
Jim Mauro

Senior Staff Engineer
Performance & Availability Engineering
Sun Microsystems, Inc

james.mauro@sun.com

#!/usr/sbin/dtrace -qs
BEGIN
{
 printf("Solaris Dynamic Tracing");
}

Credits
Most of this material was written by the creators of
DTrace: Bryan Cantrill, Mike Shapiro & Adam Leventhal.

The Problem
● As systems have grown more complex,

performance problems are increasingly
not seen in a system until production
deployment

● ...but performance analysis tools, by
and large, target developers in
development

● Production environment left with
crude, process-centric tools – of little
use on systemic problems

Why Dynamic Tracing?
● Well-defined techniques for debugging

fatal, non-reproducible failure:
– Obtain core file or crash dump
– Debug problem postmortem using mdb(1), dbx(1)

● Techniques for debugging transient
failures are much more ad hoc
– Typical techniques push traditional tools (e.g.

truss(1), mdb(1)) beyond their design centers
– Many transient problems cannot be debugged at

all using extant techniques

Transient failure
● Any unacceptable behavior that does

not result in fatal failure of the system
● May be a clear failure:
– “read(2) is returning EIO on a device that isn't

reporting any errors.”
– “Our application occasionally doesn't receive its

timer signal.”
– “One of our threads is missing a condition

variable wakeup.”

Debugging transient failure
● Historically, we have debugged

transient failure using process-centric
tools: truss(1), pstack(1), prstat(1), etc.

● These tools were not designed to debug
systemic problems

● But the tools designed for systemic
problems (i.e., mdb(1)) are designed for
postmortem analysis...

Postmortem techniques
● One technique is to use postmortem

analysis to debug transient problems by
inducing fatal failure during period of
transient failure

● Better than nothing, but not by much:
– Requires inducing fatal failure, which nearly

always results in more downtime than the
transient failure

– Requires a keen intuition to be able to sort out a
dynamic problem from a static snapshot of state

Solution Constraints
● Performance analysis in production
– Must have zero probe effect when enabled
– Must be absolutely, positively, unquestionably,

irrefutably, SAFE!
● Errors and misuse MUST NOT induce system failure

● To have system scope
– Entire system must be intrumentable – kernel

and applications
– Must be able to easily prune and coalesce data

to highlight systemic trends

Introducing DTrace
● New facility in Solaris 10 for dynamic

instrumentation of production systems
● Dtrace features:
– Dynamic instrumentation: zero proble effect

when disabled
– Unified instrumentation: can instrument both the

kernel and running apps such that data and
control flow can be followed across boundaries

– Arbitrary-context kernel instrumentation: can
instrument even delicate kernel subsystems, like
scheduling and synchronization

DTrace Features (cont)
– Data integrity: if data can not be recorded for any

reason, errors are always reported
– Arbitrary actions: actions that can be taken at

any point of instrumentation are not defined a
priori; user can specify arbitrary action

– Predicates: predicate mechanism allows actions
to be taken only when user-specified conditions
are met

– High level control language: predicates and
actions are specified in a C-like language that
supports all ANSI C operators, allows access to
kernel variables and types

Dtrace Features (cont)
– User-defined variables: support for global and

thread-local variables, associative arrays
– Data aggregation: scalable mechanism for

aggregating data
– Speculative tracing: mechanism for speculatively

recording data and deferring the decision to
commit or discard the data

– Scalable architecture: Allows for tens-of-
thousands of probes, consumers

– Scripting capability: command line or scripts (the
'D' language)

Dtrace – The Big Picture

dtrace(1M)
lockstat(1M)

plockstat(1M)

libdtrace(3LIB)
dtrace(7D)

DTrace

script.d

userland

kernel

Dtrace
consumers

sysinfo vminfo fasttrap

sdtsyscall fbtproc

Dtrace Components
dtrace(1M)

 drv/dtrace

svc routines

disassembler

lexer

parser

codegen

assembler

 module cache

libdtrace.so.1

CTF symtab

 module

CTF symtab DIF engine

DIF

Probes
● A probe is a point of instrumentation
● A probe is made available by a provider
● Each probe identifies the module and

function that it instruments
● Each probe has a name
● These four attributes define a tuple

that uniquely identifies each probe
● Each probe is assigned an integer

identifier

Dtrace Probes
pae1> dtrace -l
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 4 fasttrap fasttrap fasttrap
 5 syscall nosys entry
 6 syscall nosys return

