
DB2®

Administrative SQL Routines and Views

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4293-00

���

DB2®

Administrative SQL Routines and Views

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4293-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

Chapter 1. Introduction 1

Administrative SQL routines and views 2

Administrative views versus table functions 3

Chapter 2. Authorization 5

Authorization for administrative views 6

Chapter 3. Supported administrative

SQL routines and views 7

Supported administrative SQL routines and views . . 8

Activity monitor administrative SQL routines and

views 18

AM_BASE_RPT_RECOMS – Recommendations

for activity reports 18

AM_BASE_RPTS – Activity monitor reports . . 20

AM_DROP_TASK – Delete a monitoring task . . 22

AM_GET_LOCK_CHN_TB – Retrieve application

lock chain data in a tabular format 23

AM_GET_LOCK_CHNS – Retrieve lock chain

information for a specific application 25

AM_GET_LOCK_RPT – Retrieve application lock

details 26

AM_GET_RPT – Retrieve activity monitor data 34

AM_SAVE_TASK – Create or modify a

monitoring task 36

ADMIN_CMD stored procedure and associated

administrative SQL routines 38

ADMIN_CMD – Run administrative commands 38

ADMIN_GET_MSGS table function – Retrieve

messages generated by a data movement utility

that is executed through the ADMIN_CMD

procedure 41

ADMIN_REMOVE_MSGS procedure – Clean up

messages generated by a data movement utility

that is executed through the ADMIN_CMD

procedure 43

ADD CONTACT command using the

ADMIN_CMD procedure 44

ADD CONTACTGROUP command using the

ADMIN_CMD procedure 46

AUTOCONFIGURE command using the

ADMIN_CMD procedure 48

BACKUP DATABASE command using the

ADMIN_CMD procedure 53

DESCRIBE command using the ADMIN_CMD

procedure 58

DROP CONTACT command using the

ADMIN_CMD procedure 68

DROP CONTACTGROUP command using the

ADMIN_CMD procedure 69

EXPORT command using the ADMIN_CMD

procedure 70

FORCE APPLICATION command using the

ADMIN_CMD procedure 76

GET STMM TUNING DBPARTITIONNUM

command using the ADMIN_CMD procedure . . 78

IMPORT command using the ADMIN_CMD

procedure 80

INITIALIZE TAPE command using the

ADMIN_CMD procedure 94

LOAD command using the ADMIN_CMD

procedure 96

PRUNE HISTORY/LOGFILE command using

the ADMIN_CMD procedure 115

QUIESCE DATABASE command using the

ADMIN_CMD procedure 117

QUIESCE TABLESPACES FOR TABLE

command using the ADMIN_CMD procedure . 119

REDISTRIBUTE DATABASE PARTITION

GROUP command using the ADMIN_CMD

procedure 122

REORG INDEXES/TABLE command using the

ADMIN_CMD procedure 126

RESET ALERT CONFIGURATION command

using the ADMIN_CMD procedure 136

RESET DATABASE CONFIGURATION

command using the ADMIN_CMD procedure . 139

RESET DATABASE MANAGER

CONFIGURATION command using the

ADMIN_CMD procedure 141

REWIND TAPE command using the

ADMIN_CMD procedure 143

RUNSTATS command using the ADMIN_CMD

procedure 144

SET TAPE POSITION command using the

ADMIN_CMD procedure 156

UNQUIESCE DATABASE command using the

ADMIN_CMD procedure 157

UPDATE ALERT CONFIGURATION command

using the ADMIN_CMD procedure 159

UPDATE CONTACT command using the

ADMIN_CMD procedure 164

UPDATE CONTACTGROUP command using

the ADMIN_CMD procedure 166

UPDATE DATABASE CONFIGURATION

command using the ADMIN_CMD procedure . 168

UPDATE DATABASE MANAGER

CONFIGURATION command using the

ADMIN_CMD procedure 171

UPDATE HEALTH NOTIFICATION CONTACT

LIST command using the ADMIN_CMD

procedure 174

UPDATE HISTORY command using the

ADMIN_CMD procedure 176

UPDATE STMM TUNING DBPARTITIONNUM

command using the ADMIN_CMD procedure . 178

Configuration administrative SQL routines and

views 180

DB_PARTITIONS 180

© Copyright IBM Corp. 2006 iii

DBCFG administrative view – Retrieve database

configuration parameter information 182

DBMCFG administrative view – Retrieve

database manager configuration parameter

information 184

REG_VARIABLES administrative view –

Retrieve DB2 registry settings in use 187

Environment administrative SQL routines and

views 189

ENV_INST_INFO administrative view –

Retrieve information about the current instance . 189

ENV_PROD_INFO administrative view –

Retrieve information about installed DB2

products 191

ENV_SYS_INFO administrative view – Retrieve

information about the system 193

Health snapshot administrative SQL routines and

views 195

HEALTH_CONT_HI 195

HEALTH_CONT_HI_HIS 197

HEALTH_CONT_INFO 199

HEALTH_DB_HI 201

HEALTH_DB_HI_HIS 205

HEALTH_DB_HIC 209

HEALTH_DB_HIC_HIS 211

HEALTH_DB_INFO 214

HEALTH_DBM_HI 216

HEALTH_DBM_HI_HIS 218

HEALTH_DBM_INFO 221

HEALTH_GET_ALERT_ACTION_CFG table

function –Retrieve health alert action

configuration settings 223

HEALTH_GET_ALERT_CFG table function –

Retrieve health alert configuration settings . . 226

HEALTH_GET_IND_DEFINITION table

function – Retrieve health indicator definitions . 230

HEALTH_HI_REC 233

HEALTH_TBS_HI 235

HEALTH_TBS_HI_HIS 238

HEALTH_TBS_INFO 242

MQSeries administrative SQL routines and views 244

MQPUBLISH 244

MQREAD 247

MQREADALL 249

MQREADALLCLOB 252

MQREADCLOB 255

MQRECEIVE 257

MQRECEIVEALL 259

MQRECEIVEALLCLOB 262

MQRECEIVECLOB 265

MQSEND 267

MQSUBSCRIBE 269

MQUNSUBSCRIBE 271

Security administrative SQL routines and views 273

AUTH_LIST_GROUPS_FOR_AUTHID table

function – Retrieve group membership list for a

given authorization ID 273

AUTHORIZATIONIDS administrative view –

Retrieve authorization IDs and types 275

OBJECTOWNERS administrative view –

Retrieve object ownership information 276

PRIVILEGES administrative view – Retrieve

privilege information 278

Snapshot administrative SQL routines and views 280

APPLICATIONS administrative view – Retrieve

connected database application information . . 280

APPL_PERFORMANCE administrative view –

Retrieve percentage of rows selected for an

application 286

BP_HITRATIO administrative view – Retrieve

bufferpool hit ratio information 288

BP_READ_IO administrative view – Retrieve

bufferpool read performance information . . . 290

BP_WRITE_IO administrative view – Retrieve

bufferpool write performance information . . . 292

CONTAINER_UTILIZATION administrative

view – Retrieve table space container and

utilization information 294

LOCKS_HELD administrative view – Retrieve

information on locks held 297

LOCKWAITS administrative view – Retrieve

current lockwaits information 301

LOG_UTILIZATION administrative view –

Retrieve log utilization information 306

LONG_RUNNING_SQL administrative view 308

QUERY_PREP_COST administrative view –

Retrieve statement prepare time information . . 311

SNAP_WRITE_FILE procedure 313

SNAPAGENT administrative view and

SNAP_GET_AGENT table function – Retrieve

agent logical data group application snapshot

information 315

SNAPAGENT_MEMORY_POOL administrative

view and

SNAP_GET_AGENT_MEMORY_POOL table

function – Retrieve memory_pool logical data

group snapshot information 319

SNAPAPPL administrative view and

SNAP_GET_APPL table function – Retrieve appl

logical data group snapshot information . . . 324

SNAPAPPL_INFO administrative view and

SNAP_GET_APPL_INFO table function –

Retrieve appl_info logical data group snapshot

information 334

SNAPBP administrative view and

SNAP_GET_BP table function – Retrieve

bufferpool logical group snapshot information . 341

SNAPBP_PART administrative view and

SNAP_GET_BP_PART table function – Retrieve

bufferpool_nodeinfo logical data group snapshot

information 347

SNAPCONTAINER administrative view and

SNAP_GET_CONTAINER_V91 table function –

Retrieve tablespace_container logical data group

snapshot information 351

SNAPDB administrative view and

SNAP_GET_DB_V91 table function – Retrieve

snapshot information from the dbase logical

group 356

iv Administrative SQL Routines and Views

SNAPDB_MEMORY_POOL administrative view

and SNAP_GET_DB_MEMORY_POOL table

function – Retrieve database level memory

usage information 369

SNAPDBM administrative view and

SNAP_GET_DBM table function – Retrieve the

dbm logical grouping snapshot information . . 374

SNAPDBM_MEMORY_POOL administrative

view and SNAP_GET_DBM_MEMORY_POOL

table function – Retrieve database manager level

memory usage information 379

SNAPDETAILLOG administrative view and

SNAP_GET_DETAILLOG_V91 table function –

Retrieve snapshot information from the

detail_log logical data group 383

SNAPDYN_SQL administrative view and

SNAP_GET_DYN_SQL_V91 table function –

Retrieve dynsql logical group snapshot

information 387

SNAPFCM administrative view and

SNAP_GET_FCM table function – Retrieve the

fcm logical data group snapshot information . . 392

SNAPFCM_PART administrative view and

SNAP_GET_FCM_PART table function –

Retrieve the fcm_node logical data group

snapshot information 395

SNAPHADR administrative view and

SNAP_GET_HADR table function – Retrieve

hadr logical data group snapshot information . 398

SNAPLOCK administrative view and

SNAP_GET_LOCK table function – Retrieve

lock logical data group snapshot information . . 403

SNAPLOCKWAIT administrative view and

SNAP_GET_LOCKWAIT table function –

Retrieve lockwait logical data group snapshot

information 409

SNAPSTMT administrative view and

SNAP_GET_STMT table function – Retrieve

statement snapshot information 415

SNAPSTORAGE_PATHS administrative view

and SNAP_GET_STORAGE_PATHS table

function – Retrieve automatic storage path

information 421

SNAPSUBSECTION administrative view and

SNAP_GET_SUBSECTION table function –

Retrieve subsection logical monitor group

snapshot information 425

SNAPSWITCHES administrative view and

SNAP_GET_SWITCHES table function –

Retrieve database snapshot switch state

information 429

SNAPTAB administrative view and

SNAP_GET_TAB_V91 table function – Retrieve

table logical data group snapshot information . 432

SNAPTAB_REORG administrative view and

SNAP_GET_TAB_REORG table function –

Retrieve table reorganization snapshot

information 436

SNAPTBSP administrative view and

SNAP_GET_TBSP_V91 table function – Retrieve

tablespace logical data group snapshot

information 441

SNAPTBSP_PART administrative view and

SNAP_GET_TBSP_PART_V91 table function –

Retrieve tablespace_nodeinfo logical data group

snapshot information 447

SNAPTBSP_QUIESCER administrative view and

SNAP_GET_TBSP_QUIESCER table function –

Retrieve quiescer table space snapshot

information 452

SNAPTBSP_RANGE administrative view and

SNAP_GET_TBSP_RANGE table function –

Retrieve range snapshot information 456

SNAPUTIL administrative view and

SNAP_GET_UTIL table function – Retrieve

utility_info logical data group snapshot

information 460

SNAPUTIL_PROGRESS administrative view

and SNAP_GET_UTIL_PROGRESS table

function – Retrieve progress logical data group

snapshot information 464

TBSP_UTILIZATION administrative view –

Retrieve table space configuration and

utilization information 467

TOP_DYNAMIC_SQL administrative view –

Retrieve information on the top dynamic SQL

statements 472

SQL procedure administrative SQL routines and

views 474

GET_ROUTINE_OPTS 474

GET_ROUTINE_SAR 475

PUT_ROUTINE_SAR 476

REBIND_ROUTINE_PACKAGE 478

SET_ROUTINE_OPTS 479

Stepwise redistribute administrative SQL routines 480

ANALYZE_LOG_SPACE procedure – Retrieve

log space analysis information 480

GENERATE_DISTFILE procedure – Generate a

data distribution file 483

GET_SWRD_SETTINGS procedure – Retrieve

redistribute information 485

SET_SWRD_SETTINGS procedure – Create or

change redistribute registry 488

STEPWISE_REDISTRIBUTE_DBPG procedure –

Redistribute part of database partition group . . 491

Storage management tool administrative SQL

routines 493

CAPTURE_STORAGEMGMT_INFO procedure –

Retrieve storage-related information for a given

root object 493

CREATE_STORAGEMGMT_TABLES procedure

– Create storage management tables 495

DROP_STORAGEMGMT_TABLES procedure –

Drop all storage management tables 497

Miscellaneous administrative SQL routines and

views 498

ADMIN_COPY_SCHEMA procedure – Copy a

specific schema and its objects 498

Contents v

ADMIN_DROP_SCHEMA procedure – Drop a

specific schema and its objects 503

ADMINTABINFO administrative view and

ADMIN_GET_TAB_INFO table function –

Retrieve size and state information for tables . . 506

ALTOBJ 516

APPLICATION_ID 519

COMPILATION_ENV table function – Retrieve

compilation environment elements 520

CONTACTGROUPS administrative view –

Retrieve the list of contact groups 523

CONTACTS administrative view – Retrieve list

of contacts 525

DB_HISTORY administrative view – Retrieve

history file information 527

DBPATHS administrative view – Retrieve

database paths 532

EXPLAIN_GET_MSGS 536

GET_DBSIZE_INFO 539

NOTIFICATIONLIST administrative view –

Retrieve contact list for health notification . . . 542

PDLOGMSGS_LAST24HOURS administrative

view and PD_GET_LOG_MSGS table function –

Retrieve problem determination messages . . . 543

REORGCHK_IX_STATS procedure – Retrieve

index statistics for reorganization evaluation . . 550

REORGCHK_TB_STATS procedure – Retrieve

table statistics for reorganization evaluation . . 553

SQLERRM scalar functions – Retrieves error

message information 555

SYSINSTALLOBJECTS 558

Chapter 4. Deprecated administrative

SQL routines 559

Deprecated SQL administrative routines and their

replacement routines or views 559

GET_DB_CONFIG 563

GET_DBM_CONFIG 565

SNAP_GET_CONTAINER 566

SNAP_GET_DB 568

SNAP_GET_DYN_SQL 576

SNAP_GET_STO_PATHS 579

SNAP_GET_TAB 580

SNAP_GET_TBSP 582

SNAP_GET_TBSP_PART 586

SNAPSHOT_AGENT 589

SNAPSHOT_APPL 590

SNAPSHOT_APPL_INFO 596

SNAPSHOT_BP 599

SNAPSHOT_CONTAINER 602

SNAPSHOT_DATABASE 604

SNAPSHOT_DBM 611

SNAPSHOT_DYN_SQL 614

SNAPSHOT_FCM 616

SNAPSHOT_FCMNODE 618

SNAPSHOT_FILEW 619

SNAPSHOT_LOCK 620

SNAPSHOT_LOCKWAIT 622

SNAPSHOT_QUIESCERS 624

SNAPSHOT_RANGES 626

SNAPSHOT_STATEMENT 628

SNAPSHOT_SUBSECT 631

SNAPSHOT_SWITCHES 633

SNAPSHOT_TABLE 635

SNAPSHOT_TBREORG 637

SNAPSHOT_TBS 639

SNAPSHOT_TBS_CFG 642

SQLCACHE_SNAPSHOT 645

SYSINSTALLROUTINES 647

Appendix A. DB2 Database technical

information 649

Overview of the DB2 technical information . . . 649

Documentation feedback 649

DB2 technical library in hardcopy or PDF format 650

Ordering printed DB2 books 652

Displaying SQL state help from the command line

processor 653

Accessing different versions of the DB2

Information Center 654

Displaying topics in your preferred language in the

DB2 Information Center 654

Updating the DB2 Information Center installed on

your computer or intranet server 655

DB2 tutorials 657

DB2 troubleshooting information 657

Terms and Conditions 658

Appendix B. Notices 659

Trademarks 661

Index 663

Contacting IBM 669

vi Administrative SQL Routines and Views

Chapter 1. Introduction

© Copyright IBM Corp. 2006 1

Administrative SQL routines and views

 The administrative routines and views provide a primary, easy to use

programmatic interface to administer DB2® through SQL. They encompass a

collection of built-in views, table functions, procedures, and scalar functions for

performing a variety of DB2 administrative tasks. For example: reorganizing a

table, capturing and retrieving monitor data or retrieving the application ID of the

current connection.

These routines and views can be invoked from an SQL-based application, a DB2

command line or a command script.

 Related reference:

v “Administrative views versus table functions” on page 3

v “Supported administrative SQL routines and views” on page 8

v “C samples” in Samples Topics

v “CLI samples” in Samples Topics

v “Command Line Processor (CLP) samples” in Samples Topics

v “JDBC samples” in Samples Topics

Administrative SQL routines and views

2 Administrative SQL Routines and Views

Administrative views versus table functions

 DB2 Version 9 introduces administrative views that provide an easy-to-use

application programming interface to DB2 administrative functions through SQL.

The administrative views fall into three categories:

v Views based on catalog views.

v Views based on table functions with no input parameters.

v Views based on table functions with one or more input parameters.

The administrative views are the preferred and only documented interfaces for the

views based on catalog views and the views based on table functions with no

input parameters because the table functions do not provide any additional

information or performance benefits.

For administrative views based on table functions with one or more input

parameters, both the administrative view and the table function can be used, each

achieving a different goal:

v The ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO

table function: The administrative view retrieves information for all tables in the

database. This can have a significant performance impact for large databases.

The performance impact can be reduced by using the table function and

specifying a schema name, table name, or both as input.

v The PDLOGMSGS_LAST24HOURS administrative view and the

PD_GET_LOG_MSGS table function: The administrative view, which retrieves

notification log messages, provides quick access to data from the previous 24

hours, whereas the table function allows you to retrieve data from a specified

period of time.

v All snapshot monitor administrative views and table functions (SNAP*

administrative views, SNAP_GET_* table functions): The snapshot monitor

administrative views provide access to data from each database partition. The

table functions provide the option to choose between data from a single

database partition or data aggregated across all database partitions.

Applications that use the table functions instead of the views might need to be

changed because the table functions might change from release to release to enable

new information to be returned. The new table function will have the same base

name as the original function and will be suffixed with '_Vxx' for the version of

the product in which it is added (for example, _V91). The administrative views

will always be based on the most current version of the table functions, and

therefore allow for more application portability. Since the columns might vary from

one release to the next, it is recommended that specific columns be selected from

the administrative views, or that the result set be described if a SELECT *

statement is used by an application.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

Administrative views versus table functions

Chapter 1. Introduction 3

Administrative views versus table functions

4 Administrative SQL Routines and Views

Chapter 2. Authorization

© Copyright IBM Corp. 2006 5

Authorization for administrative views

 For all administrative views in the SYSIBMADM schema, you need SELECT

privilege on the view. This can be validated with the following query to check that

your authorization ID, or a group to which you belong, has SELECT privilege (that

is, it meets the search criteria and is listed in the GRANTEE column):

SELECT GRANTEE, GRANTEETYPE

 FROM SYSCAT.TABAUTH

 WHERE TABSCHEMA = ’SYSIBMADM’ AND TABNAME = ’<view_name>’ AND

 SELECTAUTH <> ’N’

where <view_name> is the name of the administrative view.

With the exception of SYSIBMADM.AUTHORIZATIONIDS,

SYSIBMADM.OBJECTOWNERS, and SYSIBMADM.PRIVILEGES, you also need

EXECUTE privilege on the underlying administrative table function. The

underlying administrative table function is listed in the authorization section of the

administrative view. This can be validated with the following query:

SELECT GRANTEE, GRANTEETYPE

 FROM SYSCAT.ROUTINEAUTH

 WHERE SCHEMA = 'SYSPROC' AND SPECIFICNAME = ’<routine_name>’ AND

 EXECUTEAUTH <> ’N’

where <routine_name> is the name of the underlying administrative table function

as listed in the documentation.

Some administrative views require additional authorities beyond SELECT on the

view and EXECUTE on the underlying administrative table function. Any

additional authority required is documented in the reference information

describing the view.

 Related reference:

v “Administrative views versus table functions” on page 3

v “Supported administrative SQL routines and views” on page 8

Authorization for administrative views

6 Administrative SQL Routines and Views

Chapter 3. Supported administrative SQL routines and views

© Copyright IBM Corp. 2006 7

Supported administrative SQL routines and views

 The following tables summarize information about the supported administrative

SQL routines and views.

v Activity monitor administrative SQL routines: Table 1

v ADMIN_CMD stored procedure and associated administrative SQL routines:

Table 2

v Configuration administrative SQL routines and views: Table 3 on page 9

v Environment administrative views: Table 4 on page 9

v Health snapshot administrative SQL routines: Table 5 on page 9

v MQSeries® administrative SQL routines: Table 6 on page 11

v Security administrative SQL routines and views: Table 7 on page 11

v Snapshot administrative SQL routines and views: Table 8 on page 12

v SQL procedures administrative SQL routines: Table 9 on page 15

v Stepwise redistribute administrative SQL routines: Table 10 on page 16

v Storage management tool administrative SQL routines: Table 11 on page 16

v Miscellaneous administrative SQL routines and views: Table 12 on page 16

 Table 1. Activity monitor administrative SQL routines

Routine name Schema Description

“AM_BASE_RPT_RECOMS –

Recommendations for activity reports” on

page 18

SYSPROC This table function returns recommendations

for activity reports used by the activity

monitor.

“AM_BASE_RPTS – Activity monitor

reports” on page 20

SYSPROC This table function returns activity reports

used by the activity monitor.

“AM_DROP_TASK – Delete a monitoring

task” on page 22

SYSPROC This procedure deletes a monitoring task.

“AM_GET_LOCK_CHN_TB – Retrieve

application lock chain data in a tabular

format” on page 23

SYSPROC This procedure returns application lock chain

data in tabular format.

“AM_GET_LOCK_CHNS – Retrieve lock

chain information for a specific application”

on page 25

SYSPROC This procedure displays lock chains for a

specified application using a formatted

string.

“AM_GET_LOCK_RPT – Retrieve application

lock details” on page 26

SYSPROC This procedure displays lock details for an

application.

“AM_GET_RPT – Retrieve activity monitor

data” on page 34

SYSPROC This procedure displays activity monitor

data for a report.

“AM_SAVE_TASK – Create or modify a

monitoring task” on page 36

SYSPROC This procedure creates or modifies a

monitoring task.

 Table 2. ADMIN_CMD stored procedure and associated administrative SQL routines

Routine name Schema Description

“ADMIN_CMD – Run administrative

commands” on page 38

SYSPROC This procedure allows you to execute

administrative commands (including DB2

command line processor (CLP) commands)

by running ADMIN_CMD through a CALL

statement.

Supported administrative SQL routines and views

8 Administrative SQL Routines and Views

Table 2. ADMIN_CMD stored procedure and associated administrative SQL routines (continued)

Routine name Schema Description

“ADMIN_GET_MSGS table function –

Retrieve messages generated by a data

movement utility that is executed through

the ADMIN_CMD procedure” on page 41

SYSPROC This table function is used to retrieve

messages generated by data movement

utilities that are executed through the

ADMIN_CMD procedure.

“ADMIN_REMOVE_MSGS procedure –

Clean up messages generated by a data

movement utility that is executed through

the ADMIN_CMD procedure” on page 43

SYSPROC This procedure is used to clean up messages

generated by data movement utilities that

are executed through the ADMIN_CMD

procedure.

 Table 3. Configuration administrative SQL routines and views

Routine or view name Schema Description

“DB_PARTITIONS ” on page 180

SYSPROC This table function returns the contents of

the db2nodes.cfg file in table form.

“DBCFG administrative view – Retrieve

database configuration parameter

information” on page 182

SYSIBMADM This administrative view returns database

configuration information.

“DBMCFG administrative view – Retrieve

database manager configuration parameter

information” on page 184

SYSIBMADM This administrative view returns database

manager configuration information.

“REG_VARIABLES administrative view –

Retrieve DB2 registry settings in use” on

page 187

SYSIBMADM This administrative view returns the DB2

registry settings from all database partitions.

 Table 4. Environment administrative views

View name Schema Description

“ENV_INST_INFO administrative view –

Retrieve information about the current

instance” on page 189

SYSIBMADM This administrative view returns information

about the current instance.

“ENV_PROD_INFO administrative view –

Retrieve information about installed DB2

products” on page 191

SYSIBMADM This administrative view returns information

about installed DB2 products.

“ENV_SYS_INFO administrative view –

Retrieve information about the system” on

page 193

SYSIBMADM This administrative view returns information

about the system.

 Table 5. Health snapshot administrative SQL routines

Routine name Schema Description

“HEALTH_CONT_HI ” on page 195

SYSPROC This table function returns a table with

health indicator information for containers

from a health snapshot of a database.

“HEALTH_CONT_HI_HIS ” on page 197

SYSPROC This table function returns a table with

health indicator history information for

containers from a health snapshot of a

database.

“HEALTH_CONT_INFO ” on page 199

SYSPROC This table function returns a table with

rolled-up alert state information for

containers from a health snapshot of a

database.

Supported administrative SQL routines and views

Chapter 3. Supported administrative SQL routines and views 9

Table 5. Health snapshot administrative SQL routines (continued)

Routine name Schema Description

“HEALTH_DB_HI ” on page 201

SYSPROC This table function returns a table with

health indicator information from a health

snapshot of a database.

“HEALTH_DB_HI_HIS ” on page 205

SYSPROC This table function returns a table with

health indicator history information from a

health snapshot of a database.

“HEALTH_DB_HIC ” on page 209

SYSPROC This table function returns collection health

indicator information from a health snapshot

of a database.

“HEALTH_DB_HIC_HIS ” on page 211

SYSPROC This table function returns collection health

indicator history information from a health

snapshot of a database.

“HEALTH_DB_INFO ” on page 214

SYSPROC This table function returns a table with

rolled-up alert state information from a

health snapshot of one or all databases.

“HEALTH_DBM_HI ” on page 216

SYSPROC This table function returns a table with

health indicator information from a health

snapshot of the DB2 database manager.

“HEALTH_DBM_HI_HIS ” on page 218

SYSPROC This table function returns a table with

health indicator history information from a

health snapshot of the DB2 database

manager.

“HEALTH_DBM_INFO ” on page 221

SYSPROC This table function returns a table with

rolled-up alert state information from a

health snapshot of the DB2 database

manager.

“HEALTH_GET_ALERT_ACTION_CFG table

function –Retrieve health alert action

configuration settings” on page 223

SYSPROC This table function returns health alert action

configuration settings for objects of various

types (dbm, database, table space, and table

space containers) and for various

configuration levels (install default, instance,

global, and object).

“HEALTH_GET_ALERT_CFG table function

– Retrieve health alert configuration settings”

on page 226

SYSPROC This table function returns health alert

configuration settings for objects of various

types (dbm, database, table space, table

space containers) and for various

configuration levels (install default, global,

and object).

“HEALTH_GET_IND_DEFINITION table

function – Retrieve health indicator

definitions” on page 230

SYSPROC This table function returns the health

indicator definition.

“HEALTH_HI_REC ” on page 233

SYSPROC This procedure retrieves a set of

recommendations that address a health

indicator in alert state on a particular DB2

object.

“HEALTH_TBS_HI ” on page 235

SYSPROC This table function returns a table with

health indicator information for table spaces

from a health snapshot of a database.

“HEALTH_TBS_HI_HIS ” on page 238

SYSPROC This table function returns a table with

health indicator history information for table

spaces from a health snapshot of a database.

Supported administrative SQL routines and views

10 Administrative SQL Routines and Views

Table 5. Health snapshot administrative SQL routines (continued)

Routine name Schema Description

“HEALTH_TBS_INFO ” on page 242

SYSPROC This table function returns a table with

rolled-up alert state information for table

spaces from a health snapshot of a database.

 Table 6. MQSeries administrative SQL routines

Routine name Schema Description

“MQPUBLISH ” on page 244

DB2MQ, DB2MQ1C This scalar function publishes data to an

MQSeries location.

“MQREAD ” on page 247

DB2MQ, DB2MQ1C This scalar function returns a message from

an MQSeries location.

“MQREADALL ” on page 249

DB2MQ, DB2MQ1C This table function returns a table with

messages and message metadata from an

MQSeries location.

“MQREADALLCLOB ” on page 252

DB2MQ This table function returns a table containing

messages and message metadata from a

specified MQSeries location.

“MQREADCLOB ” on page 255

DB2MQ This scalar function returns a message from a

specified MQSeries location.

“MQRECEIVE ” on page 257

DB2MQ, DB2MQ1C This scalar function returns a message from

an MQSeries location and removes the

message from the associated queue.

“MQRECEIVEALL ” on page 259

DB2MQ, DB2MQ1C This table function returns a table containing

the messages and message metadata from an

MQSeries location and removes the messages

from the associated queue.

“MQRECEIVEALLCLOB ” on page 262

DB2MQ This table function returns a table containing

messages and message metadata from a

specified MQSeries location.

“MQRECEIVECLOB ” on page 265

DB2MQ This scalar function returns a message from a

specified MQSeries location.

“MQSEND ” on page 267

DB2MQ, DB2MQ1C This scalar function sends data to an

MQSeries location.

“MQSUBSCRIBE ” on page 269

DB2MQ, DB2MQ1C This scalar function subscribes to MQSeries

messages published on a specific topic.

“MQUNSUBSCRIBE ” on page 271

DB2MQ, DB2MQ1C This scalar function unsubscribes from

MQSeries messages published on a specific

topic.

 Table 7. Security administrative SQL routines and views:

Routine or view name Schema Description

“AUTH_LIST_GROUPS_FOR_AUTHID table

function – Retrieve group membership list

for a given authorization ID” on page 273

SYSPROC This function returns the list of groups of

which the given Authorization ID is a

member.

“AUTHORIZATIONIDS administrative view

– Retrieve authorization IDs and types” on

page 275

SYSIBMADM This administrative view returns a list of

authorization IDs that have been granted

privileges or authorities, along with their

types, for the currently connected database.

Supported administrative SQL routines and views

Chapter 3. Supported administrative SQL routines and views 11

Table 7. Security administrative SQL routines and views: (continued)

Routine or view name Schema Description

“OBJECTOWNERS administrative view –

Retrieve object ownership information” on

page 276

SYSIBMADM This administrative view returns all object

ownership information for the currently

connected database.

“PRIVILEGES administrative view – Retrieve

privilege information” on page 278

SYSIBMADM This administrative view returns all explicit

privileges for the currently connected

database.

 Table 8. Snapshot administrative SQL routines and views

Routine or view name Schema Description

“APPLICATIONS administrative view –

Retrieve connected database application

information” on page 280

SYSIBMADM This administrative view returns information

on connected database applications.

“APPL_PERFORMANCE administrative

view – Retrieve percentage of rows selected

for an application” on page 286

SYSIBMADM This administrative view displays

information about the rate of rows selected

versus rows read per application.

“BP_HITRATIO administrative view –

Retrieve bufferpool hit ratio information” on

page 288

SYSIBMADM This administrative view returns bufferpool

hit ratios, including total, data, and index, in

the database.

“BP_READ_IO administrative view –

Retrieve bufferpool read performance

information” on page 290

SYSIBMADM This administrative view returns bufferpool

read performance information.

“BP_WRITE_IO administrative view –

Retrieve bufferpool write performance

information” on page 292

SYSIBMADM This administrative view returns bufferpool

write performance information per

bufferpool.

“CONTAINER_UTILIZATION administrative

view – Retrieve table space container and

utilization information” on page 294

SYSIBMADM This administrative view returns information

about table space containers and utilization

rates.

“LOCKS_HELD administrative view –

Retrieve information on locks held” on page

297

SYSIBMADM This administrative view returns information

on current locks held.

“LOCKWAITS administrative view –

Retrieve current lockwaits information” on

page 301

SYSIBMADM This administrative view returns information

on locks that are waiting to be granted.

“LOG_UTILIZATION administrative view –

Retrieve log utilization information” on page

306

SYSIBMADM This administrative view returns information

about log utilization for the currently

connected database.

“LONG_RUNNING_SQL administrative

view” on page 308

SYSIBMADM This administrative view returns the longest

running SQL statements in the currently

connected database.

“QUERY_PREP_COST administrative view –

Retrieve statement prepare time information”

on page 311

SYSIBMADM This administrative view returns a list of

statements with information about the time

required to prepare the statement.

“SNAP_WRITE_FILE procedure” on page

313

SYSPROC This procedure writes system snapshot data

to a file in the tmp subdirectory of the

instance directory.

“SNAPAGENT administrative view and

SNAP_GET_AGENT table function –

Retrieve agent logical data group application

snapshot information” on page 315

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about agents from an

application snapshot, in particular, the agent

logical data group.

Supported administrative SQL routines and views

12 Administrative SQL Routines and Views

Table 8. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

“SNAPAGENT_MEMORY_POOL

administrative view and

SNAP_GET_AGENT_MEMORY_POOL table

function – Retrieve memory_pool logical

data group snapshot information” on page

319

SYSIBMADM

(administrative view),

SYSPROC (table

function)

This administrative view and table function

return information about memory usage at

the agent level.

“SNAPAPPL administrative view and

SNAP_GET_APPL table function – Retrieve

appl logical data group snapshot

information” on page 324

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

information about applications from an

application snapshot, in particular, the appl

logical data group.

“SNAPAPPL_INFO administrative view and

SNAP_GET_APPL_INFO table function –

Retrieve appl_info logical data group

snapshot information” on page 334

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about applications from

an application snapshot, in particular, the

appl_info logical data group.

“SNAPBP administrative view and

SNAP_GET_BP table function – Retrieve

bufferpool logical group snapshot

information” on page 341

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about buffer pools from a

bufferpool snapshot, in particular, the

bufferpool logical data group.

“SNAPBP_PART administrative view and

SNAP_GET_BP_PART table function –

Retrieve bufferpool_nodeinfo logical data

group snapshot information” on page 347

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about buffer pools from a

bufferpool snapshot, in particular, the

bufferpool_nodeinfo logical data group.

“SNAPCONTAINER administrative view

and SNAP_GET_CONTAINER_V91 table

function – Retrieve tablespace_container

logical data group snapshot information” on

page 351

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return table space snapshot information from

the tablespace_container logical data group.

“SNAPDB administrative view and

SNAP_GET_DB_V91 table function –

Retrieve snapshot information from the

dbase logical group” on page 356

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information from the

database (dbase) and database storage

(db_storage_group) logical groupings.

“SNAPDB_MEMORY_POOL administrative

view and SNAP_GET_DB_MEMORY_POOL

table function – Retrieve database level

memory usage information” on page 369

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about memory usage at

the database level for UNIX® platforms only.

“SNAPDBM administrative view and

SNAP_GET_DBM table function – Retrieve

the dbm logical grouping snapshot

information” on page 374

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return the snapshot monitor DB2 database

manager (dbm) logical grouping information.

“SNAPDBM_MEMORY_POOL

administrative view and

SNAP_GET_DBM_MEMORY_POOL table

function – Retrieve database manager level

memory usage information” on page 379

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

information about memory usage at the

database manager.

“SNAPDETAILLOG administrative view and

SNAP_GET_DETAILLOG_V91 table function

– Retrieve snapshot information from the

detail_log logical data group” on page 383

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information from the

detail_log logical data group.

“SNAPDYN_SQL administrative view and

SNAP_GET_DYN_SQL_V91 table function –

Retrieve dynsql logical group snapshot

information” on page 387

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information from the dynsql

logical data group.

Supported administrative SQL routines and views

Chapter 3. Supported administrative SQL routines and views 13

Table 8. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

“SNAPFCM administrative view and

SNAP_GET_FCM table function – Retrieve

the fcm logical data group snapshot

information” on page 392

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about the fast

communication manager (FCM) from a

database manager snapshot, in particular, the

fcm logical data group.

“SNAPFCM_PART administrative view and

SNAP_GET_FCM_PART table function –

Retrieve the fcm_node logical data group

snapshot information” on page 395

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about the fast

communication manager (FCM) from a

database manager snapshot, in particular, the

fcm_node logical data group.

“SNAPHADR administrative view and

SNAP_GET_HADR table function – Retrieve

hadr logical data group snapshot

information” on page 398

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about high availability

disaster recovery from a database snapshot,

in particular, the hadr logical data group.

“SNAPLOCK administrative view and

SNAP_GET_LOCK table function – Retrieve

lock logical data group snapshot

information” on page 403

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information about locks, in

particular, the lock logical data group.

“SNAPLOCKWAIT administrative view and

SNAP_GET_LOCKWAIT table function –

Retrieve lockwait logical data group

snapshot information” on page 409

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information about lock

waits, in particular, the lockwait logical data

group.

“SNAPSTMT administrative view and

SNAP_GET_STMT table function – Retrieve

statement snapshot information” on page 415

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about statements from an

application snapshot.

“SNAPSTORAGE_PATHS administrative

view and SNAP_GET_STORAGE_PATHS

table function – Retrieve automatic storage

path information” on page 421

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return a list of automatic storage paths for

the database including file system

information for each storage path,

specifically, from the db_storage_group

logical data group

“SNAPSUBSECTION administrative view

and SNAP_GET_SUBSECTION table

function – Retrieve subsection logical

monitor group snapshot information” on

page 425

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about application

subsections, namely the subsection logical

monitor grouping.

“SNAPSWITCHES administrative view and

SNAP_GET_SWITCHES table function –

Retrieve database snapshot switch state

information” on page 429

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about the database

snapshot switch state.

“SNAPTAB administrative view and

SNAP_GET_TAB_V91 table function –

Retrieve table logical data group snapshot

information” on page 432

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information from the table

logical data group.

“SNAPTAB_REORG administrative view and

SNAP_GET_TAB_REORG table function –

Retrieve table reorganization snapshot

information” on page 436

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return table reorganization information.

“SNAPTBSP administrative view and

SNAP_GET_TBSP_V91 table function –

Retrieve tablespace logical data group

snapshot information” on page 441

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information from the

tablespace logical data group.

Supported administrative SQL routines and views

14 Administrative SQL Routines and Views

Table 8. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

“SNAPTBSP_PART administrative view and

SNAP_GET_TBSP_PART_V91 table function

– Retrieve tablespace_nodeinfo logical data

group snapshot information” on page 447

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information from the

tablespace_nodeinfo logical data group.

“SNAPTBSP_QUIESCER administrative view

and SNAP_GET_TBSP_QUIESCER table

function – Retrieve quiescer table space

snapshot information” on page 452

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about quiescers from a

table space snapshot.

“SNAPTBSP_RANGE administrative view

and SNAP_GET_TBSP_RANGE table

function – Retrieve range snapshot

information” on page 456

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information from a range snapshot.

“SNAPUTIL administrative view and

SNAP_GET_UTIL table function – Retrieve

utility_info logical data group snapshot

information” on page 460

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return snapshot information on utilities from

the utility_info logical data group.

“SNAPUTIL_PROGRESS administrative view

and SNAP_GET_UTIL_PROGRESS table

function – Retrieve progress logical data

group snapshot information” on page 464

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return information about utility progress, in

particular, the progress logical data group.

“TBSP_UTILIZATION administrative view –

Retrieve table space configuration and

utilization information” on page 467

SYSIBMADM This administrative view returns table space

configuration and utilization information.

“TOP_DYNAMIC_SQL administrative view –

Retrieve information on the top dynamic

SQL statements” on page 472

SYSIBMADM This administrative view returns the top

dynamic SQL statements sortable by number

of executions, average execution time,

number of sorts, or sorts per statement.

 Table 9. SQL procedures administrative SQL routines

Routine name Schema Description

“GET_ROUTINE_OPTS ” on page 474

SYSPROC This scalar function returns a character string

value of the options that are to be used for

the creation of SQL procedures in the current

session.

“GET_ROUTINE_SAR ” on page 475

SYSFUN This procedure returns the information

necessary to install an identical routine on

another database server running at least at

the same level and operating system.

“PUT_ROUTINE_SAR ” on page 476

SYSFUN This procedure passes the information

necessary to create and define an SQL

routine at the database server.

“REBIND_ROUTINE_PACKAGE ” on page

478

SYSPROC This procedure rebinds the package

associated with an SQL procedure.

“SET_ROUTINE_OPTS ” on page 479

SYSPROC This procedure sets the options that are to be

used for the creation of SQL procedures in

the current session.

Supported administrative SQL routines and views

Chapter 3. Supported administrative SQL routines and views 15

Table 10. Stepwise redistribute administrative SQL routines

Routine name Schema Description

“ANALYZE_LOG_SPACE procedure –

Retrieve log space analysis information” on

page 480

SYSPROC This procedure returns log space analysis

information.

“GENERATE_DISTFILE procedure –

Generate a data distribution file” on page

483

SYSPROC This procedure generates a data distribution

file.

“GET_SWRD_SETTINGS procedure –

Retrieve redistribute information” on page

485

SYSPROC This procedure returns redistribute

information.

“SET_SWRD_SETTINGS procedure – Create

or change redistribute registry” on page 488

SYSPROC This procedure creates or changes the

redistribute registry.

“STEPWISE_REDISTRIBUTE_DBPG

procedure – Redistribute part of database

partition group” on page 491

SYSPROC This procedure redistributes part of database

partition group.

 Table 11. Storage management tool administrative SQL routines

Routine name Schema Description

“CAPTURE_STORAGEMGMT_INFO

procedure – Retrieve storage-related

information for a given root object” on page

493

SYSPROC This procedure returns storage-related

information for a given root object.

“CREATE_STORAGEMGMT_TABLES

procedure – Create storage management

tables” on page 495

SYSPROC This procedure creates storage management

tables.

“DROP_STORAGEMGMT_TABLES

procedure – Drop all storage management

tables” on page 497

SYSPROC This procedure drops all storage

management tables.

 Table 12. Miscellaneous administrative SQL routines and views

Routine or view name Schema Description

“ADMIN_COPY_SCHEMA procedure –

Copy a specific schema and its objects” on

page 498

SYSPROC This procedure is used to copy a specific

schema and all objects contained in it.

“ADMIN_DROP_SCHEMA procedure –

Drop a specific schema and its objects” on

page 503

SYSPROC This procedure is used to drop a specific

schema and all objects contained in it.

“ADMINTABINFO administrative view and

ADMIN_GET_TAB_INFO table function –

Retrieve size and state information for

tables” on page 506

SYSIBMADM

(administrative view),

SYSPROC (table

function)

The administrative view and table function

return size and state information for tables,

materialized query tables (MQT) and

hierarchy tables.

“ALTOBJ ” on page 516

SYSPROC This procedure alters an existing table using

the input CREATE TABLE statement as the

target table definition.

“APPLICATION_ID ” on page 519

SYSFUN This scalar function returns the application

ID of the current connection.

“COMPILATION_ENV table function –

Retrieve compilation environment elements”

on page 520

SYSPROC This table function returns the elements of a

compilation environment.

Supported administrative SQL routines and views

16 Administrative SQL Routines and Views

Table 12. Miscellaneous administrative SQL routines and views (continued)

Routine or view name Schema Description

“CONTACTGROUPS administrative view –

Retrieve the list of contact groups” on page

523

SYSIBMADM This administrative view returns the list of

contact groups.

“CONTACTS administrative view – Retrieve

list of contacts” on page 525

SYSIBMADM This administrative view returns the list of

contacts defined on the database server.

“DB_HISTORY administrative view –

Retrieve history file information” on page

527

SYSIBMADM This administrative view returns information

from the history file that is associated with

the currently connected database partition.

“DBPATHS administrative view – Retrieve

database paths” on page 532

SYSIBMADM This administrative view returns the values

for database paths required for tasks such as

split mirror backups.

“EXPLAIN_GET_MSGS ” on page 536

The schema is the

same as the Explain

table schema.

This table function queries the

EXPLAIN_DIAGNOSTIC and

EXPLAIN_DIAGNOSTIC_DATA Explain

tables, and returns formatted messages.

“GET_DBSIZE_INFO ” on page 539

SYSPROC This procedure calculates the database size

and maximum capacity.

“NOTIFICATIONLIST administrative view –

Retrieve contact list for health notification”

on page 542

SYSIBMADM This administrative view returns the list of

contacts and contact groups that are notified

about the health of an instance.

“PDLOGMSGS_LAST24HOURS

administrative view and

PD_GET_LOG_MSGS table function –

Retrieve problem determination messages”

on page 543

SYSIBMADM

(administrative view),

SYSPROC (table

function)

This administrative view and table function

return problem determination log messages

that were logged in the DB2 notification log.

The information is intended for use by

database and system administrators.

“REORGCHK_IX_STATS procedure –

Retrieve index statistics for reorganization

evaluation” on page 550

SYSPROC This procedure checks index statistics to

determine whether or not there is a need for

reorganization.

“REORGCHK_TB_STATS procedure –

Retrieve table statistics for reorganization

evaluation” on page 553

SYSPROC This procedure checks table statistics to

determine whether or not there is a need for

reorganization.

“SQLERRM scalar functions – Retrieves error

message information” on page 555

SYSPROC There are two versions of the SQLERRM

scalar function. The first allows for full

flexibility of message retrieval including

using message tokens and language

selection. The second is a simple interface

which takes only an SQLCODE as an input

parameter and returns the short message in

English.

“SYSINSTALLOBJECTS ” on page 558

SYSPROC This procedure creates or drops the database

objects that are required for a specific tool.

 Related concepts:

v “Administrative SQL routines and views” on page 2

 Related reference:

v “Deprecated SQL administrative routines and their replacement routines or

views” on page 559

Supported administrative SQL routines and views

Chapter 3. Supported administrative SQL routines and views 17

Activity monitor administrative SQL routines and views

AM_BASE_RPT_RECOMS – Recommendations for activity

reports

 The AM_BASE_RPT_RECOMS table function returns recommendations for activity

reports used by the activity monitor.

 Syntax:

�� AM_BASE_RPT_RECOMS (report-id , client-locale) ��

The schema is SYSPROC.

 Table function parameters:

report-id

An input argument of type INTEGER that specifies a report ID. If the

argument is null, recommendations for all available reports are returned.

client-locale

An input argument of type VARCHAR(33) that specifies a client language

identifier. If the argument is null or an empty string, the default value is

’En_US’ (English). If the message files for the specified locale are not available

on the server, ’En_US’ is used.

 Authorization:

 EXECUTE privilege on the AM_BASE_RPT_RECOMS table function.

 Examples:

 Example 1: Request recommendations (in English) for the activity monitor report

with an ID of 1. Assume the default client language identifier ’En_US’.

SELECT *

 FROM TABLE(SYSPROC.AM_BASE_RPT_RECOMS(1, CAST(NULL AS VARCHAR(33))))

 AS RECOMS

Example 2: Request recommendations (in French) for the activity monitor report

with an ID of 12.

SELECT *

 FROM TABLE(SYSPROC.AM_BASE_RPT_RECOMS(12, CAST(’Fr_FR’ AS VARCHAR(33))))

 AS RECOMS

 Information returned:

 Table 13. Information returned by the AM_BASE_RPT_RECOMS table function

Column name Data type Description

REPORT_ID INTEGER The report ID.

RECOM_NAME VARCHAR(256) The name or short

description of the

recommendation.

RECOM_DESCRIPTION CLOB(32K) The detailed description of

the recommendation.

Supported administrative SQL routines and views

18 Administrative SQL Routines and Views

Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

AM_BASE_RPT_RECOMS

Chapter 3. Supported administrative SQL routines and views 19

AM_BASE_RPTS – Activity monitor reports

 The AM_BASE_RPTS table function returns activity reports used by the activity

monitor.

 Syntax:

�� AM_BASE_RPTS (report-id , type , client-locale) ��

The schema is SYSPROC.

 Table function parameters:

report-id

An input argument of type INTEGER that specifies a unique report ID. If the

argument is null, reports with any report ID are returned.

type

An input argument of type CHAR(4) that specifies the report type. Valid

values are:

’APPL’

Application

’STMT’

SQL statement

’TRAN’

Transaction

’CACH’

Dynamic SQL statement cache

Values can be specified in uppercase or lowercase characters. If the argument is

null or an empty string, reports of any type are returned.

client-locale

An input argument of type VARCHAR(33) that specifies a client language

identifier. If the argument is null or an empty string, or the message files for

the specified locale are not available on the server, ’En_US’ is used.

 Authorization:

 EXECUTE privilege on the AM_BASE_RPTS table function.

 Examples:

 Example 1:

SELECT * FROM TABLE(SYSPROC.AM_BASE_RPTS(CAST(NULL AS INTEGER),

 CAST(NULL AS CHAR(4)), CAST(NULL AS VARCHAR(33)))) AS REPORTS

Example 2:

SELECT ID, NAME FROM TABLE(SYSPROC.AM_BASE_RPTS(

 CAST(NULL AS INTEGER), CAST(’STMT’ AS CHAR(4)), ’En_US’))

 AS REPORTS WHERE TYPE = ’STMT’

AM_BASE_RPTS

20 Administrative SQL Routines and Views

Information returned:

 Table 14. Information returned by the AM_BASE_RPTS table function

Column name Data type Description

ID INTEGER The unique report ID.

TYPE CHAR(4) The report type. Valid values

are: APPL, STMT, TRAN,

CACH.

NAME VARCHAR(256) The name or short

description of the report.

DESCRIPTION VARCHAR(16384) The detailed description of

the report.

SWITCHES VARCHAR(100) The monitor switches

required for this report.

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

AM_BASE_RPTS

Chapter 3. Supported administrative SQL routines and views 21

AM_DROP_TASK – Delete a monitoring task

 The AM_DROP_TASK procedure deletes a monitoring task. It does not return any

data.

 Syntax:

�� AM_DROP_TASK (task-id) ��

The schema is SYSPROC.

 Procedure parameter:

task-id

An input argument of type INTEGER that specifies a unique monitoring task

ID.

 Authorization:

 EXECUTE privilege on the AM_DROP_TASK procedure.

 Example:

 Drop the monitoring task with ID 5.

CALL SYSPROC.AM_DROP_TASK(5)

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

AM_DROP_TASK

22 Administrative SQL Routines and Views

AM_GET_LOCK_CHN_TB – Retrieve application lock chain

data in a tabular format

 The AM_GET_LOCK_CHN_TB procedure returns application lock chain data in

tabular format. A lock chain consists of all the applications that the current

application is holding up or waiting for, either directly or indirectly.

 Syntax:

�� AM_GET_LOCK_CHN_TB (agent-id) ��

The schema is SYSPROC.

 Procedure paramater:

agent-id

An input argument of type BIGINT that specifies the agent ID of the

application for which lock chain data is to be retrieved.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the AM_GET_LOCK_CHN_TB procedure.

 Example:

 Retrieve lock chain information for agent ID 68.

CALL SYSPROC.AM_GET_LOCK_CHN_TB(68)

 Information returned:

 The procedure returns a table as shown below. Each row of the table represents a

lock-wait relationship. The result set also contains a row for each holding-only

application; in this case, the HOLDING_AGENT_ID column is null, and the other

four columns are for the holding-only application.

 Table 15. Information returned by the AM_GET_LOCK_CHN_TB procedure

Column name Data Type Description

HOLDING_AGENT_ID BIGINT The agent ID of the application

holding the lock.

AGENT_ID BIGINT The agent ID of the application

waiting for the lock.

APPL_NAME VARCHAR(255) The name of the application

waiting for the lock.

AUTH_ID VARCHAR(128) The authorization ID of the

application waiting for the lock.

APPL_ID VARCHAR(64) The application ID of the

application waiting for the lock.

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

AM_GET_LOCK_CHN_TB

Chapter 3. Supported administrative SQL routines and views 23

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

AM_GET_LOCK_CHN_TB

24 Administrative SQL Routines and Views

AM_GET_LOCK_CHNS – Retrieve lock chain information for a

specific application

 The AM_GET_LOCK_CHNS procedure returns lock chains for the specified

application as a formatted string. A lock chain consists of all the applications that

the current application is holding up or waiting for, either directly or indirectly.

 Syntax:

�� AM_GET_LOCK_CHNS (agent-id , lock-chains) ��

The schema is SYSPROC.

 Procedure parameters:

agent-id

An input argument of type BIGINT that specifies the agent ID of the

application whose lock chains are to be displayed.

lock-chains

An output argument of type CLOB(2M) that shows all the lock chains for the

specified application.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the AM_GET_LOCK_CHNS procedure.

 Example:

 CALL SYSPROC.AM_GET_LOCK_CHNS(17,?)

 Value of output parameters

 Parameter Name : LOCK_CHAINS

 Parameter Value : >db2bp.exe (Agent ID: 17) (Auth ID: AMUSERC)

<db2bp.exe (Agent ID: 17) (Auth ID: AMUSERC)

 <db2bp.exe (Agent ID: 18) (Auth ID: AMUSERB)

 <db2bp.exe (Agent ID: 16) (Auth ID: AMUSERA)

 Return Status = 0

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

AM_GET_LOCK_CHNS

Chapter 3. Supported administrative SQL routines and views 25

AM_GET_LOCK_RPT – Retrieve application lock details

 The AM_GET_LOCK_RPT procedure returns lock details for an application in three

output result sets.

 Syntax:

�� AM_GET_LOCK_RPT (agent-id) ��

 The schema is SYSPROC.

 Procedure parameter:

agent-id

An input argument of type BIGINT that specifies the agent ID of the

application whose lock details are to be returned.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the AM_GET_LOCK_RPT procedure.

 Example:

 CALL SYSPROC.AM_GET_LOCK_RPT(68)

 Usage note:

 The DFT_MON_LOCK monitor switch must be turned on for this procedure to

return any information.

 Information returned:

 The procedure returns three result sets: one for application general information;

one for locks that the application holds; and one for locks that the application is

waiting for.

 Table 16. General application information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

AUTH_ID VARCHAR(128) auth_id - Authorization ID monitor

element

APPL_ID VARCHAR(128) appl_id - Application ID monitor

element

AM_GET_LOCK_RPT

26 Administrative SQL Routines and Views

Table 16. General application information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

APPL_STATUS VARCHAR(22) appl_status - Application Status

monitor element. This interface

returns a text identifier based on

the defines in sqlmon.h, and is one

of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

COORD_PARTITION_NUM SMALLINT coord_node - Coordinating Node

monitor element

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence Number

monitor element

CLIENT_PRDID VARCHAR(128) client_prdid - Client

Product/Version ID monitor

element

CLIENT_PID BIGINT client_pid - Client Process ID

monitor element

AM_GET_LOCK_RPT

Chapter 3. Supported administrative SQL routines and views 27

Table 16. General application information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

CLIENT_PLATFORM VARCHAR(12) client_platform - Client Operating

Platform monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h,

v AIX®

v AIX64

v AS400_DRDA

v DOS

v DYNIX®

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS®

v WINDOWS95

AM_GET_LOCK_RPT

28 Administrative SQL Routines and Views

Table 16. General application information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client

Communication Protocol monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h,

v APPC

v APPN

v CPIC

v IPXSPX

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 Universal

Database™, or DB2 UDB)

v TCPIP4

v TCPIP6

CLIENT_NNAME VARCHAR(128) client_nname - Configuration

NNAME of Client monitor element

LOCKS_HELD BIGINT locks_held - Locks Held monitor

element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock Wait

Start Timestamp monitor element

LOCK_WAIT_TIME BIGINT lock_wait_time - Time Waited On

Locks monitor element

LOCK_WAITS BIGINT lock_waits - Lock Waits monitor

element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of Lock

Timeouts monitor element

LOCK_ESCALS BIGINT lock_escals - Number of Lock

Escalations monitor element

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive Lock

Escalations monitor element

DEADLOCKS BIGINT deadlocks - Deadlocks Detected

monitor element

 Table 17. Locks held information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

AM_GET_LOCK_RPT

Chapter 3. Supported administrative SQL routines and views 29

Table 17. Locks held information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock Object Type

Waited On monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_MODE VARCHAR(10) lock_mode - Lock Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

AM_GET_LOCK_RPT

30 Administrative SQL Routines and Views

Table 17. Locks held information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

LOCK_STATUS VARCHAR(10) lock_status - Lock Status monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock Escalation

monitor element

LOCK_NAME VARCHAR(32) lock_name - Lock Name monitor

element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Table 18. Locks wait information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID

Holding Lock monitor element

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application

ID Holding Lock monitor element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock Wait

Start Timestamp monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

AM_GET_LOCK_RPT

Chapter 3. Supported administrative SQL routines and views 31

Table 18. Locks wait information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock Object Type

Waited On monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_MODE VARCHAR(10) lock_mode - Lock Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

AM_GET_LOCK_RPT

32 Administrative SQL Routines and Views

Table 18. Locks wait information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock Mode

Requested monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_ESCALATION SMALLINT lock_escalation - Lock Escalation

monitor element

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

v “dft_monswitches - Default database system monitor switches configuration

parameter” in Performance Guide

AM_GET_LOCK_RPT

Chapter 3. Supported administrative SQL routines and views 33

AM_GET_RPT – Retrieve activity monitor data

 The AM_GET_RPT procedure returns activity monitor data for a report.

 Syntax:

�� AM_GET_RPT (database partition , report-id , appl-filter , �

� max-number) ��

The schema is SYSPROC.

 Procedure parameters:

database partition

An input argument of type INTEGER that specifies a database partition

number. Valid values are -2 (denoting all database partitions) and the database

partition number of any existing database partition.

report-id

An input argument of type INTEGER that specifies a unique report ID.

appl-filter

An input argument of type CLOB(32K) that specifies an application filter. An

application filter is a search condition involving any or all of the three columns

AGENT_ID, APPL_NAME, and AUTH_ID, where AGENT_ID and AUTH_ID

are integers, and APPL_NAME is a character string. If the argument is null or

an empty string, no filtering is performed.

max-number

An input argument of type INTEGER that specifies the maximum number of

applications, statements, or transactions that are to be displayed. If the

argument is null, all applications, statements, and transactions will be

displayed.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the AM_GET_RPT procedure.

 Example:

 CALL SYSPROC.AM_GET_RPT(-2, 18,

 CAST(’AGENT_ID=29 AND AUTH_ID <> ’’dbuser’’ AND APPL_NAME LIKE ’’db2%’’’

 AS CLOB(32K)), 100)

 Usage note:

 The result set returned is different for each report id. This procedure is intended to

support the Activity Monitor graphical tool. To build reports that can be parsed,

snapshot administrative SQL routines and views should be used instead.

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

 Related reference:

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

AM_GET_RPT

34 Administrative SQL Routines and Views

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “AM_SAVE_TASK – Create or modify a monitoring task” on page 36

v “Supported administrative SQL routines and views” on page 8

AM_GET_RPT

Chapter 3. Supported administrative SQL routines and views 35

AM_SAVE_TASK – Create or modify a monitoring task

 The AM_SAVE_TASK procedure creates or modifies a monitoring task.

 Syntax:

�� AM_SAVE_TASK (mode , task-id , task-name , appl-filter , �

� show-lock-chains , report-ids) ��

The schema is SYSPROC.

 Procedure parameters:

mode

An input argument of type CHAR(1) that specifies whether to create a new

monitoring task (’C’) or to modify an existing monitoring task (’M’).

task-id

An input argument of type INTEGER that specifies a unique monitoring task

ID. When mode is ’C’, any specified input for task-id is ignored. An ID for the

new monitoring task will be generated by the procedure and returned in the

output. When mode is ’M’, specifies the ID of the monitoring task that is being

modified.

task-name

An input argument of type VARCHAR(128) that specifies a name or short

description for a monitoring task.

appl-filter

An input argument of type CLOB(32K) that specifies an application filter. An

application filter is a search condition involving any or all of the three columns

AGENT_ID, APPL_NAME, and AUTH_ID, where AGENT_ID and AUTH_ID

are integers, and APPL_NAME is a character string. If the argument is null or

an empty string, no filtering is performed.

show-lock-chains

An input argument of type CHAR(1) that specifies whether lock chains are to

be shown. Valid values are ’Y’ and ’N’. If the argument is null, lock chains are

not to be shown.

report-ids

An input argument of type VARCHAR(3893) that specifies one or more report

IDs separated by commas.

 Authorization:

 EXECUTE privilege on the AM_SAVE_TASK procedure.

 Example:

 Example:

CALL SYSPROC.AM_SAVE_TASK(’M’,11,’Task ABC’,CAST (NULL AS CLOB(32K)),

 ’N’,’1,2,4,8,9,12’)

 Related concepts:

v “Activity Monitor overview” in System Monitor Guide and Reference

AM_SAVE_TASK

36 Administrative SQL Routines and Views

Related reference:

v “AM_BASE_RPTS – Activity monitor reports” on page 20

v “AM_BASE_RPT_RECOMS – Recommendations for activity reports” on page 18

v “AM_DROP_TASK – Delete a monitoring task” on page 22

v “AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific

application” on page 25

v “AM_GET_LOCK_RPT – Retrieve application lock details” on page 26

v “AM_GET_RPT – Retrieve activity monitor data” on page 34

v “AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular

format” on page 23

v “Supported administrative SQL routines and views” on page 8

AM_SAVE_TASK

Chapter 3. Supported administrative SQL routines and views 37

ADMIN_CMD stored procedure and associated administrative SQL

routines

ADMIN_CMD – Run administrative commands

 The ADMIN_CMD procedure is used by applications to run administrative

commands using the SQL CALL statement.

 Syntax:

�� ADMIN_CMD (command-string) ��

The schema is SYSPROC.

 Procedure parameter:

command-string

An input argument of type CLOB (2M) that specifies a single command that is

to be executed.

 Authorization:

 EXECUTE privilege on the ADMIN_CMD procedure.

 The procedure currently supports the following DB2 command line processor

(CLP) commands:

v “ADD CONTACT command using the ADMIN_CMD procedure” on page 44

v “ADD CONTACTGROUP command using the ADMIN_CMD procedure” on

page 46

v “AUTOCONFIGURE command using the ADMIN_CMD procedure” on page 48

v “BACKUP DATABASE command using the ADMIN_CMD procedure” on page

53 - online only

v “DESCRIBE command using the ADMIN_CMD procedure” on page 58

v “DROP CONTACT command using the ADMIN_CMD procedure” on page 68

v “DROP CONTACTGROUP command using the ADMIN_CMD procedure” on

page 69

v “EXPORT command using the ADMIN_CMD procedure” on page 70

v “FORCE APPLICATION command using the ADMIN_CMD procedure” on page

76

v “IMPORT command using the ADMIN_CMD procedure” on page 80

v “INITIALIZE TAPE command using the ADMIN_CMD procedure” on page 94

v “LOAD command using the ADMIN_CMD procedure” on page 96

v “PRUNE HISTORY/LOGFILE command using the ADMIN_CMD procedure” on

page 115

v “QUIESCE DATABASE command using the ADMIN_CMD procedure” on page

117

v “QUIESCE TABLESPACES FOR TABLE command using the ADMIN_CMD

procedure” on page 119

v “REDISTRIBUTE DATABASE PARTITION GROUP command using the

ADMIN_CMD procedure” on page 122

AM_SAVE_TASK

38 Administrative SQL Routines and Views

v “REORG INDEXES/TABLE command using the ADMIN_CMD procedure” on

page 126

v “RESET ALERT CONFIGURATION command using the ADMIN_CMD

procedure” on page 136

v “RESET DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 139

v “RESET DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 141

v “REWIND TAPE command using the ADMIN_CMD procedure” on page 143

v “RUNSTATS command using the ADMIN_CMD procedure” on page 144

v “SET TAPE POSITION command using the ADMIN_CMD procedure” on page

156

v “UNQUIESCE DATABASE command using the ADMIN_CMD procedure” on

page 157

v “UPDATE ALERT CONFIGURATION command using the ADMIN_CMD

procedure” on page 159

v “UPDATE CONTACT command using the ADMIN_CMD procedure” on page

164

v “UPDATE CONTACTGROUP command using the ADMIN_CMD procedure” on

page 166

v “UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 168

v “UPDATE DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 171

v “UPDATE HEALTH NOTIFICATION CONTACT LIST command using the

ADMIN_CMD procedure” on page 174

v “UPDATE HISTORY command using the ADMIN_CMD procedure” on page 176

Note: Some commands might have slightly different supported syntax when

executed through the ADMIN_CMD procedure.

The procedure also supports the following commands which are not supported by

the CLP:

v “GET STMM TUNING DBPARTITIONNUM command using the ADMIN_CMD

procedure” on page 78

v “UPDATE STMM TUNING DBPARTITIONNUM command using the

ADMIN_CMD procedure” on page 178

 Usage notes:

 Retrieving command execution information:

v Since the ADMIN_CMD procedure runs on the server, the utility messages are

created on the server. The MESSAGES ON SERVER option (refer to the specific

command for further details) indicates that the message file is to be created on

the server.

v Command execution status is returned in the SQLCA resulting from the CALL

statement.

v If the execution of the administrative command is successful, and the command

returns more than the execution status, the additional information is returned in

the form of a result set (up to two result sets). For example, if the EXPORT

command executes successfully, the returned result set contains information

ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 39

about the number of exported rows; however, if the RUNSTATS command

executes successfully, no result set is returned. The result set information is

documented with the corresponding command.

v If the execution of the administrative command is not successful, an SQL20397W

warning message is returned by the ADMIN_CMD procedure along with a

result set containing more details about the reason for the failure of the

administrative command. Any application that uses the ADMIN_CMD

procedure should check the SQLCODE returned by the procedure. If the

SQLCODE is >= 0, the result set for the administrative command should be

retrieved. The following table indicates what information might be returned

depending on whether the MESSAGES ON SERVER option is used or not.

 Table 19. SQLCODE and information returned by the ADMIN_CMD procedure

Administrative command

execution status

MESSAGES ON SERVER

option specified

MESSAGES ON SERVER

option not specified

Successful The SQLCODE returned is

>= 0: Additional information

(result sets) returned, if any.

The SQLCODE returned is

>= 0: Additional information

(result sets) returned, if any,

but the MSG_RETRIEVAL

and MSG_REMOVAL

columns are NULL.

Failed The SQLCODE returned

20397: Additional

information (result sets)

returned, but only the

MSG_RETRIEVAL and

MSG_REMOVAL columns

are populated.

The SQLCODE returned is <

0: No additional information

(result sets) is returned.

v The result sets can be retrieved from the CLP or from applications such as JDBC

and DB2 CLI applications, but not from embedded C applications.

For all commands executed through the ADMIN_CMD, the user ID that

established the connection to the database is used for authentication.

Any additional authority required, for example, for commands that need file

system access on the database server, is documented in the reference information

describing the command.

 This procedure cannot be called from a user-defined function (SQLSTATE 38001) or

a trigger.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

 Related samples:

v “spclient.c -- Call various stored procedures”

v “SpClient.java -- Call a variety of types of stored procedures from SpServer.java

(JDBC)”

ADMIN_CMD

40 Administrative SQL Routines and Views

ADMIN_GET_MSGS table function – Retrieve messages

generated by a data movement utility that is executed through

the ADMIN_CMD procedure

 The ADMIN_GET_MSGS table function is used to retrieve messages generated by

a single execution of a data movement utility command through the ADMIN_CMD

procedure. The input parameter operation_id identifies that operation.

 Syntax:

�� ADMIN_GET_MSGS (operation_id) ��

 The schema is SYSPROC.

 Table function parameter:

operation_id

An input argument of type VARCHAR(139) that specifies the operation ID of

the message file(s) produced by a data movement utility that was executed

through the ADMIN_CMD procedure. The operation ID is generated by the

ADMIN_CMD procedure.

 Authorization:

 EXECUTE privilege on the ADMIN_GET_MSGS table function. The fenced user ID

must have read access to the files under the directory indicated by registry variable

DB2_UTIL_MSGPATH. If the registry variable is not set, then the fenced user ID

must have read access to the files in the tmp subdirectory of the instance directory.

 Example:

 Check all the messages returned by EXPORT utility that was executed through

ADMIN_CMD procedure, with operation ID ’24523_THERESAX’

SELECT * FROM TABLE(SYSPROC.ADMIN_GET_MSGS(’24523_THERESAX’)) AS MSG

The following is an example of output from this query.

DBPARTITIONNUM AGENTTYPE SQLCODE MSG

-------------- --------- --------- ---------------------------------------...-

- - SQL3104N The Export utility is beginning to

 export data to file

 "/home/theresax/rtest/data/ac_load03.del".

- - SQL3105N The Export utility has finished

 exporting "8" rows.

2 record(s) selected.

 Usage notes:

 The query statement that invokes this table function with the appropriate

operation_id can be found in the MSG_RETRIEVAL column of the first result set

returned by the ADMIN_CMD procedure.

ADMIN_GET_MSGS

Chapter 3. Supported administrative SQL routines and views 41

Information returned:

 Table 20. Information returned by the ADMIN_GET_MSGS table function

Column name Data type Description

DBPARTITIONNUM INTEGER Database partition number.

This value is only returned

for a distributed load and

indicates which database

partition the corresponding

message is for.

AGENTTYPE CHAR(4) Agent type. This value is

only returned for a

distributed load. The possible

values are:

v 'LOAD': for load agent

v 'PART': for partitioning

agent

v 'PREP': for pre-partitioning

agent

v NULL: no agent type

information is available

SQLCODE VARCHAR(9) SQLCODE of the message

being returned.

MSG VARCHAR(1024) Short error message that

corresponds to the

SQLCODE.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Miscellaneous variables” in Performance Guide

v “ADMIN_CMD – Run administrative commands” on page 38

ADMIN_GET_MSGS

42 Administrative SQL Routines and Views

ADMIN_REMOVE_MSGS procedure – Clean up messages

generated by a data movement utility that is executed through

the ADMIN_CMD procedure

 The ADMIN_REMOVE_MSGS procedure is used to clean up messages generated

by a single execution of a data movement utility command through the

ADMIN_CMD procedure. The input parameter operation_id identifies the operation.

 Syntax:

�� ADMIN_REMOVE_MSGS (operation_id) ��

 The schema is SYSPROC.

 Procedure parameter:

operation_id

An input argument of type VARCHAR(139) that specifies the operation ID of

the message file(s) produced by a data movement utility that was executed

through the ADMIN_CMD procedure. The operation ID is generated by the

ADMIN_CMD procedure.

 Authorization:

 EXECUTE privilege on the ADMIN_REMOVE_MSGS procedure. The fenced user

ID must be able to delete files under the directory indicated by registry variable

DB2_UTIL_MSGPATH. If the registry variable is not set, then the fenced user ID

must be able to delete the files in the tmp subdirectory of the instance directory.

 Example:

 Clean up messages with operation ID '24523_THERESAX'.

CALL SYSPROC.ADMIN_REMOVE_MSGS(’24523_THERESAX’)

 Usage notes:

 The CALL statement that invokes this procedure with the appropriate operation_id

can be found in the MSG_REMOVAL column of the first result set returned by

ADMIN_CMD procedure.

 Related reference:

v “Miscellaneous variables” in Performance Guide

v “Supported administrative SQL routines and views” on page 8

v “ADMIN_CMD – Run administrative commands” on page 38

ADMIN_REMOVE_MSGS

Chapter 3. Supported administrative SQL routines and views 43

ADD CONTACT command using the ADMIN_CMD procedure

The command adds a contact to the contact list which can be either defined locally

on the system or in a global list. Contacts are users to whom processes such as the

Scheduler and Health Monitor send messages. The setting of the Database

Administration Server (DAS) contact_host configuration parameter determines

whether the list is local or global.

 Authorization:

 None.

 Required connection:

 Database. The DAS must be running.

 Command syntax:

�� ADD CONTACT name TYPE EMAIL

PAGE

MAXIMUM PAGE LENGTH

pg-length

MAX LEN

 �

� ADDRESS recipients address

DESCRIPTION

contact description
 ��

 Command parameters:

CONTACT name

The name of the contact that will be added. By default the contact will be

added in the local system, unless the DB2 administration server

configuration parameter contact_host points to another system.

TYPE Method of contact, which must be one of the following two:

EMAIL

This contact wishes to be notified by e-mail at (ADDRESS).

PAGE This contact wishes to be notified by a page sent to ADDRESS.

MAXIMUM PAGE LENGTH pg-length

If the paging service has a message-length restriction, it is

specified here in characters.

The notification system uses the SMTP protocol to send the

notification to the mail server specified by the DB2 Administration

Server configuration parameter smtp_server. It is the responsibility

of the SMTP server to send the e-mail or call the pager.

ADDRESS recipients-address

The SMTP mailbox address of the recipient. For example,

joe@somewhere.org. The smtp_server DAS configuration parameter must be

set to the name of the SMTP server.

DESCRIPTION contact description

A textual description of the contact. This has a maximum length of 128

characters.

 Example:

ADD CONTACT using ADMIN_CMD

44 Administrative SQL Routines and Views

Add a contact for user ’testuser’ with e-mail address ’testuser@test.com’.

CALL SYSPROC.ADMIN_CMD

 (’add contact testuser type email address testuser@test.com’)

 Usage notes:

 The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related tasks:

v “Enabling health alert notification” in System Monitor Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADD CONTACTGROUP command using the ADMIN_CMD procedure” on

page 46

v “DROP CONTACT command using the ADMIN_CMD procedure” on page 68

v “DROP CONTACTGROUP command using the ADMIN_CMD procedure” on

page 69

v “UPDATE CONTACT command using the ADMIN_CMD procedure” on page

164

v “UPDATE CONTACTGROUP command using the ADMIN_CMD procedure” on

page 166

v “db2admin - DB2 administration server command” in Command Reference

v “db2AddContactGroup API - Add a contact group to whom notification

messages can be sent” in Administrative API Reference

ADD CONTACT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 45

ADD CONTACTGROUP command using the ADMIN_CMD

procedure

 Adds a new contact group to the list of groups defined on the local system. A

contact group is a list of users and groups to whom monitoring processes such as

the Scheduler and Health Monitor can send messages. The setting of the Database

Administration Server (DAS) contact_host configuration parameter determines

whether the list is local or global.

 Authorization:

 None

 Required connection:

 Database. The DAS must be running.

 Command Syntax:

��

ADD CONTACTGROUP

name

�

 ,

CONTACT

name

GROUP

�

�
DESCRIPTION

group description
 ��

 Command Parameters:

CONTACTGROUP name

Name of the new contact group, which must be unique among the set of

groups on the system.

CONTACT name

Name of the contact which is a member of the group. A contact can be

defined with the ADD CONTACT command after it has been added to a

group.

GROUP name

Name of the contact group of which this group is a member.

DESCRIPTION group description

Optional. A textual description of the contact group.

 Example:

 Create a contact group named ’gname1’ that contains two contacts: ’cname1’ and

’cname2’.

CALL SYSPROC.ADMIN_CMD(’add contactgroup gname1 contact cname1, contact cname2’)

 Usage notes:

 The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

ADD CONTACTGROUP using ADMIN_CMD

46 Administrative SQL Routines and Views

Related tasks:

v “Enabling health alert notification” in System Monitor Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADD CONTACT command using the ADMIN_CMD procedure” on page 44

v “DROP CONTACT command using the ADMIN_CMD procedure” on page 68

v “DROP CONTACTGROUP command using the ADMIN_CMD procedure” on

page 69

v “UPDATE CONTACT command using the ADMIN_CMD procedure” on page

164

v “UPDATE CONTACTGROUP command using the ADMIN_CMD procedure” on

page 166

v “db2admin - DB2 administration server command” in Command Reference

v “db2AddContactGroup API - Add a contact group to whom notification

messages can be sent” in Administrative API Reference

ADD CONTACTGROUP using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 47

AUTOCONFIGURE command using the ADMIN_CMD

procedure

Calculates and displays initial values for the buffer pool size, database

configuration and database manager configuration parameters, with the option of

applying these recommended values.

 Authorization:

 sysadm.

 Required connection:

 Database.

 Command syntax:

�� AUTOCONFIGURE

�

USING

input-keyword

param-value

 �

� APPLY DB ONLY

DB AND DBM

NONE

ON CURRENT NODE
 ��

 Command parameters:

USING input-keyword param-value

 Table 21. Valid input keywords and parameter values

Keyword Valid values Default value Explanation

mem_percent 1–100 25 Percentage of

memory to dedicate.

If other applications

(other than the

operating system) are

running on this

server, set this to less

than 100.

workload_type simple, mixed,

complex

mixed Simple workloads

tend to be I/O

intensive and mostly

transactions, whereas

complex workloads

tend to be CPU

intensive and mostly

queries.

num_stmts 1–1 000 000 10 Number of

statements per unit

of work

tpm 1–200 000 60 Transactions per

minute

AUTOCONFIGURE using ADMIN_CMD

48 Administrative SQL Routines and Views

Table 21. Valid input keywords and parameter values (continued)

Keyword Valid values Default value Explanation

admin_priority performance,

recovery, both

both Optimize for better

performance (more

transactions per

minute) or better

recovery time

is_populated yes, no yes Is the database

populated with data?

num_local_apps 0–5 000 0 Number of connected

local applications

num_remote_apps 0–5 000 10 Number of connected

remote applications

isolation RR, RS, CS, UR RR Maximum isolation

level of applications

connecting to this

database (Repeatable

Read, Read Stability,

Cursor Stability,

Uncommitted Read).

It is only used to

determine values of

other configuration

parameters. Nothing

is set to restrict the

applications to a

particular isolation

level and it is safe to

use the default value.

bp_resizeable yes, no yes Are buffer pools

resizeable?

APPLY

DB ONLY

Displays the recommended values for the database configuration

and the buffer pool settings based on the current database manager

configuration. Applies the recommended changes to the database

configuration and the buffer pool settings.

DB AND DBM

Displays and applies the recommended changes to the database

manager configuration, the database configuration, and the buffer

pool settings.

NONE

Displays the recommended changes, but does not apply them.

ON CURRENT NODE

In the Database Partitioning Feature (DPF), the Configuration Advisor

updates the database configuration on all nodes by default. Running with

the ″ON CURRENT NODE″ option makes the advisor apply the

recommended database configuration to the coordinator (connection) node

only.

 The bufferpool changes are always applied to the system catalogs. Thus, all

nodes are affected. The ″ON CURRENT NODE″ option does not matter for

bufferpool recommendations.

AUTOCONFIGURE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 49

Example:

 Invoke autoconfigure on a database through the ADMIN_CMD stored procedure.

CALL SYSPROC.ADMIN_CMD(’AUTOCONFIGURE APPLY NONE’)

The following is an example of the result set returned by the command.

LEVEL NAME VALUE RECOMMENDED_VALUE DATATYPE

-----...- ----------------...- -------...- ------------------ --------...-

DBM ASLHEAPSZ 15 15 BIGINT

DBM FCM_NUM_BUFFERS 512 512 BIGINT

...

DB APP_CTL_HEAP_SZ 128 144 INTEGER

DB APPGROUP_MEM_SZ 20000 14559 BIGINT

...

BP IBMDEFAULTBP 1000 164182 BIGINT

 Usage notes:

v On systems with multiple logical partitions, the mem_percent parameter refers to

the percentage of memory that is to be used by all logical partitions. For

example, if DB2 uses 25% of the memory on the system, specify 25% regardless

of the number of logical partitions. The database configuration recommendations

made, however, will be adjusted for one logical partition.

v This command makes configuration recommendations for the currently

connected database, assuming that the database is the only active database on

the system. If more than one database is active on the system, adjust the

>mem_percent parameter to reflect the current database’s share of memory. For

example, if the DB2 database uses 80% of the system’s memory and there are

two active databases on the system that should share the resources equally,

specify 40% (80% divided by 2 databases) for the parameter mem_percent.

v When explicitly invoking the Configuration Advisor with the

AUTOCONFIGURE command, the setting of the

DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable will be ignored.

v Running the AUTOCONFIGURE command on a database will recommend

enablement of the Self Tuning Memory Manager. However, if you run the

AUTOCONFIGURE command on a database in an instance where SHEAPTHRES is

not zero, sort memory tuning (SORTHEAP) will not be enabled automatically. To

enable sort memory tuning (SORTHEAP), you must set SHEAPTHRES equal to zero

using the UPDATE DATABASE MANAGER CONFIGURATION command.

Note that changing the value of SHEAPTHRES may affect the sort memory usage in

your previously existing databases.

v Command execution status is returned in the SQLCA resulting from the CALL

statement.

v SQL executed in the ADMIN_CMD procedure on behalf of AUTOCONFIGURE

is monitored by Query Patroller.

v The AUTOCONFIGURE command issues a COMMIT statement at the end if its

execution. In the case of Type-2 connections this will cause the ADMIN_CMD

procedure to return SQL30090N with reason code 2.

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information

the following result set:

AUTOCONFIGURE using ADMIN_CMD

50 Administrative SQL Routines and Views

Table 22. Result set returned by the AUTOCONFIGURE command

Column name Data type Description

LEVEL VARCHAR(3) Level of parameter and is one of:

v BP for bufferpool level

v DBM for database manager level

v DB for database level

NAME VARCHAR(128) v If LEVEL is DB or DBM, this

contains the configuration

parameter keyword.

v If LEVEL is BP, this value

contains the buffer pool name.

VALUE VARCHAR(256) v If LEVEL is DB or DBM, and the

recommended values were

applied, this column contains the

value of the configuration

parameter identified in the

NAME column prior to applying

the recommended value (that is,

it contains the old value). If the

change was not applied, this

column contains the current

on-disk (deferred value) of the

identified configuration

parameter.

v If LEVEL is BP, and the

recommended values were

applied, this column contains the

size (in pages) of the bufferpool

identified in the NAME column

prior to applying the

recommended value (that is, it

contains the old size). If the

change was not applied, this

column contains the current size

(in pages) of the identified

bufferpool.

RECOMMENDED_VALUE VARCHAR(256) v If LEVEL is DB or DBM, this

column contains the

recommended (or applied) value

of the configuration parameter

identified in the parameter

column.

v If type is BP, this column

contains the recommended (or

applied) size (in pages) of the

bufferpool identified in the

parameter column.

DATATYPE VARCHAR(128) Parameter data type.

 Related concepts:

v “Configuration parameters” in Performance Guide

 Related tasks:

AUTOCONFIGURE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 51

v “Defining the scope of configuration parameters using the Configuration

Advisor” in Administration Guide: Implementation

v “Configuring DB2 with configuration parameters” in Performance Guide

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “db2AutoConfig API - Access the Configuration Advisor” in Administrative API

Reference

v “UPDATE DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 171

AUTOCONFIGURE using ADMIN_CMD

52 Administrative SQL Routines and Views

BACKUP DATABASE command using the ADMIN_CMD

procedure

Creates a backup copy of a database or a table space.

For information on the backup operations supported by DB2 database systems

between different operating systems and hardware platforms, see ″Backup and

restore operations between different operating systems and hardware platforms″ in

the Related concepts section.

 Scope:

 This command only affects the database partition on which it is executed.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database. The existing database connection remains after the completion of the

backup operation.

 Command syntax:

��

BACKUP

DATABASE

database-alias

DB

�

,

TABLESPACE

(

tablespace-name

)

 ONLINE

�

�
INCREMENTAL

DELTA

 �

�

�

USE

TSM

XBSA

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

,

TO

dir

dev

LOAD

library-name

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

 �

�
WITH

num-buffers

BUFFERS

BUFFER

buffer-size

PARALLELISM

n
 �

�
COMPRESS

COMPRLIB

name

COMPROPTS

string

EXCLUDE

 �

BACKUP DATABASE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 53

�

UTIL_IMPACT_PRIORITY

priority

 EXCLUDE LOGS

INCLUDE LOGS

 WITHOUT PROMPTING

��

 Command parameters:

DATABASE database-alias

Specifies the alias of the database to back up. The alias must be a local

database defined on the server and must be the database name that the

user is currently connected to. If the database-alias is not the one the user

is connected to, an SQL20322N error is returned.

TABLESPACE tablespace-name

A list of names used to specify the table spaces to be backed up.

ONLINE

 Specifies online backup. This is the only supported mode and is the

default. The ONLINE clause does not need to be specified.

INCREMENTAL

Specifies a cumulative (incremental) backup image. An incremental backup

image is a copy of all database data that has changed since the most recent

successful, full backup operation.

DELTA

Specifies a non-cumulative (delta) backup image. A delta backup image is

a copy of all database data that has changed since the most recent

successful backup operation of any type.

USE TSM

Specifies that the backup is to use Tivoli Storage Manager output.

USE XBSA

Specifies that the XBSA interface is to be used. Backup Services APIs

(XBSA) are an open application programming interface for applications or

facilities needing data storage management for backup or archiving

purposes.

OPTIONS

″options-string″

Specifies options to be used for the backup operation.The string

will be passed to the vendor support library, for example TSM,

exactly as it was entered, without the quotes. Specifying this option

overrides the value specified by the VENDOROPT database

configuration parameter.

@file-name

Specifies that the options to be used for the backup operation are

contained in a file located on the DB2 server. The string will be

passed to the vendor support library, for example TSM. The file

must be a fully qualified file name.

OPEN num-sessions SESSIONS

The number of I/O sessions to be created between DB2 and TSM or

another backup vendor product. This parameter has no effect when

backing up to tape, disk, or other local device.

TO dir/dev

A list of directory or tape device names.The full path on which the

directory resides must be specified. This target directory or device must

exist on the database server. This parameter can be repeated to specify the

BACKUP DATABASE using ADMIN_CMD

54 Administrative SQL Routines and Views

target directories and devices that the backup image will span. If more

than one target is specified (target1, target2, and target3, for example),

target1 will be opened first. The media header and special files (including

the configuration file, table space table, and history file) are placed in

target1. All remaining targets are opened, and are then used in parallel

during the backup operation. Because there is no general tape support on

Windows operating systems, each type of tape device requires a unique

device driver. To back up to the FAT file system on Windows operating

systems, users must conform to the 8.3 naming restriction.

 Use of tape devices or floppy disks might require prompts and user

interaction, which will result an error being returned.

c Continue. Continue using the device that generated the warning

message (for example, when a new tape has been mounted)

d Device terminate. Stop using only the device that generated the

warning message (for example, when there are no more tapes)

t Terminate. Abort the backup operation.

If the tape system does not support the ability to uniquely reference a

backup image, it is recommended that multiple backup copies of the same

database not be kept on the same tape.

LOAD library-name

The name of the shared library (DLL on Windows operating systems)

containing the vendor backup and restore I/O functions to be used. It can

contain the full path. If the full path is not given, it will default to the path

on which the user exit program resides.

WITH num-buffers BUFFERS

The number of buffers to be used. DB2 will automatically choose an

optimal value for this parameter unless you explicitly enter a value.

However, when creating a backup to multiple locations, a larger number of

buffers can be used to improve performance.

BUFFER buffer-size

The size, in 4 KB pages, of the buffer used when building the backup

image. DB2 will automatically choose an optimal value for this parameter

unless you explicitly enter a value. The minimum value for this parameter

is 8 pages.

 If using tape with variable block size, reduce the buffer size to within the

range that the tape device supports. Otherwise, the backup operation

might succeed, but the resulting image might not be recoverable.

 With most versions of Linux, using DB2’s default buffer size for backup

operations to a SCSI tape device results in error SQL2025N, reason code 75.

To prevent the overflow of Linux internal SCSI buffers, use this formula:

 bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER parameter,

and ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel

under the drivers/scsi directory.

PARALLELISM n

Determines the number of table spaces which can be read in parallel by the

backup utility. DB2 will automatically choose an optimal value for this

parameter unless you explicitly enter a value.

BACKUP DATABASE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 55

UTIL_IMPACT_PRIORITY priority

Specifies that the backup will run in throttled mode, with the priority

specified. Throttling allows you to regulate the performance impact of the

backup operation. Priority can be any number between 1 and 100, with 1

representing the lowest priority, and 100 representing the highest priority.

If the UTIL_IMPACT_PRIORITY keyword is specified with no priority, the

backup will run with the default priority of 50. If

UTIL_IMPACT_PRIORITY is not specified, the backup will run in

unthrottled mode. An impact policy must be defined by setting the

util_impact_lim configuration parameter for a backup to run in throttled

mode.

COMPRESS

Indicates that the backup is to be compressed.

COMPRLIB name

Indicates the name of the library to be used to perform the

compression. The name must be a fully qualified path referring to

a file on the server. If this parameter is not specified, the default

DB2 compression library will be used. If the specified library

cannot be loaded, the backup will fail.

EXCLUDE

Indicates that the compression library will not be stored in the

backup image.

COMPROPTS string

Describes a block of binary data that will be passed to the

initialization routine in the compression library. DB2 will pass this

string directly from the client to the server, so any issues of byte

reversal or code page conversion will have to be handled by the

compression library. If the first character of the data block is ’@’,

the remainder of the data will be interpreted by DB2 as the name

of a file residing on the server. DB2 will then replace the contents

of string with the contents of this file and will pass this new value

to the initialization routine instead. The maximum length for string

is 1024 bytes.

EXCLUDE LOGS

Specifies that the backup image should not include any log files. When

performing an offline backup operation, logs are excluded whether or not

this option is specified.

INCLUDE LOGS

Specifies that the backup image should include the range of log files

required to restore and roll forward this image to some consistent point in

time. This option is not valid for an offline backup.

WITHOUT PROMPTING

 Specifies that the backup will run unattended, and that any actions which

normally require user intervention will return an error message. This is the

default.

