record size of

ZFS Properties

Solaris ZFSAdministration Guide • November 200674

the database can result in significant performance gains. Use of this property for general purpose file
systems is strongly discouraged, andmay adversely affect performance. The size specifiedmust be a
power of two greater than or equal to 512 and less than or equal to 128 Kbytes. Changing the file
system’s recordsize only affects files created afterward. Existing files are unaffected.

This property can also be referred to by its shortened column name, recsize.

The volsizeProperty
The logical size of the volume. By default, creating a volume establishes a reservation for the same
amount.Any changes to volsize are reflected in an equivalent change to the reservation. These
checks are used to prevent unexpected behavior for users.Avolume that contains less space than it
claims is available can result in undefined behavior or data corruption, depending on how the
volume is used. These effects can also occur when the volume size is changed while it is in use,
particularly when you shrink the size. Extreme care should be used when adjusting the volume size.

Though not recommended, you can create a sparse volume by specifying the -s flag to zfs create
-V, or by changing the reservation once the volume has been created.A sparse volume is defined as a
volumewhere the reservation is not equal to the volume size. For a sparse volume, changes to
volsize are not reflected in the reservation.

Formore information about using volumes, see “Emulated Volumes” on page 127.

QueryingZFS File System Information
The zfs list command provides an extensible mechanism for viewing and querying dataset
information. Both basic and complex queries are explained in this section.

ListingBasic ZFS Information
You can list basic dataset information by using the zfs list command with no options. This
command displays the names of all datasets on the system including their used, available,
referenced, and mountpoint properties. Formore information about these properties, see “ZFS
Properties” on page 68.

For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 84.0K 33.5G - /pool

pool/clone 0 33.5G 8.50K /pool/clone

pool/test 8K 33.5G 8K /test

pool/home 17.5K 33.5G 9.00K /pool/home

pool/home/marks 8.50K 33.5G 8.50K /pool/home/marks

pool/home/marks@snap 0 - 8.50K /pool/home/marks@snap

Querying ZFS File System Information

Chapter 5 • Managing ZFS File Systems 75

You can also use this command to display specific datasets by providing the dataset name on the
command line.Additionally, use the -r option to recursively display all descendants of that dataset.

The following example shows how to display tank/home/chua and all of its descendant datasets.

zfs list -r tank/home/chua

NAME USED AVAIL REFER MOUNTPOINT

tank/home/chua 26.0K 4.81G 10.0K /tank/home/chua

tank/home/chua/projects 16K 4.81G 9.0K /tank/home/chua/projects

tank/home/chua/projects/fs1 8K 4.81G 8K /tank/home/chua/projects/fs1

tank/home/chua/projects/fs2 8K 4.81G 8K /tank/home/chua/projects/fs2

For additional information about the zfs list command, see zfs(1M).

CreatingComplex ZFSQueries
The zfs list output can be customized by using of the -o, -f, and -H options.

You can customize property value output by using the -o option and a comma-separated list of
desired properties. Supply any dataset property as a valid value. For a list of all supported dataset
properties, see “ZFS Properties” on page 68. In addition to the properties defined there, the -o option
list can also contain the literal name to indicate that the output should include the name of the
dataset.

The following example uses zfs list to display the dataset name, along with the sharenfs and
mountpoint properties.

zfs list -o name,sharenfs,mountpoint

NAME SHARENFS MOUNTPOINT

tank off /tank

tank/home on /tank/home

tank/home/ahrens on /tank/home/ahrens

tank/home/bonwick on /tank/home/bonwick

tank/home/chua on /tank/home/chua

tank/home/eschrock on legacy

tank/home/moore on /tank/home/moore

tank/home/tabriz ro /tank/home/tabriz

You can use the -t option to specify the types of datasets to display. The valid types are described in
the following table.

TABLE 5–2Types of ZFSDatasets

Type Description

filesystem File systems and clones

Querying ZFS File System Information

Solaris ZFSAdministration Guide • November 200676

TABLE 5–2Types of ZFSDatasets (Continued)
Type Description

volume Volumes

snapshot Snapshots

The -t options takes a comma-separated list of the types of datasets to be displayed. The following
example uses the -t and -o options simultaneously to show the name and used property for all file
systems:

zfs list -t filesystem -o name,used

NAME USED

pool 105K

pool/container 0

pool/home 26.0K

pool/home/tabriz 26.0K

pool/home/tabriz_clone 0

You can use the -H option to omit the zfs list header from the generated output.With the -H
option, all white space is output as tabs. This option can be useful when you need parseable output,
for example, when scripting. The following example shows the output generated from using the zfs
list commandwith the -H option:

zfs list -H -o name

pool

pool/container

pool/home

pool/home/tabriz

pool/home/tabriz@now

pool/home/tabriz/container

pool/home/tabriz/container/fs1

pool/home/tabriz/container/fs2

pool/home/tabriz_clone

ManagingZFSProperties
Dataset properties aremanaged through the zfs command’s set, inherit, and get subcommands.

SettingZFSProperties
You can use the zfs set command to modify any settable dataset property. For a list of settable
dataset properties, see “Settable ZFS Properties” on page 73. The zfs set command takes a
property/value sequence in the format of property=value and a dataset name.

Managing ZFS Properties

Chapter 5 • Managing ZFS File Systems 77

The following example sets the atime property to off for tank/home. Only one property can be set or
modified during each zfs set invocation.

zfs set atime=off tank/home

You can specify numeric properties by using the following easy to understand suffixes (in order of
magnitude): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating bytes, with
the exception of the B suffix, which already indicates bytes. The following four invocations of zfs
set are equivalent numeric expressions indicating that the quota property be set to the value of 50
Gbytes on the tank/home/marks file system:

zfs set quota=50G tank/home/marks

zfs set quota=50g tank/home/marks

zfs set quota=50GB tank/home/marks

zfs set quota=50gb tank/home/marks

Values of non-numeric properties are case-sensitive andmust be lowercase, with the exception of
mountpoint and sharenfs. The values of these properties can havemixed upper and lower case
letters.

For more information about the zfs set command, see zfs(1M).

Inheriting ZFSProperties
All settable properties, with the exception of quotas and reservations, inherit their value from their
parent, unless a quota or reservation is explicitly set on the child. If no ancestor has an explicit value
set for an inherited property, the default value for the property is used. You can use the zfs inherit
command to clear a property setting, thus causing the setting to be inherited from the parent.

The following example uses the zfs set command to turn on compression for the
tank/home/bonwick file system. Then, zfs inherit is used to unset the compression property, thus
causing the property to inherit the default setting of off. Because neither home nor tank have the
compression property set locally, the default value is used. If both had compression on, the value set
in themost immediate ancestor would be used (home in this example).

zfs set compression=on tank/home/bonwick

zfs get -r compression tank

NAME PROPERTY VALUE SOURCE

tank compression off default

tank/home compression off default

tank/home/bonwick compression on local

zfs inherit compression tank/home/bonwick

zfs get -r compression tank

NAME PROPERTY VALUE SOURCE

tank compression off default

tank/home compression off default

tank/home/bonwick compression off default

Managing ZFS Properties

Solaris ZFSAdministration Guide • November 200678

The inherit subcommand is applied recursively when the -r option is specified. In the following
example, the command causes the value for the compression property to be inherited by tank/home
and any descendants it might have.

zfs inherit -r compression tank/home

Note – Be aware that the use of the -r option clears the current property setting for all descendant
datasets.

Formore information about the zfs command, see zfs(1M).

QueryingZFSProperties
The simplest way to query property values is by using the zfs list command. For more
information, see “Listing Basic ZFS Information” on page 75. However, for complicated queries and
for scripting, use the zfs get command to provide more detailed information in a customized
format.

You can use the zfs get command to retrieve any dataset property. The following example shows
how to retrieve a single property on a dataset:

zfs get checksum tank/ws

NAME PROPERTY VALUE SOURCE

tank/ws checksum on default

The fourth column, SOURCE, indicates where this property value has been set from. The following
table defines themeaning of the possible source values.

TABLE 5–3 Possible SOURCEValues (zfs get)

Source Value Description

default This property was never explicitly set for this dataset or any of its
ancestors. The default value for this property is being used.

inherited from dataset-name This property value is being inherited from the parent as specified by
dataset-name.

local This property value was explicitly set for this dataset by using zfs set.

temporary This property value was set by using the zfs mount -o option and is
only valid for the lifetime of themount. Formore information about
temporarymount point properties, see “TemporaryMount
Properties” on page 84.

- (none) This property is a read-only property. Its value is generated by ZFS.

Managing ZFS Properties

Chapter 5 • Managing ZFS File Systems 79

You can use the special keyword all to retrieve all dataset properties. The following example uses the
all keyword to retrieve all existing dataset properties:

zfs get all pool

NAME PROPERTY VALUE SOURCE

pool type filesystem -

pool creation Mon Mar 13 11:41 2006 -

pool used 2.62M -

pool available 33.5G -

pool referenced 10.5K -

pool compressratio 1.00x -

pool mounted yes -

pool quota none default

pool reservation none default

pool recordsize 128K default

pool mountpoint /pool default

pool sharenfs off default

pool checksum on default

pool compression off default

pool atime on default

pool devices on default

pool exec on default

pool setuid on default

pool readonly off default

pool zoned off default

pool snapdir hidden default

pool aclmode groupmask default

pool aclinherit secure default

The -s option to zfs get enables you to specify, by source value, the type of properties to display.
This option takes a comma-separated list indicating the desired source types. Only properties with
the specified source type are displayed. The valid source types are local, default, inherited,
temporary, and none. The following example shows all properties that have been locally set on pool.

zfs get -s local all pool

NAME PROPERTY VALUE SOURCE

pool compression on local

Any of the above options can be combined with the -r option to recursively display the specified
properties on all children of the specified dataset. In the following example, all temporary properties
on all datasets within tank are recursively displayed:

zfs get -r -s temporary all tank

NAME PROPERTY VALUE SOURCE

tank/home atime off temporary

tank/home/bonwick atime off temporary

tank/home/marks atime off temporary

For more information about the zfs get command, see zfs(1M).

Managing ZFS Properties

Solaris ZFSAdministration Guide • November 200680

QueryingZFSProperties for Scripting
The zfs get command supports the -H and -o options, which are designed for scripting. The -H
option indicates that any header information should be omitted and that all white space should come
in the form of tab. Uniformwhite space allows for easily parseable data. You can use the -o option to
customize the output. This option takes a comma-separated list of values to be output.All properties
defined in “ZFS Properties” on page 68, along with the literals name, value, property and source can
be supplied in the -o list.

The following example shows how to retrieve a single value by using the -H and -o options of zfs
get.

zfs get -H -o value compression tank/home

on

The -p option reports numeric values as their exact values. For example, 1Mbyte would be reported
as 1000000. This option can be used as follows:

zfs get -H -o value -p used tank/home

182983742

You can use the -r option along with any of the above options to recursively retrieve the requested
values for all descendants. The following example uses the -r, -o, and -H options to retrieve the
dataset name and the value of the used property for export/home and its descendants, while
omitting any header output:

zfs get -H -o name,value -r used export/home

export/home 5.57G

export/home/marks 1.43G

export/home/maybee 2.15G

Mounting andSharingZFS File Systems
This section describes howmount points and shared file systems aremanaged in ZFS.

ManagingZFSMount Points
By default, all ZFS file systems aremounted by ZFS at boot by using SMF’s
svc://system/filesystem/local service. File systems aremounted under /path, where path is the
name of the file system.

You can override the default mount point by setting the mountpoint property to a specific path by
using the zfs set command. ZFS automatically creates this mount point, if needed, and
automatically mounts this file system when the zfs mount -a command is invoked, without
requiring you to edit the /etc/vfstab file.

Mounting and Sharing ZFS File Systems

Chapter 5 • Managing ZFS File Systems 81

The mountpoint property is inherited. For example, if pool/home has mountpoint set to
/export/stuff, then pool/home/user inherits /export/stuff/user for its mountpoint property.

The mountpoint property can be set to none to prevent the file system from beingmounted.

If desired, file systems can also be explicitly managed through legacymount interfaces by setting the
mountpoint property to legacy by using zfs set. Doing so prevents ZFS from automatically
mounting andmanaging this file system. Legacy tools including the mount and umount commands,
and the /etc/vfstab filemust be used instead. Formore information about legacymounts, see
“LegacyMount Points” on page 83.

When changingmount point management strategies, the following behaviors apply:

� Automatic mount point behavior
� Legacymount point behavior

AutomaticMount Points
� When changing from legacy or none, ZFS automatically mounts the file system.
� If ZFS is currently managing the file system but it is currently unmounted, and the mountpoint

property is changed, the file system remains unmounted.

You can also set the default mount point for the root dataset at creation time by using zpool
create’s -m option. Formore information about creating pools, see “Creating a ZFS Storage Pool”
on page 38.

Any dataset whose mountpoint property is not legacy is managed by ZFS. In the following example,
a dataset is created whosemount point is automatically managed by ZFS.

zfs create pool/filesystem

zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /pool/filesystem default

zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

zfs set mountpoint=/mnt pool/filesystem

zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /mnt local

zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

Mounting and Sharing ZFS File Systems

Solaris ZFSAdministration Guide • November 200682

When the mountpoint property is changed, the file system is automatically unmounted from the old
mount point and remounted to the newmount point. Mount point directories are created as needed.
If ZFS is unable to unmount a file system due to it being active, an error is reported and a forced
manual unmount is necessary.

LegacyMount Points
You canmanage ZFS file systems with legacy tools by setting the mountpoint property to legacy.
Legacy file systemsmust bemanaged through the mount and umount commands and the
/etc/vfstab file. ZFS does not automatically mount legacy file systems on boot, and the ZFS mount
and umount command do not operate on datasets of this type. The following examples show how to
set up andmanage a ZFS dataset in legacymode:

zfs set mountpoint=legacy tank/home/eschrock

mount -F zfs tank/home/eschrock /mnt

In particular, if you have set up separate ZFS /usr or /var file systems, youmust indicate that they
are legacy file systems. In addition, youmustmount them by creating entries in the /etc/vfstab file.
Otherwise, the system/filesystem/local service enters maintenancemode when the system boots.

To automatically mount a legacy file system on boot, youmust add an entry to the /etc/vfstab file.
The following example shows what the entry in the /etc/vfstab filemight look like:

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

#

tank/home/eschrock - /mnt zfs - yes -

Note that the device to fsck and fsck pass entries are set to -. This syntax is because the fsck
command is not applicable to ZFS file systems. Formore information regarding data integrity and
the lack of need for fsck in ZFS, see “Transactional Semantics” on page 18.

MountingZFS File Systems
ZFS automatically mounts file systems when file systems are created or when the system boots. Use
of the zfs mount command is necessary only when changing mount options or explicitly mounting
or unmounting file systems.

The zfs mount command with no arguments shows all currently mounted file systems that are
managed by ZFS. Legacymanagedmount points are not displayed. For example:

zfs mount

tank /tank

tank/home /tank/home

tank/home/bonwick /tank/home/bonwick

tank/ws /tank/ws

Mounting and Sharing ZFS File Systems

Chapter 5 • Managing ZFS File Systems 83

You can use the -a option tomount all ZFSmanaged file systems. Legacymanaged file systems are
notmounted. For example:

zfs mount -a

By default, ZFS does not allowmounting on top of a nonempty directory. To force amount on top of
a nonempty directory, youmust use the -O option. For example:

zfs mount tank/home/lalt

cannot mount ’/export/home/lalt’: directory is not empty

use legacy mountpoint to allow this behavior, or use the -O flag

zfs mount -O tank/home/lalt

Legacymount points must bemanaged through legacy tools.An attempt to use ZFS tools results in
an error. For example:

zfs mount pool/home/billm

cannot mount ’pool/home/billm’: legacy mountpoint

use mount(1M) to mount this filesystem

mount -F zfs tank/home/billm

When a file system ismounted, it uses a set of mount options based on the property values associated
with the dataset. The correlation between properties andmount options is as follows:

Property Mount Options

devices devices/nodevices

exec exec/noexec

readonly ro/rw

setuid setuid/nosetuid

Themount option nosuid is an alias for nodevices,nosetuid.

TemporaryMount Properties
If any of the above options are set explicitly by using the-o option with the zfs mount command, the
associated property value is temporarily overridden. These property values are reported as
temporary by the zfs get command and revert back to their original settings when the file system is
unmounted. If a property value is changed while the dataset is mounted, the change takes effect
immediately, overriding any temporary setting.

In the following example, the read-onlymount option is temporarily set on the tank/home/perrin
file system:

zfs mount -o ro tank/home/perrin

Mounting and Sharing ZFS File Systems

Solaris ZFSAdministration Guide • November 200684

In this example, the file system is assumed to be unmounted. To temporarily change a property on a
file system that is currently mounted, youmust use the special remount option. In the following
example, the atime property is temporarily changed to off for a file system that is currently
mounted:

zfs mount -o remount,noatime tank/home/perrin

zfs get atime tank/home/perrin

NAME PROPERTY VALUE SOURCE

tank/home/perrin atime off temporary

For more information about the zfs mount command, see zfs(1M).

UnmountingZFS File Systems
You can unmount file systems by using the zfs unmount subcommand. The unmount command can
take either themount point or the file system name as arguments.

In the following example, a file system is unmounted by file system name:

zfs unmount tank/home/tabriz

In the following example, the file system is unmounted bymount point:

zfs unmount /export/home/tabriz

The unmount command fails if the file system is active or busy. To forceably unmount a file system,
you can use the -f option. Be cautious when forceably unmounting a file system, if its contents are
actively being used. Unpredictable application behavior can result.

zfs unmount tank/home/eschrock

cannot unmount ’/export/home/eschrock’: Device busy

zfs unmount -f tank/home/eschrock

To provide for backwards compatibility, the legacy umount command can be used to unmount ZFS
file systems. For example:

umount /export/home/bob

For more information about the zfs umount command, see zfs(1M).

