=" i
i

#1/usr/sbin/dtrace -gs
BEGIN :

{
}

printf("Solaris Dynamic Tracing");

Jim Mauro

Senior Staff Engineer
Performance & Availability Engineering
Sun Microsystems, Inc

james.mauro@sun.com

Credits

Most of this material was written by the creators of
DTrace: Bryan Cantrill, Mike Shapiro & Adam Leventhal.

@un
The Problem

e As systems have grown more complex,
performance problems are increasingly
not seen In a system until production
deployment

e ...but performance analysis tools, by
and large, target developers In
development

e Production environment left with
crude, process-centric tools - of little
use on systemic problems

I
Why Dynamic Tracing?

o Well-defined techniques for debugging

fatal, non-reproducible failure:

— Obtain core file or crash dump
— Debug problem postmortem using mdb(1), dbx(1)

e Techniques for debugging transient

failures are much more ad hoc

— Typical techniques push traditional tools (e.q.
truss(1), mdb(1)) beyond their design centers

- Many transient problems cannot be debugged at
all using extant techniques

[Lisgalpim

Transient failure

 Any unacceptable behavior that does
not result in fatal failure of the system

 May be a clear failure:
- “read(2) is returning EIO on a device that isn't
reporting any errors.”
— “Our application occasionally doesn't receive its
timer signal.”
— “One of our threads 1s missing a condition
variable wakeup.”

P
LA h
[RESTTN TIEY

Debugging transient failure

e Historically, we have debugged
transient failure using process-centric
tools: truss(1), pstack(1), prstat(1), etc.

* These tools were not designed to debug
systemic problems

e But the tools designed for systemic
problems (i.e., mdb(1)) are designed for
postmortem analysis...

Postmortem techniques

e One technique Is to use postmortem
analysis to debug transient problems by
Inducing fatal failure during period of
transient failure

e Better than nothing, but not by much:

— Requires inducing fatal failure, which nearly
always results in more downtime than the
transient failure

— Requires a keen intuition to be able to sort out a
dynamic problem from a static snapshot of state

[Lisgalpim

Solution Constraints

e Performance analysis In production
— Must have zero probe effect when enabled

— Must be absolutely, positively, unquestionably,
iIrrefutably, SAFE!

Errors and misuse MUST NOT induce system failure
e To have system scope

— Entire system must be intrumentable - kernel
and applications

— Must be able to easily prune and coalesce data
to highlight systemic trends

Introducing DTrace

 New facility in Solaris 10 for dynamic
Instrumentation of production systems

e Dtrace features:

— Dynamic instrumentation:zero proble effect
when disabled

— Unified instrumentation:can instrument both the
kernel and running apps such that data and
control flow can be followed across boundaries

— Arbitrary-context kernel instrumentation:can
Instrument even delicate kernel subsystems, like
scheduling and synchronization

DTrace Features (cont)

— Data integrity: if data can not be recorded for any
reason, errors are always reported

— Arbitrary actions: actions that can be taken at
any point of instrumentation are not defined a
priori; user can specify arbitrary action

— Predicates: predicate mechanism allows actions
to be taken only when user-specified conditions
are met

— High level control language:predicates and
actions are specified in a C-like language that
supports all ANSI C operators, allows access to
kernel variables and types

Dtrace Features (cont)

- User-defined variables: support for global and
thread-local variables, associative arrays

— Data aggregation: scalable mechanism for
aggregating data

— Speculative tracing: mechanism for speculatively

recording data and deferring the decision to
commit or discard the data

— Scalable architecture: Allows for tens-of-
thousands of probes, consumers

— Scripting capability: command line or scripts (the
'D' language)

Dtrace - The Big Picture

_ plockstat(aM)

\« k M

. libdtrace(3LIB)

Dtrace Compone{nts :
dtrace (1M)

libdtrace.so.1

module cache

{ module J {drv/dtrace]

Probes

* A probe is a point of Instrumentation
A probe Is made available by a provider

e Each probe identifies the module and
function that it instruments

e Each probe has a name

e These four attributes define a tuple
that uniquely identifies each probe

e Each probe Is assigned an integer
identifier

Dtrace Probes

pael> dtrace -|

OCUDWNERLD

PROVI DER
dtrace
dtrace
dtrace

fasttrap

syscal |
syscal |

f bt
f bt
f bt
f bt
f bt
f bt
f bt

sdt
sdt
sdt
sdt
sdt
sdt
sdt

MODULE

uni
uni
uni
uni
uni
uni
uni

X X X X X X X

FUNCTI ON NAME
BEG N

END
ERROR
fasttrap fasttr
nosys entry
nosys return

sfmmu_kpm page_cache return
sfmmu_get ctx entry
sfmmu_get _ctx return
sfrmu_tlb_all_demap entry
sfru_tl b _all _demap return
sfmmu_repl ace_tsb entry
sfmu_replace_tsb return