 Examples:

 The following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily

non-cumulative (delta) backup operation, and a mid-week cumulative

(incremental) backup operation:

BACKUP DATABASE using ADMIN_CMD

56 Administrative SQL Routines and Views

(Sun) CALL SYSPROC.ADMIN_CMD(’backup db sample online use tsm’)

(Mon) CALL SYSPROC.ADMIN_CMD

 (’backup db sample online incremental delta use tsm’)

(Tue) CALL SYSPROC.ADMIN_CMD

 (’backup db sample online incremental delta use tsm’)

(Wed) CALL SYSPROC.ADMIN_CMD

 (’backup db sample online incremental use tsm’)

(Thu) CALL SYSPROC.ADMIN_CMD

 (’backup db sample online incremental delta use tsm’)

(Fri) CALL SYSPROC.ADMIN_CMD

 (’backup db sample online incremental delta use tsm’)

(Sat) CALL SYSPROC.ADMIN_CMD

 (’backup db sample online incremental use tsm’)

 Usage notes:

 The data in a backup cannot be protected by the database server. Make sure that

backups are properly safeguarded, particularly if the backup contains

LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported. If

you must use this option, ensure that you have well tested procedures in place that

enable you to recover successfully, using backup images that were created with a

variable block size.

When using a variable block size, you must specify a backup buffer size that is less

than or equal to the maximum limit for the tape devices that you are using. For

optimal performance, the buffer size must be equal to the maximum block size

limit of the device being used.

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, and the command returns additional

information the following result set:

 Table 23. Result set returned by the BACKUP command

Column name Data type Description

BACKUP_TIME VARCHAR(14) Corresponds to the

timestamp string used to

name the backup image.

 Related concepts:

v “Developing a backup and recovery strategy” in Data Recovery and High

Availability Guide and Reference

 Related tasks:

v “Using backup” in Data Recovery and High Availability Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “db2Backup API - Back up a database or table space” in Administrative API

Reference

BACKUP DATABASE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 57

DESCRIBE command using the ADMIN_CMD procedure

This command:

v Displays the output SQLDA information about a SELECT, CALL, or XQuery

statement

v Displays columns of a table or a view

v Displays indexes of a table or a view

v Displays data partitions of a table or view

 Authorization:

 To display the output SQLDA information about a SELECT statement, one of the

privileges or authorities listed below for each table or view referenced in the

SELECT statement is required.

To display the columns, indexes or data partitions of a table or a view, SELECT

privilege, CONTROL privilege, sysadm authority or dbadm authority is required for

the following system catalogs:

v SYSCAT.COLUMNS (DESCRIBE TABLE), SYSCAT.DATAPARTITIONEXPRESSION

(with SHOW DETAIL)

v SYSCAT.INDEXES (DESCRIBE INDEXES FOR TABLE) execute privilege on

GET_INDEX_COLNAMES() UDF (with SHOW DETAIL)

v SYSCAT.DATAPARTITIONS (DESCRIBE DATA PARTITIONS FOR TABLE)

As PUBLIC has all the privileges over declared global temporary tables, a user can

use the command to display information about any declared global temporary

table that exists within its connection.

To display the output SQLDA information about a CALL statement, one of the

privileges or authorities listed below is required:

v EXECUTE privilege on the stored procedure

v sysadm or dbadm authority

 Required connection:

 Database.

 Command syntax:

��

DESCRIBE
 OUTPUT

select-statement

call-statement

XQUERY

XQuery-statement

TABLE

table-name

INDEXES FOR TABLE

SHOW DETAIL

DATA PARTITIONS FOR TABLE

��

 Command parameters:

OUTPUT

Indicates that the output of the statement should be described. This

keyword is optional.

select-statement, call-statement, or XQUERY XQuery-statement

Identifies the statement about which information is wanted. The

DESCRIBE using ADMIN_CMD

58 Administrative SQL Routines and Views

statement is automatically prepared by CLP. To identify an XQuery

statement, precede the statement with the keyword XQUERY.

TABLE table-name

Specifies the table or view to be described. The fully qualified name in the

form schema.table-name must be used. An alias for the table cannot be used

in place of the actual table. The schema is the user name under which the

table or view was created.

 The DESCRIBE TABLE command lists the following information about

each column:

v Column name

v Type schema

v Type name

v Length

v Scale

v Nulls (yes/no)

INDEXES FOR TABLE table-name

Specifies the table or view for which indexes need to be described. The

fully qualified name in the form schema.table-name must be used. An alias

for the table cannot be used in place of the actual table. The schema is the

user name under which the table or view was created.

 The DESCRIBE INDEXES FOR TABLE command lists the following

information about each index of the table or view:

v Index schema

v Index name

v Unique rule

v Column count

DATA PARTITIONS FOR TABLE table-name

Specifies the table or view for which data partitions need to be described.

The information displayed for each data partition in the table includes; the

partition identifier and the partitioning intervals. Results are ordered

according to the partition identifier sequence. The fully qualified name in

the form schema.table-name must be used. An alias for the table cannot be

used in place of the actual table. The schema is the user name under which

the table or view was created.

SHOW DETAIL

 For the DESCRIBE TABLE command, specifies that output include the

following additional information as well as a second result set which

contains the table data partition expressions (which might return 0 rows if

the table is not data partitioned):

v Whether a CHARACTER, VARCHAR or LONG VARCHAR column was

defined as FOR BIT DATA

v Column number

v Distribution key sequence

v Code page

v Default

v Table partitioning type (for tables partitioned by range this output

appears below the original output)

DESCRIBE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 59

v Partitioning key columns (for tables partitioned by range this output

appears below the original output)

 For the DESCRIBE INDEXES FOR TABLE command, specifies that output

include the following additional information:

v Column names

 For the DESCRIBE DATA PARTITIONS FOR TABLE command, specifies

that output include a second table with the following additional

information:

v Data partition sequence identifier

v Data partition expression in SQL

 Examples:

 Describing the output of a SELECT statement

The following example shows how to describe a SELECT statement:

CALL SYSPROC.ADMIN_CMD(’describe select * from emp_photo’)

The following is an example of output for this SELECT statement.

Result set 1

SQLTYPE_ID SQLTYPE SQLLENGTH SQLSCALE SQLNAME_DATA ...

---------- ---------..- --------- -------- ------------..- ...

 452 CHARACTER 6 0 EMPNO ...

 448 VARCHAR 10 0 PHOTO_FORMAT ...

 405 BLOB 102400 0 PICTURE ...

 ...

 3 record(s) selected. ...

 ...

 Return Status = 0

Output for this SELECT statement (continued).

... SQLNAME_LENGTH SQLDATATYPENAME_DATA SQLDATATYPENAME_LENGTH

... -------------- ---------------------..- -----------------------

... 5 SYSIBM .CHARACTER 18

... 12 SYSIBM .VARCHAR 16

... 7 SYSIBM .BLOB 13

...

...

...

...

Describing a table

Describing a non-partitioned table.

CALL SYSPROC.ADMIN_CMD(’describe table org show detail’)

The following is an example of output for this CALL statement.

Result set 1

COLNAME TYPESCHEMA TYPENAME FOR_BINARY_DATA ...

-------...- ----------...- --------...- ---------------...- ...

DEPTNUMB SYSIBM SMALLINT N ...

DEPTNAME SYSIBM VARCHAR N ...

MANAGER SYSIBM SMALLINT N ...

DESCRIBE using ADMIN_CMD

60 Administrative SQL Routines and Views

DIVISION SYSIBM VARCHAR N ...

LOCATION SYSIBM VARCHAR N ...

 5 record(s) selected.

Output for this CALL statement (continued).

... LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT

... ------ ----- -------- ----- ---------- -------- -------

... 2 0 N 0 1 0 -

... 14 0 Y 1 0 1208 -

... 2 0 Y 2 0 0 -

... 10 0 Y 3 0 1208 -

... 13 0 Y 4 0 1208 -

Output for this CALL statement (continued).

Result set 2

DATA_PARTITION_KEY_SEQ DATA_PARTITION_EXPRESSION

---------------------- --------------------------

 0 record(s) selected.

Return Status = 0

Describing a partitioned table.

CALL SYSPROC.ADMIN_CMD(’describe table part_table1 show detail’)

The following is an example of output for this CALL statement.

Result set 1

COLNAME TYPESCHEMA TYPENAME FOR_BINARY_DATA ...

-------...- ----------...- -------- --------------- ...

COL1 SYSIBM INTEGER N ...

 1 record(s) selected.

Output for this CALL statement (continued).

... LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT

... ------ ----- -------- ----- ---------- -------- -------

... 4 0 N 0 1 0 -

Output for this CALL statement (continued).

Result set 2

DATA_PARTITION_KEY_SEQ DATA_PARTITION_EXPRESSION

---------------------- --------------------------

 1 COL1

 1 record(s) selected

Describing a table index

The following example shows how to describe a table index.

CALL SYSPROC.ADMIN_CMD(’describe indexes for table t1’)

The following is an example of output for this CALL statement.

Result set 1

INDSCHEMA INDNAME UNIQUE_RULE NUMBER_OF_COLUMNS COLNAMES

DESCRIBE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 61

---------..- ------------------ ------------------ ----------------- -------------

SYSIBM SQL050117181625680 PRIMARY_INDEX 1 +PK

TXU T1_INDEX1 DUPLICATES_ALLOWED 1 +C1

 2 record(s) selected.

 Return Status = 0

Describing a data partition

The following example shows how to describe data partitions.

CALL SYSPROC.ADMIN_CMD(’describe data partitions for table part_table2’)

The following is an example of output for this CALL statement.

Result set 1

DATA_PARTITION_ID LOW_KEY_INCLUSIVE LOW_KEY_VALUE ...

----------------- ----------------- ------------- ...

 0 Y 1 ...

 1 Y 10 ...

 2 Y 20 ...

 3 record(s) selected.

Output for this CALL statement (continued).

... HIGH_KEY_INCLUSIVE HIGH_KEY_VALUE

... ------------------ --------------

... N 10

... N 20

... N 40

The following example shows how to describe data partitions with ’SHOW

DETAIL’ clause.

CALL SYSPROC.ADMIN_CMD(’describe data partitions for table part_table2 show detail’)

The following is an example of output for this CALL statement.

Result set 1

DATA_PARTITION_ID LOW_KEY_INCLUSIVE LOW_KEY_VALUE ...

----------------- ----------------- ------------- ...

 0 Y 1 ...

 1 Y 10 ...

 2 Y 20 ...

 3 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).

... HIGH_KEY_INCLUSIVE HIGH_KEY_VALUE

... ------------------ --------------

... N 10

... N 20

... N 40

Output for this CALL statement (continued).

Result set 2

DESCRIBE using ADMIN_CMD

62 Administrative SQL Routines and Views

DATA_PARTITION_ID DATA_PARTITION_NAME TBSPID ...

----------------- ------------------- ------ ...

 0 PART0 3 ...

 1 PART1 3 ...

 2 PART2 3 ...

 3 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).

... PARTITION_OBJECT_ID LONG_TBSPID ACCESSMODE STATUS

... ------------------- ----------- ----------- ------

... 15 3 FULL_ACCESS

... 16 3 FULL_ACCESS

... 17 3 FULL_ACCESS

 Usage note:

 If the DESCRIBE command tries to create a temporary table and fails, creation of

SYSTOOLSTMPSPACE is attempted, and then creation of the temporary table is

attempted again, this time in SYSTOOLSTMPSPACE. SYSCTRL or SYSADM

authority is required to create the SYSTOOLSTMPSPACE table space.

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the commands return additional information

in result sets as follows:

v Table 24: DESCRIBE select-statement, DESCRIBE call-statement and

DESCRIBE XQUERY XQuery-statement commands

v Table 25 on page 64: Result set 1 for the DESCRIBE TABLE command

v Table 26 on page 65: Result set 2 for the DESCRIBE TABLE command

v Table 27 on page 65: DESCRIBE INDEXES FOR TABLE command

v Table 28 on page 66: Result set 1 for the DESCRIBE DATA PARTITIONS FOR

TABLE command

v Table 29 on page 66: Result set 2 for the DESCRIBE DATA PARTITIONS FOR

TABLE command

 Table 24. Result set returned by the DESCRIBE select-statement, DESCRIBE call-statement

and DESCRIBE XQUERY XQuery-statement commands

Column name Data type LOB only1 Description

SQLTYPE_ID SMALLINT No Data type of the column, as

it appears in the SQLTYPE

field of the SQL descriptor

area (SQLDA).

SQLTYPE VARCHAR

(257)

No Data type corresponding to

the SQLTYPE_ID value.

SQLLEN INTEGER No Length attribute of the

column, as it appears in the

SQLLEN field of the SQLDA.

SQLSCALE SMALLINT No Number of digits in the

fractional part of a decimal

value; 0 in the case of other

data types.

DESCRIBE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 63

Table 24. Result set returned by the DESCRIBE select-statement, DESCRIBE call-statement

and DESCRIBE XQUERY XQuery-statement commands (continued)

Column name Data type LOB only1 Description

SQLNAME_DATA VARCHAR

(128)

No Name of the column.

SQLNAME_LENGTH SMALLINT No Length of the column name.

SQLDATA_TYPESCHEMA VARCHAR

(128)

Yes Data type schema name.

SQLDATA_TYPENAME VARCHAR

(128)

Yes Data type name.

Note:

1: Yes indicates that non-null values are returned only when there is LOB

data being described.

 Table 25. Result set 1 returned by the DESCRIBE TABLE command

Column name Data type Detail2 Description

COLNAME VARCHAR

(128)

No Column name.

TYPESCHEMA VARCHAR

(128)

No If the column name is

distinct, the schema name is

returned, otherwise,

'SYSIBM' is returned.

TYPENAME VARCHAR

(128)

No Name of the column type.

FOR_BINARY_DATA CHAR (1) Yes Returns ’Y’ if the column is

of type CHAR, VARCHAR

or LONG VARCHAR, and is

defined as FOR BIT DATA,

’N’ otherwise.

LENGTH INTEGER No Maximum length of the data.

For DECIMAL data, this

indicates the precision. For

discinct types, 0 is returned.

SCALE SMALLINT No For DECIMAL data, this

indicates the scale. For all

other types, 0 is returned.

NULLABLE CHAR (1) No One of:

v 'Y' if column is nullable

v 'N' if column is not

nullable

COLNO SMALLINT Yes Ordinal of the column.

PARTKEYSEQ SMALLINT Yes Ordinal of the column within

the table's partitioning key.

NULL or 0 is returned if the

column is not part of the

partitioning key, and is

NULL for subtables and

hierarchy tables.

DESCRIBE using ADMIN_CMD

64 Administrative SQL Routines and Views

Table 25. Result set 1 returned by the DESCRIBE TABLE command (continued)

Column name Data type Detail2 Description

CODEPAGE SMALLINT Yes Code page of the column

and is one of:

v Value of the database code

page for columns that are

not defined with FOR BIT

DATA.

v Value of the DBCS code

page for graphic columns.

v 0 otherwise.

DEFAULT VARCHAR

(254)

Yes Default value for the column

of a table expressed as a

constant, special register, or

cast-function appropriate for

the data type of the column.

Might also be NULL.

Note:

2: Yes indicates that non-null values are returned only when the SHOW

DETAIL clause is used.

 Table 26. Result set 2 returned by the DESCRIBE TABLE command when the SHOW

DETAIL clause is used.

Column name Data type Description

DATA_PARTITION_KEY_SEQ INTEGER Data partition key number, for

example, 1 for the first data

partition expression and 2 for the

second data partition expression.

DATA_PARTITION_EXPRESSION CLOB (32K) Expression for this data partition

key in SQL syntax

 Table 27. Result set returned by the DESCRIBE INDEXES FOR TABLE command

Column name Data type Detail2 Description

INDSCHEMA VARCHAR

(128)

No Index schema name.

INDNAME VARCHAR

(128)

No Index name.

UNIQUE_RULE VARCHAR

(30)

No One of:

v DUPLICATES_ALLOWED

v PRIMARY_INDEX

v

UNIQUE_ENTRIES_ONLY

COLCOUNT SMALLINT No Number of columns in the

key, plus the number of

include columns, if any.

COLNAMES VARCHAR

(2048)

Yes List of the column names,

each preceded with a + to

indicate ascending order or a

- to indicate descending

order.

DESCRIBE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 65

Note:

2: Yes indicates that non-null values are returned only when the SHOW

DETAIL clause is used.

 Table 28. Result set 1 returned by the DESCRIBE DATA PARTITIONS FOR TABLE

command

Column name Data type Detail2 Description

DATA_PARTITION_ID INTEGER No Data partition identifier.

LOW_KEY_INCLUSIVE CHAR (1) No 'Y' if the low key value is

inclusive, otherwise, 'N'.

LOW_KEY_VALUE VARCHAR

(512)

No Low key value for this data

partition.

HIGH_KEY_INCLUSIVE CHAR (1) No 'Y' if the high key value is

inclusive, otherwise, 'N'.

HIGH_KEY_VALUE VARCHAR

(512)

No High key value for this data

partition.

Note:

2: Yes indicates that non-null values are returned only when the SHOW

DETAIL clause is used.

 Table 29. Result set 2 returned by the DESCRIBE DATA PARTITIONS FOR TABLE

command when the SHOW DETAIL clause is used.

Column name Data type Description

DATA_PARTITION_ID INTEGER Data partition identifier.

DATA_PARTITION_NAME VARCHAR (128) Data partition name.

TBSPID INTEGER Identifier of the table space where

this data partition is stored.

PARTITION_OBJECT_ID INTEGER Identifier of the DMS object where

this data partition is stored.

LONG_TBSPID INTEGER Identifier of the table space where

long data is stored.

ACCESSMODE VARCHAR (20) Defines accessibility of the data

partition and is one of:

v FULL_ACCESS

v NO_ACCESS

v NO_DATA_MOVEMENT

v READ_ONLY

STATUS VARCHAR(64) Data partition status and can be

one of:

v NEWLY_ATTACHED

v NEWLY_DETACHED: MQT

maintenance is required.

v INDEX_CLEANUP_PENDING:

detached data partition whose

tuple in SYSDATAPARTITIONS

is maintained only for index

cleanup. This tuple is removed

when all index records referring

to the detached data partition

have been deleted.

The column is blank otherwise.

DESCRIBE using ADMIN_CMD

66 Administrative SQL Routines and Views

Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

DESCRIBE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 67

DROP CONTACT command using the ADMIN_CMD procedure

Removes a contact from the list of contacts defined on the local system. A contact

is a user to whom the Scheduler and Health Monitor send messages. The setting of

the Database Administration Server (DAS) contact_host configuration parameter

determines whether the list is local or global.

 Authorization:

 None.

 Required connection:

 Database. The DAS must be running.

 Command syntax:

�� DROP CONTACT name ��

 Command parameters:

CONTACT name

The name of the contact that will be dropped from the local system.

 Example:

 Drop the contact named ’testuser’ from the list of contacts on the server system.

CALL SYSPROC.ADMIN_CMD(’drop contact testuser’)

 Usage notes:

 The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADD CONTACT command using the ADMIN_CMD procedure” on page 44

v “ADD CONTACTGROUP command using the ADMIN_CMD procedure” on

page 46

v “DROP CONTACTGROUP command using the ADMIN_CMD procedure” on

page 69

v “UPDATE CONTACT command using the ADMIN_CMD procedure” on page

164

v “UPDATE CONTACTGROUP command using the ADMIN_CMD procedure” on

page 166

v “db2admin - DB2 administration server command” in Command Reference

v “db2DropContact API - Remove a contact from the list of contacts to whom

notification messages can be sent” in Administrative API Reference

DROP CONTACT using ADMIN_CMD

68 Administrative SQL Routines and Views

DROP CONTACTGROUP command using the ADMIN_CMD

procedure

 Removes a contact group from the list of contacts defined on the local system. A

contact group contains a list of users to whom the Scheduler and Health Monitor

send messages. The setting of the Database Administration Server (DAS)

contact_host configuration parameter determines whether the list is local or global.

 Authorization:

 None.

 Required Connection:

 Database. The DAS must be running.

 Command Syntax:

�� DROP CONTACTGROUP name ��

 Command Parameters:

CONTACTGROUP name

The name of the contact group that will be dropped from the local system.

 Example:

 Drop the contact group named ’gname1’.

CALL SYSPROC.ADMIN_CMD(’drop contactgroup gname1’)

 Usage notes:

 The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADD CONTACT command using the ADMIN_CMD procedure” on page 44

v “ADD CONTACTGROUP command using the ADMIN_CMD procedure” on

page 46

v “DROP CONTACT command using the ADMIN_CMD procedure” on page 68

v “UPDATE CONTACT command using the ADMIN_CMD procedure” on page

164

v “UPDATE CONTACTGROUP command using the ADMIN_CMD procedure” on

page 166

v “db2admin - DB2 administration server command” in Command Reference

v “db2DropContactGroup API - Remove a contact group from the list of contacts

to whom notification messages can be sent” in Administrative API Reference

DROP CONTACTGROUP using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 69

EXPORT command using the ADMIN_CMD procedure

Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables. The data is exported to the

server only.

 Authorization:

 One of the following:

v sysadm

v dbadm

or CONTROL or SELECT privilege on each participating table or view.

 Required connection:

 Database. Utility access to Linux, UNIX, or Windows database servers from Linux,

UNIX, or Windows clients must be a direct connection through the engine and not

through a DB2 Connect gateway or loop back environment.

 Command syntax:

�� EXPORT TO filename OF filetype

�

,

LOBS TO

lob-path

 �

�

�

,

LOBFILE

filename

�

,

XML TO

xml-path

 �

�

�

,

XMLFILE

filename

�

MODIFIED BY

filetype-mod

 �

�
XMLSAVESCHEMA

�

,

METHOD N

(

column-name

)

 �

�
MESSAGES ON SERVER

 �

� select-statement

XQUERY

xquery-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

where-clause

 ��

traversal-order-list:

�

 ,

(

sub-table-name

)

EXPORT using ADMIN_CMD

70 Administrative SQL Routines and Views

Command parameters:

HIERARCHY traversal-order-list

Export a sub-hierarchy using the specified traverse order. All sub-tables

must be listed in PRE-ORDER fashion. The first sub-table name is used as

the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name

Using the default traverse order (OUTER order for ASC, DEL, or WSF files,

or the order stored in PC/IXF data files), export a sub-hierarchy starting

from sub-table-name.

LOBFILE filename

Specifies one or more base file names for the LOB files. When name space

is exhausted for the first name, the second name is used, and so on. The

maximum number of file names that can be specified is 999. This will

implicitly activate the LOBSINFILE behavior.

 When creating LOB files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from lob-path), and then appending a 3-digit sequence

number and the three character identifier lob. For example, if the current

LOB path is the directory /u/foo/lob/path/, and the current LOB file name

is bar, the LOB files created will be /u/foo/lob/path/bar.001.lob,

/u/foo/lob/path/bar.002.lob, and so on.

LOBS TO lob-path

Specifies one or more paths to directories in which the LOB files are to be

stored. The path(s) must exist on the coordinator partition of the server

and must be fully qualified. There will be at least one file per LOB path,

and each file will contain at least one LOB. The maximum number of paths

that can be specified is 999. This will implicitly activate the LOBSINFILE

behavior.

MESSAGES ON SERVER

Specifies that the message file created on the server by the EXPORT

command is to be saved. The result set returned will include the following

two columns: MSG_RETRIEVAL, which is the SQL statement required to

retrieve all the warnings and error messages that occur during this

operation, and MSG_REMOVAL, which is the SQL statement required to

clean up the messages.

 If this clause is not specified, the message file will be deleted when the

ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and

MSG_REMOVAL column in the result set will contain null values.

 Note that with or without the clause, the fenced user ID must have the

authority to create files under the directory indicated by the

DB2_UTIL_MSGPATH registry variable, as well as the directory where the

data is to be exported to.

METHOD N column-name

Specifies one or more column names to be used in the output file. If this

parameter is not specified, the column names in the table are used. This

parameter is valid only for WSF and IXF files, but is not valid when

exporting hierarchical data.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the export

utility.

EXPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 71

OF filetype

Specifies the format of the data in the output file:

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within

the range of type DOUBLE can be exported accurately. Although values

that do not fall within this range are also exported, importing or loading

these values back might result in incorrect data, depending on the

operating system.

v IXF (integrated exchange format, PC version), in which most of the table

attributes, as well as any existing indexes, are saved in the IXF file,

except when columns are specified in the SELECT statement. With this

format, the table can be recreated, while with the other file formats, the

table must already exist before data can be imported into it.

select-statement

Specifies the SELECT or XQUERY statement that will return the data to be

exported. If the statement causes an error, a message is written to the

message file (or to standard output). If the error code is one of SQL0012W,

SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation

continues; otherwise, it stops.

TO filename

Specifies the name of the file to which data is to be exported to on the

server. This must be a fully qualified path and must exist on the server

coordinator partition.

 If the name of a file that already exists is specified, the export utility

overwrites the contents of the file; it does not append the information.

XMLFILE filename

Specifies one or more base file names for the XML files. When name space

is exhausted for the first name, the second name is used, and so on.

 When creating XML files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from xml-path), appending a 3-digit sequence number, and

appending the three character identifier xml. For example, if the current

XML path is the directory /u/foo/xml/path/, and the current XML file

name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path

Specifies one or more paths to directories in which the XML files are to be

stored. There will be at least one file per XML path, and each file will

contain at least one XQuery Data Model (QDM) instance. If more than one

path is specified, then QDM instances are distributed evenly among the

paths.

XMLSAVESCHEMA

Specifies that XML schema information should be saved for all XML

columns. For each exported XML document that was validated against an

XML schema when it was inserted, the fully qualified SQL identifier of that

schema will be stored as an (SCH) attribute inside the corresponding XML

Data Specifier (XDS). If the exported document was not validated against

EXPORT using ADMIN_CMD

72 Administrative SQL Routines and Views

an XML schema or the schema object no longer exists in the database, an

SCH attribute will not be included in the corresponding XDS.

 The schema and name portions of the SQL identifier are stored as the

″OBJECTSCHEMA″ and ″OBJECTNAME″ values in the row of the

SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

 The XMLSAVESCHEMA option is not compatible with XQuery sequences that

do not produce well-formed XML documents.

 Example:

 The following example shows how to export information from the STAFF table in

the SAMPLE database to the file myfile.ixf. The output will be in IXF format. You

must be connected to the SAMPLE database before issuing the command.

CALL SYSPROC.ADMIN_CMD (’EXPORT to /home/user1/data/myfile.ixf

 OF ixf MESSAGES ON SERVER select * from staff’)

 Usage notes:

v Any path used in the EXPORT command must be a valid fully-qualified path on

the server.

v If a table contains LOB columns, at least one fully-qualified LOB path and LOB

name must be specified, using the LOBS TO and LOBFILE clauses.

v The export utility issues a COMMIT statement at the beginning of the operation

which, in the case of Type 2 connections, causes the procedure to return

SQL30090N with reason code 2.

v When exporting from a UCS-2 database to a delimited ASCII (DEL) file, all

character data is converted to the code page that is in effect where the procedure

is executing. Both character string and graphic string data are converted to the

same SBCS or MBCS code page of the server.

v Be sure to complete all table operations and release all locks before starting an

export operation. This can be done by issuing a COMMIT after closing all

cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.

v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.

v The export utility produces a warning message whenever a character column

with a length greater than 254 is selected for export to DEL format files.

v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

v The file copying step is not necessary if the source and the target databases are

both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA® servers such as DB2 for

OS/390®, DB2 for VM and VSE, and DB2 for OS/400®. Only PC/IXF export is

supported.

v The export utility will not create multiple-part PC/IXF files when invoked from

an AIX system.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the

table in an IXF file if the SELECT statement provided is in the form SELECT *

FROM tablename.

EXPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 73

v When exporting typed tables, subselect statements can only be expressed by

specifying the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables

to export. If this list is not specified, all tables in the hierarchy are exported, and

the default order is the OUTER order. The alternative is to use the default order,

which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does

not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials

held by the session authorization id might limit the rows that are exported.

Rows that the session authorization ID does not have read access to will not be

exported. No error or warning is given.

v If the LBAC credentials held by the session authorization id do not allow

reading from one or more protected columns included in the export then the

export fails and an error (SQLSTATE 42512) is returned.

v Export packages are bound using DATETIME ISO format, thus, all

date/time/timestamp values are converted into ISO format when cast to a string

representation. Since the CLP packages are bound using DATETIME LOC format

(locale specific format), you may see inconsistant behaviour between CLP and

export if the CLP DATETIME format is different from ISO. For instance, the

following SELECT statement may return expected results:

 db2 select col2 from tab1 where char(col2)=’05/10/2005’;

 COL2

 05/10/2005

 05/10/2005

 05/10/2005

 3 record(s) selected.

But an export command using the same select clause will not:

 db2 export to test.del of del select col2 from test

 where char(col2)=’05/10/2005’;

 Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected

results:

 db2 export to test.del of del select col2 from test

 where char(col2)=’2005-05-10’;

 Number of rows exported: 3

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information

in result sets as follows:

 Table 30. Result set returned by the EXPORT command

Column name Data type Description

ROWS_EXPORTED BIGINT Total number of exported rows.

EXPORT using ADMIN_CMD

74 Administrative SQL Routines and Views

Table 30. Result set returned by the EXPORT command (continued)

Column name Data type Description

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve

messages created by this utility. For

example:

SELECT SQLCODE, MSG

 FROM TABLE (SYSPROC.ADMIN_GET_MSGS

 ('3203498_txu')) AS MSG

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up

messages created by this utility. For

example:

CALL SYSPROC.ADMIN_REMOVE_MSGS

 ('3203498_txu')

 Related concepts:

v “Privileges, authorities and authorization required to use export” in Data

Movement Utilities Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADMIN_GET_MSGS table function – Retrieve messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” on

page 41

v “ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” on

page 43

v “db2Export API - Export data from a database” in Administrative API Reference

v “Miscellaneous variables” in Performance Guide

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

EXPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 75

FORCE APPLICATION command using the ADMIN_CMD

procedure

Forces local or remote users or applications off the system to allow for

maintenance on a server.

Attention: If an operation that cannot be interrupted (RESTORE DATABASE, for

example) is forced, the operation must be successfully re-executed before the

database becomes available.

 Scope:

 This command affects all database partitions that are listed in the

$HOME/sqllib/db2nodes.cfg file.

In a partitioned database environment, this command does not have to be issued

from the coordinator database partition of the application being forced. It can be

issued from any node (database partition server) in the partitioned database

environment.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database.

 Command syntax:

�� FORCE APPLICATION

�

 ALL

,

(

application-handle

)

MODE ASYNC
 ��

 Command parameters:

APPLICATION

ALL All applications will be disconnected from the database. This might

close the connection the ADMIN_CMD procedure is running on,

which causes an SQL1224N error to be returned for the

ADMIN_CMD procedure once the force operation is completed

successfully.

application-handle

Specifies the agent to be terminated. List the values using the LIST

APPLICATIONS command.

MODE ASYNC

The command does not wait for all specified users to be terminated before

returning; it returns as soon as the function has been successfully issued or

an error (such as invalid syntax) is discovered.

FORCE APPLICATION using ADMIN_CMD

76 Administrative SQL Routines and Views

This is the only mode that is currently supported.

 Examples:

 The following example forces two users, with application-handle values of 41408 and

55458, to disconnect from the database:

CALL SYSPROC.ADMIN_CMD(’force application (41408, 55458)’)

 Usage notes:

 The database manager remains active so that subsequent database manager

operations can be handled without the need for db2start.

To preserve database integrity, only users who are idling or executing interruptible

database operations can be terminated.

Users creating a database cannot be forced.

After a FORCE has been issued, the database will still accept requests to connect.

Additional forces might be required to completely force all users off.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “APPLICATIONS administrative view – Retrieve connected database application

information” on page 280

v “sqlefrce API - Force users and applications off the system” in Administrative API

Reference

v “LIST APPLICATIONS command” in Command Reference

FORCE APPLICATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 77

GET STMM TUNING DBPARTITIONNUM command using the

ADMIN_CMD procedure

Used to read the catalog tables to report the user preferred self tuning memory

manager (STMM) tuning database partition number and current STMM tuning

database partition number.

 Authorization:

 SYSADM or DBADM authority

 Required connection:

 Database

 Command syntax:

�� GET STMM TUNING DBPARTITIONNUM ��

 Example:

 CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

The following is an example of output from this query.

Result set 1

 USER_PREFERRED_NUMBER CURRENT_NUMBER

 --------------------- --------------

 2 2

 1 record(s) selected.

 Return Status = 0

 Usage notes:

 The user preferred self tuning memory manager (STMM) tuning database partition

number (USER_PREFERRED_NUMBER) is set by the user and specifies the

database partition on which the user wishes to run the memory tuner. While the

database is running, the tuning partition is updated asynchronously a few times an

hour. As a result, it is possible that the CURRENT_NUMBER and

USER_PREFERRED_NUMBER returned are not in sync after an update of the user

preferred STMM partition number. To resolve this, either wait for the

CURRENT_NUMBER to be updated asynchronously, or stop and start the database

to force the update of CURRENT_NUMBER.

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information

in the following result set:

GET STMM TUNING DBPARTITIONNUM using ADMIN_CMD

78 Administrative SQL Routines and Views

Table 31. Result set returned by the GET STMM TUNING DBPARTITIONNUM command

Column name Data type Description

USER_PREFERRED_NUMBER INTEGER User preferred self tuning memory

manager (STMM) tuning database

partition number. A value of -1

indicates that the default database

partition is used.

CURRENT_NUMBER INTEGER Current STMM tuning database

partition number. A value of -1

indicates that the default database

partition is used.

 Related concepts:

v “Using self tuning memory in partitioned database environments” in Performance

Guide

v “Self tuning memory” in Performance Guide

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “UPDATE STMM TUNING DBPARTITIONNUM command using the

ADMIN_CMD procedure” on page 178

GET STMM TUNING DBPARTITIONNUM using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 79

IMPORT command using the ADMIN_CMD procedure

Inserts data from an external file with a supported file format into a table,

hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does

not support loading data at the hierarchy level.

 Authorization:

v IMPORT using the INSERT option requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view, or nickname

– INSERT and SELECT privilege on each participating table or view
v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view, or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATIN privilege on the schema, if the schema name of the table refers to

an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space

and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

IMPORT using ADMIN_CMD

80 Administrative SQL Routines and Views

– sysadm

– dbadm

– CONTROL privilege on every sub-table in the hierarchy
v To import data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the import fails and an error (SQLSTATE 42512) is

returned.

v To import data into a table that has protected rows, the session authorization ID

must hold LBAC credentials that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

The label on the row to insert, the user’s LBAC credentials, the security policy

definition, and the LBAC rules determine determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session

authorization ID must have the authority to drop the table.

 Required connection:

 Database. Utility access to Linux, UNIX, or Windows database servers from Linux,

UNIX, or Windows clients must be a direct connection through the engine and not

through a DB2 Connect gateway or loop back environment.

 Command syntax:

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

 �

�

�

MODIFIED BY

filetype-mod

 �

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�

XMLVALIDATE USING

XDS

Ignore

and

Map

parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

 ALLOW NO ACCESS

ALLOW WRITE ACCESS

�

�
COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

WARNINGCOUNT

n

NOTIMEOUT
 �

�
MESSAGES ON SERVER

 �

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 81

�

�

�

 INSERT INTO table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy

description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy

description

AS ROOT TABLE

UNDER

sub-table-name

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

hierarchy description:

 ALL TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

 ,

(

sub-table-name

)

,

(

insert-column

)

traversal-order-list:

�

 ,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX IN

tablespace-name

LONG IN

tablespace-name

 Command parameters:

ALL TABLES

An implicit keyword for hierarchy only. When importing a hierarchy, the

default is to import all tables specified in the traversal order.

ALLOW NO ACCESS

Runs import in the offline mode. An exclusive (X) lock on the target table

IMPORT using ADMIN_CMD

82 Administrative SQL Routines and Views

is acquired before any rows are inserted. This prevents concurrent

applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS

Runs import in the online mode. An intent exclusive (IX) lock on the target

table is acquired when the first row is inserted. This allows concurrent

readers and writers to access table data. Online mode is not compatible

with the REPLACE, CREATE, or REPLACE_CREATE import options.

Online mode is not supported in conjunction with buffered inserts. The

import operation will periodically commit inserted data to prevent lock

escalation to a table lock and to avoid running out of active log space.

These commits will be performed even if the COMMITCOUNT option was

not used. During each commit, import will lose its IX table lock, and will

attempt to reacquire it after the commit. This parameter is required when

you import to a nickname and COMMITCOUNT must be specified with a

valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE

Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n/AUTOMATIC

Performs a COMMIT after every n records are imported. When a number n

is specified, import performs a COMMIT after every n records are

imported. When compound inserts are used, a user-specified commit

frequency of n is rounded up to the first integer multiple of the compound

count value. When AUTOMATIC is specified, import internally determines

when a commit needs to be performed. The utility will commit for either

one of two reasons:

v to avoid running out of active log space

v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the

COMMITCOUNT option is not specified, the import utility will perform

commits as if COMMITCOUNT AUTOMATIC had been specified.

If the IMPORT command encounters an SQL0964C (Transaction Log Full)

while inserting or updating a record and the COMMITCOUNT n is specified,

IMPORT will attempt to resolve the issue by performing an unconditional

commit and then reattempt to insert or update the record. If this does not

help resolve the log full condition (which would be the case when the log

full is attributed to other activity on the database), then the IMPORT

command will fail as expected, however the number of rows committed

may not be a multiple of the COMMITCOUNT n value. The RESTARTCOUNT or

SKIPCOUNT option can be used to avoid processing those row already

committed.

CREATE

Creates the table definition and row contents in the code page of the

database. If the data was exported from a DB2 table, sub-table, or

hierarchy, indexes are created. If this option operates on a hierarchy, and

data was exported from DB2, a type hierarchy will also be created. This

option can only be used with IXF files.

 This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS host database, and it contains

LONGVAR fields whose lengths, calculated on the page size, are less

than 254, CREATE might fail because the rows are too long. See

Using import to recreate an exported table for a list of restrictions.

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 83

In this case, the table should be created manually, and IMPORT with

INSERT should be invoked, or, alternatively, the LOAD command

should be used.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The schema specified through the DEFAULT clause identifies a schema to

use for validation when the XML Data Specifier (XDS) of an imported

XML document does not contain an SCH attribute identifying an XML

Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

FROM filename

Specifies the name of the file that contains the data to be imported. This

must be a fully qualified path and the file must exist on the database

server.

HIERARCHY

Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The IGNORE clause specifies a list of one or more schemas to ignore if

they are identified by an SCH attribute. If an SCH attribute exists in the

XML Data Specifier for an imported XML document, and the schema

identified by the SCH attribute is included in the list of schemas to

IGNORE, then no schema validation will occur for the imported XML

document.

 If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

 The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

IN tablespace-name

Identifies the table space in which the table will be created. The table space

must exist, and must be a REGULAR table space. If no other table space is

specified, all table parts are stored in this table space. If this clause is not

specified, the table is created in a table space created by the authorization

ID. If none is found, the table is placed into the default table space

USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name

Identifies the table space in which any indexes on the table will be created.

This option is allowed only when the primary table space specified in the

IN clause is a DMS table space. The specified table space must exist, and

must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done

when the table is created.

insert-column

Specifies the name of a column in the table or the view into which data is

to be inserted.

IMPORT using ADMIN_CMD

84 Administrative SQL Routines and Views

INSERT

Adds the imported data to the table without changing the existing table

data.

INSERT_UPDATE

Adds rows of imported data to the target table, or updates existing rows

(of the target table) with matching primary keys.

INTO table-name

Specifies the database table into which the data is to be imported. This

table cannot be a system table, a declared temporary table or a summary

table.

 One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except

in the case of a down-level server, when the fully qualified or the

unqualified table name should be used. A qualified table name is in the

form: schema.tablename. The schema is the user name under which the table

was created.

LOBS FROM lob-path

Specifies one or more fully qualified paths that store LOB files. The paths

must exist on the database server coordinator partition. The names of the

LOB data files are stored in the main data file (ASC, DEL, or IXF), in the

column that will be loaded into the LOB column. The maximum number of

paths that can be specified is 999. This will implicitly activate the

LOBSINFILE behaviour.

 This parameter is not valid when you import to a nickname.

LONG IN tablespace-name

Identifies the table space in which the values of any long columns (LONG

VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with

any of these as source types) will be stored. This option is allowed only if

the primary table space specified in the IN clause is a DMS table space.

The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is specified.

Use the MAP clause to specify alternate schemas to use in place of those

specified by the SCH attribute of an XML Data Specifier (XDS) for each

imported XML document. The MAP clause specifies a list of one or more

schema pairs, where each pair represents a mapping of one schema to

another. The first schema in the pair represents a schema that is referred to

by an SCH attribute in an XDS. The second schema in the pair represents

the schema that should be used to perform schema validation.

 If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

 Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

 A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

MESSAGES ON SERVER

Specifies that the message file created on the server by the IMPORT

command is to be saved. The result set returned will include the following

two columns: MSG_RETRIEVAL, which is the SQL statement required to

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 85

retrieve all the warnings and error messages that occur during this

operation, and MSG_REMOVAL, which is the SQL statement required to

clean up the messages.

 If this clause is not specified, the message file will be deleted when the

ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and

MSG_REMOVAL column in the result set will contain null values.

 Note that with or without the clause, the fenced user ID must have the

authority to create files under the directory indicated by the

DB2_UTIL_MSGPATH registry variable, as well as the directory where the

data is to be exported to.

METHOD

L Specifies the start and end column numbers from which to import

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the

only valid option for that file type.

N Specifies the names of the columns to be imported.

Note: This method can only be used with IXF files.

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is

the only valid option for the DEL file type.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the import

utility.

NOTIMEOUT

Specifies that the import utility will not time out while waiting for locks.

This option supersedes the locktimeout database configuration parameter.

Other applications are not affected.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L parameter is specified.

That is, the input file is an ASC file. The null indicator list is a

comma-separated list of positive integers specifying the column number of

each null indicator field. The column number is the byte offset of the null

indicator field from the beginning of a row of data. There must be one

entry in the null indicator list for each data field defined in the METHOD

L parameter. A column number of zero indicates that the corresponding

data field always contains data.

 A value of Y in the NULL indicator column specifies that the column data

is NULL. Any character other than Y in the NULL indicator column

specifies that the column data is not NULL, and that column data specified

by the METHOD L option will be imported.

 The NULL indicator character can be changed using the MODIFIED BY

option, with the nullindchar file type modifier.

OF filetype

Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)

IMPORT using ADMIN_CMD

86 Administrative SQL Routines and Views

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony
v IXF (integrated exchange format, PC version), which means it was

exported from the same or another DB2 table. An IXF file also contains

the table definition and definitions of any existing indexes, except when

columns are specified in the SELECT statement.

Th WSF file type is not supported when you import to a nickname.

REPLACE

Deletes all existing data from the table by truncating the data object, and

inserts the imported data. The table definition and the index definitions are

not changed. This option can only be used if the table exists. If this option

is used when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

 This option does not honour the CREATE TABLE statement’s NOT

LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement’s

ACTIVE NOT LOGGED INITIALLY clause.

 If an import with the REPLACE option is performed within the same

transaction as a CREATE TABLE or ALTER TABLE statement where the

NLI clause is invoked, the import will not honor the NLI clause. All inserts

will be logged.

Workaround 1

Delete the contents of the table using the DELETE statement, then

invoke the import with INSERT statement

Workaround 2

Drop the table and recreate it, then invoke the import with INSERT

statement.

This limitation applies to DB2 UDB Version 7 and DB2 UDB Version 8

REPLACE_CREATE

If the table exists, deletes all existing data from the table by truncating the

data object, and inserts the imported data without changing the table

definition or the index definitions.

 If the table does not exist, creates the table and index definitions, as well as

the row contents, in the code page of the database. See Using import to

recreate an exported table for a list of restrictions.

 This option can only be used with IXF files. If this option is used when

moving data between hierarchies, only the data for an entire hierarchy, not

individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

RESTARTCOUNT n

Specifies that an import operation is to be started at record n + 1. The first

n records are skipped. This option is functionally equivalent to

SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually exclusive.

ROWCOUNT n

Specifies the number n of physical records in the file to be imported

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 87

(inserted or updated). Allows a user to import only n rows from a file,

starting from the record determined by the SKIPCOUNT or

RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT

options are not specified, the first n rows are imported. If SKIPCOUNT m

or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When

compound inserts are used, user specified rowcount n is rounded up to the

first integer multiple of the compound count value.

SKIPCOUNT n

Specifies that an import operation is to be started at record n + 1. The first

n records are skipped. This option is functionally equivalent to

RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually

exclusive.

STARTING sub-table-name

A keyword for hierarchy only, requesting the default order, starting from

sub-table-name. For PC/IXF files, the default order is the order stored in the

input file. The default order is the only valid order for the PC/IXF file

format.

sub-table-list

For typed tables with the INSERT or the INSERT_UPDATE option, a list of

sub-table names is used to indicate the sub-tables into which data is to be

imported.

traversal-order-list

For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE

option, a list of sub-table names is used to indicate the traversal order of

the importing sub-tables in the hierarchy.

UNDER sub-table-name

Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n

Stops the import operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the import file or the target table is specified

incorrectly, the import utility will generate a warning for each row that it

attempts to import, which will cause the import to fail. If n is zero, or this

option is not specified, the import operation will continue regardless of the

number of warnings issued.

XML FROM xml-path

Specifies one or more paths that contain the XML files.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behaviour for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

IMPORT using ADMIN_CMD

88 Administrative SQL Routines and Views

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation attribute is not found in the XML document, no

validation will occur. When the USING SCHEMALOCATION

HINTS clause is specified, the SCH attribute of the XML Data

Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

 Example:

 The following example shows how to import information from the file myfile.ixf

to the STAFF table in the SAMPLE database.

CALL SYSPROC.AMDIN_CMD

 (’IMPORT FROM /home/userid/data/myfile.ixf

 OF IXF MESSAGES ON SERVER INSERT INTO STAFF’)

 Usage notes:

 Any path used in the IMPORT command must be a valid fully-qualified path on

the coordinator node for the server.

If the ALLOW WRITE ACCESS or COMMITCOUNT options are specified, a

commit will be performed by the import utility. This causes the ADMIN_CMD

procedure to return an SQL30090N error with reason code 1 in the case of Type 2

connections.

If the value to be assigned for a column of a result set from the ADMIN_CMD

procedure is greater than the maximum value for the data type of the column, then

the maximum value for the data type is assigned and a warning message,

SQL1155W, is returned.

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 89

Be sure to complete all table operations and release all locks before starting an

import operation. This can be done by issuing a COMMIT after closing all cursors

opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the RESTARTCOUNT parameter set to the number of rows

successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT

parameter is not zero. If automatic COMMITs are not performed, a full log results

in a ROLLBACK.

Offline import does not perform automatic COMMITs if any of the following

conditions is true:

v the target is a view, not a table

v compound inserts are used

v buffered inserts are used

By default, online import performs automatic COMMITs to free both the active log

space and the lock list. Automatic COMMITs are not performed only if a

COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

IMPORT using ADMIN_CMD

90 Administrative SQL Routines and Views

One cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when creating

tables from PC/IXF files. (Primary key definitions are preserved if the data was

previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60KB), the message file returned to the user on the

client might be missing messages from the middle of the import operation. The

first 30KB of message information and the last 30KB of message information are

always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on

a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand. The file copying step is not necessary if the

source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

for a regular application. If the two differ, and the FORCEIN option is specified,

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX

operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,

import of PC/IXF data files might cause DB2 to return an error, because the

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 91

maximum size of an SQL statement was exceeded. This situation can occur only if

the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not

apply to import of DEL or ASC files. If PC/IXF files are being used to create a new

table, an alternative is use db2look to dump the DDL statement that created the

table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT

option) is supported. The RESTARTCOUNT parameter, but not the

COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF

file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, or a

summary table.

Views cannot be created through the import utility.

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you

import the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for delimiters

by specifying the delprioritychar file type modifier in the IMPORT command.

 Federated considerations:

 When using the IMPORT command and the INSERT, UPDATE, or

INSERT_UPDATE command parameters, you must ensure that you have

CONTROL privilege on the participating nickname. You must ensure that the

nickname you wish to use when doing an import operation already exists. There

are also several restrictions you should be aware of as shown in the IMPORT

command parameters section.

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information

in result sets as follows:

 Table 32. Result set returned by the IMPORT command

Column name Data type Description

ROWS_READ BIGINT Number of records read from the file during

import.

IMPORT using ADMIN_CMD

92 Administrative SQL Routines and Views

Table 32. Result set returned by the IMPORT command (continued)

Column name Data type Description

ROWS_SKIPPED BIGINT Number of records skipped before inserting

or updating begins.

ROWS_INSERTED BIGINT Number of rows inserted into the target

table.

ROWS_UPDATED BIGINT Number of rows in the target table updated

with information from the imported records

(records whose primary key value already

exists in the table).

ROWS_REJECTED BIGINT Number of records that could not be

imported.

ROWS_COMMITTED BIGINT Number of records imported successfully

and committed to the database.

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve

messages created by this utility. For

example:

SELECT SQLCODE, MSG

 FROM TABLE (SYSPROC.ADMIN_GET_MSGS

 ('1203498_txu')) AS MSG

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up

messages created by this utility. For

example:

CALL SYSPROC.ADMIN_REMOVE_MSGS

 ('1203498_txu')

 Related concepts:

v “Privileges, authorities, and authorization required to use import” in Data

Movement Utilities Guide and Reference

 Related tasks:

v “Importing data” in Data Movement Utilities Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADMIN_GET_MSGS table function – Retrieve messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” on

page 41

v “ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” on

page 43

v “db2Import API - Import data into a table, hierarchy, nickname or view” in

Administrative API Reference

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

IMPORT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 93

INITIALIZE TAPE command using the ADMIN_CMD procedure

Initializes tapes for backup and restore operations to streaming tape devices. This

command is only supported on Windows operating systems.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database.

 Command syntax:

�� INITIALIZE TAPE

ON

device

USING

blksize
 ��

 Command parameters:

ON device

Specifies a valid tape device name. The default value is \\.\TAPE0. The

device specified must be relative to the server.

USING blksize

Specifies the block size for the device, in bytes. The device is initialized to

use the block size specified, if the value is within the supported range of

block sizes for the device.

 The buffer size specified for the BACKUP DATABASE command and for

RESTORE DATABASE must be divisible by the block size specified here.

 If a value for this parameter is not specified, the device is initialized to use

its default block size. If a value of zero is specified, the device is initialized

to use a variable length block size; if the device does not support variable

length block mode, an error is returned.

 When backing up to tape, use of a variable block size is currently not

supported. If you must use this option, ensure that you have well tested

procedures in place that enable you to recover successfully, using backup

images that were created with a variable block size.

 When using a variable block size, you must specify a backup buffer size

that is less than or equal to the maximum limit for the tape devices that

you are using. For optimal performance, the buffer size must be equal to

the maximum block size limit of the device being used.

 Example:

 Initialize the tape device to use a block size of 2048 bytes, if the value is within the

supported range of block sizes for the device.

CALL SYSPROC.ADMIN_CMD(’initialize tape using 2048’)

 Usage note:

INITIALIZE TAPE using ADMIN_CMD

94 Administrative SQL Routines and Views

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “REWIND TAPE command using the ADMIN_CMD procedure” on page 143

v “SET TAPE POSITION command using the ADMIN_CMD procedure” on page

156

v “BACKUP DATABASE command” in Command Reference

v “RESTORE DATABASE command” in Command Reference

v “BACKUP DATABASE command using the ADMIN_CMD procedure” on page

53

INITIALIZE TAPE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 95

LOAD command using the ADMIN_CMD procedure

 Loads data into a DB2 table. Data residing on the server can be in the form of a

file, tape, or named pipe. Data can also be loaded from a cursor defined from a

query running against the currently connected database or a different database

under the same instance, or by using a user-written script or application. If the

COMPRESS attribute for the table is set to YES, the data loaded will be subject to

compression on every data and database partition for which a dictionary already

exists in the table.

 Restrictions:

 The load utility does not support loading data at the hierarchy level. The load

utility is not compatible with range-clustered tables.

 Scope:

 This command can be issued against multiple database partitions in a single

request.

 Authorization:

 One of the following:

v sysadm

v dbadm

v load authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.
v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is

returned.

v To load data into a table that has protected rows, the session authorization id

must hold a security label that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access or for all access

If the session authorization id does not hold such a security label then the load

fails and an error (SQLSTATE 5U014) is returned. This security label is used to

protect a loaded row if the session authorization ID's LBAC credentials do not

allow it to write to the security label that protects that row in the data. This does

not happen, however, when the security policy protecting the table was created

with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of

the CREATE SECURITY POLICY statement. In this case the load fails and an

error (SQLSTATE 42519) is returned.

v If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

LOAD using ADMIN_CMD

96 Administrative SQL Routines and Views

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

 Required connection:

 Database.

Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

 Command syntax:

��

LOAD

FROM

�

 ,

filename

pipename

device

(

query-statement

)

(

DATABASE

database-alias

query-statement

)

OF

filetype

�

,

LOBS FROM

lob-path

�

MODIFIED BY

filetype-mod

�

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

SAVECOUNT

n

ROWCOUNT

n
 �

�
WARNINGCOUNT

n

MESSAGES ON SERVER

TEMPFILES PATH

temp-pathname
 INSERT

REPLACE

RESTART

TERMINATE

�

 INTO table-name

,

(

insert-column

)

 �

�

�

,

(1)

(2)

FOR EXCEPTION

table-name

NORANGEEXC

NOUNIQUEEXC

STATISTICS

USE PROFILE

NO

 �

�

�

NO

COPY

YES

USE TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

 WITHOUT PROMPTING

DATA BUFFER

buffer-size

�

�
SORT BUFFER

buffer-size

CPU_PARALLELISM

n

DISK_PARALLELISM

n

YES

FETCH_PARALLELISM

NO

INDEXING MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

 �

�
 ALLOW NO ACCESS

ALLOW READ ACCESS

USE

tablespace-name

SET INTEGRITY PENDING CASCADE

IMMEDIATE

DEFERRED

LOCK WITH FORCE

�

�
SOURCEUSEREXIT

executable

REDIRECT

INPUT FROM

BUFFER

input-buffer

PARALLELIZE

FILE

input-file

OUTPUT TO FILE

output-file

OUTPUT TO FILE

output-file

 �

�

�

PARTITIONED DB CONFIG

partitioned-db-option

 ��

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 97

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

 Command parameters:

FROM filename/pipename/device/(query-statement)/(DATABASE database-alias

query-statement)

Specifies the file, pipe or device referring to an SQL statement that contains

the data being loaded, or the SQL statement itself and the optional source

database to load from cursor.

 The query-statement option is used to LOAD from a cursor. It contains only

one query statement, which is enclosed in parentheses, and can start with

VALUES, SELECT or WITH. For example,

LOAD FROM (SELECT * FROM T1) OF CURSOR INSERT INTO T2

When the DATABASE database-alias clause is included prior to the query

statement in the parentheses, the LOAD command will attempt to load the

data using the query-statement from the given database as indicated by the

database-alias name, which is defined on the server. It must point to a

database exist on the server, and is a different database that the application

is currently connected to. Note that the LOAD will be executed using the

user ID and password explicitly provided for the currently connected

database (an implicit connection will cause the LOAD to fail).

 If the input source is a file, pipe, or device, it must be accessible from the

coordinator partition on the server.

 If several names are specified, they will be processed in sequence. If the

last item specified is a tape device and the user is prompted for a tape, the

LOAD will fail and the ADMIN_CMD procedure will return an error.

Notes:

1. A fully qualified path file name must be used and must exist on the

server.

2. If data is exported into a file using the EXPORT command using the

ADMIN_CMD procedure, the data file is owned by the fenced user ID.

This file is not usually accessible by the instance owner. To run the

LOAD from CLP or the ADMIN_CMD procedure, the data file must be

accessible by the instance owner ID, so read access to the data file must

be granted to the instance owner.

3. Loading data from multiple IXF files is supported if the files are

physically separate, but logically one file. It is not supported if the files

are both logically and physically separate. (Multiple physical files

would be considered logically one if they were all created with one

invocation of the EXPORT command.)

OF filetype

Specifies the format of the data:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format)

v IXF (integrated exchange format, PC version), exported from the same or

from another DB2 table

v CURSOR (a cursor declared against a SELECT or VALUES statement).

LOAD using ADMIN_CMD

98 Administrative SQL Routines and Views

LOBS FROM lob-path

The path to the data files containing LOB values to be loaded. The path

must end with a slash (/). The path must be fully qualified and accessible

from the coordinator partition on the server . The names of the LOB data

files are stored in the main data file (ASC, DEL, or IXF), in the column that

will be loaded into the LOB column. The maximum number of paths that

can be specified is 999. This will implicitly activate the LOBSINFILE

behaviour.

 This option is ignored when specified in conjunction with the CURSOR

filetype.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the load

utility.

METHOD

L Specifies the start and end column numbers from which to load

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1. This method can only

be used with ASC files, and is the only valid method for that file

type.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L

parameter is specified; that is, the input file is an ASC file).

The null indicator list is a comma-separated list of positive

integers specifying the column number of each null

indicator field. The column number is the byte offset of the

null indicator field from the beginning of a row of data.

There must be one entry in the null indicator list for each

data field defined in the METHOD L parameter. A column

number of zero indicates that the corresponding data field

always contains data.

 A value of Y in the NULL indicator column specifies that

the column data is NULL. Any character other than Y in

the NULL indicator column specifies that the column data

is not NULL, and that column data specified by the

METHOD L option will be loaded.

 The NULL indicator character can be changed using the

MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid. This method can

only be used with file types IXF or CURSOR.

P Specifies the field numbers (numbered from 1) of the input data

fields to be loaded. Each table column that is not nullable should

have a corresponding entry in the METHOD P list. For example,

given data fields F1, F2, F3, F4, F5, and F6, and table columns C1

INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 99

P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not

valid. This method can only be used with file types IXF, DEL, or

CURSOR, and is the only valid method for the DEL file type.

SAVECOUNT n

Specifies that the load utility is to establish consistency points after every n

rows. This value is converted to a page count, and rounded up to intervals

of the extent size. Since a message is issued at each consistency point, this

option should be selected if the load operation will be monitored using

LOAD QUERY. If the value of n is not sufficiently high, the

synchronization of activities performed at each consistency point will

impact performance.

 The default value is zero, meaning that no consistency points will be

established, unless necessary.

 This option is ignored when specified in conjunction with the CURSOR

filetype.

ROWCOUNT n

Specifies the number of n physical records in the file to be loaded. Allows

a user to load only the first n rows in a file.

WARNINGCOUNT n

Stops the load operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the load file or the target table is specified

incorrectly, the load utility will generate a warning for each row that it

attempts to load, which will cause the load to fail. If n is zero, or this

option is not specified, the load operation will continue regardless of the

number of warnings issued. If the load operation is stopped because the

threshold of warnings was encountered, another load operation can be

started in RESTART mode. The load operation will automatically continue

from the last consistency point. Alternatively, another load operation can

be initiated in REPLACE mode, starting at the beginning of the input file.

MESSAGES ON SERVER

Specifies that the message file created on the server by the LOAD

command is to be saved. The result set returned will include the following

two columns: MSG_RETRIEVAL, which is the SQL statement required to

retrieve all the warnings and error messages that occur during this

operation, and MSG_REMOVAL, which is the SQL statement required to

clean up the messages.

 If this clause is not specified, the message file will be deleted when the

ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and

MSG_REMOVAL column in the result set will contain null values.

 Note that with or without the clause, the fenced user ID must have the

authority to create files under the directory indicated by the

DB2_UTIL_MSGPATH registry variable.

TEMPFILES PATH temp-pathname

Specifies the name of the path to be used when creating temporary files

during a load operation, and should be fully qualified according to the

server database partition.

 Temporary files take up file system space. Sometimes, this space

requirement is quite substantial. Following is an estimate of how much file

system space should be allocated for all temporary files:

v 136 bytes for each message that the load utility generates

LOAD using ADMIN_CMD

100 Administrative SQL Routines and Views

v 15KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and

there is a large amount of long field or LOB data already in the table.

INSERT

One of four modes under which the load utility can execute. Adds the

loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all

existing data from the table, and inserts the loaded data. The table

definition and index definitions are not changed. If this option is used

when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

RESTART

One of four modes under which the load utility can execute. Restarts a

previously interrupted load operation. The load operation will

automatically continue from the last consistency point in the load, build, or

delete phase.

TERMINATE

One of four modes under which the load utility can execute. Terminates a

previously interrupted load operation, and rolls back the operation to the

point in time at which it started, even if consistency points were passed.

The states of any table spaces involved in the operation return to normal,

and all table objects are made consistent (index objects might be marked as

invalid, in which case index rebuild will automatically take place at next

access). If the load operation being terminated is a load REPLACE, the

table will be truncated to an empty table after the load TERMINATE

operation. If the load operation being terminated is a load INSERT, the

table will retain all of its original records after the load TERMINATE

operation.

 The load terminate option will not remove a backup pending state from

table spaces.

INTO table-name

Specifies the database table into which the data is to be loaded. This table

cannot be a system table or a declared temporary table. An alias, or the

fully qualified or unqualified table name can be specified. A qualified table

name is in the form schema.tablename. If an unqualified table name is

specified, the table will be qualified with the CURRENT SCHEMA.

insert-column

Specifies the table column into which the data is to be inserted.

 The load utility cannot parse columns whose names contain one or more

spaces. For example,

 CALL SYSPROC.ADMIN_CMD(’load from delfile1 of del noheader

 method P (1, 2, 3, 4, 5, 6, 7, 8, 9)

 insert into table1 (BLOB1, S2, I3, Int 4, I5, I6, DT7, I8, TM9)')

will fail because of the Int 4 column. The solution is to enclose such

column names with double quotation marks:

 CALL SYSPROC.ADMIN_CMD(’load from delfile1 of del noheader

 method P (1, 2, 3, 4, 5, 6, 7, 8, 9)

 insert into table1 (BLOB1, S2, I3, "Int 4", I5, I6, DT7, I8, TM9)')

FOR EXCEPTION table-name

Specifies the exception table into which rows in error will be copied. Any

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 101

row that is in violation of a unique index or a primary key index is copied.

If an unqualified table name is specified, the table will be qualified with

the CURRENT SCHEMA.

 Information that is written to the exception table is not written to the

dump file. In a partitioned database environment, an exception table must

be defined for those database partitions on which the loading table is

defined. The dump file, on the other hand, contains rows that cannot be

loaded because they are invalid or have syntax errors.

NORANGEEXC

Indicates that if a row is rejected because of a range violation it will not be

inserted into the exception table.

NOUNIQUEEXC

Indicates that if a row is rejected because it violates a unique constraint it

will not be inserted into the exception table.

STATISTICS USE PROFILE

Instructs load to collect statistics during the load according to the profile

defined for this table. This profile must be created before load is executed.

The profile is created by the RUNSTATS command. If the profile does not

exist and load is instructed to collect statistics according to the profile, a

warning is returned and no statistics are collected.

STATISTICS NO

Specifies that no statistics are to be collected, and that the statistics in the

catalogs are not to be altered. This is the default.

COPY NO

Specifies that the table space in which the table resides will be placed in

backup pending state if forward recovery is enabled (that is, logretain or

userexit is on). The COPY NO option will also put the table space state into

the Load in Progress table space state. This is a transient state that will

disappear when the load completes or aborts. The data in any table in the

table space cannot be updated or deleted until a table space backup or a

full database backup is made. However, it is possible to access the data in

any table by using the SELECT statement.

 LOAD with COPY NO on a recoverable database leaves the table spaces in

a backup pending state. For example, performing a LOAD with COPY NO

and INDEXING MODE DEFERRED will leave indexes needing a refresh.

Certain queries on the table might require an index scan and will not

succeed until the indexes are refreshed. The index cannot be refreshed if it

resides in a table space which is in the backup pending state. In that case,

access to the table will not be allowed until a backup is taken. Index

refresh is done automatically by the database when the index is accessed

by a query.

COPY YES

Specifies that a copy of the loaded data will be saved. This option is

invalid if forward recovery is disabled (both logretain and userexit are off).

USE TSM

Specifies that the copy will be stored using Tivoli Storage Manager

(TSM).

OPEN num-sess SESSIONS

The number of I/O sessions to be used with TSM or the vendor

product. The default value is 1.

LOAD using ADMIN_CMD

102 Administrative SQL Routines and Views

TO device/directory

Specifies the device or directory on which the copy image will be

created.

LOAD lib-name

The name of the shared library (DLL on Windows operating

systems) containing the vendor backup and restore I/O functions

to be used. It can contain the full path. If the full path is not given,

it will default to the path where the user exit programs reside.

NONRECOVERABLE

Specifies that the load transaction is to be marked as non-recoverable and

that it will not be possible to recover it by a subsequent roll forward

action. The roll forward utility will skip the transaction and will mark the

table into which data was being loaded as "invalid". The utility will also

ignore any subsequent transactions against that table. After the roll

forward operation is completed, such a table can only be dropped or

restored from a backup (full or table space) taken after a commit point

following the completion of the non-recoverable load operation.

 With this option, table spaces are not put in backup pending state

following the load operation, and a copy of the loaded data does not have

to be made during the load operation.

WITHOUT PROMPTING

Specifies that the list of data files contains all the files that are to be

loaded, and that the devices or directories listed are sufficient for the entire

load operation. If a continuation input file is not found, or the copy targets

are filled before the load operation finishes, the load operation will fail,

and the table will remain in load pending state.

 This is the default. Any actions which normally require user intervention

will return an error message.

DATA BUFFER buffer-size

Specifies the number of 4KB pages (regardless of the degree of parallelism)

to use as buffered space for transferring data within the utility. If the value

specified is less than the algorithmic minimum, the minimum required

resource is used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

 If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

SORT BUFFER buffer-size

This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the INDEXING MODE

parameter is not specified as DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory that is used when loading tables with many

indexes without changing the value of SORTHEAP, which would also

affect general query processing.

CPU_PARALLELISM n

Specifies the number of processes or threads that the load utility will

spawn for parsing, converting, and formatting records when building table

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 103

objects. This parameter is designed to exploit intra-partition parallelism. It

is particularly useful when loading presorted data, because record order in

the source data is preserved. If the value of this parameter is zero, or has

not been specified, the load utility uses an intelligent default value (usually

based on the number of CPUs available) at run time.

Notes:

1. If this parameter is used with tables containing either LOB or LONG

VARCHAR fields, its value becomes one, regardless of the number of

system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the

loader to perform many more I/O operations to flush both data and

table metadata. When CPU_PARALLELISM is greater than one, the

flushing operations are asynchronous, permitting the loader to exploit

the CPU. When CPU_PARALLELISM is set to one, the loader waits on

I/O during consistency points. A load operation with

CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,

completes faster than the same operation with CPU_PARALLELISM set

to one, even though there is only one CPU.

DISK_PARALLELISM n

Specifies the number of processes or threads that the load utility will

spawn for writing data to the table space containers. If a value is not

specified, the utility selects an intelligent default based on the number of

table space containers and the characteristics of the table.

FETCH_PARALLELISM YES/NO

When performing a load from a cursor where the cursor is declared using

the DATABASE keyword, or when using the API sqlu_remotefetch_entry

media entry, and this option is set to YES, the load utility attempts to

parallelize fetching from the remote data source if possible. If set to NO, no

parallel fetching is performed. The default value is YES. For more

information, see Moving data using the CURSOR file type.

INDEXING MODE

Specifies whether the load utility is to rebuild indexes or to extend them

incrementally. Valid values are:

AUTOSELECT

The load utility will automatically decide between REBUILD or

INCREMENTAL mode. The decision is based on the amount of

data being loaded and the depth of the index tree. Information

relating to the depth of the index tree is stored in the index object.

RUNSTATS is not required to populate this information.

AUTOSELECT is the default indexing mode.

REBUILD

All indexes will be rebuilt. The utility must have sufficient

resources to sort all index key parts for both old and appended

table data.

INCREMENTAL

Indexes will be extended with new data. This approach consumes

index free space. It only requires enough sort space to append

index keys for the inserted records. This method is only supported

in cases where the index object is valid and accessible at the start

of a load operation (it is, for example, not valid immediately

following a load operation in which the DEFERRED mode was

specified). If this mode is specified, but not supported due to the

LOAD using ADMIN_CMD

104 Administrative SQL Routines and Views

state of the index, a warning is returned, and the load operation

continues in REBUILD mode. Similarly, if a load restart operation

is begun in the load build phase, INCREMENTAL mode is not

supported.

 Incremental indexing is not supported when all of the following

conditions are true:

v The LOAD COPY option is specified (logarchmeth1 with the

USEREXIT or LOGRETAIN option).

v The table resides in a DMS table space.

v The index object resides in a table space that is shared by other

table objects belonging to the table being loaded.

To bypass this restriction, it is recommended that indexes be placed

in a separate table space.

DEFERRED

The load utility will not attempt index creation if this mode is

specified. Indexes will be marked as needing a refresh. The first

access to such indexes that is unrelated to a load operation might

force a rebuild, or indexes might be rebuilt when the database is

restarted. This approach requires enough sort space for all key

parts for the largest index. The total time subsequently taken for

index construction is longer than that required in REBUILD mode.

Therefore, when performing multiple load operations with deferred

indexing, it is advisable (from a performance viewpoint) to let the

last load operation in the sequence perform an index rebuild,

rather than allow indexes to be rebuilt at first non-load access.

 Deferred indexing is only supported for tables with non-unique

indexes, so that duplicate keys inserted during the load phase are

not persistent after the load operation.

ALLOW NO ACCESS

Load will lock the target table for exclusive access during the load. The

table state will be set to Load In Progress during the load. ALLOW NO

ACCESS is the default behavior. It is the only valid option for LOAD

REPLACE.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress. The SET INTEGRITY

statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS

Load will lock the target table in a share mode. The table state will be set

to both Load In Progress and Read Access. Readers can access the

non-delta portion of the data while the table is being load. In other words,

data that existed before the start of the load will be accessible by readers to

the table, data that is being loaded is not available until the load is

complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ

ACCESS load can use this option; LOAD TERMINATE or LOAD RESTART

of an ALLOW NO ACCESS load cannot use this option. Furthermore, this

option is not valid if the indexes on the target table are marked as

requiring a rebuild.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress, and Read Access. At the end

of the load, the table state Load In Progress will be removed but the table

states Set Integrity Pending and Read Access will remain. The SET

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 105

INTEGRITY statement must be used to take the table out of Set Integrity

Pending. While the table is in Set Integrity Pending and Read Access

states, the non-delta portion of the data is still accessible to readers, the

new (delta) portion of the data will remain inaccessible until the SET

INTEGRITY statement has completed. A user can perform multiple loads

on the same table without issuing a SET INTEGRITY statement. Only the

original (checked) data will remain visible, however, until the SET

INTEGRITY statement is issued.

 ALLOW READ ACCESS also supports the following modifiers:

USE tablespace-name

If the indexes are being rebuilt, a shadow copy of the index is built

in table space tablespace-name and copied over to the original table

space at the end of the load during an INDEX COPY PHASE. Only

system temporary table spaces can be used with this option. If not

specified then the shadow index will be created in the same table

space as the index object. If the shadow copy is created in the same

table space as the index object, the copy of the shadow index object

over the old index object is instantaneous. If the shadow copy is in

a different table space from the index object a physical copy is

performed. This could involve considerable I/O and time. The

copy happens while the table is offline at the end of a load during

the INDEX COPY PHASE.

 Without this option the shadow index is built in the same table

space as the original. Since both the original index and shadow

index by default reside in the same table space simultaneously,

there might be insufficient space to hold both indexes within one

table space. Using this option ensures that you retain enough table

space for the indexes.

 This option is ignored if the user does not specify INDEXING

MODE REBUILD or INDEXING MODE AUTOSELECT. This option

will also be ignored if INDEXING MODE AUTOSELECT is chosen

and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE

If LOAD puts the table into Set Integrity Pending state, the SET

INTEGRITY PENDING CASCADE option allows the user to specify

whether or not Set Integrity Pending state of the loaded table is

immediately cascaded to all descendents (including descendent foreign key

tables, descendent immediate materialized query tables and descendent

immediate staging tables).

IMMEDIATE

Indicates that Set Integrity Pending state is immediately extended

to all descendent foreign key tables, descendent immediate

materialized query tables and descendent staging tables. For a

LOAD INSERT operation, Set Integrity Pending state is not

extended to descendent foreign key tables even if the IMMEDIATE

option is specified.

 When the loaded table is later checked for constraint violations

(using the IMMEDIATE CHECKED option of the SET INTEGRITY

statement), descendent foreign key tables that were placed in Set

Integrity Pending Read Access state will be put into Set Integrity

Pending No Access state.

LOAD using ADMIN_CMD

106 Administrative SQL Routines and Views

DEFERRED

Indicates that only the loaded table will be placed in the Set

Integrity Pending state. The states of the descendent foreign key

tables, descendent immediate materialized query tables and

descendent immediate staging tables will remain unchanged.

 Descendent foreign key tables might later be implicitly placed in

Set Integrity Pending state when their parent tables are checked for

constraint violations (using the IMMEDIATE CHECKED option of

the SET INTEGRITY statement). Descendent immediate

materialized query tables and descendent immediate staging tables

will be implicitly placed in Set Integrity Pending state when one of

its underlying tables is checked for integrity violations. A warning

(SQLSTATE 01586) will be issued to indicate that dependent tables

have been placed in Set Integrity Pending state. See the Notes

section of the SET INTEGRITY statement in the SQL Reference for

when these descendent tables will be put into Set Integrity Pending

state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate

materialized query tables and descendent immediate staging tables will

remain unchanged, and can later be implicitly put into Set Integrity

Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the

SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE

The utility acquires various locks including table locks in the process of

loading. Rather than wait, and possibly timeout, when acquiring a lock,

this option allows load to force off other applications that hold conflicting

locks on the target table. Applications holding conflicting locks on the

system catalog tables will not be forced off by the load utility. Forced

applications will roll back and release the locks the load utility needs. The

load utility can then proceed. This option requires the same authority as

the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

 ALLOW NO ACCESS loads might force applications holding conflicting

locks at the start of the load operation. At the start of the load the utility

can force applications that are attempting to either query or modify the

table.

 ALLOW READ ACCESS loads can force applications holding conflicting

locks at the start or end of the load operation. At the start of the load the

load utility can force applications that are attempting to modify the table.

At the end of the load operation, the load utility can force applications that

are attempting to either query or modify the table.

SOURCEUSEREXITexecutable

Specifies an executable filename which will be called to feed data into the

utility.

REDIRECT

INPUT FROM

BUFFER input-buffer

The stream of bytes specified in input-buffer is

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 107

passed into the STDIN file descriptor of the process

executing the given executable.

FILE input-file

The contents of this client-side file are passed into

the STDIN file descriptor of the process executing

the given executable.

OUTPUT TO

FILE output-file

The STDOUT and STDERR file descriptors are

captured to the fully qualified server-side file

specified.

PARALLELIZE

Increases the throughput of data coming into the load utility by

invoking multiple user exit processes simultaneously. This option is

only applicable in multi-partition database environments and is

ingored in single-partition database enviroments.

For more information, see Moving data using a customized application

(user exit).

PARTITIONED DB CONFIG

Allows you to execute a load into a table distributed across multiple

database partitions. The PARTITIONED DB CONFIG parameter allows you

to specify partitioned database-specific configuration options. The

partitioned-db-option values can be any of the following:

PART_FILE_LOCATION x

OUTPUT_DBPARTNUMS x

PARTITIONING_DBPARTNUMS x

MODE x

MAX_NUM_PART_AGENTS x

ISOLATE_PART_ERRS x

STATUS_INTERVAL x

PORT_RANGE x

CHECK_TRUNCATION

MAP_FILE_INPUT x

MAP_FILE_OUTPUT x

TRACE x

NEWLINE

DISTFILE x

OMIT_HEADER

RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in Load configuration

options for partitioned database environments.

RESTARTCOUNT

Reserved.

USING directory

Reserved.

 Example:

 Issue a load with replace option for the employee table data from a file.

CALL SYSPROC.ADMIN_CMD(’LOAD FROM /home/theresax/tmp/emp_exp.dat

 OF DEL METHOD P (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

 MESSAGES /home/theresax/tmp/emp_load.msg

 REPLACE INTO THERESAX.EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,

LOAD using ADMIN_CMD

108 Administrative SQL Routines and Views

WORKDEPT, PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE, SALARY,

 BONUS, COMM) COPY NO INDEXING MODE AUTOSELECT ISOLATE_PART_ERRS

 LOAD_ERRS_ONLY MODE PARTITION_AND_LOAD’)

The following is an example of output from a single-partition database.

Result set 1

ROWS_READ ROWS_SKIPPED ROWS_LOADED ROWS_REJECTED ...

---------...- ------------...- -----------...- -------------...- ...

 32 0 32 0 ...

 ...

 1 record(s) selected.

Return Status = 0

Output from a single-partition database (continued).

... ROWS_DELETED ROWS_COMMITTED MSG_RETRIEVAL

... ------------...- --------------...- ------------------------------...-

... 0 32 SELECT SQLCODE, MSG_TEXT FROM

... TABLE(SYSPROC.ADMIN_GET_MSGS(

... ’2203498_thx’)) AS MSG

...

Output from a single-partition database (continued).

... MSG_REMOVAL

... --...-

... CALL SYSPROC.ADMIN_REMOVE_MSGS(’2203498_thx’)

...

...

Note: The following columns are also returned in this result set, but are set to

NULL because they are only populated when loading into a multi-partition

database: ROWS_PARTITIONED and NUM_AGENTINFO_ENTRIES.

The following is an example of output from a multi-partition database.

Result set 1 ...

-------------- ...

 ...

ROWS_READ ROWS_REJECTED ROWS_PARTITIONED NUM_AGENTINFO_ENTRIES ...

---------...- -------------...- ----------------...- --------------------- ...

 32 0 32 5 ...

 ...

 ...

1 record(s) selected.

Output from a multi-partition database (continued).

... MSG_RETRIEVAL MSG_REMOVAL

... ----------------------------------...- -----------------------------...-

... SELECT DBPARTITIONNUM, AGENT_TYPE, CALL SYSPROC.ADMIN_REMOVE_MSGS

... SQLCODE, MSG_TEXT FROM TABLE (’2203498_thx’)

... (SYSPROC.ADMIN_GET_MSGS

... (’2203498_thx’)) AS MSG

...

Note: The following columns are also returned in this result set, but are set to

NULL because they are only populated when loading into a single-partition

database: ROWS_SKIPPED, ROWS_LOADED, ROWS_DELETED and

ROWS_COMMITTED.

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 109

Output from a multi-partition database (continued).

Result set 2

DBPARTITIONNUM SQLCODE TABSTATE AGENTTYPE

--------------...- -------...- --------...- ------------...-

 10 0 NORMAL LOAD

 20 0 NORMAL LOAD

 30 0 NORMAL LOAD

 20 0 NORMAL PARTITION

 10 0 NORMAL PRE_PARTITION

1 record(s) selected.

Return Status = 0

 Usage notes:

v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted.

v The load utility builds indexes based on existing definitions. The exception

tables are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update materialized query

tables that are dependent on the tables being loaded. Tables that include

referential or check constraints are placed in Set Integrity Pending state.

Summary tables that are defined with REFRESH IMMEDIATE, and that are

dependent on tables being loaded, are also placed in Set Integrity Pending state.

Issue the SET INTEGRITY statement to take the tables out of Set Integrity

Pending state. Load operations cannot be carried out on replicated materialized

query tables.

v If a clustering index exists on the table, the data should be sorted on the

clustering index prior to loading. Data does not need to be sorted prior to

loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows

that are protected by invalid security labels will be sent to that table. This might

allow users that have access to the exception table to access to data that they

would not normally be authorized to access. For better security be careful who

you grant exception table access to, delete each row as soon as it is repaired and

copied to the table being loaded, and drop the exception table as soon as you

are done with it.

v Security labels in their internal format might contain newline characters. If you

load the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for

delimiters by specifying the delprioritychar file type modifier in the LOAD

command.

v The LOAD utility issues a COMMIT statement at the beginning of the operation

which, in the case of Type 2 connections, causes the procedure to return

SQL30090N with reason code 1.

v Any path used in the LOAD command must be a valid fully-qualified path on

the server coordinator partition.

v For performing a load using the CURSOR filetype where the DATABASE keyword

was specified during the DECLARE CURSOR command, the user ID and

password used to authenticate against the database currently connected to (for

the load) will be used to authenticate against the source database (specified by

the DATABASE option of the DECLARE CURSOR command). If no user ID or

LOAD using ADMIN_CMD

110 Administrative SQL Routines and Views

password was specified for the connection to the loading database, a user ID

and password for the source database must be specified during the DECLARE

CURSOR command.

 Result set information:

 Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information.

A single-partition database will return one result set; a multi-partition database

will return two result sets.

v Table 33: Result set for a load operation.

v Table 34 on page 112: Result set 2 contains information for each database

partition in a multi-partition load operation.

 Table 33. Result set returned by the LOAD command

Column name Data type Description

ROWS_READ BIGINT Number of rows read during the

load operation.

ROWS_SKIPPED BIGINT Number of rows skipped before the

load operation started. This

information is returned for a

single-partition database only.

ROWS_LOADED BIGINT Number of rows loaded into the

target table. This information is

returned for a single-partition

database only.

ROWS_REJECTED BIGINT Number of rows that could not be

loaded into the target table.

ROWS_DELETED BIGINT Number of duplicate rows that

were not loaded into the target

table. This information is returned

for a single-partition database only.

ROWS_COMMITTED BIGINT Total number of rows processed:

the number of rows successfully

loaded into the target table, plus

the number of skipped and rejected

rows. This information is returned

for a single-partition database only.

ROWS_PARTITIONED BIGINT Number of rows distributed by all

database distributing agents. This

information is returned for a

multi-partition database only.

NUM_AGENTINFO_ENTRIES BIGINT Number of entries returned in the

second result set for a

multi-partition database. This is the

number of agent information

entries produced by the load

operation. This information is

returned for multi-partition

database only.

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 111

Table 33. Result set returned by the LOAD command (continued)

Column name Data type Description

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to

retrieve messages created by this

utility. For example,

SELECT SQLCODE, MSG

 FROM TABLE

 (SYSPROC.ADMIN_GET_MSGS

 ('2203498_thx')) AS MSG

This information is returned only if

the MESSAGES ON SERVER clause

is specified.

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean

up messages created by this utility.

For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS

 ('2203498_thx')

This information is returned only if

the MESSAGES ON SERVER clause

is specified.

 Table 34. Result set 2 returned by the LOAD command for each database partition in a

multi-partition database.

Column name Data type Description

DBPARTITIONNUM SMALLINT The database partition number on

which the agent executed the load

operation.

SQLCODE INTEGER Final SQLCODE resulting from the

load processing.

LOAD using ADMIN_CMD

112 Administrative SQL Routines and Views

Table 34. Result set 2 returned by the LOAD command for each database partition in a

multi-partition database. (continued)

Column name Data type Description

TABSTATE VARCHAR(20) Table state after load operation has

completed. It is one of:

v LOADPENDING: Indicates that

the load did not complete, but

the table on the partition has

been left in a LOAD PENDING

state. A load restart or terminate

operation must be done on the

database partition.

v NORMAL: Indicates that the

load completed successfully on

the database partition and the

table was taken out of the LOAD

IN PROGRESS (or LOAD

PENDING) state. Note that the

table might still be in Set

Integrity Pending state if further

constraints processing is

required, but this state is not

reported by this interface.

v UNCHANGED: Indicates that

the load did not complete due to

an error, but the state of the table

has not yet been changed. It is

not necessary to perform a load

restart or terminate operation on

the database partition.

Note: Not all possible table states

are returned by this interface.

AGENTTYPE VARCHAR(20) Agent type and is one of:

v FILE_TRANSFER

v LOAD

v LOAD_TO_FILE

v PARTITIONING

v PRE_PARTITIONING

 Related concepts:

v “Privileges, authorities, and authorizations required to use Load” in Data

Movement Utilities Guide and Reference

v “Load overview” in Data Movement Utilities Guide and Reference

 Related reference:

v “ADMIN_GET_MSGS table function – Retrieve messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” on

page 41

v “ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” on

page 43

v “EXPORT command using the ADMIN_CMD procedure” on page 70

v “ADMIN_CMD – Run administrative commands” on page 38

LOAD using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 113

v “Load configuration options for partitioned database environments” in Data

Movement Utilities Guide and Reference

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

LOAD using ADMIN_CMD

114 Administrative SQL Routines and Views

PRUNE HISTORY/LOGFILE command using the ADMIN_CMD

procedure

Used to delete entries from the recovery history file or to delete log files from the

active log file path of the currently connected database partition. Deleting entries

from the recovery history file might be necessary if the file becomes excessively

large and the retention period is high.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 Database

 Command syntax:

�� PRUNE HISTORY timestamp

WITH FORCE OPTION

AND DELETE

LOGFILE PRIOR TO

log-file-name

 ��

 Command parameters:

HISTORY timestamp

Identifies a range of entries in the recovery history file that will be deleted.

A complete time stamp (in the form yyyymmddhhmmss), or an initial prefix

(minimum yyyy) can be specified. All entries with time stamps equal to or

less than the time stamp provided are deleted from the recovery history

file.

WITH FORCE OPTION

Specifies that the entries will be pruned according to the time stamp

specified, even if some entries from the most recent restore set are deleted

from the file. A restore set is the most recent full database backup

including any restores of that backup image. If this parameter is not

specified, all entries from the backup image forward will be maintained in

the history.

AND DELETE

Specifies that the associated log archives will be physically deleted (based

on the location information) when the history file entry is removed. This

option is especially useful for ensuring that archive storage space is

recovered when log archives are no longer needed. If you are archiving

logs via a user exit program, the logs cannot be deleted using this option.

LOGFILE PRIOR TO log-file-name

Specifies a string for a log file name, for example S0000100.LOG. All log

files prior to (but not including) the specified log file will be deleted. The

LOGRETAIN database configuration parameter must be set to RECOVERY or

CAPTURE.

PRUNE HISTORY/LOGFILE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 115

Example:

 Example 1: Remove all entries from the recovery history file that were written on or

before December 31, 2003:

CALL SYSPROC.ADMIN_CMD (’prune history 20031231’)

Example 2: Delete all log files from the active log file path prior to (but not

including) S0000100.LOG:

CALL SYSPROC.ADMIN_CMD(’prune logfile prior to S0000100.LOG’)

 Usage notes:

 If the FORCE option is used, you might delete entries that are required for

automatic restoration of databases. Manual restores will still work correctly. Use of

this command can also prevent the dbckrst utility from being able to correctly

analyze the complete chain of required backup images. Using the PRUNE

HISTORY command without the FORCE option prevents required entries from

being deleted.

Pruning backup entries from the history file causes related file backups on DB2

Data Links Manager servers to be deleted.

The command affects only the database partition to which the application is

currently connected.

 Related concepts:

v “Developing a backup and recovery strategy” in Data Recovery and High

Availability Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

PRUNE HISTORY/LOGFILE using ADMIN_CMD

116 Administrative SQL Routines and Views

QUIESCE DATABASE command using the ADMIN_CMD

procedure

Forces all users off the specified database and puts it into a quiesced mode. While

the database is in quiesced mode, you can perform administrative tasks on it. After

administrative tasks are complete, use the UNQUIESCE command to activate the

database and allow other users to connect to the database without having to shut

down and perform another database start.

In this mode, only users with authority in this restricted mode are allowed to

connect to the database. Users with sysadm and dbadm authority always have access

to a database while it is quiesced.

 Scope:

 QUIESCE DATABASE results in all objects in the database being in the quiesced

mode. Only the allowed user/group and sysadm, sysmaint, dbadm, or sysctrl will be

able to access the database or its objects.

 Authorization:

 One of the following:

For database level quiesce:

v sysadm

v dbadm

v sysadm

v sysctrl

 Required connection:

 Database

 Command syntax:

�� QUIESCE DATABASE

DB
 IMMEDIATE

DEFER

WITH TIMEOUT

minutes

 �

�
 FORCE CONNECTIONS

��

 Command parameters:

DEFER

Wait for applications until they commit the current unit of work.

WITH TIMEOUT

Specifies a time, in minutes, to wait for applications to commit the

current unit of work. If no value is specified, in a single-partition

database environment, the default value is 10 minutes. In a

partitioned database environment the value specified by the

start_stop_timeout database manager configuration parameter will

be used.

QUIESCE DATABASE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 117

IMMEDIATE

Do not wait for the transactions to be committed, immediately rollback the

transactions.

FORCE CONNECTIONS

Force the connections off.

DATABASE

Quiesce the database. All objects in the database will be placed in quiesced

mode. Only specified users in specified groups and users with sysadm,

sysmaint, and sysctrl authority will be able to access to the database or its

objects.

 Example:

 Force off all users with connections to the database.

CALL SYSPROC.ADMIN_CMD(’quiesce db immediate’)

v This command will force all users off the database if the FORCE CONNECTION

option is supplied. FORCE CONNECTION is the default behavior; the

parameter is allowed in the command for compatibility reasons.

v The command will be synchronized with the FORCE and will only complete

once the FORCE has completed.

 Usage notes:

v After QUIESCE DATABASE, users with sysadm, sysmaint, sysctrl, or dbadm

authority, and GRANT/REVOKE privileges can designate who will be able to

connect. This information will be stored permanently in the database catalog

tables.