SharingZFS File Systems
Similar tomount points, ZFS can automatically share file systems by using the sharenfs property.
Using this method, you do not have tomodify the /etc/dfs/dfstab file when a new file system is

Mounting and Sharing ZFS File Systems

Chapter 5 • Managing ZFS File Systems 85

added. The sharenfs property is a comma-separated list of options to pass to the share command.
The special value on is an alias for the default share options, which are read/write permissions for
anyone. The special value off indicates that the file system is notmanaged by ZFS and can be shared
through traditional means, such as the /etc/dfs/dfstab file.All file systems whose sharenfs
property is not off are shared during boot.

Controlling Share Semantics
By default, all file systems are unshared. To share a new file system, use zfs set syntax similar to the
following:

zfs set sharenfs=on tank/home/eschrock

The property is inherited, and file systems are automatically shared on creation if their inherited
property is not off. For example:

zfs set sharenfs=on tank/home

zfs create tank/home/bricker

zfs create tank/home/tabriz

zfs set sharenfs=ro tank/home/tabriz

Both tank/home/bricker and tank/home/tabriz are initially shared writable because they inherit
the sharenfs property from tank/home. Once the property is set to ro (readonly),
tank/home/tabriz is shared read-only regardless of the sharenfs property that is set for tank/home.

UnsharingZFS File Systems
Whilemost file systems are automatically shared and unshared during boot, creation, and
destruction, file systems sometimes need to be explicitly unshared. To do so, use the zfs unshare
command. For example:

zfs unshare tank/home/tabriz

This command unshares the tank/home/tabriz file system. To unshare all ZFS file systems on the
system, you need to use the -a option.

zfs unshare -a

SharingZFS File Systems
Most of the time the automatic behavior of ZFS, sharing on boot and creation, is sufficient for
normal operation. If, for some reason, you unshare a file system, you can share it again by using the
zfs share command. For example:

zfs share tank/home/tabriz

Mounting and Sharing ZFS File Systems

Solaris ZFSAdministration Guide • November 200686

You can also share all ZFS file systems on the system by using the -a option.

zfs share -a

Legacy ShareBehavior
If the sharenfs property is off, then ZFS does not attempt to share or unshare the file system at any
time. This setting enables you to administer through traditional means such as the /etc/dfs/dfstab
file.

Unlike the traditional mount command, the traditional share and unshare commands can still
function on ZFS file systems.As a result, you canmanually share a file systemwith options that are
different from the settings of the sharenfs property. This administrativemodel is discouraged.
Choose to eithermanage NFS shares completely through ZFS or completely through the
/etc/dfs/dfstab file. The ZFS administrativemodel is designed to be simpler and less work than
the traditional model. However, in some cases, youmight still want to control file system sharing
behavior through the familiar model.

ZFSQuotas andReservations
ZFS supports quotas and reservations at the file system level. You can use the quota property to set a
limit on the amount of space a file system can use. In addition, you can use the reservation property
to guarantee that some amount of space is available to a file system. Both properties apply to the
dataset they are set on and all descendants of that dataset.

That is, if a quota is set on the tank/home dataset, the total amount of space used by tank/home and
all of its descendants cannot exceed the quota. Similarly, if tank/home is given a reservation,
tank/home and all of its descendants draw from that reservation. The amount of space used by a
dataset and all of its descendents is reported by the used property.

SettingQuotas onZFS File Systems
ZFS quotas can be set and displayed by using the zfs set and zfs get commands. In the following
example, a quota of 10 Gbytes is set on tank/home/bonwick.

zfs set quota=10G tank/home/bonwick

zfs get quota tank/home/bonwick

NAME PROPERTY VALUE SOURCE

tank/home/bonwick quota 10.0G local

ZFS quotas also impact the output of the zfs list and df commands. For example:

ZFSQuotas and Reservations

Chapter 5 • Managing ZFS File Systems 87

zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank/home 16.5K 33.5G 8.50K /export/home

tank/home/bonwick 15.0K 10.0G 8.50K /export/home/bonwick

tank/home/bonwick/ws 6.50K 10.0G 8.50K /export/home/bonwick/ws

df -h /export/home/bonwick

Filesystem size used avail capacity Mounted on

tank/home/bonwick 10G 8K 10G 1% /export/home/bonwick

Note that although tank/home has 33.5 Gbytes of space available, tank/home/bonwick and
tank/home/bonwick/ws only have 10 Gbytes of space available, due to the quota on
tank/home/bonwick.

You cannot set a quota to an amount less than is currently being used by a dataset. For example:

zfs set quota=10K tank/home/bonwick

cannot set quota for ’tank/home/bonwick’: size is less than current used or

reserved space

SettingReservations onZFS File Systems
AZFS reservation is an allocation of space from the pool that is guaranteed to be available to a
dataset.As such, you cannot reserve space for a dataset if that space is not currently available in the
pool. The total amount of all outstanding unconsumed reservations cannot exceed the amount of
unused space in the pool. ZFS reservations can be set and displayed by using the zfs set and zfs
get commands. For example:

zfs set reservation=5G tank/home/moore

zfs get reservation tank/home/moore

NAME PROPERTY VALUE SOURCE

tank/home/moore reservation 5.00G local

ZFS reservations can affect the output of the zfs list command. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank/home 5.00G 33.5G 8.50K /export/home

tank/home/moore 15.0K 10.0G 8.50K /export/home/moore

Note that tank/home is using 5 Gbytes of space, although the total amount of space referred to by
tank/home and its descendants is much less than 5 Gbytes. The used space reflects the space reserved
for tank/home/moore. Reservations are considered in the used space of the parent dataset and do
count against its quota, reservation, or both.

zfs set quota=5G pool/filesystem

zfs set reservation=10G pool/filesystem/user1

ZFSQuotas and Reservations

Solaris ZFSAdministration Guide • November 200688

cannot set reservation for ’pool/filesystem/user1’: size is greater than

available space

Adataset can usemore space than its reservation, as long as space is available in the pool that is
unreserved and the dataset’s current usage is below its quota.Adataset cannot consume space that
has been reserved for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation does not
add its reservation to the existing reservation. Rather, the second reservation replaces the first
reservation.

zfs set reservation=10G tank/home/moore

zfs set reservation=5G tank/home/moore

zfs get reservation tank/home/moore

NAME PROPERTY VALUE SOURCE

tank/home/moore reservation 5.00G local

ZFSQuotas and Reservations

Chapter 5 • Managing ZFS File Systems 89

90

WorkingWith ZFS Snapshots and Clones

This chapter describes how to create andmanage ZFS snapshots and clones. Information about
saving snapshots is also provided in this chapter.

The following sections are provided in this chapter:

� “ZFS Snapshots” on page 91
� “Creating andDestroying ZFS Snapshots” on page 92
� “Displaying andAccessing ZFS Snapshots” on page 93
� “Rolling Back to a ZFS Snapshot” on page 94
� “ZFS Clones” on page 95
� “Creating a ZFS Clone” on page 95
� “Destroying a ZFS Clone” on page 96
� “Saving and Restoring ZFSData” on page 97

ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost instantly,
and initially consume no additional disk space within the pool. However, as data within the active
dataset changes, the snapshot consumes disk space by continuing to reference the old data and so
prevents the space from being freed.

ZFS snapshots include the following features:

� Provides persistence across system reboots.
� The theoretical maximumnumber of snapshots is 264.
� Uses no separate backing store. Snapshots consume disk space directly from the same storage

pool as the file system fromwhich they were created.

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled back to,
and so on. For information about backing up a ZFS snapshot, see “Saving and Restoring ZFSData”
on page 97.

6C H A P T E R 6

91

Creating andDestroyingZFS Snapshots
Snapshots are created by using the zfs snapshot command, which takes as its only argument the
name of the snapshot to create. The snapshot name is specified as follows:

filesystem@snapname
volume@snapname

The snapshot namemust satisfy the naming conventions defined in “ZFS Component Naming
Requirements” on page 21.

In the following example, a snapshot of tank/home/ahrens that is named friday is created.

zfs snapshot tank/home/ahrens@friday

You can create snapshots for all descendant file systems by using the -r option. For example:

zfs snapshot -r tank/home@now

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

tank/home@now 0 - 29.5K -

tank/home/ahrens@now 0 - 2.15M -

tank/home/anne@now 0 - 1.89M -

tank/home/bob@now 0 - 1.89M -

tank/home/cindys@now 0 - 2.15M -

Snapshots have nomodifiable properties. Nor can dataset properties be applied to a snapshot.

zfs set compression=on tank/home/ahrens@tuesday

cannot set compression property for ’tank/home/ahrens@tuesday’: snapshot

properties cannot be modified

Snapshots are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens@friday

Adataset cannot be destroyed if snapshots of the dataset exist. For example:

zfs destroy tank/home/ahrens

cannot destroy ’tank/home/ahrens’: filesystem has children

use ’-r’ to destroy the following datasets:

tank/home/ahrens@tuesday

tank/home/ahrens@wednesday

tank/home/ahrens@thursday

In addition, if clones have been created from a snapshot, then theymust be destroyed before the
snapshot can be destroyed.

Formore information about the destroy subcommand, see “Destroying a ZFS File System” on page
66.

ZFS Snapshots

Solaris ZFSAdministration Guide • November 200692

RenamingZFS Snapshots
You can rename snapshots but theymust be renamedwithin the pool and dataset fromwhich they
were created. For example:

zfs rename tank/home/cindys@083006 tank/home/cindys@today

The following snapshot rename operation is not supported because the target pool and file system
name are different from the pool and file systemwhere the snapshot was created.

zfs rename tank/home/cindys@today pool/home/cindys@saturday

cannot rename to ’pool/home/cindys@today’: snapshots must be part of same

dataset

Displaying andAccessingZFS Snapshots
Snapshots of file systems are accessible in the .zfs/snapshot directory within the root of the
containing file system. For example, if tank/home/ahrens is mounted on /home/ahrens, then the
tank/home/ahrens@thursday snapshot data is accessible in the
/home/ahrens/.zfs/snapshot/thursday directory.

ls /tank/home/ahrens/.zfs/snapshot

tuesday wednesday thursday

You can list snapshots as follows:

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

pool/home/anne@monday 0 - 780K -

pool/home/bob@monday 0 - 1.01M -

tank/home/ahrens@tuesday 8.50K - 780K -

tank/home/ahrens@wednesday 8.50K - 1.01M -

tank/home/ahrens@thursday 0 - 1.77M -

tank/home/cindys@today 8.50K - 524K -

You can list snapshots that were created for a particular file system as follows:

zfs list -r -t snapshot -o name,creation tank/home

NAME CREATION

tank/home@now Wed Aug 30 10:53 2006

tank/home/ahrens@tuesday Wed Aug 30 10:53 2006

tank/home/ahrens@wednesday Wed Aug 30 10:54 2006

tank/home/ahrens@thursday Wed Aug 30 10:53 2006

tank/home/cindys@now Wed Aug 30 10:57 2006

ZFS Snapshots

Chapter 6 • WorkingWith ZFS Snapshots and Clones 93

Snapshot SpaceAccounting
When a snapshot is created, its space is initially shared between the snapshot and the file system, and
possibly with previous snapshots.As the file system changes, space that was previously shared
becomes unique to the snapshot, and thus is counted in the snapshot’s used property.Additionally,
deleting snapshots can increase the amount of space unique to (and thus used by) other snapshots.

Asnapshot’s space referenced property is the same as the file system’s was when the snapshot was
created.

RollingBack to a ZFS Snapshot
The zfs rollback command can be used to discard all changes made since a specific snapshot. The
file system reverts to its state at the time the snapshot was taken. By default, the command cannot roll
back to a snapshot other than themost recent snapshot.

To roll back to an earlier snapshot, all intermediate snapshots must be destroyed. You can destroy
earlier snapshots by specifying the -r option.

If clones of any intermediate snapshots exist, the -R optionmust be specified to destroy the clones as
well.

Note –The file system that youwant to roll backmust be unmounted and remounted, if it is currently
mounted. If the file system cannot be unmounted, the rollback fails. The -f option forces the file
system to be unmounted, if necessary.

In the following example, the tank/home/ahrens file system is rolled back to the tuesday snapshot:

zfs rollback tank/home/ahrens@tuesday

cannot rollback to ’tank/home/ahrens@tuesday’: more recent snapshots exist

use ’-r’ to force deletion of the following snapshots:

tank/home/ahrens@wednesday

tank/home/ahrens@thursday

zfs rollback -r tank/home/ahrens@tuesday

In the above example, the wednesday and thursday snapshots are removed because you rolled back
to the previous tuesday snapshot.

zfs list -r -t snapshot -o name,creation tank/home/ahrens

NAME CREATION

tank/home/ahrens@tuesday Wed Aug 30 10:53 2006

ZFS Snapshots

Solaris ZFSAdministration Guide • November 200694

ZFSClones
A clone is a writable volume or file systemwhose initial contents are the same as the dataset from
which it was created.As with snapshots, creating a clone is nearly instantaneous, and initially
consumes no additional disk space.

Clones can only be created from a snapshot.When a snapshot is cloned, an implicit dependency is
created between the clone and snapshot. Even though the clone is created somewhere else in the
dataset hierarchy, the original snapshot cannot be destroyed as long as the clone exists. The origin
property exposes this dependency, and the zfs destroy command lists any such dependencies, if
they exist.

Clones do not inherit the properties of the dataset fromwhich it was created. Rather, clones inherit
their properties based on where the clones are created in the pool hierarchy. Use the zfs get and zfs
set commands to view and change the properties of a cloned dataset. Formore information about
setting ZFS dataset properties, see “Setting ZFS Properties” on page 77.

Because a clone initially shares all its disk space with the original snapshot, its used property is
initially zero.As changes aremade to the clone, it uses more space. The used property of the original
snapshot does not consider the disk space consumed by the clone.

Creating aZFSClone
To create a clone, use the zfs clone command, specifying the snapshot fromwhich to create the
clone, and the name of the new file system or volume. The new file system or volume can be located
anywhere in the ZFS hierarchy. The type of the new dataset (for example, file system or volume) is the
same type as the snapshot fromwhich the clone was created. You cannot create clone of a file system
in a pool that is different fromwhere the original file system snapshot resides.

In the following example, a new clone named tank/home/ahrens/bug123with the same initial
contents as the snapshot tank/ws/gate@yesterday is created.

zfs snapshot tank/ws/gate@yesterday

zfs clone tank/ws/gate@yesterday tank/home/ahrens/bug123

In the following example, a cloned workspace is created from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Then, properties are set on the cloned
workspace.

zfs snapshot projects/newproject@today

zfs clone projects/newproject@today projects/teamA/tempuser

zfs set sharenfs=on projects/teamA/tempuser

zfs set quota=5G projects/teamA/tempuser

ZFS Clones

Chapter 6 • WorkingWith ZFS Snapshots and Clones 95

Destroying aZFSClone
ZFS clones are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens/bug123

Clonesmust be destroyed before the parent snapshot can be destroyed.

Replacing aZFS File SystemWith aZFSClone
You can use the zfs promote command to replace an active ZFS file systemwith a clone of that file
system. This feature facilitates the ability to clone and replace file systems so that the “origin” file
system become the clone of the specified file system. In addition, this featuremakes it possible to
destroy the file system fromwhich the clone was originally created.Without clone promotion, you
cannot destroy a “origin” file system of active clones. Formore information about destroying clones,
see “Destroying a ZFS Clone” on page 96.

In the following example, the tank/test/productA file system is cloned and then the clone file
system, tank/test/productAbeta becomes the tank/test/productA file system.

zfs create tank/test

zfs create tank/test/productA

zfs snapshot tank/test/productA@today

zfs clone tank/test/productA@today tank/test/productAbeta

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 314K 8.24G 25.5K /tank/test

tank/test/productA 288K 8.24G 288K /tank/test/productA

tank/test/productA@today 0 - 288K -

tank/test/productAbeta 0 8.24G 288K /tank/test/productAbeta

zfs promote tank/test/productAbeta

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 316K 8.24G 27.5K /tank/test

tank/test/productA 0 8.24G 288K /tank/test/productA

tank/test/productAbeta 288K 8.24G 288K /tank/test/productAbeta

tank/test/productAbeta@today 0 - 288K -

In the above zfs -list output, you can see that the space accounting of the original productA file
system has been replaced with the productAbeta file system.

Complete the clone replacement process by renaming the file systems. For example:

zfs rename tank/test/productA tank/test/productAlegacy

zfs rename tank/test/productAbeta tank/test/productA

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

ZFS Clones

Solaris ZFSAdministration Guide • November 200696

tank/test 316K 8.24G 27.5K /tank/test

tank/test/productA 288K 8.24G 288K /tank/test/productA

tank/test/productA@today 0 - 288K -

tank/test/productAlegacy 0 8.24G 288K /tank/test/productAlegacy

Optionally, you can remove the legacy file system. For example:

zfs destroy tank/test/productAlegacy

Saving andRestoringZFSData
The zfs send command creates a stream representation of a snapshot that is written to standard
output. By default, a full stream is generated. You can redirect the output to a file or to a different
system. The zfs receive command creates a snapshot whose contents are specified in the stream
that is provided on standard input. If a full stream is received, a new file system is created as well. You
can save ZFS snapshot data and restore ZFS snapshot data and file systems with these commands. See
the examples in the next section.

The following solutions for saving ZFS data are provided:

� Saving ZFS snapshots and rolling back snapshots, if necessary.
� Saving full and incremental copies of ZFS snapshots and restoring the snapshots and file systems,

if necessary.
� Remotely replicating ZFS file systems by saving and restoring ZFS snapshots and file systems.
� Saving ZFS data with archive utilities such as tar and cpio or third-party backup products.

Consider the following when choosing a solution for saving ZFS data:

� File system snapshots and rolling back snapshots – Use the zfs snapshot and zfs rollback

commands if you want to easily create a copy of a file system and revert back to a previous file
system version, if necessary. For example, if you want to restore a file or files from a previous
version of a file system, you could use this solution.

Formore information about creating and rolling back to a snapshot, see “ZFS Snapshots”
on page 91.

