. Lol ”
1&% .
Solaris Dynamic File System

Sun Microsystems, Inc.

The Perfect Filesystem

 Write my data
* Read it back
e Keep It simple
e Keep It safe

e Do It fast

Existing Filesystems

Difficult and complex to manage
No data integrity checks
No defense against silent data corruption

No data security: spying, tampering, theft
Many limits: size, number of files, etc.
Performance and scaling problems

Solaris Dynamic File System
Unlimited Scalabilty

e Write my data

- Immense capacity (128-bit)
Moore's Law: need 65th bit in 12 years
Zettabyte = 70-bit (a billion TB)
Dynamic File System capacity: 256 quadrillion ZB
Quantum limit of Earth-based storage

— Dynamic metadata
No limits on files, directory entries, etc.
No strange knobs (e.g. Inodes/cq)

Solaris Dynamic File System

Reduced Administrative Overhead

e Keep i1t simple
— Pooled storage - no more volumes
— Filesystems are cheap and easy to create
— Grow and shrink are automatic
— No raw device names to remember
— No more fsck(1M)
— No more editing /etc/vfstab
— Unlimited snapshots and user undo
— All administration online

Solaris Dynamic File System
Data Integrity

e Keep It safe

— Provable data integrity model

Complete end-to-end verification

99.99999999999999999% certainty of error
detection

Detects bit rot, phantom writes, misdirections,
common administrative errors

— Self-healing data

— Disk scrubbing

— Real-time remote replication

— Data authentication and encryption

Solaris Dynamic File System

High Performance

e Do It fast

— Write sequentialization

— Dynamic striping across all disks

— Multiple block sizes

— Constant-time snapshots

— Concurrent, constant-time directory ops
— Byte-range locking for concurrent writes

Background: Why Volumes Exist

In the beginning, * Users wanted more space, bandwidth, reliability

each filesystem — Rewrite filesystems to handle many disks: hard
managed a single — Insert a “volume” to tie disks together: easy
disk e An industry grew up around the FS/volume model

— Filesystems, volume managers sold as separate products
— Inherent problems in FS/volume interface can't be fixed

Volumes vs. Pooled Storage

e Traditional volumes

— Partition per filesystem;
painful to manage

— Block-based FS/Volume
interface slow, brittle

e Pooled Storage
— Filesystems share space
— Easy to manage

— Transactional interface
fast, robust

Storage Administration

e The Task:

— Glven two disks, create mirrored
filesystems for three users -
Ann, Bob, and Sue

- Later, add more space

L Sun.

microsystems

Solaris 8 Administration

format

(long interactive session omitted)

metadb -a -f diskl:sliceO disk2:sliceO

metainit d10 1 1 diskl:slicel
d10: Concat/Stripe is setup

metainit di11 1 1 disk2:slicel
di1: Concat/Stripe is setup

metainit d20 -m dio0

d20: Mirror is setup

metattach d20 di1

d20: submirror dil1 is attached

metainit di12 1 1 diskl:slice2
d12: Concat/Stripe is setup

metainit di13 1 1 disk2:slice2
d13: Concat/Stripe is setup

metainit d21 -m di2

d21: Mirror is setup

metattach d21 di3

d21: submirror di3 is attached

metainit di14 1 1 diskl:slice3
di4: Concat/Stripe is setup

metainit di15 1 1 disk2:slice3
d15: Concat/Stripe is setup

metainit d22 -m di4

d22: Mirror is setup

metattach d22 dis

d22: submirror di5 is attached

newfs /dev/md/rdsk/d20

newfs: construct a new file system /dev/md/rdsk/d20: (y/n)? y
(many pages of 'superblock backup' output omitted)

mount /dev/md/dsk/d20 /export/home/ann

vi /etc/vfstab ... while in 'vi', type this exactly:

/dev/md/dsk/d20 /dev/md/rdsk/d20 /export/home/ann ufs 2 yes -

newfs /dev/md/rdsks/d21

newfs: construct a new file system /dev/md/rdsk/d21: (y/n)? y
(many pages of 'superblock backup' output omitted)

mount /dev/md/dsk/d21 /export/home/ann

vi /etc/vfstab ... while in 'vi', type this exactly:

/dev/md/dsk/d21 /dev/md/rdsk/d21 /export/home/bob ufs 2 yes -

newfs /dev/md/rdsks/d22

newfs: construct a new file system /dev/md/rdsk/d22: (y/n)? y
(many pages of 'superblock backup' output omitted)

mount /dev/md/dsk/d22 /export/home/sue

vi /etc/vfstab ... while in 'vi', type this exactly:

/dev/md/dsk/d22 /dev/md/rdsk/d22 /export/home/sue ufs 2 yes -

format
(long interactive session omitted)
metattach di12 disk3:slicel
d12: component is attached
metattach di3 disk4:slicel
d13: component is attached
metattach d21
growfs -M /export/home/bob /dev/md/rdsk/d21
/dev/md/rdsk/d21:
(many pages of 'superblock backup' output omitted)