...
 838 fbt unix sfmmu_kpm_page_cache return
 839 fbt unix sfmmu_get_ctx entry
 840 fbt unix sfmmu_get_ctx return
 841 fbt unix sfmmu_tlb_all_demap entry
 842 fbt unix sfmmu_tlb_all_demap return
 843 fbt unix sfmmu_replace_tsb entry
 844 fbt unix sfmmu_replace_tsb return

...
19958 sdt ip tcp_wput_accept conn-inc-ref
19959 sdt ip tcp_bind_hash_report conn-inc-ref
19960 sdt ip tcp_rsrv conn-inc-ref
19961 sdt ip tcp_rput_data conn-inc-ref
19962 sdt ip tcp_open conn-inc-ref
19963 sdt ip tcp_eager_cleanup conn-inc-ref
19964 sdt ip tcp_eager_blowoff conn-inc-ref
...

Providers
● A provider represents a methodology

for instrumenting the system
● Providers make probes available to the

DTrace framework
● DTrace informs providers when a probe

is to be enabled
● Providers transfer control to DTrace

when an enabled probe is hit

Providers, cont.
● DTrace has quite a few providers, e.g.:
– The function boundary tracing (FBT) provider can

dynamically instrument every function entry and
return in the kernel

– The syscall provider can dynamically instrument
the system call table

– The lockstat provider can dynamically instrument
the kernel synchronization primitives

– The profile provider can add a configureable-rate
profile interrupt of to the system

– The plockstat provider can dynamically
instrument user-defined lock primitives

– ...

Consumers
● A DTrace consumer is a process that

interacts with DTrace
● No limit on concurrent consumers;

DTrace handles the multiplexing
● Some programs are DTrace consumers

only as an implementation detail
● dtrace(1M) is a DTrace consumer that

acts as a generic front-end to the
DTrace facility

Listing probes
● Probes can be listed with the “-l” option

to dtrace(1M)
● Can list probes
– in a specific function with “-f function”
– in a specific module with “-m module”
– with a specific name with “-n name”
– from a specific provider with “-P provider”

● For each probe, provider, module,
function and name are displayed

Example – Listing Probes
● How many probes on your system?
● List all the probes in the UFS module

dtrace -l | wc -l
 32743
dtrace -l -m ufs
 ID PROVIDER MODULE FUNCTION NAME
14763 sysinfo ufs ufs_idle_free ufsinopage
14764 sysinfo ufs ufs_idle_free ufsipage
14765 sysinfo ufs ufs_iget_internal ufsiget
14766 sysinfo ufs blkatoff ufsdirblk
14767 fbt ufs hashalloc entry
14768 fbt ufs hashalloc return
14769 fbt ufs alloccg entry
14770 fbt ufs alloccg return
...

Example – Listing Probes
● List probes in the read function
● List probes with the name xcalls

dtrace -l -f read
 ID PROVIDER MODULE FUNCTION NAME
 11 syscall read entry
 12 syscall read return
 3821 sysinfo genunix read readch
 3825 sysinfo genunix read sysread
 7384 fbt genunix read entry
 7385 fbt genunix read return
...
dtrace -l -n xcalls
 ID PROVIDER MODULE FUNCTION NAME
 492 sysinfo unix xc_all xcalls
 493 sysinfo unix xc_some xcalls
14298 sysinfo SUNW,UltraSPARC-II send_one_mondo xcalls

Example – Listing Probes

dtrace -l -P sysinfo
 ID PROVIDER MODULE FUNCTION NAME
 492 sysinfo unix xc_all xcalls
 493 sysinfo unix xc_some xcalls
 494 sysinfo unix fpu_trap trap
 495 sysinfo unix trap trap
 498 sysinfo unix swtch_to pswitch
 499 sysinfo unix swtch_from_zombie pswitch
 500 sysinfo unix swtch pswitch
 502 sysinfo unix rw_enter_sleep rw_wrfails
 504 sysinfo unix preempt inv_swtch

● List probes from the sysinfo provider

Fully specifying probes
● To specify multiple components of a

probe tuple, separate the components
with a colon

● Empty components match anything
● For example, “syscall::open:entry”

specifies a probe:
– from the “syscall” provider
– in any module
– in the “open” function
– named “entry”