� Saving snapshots – Use the zfs send and zfs receive commands to save and restore a ZFS
snapshot. You can save incremental changes between snapshots, but you cannot restore files
individually. Youmust restore the entire file system snapshot.

� Remote replication – Use the zfs send and zfs receive commands when you want to copy a
file system from one system to another. This process is different from a traditional volume
management product that mightmirror devices across aWAN.No special configuration or
hardware is required. The advantage of replicating a ZFS file system is that you can re-create a file
system on a storage pool on another system, and specify different levels of configuration for the
newly created pool, such as RAID-Z, but with identical file system data.

Saving and Restoring ZFSData

Chapter 6 • WorkingWith ZFS Snapshots and Clones 97

SavingZFSDataWithOther BackupProducts
In addition to the zfs send and zfs receive commands, you can also use archive utilities, such as
the tar and cpio commands, to save ZFS files.All of these utilities save and restore ZFS file attributes
andACLs. Check the appropriate options for both the tar and cpio commands.

For up-to-date information about issues with ZFS and third-party backup products, please see the
Solaris 10 6/06 release notes.

Saving aZFS Snapshot
The simplest form of the zfs send command is to save a copy of a snapshot. For example:

zfs send tank/dana@0830 > /bkups/dana.083006

You can save incremental data by using the zfs send -i option. For example:

zfs send -i tank/dana@0829 tank/dana@0830 > /bkups/dana.today

Note that the first argument is the earlier snapshot and the second argument is the later snapshot.

If you need to storemany copies, youmight consider compressing a ZFS snapshot stream
representation with the gzip command. For example:

zfs send pool/fs@snap | gzip > backupfile.gz

Restoring aZFS Snapshot
When you restore a file system snapshot, the file system is restored as well. The file system is
unmounted and is inaccessible while it is being restored. In addition, the original file system to be
restoredmust not exist while it is being restored. If a conflicting file system name exists, zfs rename
can be used to rename the file system. For example:

zfs send tank/gozer@0830 > /bkups/gozer.083006

zfs receive tank/gozer2@today < /bkups/gozer.083006

zfs rename tank/gozer tank/gozer.old

zfs rename tank/gozer2 tank/gozer

You can use zfs recv as an alias for the zfs receive command.

When you restore an incremental file system snapshot, themost recent snapshotmust first be rolled
back. In addition, the destination file systemmust exist. In the following example, the previous
incremental saved copy of tank/dana is restored.

zfs rollback tank/dana@0829

cannot rollback to ’tank/dana@0829’: more recent snapshots exist

use ’-r’ to force deletion of the following snapshots:

Saving and Restoring ZFSData

Solaris ZFSAdministration Guide • November 200698

tank/dana@0830

zfs rollback -r tank/dana@0829

zfs recv tank/dana < /bkups/dana.today

During the incremental restore process, the file system is unmounted and cannot be accessed.

RemoteReplicationof ZFSData
You can use the zfs send and zfs recv commands to remotely copy a snapshot stream
representation from one system to another system. For example:

zfs send tank/cindy@today | ssh newsys zfs recv sandbox/restfs@today

This command saves the tank/cindy@today snapshot data and restores it into the sandbox/restfs
file system and also creates a restfs@today snapshot on the newsys system. In this example, the user
has been configured to use ssh on the remote system.

Saving and Restoring ZFSData

Chapter 6 • WorkingWith ZFS Snapshots and Clones 99

100

UsingACLs to Protect ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS files
by providingmore granular permissions than the standardUNIX permissions.

The following sections are provided in this chapter:

� “New SolarisACLModel” on page 101
� “SettingACLs on ZFS Files” on page 107
� “Setting andDisplayingACLs on ZFS Files in Verbose Format” on page 109
� “Setting andDisplayingACLs on ZFS Files in Compact Format” on page 122

NewSolarisACLModel
Recent previous versions of Solaris supported anACL implementation that was primarily based on
the POSIX-draftACL specification. The POSIX-draft basedACLs are used to protect UFS files and
are translated by versions of NFS prior to NFSv4.

With the introduction of NFSv4, a newACLmodel fully supports the interoperability that NFSv4
offers betweenUNIX and non-UNIX clients. The newACL implementation, as defined in the NFSv4
specification, providesmuch richer semantics that are based onNT-styleACLs.

Themain differences of the newACLmodel are as follows:

� Based on the NFSv4 specification and similar to NT-styleACLs.
� Providemuchmore granular set of access privileges. Formore information, see Table 7–2.
� Set and displayed with the chmod and ls commands rather than the setfacl and getfacl

commands.
� Provide richer inheritance semantics for designating how access privileges are applied from

directory to subdirectories, and so on. Formore information, see “ACL Inheritance” on page 105.

BothACLmodels providemore fine-grained access control than is available with the standard file
permissions.Much like POSIX-draftACLs, the newACLs are composed ofmultipleAccess Control
Entries (ACEs).

7C H A P T E R 7

101

POSIX-draft styleACLs use a single entry to define what permissions are allowed and what
permissions are denied. The newACLmodel has two types ofACEs that affect access checking:
ALLOW and DENY. As such, you cannot infer from any singleACE that defines a set of permissions
whether or not the permissions that weren’t defined in thatACE are allowed or denied.

Translation betweenNFSv4-styleACLs and POSIX-draftACLs is as follows:

� If you use anyACL-aware utility, such as the cp, mv, tar, cpio, or rcp commands, to transfer UFS
files withACLs to a ZFS file system, the POSIX-draftACLs are translated into the equivalent
NFSv4-styleACLs.

� SomeNFSv4-styleACLs are translated to POSIX-draftACLs. You see amessage similar to the
following if an NFSv4–styleACL isn’t translated to a POSIX-draftACL:

cp -p filea /var/tmp

cp: failed to set acl entries on /var/tmp/filea

� If you create a UFS tar or cpio archive with the preserveACLoption (tar -p or cpio -P) on a
system that runs a current Solaris release, you will lose theACLs when the archive is extracted on
a system that runs a previous Solaris release.
All of the files are extracted with the correct file modes, but theACLentries are ignored.

� You can use the ufsrestore command to restore data into a ZFS file system, but theACLs will be
lost.

� If you attempt to set anNFSv4-styleACLon aUFS file, you see amessage similar to the following:

chmod: ERROR: ACL type’s are different

� If you attempt to set a POSIX-styleACLon a ZFS file, you will seemessages similar to the
following:

getfacl filea

File system doesn’t support aclent_t style ACL’s.

See acl(5) for more information on Solaris ACL support.

For information about other limitations withACLs and backup products, see “Saving ZFSDataWith
Other Backup Products” on page 98.

SyntaxDescriptions for SettingACLs
Two basicACL formats are provided as follows:

Syntax for Setting Trivial ACLs

chmod [options] A[index]{+|=}owner@ |group@

|everyone@:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@, everyone@:access-permissions/...[:inheritance-flags]:deny |

allow file ...

NewSolarisACLModel

Solaris ZFSAdministration Guide • November 2006102

chmod [options] A[index]- file

Syntax for SettingNon-Trivial ACLs

chmod [options] A[index]{+|=}user|group:name:access-permissions/...[:inheritance-flags]:deny
| allow file

chmod [options] A-user|group:name:access-permissions/...[:inheritance-flags]:deny | allow file
...

chmod [options] A[index]- file

owner@, group@, everyone@
Identifies theACL-entry-type for trivialACL syntax. For a description ofACL-entry-types, see
Table 7–1.

user or group:ACL-entry-ID=username or groupname
Identifies theACL-entry-type for explicitACL syntax. The user and groupACL-entry-typemust
also contain theACL-entry-ID, username or groupname. For a description ofACL-entry-types, see
Table 7–1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description ofACLaccess
privileges, see Table 7–2.

inheritance-flags
Identifies an optional list ofACL inheritance flags. For a description of theACL inheritance flags,
see Table 7–3.

deny | allow
Identifies whether the access permissions are granted or denied.

In the following example, theACL-entry-ID value is not relevant.

group@:write_data/append_data/execute:deny

The following example includes anACL-entry-ID because a specific user (ACL-entry-type) is
included in theACL.

0:user:gozer:list_directory/read_data/execute:allow

When anACLentry is displayed, it looks similar to the following:

2:group@:write_data/append_data/execute:deny

The 2 or the index-ID designation in this example identifies theACLentry in the largerACL, which
might havemultiple entries for owner, specific UIDs, group, and everyone. You can specify the
index-IDwith the chmod command to identify which part of theACLyou want tomodify. For
example, you can identify index ID 3 as A3 to the chmod command, similar to the following:

chmod A3=user:venkman:read_acl:allow filename

NewSolarisACLModel

Chapter 7 • UsingACLs to Protect ZFS Files 103

ACLentry types, which are theACL representations of owner, group, and other, are described in the
following table.

TABLE 7–1ACLEntryTypes

ACLEntry Type Description

owner@ Specifies the access granted to the owner of the object.

group@ Specifies the access granted to the owning group of the object.

everyone@ Specifies the access granted to any user or group that does notmatch any otherACL
entry.

user With a user name, specifies the access granted to an additional user of the object.
Must include theACL-entry-ID, which contains a username or userID. If the value is
not a valid numeric UID or username, theACLentry type is invalid.

group With a group name, specifies the access granted to an additional group of the object.
Must include theACL-entry-ID, which contains a groupname or groupID. If the
value is not a valid numeric GID or groupname, theACLentry type is invalid.

ACLaccess privileges are described in the following table.

TABLE 7–2ACLAccess Privileges

Access Privilege
Compact Access
Privilege Description

add_file w Permission to add a new file to a directory.

add_subdirectory p On a directory, permission to create a subdirectory.

append_data p Placeholder. Not currently implemented.

delete d Permission to delete a file.

delete_child D Permission to delete a file or directory within a directory.

execute x Permission to execute a file or search the contents of a directory.

list_directory r Permission to list the contents of a directory.

read_acl c Permission to read theACL (ls).

read_attributes a Permission to read basic attributes (non-ACLs) of a file. Think of
basic attributes as the stat level attributes.Allowing this access mask
bit means the entity can execute ls(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R Permission to read the extended attributes of a file or perform a
lookup in the file’s extended attributes directory.

NewSolarisACLModel

Solaris ZFSAdministration Guide • November 2006104

TABLE 7–2ACLAccess Privileges (Continued)

Access Privilege
Compact Access
Privilege Description

synchronize s Placeholder. Not currently implemented.

write_xattr A Permission to create extended attributes or write to the extended
attributes directory.

Granting this permission to a usermeans that the user can create an
extended attribute directory for a file. The attribute file’s
permissions control the user’s access to the attribute.

write_data w Permission tomodify or replace the contents of a file.

write_attributes W Permission to change the times associated with a file or directory to
an arbitrary value.

write_acl C Permission to write theACLor the ability tomodify theACLby
using the chmod command.

write_owner o Permission to change the file’s owner or group. Or, the ability to
execute the chown or chgrp commands on the file.

Permission to take ownership of a file or permission to change the
group ownership of the file to a group of which the user is a
member. If you want to change the file or group ownership to an
arbitrary user or group, then the PRIV_FILE_CHOWN privilege is
required.

ACL Inheritance
The purpose of usingACL inheritance is so that a newly created file or directory can inherit theACLs
they are intended to inherit, but without disregarding the existing permission bits on the parent
directory.

By default,ACLs are not propagated. If you set an non-trivialACLon a directory, it is not inherited to
any subsequent directory. Youmust specify the inheritance of anACLon a file or directory.

The optional inheritance flags are described in the following table.

TABLE 7–3ACLInheritance Flags

Inheritance Flag
Compact Inheritance
Flag Description

file_inherit f Only inherit theACL from the parent directory to the
directory’s files.

dir_inherit d Only inherit theACL from the parent directory to the
directory’s subdirectories.

NewSolarisACLModel

Chapter 7 • UsingACLs to Protect ZFS Files 105

TABLE 7–3ACLInheritance Flags (Continued)

Inheritance Flag
Compact Inheritance
Flag Description

inherit_only i Inherit theACL from the parent directory but applies only to
newly created files or subdirectories and not the directory itself.
This flag requires the file_inherit flag, the dir_inherit flag,
or both, to indicate what to inherit.

no_propagate n Only inherit theACL from the parent directory to the first-level
contents of the directory, not the second-level or subsequent
contents. This flag requires the file_inherit flag, the
dir_inherit flag, or both, to indicate what to inherit.

In addition, you can set a defaultACL inheritance policy on the file system that is more strict or less
strict by using the aclinherit file system property. Formore information, see the next section.

ACLPropertyModes
The ZFS file system includes two propertymodes related toACLs:

� aclinherit – This property determines the behavior ofACL inheritance. Values include the
following:
� discard – For new objects, noACLentries are inherited when a file or directory is created.

TheACLon the file or directory is equal to the permissionmode of the file or directory.
� noallow – For new objects, only inheritableACLentries that have an access type of deny are

inherited.
� secure – For new objects, the write_owner and write_acl permissions are removed when

anACLentry is inherited.
� passthrough – For new objects, the inheritableACLentries are inherited with no changes

made to them. This mode, in effect, disables securemode.

The default mode for the aclinherit is secure.
� aclmode – This propertymodifiesACLbehavior whenever a file or directory’s mode is modified

by the chmod command or when a file is initially created. Values include the following:
� discard –AllACLentries are removed except for the entries needed to define themode of

the file or directory.
� groupmask –User or groupACLpermissions are reduced so that they are no greater than the

group permission bits, unless it is a user entry that has the sameUID as the owner of the file
or directory. Then, theACLpermissions are reduced so that they are no greater than owner
permission bits.

� passthrough – For new objects, the inheritableACLentries are inherited with no changes
made to the them.

The default mode for the aclmode property is groupmask.

NewSolarisACLModel

Solaris ZFSAdministration Guide • November 2006106

SettingACLs onZFS Files
As implemented with ZFS,ACLs are composed of an array ofACLentries. ZFS provides a pureACL
model, where all files have anACL. Typically, theACL is trivial in that it only represents the
traditional UNIX owner/group/other entries.

ZFS files still have permission bits and amode, but these values aremore of a cache of what theACL
represents.As such, if you change the permissions of the file, the file’sACL is updated accordingly. In
addition, if you remove an non-trivialACL that granted a user access to a file or directory, that user
could still have access to the file or directory because of the file or directory’s permission bits that
grant access to group or everyone.All access control decisions are governed by the permissions
represented in a file or directory’sACL.

The primary rules ofACLaccess on a ZFS file are as follows:

� ZFS processesACLentries in the order they are listed in theACL, from the top down.
� OnlyACLentries that have a “who” that matches the requester of the access are processed.
� Once an allow permission has been granted, it cannot be denied by a subsequentACLdeny entry

in the sameACLpermission set.
� The owner of the file is granted the write_acl permission unconditionally, even if the

permission is explicitly denied. Otherwise, any permission left unspecified is denied.

In the cases of deny permissions or when an access permission is missing, the privilege subsystem
determines what access request is granted for the owner of the file or for superuser. This
mechanism prevents owners of files from getting locked out of their files and enables superuser to
modify files for recovery purposes.

If you set an non-trivialACLon a directory, theACL is not automatically inherited by the directory’s
children. If you set an non-trivialACLand you want it inherited to the directory’s children, you have
to use theACL inheritance flags. Formore information, see Table 7–3 and “SettingACL Inheritance
on ZFS Files in Verbose Format” on page 115.

When you create a new file and depending on the umask value, a default trivialACL, similar to the
following, is applied:

$ ls -v file.1

-r--r--r-- 1 root root 206663 May 4 11:52 file.1

0:owner@:write_data/append_data/execute:deny

1:owner@:read_data/write_xattr/write_attributes/write_acl/write_owner

:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

SettingACLs on ZFS Files

Chapter 7 • UsingACLs to Protect ZFS Files 107

Note that each user category (owner@, group@, everyone@) in this example has twoACLentries. One
entry for deny permissions, and one entry is for allow permissions.

Adescription of this fileACL is as follows:

0:owner@ The owner is denied execute permissions to the file (execute:deny).

1:owner@ The owner can read andmodify the contents of the file
(read_data/write_data/append_data). The owner can alsomodify the file’s
attributes such as timestamps, extended attributes, andACLs
(write_xattr/write_attributes /write_acl). In addition, the owner can
modify the ownership of the file (write_owner:allow)

2:group@ The group is deniedmodify and execute permissions to the file
(write_data/append_data/execute:deny).

3:group@ The group is granted read permissions to the file (read_data:allow).

4:everyone@ Everyone who is not user or group is denied permission to execute ormodify the
contents of the file and tomodify any attributes of the file
(write_data/append_data/write_xattr/execute/
write_attributes/write_acl/write_owner:deny).

5:everyone@ Everyone who is not user or group is granted read permissions to the file, and the
file’s attributes (read_data/read_xattr/read_attributes/read_acl/
synchronize:allow). The synchronize access permission is not currently
implemented.

When a new directory is created and depending on the umask value, a default directoryACL is similar
to the following:

$ ls -dv dir.1

drwxr-xr-x 2 root root 2 Feb 23 10:37 dir.1

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Adescription of this directoryACL is as follows:

0:owner@ The owner deny list is empty for the directory (::deny).

1:owner@ The owner can read andmodify the directory contents
(list_directory/read_data/add_file/write_data/
add_subdirectory/append_data), search the contents (execute), andmodify the

SettingACLs on ZFS Files

Solaris ZFSAdministration Guide • November 2006108

file’s attributes such as timestamps, extended attributes, andACLs
(write_xattr/write_attributes/write_acl). In addition, the owner can
modify the ownership of the directory (write_owner:allow).

2:group@ The group cannot add to ormodify the directory contents
(add_file/write_data/add_subdirectory/append_data
:deny).

3:group@ The group can list and read the directory contents. In addition, the group has
execute permission to search the directory contents
(list_directory/read_data/execute:allow).