Dynamic File System

Administration
* Create a storage pool named “home”

zpool create "home" mirror (diskl,disk?2)

* Create filesystems “ann”, “bob”, “sue”

zfs mount -c home/ann /export/home/ann

zfs mount -c home/bob /export/home/bob

zfs mount -c home/sue /export/home/sue

 Later, add space to the “home” pool

zpool add "home" mirror (disk3,disk4)

Provable Data Integrity Model

 Three Big Rules

— All operations are copy-on-write
Never overwrite live data
On-disk state always valid
No need for fsck(1M)
— All operations are transactional
Related changes succeed or fail as a whole
No need for journaling
— All data 1s checksummed
No silent data corruption
No panics on bad metadata

B

Copy-On-Write Transaction Model

e |nitial block tree

S

Copy-On-Write Transaction Model

o Write: Copy-on-write a data block

S

Copy-On-Write Transaction Model

e Copy-on-write Its level-1 indirect block

S

Copy-On-Write Transaction Model

e Copy-on-write Its level-2 indirect block

/ .

S

Copy-On-Write Transaction Model

e Rewrite the uberblock (atomic)

Snapshots are Free!

e At end of transaction, do not free old blocks

Snapshot uiberblock——

- Current uberblock

/ .

Traditional Checksums

e Checksums stored with data blocks

Fine for detecting bit rot, but:

— Cannot detect phantom writes, misdirections
— Cannot validate the checksum itself

— Cannot authenticate the data

— Cannot detect common administrative errors

Dynamic File System Checksums
e Checksums stored with indirect blocks

- Self-validating, self-authenticating checksum tree

— Detects phantom writes, misdirections, common
administrative errors

Self-Healing Data

1. Issue a read. 2. Try the second disk. 3. Return good data to the
Try the first disk. Checksum indicates that the | application.
Checksum reveals that the block is good. Repair the damaged block.

block is corrupt on disk.

Self-Healing Data in Action

dd if=/dev/zero of=/dev/dsk/c2d9d0s0 bs=128k ... count=12
... read the affected file ... no problem!
zpool iostat home
capacity operations bandwidth

vdev description used avail read write read write err
1 mirror (2, 3) 305M 136G 167 0O 21.0M 0O 0/0
2 /dev/dsk/c2t8d0sO0 @ @ --—--- -———- 88 0O 11.0M 0O 0/0
3 /dev/dsk/c3t8d0sO0 @ @ @ —-—-—--- -——— 79 0O 9.9M 0O 0/0
4 mirror (5,6) 256M 136G 168 0 21.0M 0O 12712
5 /dev/dsk/c2t9d0sO0 @ @ ----- -———- 86 0O 10.8M 0O 12/0
6 /dev/dsk/c3t9d0sO0 @ @ —--—--- —-———- 81 0O 10.2M 0O 0/0
7 mirror (8,9) 258M 136G 169 0 21.2M 0O 0/s0
8 /dev/dsk/c2t10d0sO0 @ @« ----- -——— 93 0O 11.7M 0O 0/0
9 /dev/dsk/c3t10d0sO0 @ @ ----- -———- 76 0O 9.45M 0O 0/0
10 mirror (11,12) 257M 136G 176 0 22.1M 0O 0s0
11 /dev/dsk/c2t11d0sO0 @ « ----- —-———- 85 0O 10.7M 0O 0/0
12 /dev/dsk/c3t11d0sO0 @ @« ----- -———- 91 0O 11.3M 0O 0/0

Where Are We Now?

e Initial Work complete

— Complete POSIX-compliant filesystem
— Full builds of Solaris

- Key features:
pooled storage
dynamic striping

self-healing data: even under sustained, abusive fault
Injection

crash resilience: over 1,000,000 forced, violent crashes,
never lost data integrity

e Dynamic File System - Coming soon In
Solaris Express

Solaris Dynamic File System
Simple, Reliable, and Infinitely Scalable

e Breakthrough data management approach

— Efficient resource allocation via storage pools
— Automates administrative tasks

e Perpetual data integrity, availability

— Pervasive data fault detection and correction
— Defends against common administrative errors
— Extensible: add features such as encryption

o Virtually unlimited capacity
— 16 billion billion times greater than today

e Reduced costs

— Higher terabyte-to-administrator ratio
— Lower cost of acquisition, testing, maintenance

- { ,
= 7 L1
2 ! ;
i y ,--
& 7 | Vi 4
] _ "
“ i
o & ..' I,'
§ | < M
. A # [
- e H
- h =y &
y - .]
\ !
‘ h 1
d A W i i i

Solaris Dynamic File System

glenn.weinberg@sun.com