Specifying Probes

provider:module:function:name
e.g.
fbt:genunix:sys_enterclass:entry

pae1> dtrace -n fbt:genunix:sys_enterclass:entry
dtrace: description 'fbt:genunix:sys_enterclass:entry' matched 1 probe

dtrace [-i id]
[-P prov]
[-m [prov:] mod]
[-f [[prov:] mod:] func]
[-n [[[prov:] mod:] func:] name

● Four components to probe

● dtrace(1M) options for probe components

Enabling probes
● Probes are enabled by specifying them

without the “-l” option
● When enabled in this way, probes are

enabled with the default action
● The default action will indicate only

that the probe fired; no other data will
be recorded

● For example, “dtrace -m nfs” enables
every probe in the “nfs” module

DTrace – Enabling Probes
● Enable probes provided by the “syscall”

provider, and the “syscall” “open”
function
pae1> dtrace -P syscall
dtrace: description 'syscall' matched 452 probes
CPU ID FUNCTION:NAME
 0 102 ioctl:return
 0 101 ioctl:entry
 0 102 ioctl:return
 0 101 ioctl:entry
 0 102 ioctl:return
pae1> dtrace -f syscall::open
dtrace: description 'syscall::open' matched 2 probes
CPU ID FUNCTION:NAME
 12 15 open:entry
 12 16 open:return
 12 15 open:entry
 12 16 open:return
 12 15 open:entry

Dtrace – Enabling Probes

dtrace -n clock:entry
dtrace: description 'clock:entry' matched 1 probe
CPU ID FUNCTION:NAME
 0 3967 clock:entry
 0 3967 clock:entry
 0 3967 clock:entry
 0 3967 clock:entry

●Enable the entry probe in the clock function

Actions
● Actions are taken when a probe fires
● Actions are completely programmable
● Most actions record some specified

state in the system
● Some actions change the state of the

system system in a well-defined way
– These are called destructive actions
– Disabled by default

● Many actions take as parameters
expressions in the D language

The D language
● D is a C-like language specific to DTrace,

with some constructs similar to awk(1)
● Complete access to kernel C types
● Complete access to statics and globals
● Complete support for ANSI-C operators
● Support for strings as first-class citizen
● We'll introduce D features as we need

them...

Built-in D variables
● For now, our D expressions will consist

only of built-in variables
● Example of built-in variables:
– pid is the current process ID
– execname is the current executable name
– timestamp is the time since boot, in

nanoseconds
– curthread is a pointer to the kthread_t

structure that represents the current thread
– probemod, probefunc and probename are

the current probe's module, function and name

Actions: “trace”
● trace() records the result of a D

expression to the trace buffer
● For example:
– trace(pid) traces the current process ID
– trace(execname) traces the name of the

current executable
– trace(curthread->t_pri) traces the
t_pri field of the current thread

– trace(probefunc) traces the function name
of the probe

Actions, cont.
● Actions are indicated by following a

probe specification with “{ action }”
● For example:

dtrace -n 'readch{trace(pid)}'
dtrace -m 'ufs{trace(execname)}'
dtrace -n 'syscall:::entry {trace
(probefunc)}'

● Multiple actions can be specified; they
must be separated by semicolons:
dtrace -n 'xcalls{trace(pid); trace
(execname)}'

DTrace - Actions
● Trace the executable name in every

“poll” system call

pae1> dtrace -n 'syscall::poll: { trace(execname) }'
dtrace: description 'syscall::poll: ' matched 2 probes
^c

DTrace - Actions
● Trace the PID in every entry to the

“pagefault” function

pae1> dtrace -f 'pagefault { trace(pid) }'
dtrace: description 'pagefault ' matched 2 probes
CPU ID FUNCTION:NAME
 12 2554 pagefault:entry 3979
 12 2555 pagefault:return 3979
 12 2554 pagefault:entry 3979
 12 2555 pagefault:return 3979
 12 2554 pagefault:entry 3979
^c
...

DTrace - Actions
● Trace the timestamp in every entry to

the “clock” function

pae1> dtrace -f 'clock { trace(timestamp) }'
dtrace: description 'clock ' matched 2 probes
CPU ID FUNCTION:NAME
 0 4113 clock:entry 1306863050033058
 0 4114 clock:return 1306863050128812
 0 4113 clock:entry 1306863060015632
 0 4114 clock:return 1306863060094122
 0 4113 clock:entry 1306863070016883
 0 4114 clock:return 1306863070094331
...