4:everyone@ Everyone who is not user or group is denied permission to add to ormodify the
contents of the directory
(add_file/write_data/add_subdirectory/append_data). In addition, the
permission tomodify any attributes of the directory is denied. (write_xattr
/write_attributes/write_acl/write_owner:deny).

5:everyone@ Everyone who is not user or group is granted read and execute permissions to the
directory contents and the directory’s attributes
(list_directory/read_data/read_xattr/execute/read_
attributes/read_acl/synchronize:allow). The synchronize access
permission is not currently implemented.

Setting andDisplayingACLs onZFS Files inVerbose Format
You can use the chmod command tomodifyACLs on ZFS files. The following chmod syntax for
modifyingACLs uses acl-specification to identify the format of theACL. For a description of
acl-specification, see “Syntax Descriptions for SettingACLs” on page 102.

� AddingACLentries
� Adding anACLentry for a user

% chmod A+acl-specification filename
� Adding anACLentry by index-ID

% chmod Aindex-ID+acl-specification filename

This syntax inserts the newACLentry at the specified index-ID location.
� Replacing anACLentry

% chmod Aindex-ID=acl-specification filename

% chmod A=acl-specification filename
� RemovingACLentries

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 109

� Removing anACLentry by index-ID

% chmod Aindex-ID- filename
� Removing anACLentry by user

% chmod A-acl-specification filename
� Removing all non-trivialACEs from a file

% chmod A- filename

VerboseACL information is displayed by using the ls -v command. For example:

ls -v file.1

-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

For information about using the compactACL format, see “Setting andDisplayingACLs on ZFS
Files in Compact Format” on page 122.

EXAMPLE 7–1Modifying TrivialACLs onZFS Files

This section provides examples of setting and displaying trivialACLs.

In the following example, a trivialACLexists on file.1:

ls -v file.1

-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, write_data permissions are granted for group@.

Setting andDisplayingACLs on ZFS Files in Verbose Format

Solaris ZFSAdministration Guide • November 2006110

EXAMPLE 7–1Modifying TrivialACLs onZFS Files (Continued)

chmod A2=group@:append_data/execute:deny file.1

chmod A3=group@:read_data/write_data:allow file.1

ls -v file.1

-rw-rw-r-- 1 root root 206663 May 3 16:36 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:append_data/execute:deny

3:group@:read_data/write_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, permissions on file.1 are set back to 644.

chmod 644 file.1

ls -v file.1

-rw-r--r-- 1 root root 206663 May 3 16:36 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 7–2 SettingNon-TrivialACLs onZFS Files

This section provides examples of setting and displaying non-trivialACLs.

In the following example, read_data/execute permissions are added for the user gozer on the
test.dir directory.

chmod A+user:gozer:read_data/execute:allow test.dir

ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:12 test.dir

0:user:gozer:list_directory/read_data/execute:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 111

EXAMPLE 7–2 SettingNon-TrivialACLs onZFS Files (Continued)

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, read_data/execute permissions are removed for user gozer.

chmod A0- test.dir

ls -dv test.dir

drwxr-xr-x 2 root root 2 Feb 16 11:12 test.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–3ACLInteractionWith Permissions onZFS Files

TheseACLexamples illustrate the interaction between settingACLs and then changing the file or
directory’s permission bits.

In the following example, a trivialACLexists on file.2:

ls -v file.2

-rw-r--r-- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example,ACLallow permissions are removed from everyone@.

chmod A5- file.2

ls -v file.2

Setting andDisplayingACLs on ZFS Files in Verbose Format

Solaris ZFSAdministration Guide • November 2006112

EXAMPLE 7–3ACLInteractionWith Permissions on ZFS Files (Continued)

-rw-r----- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

In this output, the file’s permission bits are reset from 655 to 650. Read permissions for everyone@
have been effectively removed from the file’s permissions bits when theACLallow permissions are
removed for everyone@.

In the following example, the existingACL is replaced with read_data/write_data permissions for
everyone@.

chmod A=everyone@:read_data/write_data:allow file.3

ls -v file.3

-rw-rw-rw-+ 1 root root 1532 Feb 16 11:18 file.3

0:everyone@:read_data/write_data:allow

In this output, the chmod syntax effectively replaces the existingACLwith
read_data/write_data:allow permissions to read/write permissions for owner, group, and
everyone@. In this model, everyone@ specifies access to any user or group. Since no owner@ or
group@ACLentry exists to override the permissions for owner and group, the permission bits are set
to 666.

In the following example, the existingACL is replaced with read permissions for user gozer.

chmod A=user:gozer:read_data:allow file.3

ls -v file.3

----------+ 1 root root 1532 Feb 16 11:18 file.3

0:user:gozer:read_data:allow

In this output, the file permissions are computed to be 000 because noACLentries exist for owner@,
group@, or everyone@, which represent the traditional permission components of a file. The owner of
the file can resolve this problem by resetting the permissions (and theACL) as follows:

chmod 655 file.3

ls -v file.3

-rw-r-xr-x+ 1 root root 0 Mar 8 13:24 file.3

0:user:gozer::deny

1:user:gozer:read_data:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 113

EXAMPLE 7–3ACLInteractionWith Permissions on ZFS Files (Continued)

/write_acl/write_owner:allow

4:group@:write_data/append_data:deny

5:group@:read_data/execute:allow

6:everyone@:write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

EXAMPLE 7–4Restoring TrivialACLs onZFS Files

You can use the chmod command to remove all non-trivialACLs on a file or directory.

In the following example, 2 non-trivialACEs exist on test5.dir.

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir

0:user:gozer:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:deny

2:owner@::deny

3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny

5:group@:list_directory/read_data/execute:allow

6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, the non-trivialACLs for users gozer and lp are removed. The remaining
ACLcontains the six default values for owner@, group@, and everyone@.

chmod A- test5.dir

ls -dv test5.dir

drwxr-xr-x 2 root root 2 Feb 16 11:23 test5.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting andDisplayingACLs on ZFS Files in Verbose Format

Solaris ZFSAdministration Guide • November 2006114

SettingACL Inheritance onZFS Files inVerbose
Format
You can determine howACLs are inherited or not inherited on files and directories. By default,ACLs
are not propagated. If you set an non-trivialACLon a directory, theACL is not inherited by any
subsequent directory. Youmust specify the inheritance of anACLon a file or directory.

In addition, twoACLproperties are provided that can be set globally on file systems: aclinherit and
aclmode. By default, aclinherit is set to secure and aclmode is set to groupmask.

Formore information, see “ACL Inheritance” on page 105.

EXAMPLE 7–5DefaultACLInheritance

By default,ACLs are not propagated through a directory structure.

In the following example, an non-trivialACE of read_data/write_data/execute is applied for user
gozer on test.dir.

chmod A+user:gozer:read_data/write_data/execute:allow test.dir

ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Feb 17 14:45 test.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If a test.dir subdirectory is created, theACE for user gozer is not propagated. User gozerwould
only have access to sub.dir if the permissions on sub.dir granted him access as the file owner,
groupmember, or everyone@.

mkdir test.dir/sub.dir

ls -dv test.dir/sub.dir

drwxr-xr-x 2 root root 2 Feb 17 14:46 test.dir/sub.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 115

EXAMPLE 7–5DefaultACLInheritance (Continued)

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–6GrantingACLInheritance on Files andDirectories

This series of examples identify the file and directoryACEs that are applied when the file_inherit
flag is set.

In the following example, read_data/write_data permissions are added for files in the test.dir
directory for user gozer so that he has read access on any newly created files.

chmod A+user:gozer:read_data/write_data:file_inherit:allow test2.dir

ls -dv test2.dir

drwxr-xr-x+ 2 root root 2 Feb 17 14:47 test2.dir

0:user:gozer:read_data/write_data:file_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, user gozer’s permissions are applied on the newly created
test2.dir/file.2 file. TheACL inheritance granted, read_data:file_inherit:allow, means user
gozer can read the contents of any newly created file.

touch test2.dir/file.2

ls -v test2.dir/file.2

-rw-r--r--+ 1 root root 0 Feb 17 14:49 test2.dir/file.2

0:user:gozer:write_data:deny

1:user:gozer:read_data/write_data:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes+

/write_acl/write_owner:allow

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

Setting andDisplayingACLs on ZFS Files in Verbose Format

Solaris ZFSAdministration Guide • November 2006116

EXAMPLE 7–6GrantingACLInheritance on Files andDirectories (Continued)

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Because the aclmode for this file is set to the default mode, groupmask, user gozer does not have
write_data permission on file.2 because the group permission of the file does not allow it.

Note the inherit_only permission, which is applied when the file_inherit or dir_inherit flags
are set, is used to propagate theACL through the directory structure.As such, user gozer is only
granted or denied permission from everyone@ permissions unless he is the owner of the file or a
member of the owning group of the file. For example:

mkdir test2.dir/subdir.2

ls -dv test2.dir/subdir.2

drwxr-xr-x+ 2 root root 2 Feb 17 14:50 test2.dir/subdir.2

0:user:gozer:list_directory/read_data/add_file/write_data:file_inherit

/inherit_only:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directoryACLs that are applied when both the
file_inherit and dir_inherit flags are set.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories.

chmod A+user:gozer:read_data/write_data/execute:file_inherit/dir_inherit:allow test3.dir

ls -dv test3.dir

drwxr-xr-x+ 2 root root 2 Feb 17 14:51 test3.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 117

EXAMPLE 7–6GrantingACLInheritance on Files andDirectories (Continued)

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

touch test3.dir/file.3

ls -v test3.dir/file.3

-rw-r--r--+ 1 root root 0 Feb 17 14:53 test3.dir/file.3

0:user:gozer:write_data/execute:deny

1:user:gozer:read_data/write_data/execute:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

mkdir test3.dir/subdir.1

ls -dv test3.dir/subdir.1

drwxr-xr-x+ 2 root root 2 May 4 15:00 test3.dir/subdir.1

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit/inherit_only:allow

1:user:gozer:add_file/write_data:deny

2:user:gozer:list_directory/read_data/add_file/write_data/execute:allow

3:owner@::deny

4:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

5:group@:add_file/write_data/add_subdirectory/append_data:deny

6:group@:list_directory/read_data/execute:allow

7:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

8:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In these examples, because the permission bits of the parent directory for group@ and everyone@
deny write and execute permissions, user gozer is denied write and execute permissions. The default
aclmode property is secure, whichmeans that write_data and execute permissions are not
inherited.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files, but are not propagated to subsequent contents of the directory.

Setting andDisplayingACLs on ZFS Files in Verbose Format

Solaris ZFSAdministration Guide • November 2006118

EXAMPLE 7–6GrantingACLInheritance on Files andDirectories (Continued)

chmod A+user:gozer:read_data/write_data/execute:file_inherit/no_propagate:allow test4.dir

ls -dv test4.dir

drwxr-xr-x+ 2 root root 2 Feb 17 14:54 test4.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/no_propagate:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, when a new subdirectory is created, user gozer’s
read_data/write_data/execute permission for files are not propagated to the new sub4.dir

directory.

mkdir test4.dir/sub4.dir

ls -dv test4.dir/sub4.dir

drwxr-xr-x 2 root root 2 Feb 17 14:57 test4.dir/sub4.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny

3:group@:list_directory/read_data/execute:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, gozer’s read_data/write_data/execute permission for files is
propagated to the newly created file.

touch test4.dir/file.4

ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 May 4 15:02 test4.dir/file.4

0:user:gozer:write_data/execute:deny

1:user:gozer:read_data/write_data/execute:allow

2:owner@:execute:deny

3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 119

EXAMPLE 7–6GrantingACLInheritance on Files andDirectories (Continued)

4:group@:write_data/append_data/execute:deny

5:group@:read_data:allow

6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 7–7ACLInheritanceWithACLMode Set to Passthrough

If the aclmode property on the tank/cindy file system is set to passthrough, then user gozerwould
inherit theACLapplied on test4.dir for the newly created file.4 as follows:

zfs set aclmode=passthrough tank/cindy

touch test4.dir/file.4

ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Feb 17 15:15 test4.dir/file.4

0:user:gozer:read_data/write_data/execute:allow

1:owner@:execute:deny

2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

3:group@:write_data/append_data/execute:deny

4:group@:read_data:allow

5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

This output illustrates that the
read_data/write_data/execute:allow:file_inherit/dir_inherit ACL that was set on the
parent directory, test4.dir, is passed through to user gozer.

EXAMPLE 7–8ACLInheritanceWithACLMode Set toDiscard

If the aclmode property on a file system is set to discard, thenACLs can potentially be discarded
when the permission bits on a directory change. For example:

zfs set aclmode=discard tank/cindy

chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:dir_inherit:allow

1:owner@::deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

Setting andDisplayingACLs on ZFS Files in Verbose Format

Solaris ZFSAdministration Guide • November 2006120

EXAMPLE 7–8ACLInheritanceWithACLMode Set toDiscard (Continued)

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny

4:group@:list_directory/read_data/execute:allow

5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivialACL is
discarded. For example:

chmod 744 test5.dir

ls -dv test5.dir

drwxr--r-- 2 root root 2 Feb 16 11:23 test5.dir

0:owner@::deny

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data/execute:deny

3:group@:list_directory/read_data:allow

4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/execute/write_attributes/write_acl/write_owner:deny

5:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

EXAMPLE 7–9ACLInheritanceWithACLInheritMode Set toNoallow

In the following example, two non-trivialACLs with file inheritance are set. OneACLallows
read_data permission, and oneACLdenies read_data permission. This example also illustrates
how you can specify twoACEs in the same chmod command.

zfs set aclinherit=nonallow tank/cindy

chmod A+user:gozer:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow test6.dir

ls -dv test6.dir

drwxr-xr-x+ 2 root root 2 May 4 14:23 test6.dir

0:user:gozer:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:allow

2:owner@::deny

3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl

/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny

5:group@:list_directory/read_data/execute:allow

Setting andDisplayingACLs on ZFS Files in Verbose Format

Chapter 7 • UsingACLs to Protect ZFS Files 121

EXAMPLE 7–9ACLInheritanceWithACLInheritMode Set toNoallow (Continued)

6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny

7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example shows, when a new file is created, theACL that allows read_data
permission is discarded.

touch test6.dir/file.6

ls -v test6.dir/file.6

-rw-r--r--+ 1 root root 0 May 4 13:44 test6.dir/file.6

0:user:gozer:read_data:deny

1:owner@:execute:deny

2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

3:group@:write_data/append_data/execute:deny

4:group@:read_data:allow

5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting andDisplayingACLs onZFS Files in Compact Format
You can set and display permissions on ZFS files in a compact format that uses 14 unique letters to
represent the permissions. The letters that represent the compact permissions are listed in Table 7–2
and Table 7–3.

You can display compactACL listings for files and directories by using the ls -V command. For
example:

ls -V file.1

-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

owner@:--x-----------:------:deny

owner@:rw-p---A-W-Co-:------:allow

group@:-wxp----------:------:deny

group@:r-------------:------:allow

everyone@:-wxp---A-W-Co-:------:deny

everyone@:r-----a-R-c--s:------:allow

The compactACLoutput is described as follows:

owner@ The owner is denied execute permissions to the file (x=execute).

Setting andDisplayingACLs on ZFS Files in Compact Format

Solaris ZFSAdministration Guide • November 2006122

owner@ The owner can read andmodify the contents of the file
(rw=read_data/write_data), (p=append_data). The owner can alsomodify the
file’s attributes such as timestamps, extended attributes, andACLs (A=write_xattr,
W=write_attributes, C=write_acl). In addition, the owner canmodify the
ownership of the file (O=write_owner).

group@ The group is deniedmodify and execute permissions to the file
(rw=read_data/write_data, p=append_data, and x=execute).

group@ The group is granted read permissions to the file (r=read_data).

everyone@ Everyone who is not user or group is denied permission to execute ormodify the
contents of the file, and tomodify any attributes of the file (w=write_data,
x=execute, p=append_data, A=write_xattr, W=write_attributes, C=write_acl,
and o=write_owner).

everyone@ Everyone who is not user or group is granted read permissions to the file and the file’s
attributes (r=read_data, a=append_data, R=read_xattr, c=read_acl, and
s=synchronize). The synchronize access permission is not currently implemented.

CompactACL format provides the following advantages over verboseACL format:

� Permissions can be specified as positional arguments to the chmod command.
� The hyphen (-) characters, which identify no permissions, can be removed and only the required

letters need to be specified.
� Both permissions and inheritance flags are set in the same fashion.

For information about using the verboseACL format, see “Setting andDisplayingACLs on ZFS Files
in Verbose Format” on page 109.

