
Solaris Dynamic Tracing Guide

Beta

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–3016–01
November 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, StarOffice and Solaris are trademarks, registered trademarks,
or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

031105@6671

Contents

Preface 19

1 Introduction 23

1.1 Getting Started 23
1.2 Providers and Probes 26
1.3 Compilation and Instrumentation 28
1.4 Variables and Arithmetic Expressions 30
1.5 Predicates 32
1.6 Output Formatting 36
1.7 Arrays 39
1.8 External Symbols and Types 41

2 Types, Operators, and Expressions 43

2.1 Identifier Names and Keywords 43
2.2 Data Types and Sizes 44
2.3 Constants 46
2.4 Arithmetic Operators 47
2.5 Relational Operators 48
2.6 Logical Operators 49
2.7 Bitwise Operators 50
2.8 Assignment Operators 51
2.9 Increment and Decrement Operators 52
2.10 Conditional Expressions 53
2.11 Type Conversions 54
2.12 Precedence 55

3

3 Variables 57

3.1 Scalar Variables 57
3.2 Associative Arrays 58
3.3 Thread-Local Variables 60
3.4 Clause-Local Variables 63
3.5 Built-in Variables 65
3.6 External Variables 67

4 Program Structure 69

4.1 Probe Clauses and Declarations 69
4.2 Probe Descriptions 70
4.3 Predicates 72
4.4 Actions 72
4.5 Use of the C Preprocessor 72

5 Pointers and Arrays 75

5.1 Pointers and Addresses 75
5.2 Pointer Safety 76
5.3 Array Declarations and Storage 78
5.4 Pointer and Array Relationship 79
5.5 Pointer Arithmetic 80
5.6 Generic Pointers 81
5.7 Multi-Dimensional Arrays 82
5.8 Pointers to DTrace Objects 82
5.9 Pointers and Address Spaces 83

6 Strings 85

6.1 String Representation 85
6.2 String Constants 86
6.3 String Assignment 86
6.4 String Conversion 87
6.5 String Comparison 87

7 Structs and Unions 89

7.1 Structs 89
7.2 Pointers to Structs 92

4 Solaris Dynamic Tracing Guide • November 2003 (Beta)

7.3 Unions 95
7.4 Member Sizes and Offsets 99
7.5 Bit-Fields 99

8 Type and Constant Definitions 101

8.1 Typedef 101
8.2 Enumerations 102
8.3 Inlines 103
8.4 Type Namespaces 105

9 Aggregations 107

9.1 Aggregating Functions 107
9.2 Aggregations 108
9.3 Output 115
9.4 Normalization 116
9.5 Clearing aggregations 119
9.6 Minimizing drops 120

10 Actions and Subroutines 121

10.1 Actions 121
10.2 Default Action 122
10.3 Data Recording Actions 123

10.3.1 trace() 123
10.3.2 tracemem() 123
10.3.3 printf() 123
10.3.4 printa() 124
10.3.5 stack() 124
10.3.6 ustack() 126

10.4 Destructive Actions 127
10.4.1 Process Destructive Actions 128
10.4.2 Kernel Destructive Actions 129

10.5 Special Actions 132
10.5.1 Speculative Actions 132
10.5.2 exit() 132

10.6 Subroutines 132
10.6.1 alloca() 133
10.6.2 bcopy() 133

Contents 5

10.6.3 copyin() 133
10.6.4 copyinstr() 133
10.6.5 copyinto() 134
10.6.6 msgdsize() 134
10.6.7 msgsize() 134
10.6.8 mutex_owned() 134
10.6.9 mutex_owner() 134
10.6.10 mutex_type_adaptive() 135
10.6.11 progenyof() 135
10.6.12 rand() 135
10.6.13 rw_iswriter() 135
10.6.14 rw_read_held() 135
10.6.15 speculation() 136
10.6.16 strlen() 136

11 Buffers and Buffering 137

11.1 Principal Buffers 137
11.2 Principal Buffer Policies 138

11.2.1 switch Policy 138
11.2.2 fill Policy 139
11.2.3 ring Policy 139

11.3 Other Buffers 140
11.4 Buffer Sizes 141
11.5 Buffer Resizing Policy 141

12 Output Formatting 143

12.1 printf() 143
12.1.1 Conversion Specifications 144
12.1.2 Flag Specifiers 145
12.1.3 Width and Precision Specifiers 145
12.1.4 Size Prefixes 146
12.1.5 Conversion Formats 147

12.2 printa() 149
12.3 trace() Default Format 151

13 Speculative Tracing 153

13.1 Speculation Interfaces 154

6 Solaris Dynamic Tracing Guide • November 2003 (Beta)

13.2 Creating a Speculation 154
13.3 Using a Speculation 154
13.4 Committing a Speculation 155
13.5 Discarding a Speculation 156
13.6 Speculation Example 156
13.7 Options and Tuning 160

14 dtrace(1M) Utility 163

14.1 Description 163
14.2 Options 164
14.3 Operands 168
14.4 Exit Status 168

15 Scripting 171

15.1 Interpreter Files 171
15.2 Macro Variables 172
15.3 Macro Arguments 174

16 Options and Tunables 177

16.1 Consumer Options 177
16.2 Modifying Options 179

17 dtrace Provider 181

17.1 The BEGIN Probe 181
17.2 The END Probe 182

17.2.1 The END Probe and the exit() Action 182
17.3 The ERROR Probe 183
17.4 Stability 184

18 lockstat Provider 187

18.1 Overview 187
18.2 Adaptive Lock Probes 188
18.3 Spin Lock Probes 188
18.4 Thread Locks 190
18.5 Readers/Writer Lock Probes 190
18.6 Stability 191

Contents 7

19 profile Provider 193

19.1 profile-n probes 193
19.2 tick-n probes 196
19.3 Arguments 196
19.4 Resolution 196
19.5 Probe creation 198
19.6 Stability 199

20 fbt Provider 201

20.1 Probes 201
20.2 Probe arguments 202

20.2.1 entry probes 202
20.2.2 return probes 202

20.3 Examples 202
20.4 Tail-call optimization 208
20.5 Unsporting functions 209
20.6 Uninstrumentable functions 210

20.6.1 x86 210
20.6.2 SPARC 210

20.7 Breakpoints 210
20.8 Module loading 211
20.9 Stability 211

21 syscall Provider 213

21.1 Probes 213
21.1.1 Anachronisms 213
21.1.2 Subcoded System Calls 214
21.1.3 Large File System Calls 214
21.1.4 Implementation Details 215

21.2 Arguments 215
21.3 Stability 215

22 sdt Provider 217

22.1 Probes 217
22.2 Examples 218
22.3 Creating SDT Probes 222

22.3.1 Declaring Probes 222

8 Solaris Dynamic Tracing Guide • November 2003 (Beta)

22.3.2 Probe Arguments 222
22.4 Stability 223

23 sysinfo Provider 225

23.1 Probes 225
23.2 Arguments 228
23.3 Example 232
23.4 Stability 234

24 vminfo Provider 235

24.1 Probes 235
24.2 Arguments 237
24.3 Example 238
24.4 Stability 242

25 pid Provider 243

25.1 Naming pid Probes 243
25.2 Function Boundary Probes 244

25.2.1 Entry Probes 244
25.2.2 Return Probes 245

25.3 Function Offset Probes 245
25.4 Stability 245

26 fasttrap Provider 247

26.1 Probes 247
26.2 Stability 247

27 User Process Tracing 249

27.1 copyin() and copyinstr() Subroutines 249
27.2 Eliminating dtrace(1M) Interference 250
27.3 syscall Provider 251
27.4 ustack() Action 252
27.5 uregs[] Array 254
27.6 pid Provider 256

27.6.1 User Function Boundary Tracing 256
27.6.2 Tracing Arbitrary Instructions 257

Contents 9

28 Security 261

28.1 Privileges 261
28.2 Privileged Use of DTrace 262
28.3 dtrace_proc Privilege 262
28.4 dtrace_user Privilege 263
28.5 dtrace_kernel Privilege 264
28.6 Super-user Privileges 265

29 Anonymous Tracing 267

29.1 Creating Anonymous State 267
29.2 Claiming Anonymous State 268
29.3 Anonymous Tracing Examples 268

30 Postmortem Tracing 273

30.1 Displaying DTrace Consumers 273
30.2 Displaying Trace Data 274

31 Performance Considerations 279

31.1 Limit Enabled Probes 279
31.2 Use Aggregations 280
31.3 Use Cacheable Predicates 280

32 Stability 283

32.1 Stability Levels 283
32.2 Dependency Classes 285
32.3 Interface Attributes 287
32.4 Stability Computations and Reports 288
32.5 Stability Enforcement 290

33 Translators 291

33.1 Translator Declarations 291
33.2 Translate Operator 293
33.3 Process Model Translators 295
33.4 Stable Translations 295

10 Solaris Dynamic Tracing Guide • November 2003 (Beta)

34 Versioning 297

34.1 Versions and Releases 297

34.2 Versioning Options 298

34.3 Provider Versioning 299

Glossary 301

Contents 11

12 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Tables

TABLE 2–1 D Keywords 43
TABLE 2–2 D Integer Data Types 45
TABLE 2–3 D Integer Type Aliases 45
TABLE 2–4 D Floating-Point Data Types 46
TABLE 2–5 D Character Escape Sequences 47
TABLE 2–6 D Binary Arithmetic Operators 48
TABLE 2–7 D Relational Operators 48
TABLE 2–8 D Logical Operators 49
TABLE 2–9 D Bitwise Operators 50
TABLE 2–10 D Assignment Operators 51
TABLE 2–11 D Operator Precedence and Associativity 55
TABLE 3–1 DTrace Built-in Variables 65
TABLE 4–1 Probe Name Pattern Matching Characters 71
TABLE 6–1 D Relational Operators for Strings 88
TABLE 9–1 DTrace Aggregating Functions 109
TABLE 13–1 DTrace Speculation Functions 154
TABLE 15–1 D Macro Variables 173
TABLE 16–1 DTrace Consumer Options 177
TABLE 18–1 Adaptive Lock Probes 188
TABLE 18–2 Spin Lock Probes 189
TABLE 18–3 Thread Lock Probe 190
TABLE 18–4 Readers/Writer Lock Probes 190
TABLE 19–1 Valid time suffixes 193
TABLE 21–1 sycall Large File Probes 214
TABLE 22–1 SDT Probes 218
TABLE 23–1 sysinfo Probes 226

13

TABLE 24–1 vminfo Probes 236

TABLE 27–1 SPARC uregs[] Constants 254

TABLE 27–2 IA uregs[] Constants 254

TABLE 27–3 Common uregs[] Constants 255

TABLE 33–1 procfs.d Translators 295

TABLE 34–1 DTrace Release Versions 298

14 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Figures

FIGURE 1–1 Overview of the DTrace Architecture and Components 29

FIGURE 5–1 Scalar Array Representation 78

FIGURE 5–2 Pointer and Array Storage 79

15

16 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Examples

EXAMPLE 1–1 hello.d: Hello, World from the D Programming Language 25

EXAMPLE 1–2 trussrw.d: Trace System Calls with truss(1) Output Format 36

EXAMPLE 1–3 rwtime.d: Time read(2) and write(2) Calls 40

EXAMPLE 3–1 rtime.d: Compute Time Spent in read(2) 61

EXAMPLE 3–2 clause.d: Clause-local variables 63

EXAMPLE 5–1 badptr.d: Demonstrate DTrace Error Handling 77

EXAMPLE 7–1 rwinfo.d: Gather read(2) and write(2) Statistics 91

EXAMPLE 7–2 ksyms.d: Trace read(2) and uiomove(9F) Relationship 94

EXAMPLE 7–3 kstat.d: Trace Calls to kstat_data_lookup(3KSTAT) 98

EXAMPLE 9–1 renormalize.d: Renormalizing an aggregation 119

EXAMPLE 13–1 specopen.d: Code Flow for Failed open(2) 156

EXAMPLE 17–1 error.d: Record Errors 183

EXAMPLE 27–1 userfunc.d: Trace User Function Entry and Return 256

EXAMPLE 27–2 errorpath.d: Trace User Function Call Error Path 258

17

18 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Preface

DTrace is a comprehensive dynamic tracing framework for the Solaris™ Operating
System. DTrace provides a powerful infrastructure to permit administrators,
developers, and service personnel to concisely answer arbitrary questions about the
behavior of the operating system and user programs. The Solaris Dynamic Tracing
Guide describes how to use DTrace to observe, debug, and tune system behavior. This
book also includes a complete reference for bundled DTrace observability tools and
the D programming language.

Who Should Use This Book
If you have ever wanted to understand the behavior of your system, DTrace is the tool
for you. DTrace is a comprehensive dynamic tracing facility that is built into Solaris
that can be used by administrators and developers on live production systems to
examine the behavior of both user programs and of the operating system itself. DTrace
will allow you to explore your system to understand how it works, track down
performance problems across many layers of software, or locate the cause of aberrant
behavior. As we’ll see, DTrace lets you create your own custom programs to
dynamically instrument the system and provide immediate, concise answers to
arbitrary questions you can formulate using the DTrace D programming language.

DTrace allows all Solaris users to:

� Dynamically enable and manage thousands of probes
� Dynamically associate logical predicates and actions with probes
� Dynamically manage trace buffers and buffer policies
� Display and examine trace data from the live system or a crash dump

DTrace allows Solaris developers and administrators to:

� Implement custom scripts that use the DTrace facility

19

� Implement layered tools that use DTrace to retrieve trace data

This guide will teach you everything you need to know about using DTrace. Basic
familiarity with a programming language such as C or a scripting language such as
awk(1) or perl(1) will help you learn DTrace and the D programming language faster,
but you need not be an expert in any of these areas. If you have never written a
program or script before in any language, “Related Books” on page 20 provides
references to other documents you might find useful.

How This Book Is Organized
The first chapter provides a tour of the entire DTrace facility and introduces all readers
to its key concepts. Next, a series of chapters provide a reference for the D
programming language and all of the built-in language functions. Then a series of
chapters discuss the details of each DTrace provider and instrumentation utility. The
final chapters discuss more advanced topics.

Related Books
These books and papers are recommended and related to the tasks that you need to
perform:

� Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice
Hall, 1988. ISBN 0–13–110370–9

� Vahalia, Uresh. UNIX Internals: The New Frontiers. Prentice Hall, 1996. ISBN
0-13-101908-2

� Mauro, Jim and McDougall, Richard. Solaris Internals: Core Kernel Components. Sun
Microsystems Press, 2001. ISBN 0-13-022496-0

Note – In this document the term “x86” refers to the Intel 32–bit family of
microprocessor chips and compatible microprocessor chips made by AMD.

20 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Preface 21

http://docs.sun.com
http://docs.sun.com

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

MDB prompt >

22 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 1

Introduction

Welcome to Dynamic Tracing in the Solaris™ Operating System! If you have ever
wanted to understand the behavior of your system, DTrace is the tool for you. DTrace
is a comprehensive dynamic tracing facility that is built into Solaris that can be used
by administrators and developers on live production systems to examine the behavior
of both user programs and of the operating system itself. DTrace will allow you to
explore your system to understand how it works, track down performance problems
across many layers of software, or locate the cause of aberrant behavior. As we’ll see,
DTrace lets you create your own custom programs to dynamically instrument the
system and provide immediate, concise answers to arbitrary questions you can
formulate using the DTrace D programming language. We’ll begin with a quick
introduction to DTrace and show you how to write your very first D program. Later,
we’ll discuss the complete set of rules for programming in D as well as tips and
techniques for performing in-depth analysis of your system.

1.1 Getting Started
DTrace helps you understand a software system by permitting you to dynamically
modify the operating system kernel and user processes to record additional data that
you specify at locations of interest, called probes. A probe is a location or activity to
which DTrace can bind a request to perform a set of actions, like recording a stack
trace, a timestamp, or the argument to a function. Probes are like little programmable
sensors scattered all over your Solaris system in interesting places. If you want to
figure out what’s going on, you use DTrace to program the appropriate sensors to
record the information that is of interest to you. Then, as each probe fires, DTrace will
gather the data from your probes and report it back to you. If you don’t specify any
actions for a probe, DTrace will just take note of each time the probe fires.

23

Every probe in DTrace has two names: a unique integer ID and a human-readable
string name. We’re going to start learning DTrace by building some very simple
requests using the probe named BEGIN, which fires once each time you start a new
tracing request. You can use the dtrace(1M) utility’s -n option to enable a probe
using its string name. Type in the following command:

dtrace -n BEGIN

After a brief pause, you will see DTrace tell you that one probe was enabled and you
will see a line of output telling you that the BEGIN probe fired. Once you see this,
dtrace will remain paused waiting for other probes to fire. Since we haven’t enabled
any others and BEGIN only fires once, just type Control-C in your shell to abort
dtrace and return to your shell prompt:

dtrace -n BEGIN
dtrace: description ’BEGIN’ matched 1 probe
CPU ID FUNCTION:NAME
0 1 :BEGIN

^C

#

The output tells you that the probe named BEGIN fired once and both its name and
integer ID, 1, are printed. Notice that by default, the integer name of the CPU on
which this probe fired is displayed. In this example, the CPU column indicates that the
dtrace command was executing on CPU 0 when the probe fired.

DTrace lets you construct requests using arbitrary numbers of probes and actions.
Let’s create a simple request using two probes by adding the END probe to our
command, which fires once when tracing is completed. Type the following command,
and then again type Control-C in your shell after you see the line of output for the
BEGIN probe:

dtrace -n BEGIN -n END
dtrace: description ’BEGIN’ matched 1 probe
dtrace: description ’END’ matched 1 probe
CPU ID FUNCTION:NAME
0 1 :BEGIN

^C
0 2 :END

#

As you can see, when you typed Control-C to abort dtrace, that triggered the END
probe and dtrace reported this probe firing to you before exiting.

Now that we understand a little bit about naming and enabling probes, we’re ready to
write the DTrace version of everyone’s first program, “Hello, World.” In addition to
constructing DTrace experiments on the command line, you can also write them in text
files using the D programming language. Open your favorite text editor and create a
new file called hello.d and type in your first D program:

24 Solaris Dynamic Tracing Guide • November 2003 (Beta)

EXAMPLE 1–1 hello.d: Hello, World from the D Programming Language

BEGIN
{

trace("hello, world");
exit(0);

}

After you have saved your program, you can run it using the dtrace -s option. Type
in the following command:

dtrace -s hello.d
dtrace: script ’hello.d’ matched 1 probe
CPU ID FUNCTION:NAME
0 1 :BEGIN hello, world

#

As you can see, dtrace printed the same output we saw before followed by the text
“hello, world”. Unlike our previous example, we didn’t have to wait and type
Control-C, either. These changes were the result of the actions we specified for our
BEGIN probe in hello.d. Let’s explore the structure of our D program in more detail
in order to understand what happened.

Each D program consists of a series of clauses, each describing one or more probes to
enable, and an optional set of actions to perform when the probe fires. The actions are
listed as a series of statements enclosed in braces { } following the probe name. Each
statement ends with a semicolon (;). Our first statement uses the function trace() to
indicate that DTrace should record the specified argument, the string “hello,
world”, when the BEGIN probe fires, and then print it out. The second statement uses
the function exit() to indicate that DTrace should cease tracing and exit the dtrace
command. DTrace provides a set of useful functions like trace() and exit() for
you to call in your D programs. To call a function, you specify its name followed by a
parenthesized list of arguments. The complete set of D functions is described later in
Chapter 10.

By now, if you’re familiar with the C programming language, you’ve probably
realized from the name and our examples that DTrace’s D programming language is
very similar to C. Indeed, D is derived from a large subset of C combined with a
special set of functions and variables to help make tracing easy. We’ll learn more about
these features in subsequent chapters. If you’ve written a C program before, you will
be able to immediately transfer most of your knowledge to building tracing programs
in D. If you’ve never written a C program before, learning D is still very easy: don’t be
intimidated! We’re going to teach you all the syntax shortly. But before we do that,
we’re going to take a step back from language rules and learn more about how DTrace
works, and then we’ll return to learning how to build more interesting D programs.

Chapter 1 • Introduction 25

1.2 Providers and Probes
In our earlier examples, we learned to use two simple probes named BEGIN and END.
But where did these probes come from? DTrace probes come from a set of kernel
modules called providers, each of which knows how to perform a particular kind of
instrumentation to create probes. When you use DTrace, each provider is given an
opportunity to publish the probes it can provide to the DTrace framework. You can
then enable and bind your tracing actions to any of the probes that have been
published. To list all of the available probes on your system, type the command:

dtrace -l
ID PROVIDER MODULE FUNCTION NAME
1 dtrace BEGIN
2 dtrace END
3 dtrace ERROR
4 lockstat genunix mutex_enter adaptive-acquire
5 lockstat genunix mutex_enter adaptive-block
6 lockstat genunix mutex_enter adaptive-spin
7 lockstat genunix mutex_exit adaptive-release

... many lines of output omitted ...

#

It may take a while for all the output to scroll by. To count up all your probes you can
type the command:

dtrace -l | wc -l

25499

You will get a different total on your machine, as the number of probes varies
depending on your operating platform and the software you have installed. As you
can see, there are a very large number of probes available to you so you can peer into
every previously dark corner of the system. In fact, even this output isn’t the complete
list because, as we’ll see later, some providers offer the ability to create new probes
on-the-fly based on your tracing requests, making the actual number of DTrace probes
virtually unlimited!

Now look back at the output from dtrace -l in your terminal window. Notice that
each probe has the two names we mentioned earlier, an integer ID and a
human-readable name. You should now see that the human readable name is
composed of four parts, shown as separate columns in the dtrace output. The four
parts of a probe name are:

26 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Provider The name of the DTrace provider that is publishing this probe. The provider
name typically corresponds to the name of the DTrace kernel module that
performs the instrumentation to enable the probe.

Module If this probe corresponds to a specific program location, the name of the
module in which the probe is located. This is either the name of a kernel
module or the name of a user library.

Function If this probe corresponds to a specific program location, the name of the
program function in which the probe is located.

Name The final component of the probe name is a name that gives you some idea
of the probe’s semantic meaning, such as BEGIN or END.

When we write out the full human-readable name of a probe in this book or in our D
programs, we will most often write all four parts of the name separated by colons like
this:

provider:module:function:name

Notice that some of the probes in the list do not have a module and function, such as
the BEGIN and END probes we used earlier. Some probes leave these two fields blank
because these probes do not correspond to any specific instrumented program
function or location. Instead, these probes refer to a more abstract concept like the idea
of the end of your tracing request. We will refer to a probe that has a module and
function as part of its name as an anchored probe, and one that does not as unanchored.

By convention, if you do not specify all of the fields of a probe name, then DTrace
matches your request to all of the probes that have matching values in the parts of the
name that you do specify. In other words, when we used the probe name BEGIN
earlier, we were actually telling DTrace to match any probe whose name field is
BEGIN, regardless of the value of the provider, module, and function fields. As it
happens, there is only one probe matching that description, so the result is the same.
But we now know that the true name of the BEGIN probe is dtrace:::BEGIN, which
means this is a probe provided by the DTrace framework itself and is not anchored to
any function. Therefore we could also have written our hello.d program as follows
and obtained the same result:

dtrace:::BEGIN
{

trace("hello, world");
exit(0);

}

Now that we understand where probes originate from and how they are named, we’re
going to learn a little more about what happens when you enable probes and ask
DTrace to do something, and then we’ll return to our whirlwind tour of D.

Chapter 1 • Introduction 27

1.3 Compilation and Instrumentation
When you write traditional programs in Solaris, you use a compiler to convert your
program from source code into object code that you can execute. When you use the
dtrace command you are invoking the compiler for the D language that we used
earlier to write the hello.d program. Once your program is compiled, it is sent into
the operating system kernel for execution by DTrace. There the probes that are named
in your program are enabled and the corresponding provider performs whatever
instrumentation is needed to activate them.

All of the instrumentation in DTrace is completely dynamic: probes are enabled
discretely only when you are using them. No instrumented code is present for inactive
probes, so there is no performance degradation of any kind to your system when you
are not using DTrace. Once your experiment is complete and the dtrace command
exits, all of the probes you used are automatically disabled and their instrumentation
is removed, returning your system to its exact original state. There is effectively no
difference between a system where DTrace is not active and one where the DTrace
software is not installed.

The instrumentation for each probe is performed dynamically on the live running
operating system or on user processes you select. The system is not quiesced or
paused in any way, and instrumentation code is added only for the probes that you
enable. As a result, the probe effect of using DTrace is limited to exactly what you ask
DTrace to do: no extraneous data is traced, no one big “tracing switch” is turned on in
the system, and all of the DTrace instrumentation is designed to be as efficient as
possible. These features allow you to use DTrace in production to solve real problems
in real time.

The DTrace framework also provides support for an arbitrary number of virtual
clients. You can run as many simultaneous DTrace experiments and commands as you
like, limited only by your system’s memory capacity, and they all operate
independently using the same underlying instrumentation. This same capability also
permits any number of distinct users on the system to take advantage of DTrace
simultaneously: developers, administrators, and service personnel can all work
together or on distinct problems on the same system using DTrace without interfering
with one another.

Unlike programs written in C and C++ and similar to programs written in the Java™
programming language, DTrace D programs are compiled into a safe intermediate
form which is used for execution when your probes fire. This intermediate form is
validated for safety when your program is first examined by the DTrace kernel
software. The DTrace execution environment also handles any run-time errors that
might occur during your D program’s execution, including dividing by zero,
dereferencing invalid memory, and so on, and reports them to you. As a result, you
can never construct an unsafe program that would cause DTrace to inadvertently
damage the Solaris kernel or one of the processes running on your system. These

28 Solaris Dynamic Tracing Guide • November 2003 (Beta)

safety features allow you to use DTrace in a production environment without
worrying about crashing or corrupting your system. If you make a programming
mistake, DTrace will report your error to you, disable your instrumentation, and you
can correct your mistake and try again. We’ll learn more about DTrace error reporting
and debugging features later in the book.

The diagram below shows the different components of the DTrace architecture we
have learned about so far, including providers, probes, the DTrace kernel software,
and the dtrace command.

syscall profile

sysinfo vminfo

fbt sdt

fasttrap

DTrace

kernel

userland

DTrace
providers

dtrace(7D)

libdtrace(3LIB)

lockstat(1M)dtrace(1M)

plockstat(1M)intrstat(1M)

DTrace
consumers

a.d b.d ...

...

...

D program
source files

FIGURE 1–1 Overview of the DTrace Architecture and Components

Now that we understand how DTrace works, let’s return to our tour of the D
programming language and start writing some more interesting programs.

Chapter 1 • Introduction 29

1.4 Variables and Arithmetic Expressions
Our next example program makes use of the DTrace profile provider to implement
a simple time-based counter. The profile provider is able to create new probes based
on the descriptions found in your D program. If you create a probe named
profile:::tick-nsec for some integer n, the profile provider will create a probe
that fires every n seconds. Type in the following source code for our second example
and save it in a file named counter.d:

/*
* Count off and report the number of seconds elapsed
*/
dtrace:::BEGIN
{

i = 0;
}

profile:::tick-1sec
{

i = i + 1;
trace(i);

}

dtrace:::END
{

trace(i);

}

When executed, the program counts off the number of elapsed seconds until you type
Control-C, and then prints the total at the end:

dtrace -s counter.d
dtrace: script ’counter.d’ matched 3 probes
CPU ID FUNCTION:NAME
0 25499 :tick-1sec 1
0 25499 :tick-1sec 2
0 25499 :tick-1sec 3
0 25499 :tick-1sec 4
0 25499 :tick-1sec 5
0 25499 :tick-1sec 6

^C
0 2 :END 6

#

The first three lines of our program are a comment to explain what the program does.
Similar to C, C++, and the Java programming language, the D compiler ignores any
characters between the /* and */ symbols. Comments can be used anywhere in your
D program, including both inside and outside your probe clauses.

30 Solaris Dynamic Tracing Guide • November 2003 (Beta)

The BEGIN probe clause defines a new variable named i and assigns it the integer
value zero using the statement:

i = 0;

Unlike C, C++, and the Java programming language, D variables can be created by
simply using them in a program statement; explicit variable declarations are not
required. When a variable is used for the first time in your program, the type of the
variable is set based on the type of its first assignment. Each variable has only one
type over the lifetime of your program, so subsequent references must conform to the
same type as the initial assignment. In counter.d, we first assign i the integer
constant zero, so its type is set to int. D provides the same basic integer data types as
C, including:

char Character or single byte integer

int Default integer

short Short integer

long Long integer

long long Extended long integer

The sizes of these types are dependent on the operating system kernel’s data model;
we’ll review these details later. D also provides built-in friendly names for signed and
unsigned integer types of various fixed sizes, as well as thousands of other types that
are defined by the operating system. For now we will only use simple types in our
examples.

The central part of counter.d is the probe clause that increments our counter i:

profile:::tick-1sec
{

i = i + 1;
trace(i);

}

This clause names the probe profile:::tick-1sec, which tells the profile
provider to create a new probe which fires once per second on an available processor.
The clause contains two statements, the first assigning i to the previous value plus
one, and the second tracing the new value of i. All the usual C arithmetic operators
are available in D; we’ll review the complete list in Chapter 2. Also as in C, the ++
operator can be used as shorthand for incrementing the corresponding variable by
one. The trace() function takes any D expression as its argument, so we could write
counter.d more concisely as follows:

profile:::tick-1sec
{

Chapter 1 • Introduction 31

trace(++i);

}

If you want to explicitly control the type of the variable i, you can surround the
desired type in parentheses when you assign it in order to cast the integer zero to a
specific type. For example, if you wanted to determine the maximum size of a char in
D, you could change the BEGIN clause as follows:

dtrace:::BEGIN
{

i = (char)0;

}

After running counter.d for a while, you should see the traced value grow and then
wrap around back to zero. If you grow impatient waiting for the value to wrap, try
changing the profile probe name to profile:::tick-100msec to make a
counter that increments once every 100 milliseconds, or 10 times per second.

1.5 Predicates
One major difference between D and other programming languages such as C, C++,
and the Java programming language is the absence of control-flow constructs such as
if-statements and loops. D program clauses are written as single straight-line
statement lists that trace an optional, fixed amount of data. D does provide the ability
to conditionally trace data and modify control flow using logical expressions called
predicates that can be used to prefix program clauses. A predicate expression is
evaluated at probe firing time prior to executing any of the statements associated with
the corresponding clause. If the predicate evaluates to true, represented by any
non-zero value, the statement list is executed. If the predicate is false, represented by a
zero value, none of the statements are executed and the probe firing is ignored.

Type in the following source code for the next example and save it in a file named
countdown.d:

dtrace:::BEGIN
{

i = 10;
}

profile:::tick-1sec
/i > 0/
{

trace(i--);
}

32 Solaris Dynamic Tracing Guide • November 2003 (Beta)

profile:::tick-1sec
/i == 0/
{

trace("blastoff!");
exit(0);

}

This D program implements a 10-second countdown timer using predicates. When
executed, countdown.d counts down from 10 and then prints a message and exits:

dtrace -s countdown.d
dtrace: script ’countdown.d’ matched 3 probes
CPU ID FUNCTION:NAME

0 25499 :tick-1sec 10
0 25499 :tick-1sec 9
0 25499 :tick-1sec 8
0 25499 :tick-1sec 7
0 25499 :tick-1sec 6
0 25499 :tick-1sec 5
0 25499 :tick-1sec 4
0 25499 :tick-1sec 3
0 25499 :tick-1sec 2
0 25499 :tick-1sec 1
0 25499 :tick-1sec blastoff!

#

We first use the dtrace BEGIN probe to initialize an integer i to 10 to begin our
countdown. Next, as in the previous example, we use the tick-1sec probe to
implement a timer that fires once per second. Notice that in countdown.d, we use the
same tick-1sec probe description in two different clauses, each with a different
predicate and action list. The predicate is a logical expression surrounded by enclosing
slashes / / that appears after the probe name and before the braces { } that surround
the clause statement list.

The first predicate tests whether i is greater than zero, indicating that our timer is still
running:

profile:::tick-1sec
/i > 0/
{

trace(i--);

}

The relational operator > means greater than and returns the integer value zero for false
and one for true. All of the C relational operators are supported in D; the complete list
is found in Chapter 2. If i is not yet zero, we trace i and then decrement it by one
using the -- operator.

Our second predicate uses the == operator to return true when i is exactly equal to
zero, indicating that our countdown is complete:

Chapter 1 • Introduction 33

profile:::tick-1sec
/i == 0/
{

trace("blastoff!");
exit(0);

}

Similar to our first example, hello.d, we use a sequence of characters enclosed in
double quotes, called a string constant, to print a final message when the countdown is
complete. The exit() function is then used to exit dtrace and return to the shell
prompt.

If you look back at the structure of countdown.d, you will see that by creating two
clauses with the same probe description but different predicates and actions, we
effectively created the logical flow:

i = 10
once per second,

if i is greater than zero
trace(i--);

otherwise if i is equal to zero
trace("blastoff!");
exit(0);

When you wish to write complex programs using predicates, it is sometimes useful to
first visualize your algorithm in this manner, and then transform each path of your
conditional constructs into a separate clause and predicate.

Now let’s combine predicates with a new provider, the syscall provider, and create
our first real D tracing program. The syscall provider permits us to enable probes
on entry to or return from any Solaris system call. We’re going to use DTrace to
observe every time your shell performs a read(2) or write(2) system call. First, open
two terminal windows, one to use for DTrace and the other containing the shell
process we’re going to watch. In the second window, type the following command to
obtain the process ID of this shell:

echo $$

12345

Now go back to your first terminal window and type in the following D program and
save it in a file named rw.d. As you type in the program, replace the integer constant
12345 with the process ID of your shell that was printed in response to your echo
command.

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

}

34 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Notice that we leave the body of the rw.d’s probe clause empty since we are only
interested in notification of probe firings and not in tracing any additional data. Once
you’re done typing in rw.d, use dtrace to start your experiment and then go to your
second shell window and type a few commands, pressing return after each. As you
type, you should see dtrace report probe firings in your first window like this:

dtrace -s rw.d
dtrace: script ’rw.d’ matched 2 probes
CPU ID FUNCTION:NAME

0 34 write:entry
0 32 read:entry
0 34 write:entry
0 32 read:entry
0 34 write:entry
0 32 read:entry
0 34 write:entry
0 32 read:entry

...

You are now watching your shell perform read(2) and write(2) system calls to read a
character from your terminal window and echo back the result! We put together many
of the concepts we’ve learned so far and a few new ones to create this example. First,
since we wanted to instrument read(2) and write(2) in the same manner, we created
a single probe clause with multiple probe descriptions by separating the descriptions
with commas like this:

syscall::read:entry, syscall::write:entry

Next we created a predicate that matched only those system calls that were executed
by our shell process:

/pid == 12345/

Our predicate uses the predefined DTrace variable pid, which always evaluates to the
process ID associated with the thread that fired the corresponding probe. DTrace
provides many built-in variable definitions for useful things like the process ID. Here
is a list of a few DTrace variables you can use to write your first D programs:

Variable Name Data Type Meaning

errno int Current errno value for system calls

execname string Name of the current process’s executable file

pid pid_t Process ID of the current process

tid id_t Thread ID of the current thread

probeprov string Current probe description’s provider field

Chapter 1 • Introduction 35

Variable Name Data Type Meaning

probemod string Current probe description’s module field

probefunc string Current probe description’s function field

probename string Current probe description’s name field

Now that we’ve written a real instrumentation program, try experimenting with it on
different processes running on your system by changing the process ID and the system
call probes that are instrumented. Then, let’s make one more simple change and turn
rw.d into a very simple version of a system call tracing tool like truss(1). An empty
probe description field acts as a wildcard, matching any probe, so change your
program to the following new source code to trace any system call executed by your
shell:

syscall:::entry
/pid == 12345/
{

}

Try typing a few commands in the shell such as cd, ls, and date and see what your
DTrace program reports.

1.6 Output Formatting
System call tracing is a very powerful way to observe the behavior of most user
processes. If you’ve used the Solaris truss(1) utility before as an administrator or
developer, you’ve probably learned that it’s the Solaris equivalent of a trusty pocket
knife you always keep around for whenever there is a problem. If you’ve never used
truss before, give it a try right now by typing this command into one of your shells:

$ truss date

You will see a formatted trace of all the system calls executed by date(1) followed by
its one line of output at the end. For our next example, we’re going to improve our
earlier rw.d program by formatting its output to look more like truss(1) so we can
more easily understand the output. Type in the following program and save it in a file
called trussrw.d:

EXAMPLE 1–2 trussrw.d: Trace System Calls with truss(1) Output Format

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

36 Solaris Dynamic Tracing Guide • November 2003 (Beta)

EXAMPLE 1–2 trussrw.d: Trace System Calls with truss(1) Output Format (Continued)

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

syscall::read:return, syscall::write:return
/pid == 12345/
{

printf("\t\t = %d\n", arg1);

}

As before, change the process ID from 12345 to the process ID of the shell or other
process you are going to examine when you run dtrace. To execute trussrw.d,
we’re going to specify the dtrace option -q along with -s. The -q option tells
dtrace to be quiet and suppress its usual printing of a header line and the CPU and
ID columns we saw before. This way, we will only see the output for the data that we
explicitly traced. Type in the following command and then press return a few times in
your shell:

dtrace -q -s trussrw.d
= 1

write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1) = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1) = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1)^C

#

Now let’s examine our D program and its output in more detail. First, we created a
clause similar to our earlier program to instrument each of the shell’s calls to read(2)
and write(2). But for this example, we used a new function, printf(), to trace data
and print it out in a specific format:

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

}

Chapter 1 • Introduction 37

The printf() function combines the ability to trace data, as if by the trace()
function we used earlier, with the ability to output the data and other text in a specific
format that you describe. The printf() function tells DTrace to trace the data
associated with each argument after the first argument, and then to format the results
using the rules described by the first printf() argument, known as a format string.

The format string is a regular string that contains any number of format conversions,
each beginning with the % character, that describe how to format the corresponding
argument. The first conversion in the format string corresponds to the second
printf() argument, the second conversion to the third argument, and so on. All of
the text between conversions is printed verbatim. The character following the %
conversion character describes the format to use for the corresponding argument. Here
are the meanings of the three format conversions used in trussrw.d:

%d Print the corresponding value as a decimal integer

%s Print the corresponding value as a string

%x Print the corresponding value as a hexadecimal integer

DTrace printf() works just like the C printf(3C) library routine or the shell
printf(1) utility. If you’ve never seen printf() before, don’t worry: we’ll explain
all the formats and options in detail in Chapter 12. You should read this chapter
carefully even if you’re already familiar with printf() from another language. In D,
printf() is provided as a built-in and some new format conversions are available to
you designed specifically for DTrace.

To help you write correct programs, the D compiler validates each printf() format
string for you against its argument list. Try changing probefunc in the clause above
to the integer 123. If you run the modified program you will see an error message
telling you that the string format conversion %s is not appropriate for use with an
integer argument:

dtrace -q -s trussrw.d
dtrace: failed to compile script trussrw.d: line 4: printf()

argument #2 is incompatible with conversion #1 prototype:
conversion: %s
prototype: char [] or string (or use stringof)
argument: int

#

To print the name of the read or write system call and its arguments, we use the
printf() statement:

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

38 Solaris Dynamic Tracing Guide • November 2003 (Beta)

to trace the name of the current probe function and the first three integer arguments to
the system call, available in the DTrace variables arg0, arg1, and arg2. We’ll learn
more about probe arguments in Chapter 3. The first argument to read(2) and
write(2) is a file descriptor, which we print in decimal. The second argument is a
buffer address, which we format as a hexadecimal value. The final argument is the
buffer size, which we again format as a decimal value. We use the format specifier %4d
for the third argument to indicate that the value should be printed using the %d format
conversion with a minimum field width of 4 characters. If the integer is less than 4
characters wide, printf() will insert extra blanks for us to make the output line up
nicely.

To print the result of the system call and complete each line of output, we use the
following clause:

syscall::read:return, syscall::write:return
/pid == 12345/
{

printf("\t\t = %d\n", arg1);

}

Notice that the syscall provider also publishes a probe named return for each
system call in addition to entry. The DTrace variable arg1 for the syscall return
probes evaluates to the system call’s return value. We format the return value as a
decimal integer. The character sequences beginning with backwards slashes in the
format string expand to tab (\t) and newline (\n) respectively. These escape sequences
help you print or record characters that are difficult to type. D supports the same set of
escape sequences as C, C++, and the Java programming language. The complete list of
escape sequences is found in Chapter 2.

1.7 Arrays
D permits you to define variables that are integers, as well as other types to represent
strings and composite types called structs and unions. If you are familiar with C
programming, you’ll be happy to know you can use any type in D that you can in C. If
you’re not a C expert, don’t worry: we’ll cover all the different kinds of data types
later in Chapter 2. D also supports a special kind of variable called an associative array.
An associative array is similar to a normal array in that it associates a set of keys with
a set of values, but in an associative array the keys are not limited to integers of a fixed
range.

D associative arrays can be indexed by a list of one or more values of any type.
Together the individual key values form a tuple that is used to index into the array and
access or modify the value corresponding to that key. Every tuple used with a given
associative array must conform to the same type signature; that is, each tuple key

Chapter 1 • Introduction 39

must be of the same length and have the same key types in the same order. The value
associated with each element of a given associative array is also of a single fixed type
for the entire array. For example, the following D statement defines a new associative
array a of value type int with the tuple signature [string, int] and stores the
integer value 456 in the array:

a["hello", 123] = 456;

Once an array is defined, its elements can be accessed like any other D variable. For
example, the following D statement modifies the array element previously stored in a
by incrementing the value from 456 to 457:

a["hello", 123]++;

The values of any array elements you have not yet assigned are set to zero. Now let’s
use an associative array in a D program. Type in the following program and save it in
a file named rwtime.d:

EXAMPLE 1–3 rwtime.d: Time read(2) and write(2) Calls

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

ts[probefunc] = timestamp;
}

syscall::read:return, syscall::write:return
/ts[probefunc] != 0 && pid == 12345/
{

printf("%d nsecs", timestamp - ts[probefunc]);

}

As usual, change the process ID 12345 to the process ID of one of your shells before
running the program. When you execute rwtime.d and then type a few shell
commands, you’ll see the amount time elapsed during each system call. Type in the
following dtrace command and then press return a few times in your other shell:

dtrace -s rwtime.d
dtrace: script ’rwtime.d’ matched 4 probes
CPU ID FUNCTION:NAME
0 33 read:return 22644 nsecs
0 33 read:return 3382 nsecs
0 35 write:return 25952 nsecs
0 33 read:return 916875239 nsecs
0 35 write:return 27320 nsecs
0 33 read:return 9022 nsecs
0 33 read:return 3776 nsecs
0 35 write:return 17164 nsecs

...
^C

#

40 Solaris Dynamic Tracing Guide • November 2003 (Beta)

To trace the elapsed time for each system call, we need to instrument both the entry to
and return from read(2) and write(2) and sample the time at each point. Then, on
return from a given system call, we want to compute the difference between our first
and second timestamp. We could use separate variables for each system call, but this
would make the program annoying to extend to additional system calls. Instead, it’s
easier to use an associative array indexed by the probe function name. Here is the first
probe clause:

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

ts[probefunc] = timestamp;

}

We define an array named ts and assign the appropriate member the value of the
DTrace variable timestamp. This variable returns the value of an
always-incrementing nanosecond counter, similar to the Solaris library routine
gethrtime(3). Once we have saved the entry timestamp, we use the corresponding
return probe to sample timestamp again and report the difference between the
current time and the saved value:

syscall::read:return, syscall::write:return
/ts[probefunc] != 0 && pid == 12345 /
{

printf("%d nsecs", timestamp - ts[probefunc]);

}

The predicate on the return probe requires that we are tracing the appropriate process
and that the corresponding entry probe has already fired and assigned
ts[probefunc] a non-zero value. This trick eliminates invalid output when we first
start DTrace. If our shell is already waiting in a read(2) system call for input when we
execute dtrace, the read:return probe will fire without a preceding read:entry
for this first read(2) and ts[probefunc] will evaluate to zero because it has not yet
been assigned.

1.8 External Symbols and Types
DTrace instrumentation executes inside the Solaris operating system kernel, so in
addition to accessing special DTrace variables and probe arguments, you can also
access kernel data structures, symbols, and types. These capabilities allow advanced
DTrace users, administrators, service personnel, and driver developers to examine
low-level behavior of the operating system kernel and device drivers. The reading list
at the start of this book includes books that can help you learn more about Solaris
operating system internals.

Chapter 1 • Introduction 41

D uses the backquote character (‘) as a special scoping operator for accessing symbols
that are defined in the operating system and not in your D program. For example, the
Solaris kernel contains a C declaration of a system tunable named kmem_flags for
enabling memory allocator debugging features (see the Tunable Parameters Guide for
more information about kmem_flags). This tunable is declared in C in the kernel
source code as follows:

int kmem_flags;

To trace the value of this variable in a D program, you can write the D statement:

trace(‘kmem_flags);

DTrace associates each kernel symbol with the type used for it in the corresponding
operating system C code, providing you easy source-based access to the native
operating system data structures. Kernel symbol names are kept in a separate
namespace from D variable and function identifiers, so you never need to worry about
these names conflicting with your D variables. We’ll discuss more about how to access
kernel data structures later on in the book.

We have now completed our whirlwind tour of DTrace and you’ve learned many of
the basic DTrace building blocks necessary to build larger and more complex D
programs. We’re now going to learn the complete set of rules for D and see how
DTrace can make complex performance measurements and functional analysis of the
system easy. Later, we’ll see how to use DTrace to connect user application behavior to
system behavior, giving you the capability to analyze your entire software stack.

We’ve only just begun!

42 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 2

Types, Operators, and Expressions

D provides the ability to access and manipulate a variety of data objects: variables and
data structures can be created and modified, data objects defined in the operating
system kernel and user processes can be accessed, and integer, floating-point, and
string constants can be declared. D provides a superset of the ANSI-C operators that
are used to manipulate objects and create complex expressions. In this chapter we will
learn the detailed set of rules for types, operators, and expressions.

2.1 Identifier Names and Keywords
D identifier names are composed of upper and lower-case letters, digits, and
underscores where the first character must be a letter or underscore. All identifier
names beginning with an underscore (_) are reserved for use by the D system
libraries, described later in this guide. You should avoid using such names in your D
programs. By convention, we typically use mixed-case names for variables and all
upper-case names for constants.

D language keywords are special identifiers reserved for use in the programming
language syntax itself. These names are always specified in lower-case and may not be
used for the names of D variables.

TABLE 2–1 D Keywords

auto* goto* string+

break* if* stringof+

case* import*+ struct

char inline switch*

43

TABLE 2–1 D Keywords (Continued)
const int this+

continue* long translator+

counter*+ offsetof+ typedef

default* register* union

do* restrict* unsigned

double return* void

else* self+ volatile

enum short while*

extern signed xlate+

float sizeof

for* static*

D reserves for use as keywords a superset of the ANSI-C keywords. The keywords
reserved for future use by the D language are marked with “*”. The D compiler will
produce a syntax error if you attempt to use a keyword that is reserved for future use.
The keywords defined by D but not defined by ANSI-C are marked with “+”. As we
discussed in Chapter 1, D provides the complete set of types and operators found in
ANSI-C. The major difference in D progamming is the absence of control-flow
constructs, as we discussed earlier. Keywords associated with control-flow in ANSI-C
are reserved for future use in D.