For example,

 grant quiesce_connect on database to <username/groupname>

 revoke quiesce_connect on database from <username/groupname>

v Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “QUIESCE TABLESPACES FOR TABLE command using the ADMIN_CMD

procedure” on page 119

v “UNQUIESCE DATABASE command using the ADMIN_CMD procedure” on

page 157

v “db2DatabaseQuiesce API - Quiesce the database” in Administrative API Reference

QUIESCE DATABASE using ADMIN_CMD

118 Administrative SQL Routines and Views

QUIESCE TABLESPACES FOR TABLE command using the

ADMIN_CMD procedure

Quiesces table spaces for a table. There are three valid quiesce modes: share, intent

to update, and exclusive. There are three possible states resulting from the quiesce

function:

v Quiesced: SHARE

v Quiesced: UPDATE

v Quiesced: EXCLUSIVE

 Scope:

 In a single-partition environment, this command quiesces all table spaces involved

in a load operation in exclusive mode for the duration of the load operation. In a

partitioned database environment, this command acts locally on a database

partition. It quiesces only that portion of table spaces belonging to the database

partition on which the load operation is performed. For partitioned tables, all of

the table spaces listed in SYSDATAPARTITIONS.TBSPACEID and

SYSDATAPARTITIONS.LONG_TBSPACEID associated with a table and with a

status of normal, attached or detached, (for example,

SYSDATAPARTITIONS.STATUS of ’″’, ’A’ or ’D’, respectively) are quiesced.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v load

 Required connection:

 Database

 Command syntax:

�� QUIESCE TABLESPACES FOR TABLE tablename

schema.tablename
 SHARE

INTENT TO UPDATE

EXCLUSIVE

RESET

 ��

 Command parameters:

TABLE

tablename

Specifies the unqualified table name. The table cannot be a system

catalog table.

schema.tablename

Specifies the qualified table name. If schema is not provided, the

CURRENT SCHEMA will be used. The table cannot be a system

catalog table.

QUIESCE TABLESPACES FOR TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 119

SHARE

Specifies that the quiesce is to be in share mode.

 When a ″quiesce share″ request is made, the transaction requests intent

share locks for the table spaces and a share lock for the table. When the

transaction obtains the locks, the state of the table spaces is changed to

QUIESCED SHARE. The state is granted to the quiescer only if there is no

conflicting state held by other users. The state of the table spaces, along

with the authorization ID and the database agent ID of the quiescer, are

recorded in the table space table, so that the state is persistent. The table

cannot be changed while the table spaces for the table are in QUIESCED

SHARE state. Other share mode requests to the table and table spaces are

allowed. When the transaction commits or rolls back, the locks are

released, but the table spaces for the table remain in QUIESCED SHARE

state until the state is explicitly reset.

INTENT TO UPDATE

Specifies that the quiesce is to be in intent to update mode.

 When a ″quiesce intent to update″ request is made, the table spaces are

locked in intent exclusive (IX) mode, and the table is locked in update (U)

mode. The state of the table spaces is recorded in the table space table.

EXCLUSIVE

Specifies that the quiesce is to be in exclusive mode.

 When a ″quiesce exclusive″ request is made, the transaction requests super

exclusive locks on the table spaces, and a super exclusive lock on the table.

When the transaction obtains the locks, the state of the table spaces

changes to QUIESCED EXCLUSIVE. The state of the table spaces, along

with the authorization ID and the database agent ID of the quiescer, are

recorded in the table space table. Since the table spaces are held in super

exclusive mode, no other access to the table spaces is allowed. The user

who invokes the quiesce function (the quiescer) has exclusive access to the

table and the table spaces.

RESET

Specifies that the state of the table spaces is to be reset to normal. A

quiesce state cannot be reset if the connection that issued the quiesce

request is still active.

 Example:

 Quiesce the table spaces containing the staff table.

CALL SYSPROC.ADMIN_CMD(’quiesce tablespaces for table staff share’)

 Usage notes:

 This command is not supported for declared temporary tables.

A quiesce is a persistent lock. Its benefit is that it persists across transaction

failures, connection failures, and even across system failures (such as power failure,

or reboot).

A quiesce is owned by a connection. If the connection is lost, the quiesce remains,

but it has no owner, and is called a phantom quiesce. For example, if a power outage

caused a load operation to be interrupted during the delete phase, the table spaces

for the loaded table would be left in delete pending, quiesce exclusive state. Upon

QUIESCE TABLESPACES FOR TABLE using ADMIN_CMD

120 Administrative SQL Routines and Views

database restart, this quiesce would be an unowned (or phantom) quiesce. The

removal of a phantom quiesce requires a connection with the same user ID used

when the quiesce mode was set.

To remove a phantom quiesce:

1. Connect to the database with the same user ID used when the quiesce mode

was set.

2. Use the LIST TABLESPACES command to determine which table space is

quiesced.

3. Re-quiesce the table space using the current quiesce state. For example:

 CALL SYSPROC.ADMIN_CMD(’quiesce tablespaces for table mytable exclusive’)

Once completed, the new connection owns the quiesce, and the load operation can

be restarted.

There is a limit of five quiescers on a table space at any given time.

A quiescer can upgrade the state of a table space from a less restrictive state to a

more restrictive one (for example, S to U, or U to X). If a user requests a state

lower than one that is already held, the original state is returned. States are not

downgraded.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “sqluvqdp API - Quiesce table spaces for a table” in Administrative API Reference

v “LIST TABLESPACES command” in Command Reference

v “QUIESCE DATABASE command using the ADMIN_CMD procedure” on page

117

v “UNQUIESCE DATABASE command using the ADMIN_CMD procedure” on

page 157

QUIESCE TABLESPACES FOR TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 121

REDISTRIBUTE DATABASE PARTITION GROUP command

using the ADMIN_CMD procedure

Redistributes data across the database partitions in a database partition group. The

current data distribution, whether it is uniform or skewed, can be specified. The

redistribution algorithm selects the partitions to be moved based on the current

data distribution.

 Scope:

 This command affects all database partitions in the database partition group.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v dbadm

 Required connection:

 Connection to the catalog partition.

 Command syntax:

�� REDISTRIBUTE DATABASE PARTITION GROUP database partition group �

� UNIFORM

USING DISTFILE

distfile

USING TARGETMAP

targetmap

CONTINUE

ROLLBACK

 ��

 Command parameters:

DATABASE PARTITION GROUP database partition group

The name of the database partition group. This one-part name identifies a

database partition group described in the SYSCAT.DBPARTITIONGROUPS

catalog table. The database partition group cannot currently be undergoing

redistribution. Tables in the IBMCATGROUP and the IBMTEMPGROUP

database partition groups cannot be redistributed.

UNIFORM

Specifies that the data is uniformly distributed across hash partitions (that

is, every hash partition is assumed to have the same number of rows), but

the same number of hash partitions do not map to each database partition.

After redistribution, all database partitions in the database partition group

have approximately the same number of hash partitions.

USING DISTFILE distfile

If the distribution of distribution key values is skewed, use this option to

achieve a uniform redistribution of data across the database partitions of a

database partition group.

 Use the distfile to indicate the current distribution of data across the 4 096

hash partitions.

REDISTRIBUTE DATABASE PARTITION GROUP using ADMIN_CMD

122 Administrative SQL Routines and Views

Use row counts, byte volumes, or any other measure to indicate the

amount of data represented by each hash partition. The utility reads the

integer value associated with a partition as the weight of that partition.

When a distfile is specified, the utility generates a target distribution map

that it uses to redistribute the data across the database partitions in the

database partition group as uniformly as possible. After the redistribution,

the weight of each database partition in the database partition group is

approximately the same (the weight of a database partition is the sum of

the weights of all database partitions that map to that database partition).

 For example, the input distribution file might contain entries as follows:

 10223

 1345

 112000

 0

 100

 ...

In the example, hash partition 2 has a weight of 112 000, and partition 3

(with a weight of 0) has no data mapping to it at all.

 The distfile should contain 4 096 positive integer values in character format.

The sum of the values should be less than or equal to 4 294 967 295.

 The complete path name for distfile must be included and distfile must exist

on the server and be accessible from the connected partition.

USING TARGETMAP targetmap

The file specified in targetmap is used as the target distribution map. Data

redistribution is done according to this file. The complete path name for

targetmap must be included and targetmap must exist on the server and be

accessible from the connected partition.

 If a database partition included in the target map is not in the database

partition group, an error is returned. Issue ALTER DATABASE PARTITION

GROUP ADD DBPARTITIONNUM before running REDISTRIBUTE

DATABASE PARTITION GROUP.

 If a database partition excluded from the target map is in the database

partition group, that database partition will not be included in the

partitioning. Such a database partition can be dropped using ALTER

DATABASE PARTITION GROUP DROP DBPARTITIONNUM either before

or after REDISTRIBUTE DATABASE PARTITION GROUP.

CONTINUE

Continues a previously failed REDISTRIBUTE DATABASE PARTITION

GROUP operation. If none occurred, an error is returned.

ROLLBACK

Rolls back a previously failed REDISTRIBUTE DATABASE PARTITION

GROUP operation. If none occurred, an error is returned.

 Example:

 Redistribute database partition group DBPG_1 by providing the current data

distribution through a data distribution file, distfile_for_dbpg_1, and moving data

onto two new database partitions, 6 and 7.

CALL SYSPROC.ADMIN_CMD(’REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1

 USING DISTFILE /home/user1/data/distfile_for_dbpg_1

 ADD DATABASE PARTITION (6 TO 7) ’)

REDISTRIBUTE DATABASE PARTITION GROUP using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 123

Usage notes:

v When a redistribution operation is done, a message file is written to the server

to:

– The /sqllib/redist directory on UNIX based systems, using the following

format for subdirectories and file name: database-name.database-partition-group-
name.timestamp.

– The \sqllib\redist\ directory on Windows operating systems, using the

following format for subdirectories and file name: database-name\first-eight-
characters-of-the-database-partition-group-name\date\time.

v The time stamp value is the time when the command was issued.

v This utility performs intermittent COMMITs during processing. This can cause

type 2 connections to receive an SQL30090N error.

v Use the ALTER DATABASE PARTITION GROUP statement to add database

partitions to a database partition group. This statement permits one to define the

containers for the table spaces associated with the database partition group.

v DB2 Parallel Edition for AIX Version 1 syntax, with ADD DBPARTITIONNUM

and DROP DBPARITITIONNUM options, is supported for users with sysadm or

sysctrl authority. For ADD DBPARTITIONNUM, containers are created like the

containers on the lowest node number of the existing nodes within the database

partition group.

v All packages having a dependency on a table that has undergone redistribution

are invalidated. It is recommended to explicitly rebind such packages after the

redistribute database partition group operation has completed. Explicit rebinding

eliminates the initial delay in the execution of the first SQL request for the

invalid package. The redistribute message file contains a list of all the tables that

have undergone redistribution.

v It is also recommended to update statistics by issuing RUNSTATS after the

redistribute database partition group operation has completed.

v Database partition groups containing replicated summary tables or tables

defined with DATA CAPTURE CHANGES cannot be redistributed.

v Redistribution is not allowed if there are user temporary table spaces with

existing declared temporary tables in the database partition group.

v Command execution status is returned in the SQLCA resulting from the CALL

statement.

v The file referenced in USING DISTFILE distfile or USING TARGETMAP

targetmap, must refer to a file on the server.

v Before starting a redistribute operation, ensure there are no tables in the Load

Pending state. Table states can be checked by using the LOAD QUERY

command. If you discover data in the wrong database partition as a result of a

redistribute operation, there are two options. You can:

1. unload the table, drop it and then reload the table, or

2. use a new target map to redistribute the database partition group again.

 Compatibilities:

 For compatibility with versions earlier than Version 8:

v The keyword NODEGROUP can be substituted for DATABASE PARTITION

GROUP.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

REDISTRIBUTE DATABASE PARTITION GROUP using ADMIN_CMD

124 Administrative SQL Routines and Views

v “sqludrdt API - Redistribute data across a database partition group” in

Administrative API Reference

v “LIST DATABASE DIRECTORY command” in Command Reference

v “RUNSTATS command” in Command Reference

v “REBIND command” in Command Reference

REDISTRIBUTE DATABASE PARTITION GROUP using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 125

REORG INDEXES/TABLE command using the ADMIN_CMD

procedure

Reorganizes an index or a table.

You can reorganize all indexes defined on a table by rebuilding the index data into

unfragmented, physically contiguous pages. Alternatively, you have the option of

reorganizing specific indexes on a range partitioned table.

If you specify the CLEANUP ONLY option of the index clause, cleanup is

performed without rebuilding the indexes. This command cannot be used against

indexes on declared temporary tables (SQLSTATE 42995).

The table option reorganizes a table by reconstructing the rows to eliminate

fragmented data, and by compacting information.

 Scope:

 This command affects all database partitions in the database partition group.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table.

 Required connection:

 Database

 Command syntax:

�� REORG �

� TABLE table-name Table Clause

INDEXES ALL FOR TABLE

table-name

Index

Clause

INDEX

index-name

FOR TABLE

table-name

 �

�
Database

Partition

Clause
 ��

Table Clause:

INDEX

index-name
 �

REORG INDEXES/TABLE using ADMIN_CMD

126 Administrative SQL Routines and Views

�
 KEEPDICTIONARY

ALLOW NO ACCESS

USE

tbspace-name

INDEXSCAN

LONGLOBDATA

RESETDICTIONARY

ALLOW READ ACCESS

USE

longtbspace-name

ALLOW WRITE ACCESS

START

INPLACE

ALLOW READ ACCESS

NOTRUNCATE TABLE

RESUME

STOP

PAUSE

Index Clause:

ALLOW NO ACCESS

ALLOW WRITE ACCESS

ALLOW READ ACCESS

ALL

CLEANUP ONLY

PAGES

CONVERT

Database Partition Clause:

ON

�

�

 ,

DBPARTITIONNUM

(

db-partition-number1

)

DBPARTITIONNUMS

TO

db-partition-number2

ALL DBPARTITIONNUMS

,

EXCEPT

DBPARTITIONNUM

(

db-partition-number1

)

DBPARTITIONNUMS

TO

db-partition-number2

 Command parameters:

INDEXES ALL FOR TABLE table-name

Specifies the table whose indexes are to be reorganized. The table can be in

a local or a remote database.

INDEX index-name

Specifies an individual index to be reorganized on a partitioned table.

Reorganization of individual indexes are ONLY supported for

non-partitioned indexes on a partitioned table. This parameter is not

supported for block indexes.

FOR TABLE table-name

Specifies the table name location of the individual index being reorganized

on a partitioned table. This parameter is optional, given that index names

are unique across the database.

ALLOW NO ACCESS

Specifies that no other users can access the table while the indexes

are being reorganized.

ALLOW READ ACCESS

Specifies that other users can have read-only access to the table

while the indexes are being reorganized. This access level is not

supported for REORG INDEXES of a partitioned table unless the

CLEANUP ONLY option is specified.

ALLOW WRITE ACCESS

Specifies that other users can read from and write to the table

while the indexes are being reorganized. This access level is not

supported for multi-dimensionally clustered (MDC) tables,

partitioned tables, extended indexes, or tables containing a column

with the XML data type unless the CLEANUP ONLY option is

specified.

When no ACCESS mode is specified, one will be chosen for you in the

following way:

REORG INDEXES/TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 127

Table 35. Default table access chosen based on the command, table type and additional parameters specified for the

index clause:

Command Table type

Additional parameters

specified for index clause Default access mode

REORG INDEXES non-partitioned table any ALLOW READ ACCESS

REORG INDEXES partitioned table none specified ALLOW NO ACCESS

REORG INDEXES partitioned table CLEANUP ONLY specified ALLOW READ ACCESS

REORG INDEX partitioned table any ALLOW READ ACCESS

CLEANUP ONLY

When CLEANUP ONLY is requested, a cleanup rather than a full

reorganization will be done. The indexes will not be rebuilt and

any pages freed up will be available for reuse by indexes defined

on this table only.

 The CLEANUP ONLY PAGES option will search for and free

committed pseudo empty pages. A committed pseudo empty page

is one where all the keys on the page are marked as deleted and

all these deletions are known to be committed. The number of

pseudo empty pages in an indexes can be determined by running

runstats and looking at the NUM EMPTY LEAFS column in

SYSCAT.INDEXES. The PAGES option will clean the NUM EMPTY

LEAFS if they are determined to be committed.

 The CLEANUP ONLY ALL option will free committed pseudo

empty pages, as well as remove committed pseudo deleted keys

from pages that are not pseudo empty. This option will also try to

merge adjacent leaf pages if doing so will result in a merged leaf

page that has at least PCTFREE free space on the merged leaf page,

where PCTFREE is the percent free space defined for the index at

index creation time. The default PCTFREE is ten percent. If two

pages can be merged, one of the pages will be freed. The number

of pseudo deleted keys in an index , excluding those on pseudo

empty pages, can be determined by running runstats and then

selecting the NUMRIDS DELETED from SYSCAT.INDEXES. The

ALL option will clean the NUMRIDS DELETED and the NUM

EMPTY LEAFS if they are determined to be committed.

ALL Specifies that indexes should be cleaned up by removing

committed pseudo deleted keys and committed pseudo empty

pages.

PAGES

Specifies that committed pseudo empty pages should be removed

from the index tree. This will not clean up pseudo deleted keys on

pages that are not pseudo empty. Since it is only checking the

pseudo empty leaf pages, it is considerably faster than using the

ALL option in most cases.

CONVERT

If you are not sure whether the table you are operating on has a

type-1 or type-2 index, but want type-2 indexes, you can use the

CONVERT option. If the index is type 1, this option will convert it

into type 2. If the index is already type 2, this option has no effect.

 All indexes created by DB2 prior to Version 8 are type-1 indexes.

All indexes created by Version 8 are Type 2 indexes, except when

REORG INDEXES/TABLE using ADMIN_CMD

128 Administrative SQL Routines and Views

you create an index on a table that already has a type 1 index. In

this case the new index will also be of type 1.

 Using the INSPECT command to determine the index type can be

slow. CONVERT allows you to ensure that the new index will be

Type 2 without your needing to determine its original type.

Use the ALLOW READ ACCESS or ALLOW WRITE ACCESS option to

allow other transactions either read-only or read-write access to the table

while the indexes are being reorganized. While ALLOW READ ACCESS

and ALLOW WRITE ACCESS allow access to the table, during the period

in which the reorganized copies of the indexes are made available, no

access to the table is allowed.

TABLE table-name

Specifies the table to reorganize. The table can be in a local or a remote

database. The name or alias in the form: schema.table-name can be used. The

schema is the user name under which the table was created. If you omit the

schema name, the default schema is assumed.

 For typed tables, the specified table name must be the name of the

hierarchy’s root table.

 You cannot specify an index for the reorganization of a multidimensional

clustering (MDC) table. In place reorganization of tables cannot be used for

MDC tables.

INDEX index-name

Specifies the index to use when reorganizing the table. If you do

not specify the fully qualified name in the form: schema.index-name,

the default schema is assumed. The schema is the user name under

which the index was created. The database manager uses the index

to physically reorder the records in the table it is reorganizing.

 For an in place table reorganization, if a clustering index is defined

on the table and an index is specified, it must be clustering index.

If the in place option is not specified, any index specified will be

used. If you do not specify the name of an index, the records are

reorganized without regard to order. If the table has a clustering

index defined, however, and no index is specified, then the

clustering index is used to cluster the table. You cannot specify an

index if you are reorganizing an MDC table.

ALLOW NO ACCESS

Specifies that no other users can access the table while the table is

being reorganized. When reorganizing a partitioned table, this is

the default. Reorganization of a partitioned table occurs offline.

ALLOW READ ACCESS

Allow only read access to the table during reorganization. This is

the default for a non-partitioned table.

INPLACE

Reorganizes the table while permitting user access.

 In place table reorganization is allowed only on non-partitioned

and non-MDC tables with type-2 indexes, but without extended

indexes and with no indexes defined over XML columns in the

table. In place table reorganization takes place asynchronously, and

might not be effective immediately.

REORG INDEXES/TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 129

ALLOW READ ACCESS

Allow only read access to the table during reorganization.

ALLOW WRITE ACCESS

Allow write access to the table during reorganization. This

is the default behavior.

NOTRUNCATE TABLE

Do not truncate the table after in place reorganization.

During truncation, the table is S-locked.

START

Start the in place REORG processing. Because this is the

default, this keyword is optional.

STOP Stop the in place REORG processing at its current point.

PAUSE

Suspend or pause in place REORG for the time being.

RESUME

Continue or resume a previously paused in place table

reorganization. When an online reorganization is resumed

and you want the same options as when the reorganization

was paused, you must specify those options again while

resuming.

USE tbspace-name

Specifies the name of a system temporary table space in which to

store a temporary copy of the table being reorganized. If you do

not provide a table space name, the database manager stores a

working copy of the table in the table spaces that contain the table

being reorganized.

 For an 8KB, 16KB, or 32KB table object, if the page size of the

system temporary table space that you specify does not match the

page size of the table spaces in which the table data resides, the

DB2 database product will try to find a temporary table space of

the correct size of the LONG/LOB objects. Such a table space must

exist for the reorganization to succeed.

 When you have two temporary tablespaces of the same page size,

and you specify one of them in the USE clause, they will be used in

a round robin fashion if there is an index in the table being

reorganized. Say you have two tablespaces, tempsace1 and

tempspace2, both of the same page size and you specify tempspace1

in the REORG command with the USE option. When you perform

REORG the first time, tempspace1 is used. The second time,

tempspace2 is used. The third time, tempspace1 is used and so on.

To avoid this, you should drop one of the temporary tablespaces.

 For partitioned tables, the table space is used as temporary storage

for the reorganization of all the data partitions in the table.

Reorganization of a partitioned table reorganizes a single data

partition at a time. The amount of space required is equal to the

largest data partition in the table, and not the entire table.

 If you do not supply a table space name for a partitioned table, the

table space where each data partition is located is used for

REORG INDEXES/TABLE using ADMIN_CMD

130 Administrative SQL Routines and Views

temporary storage of that data partition. There must be enough

free space in each data partition’s table space to hold a copy of the

data partition.

INDEXSCAN

For a clustering REORG an index scan will be used to re-order

table records. Reorganize table rows by accessing the table through

an index. The default method is to scan the table and sort the

result to reorganize the table, using temporary table spaces as

necessary. Even though the index keys are in sort order, scanning

and sorting is typically faster than fetching rows by first reading

the row identifier from an index.

LONGLOBDATA

Long field and LOB data are to be reorganized.

 This is not required even if the table contains long or LOB

columns. The default is to avoid reorganizing these objects because

it is time consuming and does not improve clustering.

USE longtbspace-name

This is an optional parameter, which can be used to specify the

name of a temporary tablespace to be used for rebuilding long

data. If no temporary tablespace is specified for either the table

object or for the long objects, the objects will be constructed in the

tablespace they currently reside. If a temporary tablespace is

specified for the table but this parameter is not specified, then the

tablespace used for base reorg data will be used, unless the page

sizes differ. In this situation, the DB2 database system will attempt

to choose a temporary container of the appropriate page size to

create the long objects in.

 If USE-longtbspace is specified, USE-tbspace must also be specified.

If it is not, the longtbspace argument is ignored.

KEEPDICTIONARY

If the COMPRESS attribute for the table is YES and the table has a

compression dictionary then no new dictionary is built. All the

rows processed during reorganization are subject to compression

using the existing dictionary. If the COMPRESS attribute for the table

is NO and the table has a compression dictionary then reorg

processing will remove the dictionary and all the rows in the

newly reorganized table will be in non-compressed format. It is not

possible to compress long, LOB, index, or XML objects.

 Table 36. REORG KEEPDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Preserve dictionary;

rows compressed

Y N Build dictionary;

rows compressed

N Y Preserve dictionary;

all rows

uncompressed

N N No effect; all rows

uncompressed

REORG INDEXES/TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 131

For any reinitialization or truncation of a table (such as for a

replace operation), if the compress attribute for the table is NO, the

dictionary is discarded if one exists. Conversely, if a dictionary

exists and the compress attribute for the table is YES then a

truncation will save the dictionary and not discard it. The

dictionary is logged in its entirety for recovery purposes and for

future support with data capture changes (i.e. replication).

RESETDICTIONARY

If the COMPRESS attribute for the table is YES then a new row

compression dictionary is built. All the rows processed during

reorganization are subject to compression using this new

dictionary. This dictionary replaces any previous dictionary. If the

COMPRESS attribute for the table is NO and the table does have an

existing compression dictionary then reorg processing will remove

the dictionary and all rows in the newly reorganized table will be

in non-compressed format. It is not possible to compress long,

LOB, index, or XML objects.

 Table 37. REORG RESETDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Build new

dictionary*; rows

compressed

Y N Build new dictionary;

rows compressed

N Y Remove dictionary;

all rows

uncompressed

N N No effect; all rows

uncompressed

* - If a dictionary exists and the compression attribute is enabled

but there is currently insufficient data in the table to build a new

dictionary, the RESETDICTIONARY operation will keep the existing

dictionary. Rows which are smaller in size than the internal

minimum record length and rows which do not demonstrate a

savings in record length when an attempt is made to compress

them are considered ’insufficient’ in this case.

 Example:

 Reorganize the tables in a database partition group consisting of database

partitions 1, 3 and 4.

CALL SYSPROC.ADMIN_CMD ('REORG TABLE employee

 INDEX empid ON DBPARTITIONNUM (1,3,4)')

 Usage notes:

 Restrictions:

v Command execution status is returned in the SQLCA resulting from the CALL

statement.

v The REORG utility issue a COMMIT statement at the beginning of the operation

which, in the case of Type 2 connections, causes the procedure to return

SQL30090N with reason code 2.

REORG INDEXES/TABLE using ADMIN_CMD

132 Administrative SQL Routines and Views

v The REORG utility does not support the use of nicknames.

v The REORG TABLE command is not supported for declared temporary tables.

v The REORG TABLE command cannot be used on views.

v Reorganization of a table is not compatible with range-clustered tables, because

the range area of the table always remains clustered.

v REORG TABLE cannot be used on a partitioned table in a DMS table space

while an online backup of ANY table space in which the table resides, including

LOBs and indexes, is being performed.

v REORG TABLE cannot use an index that is based on an index extension.

v If a table is in reorg pending state, an inplace reorg is not allowed on the table.

v For partitioned tables:

– REORG is supported at the table level. Reorganization of an individual data

partition can be achieved by detaching the data partition, reorganizing the

resulting non-partitioned table and then re-attaching the data partition.

– The table must have an ACCESS_MODE in SYSCAT.TABLES of Full Access.

– Reorganization skips data partitions that are in a restricted state due to an

attach or detach operation

– If an error occurs, the non-partitioned indexes of the table are marked bad,

and are rebuilt on the next access to the table.

– If a reorganization operation fails, some data partitions may be in a

reorganized state and others may not. When the REORG TABLE command is

reissued, all the data partitions will be reorganized regardless of the data

partition’s reorganization state.

– When reorganizing indexes on partitioned tables, it is recommended that you

perform a runstats operation after asynchronous index cleanup is complete in

order to generate accurate index statistics in the presence of detached data

partitions. To determine whether or not there are detached data partitions in

the table, you can check the status field in SYSDATAPARTITIONS and look

for the value ″I″ (index cleanup) or ″D″ (detached with dependant MQT).

Information about the current progress of table reorganization is written to the

history file for database activity. The history file contains a record for each

reorganization event. To view this file, execute the LIST HISTORY command for

the database that contains the table you are reorganizing.

You can also use table snapshots to monitor the progress of table reorganization.

Table reorganization monitoring data is recorded regardless of the Database

Monitor Table Switch setting.

If an error occurs, an SQLCA dump is written to the history file. For an in-place

table reorganization, the status is recorded as PAUSED.

When an indexed table has been modified many times, the data in the indexes

might become fragmented. If the table is clustered with respect to an index, the

table and index can get out of cluster order. Both of these factors can adversely

affect the performance of scans using the index, and can impact the effectiveness of

index page prefetching. REORG INDEX or REORG INDEXES can be used to

reorganize one or all of the indexes on a table. Index reorganization will remove

any fragmentation and restore physical clustering to the leaf pages. Use

REORGCHK to help determine if an index needs reorganizing. Be sure to complete

all database operations and release all locks before invoking index reorganization.

This can be done by issuing a COMMIT after closing all cursors opened WITH

HOLD, or by issuing a ROLLBACK.

REORG INDEXES/TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 133

Indexes might not be optimal following an in-place REORG TABLE operation,

since only the data object and not the indexes are reorganized. It is recommended

that you perform a REORG INDEXES after an in place REORG TABLE operation.

Indexes are completely rebuilt during the last phase of a classic REORG TABLE,

however, so reorganizing indexes is not necessary.

Tables that have been modified so many times that data is fragmented and access

performance is noticeably slow are candidates for the REORG TABLE command.

You should also invoke this utility after altering the inline length of a structured

type column in order to benefit from the altered inline length. Use REORGCHK to

determine whether a table needs reorganizing. Be sure to complete all database

operations and release all locks before invoking REORG TABLE. This can be done

by issuing a COMMIT after closing all cursors opened WITH HOLD, or by issuing

a ROLLBACK. After reorganizing a table, use RUNSTATS to update the table

statistics, and REBIND to rebind the packages that use this table. The reorganize

utility will implicitly close all the cursors.

If the table contains mixed row format because the table value compression has

been activated or deactivated, an offline table reorganization can convert all the

existing rows into the target row format.

If the table is distributed across several database partitions, and the table or index

reorganization fails on any of the affected database partitions, only the failing

database partitions will have the table or index reorganization rolled back.

If the reorganization is not successful, temporary files should not be deleted. The

database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the data

according to the order in the index. To maximize performance, specify an index

that is often used in SQL queries. If the name of an index is not specified, and if a

clustering index exists, the data will be ordered according to the clustering index.

The PCTFREE value of a table determines the amount of free space designated per

page. If the value has not been set, the utility will fill up as much space as possible

on each page.

To complete a table space roll-forward recovery following a table reorganization,

both regular and large table spaces must be enabled for roll-forward recovery.

If the table contains LOB columns that do not use the COMPACT option, the LOB

DATA storage object can be significantly larger following table reorganization. This

can be a result of the order in which the rows were reorganized, and the types of

table spaces used (SMS or DMS).

 Related concepts:

v “Table reorganization” in Performance Guide

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “RUNSTATS command using the ADMIN_CMD procedure” on page 144

v “REORGCHK_TB_STATS procedure – Retrieve table statistics for reorganization

evaluation” on page 553

v “REORGCHK_IX_STATS procedure – Retrieve index statistics for reorganization

evaluation” on page 550

REORG INDEXES/TABLE using ADMIN_CMD

134 Administrative SQL Routines and Views

v “SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table

function – Retrieve table reorganization snapshot information” on page 436

v “db2Reorg API - Reorganize an index or a table” in Administrative API Reference

v “GET SNAPSHOT command” in Command Reference

v “REORGCHK command” in Command Reference

v “REBIND command” in Command Reference

REORG INDEXES/TABLE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 135

RESET ALERT CONFIGURATION command using the

ADMIN_CMD procedure

Resets the health indicator settings for specific objects to the current defaults for

that object type or resets the current default health indicator settings for an object

type to the install defaults.

 Authorization:

 One of the following:

v sysadm

v sysmaint

v sysctrl

 Required connection:

 Database.

 Command syntax:

�� RESET ALERT CONFIGURATION

CONFIG

CFG

 FOR �

� DATABASE MANAGER

DB MANAGER

DBM

DATABASES

TABLESPACES

CONTAINERS

DATABASE

ON

database alias

TABLESPACE

name

CONTAINER

name

FOR

tablespace-id

 �

�
USING

health indicator name
 ��

 Command parameters:

DATABASE MANAGER

Resets alert settings for the database manager.

DATABASES

Resets alert settings for all databases managed by the database manager.

These are the settings that apply to all databases that do not have custom

settings. Custom settings are defined using the DATABASE ON database

alias clause.

CONTAINERS

Resets default alert settings for all table space containers managed by the

database manager to the install default. These are the settings that apply to

all table space containers that do not have custom settings. Custom settings

are defined using the ″CONTAINER name ON database alias″ clause.

CONTAINER name FOR tablespace-id FOR tablespace-id ON database alias

Resets the alert settings for the table space container called name, for the

table space specified using the ″FOR tablespace-id″ clause, on the database

RESET ALERT CONFIGURATION using ADMIN_CMD

136 Administrative SQL Routines and Views

specified using the ″ON database alias″ clause. If this table space container

has custom settings, then these settings are removed and the current table

space containers default is used.

TABLESPACES

Resets default alert settings for all table spaces managed by the database

manager to the install default. These are the settings that apply to all table

spaces that do not have custom settings. Custom settings are defined using

the ″TABLESPACE name ON database alias″ clause.

DATABASE ON database alias

Resets the alert settings for the database specified using the ON database

alias clause. If this database has custom settings, then these settings are

removed and the install default is used.

TABLESPACE name ON database alias

Resets the alert settings for the table space called name, on the database

specified using the ON database alias clause. If this table space has custom

settings, then these settings are removed and the install default is used.

USING health indicator name

Specifies the set of health indicators for which alert configuration will be

reset. Health indicator names consist of a two-letter object identifier

followed by a name that describes what the indicator measures. For

example:

 db.sort_privmem_util

If you do not specify this option, all health indicators for the specified

object or object type will be reset.

 Example:

 Reset alert settings for the database manager that owns the database which

contains the ADMIN_CMD procedure.

CALL SYSPROC.ADMIN_CMD(’reset alert cfg for dbm’)

 Usage notes:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

The database alias must be a local database defined in the catalog on the server

because the ADMIN_CMD procedure runs on the server only.

 Related tasks:

v “Configuring health indicators using a client application” in System Monitor

Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “UPDATE ALERT CONFIGURATION command using the ADMIN_CMD

procedure” on page 159

v “HEALTH_GET_ALERT_ACTION_CFG table function –Retrieve health alert

action configuration settings” on page 223

v “HEALTH_GET_ALERT_CFG table function – Retrieve health alert configuration

settings” on page 226

RESET ALERT CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 137

v “db2ResetAlertCfg API - Reset the alert configuration of health indicators” in

Administrative API Reference

RESET ALERT CONFIGURATION using ADMIN_CMD

138 Administrative SQL Routines and Views

RESET DATABASE CONFIGURATION command using the

ADMIN_CMD procedure

Resets the configuration of a specific database to the system defaults.

 Scope:

 This command only affects the database partition that the application is connected

to.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database.

 Command syntax:

�� RESET DATABASE

DB
 CONFIGURATION

CONFIG

CFG

 FOR database-alias ��

 Command parameters:

FOR database-alias

Specifies the alias of the database whose configuration is to be reset to the

system defaults. The database alias must be one that is defined in the

catalog on the server, and must refer to a local database on the server.

 Example:

 Reset the configuration of a database cataloged with alias SAMPLE on the server

CALL SYSPROC.ADMIN_CMD(’reset db cfg for SAMPLE’)

 Usage notes:

 To view or print a list of the database configuration parameters, use the

SYSIBMADM.DBCFG administration view.

To change the value of a configurable parameter, use the UPDATE DATABASE

CONFIGURATION command.

Changes to the database configuration file become effective only after they are

loaded into memory. All applications must disconnect from the database before

this can occur.

If an error occurs, the database configuration file does not change.

RESET DATABASE CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 139

The database configuration file cannot be reset if the checksum is invalid. This

might occur if the database configuration file is changed without using the

appropriate command. If this happens, the database must be restored to reset the

database configuration file.

The RESET DATABASE CONFIGURATION command will reset the database

configuration parameters to the pre-database configuration values, where

AUTO_RUNSTATS will be ON. SELF_TUNING_MEMORY will be reset to ON on

non-partitioned database environments and to OFF on partitioned database

environments.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

The database alias must be a local database defined in the catalog on the server

because the ADMIN_CMD procedure runs on the server only.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “RESET DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 141

v “UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 168

v “UPDATE DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 171

v “DBCFG administrative view – Retrieve database configuration parameter

information” on page 182

v “GET DATABASE CONFIGURATION command” in Command Reference

v “Configuration parameters summary” in Performance Guide

v “db2CfgSet API - Set the database manager or database configuration

parameters” in Administrative API Reference

RESET DATABASE CONFIGURATION using ADMIN_CMD

140 Administrative SQL Routines and Views

RESET DATABASE MANAGER CONFIGURATION command

using the ADMIN_CMD procedure

Resets the parameters in the database manager configuration file to the system

defaults for the instance that contains the currently connected database. The values

are reset by node type.

 Authorization:

 sysadm

 Required connection:

 Database.

 Command syntax:

�� RESET DATABASE MANAGER

DB MANAGER

DBM

 CONFIGURATION

CONFIG

CFG

 ��

 Command parameters:

 None

 Example:

 Reset the configuration of the instance which contains the database the

ADMIN_CMD stored procedure belongs to.

CALL SYSPROC.ADMIN_CMD(’reset dbm cfg’)

 Usage notes:

 This command resets all parameters set by the installation program. This could

cause error messages to be returned when restarting DB2. For example, if the

SVCENAME parameter is reset, the user will receive the SQL5043N error message

when trying to restart DB2.

Before running this command, save the output from the SYSIBMADM.DBMCFG

administrative view to a file so that you can refer to the existing settings.

Individual settings can then be updated using the UPDATE DATABASE

MANAGER CONFIGURATION command through the ADMIN_CMD procedure.

It is not recommended that the SVCENAME parameter, set by the installation

program, be modified by the user.

To view or print a list of the database manager configuration parameters, use the

SYSIBMADM.DBMCFG administration view. To change the value of a configurable

parameter, use the UPDATE DATABASE MANAGER CONFIGURATION

command through the ADMIN_CMD procedure.

For more information about these parameters, refer to the summary list of

configuration parameters and the individual parameters.

Some changes to the database manager configuration file become effective only

after they are loaded into memory. For more information on which parameters are

configurable on-line and which ones are not, see the configuration parameter

summary. Server configuration parameters that are not reset immediately are reset

RESET DATABASE MANAGER CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 141

during execution of db2start. For a client configuration parameter, parameters are

reset the next time you restart the application. If the client is the command line

processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be reset if the checksum is invalid.

This might occur if the database manager you edit the configuration file manually

and do not use the appropriate command. If the checksum is invalid, you must

reinstall the database manager to reset the database manager configuration file

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “RESET DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 139

v “UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 168

v “UPDATE DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 171

v “DBMCFG administrative view – Retrieve database manager configuration

parameter information” on page 184

RESET DATABASE MANAGER CONFIGURATION using ADMIN_CMD

142 Administrative SQL Routines and Views

REWIND TAPE command using the ADMIN_CMD procedure

Rewinds tapes for backup and restore operations to streaming tape devices. This

command is only supported on Windows operating systems.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database.

 Command syntax:

�� REWIND TAPE

ON

device
 ��

 Command parameters:

ON device

Specifies a valid tape device name. The default value is \\.\TAPE0.The

device specified must be relative to the server.

 Example:

 Rewind the tape on the device named ’\\.\TAPE1’.

CALL SYSPROC.ADMIN_CMD(’rewind tape on \\.\TAPE1’)

 Usage note:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “INITIALIZE TAPE command using the ADMIN_CMD procedure” on page 94

v “SET TAPE POSITION command using the ADMIN_CMD procedure” on page

156

REWIND TAPE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 143

RUNSTATS command using the ADMIN_CMD procedure

Updates statistics about the characteristics of a table and/or associated indexes, or

statistical views. These characteristics include number of records, number of pages,

and average record length. The optimizer uses these statistics when determining

access paths to the data.

For a table, this utility should be called when the table has had many updates, or

after reorganizing the table. For a statistical view, this utility should be called when

changes to underlying tables have substantially affected the rows returned by the

view. The view must have been previously enabled for use in query optimization

using the ALTER VIEW command.

 Scope:

 This command can be issued from any database partition in the db2nodes.cfg file.

It can be used to update the catalogs on the catalog database partition.

For tables, this command collects statistics for a table on the database partition

from which it is invoked. If the table does not exist on that database partition, the

first database partition in the database partition group is selected.

For views, this command collects statistics using data from tables on all

participating database partitions.

 Authorization:

 For tables, one of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

v LOAD authority

You do not need any explicit privilege to use this command on any declared global

temporary table that exists within its connection.

For statistical views, one of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the statistical view

In addition, you need to have appropriate privileges to access rows from the

statistical view. Specifically, for each table, statistical view or nickname referenced

in the statistical view definition, the user must have one of the following

privileges:

v sysadm or dbadm

v CONTROL

v SELECT

RUNSTATS using ADMIN_CMD

144 Administrative SQL Routines and Views

Required connection:

 Database

 Command syntax:

�� RUNSTATS ON TABLE object name

USE PROFILE

Statistics

Options

 �

�
UTIL_IMPACT_PRIORITY

priority

 ��

Statistics Options:

Table

Object

Options

 ALLOW WRITE ACCESS

ALLOW READ ACCESS

�

�
Table

Sampling

Options

Profile

Options

Table Object Options:

 FOR Index Clause

EXCLUDING XML COLUMNS

Column

Stats

Clause

EXCLUDING XML COLUMNS

AND

Index

Clause

Table Sampling Options:

 TABLESAMPLE BERNOULLI

SYSTEM
 (numeric-literal) �

�
REPEATABLE

(

integer-literal

)

Profile Options:

 SET PROFILE NONE

SET

PROFILE

UPDATE

ONLY

Index Clause:

DETAILED

SAMPLED

INDEXES

INDEX

�

 ,

index name

ALL

RUNSTATS using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 145

Column Stats Clause:

 ON Cols Clause

Distribution

Clause

ON

Cols

Clause

Distribution Clause:

 WITH DISTRIBUTION

On

Dist

Cols

Clause
 �

�
Default

Dist

Options

On Cols Clause:

�

 ON ALL COLUMNS

,

ON

COLUMNS

(

Column Option

)

ALL

COLUMNS AND

KEY

ON KEY COLUMNS

On Dist Cols Clause:

�

�

 ON ALL COLUMNS

,

ON

COLUMNS

(

Column

Option

)

ALL

COLUMNS AND

Frequency

Option

KEY

Quantile

Option

ON KEY COLUMNS

Default Dist Option:

DEFAULT

�

Frequency

Option

Quantile

Option

Frequency Option:

 NUM_FREQVALUES integer

Quantile Option:

 NUM_QUANTILES integer

Column Option:

RUNSTATS using ADMIN_CMD

146 Administrative SQL Routines and Views

�

 column name

LIKE STATISTICS

,

(

column name

)

 Command parameters:

object-name

Identifies the table or statistical view on which statistics are to be collected.

It must not be a hierarchy table. For typed tables, object-name must be the

name of the root table of the table hierarchy. The fully qualified name or

alias in the form: schema.object-namemust be used. The schema is the user

name under which the table was created.

index-name

Identifies an existing index defined on the table. The fully qualified name

in the form schema.index-name must be used. This option cannot be used for

views.

USE PROFILE

This option allows RUNSTATS to employ a previously stored statistics

profile to gather statistics for a table or statistical view. The statistics profile

is created using the SET PROFILE options and is updated using the UPDATE

PROFILE options.

FOR INDEXES

Collects and updates statistics for the indexes only. If no table statistics had

been previously collected on the table, basic table statistics are also

collected. These basic statistics do not include any distribution statistics.

This option cannot be used for views.

AND INDEXES

Collects and updates statistics for both the table and the indexes. This

option cannot be used for views.

DETAILED

Calculates extended index statistics. These are the CLUSTERFACTOR and

PAGE_FETCH_PAIRS statistics that are gathered for relatively large indexes.

This option cannot be used for views.

SAMPLED

This option, when used with the DETAILED option, allows RUNSTATS to

employ a CPU sampling technique when compiling the extended index

statistics. If the option is not specified, every entry in the index is

examined to compute the extended index statistics. This option cannot be

used for views.

ON ALL COLUMNS

Statistics collection can be done on some columns and not on others.

Columns such as LONG VARCHAR or CLOB columns are ineligible. If it is

desired to collect statistics on all eligible columns, one can use the ON ALL

COLUMNS clause. Columns can be specified either for basic statistics

collection (on-cols-clause) or in conjunction with the WITH DISTRIBUTION

clause (on-dist-cols-clause). The ON ALL COLUMNS specification is the

default option if neither of the column specific clauses are specified.

 If it is specified in the on-cols-clause, all columns will have only basic

column statistics collected unless specific columns are chosen as part of the

RUNSTATS using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 147

WITH DISTRIBUTION clause. Those columns specified as part of the WITH

DISTRIBUTION clause will also have basic and distribution statistics

collected.

 If the WITH DISTRIBUTION ON ALL COLUMNS is specified both basic statistics

and distribution statistics are collected for all eligible columns. Anything

specified in the on-cols-clause is redundant and therefore not necessary.

ON COLUMNS

This clause allows the user to specify a list of columns for which to collect

statistics. If you specify group of columns, the number of distinct values

for the group will be collected. When you run RUNSTATS on a table

without gathering index statistics, and specify a subset of columns for

which statistics are to be gathered, then:

1. Statistics for columns not specified in the RUNSTATS command but

which are the first column in an index are NOT reset.

2. Statistics for all other columns not specified in the RUNSTATS

command are reset.

This clause can be used in the on-cols-clause and the

on-dist-cols-clause. Collecting distribution statistics for a group of

columns is not currently supported.

 If XML type columns are specified in a column group, the XML type

columns will be ignored for the purpose of collecting distinct values for the

group. However, basic XML column statistics will be collected for the XML

type columns in the column group.

EXCLUDING XML COLUMNS

This clause allows you to omit all XML type columns from statistics

collection. This clause facilitates the collection of statistics on non-XML

columns because the inclusion of XML data can require greater system

resources. The EXCLUDING XML COLUMNS clause takes precedence over other

clauses that specify XML columns for statistics collection. For example, if

you use the EXCLUDING XML COLUMNS clause, and you also specify XML type

columns with the ON COLUMNS clause or you use the ON ALL COLUMNS clause,

all XML type columns will be ignored during statistics collection.

ON KEY COLUMNS

Instead of listing specific columns, you can choose to collect statistics on

columns that make up all the indexes defined on the table. It is assumed

here that critical columns in queries are also those used to create indexes

on the table. If there are no indexes on the table, it is as good as an empty

list and no column statistics will be collected. It can be used in the

on-cols-clause or the on-dist-cols-clause. It is redundant in the

on-cols-clause if specified in both clauses since the WITH DISTRIBUTION

clause is used to specify collection of both basic and distribution statistics.

XML type columns are by definition not a key column and will not be

included for statistics collection by the ON KEY COLUMNS clause. This option

cannot be used for views.

column-name

Name of a column in the table or statistical view. If you specify the name

of an ineligible column for statistics collection, such as a non-existent

column or a mistyped column name, error (-205) is returned. Two lists of

columns can be specified, one without distribution and one with

distribution. If the column is specified in the list that is not associated with

the WITH DISTRIBUTION clause only basic column statistics will be collected.

RUNSTATS using ADMIN_CMD

148 Administrative SQL Routines and Views

If the column appears in both lists, distribution statistics will be collected

(unless NUM_FREQVALUES and NUM_QUANTILES are set to zero).

NUM_FREQVALUES

Defines the maximum number of frequency values to collect. It can be

specified for an individual column in the ON COLUMNS clause. If the value is

not specified for an individual column, the frequency limit value will be

picked up from that specified in the DEFAULT clause. If it is not specified

there either, the maximum number of frequency values to be collected will

be what is set in the NUM_FREQVALUES database configuration parameter.

NUM_QUANTILES

Defines the maximum number of distribution quantile values to collect. It

can be specified for an individual column in the ON COLUMNS clause. If the

value is not specified for an individual column, the quantile limit value

will be picked up from that specified in the DEFAULT clause. If it is not

specified there either, the maximum number of quantile values to be

collected will be what is set in the NUM_QUANTILES database configuration

parameter.

WITH DISTRIBUTION

This clause specifies that both basic statistics and distribution statistics are

to be collected on the columns. If the ON COLUMNS clause is not specified,

distribution statistics are collected on all the columns of the table or

statistical view (excluding columns that are ineligible such as CLOB and

LONG VARCHAR). If the ON COLUMNS clause is specified, distribution

statistics are collected only on the column list provided (excluding those

ineligible for statistics collection). If the clause is not specified, only basic

statistics are collected.

 Collection of distribution statistics on column groups is currently not

supported; distribution statistics will not be collected when column groups

are specified in the WITH DISTRIBUTION ON COLUMNS clause.

DEFAULT

If NUM_FREQVALUES or NUM_QUANTILES are specified, these values will be used

to determine the maximum number of frequency and quantile statistics to

be collected for the columns, if these are not specified for individual

columns in the ON COLUMNS clause. If the DEFAULT clause is not specified, the

values used will be those in the corresponding database configuration

parameters.

LIKE STATISTICS

When this option is specified additional column statistics are collected.

These statistics are the SUB_COUNT and the SUB_DELIM_LENGTH statistics in

SYSSTAT.COLUMNS. They are collected for string columns only and they are

used by the query optimizer to improve the selectivity estimates for

predicates of the type "column LIKE ’%xyz’" and "column LIKE ’%xyz%’"

ALLOW WRITE ACCESS

Specifies that other users can read from and write to the table(s) while

statistics are calculated. For statistical views, these are the base tables

referenced in the view definition.

 The ALLOW WRITE ACCESS option is not recommended for tables that will

have a lot of inserts, updates or deletes occurring concurrently. The

RUNSTATS command first performs table statistics and then performs

index statistics. Changes in the table’s state between the time that the table

and index statistics are collected might result in inconsistencies. Although

having up-to-date statistics is important for the optimization of queries, it

RUNSTATS using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 149

is also important to have consistent statistics. Therefore, statistics should be

collected at a time when inserts, updates or deletes are at a minimum.

ALLOW READ ACCESS

Specifies that other users can have read-only access to the table(s) while

statistics are calculated. For statistical views, these are the base tables

referenced in the view definition.

TABLESAMPLE BERNOULLI

This option allows RUNSTATS to collect statistics on a sample of the rows

from the table or statistical view. Bernoulli sampling considers each row

individually, including that row with probability P/100 (where P is the

value of numeric-literal) and excluding it with probability 1-P/100. Thus, if

the numeric-literal were evaluated to be the value 10, representing a 10

percent sample, each row would be included with probability 0.1 and be

excluded with probability 0.9. Unless the optional REPEATABLE clause is

specified, each execution of RUNSTATS will usually yield a different such

sample of the table. All data pages will be retrieved through a table scan

but only the percentage of rows as specified through the numeric-literal

parameter will be used for the statistics collection.

TABLESAMPLE SYSTEM

This option allows RUNSTATS to collect statistics on a sample of the data

pages from the table(s). System sampling considers each page individually,

including that page with probability P/100 (where P is the value of

numeric-literal) and excluding it with probability 1-P/100. Unless the

optional REPEATABLE clause is specified, each execution of RUNSTATS will

usually yield a different such sample of the table. The size of the sample is

controlled by the numeric-literal parameter in parentheses, representing an

approximate percentage P of the table to be returned. Only a percentage of

the data pages as specified through the numeric-literal parameter will be

retrieved and used for the statistics collection. On statistical views, system

sampling is restricted to a specific class of views. These are views that

either access a single base table or nickname, or that access multiple bases

tables that are joined via referential-integrity relationships. In either case,

there must not be any local predicates in the view definition. If system

sampling is specified on a view that cannot support such sampling, an

SQL20288N error is raised.

REPEATABLE (integer-literal)

Adding the REPEATABLE clause to the TABLESAMPLE clause ensures that

repeated executions of RUNSTATS return the same sample. The

integer-literal parameter is a non-negative integer representing the seed to

be used in sampling. Passing a negative seed will result in an error

(SQL1197N). The sample set might still vary between repeatable

RUNSTATS invocations if activity against the table or statistical view

resulted in changes to the table or statistical view data since the last time

TABLESAMPLE REPEATABLE was run. Also, the method by which the sample

was obtained as specified by the bernoulli or system keyword, must also

be the same to ensure consistent results.

numeric-literal

The numeric-literal parameter specifies the size of the sample to be

obtained, as a percentage P. This value must be a positive number that is

less than or equal to 100, and can be between 1 and 0. For example, a

value of 0.01 represents one one-hundredth of a percent, such that 1 row in

10,000 would be sampled, on average. A value of 0 or 100 will be treated

by the DB2 database system as if sampling was not specified, regardless of

RUNSTATS using ADMIN_CMD

150 Administrative SQL Routines and Views

whether TABLESAMPLE BERNOULLI or TABLESAMPLE SYSTEM is specified. A

value greater than 100 or less than 0 will be treated by DB2 as an error

(SQL1197N).

SET PROFILE NONE

Specifies that no statistics profile will be set for this RUNSTATS

invocation.

SET PROFILE

Allows RUNSTATS to generate and store a specific statistics profile in the

system catalog tables and executes the RUNSTATS command options to

gather statistics.

SET PROFILE ONLY

Allows RUNSTATS to generate and store a specific statistics profile in the

system catalog tables without running the RUNSTATS command options.

UPDATE PROFILE

Allows RUNSTATS to modify an existing statistics profile in the system

catalog tables, and runs the RUNSTATS command options of the updated

statistics profile to gather statistics.

UPDATE PROFILE ONLY

Allows RUNSTATS to modify an existing statistics profile in the system

catalog tables without running the RUNSTATS command options of the

updated statistics profile.

UTIL_IMPACT_PRIORITY priority

Specifies that RUNSTATS will be throttled at the level specified by priority.

priority is a number in the range of 1 to 100, with 100 representing the

highest priority and 1 representing the lowest. The priority specifies the

amount of throttling to which the utility is subjected. All utilities at the

same priority undergo the same amount of throttling, and utilities at lower

priorities are throttled more than those at higher priorities. If priority is not

specified, the RUNSTATS will have the default priority of 50. Omitting the

UTIL_IMPACT_PRIORITY keyword will invoke the RUNSTATS utility without

throttling support. If the UTIL_IMPACT_PRIORITY keyword is specified, but

the util_impact_lim configuration parameter is set to 100, then the utility

will run unthrottled. This option cannot be used for views.

 In a partitioned database, when used on tables, the RUNSTATS command collects

the statistics on only a single database partition. If the database partition from

which the RUNSTATS command is executed has a partition of the table, then the

command executes on that database partition. Otherwise, the command executes

on the first database partition in the database partition group across which the

table is partitioned.

 Usage Notes:

 1. When there are detached partitions on a partitioned table, index keys that still

belong to detached data partitions which require cleanup will not be counted

as part of the keys in the statistics. These keys are not counted because they

are invisible and no longer part of the table. They will eventually get removed

from the index by asynchronous index cleanup. As a result, statistics collected

before asynchronous index cleanup is run will be misleading. If the

RUNSTATS command is issued before asynchronous index cleanup

completes, it will likely generate a false alarm for index reorganization or

index cleanup based on the inaccurate statistics. Once asynchronous index

RUNSTATS using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 151

cleanup is run, all the index keys that still belong to detached data partitions

which require cleanup will be removed and this may eliminate the need for

index reorganization.

For partitioned tables, you are encouraged to issue the RUNSTATS command

after an asynchronous index cleanup has completed in order to generate

accurate index statistics in the presence of detached data partitions. To

determine whether or not there are detached data partitions in the table, you

can check the status field in the SYSDATAPARTITIONS table and look for the

value I (index cleanup) or D (detached with dependant MQT).

 2. Command execution status is returned in the SQLCA resulting from the CALL

statement.

 3. It is recommended to run the RUNSTATS command:

v On tables that have been modified considerably (for example, if a large

number of updates have been made, or if a significant amount of data has

been inserted or deleted or if LOAD has been done without the statistics

option during LOAD).

v On tables that have been reorganized (using REORG, REDISTRIBUTE

DATABASE PARTITION GROUP).

v On tables which have been row compressed.

v When a new index has been created.

v Before binding applications whose performance is critical.

v When the prefetch quantity is changed.

v On statistical views whose underlying tables have been modified

substantially so as to change the rows that are returned by the view.

v After LOAD has been executed with the STATISTICS option, use the

RUNSTATS utility to collect statistics on XML columns. Statistics for XML

columns are never collected during LOAD, even when LOAD is executed

with the STATISTICS option. When RUNSTATS is used to collect statistics

for XML columns only, existing statistics for non-XML columns that have

been collected by LOAD or a previous execution of the RUNSTATS utility

are retained. In the case where statistics on some XML columns have been

collected previously, the previously collected statistics for an XML column

will either be dropped if no statistics on that XML column are collected by

the current command, or be replaced if statistics on that XML column are

collected by the current command.
 4. The options chosen must depend on the specific table and the application. In

general:

v If the table is a very critical table in critical queries, is relatively small, or

does not change too much and there is not too much activity on the system

itself, it might be worth spending the effort on collecting statistics in as

much detail as possible.

v If the time to collect statistics is limited, if the table is relatively large, or if

the table is updated frequently, it might be beneficial to execute RUNSTATS

limited to the set of columns that are used in predicates. This way, you will

be able to execute the RUNSTATS command more often.

v If time to collect statistics is very limited and the effort to tailor the

RUNSTATS command on a table by table basis is a major issue, consider

collecting statistics for the ″KEY″ columns only. It is assumed that the index

contains the set of columns that are critical to the table and are most likely

to appear in predicates.

RUNSTATS using ADMIN_CMD

152 Administrative SQL Routines and Views

v If time to collect statistics is very limited and table statistics are to be

gathered, consider using the TABLESAMPLE option to collect statistics on a

subset of the table data.

v If there are many indexes on the table and DETAILED (extended) information

on the indexes might improve access plans, consider the SAMPLED option to

reduce the time it takes to collect statistics. Regardless of whether you use

the SAMPLED option, collecting detailed statistics on indexes is time

consuming. Do not collect these statistics unless you are sure that they will

be useful for your queries.

v If there is skew in certain columns and predicates of the type "column =

constant", it might be beneficial to specify a larger NUM_FREQVALUES value

for that column

v Collect distribution statistics for all columns that are used in equality

predicates and for which the distribution of values might be skewed.

v For columns that have range predicates (for example "column >=

constant", "column BETWEEN constant1 AND constant2") or of the type

"column LIKE ’%xyz’", it might be beneficial to specify a larger

NUM_QUANTILES value.

v If storage space is a concern and one cannot afford too much time on

collecting statistics, do not specify high NUM_FREQVALUES or NUM_QUANTILES

values for columns that are not used in predicates.

v If index statistics are requested, and statistics have never been run on the

table containing the index, statistics on both the table and indexes are

calculated.

v If statistics for XML columns in the table are not required, the EXCLUDING

XML COLUMNS option can be used to exclude all XML columns. This option

takes precedence over all other clauses that specify XML columns for

statistics collection.
 5. After the command is run note the following:

v A COMMIT should be issued to release the locks.

v To allow new access plans to be generated, the packages that reference the

target table must be rebound.

v Executing the command on portions of the table could result in

inconsistencies as a result of activity on the table since the command was

last issued. In this case a warning message is returned. Issuing RUNSTATS

on the table only might make table and index level statistics inconsistent.

For example, you might collect index level statistics on a table and later

delete a significant number of rows from the table. If you then issue

RUNSTATS on the table only, the table cardinality might be less than

FIRSTKEYCARD, which is an inconsistency. In the same way, if you collect

statistics on a new index when you create it, the table level statistics might

be inconsistent.
 6. The RUNSTATS command will drop previously collected distribution

statistics if table statistics are requested. For example, RUNSTATS ON TABLE, or

RUNSTATS ON TABLE ... AND INDEXES ALL will cause previously collected

distribution statistics to be dropped. If the command is run on indexes only

then previously collected distribution statistics are retained. For example,

RUNSTATS ON TABLE ... FOR INDEXES ALL will cause the previously collected

distribution statistics to be retained. If the RUNSTATS command is run on XML

columns only, then previously collected basic column statistics and

distribution statistics are retained. In the case where statistics on some XML

columns have been collected previously, the previously collected statistics for

an XML column will either be dropped if no statistics on that XML column

RUNSTATS using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 153

are collected by the current command, or be replaced if statistics on that XML

column are collected by the current command.

 7. For range-clustered tables, there is a special system-generated index in the

catalog tables which represents the range ordering property of range-clustered

tables. When statistics are collected on this type of table, if the table is to be

included as part of the statistics collection, statistics will also be collected for

the system-generated index. The statistics reflect the fast access of the range

lookups by representing the index as a two-level index with as many pages as

the base data table, and having the base data clustered perfectly along the

index order.

 8. In the on-dist-cols clause of the command syntax, the Frequency Option and

Quantile Option parameters are currently not supported for Column GROUPS.

These options are supported for single columns.

 9. There are three prefetch statistics that cannot be computed when working in

DMS mode. When looking at the index statistics in the index catalogs, you

will see a -1 value for the following statistics:

v AVERAGE_SEQUENCE_FETCH_PAGES

v AVERAGE_SEQUENCE_FETCH_GAP

v AVERAGE_RANDOM_FETCH_PAGES

10. Runstats sampling through TABLESAMPLE only occurs with table data pages and

not index pages. When index statistics as well as sampling is requested, all the

index pages are scanned for statistics collection. It is only in the collection of

table statistics where TABLESAMPLE is applicable. However, a more efficient

collection of detailed index statistics is available through the SAMPLED DETAILED

option. This is a different method of sampling than that employed by

TABLESAMPLE and only applies to the detailed set of index statistics.

11. A statistics profile can be set or updated for the table or statistical view

specified in the RUNSTATS command, by using the set profile or update

profile options. The statistics profile is stored in a visible string format, which

represents the RUNSTATS command, in the STATISTICS_PROFILE column of

the SYSIBM.SYSTABLES system catalog table.

12. Statistics collection on XML type columns is governed by two DB2 database

system registry values: DB2_XML_RUNSTATS_PATHID_K and

DB2_XML_RUNSTATS_PATHVALUE_K. These two parameters are similar to the

NUM_FREQVALUES parameter in that they specify the number of frequency values

to collect. If not set, a default of 200 will be used for both parameters.

13. RUNSTATS acquires an IX table lock on SYSTABLES and a U lock on the row

for the table on which stats are being gathered at the beginning of

RUNSTATS. Operations can still read from SYSTABLES including the row with

the U lock. Write operations are also possible, providing they do not occur

against the row with the U lock. However, another reader or writer will not be

able acquire an S lock on SYSTABLES because of RUNSTATS’ IX lock.

 Example:

 Collect statistics on all columns used in indexes and on all indexes.

CALL SYSPROC.ADMIN_CMD ('RUNSTATS ON TABLE db2user.employee

 ON KEY COLUMNS and INDEXES ALL')

 Related concepts:

v “Automatic statistics collection” in Performance Guide

 Related tasks:

RUNSTATS using ADMIN_CMD

154 Administrative SQL Routines and Views

v “Collecting catalog statistics” in Performance Guide

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “REORG INDEXES/TABLE command using the ADMIN_CMD procedure” on

page 126

v “ADMIN_COPY_SCHEMA procedure – Copy a specific schema and its objects”

on page 498

v “db2Runstats API - Update statistics for tables and indexes” in Administrative

API Reference

RUNSTATS using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 155

SET TAPE POSITION command using the ADMIN_CMD

procedure

Sets the positions of tapes for backup and restore operations to streaming tape

devices. This command is only supported on Windows operating systems.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database.

 Command syntax:

�� SET TAPE POSITION

ON

device
 TO position ��

 Command parameters:

ON device

Specifies a valid tape device name. The default value is \\.\TAPE0. The

device specified must be relative to the server.

TO position

Specifies the mark at which the tape is to be positioned. DB2 for Windows

writes a tape mark after every backup image. A value of 1 specifies the

first position, 2 specifies the second position, and so on. If the tape is

positioned at tape mark 1, for example, archive 2 is positioned to be

restored.

 Example:

 Because DB2 writes a tape mark after every backup image, specifying a position of

1 will move the tape to the start of the second archive on the tape.

CALL SYSPROC.ADMIN_CMD(’set tape position to 1’)

 Usage note:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “INITIALIZE TAPE command using the ADMIN_CMD procedure” on page 94

v “REWIND TAPE command using the ADMIN_CMD procedure” on page 143

SET TAPE POSITION using ADMIN_CMD

156 Administrative SQL Routines and Views

UNQUIESCE DATABASE command using the ADMIN_CMD

procedure

Restores user access to databases which have been quiesced for maintenance or

other reasons. UNQUIESCE restores user access without necessitating a shutdown

and database restart.

Unless specifically designated, no user except those with sysadm, sysmaint, or sysctrl

has access to a database while it is quiesced. Therefore an UNQUIESCE is required

to restore general access to a quiesced database.

 Scope:

 UNQUIESCE DB restores user access to all objects in the quiesced database.

To stop the instance and unquiesce it and all its databases, issue the db2stop

command. Stopping and restarting DB2 will unquiesce all instances and databases.

 Authorization:

 One of the following:

For database level unquiesce:

v sysadm

v dbadm

 Command syntax:

�� UNQUIESCE DB ��

 Required connection:

 Database

 Command parameters:

DB Unquiesce the database. User access will be restored to all objects in the

database.

 Examples:

 Unquiescing a Database

CALL SYSPROC.ADMIN_CMD(’unquiesce db’)

This command will unquiesce the database that had previously been quiesced.

 Usage note:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “QUIESCE DATABASE command using the ADMIN_CMD procedure” on page

117

UNQUIESCE DATABASE using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 157

v “QUIESCE TABLESPACES FOR TABLE command using the ADMIN_CMD

procedure” on page 119

v “db2DatabaseUnquiesce API - Unquiesce database” in Administrative API

Reference

UNQUIESCE DATABASE using ADMIN_CMD

158 Administrative SQL Routines and Views

UPDATE ALERT CONFIGURATION command using the

ADMIN_CMD procedure

 Updates the alert configuration settings for health indicators.

 Authorization:

 One of the following:

v sysadm

v sysmaint

v sysctrl

 Required Connection:

 Database.

 Command Syntax:

�� UPDATE ALERT CONFIGURATION

CONFIG

CFG

 FOR DATABASE MANAGER

DB MANAGER

DBM

DATABASES

CONTAINERS

TABLESPACES

DATABASE

ON

database alias

TABLESPACE

name

CONTAINER

name

FOR

tablespace-id

 USING health indicator name �

�

�

�

�

�

�

 ,

SET

parameter name

value

,

,

UPDATE ACTION

SCRIPT

pathname

ON

WARNING

SET

parameter name

value

TASK

name

ALARM

ALLALERT

ATTENTION

state

,

DELETE ACTION

SCRIPT

pathname

ON

WARNING

TASK

name

ALARM

ALLALERT

ATTENTION

state

,

ADD ACTION

SCRIPT

pathname

<Add Script Details>

ON

WARNING

USER

username

USING

password

TASK

name

ALARM

ON

hostname

ALLALERT

ATTENTION

state

��

Add Script Details:

 TYPE DB2

STATEMENT TERMINATION CHARACTER

character

STMT TERM CHAR

TERM CHAR

OPERATING SYSTEM

OS

COMMAND LINE PARAMETERS

parms

PARMS

 �

� WORKING DIRECTORY pathname

 Command Parameters:

DATABASE MANAGER

Updates alert settings for the database manager.

DATABASES

Updates alert settings for all databases managed by the database manager.

UPDATE ALERT CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 159

These are the settings that apply to all databases that do not have custom

settings. Custom settings are defined using the ″DATABASE ON database

alias″ clause.

CONTAINERS

Updates alert settings for all table space containers managed by the

database manager. These are the settings that apply to all table space

containers that do not have custom settings. Custom settings are defined

using the ″CONTAINER name ON database alias″ clause.

TABLESPACES

Updates alert settings for all table spaces managed by the database

manager. These are the settings that apply to all table spaces that do not

have custom settings. Custom settings are defined using the ″TABLESPACE

name ON database alias″ clause.

DATABASE ON database alias

Updates the alert settings for the database specified using the ″ON

database alias″ clause. If this database has custom settings, then they

override the settings for all databases for the instance, which is specified

using the DATABASES parameter.

CONTAINER name FOR tablespace-id ON database alias

Updates the alert settings for the table space container called name, for the

table space specified using the ″FOR tablespace-id″ clause, on the database

specified using the ″ON database alias″ clause. If this table space container

has custom settings, then they override the settings for all table space

containers for the database, which is specified using the CONTAINERS

parameter.

TABLESPACE name ON database alias

Updates the alert settings for the table space called name, on the database

specified using the ″ON database alias″ clause. If this table space has

custom settings, then they override the settings for all table spaces for the

database, which is specified using the TABLESPACES parameter.

USING health indicator name

Specifies the set of health indicators for which alert configuration will be

updated. Health indicator names consist of a two-letter object identifier

followed by a name which describes what the indicator measures. For

example:

 db.sort_privmem_util

SET parameter-name value

Updates the alert configuration element, parameter-name, of the health

indicator to the specified value. parameter-name must be one of the

following:

v ALARM: the value is a health indicator unit.

v WARNING: the value is a health indicator unit.

v SENSITIVITY: the value is in seconds.

v ACTIONSENABLED: the value can be either YES or NO.

v THRESHOLDSCHECKED: the value can be either YES or NO.

The list of possible health indicator units for your specific DB2 version can

be gathered by running the following query :

SELECT SUBSTR(UNIT,1,80) AS UNIT

 FROM TABLE(HEALTH_GET_IND_DEFINITION(’’)) AS T GROUP BY UNIT

UPDATE ALERT CONFIGURATION using ADMIN_CMD

160 Administrative SQL Routines and Views

UPDATE ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT |

ATTENTION state]

Specifies that the script attributes of the predefined script with absolute

pathname pathname will be updated according to the following clause:

SET parameter-name value

Updates the script attribute, parameter-name, to the specified

value. parameter-name must be one of the following:

v SCRIPTTYPE

OS or DB2 are the valid types.

v WORKINGDIR

v TERMCHAR

v CMDLINEPARMS

The command line parameters that you specify for the operating

system script will precede the default supplied parameters . The

parameters that are sent to the operating system script are:

– List of user supplied parameters

– Health indicator short name

– Fully qualified object name

– Health indicator value

– Alert state
v USERID

v PASSWORD

v SYSTEM

UPDATE ACTION TASK name ON [WARNING | ALARM | ALLALERT |

ATTENTION state]

Specifies that the task attributes of the task with name name will be

updated according to the following clause:

SET parameter-name value

Updates the task attribute, parameter-name, to the specified value.

parameter-name must be one of the following:

v USERID

v PASSWORD

v SYSTEM

DELETE ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT |

ATTENTION state]

Removes the action script with absolute pathname pathname from the list

of alert action scripts.

DELETE ACTION TASK name ON [WARNING | ALARM | ALLALERT |

ATTENTION state]

Removes the action task called name from the list of alert action tasks.

ADD ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT |

ATTENTION state]

Specifies that a new action script with absolute pathname pathname is to

be added, the attributes of which are given by the following:

TYPE An action script must be either a DB2 Command script or an

operating system script:

v DB2

v OPERATING SYSTEM

UPDATE ALERT CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 161

If it is a DB2 Command script, then the following clause allows

one to optionally specify the character, character, that is used in the

script to terminate statements:

 STATEMENT TERMINATION CHARACTER ;

If it is an operating system script, then the following clause allows

one to optionally specify the command-line parameters, parms,

that would be passed to the script upon invocation: COMMAND

LINE PARAMETERS parms

WORKING DIRECTORY pathname

Specifies the absolute pathname, pathname, of the directory in

which the script will be executed.

USER username USING password

Specifies the user account, username, and associated password,

password, under which the script will be executed. When using the

ADD ACTION option, the username and password might be exposed

in the network (where the username and password are sent

unencrypted), the db2diag.log, trace files, dump file, snapshot

monitor (dynamic SQL snapshot), system monitor snapshots, a

number of event monitors (such as statement, deadlock), Query

Patroller, explain tables, db2pd output (such as package cache and

lock timeout mechanisms) and db2 audit records.

ADD ACTION TASK name ON [WARNING | ALARM | ALLALERT |

ATTENTIONstate]

Specifies that a new task, called name, is to be added to be run ON the

specified condition

ON [WARNING | ALARM | ATTENTION state]

Specifies the condition on which the action will run. For threshold-based

HIs, this is WARNING or ALARM. For state-based HIs, this can be a

numeric state as documented in a table to be provided for each state-based

HI (for example, table space states), or a text identifier for this state.

 Example:

 Add an action for the db.log_fs_util indicator that will execute the script

/home/test/scripts/logfsutilact when there is an alarm on the system with

hostname 'plato'.

CALL SYSPROC.ADMIN_CMD(’update alert cfg for databases using

 db.log_fs_util add action script /home/test/scripts/logfsutilact

 type os command line parameters "param1 param2" working

 directory /tmp on alarm on plato user dricard using mypasswdv’)

To check the alert configuration after it has been set, you can use the

HEALTH_GET_IND_DEFINITION and HEALTH_GET_ALERT_ACTION_CFG

table functions as follows:

SELECT OBJECTTYPE, ID, CONDITION, ACTIONTYPE,

 SUBSTR(ACTIONNAME,1,50) AS ACTION_NAME

 FROM TABLE(SYSPROC.HEALTH_GET_ALERT_ACTION_CFG(’DB’,’G’,’’,’’))

 AS ALERT_ACTION_CFG

The following is an example of output from this query:

UPDATE ALERT CONFIGURATION using ADMIN_CMD

162 Administrative SQL Routines and Views

OBJECTTYPE ID CONDITION ACTIONTYPE ACTION_NAME

---------- --...- ---------...- ---------- ---------------------------------...-

DB 1006 ALARM S /home/dricard/scripts/logfsutilact

 1 record(s) selected. ...

 Usage notes:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

The database alias must be defined in the catalog on the server and be local to the

server.

The pathname must be with a fully-qualified server path name.

 Related tasks:

v “Configuring health indicators using a client application” in System Monitor

Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “RESET ALERT CONFIGURATION command using the ADMIN_CMD

procedure” on page 136

v “db2UpdateAlertCfg API - Update the alert configuration settings for health

indicators” in Administrative API Reference

UPDATE ALERT CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 163

UPDATE CONTACT command using the ADMIN_CMD

procedure

Updates the attributes of a contact that is defined on the local system. A contact is

a user to whom the Scheduler and Health Monitor send messages. To create a

contact, use the ADD CONTACT command. The setting of the Database

Administration Server (DAS) contact_host configuration parameter determines

whether the list is local or global.

 Authorization:

 None.

 Required connection:

 Database. The DAS must be running.

 Command syntax:

��

�

 ,

UPDATE CONTACT

name

USING

keyword

value

��

 Command parameters:

CONTACT name

The name of the contact that will be updated.

USING keyword value

Specifies the contact parameter to be updated (keyword) and the value to

which it will be set (value). The valid set of keywords is:

ADDRESS

The email address that is used by the SMTP server to send the

notification.

TYPE Whether the address is for an email address or a pager.

MAXPAGELEN

The maximum number of characters that the pager can accept.

DESCRIPTION

A textual description of the contact. This has a maximum length of

128 characters.

 Example:

 Update the address of user ’test’ to ’newaddress@test.com’.

CALL SYSPROC.ADMIN_CMD(’update contact test using address newaddress@test.com’)

 Usage notes:

 The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

UPDATE CONTACT using ADMIN_CMD

164 Administrative SQL Routines and Views

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADD CONTACT command using the ADMIN_CMD procedure” on page 44

v “ADD CONTACTGROUP command using the ADMIN_CMD procedure” on

page 46

v “DROP CONTACT command using the ADMIN_CMD procedure” on page 68

v “DROP CONTACTGROUP command using the ADMIN_CMD procedure” on

page 69

v “UPDATE CONTACTGROUP command using the ADMIN_CMD procedure” on

page 166

v “db2admin - DB2 administration server command” in Command Reference

v “db2UpdateContact API - Update the attributes of a contact” in Administrative

API Reference

UPDATE CONTACT using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 165

UPDATE CONTACTGROUP command using the ADMIN_CMD

procedure

 Updates the attributes of a contact group that is defined on the local system. A

contact group is a list of users who should be notified by the Scheduler and the

Health Monitor. The setting of the Database Administration Server (DAS)

contact_host configuration parameter determines whether the list is local or global.

 Authorization:

 None

 Required Connection:

 Database. The DAS must be running.

 Command Syntax:

�� UPDATE CONTACTGROUP name �

�

�

 ,

ADD

CONTACT

name

DROP

GROUP

DESCRIPTION

new description

��

 Command Parameters:

CONTACTGROUP name

Name of the contact group which will be updated.

ADD CONTACT name

Specifies the name of the new contact to be added to the group. A contact

can be defined with the ADD CONTACT command after it has been added

to a group.

DROP CONTACT name

Specifies the name of a contact in the group that will be dropped from the

group.

ADD GROUP name

Specifies the name of the new contact group to be added to the group.

DROP GROUP name

Specifies the name of a contact group that will be dropped from the group.

DESCRIPTION new description

Optional. A new textual description for the contact group.

 Example:

 Add the contact named ’cname2’ to the contact group named ’gname1’:

CALL SYSPROC.ADMIN_CMD(’update contactgroup gname1 add contact cname2’)

 Usage notes:

 The DAS must have been created and be running.

UPDATE CONTACTGROUP using ADMIN_CMD

166 Administrative SQL Routines and Views

Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “ADD CONTACT command using the ADMIN_CMD procedure” on page 44

v “ADD CONTACTGROUP command using the ADMIN_CMD procedure” on

page 46

v “DROP CONTACT command using the ADMIN_CMD procedure” on page 68

v “DROP CONTACTGROUP command using the ADMIN_CMD procedure” on

page 69

v “UPDATE CONTACT command using the ADMIN_CMD procedure” on page

164

v “db2admin - DB2 administration server command” in Command Reference

v “db2UpdateContactGroup API - Update the attributes of a contact group” in

Administrative API Reference

UPDATE CONTACTGROUP using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 167

UPDATE DATABASE CONFIGURATION command using the

ADMIN_CMD procedure

Modifies individual entries in a specific database configuration file.

A database configuration file resides on every database partition on which the

database has been created.

 Scope:

 This command only affects the database partition on which it is executed.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database. The database connection must be local to the instance containing the

connected database.

 Command syntax:

�� UPDATE DATABASE

DB
 CONFIGURATION

CONFIG

CFG

FOR

database-alias
 �

�

�

USING

config-keyword value

IMMEDIATE

DEFERRED

��

 Command parameters:

DEFERRED

Make the changes only in the configuration file, so that the changes take

effect the next time you reactivate the database.

FOR database-alias

Specifies the alias of the database whose configuration is to be updated.

Specifying the database alias is not required when a database connection

has already been established. The database alias must be defined locally on

the server. You can update the configuration file for another database

residing under the same database instance. For example, if you are

connected only to database db11, and issue update db config for alias

db22 using immediate:

v If there is no active connection on db22, the update will be successful

because only the configuration file needs to be updated. A new

connection (which will activate the database) will see the new change in

memory.

UPDATE DATABASE CONFIGURATION using ADMIN_CMD

168 Administrative SQL Routines and Views

v If there are active connections on db22 from other applications, the

update will work on disk but not in memory. You will receive a warning

saying that the database needs to be restarted.

IMMEDIATE

Make the changes immediately, while the database is running.

IMMEDIATE is the default action. Since the ADMIN_CMD procedure

requires a database connection, the changes will be effective immediately

for any dynamically configurable parameters for the connected database.

USING config-keyword value

config-keyword specifies the database configuration parameter to be

updated. value specifies the value to be assigned to the parameter.

 Example:

 Set the database configuration parameter sortheap to a value of 1000 on the

database partition to which the application is currently connected to.

CALL SYSPROC.ADMIN_CMD ('UPDATE DB CFG USING sortheap 1000')

 Usage notes:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

The database-alias must be an alias name that is defined on the server.

The command affects only the database partition to which the application is

currently connected.

To view or print a list of the database configuration parameters, use the

SYSIBMADM.DBCFG administration view.

To reset all the database configuration parameters to the recommended defaults,

use the RESET DATABASE CONFIGURATION command using the ADMIN_CMD

procedure.

To change a database configuration parameter, use the UPDATE DATABASE

CONFIGURATION command through the ADMIN_CMD procedure. For example,

to change the logging mode to “archival logging” on a single-partition database

environment containing a database called ZELLMART, use:

CALL SYSPROC.ADMIN_CMD ('update db cfg for zellmart using logretain recovery')

To check that the logretain configuration parameter has changed, use:

SELECT * FROM SYSIBMADM.DBCFG WHERE NAME='logretain'

It is recommended that the database configuration parameters be set to the same

value on all database partitions. You can do this for each database partition by:

1. setting the DB2NODE variable to a database partition number

2. connecting to the database partition

3. updating the database configuration parameters using UPDATE DATABASE

CONFIGURATION command through the ADMIN_CMD procedure

4. disconnecting from the database partition

UPDATE DATABASE CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 169

For more information about DB2 configuration parameters and the values available

for each type of database node, see the individual configuration parameter

descriptions. The values of these parameters differ for each type of database node

configured (server, client, or server with remote clients).

Not all parameters can be updated.

Some changes to the database configuration file become effective only after they

are loaded into memory. All applications must disconnect from the database before

this can occur. For more information on which parameters are configurable on-line

and which ones are not, see summary list of configuration parameters.

If an error occurs, the database configuration file does not change. The database

configuration file cannot be updated if the checksum is invalid. This might occur if

the database configuration file is changed without using the appropriate command.

If this happens, the database must be restored to reset the database configuration

file.

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

 Related reference:

v “GET DATABASE CONFIGURATION command” in Command Reference

v “db2CfgSet API - Set the database manager or database configuration

parameters” in Administrative API Reference

v “Configuration parameters summary” in Performance Guide

v “ADMIN_CMD – Run administrative commands” on page 38

v “DBCFG administrative view – Retrieve database configuration parameter

information” on page 182

v “RESET DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 139

v “RESET DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 141

v “UPDATE DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 171

UPDATE DATABASE CONFIGURATION using ADMIN_CMD

170 Administrative SQL Routines and Views

UPDATE DATABASE MANAGER CONFIGURATION command

using the ADMIN_CMD procedure

Modifies individual entries in the database manager configuration file for the

instance that contains the currently connected database.

 Authorization:

 sysadm

 Required connection:

 Database.

 Command syntax:

�� UPDATE DATABASE MANAGER

DB MANAGER

DBM

 CONFIGURATION

CONFIG

CFG

 �

�

�

USING

config-keyword value

IMMEDIATE

DEFERRED

��

 Command parameters:

DEFERRED

Make the changes only in the configuration file, so that the changes take

effect when the instance is restarted.

IMMEDIATE

Make the changes right now, dynamically, while the instance is running.

IMMEDIATE is the default. If a parameter supports dynamic update, an

attempt is made to update the parameter dynamically and the

authorization used is the user ID that established the connection.

USING config-keyword value

Specifies the database manager configuration parameter to be updated. For

a list of configuration parameters, refer to the configuration parameters

summary.

 Example:

 Update the diagnostic level to 1 for the database manager configuration.

CALL SYSPROC.ADMIN_CMD(’db2 update dbm cfg using DIAGLEVEL 1’)

 Usage notes:

 To view or print a list of the database manager configuration parameters, use the

SYSIBMADM.DBMCFG administrative view. To reset the database manager

configuration parameters to the recommended database manager defaults, use the

RESET DATABASE MANAGER CONFIGURATION command through the

ADMIN_CMD procedure. For more information about database manager

configuration parameters and the values of these parameters appropriate for each

UPDATE DATABASE MANAGER CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 171

type of database node configured (server, client, or server with remote clients), see

individual configuration parameter descriptions.

Not all parameters can be updated.

Some changes to the database manager configuration file become effective only

after they are loaded into memory. For more information on which parameters are

configurable on-line and which ones are not, see the configuration parameter

summary. Server configuration parameters that are not reset immediately are reset

during execution of db2start. For a client configuration parameter, parameters are

reset the next time you restart the application. If the client is the command line

processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is

invalid. This can occur if you edit database manager configuration file and do not

use the appropriate command. If the checksum is invalid, you must reinstall the

database manager to reset the database manager configuration file.

When you update the SVCENAME, or TPNAME database manager configuration

parameters for the current instance, if LDAP support is enabled and there is an

LDAP server registered for this instance, the LDAP server is updated with the new

value or values.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

Updates can only be made to the database instance that contains the connected

database.

If a parameter supports dynamic update, an attempt is made to update it

dynamically, even if the IMMEDIATE keyword is not specified. The authorization

used is the current SYSTEM_USER id.

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

 Related reference:

v “GET DATABASE MANAGER CONFIGURATION command” in Command

Reference

v “TERMINATE command” in Command Reference

v “Configuration parameters summary” in Performance Guide

v “db2CfgSet API - Set the database manager or database configuration

parameters” in Administrative API Reference

v “ADMIN_CMD – Run administrative commands” on page 38

v “DBMCFG administrative view – Retrieve database manager configuration

parameter information” on page 184

v “RESET DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 139

v “RESET DATABASE MANAGER CONFIGURATION command using the

ADMIN_CMD procedure” on page 141

UPDATE DATABASE MANAGER CONFIGURATION using ADMIN_CMD

172 Administrative SQL Routines and Views

v “UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD

procedure” on page 168

UPDATE DATABASE MANAGER CONFIGURATION using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 173

UPDATE HEALTH NOTIFICATION CONTACT LIST command

using the ADMIN_CMD procedure

 Updates the contact list for notification about health alerts issued by an instance.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required Connection:

 Database.

 Command Syntax:

�� UPDATE HEALTH NOTIFICATION CONTACT

NOTIFICATION
 LIST �

�

�

 ,

ADD

CONTACT

name

DROP

GROUP

��

 Command Parameters:

ADD GROUP name

Add a new contact group that will notified of the health of the instance.

ADD CONTACT name

Add a new contact that will notified of the health of the instance.

DROP GROUP name

Removes the contact group from the list of contacts that will notified of the

health of the instance.

DROP CONTACT name

Removes the contact from the list of contacts that will notified of the health

of the instance.

 Example:

 Add the contact group ’gname1’ to the health notification contact list:

CALL SYSPROC.ADMIN_CMD(’update notification list add group gname1’)

 Usage note:

 Command execution status is returned in the SQLCA resulting from the CALL

statement.

 Related tasks:

v “Enabling health alert notification” in System Monitor Guide and Reference

UPDATE HEALTH NOTIFICATION CONTACT LIST using ADMIN_CMD

174 Administrative SQL Routines and Views

Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

v “db2UpdateHealthNotificationList API - Update the list of contacts to whom

health alert notifications can be sent” in Administrative API Reference

UPDATE HEALTH NOTIFICATION CONTACT LIST using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 175

UPDATE HISTORY command using the ADMIN_CMD

procedure

Updates the location, device type, comment, or status in a history file entry on the

currently connected database partition.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 Database

 Command syntax:

�� UPDATE HISTORY FOR object-part

EID

eid
 WITH �

� LOCATION new-location DEVICE TYPE new-device-type

COMMENT

new-comment

STATUS

new-status

 ��

 Command parameters:

FOR object-part

Specifies the identifier for the history entry to be updated. It is a time

stamp with an optional sequence number from 001 to 999. This parameter

cannot be used to update the entry status. To update the entry status,

specify an EID instead.

EID eid

Specifies the history entry ID.

LOCATION new-location

Specifies the new physical location of a backup image. The interpretation

of this parameter depends on the device type.

DEVICE TYPE new-device-type

Specifies a new device type for storing the backup image. Valid device

types are:

D Disk

K Diskette

T Tape

A TSM

U User exit

P Pipe

N Null device

X XBSA

UPDATE HISTORY using ADMIN_CMD

176 Administrative SQL Routines and Views

Q SQL statement

O Other

COMMENT new-comment

Specifies a new comment to describe the entry.

STATUS new-status

Specifies a new status for an entry. Only backup entries can have their

status updated. Valid values are:

A Active. Most entries are active.

I Inactive. Backup images that are no longer on the active log chain

become inactive.

E Expired. Backup images that are no longer required because there

are more than NUM_DB_BACKUPS active images are flagged as

expired.

D Deleted. Backup images that are no longer available for recovery

should be marked as having been deleted.

 Example:

 To update the history file entry for a full database backup taken on April 13, 1997

at 10:00 a.m., enter:

CALL SYSPROC.ADMIN_CMD(’update history

 for 19970413100000001 with location

 /backup/dbbackup.1 device type d’)

 Usage notes:

 The primary purpose of the database history file is to record information, but the

data contained in the history is used directly by automatic restore operations.

During any restore where the AUTOMATIC option is specified, the history of

backup images and their locations will be referenced and used by the restore

utility to fulfill the automatic restore request. If the automatic restore function is to

be used and backup images have been relocated since they were created, it is

recommended that the database history record for those images be updated to

reflect the current location. If the backup image location in the database history is

not updated, automatic restore will not be able to locate the backup images, but

manual restore commands can still be used successfully.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

The object-part or eid must refer to the log history entries on the connected database

partition.

 Related concepts:

v “Developing a backup and recovery strategy” in Data Recovery and High

Availability Guide and Reference

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

UPDATE HISTORY using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 177

UPDATE STMM TUNING DBPARTITIONNUM command using

the ADMIN_CMD procedure

Update the user preferred self tuning memory manager (STMM) tuning database

partition.