D Scripts
● Complicated DTrace enablings become

difficult to manage on the command
line

● dtrace(1M) supports scripts, specified
with the “-s” option

● Alternatively, executable DTrace
interpreter files may be created

● Interpreter files always begin with:
#!/usr/sbin/dtrace -s

D Scripts, cont.
● For example, a script to trace the

executable name upon entry of each
system call:

#!/usr/sbin/dtrace -s

syscall:::entry
{
 trace(execname);
}

Predicates
● Predicates allow actions to only be

taken when certain conditions are met
● A predicate is a D expression
● Actions will only be taken if the

predicate expression evaluates to true
● A predicate takes the form

“/expression/” and is placed between
the probe description and the action

Predicates, cont.
● For example, tracing the pid of every

process named “date” that performs an
open(2):
#!/usr/sbin/dtrace -s

syscall::open:entry
/execname == “date”/
{
 trace(pid);
}

Example - Predicates
● Trace the timestamp in every ioctl(2)

from processes named dtrace
pae1> cat dioctl.d
#!/usr/sbin/dtrace -s

::ioctl:
/ execname == "dtrace" /
{

trace(pid);
}

pae1> ./dioctl.d
dtrace: script './dioctl.d' matched 4 probes
CPU ID FUNCTION:NAME
 8 7984 ioctl:return 3994
 8 102 ioctl:return 3994
 8 101 ioctl:entry 3994
 8 7983 ioctl:entry 3994

Example - Predicates
● Use the arg0 variable to trace the

executable name of every process read
(2)'ing from file descriptor 0

pae1> cat pred2.d
#!/usr/sbin/dtrace -s
::read:
/ arg0 == 0 /
{

trace(execname);
}

pae1> ./pred2.d
dtrace: script './pred2.d' matched 6 probes
CPU ID FUNCTION:NAME
 8 3956 read:readch ksh
 8 12 read:return ksh
 13 3956 read:readch ksh
 13 12 read:return ksh

Example - Predicates
● Use the arg2 variable to trace the

executable name of every processing
write(2)'ing more than 100 bytes
pae1> cat pred3.d
#!/usr/sbin/dtrace -s

::write:entry
/ arg2 > 100 /
{

trace(execname);
printf("Wrote: %d bytes\n",arg0);

}
::write:return
{

printf("Wrote: %d bytes\n",arg0);
}
pae1> ./pred3.d
CPU ID FUNCTION:NAME
 4 3952 write:syswrite automountd Wrote: 1 bytes

 4 3948 write:writech automountd Wrote: 1 bytes

 0 8069 write:return dtrace Wrote: 936 bytes

 13 8069 write:return ls Wrote: 936 bytes

...

Actions: More actions
● tracemem() records memory at a

specified location for a specified length
● stack() records the current kernel

stack trace
● ustack() records the current user

stack trace
● exit() tells the DTrace consumer to

exit with the specified status

Actions: Destructive actions
● Must specify “-w” option to DTrace
● stop() stops the current process
● raise() sends a specified signal to

the current process
● breakpoint() triggers a kernel

breakpoint
● panic() induces a kernel panic
● chill() spins for a specified number

of nanoseconds

Output formatting
● The printf() function combines the
trace action with the ability to
precisely control output

● printf takes a printf(3C)-like format
string as an argument, followed by
corresponding arguments to print

● e.g.:
printf(“%d was here”, pid);
printf(“I am %s”, execname);

Output formatting, cont.
● Normally, dtrace(1M) provides details

on the firing probe, plus any explicitly
traced data

● Use the quiet option (“-q”) to dtrace
(1M) to supress the probe details

● The quiet option may also be set in a D
script by embedding:

 #pragma D option quiet

Global D variables
● D allows you to define your own

variables that are global to your D
program

● Like awk(1), D tries to infer variable
type upon instantiation, obviating an
explicit variable declaration

Global D variables, cont.
● Example:

#!/usr/sbin/dtrace -s

#pragma D option quiet

sysinfo:::zfod
{
 zfods++;
}

profile:::tick-1sec
{
 printf(“%d zfods\n”, zfods);
 zfods = 0;
}

Thread-local D variables
● D allows for thread-local variables
● A thread-local variable has the same

name – but disjoint data storage – for
each thread

● By definition, thread-local variables
elminate the race conditions that are
endemic to global variables