2.2 Data Types and Sizes
D provides fundamental data types for integers and floating-point constants.
Arithmetic may only be performed on integers in D programs. Floating-point
constants may be used to initialize data structures, but floating-point arithmetic is not
permitted in D. D provides a 32-bit and 64-bit data model for use in writing programs.
The data model used when executing your program is the native data model
associated with the active operating system kernel. You can determine the native data
model for your system using isainfo(1) -b.

The names of the integer types and their sizes in each of the two data models are
shown in the table below. Integers are always represented in twos-complement form
in the native byte-encoding order of your system.

44 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 2–2 D Integer Data Types

Type Name 32–bit Size 64–bit Size

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 4 bytes

long 4 bytes 8 bytes

long long 8 bytes 8 bytes

Integer types may be prefixed with the signed or unsigned qualifier. If no sign
qualifier is present, the type is assumed to be signed. The D compiler also provides the
following type aliases for you as a convenience:

TABLE 2–3 D Integer Type Aliases

Type Name Description

int8_t 1 byte signed integer

int16_t 2 byte signed integer

int32_t 4 byte signed integer

int64_t 8 byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1 byte unsigned integer

uint16_t 2 byte unsigned integer

uint32_t 4 byte unsigned integer

uint64_t 8 byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type in
the previous table and are appropriately defined for each data model. For example, the
type name uint8_t is an alias for the type unsigned char. Later, we’ll learn how
you can define your own type aliases for use in your D programs.

D provides floating-point types for compatibility with ANSI-C declarations and types.
Floating-point operators are not supported in D, but floating-point data objects can be
traced and formatted using the printf() function. The following floating-point types
may be used:

Chapter 2 • Types, Operators, and Expressions 45

TABLE 2–4 D Floating-Point Data Types

Type Name 32–bit Size 64–bit Size

float 4 bytes 4 bytes

double 8 bytes 8 bytes

long double 16 bytes 16 bytes

D also provides the special type string to represent ASCII strings. Strings are
discussed in more detail in Chapter 6.

2.3 Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal
(0x12345). Octal (base 8) constants must be prefixed with a leading zero.
Hexadecimal (base 16) constants must be prefixed with either 0x or 0X. Integer
constants are assigned the smallest type among int, long, and long long that can
represent their value. If the value is negative, the signed version of the type is used. If
the value is positive and too large to fit in the signed type representation, the unsigned
type representation is used. You can apply one of the following suffixes to any integer
constant to explicitly specify its D type:

u or U unsigned version of the type selected by the compiler

l or L long

ul or UL unsigned long

ll or LL long long

ull or ULL unsigned long long

Floating-point constants are always written in decimal and must contain either a
decimal point (12.345) or an exponent (123e45) or both (123.34e-5).
Floating-point constants are assigned the type double by default. You can apply one
of the following suffixes to any floating-point constant to explicitly specify its D type:

f or F float

l or L long double

46 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Character constants are written as a single character or escape sequence enclosed in a
pair of single quotes (’a’). Character constants are assigned the type int and are
equivalent to an integer constant whose value is determined by that character’s value
in the ASCII character set. You can refer to ascii(5) for a list of characters and their
values. You can also use any of the following special escape sequences in your
character constants. D supports the same escape sequences found in ANSI-C.

TABLE 2–5 D Character Escape Sequences

\a alert \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \” double quote

\r carriage return \0oo octal value 0oo

\t horizontal tab \xhh hexadecimal value 0xhh

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create
integers whose individual bytes are initialized according to the corresponding
character specifiers. The bytes are read left-to-right from your character constant and
assigned to the resulting integer in the order corresponding to the native endian-ness
of your operating environment. Up to eight character specifiers can be included in a
single character constant.

Strings constants of any length can be composed by enclosing them in a pair of double
quotes ("hello"). A string constant may not contain a literal newline character; to
create strings containing newlines use the \n escape sequence instead of a literal
newline. String constants may contain any of the special character escape sequences
shown for character constants above. Similar to ANSI-C, strings are represented as
arrays of characters terminated by a null character (\0) which is implicitly added to
each string constant that you declare. String constants are assigned the special D type
string. The D compiler provides a set of special features for comparing and tracing
character arrays that are declared as strings, as described in Chapter 6.

2.4 Arithmetic Operators
D provides the following binary arithmetic operators for use in your programs. These
operators all have the same meaning for integers as they do in ANSI-C.

Chapter 2 • Types, Operators, and Expressions 47

TABLE 2–6 D Binary Arithmetic Operators

+ integer addition

- integer subtraction

* integer multiplication

/ integer division

% integer modulus

Arithmetic in D may only be performed on integer operands, or on pointers, as
discussed later in Chapter 5. Arithmetic may not be performed on floating-point
operands in D programs. The DTrace execution environment does not take any action
on integer overflow or underflow; you must check for these conditions yourself in
situations where they are applicable.

The DTrace execution environment does automatically check for and report division
by zero errors resulting from improper use of the / and % operators. If a D program
executes an invalid division operation, DTrace will automatically disable the affected
instrumentation and report the error to you. Errors detected by DTrace will have no
effect on other DTrace users or on the operating system kernel, so you don’t need to
worry about causing any damage if your D program inadvertently contains one of
these errors.

In addition to these binary operators, the + and - operators may also be used as unary
operators as well; these have higher precedence than any of the binary arithmetic
operators. We will summarize the order of precedence and associativity properties for
all the D operators at the end of this chapter. You can control precedence by grouping
expressions in parentheses ().

2.5 Relational Operators
D provides the following binary relational operators for use in your programs. These
operators all have the same meaning as they do in ANSI-C.

TABLE 2–7 D Relational Operators

< left-hand operand is less than right-operand

<= left-hand operand is less than or equal to right-hand operand

> left-hand operand is greater than right-hand operand

48 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 2–7 D Relational Operators (Continued)
>= left-hand operand is greater than or equal to right-hand operand

== left-hand operand is equal to right-hand operand

!= left-hand operand is not equal to right-hand operand

Relational operators are most frequently used to write D predicates. Each operator
evaluates to a value of type int which is equal to one if the condition is true, or zero if
it is false.

Relational operators may be applied to pairs of integers, pointers, or strings. If
pointers are compared, the result is equivalent to an integer comparison of the two
pointers interpreted as unsigned integers. If strings are compared, the result is
determined as if by performing a strcmp(3C) on the two operands. Here are some
example D string comparisons and their results:

"coffee" < "espresso" ... returns 1 (true)

"coffee" == "coffee" ... returns 1 (true)

"coffee" >= "mocha" ... returns 0 (false)

Relational operators may also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration.
Enumerations are a facility for creating named integer constants and are described in
more detail in Chapter 8.

2.6 Logical Operators
D provides the following binary logical operators for use in your programs. The first
two are equivalent to the corresponding ANSI-C operators.

TABLE 2–8 D Logical Operators

&& logical AND: true if both operands are true

|| logical OR: true if one or both operands are true

^^ logical XOR: true if exactly one operand is true

Chapter 2 • Types, Operators, and Expressions 49

Logical operators are most frequently used in writing D predicates. The logical AND
operator performs short-circuit evaluation: if the left-hand operand is false, the
right-hand expression is not evaluated. The logical OR operator also performs
short-circuit evaluation: if the left-hand operand is true, the right-hand expression is
not evaluated. The logical XOR operator does not short-circuit: both expression
operands are always evaluated.

In addition to the binary logical operators, the unary ! operator may be used to
perform a logical negation of a single operand: it converts a zero operand into a one,
and a non-zero operand into a zero. By convention, D programmers use ! when
working with integers that are meant to represent boolean values, and == 0 when
working with non-boolean integers, although both expressions are equivalent in
meaning.

The logical operators may be applied to operands of integer or pointer types. The
logical operators interpret pointer operands as unsigned integer values. As with all
logical and relational operators in D, operands are true if they have a non-zero integer
value and false if they have a zero integer value.

2.7 Bitwise Operators
D provides the following binary operators for manipulating individual bits inside of
integer operands. These operators all have the same meaning as they do in ANSI-C.

TABLE 2–9 D Bitwise Operators

& bitwise AND

| bitwise OR

^ bitwise XOR

<< shift the left-hand operand left by the number of bits specified by the
right-hand operand

>> shift the left-hand operand right by the number of bits specified by the
right-hand operand

The binary & operator is used to clear bits from an integer operand. The binary |
operator is used to set bits in an integer operand. The binary ^ operator returns one in
each bit position where exactly one of the corresponding operand bits is set.

50 Solaris Dynamic Tracing Guide • November 2003 (Beta)

The shift operators are used to move bits left or right in a given integer operand.
Shifting left fills empty bit positions on the right-hand side of the result with zeroes.
Shifting right using an unsigned integer operand fills empty bit positions on the
left-hand side of the result with zeroes. Shifting right using a signed integer operand
fills empty bit positions on the left-hand side with the value of the sign bit, also known
as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger
than the number of bits in the left-hand operand itself produces an undefined result.
The D compiler will produce an error message if it can detect this condition when you
compile your D program.

In addition to the binary logical operators, the unary ~ operator may be used to
perform a bitwise negation of a single operand: it converts each zero bit in the
operand into a one bit, and each one bit in the operand into a zero bit.

2.8 Assignment Operators
D provides the following binary assignment operators for modifying D variables.
Remember that you can only modify D variables and arrays: kernel data objects and
constants may not be modified using the D assignment operators. The assignment
operators have the same meaning as they do in ANSI-C.

TABLE 2–10 D Assignment Operators

= set the left-hand operand equal to the right-hand expression value

+= increment the left-hand operand by the right-hand expression value

-= decrement the left-hand operand by the right-hand expression value

*= mulitply the left-hand operand by the right-hand expression value

/= divide the left-hand operand by the right-hand expression value

%= modulo the left-hand operand by the right-hand expression value

|= bitwise OR the left-hand operand with the right-hand expression value

&= bitwise AND the left-hand operand with the right-hand expression value

^= bitwise XOR the left-hand operand with the right-hand expression value

<<= shift the left-hand operand left by the number of bits specified by the
right-hand expression value

Chapter 2 • Types, Operators, and Expressions 51

TABLE 2–10 D Assignment Operators (Continued)
>>= shift the left-hand operand right by the number of bits specified by the

right-hand expression value

Aside from the assignment operator =, the other assignment operators are provided as
short-hand for using the = operator with one of the other operators described earlier.
For example, the expression x = x + 1 is equivalent to the expression x += 1, except
that the expression x is evaluated once. These assignment operators obey the same
rules for operand types as the binary forms described earlier.

The result of any assignment operator is an expression equal to the new value of the
left-hand expression. You can use the assignment operators or any of the operators
described so far in combination to form expressions of arbitrary complexity. You can
use parentheses () to group terms in complex expressions.

2.9 Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing
pointers and integers. These operators have the same meaning as they do in ANSI-C.
These operators can only be applied to variables, and may be applied either before or
after the variable name. If the operator appears before the variable name, the variable
is first modified and then the resulting expression is equal to the new value of the
variable. For example, the following two expressions produce identical results:

x += 1; y = ++x;

y = x;

If the operator appears after the variable name, then the variable is modified after its
current value is returned for use in the expression. For example, the following two
expressions produce identical results:

y = x; y = x--;

x -= 1;

You can use the increment and decrement operators to create new variables without
declaring them. If a variable declaration is omitted and the increment or decrement
operator is applied to a variable, the variable is implicitly declared to be of type
int64_t.

52 Solaris Dynamic Tracing Guide • November 2003 (Beta)

The increment and decrement operators can be applied to integer or pointer variables.
When applied to integer variables, the operators increment or decrement the
corresponding value by one. When applied to pointer variables, the operators
increment or decrement the pointer address by the size of the data type referenced by
the pointer. We’ll learn more about pointers and pointer arithmetic in D in Chapter 5.

2.10 Conditional Expressions
Although D does not provide support for if-then-else constructs, it does provide
support for simple conditional expressions using the ? and : operators. These
operators permit a triplet of expressions to be associated where the first expression is
used to conditionally evaluate one of the other two. For example, the following D
statement could be used to set a variable x to one of two strings depending on the
value of i:

x = i == 0 ? "zero" : "non-zero";

In this example, the expression i == 0 is first evaluated to determine if it is true or
false. If the first expression is true, the second expression is evaluated and the ?:
expression returns its value. If the first expression is false, the third expression is
evaluated and the ?: expression return its value.

As with any D operator, you can use multiple ?: operators in a single expression to
create more complex expressions. For example, the following expression would take a
char variable c containing one of the characters 0-9, a-z, or A-Z and return the value
of this character when interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= ’0’ && c <= ’9’) ? c - ’0’ :

(c >= ’a’ && c <= ’z’) ? c + 10 - ’a’ : c + 10 - ’A’;

The first expression used with ?: must be a pointer or integer in order to be evaluated
for its truth value. The second and third expressions may be of any compatible types.
You may not construct a conditional expression where, for example, one path returns a
string and another an integer. The second and third expressions also may not invoke a
tracing function such as trace() or printf(). If you wish to conditionally trace
data, you should use a predicate instead, as we discussed earlier in Chapter 1.

Chapter 2 • Types, Operators, and Expressions 53

2.11 Type Conversions
When expressions are constructed using operands of different but compatible types,
type conversions are performed in order to determine the type of the resulting
expression. The D rules for type conversions are the same as the arithmetic conversion
rules for integers in ANSI-C. These rules are sometimes referred to as the usual
arithmetic conversions.

A simple way to describe the conversion rules is as follows: each integer type is
ranked in the order char, short, int, long, long long, with the
corresponding unsigned types assigned a rank above its signed equivalent but below
the next integer type. When you construct an expression using two integer operands
such as x + y and the operands are of different integer types, the operand type with
the highest rank is used as the result type.

If a conversion is required, the operand of lower rank is first promoted to the type of
higher rank. Promotion does not actually change the value of the operand: it simply
extends the value to a larger container according to its sign. If an unsigned operand is
promoted, the unused high-order bits of the resulting integer are filled with zeroes. If
a signed operand is promoted, the unused high-order bits are filled by performing
sign extension. If a signed type is converted to an unsigned type, it is first
sign-extended and then assigned the new unsigned type determined by the
conversion.

Integers and other types can also be explicitly cast from one type to another. In D,
pointers and integers can be cast to any integer or pointer types, but not to other
types. Rules for casting and promoting strings and character arrays are discussed later
in Chapter 6. An integer or pointer cast is formed using an expression such as:

y = (int)x;

where the destination type is enclosed in parentheses and used to prefix the source
expression. Integers are cast to types of higher rank by performing promotion as
described above. Integers are cast to types of lower rank by simply zeroing the excess
high-order bits of the integer.

Since D does not permit floating-point arithmetic, no floating-point operand
conversion or casting is permitted and no rules for implicit floating-point conversion
are defined.

54 Solaris Dynamic Tracing Guide • November 2003 (Beta)

2.12 Precedence
The D rules for operator precedence and associativity are described in the following
table. These rules are somewhat complex, but are necessary to provide precise
compatibility with the ANSI-C operator precedence rules. The table entries are in
order from highest precedence to lowest precedence.

TABLE 2–11 D Operator Precedence and Associativity

Operators Associativity

() [] -> . left to right

! ~ ++ -- + - * & (type) sizeof stringof offsetof xlate right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

^^ left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

There are several operators in the table that we have not yet discussed; these will be
covered in subsequent chapters:

sizeof ... computes the size of an object (Chapter 7)

offsetof ... computes the offset of a type member (Chapter 7)

stringof ... converts the operand to a string (Chapter 6)

Chapter 2 • Types, Operators, and Expressions 55

xlate ... translates a data type (Chapter 33)

unary & ... computes the address of an object (Chapter 5)

unary * ... dereferences a pointer to an object (Chapter 5)

-> and accesses a member of a structure or union type (Chapter 7)

The comma (,) operator listed in the table is for compatibility with the ANSI-C
comma operator, which can be used to evaluate a set of expressions in left-to-right
order and return the value of the rightmost expression. This operator is provided
strictly for compatibility with C and should generally not be used.

The () entry in the table above represents a function call; we saw examples of calls to
functions such as printf() and trace() in Chapter 1. A comma is also used in D to
list arguments to functions and to form lists of associative array keys. This comma is
not the same as the comma operator and does not guarantee left-to-right evaluation.
The D compiler provides no guarantee as to the order of evaluation of arguments to a
function or keys to an associative array. You should be careful of using expressions
with interacting side-effects, such as i and i++, in these contexts.

The [] entry in the table above represents an array or associative array reference. We
saw examples of associative arrays earlier in Chapter 1. Later, we’ll learn about a
special kind of associative array called an aggregation; see Chapter 9. The [] operator
can also be used to index into fixed-size C arrays as well; see Chapter 5.

56 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 3

Variables

D provides two basic types of variables for use in your tracing programs: scalar
variables and associative arrays. We briefly illustrated the use of these variables in our
examples in Chapter 1. In this chapter, we will explore the rules for D variables in
more detail and learn about how variables can be associated with different scopes. We
will discuss a special kind of array variable, called an aggregation, later in Chapter 9.

3.1 Scalar Variables
Scalar variables are used to represent individual fixed-size data objects, such as
integers and pointers. Scalar variables can also be used for fixed-size objects that are
composed of one or more primitive or composite types. D provides the ability to
create both arrays (see Chapter 5) of objects as well as composite structures (see
Chapter 7). DTrace also represents strings as fixed-size scalars by permitting them to
grow up to a predefined maximum length. Control over string length in your D
program is discussed further in Chapter 6.

Scalar variables are created automatically the first time you assign a value to a
previously undefined identifier in your D program, as we saw in Chapter 1. For
example, to create a scalar variable named x of type int, you can simply assign it a
value of type int in any probe clause:

BEGIN
{

x = 123;

}

Scalar variables created in this manner are global variables: their name and data
storage location is defined once and is visible in every clause of your D program. Any
time you reference the identifier x, you are referring to a single storage location
associated with this variable.

57

Unlike ANSI-C, D does not require explicit variable declarations. If you do want to
declare a global variable to assign its name and type explicitly before using it, you can
place a declaration outside of the probe clauses in your program as shown in the
example below. Explicit variable declarations are not necessary in most D programs,
but are sometimes useful when you want to carefully control your variable types or
when you want to begin your program with a set of declarations and comments
documenting your program’s variables and their meanings.

int x; /* declare an integer x for later use */

BEGIN
{

x = 123;
...

}

Unlike ANSI-C declarations, D variable declarations may not assign initial values; you
must use a BEGIN probe clause to assign any initial values. All global variable storage
is filled with zeroes for you by DTrace before you first reference it.

The D language definition places no limit on the size and number of D variables, but
limits are defined by the DTrace implementation and by the memory available on your
system and the D compiler will enforce any of the limitations that can be applied at
the time you compile your program. You can learn more about how to tune options
related to program limits in Chapter 16.

3.2 Associative Arrays
Associative arrays are used to represent collections of data elements that can be
retrieved by specifying a name called a key. D associative array keys are formed by a
list of scalar expression values called a tuple. You can think of the array tuple itself as
an imaginary parameter list to a function that is called to retrieve the corresponding
array value when you reference the array. Each D associative array has a fixed key
signature consisting of a fixed number of tuple elements where each element has a
given, fixed type. You can define different key signatures for each array in your D
program.

Associative arrays differ from normal, fixed-size arrays in that they have no
predefined limit on the number of elements, the elements can be indexed by any tuple
as opposed to just using integers as keys, and the elements are not stored in
preallocated consecutive storage locations. Associative arrays are useful in situations
where you would use a hash table or other simple dictionary data structure in a C,
C++, or Java™ language program. Associative arrays give you the ability to create a

58 Solaris Dynamic Tracing Guide • November 2003 (Beta)

dynamic history of events and state captured so far in your D program that you can
use to create more complex control flows. We’ll discuss a few more rules for
programming with associative arrays, and then construct a D program that uses them
later in this chapter.

To define an associative array, you write an assignment expression of the form:

name [key] = expression ;

where name is any valid D identifier and key is a comma-separated list of one or more
expressions. For example, the following statement defines an associative array a with
key signature [int, string] and stores the integer value 456 in a location named
by the tuple [123, "hello"]:

a[123, "hello"] = 456;

The type of each object contained in the array is also fixed for all elements in a given
array. Since a was first assigned using the integer 456, every subsequent value stored
in the array will also be of type int. You can use any of the assignment operators
defined in Chapter 2 to modify associative array elements, subject to the operand rules
defined for each operator. The D compiler will produce an appropriate error message
if you attempt an incompatible assignment. You can use any type with an associative
array key or value that you can use with a scalar variable. You cannot nest an
associative array within another associative array as a key or value.

You can reference an associative array using any tuple that is compatible with the
array key signature. The rules for tuple compatibility are similar to those for function
calls and variable assignments: the tuple must be of the same length and each type in
the list of actual parameters must be compatible with the corresponding type in the
formal key signature. For example, if an associative array x is defined as follows:

x[123ull] = 0;

then the key signature is of type unsigned long long and the values are of type
int. This array can also be referenced using the expression x[’a’] because the tuple
consisting of the character constant ’a’ of type int and length one is compatible with
the key signature unsigned long long according to the arithmetic conversion rules
described in Section 2.11.

If you need to explicitly declare a D associative array before using it, you can create a
declaration of the array name and key signature outside of the probe clauses in your
program source code:

int x[unsigned long long, char];

BEGIN
{

x[123ull, ’a’] = 456;

}

Chapter 3 • Variables 59

Once an associative array is defined, references to any tuple of a compatible key
signature are permitted, even if the tuple in question has not been previously
assigned. Loading from such an unassigned associative array element is defined to
return a zero-filled object. A consequence of this definition is that underlying storage is
not allocated for an associative array element until a non-zero value is assigned to that
element. Conversely, assigning an associative array element to zero causes DTrace to
deallocate the underlying storage. This is important because the dynamic variable
space out of which associative array elements are allocated is finite; if it is exhausted
when an allocation is attempted, the allocation will fail and an error message will be
generated indicating a dynamic variable drop. In general, one should always assign
zero to associative array elements that are no longer in use. See Chapter 16 for other
techniques to eliminate dynamic variable drops.

3.3 Thread-Local Variables
DTrace provides the ability to declare variable storage that is local to each operating
system thread, as opposed to the global variables we have used so far. Thread-local
variables are useful in situations where you wish to enable a probe and mark every
thread that happens to fire the probe with some tag or other data. Creating a program
to do this is easy in D because thread-local variables share a common name in your D
code but refer to separate data storage associated with each thread. Thread-local
variables are referenced by applying the -> operator to the special identifier self:

syscall::read:entry
{

self->read = 1;

}

This D fragment example enables the probe on the read(2) system call and associates
a thread-local variable named read with each thread that fires the probe. Similar to
global variables, thread-local variables spring into existence automatically on their
first assignment and assume the type used on the right-hand side of the first
assignment statement (in this example, int).

Each time the variable self->read is referenced in your D program, the data object
referenced is the one associated with the operating system thread that was executing
when the corresponding DTrace probe fired. You can think of a thread-local variable as
an associative array that is implicitly indexed by a tuple that describes the thread’s
identity in the system. A thread’s identity is unique over the lifetime of the system: if
the thread exits and the same operating system data structure is used to create a new
thread, this thread does not reuse the same DTrace thread-local storage identity.

Once you have defined a thread-local variable, you can reference it for any thread in
the system even if the variable in question has not been previously assigned for that
particular thread. If a thread’s copy of the thread-local variable has not yet been

60 Solaris Dynamic Tracing Guide • November 2003 (Beta)

assigned, the data storage for the copy is defined to be filled with zeroes. As with
associative array elements, underlying storage is not allocated for a thread-local
variable until a non-zero value is assigned to it. And also as with associative array
elements, assigning zero to a thread-local variable causes DTrace to deallocate the
underlying storage. In general, one should always assign zero to thread-local variables
that are no longer in use. See Chapter 16 for other techniques to fine-tune the dynamic
variable space from which thread-local variables are allocated.

Thread-local variables of any type can be defined in your D program, including
associative arrays. Here are some example thread-local variable definitions:

self->x = 123; /* integer value */
self->s = "hello"; /* string value */

self->a[123, ’a’] = 456; /* associative array */

Like any D variable, you don’t need to explicitly declare thread-local variables before
using them. If you want to create a declaration anyway, you can place one outside of
your program clauses by prepending the keyword self:

self int x; /* declare int x as a thread-local variable */

syscall::read:entry
{

self->x = 123;

}

Thread-local variables are kept in a separate namespace from global variables so you
can reuse names. Remember that x and self->x are not the same variable if you
overload names in your program! Now that we’ve learned about thread-local
variables let’s use one in a real example. Go to your editor and type in the following
program and save it in a file named rtime.d:

EXAMPLE 3–1 rtime.d: Compute Time Spent in read(2)

syscall::read:entry
{

self->t = timestamp;
}

syscall::read:return
/self->t != 0/
{

printf("%d/%d spent %d nsecs in read(2)\n",
pid, tid, timestamp - self->t);

/*
* We’re done with this thread-local variable; assign zero to it to allow
* the DTrace runtime to reclaim the underlying storage.
*/
self->t = 0;

}

Chapter 3 • Variables 61

Now go to your shell and start the program running. Wait a few seconds and you
should start to see some output. If not, try running a few commands.

dtrace -q -s rtime.d
100480/1 spent 11898 nsecs in read(2)
100441/1 spent 6742 nsecs in read(2)
100480/1 spent 4619 nsecs in read(2)
100452/1 spent 19560 nsecs in read(2)
100452/1 spent 3648 nsecs in read(2)
100441/1 spent 6645 nsecs in read(2)
100452/1 spent 5168 nsecs in read(2)
100452/1 spent 20329 nsecs in read(2)
100452/1 spent 3596 nsecs in read(2)
...
^C

#

In rtime.d, we use a thread-local variable named t to capture a timestamp on entry
to read(2) by any thread. Then, in our return clause, we print out the amount of time
spent in read(2) by subtracting self->t from the current timestamp. We use the
built-in D variables pid and tid to report the process ID and thread ID of the thread
performing the read(2). Because we are done using self->t once we report this
information, we take care to assign it to 0 to allow DTrace to reuse the underlying
storage associated with t for the curren thread.

Typically you will see many lines of output without even doing anything because,
behind the scenes, server processes and daemons are executing read(2) all the time
even when you aren’t doing anything. What are they up to? Well, keep reading!
Figuring out what your system is up to is what DTrace is all about. Try changing the
second clause of rtime.d to use the execname variable to print out the name of the
process performing a read(2) to learn more:

printf("%s/%d spent %d nsecs in read(2)\n",

execname, tid, timestamp - self->t);

If you find a process that’s of particular interest, add a predicate to learn more about
its read(2) behavior:

syscall::read:entry
/execname == "Xsun"/
{

self->t = timestamp;

}

62 Solaris Dynamic Tracing Guide • November 2003 (Beta)

3.4 Clause-Local Variables
You can also define D variables whose storage is reused for each D program clause.
Clause-local variables are similar to automatic variables in a C, C++, or Java language
program that are active during each invocation of a function. Like all D program
variables, clause-local variables spring into existence on their first assignment. These
variables can be referenced and assigned by applying the -> operator to the special
identifier this:

BEGIN
{

this->secs = timestamp / 1000000000;
...

}

If you want to explicitly declare a clause-local variable before using it, you can do so
using the this keyword:

this int x; /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{

this->x = 123;
this->c = ’D’;

}

Clause-local variables are only active for the lifetime of a given probe clause. After
DTrace performs the actions associated with your clauses for a given probe, the
storage for all clause-local variables is reclaimed and reused for the next clause. For
this reason, clause-local variables are the only D variables that are not initially filled
with zeroes. Note that if your program contains multiple clauses for a single probe,
any clause-local variables will remain intact as the clauses are executed. For example:

EXAMPLE 3–2 clause.d: Clause-local variables

int me; /* an integer global variable */
this int foo; /* an integer clause-local variable */

tick-1sec
{

/*
* Set foo to be 10 if and only if this is the first clause executed.
*/
this->foo = (me % 3 == 0) ? 10 : this->foo;
printf("Clause 1 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

tick-1sec

Chapter 3 • Variables 63

EXAMPLE 3–2 clause.d: Clause-local variables (Continued)

{
/*
* Set foo to be 20 if and only if this is the first clause executed.
*/
this->foo = (me % 3 == 0) ? 20 : this->foo;
printf("Clause 2 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

tick-1sec
{

/*
* Set foo to be 30 if and only if this is the first clause executed.
*/
this->foo = (me % 3 == 0) ? 30 : this->foo;
printf("Clause 3 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

Because the clauses are always executed in program order, and because clause-local
variables are persistent across different clauses enabling the same probe, running the
above will always produce the same output:

dtrace -q -s clause.d
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12

^C

While clause-local variables are persistent across clauses enabling the same probe,
their values are undefined in the first clause executed for a given probe. You should be
sure to assign each clause-local variable an appropriate value before using it, or your
program may have unexpected results.

Clause-local variables can be defined using any scalar variable type, but associative
arrays may not be defined using clause-local scope. The scope of clause-local variables
only applies to the corresponding variable data, not to the name and type identity
defined for the variable. Once a clause-local variable is defined, this name and type
signature may be used in any subsequent D program clause; the storage location may
not be relied upon to be the same across different clauses.

64 Solaris Dynamic Tracing Guide • November 2003 (Beta)

You can use clause-local variables to accumulate intermediate results of calculations or
as temporary copies of other variables. Access to a clause-local variable is much faster
than access to an associative array, so if you need to reference an associative array
value multiple times in the same D program clause it is more efficient to copy it into a
clause-local variable first and then reference the local variable repeatedly.

3.5 Built-in Variables
We’ve already used a number of special built-in D variables in our example programs,
including timestamp, pid, and several others. The complete list of D built-in
variables is shown in the table below. All of these variables are scalar global variables;
no thread-local or clause-local variables or built-in associative arrays are currently
defined by D.

TABLE 3–1 DTrace Built-in Variables

Type and Name Description

int64_t arg0, ..., arg9 The first ten input arguments to a probe
represented as raw 64-bit integers. If fewer
than ten arguments are passed to the current
probe, the remaining variables return zero.

args[] The typed arguments to the current probe, if
any. The args[] array is accessed using an
integer intex, but each element is defined to be
the type corresponding to the given probe
argument. For example, if args[] is
referenced by a read(2) system call probe,
args[0] is of type int, args[1] is of type
void *, and args[2] is of type size_t.

uintptr_t caller The program counter location of the current
thread just before entering the current probe.

lwpsinfo_t *curlwpsinfo The lightweight process (LWP) state of the
LWP associated with the current thread. This
structure is described in further detail in
proc(4).

psinfo_t *curpsinfo The process state of the process associated
with the current thread. This structure is
described in further detail in proc(4).

Chapter 3 • Variables 65

TABLE 3–1 DTrace Built-in Variables (Continued)
Type and Name Description

kthread_t *curthread The address of the operating system kernel’s
internal data structure for the current thread,
the kthread_t. The kthread_t is defined in
<sys/thread.h>. Refer to Solaris Internals
for more information on this and other
operating system data structures.

epid The enabled probe ID (EPID) for the current
probe. This integer uniquely identifiers a
particular probe that is enabled with a specific
predicate and set of actions.

int errno The error value returned by the last system
call executed by this thread.

string execname The name that was passed to exec(2) to
execute the current process.

uint_t id The probe ID for the current probe. This is the
system-wide unique identifier for the probe as
published by DTrace and listed in the output
of dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the
current CPU at probe firing time. Refer to
Solaris Internals for more information on
interrupt levels and interrupt handling in the
Solaris operating system kernel.

pid_t pid The process ID of the current process.

string probefunc The function name portion of the current
probe’s description.

string probemod The module name portion of the current
probe’s description.

string probename The name portion of the current probe’s
description.

string probeprov The provider name portion of the current
probe’s description.

uint64_t regs[] The current thread’s kernel-mode register
values at probe firing time.

uint_t stackdepth The current thread’s stack frame depth at
probe firing time.

66 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 3–1 DTrace Built-in Variables (Continued)
Type and Name Description

id_t tid The thread ID of the current thread. For
threads associated with user processes, this
value is equal to the result of a call to
thr_self(3THREAD).

uint64_t timestamp The current value of a nanosecond timestamp
counter. This counter increments from an
arbitrary point in the past and should only be
used for relative computations.

uint64_t uregs[] The current thread’s saved user-mode register
values at probe firing time. Use of the
uregs[] array is discussed in Chapter 27.

uint64_t vtimestamp The current value of a nanosecond timestamp
counter that is virtualized to the amount of
time that the current thread has been running
on a CPU, minus the time spent in DTrace
predicates and actions. This counter
increments from an arbitrary point in the past
and should only be used for relative time
computations.

Functions built into the D language such as trace() are discussed in Chapter 10.

3.6 External Variables
D uses the backquote character (‘) as a special scoping operator for accessing
variables that are defined in the operating system and not in your D program. For
example, the Solaris kernel contains a C declaration of a system tunable named
kmem_flags for enabling memory allocator debugging features (see the Tunable
Parameters Guide for more information about kmem_flags). This tunable is declared
as a C variable in the kernel source code as follows:

int kmem_flags;

To access the value of this variable in a D program, use the D notation:

‘kmem_flags

Chapter 3 • Variables 67

DTrace associates each kernel symbol with the type used for it in the corresponding
operating system C code, providing you easy source-based access to the native
operating system data structures. In order to use external operating system variables,
you will need access to the corresponding operating system source code.

When you access external variables from a D program, you are accessing the internal
implementation details of another program such as the operating system kernel or its
device drivers. These implementation details do not form a stable interface upon
which you can rely! Any D programs you write that consume these details may cease
to work when you next upgrade the corresponding piece of software. For this reason,
external variables are typically used by kernel and device driver developers and
service personnel in order to debug performance or functionality problems using
DTrace. To learn more about the stability of your D programs, refer to Chapter 32.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you never need to worry about these names conflicting with your D
variables. When you prefix a variable with a backquote, the D compiler searches the
known kernel symbols in order using the list of loaded modules in order to find a
matching variable definition. Since the Solaris kernel supports dynamically loaded
modules with separate symbol namespaces, it is possible that the same variable name
is used more than once in the active operating system kernel. You can resolve these
name conflicts by specifying the name of the kernel module whose variable should be
accessed prior to the backquote in the symbol name. For example, each loadable
kernel module typically provides a _fini(9E) function, so to refer to the address of
the _fini function provided by a kernel module named foo you would write:

foo‘_fini

You can apply any of the D operators to external variables, except those that modify
values, subject to the usual rules for operand types. When you launch DTrace, the D
compiler loads the set of variable names corresponding to the active kernel modules,
so declarations of these variables are not required. You may not apply any operator to
an external variable that modifies its value, such as = or +=. For safety reasons, DTrace
prevents you from damaging or corrupting the state of the software you are observing.

68 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 4

Program Structure

D programs consist of a set of clauses that describe probes to enable and predicates
and actions to bind to these probes. D programs can also contain declarations of
variables, as we saw in the previous chapter, and definitions of new types, described
later in Chapter 8. In this chapter, we will formally describe the overall structure of a
D program and features for constructing probe descriptions that match more than one
probe. We’ll also discuss the use of the C preprocessor, cpp, with D programs.

4.1 Probe Clauses and Declarations
As shown in our examples so far, a D program source file consists of one or more
probe clauses that describe the instrumentation to be enabled by DTrace. Each probe
clause has the general form:

probe descriptions
/ predicate /
{

action statements
}

The predicate and list of action statements may each be optionally omitted. Any
directives found outside probe clauses are referred to as declarations. Declarations may
only be used outside of probe clauses; no declarations inside of the enclosing { } are
permitted and declarations may not be interspersed between the elements of the probe
clause shown above. Whitespace can be used to separate any D program elements and
to indent action statements.

69

Declarations can be used to declare D variables and external C symbols as we
discussed in Chapter 3, or to define new types for use in D (see Chapter 8). Special D
compiler directives called pragmas may also appear anywhere in a D program,
including outside of probe clauses. D pragmas are specified on lines beginning with a
character. D pragmas are used, for example, to set run-time DTrace options; see
Chapter 16 for details.

4.2 Probe Descriptions
Every D program clause begins with a list of one or more probe descriptions, each
taking the usual form:

provider:module:function:name

If one or more fields of the probe description are omitted, the specified fields are
interpreted from right to left by the D compiler. For example, the probe description
foo:bar would match a probe with function foo and name bar regardless of the
value of the probe’s provider and module fields. Therefore, a probe description is
really more accurately viewed as a pattern that can be used to match one or more
probes based on their names.

In general you should write your D probe descriptions specifying all four field
delimiters so that you can specify the desired provider on the left-hand side. If you
don’t specify the provider, you may obtain unexpected results if multiple providers
publish probes with the same name. Similarly, future versions of DTrace may include
new providers whose probes unintentionally match your partially-specified probe
descriptions. You can specify a provider but match any of its probes by leaving any of
the module, function, and name fields blank. For example, the description
syscall::: can be used to match every probe published by the DTrace syscall
provider.

Probe descriptions also support a pattern matching syntax similar to the shell globbing
pattern matching syntax described in sh(1). Before matching a probe to a description,
DTrace scans each description field for the characters *, ?, and [. If one of these
characters appears in a probe description field and is not preceded by a \, the field is
regarded as a pattern. The description pattern must match the entire corresponding
field of a given probe. The complete probe description must match on every field in
order to successfully match and enable a probe. A probe description field that is not a
pattern must exactly match the corresponding field of the probe. A description field
that is empty matches any probe.

The following special characters are recognized in probe name patterns:

70 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 4–1 Probe Name Pattern Matching Characters

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated
by - matches any character between the pair, inclusive. If the first character
after the [is !, any character not enclosed in the set is matched.

\ Interpret the next character as itself, without any special meaning.

Pattern match characters can be used in any or all of the four fields of your probe
descriptions. You can also use patterns to list matching probes by using them on the
command line with dtrace -l. For example, the command dtrace -l -f kmem_*
would list all DTrace probes in functions whose names begin with the prefix kmem_.

If you want to specify the same predicate and actions for more than one probe
description or description pattern, you can place the descriptions in a
comma-separated list. For example, the following D program would trace a timestamp
each time probes associated with entry to system calls containing the words “lwp” or
“sock” fire:

syscall::*lwp*:entry, syscall::*sock*:entry
{

trace(timestamp);

}

A probe description may also specify a probe using its integer probe ID. For example,
the clause:

12345
{

trace(timestamp);

}

could be used to enable probe ID 12345, as reported by dtrace -l -i 12345. You
should always write your D programs using human-readable probe descriptions, as
integer probe IDs are not guaranteed to remain consistent as DTrace provider kernel
modules are loaded and unloaded or following a reboot.

Chapter 4 • Program Structure 71

4.3 Predicates
Predicates are expressions enclosed in slashes / / that are evaluated at probe firing
time to determine whether the associated actions should be executed or not. As we’ve
seen in our examples, predicates are the primary conditional construct used for
building more complex control flow in a D program. You can omit the predicate
section of the probe clause entirely for any probe, in which case the actions are always
executed when the probe fires.

Predicate expressions can use any of the previously described D operators and may
refer to any D data objects such as variables and constants. The predicate expression
must evaluate to a value of integer or pointer type so that it can be considered as true
or false. As with all D expressions, a zero value is interpreted as false and any
non-zero value is interpreted as true.

4.4 Actions
Probe actions are described by a list of statements separated by semicolons (;) and
enclosed in braces { }. If you only wish to note that a particular probe fired on a
particular CPU without tracing any data or performing any additional actions, you
can specify an empty set of braces with no statements inside.

4.5 Use of the C Preprocessor
The C programming language used for defining Solaris system interfaces includes a
preprocessor that performs a set of initial steps in C program compilation. The C
preprocessor is commonly used to define macro substitutions where one token in a C
program is replaced with another predefined set of tokens, or to include copies of
system header files. You can use the C preprocessor in conjunction with your D
programs by specifying the dtrace -C option. This option causes dtrace to first
execute the cpp(1) preprocessor on your program source file and then pass the results
to the D compiler. The C preprocessor is described in more detail in The C
Programming Language.

The D compiler automatically loads the set of C type descriptions associated with the
operating system implementation, but you can use the preprocessor to include other
type definitions such as types used in your own C programs. You can also use the
preprocessor to perform other tricks, like creating macros that expand to chunks of D

72 Solaris Dynamic Tracing Guide • November 2003 (Beta)

code and other program elements. If you use the preprocessor with your D program,
you may only include files that contain valid D declarations. Typical C header files
include only external declarations of types and symbols, which will be correctly
interpreted by the D compiler. C header files that include additional program elements
like C function source code will not be able to be parsed by the D compiler and will
produce an appropriate error message.

Chapter 4 • Program Structure 73

74 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 5

Pointers and Arrays

Pointers are memory addresses of data objects in the operating system kernel or in the
address space of a user process. D provides the ability to create and manipulate
pointers and store them in variables and associative arrays. In this chapter, we explore
the D syntax for pointers, operators that can be applied to create or access pointers,
and the relationship between pointers and fixed-size scalar arrays. We also discuss
issues relating to the use of pointers in different address spaces. If you are an
experienced C or C++ programmer, you can skim most of this chapter as the D pointer
syntax is the same as the corresponding ANSI-C syntax, but you should read sections
5.1, 5.2, 5.7, and 5.8 as they describe features and issues specific to DTrace.

5.1 Pointers and Addresses
The Solaris operating system uses a technique called virtual memory to provide each
user process with its own virtual view of the memory resources on your system. A
virtual view on memory resources is referred to as an address space, which associates a
range of address values (either [0 ... 0xffffffff] for a 32-bit address space or
[0 ... 0xffffffffffffffff] for a 64-bit address space) with a set of translations
that the operating system and hardware use to convert each virtual address to a
corresponding physical memory location. Pointers in D are data objects that store an
integer virtual address value and associate it with a D type that describes the format of
the data stored at the corresponding memory location.

You can declare a D variable to be of pointer type by first specifying the type of the
referenced data and then appending a * to the type name to indicate you want to
declare a pointer type. For example, the declaration:

int *p;

75

declares a D global variable named p that is a pointer to an integer. This means that p
itself is an integer of size 32 or 64-bits whose value is the address of another integer
located somewhere in memory. Since the compiled form of your D code is executed at
probe firing time inside the operating system kernel itself, D pointers are typically
pointers associated with the kernel’s address space. You can use the isainfo(1) -b
command to determine the number of bits used for pointers by the active operating
system kernel.

If you want to create a pointer to a data object inside of the kernel, you can compute
its address using the & operator. For example, the operating system kernel source code
declares an int kmem_flags tunable that we discussed earlier. You could trace the
address of this int by tracing the result of applying the & operator to the name of that
object in D:

trace(&‘kmem_flags);

The * operator can be used to refer to the object addressed by the pointer, and acts as
the inverse of the & operator. For example, the following two D code fragments are
equivalent in meaning:

p = &‘kmem_flags; trace(‘kmem_flags);

trace(*p);

The left-hand fragment creates a D global variable pointer p. Since the kmem_flags
object is of type int, the type of the result of &‘kmem_flags is int * (that is, pointer
to int). The left-hand fragment traces the value of *p, which follows the pointer back
to the data object kmem_flags. This fragment is therefore the same as the right-hand
fragment which simply traces the value of the data object directly using its name.

5.2 Pointer Safety
If you are a C or C++ programmer, you may be a bit frightened after reading the
previous section because you know that misuse of pointers in your programs can
cause your programs to crash. Don’t worry! DTrace is designed to be a robust, safe
environment for executing your D programs. You may indeed write a buggy D
program, but invalid D pointer accesses will not cause DTrace or the operating system
kernel to fail or crash in any way. Instead, the DTrace software will detect any invalid
pointer accesses, disable your instrumentation, and report the problem back to you for
debugging.

If you have programmed in the Java™ programming language, you may know that
the Java language does not support pointers at all for precisely the same reasons of
safety. Pointers are needed in D because they are an intrinsic part of the operating
system’s implementation in C, but DTrace implements the same kind of safety

76 Solaris Dynamic Tracing Guide • November 2003 (Beta)

mechanisms found in the Java programming language that prevent buggy programs
from damaging themselves or each other. DTrace’s error reporting is similar to how
the run-time environment for the Java programming language can detect a
programming error and report an exception back to you.

We can demonstrate DTrace’s error handling and reporting by writing a deliberately
bad D program using pointers. Go to your editor and type in the following D program
and save it in a file named badptr.d:

EXAMPLE 5–1 badptr.d: Demonstrate DTrace Error Handling

BEGIN
{

x = (int *)NULL;
y = *x;
trace(y);

}

The badptr.d program creates a D pointer named x that is a pointer to int. We
assign this pointer the special invalid pointer value NULL which is a built-in alias for
address 0. By convention, address 0 is always defined to be invalid so that NULL can
be used as a sentinel value in C and D programs. We use a cast expression to convert
NULL to be a pointer to an integer. We then dereference our pointer using the
expression *x, and assign the result to another variable y, and then attempt to trace y.
When we execute our D program, DTrace detects an invalid pointer access when the
statement y = *x is executed and reports the error to us:

dtrace -s badptr.d
dtrace: script ’/dev/stdin’ matched 1 probe
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address
(0x0) in action #2 at DIF offset 4
dtrace: 1 error on CPU 0
^C

#

The other problem that can arise from programs that use invalid pointers is an
alignment error. By architectural convention, fundamental data objects such as integers
are aligned in memory according to their size. For example, 2-byte integers are aligned
on addresses that are multiples of 2, 4-byte integers on multiples of 4, and so on. If you
dereference a pointer to a 4-byte integer and your pointer address is an invalid value
that is not a multiple of 4, your access will fail with an alignment error. Alignment
errors in D almost always indicate that your pointer has an invalid or corrupt value
due to a bug in your D program. You can create an example alignment error by
changing the source code of badptr.d to use the address (int *)2 instead of NULL.
Since int is 4 bytes and 2 is not a multiple of 4, the expression *x will now result in a
DTrace alignment error.

For details about the DTrace error mechanism, see “17.3 The ERROR Probe”
on page 183.

Chapter 5 • Pointers and Arrays 77

5.3 Array Declarations and Storage
D provides support for scalar arrays in addition to the dynamic associative arrays we
learned about in Chapter 3. Scalar arrays are a fixed-length group of consecutive
memory locations that each store a value of the same type. Scalar arrays are accessed
by referring to each location with an integer starting from zero. Scalar arrays
correspond directly in concept and syntax with arrays in C and C++. Scalar arrays are
not used as frequently in D as associative arrays and their more advanced
counterparts aggregations (see Chapter 9), but they are sometimes needed when
accessing existing operating system array data structures declared in C.

A D scalar array of 5 integers would be declared by using the type int and suffixing
the declaration with the number of elements in square brackets as follows:

int a[5];

The following diagram shows a visual representation of the array storage:

a a[0] a[1] a[3]a[2] a[4]

FIGURE 5–1 Scalar Array Representation

The D expression a[0] is used to refer to the first array element, a[1] refers to the
second, and so on. From a syntactic perspective, scalar arrays and associative arrays
are very similar. You can declare an associative array of five integers referenced by an
integer key as follows:

int a[int];

and also reference this array using the expression a[0]. But from a storage and
implementation perspective, the two arrays are very different. The static array a
consists of five consecutive memory locations numbered from zero and the index
refers to an offset in the storage allocated for the array. An associative array, on the
other hand, has no predefined size and does not store elements in consecutive
memory locations. In addition, associative array keys have no relationship to the
corresponding’s value storage location: you can access associative array elements
a[0] and a[-5] and only two words of storage will be allocated by DTrace which
may or may not be consecutive. Associative array keys are abstract names for the
corresponding value that have no relationship to the value storage locations.