EXAMPLE 7–10 Setting andDisplayingACLs inCompact Format

In the following example, a trivialACLexists on file.1:

ls -V file.1

-rw-r-xr-x 1 root root 206663 Feb 16 11:00 file.1

owner@:--x-----------:------:deny

owner@:rw-p---A-W-Co-:------:allow

group@:-w-p----------:------:deny

group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny

everyone@:r-x---a-R-c--s:------:allow

In this example, read_data/execute permissions are added for the user gozer on file.1.

chmod A+user:gozer:rx:allow file.1

ls -V file.1

-rw-r-xr-x+ 1 root root 206663 Feb 16 11:00 file.1

Setting andDisplayingACLs on ZFS Files in Compact Format

Chapter 7 • UsingACLs to Protect ZFS Files 123

EXAMPLE 7–10 Setting andDisplayingACLs inCompact Format (Continued)

user:gozer:r-x-----------:------:allow

owner@:--x-----------:------:deny

owner@:rw-p---A-W-Co-:------:allow

group@:-w-p----------:------:deny

group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny

everyone@:r-x---a-R-c--s:------:allow

Another way to add the same permissions for user gozer is to insert a newACLat a specific position,
4, for example.As such, the existingACLs at positions 4–6 are pushed down. For example:

chmod A4+user:gozer:rx:allow file.1

ls -V file.1

-rw-r-xr-x+ 1 root root 206663 Feb 16 11:00 file.1

owner@:--x-----------:------:deny

owner@:rw-p---A-W-Co-:------:allow

group@:-w-p----------:------:deny

group@:r-x-----------:------:allow

user:gozer:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny

everyone@:r-x---a-R-c--s:------:allow

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories by using the compactACL format.

chmod A+user:gozer:rwx:fd:allow dir.2

ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Aug 28 13:21 dir.2

user:gozer:rwx-----------:fd----:allow

owner@:--------------:------:deny

owner@:rwxp---A-W-Co-:------:allow

group@:-w-p----------:------:deny

group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny

everyone@:r-x---a-R-c--s:------:allow

You can also cut and paste permissions and inheritance flags from the ls -V output into the compact
chmod format. For example, to duplicate the permissions and inheritance flags on dir.1 for user
gozer to user cindys, copy and paste the permission and inheritance flags
(rwx-----------:f-----:allow) into your chmod command. For example:

chmod A+user:cindys:rwx-----------:fd----:allow dir.2

ls -dv dir.2

drwxr-xr-x+ 2 root root 2 Aug 28 14:12 dir.2

user:cindys:rwx-----------:fd----:allow

Setting andDisplayingACLs on ZFS Files in Compact Format

Solaris ZFSAdministration Guide • November 2006124

EXAMPLE 7–10 Setting andDisplayingACLs inCompact Format (Continued)

user:gozer:rwx-----------:fd----:allow

owner@:--------------:------:deny

owner@:rwxp---A-W-Co-:------:allow

group@:-w-p----------:------:deny

group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny

everyone@:r-x---a-R-c--s:------:allow

Setting andDisplayingACLs on ZFS Files in Compact Format

Chapter 7 • UsingACLs to Protect ZFS Files 125

126

ZFSAdvancedTopics

This chapter describes emulated volumes, using ZFS on a Solaris systemwith zones installed, ZFS
alternate root pools, and ZFS rights profiles.

The following sections are provided in this chapter:

� “Emulated Volumes” on page 127
� “Using ZFS on a Solaris SystemWith Zones Installed” on page 128
� “ZFSAlternate Root Pools” on page 132
� “ZFS Rights Profiles” on page 133

EmulatedVolumes
An emulated volume is a dataset that represents a block device and can be used like any block device.
ZFS volumes are identified as devices in the /dev/zvol/{dsk,rdsk}/path directory.

In the following example, 5-Gbyte ZFS volume, tank/vol, is created:

zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the volume. The
reservation size continues to equal the size of the volume so that unexpected behavior doesn’t occur.
For example, if the size of the volume shrinks, data corruptionmight occur. Youmust be careful
when changing the size of the volume.

In addition, if you create a snapshot of a volume that changes in size, youmight introduce file system
inconsistencies if you attempt to rollback the snapshot or create a clone from the snapshot.

For information about file system properties that can be applied to volumes, see Table 5–1.

If you are using a Solaris systemwith zones installed, you cannot create or clone a ZFS volume in a
non-global zone.Any attempt to create or clone a volume fromwithin a non-global zone will fail. For
information about using ZFS volumes in a global zone, see “Adding ZFS Volumes to a Non-Global
Zone” on page 130.

8C H A P T E R 8

127

EmulatedVolumes as SwaporDumpDevices
To set up a swap area, create a ZFS volume of a specific size and then enable swap on that device. Do
not swap to a file on a ZFS file system.AZFS swap file configuration is not supported.

In the following example, the 5-Gbyte tank/vol volume is added as a swap device.

swap -a /dev/zvol/dsk/tank/vol

swap -l

swapfile dev swaplo blocks free

/dev/dsk/c0t0d0s1 32,33 16 1048688 1048688

/dev/zvol/dsk/tank/vol 254,1 16 10485744 10485744

Using a ZFS volume as a dump device is not supported. Use the dumpadm command to set up a dump
device.

UsingZFSonaSolaris SystemWith Zones Installed
ZFS datasets can be added to a zone either as a generic file system or as a delegated dataset.

Adding a file system allows the non-global zone to share space with the global zone, though the zone
administrator cannot control properties or create new file systems in the underlying file system
hierarchy. This is identical to adding any other type of file system to a zone, and should be used when
the primary purpose is solely to share common space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control over the
dataset and all its children to the zone administrator. The zone administrator can create and destroy
file systems within that dataset, andmodify properties of the datasets. The zone administrator
cannot affect datasets that have not been added to the zone, and cannot exceed any top-level quotas
set on the exported dataset.

Consider the following interactions when working with ZFS on a systemwith Solaris zones installed:

� AZFS file system that is added to a non-global zonemust have its mountpoint property set to
legacy.

� AZFS file system cannot serve as zone root because of issues with the Solaris upgrade process. Do
not include any system-related software that is accessed by the patch or upgrade process in a ZFS
file system that is delegated to a non-global zone.

AddingZFS File Systems to aNon-Global Zone
You can add a ZFS file system as a generic file systemwhen the goal is solely to share space with the
global zone.AZFS file system that is added to a non-global zonemust have its mountpoint property
set to legacy.

You can add a ZFS file system to a non-global zone by using the zonecfg command’s add fs
subcommand. For example:

Using ZFS on a Solaris SystemWith Zones Installed

Solaris ZFSAdministration Guide • November 2006128

In the following example, a ZFS file system is added to a non-global zone by a global administrator in
the global zone.

zonecfg -z zion

zion: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zion> create

zonecfg:zion> add fs

zonecfg:zion:fs> set type=zfs

zonecfg:zion:fs> set special=tank/zone/zion

zonecfg:zion:fs> set dir=/export/shared

zonecfg:zion:fs> end

This syntax adds the ZFS file system, tank/zone/zion, to the zone zion, mounted at
/export/shared. The mountpoint property of the file systemmust be set to legacy, and the file
system cannot already bemounted in another location. The zone administrator can create and
destroy files within the file system. The file system cannot be remounted in a different location, nor
can the zone administrator change properties on the file system such as atime, readonly,
compression, and so on. The global zone administrator is responsible for setting and controlling
properties of the file system.

Formore information about the zonecfg command and about configuring resource types with
zonecfg, see Part II, “Zones,” in SystemAdministration Guide: Solaris Containers-Resource
Management and Solaris Zones.

DelegatingDatasets to aNon-Global Zone
If the primary goal is to delegate the administration of storage to a zone, then ZFS supports adding
datasets to a non-global zone through use of the zonecfg command’s add dataset subcommand.

In the following example, a ZFS file system is delegated to a non-global zone by a global
administrator in the global zone.

zonecfg -z zion

zion: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zion> create

zonecfg:zion> add dataset

zonecfg:zion:dataset> set name=tank/zone/zion

zonecfg:zion:dataset> end

Unlike adding a file system, this syntax causes the ZFS file system tank/zone/zion to be visible
within the zone zion. The zone administrator can set file system properties, as well as create children.
In addition, the zone administrator can take snapshots, create clones, and otherwise control the
entire file system hierarchy.

Formore information about what actions are allowed within zones, see “PropertyManagement
Within a Zone” on page 130.

Using ZFS on a Solaris SystemWith Zones Installed

Chapter 8 • ZFSAdvanced Topics 129

AddingZFSVolumes to aNon-Global Zone
Emulated volumes cannot be added to a non-global zone by using the zonecfg command’s add
dataset subcommand. If an attempt to add an emulated volume is detected, the zone cannot boot.
However, volumes can be added to a zone by using the zonecfg command’s add device
subcommand.

In the following example, a ZFS emulated volume is added to a non-global zone by a global
administrator in the global zone:

zonecfg -z zion

zion: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zion> create

zonecfg:zion> add device

zonecfg:zion:device> set match=/dev/zvol/dsk/tank/vol

zonecfg:zion:device> end

This syntax exports the tank/vol emulated volume to the zone. Note that adding a raw volume to a
zone has implicit security risks, even if the volume doesn’t correspond to a physical device. In
particular, the zone administrator could createmalformed file systems that would panic the system
when amount is attempted. Formore information about adding devices to zones and the related
security risks, see “Understanding the zoned Property” on page 131.

Formore information about adding devices to zones, see Part II, “Zones,” in SystemAdministration
Guide: Solaris Containers-ResourceManagement and Solaris Zones.

UsingZFS StoragePoolsWithin a Zone
ZFS storage pools cannot be created ormodified within a zone. The delegated administrationmodel
centralizes control of physical storage devices within the global zone and control of virtual storage to
non-global zones.While a pool-level dataset can be added to a zone, any command that modifies the
physical characteristics of the pool, such as creating, adding, or removing devices, is not allowed
fromwithin a zone. Even if physical devices are added to a zone by using the zonecfg command’s
add device subcommand, or if files are used, the zpool command does not allow the creation of any
new pools within the zone.

PropertyManagementWithin a Zone
Once a dataset is added to a zone, the zone administrator can control specific dataset properties.
When a dataset is added to a zone, all its ancestors are visible as read-only datasets, while the dataset
itself is writable as are all its children. For example, consider the following configuration:

global# zfs list -Ho name

tank

tank/home

Using ZFS on a Solaris SystemWith Zones Installed

Solaris ZFSAdministration Guide • November 2006130

tank/data

tank/data/matrix

tank/data/zion

tank/data/zion/home

If tank/data/zion is added to a zone, each dataset would have the following properties.

Dataset Visible Writable Immutable Properties

tank Yes No -

tank/home No - -

tank/data Yes No -

tank/data/matrix No - -

tank/data/zion Yes Yes sharenfs, zoned, quota,
reservation

tank/data/zion/home Yes Yes sharenfs, zoned

Note that every parent of tank/zone/zion is visible read-only, all children are writable, and datasets
that are not part of the parent hierarchy are not visible at all. The zone administrator cannot change
the sharenfs property, because non-global zones cannot act as NFS servers. Neither can the zone
administrator change the zoned property, because doing so would expose a security risk as described
in the next section.

Any other property can be changed, except for the added dataset itself, where the quota and
reservation properties cannot be changed. This behavior allows the global zone administrator to
control the space consumption of all datasets used by the non-global zone.

In addition, the sharenfs and mountpoint properties cannot be changed by the global zone
administrator once a dataset has been added to a non-global zone.

Understanding the zonedProperty
When a dataset is added to a non-global zone, the dataset must be specially marked so that certain
properties are not interpreted within the context of the global zone. Once a dataset has been added to
a non-global zone under the control of a zone administrator, its contents can no longer be trusted.As
with any file system, theremight be setuid binaries, symbolic links, or otherwise questionable
contents that might adversely affect the security of the global zone. In addition, the mountpoint
property cannot be interpreted in the context of the global zone. Otherwise, the zone administrator
could affect the global zone’s namespace. To address the latter, ZFS uses the zoned property to
indicate that a dataset has been delegated to a non-global zone at one point in time.

Using ZFS on a Solaris SystemWith Zones Installed

Chapter 8 • ZFSAdvanced Topics 131

The zoned property is a boolean value that is automatically turned on when a zone containing a ZFS
dataset is first booted.Azone administrator will not need tomanually turn on this property. If the
zoned property is set, the dataset cannot bemounted or shared in the global zone, and is ignored
when the zfs share -a command or the zfs mount -a command is executed. In the following
example, tank/zone/zion has been added to a zone, while tank/zone/global has not:

zfs list -o name,zoned,mountpoint -r tank/zone

NAME ZONED MOUNTPOINT

tank/zone/global off /tank/zone/global

tank/zone/zion on /tank/zone/zion

zfs mount

tank/zone/global /tank/zone/global

tank/zone/zion /export/zone/zion/root/tank/zone/zion

Note the difference between the mountpoint property and the directory where the tank/zone/zion
dataset is currently mounted. The mountpoint property reflects the property as stored on disk, not
where the dataset is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not
automatically cleared. This behavior is due to the inherent security risks associated with these tasks.
Because an untrusted user has had complete access to the dataset and its children, the mountpoint
propertymight be set to bad values, or setuid binaries might exist on the file systems.

To prevent accidental security risks, the zoned propertymust bemanually cleared by the global
administrator if you want to reuse the dataset in any way. Before setting the zoned property to off,
make sure that the mountpoint property for the dataset and all its children are set to reasonable
values and that no setuid binaries exist, or turn off the setuid property.

Once you have verified that no security vulnerabilities are left, the zoned property can be turned off
by using the zfs set or zfs inherit commands. If the zoned property is turned off while a dataset is
in use within a zone, the systemmight behave in unpredictable ways. Only change the property if you
are sure the dataset is no longer in use by a non-global zone.

ZFSAlternateRoot Pools
When a pool is created, the pool is intrinsically tied to the host system. The host systemmaintains
knowledge about the pool so that it can detect when the pool is otherwise unavailable.While useful
for normal operation, this knowledge can prove a hindrance when booting from alternatemedia, or
creating a pool on removablemedia. To solve this problem, ZFS provides an alternate root pool
feature.An alternate root pool does not persist across system reboots, and all mount points are
modified to be relative to the root of the pool.

CreatingZFSAlternateRoot Pools
Themost common use for creating an alternate root pool is for use with removablemedia. In these
circumstances, users typically want a single file system, and they want it to bemounted wherever they

ZFSAlternate Root Pools

Solaris ZFSAdministration Guide • November 2006132

choose on the target system.When an alternate root pool is created by using the -R option, the
mount point of the root file system is automatically set to /, which is the equivalent of the alternate
root itself.

In the following example, a pool called morpheus is created with /mnt as the alternate root path:

zpool create -R /mnt morpheus c0t0d0

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt/

Note the single file system, morpheus, whosemount point is the alternate root of the pool, /mnt. The
mount point that is stored on disk is / and the full path to /mnt is interpreted only in the context of
the alternate root pool. This file system can then be exported and imported under an arbitrary
alternate root pool on a different system.

ImportingAlternateRoot Pools
Pools can also be imported using an alternate root. This feature allows for recovery situations, where
themount points should not be interpreted in context of the current root, but under some temporary
directory where repairs can be performed. This feature also can be used whenmounting removable
media as described above.

In the following example, a pool called morpheus is imported with /mnt as the alternate root path.
This example assumes that morpheuswas previously exported.

zpool import -R /mnt morpheus

zpool list morpheus

NAME SIZE USED AVAIL CAP HEALTH ALTROOT

morpheus 33.8G 68.0K 33.7G 0% ONLINE /mnt

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt/morpheus

ZFSRights Profiles
If you want to performZFSmanagement tasks without using the superuser (root) account, you can
assume a role with either of the following profiles to performZFS administration tasks:

� ZFS StorageManagement – Provides the ability to create, destroy, andmanipulate devices within
a ZFS storage pool

� ZFS File systemManagement – Provides the ability to create, destroy, andmodify ZFS file
systems

Formore information about creating or assigning roles, see SystemAdministration Guide: Security
Services.

ZFS Rights Profiles

Chapter 8 • ZFSAdvanced Topics 133

134

ZFS Troubleshooting andData Recovery

This chapter describes how to identify and recover fromZFS failuremodes. Information for
preventing failures is provided as well.

The following sections are provided in this chapter:

� “ZFS FailureModes” on page 135
� “Checking ZFSData Integrity” on page 137
� “Identifying Problems in ZFS” on page 139
� “Repairing a Damaged ZFS Configuration” on page 143
� “Repairing aMissing Device” on page 143
� “Repairing a DamagedDevice” on page 145
� “Repairing DamagedData” on page 150
� “Repairing anUnbootable System” on page 152

ZFS FailureModes
As a combined file system and volumemanager, ZFS can exhibit many different failuremodes. This
chapter begins by outlining the various failuremodes, then discusses how to identify them on a
running system. This chapter concludes by discussing how to repair the problems. ZFS can
encounter three basic types of errors:

� Missing devices
� Damaged devices
� Corrupted data

Note that a single pool can experience all three errors, so a complete repair procedure involves
finding and correcting one error, proceeding to the next error, and so on.

9C H A P T E R 9

135

MissingDevices in a ZFS StoragePool
If a device is completely removed from the system, ZFS detects that the device cannot be opened and
places it in the FAULTED state. Depending on the data replication level of the pool, this might ormight
not result in the entire pool becoming unavailable. If one disk in amirrored or RAID-Z device is
removed, the pool continues to be accessible. If all components of amirror are removed, if more than
one device in a RAID-Z device is removed, or if a single-disk, top-level device is removed, the pool
becomes FAULTED. No data is accessible until the device is reattached.

DamagedDevices in a ZFS StoragePool
The term “damaged” covers a wide variety of possible errors. Examples include the following errors:

� Transient I/O errors due to a bad disk or controller
� On-disk data corruption due to cosmic rays
� Driver bugs resulting in data being transferred to or from the wrong location
� Simply another user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is having
problems. In other cases, the damage is permanent, such as on-disk corruption. Even still, whether
the damage is permanent does not necessarily indicate that the error is likely to occur again. For
example, if an administrator accidentally overwrites part of a disk, no type of hardware failure has
occurred, and the device need not be replaced. Identifying exactly what went wrong with a device is
not an easy task and is covered inmore detail in a later section.

CorruptedZFSData
Data corruption occurs when one ormore device errors (indicatingmissing or damaged devices)
affects a top-level virtual device. For example, one half of amirror can experience thousands of
device errors without ever causing data corruption. If an error is encountered on the other side of the
mirror in the exact same location, corrupted data will be the result.

Data corruption is always permanent and requires special consideration during repair. Even if the
underlying devices are repaired or replaced, the original data is lost forever. Most often this scenario
requires restoring data from backups. Data errors are recorded as they are encountered, and can be
controlled through regular disk scrubbing as explained in the following section.When a corrupted
block is removed, the next scrubbing pass recognizes that the corruption is no longer present and
removes any trace of the error from the system.

ZFS FailureModes

Solaris ZFSAdministration Guide • November 2006136

CheckingZFSData Integrity
No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes, data
repair and data validation.

DataRepair
With traditional file systems, the way in which data is written is inherently vulnerable to unexpected
failure causing data inconsistencies. Because a traditional file system is not transactional,
unreferenced blocks, bad link counts, or other inconsistent data structures are possible. The addition
of journaling does solve some of these problems, but can introduce additional problems when the log
cannot be rolled back.With ZFS, none of these problems exist. The only way for inconsistent data to
exist on disk is through hardware failure (in which case the pool should have been replicated) or a
bug in the ZFS software exists.