● Denoted by prepending “self->” to
the variable name

Thread-local D variables, cont
● Thread-local variables that have never

been assigned in the current thread
have the value zero

● Underlying thread-local storage for a
thread-local variable is deallocated by
assigning zero to it

Thread-local D variables, cont.
● Example 1:

#!/usr/sbin/dtrace -s

#pragma D option quiet

syscall::poll:entry
{
 self->ts = timestamp;
}

syscall::poll:return
/self->ts && timestamp – self->ts > 1000000000/
{
 printf(“%s polled for %d seconds\n”, execname,
 (timestamp – self->ts) / 1000000000);
 self->ts = 0;
}

Thread-local D variables, cont.
● Example 2:

syscall::ioctl:entry
/execname == “date”/
{
 self->follow = 1;
}

fbt:::
/self->follow/
{}

syscall::ioctl:return
/self->follow/
{
 self->follow = 0;
}

D Variables
● Write a D script to trace the executable

name and amount of time spent in
every open(2)
#!/usr/sbin/dtrace -qs

syscall::open:entry
{

self->st = timestamp;
}
syscall::open:return
/ self->st /
{

tt = timestamp - self->st;
printf("%s, %d nsecs in open\n",execname, tt);

}
pae1> ./open.d
ls, 64700 nsecs in open
ls, 24870 nsecs in open
date, 71220 nsecs in open
date, 62120 nsecs in open
ls, 58583 nsecs in open
ls, 24758 nsecs in open
ls, 71976 nsecs in open
^C

D Variables
● Write a D script to follow a brk(2)

system call through the kernel when
called by a date(1) command

D Variables
● Add “#pragma D option
flowindent” to the above and
observe the change in output

Aggregations
● When trying to understand suboptimal

performance, one often looks for
patterns that point to bottlenecks

● When looking for patterns, one often
doesn't want to study each datum –
one wishes to aggregate the data and
look for larger trends

● Traditionally, one has had to use
conventional tools (e.g. awk(1), perl(1))

Aggregations, cont.
● DTrace supports the aggregation of

data as a first class operation
● An aggregating function is a function f

(x), where x is a set of data, such that:
●

f(f(x0)  f(x1)  ...  f(xn)) = f(x0  x1  ...  xn)

● E.g., count, sum, maximum, and
minimum are aggregating functions;
median, and mode are not

Aggregations, cont.
● An aggregation is the result of an

aggregating function keyed by an
arbitrary tuple

● For example, to count all system calls
on a system by system call name:

dtrace -n 'syscall:::entry \
 { @syscalls[probefunc] = count(); }'

● By default, aggregation results are
printed when dtrace(1M) exits

Aggregations, cont.
● Aggregations need not be named
● Aggregations can be keyed by more

than one expression
● For example, to count all ioctl system

calls by both executable name and file
descriptor:

dtrace -n 'syscall::ioctl:entry \
 { @[execname, arg0] = count(); }'

Aggregations, cont.
● Some other aggregating functions:
– avg(): the average of specified expressions
– min(): the minimum of specified expressions
– max(): the maximum of specified expressions
– quantize(): power-of-two distribution of

specified expressions
● For example, distribution of write(2)

sizes by executable name:

dtrace -n 'syscall::write:entry \
 { @[execname] = quantize(arg2); }'

Exploring DTrace
● This has been just an introduction to

DTrace – there's much, much more:

– BEGIN, END probes – Aggregation formatting
– Normalization – Provider specifics
– Associative arrays – Clause-local variables
– User-level tracing – Ring buffering
– Speculative tracing – Anonymous tracing
– Postmortem tracing – Privilege model
– Explicit versioning – Well-defined stability

Exploring DTrace, cont.
● http://docs.sun.com
– Solaris 10 documentation online
– “Solaris Dynamic Tracing Guide”

● Written by the engineers that designed and built DTrace

● BigAdmin has a page and discussion
forum dedicated to DTrace:
http://www.sun.com/bigadmin/content/dtrace

The DTrace Revolution
● DTrace tightens the diagnosis loop:

hypothesis  instrumentation  data
gathering  analysis  hypothesis

● Tightened loop effects a revolution in
the way we diagnose transient failure

● Focus can shift from instrumentation
stage to hypothesis stage:
– Much less labor intensive, less error prone
– Much more brain intensive
– Much more effective! (And a lot more fun)

james.mauro@sun.com

#!/usr/sbin/dtrace -s

END
{

printf("Solaris Dynamic Tracing\n");
}