78 Solaris Dynamic Tracing Guide • November 2003 (Beta)

If you create an array using an initial assignment and use a single integer expression
as the array index (for example, a[0] = 2), the D compiler will always create a new
associative array, even though in this expression a could also be interpreted as an
assignment to a scalar array. Scalar arrays must be predeclared in this situation so that
the D compiler can see the definition of the array size and infer that the array is a
scalar array.

5.4 Pointer and Array Relationship
Pointers and arrays have a special relationship in D, just as they do in ANSI-C. An
array is represented by a variable that is associated with the address of its first storage
location. A pointer is also the address of a storage location with a defined type, so D
permits the use of the array [] index notation with both pointer variables and array
variables. For example, the following two D fragments are equivalent in meaning:

p = &a[0]; trace(a[2]);

trace(p[2]);

In the left-hand fragment, the pointer p is assigned to the address of the first array
element in a by applying the & operator to the expression a[0]. We then trace the
value of the third array element (index 2) using the expression p[2]. Since p now
contains the same address associated with a, this expression yields the same value as
a[2], shown in the right-hand fragment. One consequence of this equivalence is that
C and D permit you to access any index of any pointer or array; array bounds
checking is not performed for you by the compiler or DTrace runtime environment. If
you access memory beyond the end of an array’s predefined value, you will either get
an unexpected result or DTrace will report an invalid address error, as shown above.
As always, you can’t damage DTrace itself or your operating system, but you will
need to debug your D program.

The difference between pointers and arrays is that a pointer variable refers to a
separate piece of storage that contains the integer address of some other storage. An
array variable names the array storage itself, not the location of an integer that in turns
contains the location of the array. This difference is illustrated in the diagram below:

Chapter 5 • Pointers and Arrays 79

a a[0] a[1] a[3]a[2] a[4]

p 0x12345678

FIGURE 5–2 Pointer and Array Storage

This difference is manifested in the D syntax if you attempt to assign pointers and
scalar arrays. If x and y are pointer variables, the expression x = y is legal; it simply
copies the pointer address in y to the storage location named by x. If x and y are
scalar array variables, the expression x = y is not legal. Arrays may not be assigned as
a whole in D. However, an array variable or symbol name can be used in any context
where a pointer is permitted. If p is a pointer and a is an array, the statement p = a is
permitted; this statement is equivalent to the statement p = &a[0].

5.5 Pointer Arithmetic
Since pointers are just integers used as addresses of other objects in memory, D
provides a set of features for performing arithmetic on pointers. However, pointer
arithmetic is not identical to integer arithmetic. Pointer arithmetic implicitly adjusts
the underlying address by multiplying or dividing the operands by the size of the
type referenced by the pointer. The following D fragment illustrates this property:

int *x;

BEGIN
{

trace(x);
trace(x + 1);
trace(x + 2);

}

We create an integer pointer x and then trace its value, its value incremented by one,
and its value incremented by two. If you type in and execute this program, DTrace
will report the integer values 0, 4, and 8.

Since x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying
pointer value. This property is useful when using pointers to refer to consecutive
storage locations such as arrays. For example, if x were assigned to the address of an
array a like the one shown in our diagram above, the expression x + 1 would be

80 Solaris Dynamic Tracing Guide • November 2003 (Beta)

equivalent to the expression &a[1]. Similarly, the expression *(x + 1) would refer to
the value a[1]. Pointer arithmetic is implemented by the D compiler whenever a
pointer value is incremented using the +=, +, or ++ operators.

Pointer arithmetic is also applied when an integer is subtracted from a pointer on the
left-hand side, when a pointer is subtracted from another pointer, or when the --
operator is applied to a pointer. For example, the following D program would trace
the result 2:

int *x, *y;
int a[5];

BEGIN
{

x = &a[0];
y = &a[2];
trace(y - x);

}

5.6 Generic Pointers
Sometimes it is useful to represent or manipulate a generic pointer address in a D
program without specifying the type of data referred to by the pointer. Generic
pointers can be specified using the type void *, where the keyword void represents
the absence of specific type information, or using the built-in type alias uintptr_t
which is aliased to an unsigned integer type of size appropriate for a pointer in the
current data model. You may not apply pointer arithmetic to an object of type void *,
and these pointers cannot be dereferenced without casting them to another type first.
You can cast a pointer to the uintptr_t type when you need to perform integer
arithmetic on the pointer value.

Pointers to void may be used in any context where a pointer to another data type is
required, such as an associative array tuple expression or the right-hand side of an
assignment statement. Similarly, a pointer to any data type may be used in a context
where a pointer to void is required. To use a pointer to a non-void type in place of
another non-void pointer type, an explicit cast is required. You must always use
explicit casts to convert pointers to integer types such as uintptr_t, or to convert
these integers back to the appropriate pointer type.

Chapter 5 • Pointers and Arrays 81

5.7 Multi-Dimensional Arrays
Multi-dimensional scalar arrays are used infrequently in D, but are provided for
compatibility with ANSI-C and for observing and accessing operating system data
structures created using this capability in C. A multi-dimensional array is declared as a
consecutive series of scalar array sizes enclosed in square brackets [] following the
base type. For example, to declare a fixed-size two-dimensional rectangular array of
integers of dimensions 12 rows by 34 columns, you would write the declaration:

int a[12][34];

A multi-dimensional scalar array is accessed using similar notation. For example, to
access the value stored at row 0 column 1 you would write the D expression:

a[0][1]

Storage locations for multi-dimensional scalar array values are computed by
multiplying the row number by the total number of columns declared, and then
adding the column number.

You should be careful not to confuse the multi-dimensional array syntax with the D
syntax for associative array accesses (that is, a[0][1] is not the same as a[0, 1]). If
you use an incompatible tuple with an associative array or attempt an associative
array access of a scalar array, the D compiler will report an appropriate error message
and refuse to compile your program.

5.8 Pointers to DTrace Objects
In general, the D compiler prohibits you from using the & operator to obtain pointers
to DTrace objects such as associative arrays, built-in functions, and variables. You are
prohibited from obtaining the address of these variables so that the DTrace runtime
environment is free to relocate them as needed between probe firings in order to more
efficiently manage the memory required for your programs. If you create composite
structures, it is possible to construct expressions that do retrieve the kernel address of
your DTrace object storage. You should avoid creating such expressions in your D
programs. If you need to use such an expression, be sure not to cache the address
across probe firings.

In ANSI-C, pointers can also be used to perform indirect function calls or to perform
assignments, such as placing an expression using the unary * dereference operator on
the left-hand side of an assignment operator. In D, these types of expressions using

82 Solaris Dynamic Tracing Guide • November 2003 (Beta)

pointers are not permitted. You may only assign values directly to D variables using
their name or by applying the array index operator [] to a D scalar or associative
array. You may only call functions defined by the DTrace environment by name as
specified in Chapter 10. Indirect function calls using pointers are not permitted in D.

5.9 Pointers and Address Spaces
As we discussed briefly at the beginning of this chapter, a pointer is an address that
provides a translation within some virtual address space to a piece of physical memory.
DTrace executes your D programs within the address space of the operating system
kernel itself. Your entire Solaris system manages many address spaces: one for the
operating system kernel, and one for each user process. Since each address space
provides the illusion that it can access all of the memory on the system, the same
virtual address pointer value can be reused across address spaces but translate to
different physical memory. Therefore, when writing D programs that use pointers, you
must be aware of the address space corresponding to the pointers you intend to use.

For example, if you use the syscall provider to instrument entry to a system call
that takes a pointer to an integer or array of integers as an argument (for example,
pipe(2)), it would not be valid to dereference that pointer or array using the * or []
operators as described in this chapter because the address in question is an address in
the address space of the user process that performed the system call. Applying the *
or [] operators to this address in D would result in a kernel address space access,
which would result in an invalid address error or in returning unexpected data to
your D program depending upon whether the address happened to match a valid
kernel address.

To access user process memory from a DTrace probe, you must apply one of the
copyin(), copyinstr(), or copyinto() functions described in Chapter 10 to the
user address space pointer. You should take care when writing your D programs to
name and comment variables storing user addresses appropriately to avoid confusion.
You can also store user addresses as uintptr_t so you don’t accidentally compile D
code that dereferences them. We’ll learn more about techniques for using DTrace on
user processes in Chapter 27.

Chapter 5 • Pointers and Arrays 83

84 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 6

Strings

As we’ve seen in previous chapters, DTrace provides support for tracing and
manipulating strings. In this chapter, we describe the complete set of D language
features for declaring and manipulating strings. Unlike ANSI-C, strings in D are
first-class citizens with their own built-in type and operator support to permit you to
easily and unambiguously use them in your tracing programs.

6.1 String Representation
Strings are represented in DTrace as an array of characters terminated by a null byte
(that is, a byte whose value is zero, usually written as ’\0’). The visible part of the
string is of variable length, depending on the location of the null byte, but DTrace
stores each string in a fixed-size array so that each probe traces a consistent amount of
data. Strings may not exceed the length of this predefined string limit, but the limit
can be modified in your D program or on the dtrace command line by tuning the
strsize option. Refer to Chapter 16 for more information on tunable DTrace options.
The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char *
to refer to strings. The string type is equivalent to a char * in that it is the address
of a sequence of characters, but the D compiler and D functions like trace() provide
enhanced capabilities when applied to expressions of type string. For example, the
string type removes the ambiguity of the type char * when you need to trace the
actual bytes of a string. If you write the D statement:

trace(s);

and s is of type char *, DTrace will trace the value of the pointer s (that is, it will
trace an integer address value). If you write the D statement:

trace(*s);

85

then by definition of the * operator, the D compiler will dereference the pointer s and
trace the single character at that location. These behaviors are consistent with the
language definitions we have presented so far, and are essential to permitting you to
manipulate character pointers that by design refer to either single characters, or to
arrays of byte-sized integers that are not strings and do not end with a null byte. The
string type makes it clear to the D compiler that when you write:

trace(s);

and s is of type string, you want DTrace to trace a null terminated string of
characters whose address is stored in the variable s. You can also perform lexical
comparison of expressions of type string, as we’ll see shortly.

6.2 String Constants
String constants are enclosed in double quotes (") and are automatically assigned the
type string by the D compiler. You can define string constants of any length, limited
only by the amount of memory DTrace is permitted to consume on your system. The
terminating null byte (\0) is added automatically by the D compiler to any string
constants that you declare. The size of a string constant object is the number of bytes
associated with the string plus one additional byte for the terminating null byte.

A string constant may not contain a literal newline character; to create strings
containing newlines use the \n escape sequence instead of a literal newline. String
constants may also contain any of the special character escape sequences defined for
character constants in Chapter 2, Section 2.3.

6.3 String Assignment
Unlike assignment of char * variables, strings are copied by value, not by reference.
String assignment is performed using the = operator and copies the actual bytes of the
string from the source operand up to and including the null byte to the variable on the
left-hand side, which must be of type string. As usual, you can create a new variable
of type string by simply assigning it an expression of type string. For example, the
D statement:

s = "hello";

86 Solaris Dynamic Tracing Guide • November 2003 (Beta)

would create a new variable s of type string and copy the 6 bytes of the string
"hello" into it (5 printable characters plus the null byte). String assignment is
analogous to the C library function strcpy(3C), except that if the source string
exceeds the limit of the storage of the destination string, the resulting string is
automatically truncated at this limit.

You can also assign a string variable an expression of a type that is compatible with
strings. In this case, the D compiler automatically promotes the source expression to
the string type and performs a string assignment. The D compiler permits any
expression of type char * or of type char[n] (that is, a scalar array of char of any
size), to be promoted to a string.

6.4 String Conversion
Expressions of other types may be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in
meaning:

s = (string) expression s = stringof (expression)

The stringof operator binds very tightly to the operand on its right-hand side, but
typically parentheses are used to surround the expression for clarity, although they are
not strictly necessary.

Any expression that is a scalar type such as a pointer or integer or a scalar array
address may be converted to string. Expressions of other types such as void may not
be converted to string. If you erroneously convert an invalid address to a string, the
usual DTrace safety features will prevent you from damaging the system or DTrace,
but you may end up tracing a sequence of undecipherable characters.

6.5 String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string, or when one operand is of
type string and the other operand can be promoted to type string, as described
under String Assignment above. All of the relational operators can be used to compare
strings:

Chapter 6 • Strings 87

TABLE 6–1 D Relational Operators for Strings

< left-hand operand is less than right-operand

<= left-hand operand is less than or equal to right-hand operand

> left-hand operand is greater than right-hand operand

>= left-hand operand is greater than or equal to right-hand operand

== left-hand operand is equal to right-hand operand

!= left-hand operand is not equal to right-hand operand

As with integers, each operator evaluates to a value of type int which is equal to one
if the condition is true, or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similar to the C
library routine strcmp(3C). Each byte is compared using its corresponding integer
value in the ASCII character set, as shown in ascii(5), until a null byte is read or the
maximum string length is reached. Here are some example D string comparisons and
their results:

"coffee" < "espresso" ... returns 1 (true)

"coffee" == "coffee" ... returns 1 (true)

"coffee" >= "mocha" ... returns 0 (false)

88 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 7

Structs and Unions

Collections of related variables can be grouped together into composite data objects
called structs and unions. D permits you to define these objects by creating new type
definitions for them. You can use your new types for any D variables, including
associative array values. In this chapter we explore the syntax and semantics for
creating and manipulating these composite types and learn about the D operators that
interact with them. After introducing the syntax for structs and unions, we illustrate
their use by constructing several new example programs that also demonstrate the use
of the DTrace fbt and fasttrap providers.

7.1 Structs
The D keyword struct, short for structure, is used to introduce a new type composed
of a group of other types. The new struct type can be used as the type for D variables
and arrays, in effect permitting you to define groups of related variables under a
single name. D structs are the same as the corresponding construct in C and C++. If
you have programmed in the Java™ programming language, think of a struct as a
class in the Java programming language, but one with data members only and no
methods.

Let’s suppose we want to create a more sophisticated system call tracing program in D
that records a number of things about each read(2) and write(2) system call
executed by our shell, such as the elapsed time, number of calls, and the largest byte
count passed as an argument. We could write a D clause like this to record these
properties in three separate associative arrays:

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

ts[probefunc] = timestamp;
calls[probefunc]++;

89

maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?
arg2 : maxbytes[probefunc];

}

but this is inefficient because DTrace must create three separate associative arrays and
store separate copies of the identical tuple values corresponding to probefunc for each
one. Instead, we can conserve space and make our program easier to read and
maintain by using a struct. First, we’ll declare a new struct type outside of probe
clauses:

struct callinfo {
uint64_t ts; /* timestamp of last syscall entry */
uint64_t elapsed; /* total elapsed time in nanoseconds */
uint64_t calls; /* number of calls made */
size_t maxbytes; /* maximum byte count argument */

};

The struct keyword is followed by an optional identifier that we can use to refer
back to our new type, which is now known as struct callinfo. The struct
members are then enclosed in a set of braces { } and the entire declaration is
terminated by a semicolon (;). Each struct member is defined using the same syntax
as a D variable declaration, with the type of the member listed first followed by an
identifier naming the member and another semicolon (;). If you want to declare
multiple members of the same type you can list the identifiers in a comma-separated
list like this:

struct callinfo {
uint64_t ts, elapsed;
...

};

The struct declaration itself simply defines the new type; it does not create any
variables or allocate any storage in DTrace. But once declared, we can use struct
callinfo as a type throughout the remainder of our D program, and each variable of
type struct callinfo will store a copy of the four variables described by our
structure template. The members will be arranged in memory in order according to
the member list, with padding space introduced between members as required for
data object alignment purposes.

We can use the member identifier names to access the individual member values using
the “.” operator by writing an expression of the form:

variable-name.member-name

We can now write an improved program using our new structure type. Go to your
editor and type in the following D program and save it in a file named rwinfo.d,
changing the PID 12345 to the PID of one of your shells:

90 Solaris Dynamic Tracing Guide • November 2003 (Beta)

EXAMPLE 7–1 rwinfo.d: Gather read(2) and write(2) Statistics

struct callinfo {
uint64_t ts; /* timestamp of last syscall entry */
uint64_t elapsed; /* total elapsed time in nanoseconds */
uint64_t calls; /* number of calls made */
size_t maxbytes; /* maximum byte count argument */

};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

i[probefunc].ts = timestamp;
i[probefunc].calls++;
i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?

arg2 : i[probefunc].maxbytes;
}

syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == 12345/
{

i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{

printf(" calls max bytes elapsed nsecs\n");
printf("------ ----- --------- -------------\n");
printf(" read %5d %9d %d\n",

i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
printf(" write %5d %9d %d\n",

i["write"].calls, i["write"].maxbytes, i["write"].elapsed);

}

After you type in the program and change the PID 12345 to the PID of one of your
shells, run dtrace -q -s rwinfo.d and then go type in a few commands in your
shell. When you’re done entering your shell commands, type Control-C in the dtrace
terminal to fire the END probe and print the results:

dtrace -q -s rwinfo.d
^C

calls max bytes elapsed nsecs
------ ----- --------- -------------
read 36 1024 3588283144
write 35 59 14945541

#

Chapter 7 • Structs and Unions 91

7.2 Pointers to Structs
It is very common in C and D to refer to structs using pointers, so as a convenience the
operator -> is provided to access struct members through a pointer. If a struct s has
a member m and you have a pointer to this struct named sp (that is, sp is a variable of
type struct s *), you can either use the * operator to first dereference sp pointer in
order to access the member:

struct s *sp;

(*sp).m

or you can use the -> operator as a shorthand for this notation. The following two D
fragments are equivalent in meaning if sp is a pointer to a struct:

(*sp).m sp->m

DTrace provides several built-in variables which are pointers to structs, including
curpsinfo and curlwpsinfo. These pointers refer to the structs psinfo and
lwpsinfo respectively, and their content provides a snapshot of information about
the state of the current process and lightweight process (LWP) associated with the
thread that has fired the current probe. A Solaris LWP is the kernel’s representation of
a user thread, upon which the Solaris threads and POSIX threads interfaces are built.
For convenience, DTrace exports this information in the same form as the /proc
filesystem files /proc/pid/psinfo and /proc/pid/lwps/lwpid/lwpsinfo. The
/proc structures are used by observability and debugging tools such as ps(1),
pgrep(1), and truss(1), and are defined in the system header file <sys/procfs.h>
and are described in the proc(4) man page. Here are few example expressions using
curpsinfo, their types, and their meanings:

curpsinfo->pr_pid pid_t current process ID

curpsinfo->pr_fname pid_t executable file name

curpsinfo->pr_psargs pid_t initial command line arguments

You should review the complete structure definition later by examining the
<sys/procfs.h> header file and the corresponding descriptions in proc(4). We’re
going to use the pr_psargs member to identify a process of interest by matching our
command line arguments in the next example.

Structs are used very frequently to create complex data structures in C programs, so
the ability to describe and reference structs from D also provides a powerful capability
for observing the inner workings of the Solaris operating system kernel and its system
interfaces. In addition to using the aforementioned curpsinfo struct, we’re also

92 Solaris Dynamic Tracing Guide • November 2003 (Beta)

going to peek inside some kernel structs as well in our next example by constructing a
program to observe the relationship between the ksyms(7D) driver and read(2)
requests. The driver makes use of two common structs, known as uio(9S) and
iovec(9S), to respond to requests to read from the character device file /dev/ksyms.

The uio struct, accessed using the name struct uio or type alias uio_t, is
described in the uio(9S) man page and is used to describe an i/o request that involves
copying data between the kernel and a user process. The uio in turn contains an array
of one or more iovec(9S) structures which each describe a piece of the requested i/o,
in the event that multiple chunks are requested using the readv(2) or writev(2)
system calls. One of the kernel device driver interface (DDI) routines that operates on
struct uio is the function uiomove(9F), which is one of a family of functions kernel
drivers use to respond to user process read(2) requests and copy data back to user
processes.

The ksyms driver manages a character device file named /dev/ksyms, which
appears to be an ELF file containing information about the kernel’s symbol table, but
is in fact an illusion created by the driver using the set of modules that are currently
loaded into the kernel. The driver uses the uiomove(9F) routine to respond to read(2)
requests. For our example, we’d like to illustrate that the arguments and calls to
read(2) from /dev/ksyms match the calls by the driver to uiomove(9F) to copy the
results back into the user address space at the location specified to read(2).

We can use the strings(1) utility with the -a option to force a bunch of reads from
/dev/ksyms. Try running strings -a /dev/ksyms in your shell and see what
output it produces. Now go to your editor and type in the first clause of our example
and save it in a file named ksyms.d:

syscall::read:entry
/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{

printf("read %u bytes to user address %x\n", arg2, arg1);

}

Here we are using the expression curpsinfo->pr_psargs to access and match on
the command-line arguments of our strings(1) command so print out the correct
read(2) requests and report the arguments. Notice that by using operator == with a
left-hand argument that is an array of char and a right-hand argument that is a string,
we are permitting the D compiler to infer that the left-hand argument should be
promoted to a string and a string comparison should be performed. Type in and
execute the command dtrace -q -s ksyms.d in one shell, and then type in the
command strings -a /dev/ksyms in another shell. As strings(1) executes, you
will see output from DTrace similar to the following:

dtrace -q -s ksyms.d
read 8192 bytes at user address 80639fc
read 8192 bytes at user address 80639fc
read 8192 bytes at user address 80639fc
read 8192 bytes at user address 80639fc
...

Chapter 7 • Structs and Unions 93

^C

#

We can extend our example using a common D programming technique to follow a
thread from this initial read(2) request deeper into the kernel. Upon entry to the
kernel in syscall::read:entry, we will also set a thread-local flag variable
indicating this thread is of interest, and clear this flag on syscall::read:return.
Once the flag is set, we can use it as a predicate on other probes to instrument kernel
functions such as uiomove(9F). The DTrace function boundary tracing (fbt) provider
publishes probes for entry and return to functions defined within the kernel, including
those in the DDI. Type in the following source code which uses the fbt provider to
instrument uiomove(9F) and again save it again in the file ksyms.d:

EXAMPLE 7–2 ksyms.d: Trace read(2) and uiomove(9F) Relationship

/*
* When our strings(1) invocation starts a read(2), set a watched flag on
* the current thread. When the read(2) finishes, clear the watched flag.
*/
syscall::read:entry
/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{

printf("read %u bytes to user address %x\n", arg2, arg1);
self->watched = 1;

}

syscall::read:return
/self->watched/
{

self->watched = 0;
}

/*
* Instrument uiomove(9F). The prototype for this function is as follows:
* int uiomove(caddr_t addr, size_t nbytes, enum uio_rw rwflag, uio_t *uio);
*/
fbt::uiomove:entry
/self->watched/
{

this->iov = args[3]->uio_iov;

printf("uiomove %u bytes to %p in pid %d\n",
this->iov->iov_len, this->iov->iov_base, pid);

}

The final clause of our completed example uses the thread-local variable
self->watched to identify when a kernel thread of interest enters the DDI routine
uiomove(9F). Once there, we use the built-in args array to access the fourth
argument (args[3]) to uiomove(), which is a pointer to the struct uio
representing the request. The D compiler automatically associates each member of the
args array with the type corresponding to the C function prototype for the

94 Solaris Dynamic Tracing Guide • November 2003 (Beta)

instrumented kernel routine. The uio_iov member contains a pointer to the struct
iovec for the request, and we save a copy of this pointer for use in our clause in the
clause-local variable this->iov. In the final statement, we further dereference
this->iov to access the iovec members iov_len and iov_base, which represent
the length in bytes and destination base address for uiomove(9F), respectively. We
expect these values to match the input parameters to the read(2) system call issued on
the driver. Go to your shell and run dtrace -q -s ksyms.d and then again enter
the command strings -a /dev/ksyms in another shell. You should see output like
this:

dtrace -q -s ksyms.d
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
...
^C

#

The addresses and process IDs will be different in your output, but you should
observe that the input arguments to read(2) match the parameters passed to
uiomove(9F) by the ksyms driver.

7.3 Unions
Unions are another kind of composite type supported by ANSI-C and D, and are
closely related to structs. A union is a composite type where a set of members of
different types are defined and the member objects all occupy the same region of
storage. A union is therefore an object of variant type, where only one member is valid
at any given time, depending on how the union has been assigned. Typically, some
other variable or piece of state is used to indicate which union member is currently
valid. The size of a union is the size of its largest member, and the memory alignment
used for the union is the maximum alignment required by the union members.

The Solaris kstat framework defines a struct containing a union that we can use to
illustrate and observe C and D unions. The kstat framework is used to export a set
of named counters representing kernel statistics such as memory usage and i/o
throughput and is used to implement utilities such as mpstat(1M) and iostat(1M).
This framework uses struct kstat_named to represent a named counter and its
value and is defined as follows:

Chapter 7 • Structs and Unions 95

struct kstat_named {
char name[KSTAT_STRLEN]; /* name of counter */
uchar_t data_type; /* data type */
union {

char c[16];
int32_t i32;
uint32_t ui32;
long l;
ulong_t ul;
...

} value; /* value of counter */

};

We have shortened the declaration for illustrative purposes; the complete structure
definition can be found in the <sys/kstat.h> header file and is described in
kstat_named(9S). The declaration above is valid in both ANSI-C and D, and defines
a struct containing as one of its members a union value with members of various
types, depending on the type of the counter. Notice that since the union itself is
declared inside of another type, struct kstat_named, a formal name for the union
type is omitted. This declaration style is known as an anonymous union; the member
named value is of a union type described by the preceding declaration, but this
union type itself has no name because it does not need to be used anywhere else. The
struct member data_type is assigned a value that indicates which union member is
valid for each object of type struct kstat_named. A set of C preprocessor tokens
are defined for the values of data_type (for example, the token KSTAT_DATA_CHAR
is equal to zero and indicates that the member value.c is where the value is
currently stored).

We’re going to demonstrate accessing the kstat_named.value union by writing our
first D program to trace a user process. The kstat counters can be sampled from a
user process using the kstat_data_lookup(3KSTAT) function, which returns a
pointer to a struct kstat_named. The mpstat(1M) utility calls this function
repeatedly as it executes in order to sample the latest counter values. Go to your shell
and try running mpstat 1 and observe the output. Type Control-C in your shell to
abort mpstat after a few seconds. To observe counter sampling, we would like to
enable a probe that fires each time the mpstat command calls the
kstat_data_lookup(3KSTAT) function in libkstat. To do so, we’re going to make
use of a new DTrace provider: fasttrap. The fasttrap provider permits you to
dynamically create probes in user processes at C symbol locations such as function
entry points. You can ask the fasttrap provider to create a probe at a user function
entry and return sites by writing probe descriptions of the form:

pidprocess-ID:object-name:function-name:entry
pidprocess-ID:object-name:function-name:return

For example, if you want to create a probe in process ID 12345 that fires on entry to
kstat_data_lookup(3KSTAT), you can write the probe description:

pid12345:libkstat:kstat_data_lookup:entry

96 Solaris Dynamic Tracing Guide • November 2003 (Beta)

The pid provider inserts dynamic instrumentation into the specified user process at
the program location corresponding to the probe description. The probe
implementation forces each user thread that reaches the instrumented program
location to trap into the operating system kernel and enter DTrace, firing the
corresponding probe. So although the instrumentation location is associated with a
user process, the DTrace predicates and actions you specify still execute in the context
of the operating system kernel. We’ll discuss the pid provider in further detail in
Chapter 25. For now, we’ll use only this simple probe description to complete our
kstat example.

Instead of having to edit your D program source each time you wish to apply your
program to a different process, the D compiler also permits you to insert identifiers
called macro variables into your program that are evaluated at the time your program is
compiled and replaced with the additional dtrace command-line arguments. Macro
variables are specified in your D program using a dollar sign $ followed by an
identifier or digit. If you execute the command dtrace -s script foo bar baz, the
D compiler will automatically define the macro variables $1, $2, and $3 to be the
tokens foo, bar, and baz respectively. You can use macro variables in D program
expressions, or in probe descriptions. For example, the probe description:

pid$1:libkstat:kstat_data_lookup:entry
{

self->ksname = arg1;
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 != NULL/
{

this->ksp = (kstat_named_t *)copyin(arg1, sizeof (kstat_named_t));
printf("%s has ui64 value %u\n", copyinstr(self->ksname),

this->ksp->value.ui64);
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 == NULL/
{

self->ksname = NULL;

}

can be used to write a D program that instruments whatever process ID is specified as
an additional argument to dtrace. We discuss macro variables and reusable scripts in
further detail in Chapter 15. Now that we know how to instrument user processes
using their process ID, let’s return to sampling unions. Go to your editor and type in
the source code for our complete example and save it in a file named kstat.d:

Chapter 7 • Structs and Unions 97

EXAMPLE 7–3 kstat.d: Trace Calls to kstat_data_lookup(3KSTAT)

Now go to one of your shells and execute the command mpstat 1 to start
mpstat(1M) running in a mode where it samples kstats and reports them once per
second. Once mpstat is running, execute the command dtrace -q -s kstat.d
‘pgrep mpstat‘ in your other shell. You will see output corresponding to the kstats
that are being accessed. Type Control-C to abort dtrace and return to the shell
prompt.

dtrace -q -s kstat.d ‘pgrep mpstat‘
cpu_ticks_idle has ui64 value 41154176
cpu_ticks_user has ui64 value 1137
cpu_ticks_kernel has ui64 value 12310
cpu_ticks_wait has ui64 value 903
hat_fault has ui64 value 0
as_fault has ui64 value 48053
maj_fault has ui64 value 1144
xcalls has ui64 value 123832170
intr has ui64 value 165264090
intrthread has ui64 value 124094974
pswitch has ui64 value 840625
inv_swtch has ui64 value 1484
cpumigrate has ui64 value 36284
mutex_adenters has ui64 value 35574
rw_rdfails has ui64 value 2
rw_wrfails has ui64 value 2
...
^C

#

If you capture the output in each terminal window and subtract each value from the
value reported by the previous iteration through the kstats, you should be able to
correlate the dtrace output with the mpstat output. Our program records the
counter name pointer on entry to the kstat lookup function, and then performs most of
its work on return from kstat_data_lookup(3KSTAT). We use the D built-in
functions copyinstr() and copyin() to copy the function results from the user
process back into DTrace when arg1 (the return value) is not NULL. Once we have the
kstat data, we report the ui64 counter value from the union. Notice that we
simplified our example by assuming that mpstat samples counters that use the
value.ui64 member. As an exercise, try recoding kstat.d to use multiple
predicates and print out the union member corresponding to the data_type member.
You can also try to create a version of kstat.d that computes the difference between
successive data values and actually produces output similar to mpstat.

98 Solaris Dynamic Tracing Guide • November 2003 (Beta)

7.4 Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or
union, using the sizeof operator. The sizeof operator can be applied either to an
expression or to the name of a type surrounded by parentheses, as illustrated by the
following two examples:

sizeof expression sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the
expression sizeof (callinfo.ts) would also return 8 if inserted into the source
code of our example program above. The formal return type of the sizeof operator is
the type alias size_t, which is defined to be an unsigned integer of the same size as a
pointer in the current data model, and is used to represent byte counts. When the
sizeof operator is applied to an expression, the expression is validated by the D
compiler but the resulting object size is computed at compile time and no code for the
expression is generated. You can use sizeof anywhere an integer constant is
required.

You can use the companion operator offsetof to determine the offset in bytes of a
struct or union member from the start of the storage associated with any object of the
struct or union type. The offsetof operator is used in an expression of the following
form:

offsetof (type-name , member-name)

Where type-name is the name of any struct or union type or type alias thereof, and
member-name is the identifier naming a member of that struct or union. Similar to
sizeof, offsetof returns a size_t and can be used anywhere in a D program that
an integer constant can be used.

7.5 Bit-Fields
D also permits the definition of integer struct and union members of arbitrary
numbers of bits, known as bit-fields. A bit-field is declared by specifying a signed or
unsigned integer base type, a member name, and a suffix indicating the number of bits
to be assigned for the field, as shown in the following example:

struct s {
int a : 1;
int b : 3;
int c : 12;

Chapter 7 • Structs and Unions 99

};

The bit-field width is an integer constant separated from the member name by a
trailing colon. The bit-field width must be positive and must be of a number of bits not
larger than the width of the corresponding integer base type. Bit-fields larger than 64
bits may not be declared in D. D bit-fields provide compatibility with and access to the
corresponding ANSI-C capability. Bit-fields are typically used in situations when
memory storage is at a premium or when a struct layout must match a hardware
register layout.

A bit-field is simply a compiler construct that automates the layout of an integer and a
set of masks to extract the member values; the same result can be achieved by simply
defining the masks yourself and using the & operator. C and D compilers try to pack
bits as efficiently as possible, but they are free to do so in any order or fashion they
desire, so bit-fields are not guaranteed to produce identical bit layouts across differing
compilers or architectures. If you require stable bit layout, you should construct the bit
masks yourself and extract the values using the & operator.

A bit-field member is accessed like any other struct or union member by simply
specifying its name in combination with the “.” or -> operators. The bit-field will be
automatically promoted to the next largest integer type for use in any expressions. As
bit-field storage may not be aligned on a byte boundary or be a round number of bytes
in size, you may not apply the sizeof or offsetof operators to a bit-field member.
The D compiler also prohibits you from taking the address of a bit-field member using
the & operator.

100 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 8

Type and Constant Definitions

In the preceding chapters, we have learned about the primitive D data types as well as
how to build more complex types out of these primitives. In this chapter we learn how
to declare type aliases and named constants in D, and then use these constructs to
motivate a discussion of D type and namespace management for program and
operating system types and identifiers.

8.1 Typedef
The typedef keyword is used to declare an identifier as an alias for an existing type.
Like all D type declarations, the typedef keyword is used outside of probe clauses in
a declaration of the form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as
the alias for this type. For example, the declaration:

typedef unsigned char uint8_t;

is used internally by the D compiler to create the uint8_t type alias described earlier.
Typedef aliases can be used anywhere that a normal type can be used, such as the type
of a variable or associative array value or tuple member. You can also combine
typedef with more elaborate declarations such as the definition of a new struct:

typedef struct foo {
int x;
int y;

} foo_t;

101

In this example, struct foo is defined as the same type as its alias, foo_t. Solaris C
system headers often use the suffix _t to denote a typedef alias.

8.2 Enumerations
It is useful to define symbolic names for constants in a program to ease readability and
simplify the process of maintaining the program in the future. One method is to define
an enumeration, which associates a set of integers with a set of identifiers called
enumerators that the compiler recognizes and replaces with the corresponding integer
value. An enumeration is defined using a declaration such as:

enum colors {
RED,
GREEN,
BLUE

};

The first enumerator in the enumeration, RED, is assigned the value zero and each
subsequent identifier is assigned the next integer value. You can also specify an
explicit integer value for any enumerator by suffixing it with an equal sign and an
integer constant, as in:

enum colors {
RED = 7,
GREEN = 9,
BLUE

};

The enumerator BLUE is assigned the value 10 by the compiler since it has no value
specified and the previous enumerator is set to 9. Once an enumeration is defined, the
enumerators can be used anywhere in a D program that an integer constant can be
used. In addition, the enumeration enum colors is also defined as a type that is
equivalent to an int. The D compiler will allow a variable of enum type to be used
anywhere an int can be used, and will allow any integer value to be assigned to a
variable of enum type. You can also omit the enum name in the declaration if the type
name is not needed.

Enumerators are visible in all subsequent clauses and declarations in your program, so
you cannot define the same enumerator identifier in more than one enumeration.
However, you may define more than one enumerator that has the same value in either
the same or different enumerations. You may also assign integers that have no
corresponding enumerator to a variable of the enumeration type.

102 Solaris Dynamic Tracing Guide • November 2003 (Beta)

The D enumeration syntax is the same as the corresponding syntax in ANSI-C, and D
provides access to enumerations defined in the operating system kernel and its
loadable modules, but these enumerators are not globally visible in your D program.
They are only visible when used as an argument to one of the binary comparison
operators when compared to an object of the corresponding enumeration type. For
example, the function uiomove(9F) we instrumented in Chapter 7 has a parameter of
type enum uio_rw defined as follows:

enum uio_rw { UIO_READ, UIO_WRITE };

The enumerators UIO_READ and UIO_WRITE are not normally visible in your D
program, but you can promote them to global visibility by comparing one of them to a
value of type enum uio_rw, as shown in the following example clause:

fbt::uiomove:entry
/args[2] == UIO_WRITE/
{

...

}

In this example, we instrument uiomove(9F) for write requests by comparing
args[2], a variable of type enum uio_rw, to the enumerator UIO_WRITE. Since the
left-hand argument is an enumeration type, the D compiler knows to search it when
attempting to resolve the right-hand identifier. This feature protects your D programs
against inadvertent identifier name conflicts with the large collection of enumerations
defined in the operating system kernel.

8.3 Inlines
D named constants can also be defined using inline directives, which provide a
more general means of creating identifiers that are replaced by predefined values or
expressions during compilation. Inline directives are a more powerful form of lexical
replacement than the #define directive provided by the C preprocessor because the
replacement is assigned an actual type and is performed using the compiled syntax
tree and not simply a set of lexical tokens. An inline directive is specified using a
declaration of the form:

inline type name = expression ;

Chapter 8 • Type and Constant Definitions 103

where type is a type declaration of an existing type, name is any valid D identifier that
is not previously defined as an inline or global variable, and expression is any valid D
expression. Once the inline directive is processed, the D compiler will substitute the
compiled form of expression for each subsequent instance of name in the program
source. For example, the following D program would trace the string "hello" and
integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{

trace(hello);
trace(number);

}

An inline name may be used anywhere a global variable of the corresponding type can
be used. If the inline expression can be evaluated to an integer or string constant at
compile time, then the inline name can also be used in contexts that require constant
expressions, such as scalar array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive,
and the expression result type must be compatible with the type defined by the inline,
according to the same rules used for the D assignment operator (=). An inline
expression may not reference the inline identifier itself (that is, recursive definitions
are not permitted).

The DTrace software packages install a number of D source files in the system
directory /usr/lib/dtrace that contain inline directives you can use in your D
programs. For example, the signal.d library includes directives of the form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;

...

to provide you access to the current set of Solaris signal names described in
signal(3HEAD). Similarly, the errno.d library contains inline directives for the C
errno constants described in Intro(2).

By default, the D compiler includes all of the provided D library files for you
automatically so you can use these definitions in any D program you write.

104 Solaris Dynamic Tracing Guide • November 2003 (Beta)

8.4 Type Namespaces
We have already discussed a variety of namespaces for D identifiers, including global
variables, thread-local variables, and clause-local variables. We now complete our
discussion of D namespaces by discussing namespace issues related to types. In
traditional languages such as ANSI-C, type visibility is determined by whether or not
a type is nested inside of a function or other declaration. Types declared at the outer
scope of a C program are associated with a single global namespace and visible
throughout the entire program. Types defined in C header files are typically included
in this outer scope. Unlike these languages, D provides access to types from multiple
outer scopes.

D is designed as a language to facilitate dynamic observability across multiple layers
of a software stack, including the operating system kernel, an associated set of
loadable kernel modules, and user processes running on the system. Since a single D
program may instantiate probes to gather data from multiple kernel modules or other
software entities that are compiled into independent binary objects, more than one
data type of the same name, perhaps with different definitions, may be present in the
universe of types available to DTrace and the D compiler. To manage this situation, the
D compiler associates each type with a namespace identified by the containing
program object. Types from a particular program object can be accessed by specifying
the object name and backquote (‘) scoping operator in any type name.

For example, if a kernel module named foo contains the following C type declaration:

typedef struct bar {
int x;

} bar_t;

then the types struct bar and bar_t could be accessed from D using the type
names:

struct foo‘bar foo‘bar_t

The backquote operator can be used in any context where a type name is appropriate,
including when specifying the type for D variable declarations or cast expressions in D
probe clauses.

The D compiler also provides two special built-in type namespaces accessed using the
names “C” and “D” respectively. The C type namespace is initially populated with the
standard ANSI-C intrinsic types such as int. In addition, type definitions acquired
using the C preprocessor cpp(1) via the dtrace -C option will be processed using
and added to the C scope. As a result, you can #include C header files containing
type declarations which are already visible in another type namespace without
causing a compilation error.

Chapter 8 • Type and Constant Definitions 105

The D type namespace is initially populated with the D type intrinsics such as int
and string as well as the built-in D type aliases such as uint32_t. Any new type
declarations that appear in the D program source itself are automatically added to the
D type namespace. If you create a complex type such as a struct in your D program
consisting of member types from other namespaces, they will be copied into the D
namespace by the declaration.

When the D compiler encounters a type declaration that does not specify an explicit
namespace using the backquote operator, it searches the set of active type namespaces
to find a match using the specified type name. The C namespace is always searched
first followed by the D namespace. If the type name is not found in either the C or D
namespace, the type namespaces of the active kernel modules are searched in
ascending order by kernel module ID. This ordering guarantees that the binary objects
that form the core kernel are searched before any loadable kernel modules, but does
not guarantee any ordering properties among the loadable modules. You should use
the scoping operator when accessing types defined in loadable kernel modules to
avoid type name conflicts with other kernel modules.

The D compiler consumes compressed ANSI-C debugging information provided with
the core Solaris kernel modules in order to automatically access the types associated
with the operating system source code without the need for accessing the
corresponding C include files. This symbolic debugging information may not be
available for all kernel modules on your system. The D compiler will report an error if
you attempt to access a type within the namespace of a module that lacks compressed
C debugging information intended for use with DTrace.

106 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 9

Aggregations

When instrumenting the system to answer performance-related questions, it is often
useful to think not in terms of data gathered by individual probes, but rather how that
data can be aggregated to answer a specific question. For example, if you wished to
know the number of system calls by user ID, you would not necessarily care about the
datum collected at each system call — you simply want to see a table of user IDs and
system calls. Historically, one would answer this question by gathering data at each
system call, and postprocessing the data using a tool like awk(1) or perl(1). However,
in DTrace the aggregating of data is a first-class operation. In this chapter, we explore
the DTrace facilities for manipulating aggregations.

9.1 Aggregating Functions
We define an aggregating function to be one that has the following property:

f(f(x0) U f(x1) U ... U f(xn)) = f(x0 U x1 U ... U xn)

where xn is a set of arbitrary data. That is, applying an aggregating function to subsets
of the whole and then applying it again to the results gives the same result as applying
it to the whole itself. This is most easily seen in a comprehensive example. Take a
function SUM that, given a set of data, yields the summation of that set. If the raw data
consists of {2, 1, 2, 5, 4, 3, 6, 4, 2}, the result of applying SUM to the entire set is {29}.
Similarly, the result of applying SUM to the subset consisting of the first three elements
is {5}, the result of applying SUM to the set consisting of the subsequent three elements
is {12}, and the result of of applying SUM to the remaining three elements is also {12}.
SUM is an aggregating function because applying it to the set of these results, {5, 12,
12}, yields the same result — {29} — as applying SUM to the original data.

107

Not all functions are aggregating functions. An example of a non-aggregating function
is the function MEDIAN that determines the median element of the set. (The median is
defined to be that element of a set for which as many elements in the set are greater
than it as are less than it.) The MEDIAN is derived by sorting the set and selecting the
middle element. Returning to our original raw data, if we apply MEDIAN to the set
consisting of the first three elements, the result is {2}. (The sorted set is {1, 2, 2}; {2} is
the set consisting of the middle element.) Likewise, applying MEDIAN to the next three
elements yields {4} and applying MEDIAN to the final three elements yields {4}.
Applying MEDIAN to each of the subsets thus yields the set {2, 4, 4}; applying MEDIAN
to this set yields the result {4}. However, sorting the original set yields {1, 2, 2, 2, 3, 4, 4,
5, 6}; applying MEDIAN to this set thus yields {3}. Because these results do not match,
MEDIAN is not an aggregating function.

Fortunately, many common functions for understanding a set of data are aggregating
functions. These include counting the number of elements in the set, computing the
minimum value of the set, computing the maximum value of the set, and summing all
elements in the set. (Note that determining the arithmetic mean of the set can be
trivially built on functions to count the number of elements in the set and to sum the
number the elements in the set.)

However, several other useful functions are not aggregating functions. These include
computing the mode (the most common element) of a set, the median value of the set,
or the standard deviation of the set.

Applying aggregating functions to data in situ has a number of advantages:

� The entire data set need not be stored. Whenever a new element is to be added to
the set, the aggregating function is calculated given the set consisting of the current
intermediate result and the new element. After the new result is calculated, the
new element may be discarded. This reduces the amount of storage required by a
factor of the number of data points, which is often quite large.

� A scalable implementation is allowed. One does not wish for data collection to
induce pathological scalability problems. Aggregating functions allow for
intermediate results to be kept per-CPU instead of in a shared data structure. When
a system-wide result is desired, the aggregating function may then be applied to
the set consisting of the per-CPU intermediate results.

9.2 Aggregations
DTrace stores the results of aggregating functions in objects called aggregations. The
aggregation results are indexed using a tuple of expressions similar to those used for
associative arrays. In D, the syntax for an aggregation is:

@name[keys] = aggfunc (args);

108 Solaris Dynamic Tracing Guide • November 2003 (Beta)

where name is the name of the aggregation, keys is a comma-separated list of D
expressions, aggfunc is one of the DTrace aggregating functions, and args is a
comma-separated list of arguments appropriate for the aggregating function. The
aggregation name is a D identifier that is prefixed with the special character @. All
aggregations named in your D programs are global variables; there are no thread- or
clause-local aggregations. The aggregation names are kept in a separate identifier
namespace from other D global variables. Remember that a and @a are not the same
variable if you reuse names. The special aggregation name @ can be used to name an
anonymous aggregation in simple D programs: the D compiler treats it as an alias for
the aggregation name @_.

The DTrace aggregating functions are shown in the table below. Most aggregating
functions take just a single argument that represents the new datum.

TABLE 9–1 DTrace Aggregating Functions

Function Name Arguments Result

count none The number of times called.

sum scalar expression The total value of the specified expressions.

avg scalar expression The arithmetic average of the specified expressions.

min scalar expression The smallest value among the specified expressions.

max scalar expression The largest value among the specified expressions.

lquantize scalar expression,
lower bound,
upper bound, step
value

A linear frequency distribution, sized by the specified
range, of the values of the specified expressions.
Increments the value in the highest bucket that is less
than the specified expression.

quantize scalar expression A power-of-two frequency distribution of the values of
the specified expressions. Increments the value in
thehighest power-of-two bucket that is less than the
specified expression.