Given that the fsck utility is designed to repair known pathologies specific to individual file systems,
writing such a utility for a file systemwith no known pathologies is impossible. Future experience
might prove that certain data corruption problems are common enough and simple enough such
that a repair utility can be developed, but these problems can always be avoided by using replicated
pools.

If your pool is not replicated, the chance that data corruption can render some or all of your data
inaccessible is always present.

DataValidation
In addition to data repair, the fsck utility validates that the data on disk has no problems.
Traditionally, this task is done by unmounting the file system and running the fsck utility, possibly
taking the system to single-usermode in the process. This scenario results in downtime that is
proportional to the size of the file system being checked. Instead of requiring an explicit utility to
perform the necessary checking, ZFS provides amechanism to perform regular checking of all data.
This functionality, known as scrubbing, is commonly used inmemory and other systems as amethod
of detecting and preventing errors before they result in hardware or software failure.

Controlling ZFSData Scrubbing
Whenever ZFS encounters an error, either through scrubbing or when accessing a file on demand,
the error is logged internally so that you can get a quick overview of all known errors within the pool.

Explicit ZFSData Scrubbing
The simplest way to check your data integrity is to initiate an explicit scrubbing of all data within the
pool. This operation traverses all the data in the pool once and verifies that all blocks can be read.
Scrubbing proceeds as fast as the devices allow, though the priority of any I/O remains below that of

Checking ZFSData Integrity

Chapter 9 • ZFS Troubleshooting andData Recovery 137

normal operations. This operationmight negatively impact performance, though the file system
should remain usable and nearly as responsive while the scrubbing occurs. To initiate an explicit
scrub, use the zpool scrub command. For example:

zpool scrub tank

The status of the current scrub can be displayed in the zpool status output. For example:

zpool status -v tank

pool: tank

state: ONLINE

scrub: scrub completed with 0 errors on Wed Aug 30 14:02:24 2006

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

Note that only one active scrubbing operation per pool can occur at one time.

Performing regular scrubbing also guarantees continuous I/O to all disks on the system. Regular
scrubbing has the side effect of preventing powermanagement from placing idle disks in low-power
mode. If the system is generally performing I/O all the time, or if power consumption is not a
concern, then this issue can safely be ignored.

For more information about interpreting zpool status output, see “Querying ZFS Storage Pool
Status” on page 50.

ZFSData Scrubbing andResilvering
When a device is replaced, a resilvering operation is initiated tomove data from the good copies to
the new device. This action is a form of disk scrubbing. Therefore, only one such action can happen
at a given time in the pool. If a scrubbing operation is in progress, a resilvering operation suspends
the current scrubbing, and restarts it after the resilvering is complete.

Formore information about resilvering, see “Viewing Resilvering Status” on page 148.

Checking ZFSData Integrity

Solaris ZFSAdministration Guide • November 2006138

IdentifyingProblems in ZFS
All ZFS troubleshooting is centered around the zpool status command. This command analyzes
the various failures in the system and identifies themost severe problem, presenting you with a
suggested action and a link to a knowledge article formore information. Note that the command
only identifies a single problemwith the pool, thoughmultiple problems can exist. For example, data
corruption errors always imply that one of the devices has failed. Replacing the failed device does not
fix the data corruption problems.

In addition, a ZFS diagnostic engine is provided to diagnose and report pool failures and device
failures. Checksum, I/O, device, and pool errors associated with pool or device failures are also
reported. ZFS failures as reported by fmd are displayed on the console as well as the systemmessages
file. In most cases, the fmdmessage directs you to the zpool status command for further recovery
instructions.

The basic recovery process is as follows:

� Identify the errors through the fmdmessages that are displayed on the system console or in the
/var/adm/messages files.

� Find further repair instructions in the zpool status -x command.
� Repair the failures, such as:

� Replace the faulted ormissing device and bring it online.
� Restore the faulted configuration or corrupted data from a backup.
� Verify the recovery by using the zpool status -x command.
� Back up your restored configuration, if applicable.

This chapter describes how to interpret zpool status output in order to diagnose the type of failure
and directs you to one of the following sections on how to repair the problem.While most of the
work is performed automatically by the command, it is important to understand exactly what
problems are being identified in order to diagnose the type of failure.

Determining if Problems Exist in a ZFS StoragePool
The easiest way to determine if any known problems exist on the system is to use the zpool status
-x command. This command describes only pools exhibiting problems. If no bad pools exist on the
system, then the command displays a simplemessage, as follows:

zpool status -x

all pools are healthy

Without the -x flag, the command displays the complete status for all pools (or the requested pool, if
specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see “Querying
ZFS Storage Pool Status” on page 50.

Identifying Problems in ZFS

Chapter 9 • ZFS Troubleshooting andData Recovery 139

Understanding zpool status Output
The complete zpool status output looks similar to the following:

zpool status tank

pool: tank

state: DEGRADED

status: One or more devices has been taken offline by the administrator.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Online the device using ’zpool online’ or replace the device with

’zpool replace’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 OFFLINE 0 0 0

errors: No known data errors

This output is divided into several sections:

Overall Pool Status Information
This header section in the zpool status output contains the following fields, some of which are only
displayed for pools exhibiting problems:

pool The name of the pool.

state The current health of the pool. This information refers only to the ability of the pool to
provide the necessary replication level. Pools that are ONLINEmight still have failing
devices or data corruption.

status Adescription of what is wrong with the pool. This field is omitted if no problems are
found.

action Arecommended action for repairing the errors. This field is an abbreviated form
directing the user to one of the following sections. This field is omitted if no problems are
found.

see Areference to a knowledge article containing detailed repair information. Online articles
are updatedmore often than this guide can be updated, and should always be referenced
for themost up-to-date repair procedures. This field is omitted if no problems are found.

scrub Identifies the current status of a scrub operation, whichmight include the date and time
that the last scrub was completed, a scrub in progress, or if no scrubbing was requested.

errors Identifies known data errors or the absence of known data errors.

Identifying Problems in ZFS

Solaris ZFSAdministration Guide • November 2006140

Configuration Information
The config field in the zpool status output describes the configuration layout of the devices
comprising the pool, as well as their state and any errors generated from the devices. The state can be
one of the following: ONLINE, FAULTED, DEGRADED, UNAVAILABLE, or OFFLINE. If the state is anything
but ONLINE, the fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are divided into
three categories:

� READ – I/O error occurred while issuing a read request.
� WRITE – I/O error occurred while issuing a write request.
� CKSUM – Checksum error. The device returned corrupted data as the result of a read request.

These errors can be used to determine if the damage is permanent.Asmall number of I/O errors
might indicate a temporary outage, while a large numbermight indicate a permanent problemwith
the device. These errors do not necessarily correspond to data corruption as interpreted by
applications. If the device is in a redundant configuration, the disk devices might show uncorrectable
errors, while no errors appear at themirror or RAID-Z device level. If this scenario is the case, then
ZFS successfully retrieved the good data and attempted to heal the damaged data from existing
replicas.

Formore information about interpreting these errors to determine device failure, see “Determining
the Type of Device Failure” on page 145.

Finally, additional auxiliary information is displayed in the last column of the zpool status output.
This information expands on the state field, aiding in diagnosis of failuremodes. If a device is
FAULTED, this field indicates whether the device is inaccessible or whether the data on the device is
corrupted. If the device is undergoing resilvering, this field displays the current progress.

Formore information aboutmonitoring resilvering progress, see “Viewing Resilvering Status”
on page 148.

Scrubbing Status
The third section of the zpool status output describes the current status of any explicit scrubs. This
information is distinct fromwhether any errors are detected on the system, though this information
can be used to determine the accuracy of the data corruption error reporting. If the last scrub ended
recently, most likely, any known data corruption has been discovered.

Formore information about data scrubbing and how to interpret this information, see “Checking
ZFSData Integrity” on page 137.

Identifying Problems in ZFS

Chapter 9 • ZFS Troubleshooting andData Recovery 141

DataCorruption Errors
The zpool status command also shows whether any known errors are associated with the pool.
These errors might have been found during disk scrubbing or during normal operation. ZFS
maintains a persistent log of all data errors associated with the pool. This log is rotated whenever a
complete scrub of the system finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application
experienced an I/O error due to corrupt data within the pool. Device errors within a replicated pool
do not result in data corruption and are not recorded as part of this log. By default, only the number
of errors found is displayed.Acomplete list of errors and their specifics can be found by using the
zpool status -v option. For example:

zpool status -v

pool: tank

state: DEGRADED

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: resilver completed with 1 errors on Fri Mar 17 15:42:18 2006

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 1

mirror DEGRADED 0 0 1

c1t0d0 ONLINE 0 0 2

c1t1d0 UNAVAIL 0 0 0 corrupted data

errors: The following persistent errors have been detected:

DATASET OBJECT RANGE

5 0 lvl=4294967295 blkid=0

Asimilar message is also displayed by fmd on the system console and the /var/adm/messages file.
Thesemessages can also be tracked by using the fmdump command.

Formore information about interpreting data corruption errors, see “Identifying the Type of Data
Corruption” on page 150.

SystemReportingof ZFS ErrorMessages
In addition to persistently keeping track of errors within the pool, ZFS also displays syslogmessages
when events of interest occur. The following scenarios generate events to notify the administrator:

Identifying Problems in ZFS

Solaris ZFSAdministration Guide • November 2006142

� Device state transition – If a device becomes FAULTED, ZFS logs amessage indicating that the
fault tolerance of the pool might be compromised.Asimilar message is sent if the device is later
brought online, restoring the pool to health.

� Data corruption – If any data corruption is detected, ZFS logs amessage describing when and
where the corruption was detected. This message is only logged the first time it is detected.
Subsequent accesses do not generate amessage.

� Pool failures and device failures – If a pool failure or device failure occurs, the fault manager
daemon reports these errors through syslogmessages as well as the fmdump command.

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such errors
do not constitute a failure in the pool redundancy or data integrity. Moreover, such errors are
typically the result of a driver problem accompanied by its own set of errormessages.

Repairing aDamagedZFSConfiguration
ZFSmaintains a cache of active pools and their configuration on the root file system. If this file is
corrupted or somehow becomes out of sync with what is stored on disk, the pool can no longer be
opened. ZFS tries to avoid this situation, though arbitrary corruption is always possible given the
qualities of the underlying file system and storage. This situation typically results in a pool
disappearing from the systemwhen it should otherwise be available. This situation can alsomanifest
itself as a partial configuration that is missing an unknown number of top-level virtual devices. In
either case, the configuration can be recovered by exporting the pool (if it is visible at all), and
re-importing it.

Formore information about importing and exporting pools, see “Migrating ZFS Storage Pools”
on page 56.

Repairing aMissingDevice
If a device cannot be opened, it displays as UNAVAILABLE in the zpool status output. This status
means that ZFS was unable to open the device when the pool was first accessed, or the device has
since become unavailable. If the device causes a top-level virtual device to be unavailable, then
nothing in the pool can be accessed. Otherwise, the fault tolerance of the pool might be
compromised. In either case, the device simply needs to be reattached to the system to restore normal
operation.

For example, youmight see amessage similar to the following from fmd after a device failure:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Thu Aug 31 11:40:59 MDT 2006

PLATFORM: SUNW,Sun-Blade-1000, CSN: -, HOSTNAME: tank

SOURCE: zfs-diagnosis, REV: 1.0

Repairing aMissingDevice

Chapter 9 • ZFS Troubleshooting andData Recovery 143

EVENT-ID: e11d8245-d76a-e152-80c6-e63763ed7e4e

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

The next step is to use the zpool status -x command to viewmore detailed information about the
device problem and the resolution. For example:

zpool status -x

pool: tank

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-D3

scrub: resilver completed with 0 errors on Thu Aug 31 11:45:59 MDT 2006

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

c0t1d0 UNAVAIL 0 0 0 cannot open

c1t1d0 ONLINE 0 0 0

You can see from this output that themissing device c0t1d0 is not functioning. If you determine that
the drive is faulty, replace the device.

Then, use the zpool online command to online the replaced device. For example:

zpool online tank c0t1d0

Confirm that the pool with the replaced device is healthy.

zpool status -x tank

pool ’tank’ is healthy

Physically Reattaching theDevice
Exactly how amissing device is reattached depends on the device in question. If the device is a
network-attached drive, connectivity should be restored. If the device is a USB or other removable
media, it should be reattached to the system. If the device is a local disk, a controller might have failed
such that the device is no longer visible to the system. In this case, the controller should be replaced at
which point the disks will again be available. Other pathologies can exist and depend on the type of

Repairing aMissingDevice

Solaris ZFSAdministration Guide • November 2006144

hardware and its configuration. If a drive fails and it is no longer visible to the system (an unlikely
event), the device should be treated as a damaged device. Follow the procedures outlined in
“Repairing a DamagedDevice” on page 145.

NotifyingZFSofDeviceAvailability
Once a device is reattached to the system, ZFSmight ormight not automatically detect its availability.
If the pool was previously faulted, or the systemwas rebooted as part of the attach procedure, then
ZFS automatically rescans all devices when it tries to open the pool. If the pool was degraded and the
device was replaced while the systemwas up, youmust notify ZFS that the device is now available
and ready to be reopened by using the zpool online command. For example:

zpool online tank c0t1d0

Formore information about bringing devices online, see “Bringing a Device Online” on page 45.

Repairing aDamagedDevice
This section describes how to determine device failure types, clear transient errors, and replace a
device.

Determining the TypeofDevice Failure
The term damaged device is rather vague, and can describe a number of possible situations:

� Bit rot –Over time, random events, such asmagnetic influences and cosmic rays, can cause bits
stored on disk to flip in unpredictable events. These events are relatively rare but common
enough to cause potential data corruption in large or long-running systems. These errors are
typically transient.

� Misdirected reads or writes – Firmware bugs or hardware faults can cause reads or writes of
entire blocks to reference the incorrect location on disk. These errors are typically transient,
though a large numbermight indicate a faulty drive.

� Administrator error –Administrators can unknowingly overwrite portions of the disk with bad
data (such as copying /dev/zero over portions of the disk) that cause permanent corruption on
disk. These errors are always transient.

� Temporary outage–Adiskmight become unavailable for a period time, causing I/Os to fail. This
situation is typically associated with network-attached devices, though local disks can experience
temporary outages as well. These errors might ormight not be transient.

� Bad or flaky hardware – This situation is a catch-all for the various problems that bad hardware
exhibits. This could be consistent I/O errors, faulty transports causing random corruption, or
any number of failures. These errors are typically permanent.

Repairing aDamagedDevice

Chapter 9 • ZFS Troubleshooting andData Recovery 145

� Offlined device – If a device is offline, it is assumed that the administrator placed the device in
this state because it is presumed faulty. The administrator who placed the device in this state can
determine is this assumption is accurate.

Determining exactly what is wrong can be a difficult process. The first step is to examine the error
counts in the zpool status output as follows:

zpool status -v pool

The errors are divided into I/O errors and checksum errors, both of whichmight indicate the
possible failure type. Typical operation predicts a very small number of errors (just a few over long
periods of time). If you are seeing large numbers of errors, then this situation probably indicates
impending or complete device failure. However, the pathology for administrator error can result in
large error counts. The other source of information is the system log. If the log shows a large number
of SCSI or fibre channel drivermessages, then this situation probably indicates serious hardware
problems. If no syslogmessages are generated, then the damage is likely transient.

The goal is to answer the following question:

Is another error likely to occur on this device?

Errors that happen only once are considered transient, and do not indicate potential failure. Errors
that are persistent or severe enough to indicate potential hardware failure are considered “fatal.” The
act of determining the type of error is beyond the scope of any automated software currently
available with ZFS, and somuchmust be donemanually by you, the administrator. Once the
determination is made, the appropriate action can be taken. Either clear the transient errors or
replace the device due to fatal errors. These repair procedures are described in the next sections.

Even if the device errors are considered transient, it still may have caused uncorrectable data errors
within the pool. These errors require special repair procedures, even if the underlying device is
deemed healthy or otherwise repaired. Formore information on repairing data errors, see “Repairing
DamagedData” on page 150.

Clearing Transient Errors
If the device errors are deemed transient, in that they are unlikely to effect the future health of the
device, then the device errors can be safely cleared to indicate that no fatal error occurred. To clear
error counters for RAID-Z or mirrored devices, use the zpool clear command. For example:

zpool clear tank c1t0d0

This syntax clears any errors associated with the device and clears any data error counts associated
with the device.

To clear all errors associated with the virtual devices in the pool, and clear any data error counts
associated with the pool, use the following syntax:

Repairing aDamagedDevice

Solaris ZFSAdministration Guide • November 2006146

zpool clear tank

Formore information about clearing pool errors, see “Clearing Storage Pool Devices” on page 46.

Replacing aDevice in a ZFS StoragePool
If device damage is permanent or future permanent damage is likely, the devicemust be replaced.
Whether the device can be replaced depends on the configuration.

Determining if aDevice CanBeReplaced
For a device to be replaced, the pool must be in the ONLINE state. The devicemust be part of a
replicated configuration, or it must be healthy (in the ONLINE state). If the disk is part of a replicated
configuration, sufficient replicas fromwhich to retrieve good datamust exist. If two disks in a
four-waymirror are faulted, then either disk can be replaced because healthy replicas are available.
However, if two disks in a four-way RAID-Z device are faulted, then neither disk can be replaced
because not enough replicas fromwhich to retrieve data exist. If the device is damaged but otherwise
online, it can be replaced as long as the pool is not in the FAULTED state. However, any bad data on the
device is copied to the new device unless there are sufficient replicas with good data.

In the following configuration, the disk c1t1d0 can be replaced, and any data in the pool is copied
from the good replica, c1t0d0.

mirror DEGRADED

c1t0d0 ONLINE

c1t1d0 FAULTED

The disk c1t0d0 can also be replaced, though no self-healing of data can take place because no good
replica is available.