 Authorization:

 SYSADM or DBADM authority

 Required connection:

 Database

 Command syntax:

�� UPDATE STMM TUNING DBPARTITIONNUM partitionnum ��

 Command parameter:

partitionnum

partitionnum is an integer. If -1 or a non-existing database partition

number is used, the STMM tuning database partition will use the default

database partition as defined for the STMM feature. If -1 or a non-existing

database partition number is used, DB2 will automatically select an

appropriate database partition on which to run the STMM memory tuner.

 Example:

 Update the user preferred self tuning memory manager (STMM) tuning database

partition to database partition 3.

CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum 3')

 Usage notes:

 The STMM tuning process periodically checks for a change in the user preferred

STMM tuning database partition number value. The STMM tuning process will

move to the user preferred STMM tuning database partition if partitionnum exists

and is an active database partition. Once this command changes the STMM tuning

database partition number an immediate change is made to the current STMM

tuning database partition number.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

This command commits its changes in the ADMIN_CMD procedure.

 Related concepts:

v “Using self tuning memory in partitioned database environments” in Performance

Guide

v “Self tuning memory” in Performance Guide

 Related reference:

v “ADMIN_CMD – Run administrative commands” on page 38

UPDATE STMM TUNING DBPARTITIONNUM using ADMIN_CMD

178 Administrative SQL Routines and Views

v “GET STMM TUNING DBPARTITIONNUM command using the ADMIN_CMD

procedure” on page 78

UPDATE STMM TUNING DBPARTITIONNUM using ADMIN_CMD

Chapter 3. Supported administrative SQL routines and views 179

Configuration administrative SQL routines and views

DB_PARTITIONS

 The DB_PARTITIONS table function returns the contents of the db2nodes.cfg file in

table form.

 Syntax:

�� DB_PARTITIONS () ��

The schema is SYSPROC.

 Authorization:

 EXECUTE privilege on the DB_PARTITIONS table function.

 Table function parameters:

 The function has no input parameters.

 Example:

 Retrieve information from a 3 logical partition database.

SELECT * FROM TABLE(DB_PARTITIONS()) AS T

The following is an example of output from this query.

PARTITION_NUMBER HOST_NAME PORT_NUMBER SWITCH_NAME

---------------- --------------------...- ----------- -----------...-

 0 jessicae.torolab.ibm.com 0 jessicae

 1 jessicae.torolab.ibm.com 1 jessicae

 2 jessicae.torolab.ibm.com 2 jessicae

 3 record(s) selected.

 Information returned:

 Table 38. Information returned by the DB_PARTITIONS table function

Column name Data type Description

PARTITION_NUMBER SMALLINT A unique number between 0

and 999 that identifies a

database partition server in a

partitioned database

environment.

HOST_NAME VARCHAR(128) The TCP/IP host name of the

database partition server.

PORT_NUMBER SMALLINT The port number for the

database partition server.

SWITCH_NAME VARCHAR(128) The name of a high speed

interconnect, or switch, for

database partition

communications.

UPDATE STMM TUNING DBPARTITIONNUM using ADMIN_CMD

180 Administrative SQL Routines and Views

Related reference:

v “Supported administrative SQL routines and views” on page 8

DB_PARTITIONS

Chapter 3. Supported administrative SQL routines and views 181

DBCFG administrative view – Retrieve database configuration

parameter information

 The DBCFG administrative view retrieves database configuration parameter

information for the currently connected database for all database partitions.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the DBCFG administrative view and EXECUTE

privilege on the DB_GET_CFG table function.

 Examples:

 Example 1: Retrieve the automatic maintenance settings in the database

configuration that are stored in memory for all database partitions.

SELECT DBPARTITIONNUM, NAME, VALUE FROM SYSIBMADM.DBCFG WHERE NAME LIKE ’auto_%’

The following is an example of output for this query.

DBPARTITIONNUM NAME VALUE

-------------- -------------------------------- --------------...-------

 0 auto_maint OFF

 0 auto_db_backup OFF

 0 auto_tbl_maint OFF

 0 auto_runstats OFF

 0 auto_stats_prof OFF

 0 auto_prof_upd OFF

 0 auto_reorg OFF

 0 autorestart ON

 8 record(s) selected.

Example 2: Retrieve all the database configuration parameters values stored on disk

for all database partitions.

SELECT NAME, DEFERRED_VALUE, DBPARTITIONNUM FROM SYSIBMADM.DBCFG

The following is an example of output for this query.

NAME DEFERRED_VALUE DBPARTITIONNUM

----------------...- ---------------...- --------------

app_ctl_heap_sz 128 0

appgroup_mem_sz 30000 0

applheapsz 256 0

archretrydelay 20 0

...

autorestart ON 0

avg_appls 1 0

blk_log_dsk_ful NO 0

catalogcache_sz -1 0

...

 Information returned:

 Table 39. Information returned by the DBCFG administrative view

Column name Data type Description

NAME VARCHAR(32) Configuration parameter

name.

DBCFG

182 Administrative SQL Routines and Views

Table 39. Information returned by the DBCFG administrative view (continued)

Column name Data type Description

VALUE VARCHAR(1024) The current value of the

configuration parameter

stored in memory.

VALUE_FLAGS VARCHAR(10) Provides specific information

for the configuration

parameter current value.

Valid values are:

v NONE - no additional

information

v AUTOMATIC - the

configuration parameter

has been set to automatic

DEFERRED_VALUE VARCHAR(1024) The value of the

configuration parameter on

disk. For some database

configuration parameters,

changes only take effect

when the database is

reactivated. In these cases, all

applications must first

disconnect from the database.

(If the database was

activated, then it must be

deactivated and reactivated.)

The changes take effect at the

next connection to the

database.

DEFERRED_VALUE_FLAGS VARCHAR(10) Provides specific information

for the configuration

parameter deferred value.

Valid values are:

v NONE - no additional

information

v AUTOMATIC - the

configuration parameter

has been set to automatic

DATATYPE VARCHAR(128) Configuration parameter data

type.

DBPARTITIONNUM SMALLINT Database partition number.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Configuration parameters summary” in Performance Guide

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

v “DBMCFG administrative view – Retrieve database manager configuration

parameter information” on page 184

DBCFG

Chapter 3. Supported administrative SQL routines and views 183

DBMCFG administrative view – Retrieve database manager

configuration parameter information

 The DBMCFG administrative view returns database manager configuration

parameter information including the values in memory and the values stored on

disk.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the DBMCFG administrative view and

EXECUTE privilege on the DBM_GET_CFG table function.

 Examples:

 Example 1: Retrieve values for all the database manager configuration parameters

stored on disk:

SELECT NAME, DEFERRED_VALUE FROM SYSIBMADM.DBMCFG

The following is an example of output for this query.

NAME DEFERRED_VALUE

-------------------------------- -------------------...----

agent_stack_sz 0

agentpri -1

aslheapsz 15

audit_buf_sz 0

authentication SERVER

catalog_noauth YES

clnt_krb_plugin

...

comm_bandwidth 0.000000e+00

conn_elapse 0

cpuspeed 4.000000e-05

dft_account_str

dft_mon_bufpool OFF

...

dft_mon_timestamp ON

dft_mon_uow OFF

...

jdk_path /wsdb/v91/bldsupp/AIX5L

...

Example 2: Retrieve all the database manager configuration parameters values.

SELECT * FROM SYSIBMADM.DBMCFG

The following is an example of output for this query.

NAME VALUE VALUE_FLAGS ...

-------------...- ---------...- ----------- ...

agent_stack_sz 0 NONE ...

agentpri -1 NONE ...

aslheapsz 15 NONE ...

audit_buf_sz 0 NONE ...

authentication SERVER NONE ...

catalog_noauth YES NONE ...

clnt_krb_plugin NONE ...

clnt_pw_plugin NONE ...

comm_bandwidth 0.000000e+00 NONE ...

conn_elapse 0 NONE ...

cpuspeed 4.000000e-05 NONE ...

DBMCFG

184 Administrative SQL Routines and Views

dft_account_str NONE ...

dft_mon_bufpool OFF NONE ...

dft_mon_lock OFF NONE ...

dft_mon_sort OFF NONE ...

dft_mon_stmt OFF NONE ...

dft_mon_table OFF NONE ...

... ...

dir_cache YES NONE ...

discover SEARCH NONE ...

discover_inst ENABLE NONE ...

fcm_num_anchors 0 AUTOMATIC ...

fcm_num_buffers 0 AUTOMATIC ...

fcm_num_connect 0 AUTOMATIC ...

...

Output for this query (continued).

... DEFERRED_VALUE DEFERRED_VALUE_FLAGS DATATYPE

... --------------...- ------------------------- ---------...-

... 0 NONE INTEGER

... -1 NONE INTEGER

... 15 NONE BIGINT

... 0 NONE BIGINT

... SERVER NONE VARCHAR(32)

... YES NONE VARCHAR(3)

... NONE VARCHAR(32)

... NONE VARCHAR(32)

... 0.000000e+00 NONE REAL

... 0 NONE INTEGER

... 4.000000e-05 NONE REAL

... NONE VARCHAR(25)

... OFF NONE VARCHAR(3)

... OFF NONE VARCHAR(3)

... OFF NONE VARCHAR(3)

... OFF NONE VARCHAR(3)

... OFF NONE VARCHAR(3)

...

... YES NONE VARCHAR(3)

... SEARCH NONE VARCHAR(8)

... ENABLE NONE VARCHAR(8)

... 0 AUTOMATIC BIGINT

... 512 AUTOMATIC BIGINT

... 0 AUTOMATIC BIGINT

...

 Information returned:

 Table 40. Information returned by the DBMCFG administrative view

Column name Data type Description

NAME VARCHAR(32) Configuration parameter

name.

VALUE VARCHAR(256) The current value of the

configuration parameter

stored in memory.

VALUE_FLAGS VARCHAR(10) Provides specific information

for the configuration

parameter current value.

Valid values are:

v NONE - no additional

information

v AUTOMATIC - the

configuration parameter

has been set to automatic

DBMCFG

Chapter 3. Supported administrative SQL routines and views 185

Table 40. Information returned by the DBMCFG administrative view (continued)

Column name Data type Description

DEFERRED_VALUE VARCHAR(256) The value of the

configuration parameter on

disk. For some database

manager configuration

parameters, the database

manager must be stopped

(db2stop) and restarted

(db2start) for this value to

take effect.

DEFERRED_VALUE_FLAGS VARCHAR(10) Provides specific information

for the configuration

parameter deferred value.

Valid values are:

v NONE - no additional

information

v AUTOMATIC - the

configuration parameter

has been set to automatic

DATATYPE VARCHAR(128) Configuration parameter data

type.

 Related reference:

v “Configuration parameters summary” in Performance Guide

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

v “DBCFG administrative view – Retrieve database configuration parameter

information” on page 182

DBMCFG

186 Administrative SQL Routines and Views

REG_VARIABLES administrative view – Retrieve DB2 registry

settings in use

 The REG_VARIABLES administrative view returns the DB2 registry settings from

all database partitions. The DB2 registry variable values returned when the

REG_VARIABLES administrative view is queried can differ from those returned by

the db2set command if a DB2 registry variable is configured using the db2set

command after the instance has been started. The difference occurs because

REG_VARIABLES only returns the values that were in effect when the instance

was started.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the REG_VARIABLES administrative view and

EXECUTE privilege on the REG_LIST_VARIABLES table function.

 Example:

 Request the DB2 registry settings that are currently being used.

SELECT * from SYSIBMADM.REG_VARIABLES

The following is an example of output from this query.

DBPARTITIONNUM REG_VAR_NAME REG_VAR_VALUE IS_AGGREGATE AGGREGATE_NAME

-------------- ---------------...- -------------...- ------------ --------------...-

 0 DB2ADMINSERVER DB2DAS00 0 -

 0 DB2INSTPROF D:\SQLLIB 0 -

 0 DB2PATH D:\SQLLIB 0 -

 0 DB2SYSTEM D570 0 -

 0 DB2TEMPDIR D:\SQLLIB\ 0 -

 0 DB2_EXTSECURITY YES 0 -

 6 record(s) selected.

 Information returned:

 Table 41. Information returned by the REG_VARIABLES administrative view

Column name Data type Description

DBPARTITIONNUM SMALLINT Logical partition number of

each database partition on

which the function operates.

REG_VAR_NAME VARCHAR(256) Name of the DB2 registry

variable.

REG_VAR_VALUE VARCHAR(2048) Current setting of the DB2

registry variable.

IS_AGGREGATE SMALLINT Indicates whether or not the

DB2 registry variable is an

aggregate variable. The

possible return values are 0 if

it is not an aggregate

variable, and 1 if it is an

aggregate variable.

REG_VARIABLES

Chapter 3. Supported administrative SQL routines and views 187

Table 41. Information returned by the REG_VARIABLES administrative view (continued)

Column name Data type Description

AGGREGATE_NAME VARCHAR(256) Name of the aggregate if the

DB2 registry variable is

currently obtaining its value

from a configured aggregate.

If the registry variable is not

being set through an

aggregate, or is set through

an aggregate but has been

overridden, the value of

AGGREGATE_NAME is

NULL.

LEVEL CHAR(1) Indicates the level at which

the DB2 registry variable

acquires its value. The

possible return values and

the corresponding levels that

they represent are:

v I = instance

v G = global

v N = database partition

v E = environment

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “db2set - DB2 profile registry command” in Command Reference

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

REG_VARIABLES

188 Administrative SQL Routines and Views

Environment administrative SQL routines and views

ENV_INST_INFO administrative view – Retrieve information

about the current instance

 The ENV_INST_INFO administrative view returns information about the current

instance.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the ENV_INST_INFO administrative view and

EXECUTE privilege on the ENV_GET_INST_INFO table function.

 Example:

 Request information about the current instance.

SELECT * FROM SYSIBMADM.ENV_INST_INFO

The following is an example of output for this query.

INST_NAME IS_INST_PARTITIONABLE NUM_DBPARTITIONS INST_PTR_SIZE ...

-----------...---- --------------------- ---------------- ------------- ...

DB2 0 1 32 ...

 ...

 1 record(s) selected. ...

Output for this query (continued).

... RELEASE_NUM SERVICE_LEVEL BLD_LEVEL PTF FIXPACK_NUM

... -----------...--- --------------...--- ----------...--- ----...--- -----------

... 01010107 DB2 v9.1.0.115 n051106 0

...

 Information returned:

 Table 42. Information returned by the ENV_INST_INFO administrative view

Column name Data type Description

INST_NAME VARCHAR(128) Name of the current instance.

IS_INST_PARTITIONABLE SMALLINT Indicates whether or not the

current instance is a

partitionable database server

instance. Possible return

values are 0 if it is not a

partitionable database server

instance, and 1 if it is a

partitionable database server

instance.

NUM_DBPARTITIONS INTEGER Number of database

partitions. If it is not a

partitioned database

environment, returns a value

of 1.

INST_PTR_SIZE INTEGER Bit size of the current

instance (32 or 64).

REG_VARIABLES

Chapter 3. Supported administrative SQL routines and views 189

Table 42. Information returned by the ENV_INST_INFO administrative view (continued)

Column name Data type Description

RELEASE_NUM VARCHAR(128) Internal release number, as

returned by the db2level

command; for example,

03030106.

SERVICE_LEVEL VARCHAR(128) Service level, as returned by

the db2level command; for

example, DB2 v8.1.1.80.

BLD_LEVEL VARCHAR(128) Build level, as returned by

the db2level command; for

example, n041021.

PTF VARCHAR(128) Program temporary fix (PTF)

identifier, as returned by the

db2level command; for

example, U498350.

FIXPACK_NUM INTEGER Fix Pack number, as returned

by the db2level command;

for example, 9.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

v “ENV_PROD_INFO administrative view – Retrieve information about installed

DB2 products” on page 191

v “ENV_SYS_INFO administrative view – Retrieve information about the system”

on page 193

ENV_INST_INFO

190 Administrative SQL Routines and Views

ENV_PROD_INFO administrative view – Retrieve information

about installed DB2 products

 The ENV_PROD_INFO administrative view returns information about installed

DB2 products.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the ENV_PROD_INFO administrative view

and EXECUTE privilege on the ENV_GET_PROD_INFO table function.

 Example:

 Request the installed DB2 product information.

SELECT * FROM SYSIBMADM.ENV_PROD_INFO

The following is an example of output from this query.

INSTALLED_PROD IS_LICENSED PROD_RELEASE

--------------...- ----------- ------------...-

ESE 1 9.1

WSE 1 9.1

PE 1 9.1

CONPE 1 9.1

 4 record(s) selected.

 ENV_PROD_INFO administrative view metadata:

 Table 43. ENV_PROD_INFO administrative view metadata

Column name Data type Description

INSTALLED_PROD VARCHAR(26) Identifiers for one or more DB2 products that

are installed on the system. The possible

return values and the corresponding DB2

products that they represent are:

v RTCL: DB2Run-Time Client

v CLIENT: DB2 Client

v * CONSV: DB2 Connect™ Server

v CONPE: DB2 Connect Personal Edition

v ESE: DB2 Enterprise Server Edition

v EXP: DB2 Express Edition

v PE: DB2 Personal Edition

v WSE: DB2 Workgroup Server Edition

* CONSV is returned when any DB2 Connect

server edition is found.

IS_LICENSED SMALLINT Indicates whether or not the installed product

is licensed. Possible return values are 0 (if the

product is not licensed) and 1 (if it is

licensed).

PROD_RELEASE VARCHAR(26) Product release number.

 Related reference:

ENV_PROD_INFO

Chapter 3. Supported administrative SQL routines and views 191

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

v “ENV_INST_INFO administrative view – Retrieve information about the current

instance” on page 189

v “ENV_SYS_INFO administrative view – Retrieve information about the system”

on page 193

ENV_PROD_INFO

192 Administrative SQL Routines and Views

ENV_SYS_INFO administrative view – Retrieve information

about the system

 The ENV_SYS_INFO administrative view returns information about the system.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the ENV_SYS_INFO administrative view and

EXECUTE privilege on the ENV_GET_SYS_INFO table function.

 Example:

 Request information about the system.

SELECT * from SYSIBMADM.ENV_SYS_INFO

The following is an example of output from this query.

OS_NAME OS_VERSION OS_RELEASE HOST_NAME

--------...- ----------...- --------------...- ---------...-

WIN32_NT 5.1 Service Pack 1 D570

 1 record(s) selected.

Output from this query (continued).

... TOTAL_CPUS CONFIGURED_CPUS TOTAL_MEMORY

... ----------- --------------- ------------

... 1 2 1527

 Information returned:

 Table 44. Information returned by the ENV_SYS_INFO administrative view

Column name Data type Description

OS_NAME VARCHAR(256) Name of the operating

system.

OS_VERSION VARCHAR(256) Version number of the

operating system.

OS_RELEASE VARCHAR(256) Release number of the

operating system.

HOST_NAME VARCHAR(256) Name of the system.

TOTAL_CPUS INTEGER Total number of physical

CPUs on the system.

CONFIGURED_CPUS INTEGER Number of configured

physical CPUs on the system.

TOTAL_MEMORY INTEGER Total amount of memory on

the system (in megabytes).

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

ENV_SYS_INFO

Chapter 3. Supported administrative SQL routines and views 193

v “ENV_INST_INFO administrative view – Retrieve information about the current

instance” on page 189

v “ENV_PROD_INFO administrative view – Retrieve information about installed

DB2 products” on page 191

ENV_SYS_INFO

194 Administrative SQL Routines and Views

Health snapshot administrative SQL routines and views

HEALTH_CONT_HI

 The HEALTH_CONT_HI table function returns health indicator information for

table space containers from a health snapshot of table spaces in a database.

 Syntax:

�� HEALTH_CONT_HI (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_CONT_HI table function.

 Example:

 SELECT * FROM TABLE(HEALTH_CONT_HI(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP CONTAINER_NAME ...

-------------------------- ---...- ...

2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...

2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...

2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...

2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...

2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

 5 record(s) selected.

Output from this query (continued).

... NODE_NUMBER HI_ID HI_VALUE HI_TIMESTAMP ...

... ----------- -------------------- -------- -------------------------- ...

... - 3001 1 2006-02-13-12.26.26.158000 ...

... - 3001 1 2006-02-13-12.26.26.158000 ...

... - 3001 1 2006-02-13-12.26.26.158000 ...

... - 3001 1 2006-02-13-12.26.26.158000 ...

... - 3001 1 2006-02-13-12.26.26.158000 ...

Output from this query (continued).

ENV_SYS_INFO

Chapter 3. Supported administrative SQL routines and views 195

... HI_ALERT_STATE HI_ALERT_STATE_DETAIL HI_FORMULA HI_ADDITIONAL_INFO

... -------------------- --------------------- -----------...- ------------------

... 1 Normal 1 -

... 1 Normal 1 -

... 1 Normal 1 -

... 1 Normal 1 -

... 1 Normal 1 -

 Information returned:

 Table 45. Information returned by the HEALTH_CONT_HI table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

CONTAINER_NAME VARCHAR(256) container_name - Container

Name monitor element

NODE_NUMBER INTEGER node_number - Node

Number monitor element

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

HI_VALUE SMALLINT The value of the health

indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_CONT_HI

196 Administrative SQL Routines and Views

HEALTH_CONT_HI_HIS

 The HEALTH_CONT_HI_HIS table function returns health indicator history

information for containers from a health snapshot of a database.

 Syntax:

�� HEALTH_CONT_HI_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_CONT_HI_HIS table function.

 Example:

 SELECT * FROM TABLE(HEALTH_CONT_HI_HIS(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP CONTAINER_NAME ...

-------------------------- --...- ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

 10 record(s) selected.

Output from this query (continued).

... NODE_NUMBER HI_ID HI_TIMESTAMP HI_VALUE HI_ALERT_STATE ...

... ----------- -----...- -------------------------- -------- -------------- ...

... - 3001 2006-02-13-12.16.25.911000 1 1 ...

... - 3001 2006-02-13-12.06.26.168000 1 1 ...

... - 3001 2006-02-13-12.16.25.911000 1 1 ...

... - 3001 2006-02-13-12.06.26.168000 1 1 ...

... - 3001 2006-02-13-12.16.25.911000 1 1 ...

... - 3001 2006-02-13-12.06.26.168000 1 1 ...

... - 3001 2006-02-13-12.16.25.911000 1 1 ...

HEALTH_CONT_HI_HIS

Chapter 3. Supported administrative SQL routines and views 197

... - 3001 2006-02-13-12.06.26.168000 1 1 ...

... - 3001 2006-02-13-12.16.25.911000 1 1 ...

... - 3001 2006-02-13-12.06.26.168000 1 1 ...

Output from this query (continued).

... HI_ALERT_STATE_DETAIL HI_FORMULA HI_ADDITIONAL_INFO

... --------------------- -----------...- ------------------

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

... Normal 1 -

 Information returned:

 Table 46. Information returned by the HEALTH_CONT_HI_HIS table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

CONTAINER_NAME VARCHAR(256) container_name - Container

Name monitor element

NODE_NUMBER INTEGER node_number - Node

Number monitor element

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_VALUE SMALLINT The value of the health

indicator.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_CONT_HI_HIS

198 Administrative SQL Routines and Views

HEALTH_CONT_INFO

 The HEALTH_CONT_INFO table function returns container information from a

health snapshot of a database.

 Syntax:

�� HEALTH_CONT_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_CONT_INFO table function.

 Example:

 SELECT * FROM TABLE(HEALTH_CONT_INFO(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP CONTAINER_NAME ...

-------------------------- ---...- ...

2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...

2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...

2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...

2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...

2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

 5 record(s) selected.

Output from this query (continued).

... TABLESPACE_NAME NODE_NUMBER ...

... ---------------...- ----------- ...

... SYSCATSPACE - ...

... SYSTOOLSPACE - ...

... SYSTOOLSTMPSPACE - ...

... TEMPSPACE1 - ...

... USERSPACE1 - ...

Output from this query (continued).

... ROLLED_UP_ALERT_STATE ROLLED_UP_ALERT_STATE_DETAIL

... --------------------- ----------------------------

... 1 Normal

HEALTH_CONT_INFO

Chapter 3. Supported administrative SQL routines and views 199

... 1 Normal

... 1 Normal

... 1 Normal

... 1 Normal

 Information returned:

 Table 47. Information returned by the HEALTH_CONT_INFO table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

CONTAINER_NAME VARCHAR(256) container_name - Container

Name monitor element

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

NODE_NUMBER INTEGER node_number - Node

Number monitor element

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state

captured by this snapshot.

ROLLED_UP_ALERT_

 STATE_DETAIL

VARCHAR(20) The text description of the

ROLLED_UP_ALERT_STATE

column.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_CONT_INFO

200 Administrative SQL Routines and Views

HEALTH_DB_HI

 The HEALTH_DB_HI table function returns health indicator information from a

health snapshot of a database.

Syntax

�� HEALTH_DB_HI (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DB_HI table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DB_HI(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP HI_ID DB_NAME HI_VALUE ...

-------------------------- -----...- -------...- -------- ...

2006-02-13-12.30.23.949888 1001 SAMPLE 0 ...

2006-02-13-12.30.23.949888 1002 SAMPLE 0 ...

2006-02-13-12.30.23.949888 1003 SAMPLE 0 ...

2006-02-13-12.30.23.949888 1005 SAMPLE 6 ...

2006-02-13-12.30.23.949888 1006 SAMPLE 53 ...

2006-02-13-12.30.23.949888 1008 SAMPLE 3 ...

2006-02-13-12.30.23.949888 1010 SAMPLE 0 ...

2006-02-13-12.30.23.949888 1014 SAMPLE 74 ...

2006-02-13-12.30.23.949888 1015 SAMPLE 1 ...

2006-02-13-12.30.23.949888 1018 SAMPLE 1 ...

2006-02-13-12.30.23.949888 1022 SAMPLE 1 ...

 11 record(s) selected.

Output from this query (continued).

... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...

... -------------------------- -------------- --------------------- ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

HEALTH_DB_HI

Chapter 3. Supported administrative SQL routines and views 201

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.30.25.640000 2 Attention ...

... 2006-02-13-12.30.25.640000 2 Attention ...

... 2006-02-13-12.29.25.281000 2 Attention ...

Output from this query (continued).

... HI_FORMULA ...

... --...- ...

... 0 ...

... ((0 / 5000) * 100) ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... (((0 - 0) / ((118 - 0) + 1)) * 100) ...

... ...

... ...

... ...

... ...

... ...

... ((1170384 / (1170384 + 19229616)) * 100) ...

... ...

... ...

... ...

... ...

... ...

... ((11155116032 / 21138935808) * 100) ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ((5264 / (50 * 4096)) * 100) ...

... ((0 / 5) * 100) ...

... ((4587520 / 6160384) * 100) ...

... - ...

... ...

... ...

... ...

... ...

... ...

... - ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... - ...

... ...

... ...

Output from this query (continued).

... HI_ADDITIONAL_INFO

... --

... -

... The high watermark for shared sort

... memory is "57". "99"% of the time

... the sort heap allocation is less

HEALTH_DB_HI

202 Administrative SQL Routines and Views

... than or equal to "246". The sort

... heap (sortheap) database

... configuration parameter is set

... to "256". The high watermark for

... private sort memory is "0".

... The sort heap (sortheap) database

... configuration parameter is set to

... "256". The high watermark for

... private sort memory is "57". The

... high watermark for shared sort

... memory is "0"

... The following are the related

... database configuration parameter

... settings: logprimary is "3",

... logsecond is "2", and logfilsiz

... is "1000". The application with

... the oldest transaction is "712".

... The following are the related

... database configuration parameter

... settings: logprimary is "3",

... logsecond is "2", and logfilsiz

... is "1000", blk_log_dsk_ful is

... "NO", userexit is "NO",

... logarchmeth1 is "OFF" and

... logarchmeth2 is "OFF".

... -

... -

... -

... The scope setting in the reorganization

... policy is "TABSCHEMA NOT LIKE ’SYS%’".

... Automatic reorganization (AUTO_REORG)

... for this database is set to "OFF".

... The longest estimated reorganization

... time is "N/A".

... The last successful backup was taken

... at "N/A". The log space consumed since

... this last backup has been "N/A" 4KB

... pages. Automation for database backup

... is set to "OFF". The last automated

... backup returned with SQLCODE = "N/A".

... The longest estimated backup time

... is "N/A".

... The scope is "N\A". Automatic

... statistics collection (AUTO_RUNSTATS)

... is set to "OFF".

 Information returned:

 Table 48. Information returned by the HEALTH_DB_HI table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

HI_VALUE SMALLINT The value of the health

indicator.

HEALTH_DB_HI

Chapter 3. Supported administrative SQL routines and views 203

Table 48. Information returned by the HEALTH_DB_HI table function (continued)

Column name Data type

Description or

corresponding monitor

element

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_DB_HI

204 Administrative SQL Routines and Views

HEALTH_DB_HI_HIS

 The HEALTH_DB_HI_HIS table function returns health indicator history

information from a health snapshot of a database.

 Syntax:

�� HEALTH_DB_HI_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DB_HI_HIS table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DB_HI_HIS(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP HI_ID DB_NAME HI_VALUE ...

-------------------------- -----...- -------...- -------- ...

2006-02-13-12.30.26.325627 1001 SAMPLE 0 ...

... ...

2006-02-13-12.30.26.325627 1002 SAMPLE 0 ...

... ...

2006-02-13-12.30.26.325627 1003 SAMPLE 0 ...

... ...

2006-02-13-12.30.26.325627 1005 SAMPLE 3 ...

... ...

2006-02-13-12.30.26.325627 1008 SAMPLE 2 ...

... ...

2006-02-13-12.30.26.325627 1010 SAMPLE 0 ...

... ...

2006-02-13-12.30.26.325627 1014 SAMPLE 73 ...

... ...

2006-02-13-12.30.26.325627 1015 SAMPLE 1 ...

... ...

2006-02-13-12.30.26.325627 1018 SAMPLE 1 ...

... ...

2006-02-13-12.30.26.325627 1022 SAMPLE 1 ...

...

Output from this query (continued).

HEALTH_DB_HI_HIS

Chapter 3. Supported administrative SQL routines and views 205

... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...

... -------------------------- -------------------- --------------------- ...

... 2006-02-13-12.21.25.649000 1 Normal ...

...

... 2006-02-13-12.21.25.649000 1 Normal ...

...

... 2006-02-13-12.20.25.182000 1 Normal ...

...

... 2006-02-13-12.16.25.911000 1 Normal ...

...

... 2006-02-13-12.16.25.911000 1 Normal ...

...

... 2006-02-13-12.16.25.911000 1 Normal ...

...

... 2006-02-13-12.21.25.649000 1 Normal ...

...

... 2006-02-13-12.29.55.461000 2 Attention ...

...

... 2006-02-13-12.29.25.281000 2 Attention ...

...

... 2006-02-13-12.27.55.743000 2 Attention ...

... ...

Output from this query (continued).

... HI_FORMULA ...

... --- ...

... 0 ...

...

... ((0 / 5000) * 100) ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

...

... (((0 - 0) / ((68 - 0) + 1)) * 100) ...

... ...

... ...

... ...

... ...

... ...

...

... ((698410 / (698410 + 19701590)) * 100) ...

... ...

... ...

... ...

... ...

... ...

...

... ((3920 / (50 * 4096)) * 100) ...

...

... ((0 / 4) * 100) ...

...

... ((4521984 / 6160384) * 100) ...

...

... - ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

...

HEALTH_DB_HI_HIS

206 Administrative SQL Routines and Views

... - ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

...

... - ...

... ...

... ...

...

Output from this query (continued).

... HI_ADDITIONAL_INFO

... ---------------------------------------

... -

...

... The high watermark for shared sort

... memory is "15". "99"% of the time

... the sort heap allocation is less

... than or equal to "246". The sort

... heap (sortheap) database

... configuration parameter is set

... to "256". The high watermark

... for private sort memory is "0".

...

... The sort heap (sortheap) database

... configuration parameter is set

... to "256". The high watermark for

... private sort memory is "15". The

... high watermark for shared sort

... memory is "0"

...

... The following are the related

... database configuration parameter

... settings: logprimary is "3",

... logsecond is "2", and logfilsiz

... is "1000". The application with

... the oldest transaction is "712".

...

... -

...

... -

...

... -

...

... The scope setting in the

... reorganization policy is

... "TABSCHEMA NOT LIKE ’SYS%’".

... Automatic reorganization

... (AUTO_REORG) for this database

... is set to "OFF". The longest

... estimated reorganization time

... is "N/A".

...

... The last successful backup was taken

... at "N/A". The log space consumed

... since this last backup has been

... "N/A" 4KB pages. Automation for

... database backup is set to "OFF". The

... last automated backup returned with

... SQLCODE = "N/A". The longest

... estimated backup time is "N/A".

...

HEALTH_DB_HI_HIS

Chapter 3. Supported administrative SQL routines and views 207

... The scope is "N\A". Automatic

... statistics collection

... (AUTO_RUNSTATS) is set to "OFF".

...

 Information returned:

 Table 49. Information returned by the HEALTH_DB_HI_HIS table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

HI_VALUE SMALLINT The value of the health

indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_DB_HI_HIS

208 Administrative SQL Routines and Views

HEALTH_DB_HIC

 The HEALTH_DB_HIC function returns collection health indicator information

from a health snapshot of a database.

 Syntax:

�� HEALTH_DB_HIC (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DB_HIC table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DB_HIC(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP HI_ID DB_NAME ...

-------------------------- -----...- -------...- ...

2006-02-13-12.30.33.870959 1015 SAMPLE ...

2006-02-13-12.30.33.870959 1022 SAMPLE ...

 2 record(s) selected.

Output from this query (continued).

... HI_OBJ_NAME HI_OBJ_DETAIL ...

... ---------------------------------...-- -------------...- ...

... "JESSICAE"."EMPLOYEE" REORG TABLE ...

... "SYSIBM"."SYSDATAPARTITIONEXPRESSION" RUNSTATS ...

Output from this query (continued).

... HI_OBJ_STATE HI_OBJ_STATE_DETAIL HI_TIMESTAMP

... ------------ -------------------- --------------------------

... 2 Attention 2006-02-13-12.24.27.000000

... 2 Attention 2006-02-13-12.29.26.000000

HEALTH_DB_HIC

Chapter 3. Supported administrative SQL routines and views 209

Information returned:

 Table 50. Information returned by the HEALTH_DB_HIC table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

HI_OBJ_NAME VARCHAR(256) A name that uniquely

identifies an object in the

collection.

HI_OBJ_DETAIL VARCHAR(4096) Text that describes why the

object was added to the

collection.

HI_OBJ_STATE BIGINT The state of the object. Valid

states (defined in sqlmon.h)

include:

v NORMAL (1). Action is not

required on this object.

v ATTENTION (2).

Automation is not enabled

for this health indicator;

action must be taken

manually.

v AUTOMATED (5).

Automation is enabled for

this health indicator; action

will be started

automatically.

v AUTOMATE_FAILED (6).

Automation is enabled for

this health indicator; action

was started, but could not

complete successfully.

Manual intervention is

now required.

HI_OBJ_STATE_DETAIL VARCHAR(20) A translated string version of

the value in the

HI_OBJ_STATE column.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Health monitor SQL table functions” in System Monitor Guide and Reference

HEALTH_DB_HIC

210 Administrative SQL Routines and Views

HEALTH_DB_HIC_HIS

 The HEALTH_DB_HIC_HIS table function returns collection health indicator

history information from a health snapshot of a database.

 Syntax:

�� HEALTH_DB_HIC_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DB_HIC_HIS table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DB_HIC_HIS(’’,-1)) AS T

The following is an example of output from this query.

HI_HIS_ENTRY_NUM SNAPSHOT_TIMESTAMP HI_ID ...

---------------- -------------------------- -------------------- ...

 1 2006-02-13-12.30.34.496720 1015 ...

 2 2006-02-13-12.30.34.496720 1022 ...

 3 2006-02-13-12.30.34.496720 1022 ...

 4 2006-02-13-12.30.34.496720 1022 ...

 5 2006-02-13-12.30.34.496720 1022 ...

 6 2006-02-13-12.30.34.496720 1022 ...

 7 2006-02-13-12.30.34.496720 1022 ...

 8 2006-02-13-12.30.34.496720 1022 ...

 9 2006-02-13-12.30.34.496720 1022 ...

 10 2006-02-13-12.30.34.496720 1022 ...

 10 record(s) selected.

Output from this query (continued).

... DB_NAME HI_OBJ_NAME HI_OBJ_STATE ...

... -------...- ----------------------------------...- ------------ ...

... SAMPLE "JESSICAE"."EMPLOYEE" 2 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 2 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 2 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 2 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

HEALTH_DB_HIC_HIS

Chapter 3. Supported administrative SQL routines and views 211

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

Output from this query (continued).

... HI_OBJ_STATE_DETAIL HI_TIMESTAMP

... -------------------- --------------------------

... Attention 2006-02-10-09.04.57.000000

... Attention 2006-02-13-12.27.56.000000

... Attention 2006-02-13-12.26.27.000000

... Attention 2006-02-13-12.24.56.000000

... Normal 2006-02-13-12.23.28.000000

... Normal 2006-02-13-12.21.56.000000

... Normal 2006-02-13-12.20.26.000000

... Normal 2006-02-13-12.18.57.000000

... Normal 2006-02-13-12.17.27.000000

... Normal 2006-02-13-12.15.56.000000

 Information returned:

 Table 51. Information returned by the HEALTH_DB_HIC_HIS table function

Column name Data type

Description or

corresponding monitor

element

HI_HIS_ENTRY_NUM INTEGER A number that uniquely

identifies the history entry.

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

HI_OBJ_NAME VARCHAR(256) A name that uniquely

identifies an object in the

collection.

HEALTH_DB_HIC_HIS

212 Administrative SQL Routines and Views

Table 51. Information returned by the HEALTH_DB_HIC_HIS table function (continued)

Column name Data type

Description or

corresponding monitor

element

HI_OBJ_STATE BIGINT The state of the object. Valid

states (defined in sqlmon.h)

include:

v NORMAL (1). Action is not

required on this object.

v ATTENTION (2).

Automation is not enabled

for this health indicator;

action must be taken

manually.

v AUTOMATED (5).

Automation is enabled for

this health indicator; action

will be started

automatically.

v AUTOMATE_FAILED (6).

Automation is enabled for

this health indicator; action

was started, but could not

complete successfully.

Manual intervention is

now required.

HI_OBJ_STATE_DETAIL VARCHAR(20) A translated string version of

the value in the

HI_OBJ_STATE column.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Health monitor SQL table functions” in System Monitor Guide and Reference

HEALTH_DB_HIC_HIS

Chapter 3. Supported administrative SQL routines and views 213

HEALTH_DB_INFO

 The HEALTH_DB_INFO table function returns information from a health snapshot

of a database.

 Syntax:

�� HEALTH_DB_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DB_INFO table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DB_INFO(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP DB_NAME INPUT_DB_ALIAS ...

-------------------------- -------...- ---------------...- ...

2006-02-13-12.30.23.340081 SAMPLE SAMPLE ...

 1 record(s) selected.

Output from this query (continued).

... DB_PATH DB_LOCATION SERVER_PLATFORM ...

... ------------------------...- ----------- --------------- ...

... D:\DB2\NODE0000\SQL00003\ 1 5 ...

Output from this query (continued).

... ROLLED_UP_ALERT_STATE ROLLED_UP_ALERT_STATE_DETAIL

... --------------------- ----------------------------

... 4 Alarm

HEALTH_DB_INFO

214 Administrative SQL Routines and Views

Information returned:

 Table 52. Information returned by the HEALTH_DB_INFO table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input

Database Alias monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path

monitor element

DB_LOCATION INTEGER db_location - Database

Location monitor element

SERVER_PLATFORM INTEGER server_platform - Server

Operating System monitor

element

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state

captured by this snapshot.

ROLLED_UP_ALERT_

 STATE_DETAIL

VARCHAR(20) The text description of the

ROLLED_UP_ALERT_STATE

column.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_DB_INFO

Chapter 3. Supported administrative SQL routines and views 215

HEALTH_DBM_HI

 The HEALTH_DBM_HI table function returns health indicator information from a

health snapshot of the DB2 database manager.

 Syntax:

�� HEALTH_DBM_HI (dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameter:

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DBM_HI table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DBM_HI(-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP HI_ID SERVER_INSTANCE_NAME ...

-------------------------- -----...- --------------------...- ...

2006-02-13-12.30.19.773632 1 DB2 ...

2006-02-13-12.30.19.773632 4 DB2 ...

 2 record(s) selected.

Output from this query (continued).

... HI_VALUE HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...

... -------- -------------------------- -------------- --------------------- ...

... 0 2006-02-13-12.26.26.158000 1 Normal ...

... 100 2006-02-13-12.26.26.158000 4 Alarm ...

Output from this query (continued).

... HI_FORMULA HI_ADDITIONAL_INFO

... ---------------------...- ------------------

... 0 -

... ((327680 / 327680) * 100) -

 Table 53. Information returned by the HEALTH_DBM_HI table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

HEALTH_DBM_HI

216 Administrative SQL Routines and Views

Table 53. Information returned by the HEALTH_DBM_HI table function (continued)

Column name Data type

Description or

corresponding monitor

element

SERVER_INSTANCE_NAME VARCHAR(128) server_instance_name -

Server Instance Name

monitor element

HI_VALUE SMALLINT The value of the health

indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_DBM_HI

Chapter 3. Supported administrative SQL routines and views 217

HEALTH_DBM_HI_HIS

 The HEALTH_DBM_HI_HIS table function returns health indicator history

information from a health snapshot of the DB2 database manager.

 Syntax:

�� HEALTH_DBM_HI_HIS (dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameter:

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DBM_HI_HIS table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DBM_HI_HIS(-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP HI_ID SERVER_INSTANCE_NAME HI_VALUE ...

-------------------------- -----...- --------------------...- -------- ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 1 DB2 0 ...

2006-02-13-12.30.20.460905 4 DB2 100 ...

2006-02-13-12.30.20.460905 4 DB2 100 ...

2006-02-13-12.30.20.460905 4 DB2 100 ...

2006-02-13-12.30.20.460905 4 DB2 100 ...

2006-02-13-12.30.20.460905 4 DB2 60 ...

2006-02-13-12.30.20.460905 4 DB2 60 ...

2006-02-13-12.30.20.460905 4 DB2 60 ...

2006-02-13-12.30.20.460905 4 DB2 60 ...

2006-02-13-12.30.20.460905 4 DB2 60 ...

 18 record(s) selected.

Output for this query (continued).

... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...

... -------------------------- -------------- --------------------- ...

... 2006-02-13-12.21.25.649000 1 Normal ...

... 2006-02-13-12.16.25.911000 1 Normal ...

... 2006-02-13-12.11.25.377000 1 Normal ...

... 2006-02-13-12.06.26.168000 1 Normal ...

... 2006-02-13-12.01.25.165000 1 Normal ...

... 2006-02-13-11.56.25.927000 1 Normal ...

... 2006-02-13-11.51.25.452000 1 Normal ...

... 2006-02-13-11.46.25.211000 1 Normal ...

HEALTH_DBM_HI_HIS

218 Administrative SQL Routines and Views

... 2006-02-13-11.41.25.972000 1 Normal ...

... 2006-02-13-12.21.25.649000 4 Alarm ...

... 2006-02-13-12.16.25.911000 4 Alarm ...

... 2006-02-13-12.11.25.377000 4 Alarm ...

... 2006-02-13-12.06.26.168000 4 Alarm ...

... 2006-02-13-12.01.25.165000 1 Normal ...

... 2006-02-13-11.56.25.927000 1 Normal ...

... 2006-02-13-11.51.25.452000 1 Normal ...

... 2006-02-13-11.46.25.211000 1 Normal ...

... 2006-02-13-11.41.25.972000 1 Normal ...

Output for this query (continued).

... HI_FORMULA HI_ADDITIONAL_INFO

... -------------------------...- ------------------

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... ((327680 / 327680) * 100) -

... ((327680 / 327680) * 100) -

... ((327680 / 327680) * 100) -

... ((327680 / 327680) * 100) -

... ((196608 / 327680) * 100) -

... ((196608 / 327680) * 100) -

... ((196608 / 327680) * 100) -

... ((196608 / 327680) * 100) -

... ((196608 / 327680) * 100) -

 Information returned:

 Table 54. Information returned by the HEALTH_DBM_HI_HIS table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

SERVER_INSTANCE_NAME VARCHAR(128) server_instance_name -

Server Instance Name

monitor element

HI_VALUE SMALLINT The value of the health

indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

HEALTH_DBM_HI_HIS

Chapter 3. Supported administrative SQL routines and views 219

Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_DBM_HI_HIS

220 Administrative SQL Routines and Views

HEALTH_DBM_INFO

 The HEALTH_DBM_INFO function returns information from a health snapshot of

the DB2 database manager.

 Syntax:

�� HEALTH_DBM_INFO (dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameter:

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_DBM_INFO table function.

 Example:

 SELECT * FROM TABLE(HEALTH_DBM_INFO(-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP SERVER_INSTANCE_NAME ROLLED_UP_ALERT_STATE ...

-------------------------- --------------------...--- --------------------- ...

2006-02-13-12.30.19.663924 DB2 4 ...

 1 record(s) selected.

Output from this query (continued).

... ROLLED_UP_ALERT_STATE_DETAIL DB2START_TIME ...

... ---------------------------- -------------------------- ...

... Alarm 2006-02-09-10.56.18.126182 ...

Output from this query (continued).

... LAST_RESET NUM_NODES_IN_DB2_INSTANCE

... -----------...--- -------------------------

... - 1

 Information returned:

 Table 55. Information returned by the HEALTH_DBM_INFO table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SERVER_INSTANCE_NAME VARCHAR(128) server_instance_name -

Server Instance Name

monitor element

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state

captured by this snapshot.

HEALTH_DBM_INFO

Chapter 3. Supported administrative SQL routines and views 221

Table 55. Information returned by the HEALTH_DBM_INFO table function (continued)

Column name Data type

Description or

corresponding monitor

element

ROLLED_UP_ALERT_

 STATE_DETAIL

VARCHAR(20) The text description of the

ROLLED_UP_ALERT_STATE

column.

DB2START_TIME TIMESTAMP db2start_time - Start

Database Manager

Timestamp monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset

Timestamp monitor element

NUM_NODES_IN_DB2_

 INSTANCE

INTEGER num_nodes_in_db2_instance -

Number of Nodes in

Partition monitor element

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_DBM_INFO

222 Administrative SQL Routines and Views

HEALTH_GET_ALERT_ACTION_CFG table function –Retrieve

health alert action configuration settings

 The HEALTH_GET_ALERT_ACTION_CFG table function returns health alert

action configuration settings for various object types (database manager, database,

table space, and table space container) and for various configuration levels (install

default, instance, global, and object).

 Syntax:

�� HEALTH_GET_ALERT_ACTION_CFG (objecttype , cfg_level , dbname , �

� objectname) ��

 The schema is SYSPROC.

 Table function parameters:

objecttype

An input argument of type VARCHAR(3) that indicates the object type. The

value must be one of the following case-insensitive values:

v ’DBM’ for database manager

v ’DB’ for database

v ’TS’ for table space

v ’TSC’ for table space container

Note: Leading and trailing spaces will be ignored.

cfg_level

An input argument of type VARCHAR(1) that indicates the configuration level.

The value must be one of the following case-insensitive values:

v For objecttype ’DBM’: ’D’ for install default; ’G’ or ’O’ for instance level.

v For objecttype that is not ’DBM’: ’D’ for install default; ’G’ for global level;

’O’ for object level.

dbname

An input argument of type VARCHAR(128) that indicates the database name.

The database name must be provided if objecttype is ’DB’, ’TS’, or ’TSC’, and

cfg_level is ’O’. For all other combinations of objecttype and cfg_level, the dbname

parameter should be NULL (or an empty string).

objectname

An input argument of type VARCHAR(1024) that indicates the object name, for

example, <table space name> or <table space name>.<container name>. The

object name must be provided if objecttype is ’TS’ or ’TSC’, and cfg_level is ’O’.

For all other combinations of objecttype and cfg_level, the objectname parameter

should be NULL (or an empty string).

 Authorization:

 EXECUTE privilege on the HEALTH_GET_ALERT_ACTION_CFG table function.

 Examples:

 Example 1: Retrieve object level alert action configuration settings for database

SAMPLE for health indicator ID 1004.

HEALTH_GET_ALERT_ACTION_CFG

Chapter 3. Supported administrative SQL routines and views 223

SELECT OBJECTTYPE, CFG_LEVEL, SUBSTR(DBNAME,1,8) AS DBNAME,

 SUBSTR(OBJECTNAME,1,8) AS OBJECTNAME, ID, IS_DEFAULT,

 SUBSTR(CONDITION,1,10) AS CONDITION, ACTIONTYPE,

 SUBSTR(ACTIONNAME,1,30) AS ACTIONNAME, SUBSTR(USERID,1,8) AS USERID,

 SUBSTR(HOSTNAME,1,10) AS HOSTNAME, SCRIPT_TYPE,

 SUBSTR(WORKING_DIR,1,10) AS WORKING_DIR, TERMINATION_CHAR,

 SUBSTR(PARAMETERS,1,10) AS PARAMETERS

FROM TABLE(HEALTH_GET_ALERT_ACTION_CFG(’DB’,’O’,’SAMPLE’,’’)) AS ACTION_CFG

WHERE ID = 1004

The following is an example of output for this query.

OBJECTTYPE CFG_LEVEL DBNAME OBJECTNAME ID IS_DEFAULT CONDITION

---------- --------- -------- ---------- --...---- ---------- ----------

DB O SAMPLE 1004 1 ALARM

DB O SAMPLE 1004 1 ALARM

 2 record(s) selected.

Output for this query (continued).

... ACTIONTYPE ACTIONNAME USERID HOSTNAME

... ---------- ------------------------------ -------- ----------

... S ~/health_center/script/scrpn6 uid1 -

... T 00.0005 uid1 HOST3

Output for this query (continued).

... SCRIPT_TYPE WORKING_DIR TERMINATION_CHAR PARAMETERS

... ----------- ----------- ---------------- ----------

... O ~/health_c - -

... - - - -

Example 2: Retrieve the condition, action type, action name, hostname, and script

type for database SAMPLE for health indicator ID 1004.

SELECT CONDITION, ACTIONTYPE, SUBSTR(ACTIONNAME,1,35) AS ACTIONNAME,

 SUBSTR(USERID,1,8) AS USERID, SUBSTR(HOSTNAME,1,10) AS HOSTNAME, SCRIPT_TYPE

FROM TABLE(HEALTH_GET_ALERT_ACTION_CFG(’DB’,’O’,’SAMPLE’,’’)) AS ALERT_ACTION_CFG

WHERE ID=1004

The following is an example of output for this query.

CONDITION ACTIONTYPE ACTIONNAME ...

---------...--- ---------- -------------------------------- ...

ALARM S ~/health_center/script/scrpn6 ...

ALARM T 00.0005 ...

 2 record(s) selected.

Output for this query (continued).

... USERID HOSTNAME SCRIPT_TYPE

... -------- ---------- -----------

... uid1 - O

... uid1 HOST3 -

 Usage notes:

 The HEALTH_GET_IND_DEFINITION table function can be used to map health

indicator IDs to the health indicator names.

HEALTH_GET_ALERT_ACTION_CFG

224 Administrative SQL Routines and Views

Information returned:

 Table 56. Information returned by the HEALTH_GET_ALERT_ACTION_CFG table function

Column name Data type Description

OBJECTTYPE VARCHAR(3) Object type.

CFG_LEVEL CHAR(1) Configuration level.

DBNAME VARCHAR(128) Database name.

OBJECTNAME VARCHAR(512) Object name.

ID BIGINT Health indicator ID.

IS_DEFAULT SMALLINT Whether the settings is the

default: 1 if it is the default, 0

if it is not the default, Null if

it is not applicable.

CONDITION VARCHAR(512) Alert condition upon which

the action is triggered.

ACTIONTYPE CHAR(1) Action type: 'S' for script

action or 'T' for task action.

ACTIONNAME VARCHAR(5000) If ACTIONTYPE is 'S', this is

the script path name. If

ACTIONTYPE is 'T', this is

the task ID.

USERID VARCHAR(1024) User name under which the

action will be executed.

HOSTNAME VARCHAR(255) Host system name.

SCRIPT_TYPE CHAR(1) Script type: If ACTIONTYPE

is 'S', 'O' for operating system

command script or 'D' for

DB2 command script; If

ACTIONTYPE is 'T', Null.

WORKING_DIR VARCHAR(5000) The working directory for the

script if ACTIONTYPE is 'S'

or Null if ACTIONTYPE is

'T'.

TERMINATION_CHAR VARCHAR(4) The statement termination

character if it is a DB2

command script action,

otherwise Null.

PARAMETERS VARCHAR(200) The command line

parameters if it is an

operating system command

script action.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “HEALTH_GET_ALERT_CFG table function – Retrieve health alert configuration

settings” on page 226

v “HEALTH_GET_IND_DEFINITION table function – Retrieve health indicator

definitions” on page 230

HEALTH_GET_ALERT_ACTION_CFG

Chapter 3. Supported administrative SQL routines and views 225

HEALTH_GET_ALERT_CFG table function – Retrieve health

alert configuration settings

 The HEALTH_GET_ALERT_CFG table function returns health alert configuration

settings for various object types (database manager, database, table space, table

space container) and for various configuration levels (install default, global, and

object).

 Syntax:

�� HEALTH_GET_ALERT_CFG (objecttype , cfg_level , dbname , �

� objectname) ��

 The schema is SYSPROC.

 Table function parameters:

objecttype

An input argument of type VARCHAR(3) that indicates the object type. The

value must be one of the following case-insensitive values:

v ’DBM’ for database manager

v ’DB’ for database

v ’TS’ for table space

v ’TSC’ for table space container

Note: Leading and trailing spaces will be ignored.

cfg_level

An input argument of type VARCHAR(1) that indicates the configuration level.

The value must be one of the following case-insensitive values:

v For objecttype ’DBM’: ’D’ for install default; ’G’ or ’O’ for instance level.

v For objecttype that is not ’DBM’: ’D’ for install default; ’G’ for global level;

’O’ for object level.

dbname

An input argument of type VARCHAR(128) that indicates the database name.

The database name must be provided if objecttype is ’DB’, ’TS’, or ’TSC’, and

cfg_level is ’O’. For all other combinations of objecttype and cfg_level, the dbname

parameter should be NULL (or an empty string).

objectname

An input argument of type VARCHAR(1024) that indicates the object name, for

example, <table space name> or <table space name>.<container name>. The

object name must be provided if objecttype is ’TS’ or ’TSC’, and cfg_level is ’O’.

For all other combinations of objecttype and cfg_level, the objectname parameter

should be NULL (or an empty string).

 Authorization:

 EXECUTE privilege on the HEALTH_GET_ALERT_CFG table function.

 Examples:

 Example 1: Retrieve the object level alert configuration settings for database

SAMPLE.

HEALTH_GET_ALERT_CFG

226 Administrative SQL Routines and Views

SELECT * FROM TABLE(SYSPROC.HEALTH_GET_ALERT_CFG(’DB’,’O’,’SAMPLE’,’’))

 AS ALERT_CFG

The following is an example of output for this query.

OBJECTTYPE CFG_LEVEL DBNAME OBJECTNAME ...

---------- --------- --------...----- -------------...------ ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

DB O SAMPLE ...

... ...

Output for this query (continued).

... ID IS_DEFAULT WARNING_THRESHOLD ...

... -------------------- ---------- -------------------- ...

... 1001 0 0 ...

... 1018 0 0 ...

... 1015 0 0 ...

... 1022 0 0 ...

... 1002 1 95 ...

... 1003 1 30 ...

... 1004 1 60 ...

... 1005 1 75 ...

... 1006 1 75 ...

... 1007 1 5 ...

... 1008 1 75 ...

... 1009 1 5 ...

... 1010 1 50 ...

... 1011 1 80 ...

Output for this query (continued).

... ALARM_THRESHOLD SENSITIVITY EVALUATE ACTION_ENABLED

... -------------------- -------------------- -------- --------------

... 0 0 0 0

... 0 0 1 0

... 0 0 1 0

... 0 0 1 0

... 100 0 0 0

... 50 0 1 0

... 30 0 1 0

... 85 0 1 0

... 85 0 1 0

... 10 0 1 0

... 85 0 1 0

... 10 0 1 0

... 70 0 1 0

... 70 0 0 0

Example 2: Retrieve the warning and alarm thresholds for the health indicator ID

'2002' for table space USERSPACE1 in database SAMPLE.

SELECT WARNING_THRESHOLD, ALARM_THRESHOLD

 FROM TABLE(SYSPROC.HEALTH_GET_ALERT_CFG(’TS’,’O’,’SAMPLE’,’USERSPACE1’))

 AS T WHERE ID = 2002

HEALTH_GET_ALERT_CFG

Chapter 3. Supported administrative SQL routines and views 227

The following is an example of output for this query.

WARNING_THRESHOLD ALARM_THRESHOLD

-------------------- --------------------

 80 90

SQL22004N Cannot find the requested configuration for the given object.

Returning default configuration for "tablespaces".

 1 record(s) selected with 1 warning messages printed.

 Usage notes:

 The HEALTH_GET_IND_DEFINITION table function can be used to map health

indicator IDs to the health indicator names.

Example: Retrieve the warning and alarm thresholds for the health indicator

Tablespace Utilization (ts.ts_util) for table space USERSPACE1 in database

SAMPLE.

WITH HINAME(ID) AS (SELECT ID FROM TABLE(SYSPROC.HEALTH_GET_IND_DEFINITION(’’)) AS W

 WHERE NAME = ’ts.ts_util’)

SELECT WARNING_THRESHOLD, ALARM_THRESHOLD

 FROM TABLE(SYSPROC.HEALTH_GET_ALERT_CFG(’TS’,’O’,’SAMPLE’,’USERSPACE1’)) AS T,

 HINAME AS H

 WHERE T.ID = H.ID

The following is an example of output for this query.

WARNING_THRESHOLD ALARM_THRESHOLD

-------------------- --------------------

 80 90

SQL22004N Cannot find the requested configuration for the given object.

Returning default configuration for "tablespaces".

 1 record(s) selected with 1 warning messages printed.

 Information returned:

 Table 57. Information returned by the HEALTH_GET_ALERT_CFG table function

Column name Data type Description

OBJECTTYPE VARCHAR(3) Object type.

CFG_LEVEL VARCHAR(1) Configuration level.

DBNAME VARCHAR(128) Database name.

OBJECTNAME VARCHAR(512) Object name.

ID BIGINT Health indicator ID.

IS_DEFAULT SMALLINT Whether the settings is the

default: 1 if it is the default, 0

if it is not the default or Null

if not applicable.

WARNING_THRESHOLD BIGINT Warning threshold. Null if

not applicable.

ALARM_THRESHOLD BIGINT Alarm threshold. Null if not

applicable.

SENSITIVITY BIGINT Health indicator sensitivity.

EVALUATE SMALLINT 1 if this health indicator is

being evaluated or 0 if it is

not being evaluated.

HEALTH_GET_ALERT_CFG

228 Administrative SQL Routines and Views

Table 57. Information returned by the HEALTH_GET_ALERT_CFG table function (continued)

Column name Data type Description

ACTION_ENABLED SMALLINT 1 if an action is enabled to

run upon an alert occurrence

or 0 if no action is enabled to

run upon an alert occurrence.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

v “Health indicator configuration” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “HEALTH_GET_ALERT_ACTION_CFG table function –Retrieve health alert

action configuration settings” on page 223

v “HEALTH_GET_IND_DEFINITION table function – Retrieve health indicator

definitions” on page 230

HEALTH_GET_ALERT_CFG

Chapter 3. Supported administrative SQL routines and views 229

HEALTH_GET_IND_DEFINITION table function – Retrieve

health indicator definitions

 The HEALTH_GET_IND_DEFINITION table function returns the health indicator

definitions.

 Syntax:

�� HEALTH_GET_IND_DEFINITION (locale) ��

 The schema is SYSPROC.

 Table function parameter:

locale

An input argument of type VARCHAR(33) that indicates the locale in which

the translatable output is to be returned. If the input locale is not supported by

the database server, an SQL warning message is issued, and the default

language (English) is used. If the input locale is not provided, that is, its value

is NULL (or an empty string), the default language is used.

 Authorization:

 EXECUTE privilege on the HEALTH_GET_IND_DEFINITION table function.

 Examples:

 Example 1: Retrieve the type and short description for health indicator

db.db_op_status in French.

SELECT TYPE, SHORT_DESCRIPTION

 FROM TABLE(SYSPROC.HEALTH_GET_IND_DEFINITION(’fr_FR’))

 AS IND_DEFINITION WHERE NAME = ’db.db_op_status’

The following is an example of output for this query.

TYPE SHORT_DESCRIPTION

---------------- --...---------

STATE Etat opérationnel de la base de données

 1 record(s) selected.

Example 2: Retrieve the short description for health indicator ID 1001 in English.

SELECT SHORT_DESCRIPTION FROM TABLE(SYSPROC.HEALTH_GET_IND_DEFINITION(’en_US’)

 AS IND_DEFINITION WHERE ID = 1001

The following is an example of output for this query.

SHORT_DESCRIPTION

-----------------------------...-------------

Database Operational State

Example 3: Retrieve all health indicator IDs and names.

SELECT ID, NAME FROM TABLE(HEALTH_GET_IND_DEFINITION(’’)) AS T

The following is an example of output for this query.

ID NAME

-------------------- ----------------------------

 1 db2.db2_op_status

 2 db2.sort_privmem_util

 4 db2.mon_heap_util

HEALTH_GET_IND_DEFINITION

230 Administrative SQL Routines and Views

1001 db.db_op_status

 1002 db.sort_shrmem_util

...

 2001 ts.ts_op_status

 2002 ts.ts_util

...

 3002 tsc.tscont_util

 1015 db.tb_reorg_req

...

 Information returned:

 Table 58. Information returned by the HEALTH_GET_IND_DEFINITION table function

Column name Data type Description

ID BIGINT Health indicator ID.

NAME VARCHAR(128) Health indicator name.

SHORT_DESCRIPTION VARCHAR(1024) Health indicator short

description.

LONG_DESCRIPTION VARCHAR(32672) Health indicator long

description.

TYPE VARCHAR(16) Health indicator type.

Possible values are:

v 'THRESHOLD_UPPER':

upper-bounded

threshold-based health

indicators.

v 'THRESHOLD_LOWER':

lower-bounded

threshold-based health

indicators.

v 'STATE': state-based health

indicators.

v 'COLLECTION_STATE':

collection state-based

health indicators.

UNIT VARCHAR(1024) Unit of the health indicator

values and thresholds or Null

if not applicable.

CATEGORY VARCHAR(1024) Health indicator category.

FORMULA VARCHAR(512) Health indicator formula.

REFRESH_INTERVAL BIGINT Health indicator evaluation

interval in seconds.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “HEALTH_GET_ALERT_ACTION_CFG table function –Retrieve health alert

action configuration settings” on page 223

v “HEALTH_GET_ALERT_CFG table function – Retrieve health alert configuration

settings” on page 226

v “Health indicators” in System Monitor Guide and Reference

HEALTH_GET_IND_DEFINITION

Chapter 3. Supported administrative SQL routines and views 231

v “Health indicators summary” in System Monitor Guide and Reference

HEALTH_GET_IND_DEFINITION

232 Administrative SQL Routines and Views

HEALTH_HI_REC

�� HEALTH_HI_REC (schema-version , indicator-id , dbname , �

� object-type , object-name , dbpartitionnum , client-locale , �

� recommendation-doc) ��

The schema is SYSPROC.

The HEALTH_HI_REC procedure retrieves a set of recommendations that address

a health indicator in alert state on a particular DB2 object. Recommendations are

returned in an XML document that contains information about actions that can be

taken (for example, scripts that can be run) to resolve the alert state. Any scripts

that are returned by this procedure must be invoked from the instance on which

the health indicator entered the alert state.

If the specified health indicator on the identified object is not in an alert state, an

error is returned (SQLSTATE 5U0ZZ).

schema-version

An input argument of type INTEGER that specifies the version ID of the

schema used to represent the XML document. The recommendation document

will only contain elements and attributes that were defined for that schema

version. Valid schema versions are defined in db2ApiDf.h, located in the

include subdirectory of the sqllib directory.

indicator-id

An input argument of type INTEGER that specifies the numeric identifier of

the health indicator for which recommendations are being requested. Valid

health indicator IDs are defined in sqlmon.h, located in the include

subdirectory of the sqllib directory.

dbname

An input argument of type VARCHAR(255) that specifies an alias name for the

database against which the health indicator entered an alert state, and when

object type is either DB2HEALTH_OBJTYPE_TS_CONTAINER,

DB2HEALTH_OBJTYPE_TABLESPACE, or

DB2HEALTH_OBJTYPE_DATABASE. Specify NULL otherwise.

object-type

An input argument of type INTEGER that specifies the type of object on which

the health indicator entered an alert state. Valid object types are defined in

sqlmon.h, located in the include subdirectory of the sqllib directory.

object-name

An input argument of type VARCHAR(255) that specifies the name of a table

space or table space container when the object type is set to

DB2HEALTH_OBJTYPE_TABLESPACE or

DB2HEALTH_OBJTYPE_TS_CONTAINER. Specify NULL if the object type is

DB2HEALTH_OBJTYPE_DATABASE or

DB2HEALTH_OBJTYPE_DATABASE_MANAGER. In the case of a table space

container, the object name is specified as <table space name>.<container

name>.

dbpartitionnum

An input argument of type INTEGER that specifies the number of the database

partition on which the health indicator entered an alert state. Valid values are 0

HEALTH_HI_REC

Chapter 3. Supported administrative SQL routines and views 233

to 999, -1 (which specifies the currently connected database partition), and -2

(which specifies all database partitions).

client-locale

An input argument of type VARCHAR(33) that specifies a client language

identifier. Use this parameter to specify the language in which

recommendations are to be returned. If no value is specified, ’En_US’ (English)

will be used. Note that if the message files for the specified locale are not

available on the server, ’En_US’ will be used as the default.

recommendation-doc

An output argument of type BLOB(2M) that contains the recommendation

document (XML), formatted according to the DB2 Health Recommendation

schema definition (see the XML schema DB2RecommendationSchema.xsd,

located in the misc subdirectory of the sqllib directory). The XML document is

encoded in UTF-8, and text in the document is in the locale of the caller, or

English, if messages are not available in the caller’s locale at the target

instance.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “HEALTH_CONT_HI ” on page 195

v “HEALTH_CONT_HI_HIS ” on page 197

v “HEALTH_DB_HI ” on page 201

v “HEALTH_DB_HI_HIS ” on page 205

v “HEALTH_DBM_HI ” on page 216

v “HEALTH_DBM_HI_HIS ” on page 218

v “HEALTH_TBS_HI ” on page 235

v “HEALTH_TBS_HI_HIS ” on page 238

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_HI_REC

234 Administrative SQL Routines and Views

HEALTH_TBS_HI

 The HEALTH_TBS_HI table function returns health indicator information for table

spaces from a health snapshot of table spaces in a database.

 Syntax:

�� HEALTH_TBS_HI (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_TBS_HI table function.

 Example:

 SELECT * FROM TABLE(HEALTH_TBS_HI(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP TABLESPACE_NAME HI_ID HI_VALUE ...

-------------------------- ---------------...- -----...- -------- ...

2006-02-13-12.30.35.229196 SYSCATSPACE 2001 0 ...

2006-02-13-12.30.35.229196 SYSCATSPACE 2002 99 ...

2006-02-13-12.30.35.229196 SYSCATSPACE 2003 0 ...

2006-02-13-12.30.35.229196 SYSTOOLSPACE 2001 0 ...

2006-02-13-12.30.35.229196 SYSTOOLSPACE 2002 62 ...

2006-02-13-12.30.35.229196 SYSTOOLSPACE 2003 0 ...

2006-02-13-12.30.35.229196 SYSTOOLSTMPSPACE 2001 0 ...

2006-02-13-12.30.35.229196 TEMPSPACE1 2001 0 ...

2006-02-13-12.30.35.229196 USERSPACE1 2001 0 ...

2006-02-13-12.30.35.229196 USERSPACE1 2002 100 ...

2006-02-13-12.30.35.229196 USERSPACE1 2003 0 ...

 11 record(s) selected.

Output from this query (continued).

... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...

... -------------------------- --------------- --------------------- ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 4 Alarm ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

HEALTH_TBS_HI

Chapter 3. Supported administrative SQL routines and views 235

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 1 Normal ...

... 2006-02-13-12.26.26.158000 4 Alarm ...

... 2006-02-13-12.26.26.158000 1 Normal ...

Output from this query (continued).

... HI_FORMULA HI_ADDITIONAL_INFO

... ---------------------...- --

... 0 -

... ((9376 / 9468) * 100) The short term table space growth rate

 from "02/13/2006 11:26:26.000158" to

 "02/13/2006 12:26:26.000158" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:26:26.000158"

 to "02/13/2006 12:26:26.000158" is "N/A"

 bytes per second. Time to fullness is

 projected to be "N/A" and "N/A"

 respectively. The table space is defined

 with automatic storage set to "YES" and

 automatic resize enabled set to "YES".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

 the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

 "N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "38797312".

... 0 -

... ((156 / 252) * 100) The short term table space growth rate

 from "02/13/2006 11:26:26.000158" to

 "02/13/2006 12:26:26.000158" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:26:26.000158"

 to "02/13/2006 12:26:26.000158" is "N/A"

 bytes per second. Time to fullness is

 projected to be "N/A" and "N/A"

 respectively. The table space is defined

 with automatic storage set to "YES" and

 automatic resize enabled set to "YES".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

 the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

 "N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "1048576".

... 0 -

... 0 -

... 0 -

... ((1504 / 1504) * 100) The short term table space growth rate from

 "02/13/2006 11:26:26.000158" to

 "02/13/2006 12:26:26.000158" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:26:26.000158" to

 "02/13/2006 12:26:26.000158" is "N/A" bytes

 per second. Time to fullness is projected

 to be "N/A" and "N/A" respectively. The

 table space is defined with automatic storage

 set to "YES" and automatic resize enabled

 set to "YES".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

HEALTH_TBS_HI

236 Administrative SQL Routines and Views

the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

 "N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "6291456".

 Information returned:

 Table 59. Information returned by the HEALTH_TBS_HI table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

HI_VALUE SMALLINT The value of the health

indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_TBS_HI

Chapter 3. Supported administrative SQL routines and views 237

HEALTH_TBS_HI_HIS

 The HEALTH_TBS_HI_HIS table function returns health indicator history

information for table spaces from a health snapshot of a database.

Syntax

�� HEALTH_TBS_HI_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_TBS_HI_HIS table function.

 Example:

 SELECT * FROM TABLE(HEALTH_TBS_HI_HIS(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP TABLESPACE_NAME HI_ID ...

-------------------------- ---------------...- -----...- ...

2006-02-13-12.30.37.181478 SYSCATSPACE 2001 ...

2006-02-13-12.30.37.181478 SYSCATSPACE 2001 ...

2006-02-13-12.30.37.181478 SYSCATSPACE 2002 ...

2006-02-13-12.30.37.181478 SYSCATSPACE 2002 ...

2006-02-13-12.30.37.181478 SYSCATSPACE 2003 ...

2006-02-13-12.30.37.181478 SYSCATSPACE 2003 ...

2006-02-13-12.30.37.181478 SYSTOOLSPACE 2001 ...

2006-02-13-12.30.37.181478 SYSTOOLSPACE 2001 ...

2006-02-13-12.30.37.181478 SYSTOOLSPACE 2002 ...

2006-02-13-12.30.37.181478 SYSTOOLSPACE 2002 ...

2006-02-13-12.30.37.181478 SYSTOOLSPACE 2003 ...

2006-02-13-12.30.37.181478 SYSTOOLSPACE 2003 ...

2006-02-13-12.30.37.181478 SYSTOOLSTMPSPACE 2001 ...

2006-02-13-12.30.37.181478 SYSTOOLSTMPSPACE 2001 ...

2006-02-13-12.30.37.181478 TEMPSPACE1 2001 ...

2006-02-13-12.30.37.181478 TEMPSPACE1 2001 ...

2006-02-13-12.30.37.181478 USERSPACE1 2001 ...

2006-02-13-12.30.37.181478 USERSPACE1 2001 ...

2006-02-13-12.30.37.181478 USERSPACE1 2002 ...

2006-02-13-12.30.37.181478 USERSPACE1 2002 ...

2006-02-13-12.30.37.181478 USERSPACE1 2003 ...

2006-02-13-12.30.37.181478 USERSPACE1 2003 ...

 22 record(s) selected.

HEALTH_TBS_HI_HIS

238 Administrative SQL Routines and Views

Output from this query (continued).

... HI_TIMESTAMP HI_VALUE HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...

... -------------------------- -------- -------------- --------------------- ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 99 4 Alarm ...

... 2006-02-13-12.06.26.168000 99 4 Alarm ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 62 1 Normal ...

... 2006-02-13-12.06.26.168000 62 1 Normal ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

... 2006-02-13-12.16.25.911000 100 4 Alarm ...

... 2006-02-13-12.06.26.168000 100 4 Alarm ...

... 2006-02-13-12.16.25.911000 0 1 Normal ...

... 2006-02-13-12.06.26.168000 0 1 Normal ...

Output from this query (continued).

... HI_FORMULA HI_ADDITIONAL_INFO

... --------------------...- -------------------...---

... 0 -

... 0 -

... ((9376 / 9468) * 100) The short term table space growth rate from

 "02/13/2006 11:16:25.000911" to

 "02/13/2006 12:16:25.000911" is "N/A" bytes

 per second and the long term growth rate

 from "02/12/2006 12:16:25.000911" to

 "02/13/2006 12:16:25.000911" is "N/A" bytes

 per second. Time to fullness is projected

 to be "N/A" and "N/A" respectively. The

 table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES".

... ((9376 / 9468) * 100) The short term table space growth rate from

 "02/13/2006 11:06:26.000168" to

 "02/13/2006 12:06:26.000168" is "N/A" bytes

 per second and the long term growth rate

 from "02/12/2006 12:06:26.000168" to

 "02/13/2006 12:06:26.000168" is "N/A" bytes

 per second. Time to fullness is projected

 to be "N/A" and "N/A" respectively. The

 table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

 the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

 "N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "38797312".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

 the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

HEALTH_TBS_HI_HIS

Chapter 3. Supported administrative SQL routines and views 239

"N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "38797312".

... 0 -

... 0 -

... ((156 / 252) * 100) The short term table space growth rate from

 "02/13/2006 11:16:25.000911" to

 "02/13/2006 12:16:25.000911" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:16:25.000911" to

 "02/13/2006 12:16:25.000911" is "N/A" bytes

 per second. Time to fullness is projected

 to be "N/A" and "N/A" respectively. The

 table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES".

... ((156 / 252) * 100) The short term table space growth rate from

 "02/13/2006 11:06:26.000168" to

 "02/13/2006 12:06:26.000168" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:06:26.000168" to

 "02/13/2006 12:06:26.000168" is "N/A" bytes

 per second. Time to fullness is projected

 to be "N/A" and "N/A" respectively. The

 table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

 the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

 "N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "1048576".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic resize

 enabled set to "YES". The following are

 the automatic resize settings: increase

 size (bytes) "-1", increase size (percent)

 "N/A", maximum size (bytes) "-1". The

 current table space size (bytes) is

 "1048576".

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... ((1504 / 1504) * 100) The short term table space growth rate

 from "02/13/2006 11:16:25.000911" to

 "02/13/2006 12:16:25.000911" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:16:25.000911"

 to "02/13/2006 12:16:25.000911" is "N/A"

 bytes per second. Time to fullness is

 projected to be "N/A" and "N/A"

 respectively. The table space is defined

 with automatic storage set to "YES" and

 automatic resize enabled set to "YES".

... ((1504 / 1504) * 100) The short term table space growth rate

 from "02/13/2006 11:06:26.000168" to

 "02/13/2006 12:06:26.000168" is "N/A"

 bytes per second and the long term growth

 rate from "02/12/2006 12:06:26.000168"

 to "02/13/2006 12:06:26.000168" is "N/A"

 bytes per second. Time to fullness is

HEALTH_TBS_HI_HIS

240 Administrative SQL Routines and Views

projected to be "N/A" and "N/A"

 respectively. The table space is defined

 with automatic storage set to "YES" and

 automatic resize enabled set to "YES".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic

 resize enabled set to "YES". The

 following are the automatic resize

 settings: increase size (bytes) "-1",

 increase size (percent) "N/A", maximum

 size (bytes) "-1". The current table

 space size (bytes) is "6291456".

... 0 The table space is defined with automatic

 storage set to "YES" and automatic

 resize enabled set to "YES". The

 following are the automatic resize

 settings: increase size (bytes) "-1",

 increase size (percent) "N/A", maximum

 size (bytes) "-1". The current table

 space size (bytes) is "6291456".

 Information returned:

 Table 60. Information returned by the HEALTH_TBS_HI_HIS table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

HI_ID BIGINT A number that uniquely

identifies the health indicator

in the snapshot data stream.

HI_TIMESTAMP TIMESTAMP The date and time that the

alert was generated.

HI_VALUE SMALLINT The value of the health

indicator.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the

HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to calculate

the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about

the health indicator.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_TBS_HI_HIS

Chapter 3. Supported administrative SQL routines and views 241

HEALTH_TBS_INFO

 The HEALTH_TBS_INFO table function returns table space information from a

health snapshot of a database.

 Syntax:

�� HEALTH_TBS_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Table function parameters:

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If the null value is specified, -1 is set implicitly.

 Authorization:

 EXECUTE privilege on the HEALTH_TBS_INFO table function.

 Example:

 SELECT * FROM TABLE(HEALTH_TBS_INFO(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP TABLESPACE_NAME ...

-------------------------- ----------------...- ...

2006-02-13-12.30.35.027383 SYSCATSPACE ...

2006-02-13-12.30.35.027383 SYSTOOLSPACE ...

2006-02-13-12.30.35.027383 SYSTOOLSTMPSPACE ...

2006-02-13-12.30.35.027383 TEMPSPACE1 ...

2006-02-13-12.30.35.027383 USERSPACE1 ...

 5 record(s) selected.

Output from this query (continued).

... ROLLED_UP_ALERT_STATE ROLLED_UP_ALERT_STATE_DETAIL

... --------------------- ----------------------------

... 4 Alarm

... 1 Normal

... 1 Normal

... 1 Normal

... 4 Alarm

HEALTH_TBS_INFO

242 Administrative SQL Routines and Views

Information returned:

 Table 61. Information returned by the HEALTH_TBS_INFO table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state

captured by this snapshot.

ROLLED_UP_ALERT_

 STATE_DETAIL

VARCHAR(20) The text description of the

ROLLED_UP_ALERT_STATE

column.

 Related concepts:

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “Health monitor SQL table functions” in System Monitor Guide and Reference

v “Supported administrative SQL routines and views” on page 8

HEALTH_TBS_INFO

Chapter 3. Supported administrative SQL routines and views 243

MQSeries administrative SQL routines and views

MQPUBLISH

 The MQPUBLISH function publishes data to MQSeries. For more details, visit

http://www.ibm.com/software/MQSeries.

The MQPUBLISH function publishes the data contained in msg-data to the

MQSeries publisher specified in publisher-service, and using the quality of service

policy defined by service-policy. An optional topic for the message can be specified,

and an optional user-defined message correlation identifier can also be specified.

The data type of the result is VARCHAR(1). The result of the function is ’1’ if

successful or ’0’ if unsuccessful.

 Syntax:

�� MQPUBLISH (

publisher-service

,

service-policy

,

 msg-data �

�
,

topic

(1)

,

correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also specified.

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Function parameters:

publisher-service

A string containing the logical MQSeries destination where the message is to

be sent. If specified, the publisher-service must refer to a publisher Service

Point defined in the DB2MQ.MQPUBSUB table that has a type value of ’P’ for

publisher service. If publisher-service is not specified, the

DB2.DEFAULT.PUBLISHER will be used. The maximum size of publisher-service

is 48 bytes.

service-policy

A string containing the MQSeries Service Policy to be used in handling of this

message. If specified, the service-policy must refer to a Policy defined in the

DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, the default DB2.DEFAULT.POLICY will be used. The maximum size

of service-policy is 48 bytes.

msg-data

A string expression containing the data to be sent via MQSeries. The maximum

size for a VARCHAR string expression is 32 000 bytes and the maximum size

for a CLOB string expression is 1M bytes.

HEALTH_TBS_INFO

244 Administrative SQL Routines and Views

topic

A string expression containing the topic for the message publication. If no topic

is specified, none will be associated with the message. The maximum size of

topic is 40 bytes. Multiple topics can be specified in one string (up to 40

characters long). Each topic must be separated by a colon. For example,

″t1:t2:the third topic″ indicates that the message is associated with all three

topics: t1, t2, and ″the third topic″.

correl-id

An optional string expression containing a correlation identifier to be

associated with this message. The correl-id is often specified in request and

reply scenarios to associate requests with replies. If not specified, no correlation

ID will be added to the message. The maximum size of correl-id is 24 bytes.

 Examples:

 Example 1: This example publishes the string ″Testing 123″ to the default publisher

service (DB2.DEFAULT.PUBLISHER) using the default policy

(DB2.DEFAULT.POLICY). No correlation identifier or topic is specified for the

message.

 VALUES MQPUBLISH(’Testing 123’)

Example 2: This example publishes the string ″Testing 345″ to the publisher service

″MYPUBLISHER″ under the topic ″TESTS″. The default policy is used and no

correlation identifier is specified.

 VALUES MQPUBLISH(’MYPUBLISHER’,’Testing 345’, ’TESTS’)

Example 3: This example publishes the string ″Testing 678″ to the publisher service

″MYPUBLISHER″ using the policy ″MYPOLICY″ with a correlation identifier of

″TEST1″. The message is published with topic ″TESTS″.

 VALUES MQPUBLISH(’MYPUBLISHER’,’MYPOLICY’,’Testing 678’,’TESTS’,’TEST1’)

Example 4: This example publishes the string ″Testing 901″ to the publisher service

″MYPUBLISHER″ under the topic ″TESTS″ using the default policy

(DB2.DEFAULT.POLICY) and no correlation identifier.

 VALUES MQPUBLISH(’Testing 901’,’TESTS’)

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “MQRECEIVEALL ” on page 259

MQPUBLISH

Chapter 3. Supported administrative SQL routines and views 245

v “Supported administrative SQL routines and views” on page 8

MQPUBLISH

246 Administrative SQL Routines and Views

MQREAD

 The MQREAD function returns a message from the MQSeries location specified by

receive-service, using the quality of service policy defined in service-policy. Executing

this operation does not remove the message from the queue associated with

receive-service, but instead returns the message at the head of the queue.

The data type of the result is VARCHAR (32000). If no messages are available to be

returned, the result is the null value.

 Syntax:

�� MQREAD (

receive-service

,

service-policy

) ��

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Function parameters:

receive-service

A string containing the logical MQSeries destination from where the message is

to be received. If specified, the receive-service must refer to a Service Point

defined in the DB2MQ.MQSERVICE table. A service point is a logical

end-point from where a message is sent or received. Service points definitions

include the name of the MQSeries Queue Manager and Queue. If receive-service

is not specified, then the DB2.DEFAULT.SERVICE will be used. The maximum

size of receive-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy used in handling this message.

If specified, the service-policy must refer to a Policy defined in the

DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

 Examples:

 Example 1: This example reads the message at the head of the queue specified by

the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY).

 VALUES MQREAD()

Example 2: This example reads the message at the head of the queue specified by

the service ″MYSERVICE″ using the default policy (DB2.DEFAULT.POLICY).

 VALUES MQREAD(’MYSERVICE’)

Example 3: This example reads the message at the head of the queue specified by

the service ″MYSERVICE″, and using the policy ″MYPOLICY″.

 VALUES MQREAD(’MYSERVICE’,’MYPOLICY’)

 Related concepts:

MQREAD

Chapter 3. Supported administrative SQL routines and views 247

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQPUBLISH ” on page 244

v “MQREADALL ” on page 249

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “Supported administrative SQL routines and views” on page 8

MQREAD

248 Administrative SQL Routines and Views

MQREADALL

 The MQREADALL table function returns a table containing the messages and

message metadata from the MQSeries location specified by receive-service, using the

quality of service policy service-policy. Performing this operation does not remove

the messages from the queue associated with receive-service.

 Syntax:

�� MQREADALL (

receive-service

,

service-policy

num-rows
) ��

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Table function parameters:

receive-service

A string containing the logical MQSeries destination from which the message is

read. If specified, the receive-service must refer to a service point defined in the

DB2MQ.MQSERVICE table. A service point is a logical end-point from which a

message is sent or received. Service point definitions include the name of the

MQSeries Queue Manager and Queue. If receive-service is not specified, then the

DB2.DEFAULT.SERVICE will be used. The maximum size of receive-service is 48

bytes.

service-policy

A string containing the MQSeries Service Policy used in the handling of this

message. If specified, the service-policy refers to a Policy defined in the

DB2MQ.MQPOLICY table. A service policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

num-rows

A positive integer containing the maximum number of messages to be returned

by the function.

 If num-rows is specified, then a maximum of num-rows messages will be

returned. If num-rows is not specified, then all available messages will be

returned.

 Authorization:

 EXECUTE privilege on the MQREADALL table function.

 Examples:

 Example 1: This example receives all the messages from the queue specified by the

default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a

table.

SELECT * FROM table (MQREADALL()) AS T

MQREADALL

Chapter 3. Supported administrative SQL routines and views 249

Example 2: This example receives all the messages from the head of the queue

specified by the service MYSERVICE, using the default policy

(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.

SELECT T.MSG, T.CORRELID FROM table (MQREADALL(’MYSERVICE’)) AS T

Example 3: This example reads the head of the queue specified by the default

service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). Only messages with a CORRELID of ’1234’ are returned.

All columns are returned.

SELECT * FROM table (MQREADALL()) AS T WHERE T.CORRELID = ’1234’

Example 4: This example receives the first 10 messages from the head of the queue

specified by the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). All columns are returned.

SELECT * FROM table (MQREADALL(10)) AS T

 Information returned:

 Table 62. Information returned by the MQREADALL table function

Column name Data type Description

MSG VARCHAR(32000) Contains the contents of the

MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID that

can be used to identify

messages. You can select a

message from the queue

using this identifier. In the

case of a request and

response scenario, the

correlation ID enables you to

associate a response with a

particular request.

TOPIC VARCHAR(40) Contains the topic with

which the message was

published, if available.

QNAME VARCHAR(48) Contains the name of the

queue where the message

was received.

MSGID CHAR(24) Contains the assigned unique

MQSeries identifier for this

message.

MSGFORMAT VARCHAR(8) Contains the format of the

message, as defined by

MQSeries. Typical strings

have an MQSTR format.

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

MQREADALL

250 Administrative SQL Routines and Views

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQREADALL

Chapter 3. Supported administrative SQL routines and views 251

MQREADALLCLOB

 The MQREADALLCLOB table function returns a table containing the messages

and message metadata from the MQSeries location specified by receive-service,

using the quality of service policy service-policy. Performing this operation does not

remove the messages from the queue associated with receive-service.

 Syntax:

�� MQREADALLCLOB �

� ()

receive-service

num-rows

,

service-policy

 ��

The schema is DB2MQ.

 Table function parameters:

receive-service

A string containing the logical MQSeries destination from which the message is

read. If specified, the receive-service must refer to a service point defined in the

DB2MQ.MQSERVICE table. A service point is a logical end-point from which a

message is sent or received. Service point definitions include the name of the

MQSeries Queue Manager and Queue. If receive-service is not specified, then the

DB2.DEFAULT.SERVICE will be used. The maximum size of receive-service is 48

bytes.

service-policy

A string containing the MQSeries Service Policy used in the handling of this

message. If specified, the service-policy refers to a Policy defined in the

DB2MQ.MQPOLICY table. A service policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

num-rows

A positive integer containing the maximum number of messages to be returned

by the function.

 If num-rows is specified, then a maximum of num-rows messages will be

returned. If num-rows is not specified, then all available messages will be

returned.

 Authorization:

 EXECUTE privilege on the MQREADALLCLOB table function.

 Examples:

 Example 1: This example receives all the messages from the queue specified by the

default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a

table.

SELECT * FROM table (MQREADALLCLOB()) AS T

MQREADALLCLOB

252 Administrative SQL Routines and Views

Example 2: This example receives all the messages from the head of the queue

specified by the service MYSERVICE, using the default policy

(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.

SELECT T.MSG, T.CORRELID FROM table (MQREADALLCLOB(’MYSERVICE’)) AS T

Example 3: This example reads the head of the queue specified by the default

service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). Only messages with a CORRELID of ’1234’ are returned.

All columns are returned.

SELECT * FROM table (MQREADALLCLOB()) AS T WHERE T.CORRELID = ’1234’

Example 4: This example receives the first 10 messages from the head of the queue

specified by the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). All columns are returned.

SELECT * FROM table (MQREADALLCLOB(10)) AS T

 Information returned:

 Table 63. Information returned by the MQREADALLCLOB table function

Column name Data type Description

MSG CLOB(1M) Contains the contents of the

MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID that

can be used to identify

messages. You can select a

message from the queue

using this identifier. In the

case of a request and

response scenario, the

correlation ID enables you to

associate a response with a

particular request.

TOPIC VARCHAR(40) Contains the topic with

which the message was

published, if available.

QNAME VARCHAR(48) Contains the name of the

queue where the message

was received.

MSGID CHAR(24) Contains the assigned unique

MQSeries identifier for this

message.