For example, to count the number of write(2) system calls in the system, you could
use an informative string as a key and the count() aggregating function:

syscall::write:entry
{

@counts["write system calls"] = count();

}

The dtrace command prints aggregation results by default when the process
terminates – either as the result of an explicit END action or when the user types
Control-C. Running this, waiting a bit, and typing Control-C yields:

dtrace -s writes.d
dtrace: script ’./writes.d’ matched 1 probe
^C

Chapter 9 • Aggregations 109

write system calls 179

#

It may be more interesting to count system calls per process name. This can be done
by using the execname variable as the key to aggregation:

syscall::write:entry
{

@counts[execname] = count();

}

Running the above, and again waiting a bit before typing Control-C:

dtrace -s writesbycmd.d
dtrace: script ’./writesbycmd.d’ matched 1 probe
^C

dtrace 1
cat 4
sed 9
head 9
grep 14
find 15
tail 25
mountd 28
expr 72
sh 291
tee 814
def.dir.flp 1996
make.bin 2010

#

Alternatively, one may wish to have writes broken down by both executable name and
file descriptor. The file descriptor is the first argument to write(2), so we key off both
execname and arg0:

syscall::write:entry
{

@counts[execname, arg0] = count();

}

Running this yields a table with both executable name and file descriptor:

dtrace -s writesbycmdfd.d
dtrace: script ’./writesbycmdfd.d’ matched 1 probe
^C

cat 1 58
sed 1 60
grep 1 89
tee 1 156

110 Solaris Dynamic Tracing Guide • November 2003 (Beta)

tee 3 156
make.bin 5 164
acomp 1 263
macrogen 4 286
cg 1 397
acomp 3 736
make.bin 1 880
iropt 4 1731

#

We may wish to know the average time spent in the write system call, by process
name. To do this, we use the avg() aggregating function, specifying the expression
that we wish to average as the argument. In this case, we are averaging the wall time
spent in the system call:

syscall::write:entry
{

self->ts = timestamp;
}

syscall::write:return
/self->ts/
{

@time[execname] = avg(timestamp - self->ts);
self->ts = 0;

}

Running the above, and waiting a bit before typing Control-C:

dtrace -s writetime.d
dtrace: script ’./writetime.d’ matched 2 probes
^C

iropt 31315
acomp 37037
make.bin 63736
tee 68702
date 84020
sh 91632
dtrace 159200
ctfmerge 321560
install 343300
mcs 394400
get 413695
ctfconvert 594400
bringover 1332465
tail 1335260

#

The average can be useful, but it may not give one as much of a feel for the
distribution as one may like. To do this, we use the quantize() aggregating
function:

Chapter 9 • Aggregations 111

syscall::write:entry
{

self->ts = timestamp;
}

syscall::write:return
/self->ts/
{

@time[execname] = quantize(timestamp - self->ts);
self->ts = 0;

}

Because each line of output becomes a frequency distribution diagram, the output of
this script is substantially longer than previous ones; here is a snippet:

lint
value ------------- Distribution ------------- count
8192 | 0
16384 | 2
32768 | 0
65536 |@@@@@@@@@@@@@@@@@@@ 74
131072 |@@@@@@@@@@@@@@@ 59
262144 |@@@ 14
524288 | 0

acomp
value ------------- Distribution ------------- count
4096 | 0
8192 |@@@@@@@@@@@@ 840
16384 |@@@@@@@@@@@ 750
32768 |@@ 165
65536 |@@@@@@ 460
131072 |@@@@@@ 446
262144 | 16
524288 | 0
1048576 | 1
2097152 | 0

iropt
value ------------- Distribution ------------- count
4096 | 0
8192 |@@@@@@@@@@@@@@@@@@@@@@@ 4149
16384 |@@@@@@@@@@ 1798
32768 |@ 332
65536 |@ 325
131072 |@@ 431
262144 | 3
524288 | 2
1048576 | 1

2097152 | 0

112 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Note that the bucket values for the frequency distribution are always power-of-two
values. Note, too, that each bucket contains a count of the number of elements greater
than or equal to the corresponding value, but less than the next larger value. For
example, from the above output, we know that iropt had 4,149 writes taking
between 8,192 nanoseconds and 16,383 nanoseconds, inclusive.

quantize() is useful for getting quick insight into the data, but you may want
instead a distribution across linear values. To do this, use the lquantize()
aggregating function. The lquantize() function takes three arguments in addition
to a D expression: a lower bound, an upper bound, and a step. For example, if one
wished to look at the distribution of writes by file descriptor, a power-of-two
quantization doesn’t make much sense; one should instead use a linear quantization
with a small range:

syscall::write:entry
{

@fds[execname] = lquantize(arg0, 0, 100, 1);

}

Running this for several seconds yields quite a bit of output; here is a snippet:

mountd
value ------------- Distribution ------------- count

11 | 0
12 |@ 4
13 | 0
14 |@@@@@@@@@@@@@@@@@@@@@@@@@ 70
15 | 0
16 |@@@@@@@@@@@@ 34
17 | 0

xemacs-20.4
value ------------- Distribution ------------- count

6 | 0
7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 521
8 | 0
9 | 1
10 | 0

make.bin
value ------------- Distribution ------------- count

0 | 0
1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3596
2 | 0
3 | 0
4 | 42
5 | 50
6 | 0

acomp
value ------------- Distribution ------------- count

0 | 0
1 |@@@@@ 1156

Chapter 9 • Aggregations 113

2 | 0
3 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 6635
4 |@ 297
5 | 0

iropt
value ------------- Distribution ------------- count

2 | 0
3 | 299
4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 20144

5 | 0

Another interesting use of the lquantize() aggregating function is to aggregate on
time since some point in the past. This allows one to see change in behavior over time.
For example, to see the change in system call behavior over the lifetime of a process
executing the date(1) command, try this D script:

syscall::exec:return,
syscall::exece:return
/execname == "date"/
{

self->start = vtimestamp;
}

syscall:::entry
/self->start/
{

/*
* We linearly quantize on the current virtual time minus our
* process’s start time. We divide by 1000 to yield microseconds
* rather than nanoseconds. The range runs from 0 to 10 milliseconds
* in steps of 100 microseconds; we expect that no date(1) process
* will take longer than 10 milliseconds to complete.
*/
@a["system calls over time"] =

lquantize((vtimestamp - self->start) / 1000, 0, 10000, 100);
}

syscall::rexit:entry
/self->start/
{

self->start = 0;

}

The above script is most interesting to run when many date(1) processes are
executed. To do this, run sh -c ’while true; do date >/dev/null; done’ in
one window, while executing the D script in another. This yields a profile of the
system call behavior of the date(1) command:

dtrace -s dateprof.d
dtrace: script ’./dateprof.d’ matched 218 probes
^C

114 Solaris Dynamic Tracing Guide • November 2003 (Beta)

system calls over time
value ------------- Distribution ------------- count
< 0 | 0
0 |@@ 20530

100 |@@@@@@ 48814
200 |@@@ 28119
300 |@ 14646
400 |@@@@@ 41237
500 | 1259
600 | 218
700 | 116
800 |@ 12783
900 |@@@ 28133
1000 | 7897
1100 |@ 14065
1200 |@@@ 27549
1300 |@@@ 25715
1400 |@@@@ 35011
1500 |@@ 16734
1600 | 498
1700 | 256
1800 | 369
1900 | 404
2000 | 320
2100 | 555
2200 | 54
2300 | 17
2400 | 5
2500 | 1
2600 | 7

2700 | 0

From this output, one can get a rough idea of the different phases of the date(1)
command with respect to the services required of the kernel. If we wanted to better
understand these phases, it may be useful to understand which system calls are being
called when. To do this, we could change the D script to aggregate on the variable
probefunc instead of a constant string.

9.3 Output
If multiple aggregations are present in a D program, they will be displayed in the
order that they are introduced in the program. This behavior may be overridden by
using the printa() function to print the aggregations. The printa() function also
permits you to precisely format the aggregation data using a format string, as
described in Chapter 12.

Chapter 9 • Aggregations 115

If an aggregation is not formatted with a printa() statement in your D program, the
dtrace command will snapshot the aggregation data and print the results once after
tracing has completed using the default aggregation format. If a given aggregation is
formatted using a printa() statement, the default behavior is disabled. You can
achieve equivalent results by adding the statement printa(@aggregation-name) to a
dtrace:::END probe clause in your program. The default output format for the
avg(), count(), min(), max(), and sum() aggregating functions is to display an
integer decimal value corresponding to the aggregated value for each tuple. The
default output format for the lquantize() and quantize() aggregating functions
is to display an ASCII table of the results. Aggregation tuples are printed as if
trace() had been applied to each tuple element.

9.4 Normalization
When aggregating data over some period of time, it may be desirable to normalize the
data with respect to some constant factor. This may allow disjoint data to be more
readily compared. For example, if aggregating system calls, you may wish to output
system calls as a per-second rate instead of as an absolute value over the course of the
run. To allow for this, DTrace provides the normalize() action. The parameters to
normalize() are an aggregation and a normalization factor; the output of the
aggregation will be each value divided by the normaliztion factor.

For example, to aggregate based on system call:

#pragma D option quiet

BEGIN
{

/*
* Get the start time, in nanoseconds.
*/
start = timestamp;

}

syscall:::entry
{

@func[execname] = count();
}

END
{

/*
* Normalize the aggregation based on the number of seconds we have
* been running. (There are 1,000,000,000 nanoseconds in one second.)
*/
normalize(@func, (timestamp - start) / 1000000000);

}

116 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Running the above for a little while yields the following output on a desktop machine:

dtrace -s ./normalize.d
^C
syslogd 0
rpc.rusersd 0
utmpd 0
xbiff 0
in.routed 1
sendmail 2
echo 2
FvwmAuto 2
stty 2
cut 2
init 2
pt_chmod 3
picld 3
utmp_update 3
httpd 4
xclock 5
basename 6
tput 6
sh 7
tr 7
arch 9
expr 10
uname 11
mibiisa 15
dirname 18
dtrace 40
ksh 48
java 58
xterm 100
nscd 120
fvwm2 154
prstat 180
perfbar 188
Xsun 1309

.netscape.bin 3005

normalize() sets the normalization factor for the specified aggregation, but it does
not modify the underlying data. This allows the data to be denormalized with the
denormalize() function. denormalize() takes only an aggregation. Modifying
the early example, we can provide both raw system call counts and per-second rates:

#pragma D option quiet

BEGIN
{

start = timestamp;
}

syscall:::entry
{

Chapter 9 • Aggregations 117

@func[execname] = count();
}

END
{

this->seconds = (timestamp - start) / 1000000000;
printf("Ran for %d seconds.\n", this->seconds);

printf("Per-second rate:\n");
normalize(@func, this->seconds);
printa(@func);

printf("\nRaw counts:\n");
denormalize(@func);
printa(@func);

}

Running the above for a little while:

dtrace -s ./denorm.d
^C
Ran for 14 seconds.
Per-second rate:

syslogd 0
in.routed 0
xbiff 1
sendmail 2
elm 2
picld 3
httpd 4
xclock 6
FvwmAuto 7
mibiisa 22
dtrace 42
java 55
xterm 75
adeptedit 118
nscd 127
prstat 179
perfbar 184
fvwm2 296
Xsun 829

Raw counts:

syslogd 1
in.routed 4
xbiff 21
sendmail 30
elm 36
picld 43
httpd 56
xclock 91

118 Solaris Dynamic Tracing Guide • November 2003 (Beta)

FvwmAuto 104
mibiisa 314
dtrace 592
java 774
xterm 1062
adeptedit 1665
nscd 1781
prstat 2506
perfbar 2581
fvwm2 4156

Xsun 11616

Aggregations may also be renormalized: if normalize() is called more than once for
the same aggregation, the normalization factor will be that specified in the most recent
call. This may be useful to print per-second rates over time:

EXAMPLE 9–1 renormalize.d: Renormalizing an aggregation

#pragma D option quiet

BEGIN
{

start = timestamp;
}

syscall:::entry
{

@func[execname] = count();
}

tick-10sec
{

normalize(@func, (timestamp - start) / 1000000000);
printa(@func);

}

9.5 Clearing aggregations
If using DTrace to build simple monitoring scripts, it may be useful to periodically
clear the values in an aggregation. An aggregation’s values are cleared using the
clear() function, which takes an aggregation as its only parameter. Note that the
clear() function clear only the aggregation’s values; the aggregation’s keys are
retained. This is by design: the presence of a key in an aggregation that has an
associated value of zero indicates that the key had a non-zero value that was
subsequently set to zero as part of a clear().

Recasting Example 9–1 using clear():

Chapter 9 • Aggregations 119

#pragma D option quiet

BEGIN
{

last = timestamp;
}

syscall:::entry
{

@func[execname] = count();
}

tick-10sec
{

normalize(@func, (timestamp - last) / 1000000000);
printa(@func);
clear(@func);
last = timestamp;

}

Unlike Example 9–1 — which will show the system call rate ove the lifetime of the
dtrace invocation — this will show the system call rate only for the most recent ten
second period.

9.6 Minimizing drops
DTrace buffers some aggregation data in the kernel. As a result, it is possible for no
space to be available when a new key is added to an aggregation. In this case, the data
will be dropped, a counter will be incremented, and dtrace will generate a message
indicate an aggregation drop. While this is in principle possible, the implementation of
DTrace is designed to practically eliminate such drops by keeping long-running state
(consisting of the aggregation’s key and intermediate result) at user-level where space
may grow dynamically. In the unlikely event that aggregation drops are seen, they
may be eliminated by increasing the aggregation buffer with the aggsize option.
(This option may also be useful to minimize the memory footprint of DTrace.) As with
any size option, aggsize may be specified with any size suffix. As with any buffer
option, the resizing policy of this buffer is dictated by the bufresize option. More
details on buffering can be found in Chapter 11; more details on options can be found
in Chapter 16.

An alternative method to eliminate aggregation drops is to increase the rate at which
aggregation data is consumed at user-level. (This rate defaults to once per second.)
This rate may be explicitly tuned with the aggrate option. As with any rate option,
aggrate may be specified with any time suffix, but defaults to rate-per-second. As
with aggsize, more details can be found in Chapter 16.

120 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 10

Actions and Subroutines

We’ve already seen examples of function calls in our D program examples such as
trace() and printf(). D function calls permit you to invoke two different kinds of
services provided by DTrace: actions that trace data or modify state external to DTrace,
and subroutines that only affect internal DTrace state. This chapter formally defines the
set of actions and subroutines along with their syntax and semantics.

10.1 Actions
In Chapter 9, we introduced the DTrace mechanism for aggregating data from
multiple probe firings. While this is useful for many kinds of problems, you may wish
for your programs to simply record data instead of aggregating it. Actions are what
allow your DTrace programs to interact with the system outside of DTrace. While they
commonly act to record data to a DTrace buffer, there are other actions as well — like
stopping the current process, raising a specific signal on the current process, or ceasing
tracing altogether. Some of these actions are destructive in that they change the system
— albeit in a well-defined way. These actions may only be used if destructive actions
have been explicitly enabled. By default, data recording actions record data to the
principal buffer. More details on the principal buffer will be forthcoming in Chapter 11.
To understand the default behavior of most actions, you need only know that the
principal buffer is the fundamental DTrace buffer, present in every DTrace invocation.

121

10.2 Default Action
A clause need not contain an action — it may instead consist simply of manipulation
of variable state, or of any combination of actions and manipulations of variable state.
If a clause contains no actions and no D manipulation (that is, if a clause is empty), the
default action is taken. The default action is to trace the enabled probe identifer (EPID)
to the principal buffer. The EPID identifies a particular enabling of a particular probe
with a particular predicate and actions. From the EPID, DTrace consumers can
determine the probe that induced the action. Indeed, whenever any data is traced, it
must be accompanied by the EPID to allow the consumer to make sense of the data —
hence the default action is to trace the EPID and nothing else.

Using the default action allows for simple use of dtrace(1M). For example, the
command:

dtrace -m TS

enables all probes in the TS module with the default action. (The TS module
implements the timesharing scheduling class; see dispadmin(1M) for more
information.) The above command may have output like the following:

dtrace -m TS
dtrace: description ’TS’ matched 80 probes
CPU ID FUNCTION:NAME
0 12077 ts_trapret:entry
0 12078 ts_trapret:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12033 ts_setrun:entry
0 12034 ts_setrun:return
0 12081 ts_wakeup:entry
0 12082 ts_wakeup:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12033 ts_setrun:entry
0 12034 ts_setrun:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12033 ts_setrun:entry
0 12034 ts_setrun:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12023 ts_update:entry
0 12079 ts_update_list:entry
0 12080 ts_update_list:return
0 12079 ts_update_list:entry

...

122 Solaris Dynamic Tracing Guide • November 2003 (Beta)

10.3 Data Recording Actions
The data recording actions comprise the core DTrace actions. Each of these actions
records data to the principal buffer by default, but each may also record data to
speculative buffers. (See Chapter 11 for more details on the principal buffer and
Chapter 13 for more details on speculative buffers.) In the below descriptions, we refer
only to the directed buffer; by default, this is the principal buffer, but may also be a
speculative buffer if the action follows a speculate().

10.3.1 trace()
void trace(expression)

The most basic action is the trace() action, which takes a D expression as its
argument and traces the result to the directed buffer. All of the following are valid
trace() actions:

trace(execname);
trace(curlwpsinfo->pr_pri);
trace(timestamp / 1000);
trace(‘lbolt);

trace("somehow managed to get here");

10.3.2 tracemem()
void tracemem(address, size_t nbytes)

A cousin to trace() is the tracemem() action, which takes a D expression as its first
argument, address, and a constant as its second argument, nbytes. tracemem() copies
the memory from the address specified by addr into the directed buffer for the length
specified by nbytes.

10.3.3 printf()
void printf(string format, ...)

Like trace(), the printf() action traces D expressions — but printf() allows for
elaborate printf(3C)-style formatting. Like printf(3C), the parameters consists of a
format string followed by a variable number of arguments. By default, the arguments
are traced to the directed buffer. When the arguments are later processed for output by
dtrace(1M), and later formatted using the specified format string. For example, the
first two examples of trace() from “10.3.1 trace()” on page 123 could be
combined in a single printf():

Chapter 10 • Actions and Subroutines 123

printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);

A more detailed description of printf() is beyond the scope of this chapter; see
Chapter 12 for more details.

10.3.4 printa()
void printa(aggregation)
void printa(string format, aggregation)

The printa() action allows for displaying and formatting aggregations. (See
Chapter 9 for more detail on aggregations.) If a format is not provided, printa() only
traces a directive to the DTrace consumer that the specified aggregation should be
processed and displayed using the default format. If a format is provided, the
aggregation will be formatted as specified; see Chapter 12 for a more detailed
description of the printa() format string.

Note that printa() only traces a directive that the aggregation should be processed
by the DTrace consumer — it does not process the aggregation in the kernel. This
means that the time between the tracing of the printa() directive and the actual
processing of the directive depends on the factors that affect buffer processing. These
factors include the aggregation rate, the buffering policy and — if the buffering policy
is switching — the rate at which buffers are switched. See Chapter 9 and Chapter 11
for detailed descriptions of these factors.

10.3.5 stack()
void stack(int nframes)
void stack(void)

The stack() action records a kernel stack trace to the directed buffer. The kernel
stack will be nframes in depth. If nframes is not provided, the number of stack frames
recorded is the number specifed by the stackframes option. For example:

dtrace -n uiomove:entry’{stack()}’
CPU ID FUNCTION:NAME
0 9153 uiomove:entry

genunix‘fop_write+0x1b
namefs‘nm_write+0x1d
genunix‘fop_write+0x1b
genunix‘write+0x1f7

0 9153 uiomove:entry
genunix‘fop_read+0x1b
genunix‘read+0x1d4

0 9153 uiomove:entry

124 Solaris Dynamic Tracing Guide • November 2003 (Beta)

genunix‘strread+0x394
specfs‘spec_read+0x65
genunix‘fop_read+0x1b
genunix‘read+0x1d4

...

The stack() action is a little different from other actions in that it may also be used
as the key to an aggregation:

dtrace -n kmem_alloc:entry’{@a[stack()] = count()}’
dtrace: description ’kmem_alloc:entry’ matched 1 probe
^C

rpcmod‘endpnt_get+0x47c
rpcmod‘clnt_clts_kcallit_addr+0x26f
rpcmod‘clnt_clts_kcallit+0x22
nfs‘rfscall+0x350
nfs‘rfs2call+0x60
nfs‘nfs_getattr_otw+0x9e
nfs‘nfsgetattr+0x26
nfs‘nfs_getattr+0xb8
genunix‘fop_getattr+0x18
genunix‘cstat64+0x30
genunix‘cstatat64+0x4a
genunix‘lstat64+0x1c
1

genunix‘vfs_rlock_wait+0xc
genunix‘lookuppnvp+0x19d
genunix‘lookuppnat+0xe7
genunix‘lookupnameat+0x87
genunix‘lookupname+0x19
genunix‘chdir+0x18
1

rpcmod‘endpnt_get+0x6b1
rpcmod‘clnt_clts_kcallit_addr+0x26f
rpcmod‘clnt_clts_kcallit+0x22
nfs‘rfscall+0x350
nfs‘rfs2call+0x60
nfs‘nfs_getattr_otw+0x9e
nfs‘nfsgetattr+0x26
nfs‘nfs_getattr+0xb8
genunix‘fop_getattr+0x18
genunix‘cstat64+0x30
genunix‘cstatat64+0x4a
genunix‘lstat64+0x1c
1

...

Chapter 10 • Actions and Subroutines 125

10.3.6 ustack()
void ustack(int nframes)
void ustack(void)

The ustack() action records a user stack trace to the directed buffer. The user stack
will be nframes in depth. If nframes is not provided, the number of stack frames
recorded is the number specifed by the ustackframes option. While ustack() is
able to determine the address of the calling frames when the probe fires, the stack
frames will not be translated into symbols until the ustack() action is processed at
user-level by the DTrace consumer. Note that some functions are static and therefore
do not have entries in the symbol table; call sites in these functions will be displayed
with their hexadecimal address. Also, because ustack() symbol translation does not
occur until after the data was recorded, there exists a possibility that the process in
question has exited — making stack frame translation impossible. In this case, dtrace
will emit a warning, followed by the hexadecimal stack frames. For example:

dtrace: failed to grab process 100941: no such process
c7b834d4
c7bca85d
c7bca1a4
c7bd4374
c7bc2628

8047efc

More details on this phenomenon — along with techniques for mitigating it — can be
found in Chapter 27.

Finally, because the postmortem DTrace debugger commands cannot perform the
frame translation, using ustack() with a ring buffer policy always results in raw
ustack() data.

The following D program shows an example of ustack():

syscall::brk:entry
/execname == $1/
{

@a[ustack(40)] = count();

}

Now run it specifying a process for the Netscape web browser, .netscape.bin in
default Solaris installations. (The double quotes must be specified to DTrace — the
single quoting below is to prevent the shell from stripping the double quotes.)

dtrace -s brk.d ’".netscape.bin"’
dtrace: description ’syscall::brk:entry’ matched 1 probe
^C

libc.so.1‘_brk_unlocked+0xc
88143f6
88146cd
.netscape.bin‘unlocked_malloc+0x3e

126 Solaris Dynamic Tracing Guide • November 2003 (Beta)

.netscape.bin‘unlocked_calloc+0x22

.netscape.bin‘calloc+0x26

.netscape.bin‘_IMGCB_NewPixmap+0x149

.netscape.bin‘il_size+0x2f7

.netscape.bin‘il_jpeg_write+0xde
8440c19
.netscape.bin‘il_first_write+0x16b
8394670
83928e5
.netscape.bin‘NET_ProcessHTTP+0xa6
.netscape.bin‘NET_ProcessNet+0x49a
827b323
libXt.so.4‘XtAppProcessEvent+0x38f
.netscape.bin‘fe_EventLoop+0x190
.netscape.bin‘main+0x1875

1

libc.so.1‘_brk_unlocked+0xc
libc.so.1‘sbrk+0x29
88143df
88146cd
.netscape.bin‘unlocked_malloc+0x3e
.netscape.bin‘unlocked_calloc+0x22
.netscape.bin‘calloc+0x26
.netscape.bin‘_IMGCB_NewPixmap+0x149
.netscape.bin‘il_size+0x2f7
.netscape.bin‘il_jpeg_write+0xde
8440c19
.netscape.bin‘il_first_write+0x16b
8394670
83928e5
.netscape.bin‘NET_ProcessHTTP+0xa6
.netscape.bin‘NET_ProcessNet+0x49a
827b323
libXt.so.4‘XtAppProcessEvent+0x38f
.netscape.bin‘fe_EventLoop+0x190
.netscape.bin‘main+0x1875
1

...

10.4 Destructive Actions
Some actions are destructive in that they change the state of the system. Each of these
changes the system in a well-defined way, but they change it nonetheless. Destructive
actions may not be used unless they have been explicitly enabled. In dtrace(1M),
destructive actions are enabled with the -w option. If an attempt is made to enable
destructive actions in dtrace(1M) without explicitly enabling them, dtrace will fail
with a message similar to:

Chapter 10 • Actions and Subroutines 127

dtrace: failed to enable ’syscall’: destructive actions not allowed

10.4.1 Process Destructive Actions
Some destructive actions are destructive only to a process — the system itself remains
intact. These actions are available to those with the dtrace_proc or dtrace_user
privileges; see Chapter 28 for details.

10.4.1.1 stop()
void stop(void)

The stop() action forces the process that hit the enabled probe to stop when it next
leaves the kernel, as if stopped by a proc(4) action. The prun(1) utility may be used
to resume a process that has been stopped by the stop() action. The stop() action
can be used to stop a process at any DTrace probe point; this can be used to capture a
program in a very particular state (that would be difficult to achieve with a simple
breakpoint), and then attach a traditional debugger (like mdb(1)) to examine the
program’s state, or use the gcore(1) utility to capture that state in a core file for later
analysis.

10.4.1.2 raise()
void raise(int signal)

The raise() action sends the specified signal to the currently running process. This
is similar to using the kill(1) command to send a process a signal, except the
raise() action can be used to send a signal at a precise point in a process’s
execution.

10.4.1.3 copyout()
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout() action copies nbytes from the buffer specified by buf to the address
specified by addr in the address space of the process associated with the current
thread. If the user-space address does not correspond to a valid, faulted-in page in the
current address space, an error will be generated.

10.4.1.4 copyoutstr()
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

128 Solaris Dynamic Tracing Guide • November 2003 (Beta)

The copyoutstr() action copies the string specified by str to the address specified
by addr in the address space of the process associated with the current thread. If the
user-space address does not correspond to a valid, faulted-in page in the current
address space, an error will be generated. The string length is limited to the value set
by the strsize option; see Chapter 16 for details.

10.4.2 Kernel Destructive Actions
Some destructive actions are destructive to the entire system. These must obviously be
used extremely carefully, as they will affect any process on the system (and any other
system implicitly or explicitly depending upon your network services).

10.4.2.1 breakpoint()
void breakpoint(void)

The breakpoint() action induces a kernel breakpoint — causing the system to stop
and control to transfer to the kernel debugger. The kernel debugger will emit a string
denoting the DTrace probe that triggered the action. For example, if one were to do the
following:

dtrace -w -n clock:entry’{breakpoint()}’
dtrace: allowing destructive actions

dtrace: description ’clock:entry’ matched 1 probe

On Solaris running on SPARC, one may see the following on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb 30002765700)
Type ’go’ to resume

ok

On Solaris running on x86, one may see the following on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb d2b97060)
stopped at int20+0xb: ret

kadb[0]:

The address following the probe description is the address of the enabling control
block (ECB) within DTrace. It may be used to determine more details about the probe
enabling that induced the breakpoint action.

Note that a mistake with the breakpoint() action may cause it to be called far more
often than intended. This may in turn prevent you from even terminating the DTrace
consumer that is inducing the breakpoint actions. If you find yourself in this situation,
set the kernel integer variable dtrace_destructive_disallow to 0. This will
disallow all destructive actions on the machine — it is recommended that this be used
only if you find yourself in this particular situation.

Chapter 10 • Actions and Subroutines 129

The exact method for setting dtrace_destructive_disallow will depend on the
kernel debugger that you are using. If using the OpenBoot PROM on SPARC, use w!:

ok 1 dtrace_destructive_disallow w!

ok

Confirm that this has been set using w?:

ok dtrace_destructive_disallow w?
1

ok

Continue using go:

ok go

If using kadb(1M) on x86, use the 4 byte write modifer (W) with the / formatting
dcmd:

kadb[0]: dtrace_destructive_disallow/W 1
dtrace_destructive_disallow: 0x0 = 0x1

kadb[0]:

Continue using :c:

kadb[0]: :c

If you wish to reenable destructive actions after continuing, you will need to explicitly
reset dtrace_destructive_disallow back to 0. This can be done using mdb(1):

echo "dtrace_destructive_disallow/W 0" | mdb -kw
dtrace_destructive_disallow: 0x1 = 0x0

#

10.4.2.2 panic()
void panic(void)

The panic() action induces a kernel panic when triggered. This should be used to
force a system crash dump at a time of interest, and may be used together with ring
buffering and postmortem analysis to understand a problem. (See Chapter 11 and
Chapter 30 respectively.) When the panic action is used, one will see a panic message
that denotes the probe inducing the panic. For example:

panic[cpu0]/thread=30001830b80: dtrace: panic action at probe
syscall::mmap:entry (ecb 300000acfc8)

000002a10050b840 dtrace:dtrace_probe+518 (fffe, 0, 1830f88, 1830f88,
30002fb8040, 300000acfc8)

130 Solaris Dynamic Tracing Guide • November 2003 (Beta)

%l0-3: 0000000000000000 00000300030e4d80 0000030003418000 00000300018c0800
%l4-7: 000002a10050b980 0000000000000500 0000000000000000 0000000000000502

000002a10050ba30 genunix:dtrace_systrace_syscall32+44 (0, 2000, 5,
80000002, 3, 1898400)
%l0-3: 00000300030de730 0000000002200008 00000000000000e0 000000000184d928
%l4-7: 00000300030de000 0000000000000730 0000000000000073 0000000000000010

syncing file systems... 2 done
dumping to /dev/dsk/c0t0d0s1, offset 214827008, content: kernel
100% done: 11837 pages dumped, compression ratio 4.66, dump
succeeded

rebooting...

syslogd(1M) will also emit a message upon reboot:

Jun 10 16:56:31 machine1 savecore: [ID 570001 auth.error] reboot after panic:

dtrace: panic action at probe syscall::mmap:entry (ecb 300000acfc8)

The message buffer of the crash dump will also contain the probe and ECB responsible
for the panic() action.

10.4.2.3 chill()
void chill(int nanoseconds)

The chill() action causes DTrace to spin for the specified number of nanoseconds.
chill() is primarily useful for exploring problems that may be timing related. For
example, it may be used to open race condition windows, or to bring periodic events
into or out of phase with one another. Because interrupts are disabled while in DTrace
probe context, any chill()ing will induce interrupt latency, scheduling latency,
dispatch latency, etc. It is therefore possible to cause very strange systemic effects with
chill(); it should not used indiscriminately. Moreover, because the liveness of the
system relies on being able to periodically handle interrupts, DTrace will refuse to
chill() for a total of longer than 500 milliseconds and instead report an illegal
operation error:

dtrace -w -n syscall::open:entry’{chill(500000001)}’
dtrace: allowing destructive actions
dtrace: description ’syscall::open:entry’ matched 1 probe
dtrace: 57 errors
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 14: syscall::open:entry): \

illegal operation in action #1

Note that this cap is enforced even if the time is spread across multiple calls to
chill()(). That is, the same error would be generated with:

dtrace -w -n syscall::open:entry’{chill(250000000); chill(250000001);}’

Chapter 10 • Actions and Subroutines 131

The cap is also enforced if the time is spread across multiple DTrace consumers for a
single probe.

10.5 Special Actions
Some actions don’t fall neatly into either the data recording action or destructive
action categories. This section describes these other special actions.

10.5.1 Speculative Actions
There are a number of actions associated with speculative tracing: speculate(),
commit()and discard(). The discussion of these actions is outside the scope of this
chapter; see Chapter 13.

10.5.2 exit()
void exit(int status)

The exit() action is used to immediately stop tracing, and to inform the DTrace
consumer that it should cease tracing, perform any final processing, and call exit(3C)
with the status specified. Because exit() does return a status to user-level, it is a data
storing action –— but unlike other data storing actions, it cannot be speculatively
traced. exit() will cause the DTrace consumer to exit regardless of buffer policy.
Note that the data storing nature of exit() means that it can be dropped.

When exit() is called, only DTrace actions already underway on other CPUs will be
taken; no subsequent actions will be taken on any CPU. The only exception to this is
the END probe, which will be called after the DTrace consumer has processed the
exit() action and indicated that tracing should stop.

10.6 Subroutines
Subroutines differ from actions in that they generally only affect internal DTrace state.
There is therefore no such thing as a destructive subroutine, and subroutines never
trace data into buffers. Many subroutines have analogs in Section 9F or Section 3C; see
Intro(9F) and Intro(3), respectively.

132 Solaris Dynamic Tracing Guide • November 2003 (Beta)

10.6.1 alloca()
void *alloca(size_t size)

alloca() allocates size bytes out of scratch space, and returns a pointer to the
allocated memory. The returned pointer is guaranteed to have 8–byte alignment.
Scratch space is only valid for the duration of a clause; memory allocated with
alloca() will be deallocated when the clause completes. If insufficient scratch space
is available, alloca() no memory is allocated and an error is generated.

10.6.2 bcopy()
void bcopy(void *src, void *dest, size_t size)

bcopy() copies size bytes from the memory pointed to by src to the memory pointed
to by dest. All of the source memory must lie outside of scratch memory and all of the
destination memory must lie within it; if this is not the case, no copying takes place
and an error is generated.

10.6.3 copyin()
void *copyin(uintptr_t addr, size_t size)

copyin()copies the specified size in bytes from the specified user address into a
DTrace scratch buffer, and returns the address of this buffer. The user address is
interpreted as an address in the space of the process associated with the current
thread. The resulting buffer pointer is guaranteed to have 8-byte alignment. The
address in question must correspond to a faulted-in page in the current process. If the
address does not correspond to a faulted-in page, or if insufficient scratch space is
available, NULL is returned, and an error is generated. See Chapter 27 for techniques to
reduce the likelihood of copyin errors.

10.6.4 copyinstr()
string copyinstr(uintptr_t addr)

copyinstr() copies a null-terminated C string from the specified user address into a
DTrace scratch buffer, and returns the address of this buffer. The user address is
interpreted as an address in the space of the process associated with the current
thread. The string length is limited to the value set by the strsize option; see
Chapter 16 for details. As with copyin, the specified address must correspond to a
faulted-in page in the current process. If the address does not correspond to a
faulted-in page, or if insufficient scratch space is available, NULL is returned, and an
error is generated. See Chapter 27 for techniques to reduce the likelihood of
copyinstr errors.

Chapter 10 • Actions and Subroutines 133

10.6.5 copyinto()
void copyinto(uintptr_t addr, size_t size, void *dest)

copyinto()copies the specified size in bytes from the specified user address into the
DTrace scratch buffer specified by dest. The user address is interpreted as an address in
the space of the process associated with the current thread. The address in question
must correspond to a faulted-in page in the current process. If the address does not
correspond to a faulted-in page, or if any of the destination memory lies outside
scratch space, no copying takes place, and an error is generated. See Chapter 27 for
techniques to reduce the likelihood of copyinto errors.

10.6.6 msgdsize()
size_t msgdsize(mblk_t *mp)

msgdsize() returns the number of bytes in the data message pointed to by mp. See
msgdsize(9F) for details. Note that msgdsize() only includes data blocks of type
M_DATA in the count.

10.6.7 msgsize()
size_t msgsize(mblk_t *mp)

msgsize() returns the number of bytes in the message pointed to by mp. Unlike
msgdsize() — which returns only the number of data bytes — msgsize() returns
the total number of bytes in the message.

10.6.8 mutex_owned()
int mutex_owned(kmutex_t *mutex)

mutex_owned() is an implementation of mutex_owned(9F). mutex_owned()
returns non-zero if the calling thread currently holds the specified kernel mutex, or
zero if the specified adaptive mutex is currently unowned.

10.6.9 mutex_owner()
kthread_t *mutex_owner(kmutex_t *mutex)

mutex_owner() returns the thread pointer of the current owner of the specified
adaptive kernel mutex. mutex_owner() returns NULL if the specified adaptive mutex
is currently unowned, or if the specified mutex is a spin mutex. See
mutex_owned(9F).

134 Solaris Dynamic Tracing Guide • November 2003 (Beta)

10.6.10 mutex_type_adaptive()
int mutex_type_adaptive(kmutex_t *mutex)

mutex_type_adaptive() returns non-zero if the specified kernel mutex is of type
MUTEX_ADAPTIVE, or zero if it is not. Mutexes are adaptive if they are:

� declared statically,

� created with an interrupt block cookie of NULL, or

� created with an interrupt block cookie that doesn’t correspond to a high-level
interrupt

See mutex_init(9F) for more details on mutexes. The vast majority of mutexes in the
Solaris kernel are adaptive.

10.6.11 progenyof()
int progenyof(pid_t pid)

progenyof() returns non-zero if the calling process (the process associated with the
thread that is currently triggering the matched probe) is among the progeny of the
specified process ID.

10.6.12 rand()
int rand(void)

rand() returns a pseudo-random integer. The number returned is a weak
pseudo-random number, and should not be used for any cryptographic application.

10.6.13 rw_iswriter()
int rw_iswriter(krwlock_t *rwlock)

rw_iswriter() returns non-zero if the specified reader-writer lock is either held or
desired by a writer. If the lock is neither held nor desired by any writers (that is, it is
held only by readers and no writer is blocked, or it is not held at all),
rw_iswriter() returns zero. See rw_init(9F).

10.6.14 rw_read_held()
int rw_write_held(krwlock_t *rwlock)

Chapter 10 • Actions and Subroutines 135

rw_write_held() returns non-zero if the specified reader-writer lock is currently
held by a writer. If the lock is held only by readers or not held at all,
rw_write_held() returns zero. See rw_init(9F).

10.6.15 speculation()
int speculation(void)

speculation() reserves a speculative trace buffer for use with speculate() and
returns an identifier for this buffer. See Chapter 13 for details.

10.6.16 strlen()
size_t strlen(string str)

strlen() returns the length of the specified string in bytes, excluding the
terminating null byte.

136 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 11

Buffers and Buffering

Data buffering and management is an essential service provided by the DTrace
framework for its clients. In the preceding chapters, we have used DTrace without
discussing the details of how data that is traced is transported from the DTrace
framework to clients such as dtrace(1M). In this chapter, we explore data buffering
in detail and learn about options you can tune to change DTrace’s buffer management
policies.

11.1 Principal Buffers
The buffer most fundamental to DTrace operation is the principal buffer. The principal
buffer is present in every DTrace invocation and is the buffer to which tracing actions
record their data by default. These actions include:

exit() printf() trace() ustack()

printa() stack() tracemem()

The principal buffers are always allocated on a per-CPU basis. This is not tunable,
though tracing (and thus buffer allocation) may be restricted to a single CPU by using
the cpu option.

137

11.2 Principal Buffer Policies
DTrace allows for tracing in highly constrained contexts in the kernel. In particular,
DTrace allows for tracing in contexts in which one may not reliably allocate memory.
The consequence of this flexibility of context is that there always exists a possibility
that one will wish to trace data when there isn’t space available. Given this, DTrace
must have a policy to deal with such situations when they arise — but the policy that
one desires will be dictated by the specifics of how DTrace is being used: sometimes it
may be best to discard the new data, while other times it may be desirable to reuse the
space containing the oldest recorded data to trace the new data. Most often, however,
the desired policy is the one that simply minimizes the likelihood of running out of
available space in the first place. To accommodate these varying demands, DTrace
supports several different buffer policies. This support is implemented with the
bufpolicy option, and can be set on a per-consumer basis. (See Chapter 16 for more
details on setting options.)

11.2.1 switch Policy
By default, the principal buffer has a switch buffer policy. Under this policy, per-CPU
buffers are allocated in pairs: one buffer is active, the other is inactive. When a DTrace
consumer asks to read its buffer out of the kernel, the kernel firsts switches the inactive
and active buffers. Buffer switching is done in such a manner that there is no window
in which tracing data may be lost. Once the buffers are switched, the newly inactive
buffer is copied out to the DTrace consumer. This policy assures that the consumer
always sees a self-consistent buffer (that is, a buffer is never simultaneously traced to
and copied out), while not introducing a window in which tracing is paused or
otherwise prevented. The rate at which the buffer is read out (and thus switched) is
controlled by the consumer with the switchrate option. As with any rate option,
switchrate may be specified with any time suffix, but defaults to rate-per-second.
More details on switchrate and other options may be found in Chapter 16.

Under the switch policy, if a given enabled probe would trace more data than there
is space available in the active principal buffer, the data is dropped and a per-CPU drop
count is incremented. In the event of one or more drops, one will see this message or
similar from dtrace(1M):

dtrace: 11 drops on CPU 0

Drops may be reduced or eliminated by either increasing the size of the principal
buffer with the bufsize option or by increasing the switching rate with the
switchrate option.

Under the switch policy, scratch space for copyin(), copyinstr(), and
alloca() is allocated out of the active buffer.

138 Solaris Dynamic Tracing Guide • November 2003 (Beta)

11.2.2 fill Policy
For some problems, it may be desirable to have a single in-kernel buffer. While this
can be implemented with a switch policy and appropriate D constructs (for example,
incrementing a variable in D and predicating an exit() action appropriately), one
may wish to avoid any D overhead and/or completely eliminate the possibility of
drops. In such situations, it may be desirable to have a single, large in-kernel buffer,
and continue tracing until one or more of the per-CPU buffers has filled. DTrace
implements this with the fill buffer policy. Under this policy, tracing continues until
an enabled probe would trace more data than there is space in the principal buffer. At
this time, the buffer is marked as filled and the consumer is notified that at least one of
its per-CPU buffers has filled. Once dtrace(1M) detects a single filled buffer, tracing
is stopped, all buffers are processed and dtrace exits. Note that no further data will
be traced to a filled buffer — even if the data would fit in the buffer.

To use the fill policy, set the bufpolicy option to fill. For example, this
invocation of DTrace traces every system call entry into a per-CPU 2K buffer with the
buffer policy set to fill:

dtrace -n syscall:::entry -b 2k -x bufpolicy=fill

11.2.2.1 fill Policy and END Probes
END probes normally do not fire until tracing has been explicitly stopped by the
DTrace consumer. END probes are guaranteed to only fire on one CPU, but the CPU on
which the probe fires is undefined. With fill buffers, tracing is explicitly stopped
when at least one of the per-CPU principal buffers has been marked as filled. As
described, END probes for fill buffers would be problematic — the END probe may
attempt to fire on a CPU that has a filled buffer. To allow for END tracing in fill
buffers, DTrace will a priori calculate the amount of space potentially consumed by
END probes and subtract this from the size of the principal buffer. If the net size is
negative, DTrace will refuse to start, and dtrace(1M) will output a corresponding
error message:

dtrace: END enablings exceed size of principal buffer

Reserving space a priori assures that a full buffer always has sufficient space for any
and all END probes.

11.2.3 ring Policy
When using DTrace to help diagnose failure (as opposed to understanding non-failing
behavior), one often wishes to track the events leading up to failure. Moreover, in
cases where reproducing failure can take hours or days, one may wish to only keep
the most recent data. To be applicable to such problems, DTrace provides a ring

Chapter 11 • Buffers and Buffering 139

buffer policy. Under this policy, once a principal buffer has filled, tracing wraps
around to the first entry, thereby overwriting older tracing data. A ring buffer is
established by setting the bufpolicy option to the string ring:

dtrace -s foo.d -x bufpolicy=ring

When used to create a ring buffer, dtrace(1M) will not display any output until the
process is terminated — at which time the ring buffer will be consumed and
processed. When processing a ring buffer, dtrace will process each buffer in CPU
order, and within a CPU, records will be displayed in order from oldest to youngest.
Just as with the switch buffering policy, there is no ordering between records on
different CPUs per se — if an ordering is required, timestamp should be traced.

Note that if a given record cannot fit at all in the buffer (that is, if the record is larger
than the buffer size), the record will be dropped regardless of buffer policy. The
following example program demonstrates the use of a #pragma option directive to
enable ring buffering:

#pragma D option bufpolicy=ring
#pragma D option bufsize=16k

syscall:::entry
/execname == $1/
{

trace(timestamp);
}

syscall::rexit:entry
{

exit(0);

}

11.3 Other Buffers
Principal buffers exist in every DTrace enabling. Beyond principal buffers, some
DTrace consumers may have additional in-kernel data buffers: an aggregation buffer
and/or some number of speculative buffers. A full discussion of the use of these buffers
is beyond the scope of this chapter; details can be found in Chapter 9 and Chapter 13,
respectively.

140 Solaris Dynamic Tracing Guide • November 2003 (Beta)

11.4 Buffer Sizes
The size of each buffer can be tuned on a per-consumer basis. Separate options are
provided to tune each buffer size:

Buffer Size Option

Principal bufsize

Speculative specsize

Aggregation aggsize

Each of these options is set with a value that denotes the size. As with any size option,
the value may have an optional size suffix; see Chapter 16 for more details. For
example, to set the buffer size to one megabyte on the command line to dtrace, one
could use -x to set the option:

dtrace -P syscall -x bufsize=1m

One may alternatively use the -b option to dtrace:

dtrace -P syscall -b 1m

And as with any option, in a D script, one may set bufresize using #pragma D
option:

#pragma D option bufsize=1m

Note that setting the buffer size denotes the size of the buffer on each CPU. Moreover,
for the switch buffer policy, bufsize denotes the size of each buffer on each CPU.
The buffer size defaults to four megabytes.

11.5 Buffer Resizing Policy
One may find that there is not adequate free kernel memory to allocate a buffer of
desired size. This may be because there is simply not enough memory available, or it
may be because the DTrace consumer has exceeded a tunable limit (see Chapter 16 for
details). DTrace allows for a configurable policy when a buffer cannot be allocated.

Chapter 11 • Buffers and Buffering 141

The policy is set with the bufresize option, and defaults to auto. Under the auto
buffer resize policy, the size of a buffer is halved until a successful allocation occurs.
dtrace(1M) will emit a message if a buffer as allocated is smaller than the requested
size:

dtrace -P syscall -b 4g
dtrace: description ’syscall’ matched 430 probes
dtrace: buffer size lowered to 128m

...

or:

dtrace -P syscall’{@a[probefunc] = count()}’ -x aggsize=1g
dtrace: description ’syscall’ matched 430 probes
dtrace: aggregation size lowered to 128m

...

Alternatively, one may set the buffer resize policy to be manual by setting bufresize
to manual. Under this policy, a failure to allocate will cause DTrace to fail to start:

dtrace -P syscall -x bufsize=1g -x bufresize=manual
dtrace: description ’syscall’ matched 430 probes
dtrace: could not enable tracing: Not enough space

#

Note that the buffer resizing policy of all buffers — principal, speculative and
aggregation — is dictated by the bufresize option.

142 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 12

Output Formatting

DTrace provides built-in formatting functions printf() and printa() that you can
use from your D programs to format output. The D compiler provides features not
found in the printf(3C) library routine, so you should read this chapter even if you
are already familiar with printf(). This chapter also provides information about the
formatting behavior of the trace() function and the default output format used by
dtrace(1M) to display aggregations.

12.1 printf()
The printf() function combines the ability to trace data, as if by the trace()
function, with the ability to output the data and other text in a specific format that you
describe. The printf() function tells DTrace to trace the data associated with each
argument after the first argument, and then to format the results using the rules
described by the first printf() argument, known as a format string.

The format string is a regular string that contains any number of format conversions,
each beginning with the % character, that describe how to format the corresponding
argument. The first conversion in the format string corresponds to the second
printf() argument, the second conversion to the third argument, and so on. All of
the text between conversions is printed verbatim. The character following the %
conversion character describes the format to use for the corresponding argument.