tcp_wput _accept conn-i
tcp_bi nd_hash_report conn-i
tcp_rsrv conn-i

tcp_rput _data conn-i
tcp_open conn-i
tcp_eager cl eanup conn-i
tcp_eager bl owoff conn-i

ap

nc-r ef
nc-ref
nc-r ef
nc-ref
nc-r ef
nc-ref
nc-r ef

Providers

e A provider represents a methodology
for iInstrumenting the system

e Providers make probes available to the

DTrace framework

e DTrace informs providers when a probe
IS to be enabled

* Providers transfer control to DTrace
when an enabled probe Is hit

Providers, cont.

e DTrace has quite a few providers, e.qg.:

— The function boundary tracing (FBT)provider can
dynamically instrument every function entry and
return in the kernel

— The syscall provider can dynamically instrument
the system call table

— The lockstat provider can dynamically instrument
the kernel synchronization primitives

— The profile provider can add a configureable-rate
profile interrupt of to the system

— The plockstat provider can dynamically
Instrument user-defined lock primitives

Consumers

A DTrace consumer Is a process that
Interacts with DTrace

 No limit on concurrent consumers;
DTrace handles the multiplexing

e Some programs are DTrace consumers
only as an implementation detail
o dtrace(1M) is a DTrace consumer that

acts as a generic front-end to the
DTrace facility

@un
Listing probes

e Probes can be listed with the “-|” option
to dtrace(1M)

e Can list probes

- 1n a specific function with “Afunction”

- 1n a specific module with “-“mmodule”

— with a specific name with “-nname”

— from a specific provider with “-Pprovider”

e For each probe, provider, module,
function and name are displayed

Example - Listing Probes

« How many probes on your system?
e List all the probes in the UFS module

dtrace -1 | we -1

32743
dtrace -1 -mufs

| D PROVI DER MODULE FUNCTI ON NAMVE
14763 sysi nfo ufs ufs_idle free ufsinopage
14764 sysinfo ufs ufs_ idle free ufsipage
14765 sysi nfo ufs ufs_iget _internal ufsiget
14766 sysi nfo ufs bl kat of f uf sdirbl k
14767 f bt ufs hashal | oc entry
14768 f bt ufs hashal | oc return
14769 f bt ufs al l occg entry

14770 f bt ufs al l occg return

Example - Listing Probes

e List probes in the read function
e List probes with the name xcalls

dtrace -1 -f read
| D PROVI DER
11 syscal
12 syscal

3821 sysi nfo
3825 sysinfo

7384 f bt
7385 f bt
dtrace -1 -n xcalls

| D PROVI DER
492 sysi nfo
493 sysinfo

14298 sysinfo SUNW U t r aSPARC- |

MODULE

genuni x
genuni X
genuni x
genuni X

MODULE
uni x
uni X

FUNCTI ON NAME
read entry
read return
read readch
read sysread
read entry
read return

FUNCTI ON NANVE
xc_all xcalls
xc_sone xcalls
send _one_nondo xcalls

Example - Listing Probes

 List probes from the sysinfo provider

dtrace
| D

492
493
494
495
498
499
500
502
504

-1 -P sysinfo
PROVI DER

sysi nfo
sysi nfo
sysi nfo
sysi nfo
sysi nfo
sysi nfo
sysi nfo
sysi nfo
sysi nfo

MODULE
uni X
uni x
uni X
uni x
uni X
uni x
uni X
uni x
uni X

FUNCTI ON NAME
xc_all xcalls
xc_sonme xcalls
fpu trap trap
trap trap
swch to pswitch
swch _from zonbie pswitch
swch pswitch
rw enter _sleep rwwfails
preenpt inv_swtch

B
Fully specifying probes

e To specify multiple components of a
probe tuple, separate the components
with a colon

 Empty components match anything

» For example, “syscall::open:entry”

specifies a probe:

— from the “syscall” provider
— 1n any module

— In the “open” function

- named “entry”

P
S 4
[RESTTN TIEY

Specifying Probes

 Four components to probe

provi der: nodul e: functi on: nane

e.g.
f bt : genuni x: sys_enterclass:entry

o dtrace(1M) options for probe components

dtrace [-i id]
[-P prov]
[-m[prov:] nod]
[-f [[prov:] nod:] func]
[-n [[[prov:] nod:] func:] nane

pael> dtrace -n fbt:genuni x:sys enterclass:entry
dtrace: description 'fbt:genunix:sys enterclass:entry' matched 1 probe