MSGFORMAT VARCHAR(8) Contains the format of the

message, as defined by

MQSeries. Typical strings

have an MQSTR format.

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

MQREADALLCLOB

Chapter 3. Supported administrative SQL routines and views 253

v “MQREADALL ” on page 249

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQREADALLCLOB

254 Administrative SQL Routines and Views

MQREADCLOB

 The MQREADCLOB function returns a message from the MQSeries location

specified by receive-service, using the quality of service policy defined in

service-policy. Executing this operation does not remove the message from the

queue associated with receive-service, but instead returns the message at the head of

the queue.

The data type of the result is CLOB(1M). If no messages are available to be

returned, the result is the null value.

 Syntax:

�� MQREADCLOB (

receive-service

,

service-policy

) ��

The schema is DB2MQ.

 Function parameters:

receive-service

A string containing the logical MQSeries destination from where the message is

to be received. If specified, the receive-service must refer to a Service Point

defined in the DB2MQ.MQSERVICE table. A service point is a logical

end-point from where a message is sent or received. Service points definitions

include the name of the MQSeries Queue Manager and Queue. If receive-service

is not specified, then the DB2.DEFAULT.SERVICE will be used. The maximum

size of receive-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy used in handling this message.

If specified, the service-policy must refer to a Policy defined in the

DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

 Examples:

 Example 1: This example reads the message at the head of the queue specified by

the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY).

 VALUES MQREADCLOB()

Example 2: This example reads the message at the head of the queue specified by

the service ″MYSERVICE″ using the default policy (DB2.DEFAULT.POLICY).

 VALUES MQREADCLOB(’MYSERVICE’)

Example 3: This example reads the message at the head of the queue specified by

the service ″MYSERVICE″, and using the policy ″MYPOLICY″.

 VALUES MQREADCLOB(’MYSERVICE’,’MYPOLICY’)

 Related concepts:

MQREADCLOB

Chapter 3. Supported administrative SQL routines and views 255

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQREADCLOB

256 Administrative SQL Routines and Views

MQRECEIVE

 The MQRECEIVE function returns a message from the MQSeries location specified

by receive-service, using the quality of service policy service-policy. Performing this

operation removes the message from the queue associated with receive-service. If the

correl-id is specified, then the first message with a matching correlation identifier

will be returned. If correl-id is not specified, then the message at the head of the

queue will be returned.

The data type of the result is VARCHAR (32000). If no messages are available to be

returned, the result is the null value.

 Syntax:

�� MQRECEIVE �

� ()

receive-service

,

service-policy

,

correl-id

 ��

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Function parameters:

receive-service

A string containing the logical MQSeries destination from which the message is

received. If specified, the receive-service must refer to a Service Point defined in

the DB2MQ.MQSERVICE table. A service point is a logical end-point from

which a message is sent or received. Service points definitions include the

name of the MQSeries Queue Manager and Queue. If receive-service is not

specified, the DB2.DEFAULT.SERVICE is used. The maximum size of

receive-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy to be used in the handling of

this message. If specified, service-policy must refer to a policy defined in the

DB2MQ.MQPOLICY table. A service policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, the default DB2.DEFAULT.POLICY is used. The maximum size of

service-policy is 48 bytes.

correl-id

A string containing an optional correlation identifier to be associated with this

message. The correl-id is often specified in request and reply scenarios to

associate requests with replies. If not specified, no correlation id will be

specified. The maximum size of correl-id is 24 bytes.

 Examples:

 Example 1: This example receives the message at the head of the queue specified

by the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY).

 VALUES MQRECEIVE()

MQRECEIVE

Chapter 3. Supported administrative SQL routines and views 257

Example 2: This example receives the message at the head of the queue specified

by the service ″MYSERVICE″ using the default policy (DB2.DEFAULT.POLICY).

 VALUES MQRECEIVE(’MYSERVICE’)

Example 3: This example receives the message at the head of the queue specified

by the service ″MYSERVICE″ using the policy ″MYPOLICY″.

 VALUES MQRECEIVE(’MYSERVICE’,’MYPOLICY’)

Example 4: This example receives the first message with a correlation id that

matches ’1234’ from the head of the queue specified by the service ″MYSERVICE″

using the policy ″MYPOLICY″.

 VALUES MQRECEIVE(’MYSERVICE’,’MYPOLICY’,’1234’)

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQREADCLOB ” on page 255

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQRECEIVE

258 Administrative SQL Routines and Views

MQRECEIVEALL

 The MQRECEIVEALL table function returns a table containing the messages and

message metadata from the MQSeries location specified by receive-service, using the

quality of service policy service-policy. Performing this operation removes the

messages from the queue associated with receive-service.

 Syntax:

�� MQRECEIVEALL (�

�
receive-service

,

service-policy

,

correl-id

 �

�
num-rows

,

) ��

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Table function parameters:

receive-service

A string containing the logical MQSeries destination from which the message is

received. If specified, the receive-service must refer to a service point defined in

the DB2MQ.MQSERVICE table. A service point is a logical end-point from

which a message is sent or received. Service point definitions include the name

of the MQSeries Queue Manager and Queue. If receive-service is not specified,

then the DB2.DEFAULT.SERVICE will be used. The maximum size of

receive-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy used in the handling of this

message. If specified, the service-policy refers to a Policy defined in the

DB2MQ.MQPOLICY table. A service policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

correl-id

An optional string containing a correlation identifier associated with this

message. The correl-id is often specified in request and reply scenarios to

associate requests with replies. If not specified, no correlation id is specified.

The maximum size of correl-id is 24 bytes.

 If a correl-id is specified, all the messages with a matching correlation identifier

are returned and removed from the queue. If correl-id is not specified, the

message at the head of the queue is returned.

num-rows

A positive integer containing the maximum number of messages to be returned

by the function.

MQRECEIVEALL

Chapter 3. Supported administrative SQL routines and views 259

If num-rows is specified, then a maximum of num-rows messages will be

returned. If num-rows is not specified, then all available messages will be

returned.

 Authorization:

 EXECUTE privilege on the MQRECEIVEALL table function.

 Examples:

 Example 1: This example receives all the messages from the queue specified by the

default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a

table.

SELECT * FROM table (MQRECEIVEALL()) AS T

Example 2: This example receives all the messages from the head of the queue

specified by the service MYSERVICE, using the default policy

(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.

SELECT T.MSG, T.CORRELID FROM table (MQRECEIVEALL(’MYSERVICE’)) AS T

Example 3: This example receives all of the message from the head of the queue

specified by the service ″MYSERVICE″, using the policy ″MYPOLICY″. Only

messages with a CORRELID of ’1234’ are returned. Only the MSG and CORRELID

columns are returned.

SELECT T.MSG, T.CORRELID FROM table

 (MQRECEIVEALL(’MYSERVICE’,’MYPOLICY’,’1234’)) AS T

Example 4: This example receives the first 10 messages from the head of the queue

specified by the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). All columns are returned.

SELECT * FROM table (MQRECEIVEALL(10)) AS T

 Information returned:

 Table 64. Information returned by the MQRECEIVEALL table function

Column name Data type Description

MSG VARCHAR(32000) Contains the contents of the

MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID that

can be used to identify

messages. You can select a

message from the queue

using this identifier. In the

case of a request and

response scenario, the

correlation ID enables you to

associate a response with a

particular request.

TOPIC VARCHAR(40) Contains the topic with

which the message was

published, if available.

QNAME VARCHAR(48) Contains the name of the

queue where the message

was received.

MQRECEIVEALL

260 Administrative SQL Routines and Views

Table 64. Information returned by the MQRECEIVEALL table function (continued)

Column name Data type Description

MSGID CHAR(24) Contains the assigned unique

MQSeries identifier for this

message.

MSGFORMAT VARCHAR(8) Contains the format of the

message, as defined by

MQSeries. Typical strings

have an MQSTR format.

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQRECEIVEALL

Chapter 3. Supported administrative SQL routines and views 261

MQRECEIVEALLCLOB

 The MQRECEIVEALLCLOB table function returns a table containing the messages

and message metadata from the MQSeries location specified by receive-service,

using the quality of service policy service-policy. Performing this operation removes

the messages from the queue associated with receive-service.

 Syntax:

�� MQRECEIVEALLCLOB (�

�
receive-service

,

service-policy

,

correl-id

 �

�
num-rows

,

) ��

The schema is DB2MQ.

 Table function parameters:

receive-service

A string containing the logical MQSeries destination from which the message is

received. If specified, the receive-service must refer to a service point defined in

the DB2MQ.MQSERVICE table. A service point is a logical end-point from

which a message is sent or received. Service point definitions include the name

of the MQSeries Queue Manager and Queue. If receive-service is not specified,

then the DB2.DEFAULT.SERVICE will be used. The maximum size of

receive-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy used in the handling of this

message. If specified, the service-policy refers to a Policy defined in the

DB2MQ.MQPOLICY table A service policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

correl-id

An optional string containing a correlation identifier associated with this

message. The correl-id is often specified in request and reply scenarios to

associate requests with replies. If not specified, no correlation id is specified.

The maximum size of correl-id is 24 bytes.

 If a correl-id is specified, then only those messages with a matching correlation

identifier will be returned. If correl-id is not specified, then the message at the

head of the queue will be returned.

num-rows

A positive integer containing the maximum number of messages to be returned

by the function.

 If num-rows is specified, then a maximum of num-rows messages will be

returned. If num-rows is not specified, then all available messages are returned.

MQRECEIVEALLCLOB

262 Administrative SQL Routines and Views

Authorization:

 EXECUTE privilege on the MQRECEIVEALLCLOB table function.

 Examples:

 Example 1: This example receives all the messages from the queue specified by the

default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a

table.

SELECT * FROM table (MQRECEIVEALLCLOB()) AS T

Example 2: This example receives all the messages from the head of the queue

specified by the service MYSERVICE, using the default policy

(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.

SELECT T.MSG, T.CORRELID

 FROM table (MQRECEIVEALLCLOB(’MYSERVICE’)) AS T

Example 3: This example receives all of the message from the head of the queue

specified by the service ″MYSERVICE″, using the policy ″MYPOLICY″. Only

messages with a CORRELID of ’1234’ are returned. Only the MSG and CORRELID

columns are returned.

SELECT T.MSG, T.CORRELID

 FROM table (MQRECEIVEALLCLOB(’MYSERVICE’,’MYPOLICY’,’1234’)) AS T

Example 4: This example receives the first 10 messages from the head of the queue

specified by the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY). All columns are returned.

SELECT * FROM table (MQRECEIVEALLCLOB(10)) AS T

 Information returned:

 Table 65. Information returned by the MQRECEIVEALLCLOB table function

Column name Data type Description

MSG CLOB(1M) Contains the contents of the

MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID that

can be used to identify

messages. You can select a

message from the queue

using this identifier. In the

case of a request and

response scenario, the

correlation ID enables you to

associate a response with a

particular request.

TOPIC VARCHAR(40) Contains the topic with

which the message was

published, if available.

QNAME VARCHAR(48) Contains the name of the

queue where the message

was received.

MSGID CHAR(24) Contains the assigned unique

MQSeries identifier for this

message.

MQRECEIVEALLCLOB

Chapter 3. Supported administrative SQL routines and views 263

Table 65. Information returned by the MQRECEIVEALLCLOB table function (continued)

Column name Data type Description

MSGFORMAT VARCHAR(8) Contains the format of the

message, as defined by

MQSeries. Typical strings

have an MQSTR format.

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQUNSUBSCRIBE ” on page 271

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “Supported administrative SQL routines and views” on page 8

MQRECEIVEALLCLOB

264 Administrative SQL Routines and Views

MQRECEIVECLOB

 The MQRECEIVECLOB function returns a message from the MQSeries location

specified by receive-service, using the quality of service policy service-policy.

Performing this operation removes the message from the queue associated with

receive-service. If the correl-id is specified, the first message with a matching

correlation identifier will be returned. If correl-id is not specified, the message at the

head of the queue will be returned.

The data type of the result is CLOB(1M). If no messages are available to be

returned, the result is the null value.

 Syntax:

�� MQRECEIVECLOB �

� ()

receive-service

,

service-policy

,

correl-id

 ��

The schema is DB2MQ.

 Function paramters:

receive-service

A string containing the logical MQSeries destination from which the message is

received. If specified, the receive-service must refer to a Service Point defined in

the DB2MQ.MQSERVICE table. A service point is a logical end-point from

which a message is sent or received. Service points definitions include the

name of the MQSeries Queue Manager and Queue. If receive-service is not

specified, the DB2.DEFAULT.SERVICE is used. The maximum size of

receive-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy to be used in the handling of

this message. If specified, the service-policy must refer to a policy defined in the

DB2MQ.MQPOLICY table. A service policy defines a set of quality of service

options that should be applied to this messaging operation. These options

include message priority and message persistence. If service-policy is not

specified, the default DB2.DEFAULT.POLICY is used. The maximum size of

service-policy is 48 bytes.

correl-id

A string containing an optional correlation identifier to be associated with this

message. The correl-id is often specified in request and reply scenarios to

associate requests with replies. If not specified, no correlation id will be used.

The maximum size of correl-id is 24 bytes.

 Examples:

 Example 1: This example receives the message at the head of the queue specified

by the default service (DB2.DEFAULT.SERVICE), using the default policy

(DB2.DEFAULT.POLICY).

 VALUES MQRECEIVECLOB()

MQRECEIVECLOB

Chapter 3. Supported administrative SQL routines and views 265

Example 2: This example receives the message at the head of the queue specified

by the service ″MYSERVICE″ using the default policy (DB2.DEFAULT.POLICY).

 VALUES MQRECEIVECLOB(’MYSERVICE’)

Example 3: This example receives the message at the head of the queue specified

by the service ″MYSERVICE″ using the policy ″MYPOLICY″.

 VALUES MQRECEIVECLOB(’MYSERVICE’,’MYPOLICY’)

Example 4: This example receives the first message with a correlation ID that

matches ’1234’ from the head of the queue specified by the service ″MYSERVICE″

using the policy ″MYPOLICY″.

 VALUES MQRECEIVECLOB(’MYSERVICE’,MYPOLICY’,’1234’)

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQRECEIVECLOB

266 Administrative SQL Routines and Views

MQSEND

 The MQSEND function sends the data contained in msg-data to the MQSeries

location specified by send-service, using the quality of service policy defined by

service-policy. An optional user-defined message correlation identifier can be

specified using correl-id.

The data type of the result is VARCHAR(1). The result of the function is ’1’ if

successful or ’0’ if unsuccessful.

 Syntax:

�� MQSEND (

send-service

,

service-policy

,

 msg-data �

�
(1)

,

correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also specified.

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Function parameters:

msg-data

A string expression containing the data to be sent via MQSeries. The maximum

size for a VARCHAR string expression is 32 000 bytes and the maximum size

for a CLOB string expression is 1M bytes.

send-service

A string containing the logical MQSeries destination where the message is to

be sent. If specified, the send-service refers to a service point defined in the

DB2MQ.MQSERVICE table. A service point is a logical end-point from which a

message may be sent or received. Service point definitions include the name of

the MQSeries Queue Manager and Queue. If send-service is not specified, the

value of DB2.DEFAULT.SERVICE is used. The maximum size of send-service is

48 bytes.

service-policy

A string containing the MQSeries Service Policy used in handling of this

message. If specified, the service-policy must refer to a service policy defined in

the DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of

service options that should be applied to this messaging operation. These

options include message priority and message persistence. If service-policy is

not specified, a default value of DB2.DEFAULT.POLICY will be used. The

maximum size of service-policy is 48 bytes.

correl-id

An optional string containing a correlation identifier associated with this

message. The correl-id is often specified in request and reply scenarios to

associate requests with replies. If not specified, no correlation ID will be sent.

The maximum size of correl-id is 24 bytes.

MQSEND

Chapter 3. Supported administrative SQL routines and views 267

Examples:

 Example 1: This example sends the string ″Testing 123″ to the default service

(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY), with

no correlation identifier.

 VALUES MQSEND(’Testing 123’)

Example 2: This example sends the string ″Testing 345″ to the service

″MYSERVICE″, using the policy ″MYPOLICY″, with no correlation identifier.

 VALUES MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 345’)

Example 3: This example sends the string ″Testing 678″ to the service

″MYSERVICE″, using the policy ″MYPOLICY″, with correlation identifier ″TEST3″.

 VALUES MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 678’,’TEST3’)

Example 4: This example sends the string ″Testing 901″ to the service

″MYSERVICE″, using the default policy (DB2.DEFAULT.POLICY), and no

correlation identifier.

 VALUES MQSEND(’MYSERVICE’,’Testing 901’)

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSUBSCRIBE ” on page 269

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQSEND

268 Administrative SQL Routines and Views

MQSUBSCRIBE

 The MQSUBSCRIBE function is used to register interest in MQSeries messages

published on a specified topic. Successful execution of this function causes the

publish and subscribe server to forward messages matching the topic to the service

point defined by subscriber-service. The subscriber-service specifies a logical

destination for messages that match the specified topic. Messages that match topic

are placed on the queue defined by subscriber-service, and can be read or received

through a subsequent call to MQREAD, MQRECEIVE, MQREADALL, or

MQRECEIVEALL. For more details, visit http://www.ibm.com/software/MQSeries.

The data type of the result is VARCHAR(1). The result of the function is ’1’ if

successful or ’0’ if unsuccessful.

 Syntax:

�� MQSUBSCRIBE (

subscriber-service

,

service-policy

,

 topic) ��

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Function parameters:

subscriber-service

A string containing the logical MQSeries subscription point to where messages

matching topic will be sent. If specified, the subscriber-service must refer to a

Subscribers Service Point defined in the DB2MQ.MQPUBSUB table that has a

type value of ’S’ for publisher service. If subscriber-service is not specified, then

the DB2.DEFAULT.SUBSCRIBER will be used instead. The maximum size of

subscriber-service is 48 bytes.

service-policy

A string containing the MQSeries Service Policy to be used in handling the

message. If specified, the service-policy must refer to a Policy defined in the

DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service

options to be applied to this messaging operation. These options include

message priority and message persistence. If service-policy is not specified, then

the default DB2.DEFAULT.POLICY will be used instead. The maximum size of

service-policy is 48 bytes.

topic

A string defining the types of messages to receive. Only messages published

with the specified topics will be received by this subscription. Multiple

subscriptions can coexist. The maximum size of topic is 40 bytes. Multiple

topics can be specified in one string (up to 40 bytes long). Each topic must be

separated by a colon. For example, ″t1:t2:the third topic″ indicates that the

message is associated with all three topics: t1, t2, and ″the third topic″.

 Examples:

 Example 1: This example registers an interest in messages containing the topic

″Weather″. The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is

registered as the subscriber and the default service-policy (DB2.DEFAULT.POLICY)

specifies the quality of service.

MQSUBSCRIBE

Chapter 3. Supported administrative SQL routines and views 269

VALUES MQSUBSCRIBE(’Weather’)

Example 2: This example demonstrates a subscriber registering interest in messages

containing ″Stocks″. The subscriber registers as ″PORTFOLIO-UPDATES″ with

policy ″BASIC-POLICY″.

 VALUES MQSUBSCRIBE(’PORTFOLIO-UPDATES’,’BASIC-POLICY’,’Stocks’)

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQUNSUBSCRIBE ” on page 271

v “Supported administrative SQL routines and views” on page 8

MQSUBSCRIBE

270 Administrative SQL Routines and Views

MQUNSUBSCRIBE

 The MQUNSUBSCRIBE function is used to unregister an existing message

subscription. The subscriber-service, service-policy, and topic are used to identify the

subscription that is to be canceled. Successful execution of this function causes the

publish and subscribe server to remove the specified subscription. Messages with

the specified topic will no longer be sent to the logical destination defined by

subscriber-service. For more details, visit http://www.ibm.com/software/MQSeries.

The data type of the result is VARCHAR(1). The result of the function is ’1’ if

successful or ’0’ if unsuccessful.

 Syntax:

�� MQUNSUBSCRIBE �

� (topic)

subscriber-service

,

service-policy

,

 ��

The schema is DB2MQ for non-transactional message queuing functions, and

DB2MQ1C for one-phase commit transactional MQ functions.

 Function parameters:

subscriber-service

If specified, the subscriber-service must refer to a Subscribers Service Point

defined in the DB2MQ.MQPUBSUB table that has a type value of ’S’ for

publisher service. If subscriber-service is not specified, then the

DB2.DEFAULT.SUBSCRIBER will be used instead. The maximum size of

subscriber-service is 48 bytes.

service-policy

If specified, the service-policy must refer to a Policy defined in the

DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service

options to be applied to this messaging operation. If service-policy is not

specified, then the default DB2.DEFAULT.POLICY will be used. The maximum

size of service-policy is 48 bytes.

topic

A string specifying the subject of messages that are not to be received. The

maximum size of topic is 40 bytes. Multiple topics can be specified in one

string (up to 40 bytes long). Each topic must be separated by a colon. For

example, ″t1:t2:the third topic″ indicates that the message is associated with all

three topics: t1, t2, and ″the third topic″.

 Examples:

 Example 1: This example cancels an interest in messages containing the topic

″Weather″. The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is

registered as the unsubscriber and the default service-policy

(DB2.DEFAULT.POLICY) specifies the quality of service.

 VALUES MQUNSUBSCRIBE(’Weather’)

MQUNSUBSCRIBE

Chapter 3. Supported administrative SQL routines and views 271

Example 2: This example demonstrates a subscriber canceling an interest in

messages containing ″Stocks″. The subscriber is registered as ″PORTFOLIO-
UPDATES″ with policy ″BASIC-POLICY″.

 VALUES MQUNSUBSCRIBE(’PORTFOLIO-UPDATES’,’BASIC-POLICY’,’Stocks’)

 Related concepts:

v “WebSphere MQ and DB2 User Defined Functions” in Application Development

Guide for Federated Systems

 Related reference:

v “MQPUBLISH ” on page 244

v “MQREAD ” on page 247

v “MQREADALL ” on page 249

v “MQREADALLCLOB ” on page 252

v “MQREADCLOB ” on page 255

v “MQRECEIVE ” on page 257

v “MQRECEIVEALL ” on page 259

v “MQRECEIVEALLCLOB ” on page 262

v “MQRECEIVECLOB ” on page 265

v “MQSEND ” on page 267

v “MQSUBSCRIBE ” on page 269

v “Supported administrative SQL routines and views” on page 8

MQUNSUBSCRIBE

272 Administrative SQL Routines and Views

Security administrative SQL routines and views

AUTH_LIST_GROUPS_FOR_AUTHID table function – Retrieve

group membership list for a given authorization ID

 The AUTH_LIST_GROUPS_FOR_AUTHID table function returns the list of groups

of which the given authorization ID is a member.

 Syntax:

�� AUTH_LIST_GROUPS_FOR_AUTHID (authid) ��

 The schema is SYSPROC.

 Table function parameter:

authid

An input argument of type VARCHAR(128) that specifies the authorization ID

being queried. The authorization ID can only represent a user. If authid does

not exist, an empty result table is returned.

 Authorization:

 EXECUTE privilege on the AUTH_LIST_GROUPS_FOR_AUTHID table function.

 Example:

 Retrieve all groups that AMY belongs to.

SELECT * FROM TABLE (SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID(’AMY’)) AS T

The following is an example of output for this query.

GROUP

-------------------------...-------------

BUILD

PDXDB2

 2 record(s) selected.

 Usage notes:

 Group information returned might be different than expected for the following

reasons:

v In a Windows Active Directory environment, the database manager:

– supports one level of group nesting within a local group, except the nesting

of a domain local group within a local group. For example, if authid belongs

to the global group G1, and G1 belongs to the local group L1, the local group

L1 is returned as the group for authid. However, if authid belongs to the

domain local group DL1, and DL1 belongs to the local group L1, no group

information is returned for authid.

– does not support any nesting of global groups. For example, if authid belongs

to the global G2, and G2 belongs to the global G3, only G2 is returned as the

group for authid.
v The registry variable DB2_GRP_LOOKUP specifies which Windows security

mechanism is used to enumerate the groups to which a user belongs.

MQUNSUBSCRIBE

Chapter 3. Supported administrative SQL routines and views 273

v For an authorization ID that belongs to a particular domain, if the domain is not

specified as part of the authid, and both a local and domain authid exist with the

same name, the groups for the local authorization ID is returned.

 Information returned:

 Table 66. Information returned by the AUTH_LIST_GROUPS_FOR_AUTHID table function

Column name Data type Description

GROUP VARCHAR(128) The group to which the

authorization ID belongs.

 Related concepts:

v “Authorization” in Administration Guide: Planning

 Related tasks:

v “Authentication with groups and domain security (Windows)” in Administration

Guide: Implementation

v “Retrieving authorization names with granted privileges” in Administration

Guide: Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

AUTH_LIST_GROUPS_FOR_AUTHID

274 Administrative SQL Routines and Views

AUTHORIZATIONIDS administrative view – Retrieve

authorization IDs and types

 The AUTHORIZATIONIDS administrative view returns a list of authorization IDs

that have been granted privileges or authorities, along with their types, for all

authorization IDs defined in the system catalogs from the currently connected

database. If privileges or authorities have been granted to groups, only the group

names are returned.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the AUTHORIZATIONIDS administrative

view.

 Example:

 Retrieve all authorization IDs that have been granted privileges or authorities,

along with their types.

SELECT * FROM SYSIBMADM.AUTHORIZATIONIDS

The following is an example of output for this query.

AUTHID AUTHIDTYPE

-------------------------...------- ----------

PUBLIC G

JESSICAE U

 2 record(s) selected.

 Information returned:

 Table 67. Information returned by the AUTHORIZATIONIDS administrative view

Column name Data type Description

AUTHID VARCHAR(128) Authorization ID that has

been explicitly granted

privileges or authorities.

AUTHIDTYPE CHAR(1) Authorization ID type:

v U: user

v G: group

 Related concepts:

v “Authorization, privileges, and object ownership” in Administration Guide:

Implementation

 Related tasks:

v “Retrieving authorization names with granted privileges” in Administration

Guide: Implementation

v “Securing the system catalog view” in Administration Guide: Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

AUTHORIZATIONIDS

Chapter 3. Supported administrative SQL routines and views 275

OBJECTOWNERS administrative view – Retrieve object

ownership information

 The OBJECTOWNERS administrative view returns all object ownership

information for every authorization ID of type USER that owns an object and that

is defined in the system catalogs from the currently connected database.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the OBJECTOWNERS administrative view.

 Example:

 Retrieve all object ownership information for object schema 'THERESAX'.

SELECT SUBSTR(OWNER,1,10) AS OWNER, OWNERTYPE,

 SUBSTR(OBJECTNAME,1,30) AS OBJECTNAME,

 SUBSTR(OBJECTSCHEMA,1,10) AS OBJECTSCHEMA, OBJECTTYPE

 FROM SYSIBMADM.OBJECTOWNERS WHERE OJECTSCHEMA=’THERESAX’

The following is an example of output for this query.

OWNER OWNERTYPE OBJECTNAME OBJECTSCHEMA OBJECTTYPE

---------- --------- -----------------... ------------ ----------------

THERESAX U MIN_SALARY THERESAX TRIGGER

THERESAX U POLICY_IR SYSTOOLS TRIGGER

THERESAX U CUSTOMER THERESAX XML SCHEMA

THERESAX U DB2DETAILDEADLOCK EVENTMONITORS

THERESAX U SAMPSEQUENCE THERESAX SEQUENCE

THERESAX U SQLE0F00 NULLID PACKAGE

...

THERESAX U HI_OBJ_UNIQ SYSTOOLS TABLE CONSTRAINT

 257 record(s) selected.

 Information returned:

 Table 68. Information returned by the OBJECTOWNERS administrative view

Column name Data type Description

OWNER VARCHAR(128) Authorization ID that owns

this object.

OWNERTYPE VARCHAR(1) Authorization ID type:

v U: user

OBJECTNAME VARCHAR(128) Database object name.

OBJECTSCHEMA VARCHAR(128) Database object schema.

OBJECTTYPE VARCHAR(24) Database object type.

 Related concepts:

v “Authorization, privileges, and object ownership” in Administration Guide:

Implementation

 Related tasks:

v “Retrieving authorization names with granted privileges” in Administration

Guide: Implementation

v “Securing the system catalog view” in Administration Guide: Implementation

OBJECTOWNERS

276 Administrative SQL Routines and Views

Related reference:

v “Supported administrative SQL routines and views” on page 8

OBJECTOWNERS

Chapter 3. Supported administrative SQL routines and views 277

PRIVILEGES administrative view – Retrieve privilege

information

 The PRIVILEGES administrative view returns all explicit privileges for all

authorization IDs defined in the system catalogs from the currently connected

database.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the PRIVILEGES administrative view.

 Example:

 Retrieve the privilege granted along with the object name, schema and type, for all

authorization IDs.

SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE

 FROM SYSIBMADM.PRIVILEGES

The following is an example of output for this query.

AUTHID PRIVILEGE OBJECTNAME OBJECTSCHEMA OBJECTTYPE

--------...- ----------- -------------------...- ------------...- ----------...-

JESSICAE EXECUTE SQLE0F00 NULLID PACKAGE

PUBLIC EXECUTE SYSSH201 NULLID PACKAGE

JESSICAE EXECUTE SYSSH202 NULLID PACKAGE

PUBLIC EXECUTE SYSSH202 NULLID PACKAGE

...

PUBLIC EXECUTE SQL051109185227800 SYSPROC FUNCTION

JESSICAE EXECUTE SQL051109185227801 SYSPROC FUNCTION

PUBLIC EXECUTE SQL051109185227801 SYSPROC FUNCTION

JESSICAE EXECUTE SQL051109185227838 SYSPROC FUNCTION

PUBLIC EXECUTE SQL051109185227838 SYSPROC FUNCTION

...

PUBLIC EXECUTE LIST_SRVR_TYPES SYSPROC PROCEDURE

PUBLIC EXECUTE LIST_SRVR_VERSIONS SYSPROC PROCEDURE

PUBLIC EXECUTE LIST_WRAP_OPTIONS SYSPROC PROCEDURE

PUBLIC EXECUTE LIST_SRVR_OPTIONS SYSPROC PROCEDURE

...

SYSTEM POLICY_UNQ SYSTOOLS INDEX

PUBLIC CREATEIN NULLID SCHEMA

PUBLIC UPDATE COLUMNS SYSSTAT VIEW

PUBLIC UPDATE COLGROUPS SYSSTAT VIEW

...

 Information returned:

 Table 69. Information returned by the PRIVILEGES administrative view

Column name Data type Description

AUTHID VARCHAR(128) Authorization ID that has

been explicitly granted this

privilege.

AUTHIDTYPE CHAR(1) Authorization ID type:

v U: user

v G: group

PRIVILEGES

278 Administrative SQL Routines and Views

Table 69. Information returned by the PRIVILEGES administrative view (continued)

Column name Data type Description

PRIVILEGE VARCHAR(11) Privilege that has been

explicitly granted to this

authorization ID.

GRANTABLE VARCHAR(1) Indicates if the privilege is

grantable:

v Y: Grantable

v N: Not grantable

OBJECTNAME VARCHAR(128) Database object name.

OBJECTSCHEMA VARCHAR(128) Database object schema.

OBJECTTYPE VARCHAR(24) Database object type.

 Related concepts:

v “Authorization, privileges, and object ownership” in Administration Guide:

Implementation

v “Controlling access to database objects” in Administration Guide: Implementation

 Related tasks:

v “Retrieving all privileges granted to users” in Administration Guide:

Implementation

v “Retrieving authorization names with granted privileges” in Administration

Guide: Implementation

v “Retrieving names authorized to access a table” in Administration Guide:

Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

PRIVILEGES

Chapter 3. Supported administrative SQL routines and views 279

Snapshot administrative SQL routines and views

APPLICATIONS administrative view – Retrieve connected

database application information

 The APPLICATIONS administrative view returns information on connected

database applications. The view is an SQL interface for the LIST APPLICATIONS

SHOW DETAIL CLP command, but only for the currently connected database. Its

information is based on the SNAPAPPL_INFO administrative view.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the APPLICATIONS and SNAPAPPL_INFO

administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority which is required to

access snapshot monitor data.

 Example:

 Example 1: List information for all the active applications in the single-partitioned

database SAMPLE.

SELECT AGENT_ID, SUBSTR(APPL_NAME,1,10) AS APPL_NAME, AUTH_ID,

 APPL_STATUS FROM SYSIBMADM.APPLICATIONS WHERE DB_NAME = ’SAMPLE’

The following is an example of output for this query.

AGENT_ID APPL_NAME AUTH_ID APPL_STATUS

-------------------- ---------- ---------- ---------------------

 23 db2bp.exe JESSICAE UOWEXEC

 1 record(s) selected.

Example 2: List the number of agents per application on database partition 0 for the

multi-partition database SAMPLE.

SELECT SUBSTR(APPL_NAME, 1, 10) AS APPL_NAME, COUNT(*) AS NUM

 FROM SYSIBMADM.APPLICATIONS WHERE DBPARTITIONNUM = 0

 AND DB_NAME = ’SAMPLE’ GROUP BY APPL_NAME

The following is an example of output for this query.

APPL_NAME NUM

---------- -----------

db2bp.exe 3

javaw.exe 1

 2 record(s) selected.

 Usage notes:

 The view does not support the GLOBAL syntax available from the CLP. However,

aggregation can be done using SQL aggregation functions as data from all database

partitions is returned from the view.

PRIVILEGES

280 Administrative SQL Routines and Views

Information returned:

 Table 70. Information returned by the APPLICATIONS administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database Alias

Used by Application monitor

element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

AUTHID VARCHAR(128) auth_id - Authorization ID monitor

element

APPL_ID VARCHAR(128) appl_id - Application ID monitor

element

APPLICATIONS

Chapter 3. Supported administrative SQL routines and views 281

Table 70. Information returned by the APPLICATIONS administrative view (continued)

Column name Data type

Description or corresponding

monitor element

APPL_STATUS VARCHAR(22) appl_status - Application Status

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

STATUS_CHANGE_TIME TIMESTAMP status_change_time - Application

Status Change Time monitor

element

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence Number

monitor element

CLIENT_PRDID VARCHAR(128) client_prdid - Client

Product/Version ID monitor

element

CLIENT_PID BIGINT client_pid - Client Process ID

monitor element

APPLICATIONS

282 Administrative SQL Routines and Views

Table 70. Information returned by the APPLICATIONS administrative view (continued)

Column name Data type

Description or corresponding

monitor element

CLIENT_PLATFORM VARCHAR(12) client_platform - Client Operating

Platform monitor element. This

interface returns a text identifier

based on defines in sqlmon.h, and

is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

APPLICATIONS

Chapter 3. Supported administrative SQL routines and views 283

Table 70. Information returned by the APPLICATIONS administrative view (continued)

Column name Data type

Description or corresponding

monitor element

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client

Communication Protocol monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h,

v APPC

v APPN

v CPIC

v IPXSPX

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 UDB)

v TCPIP4

v TCPIP6

CLIENT_NNAME VARCHAR(128) client_nname - Configuration

NNAME of Client monitor element

COORD_NODE_NUM SMALLINT coord_node - Coordinating Node

monitor element

COORD_AGENT_PID BIGINT coord_agent_pid - Coordinator

Agent monitor element

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of

Associated Agents monitor element

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP Monitor

Client User ID monitor element

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP Monitor

Client Workstation Name monitor

element

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP Monitor

Client Application Name monitor

element

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP Monitor Client

Accounting String monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “LIST APPLICATIONS command” in Command Reference

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “Authorization for administrative views” on page 6

APPLICATIONS

284 Administrative SQL Routines and Views

v “Database system monitor elements” in System Monitor Guide and Reference

v “FORCE APPLICATION command using the ADMIN_CMD procedure” on page

76

APPLICATIONS

Chapter 3. Supported administrative SQL routines and views 285

APPL_PERFORMANCE administrative view – Retrieve

percentage of rows selected for an application

 The APPL_PERFORMANCE administrative view displays information about the

percentage of rows selected by an application. The information returned is for all

database partitions for the currently connected database. This view can be used to

look for applications that might be performing large table scans or to look for

potentially troublesome queries.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the APPL_PERFORMANCE,

SNAPAPPL_INFO and SNAPAPPL administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority are also required to

access snapshot monitor data.

 Example:

 Retrieve the report on application performance.

SELECT SNAPSHOT_TIMESTAMP, SUBSTR(AUTHID,1,10) AS AUTHID,

 SUBSTR(APPL_NAME,1,10) AS APPL_NAME,AGENT_ID,

 PERCENT_ROWS_SELECTED, DBPARTITIONNUM

 FROM SYSIBMADM.APPL_PERFORMANCE

The following is an example of output for this query.

SNAPSHOT_TIMESTAMP AUTHID APPL_NAME ...

-------------------------- ---------- ---------- ...

2006-01-07-17.01.15.966668 JESSICAE db2bp.exe ...

2006-01-07-17.01.15.980278 JESSICAE db2taskd ...

2006-01-07-17.01.15.980278 JESSICAE db2bp.exe ...

 ...

 3 record(s) selected. ...

Output for this query (continued).

... AGENT_ID PERCENT_ROWS_SELECTED DBPARTITIONNUM

... --------...-- --------------------- --------------

... 67 - 1

... 68 - 0

... 67 57.14 0

...

 Information returned:

 Table 71. Information returned by the APPL_PERFORMANCE administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AUTHID VARCHAR(128) auth_id - Authorization ID monitor

element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_PERFORMANCE

286 Administrative SQL Routines and Views

Table 71. Information returned by the APPL_PERFORMANCE administrative

view (continued)

Column name Data type

Description or corresponding

monitor element

PERCENT_ROWS_SELECTED DECIMAL(5,2) The percent of rows read from disk

that were actually returned to the

application.

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

APPL_PERFORMANCE

Chapter 3. Supported administrative SQL routines and views 287

BP_HITRATIO administrative view – Retrieve bufferpool hit

ratio information

 The BP_HITRATIO administrative view returns bufferpool hit ratios, including

total hit ratio, data hit ratio, XDA hit ratio and index hit ratio, for all bufferpools

and all database partitions in the currently connected database.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the BP_HITRATIO and SNAPBP

administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Retrieve a report for all bufferpools in the connected database.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,140) AS BP_NAME,

 TOTAL_HIT_RATIO_PERCENT, DATA_HIT_RATIO_PERCENT,

 INDEX_HIT_RATIO_PERCENT, XDA_HIT_RATIO_PERCENT, DBPARTITIONNUM

 FROM SYSIBMADM.BP_HITRATIO ORDER BY DBPARTITIONNUM

The following is an example of output for this query.

DB_NAME BP_NAME TOTAL_HIT_RATIO_PERCENT DATA_HIT_RATIO_PERCENT ...

-------- -------------- ----------------------- ---------------------- ...

TEST IBMDEFAULTBP 63.09 68.94 ...

TEST IBMSYSTEMBP4K - - ...

TEST IBMSYSTEMBP8K - - ...

TEST IBMSYSTEMBP16K - - ...

TEST IBMSYSTEMBP32K - - ...

Output for this query (continued).

... INDEX_HIT_RATIO_PERCENT XDA_HIT_RATIO_PERCENT DBPARTITIONNUM

... ----------------------- --------------------- --------------

... 43.20 - 0

... - - 0

... - - 0

... - - 0

... - - 0

 Usage notes:

 The ratio of physical reads to logical reads gives the hit ratio for the bufferpool.

The lower the hit ratio, the more the data is being read from disk rather than the

cached buffer pool which can be a more costly operation.

 Information returned:

 Table 72. Information returned by the BP_HITRATIO administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Timestamp when the report was

requested.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

BP_HITRATIO

288 Administrative SQL Routines and Views

Table 72. Information returned by the BP_HITRATIO administrative view (continued)

Column name Data type

Description or corresponding

monitor element

BP_NAME VARCHAR(128) bp_name - Buffer Pool Name

monitor element

TOTAL_LOGICAL_READS BIGINT Total logical reads (index, XDA and

data) in the bufferpool.

TOTAL_PHYSICAL_READS BIGINT Total physical reads (index, XDA

and data) in the bufferpool.

TOTAL_HIT_RATIO_PERCENT DECIMAL(5,2) Total hit ratio (index, XDA and

data reads).

DATA_LOGICAL_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

DATA_PHYSICAL_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

DATA_HIT_RATIO_PERCENT DECIMAL(5,2) Data hit ratio.

INDEX_LOGICAL_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

INDEX_PHYSICAL_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

INDEX_HIT_RATIO_PERCENT DECIMAL(5,2) Index hit ratio.

XDA_LOGICAL_READS BIGINT pool_xda_l_reads - Buffer Pool

XDA Data Logical Reads monitor

element

XDA_PHYSICAL_READS BIGINT pool_xda_p_reads - Buffer Pool

XDA Data Physical Reads monitor

element

XDA_HIT_RATIO_PERCENT DECIMAL(5,2) Auxiliary storage objects hit ratio.

DBPARTITIONNUM SMALLINT The database partition from which

the data for the row was retrieved.

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Database system monitor elements” in System Monitor Guide and Reference

v “Authorization for administrative views” on page 6

v “SNAPBP administrative view and SNAP_GET_BP table function – Retrieve

bufferpool logical group snapshot information” on page 341

BP_HITRATIO

Chapter 3. Supported administrative SQL routines and views 289

BP_READ_IO administrative view – Retrieve bufferpool read

performance information

 The BP_READ_IO administrative view returns bufferpool read performance

information. This view can be used to look at each bufferpool to see how effective

the prefetchers are.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the BP_READ_IO and SNAPBP

administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority are also required to

access snapshot monitor data.

 Example:

 Retrieve total physical reads and average read time for all bufferpools on all

partitions of the currently connected database.

SELECT SUBSTR(BP_NAME, 1, 15) AS BP_NAME, TOTAL_PHYSICAL_READS,

 AVERAGE_READ_TIME_MS, DBPARTITIONNUM

 FROM SYSIBMADM.BP_READ_IO ORDER BY DBPARTITIONNUM

The following is an example of output for this query.

BP_NAME TOTAL_PHYSICAL_READS AVERAGE_READ_TIME_MS DBPARTITIONNUM

--------------- -------------------- -------------------- --------------

IBMDEFAULTBP 811 4 0

IBMSYSTEMBP4K 0 - 0

IBMSYSTEMBP8K 0 - 0

IBMSYSTEMBP16K 0 - 0

IBMDEFAULTBP 34 0 1

IBMSYSTEMBP4K 0 - 1

IBMSYSTEMBP8K 0 - 1

IBMDEFAULTBP 34 0 2

IBMSYSTEMBP4K 0 - 2

IBMSYSTEMBP8K 0 - 2

 10 record(s) selected.

 Information returned:

 Table 73. Information returned by the BP_READ_IO administrative view

Column name Data type

Description or

corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Date and time the

report was generated.

BP_NAME VARCHAR(128) bp_name - Buffer Pool

Name monitor

element

TOTAL_PHYSICAL_READS BIGINT Total physical reads.

AVERAGE_READ_TIME_MS BIGINT Average read time in

milliseconds.

TOTAL_ASYNC_READS BIGINT Total asynchronous

reads.

BP_READ_IO

290 Administrative SQL Routines and Views

Table 73. Information returned by the BP_READ_IO administrative view (continued)

Column name Data type

Description or

corresponding

monitor element

AVERAGE_ASYNC_READ_TIME_MS BIGINT Average asynchronous

read time in

milliseconds.

TOTAL_SYNC_READS BIGINT Total synchronous

reads.

AVERAGE_SYNC_READ_TIME_MS BIGINT Average synchronous

read time in

milliseconds.

PERCENT_SYNC_READS DECIMAL(5,2) Percentage of pages

read synchronously

without prefetching. If

many of the

applications are

reading data

synchronously

without prefetching

then the system might

not be tuned

optimally.

ASYNC_NOT_READ_PERCENT DECIMAL(5,2) Percentage of pages

read asynchronously

from disk, but never

accessed by a query. If

too many pages are

read asynchronously

from disk into the

bufferpool, but no

query ever accesses

those pages, then the

prefetching might

degrade performance.

DBPARTITIONNUM SMALLINT The database partition

from which the data

was retrieved for this

row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPBP administrative view and SNAP_GET_BP table function – Retrieve

bufferpool logical group snapshot information” on page 341

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

BP_READ_IO

Chapter 3. Supported administrative SQL routines and views 291

BP_WRITE_IO administrative view – Retrieve bufferpool write

performance information

 The BP_WRITE_IO administrative view returns bufferpool write performance

information per bufferpool.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the BP_WRITE_IO and SNAPBP

administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Retrieve total writes and average write time for all bufferpools on all database

partitions of the currently connected database.

SELECT SUBSTR(BP_NAME, 1, 15) AS BP_NAME, TOTAL_WRITES,

 AVERAGE_WRITE_TIME_MS, DBPARTITIONNUM

 FROM SYSIBMADM.BP_WRITE_IO ORDER BY DBPARTITIONNUM

The following is an example of output for this query.

BP_NAME TOTAL_WRITES AVERAGE_WRITE_TIME_MS DBPARTITIONNUM

--------------- ------------...- --------------------- --------------

IBMDEFAULTBP 11 5 0

IBMSYSTEMBP4K 0 - 0

IBMSYSTEMBP8K 0 - 0

IBMSYSTEMBP16K 0 - 0

IBMSYSTEMBP32K 0 - 0

IBMDEFAULTBP 0 - 1

IBMSYSTEMBP4K 0 - 1

IBMSYSTEMBP8K 0 - 1

IBMDEFAULTBP 0 - 2

IBMSYSTEMBP4K 0 - 2

IBMSYSTEMBP8K 0 - 2

 11 record(s) selected.

 Information returned:

 Table 74. Information returned by the BP_WRITE_IO administrative view

Column name Data type

Description or

corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time the

report was generated.

BP_NAME VARCHAR(128) bp_name - Buffer Pool

Name monitor

element

TOTAL_WRITES BIGINT Total writes.

AVERAGE_WRITE_TIME_MS BIGINT Average write time in

milliseconds.

TOTAL_ASYNC_WRITES BIGINT Total asynchronous

writes.

BP_WRITE_IO

292 Administrative SQL Routines and Views

Table 74. Information returned by the BP_WRITE_IO administrative view (continued)

Column name Data type

Description or

corresponding

monitor element

PERCENT_WRITES_ASYNC BIGINT Percent of writes that

are asynchronous.

AVERAGE_ASYNC_WRITE_TIME_MS BIGINT Average asynchronous

write time in

milliseconds.

TOTAL_SYNC_WRITES BIGINT Total synchronous

writes.

AVERAGE_SYNC_WRITE_TIME_MS BIGINT Average synchronous

write time in

milliseconds.

DBPARTITIONNUM SMALLINT The database partition

from which the data

for the row was

retrieved.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPBP administrative view and SNAP_GET_BP table function – Retrieve

bufferpool logical group snapshot information” on page 341

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

BP_WRITE_IO

Chapter 3. Supported administrative SQL routines and views 293

CONTAINER_UTILIZATION administrative view – Retrieve table

space container and utilization information

 The CONTAINER_UTILIZATION administrative view returns information about

table space containers and utilization rates. The view is an SQL interface for the

LIST TABLESPACE CONTAINERS CLP command. Its information is based on the

SNAPCONTAINER administrative view.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on CONTAINER_UTILIZATION and

SNAPCONTAINER administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority (required to access

snapshot monitor data).

 Example:

 Retrieve a list of all table spaces containers in the connected single partition

database, including information on total and usable pages as well as their

accessibility status.

SELECT SUBSTR(TBSP_NAME,1,20) AS TBSP_NAME, INT(TBSP_ID) AS TBSP_ID,

 SUBSTR(CONTAINER_NAME,1,45) AS CONTAINER_NAME, INT(CONTAINER_ID)

 AS CONTAINER_ID, CONTAINER_TYPE, INT(TOTAL_PAGES) AS TOTAL_PAGES,

 INT(USABLE_PAGES) AS USABLE_PAGES, ACCESSIBLE

 FROM SYSIBMADM.CONTAINER_UTILIZATION

The following is an example of output for this query.

TBSP_NAME TBSP_ID CONTAINER_NAME ...

----------------...- ----------- -------------------------------------...-- ...

SYSCATSPACE 0 D:\DB2\NODE0000\SQL00001\SQLT0000.0 ...

TEMPSPACE1 1 D:\DB2\NODE0000\SQL00001\SQLT0001.0 ...

USERSPACE1 2 D:\DB2\NODE0000\SQL00001\SQLT0002.0 ...

SYSTOOLSPACE 3 D:\DB2\NODE0000\SQL00001\SYSTOOLSPACE ...

SYSTOOLSTMPSPACE 4 D:\DB2\NODE0000\SQL00001\SYSTOOLSTMPSPACE ...

 5 record(s) selected.

Output for this query (continued).

... CONTAINER_ID CONTAINER_TYPE TOTAL_PAGES USABLE_PAGES ACCESSIBLE

... ------------ -------------- ----------- ------------ ----------

... 0 PATH 0 0 1

... 0 PATH 0 0 1

... 0 PATH 0 0 1

... 0 PATH 0 0 1

... 0 PATH 0 0 1

 Information returned:

 The BUFFERPOOL snapshot monitor switch must be enabled at the database

manager configuration for the file system information to be returned.

CONTAINER_UTILIZATION

294 Administrative SQL Routines and Views

Table 75. Information returned by the CONTAINER_UTILIZATION administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

CONTAINER_NAME VARCHAR(256) container_name - Container Name

monitor element

CONTAINER_ID BIGINT container_id - Container

Identification monitor element

CONTAINER_TYPE VARCHAR(16) container_type - Container Type

monitor element. This is a text

identifer based on the defines in

sqlutil.h and is one of:

v DISK_EXTENT_TAG

v DISK_PAGE_TAG

v FILE_EXTENT_TAG

v FILE_PAGE_TAG

v PATH

TOTAL_PAGES BIGINT container_total_pages - Total Pages

in Container monitor element

USABLE_PAGES BIGINT container_usable_pages - Usable

Pages in Container monitor element

ACCESSIBLE SMALLINT container_accessible - Accessibility

of Container monitor element

STRIPE_SET BIGINT container_stripe_set - Stripe Set

monitor element

FS_ID VARCHAR(22) fs_id - Unique File System

Identification Number monitor

element

FS_TOTAL_SIZE_KB BIGINT fs_total_size - Total Size of a File

System monitor element. This

interface returns the value in KB.

FS_USED_SIZE_KB BIGINT fs_used_size - Amount of Space

Used on a File System monitor

element. This interface returns the

value in KB.

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

CONTAINER_UTILIZATION

Chapter 3. Supported administrative SQL routines and views 295

v “LIST TABLESPACE CONTAINERS command” in Command Reference

CONTAINER_UTILIZATION

296 Administrative SQL Routines and Views

LOCKS_HELD administrative view – Retrieve information on

locks held

 The LOCKS_HELD administrative view returns information on current locks held.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the LOCKS_HELD, SNAPLOCK and

SNAPAPPL_INFO administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Example 1: List the total number of locks held by each table in the database

SAMPLE.

SELECT TABSCHEMA, TABNAME, COUNT(*) AS NUMBER_OF_LOCKS_HELD

 FROM SYSIBMADM.LOCKS_HELD WHERE DB_NAME = ’SAMPLE’

 GROUP BY DBPARTITIONNUM, TABSCHEMA, TABNAME

The following is an example of output for this query.

TABSCHEMA TABNAME NUMBER_OF_LOCKS_HELD

----------...- ---------...- --------------------

JESSICAE EMPLOYEE 5

JESSICAE EMP_RESUME 1

JESSICAE ORG 3

Example 2: List all the locks that have not escalated in the currently connected

database, SAMPLE.

SELECT AGENT_ID, TABSCHEMA, TABNAME, LOCK_OBJECT_TYPE, LOCK_MODE,

 LOCK_STATUS FROM SYSIBMADM.LOCKS_HELD WHERE LOCK_ESCALATION = 0

 AND DBPARTITIONNUM = 0

The following is an example of output for this query.

AGENT_ID TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS

--------...- ---------...- --------...- ------------------ ---------- -----------

 680 JESSICAE EMPLOYEE INTERNALV_LOCK S GRNT

 680 JESSICAE EMPLOYEE INTERNALP_LOCK S GRNT

Example 3: List lock information for the locks that are currently held by the

application with agent ID 310.

SELECT TABSCHEMA, TABNAME, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS,

 LOCK_ESCALATION FROM SYSIBMADM.LOCKS_HELD WHERE AGENT_ID = 310

The following is an example of output for this query.

TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS

---------...- --------...- ------------------ ---------- -----------

JESSICAE EMP_RESUME TABLE_LOCK S GRNT

JESSICAE EMPLOYEE ROW_LOCK S GRNT

LOCKS_HELD

Chapter 3. Supported administrative SQL routines and views 297

Information returned:

 Table 76. Information returned by the LOCKS_HELD administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Date and time the report was

generated.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

AUTHID VARCHAR(128) auth_id - Authorization ID monitor

element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

TAB_FILE_ID BIGINT table_file_id - Table File ID monitor

element

LOCKS_HELD

298 Administrative SQL Routines and Views

Table 76. Information returned by the LOCKS_HELD administrative view (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock Object Type

Waited On monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_NAME VARCHAR(32) lock_name - Lock Name monitor

element

LOCKS_HELD

Chapter 3. Supported administrative SQL routines and views 299

Table 76. Information returned by the LOCKS_HELD administrative view (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_STATUS VARCHAR(10) lock_status - Lock Status monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock Escalation

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “SNAPLOCK administrative view and SNAP_GET_LOCK table function –

Retrieve lock logical data group snapshot information” on page 403

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

LOCKS_HELD

300 Administrative SQL Routines and Views

LOCKWAITS administrative view – Retrieve current lockwaits

information

 The LOCKWAITS administrative view returns information about DB2 agents

working on behalf of applications that are waiting to obtain locks.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the LOCKWAITS, SNAPAPPL_INFO and

SNAPLOCKWAIT administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Examples:

 Example 1: List information for all the lock waits for application with agent ID 89.

SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME,1,15) AS TABNAME,

 LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_MODE_REQUESTED, AGENT_ID_HOLDING_LK

 FROM SYSIBMADM.LOCKWAITS WHERE AGENT_ID = 89

The following is an example of output for this query.

TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE ...

--------- -------...- ---------------- ---------- ...

JESSICAE T1 ROW_LOCK X ...

 1 record(s) selected.

Output for this query (continued).

... LOCK_MODE_REQUESTED AGENT_ID_HOLDING_LK

... ------------------- --------------------

... NS 7

Example 2: List the total number of outstanding lock requests per table in the

database SAMPLE. By sorting the output by number of requests, tables with the

highest contention can be identified.

SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME, 1, 15)

 AS TABNAME, COUNT(*) AS NUM_OF_LOCK_REQUESTS_WAITING,

 DBPARTITIONNUM

 FROM SYSIBMADM.LOCKWAITS WHERE DB_NAME = ’SAMPLE’

 GROUP BY TABSCHEMA, TABNAME, DBPARTITIONNUM

 ORDER BY NUM_OF_LOCK_REQUESTS_WAITING DESC

The following is an example of output for this query.

TABSCHEMA TABNAME NUM_OF_LOCK_REQUESTS_WAITING DBPARTITIONNUM

--------- -------...- ---------------------------- --------------

JESSICAE T3 2 0

JESSICAE T1 1 0

JESSICAE T2 1 0

 3 record(s) selected.

LOCKWAITS

Chapter 3. Supported administrative SQL routines and views 301

Information returned:

 Table 77. Information returned by the LOCKWAITS administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Date and time the report was

generated.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

AUTHID VARCHAR(128) auth_id - Authorization ID monitor

element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

SUBSECTION_NUMBER BIGINT ss_number - Subsection Number

monitor element

LOCKWAITS

302 Administrative SQL Routines and Views

Table 77. Information returned by the LOCKWAITS administrative view (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock Object Type

Waited On monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock Wait

Start Timestamp monitor element

LOCK_NAME VARCHAR(32) lock_name - Lock Name monitor

element

LOCKWAITS

Chapter 3. Supported administrative SQL routines and views 303

Table 77. Information returned by the LOCKWAITS administrative view (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock Mode

Requested monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID

Holding Lock monitor element

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application

ID Holding Lock monitor element

LOCK_ESCALATION SMALLINT lock_escalation - Lock Escalation

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

LOCKWAITS

304 Administrative SQL Routines and Views

Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table

function – Retrieve lockwait logical data group snapshot information” on page

409

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

LOCKWAITS

Chapter 3. Supported administrative SQL routines and views 305

LOG_UTILIZATION administrative view – Retrieve log

utilization information

 The LOG_UTILIZATION administrative view returns information about log

utilization for the currently connected database. A single row is returned for each

database partition.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the LOG_UTILIZATION and SNAPDB

administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 List the log utilization for the currently connected database, SAMPLE.

SELECT * FROM SYSIBMADM.LOG_UTILIZATION

The following is an example of output for this query.

DB_NAME ... LOG_UTILIZATION_PERCENT TOTAL_LOG_USED_KB ...

-------- ... ----------------------- -------------------- ...

SAMPLE ... 9.75 1989 ...

 ...

 1 record(s) selected. ...

Output for this query (continued).

... TOTAL_LOG_AVAILABLE_KB TOTAL_LOG_USED_TOP_KB DBPARTITIONNUM

... ---------------------- --------------------- --------------

... 18411 1990 0

...

...

 Usage note:

 For databases that are configured for infinite logging, the

LOG_UTILIZATION_PERCENT and TOTAL_LOG_AVAILABLE_KB will be NULL.

 Information returned:

 Table 78. Information returned by the LOG_UTILIZATION administrative view

Column name Data type

Description or corresponding

monitor element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

LOG_UTILIZATION_PERCENT DECIMAL(5,2) Percent utilization of total log

space.

TOTAL_LOG_USED_KB BIGINT total_log_used - Total Log Space

Used monitor element. This

interface returns the value in KB.

TOTAL_LOG_AVAILABLE_KB BIGINT total_log_available - Total Log

Available monitor element. This

interface returns the value in KB.

LOG_UTILIZATION

306 Administrative SQL Routines and Views

Table 78. Information returned by the LOG_UTILIZATION administrative view (continued)

Column name Data type

Description or corresponding

monitor element

TOTAL_LOG_USED_TOP_KB BIGINT tot_log_used_top - Maximum Total

Log Space Used monitor element.

This interface returns the value in

KB.

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPDB administrative view and SNAP_GET_DB_V91 table function –

Retrieve snapshot information from the dbase logical group” on page 356

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

LOG_UTILIZATION

Chapter 3. Supported administrative SQL routines and views 307

LONG_RUNNING_SQL administrative view

 The LONG_RUNNING_SQL administrative view returns the longest running SQL

statements in the currently connected database.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the LONG_RUNNING_SQL, SNAPSTMT,

SNAPAPPL_INFO, and SNAPAPPL administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Retrieve a report on long running SQL statements in the currently connected

database.

SELECT SUBSTR(STMT_TEXT, 1, 50) AS STMT_TEXT, AGENT_ID,

 ELAPSED_TIME_MIN, APPL_STATUS, DBPARTITIONNUM

 FROM SYSIBMADM.LONG_RUNNING_SQL ORDER BY DBPARTITIONNUM

The following is an example of output for this query.

STMT_TEXT AGENT_ID ...

-----------------------------...- --------...- ...

select * from dbuser.employee 228 ...

select * from dbuser.employee 228 ...

select * from dbuser.employee 228 ...

 ...

3 record(s) selected. ...

Output for this query (continued).

... ELAPSED_TIME_MIN APPL_STATUS DBPARTITIONNUM

... ---------------- -----------...- --------------

... 2 UOWWAIT 0

... 0 CONNECTED 1

... 0 CONNECTED 2

 Usage note:

 This view can be used to identify long-running SQL statements in the database.

You can look at the currently running queries to see which statements are the

longest running and the current status of the query. Further investigation can be

done of the application containing the SQL statement, using agent ID as the unique

identifier. If executing a long time and waiting on a lock, you might want to dig

deeper using the LOCKWAITS or LOCKS_HELD administrative views. If “waiting

on User”, this means that the DB2 server is not doing anything but rather is

waiting for the application to do something (like issue the next fetch or submit the

next SQL statement).

 Information returned:

 Table 79. Information returned by the LONG_RUNNING_SQL administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Time the report was generated.

LONG_RUNNING_SQL

308 Administrative SQL Routines and Views

Table 79. Information returned by the LONG_RUNNING_SQL administrative view (continued)

Column name Data type

Description or corresponding

monitor element

ELAPSED_TIME_MIN INTEGER Elapsed time of the statement in

minutes.

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

APPL_STATUS VARCHAR(22) appl_status - Application Status

monitor element. This interface

returns a text identifier based on

the defines in sqlmon.h, and is one

of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

AUTHID VARCHAR(128) auth_id - Authorization ID monitor

element

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound

Communication Address monitor

element

STMT_TEXT CLOB(16 M) stmt_text - SQL Dynamic Statement

Text monitor element

LONG_RUNNING_SQL

Chapter 3. Supported administrative SQL routines and views 309

Table 79. Information returned by the LONG_RUNNING_SQL administrative view (continued)

Column name Data type

Description or corresponding

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “LOCKWAITS administrative view – Retrieve current lockwaits information” on

page 301

v “SNAPSTMT administrative view and SNAP_GET_STMT table function –

Retrieve statement snapshot information” on page 415

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “LOCKS_HELD administrative view – Retrieve information on locks held” on

page 297

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

LONG_RUNNING_SQL

310 Administrative SQL Routines and Views

QUERY_PREP_COST administrative view – Retrieve statement

prepare time information

 The QUERY_PREP_COST administrative view returns a list of statements with

information about the time required to prepare the statement.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the QUERY_PREP_COST and

SNAPDYN_SQL administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Retrieve a report on the queries with the highest percentage of time spent on

preparing.

SELECT NUM_EXECUTIONS, AVERAGE_EXECUTION_TIME_S, PREP_TIME_PERCENT,

 SUBSTR(STMT_TEXT, 1, 30) AS STMT_TEXT, DBPARTITIONNUM

 FROM SYSIBMADM.QUERY_PREP_COST ORDER BY PREP_TIME_PERCENT

The following is an example of output for this query.

NUM_EXECUTIONS AVERAGE_EXECUTION_TIME_S ...

--------------...- ------------------------ ...

 1 25 ...

 1 record(s) selected.

Output for this query (continued).

... PREP_TIME_PERCENT STMT_TEXT DBPARTITIONNUM

... ----------------- ------------------------------ --------------

... 0.0 select * from dbuser.employee 0

 Usage notes:

 When selecting from the view, an order by clause can be used to identify queries

with the highest prep cost. You can examine this view to see how frequently a

query is run as well as the average execution time for each of these queries. If the

time it takes to compile and optimize a query is almost as long as it takes for the

query to execute, you might want to look at the optimization class that you are

using. Lowering the optimization class might make the query complete

optimization more rapidly and therefore return a result sooner. However, if a

query takes a significant amount of time to prepare yet is executed thousands of

times (without being prepared again) then the optimization class might not be an

issue.

 Information returned:

 Table 80. Information returned by the QUERY_PREP_COST administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time the report was

generated.

QUERY_PREP_COST

Chapter 3. Supported administrative SQL routines and views 311

Table 80. Information returned by the QUERY_PREP_COST administrative view (continued)

Column name Data type

Description or corresponding

monitor element

NUM_EXECUTIONS BIGINT num_executions - Statement

Executions monitor element

AVERAGE_EXECUTION_TIME_S BIGINT Average execution time in seconds.

PREP_TIME_MS BIGINT prep_time_worst - Statement Worst

Preparation Time monitor element

PREP_TIME_PERCENT DECIMAL(5,2) Percent of execution time spent on

preparation.

STMT_TEXT CLOB(2 M) stmt_text - SQL Dynamic Statement

Text monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V91 table

function – Retrieve dynsql logical group snapshot information” on page 387

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

QUERY_PREP_COST

312 Administrative SQL Routines and Views

SNAP_WRITE_FILE procedure

 The SNAP_WRITE_FILE procedure writes system snapshot data to a file in the tmp

subdirectory of the instance directory.

 Syntax:

�� SNAP_WRITE_FILE (requestType , dbname , dbpartitionnum) ��

The schema is SYSPROC.

 Procedure parameters:

requestType

An input argument of type VARCHAR (32) that specifies a valid snapshot

request type. The possible request types are text identifiers based on defines in

sqlmon.h, and are one of:

v APPL_ALL

v BUFFERPOOLS_ALL

v DB2

v DBASE_ALL

v DBASE_LOCKS

v DBASE_TABLES

v DBASE_TABLESPACES

v DYNAMIC_SQL

dbname

An input argument of type VARCHAR(128) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify NULL or empty string to take the snapshot from the

currently connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for an aggregate of

all database partitions. If a null value is specified, -1 is set implicitly.

 Authorization:

 To execute the procedure, a user must have SYSADM, SYSCTRL, SYSMAINT, or

SYSMON authority. The saved snapshot can be read by users who do not have

SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority by passing null values as

the inputs to snapshot table functions.

 Example:

 Take a snapshot of database manager information by specifying a request type of

’DB2’ (which corresponds to SQLMA_DB2), and defaulting to the currently

connected database and current database partition.

CALL SYSPROC.SNAP_WRITE_FILE (’DB2’, ’’, -1)

SNAP_WRITE_FILE

Chapter 3. Supported administrative SQL routines and views 313

This will result in snapshot data being written to the instance temporary directory,

which is sqllib/tmp/SQLMA_DB2.dat on UNIX operating systems, and

sqllib\DB2\tmp\SQLMA_DB2.dat on a Windows operating system.

 Usage notes:

 If an unrecognized input parameter is provided, the following error is returned:

SQL2032N The ″REQUEST_TYPE″ parameter is not valid.

 Related tasks:

v “Capturing database system snapshot information to a file using the

SNAP_WRITE_FILE stored procedure” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

SNAP_WRITE_FILE

314 Administrative SQL Routines and Views

SNAPAGENT administrative view and SNAP_GET_AGENT

table function – Retrieve agent logical data group application

snapshot information

 The “SNAPAGENT administrative view” and the “SNAP_GET_AGENT table

function” return information about agents from an application snapshot, in

particular, the agent logical data group.

SNAPAGENT administrative view

 This administrative view allows you to retrieve agent logical data group

application snapshot information for the currently connected database.

 Used with the SNAPAGENT_MEMORY_POOL, SNAPAPPL,

SNAPAPPL_INFO, SNAPSTMT and SNAPSUBSECTION administrative

views, the SNAPAGENT administrative view provides information

equivalent to the GET SNAPSHOT FOR APPLICATIONS ON

database-alias CLP command, but retrieves data from all database

partitions.

 The schema is SYSIBMADM.

 Refer to Table 81 on page 317 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPAGENT administrative

view and EXECUTE privilege on the SNAP_GET_AGENT table function.

 Example:

 Retrieve all application snapshot information for the currently connected

database from the agent logical data group.

SELECT * FROM SYSIBMADM.SNAPAGENT

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP DB_NAME AGENT_ID ...

-------------------------- -------...- ---------...--- ...

2005-07-19-11.03.26.740423 SAMPLE 101 ...

2005-07-19-11.03.26.740423 SAMPLE 49 ...

 ...

 2 record(s) selected. ...

Output from this query (continued).

... AGENT_PID LOCK_TIMEOUT_VAL DBPARTITIONNUM

... -------------------- -------------------- --------------

... 11980 -1 0

... 15940 -1 0

...

...

SNAP_GET_AGENT table function

 The SNAP_GET_AGENT table function returns the same information as

the SNAPAGENT administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

SNAPAGENT and SNAP_GET_AGENT

Chapter 3. Supported administrative SQL routines and views 315

Used with the SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL,

SNAP_GET_APPL_INFO, SNAP_GET_STMT and

SNAP_GET_SUBSECTION table functions, the SNAP_GET_AGENT table

function provides information equivalent to the GET SNAPSHOT FOR

ALL APPLICATIONS CLP command, but retrieves data from all database

partitions.

 Refer to Table 81 on page 317 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_AGENT (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_AGENT table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_AGENT table function.

 Example:

 Retrieve all application snapshot information for all applications in all

active databases.

SELECT * FROM TABLE(SNAP_GET_AGENT(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following is an example of output from this query.

SNAPAGENT and SNAP_GET_AGENT

316 Administrative SQL Routines and Views

SNAPSHOT_TIMESTAMP DB_NAME AGENT_ID ...

-------------------------- -------...- --------...-- ...

2006-01-03-17.21.38.530785 SAMPLE 48 ...

2006-01-03-17.21.38.530785 SAMPLE 47 ...

2006-01-03-17.21.38.530785 SAMPLE 46 ...

2006-01-03-17.21.38.530785 TESTDB 30 ...

2006-01-03-17.21.38.530785 TESTDB 29 ...

2006-01-03-17.21.38.530785 TESTDB 28 ...

6 record(s) selected.

Output from this query (continued).

... AGENT_PID LOCK_TIMEOUT_VAL DBPARTITIONNUM

... ---------...---- -------------------- --------------

... 7696 -1 0

... 8536 -1 0

... 6672 -1 0

... 2332 -1 0

... 8360 -1 0

... 6736 -1 0

...

Information returned

 Table 81. Information returned by the SNAPAGENT administrative view and the

SNAP_GET_AGENT table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

AGENT_PID BIGINT agent_pid - Process or Thread ID

monitor element

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data for the row was retrieved.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “GET SNAPSHOT command” in Command Reference

v “Database system monitor elements” in System Monitor Guide and Reference

v “SNAPSTMT administrative view and SNAP_GET_STMT table function –

Retrieve statement snapshot information” on page 415

v “SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table

function – Retrieve subsection logical monitor group snapshot information” on

page 425

v “Administrative views versus table functions” on page 3

SNAPAGENT and SNAP_GET_AGENT

Chapter 3. Supported administrative SQL routines and views 317

v “SNAP_WRITE_FILE procedure” on page 313

v “SNAPAGENT_MEMORY_POOL administrative view and

SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool

logical data group snapshot information” on page 319

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

SNAPAGENT and SNAP_GET_AGENT

318 Administrative SQL Routines and Views

SNAPAGENT_MEMORY_POOL administrative view and

SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve

memory_pool logical data group snapshot information

 The “SNAPAGENT_MEMORY_POOL administrative view” and the

“SNAP_GET_AGENT_MEMORY_POOL table function” return information about

memory usage at the agent level.

SNAPAGENT_MEMORY_POOL administrative view

 This administrative view allows you to retrieve the memory_pool logical

data group snapshot information about memory usage at the agent level

for the currently connected database.

 Used with the SNAPAGENT, SNAPAPPL, SNAPAPPL_INFO, SNAPSTMT

and SNAPSUBSECTION administrative views, the

SNAPAGENT_MEMORY_POOL administrative view provides information

equivalent to the GET SNAPSHOT FOR APPLICATIONS ON

database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 82 on page 321 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPAGENT_MEMORY_POOL

administrative view and EXECUTE privilege on the

SNAP_GET_AGENT_MEMORY_POOL table function.

 Example:

 Retrieve a list of memory pools and their current size.

SELECT AGENT_ID, POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPAGENT_MEMORY_POOL

The following is an example of output from this query.

AGENT_ID POOL_ID POOL_ CUR_SIZE

--------...--- -------------- ---------...------

 48 APPLICATION 65536

 48 OTHER 65536

 48 APPL_CONTROL 65536

 47 APPLICATION 65536

 47 OTHER 131072

 47 APPL_CONTROL 65536

 46 OTHER 327680

 46 APPLICATION 262144

 46 APPL_CONTROL 65536

9 record(s) selected.

SNAP_GET_AGENT_MEMORY_POOL table function

 The SNAP_GET_AGENT_MEMORY_POOL table function returns the same

information as the SNAPAGENT_MEMORY_POOL administrative view,

but allows you to retrieve the information for a specific database on a

specific database partition, aggregate of all database partitions or all

database partitions.

 Used with the SNAP_GET_AGENT, SNAP_GET_APPL,

SNAP_GET_APPL_INFO, SNAP_GET_STMT and

SNAPAGENT_MEMORY_POOL and SNAP_GET_AGENT_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 319

SNAP_GET_SUBSECTION table functions, the

SNAP_GET_AGENT_MEMORY_POOL table function provides information

equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP

command.

 Refer to Table 82 on page 321 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_AGENT_MEMORY_POOL (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the

SNAP_GET_AGENT_MEMORY_POOL table function takes a snapshot for

the currently connected database and database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table

function.

 Example:

 Retrieve a list of memory pools and their current size for all databases.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, POOL_ID, POOL_CUR_SIZE

 FROM TABLE(SNAP_GET_AGENT_MEMORY_POOL(CAST (NULL AS VARCHAR(128)), -1))

 AS T

The following is an example of output from this query.

DB_NAME AGENT_ID POOL_ID POOL_CUR_SIZE

-------- --------...--- -------------- --------------------

SAMPLE 48 APPLICATION 65536

SNAPAGENT_MEMORY_POOL and SNAP_GET_AGENT_MEMORY_POOL

320 Administrative SQL Routines and Views

SAMPLE 48 OTHER 65536

SAMPLE 48 APPL_CONTROL 65536

SAMPLE 47 APPLICATION 65536

SAMPLE 47 OTHER 131072

SAMPLE 47 APPL_CONTROL 65536

SAMPLE 46 OTHER 327680

SAMPLE 46 APPLICATION 262144

SAMPLE 46 APPL_CONTROL 65536

TESTDB 30 APPLICATION 65536

TESTDB 30 OTHER 65536

TESTDB 30 APPL_CONTROL 65536

TESTDB 29 APPLICATION 65536

TESTDB 29 OTHER 131072

TESTDB 29 APPL_CONTROL 65536

TESTDB 28 OTHER 327680

TESTDB 28 APPLICATION 65536

TESTDB 28 APPL_CONTROL 65536

18 record(s) selected.

Information returned

 Table 82. Information returned by the SNAPAGENT_MEMORY_POOL administrative view

and the SNAP_GET_AGENT_MEMORY_POOL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

AGENT_PID BIGINT agent_pid - Process or Thread ID

monitor element

SNAPAGENT_MEMORY_POOL and SNAP_GET_AGENT_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 321

Table 82. Information returned by the SNAPAGENT_MEMORY_POOL administrative view

and the SNAP_GET_AGENT_MEMORY_POOL table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_ID VARCHAR(14) pool_id - Memory Pool Identifier

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current Size of

Memory Pool monitor element

POOL_WATERMARK BIGINT pool_watermark - Memory Pool

Watermark monitor element

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured Size

of Memory Pool monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPAGENT administrative view and SNAP_GET_AGENT table function –

Retrieve agent logical data group application snapshot information” on page 315

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

SNAPAGENT_MEMORY_POOL and SNAP_GET_AGENT_MEMORY_POOL

322 Administrative SQL Routines and Views

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table

function – Retrieve subsection logical monitor group snapshot information” on

page 425

v “SNAPSTMT administrative view and SNAP_GET_STMT table function –

Retrieve statement snapshot information” on page 415

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPAGENT_MEMORY_POOL and SNAP_GET_AGENT_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 323

SNAPAPPL administrative view and SNAP_GET_APPL table

function – Retrieve appl logical data group snapshot

information

 The “SNAPAPPL administrative view” and the “SNAP_GET_APPL table function”

return information about applications from an application snapshot, in particular,

the appl logical data group.

SNAPAPPL administrative view

 This administrative view allows you to retrieve appl logical data group

snapshot information for the currently connected database.

 Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL,

SNAPAPPL_INFO, SNAPSTMT and SNAPSUBSECTION administrative

views, the SNAPAPPL administrative view provides information

equivalent to the GET SNAPSHOT FOR APPLICATIONS ON

database-alias CLP command, but retrieves data from all database

partitions.

 The schema is SYSIBMADM.

 Refer to Table 83 on page 326 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPAPPL administrative view

and EXECUTE privilege on the SNAP_GET_APPL table function.

 Example:

 Retrieve details on rows read and written for each application in the

connected database.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

 FROM TABLE SYSIBMADM.SNAPAPPL

The following is an example of output from this query.

DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN

-------- -------------------- -------------------- --------------------

SAMPLE 7 25 0

 1 record(s) selected.

SNAP_GET_APPL table function

 The SNAP_GET_APPL table function returns the same information as the

SNAPAPPL administrative view, but allows you to retrieve the information

for a specific database on a specific database partition, aggregate of all

database partitions or all database partitions.

 Used with the SNAP_GET_AGENT,

SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL_INFO,

SNAP_GET_STMT and SNAP_GET_SUBSECTION table functions, the

SNAP_GET_APPL table function provides information equivalent to the

GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but

retrieves data from all database partitions.

 Refer to Table 83 on page 326 for a complete list of information that can be

returned.

SNAPAPPL and SNAP_GET_APPL

324 Administrative SQL Routines and Views

Syntax:

�� SNAP_GET_APPL (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_APPL table function takes

a snapshot for the currently connected database and database partition

number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_APPL table function.

 Example:

 Retrieve details on rows read and written for each application for all active

databases.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

 FROM TABLE (SNAP_GET_APPL(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following is an example of output from this query.

DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN

-------- --------...--- ---------...-- ------------...-

WSDB 679 0 0

WSDB 461 3 0

WSDB 460 4 0

TEST 680 4 0

TEST 455 6 0

TEST 454 0 0

TEST 453 50 0

Information returned

SNAPAPPL and SNAP_GET_APPL

Chapter 3. Supported administrative SQL routines and views 325

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of

Work Log Space Used monitor

element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

INACT_STMTHIST_SZ BIGINT inact_stmthist_sz - Statement

history list size monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

SNAPAPPL and SNAP_GET_APPL

326 Administrative SQL Routines and Views

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool

XDA Data Logical Reads monitor

element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool

XDA Data Physical Reads monitor

element

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA

Data Writes monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

LOCKS_HELD BIGINT locks_held - Locks Held monitor

element

LOCK_WAITS BIGINT lock_waits - Lock Waits monitor

element

LOCK_WAIT_TIME BIGINT lock_wait_time - Time Waited On

Locks monitor element

LOCK_ESCALS BIGINT lock_escals - Number of Lock

Escalations monitor element

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive Lock

Escalations monitor element

DEADLOCKS BIGINT deadlocks - Deadlocks Detected

monitor element

TOTAL_SORTS BIGINT total_sorts - Total Sorts monitor

element

SNAPAPPL and SNAP_GET_APPL

Chapter 3. Supported administrative SQL routines and views 327

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit

Statements Attempted monitor

element

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback

Statements Attempted monitor

element

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL

Statements Attempted monitor

element

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL

Statements Attempted monitor

element

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed Statement

Operations monitor element

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL

Statements Executed monitor

element

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data Definition

Language (DDL) SQL Statements

monitor element

UID_SQL_STMTS BIGINT uid_sql_stmts -

Update/Insert/Delete SQL

Statements Executed monitor

element

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal

Automatic Rebinds monitor

element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_COMMITS BIGINT int_commits - Internal Commits

monitor element

INT_ROLLBACKS BIGINT int_rollbacks - Internal Rollbacks

monitor element

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal

Rollbacks Due To Deadlock

monitor element

ROWS_DELETED BIGINT rows_deleted - Rows Deleted

monitor element

ROWS_INSERTED BIGINT rows_inserted - Rows Inserted

monitor element

SNAPAPPL and SNAP_GET_APPL

328 Administrative SQL Routines and Views

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

ROWS_UPDATED BIGINT rows_updated - Rows Updated

monitor element

ROWS_SELECTED BIGINT rows_selected - Rows Selected

monitor element

BINDS_PRECOMPILES BIGINT binds_precompiles -

Binds/Precompiles Attempted

monitor element

OPEN_REM_CURS BIGINT open_rem_curs - Open Remote

Cursors monitor element

OPEN_REM_CURS_BLK BIGINT open_rem_curs_blk - Open Remote

Cursors with Blocking monitor

element

REJ_CURS_BLK BIGINT rej_curs_blk - Rejected Block Cursor

Requests monitor element

ACC_CURS_BLK BIGINT acc_curs_blk - Accepted Block

Cursor Requests monitor element

SQL_REQS_SINCE_COMMIT BIGINT sql_reqs_since_commit - SQL

Requests Since Last Commit

monitor element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of Lock

Timeouts monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

OPEN_LOC_CURS BIGINT open_loc_curs - Open Local

Cursors monitor element

OPEN_LOC_CURS_BLK BIGINT open_loc_curs_blk - Open Local

Cursors with Blocking monitor

element

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package

Cache Lookups monitor element

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package Cache

Inserts monitor element

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog Cache

Lookups monitor element

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog Cache

Inserts monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

NUM_AGENTS BIGINT num_agents - Number of Agents

Working on a Statement monitor

element

AGENTS_STOLEN BIGINT agents_stolen - Stolen Agents

monitor element

ASSOCIATED_AGENTS_TOP BIGINT associated_agents_top - Maximum

Number of Associated Agents

monitor element

SNAPAPPL and SNAP_GET_APPL

Chapter 3. Supported administrative SQL routines and views 329

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

APPL_PRIORITY BIGINT appl_priority - Application Agent

Priority monitor element

APPL_PRIORITY_TYPE VARCHAR(16) appl_priority_type - Application

Priority Type monitor element. This

interface returns a text identifier,

based on defines in sqlmon.h, and

is one of:

v DYNAMIC_PRIORITY

v FIXED_PRIORITY

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time Waited

for Prefetch monitor element

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section

Lookups monitor element

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section

Inserts monitor element

LOCKS_WAITING BIGINT locks_waiting - Current Agents

Waiting On Locks monitor element

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total Hash Joins

monitor element

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total Hash

Loops monitor element

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash Join

Overflows monitor element

HASH_JOIN_SMALL_

 OVERFLOWS

BIGINT hash_join_small_overflows - Hash

Join Small Overflows monitor

element

APPL_IDLE_TIME BIGINT appl_idle_time - Application Idle

Time monitor element

UOW_LOCK_WAIT_TIME BIGINT uow_lock_wait_time - Total Time

Unit of Work Waited on Locks

monitor element

UOW_COMP_STATUS VARCHAR(14) uow_comp_status - Unit of Work

Completion Status monitor

element. This interface returns a

text identifier, based on defines in

sqlmon.h, and is one of:

v APPL_END

v UOWABEND

v UOWCOMMIT

v UOWDEADLOCK

v UOWLOCKTIMEOUT

v UOWROLLBACK

v UOWUNKNOWN

AGENT_USR_CPU_TIME_S BIGINT agent_usr_cpu_time - User CPU

Time used by Agent monitor

element

SNAPAPPL and SNAP_GET_APPL

330 Administrative SQL Routines and Views

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

AGENT_USR_CPU_TIME_MS BIGINT agent_usr_cpu_time - User CPU

Time used by Agent monitor

element

AGENT_SYS_CPU_TIME_S BIGINT agent_sys_cpu_time - System CPU

Time used by Agent monitor

element

AGENT_SYS_CPU_TIME_MS BIGINT agent_sys_cpu_time - System CPU

Time used by Agent monitor

element

APPL_CON_TIME TIMESTAMP appl_con_time - Connection

Request Start Timestamp monitor

element

CONN_COMPLETE_TIME TIMESTAMP conn_complete_time - Connection

Request Completion Timestamp

monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

UOW_START_TIME TIMESTAMP uow_start_time - Unit of Work Start

Timestamp monitor element

UOW_STOP_TIME TIMESTAMP uow_stop_time - Unit of Work Stop

Timestamp monitor element

PREV_UOW_STOP_TIME TIMESTAMP prev_uow_stop_time - Previous

Unit of Work Completion

Timestamp monitor element

UOW_ELAPSED_TIME_S BIGINT uow_elapsed_time - Most Recent

Unit of Work Elapsed Time monitor

element

UOW_ELAPSED_TIME_MS BIGINT uow_elapsed_time - Most Recent

Unit of Work Elapsed Time monitor

element

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound

Communication Address monitor

element

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout

monitor element

PRIV_WORKSPACE_NUM_

 OVERFLOWS

BIGINT priv_workspace_num_overflows -

Private Workspace Overflows

monitor element

PRIV_WORKSPACE_SECTION_

 INSERTS

BIGINT priv_workspace_section_inserts -

Private Workspace Section Inserts

monitor element

SNAPAPPL and SNAP_GET_APPL

Chapter 3. Supported administrative SQL routines and views 331

Table 83. Information returned by the SNAPAPPL administrative view and the

SNAP_GET_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

PRIV_WORKSPACE_SECTION_

 LOOKUPS

BIGINT priv_workspace_section_lookups -

Private Workspace Section Lookups

monitor element

PRIV_WORKSPACE_SIZE_

 TOP

BIGINT priv_workspace_size_top -

Maximum Private Workspace Size

monitor element

SHR_WORKSPACE_NUM_

 OVERFLOWS

BIGINT shr_workspace_num_overflows -

Shared Workspace Overflows

monitor element

SHR_WORKSPACE_SECTION_

 INSERTS

BIGINT shr_workspace_section_inserts -

Shared Workspace Section Inserts

monitor element

SHR_WORKSPACE_SECTION_

 LOOKUPS

BIGINT shr_workspace_section_lookups -

Shared Workspace Section Lookups

monitor element

SHR_WORKSPACE_SIZE_

 TOP

BIGINT shr_workspace_size_top -

Maximum Shared Workspace Size

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data for the row was retrieved.

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog Cache

High Water Mark monitor element

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPAGENT administrative view and SNAP_GET_AGENT table function –

Retrieve agent logical data group application snapshot information” on page 315

v “SNAPAGENT_MEMORY_POOL administrative view and

SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool

logical data group snapshot information” on page 319

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “SNAPSTMT administrative view and SNAP_GET_STMT table function –

Retrieve statement snapshot information” on page 415

SNAPAPPL and SNAP_GET_APPL

332 Administrative SQL Routines and Views

v “SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table

function – Retrieve subsection logical monitor group snapshot information” on

page 425

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPAPPL and SNAP_GET_APPL

Chapter 3. Supported administrative SQL routines and views 333

SNAPAPPL_INFO administrative view and

SNAP_GET_APPL_INFO table function – Retrieve appl_info

logical data group snapshot information

 The “SNAPAPPL_INFO administrative view” and the “SNAP_GET_APPL_INFO

table function” return information about applications from an application snapshot,

in particular, the appl_info logical data group.

SNAPAPPL_INFO administrative view

 This administrative view allows you to retrieve appl_info logical data

group snapshot information for the currently connected database.

 Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,

SNAPAPPL_INFO, SNAPSTMT and SNAPSUBSECTION administrative

views, the SNAPAPPL_INFO administrative view provides information

equivalent to the GET SNAPSHOT FOR APPLICATIONS ON

database-alias CLP command, but retrieves data from all database

partitions.

 The schema is SYSIBMADM.

 Refer to Table 84 on page 336 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPAPPL_INFO administrative

view and EXECUTE privilege on the SNAP_GET_APPL_INFO table

function.

 Example:

 Retrieve the status of the applications connected to the current database.

SELECT AGENT_ID, SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS

 FROM SYSIBMADM.SNAPAPPL_INFO

The following is an example of output from this query.

AGENT_ID APPL_NAME APPL_STATUS

-------------------- ---------- ----------------------

 101 db2bp.exe UOWEXEC

 49 db2bp.exe CONNECTED

 2 record(s) selected.

SNAP_GET_APPL_INFO table function

 The SNAP_GET_APPL_INFO table function returns the same information

as the SNAPAPPL_INFO administrative view, but allows you to retrieve

the information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_AGENT,

SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL,

SNAP_GET_APPL_INFO, SNAP_GET_STMT and

SNAP_GET_SUBSECTION table functions, the SNAP_GET_APPL_INFO

table function provides information equivalent to the GET SNAPSHOT

FOR ALL APPLICATIONS CLP command, but retrieves data from all

database partitions.

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

334 Administrative SQL Routines and Views

Refer to Table 84 on page 336 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_APPL_INFO (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_APPL_INFO table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_APPL_INFO table function.

 Examples:

 Retrieve the status of all applications on the connected database partition.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID,

 SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS

 FROM TABLE(SNAP_GET_APPL_INFO(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following is an example of output from this query.

DB_NAME AGENT_ID APPL_NAME APPL_STATUS

-------- -------------------- ---------- ----------------------

TOOLSDB 14 db2bp.exe CONNECTED

SAMPLE 15 db2bp.exe UOWEXEC

SAMPLE 8 javaw.exe CONNECTED

SAMPLE 7 db2bp.exe UOWWAIT

 4 record(s) selected.