Unlike printf(3C), DTrace printf() is implemented as a built-in function that is
recognized by the D compiler. The D compiler provides several useful services for
DTrace printf() that are not found in the C library printf():

� The D compiler compares the arguments to the conversions in the format string. If
an argument’s type is incompatible with the format conversion, the D compiler will
produce a helpful error message explaining the problem.

143

� The D compiler does not require the use of size prefixes with printf() format
conversions. The C printf() routine requires that you indicate the size of
arguments by adding prefixes such as %ld for long or %lld for long long. The
D compiler knows the size and type of your arguments, so these prefixes are not
required in your D printf() statements.

� DTrace provides additional format characters that are useful for debugging and
observability; for example, the %a format conversion can be used to print a pointer
as a symbol name and offset.

In order to implement these features, the format string in the DTrace printf()
function must be specified as a string constant in your D program; format strings may
not be dynamic variables of type string.

12.1.1 Conversion Specifications
Each conversion specification in the format string is introduced by the % character,
after which the following appear in sequence:

� Zero or more flags (in any order), which modify the meaning of the conversion
specification as described below.

� An optional minimum field width. If the converted value has fewer bytes than the
field width, it will be padded with spaces on the left by default, or on the right if
the left-adjustment flag (-) is specified. The field width can also be specified as an
asterisk (*), in which case the field width is set dynamically based on the value of
an additional argument of type int.

� An optional precision that gives the minimum number of digits to appear for the d,
i, o, u, x, and X conversions (the field is padded with leading zeroes); the number
of digits to appear after the radix character for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversions; or the
maximum number of bytes to be printed from a string by the s conversion. The
precision takes the form of a period (.) followed by either an asterisk (*), described
below, or a decimal digit string.

� An optional sequence of size prefixes that indicate the size of the corresponding
argument, described below. The size prefixes are not necessary in D and are
provided solely for compatibility with the C printf() function.

� A conversion specifier, described below, that indicates the type of conversion to be
applied to the argument.

The printf(3C) function also supports conversion specifications of the form %n$
where n is a decimal integer; DTrace printf() does not support this type of
conversion specification.

144 Solaris Dynamic Tracing Guide • November 2003 (Beta)

12.1.2 Flag Specifiers
The printf() conversion flags are enabled by specifying one or more of the
following characters, which may appear in any order:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f,
%g, or %G) will be formatted with thousands grouping characters using the
non-monetary grouping character. Not all locales, including the POSIX C
locale, provide non-monetary grouping characters for use with this flag.

- The result of the conversion will be left-justified within the field. The
conversion will be right-justified if this flag is not specified.

+ The result of signed conversion will always begin with a sign (+ or -). The
conversion will begin with a sign only when a negative value is converted
if this flag is not specified.

space If the first character of a signed conversion is not a sign or if a signed
conversion results in no characters, a space will be placed before the result.
If the space and + flags both appear, the space flag is ignored.

The value is converted to an alternate form if one is defined for the selected
conversion. The alternate formats for conversions are described below in
the text corresponding to each conversion.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeroes (following
any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0
flag will be ignored. If the 0 and ’ flags both appear, the grouping
characters are inserted before the zero padding.

12.1.3 Width and Precision Specifiers
The minimum field width can be specified as a decimal digit string following any flag
specifier, as described above, in which case the field width will be set to the specified
number of columns. The field width can also be specified as asterisk (*) in which case
an additional argument of type int is accessed to determine the field width. For
example, to print an integer x in a field width determined by the value of the int
variable w, you would write the D statement:

printf("%*d", w, x);

The field width can also be specified using a ? character to indicate that the field
width should be set based on the number of characters required to format an address
in hexadecimal in the data model of the operating system kernel. The width is set to 8
if the kernel is using the 32–bit data model, or to 16 if the kernel is using the 64–bit
data model.

Chapter 12 • Output Formatting 145

The precision for the conversion can be specified as a decimal digit string following a
period (.) or by an asterisk (*) following a period. If an asterisk is used to specify the
precision, an additional argument of type int prior to the conversion argument is
accessed to determine the precision. If both width and precision are specified as
asterisks, the order of arguments to printf() for the conversion should appear in the
order: width, precision, value.

12.1.4 Size Prefixes
Size prefixes are required in ANSI-C programs that use printf(3C) in order to
indicate the size and type of the conversion argument. The D compiler performs this
processing for your printf() calls automatically, so size prefixes are not required.
Although size prefixes are provided for C compatibility, their use is explicitly
discouraged in D programs because they also tend to bind your code to a particular
data model when using derived types. For example, if a typedef is redefined to
different integer base types depending on the data model, it is not possible to use a
single C conversion that works in both data models without explicitly knowing the
two underlying types and including a cast expression, or defining multiple format
strings. The D compiler solves this problem automatically by allowing you to omit
size prefixes and automatically determining the argument size.

The size prefixes can be placed just prior to the format conversion name and after any
flags, widths, and precision specifiers. The size prefixes are:

� An optional h specifies that a following d, i, o, u, x, or X conversion applies to a
short or unsigned short.

� An optional l specifies that a following d, i, o, u, x, or X conversion applies to a
long or unsigned long.

� An optional ll specifies that a following d, i, o, u, x, or X conversion applies to a
long long or unsigned long long.

� An optional L specifies that a following e, E, f, g, or G conversion applies to a
long double.

� An optional l specifies that a following c conversion applies to a wint_t
argument; an optional l specifies that a following s conversion character applies to
a pointer to awchar_t argument.

146 Solaris Dynamic Tracing Guide • November 2003 (Beta)

12.1.5 Conversion Formats
Each conversion character sequence results in fetching zero or more arguments. If
insufficient arguments are provided for the format string, or if the format string is
exhausted and arguments remain, the D compiler will issue an appropriate error
message. If an undefined conversion format is specified, the D compiler will issue an
appropriate error message. The conversion character sequences and their meanings
are:

a The pointer or uintptr_t argument is printed as a kernel symbol name in
the form module‘symbol-name plus an optional hexadecimal byte offset. If the
value does not fall within the range defined by a known kernel symbol, the
value is printed as a hexadecimal integer.

c The char, short, or int argument is printed as an ASCII character.

d The char, short, int, long, or long long argument is printed as a
decimal (base 10) integer. If the argument is signed, it will be printed as a
signed value. If the argument is unsigned, it will be printed as an unsigned
value. This conversion has the same meaning as i.

e, E The float, double, or long double argument is converted to the style
[-]d.ddde±dd, where there is one digit before the radix character (which is
non-zero if the argument is non-zero) and the number of digits after it is
equal to the precision. If the precision is not specified, the default precision
value is 6. If the precision is 0 and the # flag is not specified, no radix
character appears. The E conversion format will produce a number with E
instead of e introducing the exponent. The exponent always contains at least
two digits. The value is rounded up to the appropriate number of digits.

f The float, double, or long double argument is converted to the style
[-]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification. If the precision is not specifed, the default
precision value is 6. If the precision is 0 and the # flag is not specified, no
radix character appears. If a radix character appears, at least one digit
appears before it. The value is rounded up to the appropriate number of
digits.

g, G The float, double, or long double argument is printed in the style f or
e (or in style E in the case of a G conversion character), with the precision
specifying the number of significant digits. If an explicit precision is 0, it is
taken as 1. The style used depends on the value converted: style e (or E) will
be used only if the exponent resulting from the conversion is less than -4 or
greater than or equal to the precision. Trailing zeroes are removed from the
fractional part of the result. A radix character appears only if it is followed by
a digit. If the # flag is specified, trailing zeroes will not be removed from the
result as they normally are.

i The char, short, int, long, or long long argument is printed as a
decimal (base 10) integer. If the argument is signed, it will be printed as a

Chapter 12 • Output Formatting 147

signed value. If the argument is unsigned, it will be printed as an unsigned
value. This conversion has the same meaning as d.

o The char, short, int, long, or long long argument is printed as an
unsigned octal (base 8) integer. Arguments that are signed or unsigned
may be used with this conversion. If the # flag is specified, the precision of
the result will be increased if necessary to force the first digit of the result to
be a zero.

p The pointer or uintptr_t argument is printed as a hexadecimal (base 16)
integer. D accepts pointer arguments of any type. If the # flag is specified, a
non-zero result will have 0x prepended to it.

s The argument must be an array of char or a string. Bytes from the array
or string are read up to a terminating null character or the end of the data
and interpreted and printed as ASCII characters. If the precision is not
specified, it is taken to be infinite, so all characters up to the first null
character are printed. If the precision is specified, only that portion of the
character array that will display in the corresponding number of screen
columns will be printed. If an argument of type char * is to be formatted, it
should be cast to string or prefixed with the D stringof operator to
indicate that DTrace should trace the bytes of the string and format them.

u The char, short, int, long, or long long argument is printed as an
unsigned decimal (base 10) integer. Arguments that are signed or
unsigned may be used with this conversion, and the result is always
formatted as unsigned.

wc The int argument is converted to a wide character (wchar_t) and the
resulting wide character is printed.

ws The argument must be an array of wchar_t. Bytes from the array are read
up to a terminating null character or the end of the data and interpreted and
printed as wide characters. If the precision is not specified, it is taken to be
infinite, so all wide characters up to the first null character are printed. If the
precision is specified, only that portion of the wide character array that will
display in the corresponding number of screen columns will be printed.

x, X The char, short, int, long, or long long argument is printed as an
unsigned hexadecimal (base 16) integer. Arguments that are signed or
unsigned may be used with this conversion. If the x form of the conversion
is used, the letter digits abcdef are used. If the X form of the conversion is
used, the letter digits ABCDEF are used. If the # flag is specified, a non-zero
result will have 0x (for %x) or 0X (for %X) prepended to it.

% Print a literal % character; no argument is converted. The entire conversion
specification must be %%.

148 Solaris Dynamic Tracing Guide • November 2003 (Beta)

12.2 printa()
The printa() function is used to format the results of aggregations in a D program.
The function is invoked using one of two forms:

printa(@aggregation-name);
printa(format-string, @aggregation-name);

If the first form of the function is used, the dtrace(1M) command takes a consistent
snapshot of the aggregation data and produces output equivalent to the default output
format used for aggregations, described in Chapter 9.

If the second form of the function is used, the dtrace(1M) command takes a
consistent snapshot of the aggregation data and produces output according to the
conversions specified in the format string, according to the following rules:

� The format conversions must match the tuple signature used to create the
aggregation. Each tuple element may only appear once. For example, if you
aggregate a count using the following D statements:

@a["hello", 123] = count();

@a["goodbye", 456] = count();

and then add the D statement printa(format-string, @a) to a probe clause,
dtrace will snapshot the aggregation data and produce output as if you had
entered the statements:

printf(format-string, "hello", 123);

printf(format-string, "goodbye", 456);

and so on for each tuple defined in the aggregation.

� Unlike printf(), the format string you use for printa() need not include all
elements of the tuple (that is, you can have a tuple of length 3 and only one format
conversion). Therefore you can omit any tuple keys from your printa() output
by changing your aggregation declaration to move the ones you wish to omit to the
end of the tuple and then omitting corresponding conversion specifiers for them
from the printa() format string.

� The aggregation result itself can be included in the output by using the additional
@ format flag character, which is only valid when used with printa(). The @ flag
can be combined with any appropriate format conversion specifier, and may
appear more than once in a format string so that your tuple result can appear
anywhere in the output and can appear more than once. The set of conversion
specifiers that can be used with each aggregating function are implied by the
aggregating function’s result type, listed below:

Chapter 12 • Output Formatting 149

avg() uint64_t

count() uint64_t

lquantize() int64_t

max() uint64_t

min() uint64_t

quantize() int64_t

sum() uint64_t

For example, to format the results of avg(), you can apply the %d, %i, %o, %u, or
%x format conversions. The quantize() and lquantize() functions format
their results as an ASCII table rather than as a single value.

The following D program shows a complete example of printa(), using the
profile provider to sample the value of caller and then formatting the results as a
simple table:

profile:::profile-997
{

@a[caller] = count();
}

END
{

printa("%@8u %a\n", @a);

}

If we use dtrace to execute this program and wait a few seconds and type Control-C,
we will see output similar to the following:

dtrace -s printa.d
^C
CPU ID FUNCTION:NAME
1 2 :END 1 0x1

1 ohci‘ohci_handle_root_hub_status_change+0x148
1 specfs‘spec_write+0xe0
1 0xff14f950
1 genunix‘cyclic_softint+0x588
1 0xfef2280c
1 genunix‘getf+0xdc
1 ufs‘ufs_icheck+0x50
1 genunix‘infpollinfo+0x80
1 genunix‘kmem_log_enter+0x1e8

...

150 Solaris Dynamic Tracing Guide • November 2003 (Beta)

12.3 trace() Default Format
If the trace() function is used to capture data rather than printf(), the dtrace
command will format the results using a default output format. If the data is 1, 2, 4, or
8 bytes in size, the result will be formatted as a decimal integer value. If the data is
any other size and is a sequence of printable characters if interpreted as sequence of
bytes, it will be printed as an ASCII string. If the data is any other size and is not a
sequence of printable characters, it will be printed as a series of byte values formatted
as hexadecimal integers.

Chapter 12 • Output Formatting 151

152 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 13

Speculative Tracing

In a tracing framework that offers coverage as comprehensive as that of DTrace, the
challenge for the user quickly becomes figuring out what not to trace. In DTrace, the
primary mechanism for filtering out uninteresting events is the predicate mechanism as
discussed in Chapter 4. Predicates are useful when you know at the time that a probe
fires whether or not the probe event is interesting. For example, if you are only
interested in activity associated with a certain process or a certain file descriptor, you
know when the probe fires if it is associated with the process or file decriptor of
interest. However, there are some situations for which one may not know whether or
not a given probe event is interesting at the time that the probe fires. It may only be
some time after the probe fires that one can make the determination that the probe
event is interesting.

For example, if a system call is failing some amount of the time with a common error
code (for example, EIO or EINVAL), one may wish to better understand the code path
that is leading to the error condition. To capture the code path, one could enable every
probe — but only if the failing call can be isolated in such a way that a meaningful
predicate can be constructed. If the failures were sporadic or nondeterministic, one
would be forced to trace all events that may be interesting, and later postprocess the
data to filter out the ones that were not associated with the failing code path. In this
case, even though the number of interesting events may be reasonably small, the
number of events that must be traced is very large — making postprocessing difficult
if not impossible.

To address this and similar situations, DTrace has a facility for speculative tracing.
Using this facility, one may tentatively trace data; later, one may decide that the traced
data is interesting and commit it to the principal buffer, or one may decide that the
traced data is uninteresting, and discard it.

153

13.1 Speculation Interfaces
The following D functions comprise the DTrace speculation facility:

TABLE 13–1 DTrace Speculation Functions

Function Name Args Description

speculation None Returns an identifier for a new speculative buffer.

speculate ID Denotes that the remainder of the clause should be traced to the
speculative buffer specified by ID.

commit ID Commits the speculative buffer associated with ID.

discard ID Discards the speculative buffer associated with ID.

13.2 Creating a Speculation
The speculation() function allocates a speculative buffer, and returns a speculation
identifier. The speculation identifier should be used in subsequent calls to the
speculate() function. Speculative buffers are a finite resource; if no speculative
buffer is available when speculation() is called, an ID of zero is returned (and a
corresponding DTrace error counter is incremented). An ID of zero is always invalid,
but may be passed to speculate(), commit() or discard() without ill effect. If a
call to speculation() fails, one will see a dtrace message like the following:

dtrace: 2 failed speculations (no speculative buffer space available)

The number of speculative buffers defaults to one, but may be optionally tuned
higher; see Options and Tuning, below.

13.3 Using a Speculation
To use a speculation, an identifer returned from speculation() must be passed to
the speculate() function in a clause before any data-recording actions. All
subsequent data-recording actions in a clause containing a speculate() will be
speculatively traced. As such, speculate() may not follow data recording actions;

154 Solaris Dynamic Tracing Guide • November 2003 (Beta)

any attempt to do so will yield a compile-time error. As this implies, clauses may
contain speculative tracing or non-speculative tracing — but not both. Aggregating
actions, destructive actions, and the exit action may never be speculative; any
attempt to take one of these actions in a clause containing a speculate() will result
in a compile-time error. Moreover, a speculate() may not follow a speculate()
— only one speculation is permitted per clause. Note that a clause that contains only a
speculate() will speculatively trace the default action — which is defined to be the
enabled probe ID. (See Chapter 10 for a description of the default action.)

Typically, one will assign the result of speculation() to a variable (often
thread-local), and use that variable as a subsequent predicate to other probes as well
as an argument to speculate(). For example:

syscall::open:entry
{

self->spec = speculation();
}

syscall:::
/self->spec/
{

speculate(self->spec);
printf("this is speculative");

}

13.4 Committing a Speculation
Speculations are committed using the commit() function. When a speculative buffer
is committed, its data is copied into the principal buffer. If there is more data in the
specified speculative buffer than there is available space in the principal buffer, no data
will be copied and the drop count for the buffer will be increased. If the speculation is
active on more than one CPU (that is, if the buffer has been speculatively traced to on
more than one CPU), the speculative data on the committing CPU will be copied
immediately, while speculative data on other CPUs will be copied some time after the
commit(). Thus, some time may elapse between a commit() beginning on one CPU
and the data being copied from speculative buffers to principal buffers on all CPUs.
This time is guaranteed to be no longer than the time dictated by the cleaning rate; see
“13.7 Options and Tuning” on page 160 for more details.

A committing speculative buffer will not be made available to subsequent
speculation() calls until each per-CPU speculative buffer has been completely
copied into its corresponding per-CPU principal buffer. Similarly, subsequent calls to
speculate() to the committing buffer will be silently discarded, and subsequent
calls to commit() or discard() it will silently fail. Finally, there may be no other
data recording action in a clause containing a commit(), but a clause may contain
multiple commit() calls to commit disjoint buffers.

Chapter 13 • Speculative Tracing 155

13.5 Discarding a Speculation
Speculations are discarded using the discard() function. When a speculative buffer
is discarded, its contents are thrown away. If the speculation has only been active on
the CPU calling discard(), the buffer is immediately available for subsequent calls
to speculation(). If the speculation has been active on more than one CPU, the
discarded buffer will be available for subsequent speculation() some time after the
call to discard(). The time between a discard() on one CPU and the buffer being
made available for subsequent speculations is guaranteed to be no longer than the
time dictated by the cleaning rate. If, at the time speculation() is called, no buffer
is available because all speculative buffers are currently being discarded or committed,
one will see a dtrace message like:

dtrace: 905 failed speculations (available buffer(s) still busy)

The likelihood of this can be reduced by tuning the number of speculation buffers
and/or the cleaning rate; see “13.7 Options and Tuning” on page 160, for details.

13.6 Speculation Example
One potential use for speculations is to highlight a particular code path. For example,
here is a D script to show the entire codepath under the open(2) system call — but
only when the open() fails:

EXAMPLE 13–1 specopen.d: Code Flow for Failed open(2)

#!/usr/sbin/dtrace -Fs

syscall::open:entry,
syscall::open64:entry
{

/*
* The call to speculation() creates a new speculation. If this fails,
* dtrace(1M) will generate an error message indicating the reason for
* the failed speculation(), but subsequent speculative tracing will be
* silently discarded.
*/
self->spec = speculation();
speculate(self->spec);

/*
* Because this printf() follows the speculate(), it is being
* speculatively traced; it will only appear in the data buffer if the

156 Solaris Dynamic Tracing Guide • November 2003 (Beta)

EXAMPLE 13–1 specopen.d: Code Flow for Failed open(2) (Continued)

* speculation is subsequently commited.
*/
printf("%s", stringof(copyinstr(arg0)));

}

fbt:::
/self->spec/
{

/*
* A speculate() with no other actions speculates the default action:
* tracing the EPID.
*/
speculate(self->spec);

}

syscall::open:return,
syscall::open64:return
/self->spec/
{

/*
* To balance the output with the -F option, we want to be sure that
* every entry has a matching return. Because we speculated the
* open entry above, we want to also speculate the open return.
* This is also a convenient time to trace the errno value.
*/
speculate(self->spec);
trace(errno);

}

syscall::open:return,
syscall::open64:return
/self->spec && errno != 0/
{

/*
* If errno is non-zero, we want to commit the speculation.
*/
commit(self->spec);
self->spec = 0;

}

syscall::open:return,
syscall::open64:return
/self->spec && errno == 0/
{

/*
* If errno is not set, we discard the speculation.
*/
discard(self->spec);
self->spec = 0;

}

Running this yields, for example:

Chapter 13 • Speculative Tracing 157

./specopen.d
dtrace: script ’./specopen.d’ matched 24282 probes
CPU FUNCTION
1 => open /var/ld/ld.config
1 -> open
1 -> copen
1 -> falloc
1 -> ufalloc
1 -> fd_find
1 -> mutex_owned
1 <- mutex_owned
1 <- fd_find
1 -> fd_reserve
1 -> mutex_owned
1 <- mutex_owned
1 -> mutex_owned
1 <- mutex_owned
1 <- fd_reserve
1 <- ufalloc
1 -> kmem_cache_alloc
1 -> kmem_cache_alloc_debug
1 -> verify_and_copy_pattern
1 <- verify_and_copy_pattern
1 -> file_cache_constructor
1 -> mutex_init
1 <- mutex_init
1 <- file_cache_constructor
1 -> tsc_gethrtime
1 <- tsc_gethrtime
1 -> getpcstack
1 <- getpcstack
1 -> kmem_log_enter
1 <- kmem_log_enter
1 <- kmem_cache_alloc_debug
1 <- kmem_cache_alloc
1 -> crhold
1 <- crhold
1 <- falloc
1 -> vn_openat
1 -> lookupnameat
1 -> copyinstr
1 <- copyinstr
1 -> lookuppnat
1 -> lookuppnvp
1 -> pn_fixslash
1 <- pn_fixslash
1 -> pn_getcomponent
1 <- pn_getcomponent
1 -> ufs_lookup
1 -> dnlc_lookup
1 -> bcmp
1 <- bcmp
1 <- dnlc_lookup
1 -> ufs_iaccess
1 -> crgetuid

158 Solaris Dynamic Tracing Guide • November 2003 (Beta)

1 <- crgetuid
1 -> groupmember
1 -> supgroupmember
1 <- supgroupmember
1 <- groupmember
1 <- ufs_iaccess
1 <- ufs_lookup
1 -> vn_rele
1 <- vn_rele
1 -> pn_getcomponent
1 <- pn_getcomponent
1 -> ufs_lookup
1 -> dnlc_lookup
1 -> bcmp
1 <- bcmp
1 <- dnlc_lookup
1 -> ufs_iaccess
1 -> crgetuid
1 <- crgetuid
1 <- ufs_iaccess
1 <- ufs_lookup
1 -> vn_rele
1 <- vn_rele
1 -> pn_getcomponent
1 <- pn_getcomponent
1 -> ufs_lookup
1 -> dnlc_lookup
1 -> bcmp
1 <- bcmp
1 <- dnlc_lookup
1 -> ufs_iaccess
1 -> crgetuid
1 <- crgetuid
1 <- ufs_iaccess
1 -> vn_rele
1 <- vn_rele
1 <- ufs_lookup
1 -> vn_rele
1 <- vn_rele
1 <- lookuppnvp
1 <- lookuppnat
1 <- lookupnameat
1 <- vn_openat
1 -> setf
1 -> fd_reserve
1 -> mutex_owned
1 <- mutex_owned
1 -> mutex_owned
1 <- mutex_owned
1 <- fd_reserve
1 -> cv_broadcast
1 <- cv_broadcast
1 <- setf
1 -> unfalloc
1 -> mutex_owned

Chapter 13 • Speculative Tracing 159

1 <- mutex_owned
1 -> crfree
1 <- crfree
1 -> kmem_cache_free
1 -> kmem_cache_free_debug
1 -> kmem_log_enter
1 <- kmem_log_enter
1 -> tsc_gethrtime
1 <- tsc_gethrtime
1 -> getpcstack
1 <- getpcstack
1 -> kmem_log_enter
1 <- kmem_log_enter
1 -> file_cache_destructor
1 -> mutex_destroy
1 <- mutex_destroy
1 <- file_cache_destructor
1 -> copy_pattern
1 <- copy_pattern
1 <- kmem_cache_free_debug
1 <- kmem_cache_free
1 <- unfalloc
1 -> set_errno
1 <- set_errno
1 <- copen
1 <- open

1 <= open 2

13.7 Options and Tuning
As with normal trace operation, if a speculative buffer is full when a speculative
tracing action is attempted, no data will be stored and a drop count will be increased.
If this occurs, one will see a dtrace message like:

dtrace: 38 speculative drops

Note that speculative drops will not prevent the full speculative buffer from being
copied into the principal buffer when it is committed. Similarly, one will see
speculative drops even if drops were experienced on a speculative buffer that was
ultimately discarded. As with principal buffers and aggregation buffers, speculative
drops can be reduced by increasing the buffer size. In the case of speculative buffers,
the buffer size may be increased with the specsize option. As with any size option,
specsize may be specified with any size suffix. As with any buffer option, the
resizing policy of this buffer is dictated by the bufresize option.

160 Solaris Dynamic Tracing Guide • November 2003 (Beta)

As mentioned, speculative buffers may be unavailable when speculation() is
called. If this is because all buffers are simply outstanding (that is, if there exist buffers
that have not been committed or discarded), one will see this message or similar from
dtrace:

dtrace: 1 failed speculation (no speculative buffer available)

Failed speculations of this nature may be reduced by increasing the number of
speculative buffers with the nspec option. The value of nspec defaults to one.

Alternatively, speculation() may fail because all speculative buffers are busy. In
this case, one will see this message or similar from dtrace:

dtrace: 1 failed speculation (available buffer(s) still busy)

This denotes that speculation() was called after commit() was called for a
speculative buffer, but before that buffer was actually committed on all CPUs. Failed
speculations of this nature may be reduced by increasing the rate at which CPUs are
cleaned with the cleanrate option. The value of cleanrate defaults to 101.

Chapter 13 • Speculative Tracing 161

162 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 14

dtrace(1M) Utility

The dtrace(1M) command is provided as a generic front-end to the DTrace facility.
The command implements a simple interface to invoke the D language compiler, the
ability to retrieve buffered trace data from the DTrace kernel facility, and a set of basic
routines to format and print traced data. This chapter provides a complete reference
for the dtrace command.

14.1 Description
The dtrace command provides a generic interface to all of the essential services
provided by the DTrace facility, including:

� Options to list the set of probes and providers currently published by DTrace

� Options to enable probes directly using any of the probe description specifiers
(provider, module, function, name)

� Options to run the D compiler and compile one or more D program files or
programs written directly on the command-line

� Options to generate anonymous tracing programs (see Chapter 29)

� Options to generate program stability reports (see Chapter 32)

� Options to modify DTrace tracing and buffering behavior and enable additional D
compiler features (see Chapter 16)

dtrace can also be used to create D scripts by using it in a #! declaration to create an
interpreter file (see Chapter 15). Finally, you can use dtrace to attempt to compile D
programs and determine their properties without actually enabling any tracing using
the -e option, described below.

163

14.2 Options
The dtrace command accepts the following options:

dtrace [-32 | -64] [-aACeEFGHlqSvVwz] [-b bufsz] [-D name [=def]]
[-I path] [-o output] [-s script] [-U name] [-x arg [=val]] [-Xa | c | s
| t] [-P provider [[predicate]action]] [-m [[provider:]module
[[predicate]action]]] [-f [[provider:]module:]func [[predicate]action]]
[-n [[[provider:]module:]func:]name [[predicate]action]] [-i probe-id
[[predicate]action]]

where predicate is any D predicate enclosed in slashes / / and action is any D
statement list enclosed in braces { } according to the previously described D language
syntax. If D program code is provided as an argument to the -P, -m, -f, -n, or -i
options this text must be appropriately quoted to avoid intepretation by the shell. The
options are as follows:

-32, -64 The D compiler produces programs using the native data model of the
operating system kernel. You can use the isainfo(1) -b command to
determine the current operating system data model. If the -32 option is
specified, dtrace will force the D compiler to compile a D program using
the 32-bit data model. If the -64 option is specified, dtrace will force the
D compiler to compile a D program using the 64-bit data model. These
options are typically not required as dtrace selects the native data model
as the default. The data model affects the sizes of integer types and other
language properties. D programs compiled for either data model may be
executed on both 32-bit and 64-bit kernels. The -32 and -64 options also
determine the ELF file format (ELF32 or ELF64) produced by the -G option.

-a Claim anonymous tracing state and display the traced data. You can
combine the -a option with the -e option to force dtrace to exit
immediately after consuming the anonymous tracing state rather than
continuing to wait for new data. See Chapter 29 for more information
about anonymous tracing.

-A Generate driver.conf(4) directives for anonymous tracing. If the -A
option is specified, dtrace compiles any D programs specified using the
-s option or on the command-line and constructs a set of dtrace(7D)
configuration file directives to enable the specified probes for anonymous
tracing (see Chapter 29) and then exits. By default, dtrace attempts to
store the directives to the file /kernel/drv/dtrace.conf; this behavior
can be modified using the -o option to specify an alternate output file.

-b Set principal trace buffer size. The trace buffer size can include any of the
size suffixes k, m, g, or t as described in Chapter 29. If the buffer space
cannot be allocated, dtrace attempts to reduce the buffer size or exit
depending on the setting of the bufresize property.

164 Solaris Dynamic Tracing Guide • November 2003 (Beta)

-C Run the C preprocessor cpp(1) over D programs before compiling them.
Options can be passed to the C preprocessor using the -D, -U, -I, and -H
options. The degree of C standard conformance can be selected using the
-X option. Refer to the description of the -X option for a description of the
set of tokens defined by the D compiler when invoking the C preprocessor.

-D Define the specified name when invoking cpp(1) (enabled using the -C
option). If an equals sign (=) and additional value are specified, the name is
assigned the corresponding value. This option passes the -D option to each
cpp invocation.

-e Exit after compiling any requests and consuming anonymous tracing state
(-a option) but prior to enabling any probes. This option can be combined
with the -a option to print anonymous tracing data and exit, or it can be
combined with D compiler options to verify that the programs compile
without actually executing them and enabling the corresponding
instrumentation.

-E Exit after compiling any requests and enabling probes but prior to tracing
any data. This option can be used to compile a set of probes and enable
them without attempting to consume any buffer data from DTrace.

-f Specify function name to trace or list (-l option). The corresponding
argument can include any of the probe description forms
provider:module:function, module:function, or function. Unspecified probe
description fields are left blank and match any probes regardless of the
values in those fields. If no qualifiers other than function are specified in the
description, all probes with the corresponding function are matched. The -f
argument can be suffixed with an optional D probe clause. More than one
-f option may be specified on the command-line at a time.

-F Coalesce trace output by identifying function entry and return. Function
entry probe reports are indented and their output is prefixed with ->.
Function return probe reports are unindented and their output is prefixed
with <-.

-G Generate an ELF file containing an embedded DTrace program. The DTrace
probes specified in the program are saved inside of a relocatable ELF object
which can be linked into another program.

-H Print the pathnames of included files when invoking cpp(1) (enabled using
the -C option). This option passes the -H option to each cpp invocation,
causing it to display the list of pathnames, one per line, to stderr.

-i Specify probe identifier to trace or list (-l option). Probe IDs are specified
using decimal integers as shown by dtrace -l. The -i argument can be
suffixed with an optional D probe clause. More than one -i option may be
specified on the command-line at a time.

-I Add the specified directory path to the search path for #include files
when invoking cpp(1) (enabled using the -C option). This option passes

Chapter 14 • dtrace(1M) Utility 165

the -I option to each cpp invocation. The specified directory is inserted
into the search path ahead of the default directory list.

-l List probes instead of enabling them. If the -l option is specified, dtrace
will produce a report of the probes matching the descriptions given using
the -P, -m, -f, -n, and -i options. If none of these options are specified,
all probes are listed.

-m Specify module name to trace or list (-l option). The corresponding
argument can include any of the probe description forms provider:module or
module. Unspecified probe description fields are left blank and match any
probes regardless of the values in those fields. If no qualifiers other than
module are specified in the description, all probes with a corresponding
module are matched. The -m argument can be suffixed with an optional D
probe clause. More than one -m option may be specified on the
command-line at a time.

-n Specify probe name to trace or list (-l option). The corresponding
argument can include any of the probe description forms
provider:module:function:name, module:function:name, function:name, or name.
Unspecified probe description fields are left blank and match any probes
regardless of the values in those fields. If no qualifiers other than name are
specified in the description, all probes with a corresponding name are
matched. The -n argument can be suffixed with an optional D probe clause.
More than one -n option may be specified on the command-line at a time.

-o Specify the output file for the -A and -G options. If the -A option is present
and -o is not present, the default output file is
/kernel/drv/dtrace.conf. If the -G option is present and the -s
option’s argument is of the form filename.d and -o is not present, the
default output file is filename.o; otherwise the default output file is d.out.

-P Specify provider name to trace or list (-l option). The remaining probe
description fields module, function, and name are left blank and match any
probes regardless of the values in those fields. The -P argument can be
suffixed with an optional D probe clause. More than one -P option may be
specified on the command-line at a time.

-q Set quiet mode. dtrace will suppress messages such as the number of
probes matched by the specified options and D programs and will not print
column headers, the CPU ID, the probe ID, or insert newlines into the
output. Only data traced and formatted by D program statements such as
trace() and printf() will be displayed to stdout.

-s Compile the specified D program source file. If the -e option is present, the
program will be compiled but no instrumentation will be enabled. If the -l
option is present, the program will be compiled and the set of probes
matched by it will be listed, but no instrumentation will be enabled. If
neither -e nor -l are present, the instrumentation specified by the D
program will be enabled and tracing will begin.

166 Solaris Dynamic Tracing Guide • November 2003 (Beta)

-S Show D compiler intermediate code. The D compiler will produce a report
of the intermediate code generated for each D program to stderr.

-U Undefine the specified name when invoking cpp(1) (enabled using the -C
option). This option passes the -U option to each cpp invocation.

-v Set verbose mode. If the -v option is specified, dtrace will produce a
program stability report showing the minimum interface stability and
dependency level for the specified D programs. DTrace stability levels are
explained in further detail in Chapter 32.

-V Report the highest D programming interface version supported by
dtrace. The version information is printed to stdout and the dtrace
command exits. See Chapter 34 for more information about DTrace
versioning features.

-w Permit destructive actions in D programs specified using the -s, -P, -m,
-f, -n, or -i options. If the -w option is not specified, dtrace will not
permit the compilation or enabling of a D program that contains
destructive actions. Destructive actions are described in further detail in
Chapter 10.

-x Enable or modify a DTrace runtime option or D compiler option. The list of
options is found in Chapter 16. Boolean options are enabled by specifying
their name. Options with values are set by separating the option name and
value with an equals sign (=).

-X Specify the degree of conformance to the ISO C standard that should be
selected when invoking cpp(1) (enabled using the -C option). The -X
option argument affects the value and presence of the __STDC__ macro
depending upon the value of the argument letter:

a (default) ISO C plus K&R compatibility extensions, with
semantic changes required by ISO C. This is the
default mode if -X is not specified. The predefined
macro __STDC__ has a value of 0 when cpp is
invoked in conjunction with the -Xa option.

c (conformance) Strictly conformant ISO C, without K&R C
compatibility extensions. The predefined macro
__STDC__ has a value of 1 when cpp is invoked in
conjunction with the -Xc option.

s (K&R C) K&R C only. The macro __STDC__ is not defined
when cpp is invoked in conjunction with the -Xs
option.

t (transition) ISO C plus K&R C compatibility extensions, without
semantic changes required by ISO C. The predefined
macro __STDC__ has a value of 0 when cpp is
invoked in conjunction with the -Xt option.

Chapter 14 • dtrace(1M) Utility 167

As the -X option only affects how the D compiler invokes the C
preprocessor, the -Xa and -Xt options are equivalent from the perspective
of D and both are provided only to ease re-use of settings from a C build
environment.

Regardless of the -X mode, the following additional C preprocessor
definitions are always specified and valid in all modes:

� __sun
� __unix
� __SVR4
� __sparc (on SPARC™ systems only)
� __i386 (on x86 systems only)
� __‘uname -s‘_‘uname -r‘ (for example, __SunOS_5_10)
� __SUNW_D=1
� __SUNW_D_VERSION=0xMMmmmuuu (where MM is the Major release

value in hexadecimal, mmm is the Minor release value in hexadecimal,
and uuu is the Micro release value in hexadecimal; see Chapter 34 for
more information about DTrace versioning)

-z Permit probe descriptions that match zero probes. If the -z option is not
specified, dtrace will report an error and exit if any probe descriptions
specified in D program files (-s option) or on the command-line (-P, -m,
-f, -n, or -i options) contain descriptions that do not match any known
probes.

14.3 Operands
Zero or more additional arguments may be specified on the dtrace command line to
define a set of macro variables ($1, $2, and so on) to be used in any D programs
specified using the -s option or on the command-line. The use of macro variables is
described further in Chapter 15.

14.4 Exit Status
The following exit values are returned by the dtrace utility:

0 The specified requests were completed successfully. For D program
requests, the 0 exit status indicates programs were successfully compiled,

168 Solaris Dynamic Tracing Guide • November 2003 (Beta)

probes were successfully enabled, or anonymous state was successfully
retrieved. dtrace returns 0 even if the specified tracing requests
encounted errors or drops.

1 A fatal error occurred. For D program requests, the 1 exit status indicates
that program compilation failed or that the specified request could not be
satisfied.

2 Invalid command-line options or arguments were specified.

Chapter 14 • dtrace(1M) Utility 169

170 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 15

Scripting

The dtrace(1M) utility can be used to create interpreter files out of D programs
similar to shell scripts that you can install as reusable interactive DTrace tools. The D
compiler and dtrace command provide a set of macro variables that are expanded by
the D compiler that make it easy to create DTrace scripts. This chapter provides a
reference for the macro variable facility and tips for creating persistent scripts.

15.1 Interpreter Files
Similar to your shell and utilities such as awk(1) and perl(1), dtrace(1M) can be
used to create executable interpreter files. An interpreter file begins with a line of the
form:

#! pathname [arg]

where pathname is the path of the interpreter and arg is a single optional argument.
When an interpreter file is executed, the system invokes the specifier interpreter. If arg
was specified in the interpreter file, it is passed as an argument to the interpreter. The
path to the interpreter file itself and any additional arguments specified when it was
executed are then appended to the interpreter argument list. Therefore, you will
always need to create DTrace interpreter files with at least these arguments:

#!/usr/sbin/dtrace -s

When your interpreter file is executed, the argument to the -s option will therefore be
the pathname of the interpreter file itself. dtrace will then read, compile, and execute
this file as if you had typed:

dtrace -s interpreter-file

171

in your shell. Here is a simple example of how to create and execute a dtrace
interpreter file. Type in the following D source code and save it in a file named
interp.d:

#!/usr/sbin/dtrace -s
BEGIN
{

trace("hello");
exit(0);

}

You can now mark the interp.d file as executable and execute it:

chmod a+rx interp.d
./interp.d
dtrace: script ’./interp.d’ matched 1 probe
CPU ID FUNCTION:NAME
1 1 :BEGIN hello

#

Remember that the #! directive must comprise the first two characters of your file
with no intervening or preceding whitespace. The D compiler knows to automatically
ignore this line when it processes the interpreter file.

dtrace uses getopt(3) to process its command-line options, so you can combine
multiple options in your single interpreter argument. For example, to add the -q
option to the preceding example you could change the interpreter directive to:

#!/usr/sbin/dtrace -qs

If you specify multiple option letters, the -s option must always end the list of
boolean options so that the next argument (the interpreter file name) is processed as
the argument corresponding to the -s option.

If you need to specify more than one option that requires an argument in your
interpreter file, you will not be able to fit all your options and arguments into the
single interpreter argument. Instead, use the #pragma D option directive syntax to
set your options. All of the dtrace command-line options have #pragma equivalents
that you can use, as shown in Chapter 16.

15.2 Macro Variables
The D compiler defines a set of built-in macro variables that you can use when writing
D programs or interpreter files. Macro variables are identifiers that are prefixed with a
dollar sign ($) and are expanded once by the D compiler when processing your input
file. The D compiler provides the following macro variables:

172 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 15–1 D Macro Variables

Name Description Reference

$[0-9]+ macro arguments See “15.3 Macro Arguments”
on page 174, below

$egid effective group-ID getegid(2)

$euid effective user-ID geteuid(2)

$gid real group-ID getgid(2)

$pid process ID getpid(2)

$pgid parent group ID getpgid(2)

$ppid parent process ID getppid(2)

$projid project ID getprojid(2)

$sid session ID getsid(2)

$taskid task ID gettaskid(2)

$uid real user-ID getuid(2)

Except for the $[0-9]+ macro arguments (described below), the macro variables all
expand to integers corresponding to system attributes such as the process ID and user
ID. The variables expand to the attribute value associated with the current dtrace
process itself, or whatever process is running the D compiler.

Macro variables are useful in interpreter files because they allow you to create
persistent D programs that do not need to be edited each time you want to use them,
as we did for some of our earliest examples in Chapter 1. For example, to count all
system calls except those executed by the dtrace command itself, you can use the
following D program clause containing $pid:

syscall:::entry
/pid != $pid/
{

@calls = count();

}

This clause always produces the desired result, even though each invocation of the
dtrace command will have a different process ID.

Macro variables can be used anywhere an integer, identifier, or string can be used in a
D program, but are expanded only once (that is, not recursively) when the input file is
parsed. Each macro variable is expanded to form a separate input token, and cannot
be concatenated with other text to yield a single token. For example, if $pid expands
to the value 456, the D code:

Chapter 15 • Scripting 173

123$pid

would expand to the two adjacent tokens 123 and 456 (resulting in a syntax error),
rather than the single integer token 123456.

Macro variables are expanded and concatenated with adjacent text inside of D probe
descriptions at the start of your program clauses. For example, the following clause
utilizes the DTrace pid provider to instrument the dtrace command itself:

pid$pid:libc.so:printf:entry
{

...

}

Macro variables are only expanded once within each probe description field; they may
not contain probe description delimeters (:).

15.3 Macro Arguments
The D compiler also provides a set of macro variables corresponding to any additional
argument operands specified as part of the dtrace command invocation. These macro
arguments are accessed using the built-in names $0 for name of the D program file or
dtrace command, $1 for the first additional operand, $2 for the second operand, and
so on. If you use the dtrace -s option, $0 expands to the value of the name of the
input file used with this option. For D programs specified on the command-line, $0
expands to the value of argv[0] used to exec dtrace itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the
form of the corresponding text. As with all macro variables, macro arguments can be
used anywhere integer, identifier, and string tokens can be used in a D program. All of
the following examples could form valid D expressions assuming appropriate macro
argument values:

execname == $1 /* with a string macro argument */
x += $1 /* with an integer macro argument */

trace(x->$1) /* with an identifier macro argument */

Macro arguments can be used to create dtrace interpreter files that act like real
Solaris commands and use information specified by a user or by another tool to
modify their behavior. For example, the following D interpreter file traces write(2)
system calls executed by a particular process ID:

#!/usr/sbin/dtrace -s

syscall::write:entry

174 Solaris Dynamic Tracing Guide • November 2003 (Beta)

/pid == $1/
{

}

If you make this interpreter file executable, you can specify the value of $1 using an
additional command-line argument to your interpreter file:

chmod a+rx ./tracewrite

./tracewrite 12345

The resulting command invocation counts each write(2) system call executed by
process ID 12345.

If your D program references a macro argument that is not provided on the
command-line, an appropriate error message will be printed and your program will
fail to compile:

./tracewrite
dtrace: failed to compile script ./tracewrite: line 4:

macro argument $1 is not defined

The D compiler will also produce an error message if additional arguments are
specified on the command line that are not referenced by your D program.

The macro argument values must match the form of an integer, identifier, or string. If
the argument does not match any of these forms, the D compiler will report an
appropriate error message. When specifying string macro arguments to a DTrace
interpreter file, it is typically necessary to surround the argument in an extra pair of
single quotes to avoid interpretation of the double quotes and string contents by the
shell:

./foo ’"a string argument"’

If you want your D macro arguments to always be interpreted as string tokens even if
they match the form of an integer or identifier, you can prefix the macro variable or
argument name with two leading dollar signs (for example, $$1), to force the D
compiler to interpret the argument value as if it were a string surrounded by double
quotes. All the usual D string escape sequences (see Table 2–5) are expanded inside of
any string macro arguments, regardless of whether they are referenced using the $arg
or $$arg form of the macro.

Chapter 15 • Scripting 175

176 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 16

Options and Tunables

To allow for customization, DTrace affords its consumers several important degrees of
freedom. To minimize the likelihood of requiring specific tuning, DTrace is
implemented using reasonable default values and flexible default policies. However,
situations may arise that require tuning the behavior of DTrace on a
consumer-by-consumer basis. In this chapter, we describe the DTrace options and
tunables and the interfaces you can use to modify them.

16.1 Consumer Options
DTrace is tuned by setting or enabling options; the available options (along with the
units of their corresponding values) are listed in the table below. For some options,
dtrace(1M) provides a corresponding command-line option; these are listed in the
third column. Details on the specifics of each option may be found in the chapter listed
in the rightmost column.

TABLE 16–1 DTrace Consumer Options

Option Name Value dtrace(1M) Alias Description See Chapter

aggrate time Rate of
aggregation
reading

Chapter 9

aggsize size Aggregation
buffer size

Chapter 9

bufresize auto or manual Buffer resizing
policy

Chapter 11

177

TABLE 16–1 DTrace Consumer Options (Continued)
Option Name Value dtrace(1M) Alias Description See Chapter

bufsize size -b Principal buffer
size

Chapter 11

cleanrate time Cleaning rate Chapter 13

cpu scalar -c CPU on which to
enable tracing

Chapter 11

dynvarsize size Dynamic variable
space size

Chapter 3

flowindent — -F Indent function
entry and prefix
with ->;
unindent
function return
and prefix with
<-

Chapter 14

grabanon — -a Claim
anonymous state

Chapter 29

nspec scalar Number of
speculations

Chapter 13

quiet — -q Only output
explicitly traced
data

Chapter 14

specsize size Speculation
buffer size

Chapter 13

strsize size String size Chapter 6

stackframes scalar Number of stack
frames

Chapter 10

statusrate time Rate of status
checking

switchrate time Rate of buffer
switching

Chapter 11

ustackframes scalar Number of user
stack frames

Chapter 10

Values that denote sizes may be given an optional suffix of k, m, g, or t to denote
kilobytes, megabytes, gigabytes and terabytes respectively. Values that denote times
may be given an optional suffix of ns, us, ms, s or hz to denote nanoseconds,
microseconds, milliseconds, seconds, and number-per-second, respectively.