In the following configuration, neither of the faulted disks can be replaced. The ONLINE disks cannot
be replaced either, because the pool itself is faulted.

raidz FAULTED

c1t0d0 ONLINE

c2t0d0 FAULTED

c3t0d0 FAULTED

c3t0d0 ONLINE

In the following configuration, either top-level disk can be replaced, though any bad data present on
the disk is copied to the new disk.

c1t0d0 ONLINE

c1t1d0 ONLINE

Repairing aDamagedDevice

Chapter 9 • ZFS Troubleshooting andData Recovery 147

If either disk were faulted, then no replacement could be performed because the pool itself would be
faulted.

UnreplaceableDevices
If the loss of a device causes the pool to become faulted, or the device contains toomany data errors
in an unreplicated configuration, then the device cannot safely be replaced.Without sufficient
replicas, no good data with which to heal the damaged device exists. In this case, the only option is to
destroy the pool and re-create the configuration, restoring your data in the process.

Formore information about restoring an entire pool, see “Repairing ZFS Storage Pool-Wide
Damage” on page 152.

Replacing aDevice
Once you have determined that a device can be replaced, use the zpool replace command to
replace the device. If you are replacing the damaged device with another different device, use the
following command:

zpool replace tank c1t0d0 c2t0d0

This command beginsmigrating data to the new device from the damaged device, or other devices in
the pool if it is in a replicated configuration.When the command is finished, it detaches the damaged
device from the configuration, at which point the device can be removed from the system. If you have
already removed the device and replaced it with a new device in the same location, use the single
device form of the command. For example:

zpool replace tank c1t0d0

This command takes an unformatted disk, formats it appropriately, and then begins resilvering data
from the rest of the configuration.

For more information about the zpool replace command, see “Replacing Devices in a Storage
Pool” on page 46.

ViewingResilvering Status
The process of replacing a drive can take an extended period of time, depending on the size of the
drive and the amount of data in the pool. The process of moving data from one device to another
device is known as resilvering, and can be monitored by using the zpool status command.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial layering
of the volumemanager, it can perform resilvering in amuchmore powerful and controlledmanner.
The twomain advantages of this feature are as follows:

Repairing aDamagedDevice

Solaris ZFSAdministration Guide • November 2006148

� ZFS only resilvers theminimum amount of necessary data. In the case of a short outage (as
opposed to a complete device replacement), the entire disk can be resilvered in amatter of
minutes or seconds, rather than resilvering the entire disk, or complicatingmatters with “dirty
region” logging that some volumemanagers support.When an entire disk is replaced, the
resilvering process takes time proportional to the amount of data used on disk. Replacing a
500-Gbyte disk can take seconds if only a few gigabytes of used space is in the pool.

� Resilvering is interruptible and safe. If the system loses power or is rebooted, the resilvering
process resumes exactly where it left off, without any need formanual intervention.

To view the resilvering process, use the zpool status command. For example:

zpool status tank

pool: tank

state: DEGRADED

reason: One or more devices is being resilvered.

action: Wait for the resilvering process to complete.

see: http://www.sun.com/msg/ZFS-XXXX-08

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0

replacing DEGRADED 0 0 0 52% resilvered

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

In this example, the disk c1t0d0 is being replaced by c2t0d0. This event is observed in the status
output by presence of the replacing virtual device in the configuration. This device is not real, nor is it
possible for you to create a pool by using this virtual device type. The purpose of this device is solely
to display the resilvering process, and to identify exactly which device is being replaced.

Note that any pool currently undergoing resilvering is placed in the DEGRADED state, because the pool
cannot provide the desired replication level until the resilvering process is complete. Resilvering
proceeds as fast as possible, though the I/O is always scheduled with a lower priority than
user-requested I/O, tominimize impact on the system. Once the resilvering is complete, the
configuration reverts to the new, complete, configuration. For example:

zpool status tank

pool: tank

state: ONLINE

scrub: scrub completed with 0 errors on Thu Aug 31 11:20:18 2006

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror ONLINE 0 0 0

Repairing aDamagedDevice

Chapter 9 • ZFS Troubleshooting andData Recovery 149

c2t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original bad disk (c1t0d0) has been removed from the
configuration.

RepairingDamagedData
ZFS uses checksumming, replication, and self-healing data tominimize the chances of data
corruption. Nonetheless, data corruption can occur if the pool isn’t replicated, if corruption occurred
while the pool was degraded, or an unlikely series of events conspired to corruptmultiple copies of a
piece of data. Regardless of the source, the result is the same: The data is corrupted and therefore no
longer accessible. The action taken depends on the type of data being corrupted, and its relative
value. Two basic types of data can be corrupted:

� Pool metadata – ZFS requires a certain amount of data to be parsed to open a pool and access
datasets. If this data is corrupted, the entire pool or complete portions of the dataset hierarchy
will become unavailable.

� Object data – In this case, the corruption is within a specific file or directory. This problemmight
result in a portion of the file or directory being inaccessible, or this problemmight cause the
object to be broken altogether.

Data is verified during normal operation as well as through scrubbing. Formore information about
how to verify the integrity of pool data, see “Checking ZFSData Integrity” on page 137.

Identifying the TypeofData Corruption
By default, the zpool status command shows only that corruption has occurred, but not where this
corruption occurred. For example:

zpool status tank -v

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

RepairingDamagedData

Solaris ZFSAdministration Guide • November 2006150

tank ONLINE 1 0 0

mirror ONLINE 1 0 0

c2t0d0 ONLINE 2 0 0

c1t1d0 ONLINE 2 0 0

errors: The following persistent errors have been detected:

DATASET OBJECT RANGE

tank 6 0-512

Each error indicates only that an error occurred at the given point in time. Each error is not
necessarily still present on the system. Under normal circumstances, this situation is true. Certain
temporary outagesmight result in data corruption that is automatically repaired once the outage
ends.Acomplete scrub of the pool is guaranteed to examine every active block in the pool, so the
error log is reset whenever a scrub finishes. If you determine that the errors are no longer present,
and you don’t want to wait for a scrub to complete, reset all errors in the pool by using the zpool
online command.

If the data corruption is in pool-widemetadata, the output is slightly different. For example:

zpool status -v morpheus

pool: morpheus

id: 1422736890544688191

state: FAULTED

status: The pool metadata is corrupted.

action: The pool cannot be imported due to damaged devices or data.

see: http://www.sun.com/msg/ZFS-8000-72

config:

morpheus FAULTED corrupted data

c1t10d0 ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state, because the pool
cannot possibly provide the needed replication level.

Repairing aCorrupted File orDirectory
If a file or directory is corrupted, the systemmight still be able to function depending on the type of
corruption.Any damage is effectively unrecoverable. No good copies of the data exist anywhere on
the system. If the data is valuable, you have no choice but to restore the affected data from backup.
Even so, youmight be able to recover from this corruption without restoring the entire pool.

If the damage is within a file data block, then the file can safely be removed, thereby clearing the error
from the system. The first step is to try to locate the file by using the find command and specify the
object number that is identified in the zpool status output under DATASET/OBJECT/RANGE output
as the inode number to find. For example:

RepairingDamagedData

Chapter 9 • ZFS Troubleshooting andData Recovery 151

find -inum 6

Then, try removing the file with the rm command. If this command doesn’t work, the corruption is
within the file’s metadata, and ZFS cannot determine which blocks belong to the file in order to
remove the corruption.

If the corruption is within a directory or a file’s metadata, the only choice is tomove the file
elsewhere. You can safelymove any file or directory to a less convenient location, allowing the
original object to be restored in place.

Repairing ZFS StoragePool-WideDamage
If the damage is in pool metadata that damage prevents the pool from being opened, then youmust
restore the pool and all its data from backup. Themechanism you use varies widely by the pool
configuration and backup strategy. First, save the configuration as displayed by zpool status so that
you can recreate it once the pool is destroyed. Then, use zpool destroy -f to destroy the pool. Also,
keep a file describing the layout of the datasets and the various locally set properties somewhere safe,
as this information will become inaccessible if the pool is ever rendered inaccessible.With the pool
configuration and dataset layout, you can reconstruct your complete configuration after destroying
the pool. The data can then be populated by using whatever backup or restoration strategy you use.

Repairing anUnbootable System
ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain unexpected
pathologies might cause the system to panic when a pool is accessed.As part of the boot process, each
pool must be opened, whichmeans that such failures will cause a system to enter into a panic-reboot
loop. In order to recover from this situation, ZFSmust be informed not to look for any pools on
startup.

ZFSmaintains an internal cache of available pools and their configurations in
/etc/zfs/zpool.cache. The location and contents of this file are private and are subject to change.
If the system becomes unbootable, boot to the nonemilestone by using the -m milestone=none boot
option. Once the system is up, remount your root file system as writable and then remove
/etc/zfs/zpool.cache. These actions cause ZFS to forget that any pools exist on the system,
preventing it from trying to access the bad pool causing the problem. You can then proceed to a
normal system state by issuing the svcadm milestone all command. You can use a similar process
when booting from an alternate root to perform repairs.

Once the system is up, you can attempt to import the pool by using the zpool import command.
However, doing so will likely cause the same error that occurred during boot, because the command
uses the samemechanism to access pools. If more than one pool is on the system and you want to
import a specific pool without accessing any other pools, youmust re-initialize the devices in the
damaged pool, at which point you can safely import the good pool.

Repairing anUnbootable System

Solaris ZFSAdministration Guide • November 2006152

Index

A
accessing

ZFS snapshot
(example of), 93

ACLmodel, Solaris, differences between ZFS and
traditional file systems, 31

ACLpropertymode
aclinherit, 69
aclmode, 69

aclinherit propertymode, 106
aclmode propertymode, 106
ACLs

access privileges, 104
ACL inheritance, 105
ACL inheritance flags, 105
ACLon ZFS directory

detailed description, 108
ACLon ZFS file

detailed description, 108
ACLpropertymodes, 106
aclinherit propertymode, 106
aclmode propertymode, 106
description, 101
differences from POSIX-draftACLs, 102
entry types, 104
format description, 102
modifying trivialACLon ZFS file (verbosemode)

(example of), 110
restoring trivialACLon ZFS file (verbosemode)

(example of), 114
settingACL inheritance on ZFS file (verbosemode)

(example of), 115
settingACLs on ZFS file (compact mode)

(example of), 123

ACLs, settingACLs on ZFS file (compact mode)
(Continued)

description, 122
settingACLs on ZFS file (verbosemode)

description, 109
setting on ZFS files

description, 107
adding

devices to ZFS storage pool (zpool add)
(example of), 43

ZFS file system to a non-global zone
(example of), 128

ZFS volume to a non-global zone
(example of), 130

alternate root pools
creating

(example of), 133
description, 132
importing

(example of), 133
atime property, description, 69
attaching

devices to ZFS storage pool (zpool attach)
(example of), 44

available property, description, 69

C
checking, ZFS data integrity, 137
checksum, definition, 20
checksum property, description, 69
checksummed data, description, 19

153

clearing
a device in a ZFS storage pool (zpool clear)

description, 46
device errors (zpool clear)

(example of), 146
clearing a device

ZFS storage pool
(example of), 46

clone, definition, 20
clones

creating
(example of), 95

destroying
(example of), 96

features, 95
components of, ZFS storage pool, 33
components of ZFS, naming requirements, 21
compression property, description, 69
compressratio property, description, 70
controlling, data validation (scrubbing), 137
creating

a basic ZFS file system (zpool create)
(example of), 24

a ZFS storage pool (zpool create)
(example of), 24

alternate root pools
(example of), 133

double-parity RAID-Z storage pool (zpool create)
(example of), 39

emulated volume
(example of), 127

emulated volume as swap device
(example of), 128

mirrored ZFS storage pool (zpool create)
(example of), 38

single-parity RAID-Z storage pool (zpool create)
(example of), 38

ZFS clone
(example of), 95

ZFS file system, 27
(example of), 66
description, 66

ZFS file system hierarchy, 26
ZFS snapshot

(example of), 92

creating (Continued)
ZFS storage pool

description, 38
ZFS storage pool (zpool create)

(example of), 38
creation property, description, 70

D
data

corrupted, 136
corruption identified (zpool status -v)

(example of), 142
repair, 137
resilvering

description, 138
scrubbing

(example of), 138
validation (scrubbing), 137

dataset
definition, 20
description, 65

dataset types, description, 76
delegating

dataset to a non-global zone
(example of), 129

destroying
ZFS clone

(example of), 96
ZFS file system

(example of), 66
ZFS file systemwith dependents

(example of), 67
ZFS snapshot

(example of), 92
ZFS storage pool

description, 38
ZFS storage pool (zpool destroy)

(example of), 42
detaching

devices to ZFS storage pool (zpool detach)
(example of), 44

detecting
in-use devices

(example of), 40

Index

Solaris ZFSAdministration Guide • November 2006154

detecting (Continued)
mismatched replication levels

(example of), 41
determining

if a device can be replaced
description, 147

type of device failure
description, 145

devices property, description, 70
differences between ZFS and traditional file systems

file system granularity, 29
mounting ZFS file systems, 31
new SolarisACLModel, 31
out of space behavior, 30
traditional volumemanagement, 31
ZFS space accounting, 30

disks, as components of ZFS storage pools, 34
displaying

detailed ZFS storage pool health status
(example of), 55

health status of storage pools
description of, 54

syslog reporting of ZFS errormessages
description, 142

ZFS storage pool health status
(example of), 55

ZFS storage pool I/O statistics
description, 52

ZFS storage pool vdev I/O statistics
(example of), 53

ZFS storage pool-wide I/O statistics
(example of), 52

dry run
ZFS storage pool creation (zpool create -n)

(example of), 41
dynamic striping

description, 37
storage pool feature, 37

E
EFI label

description, 34
interaction with ZFS, 34

emulated volume
as swap device, 128
description, 127

exec property, description, 70
exporting

ZFS storage pool
(example of), 57

F
failuremodes, 135

corrupted data, 136
damaged devices, 136
missing (faulted) devices, 136

file system, definition, 20
file system granularity, differences between ZFS and

traditional file systems, 29
file system hierarchy, creating, 26
files, as components of ZFS storage pools, 35

H
hardware and software requirements, 23
hot spares

creating
(example of), 47

description of
(example of), 47

I
identifying

storage requirements, 25
type of data corruption (zpool status -v)

(example of), 150
ZFS storage pool for import (zpool import -a)

(example of), 58
importing

alternate root pools
(example of), 133

ZFS storage pool
(example of), 61

Index

155

importing (Continued)
ZFS storage pool from alternate directories (zpool
import -d)

(example of), 60
in-use devices

detecting
(example of), 40

inheriting
ZFS properties (zfs inherit)

description, 78

L
listing

descendants of ZFS file systems
(example of), 76

types of ZFS file systems
(example of), 77

ZFS file systems
(example of), 75

ZFS file systems (zfs list)
(example of), 28

ZFS file systems without header information
(example of), 77

ZFS pool information, 26
ZFS properties (zfs list)

(example of), 79
ZFS properties by source value

(example of), 80
ZFS properties for scripting

(example of), 81
ZFS storage pools

(example of), 51
description, 50

M
migrating ZFS storage pools, description, 56
mirror, definition, 20
mirrored configuration

conceptual view, 36
description, 36
replication feature, 36

mirrored storage pool (zpool create), (example of), 38

mismatched replication levels
detecting

(example of), 41
modifying

trivialACLon ZFS file (verbosemode)
(example of), 110

mount points
automatic, 82
legacy, 82
managing ZFS

description, 81
mounted property, description, 70
mounting

ZFS file systems
(example of), 84

mounting ZFS file systems, differences between ZFS and
traditional file systems, 31

mountpoint
default for ZFS file system, 66
default for ZFS storage pools, 41

mountpoint property, description, 70

N
naming requirements, ZFS components, 21
NFSv4ACLs

ACL inheritance, 105
ACL inheritance flags, 105
ACLpropertymodes, 106
differences from POSIX-draftACLs, 102
format description, 102
model

description, 101
notifying

ZFS of reattached device (zpool online)
(example of), 145

O
offlining a device (zpool offline)

ZFS storage pool
(example of), 45

Index

Solaris ZFSAdministration Guide • November 2006156

onlining a device
ZFS storage pool (zpool online)

(example of), 45
onlining and offlining devices

ZFS storage pool
description, 44

origin property, description, 70
out of space behavior, differences between ZFS and

traditional file systems, 30

P
pool, definition, 20
pooled storage, description, 18
POSIX-draftACLs, description, 102
properties of ZFS

description, 68
description of heritable properties, 68

Q
quota property, description, 71
quotas and reservations, description, 87

R
RAID-Z, definition, 20
RAID-Z configuration

(example of), 38
conceptual view, 36
double-parity, description, 36
replication feature, 36
single-parity, description, 36

read-only properties of ZFS
available, 69
compression, 70
creation, 70
description, 73
mounted, 70
origin, 70
referenced, 71
type, 72
used, 72

read-only property, description, 71
recordsize property

description, 71
detailed description, 74

recovering
destroyed ZFS storage pool

(example of), 62
referenced property, description, 71
renaming

ZFS file system
(example of), 67

ZFS snapshot
(example of), 93

repairing
a damaged ZFS configuration

description, 143
an unbootable system

description, 152
pool-wide damage

description, 152
repairing a corrupted file or directory

description, 151
replacing

a device (zpool replace)
(example of), 46, 148, 149

amissing device
(example of), 143

replication features of ZFS, mirrored or RAID-Z, 36
reservation property, description, 71
resilvering, definition, 21
resilvering and data scrubbing, description, 138
restoring

trivialACLon ZFS file (verbosemode)
(example of), 114

ZFS file system data (zfs receive)
(example of), 98

rights profiles
formanagement of ZFS file systems and storage pools

description, 133
rolling back

ZFS snapshot
(example of), 94

Index

157

S
saving

ZFS file system data (zfs send)
(example of), 98

saving and restoring
ZFS file system data

description, 97
scripting

ZFS storage pool output
(example of), 52

scrubbing
(example of), 138
data validation, 137

self-healing data, description, 37
settable properties of ZFS

aclinherit, 69
aclmode, 69
atime, 69
checksum, 69
compression, 69
description, 74
devices, 70
exec, 70
mountpoint, 70
quota, 71
read-only, 71
recordsize, 71

detailed description, 74
reservation, 71
setuid, 72
sharenfs, 72
snapdir, 72
used

detailed description, 73
volblocksize, 72
volsize, 72

detailed description, 75
zoned, 72

setting
ACL inheritance on ZFS file (verbosemode)