Information returned

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

Chapter 3. Supported administrative SQL routines and views 335

Table 84. Information returned by the SNAPAPPL_INFO administrative view and the

SNAP_GET_APPL_INFO table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

APPL_STATUS VARCHAR(22) appl_status - Application Status

monitor element. This interface

returns a text identifier based on

the defines in sqlmon.h, and is one

of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

CODEPAGE_ID BIGINT codepage_id - ID of Code Page

Used by Application monitor

element

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of

Associated Agents monitor element

COORD_NODE_NUM SMALLINT coord_node - Coordinating Node

monitor element

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

336 Administrative SQL Routines and Views

Table 84. Information returned by the SNAPAPPL_INFO administrative view and the

SNAP_GET_APPL_INFO table function (continued)

Column name Data type

Description or corresponding

monitor element

AUTHORITY_LVL VARCHAR(512) authority_lvl - User Authorization

Level monitor element. This

interface returns a text identifier

based on the defines in sql.h, and is

one or more of the following,

separated by ’ + ’:

v BINDADD

v BINDADD_GRP

v CONNECT

v CONNECT_GRP

v CREATE_EXT_RT

v CREATE_EXT_RT_GRP

v CREATE_NOT_FENC

v CREATE_NOT_FENC_GRP

v CREATETAB

v CREATETAB_GRP

v DBADM

v DBADM_GRP

v IMPLICIT_SCHEMA

v IMPLICIT_SCHEMA_GRP

v LOAD

v LOAD_GRP

v LIBADM

v LIBADM_GRP

v QUIESCE_CONN

v QUIESCE_CONN_GRP

v SECADM

v SECADM_GRP

v SYSADM

v SYSADM_GRP

v SYSCTRL

v SYSCTRL_GRP

v SYSMAINT

v SYSMAINT_GRP

v SYSMON

v SYSMON_GRP

v SYSQUIESCE

v SYSQUIESCE_GRP

CLIENT_PID BIGINT client_pid - Client Process ID

monitor element

COORD_AGENT_PID BIGINT coord_agent_pid - Coordinator

Agent monitor element

STATUS_CHANGE_TIME TIMESTAMP status_change_time - Application

Status Change Time monitor

element

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

Chapter 3. Supported administrative SQL routines and views 337

Table 84. Information returned by the SNAPAPPL_INFO administrative view and the

SNAP_GET_APPL_INFO table function (continued)

Column name Data type

Description or corresponding

monitor element

CLIENT_PLATFORM VARCHAR(12) client_platform - Client Operating

Platform monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h,

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

338 Administrative SQL Routines and Views

Table 84. Information returned by the SNAPAPPL_INFO administrative view and the

SNAP_GET_APPL_INFO table function (continued)

Column name Data type

Description or corresponding

monitor element

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client

Communication Protocol monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h,

v APPC

v APPN

v CPIC

v IPXSPX

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 UDB)

v TCPIP4

v TCPIP6

TERRITORY_CODE SMALLINT territory_code - Database Territory

Code monitor element

APPL_NAME VARCHAR(256) appl_name - Application Name

monitor element

APPL_ID VARCHAR(128) appl_id - Application ID monitor

element

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence Number

monitor element

PRIMARY_AUTH_ID VARCHAR(128) auth_id - Authorization ID monitor

element

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session

Authorization ID monitor element

CLIENT_NNAME VARCHAR(128) client_nname - Configuration

NNAME of Client monitor element

CLIENT_PRDID VARCHAR(128) client_prdid - Client

Product/Version ID monitor

element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input Database

Alias monitor element

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database Alias

Used by Application monitor

element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path monitor

element

EXECUTION_ID VARCHAR(128) execution_id - User Login ID

monitor element

CORR_TOKEN VARCHAR(128) corr_token - DRDA Correlation

Token monitor element

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

Chapter 3. Supported administrative SQL routines and views 339

Table 84. Information returned by the SNAPAPPL_INFO administrative view and the

SNAP_GET_APPL_INFO table function (continued)

Column name Data type

Description or corresponding

monitor element

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP Monitor

Client User ID monitor element

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP Monitor

Client Workstation Name monitor

element

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP Monitor

Client Application Name monitor

element

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP Monitor Client

Accounting String monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data for the row was retrieved.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPAGENT administrative view and SNAP_GET_AGENT table function –

Retrieve agent logical data group application snapshot information” on page 315

v “SNAPAGENT_MEMORY_POOL administrative view and

SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool

logical data group snapshot information” on page 319

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

v “SNAPSTMT administrative view and SNAP_GET_STMT table function –

Retrieve statement snapshot information” on page 415

v “SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table

function – Retrieve subsection logical monitor group snapshot information” on

page 425

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPAPPL_INFO and SNAP_GET_APPL_INFO

340 Administrative SQL Routines and Views

SNAPBP administrative view and SNAP_GET_BP table

function – Retrieve bufferpool logical group snapshot

information

 The “SNAPBP administrative view” and the “SNAP_GET_BP table function”

return information about buffer pools from a bufferpool snapshot, in particular, the

bufferpool logical data group.

SNAPBP administrative view

 This administrative view allows you to retrieve bufferpool logical group

snapshot information for the currently connected database.

 Used with the SNAPBP_PART administrative view, the SNAPBP

administrative view provides the data equivalent to the GET SNAPSHOT

FOR BUFFERPOOLS ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 85 on page 343 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPBP administrative view

and EXECUTE privilege on the SNAP_GET_BP table function.

 Example:

 Retrieve data and index writes for all the bufferpools of the currently

connected database.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME,SUBSTR(BP_NAME,1,15)

 AS BP_NAME,POOL_DATA_WRITES,POOL_INDEX_WRITES

 FROM SYSIBMADM.SNAPBP

The following is an example of output from this query.

DB_NAME BP_NAME POOL_DATA_WRITES POOL_INDEX_WRITES

-------- --------------- -------------------- --------------------

TEST IBMDEFAULTBP 0 0

TEST IBMSYSTEMBP4K 0 0

TEST IBMSYSTEMBP8K 0 0

TEST IBMSYSTEMBP16K 0 0

TEST IBMSYSTEMBP32K 0 0

5 record(s) selected

SNAP_GET_BP table function

 The SNAP_GET_BP table function returns the same information as the

SNAPBP administrative view, but allows you to retrieve the information

for a specific database on a specific database partition, aggregate of all

database partitions or all database partitions.

 Used with the SNAP_GET_BP_PART table function, the SNAP_GET_BP

table function provides the data equivalent to the GET SNAPSHOT FOR

ALL BUFFERPOOLS CLP command.

 Refer to Table 85 on page 343 for a complete list of information that can be

returned.

 Syntax:

SNAPBP and SNAP_GET_BP

Chapter 3. Supported administrative SQL routines and views 341

�� SNAP_GET_BP (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_BP table function takes a

snapshot for the currently connected database and database partition

number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_BP table function.

 Example:

 Retrieve total physical and logical reads for all bufferpools for all active

databases for the currently connected database partition.

SELECT SUBSTR(T.DB_NAME,1,10) AS DB_NAME,

 SUBSTR(T.BP_NAME,1,20) AS BP_NAME,

 (T.POOL_DATA_L_READS+T.POOL_INDEX_L_READS) AS TOTAL_LOGICAL_READS,

 (T.POOL_DATA_P_READS+T.POOL_INDEX_P_READS) AS TOTAL_PHYSICAL_READS,

 T.DBPARTITIONNUM

 FROM TABLE(SNAP_GET_BP(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following is an example of output from this query.

DB_NAME BP_NAME TOTAL_LOGICAL_READS ...

---------- ------------...- -------------------- ...

SAMPLE IBMDEFAULTBP 0 ...

TOOLSDB IBMDEFAULTBP 0 ...

TOOLSDB BP32K0000 0 ...

 3 record(s) selected.

Output from this query (continued).

SNAPBP and SNAP_GET_BP

342 Administrative SQL Routines and Views

... TOTAL_PHYSICAL_READS DBPARTITIONNUM

... -------------------- --------------

... 0 0

... 0 0

... 0 0

Information returned

 Table 85. Information returned by the SNAPBP administrative view and the SNAP_GET_BP

table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer Pool Name

monitor element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path monitor

element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input Database

Alias monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool

XDA Data Logical Reads monitor

element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool

XDA Data Physical Reads monitor

element

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA

Data Writes monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

SNAPBP and SNAP_GET_BP

Chapter 3. Supported administrative SQL routines and views 343

Table 85. Information returned by the SNAPBP administrative view and the SNAP_GET_BP

table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer Pool

Asynchronous XDA Data Reads

monitor element

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer

Pool Asynchronous XDA Data

Writes monitor element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

POOL_ASYNC_INDEX_

 READ_REQS

BIGINT pool_async_index_read_reqs -

Buffer Pool Asynchronous Index

Read Requests monitor element

POOL_ASYNC_XDA_

 READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer

Pool Asynchronous XDA Read

Requests monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

SNAPBP and SNAP_GET_BP

344 Administrative SQL Routines and Views

Table 85. Information returned by the SNAPBP administrative view and the SNAP_GET_BP

table function (continued)

Column name Data type

Description or corresponding

monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer Pool

No Victim Buffers monitor element

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total

Number of Pages Read by Block IO

monitor element

PAGES_FROM_VECTORED_IOS BIGINT pages_from_vectored_ios - Total

Number of Pages Read by Vectored

IO monitor element

PHYSICAL_PAGE_MAPS BIGINT physical_page_maps - Number of

Physical Page Maps monitor

element

VECTORED_IOS BIGINT vectored_ios - Number of Vectored

IO Requests monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “GET SNAPSHOT command” in Command Reference

SNAPBP and SNAP_GET_BP

Chapter 3. Supported administrative SQL routines and views 345

v “SNAPBP_PART administrative view and SNAP_GET_BP_PART table function –

Retrieve bufferpool_nodeinfo logical data group snapshot information” on page

347

v “Administrative views versus table functions” on page 3

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPBP and SNAP_GET_BP

346 Administrative SQL Routines and Views

SNAPBP_PART administrative view and SNAP_GET_BP_PART

table function – Retrieve bufferpool_nodeinfo logical data

group snapshot information

 The “SNAPBP_PART administrative view” and the “SNAP_GET_BP_PART table

function” return information about buffer pools from a bufferpool snapshot, in

particular, the bufferpool_nodeinfo logical data group.

SNAPBP_PART administrative view

 This administrative view allows you to retrieve bufferpool_nodeinfo logical

data group snapshot information for the currently connected database.

 Used with the SNAPBP administrative view, the SNAPBP_PART

administrative view provides the data equivalent to the GET SNAPSHOT

FOR BUFFERPOOLS ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 86 on page 349 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPBP_PART administrative

view and EXECUTE privilege on the SNAP_GET_BP_PART table

function.

 Example:

 Retrieve data for all bufferpools when connected to SAMPLE database.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,

 BP_CUR_BUFFSZ, BP_NEW_BUFFSZ, BP_PAGES_LEFT_TO_REMOVE, BP_TBSP_USE_COUNT

 FROM SYSIBMADM.SNAPBP_PART

The following is an example of output from this query.

DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ ...

-------- --------------- -------------------- -------------------- ...

SAMPLE IBMDEFAULTBP 1000 1000 ...

SAMPLE IBMSYSTEMBP4K 16 16 ...

SAMPLE IBMSYSTEMBP8K 16 16 ...

SAMPLE IBMSYSTEMBP16K 16 16 ...

 ...

 4 record(s) selected.

Output from this query (continued).

... BP_PAGES_LEFT_TO_REMOVE BP_TBSP_USE_COUNT

... ----------------------- --------------------

... 0 3

... 0 0

... 0 0

... 0 0

...

SNAP_GET_BP_PART table function

 The SNAP_GET_BP_PART table function returns the same information as

the SNAPBP_PART administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

SNAPBP_PART and SNAP_GET_BP_PART

Chapter 3. Supported administrative SQL routines and views 347

Used with the SNAP_GET_BP table function, the SNAP_GET_BP_PART

table function provides the data equivalent to the GET SNAPSHOT FOR

ALL BUFFERPOOLS CLP command.

 Refer to Table 86 on page 349 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_BP_PART (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot for all bufferpools in all databases within the same

instance as the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_BP_PART table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_BP_PART table function.

 Example:

 Retrieve data for all bufferpools for all active databases when connected to

the SAMPLE database.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,

 BP_CUR_BUFFSZ, BP_NEW_BUFFSZ, BP_PAGES_LEFT_TO_REMOVE, BP_TBSP_USE_COUNT

 FROM TABLE(SNAP_GET_BP_PART(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following is an example of output from this query.

DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ ...

-------- --------------- -------------------- -------------------- ...

SAMPLE IBMDEFAULTBP 250 250 ...

SAMPLE IBMSYSTEMBP4K 16 16 ...

SNAPBP_PART and SNAP_GET_BP_PART

348 Administrative SQL Routines and Views

SAMPLE IBMSYSTEMBP8K 16 16 ...

SAMPLE IBMSYSTEMBP16K 16 16 ...

SAMPLE IBMSYSTEMBP32K 16 16 ...

TESTDB IBMDEFAULTBP 250 250 ...

TESTDB IBMSYSTEMBP4K 16 16 ...

TESTDB IBMSYSTEMBP8K 16 16 ...

TESTDB IBMSYSTEMBP16K 16 16 ...

TESTDB IBMSYSTEMBP32K 16 16 ...

...

Output from this query (continued).

... BP_PAGES_LEFT_TO_REMOVE BP_TBSP_USE_COUNT

... ----------------------- --------------------

... 0 3

... 0 0

... 0 0

... 0 0

... 0 0

... 0 3

... 0 0

... 0 0

... 0 0

... 0 0

...

Information returned

 Table 86. Information returned by the SNAPBP_PART administrative view and the

SNAP_GET_BP_PART table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer Pool Name

monitor element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

BP_CUR_BUFFSZ BIGINT bp_cur_buffsz - Current Size of

Buffer Pool monitor element

BP_NEW_BUFFSZ BIGINT bp_new_buffsz - New Buffer Pool

Size monitor element

BP_PAGES_LEFT_TO_REMOVE BIGINT bp_pages_left_to_remove - Number

of Pages Left to Remove monitor

element

BP_TBSP_USE_COUNT BIGINT bp_tbsp_use_count - Number of

Table Spaces Mapped to Buffer

Pool monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

SNAPBP_PART and SNAP_GET_BP_PART

Chapter 3. Supported administrative SQL routines and views 349

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPBP administrative view and SNAP_GET_BP table function – Retrieve

bufferpool logical group snapshot information” on page 341

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPBP_PART and SNAP_GET_BP_PART

350 Administrative SQL Routines and Views

SNAPCONTAINER administrative view and

SNAP_GET_CONTAINER_V91 table function – Retrieve

tablespace_container logical data group snapshot information

 The “SNAPCONTAINER administrative view” and the

“SNAP_GET_CONTAINER_V91 table function” on page 352 return table space

snapshot information from the tablespace_container logical data group.

SNAPCONTAINER administrative view

 This administrative view allows you to retrieve tablespace_container

logical data group snapshot information for the currently connected

database.

 Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_QUIESCER and

SNAPTBSP_RANGE administrative views, the SNAPCONTAINER

administrative view returns data equivalent to the GET SNAPSHOT FOR

TABLESPACES ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 87 on page 353 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPCONTAINER

administrative view and EXECUTE privilege on the

SNAP_GET_CONTAINER_V91 table function.

 Example:

 Retrieve details for the table space containers for all database partitions for

the currently connected database.

SELECT SNAPSHOT_TIMESTAMP, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME,

 TBSP_ID, SUBSTR(CONTAINER_NAME, 1, 20) AS CONTAINER_NAME,

 CONTAINER_ID, CONTAINER_TYPE, ACCESSIBLE, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPCONTAINER ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP TBSP_NAME TBSP_ID ...

-------------------------- --------------- -------...- ...

2006-01-08-16.49.24.639945 SYSCATSPACE 0 ...

2006-01-08-16.49.24.639945 TEMPSPACE1 1 ...

2006-01-08-16.49.24.639945 USERSPACE1 2 ...

2006-01-08-16.49.24.639945 SYSTOOLSPACE 3 ...

2006-01-08-16.49.24.640747 TEMPSPACE1 1 ...

2006-01-08-16.49.24.640747 USERSPACE1 2 ...

2006-01-08-16.49.24.639981 TEMPSPACE1 1 ...

2006-01-08-16.49.24.639981 USERSPACE1 2 ...

 ...

8 record(s) selected.

Output from this query (continued).

... CONTAINER_NAME CONTAINER_ID CONTAINER_TYPE ...

... -------------------- ------------...- ---------------- ...

... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

... /home/swalkty/swalkt 0 PATH ...

... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

SNAPCONTAINER and SNAP_GET_CONTAINER_V91

Chapter 3. Supported administrative SQL routines and views 351

... /home/swalkty/swalkt 0 PATH ...

... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

... /home/swalkty/swalkt 0 PATH ...

... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

Output from this query (continued).

... ACCESSIBLE DBPARTITIONNUM

... ---------- --------------

... 1 0

... 1 0

... 1 0

... 1 0

... 1 1

... 1 1

... 1 2

... 1 2

SNAP_GET_CONTAINER_V91 table function

 The SNAP_GET_CONTAINER_V91 table function returns the same

information as the SNAPCONTAINER administrative view, but allows you

to retrieve the information for a specific database on a specific database

partition, aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,

SNAP_GET_TBSP_QUIESCER and SNAP_GET_TBSP_RANGE table

functions, the SNAP_GET_CONTAINER_V91 table function returns data

equivalent to the GET SNAPSHOT FOR TABLESPACES ON

database-alias CLP command.

 Refer to Table 87 on page 353 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_CONTAINER_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

SNAPCONTAINER and SNAP_GET_CONTAINER_V91

352 Administrative SQL Routines and Views

request type does not exist, then the SNAP_GET_CONTAINER_V91 table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_CONTAINER_V91 table

function.

 Example:

 Retrieve details for the table space containers on the currently connected

database on the currently connected database partition.

SELECT SNAPSHOT_TIMESTAMP, TBSP_NAME, TBSP_ID, CONTAINER_NAME,

 CONTAINER_ID, CONTAINER_TYPE, ACCESSIBLE

 FROM TABLE(SNAP_GET_CONTAINER_V91(’’,-1)) AS T

The following is an example of output from this query.

SNAPSHOT_TIMESTAMP TBSP_NAME TBSP_ID ...

-------------------------- -------------------- ------- ...

2005-04-25-14.42.10.899253 SYSCATSPACE 0 ...

2005-04-25-14.42.10.899253 TEMPSPACE1 1 ...

2005-04-25-14.42.10.899253 USERSPACE1 2 ...

2005-04-25-14.42.10.899253 SYSTOOLSPACE 3 ...

2005-04-25-14.42.10.899253 MYTEMP 4 ...

2005-04-25-14.42.10.899253 WHATSNEWTEMPSPACE 5 ...

Output from this query (continued).

... CONTAINER_NAME CONTAINER_ID ...

... -- ------------ ...

... D:\DB2\NODE0000\SQL00002\SQLT0000.0 0 ...

... D:\DB2\NODE0000\SQL00002\SQLT0001.0 0 ...

... D:\DB2\NODE0000\SQL00002\SQLT0002.0 0 ...

... D:\DB2\NODE0000\SQL00002\SYSTOOLSPACE 0 ...

... D:\DB2\NODE0000\SQL003 0 ...

... d:\DGTTsWhatsNewContainer 0 ...

Output from this query (continued).

... CONTAINER_TYPE ACCESSIBLE

... -------------- ----------

... CONT_PATH 1

... CONT_PATH 1

... CONT_PATH 1

... CONT_PATH 1

... CONT_PATH 1

... CONT_PATH 1

Information returned

 NOTE: The BUFFERPOOL database manager monitor switch must be

turned on in order for the file system information to be returned.

 Table 87. Information returned by the SNAPCONTAINER administrative view and the

SNAP_GET_CONTAINER_V91 table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SNAPCONTAINER and SNAP_GET_CONTAINER_V91

Chapter 3. Supported administrative SQL routines and views 353

Table 87. Information returned by the SNAPCONTAINER administrative view and the

SNAP_GET_CONTAINER_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

CONTAINER_NAME VARCHAR(256) container_name - Container Name

monitor element

CONTAINER_ID BIGINT container_id - Container

Identification monitor element

CONTAINER_TYPE VARCHAR(16) container_type - Container Type

monitor element. This is a text

identifer based on the defines in

sqlutil.h and is one of:

v DISK_EXTENT_TAG

v DISK_PAGE_TAG

v FILE_EXTENT_TAG

v FILE_PAGE_TAG

v PATH

TOTAL_PAGES BIGINT container_total_pages - Total Pages

in Container monitor element

USABLE_PAGES BIGINT container_usable_pages - Usable

Pages in Container monitor element

ACCESSIBLE SMALLINT container_accessible - Accessibility

of Container monitor element

STRIPE_SET BIGINT container_stripe_set - Stripe Set

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

FS_ID VARCHAR(22) fs_id - Unique File System

Identification Number monitor

element

FS_TOTAL_SIZE BIGINT fs_total_size - Total Size of a File

System monitor element

FS_USED_SIZE BIGINT fs_used_size - Amount of Space

Used on a File System monitor

element

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

SNAPCONTAINER and SNAP_GET_CONTAINER_V91

354 Administrative SQL Routines and Views

v “SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function –

Retrieve tablespace logical data group snapshot information” on page 441

v “SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER

table function – Retrieve quiescer table space snapshot information” on page 452

v “SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table

function – Retrieve range snapshot information” on page 456

v “SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table

function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPCONTAINER and SNAP_GET_CONTAINER_V91

Chapter 3. Supported administrative SQL routines and views 355

SNAPDB administrative view and SNAP_GET_DB_V91 table

function – Retrieve snapshot information from the dbase

logical group

 The “SNAPDB administrative view” and the “SNAP_GET_DB_V91 table function”

return snapshot information from the database (dbase) logical group.

SNAPDB administrative view

 This administrative view allows you to retrieve snapshot information from

the dbase logical group for the currently connected database.

 Used in conjunction with the SNAPDB_MEMORY_POOL,

SNAPDETAILLOG, SNAPHADR and SNAPSTORAGE_PATHS

administrative views, the SNAPDB administrative view provides

information equivalent to the GET SNAPSHOT FOR DATABASE on

database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 88 on page 358 for a complete list of information that is

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPDB administrative view

and EXECUTE privilege on the SNAP_GET_DB_V91 table function.

 Example:

 Retrieve the status, platform, location, and connect time for all database

partitions of the currently connected database.

SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

 DB_LOCATION, DB_CONN_TIME, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPDB ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

DB_NAME DB_STATUS SERVER_PLATFORM DB_LOCATION ...

-------...- ------------ --------------- ------------ ...

TEST ACTIVE AIX64 LOCAL ...

TEST ACTIVE AIX64 LOCAL ...

TEST ACTIVE AIX64 LOCAL ...

3 record(s) selected.

Output from this query (continued).

... DB_CONN_TIME DBPARTITIONNUM

... -------------------------- --------------

... 2006-01-08-16.48.30.665477 0

... 2006-01-08-16.48.34.005328 1

... 2006-01-08-16.48.34.007937 2

SNAP_GET_DB_V91 table function

 The SNAP_GET_DB_V91 table function returns the same information as

the SNAPDB administrative view.

 Used in conjunction with the SNAP_GET_DB_MEMORY_POOL,

SNAP_GET_DETAILLOG_V91, SNAP_GET_HADR and

SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DB_V91

SNAPDB and SNAP_GET_DB_V91

356 Administrative SQL Routines and Views

table function provides information equivalent to the GET SNAPSHOT

FOR ALL DATABASES CLP command.

 Refer to Table 88 on page 358 for a complete list of information that is

returned.

 Syntax:

�� SNAP_GET_DB_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_DB_V91 table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_DB_V91 table function.

 Examples:

 Example 1: Retrieve the status, platform, location, and connect time as an

aggregate view across all database partitions of the currently connected

database.

SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

 DB_LOCATION, DB_CONN_TIME FROM TABLE(SNAP_GET_DB_V91(’’, -2)) AS T

The following is an example of output from this query.

DB_NAME DB_STATUS SERVER_PLATFORM ...

-------...- ------------ --------------- ...

SAMPLE ACTIVE AIX64 ...

 1 record(s) selected.

SNAPDB and SNAP_GET_DB_V91

Chapter 3. Supported administrative SQL routines and views 357

Output from this query (continued).

... DB_LOCATION DB_CONN_TIME

... ------------ --------------------------

... LOCAL 2005-07-24-22.09.22.013196

Example 2: Retrieve the status, platform, location, and connect time as an

aggregate view across all database partitions for all active databases in the

same instance that contains the currently connected database.

SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

 DB_LOCATION, DB_CONN_TIME

 FROM TABLE(SNAP_GET_DB_V91(CAST (NULL AS VARCHAR(128)), -2)) AS T

The following is an example of output from this query.

DB_NAME DB_STATUS SERVER_PLATFORM ...

--------...- ------------ --------------- ...

TOOLSDB ACTIVE AIX64 ...

SAMPLE ACTIVE AIX64 ...

Output from this query (continued).

... DB_LOCATION DB_CONN_TIME

... ------------ --------------------------

... LOCAL 2005-07-24-22.26.54.396335

... LOCAL 2005-07-24-22.09.22.013196

SNAPDB administrative view and SNAP_GET_DB_V91 table function metadata

 Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path monitor

element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input Database

Alias monitor element

DB_STATUS VARCHAR(12) db_status - Status of Database

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

v ROLLFWD

CATALOG_PARTITION SMALLINT catalog_node - Catalog Node

Number monitor element

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog Node

Network Name monitor element

SNAPDB and SNAP_GET_DB_V91

358 Administrative SQL Routines and Views

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

SERVER_PLATFORM VARCHAR(12) server_platform - Server Operating

System monitor element. This

interface returns a text identifier

based on defines in sqlmon.h, and

is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

DB_LOCATION VARCHAR(12) db_location - Database Location

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v LOCAL

v REMOTE

SNAPDB and SNAP_GET_DB_V91

Chapter 3. Supported administrative SQL routines and views 359

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

DB_CONN_TIME TIMESTAMP db_conn_time - Database

Activation Timestamp monitor

element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

LAST_BACKUP TIMESTAMP last_backup - Last Backup

Timestamp monitor element

CONNECTIONS_TOP BIGINT connections_top - Maximum

Number of Concurrent Connections

monitor element

TOTAL_CONS BIGINT total_cons - Connects Since

Database Activation monitor

element

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary

Connections monitor element

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications

Connected Currently monitor

element

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications

Executing in the Database

Currently monitor element

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of

Associated Agents monitor element

AGENTS_TOP BIGINT agents_top - Number of Agents

Created monitor element

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum

Number of Coordinating Agents

monitor element

LOCKS_HELD BIGINT locks_held - Locks Held monitor

element

LOCK_WAITS BIGINT lock_waits - Lock Waits monitor

element

LOCK_WAIT_TIME BIGINT lock_wait_time - Time Waited On

Locks monitor element

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total Lock List

Memory In Use monitor element

DEADLOCKS BIGINT deadlocks - Deadlocks Detected

monitor element

LOCK_ESCALS BIGINT lock_escals - Number of Lock

Escalations monitor element

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive Lock

Escalations monitor element

LOCKS_WAITING BIGINT locks_waiting - Current Agents

Waiting On Locks monitor element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of Lock

Timeouts monitor element

SNAPDB and SNAP_GET_DB_V91

360 Administrative SQL Routines and Views

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of

Indoubt Transactions monitor

element

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total Sort

Heap Allocated monitor element

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort Share

Heap Currently Allocated monitor

element

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort Share Heap

High Water Mark monitor element

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post

threshold sorts monitor element

TOTAL_SORTS BIGINT total_sorts - Total Sorts monitor

element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

ACTIVE_SORTS BIGINT active_sorts - Active Sorts monitor

element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

SNAPDB and SNAP_GET_DB_V91

Chapter 3. Supported administrative SQL routines and views 361

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool

XDA Data Physical Reads monitor

element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool

XDA Data Logical Reads monitor

element

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA

Data Writes monitor element

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer Pool

Asynchronous XDA Data Reads

monitor element

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer

Pool Asynchronous XDA Data

Writes monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

SNAPDB and SNAP_GET_DB_V91

362 Administrative SQL Routines and Views

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

POOL_ASYNC_INDEX_

 READ_REQS

BIGINT pool_async_index_read_reqs -

Buffer Pool Asynchronous Index

Read Requests monitor element

POOL_ASYNC_XDA_

 READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer

Pool Asynchronous XDA Read

Requests monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer Pool

No Victim Buffers monitor element

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer Pool

Log Space Cleaners Triggered

monitor element

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer

Pool Victim Page Cleaners

Triggered monitor element

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer

Pool Threshold Cleaners Triggered

monitor element

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time Waited

for Prefetch monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit

Statements Attempted monitor

element

SNAPDB and SNAP_GET_DB_V91

Chapter 3. Supported administrative SQL routines and views 363

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback

Statements Attempted monitor

element

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL

Statements Attempted monitor

element

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL

Statements Attempted monitor

element

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed Statement

Operations monitor element

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL

Statements Executed monitor

element

UID_SQL_STMTS BIGINT uid_sql_stmts -

Update/Insert/Delete SQL

Statements Executed monitor

element

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data Definition

Language (DDL) SQL Statements

monitor element

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal

Automatic Rebinds monitor

element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_COMMITS BIGINT int_commits - Internal Commits

monitor element

INT_ROLLBACKS BIGINT int_rollbacks - Internal Rollbacks

monitor element

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal

Rollbacks Due To Deadlock

monitor element

ROWS_DELETED BIGINT rows_deleted - Rows Deleted

monitor element

ROWS_INSERTED BIGINT rows_inserted - Rows Inserted

monitor element

ROWS_UPDATED BIGINT rows_updated - Rows Updated

monitor element

ROWS_SELECTED BIGINT rows_selected - Rows Selected

monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

SNAPDB and SNAP_GET_DB_V91

364 Administrative SQL Routines and Views

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

BINDS_PRECOMPILES BIGINT binds_precompiles -

Binds/Precompiles Attempted

monitor element

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total Log

Available monitor element

TOTAL_LOG_USED BIGINT total_log_used - Total Log Space

Used monitor element

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum

Secondary Log Space Used monitor

element

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum Total

Log Space Used monitor element

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary Logs

Allocated Currently monitor

element

LOG_READS BIGINT log_reads - Number of Log Pages

Read monitor element

LOG_READ_TIME_S BIGINT log_read_time - Log Read Time

monitor element

LOG_READ_TIME_NS BIGINT log_read_time - Log Read Time

monitor element

LOG_WRITES BIGINT log_writes - Number of Log Pages

Written monitor element

LOG_WRITE_TIME_S BIGINT log_write_time - Log Write Time

monitor element

LOG_WRITE_TIME_NS BIGINT log_write_time - Log Write Time

monitor element

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of Log

Writes monitor element

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of Log

Reads monitor element

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number of

Partial Log Page Writes monitor

element

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of

Full Log Buffers monitor element

NUM_LOG_DATA_FOUND_

 IN_BUFFER

BIGINT num_log_data_found_in_buffer -

Number of Log Data Found In

Buffer monitor element

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application

with Oldest Transaction monitor

element

LOG_TO_REDO_FOR_

 RECOVERY

BIGINT log_to_redo_for_recovery - Amount

of Log to be Redone for Recovery

monitor element

SNAPDB and SNAP_GET_DB_V91

Chapter 3. Supported administrative SQL routines and views 365

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages - Amount

of Log Space Accounted for by

Dirty Pages monitor element

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package

Cache Lookups monitor element

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package Cache

Inserts monitor element

PKG_CACHE_NUM_

 OVERFLOWS

BIGINT pkg_cache_num_overflows -

Package Cache Overflows monitor

element

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package

Cache High Water Mark monitor

element

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section

Lookups monitor element

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section

Inserts monitor element

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog Cache

Lookups monitor element

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog Cache

Inserts monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog Cache

High Water Mark monitor element

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top -

Maximum Private Workspace Size

monitor element

PRIV_WORKSPACE_NUM_

 OVERFLOWS

BIGINT priv_workspace_num_overflows -

Private Workspace Overflows

monitor element

PRIV_WORKSPACE_SECTION_

 INSERTS

BIGINT priv_workspace_section_inserts -

Private Workspace Section Inserts

monitor element

PRIV_WORKSPACE_SECTION_

 LOOKUPS

BIGINT priv_workspace_section_lookups -

Private Workspace Section Lookups

monitor element

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top -

Maximum Shared Workspace Size

monitor element

SHR_WORKSPACE_NUM_

 OVERFLOWS

BIGINT shr_workspace_num_overflows -

Shared Workspace Overflows

monitor element

SHR_WORKSPACE_SECTION_

 INSERTS

BIGINT shr_workspace_section_inserts -

Shared Workspace Section Inserts

monitor element

SNAPDB and SNAP_GET_DB_V91

366 Administrative SQL Routines and Views

Table 88. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V91

table function (continued)

Column name Data type

Description or corresponding

monitor element

SHR_WORKSPACE_SECTION_

 LOOKUPS

BIGINT shr_workspace_section_lookups -

Shared Workspace Section Lookups

monitor element

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total Hash Joins

monitor element

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total Hash

Loops monitor element

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash Join

Overflows monitor element

HASH_JOIN_SMALL_

 OVERFLOWS

BIGINT hash_join_small_overflows - Hash

Join Small Overflows monitor

element

POST_SHRTHRESHOLD_

 HASH_JOINS

BIGINT post_shrthreshold_hash_joins - Post

threshold hash joins monitor

element

ACTIVE_HASH_JOINS BIGINT active_hash_joins - Active hash

joins monitor element

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number

of automatic storage paths monitor

element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

SMALLEST_LOG_AVAIL_

 NODE

INTEGER smallest_log_avail_node - Node

with Least Available Log Space

monitor element

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPDB_MEMORY_POOL administrative view and

SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level

memory usage information” on page 369

v “SNAPHADR administrative view and SNAP_GET_HADR table function –

Retrieve hadr logical data group snapshot information” on page 398

v “SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91

table function – Retrieve snapshot information from the detail_log logical data

group” on page 383

SNAPDB and SNAP_GET_DB_V91

Chapter 3. Supported administrative SQL routines and views 367

v “SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function – Retrieve automatic storage path

information” on page 421

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPDB and SNAP_GET_DB_V91

368 Administrative SQL Routines and Views

SNAPDB_MEMORY_POOL administrative view and

SNAP_GET_DB_MEMORY_POOL table function – Retrieve

database level memory usage information

 The “SNAPDB_MEMORY_POOL administrative view” and the

“SNAP_GET_DB_MEMORY_POOL table function” return information about

memory usage at the database level for UNIX platforms only.

SNAPDB_MEMORY_POOL administrative view

 This administrative view allows you to retrieve database level memory

usage information for the currently connected database.

 Used with the SNAPDB, SNAPDETAILLOG, SNAPHADR and

SNAPSTORAGE_PATHS administrative views, the

SNAPDB_MEMORY_POOL administrative view provides information

equivalent to the GET SNAPSHOT FOR DATABASE ON database-alias

CLP command.

 The schema is SYSIBMADM.

 Refer to Table 89 on page 371 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPDB_MEMORY_POOL

administrative view and EXECUTE privilege on the

SNAP_GET_DB_MEMORY_POOL table function.

 Example:

 Retrieve a list of memory pools and their current size for the currently

connected database, SAMPLE.

SELECT POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPDB_MEMORY_POOL

The following is an example of output from this query.

POOL_ID POOL_CUR_SIZE

------------- --------------------

UTILITY 32768

PACKAGE_CACHE 475136

CAT_CACHE 65536

BP 2097152

BP 1081344

BP 540672

BP 278528

BP 147456

BP 81920

LOCK_MGR 294912

DATABASE 3833856

OTHER 0

 12 record(s) selected.

SNAP_GET_DB_MEMORY_POOL table function

 The SNAP_GET_DB_MEMORY_POOL table function returns the same

information as the SNAPDB_MEMORY_POOL administrative view, but

allows you to retrieve the information for a specific database on a specific

database partition, aggregate of all database partitions or all database

partitions.

SNAPDB_MEMORY_POOL and SNAP_GET_DB_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 369

Used with the SNAP_GET_DB_V91, SNAP_GET_DETAILLOG_V91,

SNAP_GET_HADR and SNAP_GET_STORAGE_PATHS table functions, the

SNAP_GET_DB_MEMORY_POOL table function provides information

equivalent to the GET SNAPSHOT FOR ALL DATABASES CLP

command.

 Refer to Table 89 on page 371 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_DB_MEMORY_POOL (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_DB_MEMORY_POOL

table function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_DB_MEMORY_POOL table

function.

 Example:

 Retrieve a list of memory pools and their current size for all databases.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, POOL_ID, POOL_CUR_SIZE

 FROM TABLE(SNAPSHOT_GET_DB_MEMORY_POOL

 (CAST(NULL AS VARCHAR(128)), -1)) AS T

The following is an example of output from this query.

SNAPDB_MEMORY_POOL and SNAP_GET_DB_MEMORY_POOL

370 Administrative SQL Routines and Views

DB_NAME POOL_ID POOL_CUR_SIZE

-------- -------------- --------------------

TESTDB UTILITY 65536

TESTDB PACKAGE_CACHE 851968

TESTDB CAT_CACHE 65536

TESTDB BP 35913728

TESTDB BP 589824

TESTDB BP 327680

TESTDB BP 196608

TESTDB BP 131072

TESTDB SHARED_SORT 65536

TESTDB LOCK_MGR 10092544

TESTDB DATABASE 4980736

TESTDB OTHER 196608

SAMPLE UTILITY 65536

SAMPLE PACKAGE_CACHE 655360

SAMPLE CAT_CACHE 131072

SAMPLE BP 4325376

SAMPLE BP 589824

SAMPLE BP 327680

SAMPLE BP 196608

SAMPLE BP 131072

SAMPLE SHARED_SORT 0

SAMPLE LOCK_MGR 655360

SAMPLE DATABASE 4653056

SAMPLE OTHER 196608

24 record(s) selected.

Information returned

 Table 89. Information returned by the SNAPDB_MEMORY_POOL administrative view and the

SNAP_GET_DB_MEMORY_POOL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

SNAPDB_MEMORY_POOL and SNAP_GET_DB_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 371

Table 89. Information returned by the SNAPDB_MEMORY_POOL administrative view and the

SNAP_GET_DB_MEMORY_POOL table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_ID VARCHAR(14) pool_id - Memory Pool Identifier

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_SECONDARY_ID VARCHAR(32) pool_secondary_id - Memory Pool

Secondary Identifier monitor

element

POOL_CUR_SIZE BIGINT pool_cur_size - Current Size of

Memory Pool monitor element

POOL_WATERMARK BIGINT pool_watermark - Memory Pool

Watermark monitor element

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured Size

of Memory Pool monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

SNAPDB_MEMORY_POOL and SNAP_GET_DB_MEMORY_POOL

372 Administrative SQL Routines and Views

v “SNAPHADR administrative view and SNAP_GET_HADR table function –

Retrieve hadr logical data group snapshot information” on page 398

v “SNAPDB administrative view and SNAP_GET_DB_V91 table function –

Retrieve snapshot information from the dbase logical group” on page 356

v “SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91

table function – Retrieve snapshot information from the detail_log logical data

group” on page 383

v “SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function – Retrieve automatic storage path

information” on page 421

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPDB_MEMORY_POOL and SNAP_GET_DB_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 373

SNAPDBM administrative view and SNAP_GET_DBM table

function – Retrieve the dbm logical grouping snapshot

information

 The “SNAPDBM administrative view” and the “SNAP_GET_DBM table function”

return the snapshot monitor DB2 database manager (dbm) logical grouping

information.

SNAPDBM administrative view

 Used with the SNAPDBM_MEMORY_POOL, SNAPFCM,

SNAPFCM_PART and SNAPSWITCHES administrative views, the

SNAPDBM administrative view provides the data equivalent to the GET

SNAPSHOT FOR DBM command.

 The schema is SYSIBMADM.

 Refer to Table 90 on page 375 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPDBM administrative view

and EXECUTE privilege on the SNAP_GET_DBM table function.

 Example:

 Retrieve database manager status and connection information for all

database partitions.

SELECT DB2_STATUS, DB2START_TIME, LAST_RESET, LOCAL_CONS, REM_CONS_IN,

 (AGENTS_CREATED_EMPTY_POOL/AGENTS_FROM_POOL) AS AGENT_USAGE,

 DBPARTITIONNUM FROM SYSIBMADM.SNAPDBM ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

DB2_STATUS DB2START_TIME LAST_RESET ...

------------ -------------------------- ----------...- ...

ACTIVE 2006-01-06-14.59.59.059879 - ...

ACTIVE 2006-01-06-14.59.59.097605 - ...

ACTIVE 2006-01-06-14.59.59.062798 - ...

 3 record(s) selected. ...

Output from this query (continued).

... LOCAL_CONS REM_CONS_IN AGENT_USAGE DBPARTITIONNUM

... ----------...- -----------...- -----------...- --------------

... 1 1 0 0

... 0 0 0 1

... 0 0 0 2

SNAP_GET_DBM table function

 The SNAP_GET_DBM table function returns the same information as the

SNAPDBM administrative view, but allows you to retrieve the information

for a specific database partition, aggregate of all database partitions or all

database partitions.

 Used with the SNAP_GET_DBM_MEMORY_POOL, SNAP_GET_FCM,

SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the

SNAP_GET_DBM table function provides the data equivalent to the GET

SNAPSHOT FOR DBM command.

SNAPDBM and SNAP_GET_DBM

374 Administrative SQL Routines and Views

Refer to Table 90 for a complete list of information that can be returned.

 Syntax:

�� SNAP_GET_DBM ()

dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If this input option is

not used, data will be returned from all database partitions.

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_DBM table function calls the snapshot from

memory.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_DBM table function.

 Example:

 Retrieve the start time and current status of database partition number 2.

SELECT DB2START_TIME, DB2_STATUS FROM TABLE(SNAP_GET_DBM(2)) AS T

The following is an example of output from this query.

DB2START_TIME DB2_STATUS

-------------------------- ------------

2006-01-06-14.59.59.062798 ACTIVE

Information returned

 Table 90. Information returned by the SNAPDBM administrative view and the

SNAP_GET_DBM table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total Sort

Heap Allocated monitor element

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post

Threshold Sorts monitor element

PIPED_SORTS_REQUESTED BIGINT piped_sorts_requested - Piped Sorts

Requested monitor element

PIPED_SORTS_ACCEPTED BIGINT piped_sorts_accepted - Piped Sorts

Accepted monitor element

SNAPDBM and SNAP_GET_DBM

Chapter 3. Supported administrative SQL routines and views 375

Table 90. Information returned by the SNAPDBM administrative view and the

SNAP_GET_DBM table function (continued)

Column name Data type

Description or corresponding

monitor element

REM_CONS_IN BIGINT rem_cons_in - Remote Connections

To Database Manager monitor

element

REM_CONS_IN_EXEC BIGINT rem_cons_in_exec - Remote

Connections Executing in the

Database Manager monitor element

LOCAL_CONS BIGINT local_cons - Local Connections

monitor element

LOCAL_CONS_IN_EXEC BIGINT local_cons_in_exec - Local

Connections Executing in the

Database Manager monitor element

CON_LOCAL_DBASES BIGINT con_local_dbases - Local Databases

with Current Connects monitor

element

AGENTS_REGISTERED BIGINT agents_registered - Agents

Registered monitor element

AGENTS_WAITING_ON_TOKEN BIGINT agents_waiting_on_token - Agents

Waiting for a Token monitor

element

DB2_STATUS VARCHAR(12) db2_status - Status of DB2 Instance

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

AGENTS_REGISTERED_TOP BIGINT agents_registered_top - Maximum

Number of Agents Registered

monitor element

AGENTS_WAITING_TOP BIGINT agents_waiting_top - Maximum

Number of Agents Waiting monitor

element

COMM_PRIVATE_MEM BIGINT comm_private_mem - Committed

Private Memory monitor element

IDLE_AGENTS BIGINT idle_agents - Number of Idle

Agents monitor element

AGENTS_FROM_POOL BIGINT agents_from_pool - Agents

Assigned From Pool monitor

element

AGENTS_CREATED_

 EMPTY_POOL

BIGINT agents_created_empty_pool -

Agents Created Due to Empty

Agent Pool monitor element

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum

Number of Coordinating Agents

monitor element

MAX_AGENT_OVERFLOWS BIGINT max_agent_overflows - Maximum

Agent Overflows monitor element

SNAPDBM and SNAP_GET_DBM

376 Administrative SQL Routines and Views

Table 90. Information returned by the SNAPDBM administrative view and the

SNAP_GET_DBM table function (continued)

Column name Data type

Description or corresponding

monitor element

AGENTS_STOLEN BIGINT agents_stolen - Stolen Agents

monitor element

GW_TOTAL_CONS BIGINT gw_total_cons - Total Number of

Attempted Connections for DB2

Connect monitor element

GW_CUR_CONS BIGINT gw_cur_cons - Current Number of

Connections for DB2 Connect

monitor element

GW_CONS_WAIT_HOST BIGINT gw_cons_wait_host - Number of

Connections Waiting for the Host

to Reply monitor element

GW_CONS_WAIT_CLIENT BIGINT gw_cons_wait_client - Number of

Connections Waiting for the Client

to Send Request monitor element

POST_THRESHOLD_

 HASH_JOINS

BIGINT post_threshold_hash_joins - Hash

Join Threshold monitor element

NUM_GW_CONN_SWITCHES BIGINT num_gw_conn_switches -

Connection Switches monitor

element

DB2START_TIME TIMESTAMP db2start_time - Start Database

Manager Timestamp monitor

element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

NUM_NODES_IN_

 DB2_INSTANCE

INTEGER num_nodes_in_db2_instance -

Number of Nodes in Partition

monitor element

PRODUCT_NAME VARCHAR(32) product_name - Product Name

monitor element

SERVICE_LEVEL VARCHAR(18) service_level - Service Level

monitor element

SORT_HEAP_TOP BIGINT sort_heap_top - Sort Private Heap

High Water Mark monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “GET SNAPSHOT command” in Command Reference

v “Administrative views versus table functions” on page 3

SNAPDBM and SNAP_GET_DBM

Chapter 3. Supported administrative SQL routines and views 377

v “SNAPDBM_MEMORY_POOL administrative view and

SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database manager

level memory usage information” on page 379

v “SNAPFCM administrative view and SNAP_GET_FCM table function – Retrieve

the fcm logical data group snapshot information” on page 392

v “SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table

function – Retrieve the fcm_node logical data group snapshot information” on

page 395

v “SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table

function – Retrieve database snapshot switch state information” on page 429

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPDBM and SNAP_GET_DBM

378 Administrative SQL Routines and Views

SNAPDBM_MEMORY_POOL administrative view and

SNAP_GET_DBM_MEMORY_POOL table function – Retrieve

database manager level memory usage information

 The “SNAPDBM_MEMORY_POOL administrative view” and the

“SNAP_GET_DBM_MEMORY_POOL table function” return information about

memory usage at the database manager.

SNAPDBM_MEMORY_POOL administrative view

 Used with the SNAPDBM, SNAPFCM, SNAPFCM_PART and

SNAPSWITCHES administrative views, the SNAPDBM_MEMORY_POOL

administrative view provides the data equivalent to the GET SNAPSHOT

FOR DBM command.

 The schema is SYSIBMADM.

 Refer to Table 91 on page 380 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPDBM_MEMORY_POOL

administrative view and EXECUTE privilege on the

SNAP_GET_DBM_MEMORY_POOL table function.

 Example:

 Retrieve a list of the memory pools and their current size for the database

manager of the connected database.

SELECT POOL_ID, POOL_CUR_SIZE FROM SNAPDBM_MEMORY_POOL

The following is an example of output from this query.

POOL_ID POOL_CUR_SIZE

-------------- --------------------

MONITOR 65536

OTHER 29622272

FCMBP 57606144

...

SNAP_GET_DBM_MEMORY_POOL table function

 The SNAP_GET_DBM_MEMORY_POOL table function returns the same

information as the SNAPDBM_MEMORY_POOL administrative view, but

allows you to retrieve the information for a specific database partition,

aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_DBM, SNAP_GET_FCM,

SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the

SNAP_GET_DBM_MEMORY_POOL table function provides the data

equivalent to the GET SNAPSHOT FOR DBM command.

 Refer to Table 91 on page 380 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_DBM_MEMORY_POOL ()

dbpartitionnum
 ��

SNAPDBM_MEMORY_POOL and SNAP_GET_DBM_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 379

The schema is SYSPROC.

 Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If this input option is

not used, data will be returned from all database partitions.

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_DBM_MEMORY_POOL table function takes

a snapshot for the currently connected database and database partition

number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_DBM_MEMORY_POOL table

function.

 Example:

 Retrieve a list of the memory pools and their current size for all database

partitions of the database manager of the connected database.

SELECT POOL_ID, POOL_CUR_SIZE, DBPARTITIONNUM

 FROM TABLE(SYSPROC.SNAP_GET_DBM_MEMORY_POOL())

 AS T ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

POOL_ID POOL_CUR_SIZE DBPARTITIONNUM

-------------- -------------------- --------------

MONITOR 65536 0

OTHER 29622272 0

FCMBP 57606144 0

MONITOR 65536 1

OTHER 29425664 1

FCMBP 57606144 1

MONITOR 65536 2

OTHER 29425664 2

FCMBP 57606144 2

Information returned

 Table 91. Information returned by the SNAPDBM_MEMORY_POOL administrative view and

the SNAP_GET_DBM_MEMORY_POOL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SNAPDBM_MEMORY_POOL and SNAP_GET_DBM_MEMORY_POOL

380 Administrative SQL Routines and Views

Table 91. Information returned by the SNAPDBM_MEMORY_POOL administrative view and

the SNAP_GET_DBM_MEMORY_POOL table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_ID VARCHAR(14) pool_id - Memory Pool Identifier

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current Size of

Memory Pool monitor element

POOL_WATERMARK BIGINT pool_watermark - Memory Pool

Watermark monitor element

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured Size

of Memory Pool monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPDBM administrative view and SNAP_GET_DBM table function – Retrieve

the dbm logical grouping snapshot information” on page 374

v “SNAPFCM administrative view and SNAP_GET_FCM table function – Retrieve

the fcm logical data group snapshot information” on page 392

SNAPDBM_MEMORY_POOL and SNAP_GET_DBM_MEMORY_POOL

Chapter 3. Supported administrative SQL routines and views 381

v “SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table

function – Retrieve the fcm_node logical data group snapshot information” on

page 395

v “SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table

function – Retrieve database snapshot switch state information” on page 429

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPDBM_MEMORY_POOL and SNAP_GET_DBM_MEMORY_POOL

382 Administrative SQL Routines and Views

SNAPDETAILLOG administrative view and

SNAP_GET_DETAILLOG_V91 table function – Retrieve

snapshot information from the detail_log logical data group

 The “SNAPDETAILLOG administrative view” and the

“SNAP_GET_DETAILLOG_V91 table function” return snapshot information from

the detail_log logical data group.

SNAPDETAILLOG administrative view

 This administrative view allows you to retrieve snapshot information from

the detail_log logical data group for the currently connected database.

 Used in conjunction with the SNAPDB, SNAPDB_MEMORY_POOL,

SNAPHADR and SNAPSTORAGE_PATHS administrative views, the

SNAPDETAILLOG administrative view provides information equivalent to

the GET SNAPSHOT FOR DATABASE on database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 92 on page 385 for a complete list of information that is

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPDETAILLOG

administrative view and EXECUTE privilege on the

SNAP_GET_DETAILLOG_V91 table function.

 Example:

 Retrieve log information for all database partitions for the currently

connected database.

SELECT SUBSTR(DB_NAME, 1, 8) AS DB_NAME, FIRST_ACTIVE_LOG,

 LAST_ACTIVE_LOG, CURRENT_ACTIVE_LOG, CURRENT_ARCHIVE_LOG,

 DBPARTITIONNUM

 FROM SYSIBMADM.SNAPDETAILLOG ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

DB_NAME FIRST_ACTIVE_LOG LAST_ACTIVE_LOG ...

-------- -------------------- -------------------- ...

TEST 0 8 ...

TEST 0 8 ...

TEST 0 8 ...

 ...

3 record(s) selected. ...

Output from this query (continued).

... CURRENT_ACTIVE_LOG CURRENT_ARCHIVE_LOG DBPARTITIONNUM

... -------------------- -------------------- --------------

... 0 - 0

... 0 - 1

... 0 - 2

SNAP_GET_DETAILLOG_V91 table function

 The SNAP_GET_DETAILLOG_V91 table function returns the same

information as the SNAPDETAILLOG administrative view.

 Used in conjunction with the SNAP_GET_DB_V91,

SNAP_GET_DB_MEMORY_POOL, SNAP_GET_HADR and

SNAPDETAILLOG and SNAP_GET_DETAILLOG_V91

Chapter 3. Supported administrative SQL routines and views 383

SNAP_GET_STORAGE_PATHS table functions, the

SNAP_GET_DETAILLOG table function provides information equivalent to

the GET SNAPSHOT FOR ALL DATABASES CLP command.

 Refer to Table 92 on page 385 for a complete list of information that is

returned.

 Syntax:

�� SNAP_GET_DETAILLOG_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_DETAILLOG_V91 table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_DETAILLOG_V91 table function.

 Example:

 Retrieve log information for database partition 1 for the currently

connected database.

SELECT SUBSTR(DB_NAME, 1, 8) AS DB_NAME, FIRST_ACTIVE_LOG,

 LAST_ACTIVE_LOG, CURRENT_ACTIVE_LOG, CURRENT_ARCHIVE_LOG

 FROM TABLE(SNAP_GET_DETAILLOG_V91(’’, 1)) AS T

The following is an example of output from this query.

SNAPDETAILLOG and SNAP_GET_DETAILLOG_V91

384 Administrative SQL Routines and Views

DB_NAME FIRST_ACTIVE_LOG LAST_ACTIVE_LOG ...

-------- -------------------- -------------------- ...

TEST 0 8 ...

 ...

1 record(s) selected. ...

Output from this query (continued).

... CURRENT_ACTIVE_LOG CURRENT_ARCHIVE_LOG

... -------------------- --------------------

... 0 -

...

...

SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91 table

function metadata

 Table 92. Information returned by the SNAPDETAILLOG administrative view and

SNAP_GET_DETAILLOG_V91 table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

FIRST_ACTIVE_LOG BIGINT first_active_log - First Active Log

File Number monitor element

LAST_ACTIVE_LOG BIGINT last_active_log - Last Active Log

File Number monitor element

CURRENT_ACTIVE_LOG BIGINT current_active_log - Current Active

Log File Number monitor element

CURRENT_ARCHIVE_LOG BIGINT current_archive_log - Current

Archive Log File Number monitor

element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPHADR administrative view and SNAP_GET_HADR table function –

Retrieve hadr logical data group snapshot information” on page 398

v “SNAPDB_MEMORY_POOL administrative view and

SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level

memory usage information” on page 369

v “SNAPDB administrative view and SNAP_GET_DB_V91 table function –

Retrieve snapshot information from the dbase logical group” on page 356

SNAPDETAILLOG and SNAP_GET_DETAILLOG_V91

Chapter 3. Supported administrative SQL routines and views 385

v “SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function – Retrieve automatic storage path

information” on page 421

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPDETAILLOG and SNAP_GET_DETAILLOG_V91

386 Administrative SQL Routines and Views

SNAPDYN_SQL administrative view and

SNAP_GET_DYN_SQL_V91 table function – Retrieve dynsql

logical group snapshot information

 The “SNAPDYN_SQL administrative view” and the “SNAP_GET_DYN_SQL_V91

table function” on page 388 return snapshot information from the dynsql logical

data group.

SNAPDYN_SQL administrative view

 This administrative view allows you to retrieve dynsql logical group

snapshot information for the currently connected database.

 This view returns information equivalent to the GET SNAPSHOT FOR

DYNAMIC SQL ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 93 on page 389 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPDYN_SQL administrative

view and EXECUTE privilege on the SNAP_GET_DYN_SQL_V91 table

function.

 Example:

 Retrieve a list of dynamic SQL run on all database partitions of the

currently connected database, ordered by the number of rows read.

SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

 AS STMT_TEXT, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPDYN_SQL ORDER BY ROWS_READ

The following is an example of output from this query.

PREP_TIME_WORST NUM_COMPILATIONS ...

-------------------- -------------------- ...

 98 1 ...

 9 1 ...

 0 0 ...

 0 1 ...

 0 1 ...

 0 1 ...

 0 1 ...

 0 1 ...

 40 1 ...

 ...

9 record(s) selected.

Output from this query (continued).

... STMT_TEXT ...

... -- ...

... select prep_time_worst, num_compilations, substr(stmt_text, ...

... select * from dbuser.employee ...

... SET CURRENT LOCALE LC_CTYPE = ’en_US’ ...

... select prep_time_worst, num_compilations, substr(stmt_text, ...

... select prep_time_worst, num_compilations, substr(stmt_text, ...

... select * from dbuser.employee ...

SNAPDYN_SQL and SNAP_GET_DYN_SQL_V91

Chapter 3. Supported administrative SQL routines and views 387

... insert into dbuser.employee values(1) ...

... select * from dbuser.employee ...

... insert into dbuser.employee values(1) ...

Output from this query (continued).

... DBPARTITIONNUM

... --------------

... 0

... 0

... 0

... 2

... 1

... 2

... 2

... 1

... 0

SNAP_GET_DYN_SQL_V91 table function

 The SNAP_GET_DYN_SQL_V91 table function returns the same

information as the SNAPDYN_SQL administrative view, but allows you to

retrieve the information for a specific database on a specific database

partition, aggregate of all database partitions or all database partitions.

 This table function returns information equivalent to the GET SNAPSHOT

FOR DYNAMIC SQL ON database-alias CLP command.

 Refer to Table 93 on page 389 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_DYN_SQL_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_DYN_SQL_V91 table

function takes a snapshot for the currently connected database and

database partition number.

SNAPDYN_SQL and SNAP_GET_DYN_SQL_V91

388 Administrative SQL Routines and Views

Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_DYN_SQL_V91 table function.

 Example:

 Retrieve a list of dynamic SQL run on the currently connected database

partition of the currently connected database, ordered by the number of

rows read.

SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

 AS STMT_TEXT FROM TABLE(SNAP_GET_DYN_SQL_V91(’’,-1)) as T

 ORDER BY ROWS_READ

The following is an example of output from this query.

PREP_TIME_WORST ...

-------------------- ...

 0 ...

 3 ...

 ...

 4 ...

 ...

 4 ...

 ...

 4 ...

 ...

 3 ...

 ...

 4 ...

 ...

Output from this query (continued).

... NUM_COMPILATIONS STMT_TEXT

... -------------------- ---------------------------------------...-

... 0 SET CURRENT LOCALE LC_CTYPE = ’en_US’

... 1 select rows_read, rows_written,

... substr(stmt_text, 1, 40) as

... 1 select * from table

... (snap_get_dyn_sqlv9(’’,-1)) as t

... 1 select * from table

... (snap_getdetaillog9(’’,-1)) as t

... 1 select * from table

... (snap_get_hadr(’’,-1)) as t

... 1 select prep_time_worst, num_compilations,

... substr(stmt_text,

... 1 select prep_time_worst, num_compilations,

... substr(stmt_text,

Information returned

 Table 93. Information returned by the SNAPDYN_SQL administrative view and the

SNAP_GET_DYN_SQL_V91 table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

NUM_EXECUTIONS BIGINT num_executions - Statement

Executions monitor element

NUM_COMPILATIONS BIGINT num_compilations - Statement

Compilations monitor element

SNAPDYN_SQL and SNAP_GET_DYN_SQL_V91

Chapter 3. Supported administrative SQL routines and views 389

Table 93. Information returned by the SNAPDYN_SQL administrative view and the

SNAP_GET_DYN_SQL_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

PREP_TIME_WORST BIGINT prep_time_worst - Statement Worst

Preparation Time monitor element

PREP_TIME_BEST BIGINT prep_time_best - Statement Best

Preparation Time monitor element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

STMT_SORTS BIGINT stmt_sorts - Statement Sorts

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool

XDA Data Logical Reads monitor

element

SNAPDYN_SQL and SNAP_GET_DYN_SQL_V91

390 Administrative SQL Routines and Views

Table 93. Information returned by the SNAPDYN_SQL administrative view and the

SNAP_GET_DYN_SQL_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool

XDA Data Physical Reads monitor

element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed Statement

Execution Time monitor element

TOTAL_EXEC_TIME_MS BIGINT total_exec_time - Elapsed Statement

Execution Time monitor element

TOTAL_USR_CPU_TIME BIGINT total_usr_cpu_time - Total User

CPU for a Statement monitor

element

TOTAL_USR_CPU_TIME_MS BIGINT total_usr_cpu_time - Total User

CPU for a Statement monitor

element

TOTAL_SYS_CPU_TIME BIGINT total_sys_cpu_time - Total System

CPU for a Statement monitor

element

TOTAL_SYS_CPU_TIME_MS BIGINT total_sys_cpu_time - Total System

CPU for a Statement monitor

element

STMT_TEXT CLOB(2 M) stmt_text - SQL Dynamic Statement

Text monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPDYN_SQL and SNAP_GET_DYN_SQL_V91

Chapter 3. Supported administrative SQL routines and views 391

SNAPFCM administrative view and SNAP_GET_FCM table

function – Retrieve the fcm logical data group snapshot

information

 The “SNAPFCM administrative view” and the “SNAP_GET_FCM table function”

return information about the fast communication manager from a database

manager snapshot, in particular, the fcm logical data group.

SNAPFCM administrative view

 Used with the SNAPDBM, SNAPDBM_MEMORY_POOL,

SNAPFCM_PART and SNAPSWITCHES administrative views, the

SNAPFCM administrative view provides the data equivalent to the GET

SNAPSHOT FOR DBM command.

 The schema is SYSIBMADM.

 Refer to Table 94 on page 393 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPFCM administrative view

and EXECUTE privilege on the SNAP_GET_FCM table function.

 Example:

 Retrieve information about the fast communication manager’s message

buffers on all database partitions.

SELECT BUFF_FREE, BUFF_FREE_BOTTOM, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPFCM ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

BUFF_FREE BUFF_FREE_BOTTOM DBPARTITIONNUM

---------...---- -------------------- --------------

 5120 5100 0

 5120 5100 1

 5120 5100 2

SNAP_GET_FCM table function

 The SNAP_GET_FCM table function returns the same information as the

SNAPFCM administrative view, but allows you to retrieve the information

for a specific database partition, aggregate of all database partitions or all

database partitions.

 Used with the SNAP_GET_DBM, SNAP_GET_DBM_MEMORY_POOL,

SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the

SNAP_GET_FCM table function provides the data equivalent to the GET

SNAPSHOT FOR DBM command.

 Refer to Table 94 on page 393 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_FCM ()

dbpartitionnum
 ��

 The schema is SYSPROC.

SNAPFCM and SNAP_GET_FCM

392 Administrative SQL Routines and Views

Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If this input option is

not used, data will be returned from all database partitions

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_FCM table function takes a snapshot for the

currently connected database and database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_FCM table function.

 Example:

 Retrieve information about the fast communication manager’s message

buffers on database partition 1.

SELECT BUFF_FREE, BUFF_FREE_BOTTOM, DBPARTITIONNUM

 FROM TABLE(SYSPROC.SNAP_GET_FCM(1)) AS T

The following is an example of output from this query.

BUFF_FREE BUFF_FREE_BOTTOM DBPARTITIONNUM

-------------------- -------------------- --------------

 5120 5100 1

Information returned

 Table 94. Information returned by the SNAPFCM administrative view and the

SNAP_GET_FCM table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

BUFF_FREE BIGINT buff_free - FCM Buffers Currently

Free monitor element

BUFF_FREE_BOTTOM BIGINT buff_free_bottom - Minimum FCM

Buffers Free monitor element

CH_FREE BIGINT ch_free - Channels Currently Free

monitor element

CH_FREE_BOTTOM BIGINT ch_free_bottom - Minimum

Channels Free monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

SNAPFCM and SNAP_GET_FCM

Chapter 3. Supported administrative SQL routines and views 393

Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “GET SNAPSHOT command” in Command Reference

v “Administrative views versus table functions” on page 3

v “SNAPDBM_MEMORY_POOL administrative view and

SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database manager

level memory usage information” on page 379

v “SNAPDBM administrative view and SNAP_GET_DBM table function – Retrieve

the dbm logical grouping snapshot information” on page 374

v “SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table

function – Retrieve the fcm_node logical data group snapshot information” on

page 395

v “SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table

function – Retrieve database snapshot switch state information” on page 429

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPFCM and SNAP_GET_FCM

394 Administrative SQL Routines and Views

SNAPFCM_PART administrative view and

SNAP_GET_FCM_PART table function – Retrieve the

fcm_node logical data group snapshot information

 The “SNAPFCM_PART administrative view” and the “SNAP_GET_FCM_PART

table function” return information about the fast communication manager from a

database manager snapshot, in particular, the fcm_node logical data group.

SNAPFCM_PART administrative view

 Used with the SNAPDBM, SNAPDBM_MEMORY_POOL, SNAPFCM and

SNAPSWITCHES administrative views, the SNAPFCM_PART

administrative view provides the data equivalent to the GET SNAPSHOT

FOR DBM command.

 The schema is SYSIBMADM.

 Refer to Table 95 on page 396 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPFCM_PART administrative

view and EXECUTE privilege on the SNAP_GET_FCM_PART table

function.

 Example:

 Retrieve buffers sent and received information for the fast communication

manager.

SELECT CONNECTION_STATUS, TOTAL_BUFFERS_SENT, TOTAL_BUFFERS_RECEIVED

 FROM SYSIBMADM.SNAPFCM_PART WHERE DBPARTITIONNUM = 0

The following is an example of output from this query.

CONNECTION_STATUS TOTAL_BUFFERS_SENT TOTAL_BUFFERS_RCVD

-------------------- -------------------- --------------------

INACTIVE 2 1

 1 record(s) selected.

SNAP_GET_FCM_PART table function

 The SNAP_GET_FCM_PART table function returns the same information

as the SNAPFCM_PART administrative view, but allows you to retrieve the

information for a specific database partition, aggregate of all database

partitions or all database partitions.

 Used with the SNAP_GET_DBM, SNAP_GET_DBM_MEMORY_POOL,

SNAP_GET_FCM and SNAP_GET_SWITCHES table functions, the

SNAP_GET_FCM_PART table function provides the data equivalent to the

GET SNAPSHOT FOR DBM command.

 Refer to Table 95 on page 396 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_FCM_PART ()

dbpartitionnum
 ��

SNAPFCM_PART and SNAP_GET_FCM_PART

Chapter 3. Supported administrative SQL routines and views 395

The schema is SYSPROC.

 Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current partition, or -2 for

an aggregate of all partitions. If this input option is not used, data will

be returned from all partitions

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_FCM_PART table function takes a snapshot

for the currently connected database and database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_FCM_PART table function.

 Example:

 Retrieve buffers sent and received information for the fast communication

manager for all database partitions.

SELECT FCM_DBPARTITIONNUM, TOTAL_BUFFERS_SENT, TOTAL_BUFFERS_RCVD,

 DBPARTITIONNUM FROM TABLE(SNAP_GET_FCM_PART()) AS T

 ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

FCM_DBPARTITIONNUM TOTAL_BUFFERS_SENT TOTAL_BUFFERS_RCVD DBPARTITIONNUM

------------------ -------------------- -------------------- --------------

 0 305 305 0

 1 5647 1664 0

 2 5661 1688 0

 0 19 19 1

 1 305 301 1

 2 1688 5661 1

 0 1664 5647 2

 1 10 10 2

 2 301 305 2

Information returned

 Table 95. Information returned by the SNAPFCM_PART administrative view and the

SNAP_GET_FCM_PART table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

CONNECTION_STATUS VARCHAR(10) connection_status - Connection

Status monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v INACTIVE

v ACTIVE

v CONGESTED

SNAPFCM_PART and SNAP_GET_FCM_PART

396 Administrative SQL Routines and Views

Table 95. Information returned by the SNAPFCM_PART administrative view and the

SNAP_GET_FCM_PART table function (continued)

Column name Data type

Description or corresponding

monitor element

TOTAL_BUFFERS_SENT BIGINT total_buffers_sent - Total FCM

Buffers Sent monitor element

TOTAL_BUFFERS_RCVD BIGINT total_buffers_rcvd - Total FCM

Buffers Received monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

FCM_DBPARTITIONNUM SMALLINT The database partition number to

which data was sent or from which

data was received (as per the

TOTAL_BUFFERS_SENT and

TOTAL_BUFFERS_RCVD columns).

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “GET SNAPSHOT command” in Command Reference

v “Administrative views versus table functions” on page 3

v “SNAPDBM_MEMORY_POOL administrative view and

SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database manager

level memory usage information” on page 379

v “SNAPDBM administrative view and SNAP_GET_DBM table function – Retrieve

the dbm logical grouping snapshot information” on page 374

v “SNAPFCM administrative view and SNAP_GET_FCM table function – Retrieve

the fcm logical data group snapshot information” on page 392

v “SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table

function – Retrieve database snapshot switch state information” on page 429

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPFCM_PART and SNAP_GET_FCM_PART

Chapter 3. Supported administrative SQL routines and views 397

SNAPHADR administrative view and SNAP_GET_HADR table

function – Retrieve hadr logical data group snapshot

information

 The “SNAPHADR administrative view” and the “SNAP_GET_HADR table

function” return information about high availability disaster recovery from a

database snapshot, in particular, the hadr logical data group.

SNAPHADR administrative view

 This administrative view allows you to retrieve hadr logical data group

snapshot information for the currently connected database. The data is

only returned by this view if the database is a primary or standby high

availability disaster recovery (HADR) database.

 Used with the SNAPDB, SNAPDB_MEMORY_POOL, SNAPDETAILLOG

and SNAPSTORAGE_PATHS administrative views, the SNAPHADR

administrative view provides information equivalent to the GET

SNAPSHOT FOR DATABASE ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 96 on page 400 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPHADR administrative

view and EXECUTE privilege on the SNAP_GET_HADR table function.

 Example:

 Retrieve the configuration and status information for HADR on the

primary HADR database.

SELECT SUBSTR(DB_NAME, 1, 8) AS DBNAME, HADR_ROLE, HADR_STATE,

 HADR_SYNCMODE, HADR_CONNECT_STATUS

 FROM SYSIBMADM.SNAPHADR

The following is an example of output from this query.

DBNAME HADR_ROLE HADR_STATE HADR_SYNCMODE HADR_CONNECT_STATUS

-------- --------- -------------- ------------- -------------------

SAMPLE PRIMARY PEER SYNC CONNECTED

 1 record(s) selected.

SNAP_GET_HADR table function

 The SNAP_GET_HADR table function returns the same information as the

SNAPHADR administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_DB_V91, SNAP_GET_DB_MEMORY_POOL,

SNAP_GET_DETAILLOG_V91 and SNAP_GET_STORAGE_PATHS table

functions, the SNAP_GET_HADR table function provides information

equivalent to the GET SNAPSHOT FOR ALL DATABASES CLP

command.

 Refer to Table 96 on page 400 for a complete list of information that can be

returned.

SNAPHADR and SNAP_GET_HADR

398 Administrative SQL Routines and Views

Syntax:

�� SNAP_GET_HADR (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_HADR table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_HADR table function.

 Example:

 Retrieve the configuration and status information for HADR for all

databases.

SELECT SUBSTR(DB_NAME, 1, 8) AS DBNAME, HADR_ROLE, HADR_STATE,

 HADR_SYNCMODE, HADR_CONNECT_STATUS

 FROM TABLE (SNAP_GET_HADR (CAST (NULL as VARCHAR(128)), 0)) as T

The following is an example of output from this query.

DBNAME HADR_ROLE HADR_STATE HADR_SYNCMODE HADR_CONNECT_STATUS

-------- --------- -------------- ------------- -------------------

SAMPLE PRIMARY PEER SYNC CONNECTED

TESTDB PRIMARY DISCONNECTED NEARSYNC DISCONNECTED

2 record(s) selected.

SNAPHADR and SNAP_GET_HADR

Chapter 3. Supported administrative SQL routines and views 399

Information returned

 Table 96. Information returned by the SNAPHADR administrative view and the

SNAP_GET_HADR table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

HADR_ROLE VARCHAR(10) hadr_role - HADR Role monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h, and is one of:

v PRIMARY

v STANDARD

v STANDBY

HADR_STATE VARCHAR(14) hadr_state - HADR State monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h, and is one of:

v DISCONNECTED

v LOCAL_CATCHUP

v PEER

v REM_CATCH_PEN

v REM_CATCHUP

HADR_SYNCMODE VARCHAR(10) hadr_syncmode - HADR

Synchronization Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h, and is one of:

v ASYNC

v NEARSYNC

v SYNC

HADR_CONNECT_STATUS VARCHAR(12) hadr_connect_status - HADR

Connection Status monitor element.

This interface returns a text

identifier based on the defines in

sqlmon.h, and is one of:

v CONGESTED

v CONNECTED

v DISCONNECTED

HADR_CONNECT_TIME TIMESTAMP hadr_connect_time - HADR

Connection Time monitor element

HADR_HEARTBEAT INTEGER hadr_heartbeat - HADR Heartbeat

monitor element

HADR_LOCAL_HOST VARCHAR(255) hadr_local_host - HADR Local

Host monitor element

HADR_LOCAL_SERVICE VARCHAR(40) hadr_local_service - HADR Local

Service monitor element

SNAPHADR and SNAP_GET_HADR

400 Administrative SQL Routines and Views

Table 96. Information returned by the SNAPHADR administrative view and the

SNAP_GET_HADR table function (continued)

Column name Data type

Description or corresponding

monitor element

HADR_REMOTE_HOST VARCHAR(255) hadr_remote_host - HADR Remote

Host monitor element

HADR_REMOTE_SERVICE VARCHAR(40) hadr_remote_service - HADR

Remote Service monitor element

HADR_REMOTE_INSTANCE VARCHAR(128) hadr_remote_instance - HADR

Remote Instance monitor element

HADR_TIMEOUT BIGINT hadr_timeout - HADR Timeout

monitor element

HADR_PRIMARY_LOG_FILE VARCHAR(255) hadr_primary_log_file - HADR

Primary Log File monitor element

HADR_PRIMARY_LOG_PAGE BIGINT hadr_primary_log_page - HADR

Primary Log Page monitor element

HADR_PRIMARY_LOG_LSN BIGINT hadr_primary_log_lsn - HADR

Primary Log LSN monitor element

HADR_STANDBY_LOG_FILE VARCHAR(255) hadr_standby_log_file - HADR

Standby Log File monitor element

HADR_STANDBY_LOG_PAGE BIGINT hadr_standby_log_page - HADR

Standby Log Page monitor element

HADR_STANDBY_LOG_LSN BIGINT hadr_standby_log_lsn - HADR

Standby Log LSN monitor element

HADR_LOG_GAP BIGINT hadr_log_gap - HADR Log Gap

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “SNAP_WRITE_FILE procedure” on page 313

v “GET SNAPSHOT command” in Command Reference

v “SNAPDB_MEMORY_POOL administrative view and

SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level

memory usage information” on page 369

v “SNAPDB administrative view and SNAP_GET_DB_V91 table function –

Retrieve snapshot information from the dbase logical group” on page 356

v “SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91

table function – Retrieve snapshot information from the detail_log logical data

group” on page 383

v “SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function – Retrieve automatic storage path

information” on page 421

SNAPHADR and SNAP_GET_HADR

Chapter 3. Supported administrative SQL routines and views 401

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPHADR and SNAP_GET_HADR

402 Administrative SQL Routines and Views

SNAPLOCK administrative view and SNAP_GET_LOCK table

function – Retrieve lock logical data group snapshot

information

 The “SNAPLOCK administrative view” and the “SNAP_GET_LOCK table

function” return snapshot information about locks, in particular, the lock logical

data group.

SNAPLOCK administrative view

 This administrative view allows you to retrieve lock logical data group

snapshot information for the currently connected database.

 Used with the SNAPLOCKWAIT administrative view, the SNAPLOCK

administrative view provides information equivalent to the GET

SNAPSHOT FOR LOCKS ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 97 on page 404 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPLOCK administrative view

and EXECUTE privilege on the SNAP_GET_LOCK table function.

 Example:

 Retrieve lock information for the database partition 0 of the currently

connected database.

SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

 FROM SYSIBMADM.SNAPLOCK WHERE DBPARTITIONNUM = 0

The following is an example of output from this query.

AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS

-------------------- ---------------- --------- -----------

 7 TABLE IX GRNT

 1 record(s) selected.

SNAP_GET_LOCK table function

 The SNAP_GET_LOCK table function returns the same information as the

SNAPLOCK administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_LOCKWAIT table function, the

SNAP_GET_LOCK table function provides information equivalent to the

GET SNAPSHOT FOR LOCKS ON database-alias CLP command.

 Refer to Table 97 on page 404 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_LOCK (dbname)

, dbpartitionnum
 ��

SNAPLOCK and SNAP_GET_LOCK

Chapter 3. Supported administrative SQL routines and views 403

The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify a null value or empty string to take

the snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_LOCK table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_LOCK table function.

 Example:

 Retrieve lock information for the current database partition of the currently

connected database.

SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

 FROM TABLE(SNAP_GET_LOCK(’’,-1)) as T

The following is an example of output from this query.

AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS

--------...--- ------------------ ---------- -----------

 680 INTERNALV_LOCK S GRNT

 680 INTERNALP_LOCK S GRNT

2 record(s) selected.

Information returned

 Table 97. Information returned by the SNAPLOCK administrative view and the

SNAP_GET_LOCK table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

SNAPLOCK and SNAP_GET_LOCK

404 Administrative SQL Routines and Views

Table 97. Information returned by the SNAPLOCK administrative view and the

SNAP_GET_LOCK table function (continued)

Column name Data type

Description or corresponding

monitor element

TAB_FILE_ID BIGINT table_file_id - Table File ID monitor

element

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock Object Type

Waited On monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

SNAPLOCK and SNAP_GET_LOCK

Chapter 3. Supported administrative SQL routines and views 405

Table 97. Information returned by the SNAPLOCK administrative view and the

SNAP_GET_LOCK table function (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_STATUS VARCHAR(10) lock_status - Lock Status monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock Escalation

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

SNAPLOCK and SNAP_GET_LOCK

406 Administrative SQL Routines and Views

Table 97. Information returned by the SNAPLOCK administrative view and the

SNAP_GET_LOCK table function (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock Attributes

monitor element. This interface

returns a text identifier based on

the defines in sqlmon.h. If there are

no locks, the text identifier is

NONE, otherwise, it is any

combination of the following

separated by a ’+’ sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

LOCK_COUNT BIGINT lock_count - Lock Count monitor

element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original Lock

Mode Before Conversion monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_HOLD_COUNT BIGINT lock_hold_count - Lock Hold Count

monitor element

LOCK_NAME VARCHAR(32) lock_name - Lock Name monitor

element

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock Release

Flags monitor element

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition

Identifier monitor element. For a

non-partitioned table, this element

is NULL.

SNAPLOCK and SNAP_GET_LOCK

Chapter 3. Supported administrative SQL routines and views 407

Table 97. Information returned by the SNAPLOCK administrative view and the

SNAP_GET_LOCK table function (continued)

Column name Data type

Description or corresponding

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “GET SNAPSHOT command” in Command Reference

v “Administrative views versus table functions” on page 3

v “SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table

function – Retrieve lockwait logical data group snapshot information” on page

409

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPLOCK and SNAP_GET_LOCK

408 Administrative SQL Routines and Views

SNAPLOCKWAIT administrative view and

SNAP_GET_LOCKWAIT table function – Retrieve lockwait

logical data group snapshot information

 The “SNAPLOCKWAIT administrative view” and the “SNAP_GET_LOCKWAIT

table function” return snapshot information about lock waits, in particular, the

lockwait logical data group.

SNAPLOCKWAIT administrative view

 This administrative view allows you to retrieve lockwait logical data group

snapshot information for the currently connected database.

 Used with the SNAPLOCK administrative view, the SNAPLOCKWAIT

administrative view provides information equivalent to the GET

SNAPSHOT FOR LOCKS ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 98 on page 411 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPLOCKWAIT administrative

view and EXECUTE privilege on the SNAP_GET_LOCKWAIT table

function.

 Example:

 Retrieve lock wait information on database partition 0 for the currently

connected database.

SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

 LOCK_MODE_REQUESTED FROM SYSIBMADM.SNAPLOCKWAIT

 WHERE DBPARTITIONNUM = 0

The following is an example of output from this query.

AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...

--------...- --------- ---------------- ...

 7 IX TABLE ...

 1 record(s) selected.

Output from this query (continued).

... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED

... -------------------- -------------------

... 12 IS

SNAP_GET_LOCKWAIT table function

 The SNAP_GET_LOCKWAIT table function returns the same information

as the SNAPLOCKWAIT administrative view, but allows you to retrieve

the information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_LOCK table function, the

SNAP_GET_LOCKWAIT table function provides information equivalent to

the GET SNAPSHOT FOR LOCKS ON database-alias CLP command.

SNAPLOCKWAIT and SNAP_GET_LOCKWAIT

Chapter 3. Supported administrative SQL routines and views 409

Refer to Table 98 on page 411 for a complete list of information that can be

returned.

 Syntax:

�� SNAP_GET_LOCKWAIT (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify a null value or empty string to take

the snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_LOCKWAIT table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function.

 Example:

 Retrieve lock wait information on current database partition for the

currently connected database.

SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

 LOCK_MODE_REQUESTED FROM TABLE(SNAP_GET_LOCKWAIT(’’,-1)) AS T

The following is an example of output from this query.

AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...

--------...-- ---------- ------------------ ...

 12 X ROW_LOCK ...

1 record(s) selected.

Output from this query (continued).

... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED

... -------------------- -------------------

... 7 X

SNAPLOCKWAIT and SNAP_GET_LOCKWAIT

410 Administrative SQL Routines and Views

Information returned

 Table 98. Information returned by the SNAPLOCKWAIT administrative view and the

SNAP_GET_LOCKWAIT table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

SUBSECTION_NUMBER BIGINT ss_number - Subsection Number

monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock Mode monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

SNAPLOCKWAIT and SNAP_GET_LOCKWAIT

Chapter 3. Supported administrative SQL routines and views 411

Table 98. Information returned by the SNAPLOCKWAIT administrative view and the

SNAP_GET_LOCKWAIT table function (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock Object Type

Waited On monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID

Holding Lock monitor element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock Wait

Start Timestamp monitor element

SNAPLOCKWAIT and SNAP_GET_LOCKWAIT

412 Administrative SQL Routines and Views

Table 98. Information returned by the SNAPLOCKWAIT administrative view and the

SNAP_GET_LOCKWAIT table function (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock Mode

Requested monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_ESCALATION SMALLINT lock_escalation - Lock Escalation

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application

ID Holding Lock monitor element

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock Attributes

monitor element. This interface

returns a text identifier based on

the defines in sqlmon.h. If there are

no locks, the text identifier is

NONE, otherwise, it is any

combination of the following

separated by a ’+’ sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

SNAPLOCKWAIT and SNAP_GET_LOCKWAIT

Chapter 3. Supported administrative SQL routines and views 413

Table 98. Information returned by the SNAPLOCKWAIT administrative view and the

SNAP_GET_LOCKWAIT table function (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original Lock

Mode Before Conversion monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v NX

v S

v SIX

v U

v W

v X

v Z

LOCK_NAME VARCHAR(32) lock_name - Lock Name monitor

element

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock Release

Flags monitor element.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition

Identifier monitor element. For a

non-partitioned table, this element

is NULL.

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPLOCK administrative view and SNAP_GET_LOCK table function –

Retrieve lock logical data group snapshot information” on page 403

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPLOCKWAIT and SNAP_GET_LOCKWAIT

414 Administrative SQL Routines and Views

SNAPSTMT administrative view and SNAP_GET_STMT table

function – Retrieve statement snapshot information

 The “SNAPSTMT administrative view” and the “SNAP_GET_STMT table function”

return information about SQL or XQuery statements from an application snapshot.

SNAPSTMT administrative view

 This administrative view allows you to retrieve statement snapshot

information for the currently connected database.

 Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,

SNAPAPPL_INFO and SNAPSUBSECTION administrative views, the

SNAPSTMT administrative view provides information equivalent to the

GET SNAPSHOT FOR APPLICATIONS on database-alias CLP

command, but retrieves data from all database partitions.

 The schema is SYSIBMADM.

 Refer to Table 99 on page 417 for a complete list of information that can be

returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPSTMT administrative view

and EXECUTE privilege on the SNAP_GET_STMT table function.

 Example:

 Retrieve rows read, written and operation performed for statements

executed on the currently connected single-partition database.

SELECT SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT, ROWS_READ, ROWS_WRITTEN,

 STMT_OPERATION FROM SYSIBMADM.SNAPSTMT

The following is an example of output from this query.

STMT_TEXT ROWS_READ ROWS_WRITTEN STMT_OPERATION

---------...- ---------...- ------------...- --------------------

- 0 0 FETCH

- 0 0 STATIC_COMMIT

 2 record(s) selected.

SNAP_GET_STMT table function

 The SNAP_GET_STMT table function returns the same information as the

SNAPSTMT administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used with the SNAP_GET_AGENT,

SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL,

SNAP_GET_APPL_INFO and SNAP_GET_SUBSECTION table functions,

the SNAP_GET_STMT table function provides information equivalent to

the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but

retrieves data from all database partitions.

 Refer to Table 99 on page 417 for a complete list of information that can be

returned.

 Syntax:

SNAPSTMT and SNAP_GET_STMT

Chapter 3. Supported administrative SQL routines and views 415

�� SNAP_GET_STMT (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_STMT table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_STMT table function.

 Example:

 Retrieve rows read, written and operation performed for statements

executed on current database partition of currently connected database.

SELECT SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT, ROWS_READ,

 ROWS_WRITTEN, STMT_OPERATION FROM TABLE(SNAP_GET_STMT(’’,-1)) AS T

The following is an example of output from this query.

STMT_TEXT ROWS_READ ...

------------------------------ ---------...- ...

update t set a=3 0 ...

SELECT SUBSTR(STMT_TEXT,1,30) 0 ...

- 0 ...

- 0 ...

update t set a=2 9 ...

 ...

5 record(s) selected. ...

Output from this query (continued).

... ROWS_WRITTEN STMT_OPERATION

... ------------...- --------------------

... 0 EXECUTE_IMMEDIATE

SNAPSTMT and SNAP_GET_STMT

416 Administrative SQL Routines and Views

... 0 FETCH

... 0 NONE

... 0 NONE

... 1 EXECUTE_IMMEDIATE

...

Information returned

 Table 99. Information returned by the SNAPSTMT administrative view and the

SNAP_GET_STMT table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

NUM_AGENTS BIGINT num_agents - Number of Agents

Working on a Statement monitor

element

AGENTS_TOP BIGINT agents_top - Number of Agents

Created monitor element

STMT_TYPE VARCHAR(20) stmt_type - Statement Type monitor

element. This interface returns a

text identifier based on defines in

sqlmon.h and is one of:

v DYNAMIC

v NON_STMT

v STATIC

v STMT_TYPE_UNKNOWN

SNAPSTMT and SNAP_GET_STMT

Chapter 3. Supported administrative SQL routines and views 417

Table 99. Information returned by the SNAPSTMT administrative view and the

SNAP_GET_STMT table function (continued)

Column name Data type

Description or corresponding

monitor element

STMT_OPERATION VARCHAR(20) stmt_operation/operation -

Statement Operation monitor

element. This interface returns a

text identifier based on defines in

sqlmon.h and is one of:

v CALL

v CLOSE

v COMPILE

v DESCRIBE

v EXECUTE

v EXECUTE_IMMEDIATE

v FETCH

v FREE_LOCATOR

v GETAA

v GETNEXTCHUNK

v GETTA

v NONE

v OPEN

v PREP_COMMIT

v PREP_EXEC

v PREP_OPEN

v PREPARE

v REBIND

v REDIST

v REORG

v RUNSTATS

v SELECT

v SET

v STATIC_COMMIT

v STATIC_ROLLBACK

SECTION_NUMBER BIGINT section_number - Section Number

monitor element

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query Cost

Estimate monitor element

QUERY_CARD_ESTIMATE BIGINT query_card_estimate - Query

Number of Rows Estimate monitor

element

DEGREE_PARALLELISM BIGINT degree_parallelism - Degree of

Parallelism monitor element

STMT_SORTS BIGINT stmt_sorts - Statement Sorts

monitor element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

SNAPSTMT and SNAP_GET_STMT

418 Administrative SQL Routines and Views

Table 99. Information returned by the SNAPSTMT administrative view and the

SNAP_GET_STMT table function (continued)

Column name Data type

Description or corresponding

monitor element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

FETCH_COUNT BIGINT fetch_count - Number of Successful

Fetches monitor element

STMT_START TIMESTAMP stmt_start - Statement Operation

Start Timestamp monitor element

STMT_STOP TIMESTAMP stmt_stop - Statement Operation

Stop Timestamp monitor element

STMT_USR_CPU_TIME_S BIGINT stmt_usr_cpu_time - User CPU

Time used by Statement monitor

element

STMT_USR_CPU_TIME_MS BIGINT stmt_usr_cpu_time - User CPU

Time used by Statement monitor

element

STMT_SYS_CPU_TIME_S BIGINT stmt_sys_cpu_time - System CPU

Time used by Statement monitor

element

STMT_SYS_CPU_TIME_MS BIGINT stmt_sys_cpu_time - System CPU

Time used by Statement monitor

element

STMT_ELAPSED_TIME_S BIGINT stmt_elapsed_time - Most Recent

Statement Elapsed Time monitor

element

STMT_ELAPSED_TIME_MS BIGINT stmt_elapsed_time - Most Recent

Statement Elapsed Time monitor

element

BLOCKING_CURSOR SMALLINT blocking_cursor - Blocking Cursor

monitor element

STMT_NODE_NUMBER SMALLINT stmt_node_number - Statement

Node monitor element

CURSOR_NAME VARCHAR(128) cursor_name - Cursor Name

monitor element

CREATOR VARCHAR(128) creator - Application Creator

monitor element

PACKAGE_NAME VARCHAR(128) package_name - Package Name

monitor element

STMT_TEXT CLOB(16 M) stmt_text - SQL Dynamic Statement

Text monitor element

CONSISTENCY_TOKEN VARCHAR(128) consistency_token - Package

Consistency Token monitor element

PACKAGE_VERSION_ID VARCHAR(128) package_version_id - Package

Version monitor element

SNAPSTMT and SNAP_GET_STMT

Chapter 3. Supported administrative SQL routines and views 419

Table 99. Information returned by the SNAPSTMT administrative view and the

SNAP_GET_STMT table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

POOL_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

SNAPSTMT and SNAP_GET_STMT

420 Administrative SQL Routines and Views

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table

function – Retrieve subsection logical monitor group snapshot information” on

page 425

v “SNAPAGENT administrative view and SNAP_GET_AGENT table function –

Retrieve agent logical data group application snapshot information” on page 315

v “SNAPAGENT_MEMORY_POOL administrative view and

SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool

logical data group snapshot information” on page 319

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function – Retrieve

automatic storage path information

 The “SNAPSTORAGE_PATHS administrative view” and the

“SNAP_GET_STORAGE_PATHS table function” on page 422 return a list of

automatic storage paths for the database including file system information for each

storage path, specifically, from the db_storage_group logical data group.