178 Solaris Dynamic Tracing Guide • November 2003 (Beta)

16.2 Modifying Options
Options may be set in a D script by using #pragma D followed by the string option
and the option name. If the option takes a value, the option name should be followed
by an equals sign (=) and the option value. For example, all of the following are valid
option settings:

#pragma D option nspec=4
#pragma D option grabanon
#pragma D option bufsize=2g
#pragma D option switchrate=10hz
#pragma D option aggrate=100us

#pragma D option bufresize=manual

The dtrace(1M) command also permits accepts option settings on the command-line
as an argument to the -x option. For example:

dtrace -x nspec=4 -x grabanon -x bufsize=2g \

-x switchrate=10hz -x aggrate=100us -x bufresize=manual

If an invalid option is specified, dtrace will indicate that the option name is invalid
and abort:

dtrace -x wombats=25
dtrace: failed to set option -x wombats: Invalid option name

#

Similarly, if an option value is not valid for the given option (due to an illegal suffix or
otherwise illegal value), dtrace will indicate that the value itself is invalid:

dtrace -x bufsize=100wombats
dtrace: failed to set option -x bufsize: Invalid value for specified option

#

If an option is set more than once, subsequent settings overwrite earlier settings. Some
options (like grabanon) may only be set; the presence of the option sets it, and there is
no way to subsequently unset it.

If options are set for an anonymous enabling, those options will be honored by the
DTrace consumer that claims the anonymous state. See Chapter 29 for details on
enabling anonymous tracing.

Chapter 16 • Options and Tunables 179

180 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 17

dtrace Provider

The dtrace provider provides several probes related to DTrace itself. These probes
can be used for initializing state before tracing begins, processing state after tracing
has completed, and handling unexpected execution errors in the probes themselves.

17.1 The BEGIN Probe
The BEGIN probe fires before any other — no other probe will fire until all BEGIN
clauses have completed. This probe can be used to initialize any state that is needed in
other probes. For example, we can use the BEGIN probe to initialize an associative
array to map between mmap(2) protection bits and a textual representation:

BEGIN
{

prot[0] = "---";
prot[1] = "r--";
prot[2] = "-w-";
prot[3] = "rw-";
prot[4] = "--x";
prot[5] = "r-x";
prot[6] = "-wx";
prot[7] = "rwx";

}

syscall::mmap:entry
{

printf("mmap with prot = %s", prot[arg2 & 0x7]);

}

181

The BEGIN probe fires in an unspecified context. This means that the output of
stack() or ustack(), and the value of context-specific variables (for example,
execname), are all arbitrary, and are not values that should be relied upon or
interpreted to infer any meaningful information. There are no arguments defined for
the BEGIN probe.

17.2 The END Probe
The END probe fires after all others — it will not fire until all other probe clauses have
completed. This can be used to process state that has been gathered or to format the
output — the printa() action is often used in the END probe. The BEGIN and END
probes can be used together to measure the total time spent tracing:

BEGIN
{

start = timestamp;
}

/*
* ... other tracing actions...
*/

END
{

printf("total time: %d secs", (timestamp - start) / 1000000000);

}

See “9.4 Normalization” on page 116 and “12.2 printa()” on page 149 for other
common uses of the END probe.

As with the BEGIN probe, there are no arguments to the END probe and the context in
which it fires is arbitrary and should not be depended upon.

When tracing with the bufpolicy option set to fill, adequate space is reserved to
accomodate any records traced in the END probe. See “11.2.2.1 fill Policy and END
Probes” on page 139 for details.

17.2.1 The END Probe and the exit() Action
The exit() action causes tracing to stop and the END probe to fire, however there is
some delay between the invocation of the exit() action and the END probe firing
(during this delay, no probes will fire). After a probe invokes the exit() action, the
END probe is not fired until the DTrace consumer determines that exit() has been
called and stops tracing; the rate at which the exit status is checked can be set using
statusrate option. (See Chapter 16).

182 Solaris Dynamic Tracing Guide • November 2003 (Beta)

17.3 The ERROR Probe
The ERROR probe fires when there is a run-time error in executing a clause for a
DTrace probe. For example, if a clause attempts to dereference a NULL pointer, the
ERROR probe will fire:

EXAMPLE 17–1 error.d: Record Errors

BEGIN
{

*(char *)NULL;
}

ERROR
{

printf("Hit an error!");

}

When we run this program, we’ll see output like this:

dtrace -s ./error.d
dtrace: script ’./error.d’ matched 2 probes
CPU ID FUNCTION:NAME
2 3 :ERROR Hit an error!

dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address
(0x0) in action #1 at DIF offset 12

dtrace: 1 error on CPU 2

We can see that our ERROR probe fired, but we also see output from dtrace(1M)
reporting the error. This is because dtrace has its own enabling of the ERROR probe
to allow it to report errors! Using the ERROR probe, you can create your own custom
error handling.

The arguments to the ERROR probe are as follows:

arg1 The enabled probe identifier (EPID) of the
probe that caused the error

arg2 The index of the action that caused the fault

arg3 The DIF offset into that action or -1 if not
applicable

arg4 The fault type (see below)

arg5 Value particular to the fault type (see below)

Chapter 17 • dtrace Provider 183

The table below describes the various fault types and the value that arg5 will have for
each:

arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type —

DTRACEFLT_BADADDR Access to unmapped or
invalid address

Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation —

DTRACEFLT_DIVZERO Integer divide by zero —

DTRACEFLT_NOSCRATCH Insufficient scratch space to
satisfy scratch allocation

—

DTRACEFLT_KPRIV Attempt to access a kernel
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter
stack overflow

—

If the actions taken in the ERROR probe itself cause an error, that error is silently
dropped — the ERROR probe will not be recursively invoked.

17.4 Stability
The dtrace provider uses DTrace’s stability mechanism (see Chapter 32) to describe
its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

184 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Element Name stability Data stability Dependency class

Name Stable Stable Common

Arguments Stable Stable Common

Chapter 17 • dtrace Provider 185

186 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 18

lockstat Provider

The lockstat provider makes available probes that can be used to discern lock
contention statistics, or to understand virtually any aspect of locking behavior. Indeed,
the lockstat(1M) command is simply a DTrace consumer that uses the lockstat
provider to gather its raw data.

18.1 Overview
The lockstat provider makes available two kinds of probes:

Contention-event probes correspond to contention on a synchronization primitive, and
fire when a thread is forced to wait for a resource to become available. Solaris is
generally optimized for the non-contention case, so prolonged contention is not
expected; these probes should be used to understand those cases where contention
does arise. Because contention is designed to be (relatively) rare, enabling
contention-event probes generally doesn’t have a serious probe effect; they can be
enabled without concern for substantially affecting performance.

Hold-event probes correspond to acquiring, releasing or otherwise manipulating a
synchronization primitive. As such, these probes can be used to answer arbitrary
questions about the way synchronization primitives are manipulated. Because Solaris
acquires and releases synchronization primitives very often (on the order of millions
of times per second per CPU on a busy system), enabling hold-event probes has a
much higher probe effect than does enabling contention-event probes. While the probe
effect induced by enabling them can be substantial, it is not pathological; they may still
be enabled with confidence on production systems.

The lockstat provider makes available probes that correspond to the different
synchronization primitives in Solaris; these primitives — and the probes that
correspond to them — are discussed in the sections that follow.

187

18.2 Adaptive Lock Probes
Adaptive locks enforce mutual exclusion to a critical section, and may be acquired in
most contexts in the kernel. Because they have few context restrictions, adaptive locks
comprise the vast majority of synchronization primitives in the Solaris kernel. These
locks are adaptive in their behavior with respect to contention: when a thread attempts
to acquire a held adaptive lock, it will determine if the owning thread is currently
running on a CPU. If the owner is running on another CPU, the acquiring thread will
spin; if the owner is not running, the acquiring thread will block.

The four lockstat probes pertaining to adaptive locks are in Table 18–1. For each probe,
arg0 contains a pointer to the kmutex_t structure that represents the adaptive lock.

TABLE 18–1 Adaptive Lock Probes

adaptive-acquire Hold-event probe that fires immediately after an adaptive lock is
acquired.

adaptive-block Contention-event probe that fires after a thread that has blocked on a
held adaptive mutex has reawakened and has acquired the mutex. If
both are enabled, adaptive-block fires before adaptive-acquire.
At most one of adaptive-block and adaptive-spin will fire for a
single lock acquisition. arg1 for adaptive-block contains the sleep
time in nanoseconds.

adaptive-spin Contention-event probe that fires after a thread that has spun on a held
adaptive mutex has successfully acquired the mutex. If both are
enabled, adaptive-spin fires before adaptive-acquire. At most
one of adaptive-spin and adaptive-block will fire for a single
lock acquisition. arg1 for adaptive-spin contains the spin count: the
number of iterations that were taken through the spin loop before the
lock was acquired. The spin count has little meaning on its own, but can
be used to compare spin times.

adaptive-release Hold-event probe that fires immediately after an adaptive lock is
released.

18.3 Spin Lock Probes
There are some contexts in the kernel — notably high-level interrupt context and any
context manipulating dispatcher state — in which one may not block. In these
contexts, this restriction prevents the use of adaptive locks. Spin locks are instead used

188 Solaris Dynamic Tracing Guide • November 2003 (Beta)

to effect mutual exclusion to critical sections in these contexts. As the name implies,
the behavior of these locks in the presence of contention is to spin until the lock is
released by the owning thread. The three probes pertaining to spin locks are in Table
18–2.

TABLE 18–2 Spin Lock Probes

spin-acquire Hold-event probe that fires immediately after a spin lock is acquired.

spin-spin Contention-event probe that fires after a thread that has spun on a held spin
lock has successfully acquired the spin lock. If both are enabled,
spin-spin fires before spin-acquire. arg1 for spin-spin contains the
spin count: the number of iterations that were taken through the spin loop
before the lock was acquired. The spin count has little meaning on its own,
but can be used to compare spin times.

spin-release Hold-event probe that fires immediately after a spin lock is released.

Adaptive locks are much more common than spin locks; you can use a simple DTrace
script to understand the degree to which this is true:

lockstat:::adaptive-acquire
/execname == "date"/
{

@locks["adaptive"] = count();
}

lockstat:::spin-acquire
/execname == "date"/
{

@locks["spin"] = count();

}

Run this script in one window, and a date(1) command in another. When you
terminate the DTrace script you’ll see something like:

dtrace -s ./whatlock.d
dtrace: script ’./whatlock.d’ matched 5 probes
^C
spin 26

adaptive 2981

As this indicates, over 99 percent of the locks acquired in running date are adaptive
locks. (It may be surprising that so many locks are acquired in doing something as
simple as a date. This is only startling to the uninitiated: the large number of locks is
a natural artifact of the fine-grained locking required of an extremely scalable system
like the Solaris kernel.)

Chapter 18 • lockstat Provider 189

18.4 Thread Locks
Thread locks are a special kind of spin lock that are used to lock a thread for purposes
of changing thread state. Thread lock hold events are available as spin lock hold-event
probes (that is, spin-acquire and spin-release), but contention events have
their own probe specific to thread locks. The thread lock hold-event probe is in Table
18–3.

TABLE 18–3 Thread Lock Probe

thread-spin Contention-event probe that fires after a thread has spun on a thread lock.
Like other contention-event probes, if both the contention-event probe and
the hold-event probe are enabled, thread-spin will fire before
spin-acquire. Unlike other contention-event probes, however,
thread-spin fires before the lock is actually acquired. As a result, there may
be multiple thread-spin probe firings corresponding to a single
spin-acquire probe firing.

18.5 Readers/Writer Lock Probes
Readers/writer locks enforce a policy of allowing multiple readers or a single writer —
but not both — to be in a critical section. They are typically used for structures that are
searched more frequently than they are modified, and for which there is substantial
time in the critical section. (If critical section times are short, readers/writer locks will
implicitly serialize over the shared memory used to implement the lock, giving them
no advantage over adaptive locks.) See rwlock(9F) for more details on readers/writer
locks.

The probes pertaining to readers/writer locks are in Table 18–4. For each probe, arg0
contains a pointer to the krwlock_t structure that represents the adaptive lock.

TABLE 18–4 Readers/Writer Lock Probes

rw-acquire Hold-event probe that fires immediately after a readers/writer lock is
acquired. arg1 contains the constant RW_READER if the lock was acquired
as a reader, and RW_WRITER if the lock was acquired as a writer.

190 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 18–4 Readers/Writer Lock Probes (Continued)
rw-block Contention-event probe that fires after a thread that has blocked on a held

readers/writer lock has reawakened and has acquired the lock. arg1
contains the length of time (in nanoseconds) that the current thread had to
sleep to acquire the lock. arg2 contains the constant RW_READER if the lock
was acquired as a reader, and RW_WRITER if the lock was acquired as a
writer. arg3 and arg4 contain more information on the reason for
blocking. arg3 is non-zero if and only if the lock was held as a writer when
the current thread blocked and arg4 contains the readers count when the
current thread blocked. If both are enabled, rw-block fires before
rw-acquire.

rw-upgrade Hold-event probe that fires after a thread has successfully upgraded a
readers/writer lock from a reader to a writer. Upgrades do not have an
associated contention event because they are only possible through a
non-blocking interface, rw_tryupgrade(9F).

rw-downgrade Hold-event probe that fires after a thread had downgraded its ownership of
a readers/writer lock from writer to reader. Downgrades do not have an
associated contention event because — by definition — they always succeed
without contention.

rw-release Hold-event probe that fires immediately after a readers/writer lock is
released. arg1 contains the constant RW_READER if the released lock was
held as a reader, and RW_WRITER if the released lock was held as a writer.
Note that due to upgrades and downgrades, the lock may not have been
released as it was acquired.

18.6 Stability
The lockstat provider uses DTrace’s stability mechanism (see Chapter 32) to
describe its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

Chapter 18 • lockstat Provider 191

192 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 19

profile Provider

The profile provider provides unanchored probes — probes that are not associated
with any particular point of execution, but rather with some asynchronous event
source. In the case of the profile provider, the event source is a time-based interrupt
firing every fixed, specified time interval. These probes can be used to sample some
aspect of system state every unit time — and the samples can then be used to infer
system behavior. If the sampling rate is high, or the sampling time is long, an accurate
inference is possible. Thanks to the arbitrary actions of DTrace, the profile provider
can be used to sample practically anything in the system. For example, one could
sample the state of the current thread, the state of the CPU, or the current machine
instruction.

19.1 profile-n probes
A profile-n probe fires every fixed interval on every CPU at high interrupt level.
The probe’s firing interval is denoted by the value of n: the interrupt source will fire n
times per second. n may also have an optional time suffix, in which case n is
interpreted to be in the units denoted by the suffix. Valid suffixes — and the units they
denote — are in Table 19–1.

TABLE 19–1 Valid time suffixes

Suffix Time units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

193

TABLE 19–1 Valid time suffixes (Continued)
Suffix Time units

sec or s seconds

min or m minutes

hour or h hours

day or d days

hz hertz (frequency per second)

For example, we can create a probe to fire at 97 hertz to sample the currently running
process:

#pragma D option quiet

profile-97
/pid != 0/
{

@proc[pid, execname] = count();
}

END
{

printf("%-8s %-40s %s\n", "PID", "CMD", "COUNT");
printa("%-8d %-40s %@d\n", @proc);

}

Running the above for a little while:

dtrace -s ./prof.d
^C
PID CMD COUNT
223887 sh 1
100360 httpd 1
100409 mibiisa 1
223887 uname 1
218848 sh 2
218984 adeptedit 2
100224 nscd 3
3 fsflush 4
2 pageout 6
100372 java 7
115279 xterm 7
100460 Xsun 7
100475 perfbar 9

223888 prstat 15

You can also use the profile-n provider to sample information about the running
process. For example, this D script uses a 1,001 hertz profile probe to sample the
current priority of a specified process:

194 Solaris Dynamic Tracing Guide • November 2003 (Beta)

profile-1001
/pid == $1/
{

@proc[execname] = lquantize(curlwpsinfo->pr_pri, 0, 100, 10);

}

To see this in action, type the following in one window:

$ echo $$
494621

$ while true ; do let i=0 ; done

In another window, run the D script for a little while:

dtrace -s ./profpri.d 494621
dtrace: script ’./profpri.d’ matched 1 probe
^C
ksh

value ------------- Distribution ------------- count
< 0 | 0
0 |@@@@@@@@@@@@@@@@@@@@@ 7443
10 |@@@@@@ 2235
20 |@@@@ 1679
30 |@@@ 1119
40 |@ 560
50 |@ 554

60 | 0

This shows you the clear bias of the timesharing scheduling class: because the shell
process is spinning on the CPU, its priority is constantly being lowered by the system.
If the shell process were running less frequently, its priority would be higher. Indeed,
as an experiment, ^C the spinning shell, and rerun the script:

dtrace -s ./profpri.d 494621

dtrace: script ’./profpri.d’ matched 1 probe

Now go back to the shell, and type a few characters. When you terminate the DTrace
script, you’ll see output like the following:

ksh
value ------------- Distribution ------------- count

40 | 0
50 |@@ 14

60 | 0

Because the shell process was sleeping awaiting user-input instead of spinning on the
CPU, when it did run it was run at a much higher priority.

Chapter 19 • profile Provider 195

19.2 tick-n probes
Like profile-n probes, tick-n probes fire every fixed interval at high interrupt
level. However, unlike profile-n probes — which fire on every CPU — tick-n
probes fire on only one CPU per interval. The actual CPU may change over time, but
tick-n probes are guaranteed to only fire on one CPU at a time. As with profile-n
probes, n defaults to rate-per-second but may also have an optional time suffix.
tick-n probes have several uses; one use may be to provide some periodic output, or
to take a periodic action.

19.3 Arguments
The arguments to profile probes are as follows:

arg0 The program counter (PC) in the kernel at the time that the probe fired, or 0
if the current process was not executing in the kernel at the time that the
probe fired

arg1 The PC in the user-level process at the time that the probe fired, or 0 if the
current process was executing at the kernel at the time that the probe fired

As the above implies, arg0 is non-zero and arg1 is zero, or arg0 is zero and arg1 is
non-zero. (That is, the logical exclusive-or of arg0 and arg1 is always true.) Thus,
arg0 and arg1 may be used to differentiate user-level from kernel level, as in this
simple example:

profile-1ms
{

@ticks[arg0 ? "kernel" : "user"] = count();

}

19.4 Resolution
The profile provider makes use of arbitrary resolution interval timers in the
operating system. While all hardware architectures support this facility in some form,
not all have support for truly arbitrary resolution time-based interrupts. On
architectures that do not support a truly arbitrary resolution, the frequency will be

196 Solaris Dynamic Tracing Guide • November 2003 (Beta)

limited by the system clock frequency, which is specified by the hz kernel variable.
Probes of higher frequency than hz on such architectures will fire some number of
times every 1/hz seconds. For example, a 1000 hertz profile probe on such an
architecture with hz set to 100 will fire ten times in rapid succession every ten
milliseconds. On platforms that support arbitrary resolution, a 1000 hertz profile
probe would fire exactly every one millisecond.

To test a given architecture’s resolution, use this D script:

profile-5000
{

/*
* We divide by 1,000,000 to convert nanoseconds to milliseconds, and
* then we take the value mod 10 to get the current millisecond within
* a 10 millisecond window. On platforms that do not support truly
* arbitrary resolution profile probes, all of the profile-5000 probes
* will fire on roughly the same millisecond. On platforms that
* support a truly arbitrary resolution, the probe firings will be
* evenly distributed across the milliseconds.
*/
@ms = lquantize((timestamp / 1000000) % 10, 0, 10, 1);

}

tick-1sec
/i++ >= 10/
{

exit(0);

}

On an architecture that supports arbitrary resolution profile probes, running the
above will yield an even distribution:

dtrace -s ./restest.d
dtrace: script ’./restest.d’ matched 2 probes
CPU ID FUNCTION:NAME
0 33631 :tick-1sec

value ——————- Distribution ——————- count
< 0 | 0
0 |@@@ 10760
1 |@@@@ 10842
2 |@@@@ 10861
3 |@@@ 10820
4 |@@@ 10819
5 |@@@ 10817
6 |@@@@ 10826
7 |@@@@ 10847
8 |@@@@ 10830

9 |@@@@ 10830

On an architecture that does not support arbitrary resolution profile probes,
running the above will yield a distinctly uneven distribution:

Chapter 19 • profile Provider 197

dtrace -s ./restest.d
dtrace: script ’./restest.d’ matched 2 probes
CPU ID FUNCTION:NAME
0 28321 :tick-1sec

value ——————- Distribution ——————- count
4 | 0
5 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 107864
6 | 424
7 | 255
8 | 496

9 | 0

On these architectures, hz may be manually tuned in /etc/system to improve the
effective profile resolution.

Currently, all variants of UltraSPARC (“sun4u”) support arbitrary resolution
profile probes; all variants of the x86 architecture (“i86pc”) do not.

19.5 Probe creation
Unlike other providers, the profile provider creates probes on-the-fly on an
as-needed basis. Thus, one may not see the desired profile probe in a listing of all
probes (for example, by using dtrace -l -P profile); the probe will be created
when it is explicitly enabled.

On architectures that support arbitrary resolution profile probes, a time interval
that is too short would cause the machine to do nothing but field time-based
interrupts — thereby denying service on the machine. To prevent this, the profile
provider will silently refuse to create any probe that would result in an interval of less
than two hundred microseconds.

198 Solaris Dynamic Tracing Guide • November 2003 (Beta)

19.6 Stability
The profile provider uses DTrace’s stability mechanism (see Chapter 32) to describe
its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

Chapter 19 • profile Provider 199

200 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 20

fbt Provider

The function is the fundamental unit of program text. In a well-designed system, the
function performs a discrete and well-defined operation on a specified object or series
of like objects. Most functions themselves call functions on encapsulated objects, but
some functions — so-called leaf functions — are implemented without making any
further function calls. The Function Boundary Tracing (FBT) provider contains a
mechanism for instrumenting the vast majority of functions in the Solaris kernel. As a
result, FBT provides the lion’s share of the probes on a typical system — even on the
smallest systems, FBT will provide on the order of 20,000 probes.

As with most other DTrace providers, FBT has zero probe effect when it is not
explicitly enabled, and when enabled only induces a probe effect in probed functions.
While the mechanism used for the implementation of FBT is highly specific to the
instruction set architecture, FBT has been implemented on both SPARC™ and x86.

Because mastery of FBT requires both knowledge of the underlying instruction set
architecture and understanding of the operating system implementation, it is
recommended that one use FBT only when other providers are deemed insufficient. (In
particular, one should take a close look at the syscall provider before considering
use of FBT.)

20.1 Probes
FBT provides a probe at the boundary of most functions in the kernel. The boundary of
a function is crossed by entering the function and by returning from the function; FBT
thus provides two functions for every function in the kernel: one upon entry to the
function, and one upon return from the function. These probes are named entry and
return, respectively. The function name, and module name are specified as part of
the probe. All of FBT’s probes are anchored: all FBT probes specify a function name
and module name.

201

20.2 Probe arguments

20.2.1 entry probes
The arguments to entry probes are exactly the arguments to the function. These
arguments may be accessed in a typed fashion by using the args[] array. These
arguments may be accessed as int64_t’s by using the arg0 .. argn variables.

20.2.2 return probes
While a given function only has a single point of entry, it may have many different
points where it returns to its caller. Generally, one is interested in either the value that
a function returned or the fact that the function returned at all; one is typically less
interested in the specific return path taken. FBT reflects this by collecting a function’s
multiple return sites into a single return probe. Still, there may arise conditions
when the exact return path is relevant to the understanding of a problem. Thus, for
return probes FBT provides the offset (in bytes) of the returning instruction in the
function text as argument zero.

If the function has a return value, it is stored in argument one. If a function does not
have a return value, argument one is not defined.

20.3 Examples
FBT can be used to easily explore kernel implementation. For example, here is a script
that picks up the first ioctl(2) that it sees from any xclock(1) process and follows it
through the kernel:

/*
* To make the output more readable, we want to indent every function entry
* (and unindent every function return). This is done by setting the
* "flowindent" option.
*/
#pragma D option flowindent

syscall::ioctl:entry
/execname == "xclock" && guard++ == 0/
{

202 Solaris Dynamic Tracing Guide • November 2003 (Beta)

self->traceme = 1;
printf("fd: %d", arg0);

}

fbt:::
/self->traceme/
{}

syscall::ioctl:return
/self->traceme/
{

self->traceme = 0;
exit(0);

}

Running this script:

dtrace -s ./xioctl.d
dtrace: script ’./xioctl.d’ matched 26254 probes
CPU FUNCTION
0 => ioctl fd: 3
0 -> ioctl
0 -> getf
0 -> set_active_fd
0 <- set_active_fd
0 <- getf
0 -> fop_ioctl
0 -> sock_ioctl
0 -> strioctl
0 -> job_control_type
0 <- job_control_type
0 -> strcopyout
0 -> copyout
0 <- copyout
0 <- strcopyout
0 <- strioctl
0 <- sock_ioctl
0 <- fop_ioctl
0 -> releasef
0 -> clear_active_fd
0 <- clear_active_fd
0 -> cv_broadcast
0 <- cv_broadcast
0 <- releasef
0 <- ioctl

0 <= ioctl

In this case, we can see that an xclock process called ioctl on a file descriptor that
appears to be associated with a socket.

FBT may also be useful when trying to understand kernel drivers. For example, the
ssd(7D) driver has many code paths by which EIO may be returned. FBT can be
easily used to hone in on any of these paths that may be being taken:

Chapter 20 • fbt Provider 203

fbt:ssd::return
/arg1 == EIO/
{

printf("%s+%x returned EIO.", probefunc, arg0);

}

For more information on any one return of EIO, one may wish to speculatively trace
all fbt probes, and then commit()(or discard()) based on the return value of a
specific function. See Chapter 13 for details on speculative tracing.

Alternatively, one may use FBT to understand the functions called within a specified
module. For example, to see all of the functions called in UFS:

dtrace -n fbt:ufs::entry’{@a[probefunc] = count()}’
dtrace: description ’fbt:ufs::entry’ matched 353 probes
^C
ufs_ioctl 1
ufs_statvfs 1
ufs_readlink 1
ufs_trans_touch 1
wrip 1
ufs_dirlook 1
bmap_write 1
ufs_fsync 1
ufs_iget 1
ufs_trans_push_inode 1
ufs_putpages 1
ufs_putpage 1
ufs_syncip 1
ufs_write 1
ufs_trans_write_resv 1
ufs_log_amt 1
ufs_getpage_miss 1
ufs_trans_syncip 1
getinoquota 1
ufs_inode_cache_constructor 1
ufs_alloc_inode 1
ufs_iget_alloced 1
ufs_iget_internal 2
ufs_reset_vnode 2
ufs_notclean 2
ufs_iupdat 2
blkatoff 3
ufs_close 5
ufs_open 5
ufs_access 6
ufs_map 8
ufs_seek 11
ufs_addmap 15
rdip 15
ufs_read 15
ufs_rwunlock 16
ufs_rwlock 16
ufs_delmap 18

204 Solaris Dynamic Tracing Guide • November 2003 (Beta)

ufs_getattr 19
ufs_getpage_ra 24
bmap_read 25
findextent 25
ufs_lockfs_begin 27
ufs_lookup 46
ufs_iaccess 51
ufs_imark 92
ufs_lockfs_begin_getpage 102
bmap_has_holes 102
ufs_getpage 102
ufs_itimes_nolock 107
ufs_lockfs_end 125
dirmangled 498

dirbadname 498

If you know the purpose or arguments of a kernel function, you can use FBT to
understand how or why it is being called. For example,putnext(9F) takes a pointer to
a queue(9S) structure as its first member. The q_qinfo member of the queue
structure is a pointer to a qinit(9S) structure. The qi_minfo member of the qinit
structure has a pointer to a module_info(9S) structure, which contains the module
name in its mi_idname member. We can put all of this together with the FBT probe in
putnext to track putnext(9F) calls by module name:

fbt::putnext:entry
{

@calls[stringof(args[0]->q_qinfo->qi_minfo->mi_idname)] = count();

}

Running the above:

dtrace -s ./putnext.d
^C

iprb 1
rpcmod 1
pfmod 1
timod 2
vpnmod 2
pts 40
conskbd 42
kb8042 42
tl 58
arp 108
tcp 126
ptm 249
ip 313
ptem 340
vuid2ps2 361
ttcompat 412
ldterm 413
udp 569
strwhead 624

Chapter 20 • fbt Provider 205

mouse8042 726

You can also use FBT to determine the time spent in a particular function. For
example, you may be interested in callers of the DDI delaying routines:
drv_usecwait(9F) and delay(9F). Here is a script to see who is calling these
routines — and how long they end up delaying:

fbt::delay:entry,
fbt::drv_usecwait:entry
{

self->in = timestamp
}

fbt::delay:return,
fbt::drv_usecwait:return
/self->in/
{

@snoozers[stack()] = quantize(timestamp - self->in);
self->in = 0;

}

This script is particularly interesting to run during boot. To do this, follow the
procedure outlined Chapter 29. Upon reboot, one may see output like this:

dtrace -ae

ata‘ata_wait+0x34
ata‘ata_id_common+0xf5
ata‘ata_disk_id+0x20
ata‘ata_drive_type+0x9a
ata‘ata_init_drive+0xa2
ata‘ata_attach+0x50
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘devi_attach_node+0x3d
genunix‘devi_config_one+0x1d0
genunix‘ndi_devi_config_one+0xb0
devfs‘dv_find+0x125
devfs‘devfs_lookup+0x40
genunix‘fop_lookup+0x21
genunix‘lookuppnvp+0x236
genunix‘lookuppnat+0xe7
genunix‘lookupnameat+0x87
genunix‘cstatat_getvp+0x134

value ------------- Distribution ------------- count
2048 | 0
4096 |@@@@@@@@@@@@@@@@@@@@@ 4105
8192 |@@@@ 783
16384 |@@@@@@@@@@@@@@ 2793
32768 | 16

206 Solaris Dynamic Tracing Guide • November 2003 (Beta)

65536 | 0

kb8042‘kb8042_wait_poweron+0x29
kb8042‘kb8042_init+0x22
kb8042‘kb8042_attach+0xd6
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘devi_attach_node+0x3d
genunix‘devi_config_one+0x1d0
genunix‘ndi_devi_config_one+0xb0
genunix‘resolve_pathname+0xa5
genunix‘ddi_pathname_to_dev_t+0x16
consconfig_dacf‘consconfig_load_drivers+0x14
consconfig_dacf‘dynamic_console_config+0x6c
consconfig‘consconfig+0x8
unix‘stubs_common_code+0x3b

value ------------- Distribution ------------- count
262144 | 0
524288 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 221
1048576 |@@@@ 29
2097152 | 0

usba‘hubd_enable_all_port_power+0xed
usba‘hubd_check_ports+0x8e
usba‘usba_hubdi_attach+0x275
usba‘usba_hubdi_bind_root_hub+0x168
uhci‘uhci_attach+0x191
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘i_ddi_attach_node_hierarchy+0x49
genunix‘attach_driver_nodes+0x49
genunix‘ddi_hold_installed_driver+0xe3
genunix‘attach_drivers+0x28

value ------------- Distribution ------------- count
33554432 | 0
67108864 |@@ 3

134217728 | 0

Chapter 20 • fbt Provider 207

20.4 Tail-call optimization
When one function ends by calling another, the compiler can engage in tail-call
optimization whereby the callee reuses the caller’s stack frame. This is most commonly
used on SPARC, where the compiler reuses the caller’s register window in the callee —
thereby minimizing register window pressure.

The presence of this optimization induces the return probe of the calling function to
fire before the entry probe of the called function. This can lead to quite a bit of
confusion. For example, if one wished to capture all functions called from a particular
function and its callees, one may well write the following:

fbt::foo:entry
{

self->traceme = 1;
}

fbt:::entry
/self->traceme/
{

printf("called %s", probefunc);
}

fbt::foo:return
/self->traceme/
{

self->traceme = 0;

}

However, if foo() ends in an optimized tail-call, the tail-called function (and
therefore its callees) will not be captured.

Because the kernel cannot be dynamically deoptimized on the fly — and because
DTrace does not wish to engage in a lie about how code is structured — tail-call
optimization must be thought of as a complicating fact of life. As such, the best way to
deal with tail-call optimization is to become aware of when it may used.

Tail-call optimization is likely to be used in calls like this:

return (bar());

Or calls like this:

(void) bar();

return;

208 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Conversely, a function that ends this way cannot have its call to bar() optimized, as it
is not a tail-call:

bar();

return (rval);

If one suspects that a call has been tail-call optimized, check it this way:

� While running DTrace, trace arg0 of the return probe in question. As discussed
above, arg0 contains the offset of the returning instruction in the function.

� After DTrace has stopped, use mdb(1) to look at the function. If the traced offset
contains a call to another function instead of an instruction to return from the
function, the call has been tail-call optimized.

For reasons of instruction set architecture, tail-call optimization is far more common
on SPARC than it is on x86. Here is an example of using mdb to discover tail-call
optimization in the kernel’s dup() function:

dtrace -q -n fbt::dup:return’{printf("%s+0x%x", probefunc, arg0);}’

While the above is running, run a program that performs a dup(2) (for example, start a
bash(1) process). The above invocation should provide some output:

dup+0x10

^C

Now examine the function with mdb:

echo "dup::dis" | mdb -k
dup: sra %o0, 0, %o0
dup+4: mov %o7, %g1
dup+8: clr %o2
dup+0xc: clr %o1
dup+0x10: call -0x1278 <fcntl>

dup+0x14: mov %g1, %o7

We can see that dup+0x10 is a call to the fcntl() function and not a ret instruction.
We conclude that this is an example of tail-call optimization.

20.5 Unsporting functions
Rarely, one may run into functions that seem to enter but never return or vice versa.
These are generally hand-coded assembly routines that branch to the middle of
another (hand-coded assembly) function to complete their tasks. While these functions
are ungentlemanly, they should be reasonably harmless to analysis: the branched-to

Chapter 20 • fbt Provider 209

function must still return to the caller of the branched-from function. That is, if one
enables all FBT probes, one should see the entry as one function name and the return
at the same stack depth as another function name. In general, this construct is
regarded as inappropriate, and functions that exhibit this behavior are being
eliminated as they are found — but some may persist.

20.6 Uninstrumentable functions
Some functions cannot be instrumented by FBT. The exact nature of uninstrumentable
functions is specific to the instruction set architecture.

20.6.1 x86
Functions that do not create a stack frame cannot be instrumented by FBT. Because the
register set for x86 is extraordinarily small, most functions — even functions that do
not call other functions — must put data on the stack and must therefore create a stack
frame. Still, there exists a non-trivial number of functions that do not create a stack
frame (and are therefore uninstrumentable). Actual numbers vary, but typically fewer
than five percent of functions are uninstrumentable on x86.

20.6.2 SPARC
On SPARC, only leaf routines hand-coded in assembly cannot be instrumented by
FBT. The vast majority of the kernel is written in C, and is thus instrumentable by FBT.
Actual numbers vary, but typically fewer than five percent of functions are
uninstrumentable on SPARC.

20.7 Breakpoints
FBT works by dynamically modifying kernel text. Kernel breakpoints also work by
modifying kernel text, giving rise to a natural conflict. If a kernel breakpoint is placed
at an entry or return site before loading DTrace, FBT will refuse to provide a probe for
the function — even if the kernel breakpoint is subsequently removed. If the kernel
breakpoint is placed after loading DTrace, both the kernel breakpoint and the DTrace
probe will correspond to the same point in text. (That is, the breakpoint will be hit,

210 Solaris Dynamic Tracing Guide • November 2003 (Beta)

and — when the debugger is continued — the probe will fire.) Because these
interactions may be non-intuitive, it is recommended that kernel breakpoints not be
used concurrently with DTrace — or least that they not be used concurrently for the
same point in text. If breakpoints are required, consider using the DTrace
breakpoint() action instead; see “10.4.2.1 breakpoint()” on page 129 for details.

20.8 Module loading
The Solaris kernel has a facility for dynamic module loading and unloading. When
FBT is loaded and a module is dynamically loaded, FBT automatically provides new
probes associated with the new module. If a loaded module has unenabled FBT probes,
the module may be unloaded; the corresponding probes will be destroyed as the
module is unloaded. If a loaded module has enabled FBT probes, the module is
considered busy, and cannot be unloaded.

20.9 Stability
The FBT provider uses DTrace’s stability mechanism (see Chapter 32) to describe its
stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

As FBT exposes the kernel implementation, nothing about it is Stable — and the
Module and Function name and data stability are explicitly Private. The data stability
for Provider and Name are Evolving, but all other data stabilities are Private: they are
artifacts of the current implementation. The dependency class for FBT is ISA: while
FBT is available on all current instruction set architectures, there is no guarantee that
FBT will be available on arbitrary future instruction set architectures.

Chapter 20 • fbt Provider 211

212 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 21

syscall Provider

The syscall provider makes available a probe at the entry to and return from every
system call in the system. As system calls are the primary interface between user-level
applications and the operating system kernel, the syscall provider can offer
tremendous insight into application behavior with respect to the system.

21.1 Probes
syscall provides a pair of probes for each system call: one named “entry” that fires
before the system call is entered, and another named “return” that fires after the
system call has completed but before control has transferred back to user-level. For all
syscall probes, the function name is set to be the name of the instrumented system
call and the module name is undefined.

The names of the system calls as provided by the syscall provider may be found in
the file “/etc/name_to_sysnum.” Often, the system call names provided by
syscall correspond exactly to names in Section 2 of the manual (see Intro(2)).
However, some probes provided by the syscall provider do not directly correspond
to any documented system call. There are several possible reasons for this, the most
common of which are outlined below.

21.1.1 Anachronisms
In some cases, the name of the system call as provided by the syscall provider is
actually a reflection of an ancient implementation detail. For example, for reasons
dating back to UNIX™ antiquity, the name of exit(2) in /etc/name_to_sysnum is
“rexit.” Similarly, the name of time(2) is “gtime,” and the name of both execle(2)
and execve(2) is “exece.”

213

21.1.2 Subcoded System Calls
Some system calls as presented in Section 2 are actually implemented as suboperations
of an undocumented system call. For example, the system calls related to System V
semaphores — semctl(2), semget(2), semids(2), semop(2), and semtimedop(2) —
are actually implemented as suboperations of a single system call, “semsys.” The
semsys system call takes as its first argument an implementation-specific subcode
denoting the specific system call required: SEMCTL, SEMGET, SEMIDS, SEMOP or
SEMTIMEDOP, respectively. As a result of overloading a single system call to
implement multiple system calls, there is only a single pair of syscall probes for
System V semaphores: syscall::semsys:entry and syscall::semsys:return.

21.1.3 Large File System Calls
In order for a 32-bit program to support file offsets larger than four gigabytes, it must
be able to process large files. Because large files require use of large offsets, large files
are manipulated through a parallel set of system interfaces, as described in lf64(5).
While virtually all of these interfaces are documented in lf64, they do not have their
own manual entry. Each of these large file system call interfaces appears as its own
syscall probe; these interfaces are listed in Table 21–1.

TABLE 21–1 sycall Large File Probes

Large file syscall probe System call

creat64 creat(2)

fstat64 fstat(2)

fstatvfs64 fstatvfs(2)

getdents64 getdents(2)

getrlimit64 getrlimit(2)

lstat64 lstat(2)

mmap64 mmap(2)

open64 open(2)

pread64 pread(2)

pwrite64 pwrite(2)

setrlimit64 setrlimit(2)

stat64 stat(2)

statvfs64 statvfs(2)

214 Solaris Dynamic Tracing Guide • November 2003 (Beta)

21.1.4 Implementation Details
Some system calls exist purely as implementation details of Solaris subsystems that
span the user-kernel boundary. As such, these system calls do not have their own
manual entry in Section 2. Examples of system calls in this category include the
“signotify” system call, which is used as part of the implementation of POSIX.4
message queues, and the “utssys” system call, which is used to implement
fuser(1M).

21.2 Arguments
For “entry” probes, the arguments (arg0 .. argn) are the arguments to the system
call. For “return” probes, both arg0 and arg1 contain the return value. (That is,
they contain the same value.) To check for system call failure in “return” probes, one
should check for a non-zero value in the D variable “errno.”

21.3 Stability
The syscall provider uses DTrace’s stability mechanism (see Chapter 32) to describe
its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Unstable Unstable ISA

Name Evolving Evolving Common

Arguments Unstable Unstable ISA

Chapter 21 • syscall Provider 215

216 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 22

sdt Provider

Some DTrace providers — like FBT — use instrumentation methodologies that allow
them to create probes where the original implementor never envisioned them. While
these providers are able to offer unparalleled probe coverage, they provide little (if
anything) in terms of semantic information of the probes they create. To allow for the
explicit, premeditated creation of probes, DTrace has a statically defined tracing (SDT)
provider. This provider creates probes at sites that the original implementor has
formally designated, allowing the implementor to consciously choose the points in
their code that are desired probe points, and to convey some semantic knowledge
about that point with the choice of probe name.

22.1 Probes
The Solaris kernel has defined a handful of SDT probes, and will likely add more over
time. Some of the current SDT probes are listed in Table 22–1. As mentioned in “22.4
Stability” on page 223, the name stability and data stability of these probes are both
Private — their description here thus reflects the kernel’s implementation and should
not be inferred to be an interface commitment. Still, as a practical matter, these probes
are likely to continue to exist largely as described.

217

TABLE 22–1 SDT Probes

Probe name Description arg0

callout-start Probe that fires immediately before
executing a callout (see
<sys/callo.h>). Callouts are
executed by periodic system clock,
and represent the implementation
for timeout(9F)

Pointer to the callout_t (see
<sys/callo.h>) corresponding
to the callout to be executed.

callout-end Probe that fires immediately after
executing a callout (see
<sys/callo.h>).

Pointer to the callout_t (see
<sys/callo.h>) corresponding
to the callout just executed.

interrupt-start Probe that fires immediately before
calling into a device’s interrupt
handler.

Pointer to thedev_info structure
(see <sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

interrupt-complete Probe that fires immediately after
returning from a device’s interrupt
handler.

Pointer to dev_info structure (see
<sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

22.2 Examples
Here is an example of a simple monitoring script to observe callout behavior on a
per-second basis:

#pragma D option quiet

sdt:::callout-start
{

@callouts[((callout_t *)arg0)->c_func] = count();
}

tick-1sec
{

printa("%40a %10@d\n", @callouts);
clear(@callouts);

}

Running this reveals the frequent users of timeout(9F) in the system:

dtrace -s ./callout.d
FUNC COUNT

TS‘ts_update 1
uhci‘uhci_cmd_timeout_hdlr 3

218 Solaris Dynamic Tracing Guide • November 2003 (Beta)

genunix‘setrun 5
genunix‘schedpaging 5

ata‘ghd_timeout 10
uhci‘uhci_handle_root_hub_status_change 309

FUNC COUNT
ip‘tcp_time_wait_collector 1

TS‘ts_update 1
uhci‘uhci_cmd_timeout_hdlr 3

genunix‘schedpaging 4
genunix‘setrun 8
ata‘ghd_timeout 10

uhci‘uhci_handle_root_hub_status_change 300

FUNC COUNT
ip‘tcp_time_wait_collector 0

iprb‘mii_portmon 1
TS‘ts_update 1

uhci‘uhci_cmd_timeout_hdlr 3
genunix‘schedpaging 4

genunix‘setrun 7
ata‘ghd_timeout 10

uhci‘uhci_handle_root_hub_status_change 300

The timeout(9F) interface does not allow for interval timers; consumers of
timeout() requiring interval timer functionality typically reinstall their timeout from
their timeout() handler. We can see this behavior with the following D script:

#pragma D option quiet

sdt:::callout-start
{

self->callout = ((callout_t *)arg0)->c_func;
}

fbt::timeout:entry
/self->callout && arg2 <= 100/
{

/*
* In this case, we are most interested in interval timeout(9F)s that
* are short. We therefore do a linear quantization from 0 ticks to
* 100 ticks. The system clock’s frequency — set by the variable
* "hz" — defaults to 100, so 100 system clock ticks is one second.
*/
@callout[self->callout] = lquantize(arg2, 0, 100);

}

sdt:::callout-end
{

self->callout = NULL;
}

END
{

Chapter 22 • sdt Provider 219

printa("%a\n%@d\n\n", @callout);

}

Running this and waiting several seconds before typing ^C:

dtrace -s ./interval.d
^C
genunix‘schedpaging

value ------------- Distribution ------------- count
24 | 0
25 |@@ 20
26 | 0

ata‘ghd_timeout

value ------------- Distribution ------------- count
9 | 0
10 |@@ 51
11 | 0

uhci‘uhci_handle_root_hub_status_change

value ------------- Distribution ------------- count
0 | 0
1 |@@ 1515

2 | 0

From the above, uhci_handle_root_hub_status_change() in the uhci(7D)
driver represents (by far) the shortest interval timer on the system – it is called every
system clock tick. This may or may not be desirable, depending on the nature of the
timeout. In any case, this view provides a better understanding of the system, and
avenues for further exploration.

The interrupt-start probe can be used to understand interrupt activity. For
example, we may want to quantize the time spent executing an interrupt handler by
driver name:

interrupt-start
{

self->ts = vtimestamp;
}

interrupt-complete
/self->ts/
{

this->devi = (struct dev_info *)arg0;
@[stringof(‘devnamesp[this->devi->devi_major].dn_name),

this->devi->devi_instance] = quantize(vtimestamp - self->ts);

}

220 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Running this:

dtrace -s ./intr.d
dtrace: script ’./intr.d’ matched 2 probes
^C
isp 0

value ------------- Distribution ------------- count
8192 | 0
16384 |@@ 1
32768 | 0

pcf8584 0
value ------------- Distribution ------------- count

64 | 0
128 | 2
256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 157
512 |@@@@@@ 31
1024 | 3
2048 | 0

pcf8584 1
value ------------- Distribution ------------- count
2048 | 0
4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 154
8192 |@@@@@@@ 37
16384 | 2
32768 | 0

qlc 0
value ------------- Distribution ------------- count
16384 | 0
32768 |@@ 9
65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 126
131072 |@ 5
262144 | 2
524288 | 0

hme 0
value ------------- Distribution ------------- count
1024 | 0
2048 | 6
4096 | 2
8192 |@@@@ 89
16384 |@@@@@@@@@@@@@ 262
32768 |@ 37
65536 |@@@@@@@ 139
131072 |@@@@@@@@ 161
262144 |@@@ 73
524288 | 4
1048576 | 0
2097152 | 1
4194304 | 0

ohci 0
value ------------- Distribution ------------- count

Chapter 22 • sdt Provider 221

8192 | 0
16384 | 3
32768 | 1
65536 |@@@ 143
131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1368

262144 | 0

22.3 Creating SDT Probes
If you are a device driver developer, you may be interested in creating your own SDT
probes in your Solaris driver. The disabled probe effect of SDT is very slight –
essentially the cost of several no-operation machine instructions. You are therefore
encouraged to add SDT probes liberally to your device driver, and — barring
compelling performance data to the contrary – to leave those probes in your shipping
code.

22.3.1 Declaring Probes
SDT probes are declared using the DTRACE_PROBE, DTRACE_PROBE1,
DTRACE_PROBE2, DTRACE_PROBE3 and DTRACE_PROBE4 macros from
<sys/sdt.h>. The module name and function name of an SDT-based probe
corresponds to the kernel module and function of the probe. The name of the probe
depends on the name given in the DTRACE_PROBEn macro: if the name contains no
two consecutive underbars (“__”), the name of the probe is as-written in the macro. If
the name contains any two consecutive underbars, the probe name converts the
consecutive underbars to a single dash (“-”). For example, if a DTRACE_PROBE macro
specifies transaction__start, the SDT probe will be named transaction-
start. This allows C code to provide macro names that are not valid C identifiers
without specifying a string.

When naming your SDT probes, you need not worry about name space collisions:
because the module name and function name are part of the tuple identifying a probe,
DTrace users will always be able to precisely specify an SDT probe of interest. This
also means that you need not worry about somehow incorporating your driver name
and function name in your probe name – DTrace takes care of this for you.