[THETTN T

Enabling probes

* Probes are enabled by specifying them
without the “-1” option

 When enabled In this way, probes are
enabled with the default action

 The default action will indicate only
that the probe fired; no other data will
be recorded

e For example, “dtrace -m nfs” enables
every probe In the “nfs” module

DTrace - Enabling Probes

 Enable probes provided by the “syscall”
provider, and the “syscall” “open”
function

pael> dtrace -P syscal

dtrace: description 'syscall' matched 452 probes
CPU | D FUNCTI ON: NAVE

0 102 loctl:return

0 101 loctl:entry

0 102 loctl:return

0 101 loctl:entry

0 102 loctl:return
pael> dtrace -f syscall::open
dtrace: description 'syscall::open' matched 2 probes
CPU I D FUNCTI ON: NAMVE

12 15 open:entry

12 16 open:return

12 15 open:entry

12 16 open:return

12 15 open:entry

I
Dtrace - Enabling Probes

*Enable the entry probe in the clock function

dtrace -n clock:entry
dtrace: description 'clock:entry' matched 1 probe

CPU | D FUNCTI ON: NAVE
0 3967 cl ock:entry
0 3967 cl ock:entry
0 3967 cl ock:entry
0 3967 cl ock:entry

Actions

o Actions are taken when a probe fires
e Actions are completely programmable

* Most actions record some specified
state In the system

 Some actions change the state of the

system system 1n a well-defined way

— These are called destructive actions
— Disabled by default

 Many actions take as parameters
expressions in the D language

[THETTN T

The D language

e Dis a C-like language specific to DTrace,
with some constructs similar to awk(1)

 Complete access to kernel C types

 Complete access to statics and globals
 Complete support for ANSI-C operators
e Support for strings as first-class citizen

e We'll introduce D features as we need
them...

Built-in D variables

e For now, our D expressions will consist
only of built-in variables

e Example of built-in variables:

— pidisthe current process ID

— execname IS the current executable name

- timestamp Is the time since boot, In
nanoseconds

- curthreadis a pointer to thekthread t
structure that represents the current thread

- probemod, probefuncand probename are
the current probe's module, function and name

Actions: “trace”

e trace () recordstheresultofaD
expression to the trace buffer

e For example:

— trace (pid) traces the current process ID

—- trace (execname) traces the name of the
current executable

- trace (curthread->t pri)tracesthe
t pri field of the current thread

—- trace (probefunc) traces the function name
of the probe

Actions, cont.

e Actions are indicated by following a
probe specification with “{ action }”

e For example:
dtrace -n 'readch{trace(pid) }'
dtrace -m 'ufs{trace (execname) }'

dtrace -n 'syscall:::entry {trace
(probefunc) }'

 Multiple actions can be specified; they
must be separated by semicolons:

dtrace -n 'xcalls{trace(pid); trace
(execname) }'

DTrace - Actions

e Trace the executable name in every
“poll” system call

pael> dtrace -n 'syscall::poll: { trace(execnane) }'
dtrace: description 'syscall::poll: ' matched 2 probes
N

c

DTrace - Actions

e Trace the PID In every entry to the
“pagefault” function

pael> dtrace -f 'pagefault { trace(pid) }'
dtrace: description 'pagefault ' matched 2 probes

CPU | D FUNCTI ON: NAVE
12 2554 pagefault:entry 3979
12 2555 pagefault:return 3979
12 2554 pagefault:entry 3979
12 2555 pagefault:return 3979
12 2554 pagefault:entry 3979

Ne

DTrace - Actions

e Trace the timestamp In every entry to
the “clock” function

pael> dtrace -f 'clock { trace(tinmestanp) }'
dtrace: description 'clock ' matched 2 probes

CPU | D FUNCTI ON: NAME
0 4113 clock:entry 1306863050033058
0 4114 clock:return 1306863050128812
0 4113 clock:entry 1306863060015632
0 4114 clock:return 1306863060094122
0 4113 clock:entry 1306863070016883
0 4114 clock:return 1306863070094331

[THETTN T

D Scripts

 Complicated DTrace enablings become

difficult to manage on the command

line

o dtrace(1M) supports scripts, specified
with the “-s” option

e Alternatively, executable DTrace
iInterpreter files may be created

e Interpreter files always begin with:
#!/usr/sbin/dtrace -s

D Scripts, cont.