SNAPSTORAGE_PATHS administrative view

 This administrative view allows you to retrieve automatic storage path

information for the currently connected database.

 Used with the SNAPDB, SNAPDETAILLOG, SNAPHADR and

SNAPDB_MEMORY_POOL administrative views, the

SNAPSTORAGE_PATHS administrative view provides information

equivalent to the GET SNAPSHOT FOR DATABASE ON database-alias

CLP command.

 The schema is SYSIBMADM.

 Refer to Table 100 on page 423 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPSTORAGE_PATHS

administrative view and EXECUTE privilege on the

SNAP_GET_STORAGE_PATHS table function.

 Example:

 Retrieve the storage path for the currently connected single-partition

database.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(DB_STORAGE_PATH,1,8)

 AS DB_STORAGE_PATH, SUBSTR(HOSTNAME,1,10) AS HOSTNAME

 FROM SYSIBMADM.SNAPSTORAGE_PATHS

SNAPSTMT and SNAP_GET_STMT

Chapter 3. Supported administrative SQL routines and views 421

The following is an example of output from this query.

DB_NAME DB_STORAGE_PATH HOSTNAME

-------- --------------- ----------

STOPATH d: JESSICAE

 1 record(s) selected.

SNAP_GET_STORAGE_PATHS table function

 The SNAP_GET_STORAGE_PATHS table function returns the same

information as the SNAPSTORAGE_PATHS administrative view, but

allows you to retrieve the information for a specific database on a specific

database partition, aggregate of all database partitions or all database

partitions.

 Used with the SNAP_GET_DB_V91, SNAP_GET_DETAILLOG_V91,

SNAP_GET_HADR and SNAP_GET_DB_MEMORY_POOL table functions,

the SNAP_GET_STORAGE_PATHS table function provides information

equivalent to the GET SNAPSHOT FOR ALL DATABASES CLP

command.

 Refer to Table 100 on page 423 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_STORAGE_PATHS (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_STORAGE_PATHS table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

SNAPSTORAGE_PATHS and SNAP_GET_STORAGE_PATHS

422 Administrative SQL Routines and Views

v EXECUTE privilege on the SNAP_GET_STORAGE_PATHS table

function.

 Examples:

 Retrieve the storage path information for all active databases.

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, DB_STORAGE_PATH

 FROM TABLE(SNAP_GET_STORAGE_PATHS(CAST (NULL AS VARCHAR(128)), -1)) AS T

The following is an example of output from this query.

DB_NAME DB_STORAGE_PATH

-------- -------------------...

STOPATH /home/jessicae/sdb

MYDB /home/jessicae/mdb

 2 record(s) selected

Information returned

 The BUFFERPOOL monitor switch must be turned on in order for the file

system information to be returned.

 Table 100. Information returned by the SNAPSTORAGE_PATHS administrative view and the

SNAP_GET_STORAGE_PATHS table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_STORAGE_PATH VARCHAR(256) db_storage_path - Automatic

storage path monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

FS_ID VARCHAR(22) fs_id - Unique File System

Identification Number monitor

element

FS_TOTAL_SIZE BIGINT fs_total_size - Total Size of a File

System monitor element

FS_USED_SIZE BIGINT fs_used_size - Amount of Space

Used on a File System monitor

element

STO_PATH_FREE_SIZE BIGINT sto_path_free_sz - Automatic

Storage Path Free Space monitor

element

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

SNAPSTORAGE_PATHS and SNAP_GET_STORAGE_PATHS

Chapter 3. Supported administrative SQL routines and views 423

v “GET SNAPSHOT command” in Command Reference

v “SNAPHADR administrative view and SNAP_GET_HADR table function –

Retrieve hadr logical data group snapshot information” on page 398

v “SNAPDB_MEMORY_POOL administrative view and

SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level

memory usage information” on page 369

v “SNAPDB administrative view and SNAP_GET_DB_V91 table function –

Retrieve snapshot information from the dbase logical group” on page 356

v “SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91

table function – Retrieve snapshot information from the detail_log logical data

group” on page 383

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPSTORAGE_PATHS and SNAP_GET_STORAGE_PATHS

424 Administrative SQL Routines and Views

SNAPSUBSECTION administrative view and

SNAP_GET_SUBSECTION table function – Retrieve

subsection logical monitor group snapshot information

 The “SNAPSUBSECTION administrative view” and the

“SNAP_GET_SUBSECTION table function” return information about application

subsections, namely the subsection logical monitor grouping.

SNAPSUBSECTION administrative view

 This administrative view allows you to retrieve subsection logical monitor

group snapshot information for the currently connected database.

 Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,

SNAPAPPL_INFO and SNAPSTMT administrative views, the

SNAPSUBSECTION administrative view provides information equivalent

to the GET SNAPSHOT FOR APPLICATIONS on database-alias CLP

command, but retrieves data from all database partitions.

 The schema is SYSIBMADM.

 Refer to Table 101 on page 426 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPSUBSECTION

administrative view and EXECUTE privilege on the

SNAP_GET_SUBSECTION table function.

 Example:

 Get status for subsections executing on all database partitions.

SELECT DB_NAME, STMT_TEXT, SS_STATUS, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPSUBSECTION

 ORDER BY DB_NAME, SS_STATUS, DBPARTITIONNUM

The following is an example of output from this query.

DB_NAME STMT_TEXT SS_STATUS DBPARTITIONNUM

-------...- ----------------------...- ---------...- --------------

SAMPLE select * from EMPLOYEE EXEC 0

SAMPLE select * from EMPLOYEE EXEC 1

SNAP_GET_SUBSECTION table function

 The SNAP_GET_SUBSECTION table function returns the same information

as the SNAPSUBSECTION administrative view, but allows you to retrieve

the information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Refer to Table 101 on page 426 for a complete list of information that can

be returned.

 Used with the SNAP_GET_AGENT,

SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL,

SNAP_GET_APPL_INFO and SNAP_GET_STMT table functions, the

SNAP_GET_SUBSECTION table function provides information equivalent

to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but

retrieves data from all database partitions.

 Syntax:

SNAPSUBSECTION and SNAP_GET_SUBSECTION

Chapter 3. Supported administrative SQL routines and views 425

�� SNAP_GET_SUBSECTION (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify an empty string to take the snapshot

from the currently connected database. Specify a NULL value to take

the snapshot from all databases within the same instance as the

currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_SUBSECTION table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_SUBSECTION table function.

 Example:

 Get status for subsections executing on all database partitions.

SELECT DB_NAME, STMT_TEXT, SS_STATUS, DBPARTITIONNUM

 FROM TABLE(SYSPROC.SNAP_GET_SUBSECTION(’’, 0)) as T

 ORDER BY DB_NAME, SS_STATUS, DBPARTITIONNUM

The following is an example of output from this query.

DB_NAME STMT_TEXT SS_STATUS DBPARTITIONNUM

-------...- ----------------------...- ---------...- --------------

SAMPLE select * from EMPLOYEE EXEC 0

SAMPLE select * from EMPLOYEE EXEC 1

Information returned

 Table 101. Information returned by the SNAPSUBSECTION administrative view and the

SNAP_GET_SUBSECTION table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SNAPSUBSECTION and SNAP_GET_SUBSECTION

426 Administrative SQL Routines and Views

Table 101. Information returned by the SNAPSUBSECTION administrative view and the

SNAP_GET_SUBSECTION table function (continued)

Column name Data type

Description or corresponding

monitor element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

STMT_TEXT CLOB(16 M) stmt_text - SQL Dynamic Statement

Text monitor element

SS_EXEC_TIME BIGINT ss_exec_time - Subsection Execution

Elapsed Time monitor element

TQ_TOT_SEND_SPILLS BIGINT tq_tot_send_spills - Total Number

of Tablequeue Buffers Overflowed

monitor element

TQ_CUR_SEND_SPILLS BIGINT tq_cur_send_spills - Current

Number of Tablequeue Buffers

Overflowed monitor element

TQ_MAX_SEND_SPILLS BIGINT tq_max_send_spills - Maximum

Number of Tablequeue Buffers

Overflows monitor element

TQ_ROWS_READ BIGINT tq_rows_read - Number of Rows

Read from Tablequeues monitor

element

TQ_ROWS_WRITTEN BIGINT tq_rows_written - Number of Rows

Written to Tablequeues monitor

element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

SS_USR_CPU_TIME_S BIGINT ss_usr_cpu_time - User CPU Time

used by Subsection monitor

element

SS_USR_CPU_TIME_MS BIGINT ss_usr_cpu_time - User CPU Time

used by Subsection monitor

element

SS_SYS_CPU_TIME_S BIGINT ss_sys_cpu_time - System CPU

Time used by Subsection monitor

element

SS_SYS_CPU_TIME_MS BIGINT ss_sys_cpu_time - System CPU

Time used by Subsection monitor

element

SS_NUMBER INTEGER ss_number - Subsection Number

monitor element

SS_STATUS VARCHAR(20) ss_status - Subsection Status

monitor element. This interface

returns a text identifier based on

defines in sqlmon.h and is one of:

v EXEC

v TQ_WAIT_TO_RCV

v TQ_WAIT_TO_SEND

v COMPLETED

SNAPSUBSECTION and SNAP_GET_SUBSECTION

Chapter 3. Supported administrative SQL routines and views 427

Table 101. Information returned by the SNAPSUBSECTION administrative view and the

SNAP_GET_SUBSECTION table function (continued)

Column name Data type

Description or corresponding

monitor element

SS_NODE_NUMBER SMALLINT ss_node_number - Subsection Node

Number monitor element

TQ_NODE_WAITED_FOR SMALLINT tq_node_waited_for - Waited for

Node on a Tablequeue monitor

element

TQ_WAIT_FOR_ANY INTEGER tq_wait_for_any - Waiting for Any

Node to Send on a Tablequeue

monitor element

TQ_ID_WAITING_ON INTEGER tq_id_waiting_on - Waited on Node

on a Tablequeue monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPAGENT administrative view and SNAP_GET_AGENT table function –

Retrieve agent logical data group application snapshot information” on page 315

v “SNAPAGENT_MEMORY_POOL administrative view and

SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool

logical data group snapshot information” on page 319

v “SNAPAPPL administrative view and SNAP_GET_APPL table function –

Retrieve appl logical data group snapshot information” on page 324

v “SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on page

334

v “SNAPSTMT administrative view and SNAP_GET_STMT table function –

Retrieve statement snapshot information” on page 415

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPSUBSECTION and SNAP_GET_SUBSECTION

428 Administrative SQL Routines and Views

SNAPSWITCHES administrative view and

SNAP_GET_SWITCHES table function – Retrieve database

snapshot switch state information

 The “SNAPSWITCHES administrative view” and the “SNAP_GET_SWITCHES

table function” return information about the database snapshot switch state.

SNAPSWITCHES administrative view

 This view provides the data equivalent to the GET DBM MONITOR

SWITCHES CLP command.

 The schema is SYSIBMADM.

 Refer to Table 102 on page 430 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPSWITCHES administrative

view and EXECUTE privilege on the SNAP_GET_SWITCHES table

function.

 Example:

 Retrieve DBM monitor switches state information for all database

partitions.

SELECT UOW_SW_STATE, STATEMENT_SW_STATE, TABLE_SW_STATE, BUFFPOOL_SW_STATE,

 LOCK_SW_STATE, SORT_SW_STATE, TIMESTAMP_SW_STATE,

 DBPARTITIONNUM FROM SYSIBMADM.SNAPSWITCHES

The following is an example of output from this query.

UOW_SW_STATE STATEMENT_SW_STATE TABLE_SW_STATE BUFFPOOL_SW_STATE ...

------------ ------------------ -------------- ----------------- ...

 0 0 0 0 ...

 0 0 0 0 ...

 0 0 0 0 ...

 ...

 3 record selected.

Output from this query (continued).

... LOCK_SW_STATE SORT_SW_STATE TIMESTAMP_SW_STATE DBPARTITIONNUM

... ------------- ------------- ------------------ --------------

... 1 0 1 0

... 1 0 1 1

... 1 0 1 2

SNAP_GET_SWITCHES table function

 The SNAP_GET_SWITCHES table function returns the same information as

the SNAPSWITCHES administrative view, but allows you to retrieve the

information for a specific database partition, aggregate of all database

partitions or all database partitions.

 This table function provides the data equivalent to the GET DBM

MONITOR SWITCHES CLP command.

 Refer to Table 102 on page 430 for a complete list of information that can

be returned.

 Syntax:

SNAPSWITCHES and SNAP_GET_SWITCHES

Chapter 3. Supported administrative SQL routines and views 429

�� SNAP_GET_SWITCHES ()

dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If this input option is

not used, data will be returned from all database partitions.

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_SWITCHES table function takes a snapshot

for the currently connected database and database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_SWITCHES table function.

 Examples:

 Retrieve DBM monitor switches state information for the current database

partition.

SELECT UOW_SW_STATE, STATEMENT_SW_STATE, TABLE_SW_STATE,

 BUFFPOOL_SW_STATE,LOCK_SW_STATE, SORT_SW_STATE, TIMESTAMP_SW_STATE

 FROM TABLE(SNAP_GET_SWITCHES(-1)) AS T

The following is an example of output from this query.

UOW_SW_STATE STATEMENT_SW_STATE TABLE_SW_STATE...

------------ ------------------ --------------...

 1 1 1...

 ...

1 record(s) selected. ...

Output from this query (continued).

... BUFFPOOL_SW_STATE LOCK_SW_STATE SORT_SW_STATE TIMESTAMP_SW_STATE

... ----------------- ------------- ------------- ------------------

... 1 1 0 1

Information returned

 Table 102. Information returned by the SNAPSWITCHES administrative view and the

SNAP_GET_SWITCHES table function

Column name Data type Description

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

UOW_SW_STATE SMALLINT State of the unit of work monitor

recording switch (0 or 1).

UOW_SW_TIME TIMESTAMP If the unit of work monitor

recording switch is on, the date and

time that this switch was turned

on.

SNAPSWITCHES and SNAP_GET_SWITCHES

430 Administrative SQL Routines and Views

Table 102. Information returned by the SNAPSWITCHES administrative view and the

SNAP_GET_SWITCHES table function (continued)

Column name Data type Description

STATEMENT_SW_STATE SMALLINT State of the SQL statement monitor

recording switch (0 or 1).

STATEMENT_SW_TIME TIMESTAMP If the SQL statement monitor

recording switch is on, the date and

time that this switch was turned

on.

TABLE_SW_STATE SMALLINT State of the table activity monitor

recording switch (0 or 1).

TABLE_SW_TIME TIMESTAMP If the table activity monitor

recording switch is on, the date and

time that this switch was turned

on.

BUFFPOOL_SW_STATE SMALLINT State of the buffer pool activity

monitor recording switch (0 or 1).

BUFFPOOL_SW_TIME TIMESTAMP If the buffer pool activity monitor

recording switch is on, the date and

time that this switch was turned

on.

LOCK_SW_STATE SMALLINT State of the lock monitor recording

switch (0 or 1).

LOCK_SW_TIME TIMESTAMP If the lock monitor recording

switch is on, the date and time that

this switch was turned on.

SORT_SW_STATE SMALLINT State of the sorting monitor

recording switch (0 or 1).

SORT_SW_TIME TIMESTAMP If the sorting monitor recording

switch is on, the date and time that

this switch was turned on.

TIMESTAMP_SW_STATE SMALLINT State of the timestamp monitor

recording switch (0 or 1)

TIMESTAMP_SW_TIME TIMESTAMP If the timestamp monitor recording

switch is on, the date and time that

this switch was turned on.

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET DATABASE MANAGER MONITOR SWITCHES command” in Command

Reference

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPSWITCHES and SNAP_GET_SWITCHES

Chapter 3. Supported administrative SQL routines and views 431

SNAPTAB administrative view and SNAP_GET_TAB_V91 table

function – Retrieve table logical data group snapshot

information

 The “SNAPTAB administrative view” and the “SNAP_GET_TAB_V91 table

function” return snapshot information from the table logical data group.

SNAPTAB administrative view

 This administrative view allows you to retrieve table logical data group

snapshot information for the currently connected database.

 Used in conjunction with the SNAPTAB_REORG administrative view, the

SNAPTAB administrative view returns equivalent information to the GET

SNAPSHOT FOR TABLES ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 103 on page 433 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTAB administrative view

and EXECUTE privilege on the SNAP_GET_TAB_V91 table function.

 Example:

 Retrieve the schema and name for all active tables.

SELECT SUBSTR(TABSCHEMA,1,8), SUBSTR(TABNAME,1,15) AS TABNAME, TAB_TYPE,

 DBPARTITIONNUM FROM SYSIBMADM.SNAPTAB

The following is an example of output from this query.

TABSCHEMA TABNAME TAB_TYPE DBPARTITIONNUM

--------- --------------- ------------ --------------

SYSTOOLS HMON_ATM_INFO USER_TABLE 0

 1 record selected.

SNAP_GET_TAB_V91 table function

 The SNAP_GET_TAB_V91 table function returns the same information as

the SNAPTAB administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used in conjunction with the SNAP_GET_TAB_REORG table function, the

SNAP_GET_TAB_V91 table function returns equivalent information to the

GET SNAPSHOT FOR TABLES ON database-alias CLP command.

 Refer to Table 103 on page 433 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_TAB_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

SNAPTAB and SNAP_GET_TAB_V91

432 Administrative SQL Routines and Views

Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_TAB_V91 table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_TAB_V91 table function.

 Example:

 Retrieve a list of active tables as an aggregate view for the currently

connected database.

SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME,1,15) AS TABNAME,

 TAB_TYPE, DBPARTITIONNUM FROM TABLE(SNAP_GET_TAB(’’,-2)) AS T

The following is an example of output from this query.

TABSCHEMA TABNAME TAB_TYPE DBPARTITIONNUM

--------- --------------- ------------- --------------

SYSTOOLS HMON_ATM_INFO USER_TABLE -

JESSICAE EMPLOYEE USER_TABLE -

Information returned

 Table 103. Information returned by the SNAPTAB administrative view and the

SNAP_GET_TAB_V91 table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABSCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

TABNAME VARCHAR(128) table_name - Table Name monitor

element

SNAPTAB and SNAP_GET_TAB_V91

Chapter 3. Supported administrative SQL routines and views 433

Table 103. Information returned by the SNAPTAB administrative view and the

SNAP_GET_TAB_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

TAB_FILE_ID BIGINT table_file_id - Table File ID monitor

element

TAB_TYPE VARCHAR(14) table_type - Table Type monitor

element. This interface returns a

text identifier based on defines in

sqlmon.h, and is one of:

v USER_TABLE

v DROPPED_TABLE

v TEMP_TABLE

v CATALOG_TABLE

v REORG_TABLE

DATA_OBJECT_PAGES BIGINT data_object_pages - Data Object

Pages monitor element

INDEX_OBJECT_PAGES BIGINT index_object_pages - Index Object

Pages monitor element

LOB_OBJECT_PAGES BIGINT lob_object_pages - LOB Object

Pages monitor element

LONG_OBJECT_PAGES BIGINT long_object_pages - Long Object

Pages monitor element

XDA_OBJECT_PAGES BIGINT xda_object_pages - XDA Object

Pages monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses to

Overflowed Records monitor

element

PAGE_REORGS BIGINT page_reorgs - Page Reorganizations

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition

Identifier monitor element. For a

non-partitioned table, this element

will be NULL.

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

SNAPTAB and SNAP_GET_TAB_V91

434 Administrative SQL Routines and Views

Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table

function – Retrieve table reorganization snapshot information” on page 436

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPTAB and SNAP_GET_TAB_V91

Chapter 3. Supported administrative SQL routines and views 435

SNAPTAB_REORG administrative view and

SNAP_GET_TAB_REORG table function – Retrieve table

reorganization snapshot information

 The “SNAPTAB_REORG administrative view” and the “SNAP_GET_TAB_REORG

table function” return table reorganization information. If no tables have been

reorganized, 0 rows are returned.

SNAPTAB_REORG administrative view

 This administrative view allows you to retrieve table reorganization

snapshot information for the currently connected database.

 Used with the SNAPTAB administrative view, the SNAPTAB_REORG

administrative view provides the data equivalent to the GET SNAPSHOT

FOR TABLES ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 104 on page 438 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTAB_REORG

administrative view and EXECUTE privilege on the

SNAP_GET_TAB_REORG table function.

 Example:

 Select details on reorganization operations for all database partitions on the

currently connected database.

SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)

 AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,

 REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPTAB_REORG ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

TAB_NAME TAB_SCHEMA REORG_PHASE ...

--------...- ----------...- ---------------- ...

EMPLOYEE DBUSER REPLACE ...

EMPLOYEE DBUSER REPLACE ...

EMPLOYEE DBUSER REPLACE ...

 ...

3 record(s) selected.

Output from this query (continued).

... REORG_TYPE REORG_STATUS REORG_COMPLETION DBPARTITIONNUM

... -------------------- ------------ ---------------- --------------

... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 0

... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 1

... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 2

SNAP_GET_TAB_REORG table function

 The SNAP_GET_TAB_REORG table function returns the same information

as the SNAPTAB_REORG administrative view, but allows you to retrieve

the information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

SNAPTAB_REORG and SNAP_GET_TAB_REORG

436 Administrative SQL Routines and Views

Used with the SNAP_GET_TAB table function, the

SNAP_GET_TAB_REORG table function provides the data equivalent to

the GET SNAPSHOT FOR TABLES ON database-alias CLP command.

 Refer to Table 104 on page 438 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_TAB_REORG (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_TAB_REORG table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_TAB_REORG table function.

 Example:

 Select details on reorganization operations for database partition 1 on the

currently connected database.

SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)

 AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,

 REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM

 FROM TABLE(SNAP_GET_TAB_REORG(’’, 1)) AS T

The following is an example of output from this query.

TAB_NAME TAB_SCHEMA REORG_PHASE REORG_TYPE ...

--------...- ----------...- -----------...- -------------------- ...

EMPLOYEE DBUSER REPLACE RECLAIM+OFFLINE+ALLO ...

 ...

 1 record(s) selected. ...

SNAPTAB_REORG and SNAP_GET_TAB_REORG

Chapter 3. Supported administrative SQL routines and views 437

Output from this query (continued).

... REORG_STATUS REORG_COMPLETION DBPARTITIONNUM

... ------------ ---------------- --------------

... COMPLETED SUCCESS 1

...

Information returned

 Table 104. Information returned by the SNAPTAB_REORG administrative view and the

SNAP_GET_TAB_REORG table function

Column name Data type

Description or corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was

taken.

TABNAME VARCHAR

(128)

table_name - Table Name monitor element

TABSCHEMA VARCHAR

(128)

table_schema - Table Schema Name monitor

element

PAGE_REORGS BIGINT page_reorgs - Page Reorganizations monitor

element

REORG_PHASE VARCHAR

(16)

reorg_phase - Reorganize Phase monitor

element. This interface returns a text

identifier based on defines in sqlmon.h and

is one of:

v BUILD

v DICT_SAMPLE

v INDEX_RECREATE

v REPLACE

v SORT

or SORT+DICT_SAMPLE.

REORG_MAX_PHASE INTEGER reorg_max_phase - Maximum Reorganize

Phase monitor element

REORG_CURRENT_

 COUNTER

BIGINT reorg_current_counter - Reorganize Progress

monitor element

REORG_MAX_COUNTER BIGINT reorg_max_counter - Total Amount of

Reorganization monitor element

SNAPTAB_REORG and SNAP_GET_TAB_REORG

438 Administrative SQL Routines and Views

Table 104. Information returned by the SNAPTAB_REORG administrative view and the

SNAP_GET_TAB_REORG table function (continued)

Column name Data type

Description or corresponding monitor

element

REORG_TYPE VARCHAR

(128)

reorg_type - Table Reorganize Attributes

monitor element. This interface returns a

text identifier using a combination of the

following identifiers separated by '+':

Either:

v RECLAIM

v RECLUSTER

and either:

v +OFFLINE

v +ONLINE

If access mode is specified, it is one of:

v +ALLOW_NONE

v +ALLOW_READ

v +ALLOW_WRITE

If offline, one of:

v +INDEXSCAN or +TABLESCAN

v +LONGLOB or +DATAONLY

If offline, and option is specified, any of:

v +CHOOSE_TEMP

v +KEEP_DICTIONARY

v +RESET_DICTIONARY

If online, and option is specified:

v +NOTRUNCATE

For example, if a REORG TABLE

TEST.EMPLOYEE was run, the following

would be displayed:

RECLAIM+OFFLINE+ALOW_READ

+TABLESCAN+DATAONLY

REORG_STATUS VARCHAR

(10)

reorg_status - Table Reorganize Status

monitor element. This interface returns a

text identifier based on defines in sqlmon.h

and is one of:

v COMPLETED

v PAUSED

v STARTED

v STOPPED

v TRUNCATE

REORG_COMPLETION VARCHAR

(10)

reorg_completion - Reorganization

Completion Flag monitor element. This

interface returns a text identifier, based on

defines in sqlmon.h and is one of:

v FAIL

v SUCCESS

SNAPTAB_REORG and SNAP_GET_TAB_REORG

Chapter 3. Supported administrative SQL routines and views 439

Table 104. Information returned by the SNAPTAB_REORG administrative view and the

SNAP_GET_TAB_REORG table function (continued)

Column name Data type

Description or corresponding monitor

element

REORG_START TIMESTAMP reorg_start - Table Reorganize Start Time

monitor element

REORG_END TIMESTAMP reorg_end - Table Reorganize End Time

monitor element

REORG_PHASE_START TIMESTAMP reorg_phase_start - Reorganize Phase Start

Time monitor element

REORG_INDEX_ID BIGINT reorg_index_id - Index Used to Reorganize

the Table monitor element

REORG_TBSPC_ID BIGINT reorg_tbspc_id - Table Space Where Table or

Data partition is Reorganized monitor

element

DBPARTITIONNUM SMALLINT The database partition from which the data

was retrieved for this row.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition Identifier

monitor element. For a non-partitioned

table, this element will be NULL.

REORG_

 ROWSCOMPRESSED

BIGINT reorg_rows_compressed - Rows Compressed

monitor element

REORG_ROWSREJECTED BIGINT reorg_rows_rejected_for_compression - Rows

Rejected for Compression monitor element

REORG_LONG_TBSPC_ID BIGINT reorg_long_tbspc_id - Table Space Where

Long Objects are Reorganized monitor

element

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPTAB administrative view and SNAP_GET_TAB_V91 table function –

Retrieve table logical data group snapshot information” on page 432

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPTAB_REORG and SNAP_GET_TAB_REORG

440 Administrative SQL Routines and Views

SNAPTBSP administrative view and SNAP_GET_TBSP_V91

table function – Retrieve tablespace logical data group

snapshot information

 The “SNAPTBSP administrative view” and the “SNAP_GET_TBSP_V91 table

function” return snapshot information from the tablespace logical data group.

SNAPTBSP administrative view

 This administrative view allows you to retrieve tablespace logical data

group snapshot information for the currently connected database.

 Used in conjunction with the SNAPTBSP_PART, SNAPTBSP_QUIESCER,

SNAPTBSP_RANGE, SNAPCONTAINER administrative views, the

SNAPTBSP administrative view returns information equivalent to the GET

SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 105 on page 443 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTBSP administrative view

and EXECUTE privilege on the SNAP_GET_TBSP_V91 table function.

 Example:

 Retrieve a list of table spaces on the catalog database partition for the

currently connected database.

SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID, TBSP_TYPE,

 TBSP_CONTENT_TYPE FROM SYSIBMADM.SNAPTBSP WHERE DBPARTITIONNUM = 1

The following is an example of output from this query.

TBSP_NAME TBSP_ID TBSP_TYPE TBSP_CONTENT_TYPE

---------- -------...- ---------- -----------------

TEMPSPACE1 1 SMS SYSTEMP

USERSPACE1 2 DMS LONG

2 record(s) selected.

SNAP_GET_TBSP_V91 table function

 The SNAP_GET_TBSP_V91 table function returns the same information as

the SNAPTBSP administrative view, but allows you to retrieve the

information for a specific database on a specific database partition,

aggregate of all database partitions or all database partitions.

 Used in conjunction with the SNAP_GET_TBSP_PART_V91,

SNAP_GET_TBSP_QUIESCER, SNAP_GET_TBSP_RANGE,

SNAP_GET_CONTAINER_V91 table functions, the SNAP_GET_TBSP_V91

table function returns information equivalent to the GET SNAPSHOT

FOR TABLESPACES ON database-alias CLP command.

 Refer to Table 105 on page 443 for a complete list of information that can

be returned.

 Syntax:

SNAPTBSP and SNAP_GET_TBSP_V91

Chapter 3. Supported administrative SQL routines and views 441

�� SNAP_GET_TBSP_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_TBSP_V91 table function

takes a snapshot for the currently connected database and database

partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_TBSP_V91 table function.

 Example:

 Retrieve a list of table spaces for all database partitions for the currently

connected database.

SELECT SUBSTR(TBSP_NAME,1,10) AS TBSP_NAME, TBSP_ID, TBSP_TYPE,

 TBSP_CONTENT_TYPE, DBPARTITIONNUM FROM TABLE(SNAP_GET_TBSP_V91(’’)) AS T

The following is an example of output from this query.

TBSP_NAME TBSP_ID TBSP_TYPE TBSP_CONTENT_TYPE DBPARTITIONNUM

-----–---- -------...- ---------- ----------------- --------------

TEMPSPACE1 1 SMS SYSTEMP 1

USERSPACE1 2 DMS LONG 1

SYSCATSPAC 0 DMS ANY 0

TEMPSPACE1 1 SMS SYSTEMP 0

USERSPACE1 2 DMS LONG 0

SYSTOOLSPA 3 DMS LONG 0

TEMPSPACE1 1 SMS SYSTEMP 2

USERSPACE1 2 DMS LONG 2

 8 record(s) selected.

Information returned

SNAPTBSP and SNAP_GET_TBSP_V91

442 Administrative SQL Routines and Views

Table 105. Information returned by the SNAPTBSP administrative view and the

SNAP_GET_TBSP_V91 table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

TBSP_TYPE VARCHAR(10) tablespace_type - Table Space Type

monitor element. This interface

returns a text identifier based on

defines in sqlutil.h, and is one of:

v DMS

v SMS

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type - Table

Space Contents Type monitor

element. This interface returns a

text identifier based on defines in

sqlmon.h, and is one of:

v ANY

v LARGE

v SYSTEMP

v USRTEMP

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table Space

Page Size monitor element

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table Space

Extent Size monitor element

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table

Space Prefetch Size monitor

element

TBSP_CUR_POOL_ID BIGINT tablespace_cur_pool_id - Buffer

Pool Currently Being Used monitor

element

TBSP_NEXT_POOL_ID BIGINT tablespace_next_pool_id - Buffer

Pool That Will Be Used at Next

Startup monitor element

FS_CACHING SMALLINT fs_caching - File System Caching

monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

SNAPTBSP and SNAP_GET_TBSP_V91

Chapter 3. Supported administrative SQL routines and views 443

Table 105. Information returned by the SNAPTBSP administrative view and the

SNAP_GET_TBSP_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool

XDA Data Logical Reads monitor

element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool

XDA Data Physical Reads monitor

element

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA

Data Writes monitor element

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer Pool

Asynchronous XDA Data Reads

monitor element

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer

Pool Asynchronous XDA Data

Writes monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer

Pool Temporary XDA Data Logical

Reads monitor element

SNAPTBSP and SNAP_GET_TBSP_V91

444 Administrative SQL Routines and Views

Table 105. Information returned by the SNAPTBSP administrative view and the

SNAP_GET_TBSP_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer

Pool Temporary XDA Data Physical

Reads monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

POOL_ASYNC_INDEX_

 READ_REQS

BIGINT pool_async_index_read_reqs -

Buffer Pool Asynchronous Index

Read Requests monitor element

POOL_ASYNC_XDA_

 READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer

Pool Asynchronous XDA Read

Requests monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer Pool

No Victim Buffers monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

SNAPTBSP and SNAP_GET_TBSP_V91

Chapter 3. Supported administrative SQL routines and views 445

Table 105. Information returned by the SNAPTBSP administrative view and the

SNAP_GET_TBSP_V91 table function (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_REBALANCER_MODE VARCHAR(10) tablespace_rebalancer_mode -

Rebalancer Mode monitor element.

This interface returns a text

identifier based on defines in

sqlmon.h, and is one of:

v NO_REBAL

v FWD_REBAL

v REV_REBAL

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -

Using automatic storage monitor

element

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -

Auto-resize enabled monitor

element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related concepts:

v “XML storage object overview” in Administration Guide: Planning

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER

table function – Retrieve quiescer table space snapshot information” on page 452

v “SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table

function – Retrieve range snapshot information” on page 456

v “SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91

table function – Retrieve tablespace_container logical data group snapshot

information” on page 351

v “SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table

function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPTBSP and SNAP_GET_TBSP_V91

446 Administrative SQL Routines and Views

SNAPTBSP_PART administrative view and

SNAP_GET_TBSP_PART_V91 table function – Retrieve

tablespace_nodeinfo logical data group snapshot information

 The “SNAPTBSP_PART administrative view” and the

“SNAP_GET_TBSP_PART_V91 table function” return snapshot information from

the tablespace_nodeinfo logical data group.

SNAPTBSP_PART administrative view

 This administrative view allows you to retrieve tablespace_nodeinfo logical

data group snapshot information for the currently connected database.

 Used in conjunction with the SNAPTBSP, SNAPTBSP_QUIESCER,

SNAPTBSP_RANGE, SNAPCONTAINER administrative views, the

SNAPTBSP_PART administrative view returns information equivalent to

the GET SNAPSHOT FOR TABLESPACES ON database-alias CLP

command.

 The schema is SYSIBMADM.

 Refer to Table 106 on page 449 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTBSP_PART administrative

view and EXECUTE privilege on the SNAP_GET_TBSP_PART_V91 table

function.

 Example:

 Retrieve a list of table spaces and their state for all database partitions of

the currently connected database.

SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID,

 SUBSTR(TBSP_STATE,1,30) AS TBSP_STATE, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPTBSP_PART

The following is an example of output from this query.

TBSP_NAME TBSP_ID TBSP_STATE DBPARTITIONNUM

-----------...- -------...- ----------...- --------------

SYSCATSPACE 0 NORMAL 0

TEMPSPACE1 1 NORMAL 0

USERSPACE1 2 NORMAL 0

TEMPSPACE1 1 NORMAL 1

USERSPACE1 2 NORMAL 1

 5 record(s) selected.

SNAP_GET_TBSP_PART_V91 table function

 The SNAP_GET_TBSP_PART_V91 table function returns the same

information as the SNAPTBSP_PART administrative view, but allows you

to retrieve the information for a specific database on a specific database

partition, aggregate of all database partitions or all database partitions.

 Used in conjunction with the SNAP_GET_TBSP_V91,

SNAP_GET_TBSP_QUIESCER, SNAP_GET_TBSP_RANGE,

SNAP_GET_CONTAINER_V91 table functions, the

SNAPTBSP_PART and SNAP_GET_TBSP_PART_V91

Chapter 3. Supported administrative SQL routines and views 447

SNAP_GET_TBSP_PART_V91 table function returns information equivalent

to the GET SNAPSHOT FOR TABLESPACES ON database-alias CLP

command.

 Refer to Table 106 on page 449 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_TBSP_PART_V91 (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_TBSP_PART_V91 table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_TBSP_PART_V91 table function.

 Example:

 Retrieve a list of table spaces and their state for the connected database

partition of the connected database.

SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID,

 SUBSTR(TBSP_STATE,1,30) AS TBSP_STATE

 FROM TABLE(SNAP_GET_TBSP_PART_V91(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following is an example of output from this query.

TBSP_NAME TBSP_ID TBSP_STATE

------------------------------ -------------------- ------------...-

SYSCATSPACE 0 NORMAL

TEMPSPACE1 1 NORMAL

USERSPACE1 2 NORMAL

SNAPTBSP_PART and SNAP_GET_TBSP_PART_V91

448 Administrative SQL Routines and Views

SYSTOOLSPACE 3 NORMAL

SYSTOOLSTMPSPACE 4 NORMAL

 5 record(s) selected.

Information returned

 Table 106. Information returned by the SNAPTBSP_PART administrative view and the

SNAP_GET_TBSP_PART_V91 table function

Column name Data type

Description or corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was

taken.

TBSP_NAME VARCHAR

(128)

tablespace_name - Table Space Name

monitor element

TBSP_ID BIGINT tablespace_id - Table Space Identification

monitor element

TBSP_STATE VARCHAR

(256)

tablespace_state - Table Space State monitor

element. This interface returns a text

identifier based on defines in sqlutil.h and is

combination of the following separated by a

’+’ sign:

v BACKUP_IN_PROGRESS

v BACKUP_PENDING

v DELETE_PENDING

v DISABLE_PENDING

v DROP_PENDING

v LOAD_IN_PROGRESS

v LOAD_PENDING

v NORMAL

v OFFLINE

v PSTAT_CREATION

v PSTAT_DELETION

v QUIESCED_EXCLUSIVE

v QUIESCED_SHARE

v QUIESCED_UPDATE

v REBAL_IN_PROGRESS

v REORG_IN_PROGRESS

v RESTORE_IN_PROGRESS

v RESTORE_PENDING

v ROLLFORWARD_IN_PROGRESS

v ROLLFORWARD_PENDING

v STORDEF_ALLOWED

v STORDEF_CHANGED

v STORDEF_FINAL_VERSION

v STORDEF_PENDING

v SUSPEND_WRITE

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table Space

Prefetch Size monitor element

TBSP_NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of

Quiescers monitor element

SNAPTBSP_PART and SNAP_GET_TBSP_PART_V91

Chapter 3. Supported administrative SQL routines and views 449

Table 106. Information returned by the SNAPTBSP_PART administrative view and the

SNAP_GET_TBSP_PART_V91 table function (continued)

Column name Data type

Description or corresponding monitor

element

TBSP_STATE_CHANGE_

 OBJECT_ID

BIGINT tablespace_state_change_object_id - State

Change Object Identification monitor

element

TBSP_STATE_CHANGE_

 TBSP_ID

BIGINT tablespace_state_change_ts_id - State

Change Table Space Identification monitor

element

TBSP_MIN_RECOVERY_

 TIME

TIMESTAMP tablespace_min_recovery_time - Minimum

Recovery Time For Rollforward monitor

element

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total Pages in Table

Space monitor element

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable Pages in

Table Space monitor element

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used Pages in

Table Space monitor element

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free Pages in Table

Space monitor element

TBSP_PENDING_FREE_

 PAGES

BIGINT tablespace_pending_free_pages - Pending

Free Pages in Table Space monitor element

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table Space High

Water Mark monitor element

REBALANCER_MODE VARCHAR

(10)

tablespace_rebalancer_mode - Rebalancer

Mode monitor element. This interface

returns a text identifier based on defines in

sqlmon.h, and is one of:

v FWD_REBAL

v NO_REBAL

v REV_REBAL

REBALANCER_EXTENTS_

 REMAINING

BIGINT tablespace_rebalancer_extents_remaining -

Total Number of Extents to be Processed by

the Rebalancer monitor element

REBALANCER_EXTENTS_

 PROCESSED

BIGINT tablespace_rebalancer_extents_processed -

Number of Extents the Rebalancer has

Processed monitor element

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current

Rebalancer Priority monitor element

REBALANCER_START_

 TIME

TIMESTAMP tablespace_rebalancer_start_time -

Rebalancer Start Time monitor element

REBALANCER_RESTART_

 TIME

TIMESTAMP tablespace_rebalancer_restart_time -

Rebalancer Restart Time monitor element

REBALANCER_LAST_

 EXTENT_MOVED

BIGINT tablespace_rebalancer_last_extent_moved -

Last Extent Moved by the Rebalancer

monitor element

TBSP_NUM_RANGES BIGINT tablespace_num_ranges - Number of Ranges

in the Table Space Map monitor element

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers - Number of

Containers in Table Space monitor element

SNAPTBSP_PART and SNAP_GET_TBSP_PART_V91

450 Administrative SQL Routines and Views

Table 106. Information returned by the SNAPTBSP_PART administrative view and the

SNAP_GET_TBSP_PART_V91 table function (continued)

Column name Data type

Description or corresponding monitor

element

TBSP_INITIAL_SIZE BIGINT tablespace_initial_size - Initial table space

size monitor element

TBSP_CURRENT_SIZE BIGINT tablespace_current_size - Current table space

size monitor element

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum table space

size monitor element

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase size in

bytes monitor element

TBSP_INCREASE_SIZE_

 PERCENT

SMALLINT tablespace_increase_size_percent - Increase

size by percent monitor element

TBSP_LAST_RESIZE_TIME TIMESTAMP tablespace_last_resize_time - Time of last

successful resize monitor element

TBSP_LAST_RESIZE_

 FAILED

SMALLINT tablespace_last_resize_failed - Last resize

attempt failed monitor element

DBPARTITIONNUM SMALLINT The database partition from which the data

was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function –

Retrieve tablespace logical data group snapshot information” on page 441

v “SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER

table function – Retrieve quiescer table space snapshot information” on page 452

v “SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table

function – Retrieve range snapshot information” on page 456

v “SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91

table function – Retrieve tablespace_container logical data group snapshot

information” on page 351

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPTBSP_PART and SNAP_GET_TBSP_PART_V91

Chapter 3. Supported administrative SQL routines and views 451

SNAPTBSP_QUIESCER administrative view and

SNAP_GET_TBSP_QUIESCER table function – Retrieve

quiescer table space snapshot information

 The “SNAPTBSP_QUIESCER administrative view” and the

“SNAP_GET_TBSP_QUIESCER table function” return information about quiescers

from a table space snapshot.

SNAPTBSP_QUIESCER administrative view

 This administrative view allows you to retrieve quiescer table space

snapshot information for the currently connected database.

 Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_RANGE,

SNAPCONTAINER administrative views, the SNAPTBSP_QUIESCER

administrative view provides information equivalent to the GET

SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 107 on page 454 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTBSP_QUIESCER

administrative view and EXECUTE privilege on the

SNAP_GET_TBSP_QUIESCER table function.

 Example:

 Retrieve information on quiesced table spaces for all database partitions for

the currently connected database.

SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME, QUIESCER_TS_ID,

 QUIESCER_OBJ_ID, QUIESCER_AUTH_ID, QUIESCER_AGENT_ID,

 QUIESCER_STATE, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPTBSP_QUIESCER ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

TBSP_NAME QUIESCER_TS_ID QUIESCER_OBJ_ID QUIESCER_AUTH_ID ..

---------- --------------...- ---------------...- ----------------...- ..

USERSPACE1 2 5 SWALKTY ..

USERSPACE1 2 5 SWALKTY ..

 ..

 2 record(s) selected.

Output from this query (continued).

... QUIESCER_AGENT_ID QUIESCER_STATE DBPARTITIONNUM

... -------------------- -------------- --------------

... 0 EXCLUSIVE 0

... 65983 EXCLUSIVE 1

...

SNAP_GET_TBSP_QUIESCER table function

 The SNAP_GET_TBSP_QUIESCER table function returns the same

information as the SNAPTBSP_QUIESCER administrative view, but allows

you to retrieve the information for a specific database on a specific

database partition, aggregate of all database partitions or all database

partitions.

SNAPTBSP_QUIESCER and SNAP_GET_TBSP_QUIESCER

452 Administrative SQL Routines and Views

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,

SNAP_GET_TBSP_RANGE, SNAP_GET_CONTAINER_V91 table functions,

the SNAP_GET_TBSP_QUIESCER table function provides information

equivalent to the GET SNAPSHOT FOR TABLESPACES ON

database-alias CLP command.

 Refer to Table 107 on page 454 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_TBSP_QUIESCER (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_TBSP_QUIESCER table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_TBSP_QUIESCER table function.

 Example:

 Retrieve information on quiesced table spaces for database partition 1 for

the currently connected database.

SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME, QUIESCER_TS_ID,

 QUIESCER_OBJ_ID, QUIESCER_AUTH_ID, QUIESCER_AGENT_ID,

 QUIESCER_STATE, DBPARTITIONNUM

 FROM TABLE(SYSPROC.SNAP_GET_TBSP_QUIESCER(’’, 1)) AS T

The following is an example of output from this query.

SNAPTBSP_QUIESCER and SNAP_GET_TBSP_QUIESCER

Chapter 3. Supported administrative SQL routines and views 453

TBSP_NAME QUIESCER_TS_ID QUIESCER_OBJ_ID QUIESCER_AUTH_ID ...

---------- --------------...- ---------------...- ----------------...- ...

USERSPACE1 2 5 SWALKTY ...

 ...

1 record(s) selected.

Output from this query (continued).

... QUIESCER_AGENT_ID QUIESCER_STATE DBPARTITIONNUM

... -------------------- -------------- --------------

... 65983 EXCLUSIVE 1

...

Information returned

 Table 107. Information returned by the SNAPTBSP_QUIESCER administrative view and the

SNAP_GET_TBSP_QUIESCER table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

QUIESCER_TS_ID BIGINT quiescer_ts_id - Quiescer Table

Space Identification monitor

element

QUIESCER_OBJ_ID BIGINT quiescer_obj_id - Quiescer Object

Identification monitor element

QUIESCER_AUTH_ID VARCHAR(128) quiescer_auth_id - Quiescer User

Authorization Identification

monitor element

QUIESCER_AGENT_ID BIGINT quiescer_agent_id - Quiescer Agent

Identification monitor element

QUIESCER_STATE VARCHAR(14) quiescer_state - Quiescer State

monitor element. This interface

returns a text identifier based on

defines in sqlutil.h and is one of:

v EXCLUSIVE

v UPDATE

v SHARE

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Database system monitor elements” in System Monitor Guide and Reference

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

SNAPTBSP_QUIESCER and SNAP_GET_TBSP_QUIESCER

454 Administrative SQL Routines and Views

v “SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function –

Retrieve tablespace logical data group snapshot information” on page 441

v “SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table

function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

v “SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91

table function – Retrieve tablespace_container logical data group snapshot

information” on page 351

v “SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table

function – Retrieve range snapshot information” on page 456

SNAPTBSP_QUIESCER and SNAP_GET_TBSP_QUIESCER

Chapter 3. Supported administrative SQL routines and views 455

SNAPTBSP_RANGE administrative view and

SNAP_GET_TBSP_RANGE table function – Retrieve range

snapshot information

 The “SNAPTBSP_RANGE administrative view” and the

“SNAP_GET_TBSP_RANGE table function” on page 457 return information from a

range snapshot.

SNAPTBSP_RANGE administrative view

 This administrative view allows you to retrieve range snapshot information

for the currently connected database.

 Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_QUIESCER and

SNAPCONTAINER administrative views, the SNAPTBSP_RANGE

administrative view provides information equivalent to the GET

SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

 The schema is SYSIBMADM.

 Refer to Table 108 on page 458 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTBSP_RANGE

administrative view and EXECUTE privilege on the

SNAP_GET_TBSP_RANGE table function.

 Example:

 Select information about table space ranges for all database partitions for

the currently connected database.

SELECT TBSP_ID, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME, RANGE_NUMBER,

 RANGE_STRIPE_SET_NUMBER, RANGE_OFFSET, RANGE_MAX_PAGE,

 RANGE_MAX_EXTENT, RANGE_START_STRIPE, RANGE_END_STRIPE,

 RANGE_ADJUSTMENT, RANGE_NUM_CONTAINER, RANGE_CONTAINER_ID,

 DBPARTITIONNUM FROM SYSIBMADM.SNAPTBSP_RANGE

 ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

TBSP_ID TBSP_NAME RANGE_NUMBER RANGE_STRIPE_SET_NUMBER ...

-------...- --------------- ------------...- ----------------------- ...

 0 SYSCATSPACE 0 0 ...

 2 USERSPACE1 0 0 ...

 3 SYSTOOLSPACE 0 0 ...

 2 USERSPACE1 0 0 ...

 2 USERSPACE1 0 0 ...

 ...

5 record(s) selected. ...

Output from this query (continued).

... RANGE_OFFSET RANGE_MAX_PAGE RANGE_MAX_EXTENT ...

... ------------...- -------------------- -------------------- ...

... 0 11515 2878 ...

... 0 479 14 ...

... 0 251 62 ...

... 0 479 14 ...

... 0 479 14 ...

SNAPTBSP_RANGE and SNAP_GET_TBSP_RANGE

456 Administrative SQL Routines and Views

Output from this query (continued).

... RANGE_START_STRIPE RANGE_END_STRIPE RANGE_ADJUSTMENT ...

... -------------------- -------------------- -------------------- ...

... 0 2878 0 ...

... 0 14 0 ...

... 0 62 0 ...

... 0 14 0 ...

... 0 14 0 ...

Output from this query (continued).

... RANGE_NUM_CONTAINER RANGE_CONTAINER_ID DBPARTITIONNUM

... -------------------- -------------------- --------------

... 1 0 0

... 1 0 0

... 1 0 0

... 1 0 1

... 1 0 2

SNAP_GET_TBSP_RANGE table function

 The SNAP_GET_TBSP_RANGE table function returns the same

information as the SNAPTBSP_RANGE administrative view, but allows

you to retrieve the information for a specific database on a specific

database partition, aggregate of all database partitions or all database

partitions.

 Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,

SNAP_GET_TBSP_QUIESCER and SNAP_GET_CONTAINER_V91 table

functions, the SNAP_GET_TBSP_RANGE table function provides

information equivalent to the GET SNAPSHOT FOR TABLESPACES ON

database-alias CLP command.

 Refer to Table 108 on page 458 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_TBSP_RANGE (dbname)

, dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameters:

 dbname

An input argument of type VARCHAR(128) that specifies a valid

database name in the same instance as the currently connected

database. Specify a database name that has a directory entry type of

either ″Indirect″ or ″Home″, as returned by the LIST DATABASE

DIRECTORY command. Specify NULL or empty string to take the

snapshot from the currently connected database.

dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If dbname is not set to

NULL and dbpartitionnum is set to NULL, -1 is set implicitly for

dbpartitionnum. If this input option is not used, that is, only dbname is

provided, data is returned from all database partitions.

 If both dbname and dbpartitionnum are set to NULL, an attempt is made to

read data from the file created by SNAP_WRITE_FILE procedure. Note

SNAPTBSP_RANGE and SNAP_GET_TBSP_RANGE

Chapter 3. Supported administrative SQL routines and views 457

that this file could have been created at any time, which means that the

data might not be current. If a file with the corresponding snapshot API

request type does not exist, then the SNAP_GET_TBSP_RANGE table

function takes a snapshot for the currently connected database and

database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_TBSP_RANGE table function.

 Examples:

 Select information on the table space range for the table space with tbsp_id

= 2 on the currently connected database partition.

SELECT TBSP_ID, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME, RANGE_NUMBER,

 RANGE_STRIPE_SET_NUMBER, RANGE_OFFSET, RANGE_MAX_PAGE, RANGE_MAX_EXTENT,

 RANGE_START_STRIPE, RANGE_END_STRIPE, RANGE_ADJUSTMENT,

 RANGE_NUM_CONTAINER, RANGE_CONTAINER_ID

 FROM TABLE(SNAP_GET_TBSP_RANGE(’’,-1)) AS T WHERE TBSP_ID = 2

The following is an example of output from this query.

TBSP_ID TBSP_NAME RANGE_NUMBER ...

-------...- --------------- ------------...- ...

 2 USERSPACE1 0 ...

 ...

1 record(s) selected. ...

Output from this query (continued).

... RANGE_STRIPE_SET_NUMBER RANGE_OFFSET RANGE_MAX_PAGE ...

... ----------------------- ------------...- --------------...---- ...

... 0 0 3967 ...

... ...

Output from this query (continued).

... RANGE_MAX_EXTENT RANGE_START_STRIPE RANGE_END_STRIPE ...

... -------------------- -------------------- -------------------- ...

... 123 0 123 ...

... ...

Output from this query (continued).

... RANGE_ADJUSTMENT RANGE_NUM_CONTAINER RANGE_CONTAINER_ID

... -------------------- -------------------- --------------------

... 0 1 0

...

Information returned

 Table 108. Information returned by the SNAPTBSP_RANGE administrative view and the

SNAP_GET_TBSP_RANGE table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

SNAPTBSP_RANGE and SNAP_GET_TBSP_RANGE

458 Administrative SQL Routines and Views

Table 108. Information returned by the SNAPTBSP_RANGE administrative view and the

SNAP_GET_TBSP_RANGE table function (continued)

Column name Data type

Description or corresponding

monitor element

RANGE_NUMBER BIGINT range_number - Range Number

monitor element

RANGE_STRIPE_SET_NUMBER BIGINT range_stripe_set_number - Stripe

Set Number monitor element

RANGE_OFFSET BIGINT range_offset - Range Offset monitor

element

RANGE_MAX_PAGE BIGINT range_max_page_number -

Maximum Page in Range monitor

element

RANGE_MAX_EXTENT BIGINT range_max_extent - Maximum

Extent in Range monitor element

RANGE_START_STRIPE BIGINT range_start_stripe - Start Stripe

monitor element

RANGE_END_STRIPE BIGINT range_end_stripe - End Stripe

monitor element

RANGE_ADJUSTMENT BIGINT range_adjustment - Range

Adjustment monitor element

RANGE_NUM_CONTAINER BIGINT range_num_containers - Number of

Containers in Range monitor

element

RANGE_CONTAINER_ID BIGINT range_container_id - Range

Container monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “GET SNAPSHOT command” in Command Reference

v “SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function –

Retrieve tablespace logical data group snapshot information” on page 441

v “SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table

function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

v “SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91

table function – Retrieve tablespace_container logical data group snapshot

information” on page 351

v “SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER

table function – Retrieve quiescer table space snapshot information” on page 452

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPTBSP_RANGE and SNAP_GET_TBSP_RANGE

Chapter 3. Supported administrative SQL routines and views 459

SNAPUTIL administrative view and SNAP_GET_UTIL table

function – Retrieve utility_info logical data group snapshot

information

 The “SNAPUTIL administrative view” and the “SNAP_GET_UTIL table function”

return snapshot information on utilities from the utility_info logical data group.

SNAPUTIL administrative view

 Used in conjunction with the SNAPUTIL_PROGRESS administrative view,

the SNAPUTIL administrative view provides the same information as the

LIST UTILITIES SHOW DETAIL CLP command.

 The schema is SYSIBMADM.

 Refer to Table 109 on page 462 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPUTIL administrative view

and EXECUTE privilege on the SNAP_GET_UTIL table function.

 Example:

 Retrieve a list of utilities and their states on all database partitions for all

active databases in the instance that contains the connected database.

SELECT UTILITY_TYPE, UTILITY_PRIORITY, SUBSTR(UTILITY_DESCRIPTION, 1, 72)

 AS UTILITY_DESCRIPTION, SUBSTR(UTILITY_DBNAME, 1, 17) AS

 UTILITY_DBNAME, UTILITY_STATE, UTILITY_INVOKER_TYPE, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPUTIL ORDER BY DBPARTITIONNUM

The following is an example of output from this query.

UTILITY_TYPE UTILITY_PRIORITY ...

------------...- ---------------- ...

LOAD - ...

LOAD - ...

LOAD - ...

3 record(s) selected.

Output from this query (continued).

... UTILITY_DESCRIPTION ...

... ---...

... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...

... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...

... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...

Output from this query (continued).

... UTILITY_DBNAME UTILITY_STATE UTILITY_INVOKER_TYPE DBPARTITIONNUM

... ----------------- ------------- -------------------- --------------

... SAMPLE EXECUTE USER 0

... SAMPLE EXECUTE USER 1

... SAMPLE EXECUTE USER 2

SNAP_GET_UTIL table function

SNAPUTIL and SNAP_GET_UTIL

460 Administrative SQL Routines and Views

The SNAP_GET_UTIL table function returns the same information as the

SNAPUTIL administrative view, but allows you to retrieve the information

for a specific database partition, aggregate of all database partitions or all

database partitions.

 Used in conjunction with the SNAP_GET_UTIL_PROGRESS table function,

the SNAP_GET_UTIL table function provides the same information as the

LIST UTILITIES SHOW DETAIL CLP command.

 Refer to Table 109 on page 462 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_UTIL ()

dbpartitionnum
 ��

 The schema is SYSPROC.

 Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If this input option is

not used, data will be returned from all database partitions.

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_UTIL table function takes a snapshot for the

currently connected database and database partition number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_UTIL table function.

 Example:

 Retrieve a list of utility ids with their type and state for the currently

connected database partition on database SAMPLE.

SELECT UTILITY_ID, UTILITY_TYPE, STATE

 FROM TABLE(SNAP_GET_UTIL(-1)) AS T WHERE UTILITY_DBNAME=’SAMPLE’

The following is an example of output from this query.

UTILITY_ID UTILITY_TYPE STATE

-------------------- -------------------------- --------

 1 BACKUP EXECUTE

 1 record(s) selected.

Information returned

SNAPUTIL and SNAP_GET_UTIL

Chapter 3. Supported administrative SQL routines and views 461

Table 109. Information returned by the SNAPUTIL administrative view and the

SNAP_GET_UTIL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

UTILITY_ID INTEGER utility_id - Utility ID monitor

element. Unique to a database

partition.

UTILITY_TYPE VARCHAR(26) utility_type - Utility Type monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v ASYNC_INDEX_CLEANUP

v BACKUP

v CRASH_RECOVERY

v LOAD

v REBALANCE

v REDISTRIBUTE

v REORG

v RESTART_RECREATE_INDEX

v RESTORE

v ROLLFORWARD_RECOVERY

v RUNSTATS

UTILITY_PRIORITY INTEGER utility_priority - Utility Priority

monitor element. Priority if utility

supports throttling, otherwise null.

UTILITY_DESCRIPTION VARCHAR(2048) utility_description - Utility

Description monitor element. Can

be null.

UTILITY_DBNAME VARCHAR(128) utility_dbname - Database

Operated on by Utility monitor

element

UTILITY_START_TIME TIMESTAMP utility_start_time - Utility Start

Time monitor element

UTILITY_STATE VARCHAR(10) utility_state - Utility State monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v ERROR

v EXECUTE

v WAIT

UTILITY_INVOKER_TYPE VARCHAR(10) utility_invoker_type - Utility

Invoker Type monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v AUTO

v USER

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

SNAPUTIL and SNAP_GET_UTIL

462 Administrative SQL Routines and Views

Table 109. Information returned by the SNAPUTIL administrative view and the

SNAP_GET_UTIL table function (continued)

Column name Data type

Description or corresponding

monitor element

PROGRESS_LIST_ATTR VARCHAR(10) progress_list_attr - Current Progress

List Attributes monitor element

PROGRESS_LIST_CUR_SEQ_NUM INTEGER progress_list_cur_seq_num -

Current Progress List Sequence

Number monitor element

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “LIST UTILITIES command” in Command Reference

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “Database system monitor elements” in System Monitor Guide and Reference

v “SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS

table function – Retrieve progress logical data group snapshot information” on

page 464

SNAPUTIL and SNAP_GET_UTIL

Chapter 3. Supported administrative SQL routines and views 463

SNAPUTIL_PROGRESS administrative view and

SNAP_GET_UTIL_PROGRESS table function – Retrieve

progress logical data group snapshot information

 The “SNAPUTIL_PROGRESS administrative view” and the

“SNAP_GET_UTIL_PROGRESS table function” return snapshot information about

utility progress, in particular, the progress logical data group.

SNAPUTIL_PROGRESS administrative view

 Used in conjunction with the SNAPUTIL administrative view, the

SNAPUTIL_PROGRESS administrative view provides the same information

as the LIST UTILITIES SHOW DETAIL CLP command.

 The schema is SYSIBMADM.

 Refer to Table 110 on page 465 for a complete list of information that can

be returned.

 Authorization:

 v SYSMON authority

v SELECT or CONTROL privilege on the SNAPUTIL_PROGRESS

administrative view and EXECUTE privilege on the

SNAP_GET_UTIL_PROGRESS table function.

 Example:

 Retrieve details on total and completed units of progress by utility ID.

SELECT SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,

 DBPARTITIONNUM FROM SYSIBMADM.SNAPUTIL_PROGRESS

The following is an example of output from this query.

UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNU

---------- -------------------- ------------------------ -----------–-

 7 10 5 0

 9 10 5 1

 1 record(s) selected.

SNAP_GET_UTIL_PROGRESS table function

 The SNAP_GET_UTIL_PROGRESS table function returns the same

information as the SNAPUTIL_PROGRESS administrative view, but allows

you to retrieve the information for a specific database on a specific

database partition, aggregate of all database partitions or all database

partitions.

 Used in conjunction with the SNAP_GET_UTIL table function, the

SNAP_GET_UTIL_PROGRESS table function provides the same

information as the LIST UTILITIES SHOW DETAIL CLP command.

 Refer to Table 110 on page 465 for a complete list of information that can

be returned.

 Syntax:

�� SNAP_GET_UTIL_PROGRESS ()

dbpartitionnum
 ��

 The schema is SYSPROC.

SNAPUTIL_PROGRESS and SNAP_GET_UTIL_PROGRESS

464 Administrative SQL Routines and Views

Table function parameter:

 dbpartitionnum

An optional input argument of type INTEGER that specifies a valid

database partition number. Specify -1 for the current database partition,

or -2 for an aggregate of all database partitions. If this input option is

not used, data will be returned from all database partitions.

 If dbpartitionnum is set to NULL, an attempt is made to read data from the

file created by SNAP_WRITE_FILE procedure. Note that this file could

have been created at any time, which means that the data might not be

current. If a file with the corresponding snapshot API request type does

not exist, then the SNAP_GET_UTIL_PROGRESS table function takes a

snapshot for the currently connected database and database partition

number.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function.

 Example:

 Retrieve details on the progress of utilities on the currently connect

partition.

SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,

 DBPARTITIONNUM FROM TABLE(SNAP_GET_UTIL_PROGRESS(-1)) as T

The following is an example of output from this query.

UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNUM

---------- -------------------- ------------------------ --------------

 7 10 5 0

 1 record(s) selected.

Information returned

 Table 110. Information returned by the SNAPUTIL_PROGRESS administrative view and the

SNAP_GET_UTIL_PROGRESS table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

UTILITY_ID INTEGER utility_id - Utility ID monitor

element. Unique to a database

partition.

PROGRESS_SEQ_NUM INTEGER progress_seq_num - Progress

Sequence Number monitor element.

If serial, the number of the phase.

If concurrent, then could be NULL.

UTILITY_STATE VARCHAR(16) utility_state - Utility State monitor

element. This interface returns a

text identifier based on the defines

in sqlmon.h and is one of:

v ERROR

v EXECUTE

v WAIT

SNAPUTIL_PROGRESS and SNAP_GET_UTIL_PROGRESS

Chapter 3. Supported administrative SQL routines and views 465

Table 110. Information returned by the SNAPUTIL_PROGRESS administrative view and the

SNAP_GET_UTIL_PROGRESS table function (continued)

Column name Data type

Description or corresponding

monitor element

PROGRESS_DESCRIPTION VARCHAR(2048) progress_description - Progress

Description monitor element

PROGRESS_START_TIME TIMESTAMP progress_start_time - Progress Start

Time monitor element. Start time if

the phase has started, otherwise

NULL.

PROGRESS_WORK_METRIC VARCHAR(16) progress_work_metric - Progress

Work Metric monitor element. This

interface returns a text identifier

based on the defines in sqlmon.h

and is one of:

v NOT_SUPPORT

v BYTES

v EXTENTS

v INDEXES

v PAGES

v ROWS

v TABLES

PROGRESS_TOTAL_UNITS BIGINT progress_total_units - Total

Progress Work Units monitor

element

PROGRESS_COMPLETED_UNITS BIGINT progress_completed_units -

Completed Progress Work Units

monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “LIST UTILITIES command” in Command Reference

v “SNAP_WRITE_FILE procedure” on page 313

v “Administrative views versus table functions” on page 3

v “SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS

table function – Retrieve progress logical data group snapshot information” on

page 464

v “Database system monitor elements” in System Monitor Guide and Reference

SNAPUTIL_PROGRESS and SNAP_GET_UTIL_PROGRESS

466 Administrative SQL Routines and Views

TBSP_UTILIZATION administrative view – Retrieve table space

configuration and utilization information

 The TBSP_UTILIZATION administrative view returns table space configuration

and utilization information. The view is an SQL interface for the LIST

TABLESPACES CLP command. Its information is based on the SNAPTBSP,

SNAPTBSP_PART administrative views and TABLESPACES catalog view.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the TBSP_UTILIZATION, SNAPTBSP,

SNAPTBSP_PART administrative views and the SYSCAT.TABLESPACES catalog

view.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Retrieve the same report as the LIST TABLESPACES command on a single

partitioned database.

SELECT TBSP_ID, SUBSTR(TBSP_NAME,1,20) as TBSP_NAME, TBSP_TYPE,

 TBSP_CONTENT_TYPE, TBSP_STATE FROM SYSIBMADM.TBSP_UTILIZATION

The following is an example of output for this query.

TBSP_ID TBSP_NAME TBSP_TYPE ...

-------...- -------------------- ---------- ...

 0 SYSCATSPACE SMS ...

 1 TEMPSPACE1 SMS ...

 2 USERSPACE1 SMS ...

 3 SYSTOOLSPACE SMS ...

 4 SYSTOOLSTMPSPACE SMS ...

Output for this query (continued).

... TBSP_CONTENT_TYPE TBSP_STATE

... ----------------- -----------

... ANY NORMAL

... SYSTEMP NORMAL

... ANY NORMAL

... ANY NORMAL

... USRTEMP NORMAL

 Information returned:

 Table 111. Information returned by the TBSP_UTILIZATION administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TBSP_UTILIZATION

Chapter 3. Supported administrative SQL routines and views 467

Table 111. Information returned by the TBSP_UTILIZATION administrative view (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_TYPE VARCHAR(10) tablespace_type - Table Space Type

monitor element. This interface

returns a text identifier based on

the defines in sqlutil.h and is one

of:

v DMS

v SMS

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type - Table

Space Contents Type monitor

element . This interface returns a

text identifier based on the defines

in sqlutil.h and is one of:

v ANY

v LONG

v SYSTEMP

v USRTEMP

TBSP_CREATE_TIME TIMESTAMP Creation time of the table space.

TBSP_UTILIZATION

468 Administrative SQL Routines and Views

Table 111. Information returned by the TBSP_UTILIZATION administrative view (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_STATE VARCHAR(256) tablespace_state - Table Space State

monitor element. This interface

returns a text identifier based on

defines in sqlutil.h, and is

combination of the following

separated by a ’+’ sign:

v BACKUP_IN_PROGRESS

v BACKUP_PENDING

v DELETE_PENDING

v DISABLE_PENDING

v DROP_PENDING

v LOAD_IN_PROGRESS

v LOAD_PENDING

v NORMAL

v OFFLINE

v PSTAT_CREATION

v PSTAT_DELETION

v QUIESCED_EXCLUSIVE

v QUIESCED_SHARE

v QUIESCED_UPDATE

v REBAL_IN_PROGRESS

v REORG_IN_PROGRESS

v RESTORE_IN_PROGRESS

v RESTORE_PENDING

v ROLLFORWARD_IN_PROGRESS

v ROLLFORWARD_PENDING

v STORDEF_ALLOWED

v STORDEF_CHANGED

v STORDEF_FINAL_VERSION

v STORDEF_PENDING

v SUSPEND_WRITE

TBSP_TOTAL_SIZE_KB BIGINT The total size of the table space in

KB, calculated as

total_pages*pagesize/1024.

TBSP_USABLE_SIZE_KB BIGINT The total usable size of the table

space in KB, calculated as

usable_pages*pagesize/1024.

TBSP_USED_SIZE_KB BIGINT The total used size of the table

space in KB, calculated as

used_pages*pagesize/1024.

TBSP_FREE_SIZE_KB BIGINT The total available size of the table

space in KB, calculated as

free_pages*pagesize/1024.

TBSP_UTILIZATION

Chapter 3. Supported administrative SQL routines and views 469

Table 111. Information returned by the TBSP_UTILIZATION administrative view (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_UTILIZATION_PERCENT BIGINT The utilization of the table space as

a percentage. Calculated as

(used_pages/usable_pages)*100, if

usable_pages is available.

Otherwise, -1 will be displayed.

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total Pages

in Table Space monitor element

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable

Pages in Table Space monitor

element

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used

Pages in Table Space monitor

element

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free Pages

in Table Space monitor element

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table Space

High Water Mark monitor element

TBSP_PAGE_SIZE INTEGER tablespace_page_size - Table Space

Page Size monitor element

TBSP_EXTENT_SIZE INTEGER tablespace_extent_size - Table Space

Extent Size monitor element

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table

Space Prefetch Size monitor

element

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum

table space size monitor element

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase

size in bytes monitor element

TBSP_INCREASE_SIZE_PERCENT SMALLINT tablespace_increase_size_percent -

Increase size by percent monitor

element

TBSP_LAST_RESIZE_TIME TIMESTAMP tablespace_last_resize_time - Time

of last successful resize monitor

element

TBSP_LAST_RESIZE_FAILED SMALLINT tablespace_last_resize_failed - Last

resize attempt failed monitor

element

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -

Using automatic storage monitor

element

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -

Auto-resize enabled monitor

element

DBPGNAME VARCHAR(128) Name of the database partition

group for the table space.

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers -

Number of Containers in Table

Space monitor element

TBSP_UTILIZATION

470 Administrative SQL Routines and Views

Table 111. Information returned by the TBSP_UTILIZATION administrative view (continued)

Column name Data type

Description or corresponding

monitor element

REMARKS VARCHAR(254) User-provided comment.

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SYSCAT.TABLESPACES catalog view” in SQL Reference, Volume 1

v “Database system monitor elements” in System Monitor Guide and Reference

v “Authorization for administrative views” on page 6

v “LIST TABLESPACES command” in Command Reference

v “SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function –

Retrieve tablespace logical data group snapshot information” on page 441

v “SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table

function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

TBSP_UTILIZATION

Chapter 3. Supported administrative SQL routines and views 471

TOP_DYNAMIC_SQL administrative view – Retrieve

information on the top dynamic SQL statements

 The TOP_DYNAMIC_SQL administrative view returns the top dynamic SQL

statements sortable by number of executions, average execution time, number of

sorts, or sorts per statement. These are the queries that should get focus to ensure

they are well tuned.

The schema is SYSIBMADM.

 Authorization:

 v SELECT or CONTROL privilege on the TOP_DYNAMIC_SQL and

SNAPDYN_SQL administrative views.

v SYSMON, SYSCTRL, SYSMAINT, or SYSADM authority is also required to

access snapshot monitor data.

 Example:

 Identify the top 5 most frequently run SQL.

SELECT NUM_EXECUTIONS, AVERAGE_EXECUTION_TIME_S, STMT_SORTS,

 SORTS_PER_EXECUTION, SUBSTR(STMT_TEXT,1,60) AS STMT_TEXT

 FROM SYSIBMADM.TOP_DYNAMIC_SQL

 ORDER BY NUM_EXECUTIONS DESC FETCH FIRST 5 ROWS ONLY

The following is an example of output for this query.

NUM_EXECUTIONS AVERAGE_EXECUTION_TIME_S STMT_SORTS ...

-------------------- ------------------------ -------------------- ...

 148 0 0 ...

 123 0 0 ...

 2 0 0 ...

 1 0 0 ...

 1 0 0 ...

 5 record(s) selected.

Output for this query (continued).

... SORTS_PER_EXECUTION ...

... -------------------- ...

... 0 ...

... 0 ...

... 0 ...

... 0 ...

... 0 ...

Output for this query (continued).

... STMT_TEXT

... --

... SELECT A.ID, B.EMPNO, B.FIRSTNME, B.LASTNAME, A.DEPT FROM E

... SELECT A.EMPNO, A.FIRSTNME, A.LASTNAME, B.LOCATION, B.MGRNO

... SELECT A.EMPNO, A.FIRSTNME, A.LASTNAME, B.DEPTNAME FROM EMP

... SELECT ATM.SCHEMA, ATM.NAME, ATM.CREATE_TIME, ATM.LAST_WAIT,

... SELECT * FROM JESSICAE.EMP_RESUME

TOP_DYNAMIC_SQL

472 Administrative SQL Routines and Views

Information returned:

 Table 112. Information returned by the TOP_DYNAMIC_SQL administrative view

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Timestamp for the report.

NUM_EXECUTIONS BIGINT num_compilations - Statement

Compilations monitor element

AVERAGE_EXECUTION_TIME_S BIGINT Average execution time.

STMT_SORTS BIGINT stmt_sorts - Statement Sorts

monitor element

SORTS_PER_EXECUTION BIGINT Number of sorts per statement

execution.

STMT_TEXT CLOB(2 M) stmt_text - SQL Dynamic Statement

Text monitor element

DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

 Related tasks:

v “Capturing database system snapshots using snapshot administrative views and

table functions” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V91 table

function – Retrieve dynsql logical group snapshot information” on page 387

v “Authorization for administrative views” on page 6

v “Database system monitor elements” in System Monitor Guide and Reference

TOP_DYNAMIC_SQL

Chapter 3. Supported administrative SQL routines and views 473

SQL procedure administrative SQL routines and views

GET_ROUTINE_OPTS

�� GET_ROUTINE_OPTS () ��

The schema is SYSPROC.

The GET_ROUTINE_OPTS function returns a character string value of the options

that are to be used for the creation of SQL procedures in the current session.

The result of the function is a varying-length character string (VARCHAR) value

with a length attribute of 1024.

Example:

Return the options to be used for the creation of SQL procedures as the result of a

query.

 SELECT GET_ROUTINE_OPTS()

 FROM SYSIBM.SYSDUMMY1

 Related reference:

v “SET_ROUTINE_OPTS ” on page 479

v “Supported administrative SQL routines and views” on page 8

TOP_DYNAMIC_SQL

474 Administrative SQL Routines and Views

GET_ROUTINE_SAR

�� GET_ROUTINE_SAR �

� (sarblob , type , routine-name-string)

,

hide-body-flag
 ��

The schema is SYSFUN.

The GET_ROUTINE_SAR procedure retrieves the necessary information to install

the same routine in another database server running the same level on the same

operating system. The information is retrieved into a single BLOB string

representing an SQL archive file. The invoker of the GET_ROUTINE_SAR

procedure must have DBADM authority.

sarblob

An output argument of type BLOB(3M) that contains the routine SAR file

contents.

type

An input argument of type CHAR(2) that specifies the type of routine, using

one of the following values:

v ’P ’ for a procedure

v ’SP’ for the specific name of a procedure

routine-name-string

An input argument of type VARCHAR(257) that specifies a qualified name of

the routine. If no schema name is specified, the default is the CURRENT

SCHEMA when the routine is processed. The routine-name-string cannot include

double quotation marks (").

hide-body-flag

An input argument of type INTEGER that specifies (using one of the following

values) whether or not the routine body should be hidden when the routine

text is extracted from the catalogs. Valid values are:

0 Leave the routine text intact. This is the default value.

1 Replace the routine body with an empty body when the routine text is

extracted from the catalogs.

 The qualified name of the routine is used to determine which routine to retrieve.

The routine that is found must be an SQL routine. Not using a specific name may

result in more than one routine, and an error is raised (SQLSTATE 42725). If this

occurs, the specific name of the desired routine must be used.

The SAR file must include a bind file, which may not be available at the server. If

the bind file cannot be found and stored in the SAR file, an error is raised

(SQLSTATE 55045).

 Related reference:

v “Supported administrative SQL routines and views” on page 8

GET_ROUTINE_SAR

Chapter 3. Supported administrative SQL routines and views 475

PUT_ROUTINE_SAR

�� PUT_ROUTINE_SAR (sarblob

,

new-owner

,

use-register-flag
) ��

The schema is SYSFUN.

The PUT_ROUTINE_SAR procedure passes the necessary file to create an SQL

routine at the server and then defines the routine. The invoker of the

PUT_ROUTINE_SAR procedure must have DBADM authority.

sarblob

An input argument of type BLOB(3M) that contains the routine SAR file

contents.

new-owner

An input argument of type VARCHAR(128) that contains an

authorization-name used for authorization checking of the routine. The

new-owner must have the necessary privileges for the routine to be defined. If

new-owner is not specified, the authorization-name of the original routine

definer is used.

use-register-flag

An input argument of type INTEGER that indicates whether or not the

CURRENT SCHEMA and CURRENT PATH special registers are used to define

the routine. If the special registers are not used, the settings for the default

schema and SQL path are the settings used when the routine was originally

defined. Possible values for use-register-flag:

0 Do not use the special registers of the current environment

1 Use the CURRENT SCHEMA and CURRENT PATH special registers.

If the value is 1, CURRENT SCHEMA is used for unqualified object names in

the routine definition (including the name of the routine) and CURRENT

PATH is used to resolve unqualified routines and data types in the routine

definition. If the use-registers-flag is not specified, the behavior is the same as if

a value of 0 was specified.

 The identification information contained in sarblob is checked to confirm that the

inputs are appropriate for the environment, otherwise an error is raised

(SQLSTATE 55046). The PUT_ROUTINE_SAR procedure then uses the contents of

the sarblob to define the routine at the server.

The contents of the sarblob argument are extracted into the separate files that make

up the SQL archive file. The shared library and bind files are written to files in a

temporary directory. The environment is set so that the routine definition statement

processing is aware that compiling and linking are not required, and that the

location of the shared library and bind files is available. The contents of the DDL

file are then used to dynamically execute the routine definition statement.

No more than one procedure can be concurrently installed under a given schema.

Processing of this statement might result in the same errors as executing the

routine definition statement using other interfaces. During routine definition

processing, the presence of the shared library and bind files is noted and the

PUT_ROUTINE_SAR

476 Administrative SQL Routines and Views

precompile, compile and link steps are skipped. The bind file is used during bind

processing and the contents of both files are copied to the usual directory for an

SQL routine.

If a GET ROUTINE or a PUT ROUTINE operation (or their corresponding

procedure) fails to execute successfully, it will always return an error (SQLSTATE

38000), along with diagnostic text providing information about the cause of the

failure. For example, if the procedure name provided to GET ROUTINE does not

identify an SQL procedure, diagnostic ″-204, 42704″ text will be returned, where

″-204″ and ″42704″ are the SQLCODE and SQLSTATE, respectively, that identify the

cause of the problem. The SQLCODE and SQLSTATE in this example indicate that

the procedure name provided in the GET ROUTINE command is undefined.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

PUT_ROUTINE_SAR

Chapter 3. Supported administrative SQL routines and views 477

REBIND_ROUTINE_PACKAGE

�� REBIND_ROUTINE_PACKAGE (type , routine-name-string , resolve) ��

The schema is SYSPROC.

The REBIND_ROUTINE_PACKAGE procedure rebinds the package associated with

an SQL procedure. It is functionally equivalent to the REBIND command, except

that it takes a procedure name, instead of a package name, as an argument. The

REBIND_ROUTINE_PACKAGE procedure can be invoked from the command line

or called from an application.

type

An input argument of type CHAR(2) that specifies the type of routine, using

one of the following values:

v ’P ’ for a procedure

v ’SP’ for the specific name of a procedure

routine-name-string

An input argument of type VARCHAR(257) that specifies a qualified name of

the routine. If no schema name is specified, the default is the value of the

CURRENT SCHEMA special register when the routine is processed. The

routine-name-string cannot include double quotation marks (").

resolve

An input argument of type VARCHAR(12) that specifies which binding

semantics should be used. A value of ’ANY’ indicates that any of the functions

and types in the SQL path are considered for function and type resolution. A

value of ’CONSERVATIVE’ indicates that only functions and types in the SQL

path that were defined before the last explicit bind time stamp are considered

for function and type resolution.

 The qualified name of the routine is used to determine which routine to retrieve.

The routine that is found must be an SQL routine; otherwise, an error is returned

(SQLSTATE 428F7). If a specific name is not used, more than one routine may be

found, and an error is returned (SQLSTATE 42725). If this occurs, the specific name

of the desired routine must be used.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

REBIND_ROUTINE_PACKAGE

478 Administrative SQL Routines and Views

SET_ROUTINE_OPTS

�� SET_ROUTINE_OPTS (character-expression) ��

The schema is SYSPROC.

The SET_ROUTINE_OPTS procedure sets the options that are to be used for the

creation of SQL procedures in the current session. This setting overrides the

instance-wide setting specified in the DB2_SQLROUTINE_PREPOPTS registry

variable.

character-expression

An input argument of type VARCHAR(1024) that specifies the options setting

for the current session.

 Specified options are valid for the duration of the session. If the null value is

specified as the argument, the value of the DB2_SQLROUTINE_PREPOPTS registry

variable is restored as the default options setting for the current session. For a list

of the allowed options, see the description of the DB2_SQLROUTINE_PREPOPTS

registry variable under “Query compiler variables”.

Example:

 CALL SYSPROC.SET_ROUTINE_OPTS(CAST (NULL AS VARCHAR(1)))

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “GET_ROUTINE_OPTS ” on page 474

v “Query compiler variables” in Performance Guide

SET_ROUTINE_OPTS

Chapter 3. Supported administrative SQL routines and views 479

Stepwise redistribute administrative SQL routines

ANALYZE_LOG_SPACE procedure – Retrieve log space

analysis information

 The ANALYZE_LOG_SPACE procedure returns the log space analysis results for

each of the database partitions of the given database partition group.

 Syntax:

�� ANALYZE_LOG_SPACE (inDBPGroup , inMainTbSchema , inMainTable , �

� analysisType , inStmgTime , addDropOption , addDropList , pNumber , �

� pWeight) ��

The schema is SYSPROC.

 Procedure parameters:

inDBPGroup

An input argument of type VARCHAR (128) that specifies the database

partition group name.

inMainTbSchema

An input argument of type VARCHAR (128) that specifies the schema of the

main table

inMainTable

An input argument of type VARCHAR (128) that specifies the main table

within the database partition group, usually the largest table in the database

partition group.

analysisType

An input argument of type SMALLINT that specifies an indicator for analysis

type:

v SWRD_USE_STMG_TABLE (1): indicates that the information in the storage

management tables is used to find the table row count per database

partition. This type should only be used if the storage management tables

are setup, and at least one storage snapshot has been taken for the database

partition group that is to be redistributed.

v SWRD_USE_REALTIME_ANALYSIS (2): indicates that a SELECT query is

used to find the table row count per database partition.

inStmgTime

An input argument of type VARCHAR (26) that specifies the timestamp for the

storage management record. This parameter is ignored when analysisType is set

to SWRD_USE_REALTIME_ANALYSIS.

addDropOption

An input argument of type CHAR (1) that specifies database partitions are

being added or dropped:

v ’A’: Adding database partitions.

v ’D’: Dropping database partitions.

v ’N’: No adding or dropping.

SET_ROUTINE_OPTS

480 Administrative SQL Routines and Views

addDropList

An input argument of type VARCHAR (6000) that specifies the database

partitions to be added or dropped. This database partition numbers are

specified in a comma-separated string format and no spaces are allowed in the

string.

pNumber

An input argument of type VARCHAR (6000) that specifies all the database

partition numbers corresponding to the database partition weight. Each

database partition number is between 0 and 999, and the database partition

numbers are specified in a comma-separated string with no spaces in the

string.

pWeight

An input argument of type VARCHAR (6000) that specifies all the database

partition weights that the user has specified corresponding to the database

partition numbers in the pNumber string. Each database partition weight is a

number between 0 and 32767, and database partition wights are specified in a

comma-separated string with no spaces in the string.

 Authorization:

 v SYSADM, SYSMON, SYSCTRL, or SYSMAINT

v EXECUTE privilege on the ANALYZE_LOG_SPACE procedure

 Example:

 Analyze the effect of adding a database partition without applying the changes. In

the following case, the hypothesis is adding database partition 40, 50 and 60 to the

database partition group, and for database partitions 10,20,30,40,50,60, using a

respective target ratio of 1:2:1:2:1:2. Note that in this example, only partitions 10, 20

and 30 actually exist in the database partition group

CALL SYSPROC.ANALYZE_LOG_SPACE(’IBMDEFAULTGROUP’, ’TEST’,

 'EMP’, 2, ’ ’, ’A’, ’40,50,60’, ’10,20,30,40,50,60’,

 ’1,2,1,2,1,2’)

Analyze the effect of dropping a database partition without applying the changes.

In the following case, the hypothesis is dropping database partition 30 from the

database partition group, and redistributing the data in database partitions 10 and

20 using a respective target ratio of 1 : 1. Note that in this example, all database

partitions 10, 20 and 30 should exist in the database partition group

CALL SYSPROC.ANALYZE_LOG_SPACE(’IBMDEFAULTGROUP’, ’TEST’,

 ’EMP’, 2, ’ ’, ’D’, ’30’, ’10,20’,’1,1’)

 Usage notes:

 “-1” is used as an output value for parameters when their values cannot be

obtained.

The redistribute stored procedures and functions work only in partitioned database

environments, where a distribution key has been defined for each table.

 Information returned:

 The ANALYZE_LOG_SPACE procedure returns a result set (an open cursor) of the

log space analysis results, containing the following fields for each of the database

partitions of the given database partition group.

ANALYZE_LOG_SPACE

Chapter 3. Supported administrative SQL routines and views 481

Table 113. Information returned by the ANALYZE_LOG_SPACE procedure

Column name Column type Description

PARTITION_NUM SMALLINT The database partition number of the log

space analysis.

TOTAL_LOG_SIZE BIGINT Total log space allocated in bytes, -1

indicates unlimited size.

AVAIL_LOG_SPACE BIGINT The amount of log space in bytes that is

free and can be used by the redistribute

process.

DATA_SKEW BIGINT The absolute value in bytes of the size of

data which is deviated from the target level.

REQ_LOG_SPACE BIGINT The amount of space in bytes required to

reach the desired data distribution.

NUM_OF_STEPS SMALLINT The number of steps needed to reduce the

data skew to zero.

MAX_STEP_SIZE BIGINT The maximum amount of data in bytes that

can be moved at a time, without causing a

log full error.

 Related concepts:

v “Data redistribution” in Performance Guide

v “Partitioned database environments” in Administration Guide: Planning

v “Distribution keys” in Administration Guide: Planning

 Related tasks:

v “Defining distribution keys” in Administration Guide: Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Redistributing data using step-wise redistribute procedures” in Performance

Guide

v “GENERATE_DISTFILE procedure – Generate a data distribution file” on page

483

v “GET_SWRD_SETTINGS procedure – Retrieve redistribute information” on page

485

v “SET_SWRD_SETTINGS procedure – Create or change redistribute registry” on

page 488

v “STEPWISE_REDISTRIBUTE_DBPG procedure – Redistribute part of database

partition group” on page 491

ANALYZE_LOG_SPACE

482 Administrative SQL Routines and Views

GENERATE_DISTFILE procedure – Generate a data

distribution file

 The GENERATE_DISTFILE procedure generates a data distribution file for the

given table and saves it under the given fileName.

 Syntax:

�� GENERATE_DISTFILE (inTbSchema , inTbName , fileName) ��

The schema is SYSPROC.

 Procedure parameters:

inTbSchema

An input argument of type VARCHAR (128) that specifies the table schema

name.

inTbName

An input argument of type VARCHAR (128) that specifies the table name.

fileName

An input or output argument of type VARCHAR (255) that specifies data

distribution file name. If the given file name is just a file name, the file will be

saved in the tmp sub-directory under the instance directory, and the full file

path name will be returned in the parameter.

 Authorization:

 v EXECUTE privilege on the GENERATE_DISTFILE procedure.

v SELECT privilege on SYSCAT.TABLES, SYSCAT.COLUMNS, and the specified

table.

In addition, the fenced user ID must be able to create files in the tmp sub-directory

under the instance directory.

 Example:

 Generate a data distribution file to be used by the redistribute process.