22.3.2 Probe Arguments
The arguments are those specified in the DTRACE_PROBEn macro. The number of
arguments depends on which macro was used to create the probe: DTRACE_PROBE1
specifies one argument, DTRACE_PROBE2 specifies two arguments, and so on. When

222 Solaris Dynamic Tracing Guide • November 2003 (Beta)

declaring your SDT probes, you can minimize their disabled probe effect by neither
dereferencing pointers nor loading from global variables in the probe arguments.
(Both pointer dereferencing and global variable loading may be done safely in D
actions that enable probes – allowing the cost of these actions to be only borne when
they are explicitly required.)

22.4 Stability
The SDT provider uses DTrace’s stability mechanism (see Chapter 32) to describe its
stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA

Chapter 22 • sdt Provider 223

224 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 23

sysinfo Provider

The sysinfo provider makes available probes that correspond to the “sys” kernel
statistics. Because these statistics provide the input for system monitoring utilities like
mpstat(1M), the sysinfo provider can allow for quick exploration of observed
aberrant behavior.

23.1 Probes
The sysinfo provider makes available probes that correspond to the fields in the
“sys” named kstat: a probe provided by sysinfo fires immediately before the
corresponding sys value is incremented. To display both the names and the current
values of the sys named kstat, one may use the kstat(1M) command. For example:

$ kstat -n sys
module: cpu instance: 0
name: sys class: misc

bawrite 123
bread 2899
bwrite 17995
cpu_ticks_idle 73743866
cpu_ticks_kernel 2096277
cpu_ticks_user 1010122
cpu_ticks_wait 46413

...

The sysinfo probes are described in Table 23–1.

225

TABLE 23–1 sysinfo Probes

bawrite Probe that fires whenever a buffer is about to be asynchronously written out
to a device.

bread Probe that fires whenever a buffer is physically read from a device. bread
fires after the buffer has been requested from the device, but before blocking
pending its completion.

bwrite Probe that fires whenever a buffer is about to be written out to a device –
synchronously or asynchronously.

cpu_ticks_idle Probe that fires when the periodic system clock has made the determination
that a CPU is idle. Note that this probe fires in the context of the system
clock and therefore fires on the CPU running the system clock; one must
examine the cpu_t argument (arg2) to determine the CPU that has been
deemed idle. See “23.2 Arguments” on page 228 for details.

cpu_ticks_kernel Probe that fires when the periodic system clock has made the determination
that a CPU is executing in the kernel. Note that this probe fires in the context
of the system clock and therefore fires on the CPU running the system clock;
one must examine the cpu_t argument (arg2) to determine the CPU that
has been deemed to be executing in the kernel. See “23.2 Arguments”
on page 228 for details.

cpu_ticks_user Probe that fires when the periodic system clock has made the determination
that a CPU is executing inuser mode. Note that this probe fires in the context
of the system clock and therefore fires on the CPU running the system clock;
one must examine the cpu_t argument (arg2) to determine the CPU that
has been deemed to be running in user-mode. See “23.2 Arguments”
on page 228 for details.

cpu_ticks_wait Probe that fires when the periodic system clock has made the determination
that a CPU is otherwise idle, but on which some threads are waiting for I/O.
Note that this probe fires in the context of the system clock and therefore
fires on the CPU running the system clock; one must examine the cpu_t
argument (arg2) to determine the CPU that has been deemed waiting on
I/O. See “23.2 Arguments” on page 228 for details.

idlethread Probe that fires whenever a CPU enters the idle loop.

intrblk Probe that fires whenever an interrupt thread blocks.

inv_swtch Probe that fires whenever a running thread is forced to involuntarily give
up the CPU.

lread Probe that fires whenever a buffer is logically read from a device.

lwrite Probe that fires whenever a buffer is logically written to a device

modload Probe that fires whenever a kernel module is loaded.

modunload Probe that fires whenever a kernel module is unloaded.

226 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 23–1 sysinfo Probes (Continued)
msg Probe that fires whenever a msgsnd(2) or msgrcv(2) system call is made,

but before the message queue operations have been performed.

mutex_adenters Probe that fires whenever an attempt is made to acquire an owned adaptive
lock. If this probe fires, one of the lockstat provider’s adaptive-block
or adaptive-spin will also fire. See Chapter 18 for details.

namei Probe that fires whenever a name lookup is attempted in the filesystem.

nthreads Probe that fires whenever a thread is created.

phread Probe that fires whenever a raw I/O read is about to be perfomed.

phwrite Probe that fires whenever a raw I/O write is about to be performed.

procovf Probe that fires whenever a new process cannot be created because the
system is out of process table entries.

pswitch Probe that fires whenever a CPU switches from executing one thread to
executing another.

readch Probe that fires after each successful read, but before control is returned to
the thread performing the read. A read may occur through the read(2),
readv(2) or pread(2) system calls. arg0 contains the number of bytes that
were successfully read.

rw_rdfails Probe that fires whenever an attempt is made to read-lock a readers/writer
when the lock is either held by a writer, or desired by a writer. If this probe
fires, the lockstat provider’s rw-block probe will also fire. See
Chapter 18 for details.

rw_wrfails Probe that fires whenever an attempt is made to write-lock a readers/writer
lock when the lock is held – either by some number of readers or by another
writer. If this probe fires, the lockstat provider’s rw-block probe will
also fire. See Chapter 18 for details.

sema Probe that fires whenever a semop(2) system call is made, but before any
semaphore operations have been performed.

sysexec Probe that fires whenever an exec(2) system call is made.

sysfork Probe that fires whenever a fork(2) system call is made.

sysread Probe that fires whenever a read(2), readv(2) or pread(2) system call is
made.

sysvfork Probe that fires whenever a vfork(2) system call is made.

syswrite Probe that fires whenever a write(2), writev(2) or pwrite(2) system call
is made.

trap Probe that fires whenever a processor trap occurs. Note that some
processors (in particular, UltraSPARC variants) handle some light-weight
traps through a mechanism that does not cause this probe to fire.

Chapter 23 • sysinfo Provider 227

TABLE 23–1 sysinfo Probes (Continued)
ufsdirblk Probe that fires whenever a directory block is read from the UFS file system.

See fs_ufs(4) for details on UFS.

ufsiget Probe that fires whenever an inode is retrieved. See fs_ufs(4)for details on
UFS.

ufsinopage Probe that fires after an in-core inode without any associated data pages has
been made available for reuse. See fs_ufs(4) for details on UFS.

ufsipage Probe that fires after an in-core inode with associated data pages has been
made available for reuse – and therefore after the associated data pages
have been flushed to disk. See fs_ufs(4) for details on UFS.

wait_ticks_io Probe that fires when the periodic system clock has made the determination
that a CPU is otherwise idle, but on which some threads are waiting for I/O.
Note that this probe fires in the context of the system clock and therefore
fires on the CPU running the system clock; one must examine the cpu_t
argument (arg2) to determine the CPU that has been deemed waiting on
I/O. See “23.2 Arguments” on page 228 for details on arg2. Note that there
is no semantic difference between wait_ticks_io and cpu_ticks_io;
wait_ticks_io exists purely for historical reasons.

writech Probe that fires after each successful write, but before control is returned to
the thread performing the write. A write may occur through the write(2),
writev(2) or pwrite(2) system calls. arg0 contains the number of bytes
that were successfully written.

xcalls Probe that fires whenever a cross-call is about to be made. A cross-call is the
operating system’s mechanism for one CPU to request immediate work of
another.

23.2 Arguments
The arguments to sysinfo probes are as follows:

arg0 The value by which the statistic is to be incremented. For most probes, this
argument is always 1, but for some it may take other values.

arg1 A pointer to the current value of the statistic to be incremented. This value
is a 64–bit quantity that will be incremented by the value in arg0.
Dereferencing this pointer allows consumers to determine the current count
of the statistic corresponding to the probe.

228 Solaris Dynamic Tracing Guide • November 2003 (Beta)

arg2 A pointer to the cpu_t structure that corresponds to the CPU on which the
statistic is to be incremented. This structure is defined in
<sys/cpuvar.h>, but it is part of the kernel implementation and should
be considered Private.

As the above mentions, arg0 is always 1 for most sysinfo probes. Two exceptions to
this are the readch and writech probes, for which arg0 is set to the number of
bytes read or written, respectively. This allows, for example, an easy glance at the size
of reads by executable name:

dtrace -n readch’{@[execname] = quantize(arg0)}’
dtrace: description ’readch’ matched 4 probes
^C
xclock

value ------------- Distribution ------------- count
16 | 0
32 |@@ 1
64 | 0

acroread
value ------------- Distribution ------------- count

16 | 0
32 |@@ 3
64 | 0

FvwmAuto
value ------------- Distribution ------------- count

2 | 0
4 |@@@@@@@@@@@@@ 13
8 |@@@@@@@@@@@@@@@@@@@@@ 21
16 |@@@@@ 5
32 | 0

xterm
value ------------- Distribution ------------- count

16 | 0
32 |@@@@@@@@@@@@@@@@@@@@@@@@ 19
64 |@@@@@@@@@ 7
128 |@@@@@@ 5
256 | 0

fvwm2
value ------------- Distribution ------------- count

-1 | 0
0 |@@@@@@@@@ 186
1 | 0
2 | 0
4 |@@ 51
8 | 17
16 | 0
32 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 503
64 | 9
128 | 0

Chapter 23 • sysinfo Provider 229

Xsun
value ------------- Distribution ------------- count

-1 | 0
0 |@@@@@@@@@@@ 269
1 | 0
2 | 0
4 | 2
8 |@ 31
16 |@@@@@ 128
32 |@@@@@@@ 171
64 |@ 33
128 |@@@ 85
256 |@ 24
512 | 8
1024 | 21
2048 |@ 26
4096 | 21
8192 |@@@@ 94

16384 | 0

As described in the table above, arg2 is a pointer to a cpu_t, a structure internal to
the kernel implementation. Most sysinfo probes fire on the CPU on which the
statistic is being incremented, but some (notably the cpu_ticks_idle,
cpu_ticks_kernel, cpu_ticks_user and cpu_ticks_wait probes) do not.
These probes always fire on the CPU executing the system clock; to determine the
CPU of interest, one may examine the cpu_id member of the cpu_t structure. For
example, here is a D script that runs for about ten seconds and gives a quick snapshot
of relative CPU behavior on a statistic-by-statistic basis:

cpu_ticks_*
{

@[probename] = lquantize(((cpu_t *)arg2)->cpu_id, 0, 1024, 1);
}

tick-1sec
/x++ >= 10/
{

exit(0);

}

Running the above:

dtrace -s ./tick.d
dtrace: script ’./tick.d’ matched 5 probes
CPU ID FUNCTION:NAME
22 37588 :tick-1sec

cpu_ticks_user
value ------------- Distribution ------------- count

11 | 0
12 |@@@@@@@@ 14
13 |@@@@ 7

230 Solaris Dynamic Tracing Guide • November 2003 (Beta)

14 |@ 3
15 |@ 2
16 |@@ 4
17 |@@@@@@ 10
18 | 0
19 |@ 2
20 |@@@ 6
21 |@@@ 5
22 | 1
23 |@@@@@@ 10
24 | 0

cpu_ticks_wait
value ------------- Distribution ------------- count

11 | 0
12 |@@@@@@@@@@@@@ 241
13 |@@@@@@@@@@@@@ 236
14 | 16
15 |@@@@@@@ 132
16 | 11
17 | 10
18 | 7
19 |@ 18
20 | 4
21 | 16
22 | 13
23 | 10
24 | 0

cpu_ticks_kernel
value ------------- Distribution ------------- count

11 | 0
12 |@@@@@@@@ 234
13 |@@@@@ 159
14 |@@@ 104
15 |@@@@ 131
16 |@@ 66
17 |@ 40
18 |@ 51
19 |@ 36
20 |@@ 56
21 |@ 42
22 |@@@ 96
23 |@@ 57
24 | 0

cpu_ticks_idle
value ------------- Distribution ------------- count

11 | 0
12 |@@ 534
13 |@@ 621
14 |@@@ 900
15 |@@ 758
16 |@@@ 942
17 |@@@ 963

Chapter 23 • sysinfo Provider 231

18 |@@@ 965
19 |@@@ 967
20 |@@@ 957
21 |@@@ 960
22 |@@@ 913
23 |@@@ 946

24 | 0

23.3 Example
Suppose one were to see the following output from mpstat(1M):

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
12 90 22 5760 422 299 435 26 71 116 11 1372 5 19 17 60
13 46 18 4585 193 162 431 25 69 117 12 1039 3 17 14 66
14 33 13 3186 405 381 397 21 58 105 10 770 2 17 11 70
15 34 19 4769 109 78 417 23 57 115 13 962 3 14 14 69
16 74 16 4421 437 406 448 29 77 111 8 1020 4 23 14 59
17 51 15 4493 139 110 378 23 62 109 9 928 4 18 14 65
18 41 14 4204 494 468 360 23 56 102 9 849 4 17 12 68
19 37 14 4229 115 87 363 22 50 106 10 845 3 15 14 67
20 78 17 5170 200 169 456 26 69 108 9 1119 5 21 25 49
21 53 16 4817 78 51 394 22 56 106 9 978 4 17 22 57
22 32 13 3474 486 463 347 22 48 106 9 769 3 17 17 63

23 43 15 4572 59 34 361 21 46 102 10 947 4 15 22 59

In the above, the xcal field may seem aberrantly high, especially given the relative
idleness of the system. mpstat determines the value in the xcal field by examining
the xcalls field of the sys kstat. This aberration can thus be easily explored by
enabling the xcalls sysinfo probe:

dtrace -n xcalls’{@[execname] = count()}’
dtrace: description ’xcalls’ matched 4 probes
^C
dtterm 1
nsrd 1
in.mpathd 2
top 3
lockd 4
java_vm 10
ksh 19
iCald.pl6+RPATH 28
nwadmin 30
fsflush 34
nsrindexd 45
in.rlogind 56
in.routed 100
dtrace 153

232 Solaris Dynamic Tracing Guide • November 2003 (Beta)

rpc.rstatd 246
imapd 377
sched 431
nfsd 1227

find 3767

We now know where to look for the source of the cross-calls: some number of find(1)
processes are inducing the majority of them. To better understand how this is
happening, we can write the following D script:

syscall:::entry
/execname == "find"/
{

self->syscall = probefunc;
self->insys = 1;

}

sysinfo:::xcalls
/execname == "find"/
{

@[self->insys ? self->syscall : "<none>"] = count();
}

syscall:::return
/self->insys/
{

self->insys = 0;
self->syscall = NULL;

}

This script uses the syscall provider to attribute cross-calls from find to a
particular system call. Some cross-calls — for example, those from page faults — may
not emanate from system calls; the script prints “<none>” in these cases. Running the
script:

dtrace -s ./find.d
dtrace: script ’./find.d’ matched 444 probes
^C
<none> 2
lstat64 2433

getdents64 14873

This indicates that the vast majority of cross-calls induced by find are in turn induced
by getdents(2) system calls. Further exploration would depend on what avenue we
wish to explore: we may want to understand why find processes are making calls to
getdents (in which case we might write a D script to aggregate on ustack() when
find induces a cross-call) or we may want to understand why calls to getdents are
inducing cross-calls (in which case we might write a D script to aggregate on stack()
when find induces a cross-call). Either way, the presence of the xcalls probe has
allowed up to quickly drill down from strange monitoring output to its root-cause.

Chapter 23 • sysinfo Provider 233

23.4 Stability
The sysinfo provider uses DTrace’s stability mechanism (see Chapter 32) to describe
its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

234 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 24

vminfo Provider

The vminfo provider makes available probes that correspond to the “vm” kernel
statistics. Because these statistics provide the input for system monitoring utilities like
vmstat(1M), the vminfo provider can allow for quick exploration of observed
aberrant behavior.

24.1 Probes
The vminfo provider makes available probes that correspond to the fields in the “vm”
named kstat: a probe provided by vminfo fires immediately before the corresponding
vm value is incremented. To display both the names and the current values of the vm
named kstat, one may use the kstat(1M) command. For example:

$ kstat -n vm
module: cpu instance: 0
name: vm class: misc

anonfree 13
anonpgin 2620
anonpgout 13
as_fault 12528831
cow_fault 2278711
crtime 202.10625712
dfree 1328740
execfree 0
execpgin 5541

...

The vminfo probes are described in Table 24–1.

235

TABLE 24–1 vminfo Probes

anonfree Probe that fires whenever an unmodified anonymous page is freed as part
of paging activity. Anonymous pages are those that are not associated with
a file; memory containing such pages include heap memory, stack memory
or memory obtained by explicitly mapping zero(7D).

anonpgin Probe that fires whenever an anonymous page is paged in from a swap
device.

anonpgout Probe that fires whenever a modified anonymous page is paged out to a
swap device.

as_fault Probe that fires whenever a fault is taken on a page and the fault is neither a
protection fault nor a copy-on-write fault.

cow_fault Probe that fires whenever a copy-on-write fault is taken on a page. arg0
contains the number of pages that are created as a result of the
copy-on-write.

dfree Probe that fires whenever a page is freed as a result of paging activity.
Whenever dfree fires, exactly one of anonfree, execfree or fsfree
will also subsequently fire.

execfree Probe that fires whenever an unmodified executable page is freed as a result
of paging activity.

execpgin Probe that fires whenever an executable page is paged in from the backing
store.

execpgout Probe that fires whenever a modified executable page is paged out to the
backing store. Such as it occurs at all, most paging of executable pages will
occur in terms of execfree; execpgout can only fire if an executable page
is modified in memory — an uncommon occurence in most systems.

fsfree Probe that fires whenever an unmodified file system data page is freed as
part of paging activity.

fspgin Probe that fires whenever a file system page is paged in from the backing
store.

fspgout Probe that fires whenever a modified file system page is paged out to the
backing store.

kernel_asflt Probe that fires whenever a page fault is taken by the kernel on a page in its
own address space. Whenever kernel_asflt fires, it will be immediately
preceeded by a firing of the as_fault probe.

maj_fault Probe that fires whenever a page fault is taken that results in I/O from a
backing store or swap device. Whenever maj_fault fires, it will be
immediately preceeded by a firing of the pgin probe.

pgfrec Probe that fires whenever a page is reclaimed off of the free page list.

236 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 24–1 vminfo Probes (Continued)
pgin Probe that fires whenever a page is paged in from the backing store or from

a swap device. This differs from maj_fault in that maj_fault only fires
when a page is paged in as a result of a page fault; pgin fires whenever a
page is paged in — regardless of the reason.

pgout Probe that fires whenever a page is paged out to the backing store or to a
swap device.

pgpgin Probe that fires whenever a page is paged in from the backing store or from
a swap device. The only difference between pgpgin and pgin is that
pgpgin contains the number of pages paged in as arg0. (pgin always
contains 1 in arg0.)

pgpgout Probe that fires whenever a page is paged out to the backing store or to a
swap device. The only difference between pgpgout and pgout is that
pgpgout contains the number of pages paged out as arg0. (pgout always
contains 1 in arg0.)

pgrec Probe that fires whenever a page is reclaimed.

pgrrun Probe that fires whenever the pager is scheduled.

pgswapin Probe that fires whenever a process is swapped in.

pgswapout Probe that fires whenever a process is swapped out.

prot_fault Probe that fires whenever a page fault is taken due to a protection violation.

rev Probe that fires whenever the page deamon begins a new revolution
through all pages.

scan Probe that fires whenever the page daemon examines a page.

softlock Probe that fires whenever a page is faulted as a part of placing a software
lock on the page.

swapin Probe that fires whenever a swapped-out process is swapped back in.

swapout Probe that fires whenever a process is swapped out.

zfod Probe that fires whenever a zero-filled page is created on demand.

24.2 Arguments

arg0 The value by which the statistic is to be incremented. For most probes, this
argument is always 1, but for some it may take other values; these probes
are noted in Table 24–1.

Chapter 24 • vminfo Provider 237

arg1 A pointer to the current value of the statistic to be incremented. This value
is a 64–bit quantity that will be incremented by the value in arg0.
Dereferencing this pointer allows consumers to determine the current count
of the statistic corresponding to the probe.

24.3 Example
Suppose one were to see the following output from vmstat(1M):

kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr cd s0 — — in sy cs us sy id
0 1 0 1341844 836720 26 311 1644 0 0 0 0 216 0 0 0 797 817 697 9 10 81
0 1 0 1341344 835300 238 934 1576 0 0 0 0 194 0 0 0 750 2795 791 7 14 79
0 1 0 1340764 833668 24 165 1149 0 0 0 0 133 0 0 0 637 813 547 5 4 91
0 1 0 1340420 833024 24 394 1002 0 0 0 0 130 0 0 0 621 2284 653 14 7 79
0 1 0 1340068 831520 14 202 380 0 0 0 0 59 0 0 0 482 5688 1434 25 7 68

The “pi” column in the above output denotes the number of pages paged in. The
vminfo provider makes it easy to learn more about the source of these page-ins:

dtrace -n pgin’{@[execname] = count()}’
dtrace: description ’pgin’ matched 1 probe
^C
xterm 1
ksh 1
ls 2
lpstat 7
sh 17
soffice 39
javaldx 103

soffice.bin 3065

From the above, we can see that a process associated with the StarOffice™ Office Suite,
“soffice.bin”, is reponsible for most of the page-ins. To get a better picture of
soffice.bin in terms of VM behavior, we may wish to enable all vminfo probes. In
the following example, we run dtrace(1M) while launching StarOffice:

dtrace -P vminfo’/execname == "soffice.bin"/{@[probename] = count()}’
dtrace: description ’vminfo’ matched 42 probes
^C

kernel_asflt 1
fspgin 10
pgout 16
execfree 16
execpgout 16
fsfree 16

238 Solaris Dynamic Tracing Guide • November 2003 (Beta)

fspgout 16
anonfree 16
anonpgout 16
pgpgout 16
dfree 16
execpgin 80
prot_fault 85
maj_fault 88
pgin 90
pgpgin 90
cow_fault 859
zfod 1619
pgfrec 8811
pgrec 8827

as_fault 9495

To further drill down on some of the VM behavior of StarOffice during startup, we
could write the following D script:

vminfo:::maj_fault,
vminfo:::zfod,
vminfo:::as_fault
/execname == "soffice.bin" && start == 0/
{

/*
* This is the first time that a vminfo probe has been hit; record
* out initial timestamp.
*/
start = timestamp;

}

vminfo:::maj_fault,
vminfo:::zfod,
vminfo:::as_fault
/execname == "soffice.bin"/
{

/*
* Aggregate on the probename, and lquantize() the number of seconds
* since our initial timestamp. (There are 1,000,000,000 nanoseconds
* in a second.) We assume that the script will be terminated before
* 60 seconds elapses.
*/
@[probename] =

lquantize((timestamp - start) / 1000000000, 0, 60);

}

We run the above while again starting StarOffice. This time, we create a new drawing,
create a new presentation, and then close everything, exit StarOffice, and ^C the D
script. The results are a view of some VM behavior over time:

dtrace -s ./soffice.d
dtrace: script ’./soffice.d’ matched 10 probes
^C

Chapter 24 • vminfo Provider 239

maj_fault
value ------------- Distribution ------------- count

7 | 0
8 |@@@@@@@@@ 88
9 |@@@@@@@@@@@@@@@@@@@@ 194
10 |@ 18
11 | 0
12 | 0
13 | 2
14 | 0
15 | 1
16 |@@@@@@@@ 82
17 | 0
18 | 0
19 | 2
20 | 0

zfod
value ------------- Distribution ------------- count
< 0 | 0
0 |@@@@@@@ 525
1 |@@@@@@@@ 605
2 |@@ 208
3 |@@@ 280
4 | 4
5 | 0
6 | 0
7 | 0
8 | 44
9 |@@ 161
10 | 2
11 | 0
12 | 0
13 | 4
14 | 0
15 | 29
16 |@@@@@@@@@@@@@@ 1048
17 | 24
18 | 0
19 | 0
20 | 1
21 | 0
22 | 3
23 | 0

as_fault
value ------------- Distribution ------------- count
< 0 | 0
0 |@@@@@@@@@@@@@ 4139
1 |@@@@@@@ 2249
2 |@@@@@@@ 2402
3 |@ 594
4 | 56
5 | 0

240 Solaris Dynamic Tracing Guide • November 2003 (Beta)

6 | 0
7 | 0
8 | 189
9 |@@ 929
10 | 39
11 | 0
12 | 0
13 | 6
14 | 0
15 | 297
16 |@@@@ 1349
17 | 24
18 | 0
19 | 21
20 | 1
21 | 0
22 | 92

23 | 0

In the above output, we can see some StarOffice behavior with respect to the VM
system. For example, we see that maj_fault didn’t fire until we started up a new
application — as we would expect and hope, a warm start of StarOffice did not result
in new major faults. In the as_fault output, we can very clearly see the initial burst
of activity, the latency while the user located the menu to create a new drawing,
another period of idleness, and a final burst of activity when the user clicked on a new
presentation. From the zfod output, we can see that creating the new presentation
induced significant pressure for zero-filled pages, but only for a short period of time.

The next iteration of DTrace investigation in this example would depend on the
avenue we might choose for further inquiry. If we wished to understand the source of
the demand for zero-filled pages, we might aggregate on ustack() in a zfod
enabling. Or perhaps we would want to have some threshold for zero-filled page
pressure, and when the pressure is exceeded, we could use the stop() destructive
action to stop the offending process. This would allow us to use more traditional
debugging tools like truss(1) or mdb(1) The vminfo provider allows for a quick
mechanism to associate statistics seen in the output of conventional tools like
vmstat(1M) with the application or applications that are inducing the systemic
behavior.

Chapter 24 • vminfo Provider 241

24.4 Stability
The vminfo provider uses DTrace’s stability mechanism (see Chapter 32) to describe
its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

242 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 25

pid Provider

The pid provider allows for tracing of the entry and return of any function in a user
process as well as any instruction as specified by an absolute address or function
offset. The pid provider has no probe effect when probes are not enabled, and when
enabled it only induces probe effect on those processes that are traced.

25.1 Naming pid Probes
The pid provider actually defines a class of providers -- each process can potentially
have its own associated pid provider. A process with ID 123, for example, would be
traced by using the pid123 provider. For probes from one of these providers, the
module portion of the probe description refers to an object loaded in the
corresponding process’s address space. We can see a list of objects using mdb(1):

$ mdb -p 1234
Loading modules: [ld.so.1 libc.so.1]
> ::objects

BASE LIMIT SIZE NAME
10000 34000 24000 /usr/bin/csh

ff3c0000 ff3e8000 28000 /lib/ld.so.1
ff350000 ff37a000 2a000 /lib/libcurses.so.1
ff200000 ff2be000 be000 /lib/libc.so.1
ff3a0000 ff3a2000 2000 /lib/libdl.so.1

ff320000 ff324000 4000 /platform/sun4u/lib/libc_psr.so.1

In the probe description you name the object by the name of the file, not its full path
name. You may also omit the “.1” or “so.1” suffix. All of the following name the
same probe:

pid123:libc.so.1:strcpy:entry
pid123:libc.so:strcpy:entry

pid123:libc:strcpy:entry

243

The first is the actual name of the probe, the others are convenient aliases that are
replaced with the full load object name internally.

For the load object of the executable itself, you can use the alias “a.out”; these two
probe descriptions name the same probe:

pid123:csh:main:return

pid123:a.out:main:return

As with all anchored DTrace probes, the function field of the probe description names
a function in the module field. A user-land binary may have several names for the
same function (for example, mutex_lock may just be an alternate name for the
function pthread_mutex_lock in libc.so.1). DTrace chooses one canonical name
for those muliply named functions and will use that name internally. The following
example shows how DTrace internally remaps module and function names to a
canonical form:

dtrace -q -n pid101267:libc:mutex_lock:entry’{ \
printf("%s:%s:%s:%s\n", probeprov, probemod, probefunc, probename); }’

pid101267:libc.so.1:pthread_mutex_lock:entry

^C

This automatic renaming is not something that should overly concern you, but be
aware that the names of the probes you enable may be slighly different than those
actually enabled. The canonical name will always be consistent between runs of
DTrace on systems running the same release of Solaris.

See Chapter 27 for examples of how to use the pid provider effectively.

25.2 Function Boundary Probes
The pid provider lets you trace function entry and return in user programs just as the
FBT provider provides that capability for the kernel. Most of the examples in this
guide that use the FBT provider to trace kernel function calls can be modified slightly
to apply to user processes.

25.2.1 Entry Probes
An entry probe fires when the traced function is invoked. The arguments to entry
probes are the values of the arguments to the traced function.

244 Solaris Dynamic Tracing Guide • November 2003 (Beta)

25.2.2 Return Probes
A return probes fires when the traced function returns or makes a tail call to another
function. The value for arg0 is the offset in the function of the return instruction;
arg1 holds the return value.

25.3 Function Offset Probes
The pid provider lets you trace any instruction in a function. For example to trace the
instruction 4 bytes into a function main(), you can use something like this:

pid123:a.out:main:4

Every time the program executes the instruction at address main+4, this probe will be
activated. The arguments for offset probes are undefined. To examine process state in a
useful way at these probe sites, the uregs[] array is a good place to start. (See “27.5
uregs[] Array” on page 254.)

25.4 Stability
The pid provider uses DTrace’s stability mechanism (see Chapter 32) to describe its
stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

Chapter 25 • pid Provider 245

246 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 26

fasttrap Provider

The fasttrap provider allows for tracing at specific, pre-programmed user process
locations. Unlike most other DTrace providers, the fasttrap provider is not designed
for tracing system activity; rather, it is meant as a way for DTrace consumers to inject
information into the DTrace framework by activating the fasttrap probe.

26.1 Probes
The fasttrap provider makes available a single probe, “fasttrap:::fasttrap,”
that fires whenever a user-level process makes a certain DTrace call into the kernel.
The DTrace call to activate the probe is not publicly available; when it becomes
available, you will be able to activate the fasttrap:::fasttrap probe from your
programs using a documented function.

26.2 Stability
The fasttrap provider uses DTrace’s stability mechanism (see Chapter 32) to
describe its stabilities as follows:

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

247

Element Name stability Data stability Dependency class

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

248 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 27

User Process Tracing

DTrace is an extremely powerful tool for understanding the behavior of user
processes; it is an invaluable tool for debugging, analyzing performance problems, or
simply understanding the behavior of a complex application. This chapter focuses on
the DTrace facilities relevant for tracing user process activity and provides examples to
illustrate their use.

27.1 copyin() and copyinstr()
Subroutines
DTrace’s interaction with processes is a little different than most traditional debuggers
or observability tools. Many such tools appear to execute within the scope of the
process itself, letting users dereference pointers to program variables directly. Rather
than appearing to execute within or as part of the process itself, DTrace probes execute
in the Solaris kernel. To access process data, a probe needs to use the copyin() or
copyinstr() subroutines to copy user process data into the address space of the
kernel.

For example, consider the write(2) system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a
string passed to the write(2) system call:

syscall::write:entry
{

printf("%s", stringof(arg1)); /* incorrect use of arg1 */

}

249

If we try to run this script, DTrace will produce error messages of the form:

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \

invalid address (0x10038a000) in action #1

The arg1 variable (the value of the buf parameter) holds an address that refers to
memory in the process executing the system call. To read the string at that address we
need to use the copyinstr() subroutine and record its result with the printf()
action:

syscall::write:entry
{

printf("%s", copyinstr(arg1)); /* correct use of arg1 */

If we run this script, we’ll see what we expect: all of the strings being passed to the
write(2) system call. Occassionally, however, we may see strange output like this:

0 37 write:entry madaï¿½ï¿½ï¿½

The copyinstr() subroutine acts on an input argument that is the user address of a
null-terminated ASCII string, which need not be the case for buffers passed to the
write(2) system call. To print only as much of the string as the caller intended, we
need to use the copyin() subroutine which takes a size as its second argument:

syscall::write:entry
{

printf("%s", stringof(copyin(arg1, arg2)));

}

Notice that we need to use the stringof operator so that DTrace properly converts
the user data we retrieved using copyin() to a string (this is not necessary when
using copyinstr() because this function always returns type string).

27.2 Eliminating dtrace(1M)
Interference
If we let the previous example run for a little while, we can see that even a single call
to the write(2) system call can cause a cascade of output. Each call to write()
causes the dtrace(1M) command itself to call write() as it displays the output, and
so on. This feedback loop is a good example of how the dtrace command can
interfere with the desired data. We can use a simple predicate to prevent these
unwanted data from being traced:

250 Solaris Dynamic Tracing Guide • November 2003 (Beta)

syscall::write:entry
/pid != $pid/
{

printf("%s", stringof(copyin(arg1, arg2)));

}

The $pid macro variable expands to the process identifier of the process that enabled
the probes. The pid variable contains the process identifier of the process whose
thread was running on the CPU where the probe was fired. Therefore the predicate
/pid != $pid/ ensures that we don’t trace any events related to the running of this
script itself.

27.3 syscall Provider
The syscall provider lets you trace every system call entry and return; we’ve seen
examples of its use throughout this guide. System calls can be a good starting point for
understanding a process’s behavior especially if it seems to be spending a large
amount of time executing or blocked in the kernel. We can use the prstat(1M)
command to see where processes are spending time:

$ prstat -m -p 31337
PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP

13499 user1 53 44 0.0 0.0 0.0 0.0 2.5 0.0 4K 24 9K 0 mystery/6

In this example, we can see that the process is consuming a large amount of system
time. One possible explanation for this behavior is that the process is executing a large
number of system calls. We can use a simple D program specified on the
command-line to see which syscalls are happening most often:

dtrace -n syscall:::entry’/pid == 31337/{ @syscalls[probefunc] = count(); }’
dtrace: description ’syscall:::entry’ matched 215 probes
^C

open 1
lwp_park 2
times 4
fcntl 5
close 6
sigaction 6
read 10
ioctl 14
sigprocmask 106

write 1092

Chapter 27 • User Process Tracing 251

This report gives a sense of which system calls are being called most often, in this case,
the write(2) system call. We can use the syscall provider to further hone in on the
source of all the write() system calls:

dtrace -n syscall::write:entry’/pid == 31337/{ @writes[arg2] = quantize(); }’
dtrace: description ’syscall::write:entry’ matched 1 probe
^C

value ------------- Distribution ------------- count
0 | 0
1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037
2 |@ 3
4 | 0
8 | 0
16 | 0
32 |@ 3
64 | 0
128 | 0
256 | 0
512 | 0
1024 |@ 5

2048 | 0

We can see from this report that the process is executing many write() system calls
with a relatively small amount of data, and this could potentially be the source of the
performance problem for this particular process. This example is not applicable to
every situation, but it illustrates a general methodology for investigating system call
behavior.

27.4 ustack() Action
As we try to hone in on a problem, it’s often useful to see the process thread’s stack at
the time a particular probe is activated. The ustack() action traces the user thread’s
stack. This can be useful if, for example, a process that opens many files occassionally
fails in the open(2) system call, we can use the ustack() action to discover the code
path that executes the failed open():

syscall::open:entry
/pid == $1/
{

self->path = copyinstr(arg0);
}

syscall::open:return
/self->path && arg1 == -1/
{

printf("open for ’%s’ failed", self->path);

252 Solaris Dynamic Tracing Guide • November 2003 (Beta)

ustack();

}

This script also illustrates the use of the $1 macro variable which takes the value of
the first operand specified on the dtrace(1M) command-line:

dtrace -s failed_open.d 31337
dtrace: script ’./failed_open.d’ matched 2 probes
CPU ID FUNCTION:NAME
0 40 open:return open for ’/usr/lib/foo’ failed

libc.so.1‘__open+0x4
libc.so.1‘open+0x6c
420b0
tcsh‘dosource+0xe0
tcsh‘execute+0x978
tcsh‘execute+0xba0
tcsh‘process+0x50c
tcsh‘main+0x1d54

tcsh‘_start+0xdc

Note that the ustack() action records program counter (PC) values for the stack and
dtrace(1M) resolves those PC values to symbol names by looking though the
process’s symbol tables. If dtrace can’t resolve the PC value to a symbol, it will print
out the value as a hexadecimal (base 16) integer.

The ustack() action has one potential limitation that you may encounter: if a process
exits or is killed before your tracing experiment is complete, dtrace may be unable to
resolve the PC values in the stack trace to symbol names, and will be forced to display
them as hexadecimal integers. Here is a D program that demonstrates how to work
around the limitation:

/*
* This example uses the open(2) system call probe, but this technique
* is applicable to any script using the ustack() action where the stack
* being traced is in a process that may exit soon.
*/
syscall::open:entry
{

ustack();
stop_pids[pid] = 1;

}

syscall::rexit:entry
/stop_pids[pid] != 0/
{

printf("stopping pid %d", pid);
stop();
stop_pids[pid] = 0;

}

Chapter 27 • User Process Tracing 253

This script stops a process just before it exits if the ustack() action has been applied
to a thread in that process. This ensures that the dtrace command will be able to
resolve the PC values to symbolic names. Notice that the value of stop_pids[pid]
is set to 0 after it has been used to clear the dynamic variable. It’s important to
remember to set those stopped processes running again by using the prun(1)
command or your system will accumulate many stopped processes.

27.5 uregs[] Array
The uregs[] array allows you to access individual user registers. The indices into the
uregs[] array come from one of the tables below depending on the architecture on
which you’re running DTrace.

TABLE 27–1 SPARC uregs[] Constants

Constant Register

R_G0..R_G7 %g0..%g7 global registers

R_O0..R_O7 %o0..%o7 out registers

R_L0..R_L7 %l0..%l7 local registers

R_I0..R_I7 %i0..%i7 in registers

R_CCR %ccr condition code register

R_PC %pc program counter

R_NPC %npc next program counter

R_Y %y multiply/divide register

R_ASI %asi address space identifier register

R_FPRS %fprsfloating-point registers state

TABLE 27–2 IA uregs[] Constants

Constant Register

R_GS %gs

R_GS %gs

R_ES %es

R_DS %ds

254 Solaris Dynamic Tracing Guide • November 2003 (Beta)

TABLE 27–2 IA uregs[] Constants (Continued)
Constant Register

R_EDI %edi

R_ESI %esi

R_EBP %ebp

R_ESP %esp

R_EBX %ebx

R_EDX %edx

R_ECX %ecx

R_EAX %eax

R_TRAPNO %trapno

R_ERR %err

R_EIP %eip

R_CS %cs

R_ERR %cs

R_EFL %efl

R_UESP %uesp

R_SS %ss

In addition, the following aliases can be used on both platforms:

TABLE 27–3 Common uregs[] Constants

Constant Register

R_PC program counter register

R_SP stack pointer register

R_R0 first return code

R_R1 second return code

Chapter 27 • User Process Tracing 255

27.6 pid Provider
The pid provider allows you to trace any instruction in a process. Unlike most other
providers, probes are created on demand based on the probe descriptions found in
your D programs. As a result, you will not see any pid probes listed in the output of
dtrace -l until you have enabled them yourself.

27.6.1 User Function Boundary Tracing
The simplest mode of operation for the pid provider is as the user-land analogue to
the fbt provider (in fact, most examples using the fbt provider can be adapted for
user-land by using the pid provider’s entry and return probes).

The following example program traces all function entries and returns that are made
from a single function. The $1 macro variable (the first operand on the command line)
is the process ID for the process we want to trace, and the $2 macro variable (the
second operand on the command line) is the name of the function from which we
want to trace all function calls.

EXAMPLE 27–1 userfunc.d: Trace User Function Entry and Return

pid$1::$2:entry
{

self->trace = 1;
}

pid$1::$2:return
/self->trace/
{

self->trace = 0;
}

pid$1:::entry,
pid$1:::return
/self->trace/
{

}

If we save this example program in a file named userfunc.d and then chmod it to be
executable, we can run it as follows:

./userfunc.d 15032 execute
dtrace: script ’from_function.d’ matched 11594 probes
0 -> execute
0 -> execute
0 -> Dfix
0 <- Dfix

256 Solaris Dynamic Tracing Guide • November 2003 (Beta)

0 -> s_strsave
0 -> malloc
0 <- malloc
0 <- s_strsave
0 -> set
0 -> malloc
0 <- malloc
0 <- set
0 -> set1
0 -> tglob
0 <- tglob
0 <- set1
0 -> setq
0 -> s_strcmp
0 <- s_strcmp

...

The pid provider can only be used on processes that are already running. You can use
the truss(1) utility to start a new process and stop it immediately, then run your
DTrace script and restart the process:

$ truss -f -t\!all -U a.out:main command args ...
198343/1: -> main(0x1, 0xffbff77c, 0xffbff784, 0x22000)

Now in another shell start your DTrace script or commands. Then resume the stopped
process:

$ prun 198343

27.6.2 Tracing Arbitrary Instructions
The pid provider can be used to trace any instruction in any user function. Upon
demand, the pid provider will create a probe for every instruction in a function. The
name of each probe is the offset of its corresponding instruction in the function
expressed as a hexadecimal integer. For example, to enable a probe associated with the
instruction at offset 0x1c in function foo of module bar.so in the process with PID
123 you can use the following command:

dtrace -n pid123:bar.so:foo:1c

And to enable all of the probes in the function foo, including the probe for each
instruction, you can use the command:

dtrace -n pid123:bar.so:foo:

This is an extremely powerful facility for debugging and analyzing user-land
applications. Infrequent errors can be difficult to debug because they can be difficult to
reproduce. Often it’s easy to identify a problem after the failure has occurred, but at
that point, it’s too late to reconstruct the code path that was taken along the way to

Chapter 27 • User Process Tracing 257

that failure condition making debugging the problem extremely difficult. The pid
provider combined with speculative tracing (see Chapter 13) offers a convenient
solution to this common problem and illustrates how to trace every instruction in a
function.

EXAMPLE 27–2 errorpath.d: Trace User Function Call Error Path

pid$1::$2:entry
{

self->spec = speculation();
speculate(self->spec);
printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);

}

pid$1::$2:
/self->spec/
{

speculate(self->spec);
}

pid$1::$2:return
/self->spec && arg1 == 0/
{

discard(self->spec);
self->spec = 0;

}

pid$1::$2:return
/self->spec && arg1 != 0/
{

commit(self->spec);
self->spec = 0;

}

If you type in the preceding example source and save it in a file named errorpath.d
and chmod it to be executable, you can run it as follows:

./errorpath.d 100461 _chdir
dtrace: script ’./errorpath.d’ matched 19 probes
CPU ID FUNCTION:NAME
0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0
0 25253 _chdir:entry
0 25269 _chdir:0
0 25270 _chdir:4
0 25271 _chdir:8
0 25272 _chdir:c
0 25273 _chdir:10
0 25274 _chdir:14
0 25275 _chdir:18
0 25276 _chdir:1c
0 25277 _chdir:20
0 25278 _chdir:24
0 25279 _chdir:28
0 25280 _chdir:2c

258 Solaris Dynamic Tracing Guide • November 2003 (Beta)

0 25268 _chdir:return

Chapter 27 • User Process Tracing 259

260 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 28

Security

DTrace enables visibility into all aspects of the system including user-level functions,
system calls, kernel functions, and more, and it allows for powerful actions some of
which can modify a program’s state. Just as it would be inapproriate to allow a user
access to another user’s private files, a system administrator should be loathe to afford
every user full access to all the facilities that DTrace offers. By default, only the
super-user can use DTrace, but an administrator can allow other users controlled use
of DTrace. The Least Privilege facility allows Solaris system administrators to give
particular users or processes specific privileges to allow them access to individual
DTrace capabilities.

28.1 Privileges
The Solaris Least Privilege facility permits administrators to grant specific privileges
to specific Solaris users. To give a user a privilege on login, insert a line into
/etc/user_attr of the form:

user-name::::defaultpriv=basic,privilege

To give a running process an additional privilege, use the ppriv(1) command:

ppriv -s A+privilege process-ID

There are three privileges that control a user’s access to DTrace features:
dtrace_proc, dtrace_user, and dtrace_kernel. Each privilege permits the use
of a certain set of DTrace providers, actions, and variables, and each corresponds to a
particular type of use of DTrace. The privilege modes are described in detail in the

261

following sections; system administrators should carefully weigh each user’s need
against the visibility and performance impact of the different privilege modes. Users
need at least one of the three DTrace privileges in order to use any of the DTrace
functionality.

28.2 Privileged Use of DTrace
Users with any of the three DTrace privileges may enable probes provided by the
dtrace provider (see Chapter 17), and may use the following actions and variables:

Providers dtrace

Actions exit printf tracemem

discard speculate

printa trace

Variables args probemod this

epid probename timestamp

id probeprov vtimestamp

probefunc self

Address Spaces None

28.3 dtrace_proc Privilege
The dtrace_proc privilege permits use of the pid and fasttrap providers for
process-level tracing. It also allows the use of the following actions and variables:

Providers pid

Actions copyin copyout stop

copyinstr raise ustack

Variables execname pid uregs

262 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Address Spaces User

This privilege does not grant any visibility to Solaris kernel data structures or to
processes to which the user does not have permission.

Users with this privilege may create and enable probes in processes that they own; if
the user also has the proc_owner privilege, probes may be created and enabled in
any process.1 The dtrace_proc privilege is intended for users interesting in the
debugging or performance analysis of user processes. It is ideal for a developer
working on a new application or an engineer trying to improve an application’s
performance in a production environment.

The dtrace_proc privilege allows access to DTrace that can impose a perfomance
penalty only on those processes to which the user has permission. The instrumented
processes will impose more of a load on the system resources, and as such it may have
some small impact on the overall system performance. Aside from this increase in
overall load, this privilege does not allow any instrumentation that impacts
performance for any processes other than those being traced. As this privilege grants
users no additional visibility into other processes or the kernel itself, it is
recommended that this privilege be granted to all users that may need to better
understand the inner-workings of their own processes.

28.4 dtrace_user Privilege
The dtrace_user privilege permits use of the profile and syscall providers
with some caveats, and the use of the following actions and variables:

Providers profile syscall fasttrap

Actions copyin copyout• stop•

copyinstr raise• ustack

Variables execname pid uregs

Address Spaces User

As with the dtrace_proc privilege, the dtrace_user privilege permits no visibility
to Solaris kernel data structures or to processes to which the user does not have
permission.

1 Users with the dtrace_proc and proc_owner privileges may enable any pid probe from any process, but can only create
probes in processes whose privilege set is a subset of their own privilege set. Refer to the Least Privilege documentation for
complete details.

Chapter 28 • Security 263

The dtrace_user privilege provides only visibility to those processes to which the
user already has permission; it does not allow any visibility into kernel state or
activity. With this privilege, users may enable the syscall provider, but the enabled
probes will only activate in processes to which the user has permission. Similarly, the
profile provider may be enabled, but the enabled probes will only activate in
processes to which the user has permission, never in the Solaris kernel.

This privilege permits the use of instrumentation that, while only allowing visibility
into particular processes, can impact overall system performance. The syscall
provider has some small performance impact on every system call for every process.
The profile impacts overall system performance by executing every time interval (not
unlike a real-time timer). Neither of these performance degradations is so great as to
severely limit the system’s progress, but system administrators should consider of the
implications of granting a user this privilege. Refer to Chapter 21 and Chapter 19 for a
discussion of the performance impact of the syscall and profile providers.