(example of), 115
ACLs on ZFS file (compact mode)

(example of), 123
description, 122

ACLs on ZFS file (verbosemode)
(description, 109

setting (Continued)
ACLs on ZFS files

description, 107
compression property

(example of), 27
legacymount points

(example of), 83
mountpoint property, 27
quota property (example of), 28
sharenfs property

(example of), 27
ZFS atime property

(example of), 77
ZFS file system quota (zfs set quota)

example of, 87
ZFS file system reservation

(example of), 88
ZFS mount points (zfs set mountpoint)

(example of), 83
ZFS quota

(example of), 78
setuid property, description, 72
sharenfs property

description, 72, 86
sharing

ZFS file systems
description, 86
example of, 86

simplified administration, description, 19
snapdir property, description, 72
snapshot

accessing
(example of), 93

creating
(example of), 92

definition, 21
destroying

(example of), 92
features, 91
renaming

(example of), 93
rolling back

(example of), 94
space accounting, 94

SolarisACLs
ACL inheritance, 105

Index

Solaris ZFSAdministration Guide • November 2006158

SolarisACLs (Continued)
ACL inheritance flags, 105
ACLpropertymodes, 106
differences from POSIX-draftACLs, 102
format description, 102
newmodel

description, 101
storage requirements, identifying, 25

T
terminology

checksum, 20
clone, 20
dataset, 20
file system, 20
mirror, 20
pool, 20
RAID-Z, 20
resilvering, 21
snapshot, 21
virtual device, 21
volume, 21

traditional volumemanagement, differences between ZFS
and traditional file systems, 31

transactional semantics, description, 18
troubleshooting

clear device errors (zpool clear)
(example of), 146

damaged devices, 136
data corruption identified (zpool status -v)

(example of), 142
determining if a device can be replaced

description, 147
determining if problems exist (zpool status -x), 139
determining type of data corruption (zpool status

-v)
(example of), 150

determining type of device failure
description, 145

identifying problems, 139
missing (faulted) devices, 136
notifying ZFS of reattached device (zpool online)

(example of), 145

troubleshooting (Continued)
overall pool status information

description, 140
repairing a corrupted file or directory

description, 151
repairing a damaged ZFS configuration, 143
repairing an unbootable system

description, 152
repairing pool-wide damage

description, 152
replacing a device (zpool replace)

(example of), 148, 149
replacing amissing device

(example of), 143
syslog reporting of ZFS errormessages, 142
ZFS failuremodes, 135

type property, description, 72

U
unmounting

ZFS file systems
(example of), 85

unsharing
ZFS file systems

example of, 86
upgrading

ZFS storage pool
description, 63

used property
description, 72
detailed description, 73

V
virtual device, definition, 21
virtual devices, as components of ZFS storage pools, 35
volblocksize property, description, 72
volsize property

description, 72
detailed description, 75

volume, definition, 21

Index

159

W
whole disks, as components of ZFS storage pools, 34

Z
zfs create

(example of), 27, 66
description, 66

zfs destroy, (example of), 66
zfs destroy -r, (example of), 67
ZFS file system, description, 65
ZFS file systems

ACLon ZFS directory
detailed description, 108

ACLon ZFS file
detailed description, 108

adding ZFS file system to a non-global zone
(example of), 128

adding ZFS volume to a non-global zone
(example of), 130

checksum
definition, 20

checksummed data
description, 19

clone
creating, 95
destroying, 96
replacing a file systemwith (example of), 96

clones
definition, 20
description, 95

component naming requirements, 21
creating

(example of), 66
creating an emulated volume

(example of), 127
creating an emulated volume as swap device

(example of), 128
dataset

definition, 20
dataset types

description, 76
default mountpoint

(example of), 66

ZFS file systems (Continued)
delegating dataset to a non-global zone

(example of), 129
description, 17
destroying

(example of), 66
destroying with dependents

(example of), 67
file system

definition, 20
inheriting property of (zfs inherit)

(example of), 78
listing

(example of), 75
listing descendants

(example of), 76
listing properties by source value

(example of), 80
listing properties for scripting

(example of), 81
listing properties of (zfs list)

(example of), 79
listing types of

(example of), 77
listing without header information

(example of), 77
managing automatic mount points, 82
managing legacymount points

description, 82
managingmount points

description, 81
modifying trivialACLon ZFS file (verbosemode)

(example of), 110
mounting

(example of), 84
pooled storage

description, 18
propertymanagement within a zone

description, 130
renaming

(example of), 67
restoring data streams (zfs receive)

(example of), 98
restoring trivialACLon ZFS file (verbosemode)

(example of), 114
rights profiles, 133

Index

Solaris ZFSAdministration Guide • November 2006160

ZFS file systems (Continued)
saving and restoring

description, 97
saving data streams (zfs send)

(example of), 98
setting a reservation

(example of), 88
settingACL inheritance on ZFS file (verbosemode)

(example of), 115
settingACLs on ZFS file (compact mode)

(example of), 123
description, 122

settingACLs on ZFS file (verbosemode)
description, 109

settingACLs on ZFS files
description, 107

setting atime property
(example of), 77

setting legacymount point
(example of), 83

setting mount point (zfs set mountpoint)
(example of), 83

setting quota property
(example of), 78

sharing
description, 86
example of, 86

simplified administration
description, 19

snapshot
accessing, 93
creating, 92
definition, 21
description, 91
destroying, 92
renaming, 93
rolling back, 94

snapshot space accounting, 94
transactional semantics

description, 18
unmounting

(example of), 85
unsharing

example of, 86
using on a Solaris systemwith zones installed

description, 128

ZFS file systems (Continued)
volume

definition, 21
ZFS file systems (zfs set quota)

setting a quota
example of, 87

zfs get, (example of), 79
zfs get -H -o, (example of), 81
zfs get -s, (example of), 80
zfs inherit, (example of), 78
zfs list

(example of), 28, 75
zfs list -H, (example of), 77
zfs list -r, (example of), 76
zfs list -t, (example of), 77
zfs mount, (example of), 84
zfs promote, clone promotion (example of), 96
ZFS properties

aclinherit, 69
aclmode, 69
atime, 69
available, 69
checksum, 69
compression, 69
compressratio, 70
creation, 70
description, 68
devices, 70
exec, 70
inheritable, description of, 68
management within a zone

description, 130
mounted, 70
mountpoint, 70
origin, 70
quota, 71
read-only, 71
read-only, 73
recordsize, 71

detailed description, 74
referenced, 71
reservation, 71
settable, 74
setuid, 72
sharenfs, 72
snapdir, 72

Index

161

ZFS properties (Continued)
type, 72
used, 72

detailed description, 73
volblocksize, 72
volsize, 72

detailed description, 75
zoned, 72
zoned property

detailed description, 131
zfs receive, (example of), 98
zfs rename, (example of), 67
zfs send, (example of), 98
zfs set atime, (example of), 77
zfs set compression, (example of), 27
zfs set mountpoint

(example of), 27, 83
zfs set mountpoint=legacy, (example of), 83
zfs set quota

(example of), 28
zfs set quota, (example of), 78
zfs set quota

example of, 87
zfs set reservation, (example of), 88
zfs set sharenfs, (example of), 27
zfs set sharenfs=on, example of, 86
ZFS space accounting, differences between ZFS and

traditional file systems, 30
ZFS storage pools

adding devices to (zpool add)
(example of), 43

alternate root pools, 132
attaching devices to (zpool attach)

(example of), 44
clearing a device

(example of), 46
clearing device errors (zpool clear)

(example of), 146
components, 33
corrupted data

description, 136
creating (zpool create)

(example of), 38
creating a RAID-Z configuration (zpool create)

(example of), 38

ZFS storage pools (Continued)
creating mirrored configuration (zpool create)

(example of), 38
damaged devices

description, 136
data corruption identified (zpool status -v)

(example of), 142
data repair

description, 137
data scrubbing

(example of), 138
description, 137

data scrubbing and resilvering
description, 138

data validation
description, 137

default mountpoint, 41
destroying (zpool destroy)

(example of), 42
detaching devices from (zpool detach)

(example of), 44
determining if a device can be replaced

description, 147
determining if problems exist (zpool status -x)

description, 139
determining type of device failure

description, 145
displaying detailed health status

(example of), 55
displaying health status, 54

(example of), 55
doing a dry run (zpool create -n)

(example of), 41
dynamic striping, 37
exporting

(example of), 57
failuremodes, 135
identifying for import (zpool import -a)

(example of), 58
identifying problems

description, 139
identifying type of data corruption (zpool status -v)

(example of), 150
importing

(example of), 61

Index

Solaris ZFSAdministration Guide • November 2006162

ZFS storage pools (Continued)
importing from alternate directories (zpool import
-d)

(example of), 60
listing

(example of), 51
migrating

description, 56
mirror

definition, 20
mirrored configuration, description of, 36
missing (faulted) devices

description, 136
notifying ZFS of reattached device (zpool online)

(example of), 145
offlining a device (zpool offline)

(example of), 45
onlining and offlining devices

description, 44
overall pool status information for troubleshooting

description, 140
pool

definition, 20
pool-wide I/O statistics

(example of), 52
RAID-Z

definition, 20
RAID-Z configuration, description of, 36
recovering a destroyed pool

(example of), 62
repairing a corrupted file or directory

description, 151
repairing a damaged ZFS configuration, 143
repairing an unbootable system

description, 152
repairing pool-wide damage

description, 152
replacing a device (zpool replace)

(example of), 46, 148
replacing amissing device

(example of), 143
resilvering

definition, 21
rights profiles, 133
scripting storage pool output

(example of), 52

ZFS storage pools (Continued)
system errormessages

description, 142
upgrading

description, 63
using files, 35
using whole disks, 34
vdev I/O statistics

(example of), 53
viewing resilvering process

(example of), 149
virtual device

definition, 21
virtual devices, 35

ZFS storage pools (zpool online)
onlining a device

(example of), 45
zfs unmount, (example of), 85
zoned property

description, 72
detailed description, 131

zones
adding ZFS file system to a non-global zone

(example of), 128
adding ZFS volume to a non-global zone

(example of), 130
delegating dataset to a non-global zone

(example of), 129
using with ZFS file systems

description, 128
ZFS propertymanagement within a zone

description, 130
zoned property

detailed description, 131
zpool add, (example of), 43
zpool attach, (example of), 44
zpool clear

(example of), 46
description, 46

zpool create

(example of), 24, 26
basic pool

(example of), 38
mirrored storage pool

(example of), 38

Index

163

zpool create (Continued)
RAID-Z storage pool

(example of), 38
zpool create -n

dry run
(example of), 41

zpool destroy, (example of), 42
zpool detach, (example of), 44
zpool export, (example of), 57
zpool import -a, (example of), 58
zpool import -D, (example of), 62
zpool import -d, (example of), 60
zpool import name, (example of), 61
zpool iostat, pool-wide (example of), 52
zpool iostat -v, vdev (example of), 53
zpool list

(example of), 26, 51
description, 50

zpool list -Ho name, (example of), 52
zpool offline, (example of), 45
zpool online, (example of), 45
zpool replace, (example of), 46
zpool status -v, (example of), 55
zpool status -x, (example of), 55
zpool upgrade, 63

Index

Solaris ZFSAdministration Guide • November 2006164

	Solaris ZFS Administration Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Solaris ZFS File System (Introduction)
	What's New in ZFS?
	Support for ZFS in the Sun Cluster 3.2 Release
	Recursive ZFS Snapshots
	Double Parity RAID-Z (raidz2)
	Hot Spares for ZFS Storage Pool Devices
	Replacing a ZFS File System With a ZFS Clone (zfs promote)
	Upgrading ZFS Storage Pools (zpool upgrade)
	ZFS Backup and Restore Commands are Renamed
	Recovering Destroyed Storage Pools
	ZFS is Integrated With Fault Manager
	New zpool clear Command
	Compact NFSv4 ACL Format
	File System Monitoring Tool (fsstat)
	ZFS Web-Based Management

	What Is ZFS?
	ZFS Pooled Storage
	Transactional Semantics
	Checksums and Self-Healing Data
	Unparalleled Scalability
	ZFS Snapshots
	Simplified Administration

	ZFS Terminology
	ZFS Component Naming Requirements

	Getting Started With ZFS
	ZFS Hardware and Software Requirements and Recommendations
	Creating a Basic ZFS File System
	Creating a ZFS Storage Pool
	Identifying Storage Requirements
	Creating the ZFS Storage Pool

	Creating a ZFS File System Hierarchy
	Determining the ZFS File System Hierarchy
	Creating ZFS File Systems

	ZFS and Traditional File System Differences
	ZFS File System Granularity
	ZFS Space Accounting
	Out of Space Behavior

	Mounting ZFS File Systems
	Traditional Volume Management
	New Solaris ACL Model

	Managing ZFS Storage Pools
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool
	Virtual Devices in a Storage Pool

	Replication Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	Self-Healing Data in a Replicated Configuration
	Dynamic Striping in a Storage Pool

	Creating and Destroying ZFS Storage Pools
	Creating a ZFS Storage Pool
	Creating a Basic Storage Pool
	Creating a Mirrored Storage Pool
	Creating a Single-Parity RAID-Z Storage Pool
	Creating a Double-Parity RAID-Z Storage Pool

	Handling ZFS Storage Pool Creation Errors
	Detecting in Use Devices
	Mismatched Replication Levels
	Doing a Dry Run of Storage Pool Creation
	Default Mount Point for Storage Pools

	Destroying ZFS Storage Pools
	Destroying a Pool With Faulted Devices

	Managing Devices in ZFS Storage Pools
	Adding Devices to a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Onlining and Offlining Devices in a Storage Pool
	Taking a Device Offline
	Bringing a Device Online

	Clearing Storage Pool Devices
	Replacing Devices in a Storage Pool
	Designating Hot Spares in Your Storage Pool
	Activating and Deactivating Hot Spares in Your Storage Pool

	Querying ZFS Storage Pool Status
	Basic ZFS Storage Pool Information
	Listing Information About All Storage Pools
	Listing Specific Storage Pool Statistics
	Scripting ZFS Storage Pool Output

	ZFS Storage Pool I/O Statistics
	Listing Pool-Wide Statistics
	Listing Virtual Device Statistics

	Health Status of ZFS Storage Pools
	Basic Storage Pool Health Status
	Detailed Health Status

	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Finding ZFS Storage Pools From Alternate Directories
	Importing ZFS Storage Pools
	Recovering Destroyed ZFS Storage Pools
	Upgrading ZFS Storage Pools

	Managing ZFS File Systems
	Creating and Destroying ZFS File Systems
	Creating a ZFS File System
	Destroying a ZFS File System
	Renaming a ZFS File System

	ZFS Properties
	Read-Only ZFS Properties
	The used Property

	Settable ZFS Properties
	The recordsize Property
	The volsize Property

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting

	Mounting and Sharing ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Temporary Mount Properties
	Unmounting ZFS File Systems
	Sharing ZFS File Systems
	Controlling Share Semantics
	Unsharing ZFS File Systems
	Sharing ZFS File Systems
	Legacy Share Behavior

	ZFS Quotas and Reservations
	Setting Quotas on ZFS File Systems
	Setting Reservations on ZFS File Systems

	Working With ZFS Snapshots and Clones
	ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Snapshot Space Accounting

	Rolling Back to a ZFS Snapshot

	ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone
	Replacing a ZFS File System With a ZFS Clone

	Saving and Restoring ZFS Data
	Saving ZFS Data With Other Backup Products
	Saving a ZFS Snapshot
	Restoring a ZFS Snapshot
	Remote Replication of ZFS Data

	Using ACLs to Protect ZFS Files
	New Solaris ACL Model
	Syntax Descriptions for Setting ACLs
	ACL Inheritance
	ACL Property Modes

	Setting ACLs on ZFS Files
	Setting and Displaying ACLs on ZFS Files in Verbose Format
	Setting ACL Inheritance on ZFS Files in Verbose Format

	Setting and Displaying ACLs on ZFS Files in Compact Format

	ZFS Advanced Topics
	Emulated Volumes
	Emulated Volumes as Swap or Dump Devices

	Using ZFS on a Solaris System With Zones Installed
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Property Management Within a Zone
	Understanding the zoned Property

	ZFS Alternate Root Pools
	Creating ZFS Alternate Root Pools
	Importing Alternate Root Pools

	ZFS Rights Profiles

	ZFS Troubleshooting and Data Recovery
	ZFS Failure Modes
	Missing Devices in a ZFS Storage Pool
	Damaged Devices in a ZFS Storage Pool
	Corrupted ZFS Data

	Checking ZFS Data Integrity
	Data Repair
	Data Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	ZFS Data Scrubbing and Resilvering

	Identifying Problems in ZFS
	Determining if Problems Exist in a ZFS Storage Pool
	Understanding zpool status Output
	Overall Pool Status Information
	Configuration Information
	Scrubbing Status
	Data Corruption Errors

	System Reporting of ZFS Error Messages

	Repairing a Damaged ZFS Configuration
	Repairing a Missing Device
	Physically Reattaching the Device
	Notifying ZFS of Device Availability

	Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient Errors
	Replacing a Device in a ZFS Storage Pool
	Determining if a Device Can Be Replaced
	Unreplaceable Devices
	Replacing a Device
	Viewing Resilvering Status

	Repairing Damaged Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing ZFS Storage Pool-Wide Damage

	Repairing an Unbootable System

	Index