e For example, a script to trace the

executable name upon entry of each
system call:

#!/usr/sbin/dtrace -s

syscall:::entry
{

trace (execname) ;

}

Predicates

* Predicates allow actions to only be
taken when certain conditions are met

* A predicate Is a D expression

e Actions will only be taken if the
predicate expression evaluates to true

e A predicate takes the form
“/expression/” and Is placed between

the probe description and the action

Predicates, cont.

e For example, tracing the pid of every
process named “date” that performs an
open(2):

#!/usr/sbin/dtrace -s

syscal |l ::open:entry
/ execnane == “date”/
{

trace(pid);
}

Example - Predicates

e Trace the timestamp In every ioctl(2)
from processes named dtrace

pael> cat dioctl.d
#!/usr/sbin/dtrace -s

cri1octl:
/| execnane == "dtrace" /
{
trace(pid);
}

pael> ./dioctl.d
dtrace: script './dioctl.d matched 4 probes
CPU | D FUNCTI ON: NAVE

8 7984 ioctl:return 3994
8 102 ioctl:return 3994
8 101 ioctl:entry 3994
8 7983 ioctl:entry 3994

Example - Predicates

e Use the argO variable to trace the
executable name of every process read

(2)'Iing from file descriptor O

pael> cat pred2.d
#1 /usr/sbin/dtrace -s

. read:

/| arg0 == 0 /

{

trace(execnane);

}

pael> ./pred2.d

dtrace: script './pred2.d" matched 6 probes

CPU | D FUNCTI ON: NAVE
8 3956 read: readch
8 12 read: return
13 3956 read: readch
13 12 read: return

ksh
ksh
ksh
ksh

Example - Predicates

e Use the arg?2 variable to trace the

executable name of every processing
write(2)'ing more than 100 bytes

pael> cat pred3.d
#!/usr/sbin/dtrace -s

iwriterentry

/ arg2 > 100 /

{

trace(execnane);
printf("Wote: %l bytes\n", arg0);

}

crwrite:return

{

printf("Wote: %l bytes\n", argO0);

pael> ./pred3.d

CPU | D
4 3952
4 3948
0 8069
13 8069

FUNCTI ON: NAVE
wite:syswite

wite:witech
wite:return

wite:return

aut onount d
aut onount d
dtrace

s

W ot e:

W ot e:

W ot e:

W ot e:

1 bytes
1 bytes
936 bytes
936 bytes

Actions: More actions

e tracemem() records memory at a
specified location for a specified length

e stack () records the current kernel
stack trace

e ustack () records the current user
stack trace

e exit () tells the DTrace consumer to
exit with the specified status

P
& Sun
S ¥
[RESTTN TIEY

@ Sun.
Actions: Destructive actions

e Must specify “-w” option to DTrace
e stop () stops the current process

e raise () sends a specified signal to
the current process

e breakpoint () triggers a kernel
breakpoint

e panic () Induces a kernel panic

e chill () spins for a specified number
of nanoseconds

P
LA i
[RESTTN TIEY

Output formatting

e The printf () function combines the

trace action with t
precisely control out

ne ability to

Ut

e printf takes a printf(3C)-like format

string as an argument, followed by
corresponding arguments to print

¢ 2.g.:

printf (“%d was here”, pid);

printf (“I am %s”,

execname) ;

Output formatting, cont.

 Normally, dtrace(1M) provides details
on the firing probe, plus any explicitly
traced data

e Use the quiet option (“-q”) to dtrace
(1M) to supress the probe details

* The quiet option may also be setina D
script by embedding:

#pragma D option quiet

P
LA h
[RESTTN TIEY

Global D variables

e D allows you to define your own
variables that are global to your D
program

e Like awk(1), D tries to infer variable
type upon Instantiation, obviating an
explicit variable declaration

P
e ng‘tﬂ
A 4,
[RESTTN TIEY

Global D variables, cont.

e Example:

#!/usr/sbin/dtrace -s
#pragma D option quiet

sysinfo:::zfod
{

zfods++;

}

profile:::tick-1sec

{

printf (“%d zfods\n”,

zfods = 0;

zfods) ;

Thread-local D variables

e D allows for thread-local variables

A thread-local variable has the same
name - but disjoint data storage - for
each thread

e By definition, thread-local variables
elminate the race conditions that are
endemic to global variables

e Denoted by prepending “self->"to
the variable name

[Lisgalpim

Thread-local D variables, cont
 Thread-local variables that have never

nave t

e Under
threac

veen assighed in the current thread

ne value zero
ying thread-local storage for a

-local variable Is deallocated by

assigning zero to it

Thread-local D variables, cot
e Example 1:

#!/usr/sbin/dtrace -s
#pragma D option quiet

syscall::poll:entry
{
self->ts = timestamp;

}

syscall::poll:return
/self->ts && timestamp - self->ts > 1000000000/
{
printf (“%s polled for %d seconds\n”, execname,

(timestamp - self->ts) / 1000000000) ;
self->ts = 0;

Thread-local D variables, cont.

e Example 2:

syscall::ioctl:entry
/execname == ‘“date”/
{

self->follow = 1;
}

fbt:::
/self->follow/
{}

syscall::ioctl:return
/self->follow/
{

self->follow = O;
}

D Variables

e Write a D script to trace the executable
name and amount of time spent in

every open(2)

#! /usr/sbin/dtrace -gs

syscal | : : open:entry
sel f->st = tinmestanp;
}
syscal | ::open:return
/| self->st [/
{
tt = timestanp - self->st;
printf("%, % nsecs in open\n", execnane,
}

pael> ./open.d

s, 64700 nsecs in open
s, 24870 nsecs in open
date, 71220 nsecs in open
date, 62120 nsecs in open
| s, 58583 nsecs in open

| s, 24758 nsecs in open
s, 71976 nsecs in open
"C

tt);

D Variables

* Write a D script to follow a brk(2)
system call through the kernel when
called by a date(1) command

D Variables

e Add “#pragma D option
flowindent” to the above and
observe the change in output

[THETTN T

Aggregations

 When trying to understand suboptimal
performance, one often looks for
patterns that point to bottlenecks

 When looking for patterns, one often
doesn't want to study each datum -
one wishes to aggregate the data and
look for larger trends

e Traditionally, one has had to use
conventional tools (e.g. awk(1), perl(1))

Aggregations, cont.

e DTrace supports the aggregation of
data as a first class operation

* An aggregating function 1s a function f
‘(x), where x Is a set of data, such that:

ILiasgalpnm

f(f(xg) W (X)) U ... U (X)) =f(Xg U X; U ... U X,)
e E.g., COUNT, SUM, MAXIMUM, and

MINIMUM are aggregating functions;
MEDIAN, and MODE are not

Aggregations, cont.

* An aggregation 1s the result of an

aggregating function keyed by an
arbitrary tuple

e For example, to count all system calls
on a system by system call name:

[Lisgalpim

dtrace -n 'syscall:::entry \
{ @syscalls[probefunc] = count(); }'

* By default, aggregation results are
printed when dtrace(1M) exits

Aggregations, cont.

e Aggregations need not be named

e Aggregations can be keyed by more
than one expression

e For example, to count all ioctl system
calls by both executable name and file
descriptor:

P
@ Sun
i ;|
[RESTTN TIEY

dtrace -n 'syscall::ioctl:entry \
{ @[execname, arg0] = count(); }'

Aggregations, cont.
 Some other aggregating functions:

—avg():t
—min():t
- max ():t

ne average of specified expressions
ne minimum of specified expressions

he maximum of specified expressions

- quantize (): power-oftwo distribution of
specified expressions

e For example, distribution of write(2)
sizes by executable name:

dtrace -n

'syscall: :write:entry \

{ @[execname] = quantize(arg2); }'

Exploring DTrace

e This has been just an introduction to
DTrace - there's much, much more:

— BEGIN, END probes - Aggregation formatting

- Normalization - Provider specifics
— Associative arrays - Clause-local variables
— User-level tracing - Ring buffering

— Speculative tracing - Anonymous tracing
— Postmortem tracing - Privilege model
— Explicit versioning - Well-defined stability

Exploring DTrace, cont.

e http://docs.sun.com

— Solaris 10 documentation online

— “Solaris Dynamic Tracing Guide”
Written by the engineers that designed and built DTrace

 BigAdmin has a page and discussion

forum dedicated to DTrace:
http://www.sun.com/bigadmin/content/dtrace

The DTrace Revolution

e DTrace tightens the diagnosis loop:
hypothesis — instrumentation — data

gathering — analysis — hypothesis

* Tightened loop effects a revolution In
the way we diagnose transient failure

e Focus can shift from instrumentation
stage to hypothesis stage:

— Much less labor intensive, less error prone
— Much more brain intensive
— Much more effective! (And alot more fun)

ILiasgalpnm

#1/usr/sbin/dtrace -s

END
{

printf("Solaris Dynamic Tracing\n");

}

james.mauro@sun.com