28.5 dtrace_kernel Privilege
The dtrace_kernel privilege permits the use of every provider except for the use of
the pid and fasttrap providers on processes not owned by the user, and permits
the use of all actions and variables except for kernel destructive actions
(breakpoint(), panic(), chill()). This privilege allows for complete visibility
into kernel and user state. Notice that the facilities enabled by the dtrace_user
privilege are a strict subset of those enabled by dtrace_kernel.

Providers All with above restrictions

Actions All but destructive actions

Variables All

Address Spaces User Kernel

264 Solaris Dynamic Tracing Guide • November 2003 (Beta)

28.6 Super-user Privileges
A user with all privileges may use every providers and every action including the
kernel destructive actions unavailable to every other class of user.

Providers All

Actions All including destructive
actions

Variables All

Address Spaces User Kernel

Chapter 28 • Security 265

266 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 29

Anonymous Tracing

DTrace consumers are processes that have open file descriptors corresponding to the
in-kernel DTrace framework. In general, having DTrace consumers be processes is a
natural fit: the process is a well-understood entity for accounting, security, diagnosis,
etc. However, there are some spaces into which processes cannot fit. Specifically, if
tracing consumers can only be processes, tracing may only occur when processes can
run — which is to say, tracing may not occur during boot. To most users of DTrace,
this does not pose much of a limitation — most users do not care about boot once a
machine has booted. To device driver developers, however, boot problems are
particularly difficult to debug.

To allow for tracing during boot, DTrace provides anonymous tracing — tracing that is
not associated with any consumer per se. Any tracing that one can do interactively one
may do anonymously. However, only the super-user may create an anonymous
enabling, and there may only be one anonymous enabling at any time.

29.1 Creating Anonymous State
To create an anonymous enabling, use the -A option to a dtrace(1M) invocation that
specifies the desired probes, predicates, actions and options. dtrace will add a series
of driver properties representing your request to the dtrace(7D) driver’s
configuration file — typically /kernel/drv/dtrace.conf. These properties will be
read by the dtrace(7D) driver when it is loaded, and the driver will enable the
specified probes with the specified actions, and create an anonymous state to associate
with the new enabling. Normally, the dtrace(7D) driver is loaded on-demand (as are
any drivers that act as DTrace providers). However, if one wishes to perform tracing
during boot, one will want the dtrace(7D) driver to be loaded as early as possible.
Due to this, add a forceload statement to /etc/system (see system(4)) for each
required DTrace provider and for dtrace(7D) itself. For example, if one is enabling
probes in fbt(7D), one would add the following two lines to /etc/system:

267

forceload: drv/fbt

forceload: drv/dtrace

Once these lines have been added to /etc/system, the system should be rebooted.
When the system boots, a message will be emitted by dtrace(7D) to indicate that the
configuration file has been succesfully processed.

Note that all options may be set with an anonymous enabling, including buffer size,
dynamic variable size, speculation size, number of speculations, and so on.

29.2 Claiming Anonymous State
Once the machine has completely booted, any anonymous state may be claimed by
specifying the -a option to dtrace. By default, -a claims the anonymous state,
processes the existing data, and continues to run. If one wishes to grab the anonymous
state and then exit, one should add the -e option.

Note that once anonymous state has been grabbed, it cannot be replaced; as with all
DTrace data, once the data has been consumed from the kernel, the in-kernel buffers
that contained it are reused. If one attempts to claim anonymous tracing state where
none exists, dtrace will generate a message similar to:

dtrace: no anonymous tracing state

If drops or errors have occurred, dtrace will generate the appropriate messages
when the anonymous state is claimed. The messages for drops and errors are the same
for both anonymous and non-anonymous state.

29.3 Anonymous Tracing Examples
Here is an anonymous DTrace enabling for every probe in the iprb(7D) module:

dtrace -A -m iprb
echo ’forceload: drv/fbt’ >>/etc/system
echo ’forceload: drv/dtrace’ >>/etc/system

reboot

After rebooting, dtrace(7D) prints a message on the console to indicate that it is
enabling the specified probes:

268 Solaris Dynamic Tracing Guide • November 2003 (Beta)

...
Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
NOTICE: enabling probe 0 (:iprb::)
NOTICE: enabling probe 1 (dtrace:::ERROR)
configuring IPv4 interfaces: iprb0.

...

When the machine has rebooted, the anonymous state may be grabbed by specifying
the -a option to dtrace:

dtrace -a
CPU ID FUNCTION:NAME
0 22954 _init:entry
0 22955 _init:return
0 22800 iprbprobe:entry
0 22934 iprb_get_dev_type:entry
0 22935 iprb_get_dev_type:return
0 22801 iprbprobe:return
0 22802 iprbattach:entry
0 22874 iprb_getprop:entry
0 22875 iprb_getprop:return
0 22934 iprb_get_dev_type:entry
0 22935 iprb_get_dev_type:return
0 22870 iprb_self_test:entry
0 22871 iprb_self_test:return
0 22958 iprb_hard_reset:entry
0 22959 iprb_hard_reset:return
0 22862 iprb_get_eeprom_size:entry
0 22826 iprb_shiftout:entry
0 22828 iprb_raiseclock:entry
0 22829 iprb_raiseclock:return

...

Here is a more interesting enabling focusing only on those functions called from
iprbattach():

fbt::iprbattach:entry
{

self->trace = 1;
}

fbt:::
/self->trace/
{}

fbt::iprbattach:return
{

self->trace = 0;

}

Chapter 29 • Anonymous Tracing 269

Save this example in a file named iprb.d and then execute the following commands
to clear the previous settings from the driver configuration file, install the new
anonymous tracing request, and reboot:

dtrace -AFs iprb.d

reboot

After rebooting, dtrace(7D) prints a different message on the console to indicate the
slightly different enabling:

...
Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
NOTICE: enabling probe 0 (fbt::iprbattach:entry)
NOTICE: enabling probe 1 (fbt:::)
NOTICE: enabling probe 2 (fbt::iprbattach:return)
NOTICE: enabling probe 3 (dtrace:::ERROR)
configuring IPv4 interfaces: iprb0.

...

After the machine has completely booted, claim the anonymous state with the -a
option. We add the -e option to denote that dtrace should exit after processing the
anonymous data:

dtrace -ae
CPU FUNCTION
0 -> iprbattach
0 -> gld_mac_alloc
0 -> kmem_zalloc
0 -> kmem_cache_alloc
0 -> kmem_cache_alloc_debug
0 -> verify_and_copy_pattern
0 <- verify_and_copy_pattern
0 -> tsc_gethrtime
0 <- tsc_gethrtime
0 -> getpcstack
0 <- getpcstack
0 -> kmem_log_enter
0 <- kmem_log_enter
0 <- kmem_cache_alloc_debug
0 <- kmem_cache_alloc
0 <- kmem_zalloc
0 <- gld_mac_alloc
0 -> kmem_zalloc
0 -> kmem_alloc
0 -> vmem_alloc
0 -> highbit
0 <- highbit
0 -> lowbit
0 <- lowbit
0 -> vmem_xalloc
0 -> highbit
0 <- highbit

270 Solaris Dynamic Tracing Guide • November 2003 (Beta)

0 -> lowbit
0 <- lowbit
0 -> segkmem_alloc
0 -> segkmem_xalloc
0 -> vmem_alloc
0 -> highbit
0 <- highbit
0 -> lowbit
0 <- lowbit
0 -> vmem_seg_alloc
0 -> highbit
0 <- highbit
0 -> highbit
0 <- highbit
0 -> vmem_seg_create

...

Chapter 29 • Anonymous Tracing 271

272 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 30

Postmortem Tracing

DTrace allows for understanding complicated problems in a running system. A natural
extension to DTrace is to allow it to be used to better understand problems that induce
fatal system failure. To enable this, DTrace provides facilities for postmortem extraction
and processing of the in-kernel data of DTrace consumers. That is, DTrace data may be
extracted and processed from the system crash dump that typically results from fatal
system failure.

By coupling these postmortem capabilities of DTrace with its ring buffering buffer
policy (see Chapter 11), DTrace can be used as an operating system analog to the flight
data recorder present on commercial aircraft (the so-called black box — even though it
is bright orange). In the event of a system crash, the information that has been
recorded with DTrace may provide the crucial clues to root-cause the system failure.

Recovering DTrace data from a system crash dump is straightforward, and makes use
of the Solaris Modular Debugger, mdb(1). To extract DTrace data from a specific crash
dump, one should begin by running mdb(1) on the dump of interest. The MDB module
containing the DTrace functionality will be loaded automatically. To learn more about
MDB, refer to the Solaris Modular Debugger Guide.

30.1 Displaying DTrace Consumers
To extract DTrace data from a DTrace consumer, one must first determine the DTrace
consumer of interest. To do this, run the ::dtrace_state MDB dcmd:

> ::dtrace_state
ADDR MINOR PROC NAME FILE

ccaba400 2 - <anonymous> -
ccab9d80 3 d1d6d7e0 intrstat cda37078
cbfb56c0 4 d71377f0 dtrace ceb51bd0
ccabb100 5 d713b0c0 lockstat ceb51b60

273

d7ac97c0 6 d713b7e8 dtrace ceb51ab8

This dcmd provides as its output a table of DTrace state structures. Each row of the
table consists of the following:

� The address of the state structure.
� The minor number associated with the dtrace(7D) device.
� The address of the process structure that corresponds to the DTrace consumer.
� The name of the DTrace consumer (or <anonymous> for anonymous consumers).
� The name of the file structure that corresponds to the open dtrace(7D) device.

If further information about a DTrace consumer is desired, the address of its process
structure may be specified to the ::ps dcmd:

> d71377f0::ps
S PID PPID PGID SID UID FLAGS ADDR NAME

R 100647 100642 100647 100638 0 0x00004008 d71377f0 dtrace

30.2 Displaying Trace Data
Once the consumer of interest has been determined, the data corresponding to the
unconsumed buffers may be processed by specifying the address of the state structure
to the ::dtrace dcmd. For example, here is the output of the ::dtrace dcmd on an
anonymous enabling of syscall:::entry with the action trace(execname):

> ::dtrace_state
ADDR MINOR PROC NAME FILE

cbfb7a40 2 - <anonymous> -

> cbfb7a40::dtrace
CPU ID FUNCTION:NAME
0 344 resolvepath:entry init
0 16 close:entry init
0 202 xstat:entry init
0 202 xstat:entry init
0 14 open:entry init
0 206 fxstat:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 190 munmap:entry init
0 344 resolvepath:entry init
0 216 memcntl:entry init
0 16 close:entry init
0 202 xstat:entry init
0 14 open:entry init
0 206 fxstat:entry init
0 186 mmap:entry init

274 Solaris Dynamic Tracing Guide • November 2003 (Beta)

0 186 mmap:entry init
0 186 mmap:entry init
0 190 munmap:entry init

...

The ::dtrace dcmd handles errors in the same way that dtrace(1M) does; if drops,
errors, speculative drops, or the like were encountered, ::dtrace will emit a message
corresponding to that of dtrace(1M).

As with dtrace(1M), the order of events as displayed by ::dtrace is always oldest
to youngest within a given CPU. The CPU buffers themselves are displayed in
numerical order; if an ordering is required for events on different CPUs, the
timestamp variable should be traced.

One may display only the data for a specific CPU by specifying the -c option to
::dtrace:

> cbfb7a40::dtrace -c 1
CPU ID FUNCTION:NAME
1 14 open:entry init
1 206 fxstat:entry init
1 186 mmap:entry init
1 344 resolvepath:entry init
1 16 close:entry init
1 202 xstat:entry init
1 202 xstat:entry init
1 14 open:entry init
1 206 fxstat:entry init
1 186 mmap:entry init

...

Note that ::dtrace only processes in-kernel DTrace data. Data that has been
consumed from the kernel and processed (via dtrace(1M) or other means) will not be
available to be processed with ::dtrace. To assure that the most amount of data
possible is available at the time of failure, a ring buffer buffering policy should be
used. (See Chapter 11 for more information on buffer policies.)

Here is an example that creates a very small (16K) ring buffer recording all system
calls and the process making them:

dtrace -P syscall’{trace(curpsinfo->pr_psargs)}’ -b 16k -x bufpolicy=ring

dtrace: description ’syscall:::entry’ matched 214 probes

Looking at a crash dump when the above was enabled:

> ::dtrace_state
ADDR MINOR PROC NAME FILE

cdccd400 3 d15e80a0 dtrace ced065f0

> cdccd400::dtrace
CPU ID FUNCTION:NAME

Chapter 30 • Postmortem Tracing 275

0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 17 close:return mibiisa -r -p 25216

...
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 16 close:entry mibiisa -r -p 25216
0 17 close:return mibiisa -r -p 25216
0 124 lwp_park:entry mibiisa -r -p 25216
1 68 access:entry mdb -kw
1 69 access:return mdb -kw
1 202 xstat:entry mdb -kw
1 203 xstat:return mdb -kw
1 14 open:entry mdb -kw
1 15 open:return mdb -kw
1 206 fxstat:entry mdb -kw
1 207 fxstat:return mdb -kw
1 186 mmap:entry mdb -kw

...
1 13 write:return mdb -kw
1 10 read:entry mdb -kw
1 11 read:return mdb -kw
1 12 write:entry mdb -kw
1 13 write:return mdb -kw
1 96 ioctl:entry mdb -kw
1 97 ioctl:return mdb -kw
1 364 pread64:entry mdb -kw
1 365 pread64:return mdb -kw
1 366 pwrite64:entry mdb -kw
1 367 pwrite64:return mdb -kw
1 364 pread64:entry mdb -kw
1 365 pread64:return mdb -kw
1 38 brk:entry mdb -kw
1 39 brk:return mdb -kw

>

276 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Note that CPU 1’s youngest records include a series of write(2) system calls by an
mdb -kw process. This is very suspicious, as one could modify running kernel data or
text with mdb(1) when run with the -k and -w options. In this case, the DTrace data
provides at least an interesting avenue of investigation, if not the root-cause of the
failure.

Chapter 30 • Postmortem Tracing 277

278 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 31

Performance Considerations

As it induces additional work in the system, enabling DTrace in just about any fashion
affects system performance in some way. Often, this effect is negligible – but it can
become substantial if many probes are enabled with costly enablings. This chapter
describes techniques for minimizing the performance effect of DTrace.

31.1 Limit Enabled Probes
Thanks to dynamic instrumentation techniques, DTrace allows unparalleled tracing
coverage of both the kernel and of arbitrary user processes. While this coverage allows
revolutionary new insight into system behavior, it also also allows for enormous probe
effect: if tens of thousands or hundreds of thousands of probes are enabled, the effect
on the system can easily be substantial. In general, one should only enable as many
probes as one needs to solve a problem. One should not, for example, enable all FBT
probes if a more concise enabling will answer the question. For example, is there a
specific module of interest? A specific function?

If using the pid provider, one should be especially careful: because the pid provider
can instrument every instruction, it is possible to quite literally enable millions of
probes in an application – and to therefore slow the target process to a crawl.

Still, there are plenty of conditions in which very many probes must be enabled for a
question to be answered. DTrace has been designed for this in mind; enabling a large
number of probes may slow down the system quite a bit, but it will never induce fatal
failure on the machine. One should therefore not hesitate to enable many probes if so
required.

279

31.2 Use Aggregations
As discussed in Chapter 9, DTrace’s aggregations allow for a scalable way of
aggregating data. Associative arrays may appear to offer similar functionality to
aggregations. While associative arrays are a powerful (and essential) part of the
DTrace facility, they cannot – by nature of being global, general-purpose variables –
offer the linear scalability of aggregations. One should therefore always prefer to use
aggregations over associative arrays when possible. For example, one should generally
not do the following:

syscall:::entry
{

totals[execname]++;
}

syscall::rexit:entry
{

printf("%40s %d\n", execname, totals[execname]);
totals[execname] = 0;

}

One should instead prefer the following:

syscall:::entry
{

@totals[execname] = count();
}

END
{

printa("%40s %@d\n", @totals);

}

31.3 Use Cacheable Predicates
In a tracing framework that offers comprehensive coverage, the framework must
provide mechanism to allow events not to be traced — lest the user be flooded with
unwanted data. As discussed in “4.3 Predicates” on page 72, DTrace does this with
predicates, whereby data is only traced if a specified condition is found to be true.
When enabling many probes, one tends to use predicates of a form that identifies a
specific thread or threads of interest, for example “/self->traceme/” or “/pid ==
12345/.” Many of these predicates evaluate to the same (false) value for most threads
in most probes, but the evaluation itself can become costly when done for, say, every

280 Solaris Dynamic Tracing Guide • November 2003 (Beta)

function entry and return point in the kernel. To reduce this cost, DTrace caches the
evaluation of a predicate if it includes only thread-local variables (as in the first
example) and/or immutable variables (as in the second). The cost of evaluating a
cached predicate is much smaller than the cost of evaluating a non-cached predicate –
especially if the predicate involves thread-local variables, string comparisons, or other
relatively costly operations. While predicate caching is transparent to the user (cache
coherency is maintained by DTrace), it does imply some guidelines for constructing
optimal predicates:

Cacheable Uncacheable

self->mumble mumble[curthread], mumble[pid, tid]

execname curpsinfo->pr_fname, curthread->t_procp-
>p_user.u_comm

pid curpsinfo->pr_pid, curthread->t_procp->p_pipd-
>pid_id

tid curlwpsinfo->pr_lwpid, curthread->t_tid

curthread curthread->any member, curlwpsinfo->any member,
curpsinfo->any member

For example, one should generally not do the following:

syscall::read:entry
{

follow[pid, tid] = 1;
}

fbt:::
/follow[pid, tid]/
{}

syscall::read:return
/follow[pid, tid]/
{

follow[pid, tid] = 0;

}

One should instead prefer to use thread-local variables, as in the following:

syscall::read:entry
{

self->follow = 1;
}

fbt:::
/self->follow/
{}

Chapter 31 • Performance Considerations 281

syscall::read:return
/self->follow/
{

self->follow = 0;

}

Finally, note that a predicate must consist exclusively of cacheable expressions in order
to be cacheable. Thus, the following predicates are all cacheable:

/execname == "myprogram"/
/execname == $$1/
/pid == 12345/
/pid == $1/

/self->traceme == 1/

But – due to their use of global variables – these predicates are all not cacheable:

/execname == one_to_watch/
/traceme[execname]/
/pid == pid_i_care_about/

/self->traceme == my_global/

282 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 32

Stability

Sun often provides developers with early access to new technologies as well as
observability tools that allow users to peer into the internal implementation details of
user and kernel software. Unfortunately, new technologies and internal
implementation details are both prone to changes as interfaces and implementations
evolve and mature when software is upgraded or patched. Sun documents application
and interface stability levels using a set of labels described in the attributes(5) man
page to help set user expectations for what kinds of changes might occur in different
kinds of future releases.

DTrace provides a unique challenge for Sun in this area, as there is not one stability
attribute that appropriately describes the arbitrary set of entities and services that can
be accessed from a D program. To meet this challenge, DTrace and the D compiler
include features to dynamically compute and describe the stability levels of D
programs you create. In this chapter, we discuss the DTrace features for determining
program stability and help you understand how to design stable D programs. You can
use the DTrace stability features to inform you of the stability attributes of your D
programs, or to produce compile-time errors when your program has undesirable
interface dependencies.

32.1 Stability Levels
DTrace provides two types of stability attributes for entities such as built-in variables,
functions, and probes: a stability level and an architectural dependency class. The DTrace
stability level assists you in making risk assessments when developing scripts and
tools based on DTrace by indicating how likely an interface or DTrace entity is to
change in a future release or patch. The DTrace dependency class tells you whether an
interface is common to all Solaris platforms and processors, or whether the interface is
associated with a particular architecture such as SPARC processors only. The two
types of attributes used to describe interfaces can vary independently.

283

The stability values used by DTrace are listed below in order from lowest to highest
stability. The more stable interfaces can be used by all D programs and layered
applications because Sun will endeavor to ensure that these continue to work in future
minor releases. Applications that depend only on Stable interfaces should reliably
continue to function correctly on future minor releases and will not be broken by
interim patches. The less stable interfaces allow experimentation, prototyping, tuning,
and debugging on your current system, but should be used with the understanding
that they might change incompatibly or even be dropped or replaced with alternatives
in future minor releases. The Solaris Dynamic Tracing Guide will document changes to
DTrace interfaces in future releases.

The DTrace stability values also help you understand the stability of the software
entities you are observing, in addition to the stability of the DTrace interfaces
themselves. Therefore, DTrace stability values also tell you how likely your D
programs and layered tools are to require corresponding changes when you upgrade
or change the software stack you are observing. Sun’s versioning model and release
taxonomy is described further in the attributes(5) man page.

Internal The interface is private to DTrace itself and represents an
implementation detail of DTrace. Internal interfaces may change in
minor or micro releases.

Private The interface is private to Sun and represents an interface
developed for use by other Sun products that is not yet publicly
documented for use by customers and ISVs. Private interfaces may
change in minor or micro releases.

Obsolete The interface is supported in the current release, but it scheduled
to be removed, most likely in a future minor release. When
support of an interface is to be discontinued, Sun will attempt to
provide notification before discontinuing the interface. The D
compiler may produce warning messages if you attempt to use an
Obsolete interface.

External The interface is controlled by an entity other than Sun. At Sun’s
discretion, Sun can deliver as part of any release updated and
possibly incompatible versions of such interfaces, subject to their
availability from the controlling entity. Sun makes no claims
regarding either source or binary compatibility for External
interfaces between any two releases. Applications based on these
interfaces might not work in future releases, including patches that
contain External interfaces.

Unstable The interface is provided to give developers early access to new or
rapidly changing technology or to an implementation artifact
which is essential for observing or debugging system behavior for
which a more stable solution is anticipated in the future. Sun
makes no claims about either source or binary compatibility for
Unstable interfaces from one minor release to another.

284 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Evolving The interface may eventually become Standard or Stable but is still
in transition. Sun will make reasonable efforts to ensure
compatibility with previous releases as it evolves. When
non-upwards compatible changes become necessary, they will
occur in minor and major releases; such changes will be avoided in
micro releases whenever possible. If such a change is necessary, it
will be documented in the release notes for the affected release,
and when feasible, Sun will provide migration aids for binary
compatibility and continued D program development.

Stable The interface is a mature interface under Sun’s control. Sun will try
to avoid non-upwards-compatible changes to these interfaces,
especially in minor or micro releases. If support of a Stable
interface must be discontinued, Sun will attempt to provide
notification and the stability level changes to Obsolete, as
described above.

Standard The interface complies with an industry standard. The
corresponding documentation for the interface in the Solaris
Dynamic Tracing Guide will describe the standard to which the
interface conforms. Standards are typically controlled by a
standards development organization, and changes can be made to
the interface in accordance with approved changes the standard.
This stability level can also apply to interfaces that have been
adopted (without a formal standard) by an industry convention.
Support is provided for only the specified version(s) of a standard;
support for later versions is not guaranteed. If the standards
development organization approves a non-upward-compatible
change to a Standard interface that Sun decides to support, Sun
will announce a compatibility and migration strategy.

32.2 Dependency Classes
Since Solaris and DTrace support a variety of operating platforms and processors,
DTrace also labels interfaces with a dependency class that tells you whether an interface
is common to all Solaris platforms and processors, or whether the interface is
associated with a particular system architecture. The dependency class is orthogonal
to the stability levels described earlier. For example, a DTrace interface can be Stable
but only supported on SPARC microprocessors, or it can be Unstable but common to
all Solaris systems. The DTrace dependency classes are described below in order from
least common (that is, most specific to a particular architecture) to most common (that
is, common to all architectures).

Chapter 32 • Stability 285

Unknown The interface has an unknown set of architectural dependencies.
DTrace does not necessarily know the architectural dependencies
of all entities, such as data types defined in the operating system
implementation. The Unknown label is typically applied to
interfaces of very low stability for which dependencies cannot be
computed. The interface may not be available when using DTrace
on any architecture other than the one you are currently using.

CPU The interface is specific to the CPU model of the current system.
The psrinfo(1M) utility’s -v option can be used to display the
current CPU model and implementation name(s). Interfaces with
CPU model dependencies may not be available on other CPU
implementations, even if those CPUs export the same instruction
set architecture (ISA). For example, a CPU-dependent interface on
an UltraSPARC-III+ microprocessor may not be available on an
UltraSPARC-II microprocessor, even though both processors
support the SPARC instruction set.

Platform The interface is specific to the hardware platform of the current
system. A platform typically associates a set of system components
and architectural characteristics such as a set of supported CPU
models with a system name such as SUNW,Ultra-Enterprise-10000.
The current platform name can be displayed by using the
uname(1) -i option. The interface may not be available on other
hardware platforms.

Group The interface is specific to the hardware platform group of the
current system. A platform group typically associates a set of
platforms with related characteristics together under a single
name, such as sun4u. The current platform group name can be
displayed using the uname(1) -m option. The interface is available
on other platforms in the platform group, but may not be available
on hardware platforms that are not members of the group.

ISA The interface is specific to the instruction set architecture (ISA)
supported by the microprocessors on this system. The ISA
describes a specification for software that can be executed on the
microprocessor, including details such as assembly language
instructions and registers. The native instruction sets supported by
the system can be displayed using the isainfo(1) utility. The
interface may not be supported on systems that do not export any
of the same instruction sets. For example, an ISA-dependent
interface on a Solaris SPARC system may not be supported on a
Solaris x86 system.

Common The interface is common to all Solaris systems, regardless of the
underlying hardware. DTrace programs and layered applications
that depend only on Common interfaces can be executed and
deployed on other Solaris systems with the same Solaris and

286 Solaris Dynamic Tracing Guide • November 2003 (Beta)

DTrace revisions. The vast majority of DTrace interfaces are
designed to be Common, so you can use them wherever you use
Solaris.

32.3 Interface Attributes
DTrace describes interfaces using a triplet of attributes consisting of two stability
levels and a dependency class. By convention, we write down the interface attributes
in the following order, separated by slashes:

name-stability / data-stability / dependency-class

The name stability of an interface describes the stability level associated with its name
as it appears in your D program or on the dtrace command-line. For example, the
execname D variable is a Stable name: Sun guarantees this identifier will continue to
be supported in your D programs according to the rules described for Stable interfaces
above.

The data stability of an interface is distinct from the stability associated with the
interface name. This stability level describes Sun’s commitment to maintaining the
data format(s) used by the interface and any associated data semantics. For example,
the pid D variable is a Stable interface: process IDs are a Stable concept in Solaris, and
Sun guarantees that the pid variable will be of type pid_t with the semantic that it is
set to the process ID corresponding to the thread that fired a given probe in
accordance with the rules described for Stable interfaces above.

The dependency class of an interface is distinct from its name and data stability, and
describes whether the interface is specific to the current operating platform or
microprocessor, as described above.

DTrace and the D compiler track the stability attributes for all of the DTrace interface
entities we have seen so far, including providers, probe descriptions, D variables, D
functions, types, and even your program statements themselves, as we’ll see shortly.
Notice that all three values can vary independently. For example, the curthread D
variable has Stable/Private/Common attributes: the variable name is Stable and is
Common to all Solaris operating platforms, but this variable provides access to a
Private data format which is an artifact of the Solaris kernel implementation. Most D
variables we have today are provided with Stable/Stable/Common attributes, as are
the variables you define yourself.

Chapter 32 • Stability 287

32.4 Stability Computations and Reports
The D compiler performs stability computations for each of the probe descriptions and
action statements in your D programs. You can use the dtrace -v option to display a
report of your program’s stability. Here is a simple example using a program written
on the command-line:

dtrace -v -n dtrace:::BEGIN’{exit(0);}’
dtrace: description ’dtrace:::BEGIN’ matched 1 probe
Stability data for description dtrace:::BEGIN:

Minimum probe description attributes
Identifier Names: Evolving
Data Semantics: Evolving
Dependency Class: Common

Minimum probe statement attributes
Identifier Names: Stable
Data Semantics: Stable
Dependency Class: Common

CPU ID FUNCTION:NAME

0 1 :BEGIN

You may also wish to combine the dtrace -v option with the -e option, which tells
dtrace to compile but not execute your D program, so that you can determine program
stability without having to enable any probes and execute your program. Here is
another example stability report:

dtrace -ev -n dtrace:::BEGIN’{trace(curthread->t_procp);}’
Stability data for description dtrace:::BEGIN:

Minimum probe description attributes
Identifier Names: Evolving
Data Semantics: Evolving
Dependency Class: Common

Minimum probe statement attributes
Identifier Names: Stable
Data Semantics: Private
Dependency Class: Common

#

Notice that in our new program, we have referenced the D variable curthread,
which has a Stable name, but Private data semantics (that is, if you look at it, you are
accessing Private implementation details of the kernel), and this is now reflected in the
program’s stability report. Stability attributes in the program report are computed by
selecting the minimum stability level and class out of the corresponding values for
each interface attributes triplet.

288 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Stability attributes are computed for a probe description by taking the minimum
stability attributes of all specified probe description fields according to the attributes
published by the provider. The attributes of the available DTrace providers are shown
in the chapter corresponding to each provider. DTrace providers export a stability
attributes triplet for each of the four description fields for all probes published by that
provider. Therefore, a provider’s name may have a greater stability than the individual
probes it exports. For example, the probe description:

fbt:::

indicating that DTrace should trace entry and return from all kernel functions, has
greater stability than the probe description:

fbt:foo:bar:entry

which names an specific internal function bar() in kernel module foo. For simplicity,
most providers use a single set of attributes for all of the individual
module:function:name values that they publish. Providers also specify attributes for
the args[] array, as the stability of any probe arguments vary by provider.

If the provider field itself is not specified in a probe description, then the description is
assigned the stability attributes Unstable/Unstable/Common because the description
may end up matching probes of providers that do not even exist yet when used on a
future version of Solaris. As such, Sun is not able to provide guarantees about the
future stability and behavior of this program. In general, you should always explicitly
specify the provider when writing your D program clauses. In addition, any probe
description fields that contain pattern matching characters (see Chapter 4) or macro
variables such as $1 (see Chapter 15) are treated as if they are unspecified because
these description patterns may expand to match providers or probes released by Sun
in future versions of DTrace and Solaris.

Stability attributes are computed for most D language statements by taking the
minimum stability and class of the entities in the statement. For example, if we take
the following attributes of D language entities:

Entity Attributes

D built-in variable curthread Stable/Private/Common

D user-defined variable x Stable/Stable/Common

and we write the following D program statement:

x += curthread->t_pri;

Chapter 32 • Stability 289

then the resulting attributes of the statement are Stable/Private/Common, the
minimum attributes associated with the operands curthread and x. In general, the
stability of an expression is computed by taking the minimum stability attributes of
each of the operands.

Any D variables you define in your program are automatically assigned the attributes
Stable/Stable/Common. In addition, the D language grammar and D operators are
implicitly assigned the attributes Stable/Stable/Common. References to kernel
symbols using the backquote (‘) operator are always assigned the attributes
Private/Private/Unknown because they reflect implementation artifacts. Types that
you define in your D program source code (specifically those that are associated with
the C and D type namespaces) are assigned the attributes Stable/Stable/Common.
Types that are defined in the operating system implementation and provided by other
type namespaces are assigned the attributes Private/Private/Unknown. The D type
cast operator yields an expression whose stability attributes are the minimum of the
input expression’s attributes and the attributes of the cast output type.

If you use the C preprocessor to include C system header files, these types will be
associated with the C type namespace and will be assigned the attributes
Stable/Stable/Common as the D compiler has no choice but to assume that you are
taking responsibility for these declarations. It is therefore possible to mislead yourself
about your program’s stability if you use the C preprocessor to include a header file
containing implementation artifacts. You should always consult the documentation
corresponding to the header files you are including in order to determine the correct
stability levels.

32.5 Stability Enforcement
When developing a DTrace script or layered tool, you may wish to identify the specific
source of stability issues or ensure that your program has a desired set of stability
attributes. You can use the dtrace -x amin=attributes option to force the D compiler
to produce an error when any attributes computation results in a triplet of attributes
less than the minimum values you specify on the command-line. The following
example demonstrates the use of -x amin using a snippet of D program source.
Notice that attributes are specified using three labels delimited by / in the usual order.

dtrace -x amin=Evolving/Evolving/Common \
-ev -n dtrace:::BEGIN’{trace(curthread->t_procp);}’

dtrace: invalid probe specifier dtrace:::BEGIN{trace(curthread->t_procp);}: \
in action list: attributes for scalar curthread (Stable/Private/Common) \
are less than predefined minimum

#

290 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 33

Translators

In Chapter 32, we learned about how DTrace computes and reports program stability
attributes. Ideally, we would like to construct our DTrace programs by consuming
only Stable or Evolving interfaces. Unfortunately, when debugging a low-level
problem or measuring system performance, you may need to enable probes that are
associated with internal operating system routines such as functions in the kernel,
rather than probes associated with more stable interfaces such as system calls. The
data available at probe locations deep within the software stack is often a collection of
implementation artifacts rather than more stable data structures such as those
associated with the Solaris system call interfaces. In order to aid you in writing stable
D programs, DTrace provides a facility to translate implementation artifacts into stable
data structures accessible from your D program statements.

33.1 Translator Declarations
To understand the need for and use of translators, we’ll consider as an example the
ANSI-C standard library routines defined in stdio.h. These routines operate on a
data structure named FILE whose implementation artifacts are abstracted away from
C programmers. A standard technique for creating a data structure abstraction is to
provide only a forward declaration of a data structure in public header files, while
keeping the corresponding struct definition in a separate private header file.

If you are writing a C program and wish to know the file descriptor corresponding to
a FILE struct, you can use the fileno(3C) function to obtain the descriptor rather
than dereferencing a member of the FILE struct directly. The Solaris header files
enforce this rule by defining FILE as an opaque forward declaration tag so it cannot be
dereferenced directly by C programs that include <stdio.h>. Inside the libc.so.1
library, you can imagine that fileno() is implemented in C something like this:

int
fileno(FILE *fp)

291

{
struct file_impl *ip = (struct file_impl *)fp;

return (ip->fd);

}

Our hypothetical fileno() takes a FILE pointer as an argument and casts it to a
pointer to a corresponding internal libc structure, struct file_impl, and then
returns the value of the fd member of the implementation structure. Why does Solaris
implement interfaces like this? By abstracting the details of the current libc
implementation away from client programs, Sun is able to maintain a commitment to
strong binary compatibility while continuing to evolve and change the internal
implementation details of libc. In our example, the fd member could change size or
position within struct file_impl, even in a patch, and existing binaries calling
fileno(3C) would not be affected by this change because they do not depend on
these artifacts.

Unfortunately, observability software such as DTrace has the need to peer inside the
implementation in order to provide useful results, and does not have the luxury of
calling arbitrary C functions defined in Solaris libraries or in the kernel. You could
declare a copy of struct file_impl in your D program in order to instrument the
routines declared in stdio.h, but then your D program would rely on Private
implementation artifacts of the library that might break in a future micro or minor
release, or even in a patch. Ideally, we want to provide a construct for use in D
programs that is bound to the implementation of the library and is updated
accordingly, but still provides an additional layer of abstraction associated with
greater stability.

A translator is a collection of D assignment statements provided by the supplier of an
interface that can be used to translate an input expression into an object of struct type.
A new translator is created using a declaration of the form:

translator output-type < input-type input-identifier > {
member-name = expression ;
member-name = expression ;
...

};

The output-type names a struct that will be the result type for the translation. The
input-type specifies the type of the input expression, and is surrounded in angle
brackets < > and followed by an input-identifier that can be used in the translator
expressions as an alias for the input expression. The body of the translator is
surrounded in braces { } and terminated with a semicolon (;), and consists of a list of
member-name and identifiers corresponding translation expressions. Each member
declaration must name a unique member of the output-type and must be assigned an
expression of a type compatible with the member type, according to the rules for the D
assignment (=) operator.

292 Solaris Dynamic Tracing Guide • November 2003 (Beta)

For example, we could define a struct of stable information about stdio files based
on some of the available libc interfaces:

struct file_info {
int file_fd; /* file descriptor from fileno(3C) */
int file_eof; /* eof flag from feof(3C) */

};

A hypothetical D translator from FILE to file_info could then be declared in D as
follows:

translator struct file_info < FILE *F > {
file_fd = ((struct file_impl *)F)->fd;
file_eof = ((struct file_impl *)F)->eof;

};

In our hypothetical translator, the input expression is of type FILE * and is assigned
the input-identifier F. The identifier F can then be used in the translator member
expressions as a variable of type FILE * that is only visible within the body of the
translator declaration. To determine the value of the output file_fd member, the
translator performs a cast and dereference similar to the hypothetical implementation
of fileno(3C) shown above. A similar translation is performed to obtain the value of
the EOF indicator.

Sun provides a set of translators for use with Solaris interfaces that you can invoke
from your D programs, and promises to maintain these translators according to the
rules for interface stability defined earlier as the implementation of the corresponding
interface changes. We’ll learn about these translators later in the chapter, after we learn
how to invoke translators from D. The translator facility itself is also provided for use
by application and library developers who wish to offer their own translators that D
programmers can use to observe the state of their software packages.

33.2 Translate Operator
The D operator xlate is used to perform a translation from an input expression to
one of the defined translation output structures. The xlate operator is used in an
expression of the form:

xlate < output-type > (input-expression)

For example, to invoke the hypothetical translator for FILE structs defined above and
access the file_fd member, you would write the expression:

xlate <struct file_info *>(f)->file_fd;

Chapter 33 • Translators 293

where f is a D variable of type FILE *. The xlate expression itself is assigned the
type defined by the output-type. Once a translator is defined, it can be used to translate
input expressions to either the translator output struct type, or to a pointer to that
struct.

If you translate an input expression to a struct, you can either dereference a particular
member of the output immediately using the “.” operator, or you can assign the entire
translated struct to another D variable to make a copy of the values of all the
members. If you dereference a single member, the D compiler will only generate code
corresponding to the expression for that member. You may not apply the & operator to
a translated struct to obtain its address, as the data object itself does not exist until it is
copied or one of its members is referenced.

If you translate an input expression to a pointer to a struct, you can either dereference
a particular member of the output immediately using the -> operator, or you can
dereference the pointer using the unary * operator, in which case the result behaves as
if you translated the expression to a struct. If you dereference a single member, the D
compiler will only generate code corresponding to the expression for that member.
You may not assigned a translated pointer to another D variable as the data object
itself does not exist until it is copied or one of its members is referenced, and therefore
cannot be addressed.

A translator declaration may omit expressions for one or more members of the output
type. If an xlate expression is used to access a member for which no translation
expression is defined, the D compiler will produce an appropriate error message and
abort the program compilation. If the entire output type is copied by means of a
structure assignment, any members for which no translation expressions are defined
will be filled with zeroes.

In order to find a matching translator for an xlate operation, the D compiler
examines the set of available translators in the following order:

� First, the compiler looks for a translation from the exact input expression type to
the exact output type.

� Second, the compiler resolves the input and output types by following any typedef
aliases to the underlying type names, and then looks for a translation from the
resolved input type to the resolved output type.

� Third, the compiler looks for a translation from a compatible input type to the
resolved output type. The compiler uses the same rules as it does for determining
compatibility of function call arguments with function prototypes in order to
determine if an input expression type is compatible with a translator’s input type.

If no matching translator can be found according to these rules, the D compiler
produces an appropriate error message and program compilation fails.

294 Solaris Dynamic Tracing Guide • November 2003 (Beta)

33.3 Process Model Translators
The DTrace library file /usr/lib/dtrace/procfs.d provides a set of translators
for use in your D programs to translate from the operating system kernel
implementation structures for processes and threads to the stable proc(4) structures
psinfo and lwpsinfo. These structures are also used in the Solaris /proc filesystem
files /proc/pid/psinfo and /proc/pid/lwps/lwpid/lwpsinfo, and are defined in
the system header file /usr/include/sys/procfs.h. These structures define
useful Stable information about processes and threads such as the process ID, LWP ID,
initial arguments, and other data displayed by the ps(1) command. Refer to proc(4)
for a complete description of the struct members and semantics.

TABLE 33–1 procfs.d Translators

Input Type Input Type Attributes Output Type Output Type Attributes

proc_t * Private/Private/Common psinfo_t * Stable/Stable/Common

kthread_t * Private/Private/Common lwpsinfo_t * Stable/Stable/Common

33.4 Stable Translations
While a translator provides the ability to convert information into a stable data
structure, it does not necessarily resolve all stability issues that can arise in translating
data. For example, if the input expression for an xlate operation itself references
Unstable data, the resulting D program is also Unstable because program stability is
always computed as the minimum stability of the accumulated D program statements
and expressions. Therefore, it is sometimes necessary to define a specific stable input
expression for a translator in order to permit stable programs to be constructed. The D
inline mechanism can be used to facilitate such stable translations.

The DTrace procfs.d library provides the curlwpsinfo and curpsinfo variables
described earlier as stable translations. For example, the curlwpsinfo variable is
actually an inline declared as follows:

inline lwpsinfo_t *curlwpsinfo = xlate <lwpsinfo_t *> (curthread);

#pragma D attributes Stable/Stable/Common curlwpsinfo

The curlwpsinfo variable is defined as an inlined translation from the curthread
variable, a pointer to the kernel’s Private data structure representing a thread, to the
Stable lwpsinfo_t type. The D compiler processes this library file and caches the
inline declaration, making curlwpsinfo appear as any other D variable. The

Chapter 33 • Translators 295

#pragma statement following the declaration is used to explicitly reset the attributes
of the curlwpsinfo identifier to Stable/Stable/Common, masking the reference to
curthread in the inlined expression. This combination of D features permits D
programmers to use curthread as the source of a translation in a safe fashion that can
be updated by Sun coincident to corresponding changes in the Solaris implementation.

296 Solaris Dynamic Tracing Guide • November 2003 (Beta)

CHAPTER 34

Versioning

In Chapter 32, we learned about the DTrace features for determining the stability
attributes of D programs that you create. Once you have created a D program with the
appropriate stability attributes, you may also wish to bind this program to a particular
version of the D programming interface. The D interface version is a label applied to a
particular set of types, variables, functions, constants, and translators made available
to you by the D compiler. If you specify a binding to a specific version of the D
programming interface, you ensure that you can recompile your program on future
versions of DTrace without encountering conflicts between program identifiers that
you define and identifiers defined in future versions of the D programming interface.
You should establish version bindings for any D programs that you wish to install as
persistent scripts (see Chapter 15) or use in layered tools.

34.1 Versions and Releases
The D compiler labels sets of types, variables, functions, constants, and translators
corresponding to a particular software release using a version string. A version string is
a period-delimited sequence of decimal integers of the form “x” (a Major release),
“x.y” (a Minor release), or “x.y.z” (a Micro release). Versions are compared by
comparing the integers from left to right. If the leftmost integers are not equal, the
string with the greater integer is the greater (and therefore more recent) version. If the
leftmost integers are equal, the comparison proceeds to the next integer in order from
left to right to determine the result. All unspecified integers in a version string are
interpreted as having the value zero during a version comparison.

The DTrace version strings correspond to Sun’s standard nomenclature for interface
versions, as described in attributes(5). A change in the D programming interface is
accompanied by a new version string. The following table summarizes the version
strings used by DTrace and the likely significance of the corresponding DTrace
software release.

297

TABLE 34–1 DTrace Release Versions

Release Version Significance

Major x.0 A Major release is likely to contain major feature additions; adhere to
different, possibly incompatible Standard revisions; and though unlikely,
could change, drop, or replace Standard or Stable interfaces (see
Chapter 32). The initial version of the D programming interface is labeled as
version 1.0.

Minor x.y Compared to an x.0 or earlier version (where y is not equal to zero), a new
Minor release is likely to contain minor feature additions, compatible
Standard and Stable interfaces, possibly incompatible Evolving interfaces,
or likely incompatible Unstable interfaces. These changes may include new
built-in D types, variables, functions, constants, and translators. In addition,
a Minor release may remove support for interfaces previously labeled as
Obsolete (see Chapter 32).

Micro x.y.z Micro releases are intended to be interface compatible with the previous
release (where z is not equal to zero), but are likely to include bug fixes,
performance enhancements, and support for additional hardware.

In general, each new version of the D programming interface will provide a superset
of the capabilities offered by the previous version, with the exception of any Obsolete
interfaces that have been removed.

34.2 Versioning Options
By default, any D programs you compile using dtrace -s or specify using the
dtrace -P, -m, -f, -n, or -i command-line options are bound to the most recent D
programming interface version offered by the D compiler. You can determine the
current D programming interface version using the dtrace -V option:

$ dtrace -V
dtrace: Sun D 1.0

$

If you wish to establish a binding to a specific version of the D programming interface,
you can set the version option to an appropriate version string. Similar to other
DTrace options (see Chapter 16), you can set the version option either on the
command-line using dtrace -x:

dtrace -x version=1.0 -n ’BEGIN{trace("hello");}’

or you can use the #pragma D option syntax to set the option in your D program
source file:

298 Solaris Dynamic Tracing Guide • November 2003 (Beta)

#pragma D option version=1.0

BEGIN
{

trace("hello");

}

If you use the #pragma D option syntax to request a version binding, you must
place this directive at the top of your D program file prior to any other declarations
and probe clauses. If the version binding argument is not a valid version string or
refers to a version not offered by the D compiler, an appropriate error message will be
produced and compilation will fail. You can therefore also use the version binding
facility to cause execution of a D script on an older version of DTrace to fail with an
obvious error message.

Prior to compiling your program declarations and clauses, the D compiler loads the
set of D types, functions, constants, and translators for the appropriate interface
version into the compiler namespaces. Therefore, any version binding options you
specify simply control the set of identifiers, types, and translators that are visible to
your program in addition to the variables, types, and translators that your program
defines. Version binding prevents the D compiler from loading newer interfaces that
may define identifiers or translators that conflict with declarations in your program
source code and would therefore cause a compilation error. See “2.1 Identifier Names
and Keywords” on page 43 for tips on how to pick identifier names that are unlikely
to conflict with interfaces offered by future versions of DTrace.

34.3 Provider Versioning
Unlike interfaces offered by the D compiler, interfaces offered by DTrace providers
(that is, probes and probe arguments) are not affected by or associated with the D
programming interface or the previously described version binding options. The
available provider interfaces are established as part of loading your compiled
instrumentation into the DTrace software in the operating system kernel and vary
depending on your instruction set architecture, operating platform, processor, the
software installed on your Solaris system, and your current security privileges. The D
compiler and DTrace runtime examine the probes described in your D program
clauses and report appropriate error messages when probes requested by your D
program are not available. These features are orthogonal to the D programming
interface version because DTrace providers do not export interfaces that can conflict
with definitions in your D programs; that is, you can only enable probes in D, you
cannot define them, and probe names are kept in a separate namespace from other D
program identifiers.

Chapter 34 • Versioning 299

DTrace providers are delivered with a particular release of Solaris and are described in
the corresponding version of the Solaris Dynamic Tracing Guide. The chapter of this
guide corresponding to each provider will also describe any relevant changes to or
new features offered by a given provider. You can use the dtrace -l option to
explore the set of providers and probes available on your Solaris system. Providers
label their interfaces using the DTrace stability attributes, and you can use the DTrace
stability reporting features (see Chapter 32) to determine whether the provider
interfaces used by your D program are likely to change or be offered in future Solaris
releases.

300 Solaris Dynamic Tracing Guide • November 2003 (Beta)

Glossary

DTrace A dynamic tracing facility that provides concise answers to arbitrary
questions.

301

302 Solaris Dynamic Tracing Guide • November 2003 (Beta)