CALL SYSPROC.GENERATE_DISTFILE(’TEST’, ’EMP’,

 ’$HOME/sqllib/function/SAMPLE.IBMDEFAULTGROUP_swrdData.dst’)"

 Usage notes:

 The redistribute stored procedures and functions work only in partitioned database

environments, where a distribution key has been defined for each table.

 Related concepts:

v “Data redistribution” in Performance Guide

v “Partitioned database environments” in Administration Guide: Planning

v “Distribution keys” in Administration Guide: Planning

 Related tasks:

v “Defining distribution keys” in Administration Guide: Implementation

GENERATE_DISTFILE

Chapter 3. Supported administrative SQL routines and views 483

Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Redistributing data using step-wise redistribute procedures” in Performance

Guide

v “ANALYZE_LOG_SPACE procedure – Retrieve log space analysis information”

on page 480

v “GET_SWRD_SETTINGS procedure – Retrieve redistribute information” on page

485

v “SET_SWRD_SETTINGS procedure – Create or change redistribute registry” on

page 488

v “STEPWISE_REDISTRIBUTE_DBPG procedure – Redistribute part of database

partition group” on page 491

GENERATE_DISTFILE

484 Administrative SQL Routines and Views

GET_SWRD_SETTINGS procedure – Retrieve redistribute

information

 The GET_SWRD_SETTINGS procedure reads the existing redistribute registry

records for the given database partition group.

 Syntax:

�� GET_SWRD_SETTINGS (dbpgName , matchingSpec , redistMethod , �

� pMapFile , distFile , stepSize , totalSteps , stageSize , �

� nextStep , processState , pNumber , pWeight) ��

The schema is SYSPROC.

 Procedure parameters:

dbpgName

An input argument of type VARCHAR(128) that specifies the database

partition group name against which the redistribute process is to run.

matchingSpec

An input argument of type SMALLINT that specifies the bitwise field

indentifier(s) from Table 114, indicating the target fields to be returned by the

output parameters. Those output parameters that are not required can be set to

null.

 For example, if matchingSpec is set to 96, which is the integer value of

(REDIST_STAGE_SIZE | REDIST_NEXT_STEP), the caller of this function only

needs to provide stageSize and nextStep to receive the values, and the rest of the

output parameters can be null.

 Table 114. Bitwise field indentifiers

Field Name Hexadecimal value Decimal value

REDIST_METHOD 0x0001<<0 1

REDIST_PMAP_FILE 0x0001<<1 2

REDIST_DIST_FILE 0x0001<<2 4

REDIST_STEP_SIZE 0x0001<<3 8

REDIST_NUM_STEPS 0x0001<<4 16

REDIST_STAGE_SIZE 0x0001<<5 32

REDIST_NEXT_STEP 0x0001<<6 64

REDIST_PROCESS_STATE 0x0001<<7 128

REDIST_PWEIGHT_START_NODE 0x0001<<8 256

REDIST_PWEIGHT 0x0001<<9 512

redistMethod

An output argument of type SMALLINT that specifies whether the redistribute

is to run using the data distribution file or the target distribution map. There

are two possible return values:

v 2: indicates that the redistribute process will work with a data distribution

file as input.

GET_SWRD_SETTINGS

Chapter 3. Supported administrative SQL routines and views 485

v 3: indicates that the redistribute process will work with a target distribution

map as input.

pMapFile

An output argument of type VARCHAR (255) that specifies the full path file

name of the target distribution map on the database server.

distFile

An output argument of type VARCHAR (255) that specifies the full path file

name of the data distribution file on the database server.

stepSize

An output argument of type BIGINT that specifies the maximum number of

rows that can be moved before a commit must be called to prevent a log full

situation. The number can be changed in each redistribution step.

totalSteps

An output argument of type SMALLINT that specifies the number of steps it

takes to completely redistribute the given database partition group.

stageSize

An output argument of type SMALLINT that specifies the number of steps to

be run consecutively.

nextStep

An output argument of type SMALLINT that specifies the index separating

which steps have been completed, and what still needs to be run.

processState

An output argument of type SMALLINT that indicates whether or not the

redistribute process will be stopped at the next check point. A check point is

placed at beginning of each redistribute step. If this argument is set to 1, the

step will not start; if the value is 0, the step will proceed.

pNumber

An output argument of type VARCHAR (6000) that might return a list of

comma-separated database partition numbers in a string format. These

partition numbers can be either the database partitions that are currently used

by the database partition group, or the ones to be added or dropped. The

sequence and the count of these partition numbers correspond to the target

partition weight returned by the pWeight variable.

pWeight

An output argument of type VARCHAR (6000) that might return a list of

comma-separated target database partition weight numbers. The sequence and

the count of these partition weights correspond to the partition numbers

returned by the pNumber variable.

 Authorization:

 EXECUTE privilege on the GET_SWRD_SETTINGS procedure.

 Example:

 Report the content of the step wise redistribution plan for the given database

partition group.

CALL SYSPROC.GET_SWRD_SETTINGS

 (’IBMDEFAULTGROUP’, 255, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

 Usage note:

GET_SWRD_SETTINGS

486 Administrative SQL Routines and Views

The redistribute stored procedures and functions work only in partitioned database

environments, where a distribution key has been defined for each table.

 Related concepts:

v “Data redistribution” in Performance Guide

v “Partitioned database environments” in Administration Guide: Planning

v “Distribution keys” in Administration Guide: Planning

v “Distribution maps” in Administration Guide: Planning

 Related tasks:

v “Defining distribution keys” in Administration Guide: Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Redistributing data using step-wise redistribute procedures” in Performance

Guide

v “ANALYZE_LOG_SPACE procedure – Retrieve log space analysis information”

on page 480

v “GENERATE_DISTFILE procedure – Generate a data distribution file” on page

483

v “SET_SWRD_SETTINGS procedure – Create or change redistribute registry” on

page 488

v “STEPWISE_REDISTRIBUTE_DBPG procedure – Redistribute part of database

partition group” on page 491

GET_SWRD_SETTINGS

Chapter 3. Supported administrative SQL routines and views 487

SET_SWRD_SETTINGS procedure – Create or change

redistribute registry

 The SET_SWRD_SETTINGS procedure creates or make changes to the redistribute

registry. If the registry does not exist, it creates it and add records into it. If the

registry already exists, it uses overwriteSpec to identify which of the field values

need to be overwritten. The overwriteSpec field enables this function to take NULL

inputs for the fields that do not need to be updated.

 Syntax:

�� SET_SWRD_SETTINGS (dbpgName , overwriteSpec , redistMethod , �

� pMapFile , distFile , stepSize , totalSteps , stageSize , �

� nextStep , processState , pNumber , pWeight) ��

The schema is SYSPROC.

 Procedure parameters:

dbpgName

An input argument of type VARCHAR(128) that specifies the database

partition group name against which the redistribute process is to run.

overwriteSpec

Bitwise field indentifier(s) from Table 115 indicating the target fields to be

written or overwritten into the redistribute settings registry.

 Table 115. Bitwise field indentifiers

Field Name Hexadecimal value Decimal value

REDIST_METHOD 0x0001<<0 1

REDIST_PMAP_FILE 0x0001<<1 2

REDIST_DIST_FILE 0x0001<<2 4

REDIST_STEP_SIZE 0x0001<<3 8

REDIST_NUM_STEPS 0x0001<<4 16

REDIST_STAGE_SIZE 0x0001<<5 32

REDIST_NEXT_STEP 0x0001<<6 64

REDIST_PROCESS_STATE 0x0001<<7 128

REDIST_PWEIGHT_START_NODE 0x0001<<8 256

REDIST_PWEIGHT 0x0001<<9 512

redistMethod

An input argument of type SMALLINT that specifies whether the redistribute

is to run using the data distribution file or the target distribution map. The two

valid input values are:

v 2: indicate that the redistribute process will work with a data distribution

file as input.

v 3: indicate that the redistribute process will work with a target distribution

map as input.

SET_SWRD_SETTINGS

488 Administrative SQL Routines and Views

pMapFile

An input argument of type VARCHAR (255) that specifies the full path file

name of the target distribution map on the database server.

distFile

An input argument of type VARCHAR (255) that specifies the full path file

name of the data distribution file on the database server..

stepSize

An input argument of type BIGINT that specifies the maximum number of

rows that can be moved before a commit must be called to prevent a log full

situation. The number can be changed in each redistribution step. The value

“-2” can be used for stepSize to indicate that the number is unlimited.

totalSteps

An input argument of type SMALLINT that specifies the number of steps it

takes to completely redistribute the given database partition group. The value

“-2” can be used totalSteps to indicate that the number is unlimited.

stageSize

An input argument of type SMALLINT that specifies the number of steps to be

run consecutively.

nextStep

An input argument of type SMALLINT that specifies the index separating

which steps have been completed, and what still needs to be run.

processState

An input argument of type SMALLINT that indicates whether or not the

redistribute process will be stopped at the next check point. A check point is

placed at beginning of each redistribute step. If this argument is set to 1, the

step will not start; if the value is 0, the step will proceed.

pNumber

An input argument of type VARCHAR (6000) that can contain a list of

comma-separated database partition numbers in a string format. These

partition numbers can be either the database partitions that are currently used

by the database partition group, or the ones to be added or dropped. The

sequence and the count of these partition numbers correspond to the target

partition weight returned by the pWeight variable. Each database partition

number is between 0 and 999, and there are no spaces are allowed in the

string.

pWeight

An input argument of type VARCHAR (6000) that can contain a

comma-separated string of all the database partition weights the user has

specified, corresponding to the database partition numbers in the pNumber

string. Each database partition weight is a number between 0 and 32767, and

no spaces are allowed in the string.

 Authorization:

 EXECUTE privilege on the SET_SWRD_SETTINGS procedure.

 Example:

 Write a step wise redistribution plan into a registry. Setting processState to 1, might

cause a currently running step wise redistribute stored procedure to complete the

current step and stop, until this parameter is reset to 0, and the redistribute stored

procedure is called again.

SET_SWRD_SETTINGS

Chapter 3. Supported administrative SQL routines and views 489

CALL SYSPROC.SET_SWRD_SETTINGS(’IBMDEFAULTGROUP’, 255, 0, ’ ’,

 ’$HOME/sqllib/function/TEST.IBMDEFAULTGROUP_swrdData.dst’, 1000,

 12, 2, 1, 0, ’10,20,30’, ’50,50,50’)

 Usage notes:

 The redistribute stored procedures and functions work only in partitioned database

environments, where a distribution key has been defined for each table.

 Related concepts:

v “Data redistribution” in Performance Guide

v “Partitioned database environments” in Administration Guide: Planning

v “Distribution keys” in Administration Guide: Planning

v “Distribution maps” in Administration Guide: Planning

 Related tasks:

v “Defining distribution keys” in Administration Guide: Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Redistributing data using step-wise redistribute procedures” in Performance

Guide

v “ANALYZE_LOG_SPACE procedure – Retrieve log space analysis information”

on page 480

v “GENERATE_DISTFILE procedure – Generate a data distribution file” on page

483

v “GET_SWRD_SETTINGS procedure – Retrieve redistribute information” on page

485

v “STEPWISE_REDISTRIBUTE_DBPG procedure – Redistribute part of database

partition group” on page 491

SET_SWRD_SETTINGS

490 Administrative SQL Routines and Views

STEPWISE_REDISTRIBUTE_DBPG procedure – Redistribute

part of database partition group

 The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the database

partition group according to the input specified for the procedure, and the setting

file created or updated by the SET_SWRD_SETTINGS procedure.

 Syntax:

�� STEPWISE_REDISTRIBUTE_DBPG (inDBPGroup , inStartingPoint , �

� inNumSteps) ��

The schema is SYSPROC.

 Procedure parameters:

inDBPGroup

An input argument of type VARCHAR (128) that specifies the name of the

target database partition group.

inStartingPoint

An input argument of type SMALLINT that specifies the starting point to use.

If the parameter is set to a positive integer and is not NULL, the

STEPWISE_REDISTRIBUTE_DBPG procedure uses this value instead of using

the nextStep value specified in the setting file. This is a useful option when you

want to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure from a

particular step. If the parameter is set to NULL, the nextStep value is used.

inNumSteps

An input argument of type SMALLINT that specifies the number of steps to

run. If the parameter is set to a positive integer and is not NULL, the

STEPWISE_REDISTRIBUTE_DBPG procedure uses this value instead of using

thestageSize value specified in the setting file. This is a useful option when you

want to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure with a

different number of steps than what is specified in the settings. For example, if

there are five steps in a scheduled stage, and the redistribution process failed

at step 3, the STEPWISE_REDISTRIBUTE_DBPG procedure can be called to run

the remaining three steps once the error condition has been corrected. If the

parameter is set to NULL, the stageSize value is used. The value “-2” can be

used in this procedure to indicate that the number is unlimited.

 Authorization:

 v EXECUTE privilege on the STEPWISE_REDISTRIBUTE_DBPG procedure

v SYSADM, SYSCTRL or DBADM

 Example:

 Redistribute the database partition group ″IBMDEFAULTGROUP″ according to the

redistribution plan stored in the registry by the SET_SWRD_SETTINGS procedure.

It is starting with step 3 and redistributes the data until 2 steps in the

redistribution plan are completed.

CALL SYSPROC.STEPWISE_REDISTRIBUTE_DBPG(’IBMDEFAULTGROUP’, 3, 2)

STEPWISE_REDISTRIBUTE_DBPG

Chapter 3. Supported administrative SQL routines and views 491

For a full usage example of the stepwise redistribute procedures, refer to

Redistributing data using step-wise redistribute procedures

 Usage notes:

 If the registry value for processState is updated to 1 using the

SET_SWRD_SETTINGS procedure after the STEPWISE_REDISTRIBUTE_DBPG

procedure execution is started, the process stops at the beginning to the next step

and a warning message is returned.

Since SQL COMMIT statement is called by the redistribute process, running the

redistribute process under a Type-2 connection is not supported.

 Related concepts:

v “Data redistribution” in Performance Guide

v “Partitioned database environments” in Administration Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Redistributing data using step-wise redistribute procedures” in Performance

Guide

v “ANALYZE_LOG_SPACE procedure – Retrieve log space analysis information”

on page 480

v “GENERATE_DISTFILE procedure – Generate a data distribution file” on page

483

v “GET_SWRD_SETTINGS procedure – Retrieve redistribute information” on page

485

v “SET_SWRD_SETTINGS procedure – Create or change redistribute registry” on

page 488

STEPWISE_REDISTRIBUTE_DBPG

492 Administrative SQL Routines and Views

Storage management tool administrative SQL routines

CAPTURE_STORAGEMGMT_INFO procedure – Retrieve

storage-related information for a given root object

 The CAPTURE_STORAGEMGMT_INFO procedure attempts to collect the

storage-related information for the given root object, as well as the storage objects

defined within its scope. All the storage objects are specified in the

SYSTOOLS.STMG_OBJECT_TYPE table.

 Table 116. STMG_OBJECT_TYPE table

Column name Data type Nullable Description

OBJ_TYPE INTEGER N Integer value corresponds to a

type of storage object

v 0 - Database

v 1 - Database Partition Group

v 2 - Table Space

v 3 - Table Space Container

v 4 - Table

v 5 - Index

TYPE_NAME VARCHAR N Descriptive name of the storage

object type

v STMG_DATABASE

v STMG_DBPGROUP

v STMG_TABLESPACE

v STMG_CONTAINER

v STMG_TABLE

v STMG_INDEX

 Syntax:

�� CAPTURE_STORAGEMGMT_INFO (in_rootType , in_rootSchema , �

� in_rootName) ��

The schema is SYSPROC.

 Procedure parameters:

in_rootType

An input argument of type SMALLINT. The valid option types are:

v 0 - Database

v 1 - Database Partition Group

v 2 - Table Space

v 4 - Table

v 5 - Index

The input argument cannot be null. If a null value is specified, an SQL0443

error with SQLSTATE 38553, and token DBA7617 is returned.

in_rootSchema

An input argument of type VARCHAR (128) that specifies the schema name of

the storage snapshot root object.

STEPWISE_REDISTRIBUTE_DBPG

Chapter 3. Supported administrative SQL routines and views 493

in_rootName

An input argument of type VARCHAR (128) that specifies the name of the root

object. The input argument cannot be null. If a null value is specified, an

SQL0443 error with SQLSTATE 38553, and token DBA7617 is returned.

 Authorization:

 v EXECUTE privilege on the CAPTURE_STORAGEMGMT_INFO procedure.

v EXECUTE privilege on the SYSPROC.DB_PARTITIONS,

SYSPROC.SNAP_GET_CONTAINER, SYSPROC.SNAPSHOT_CNTRFS table

functions.

v SELECT privilege on SYSCAT.TABLES, SYSCAT.TABLESPACES,

SYSCAT.NODEGROUPDEF, SYSCAT.DATABASEPARTITIONS,

SYSCAT.DATAPARTITIONEXPRESSION, SYSCAT.INDEXES, and

SYSCAT.COLUMNS.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “CREATE_STORAGEMGMT_TABLES procedure – Create storage management

tables” on page 495

v “DROP_STORAGEMGMT_TABLES procedure – Drop all storage management

tables” on page 497

v “Storage management view” in Administration Guide: Planning

v “Storage management view tables” in Administration Guide: Planning

CAPTURE_STORAGEMGMT_INFO

494 Administrative SQL Routines and Views

CREATE_STORAGEMGMT_TABLES procedure – Create

storage management tables

 The CREATE_STORAGEMGMT_TABLES procedure creates all storage

management tables under a fixed ″DB2TOOLS″ schema, in the table space specified

by input.

 Syntax:

�� CREATE_STORAGEMGMT_TABLES (in_tbspace) ��

The schema is SYSPROC.

 Procedure parameters:

in_tbspace

An input argument of type VARCHAR(128) that specifies the table space name.

The input argument cannot be null. If a null value is specified, an SQL0443

error with SQLSTATE 38553, and token DBA7617 is returned.

 Authorization:

 EXECUTE privilege on the CREATE_STORAGEMGMT_TABLES procedure.

You must also have CREATETAB privilege on the database and USE privilege on

the table space, and either:

v IMPLICIT_SCHEMA authority on the database if the implicit or explicit schema

name DB2TOOLS does not exist.

v CREATEIN privilege on the schema if the schema name of the table exists.

v SYSADM or DBADM authority

 Usage notes:

 The following tables are created in the DB2TOOLS schema:

v STMG_CONTAINER

v STMG_CURR_THRESHOLD

v STMG_DATABASE

v STMG_DBPARTITION

v STMG_DBPGROUP

v STMG_HIST_THRESHOLD

v STMG_INDEX

v STMG_OBJECT

v STMG_OBJECT_TYPE

v STMG_ROOT_OBJECT

v STMG_TABLE

v STMG_TABLESPACE

v STMG_TBPARTITION

v STMG_THRESHOLD_REGISTRY

 Related reference:

CREATE_STORAGEMGMT_TABLES

Chapter 3. Supported administrative SQL routines and views 495

v “Supported administrative SQL routines and views” on page 8

v “CAPTURE_STORAGEMGMT_INFO procedure – Retrieve storage-related

information for a given root object” on page 493

v “DROP_STORAGEMGMT_TABLES procedure – Drop all storage management

tables” on page 497

v “Storage management view” in Administration Guide: Planning

CREATE_STORAGEMGMT_TABLES

496 Administrative SQL Routines and Views

DROP_STORAGEMGMT_TABLES procedure – Drop all storage

management tables

 The DROP_STORAGEMGMT_TABLES procedure attempts to drop all storage

management tables.

 Syntax:

�� DROP_STORAGEMGMT_TABLES (dropSpec) ��

The schema is SYSPROC.

 Procedure parameters:

dropSpec

An input argument of type SMALLINT. When dropSpec is set to 0, the process

stops when any error is encountered; when dropSpec is set to 1, the process

continues, ignoring any error it encounters. The input argument cannot be null.

If a null value is specified, an SQL0443 error with SQLSTATE 38553, and token

DBA7617 is returned.

 Authorization:

 EXECUTE privilege on the DROP_STORAGEMGMT_TABLES procedure.

The user ID that establishes the database connection must either be the definer of

the storage management tables as recorded in the DEFINER column of

SYSCAT.TABLES, or have at least one of the following privileges:

v SYSADM or DBADM authority

v DROPIN privilege on the schema for these tables

v CONTROL privilege on these tables

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “CAPTURE_STORAGEMGMT_INFO procedure – Retrieve storage-related

information for a given root object” on page 493

v “CREATE_STORAGEMGMT_TABLES procedure – Create storage management

tables” on page 495

v “Storage management view” in Administration Guide: Planning

DROP_STORAGEMGMT_TABLES

Chapter 3. Supported administrative SQL routines and views 497

Miscellaneous administrative SQL routines and views

ADMIN_COPY_SCHEMA procedure – Copy a specific schema

and its objects

 The ADMIN_COPY_SCHEMA procedure is used to copy a specific schema and all

objects contained in it. The new target schema objects will be created using the

same object names as the objects in the source schema, but with the target schema

qualifier. The ADMIN_COPY_SCHEMA procedure can be used to copy tables with

or without the data of the original tables.

 Syntax:

�� ADMIN_COPY_SCHEMA (sourceschema , targetschema , copymode , �

� objectowner , sourcetbsp , targettbsp , errortabschema , errortab) ��

 The schema is SYSPROC.

 Procedure parameters:

sourceschema

An input argument of type VARCHAR(128) that specifies the name of the

schema whose objects are being copied. The name is case-sensitive.

targetschema

An input argument of type VARCHAR(128) that specifies a unique schema

name to create the copied objects into. The name is case-sensitive. If the

schema name already exists, the procedure call will fail and return a message

indicating that the schema must be removed prior to invoking the procedure.

copymode

An input argument of type VARCHAR(128) that specifies the mode of copy

operation. Valid options are:

v ’DDL’: create empty copies of all supported objects from the source schema.

v ’COPY’: create empty copies of all objects from the source schema, then load

each target schema table with data. Load is done in ’NONRECOVERABLE’

mode. A backup must be taken after calling the ADMIN_COPY_SCHEMA,

otherwise the copied tables will be inaccessible following recovery.

v ’COPYNO’: create empty copies of all objects from the source schema, then

load each target schema table with data. Load is done in ’COPYNO’ mode.

Note: If copymode is ’COPY’ or ’COPYNO’, a fully qualified filename, for

example ’COPYNO /home/mckeough/loadoutput’, can be specified

along with the copymode parameter value. When a path is passed in,

load messages will be logged to the file indicated. The file name must

be writable by the user ID used for fenced routine invocations on the

instance. If no path is specified, then load message files will be

discarded (default behavior).

objectowner

An input argument of type VARCHAR(128) that specifies the authorization ID

to be used as the owner of the copied objects. If NULL, then the owner will be

the authorization ID of the user performing the copy operation.

sourcetbsp

An input argument of type CLOB(2 M) that specifies a list of source table

DROP_STORAGEMGMT_TABLES

498 Administrative SQL Routines and Views

spaces for the copy, separated by commas. Delimited table space names are

supported. For each table being created, any table space found in this list, and

the tables definition, will be converted to the nth entry in the targettbsp list. If

NULL is specified for this parameter, new objects will be created using the

same table spaces as the source objects use.

targettbsp

An input argument of type CLOB(2 M) that specifies a list of target table

spaces for the copy, separated by commas. Delimited table space names are

supported. One table space must be specified for each entry in the sourcetbsp

list of table spaces. The nth table space in the sourcetbsp list will be mapped to

the nth table space in the targettbsp list during DDL replay. It is possible to

specify ’SYS_ANY’ as the final table space (an additional table space name,

that does not correspond to any name in the source list). When ’SYS_ANY’ is

encountered, the default table space selection algorithm will be used when

creating objects (refer to the IN tablespace-name1 option of the CREATE TABLE

statement documentation for further information on the selection algorithm). If

NULL is specified for this parameter, new objects will be created using the

same table spaces as the source objects use.

errortabschema

An input and output argument of type VARCHAR(128) that specifies the

schema name of a table containing error information for objects that could not

be copied. This table is created for the user by the ADMIN_COPY_SCHEMA

procedure in the SYSTOOLSPACE table space. If no errors occurred, then this

parameter is NULL on output.

errortab

An input and output argument of type VARCHAR(128) that specifies the name

of a table containing error information for objects that could not be copied.

This table is created for the user by the ADMIN_COPY_SCHEMA procedure in

the SYSTOOLSPACE table space. This table is owned by the user ID that

invoked the procedure. If no errors occurred, then this parameter is NULL on

output. If the table cannot be created or already exists, the procedure operation

fails and an error message is returned. The table must be cleaned up by the

user following any call to the ADMIN_COPY_SCHEMA procedure; that is, the

table must be dropped in order to reclaim the space it is consuming in

SYSTOOLSPACE.

 Table 117. ADMIN_COPY_SCHEMA errortab format

Column name Data type Description

OBJECT_SCHEMA VARCHAR(128) Schema name of the object

for which the copy command

failed.

OBJECT_NAME VARCHAR(128) Name of the object for which

the copy command failed.

OBJECT_TYPE VARCHAR(30) Type of object.

SQLCODE INTEGER The error SQLCODE.

SQLSTATE CHAR(5) The error SQLSTATE.

ERROR_TIMESTAMP TIMESTAMP Time of failure for the

operation that failed.

ADMIN_COPY_SCHEMA

Chapter 3. Supported administrative SQL routines and views 499

Table 117. ADMIN_COPY_SCHEMA errortab format (continued)

Column name Data type Description

STATEMENT CLOB(2 M) DDL for the failing object. If

the failure occurred when

data was being loaded into a

target table, this field

contains text corresponding

to the load command that

failed.

DIAGTEXT CLOB(2 K) Error message text for the

failed operation.

 Authorization:

 In order for the schema copy to be successful, the user ID calling this procedure

must have the appropriate object creation authorities including both the authority

to select from the source tables, and the authority to perform a load. If a table in

the source schema is protected by label based access control (LBAC), the user ID

must have LBAC credentials that allow creating that same protection on the target

table. If copying with data, the user ID must also have LBAC credentials that allow

both reading the data from the source table and writing that data to the target

table.

EXECUTE privilege on the ADMIN_COPY_SCHEMA procedure is also needed.

 Example:

 CALL SYSPROC.ADMIN_COPY_SCHEMA(’SOURCE_SCHEMA’, ’TARGET_SCHEMA’,

 ’COPY’, NULL, ’SOURCETS1 , SOURCETS2’, ’TARGETTS1, TARGETTS2,

 SYS_ANY’, ’ERRORSCHEMA’, ’ERRORNAME’)

 Restrictions:

 v Only DDL copymode is supported for HADR databases.

v XML with COPY or COPY NO is not supported.

v Using the ADMIN_COPY_SCHEMA procedure with the COPYNO option places

the table spaces in which the target database object resides in backup pending

state. After the load operation completes, target schema tables are in set integrity

pending state, and the ADMIN_COPY_SCHEMA procedure issues a SET

INTEGRITY statement to get the tables out of this state. Because the table spaces

are already in backup pending state, the SET INTEGRITY statement fails. For

information on how to resolve this problem, see “Copying a schema”.

 Usage notes:

 v Qualified objects within the objects being copied are not modified. The

ADMIN_COPY_SCHEMA procedure only changes the qualifying schema of the

object being created, not any data within those objects.

v This procedure does not support copying the following objects:

– index extensions

– nicknames

– packages

– typed tables

– user-defined structured types (and their transform functions)

– typed views

ADMIN_COPY_SCHEMA

500 Administrative SQL Routines and Views

– jars (Java™ routine archives)

– staging tables
v If one of the above objects exists in the schema being copied, the object is not

copied but an entry is added to the error table indicating that the object has not

been copied.

v When a replicated table is copied, the new copy of the table does not have

subscriptions enabled. The table is recreated as a basic table only.

v The operation of this procedure requires the existence of the SYSTOOLSPACE

table space. This table space is used to hold metadata used by the

ADMIN_COPY_SCHEMA procedure as well as error tables returned by this

procedure. If the table space does not exist, an error is returned.

v Statistics for the objects in the target schema are set to default.

v If a table has a generated identity column, and copymode is either 'COPY' or

'COPYNO', the data values from the source table are preserved during the load.

v A new catalog entry is created for each external routine, referencing the binary

of the original source routine.

v If a table is in set integrity pending state at the beginning of the copy operation,

the data is not loaded into the target table and an entry is logged in errortab

indicating that the data was not loaded for that table.

v If a Load or DDL operation fails, an entry is logged in errortab for any object that

was not created. All objects that are successfully created remain. To recover, a

manual load can be initiated, or the new schema can be dropped using the

ADMIN_DROP_SCHEMA procedure and the ADMIN_COPY_SCHEMA

procedure can be called again.

v During DDL replay, the default schema is overridden to the target schema if it

matches the source schema.

v The function path used to compile a trigger, view or SQL function is the path

used to create the source object, with the following exception: if the object’s

function path contains the source schema name, this entry in the path is

modified to the target schema name during DDL replay.

v Running multiple ADMIN_COPY_SCHEMA procedures will result in deadlocks.

Only one ADMIN_COPY_SCHEMA procedure call should be issued at a time.

Changes to tables in the source schema during copy processing might mean that

the data in the target schema is not identical following a copy operation.

v Careful consideration should be taken when copying a schema with tables from

a table space in a single-partition database partition group to a table space in a

multiple-partition database partition group. Unless automatic partitioning key

selection is preferred, the partitioning key should be defined on the tables before

the copy schema operation is undertaken. Altering the partitioning key can only

be done to a table whose table space is associated with a single-partition

database partition group.

 Transactional considerations:

 v If the ADMIN_COPY_SCHEMA procedure is forced to rollback due to a

deadlock or lock timeout during its processing, any work performed in the unit

of work that called the ADMIN_COPY_SCHEMA procedure is also rolled back.

v If a failure occurs during the DDL phase of the copy, all the changes that were

made to the target schema are rolled back to a savepoint.

v If copymode is set to 'COPY' or 'COPYNO', the ADMIN_COPY_SCHEMA

procedure commits once the DDL phase of the copy is complete, also

committing any work done in the unit of work that called the procedure.

ADMIN_COPY_SCHEMA

Chapter 3. Supported administrative SQL routines and views 501

Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

v “Table locking, table states and table space states” in Data Movement Utilities

Guide and Reference

 Related tasks:

v “Copying a schema” in Administration Guide: Implementation

v “Restarting a failed copy schema operation” in Administration Guide:

Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “ADMIN_DROP_SCHEMA procedure – Drop a specific schema and its objects”

on page 503

v “CREATE TABLE statement” in SQL Reference, Volume 2

ADMIN_COPY_SCHEMA

502 Administrative SQL Routines and Views

ADMIN_DROP_SCHEMA procedure – Drop a specific schema

and its objects

 The ADMIN_DROP_SCHEMA procedure is used to drop a specific schema and all

objects contained in it.

 Syntax:

�� ADMIN_DROP_SCHEMA (schema , dropmode , errortabschema , �

� errortab) ��

The schema is SYSPROC.

 Procedure parameters:

schema

An input argument of type VARCHAR(128) that specifies the name of the

schema being dropped. The name must be specified in uppercase characters.

dropmode

Reserved for future use and should be set to NULL.

errortabschema

An input and output argument of type VARCHAR(128) that specifies the

schema name of a table containing error information for objects that could not

be dropped. The name is case-sensitive. This table is created for the user by the

ADMIN_DROP_SCHEMA procedure in the SYSTOOLSPACE table space. If no

errors occurred, then this parameter is NULL on output.

errortab

An input and output argument of type VARCHAR(128) that specifies the name

of a table containing error information for objects that could not be dropped.

The name is case-sensitive. This table is created for the user by the

ADMIN_DROP_SCHEMA procedure in the SYSTOOLSPACE table space. This

table is owned by the user ID that invoked the procedure. If no errors

occurred, then this parameter is NULL on output. If the table cannot be created

or already exists, the procedure operation fails and an error message is

returned. The table must be cleaned up by the user following any call to

ADMIN_DROP_SCHEMA; that is, the table must be dropped in order to

reclaim the space it is consuming in SYSTOOLSPACE.

 Table 118. ADMIN_DROP_SCHEMA errortab format

Column name Data type Description

OBJECT_SCHEMA VARCHAR(128) Schema name of the object

for which the drop command

failed.

OBJECT_NAME VARCHAR(128) Name of the object for which

the drop command failed.

OBJECT_TYPE VARCHAR(30) Type of object.

SQLCODE INTEGER The error SQLCODE.

SQLSTATE CHAR(5) The error SQLSTATE.

ERROR_TIMESTAMP TIMESTAMP Time that the drop command

failed.

ADMIN_DROP_SCHEMA

Chapter 3. Supported administrative SQL routines and views 503

Table 118. ADMIN_DROP_SCHEMA errortab format (continued)

Column name Data type Description

STATEMENT CLOB(2 M) DDL for the failing object.

DIAGTEXT CLOB(2 K) Error message text for the

failed drop command.

 Authorization:

 Drop authority is needed on all objects being removed for the user calling this

procedure.

EXECUTE privilege on the ADMIN_DROP_SCHEMA procedure is also needed.

 Example:

 CALL SYSPROC.ADMIN_DROP_SCHEMA(’SCHNAME’, NULL, ’ERRORSCHEMA’, ’ERRORTABLE’)

The following is an example of output for this procedure.

Value of output parameters

Parameter Name : ERRORTABSCHEMA

Parameter Value : ERRORSCHEMA <-- error!

Parameter Name : ERRORTAB

Parameter Value : ERRORTABLE <-- error!

Return Status = 0

The return status is not zero only when an internal error has been detected (for

example, if SYSTOOLSPACE does not exist).

Errors can be checked by querying the error table:

SELECT * FROM ERRORSCHEMA.ERRORTABLE

 Usage notes:

 v If objects in another schema depend on an object being dropped, the default

DROP statement semantics apply.

v This procedure does not support dropping the following objects:

– index extensions

– nicknames

– packages

– typed tables

– user-defined structured types (and their transform functions)

– typed views

– jars (Java routine archives)

– staging tables
v If one of the above objects exists in the schema being dropped, neither the object

nor the schema is dropped, and an entry is added to the error table indicating

that the object was not dropped.

v The operation of this procedure requires the existence of the SYSTOOLSPACE

table space. This table space is used to hold metadata used by the

ADMIN_DROP_SCHEMA procedure as well as error tables returned by this

procedure. If the table space does not exist, an error is returned.

ADMIN_DROP_SCHEMA

504 Administrative SQL Routines and Views

Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “ADMIN_COPY_SCHEMA procedure – Copy a specific schema and its objects”

on page 498

v “DROP statement” in SQL Reference, Volume 2

ADMIN_DROP_SCHEMA

Chapter 3. Supported administrative SQL routines and views 505

ADMINTABINFO administrative view and

ADMIN_GET_TAB_INFO table function – Retrieve size and

state information for tables

 The “ADMINTABINFO administrative view” and the “ADMIN_GET_TAB_INFO

table function” provide methods to retrieve table size and state information that is

not currently available in the catalog views.

ADMINTABINFO administrative view

 The ADMINTABINFO administrative view returns size and state

information for tables, materialized query tables (MQT) and hierarchy

tables only. These table types are reported as T for table, S for materialized

query tables and H for hierarchy tables in the SYSCAT.TABLES catalog

view. The information is returned at both the data partition level and the

database partition level for a table.

 The schema is SYSIBMADM.

 Refer to the “ADMINTABINFO administrative view and

ADMIN_GET_TAB_INFO table function metadata” on page 508 table for a

complete list of information that can be returned.

 Authorization:

 SELECT or CONTROL privilege on the ADMINTABINFO administrative

view and EXECUTE privilege on the “ADMIN_GET_TAB_INFO table

function.”

 Examples:

 Example 1: Retrieve size and state information for all tables

SELECT * FROM SYSIBMADM.ADMINTABINFO

Example 2: Determine the amount of physical space used by a large number

of sparsely populated tables.

SELECT TABSCHEMA, TABNAME, SUM(DATA_OBJECT_P_SIZE),

 SUM(INDEX_OBJECT_P_SIZE), SUM(LONG_OBJECT_P_SIZE),

 SUM(LOB_OBJECT_P_SIZE), SUM(XML_OBJECT_P_SIZE)

 FROM SYSIBMADM.ADMINTABINFO GROUP BY TABSCHEMA, TABNAME

Example 3: Identify tables that are eligible to use large RIDs, but are not

currently enabled to use large RIDs.

SELECT TABSCHEMA, TABNAME FROM SYSIBMADM.ADMINTABINFO

 WHERE LARGE_RIDS = 'P'

Example 4: Identify which tables are using type-1 indexes and require a

reorganization to convert to type-2 indexes.

SELECT TABSCHEMA, TABNAME FROM SYSIBMADM.ADMINTABINFO

 WHERE INDEX_TYPE = 1

ADMIN_GET_TAB_INFO table function

 The ADMIN_GET_TAB_INFO table function returns the same information

as the “ADMINTABINFO administrative view,” but allows you to specify a

schema and table name.

 Refer to the “ADMINTABINFO administrative view and

ADMIN_GET_TAB_INFO table function metadata” on page 508 table for a

complete list of information that can be returned.

ADMINTABINFO and ADMIN_GET_TAB_INFO

506 Administrative SQL Routines and Views

Syntax:

�� ADMIN_GET_TAB_INFO (tabschema , tabname) ��

 The schema is SYSPROC.

 Table function parameters:

 tabschema

An input argument of type VARCHAR(128) that specifies a schema

name.

tabname

An input argument of type VARCHAR(128) that specifies a table name,

a materialized query table name or a hierarchy table name.

 Authorization:

 EXECUTE privilege on the ADMIN_GET_TAB_INFO table function.

 Example:

 Example 1: Retrieve size and state information for the table

DBUSER1.EMPLOYEE.

SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_INFO('DBUSER1', 'EMPLOYEE'))

 AS T

Example 2: Suppose there exists a non-partitioned table

(DBUSER1.EMPLOYEE), with all associated objects (for example, indexes

and LOBs) stored in a single table space. Calculate how much physical

space the table is using in the table space:

SELECT (data_object_p_size + index_object_p_size + long_object_p_size +

 lob_object_p_size + xml_object_p_size) as total_p_size

 FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO(’DBUSER1’, ’EMPLOYEE’)) AS T

Calculate how much space would be required if the table were moved to

another table space, where the new table space has the same page size and

extent size as the original table space:

SELECT (data_object_l_size + index_object_l_size + long_object_l_size +

 lob_object_l_size + xml_object_l_size) as total_l_size

 FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO(’DBUSER1’, ’EMPLOYEE’)) AS T

 Usage notes:

 v If both the tabschema and tabname are specified, information is returned

for that specific table only.

v If the tabschema is specified but tabname is empty (") or NULL,

information is returned for all tables in the given schema.

v If the tabschema is empty (") or NULL and tabname is specified, the value

of CURRENT_SCHEMA is assumed and information is returned only for

the specified table.

v If both tabschema and tabname are empty (") or NULL, information is

returned for all tables.

v If tabschema or tabname do not exist, or tabname does not correspond to a

table name (type T), a materialized query table name (type S) or a

hierarchy table name (type H), an empty result set is returned.

v When the ADMIN_GET_TAB_INFO table function is retrieving data for

a given table, it will acquire a shared lock on the corresponding row of

ADMINTABINFO and ADMIN_GET_TAB_INFO

Chapter 3. Supported administrative SQL routines and views 507

SYSTABLES to ensure consistency of the data that is returned (for

example, to ensure that the table is not dropped while information is

being retrieved for it). The lock will only be held for as long as it takes

to retrieve the size and state information for the table, not for the

duration of the table function call.

v Physical size reported for tables in SMS table spaces is the same as

logical size.

v When an inplace reorg is active on a table, the physical size for the data

object (DATA_OBJECT_P_SIZE) will not be calculated. Only the logical

size will be returned. You can tell if an inplace reorg is active on the

table by looking at the INPLACE_REORG_STATUS output column.

v The logical size reported for LOB objects created before DB2 UDB

Version 8 might be larger than the physical size if the objects have not

yet been reorganized.

ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata

 Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata

Column name Data type Description

TABSCHEMA VARCHAR(128) Schema name.

TABNAME VARCHAR(128) Table name.

TABTYPE CHAR(1) Table type:

v 'H' = hierarchy table

v 'S' = materialized query

table

v 'T' = table

DBPARTITIONNUM SMALLINT Database partition number.

DATA_PARTITION_ID INTEGER Data partition number.

AVAILABLE CHAR(1) State of the table:

v 'N' = the table is

unavailable. If the table is

unavailable, all other

output columns relating to

the size and state will be

NULL.

v 'Y' = the table is available.

Note: Rollforward through

an unrecoverable load will

put a table into the

unavailable state.

ADMINTABINFO and ADMIN_GET_TAB_INFO

508 Administrative SQL Routines and Views

Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata (continued)

Column name Data type Description

DATA_OBJECT_L_SIZE BIGINT Data object logical size.

Amount of disk space

logically allocated for the

table, reported in kilobytes.

The logical size is the amount

of space that the table knows

about. It might be less than

the amount of space

physically allocated for the

table (for example, in the case

of a logical table truncation).

For multi-dimensional

clustering (MDC) tables, this

size includes the logical size

of the block map object. The

size returned takes into

account full extents that are

logically allocated for the

table and, for objects created

in DMS table spaces, an

estimate of the Extent Map

Page (EMP) extents. This size

represents the logical size of

the base table only. Space

consumed by LOB data, Long

Data, Indexes and XML

objects are reported by other

columns.

DATA_OBJECT_P_SIZE BIGINT Data object physical size.

Amount of disk space

physically allocated for the

table, reported in kilobytes.

For MDC tables, this size

includes the size of the block

map object. The size returned

takes into account full extents

allocated for the table and

includes the EMP extents for

objects created in DMS table

spaces. This size represents

the physical size of the base

table only. Space consumed

by LOB data, Long Data,

Indexes and XML objects are

reported by other columns.

ADMINTABINFO and ADMIN_GET_TAB_INFO

Chapter 3. Supported administrative SQL routines and views 509

Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata (continued)

Column name Data type Description

INDEX_OBJECT_L_SIZE BIGINT Index object logical size.

Amount of disk space

logically allocated for the

indexes defined on the table,

reported in kilobytes. The

logical size is the amount of

space that the table knows

about. It might be less than

the amount of space

physically allocated to hold

index data for the table (for

example, in the case of a

logical table truncation). The

size returned takes into

account full extents that are

logically allocated for the

indexes and, for indexes

created in DMS table spaces,

an estimate of the EMP

extents. This value is only

reported for non-partitioned

tables. For partitioned tables,

this value will be 0.

INDEX_OBJECT_P_SIZE BIGINT Index object physical size.

Amount of disk space

physically allocated for the

indexes defined on the table,

reported in kilobytes. The

size returned takes into

account full extents allocated

for the indexes and includes

the EMP extents for indexes

created in DMS table spaces.

This value is only reported

for non-partitioned tables.

For partitioned tables this

value will be 0.

ADMINTABINFO and ADMIN_GET_TAB_INFO

510 Administrative SQL Routines and Views

Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata (continued)

Column name Data type Description

LONG_OBJECT_L_SIZE BIGINT Long object logical size.

Amount of disk space

logically allocated for long

field data in a table, reported

in kilobytes. The logical size

is the amount of space that

the table knows about. It

might be less than the

amount of space physically

allocated to hold long field

data for the table (for

example, in the case of a

logical table truncation). The

size returned takes into

account full extents that are

logically allocated for long

field data and, for long field

data created in DMS table

spaces, an estimate of the

EMP extents.

LONG_OBJECT_P_SIZE BIGINT Long object physical size.

Amount of disk space

physically allocated for long

field data in a table, reported

in kilobytes. The size

returned takes into account

full extents allocated for long

field data and includes the

EMP extents for long field

data created in DMS table

spaces.

LOB_OBJECT_L_SIZE BIGINT LOB object logical size.

Amount of disk space

logically allocated for LOB

data in a table, reported in

kilobytes. The logical size is

the amount of space that the

table knows about. It might

be less than the amount of

space physically allocated to

hold LOB data for the table

(for example, in the case of a

logical table truncation). The

size includes space logically

allocated for the LOB

allocation object. The size

returned takes into account

full extents that are logically

allocated for LOB data and,

for LOB data created in DMS

table spaces, an estimate of

the EMP extents.

ADMINTABINFO and ADMIN_GET_TAB_INFO

Chapter 3. Supported administrative SQL routines and views 511

Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata (continued)

Column name Data type Description

LOB_OBJECT_P_SIZE BIGINT LOB object physical size.

Amount of disk space

physically allocated for LOB

data in a table, reported in

kilobytes. The size includes

space allocated for the LOB

allocation object. The size

returned takes into account

full extents allocated for LOB

data and includes the EMP

extents for LOB data created

in DMS table spaces.

XML_OBJECT_L_SIZE BIGINT XML object logical size.

Amount of disk space

logically allocated for XML

data in a table, reported in

kilobytes. The logical size is

the amount of space that the

table knows about. It might

be less than the amount of

space physically allocated to

hold XML data for the table

(for example, in the case of a

logical table truncation). The

size returned takes into

account full extents that are

logically allocated for XML

data and, for XML data

created in DMS table spaces,

an estimate of the EMP

extents.

XML_OBJECT_P_SIZE BIGINT XML object physical size.

Amount of disk space

physically allocated for XML

data in a table, reported in

kilobytes. The size returned

takes into account full extents

allocated for XML data and

includes the EMP extents for

XML data created in DMS

table spaces.

INDEX_TYPE SMALLINT Indicates the type of indexes

currently in use for the table.

Returns:

v 1 if type-1 indexes are

being used.

v 2 if type-2 indexes are

being used.

REORG_PENDING CHAR(1) A value of 'Y' indicates that a

reorg recommended alter has

been applied to the table and

a classic (offline) reorg is

required. Otherwise 'N' is

returned.

ADMINTABINFO and ADMIN_GET_TAB_INFO

512 Administrative SQL Routines and Views

Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata (continued)

Column name Data type Description

INPLACE_REORG_STATUS VARCHAR(10) Current status of an inplace

table reorganization on the

table. The status value can be

one of the following:

v ABORTED (in a PAUSED

state, but unable to

RESUME; STOP is

required)

v EXECUTING

v NULL (if no inplace reorg

has been performed on the

table)

v PAUSED

LOAD_STATUS VARCHAR(12) Current status of a load

operation against the table.

The status value can be one

of the following:

v IN_PROGRESS

v NULL (if there is no load

in progress for the table

and the table is not in load

pending state)

v PENDING

READ_ACCESS_ONLY CHAR(1) 'Y' if the table is in Read

Access Only state, 'N'

otherwise. A value of 'N'

should not be interpreted as

meaning that the table is

fully accessible. If a load is in

progress or pending, a value

of 'Y' means the table data is

available for read access, and

a value of 'N' means the table

is inaccessible. Similarly, if

the table status is set integrity

pending (refer to

SYSCAT.TABLES STATUS

column), then a value of 'N'

means the table is

inaccessible.

NO_LOAD_RESTART CHAR(1) A value of 'Y' indicates the

table is in a partially loaded

state that will not allow a

load restart. A value of 'N' is

returned otherwise.

NUM_REORG_REC_ALTERS SMALLINT Number of reorg recommend

alter operations (for example,

alter operations after which a

reorganization is required)

that have been performed

against this table since the

last reorganization.

ADMINTABINFO and ADMIN_GET_TAB_INFO

Chapter 3. Supported administrative SQL routines and views 513

Table 119. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO table

function metadata (continued)

Column name Data type Description

INDEXES_REQUIRE_

 REBUILD

CHAR(1) ’Y’ if any of the indexes

defined on the table require a

rebuild, and 'N' otherwise. If

no indexes are defined on the

table, 'N' will also be

returned, since there are no

indexes that require a

rebuild.

LARGE_RIDS CHAR(1) Indicates whether or not the

table is using large row IDs

(RIDs) (4 byte page number,

2 byte slot number). A value

of 'Y' indicates that the table

is using large RIDs and 'N'

indicates that it is not using

large RIDs. A value of 'P'

(pending) will be returned if

the table supports large RIDs

(that is, the table is in a large

table space), but at least one

of the indexes for the table

has not been reorganized or

rebuilt yet, so the table is still

using 4 byte RIDs (which

means that action must be

taken to convert the table or

indexes).

LARGE_SLOTS CHAR(1) Indicates whether or not the

table is using large slots

(which allows more than 255

rows per page). A value of 'Y'

indicates that the table is

using large slots and 'N'

indicates that it is not using

large slots. A value of 'P'

(pending) will be returned if

the table supports large slots

(that is, the table is in a large

table space), but there has

been no offline table

reorganization or table

truncation operation

performed on the table yet,

so it is still using a maximum

of 255 rows per page.

DICTIONARY_SIZE BIGINT Size of the dictionary, in

bytes, used for row

compression if a row

compression dictionary exists

for the table.

 Related concepts:

v “Index structure” in Performance Guide

ADMINTABINFO and ADMIN_GET_TAB_INFO

514 Administrative SQL Routines and Views

Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SYSCAT.TABLES catalog view” in SQL Reference, Volume 1

v “Administrative views versus table functions” on page 3

ADMINTABINFO and ADMIN_GET_TAB_INFO

Chapter 3. Supported administrative SQL routines and views 515

ALTOBJ

 The ALTOBJ procedure parses an input CREATE TABLE statement serving as the

target data definition language (DDL) for an existing table that is to be altered.

This procedure supports the following alter table operations and maintains

recoverable dependencies:

v Renaming a column

v Increasing or decreasing the size of a column

v Altering a column type and transforming existing data using DB2 scalar

functions

v Changing the precision or the scale of decimal values

v Changing the default value of a column

v Changing the nullability attribute of a column to nullable

v Dropping a column

 Syntax:

�� ALTOBJ (exec-mode , sql-stmt , alter-id , msg) ��

The schema is SYSPROC.

 Procedure parameters:

exec-mode

An input argument of type VARCHAR(30) that specifies one of the following

execution modes:

’GENERATE’

Specifies that all the scripts required by the VALIDATE, APPLY, and

UNDO modes are to be generated.

’VALIDATE’

Specifies that the statement syntax is to be validated. This option also

generates a script to manage the processing of related objects and

relationships for the table that is to be altered.

’APPLY_CONTINUE_ON_ERROR’ or ’APPLY_STOP_ON_ERROR’

Specifies that a script to manage the processing of related objects and

relationships for the table that is to be altered is to be generated. Data

from the original table is to be exported, transformed, and used to

populate the new table.

’UNDO’

Specifies that any changes made by the alter table operation are to be

undone, in case a rollback operation cannot recover errors that might

have occurred. This mode is only possible if the original table and any

generated scripts have not been deleted.

’FINISH’

Specifies that the renamed original table is to be dropped.

sql-stmt

An input argument of type VARCHAR(2048) that specifies a CREATE TABLE

statement that will be used as a template for altering an existing table. When

exec-mode is ’GENERATE’, sql-stmt must not be the null value. Otherwise,

sql-stmt can be the null value, but only if alter-id is not -1.

ALTOBJ

516 Administrative SQL Routines and Views

alter-id

An input and output argument of type INTEGER that identifies all of the

statements that are generated by this call. If -1 is specified, a new identifier

will be generated and returned to the caller. Any existing statements identified

by the specified integer are overwritten.

msg

An output argument of type VARCHAR(2048) containing an SQL query that

you can execute to display all of the SQL statements generated for or used by

the alter table process under the specified execution mode.

 Authorization:

 EXECUTE privilege on the ALTOBJ procedure.

DBADM with LOAD authority, and SETSESSIONUSER are also required.

 Examples:

 Example 1: Run the ALTOBJ procedure to alter column CL2 in table T1 from type

INTEGER to BIGINT. The original data definition language for table T1 is:

CREATE TABLE T1 (CL1 VARCHAR(5), CL2 INTEGER)

The ALTOBJ procedure call to alter the column data type is:

CALL SYSPROC.ALTOBJ(’APPLY_CONTINUE_ON_ERROR’,

 ’CREATE TABLE T1 (CL1 VARCHAR(5), CL2 BIGINT)’, -1, ?)

Example 2: Run the ALTOBJ procedure in VALIDATE mode with alter-id input.

CALL SYSPROC.ALTOBJ(’VALIDATE’, CAST (NULL AS VARCHAR(2048)), 123, ?)

 Usage notes:

 This procedure does not support the following alter table operations:

v Altering materialized query tables (MQTs) is not supported. Altering a table

which contains an MQT is supported.

v Altering typed tables is not supported.

v Altering a remote table using a nickname is not supported.

v Column sequence cannot be reordered.

v Adding and removing, or renaming and removing columns in one call to the

procedure is not supported, but adding and renaming columns is supported.

This is because the only way to indicate how the table is to be altered is by the

use of the target DDL, rather than column matching information. The following

rules are followed by the ALTOBJ procedure when transforming data from the

existing table to the altered table:

1. If the number of columns in the existing table is the same as the altered

table, it is assumed that no columns are being added or removed. The

columns in this case can only be renamed, and are matched by column

index.

2. If the number of columns in the existing table is less than in the altered table,

it is assumed that columns are being added. The columns can be renamed,

and the new columns are added at the end. The existing columns are

matched by index.

ALTOBJ

Chapter 3. Supported administrative SQL routines and views 517

3. If the number of columns in the existing table is greater than in the altered

table, it is assumed that columns are being removed. The columns cannot be

renamed and matched by name. The column that is being dropped can be

any existing column in the table.
v Structured type UDTs and Reference type UDTs are not supported.

v MQTs defined on a base table which is altered are not populated during the

alter table process.

If a table is altered using the ALTOBJ procedure, and the table has an MQT

defined, the MQT will be created, but it will not be populated with data.

If a table is altered using the ALTOBJ procedure, and the table has an MQT

defined, any columns that are not part of the select result from the table being

altered are lost because the MQT content is rebuilt from the new base table.

The definition of the objects might change between ALTOBJ procedure calls

because there are no object locks that persist through different sessions.

The table profiles (such as runstats profile) that are associated with the table are

lost after going through this extensive alter process.

The SYSTOOLSPACE is used for the routine’s operation tables to store metadata;

that is, data used to describe database objects and their operation.

 Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “GRANT (SETSESSIONUSER Privilege) statement” in SQL Reference, Volume 2

ALTOBJ

518 Administrative SQL Routines and Views

APPLICATION_ID

 The APPLICATION_ID function returns the application ID of the current

connection. The data type of the result is VARCHAR(128).

The value returned by the function is unique within a 100-year interval and valid

only for the duration of the connection established before calling the function.

 Syntax:

�� APPLICATION_ID () ��

The schema is SYSFUN.

 Example:

 SELECT APPLICATION_ID() AS APPL_ID FROM SYSIBM.SYSDUMMY1

 Related reference:

v “appl_id - Application ID monitor element” in System Monitor Guide and

Reference

v “Supported administrative SQL routines and views” on page 8

APPLICATION_ID

Chapter 3. Supported administrative SQL routines and views 519

COMPILATION_ENV table function – Retrieve compilation

environment elements

 The COMPILATION_ENV table function returns the elements of a compilation

environment.

 Syntax:

�� COMPILATION_ENV (compilation-env) ��

 The schema is SYSPROC.

 Table function parameter:

compilation-env

An input argument of type BLOB(2 M)that contains a compilation environment

provided by a deadlock event monitor.

 The function returns a table of two columns (see Table 120): NAME

VARCHAR(256) and VALUE VARCHAR(1024). The possible values for the

compilation environment element names are described in Table 121 on page 521.

The origin of the element values depends primarily on whether the SQL statement

is issued dynamically or bound as part of a package.

The number and types of entries in a compilation environment can change over

time as capabilities are added to the DB2 database manager. If the compilation

environment is from a different DB2 database manager level than the level on

which this function is executing, only those elements that are recognized by the

level of the function are returned. The descriptions of the elements might also vary

from release to release.

 Examples:

 Example 1: Request all the elements of a specific compilation environment that was

previously captured by a deadlock event monitor. A deadlock event monitor that is

created specifying the WITH DETAILS HISTORY option will capture the

compilation environment for dynamic SQL statements. This captured environment

is what is accepted as input to the table function.

 SELECT NAME, VALUE

 FROM TABLE(SYSPROC.COMPILATION_ENV(:hv1)) AS t

Example 2: Request a specific element (the default schema) of a compilation

environment.

 SELECT NAME, VALUE

 FROM TABLE(SYSPROC.COMPILATION_ENV(:hv1)) AS t

 WHERE NAME = ’SCHEMA’

 Information returned:

 Table 120. Information returned by the COMPILATION_ENV table function

Column name Data type Description

NAME VARCHAR(256) Element of compilation

environment. See Table 121

on page 521 for more details.

VALUE VARCHAR(1024) Value of the element.

COMPILATION_ENV

520 Administrative SQL Routines and Views

Table 121. Elements of a compilation environment returned by the COMPILATION_ENV table

function

Element name Description

ISOLATION The isolation level passed to the SQL compiler. The value is

obtained from either the CURRENT ISOLATION special

register or the ISOLATION bind option of the current

package.

QUERY_OPTIMIZATION The query optimization level passed to the SQL compiler.

The value is obtained from either the CURRENT QUERY

OPTIMIZATION special register or the QUERYOPT bind

option of the current package.

MIN_DEC_DIV_3 The requested decimal computational scale passed to the

SQL compiler. The value is obtained from the min_dec_div_3

database configuration parameter.

DEGREE The requested degree of intra-parallelism passed to the SQL

compiler. The value is obtained from either the CURRENT

DEGREE special register or the DEGREE bind option of the

current package.

SQLRULES The requested SQL statement behaviors passed to the SQL

compiler. The value is derived from the setting of the

LANGLVL bind option of the current package. The possible

values are ’DB2’ or ’SQL92’.

REFRESH_AGE The allowable data latency passed to the SQL compiler. The

value is obtained from either the CURRENT REFRESH AGE

special register or the REFRESHAGE bind option of the

current package.

SCHEMA The default schema passed to the SQL compiler. The value

is obtained from either the CURRENT SCHEMA special

register or the QUALIFIER bind option of the current

package.

PATH The function path passed to the SQL compiler. The value is

obtained from either the CURRENT PATH special register or

the FUNC_PATH bind option of the current package.

TRANSFORM_GROUP The transform group information passed to the SQL

compiler. The value is obtained from either the CURRENT

DEFAULT TRANSFORM GROUP special register or the

TRANSFORMGROUP package bind option.

MAINTAINED_TABLE_TYPE An indicator of what table types can be considered for

optimization, passed to the SQL compiler. The value is

obtained from the CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION special register.

RESOLUTION_TIMESTAMP The timestamp that is to be used by the SQL compiler for

resolving items such as function and data type references in

an SQL statement. This timestamp is either the current

timestamp or the timestamp of the last explicit bind

operation for the current package.

FEDERATED_ASYNCHRONY The requested degree of federated asynchrony parallelism

passed to the SQL compiler. The value is obtained from

either the CURRENT FEDERATED ASYNCHRONY special

register or the FEDERATED_ASYNCHRONY bind option of

the current package.

 Related reference:

COMPILATION_ENV

Chapter 3. Supported administrative SQL routines and views 521

v “Supported administrative SQL routines and views” on page 8

v “CREATE EVENT MONITOR statement” in SQL Reference, Volume 2

v “SET COMPILATION ENVIRONMENT statement” in SQL Reference, Volume 2

COMPILATION_ENV

522 Administrative SQL Routines and Views

CONTACTGROUPS administrative view – Retrieve the list of

contact groups

 The CONTACTGROUPS administrative view returns the list of contact groups,

which can be defined locally on the system or in a global list. The setting of the

Database Administration Server (DAS) CONTACT_HOST configuration parameter

determines whether the list is local or global.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the CONTACTGROUPS administrative view

and EXECUTE privilege on the ADMIN_GET_CONTACTGROUPS table function.

 Example:

 Retrieve all contact group lists.

SELECT * FROM SYSIBMADM.CONTACTGROUPS

The following is an example of output for this query.

NAME DESCRIPTION MEMBERNAME MEMBERTYPE

-------...--- ------------------------...--- -----------...--- ----------

group1 DBA Group1 Contact List name1 CONTACT

group1 DBA Group1 Contact List name9 CONTACT

group2 DBA Group2 List name2 CONTACT

group3 group2 GROUP

group5 DBA Group5 group2 GROUP

group6 DBA Group6 group3 GROUP

group7 name1 CONTACT

 7 record(s) selected.

 Usage note:

 The DAS must have been created and be running.

 Information returned:

 Table 122. Information returned by the CONTACTGROUPS administrative view

Column name Data type Description

NAME VARCHAR(128) Name of the contact group.

DESCRIPTION VARCHAR(128) Description of the contact

group.

MEMBERNAME VARCHAR(128) Name of the member in the

contact group. This name can

refer to a contact or another

contact group.

MEMBERTYPE VARCHAR(7) Type of member in the

contact group. The type is

either CONTACT or GROUP.

 Related tasks:

v “Notification and contact list setup and configuration” in Administration Guide:

Implementation

CONTACTGROUPS

Chapter 3. Supported administrative SQL routines and views 523

Related reference:

v “contact_host - Location of contact list configuration parameter” in Performance

Guide

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

CONTACTGROUPS

524 Administrative SQL Routines and Views

CONTACTS administrative view – Retrieve list of contacts

 The CONTACTS administrative view returns the list of contacts defined on the

database server. The setting of the Database Administration Server (DAS)

CONTACT_HOST configuration parameter determines whether the list is local or

global.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the CONTACTS administrative view and

EXECUTE privilege on the ADMIN_GET_CONTACTS table function.

 Example:

 Retrieve all contacts.

SELECT * FROM SYSIBMADM.CONTACTS

The following is an example of output for this query.

NAME TYPE ADDRESS MAX_PAGE_LENGTH DESCRIPTION

-----...- ----- ----------------...- --------------- ------------------...-

user1 EMAIL user3@ca.ibm.com - DBA Extraordinaire

user2 EMAIL user2@ca.ibm.com - DBA on Email

user3 PAGE user3@ca.ibm.com 128 DBA on Page

user5 EMAIL user2@ca.ibm.com - DBA Extraordinaire

 4 record(s) selected.

 Usage note:

 The DAS must have been created and be running.

 Information returned:

 Table 123. Information returned by the CONTACTS administrative view

Column name Data type Description

NAME VARCHAR(128) Name of contact.

TYPE VARCHAR(5) Type of contact:

v 'EMAIL'

v 'PAGE'

ADDRESS VARCHAR(128) SMTP mailbox address of the

recipient. For example,

joe@somewhere.org.

MAX_PAGE_LENGTH INTEGER Maximum message length.

Used for example, if the

paging service has a

message-length restriction.

DESCRIPTION VARCHAR(128) Description of contact.

 Related tasks:

v “Notification and contact list setup and configuration” in Administration Guide:

Implementation

 Related reference:

CONTACTS

Chapter 3. Supported administrative SQL routines and views 525

v “Supported administrative SQL routines and views” on page 8

v “contact_host - Location of contact list configuration parameter” in Performance

Guide

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

CONTACTS

526 Administrative SQL Routines and Views

DB_HISTORY administrative view – Retrieve history file

information

 The DB_HISTORY administrative view returns information from the history files

from all database partitions.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the DB_HISTORY administrative view and

EXECUTE privilege on the ADMIN_LIST_HIST table function.

 Example:

 Select the database partition number, entry ID, operation, start time, and status

information from the database history files for all the database partitions of the

database to which the client is currently connected.

SELECT DBPARTITIONNUM, EID, OPERATION, START_TIME, ENTRY_STATUS

 FROM SYSIBMADM.DB_HISTORY

The following is an example of output for this query.

DBPARTITIONNUM EID OPERATION START_TIME ENTRY_STATUS

-------------- -------------------- --------- -------------- ------------

 0 1 A 20051109185510 A

 1 record(s) selected.

 Information returned:

 Table 124. Information returned by the DB_HISTORY administrative view

Column name Data type Description

DBPARTITIONNUM SMALLINT Database partition number.

EID BIGINT Number that uniquely

identifies an entry in the

history file.

START_TIME VARCHAR(14) Timestamp marking the start

of a logged event.

SEQNUM SMALLINT Sequence number.

END_TIME VARCHAR(14) Timestamp marking the end

of a logged event.

FIRSTLOG VARCHAR(254) Name of the earliest

transaction log associated

with an event.

LASTLOG VARCHAR(254) Name of the latest transaction

log associated with an event.

BACKUP_ID VARCHAR(24) Backup identifier or unique

table identifier.

TABSCHEMA VARCHAR(128) Table schema.

TABNAME VARCHAR(128) Table name.

COMMENT VARCHAR(254) System-generated comment

text associated with a logged

event.

DB_HISTORY

Chapter 3. Supported administrative SQL routines and views 527

Table 124. Information returned by the DB_HISTORY administrative view (continued)

Column name Data type Description

CMD_TEXT CLOB(2 M) Data definition language

associated with a logged

event.

NUM_TBSPS INTEGER Number of table spaces

associated with a logged

event.

TBSPNAMES CLOB(5 M) Names of the table spaces

associated with a logged

event.

OPERATION CHAR(1) Operation identifier. See

Table 125 on page 529 for

possible values.

OPERATIONTYPE CHAR(1) Action identifier for an

operation. See Table 125 on

page 529 for possible values.

OBJECTTYPE CHAR(1) Identifier for the target object

of an operation. The possible

values are: D for full

database, P for table space,

and T for table.

LOCATION VARCHAR(255) Full path name for files, such

as backup images or load

input file, that are associated

with logged events.

DEVICETYPE CHAR(1) Identifier for the device type

associated with a logged

event. This field determines

how the LOCATION field is

interpreted. The possible

values are: A for TSM, C for

client, D for disk, K for

diskette, L for local, O for

other (for other vendor

device support), P for pipe, Q

for cursor, S for server, T for

tape, and U for user exit.

ENTRY_STATUS CHAR(1) Identifier for the status of an

entry in the history file. The

possible values are: A for

active, D for deleted (future

use), E for expired, I for

inactive, N for not yet

committed, Y for committed

or active.

SQLCAID VARCHAR(8) An ″eye catcher″ for storage

dumps containing ’SQLCA’,

as it appears in the SQLCAID

field of the SQL

communications area

(SQLCA).

SQLCABC INTEGER Length of the SQLCA, as it

appears in the SQLCABC

field of the SQLCA.

DB_HISTORY

528 Administrative SQL Routines and Views

Table 124. Information returned by the DB_HISTORY administrative view (continued)

Column name Data type Description

SQLCODE INTEGER SQL return code, as it

appears in the SQLCODE

field of the SQLCA.

SQLERRML SMALLINT Length indicator for

SQLERRMC, as it appears in

the SQLERRML field of the

SQLCA.

SQLERRMC VARCHAR(70) Contains one or more tokens,

separated by X’FF’, as they

appear in the SQLERRMC

field of the SQLCA. These

tokens are substituted for

variables in the descriptions

of error conditions.

SQLERRP VARCHAR(8) A three-letter identifier

indicating the product,

followed by five digits

indicating the version,

release, and modification

level of the product, as they

appear in the SQLERRP field

of the SQLCA.

SQLERRD1 INTEGER See SQLCA (SQL

communications area).

SQLERRD2 INTEGER See SQLCA (SQL

communications area).

SQLERRD3 INTEGER See SQLCA (SQL

communications area).

SQLERRD4 INTEGER See SQLCA (SQL

communications area).

SQLERRD5 INTEGER See SQLCA (SQL

communications area).

SQLERRD6 INTEGER See SQLCA (SQL

communications area).

SQLWARN VARCHAR(11) A set of warning indicators,

each containing a blank or

’W’. See SQLCA (SQL

communications area).

SQLSTATE VARCHAR(5) A return code that indicates

the outcome of the most

recently executed SQL

statement, as it appears in the

SQLSTATE field of the

SQLCA.

 Table 125. OPERATION and OPERATIONTYPE values

Operation value Operation value description Operation type

A Add table space None

DB_HISTORY

Chapter 3. Supported administrative SQL routines and views 529

Table 125. OPERATION and OPERATIONTYPE values (continued)

Operation value Operation value description Operation type

B Backup Operation types are:

v D = delta offline

v E = delta online

v F = offline

v I = incremental offline

v N = online

v O = incremental online

C Load copy None

D Dropped table None

F Rollforward Operation types are:

v E = end of logs

v P = point in time

G Reorganize table Operation types are:

v F = offline

v N = online

L Load Operation types are:

v I = insert

v R = replace

N Rename table space None

O Drop table space None

Q Quiesce Operation types are:

v S = quiesce share

v U = quiesce update

v X = quiesce exclusive

v Z = quiesce reset

R Restore Operation types are:

v F = offline

v I = incremental offline

v N = online

v O = incremental online

v R = rebuild

T Alter table space Operation types are:

v C = add containers

v R = rebalance

U Unload None

DB_HISTORY

530 Administrative SQL Routines and Views

Table 125. OPERATION and OPERATIONTYPE values (continued)

Operation value Operation value description Operation type

X Archive logs Operation types are:

v F = fail archive path

v M = mirror log path

v N = forced truncation via

ARCHIVE LOG command

v P = primary log path

v 1 = first log archive

method

v 2 = second log archive

method

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “LIST HISTORY command” in Command Reference

v “SQLCA (SQL communications area)” in SQL Reference, Volume 1

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

DB_HISTORY

Chapter 3. Supported administrative SQL routines and views 531

DBPATHS administrative view – Retrieve database paths

 The DBPATHS administrative view returns the values for database paths required

for tasks such as split mirror backups.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the DBPATHS administrative view and

EXECUTE privilege on ADMIN_LIST_DB_PATHS table function.

 Example:

 Retrieve all database paths.

SELECT * FROM SYSIBMADM.DBPATHS

The following is an example of output for this query.

DBPARTITIONNUM TYPE ...

-------------- ------------------------...

 0 LOGPATH ...

 0 MIRRORLOGPATH ...

 0 DB_STORAGE_PATH ...

 0 DB_STORAGE_PATH ...

 0 TBSP_CONTAINER ...

 0 TBSP_CONTAINER ...

 0 TBSP_CONTAINER ...

 0 TBSP_DIRECTORY ...

 0 TBSP_DIRECTORY ...

 0 LOCAL_DB_DIRECTORY ...

 0 DBPATH ...

 11 record(s) selected.

Output for this query (continued).

... PATH

... --

... S:\dbfiles\INST5\NODE0000\SQL00001\SQLOGDIR\

... S:\mirrorlogs\NODE0000\

... S:\dbfiles\

... S:\dbfile2\

... S:\dbfiles\INST5\NODE0000\SQL00001\TS3

... S:\dbfiles\INST5\NODE0000\SQL00001\long3

... S:\dbfiles\INST5\NODE0000\SQL00001\regular05

... S:\dbfiles\INST5\NODE0000\SQL00001\usertemp3\

... S:\dbfiles\INST5\NODE0000\SQL00001\systemp3\

... S:\dbfiles\INST5\NODE0000\SQLDBDIR\

... S:\dbfiles\INST5\NODE0000\SQL00001\

 Information returned:

 Table 126. Information returned by the DBPATHS administrative view

Column name Data type Description

DBPARTITIONNUM SMALLINT Database partition number.

DBPATHS

532 Administrative SQL Routines and Views

Table 126. Information returned by the DBPATHS administrative view (continued)

Column name Data type Description

TYPE VARCHAR(64) Describes the type of

database object that the path

belongs to. For example the

path to the log directory

indicated by the LOGPATH

database configuration

parameter would be shown

in this column as LOGPATH.

See Table 127 for a list of

possible return values.

PATH VARCHAR(5000) Path to location where the

database manager has a file

or directory located. If the

path ends with the file

system delimiter (’/’ on

UNIX environments, ’\’ on

Windows environments), the

path points to a directory.

 Table 127. TYPE column values

Type value Description

TBSP_DEVICE Raw device for a database managed space

(DMS) table space.

TBSP_CONTAINER File container for a DMS table space.

TBSP_DIRECTORY Directory for a system managed space (SMS)

table space.

LOGPATH Primary log path.

LOGPATH_DEVICE Raw device for primary log path.

MIRRORLOGPATH Database configuration mirror log path.

DB_STORAGE_PATH Automatic storage path.

DBPATH Database directory path.

LOCAL_DB_DIRECTORY Path to the local database directory.

DBPATHS

Chapter 3. Supported administrative SQL routines and views 533

Table 127. TYPE column values (continued)

Type value Description

v For table spaces using automatic storage, both used and unused storage paths are

returned. The unused automatic storage paths are needed in case the split mirror backup

is restored. Consider the following example: A split mirror backup is taken on a

production system. After the backup completes, the automatic storage paths that were not

in use before the backup are now in use in production. Assume that there is now a need

to restore the split mirror backup. At this point, it is necessary to roll forward the logs

from the production database. In order to roll forward the logs, all of the automatic

storage paths are required since all automatic storage paths are now in use.

v Table space containers managed by automatic storage are not returned individually.

Instead, they are reflected in the automatic storage path column.

v The automatic storage paths are returned once per database partition.

v The values returned for LOGPATH and MIRRORLOGPATH are the values stored in

memory. Changed values stored on disk, which are only applicable after a database

restart, are not returned.

v If output from SELECT * FROM SYSIBMADM.DBPATHS is being used to create a db2relocatedb

configuration file (a file containing the configuration information necessary for relocating

a database), the DBPATH output must be modified appropriately before it can be used in

the configuration file.

For example, the following DBPATH output:

/storage/svtdbm3/svtdbm3/NODE0000/SQL00001/

can be used to specify the DB_PATH parameter in a db2relocatedb configuration file as

follows:

DB_PATH=/storage/svtdbm3,/storage_copy2/svtdbm3

v The LOCAL_DB_DIRECTORY path might contain information belonging to multiple

databases. Because the sqldbdir is not separated for multiple databases created in the

same directory, ensure that the target system to which files will be copied does not have

any databases already existing in that path.

v If two or more databases share at least one automatic storage path, the split mirror

operation for one of these databases might affect more than one database, causing I/O

problems for the databases that were not intended to be split.

 Restriction:

 This administrative view cannot be called when the database is in WRITE

SUSPEND mode. The database administrator must ensure that the physical layout

of the database does not change in the time between the invocation of the view

and the activation of the WRITE SUSPEND mode, which is needed to perform the

split mirror operation. The split mirror backup image might not be restored

successfully if, for example, the table space layout changed in that time.

 Related concepts:

v “Automatic storage databases” in Administration Guide: Implementation

v “High availability through online split mirror and suspended I/O support” in

Data Recovery and High Availability Guide and Reference

 Related tasks:

v “Using a split mirror as a backup image” in Data Recovery and High Availability

Guide and Reference

v “Using a split mirror as a standby database” in Data Recovery and High

Availability Guide and Reference

v “Using a split mirror to clone a database” in Data Recovery and High Availability

Guide and Reference

DBPATHS

534 Administrative SQL Routines and Views

Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

v “db2relocatedb - Relocate database command” in Command Reference

v “SET WRITE command” in Command Reference

DBPATHS

Chapter 3. Supported administrative SQL routines and views 535

EXPLAIN_GET_MSGS

�� EXPLAIN_GET_MSGS (explain-requester , explain-time , source-name , �

� source-schema , source-version , explain-level , stmtno , sectno , �

� locale) ��

The schema is the same as the Explain table schema.

The EXPLAIN_GET_MSGS table function queries the EXPLAIN_DIAGNOSTIC and

EXPLAIN_DIAGNOSTIC_DATA Explain tables, and returns formatted messages.

Any of the following input arguments can be null. If an argument is null, it is not

used to limit the query.

explain-requester

An input argument of type VARCHAR(128) that specifies the authorization ID

of the initiator of this Explain request. A null value excludes this parameter

from the search condition of the query.

explain-time

An input argument of type TIMESTAMP that specifies the time of initiation for

the Explain request. A null value excludes this parameter from the search

condition of the query.

source-name

An input argument of type VARCHAR(128) that specifies the name of the

package running when the dynamic statement was explained, or the name of

the source file when the static SQL statement was explained. A null value

excludes this parameter from the search condition of the query.

source-schema

An input argument of type VARCHAR(128) that specifies the schema, or

qualifier, of the source of the Explain request. A null value excludes this

parameter from the search condition of the query.

source-version

An input argument of type VARCHAR(64) that specifies the version of the

source of the Explain request. A null value excludes this parameter from the

search condition of the query.

explain-level

An input argument of type CHAR(1) that specifies the level of Explain

information for which this row is relevant. A null value excludes this

parameter from the search condition of the query.

stmtno

An input argument of type INTEGER that specifies the statement number

within the package to which this Explain information is related. A null value

excludes this parameter from the search condition of the query.

sectno

An input argument of type INTEGER that specifies the section number within

the package to which this Explain information is related. A null value excludes

this parameter from the search condition of the query.

EXPLAIN_GET_MSGS

536 Administrative SQL Routines and Views

locale

An input argument of type VARCHAR(33) that specifies the locale of returned

messages. If the specified locale is not installed on the DB2 server, the value is

ignored.

 The function returns a table as shown below.

 Table 128. Information returned by the EXPLAIN_GET_MSGS table function

Column name Data type Description

EXPLAIN_REQUESTER VARCHAR(128) Authorization ID of the initiator of

this Explain request.

EXPLAIN_TIME TIMESTAMP Time of initiation for the Explain

request.

SOURCE_NAME VARCHAR(128) Name of the package running when

the dynamic statement was explained,

or the name of the source file when

the static SQL statement was

explained.

SOURCE_SCHEMA VARCHAR(128) Schema, or qualifier, of the source of

the Explain request.

SOURCE_VERSION VARCHAR(64) Version of the source of the Explain

request.

EXPLAIN_LEVEL CHAR(1) Level of Explain information for

which this row is relevant.

STMTNO INTEGER Statement number within the package

to which this Explain information is

related.

SECTNO INTEGER Section number within the package to

which this Explain information is

related.

DIAGNOSTIC_ID INTEGER ID of the diagnostic for a particular

instance of a statement in the

EXPLAIN_STATEMENT table.

LOCALE VARCHAR(33) Locale of returned messages. This

locale will not match the specified

locale if the latter is not installed on

the DB2 server.

MSG VARCHAR(4096) Formatted message text.

Example

Request formatted English messages from the Explain tables in the default schema

for requester SIMMEN that were generated in the last hour. Specify a source name

of SQLC2E03.

 SELECT MSG

 FROM TABLE(EXPLAIN_GET_MSGS(

 ’SIMMEN’,

 CAST(NULL AS TIMESTAMP),

 ’SQLC2E03’,

 CAST(NULL AS VARCHAR(128)),

 CAST(NULL AS VARCHAR(64)),

 CAST(NULL AS CHAR(1)),

 CAST(NULL AS INTEGER),

 CAST(NULL AS INTEGER),

EXPLAIN_GET_MSGS

Chapter 3. Supported administrative SQL routines and views 537

’en_US’))

 AS REGISTRYINFO

 WHERE EXPLAIN_TIME >= (CURRENT TIME - 1 HOUR)

 ORDER BY DIAGNOSTIC_ID

The following is an example of output from this query.

MSG

--

EXP0012W Invalid access request. The index "index1" could not be found.

 Line number "554", character number "20".

EXP0012W Invalid access request. The index "index2" could not be found.

 Line number "573", character number "20".

EXP0015W Invalid join request. Join refers to tables that are not in

 the same FROM clause. Line number "573", character number "20".

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “EXPLAIN_STATEMENT table” in SQL Reference, Volume 1

EXPLAIN_GET_MSGS

538 Administrative SQL Routines and Views

GET_DBSIZE_INFO

 The GET_DBSIZE_INFO procedure calculates the database size and maximum

capacity.

 Syntax:

�� GET_DBSIZE_INFO (snapshot-timestamp , dbsize , dbcapacity , �

� refresh-window) ��

The schema is SYSPROC.

 Procedure parameters:

snapshot-timestamp

An output parameter of type TIMESTAMP that returns the time at which dbsize

and dbcapacity were calculated. This timestamp, along with the value of

refresh-window, is used to determine when the cached values in the

SYSTOOLS.STMG_DBSIZE_INFO table need to be refreshed.

dbsize

An output parameter of type BIGINT that returns the size of the database (in

bytes). The database size is calculated as follows: dbsize = sum (used_pages *

page_size) for each table space (SMS & DMS).

dbcapacity

An output parameter of type BIGINT that returns the database capacity (in

bytes). This value is not available on partitioned database systems. The

database capacity is calculated as follows: dbcapacity = SUM (DMS

usable_pages * page size) + SUM (SMS container size + file system free size

per container). If multiple SMS containers are defined on the same file system,

the file system free size is included only once in the calculation of capacity.

refresh-window

An input argument of type INTEGER that specifies the number of minutes

until the cached values for database size and capacity are to be refreshed.

Specify -1 for the default refresh window of 30 minutes. A refresh window of 0

forces an immediate refreshing of the cached values.

 Authorization:

 v SYSMON authority

v EXECUTE privilege on the GET_DBSIZE_INFO procedure

 Examples:

 Example 1: Get the database size and capacity using a default refresh window of 30

minutes. The database size and capacity will be recalculated when the cached data

is older than 30 minutes.

CALL GET_DBSIZE_INFO(?, ?, ?, -1)

The procedure returns:

 Value of output parameters

 Parameter Name : SNAPSHOTTIMESTAMP

 Parameter Value : 2004-02-29-18.31.55.178000

GET_DBSIZE_INFO

Chapter 3. Supported administrative SQL routines and views 539

Parameter Name : DATABASESIZE

 Parameter Value : 22302720

 Parameter Name : DATABASECAPACITY

 Parameter Value : 4684793856

 Return Status = 0

Example 2: Get the database size and capacity using a refresh window of 0 minutes.

The database size and capacity will be recalculated immediately.

CALL GET_DBSIZE_INFO(?, ?, ?, 0)

The procedure returns:

Value of output parameters

Parameter Name : SNAPSHOTTIMESTAMP

Parameter Value : 2004-02-29-18.33.34.561000

Parameter Name : DATABASESIZE

Parameter Value : 22302720

Parameter Name : DATABASECAPACITY

Parameter Value : 4684859392

 Return Status = 0

Example 3: Get the database size and capacity using a refresh window of 24 hours.

The database size and capacity will be recalculated when the cached data is older

than 1440 minutes.

CALL GET_DBSIZE_INFO(?, ?, ?, 1440)

The procedure returns:

 Value of output parameters

 Parameter Name : SNAPSHOTTIMESTAMP

 Parameter Value : 2004-02-29-18.33.34.561000

 Parameter Name : DATABASESIZE

 Parameter Value : 22302720

 Parameter Name : DATABASECAPACITY

 Parameter Value : 4684859392

 Return Status = 0

 Usage notes:

 The calculated values are returned as procedure output parameters and are cached

in the SYSTOOLS.STMG_DBSIZE_INFO table. The procedure caches these values

because the calculations are costly. The SYSTOOLS.STMG_DBSIZE_INFO table is

created automatically the first time the procedure executes. If there are values

cached in the SYSTOOLS.STMG_DBSIZE_INFO table and they are current enough,

as determined by the snapshot-timestamp and refresh-window values, these cached

values are returned. If the cached values are not current enough, new cached

values are calculated, inserted into the SYSTOOLS.STMG_DBSIZE_INFO table and

returned, and the snapshot-timestamp value is updated.

To ensure that the data is returned by all partitions for a global table space

snapshot, the database must be activated.

GET_DBSIZE_INFO

540 Administrative SQL Routines and Views

The SYSTOOLSPACE is used for the routine’s operation tables to store metadata;

that is, data used to describe database objects and their operation.

 Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

GET_DBSIZE_INFO

Chapter 3. Supported administrative SQL routines and views 541

NOTIFICATIONLIST administrative view – Retrieve contact list

for health notification

 The NOTIFICATIONLIST administrative view returns the list of contacts and

contact groups that are notified about the health of an instance.

The schema is SYSIBMADM.

 Authorization:

 SELECT or CONTROL privilege on the NOTIFICATIONLIST administrative view

and EXECUTE privilege on the HEALTH_GET_NOTIFICATION_LIST table

function.

 Example:

 Retrieve all contacts that will receive notification of health alerts.

SELECT * FROM SYSIBMADM.NOTIFICATIONLIST

The following is an example of output for this query.

NAME TYPE

------------...------- -------

group3 GROUP

user4 CONTACT

group3 GROUP

 3 record(s) selected.

 Information returned:

 Table 129. Information returned by the NOTIFICATIONLIST administrative view

Column name Data type Description

NAME VARCHAR(128) Name of contact.

TYPE VARCHAR(7) Type of contact:

v 'CONTACT'

v 'GROUP'

 Related tasks:

v “Enabling health alert notification” in System Monitor Guide and Reference

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

v “Authorization for administrative views” on page 6

NOTIFICATIONLIST

542 Administrative SQL Routines and Views

PDLOGMSGS_LAST24HOURS administrative view and

PD_GET_LOG_MSGS table function – Retrieve problem

determination messages

 The “PDLOGMSGS_LAST24HOURS administrative view” and the

“PD_GET_LOG_MSGS table function” on page 545 return problem determination

log messages that were logged in the DB2 notification log. The information is

intended for use by database and system administrators.

PDLOGMSGS_LAST24HOURS administrative view

 The PDLOGMSGS_LAST24HOURS administrative view returns problem

determination log messages that were logged in the DB2 notification log in

the last 24 hours.

 The schema is SYSIBMADM.

 Refer to Table 130 on page 548 for a complete list of information that can

be returned.

 Authorization:

 SELECT or CONTROL privilege on the PDLOGMSGS_LAST24HOURS

administrative view and EXECUTE privilege on the PD_GET_LOG_MSGS

table function.

 Example:

 Get all critical log messages logged in the last 24 hours, ordered by most

recent.

SELECT * FROM SYSIBMADM.PDLOGMSGS_LAST24HOURS

 WHERE MSGSEVERITY = ’C’ ORDER BY TIMESTAMP DESC

The following is an example of output from this query.

TIMESTAMP TIMEZONE INSTANCENAME ...

-------------------------- ----------- ----------------- ...

2005-11-23-21.56.41.240066 -300 svtdbm4 ...

 ...

 ...

 ...

 ...

 ...

 ...

2005-11-23-21.56.39.150597 -300 svtdbm4 ...

2005-11-23-21.56.37.363384 -300 svtdbm4 ...

 ...

 ...

 ...

2005-11-23-21.56.35.880314 -300 svtdbm4 ...

 ...

 4 record(s) selected.

Output from this query (continued).

... DBPARTITIONNUM DBNAME PID PROCESSNAME ...

... -------------- ------------- ---...----- -------------------- ...

... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...

... ...

... ...

... ...

... ...

... ...

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

Chapter 3. Supported administrative SQL routines and views 543

... ...

... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...

... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...

... ...

... ...

... ...

... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...

... ...

... ...

Output from this query (continued).

...TID APPL_ID COMPONENT ...

...--- ------------------------------- --------------------- ...

... 1 9.26.15.148.36942.051124025612 oper system services ...

... ...

... ...

... ...

... ...

... ...

... ...

... 1 9.26.15.148.36942.051124025612 base sys utilities ...

... 1 9.26.15.148.36942.051124025612 relation data serv ...

... ...

... ...

... ...

... 1 9.26.15.148.36942.051124025612 relation data serv ...

... ...

... ...

Output from this query (continued).

... FUNCTION PROBE MSGNUM MSGTYPE ...

... ------------------ ------ ----------- ------- ...

... sqloSleepInstance 38 504 ADM ...

... ...

... ...

... ...

... ...

... ...

... ...

... sqleMarkDBad 10 7518 ADM ...

... sqlrr_dump_ffdc 10 1 ADM ...

... ...

... ...

... ...

... sqlrr_dump_ffdc 10 1 ADM ...

... ...

Output from this query (continued).

... MSGSEVERITY MSG

... ----------- -------------------------------------

... C ADM0504C An unexpected internal

... processing error has occurred. ALL

... DB2 PROCESSES ASSOCIATED WITH THIS

... INSTANCE HAVE BEEN SUSPENDED.

... Diagnostic information has been

... recorded. Contact IBM Support

... for further assistance.

... C ADM7518C "CAPTAIN " marked bad.

... C ADM0001C A severe error has occurred.

... Examine the administration notification

... log and contact IBM Support if

... necessary.

... C ADM0001C A severe error has occurred.

... Examine the administration notification

... log and contact IBM Support if necessary.

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

544 Administrative SQL Routines and Views

PD_GET_LOG_MSGS table function

 The PD_GET_LOG_MSGS table function returns the same information as

the PDLOGMSGS_LAST24HOURS administrative view, but allows you to

specify a specific time period that is not limited to the last 24 hours.

 Refer to Table 130 on page 548 for a complete list of information that can

be returned.

 Syntax:

�� PD_GET_LOG_MSGS (oldest_timestamp) ��

 The schema is SYSPROC.

 Table function parameter:

 oldest_timestamp

An input argument of type TIMESTAMP that specifies a valid

timestamp. Entries are returned starting with the most current

timestamp and ending with the log entry with the timestamp specified

by this input argument. If a null value is specified, all log entries are

returned.

 Authorization:

 EXECUTE privilege on the PD_GET_LOG_MSGS table function.

 Examples:

 Example 1: Retrieve all notification messages logged for database SAMPLE

on instance DB2 in the last week for all database partitions. Report

messages in chronological order.

SELECT TIMESTAMP, APPL_ID, DBPARTITIONNUM, MSG

 FROM TABLE (PD_GET_LOG_MSGS(CURRENT_TIMESTAMP - 7 DAYS)) AS T

 WHERE INSTANCENAME = ’DB2’ AND DBNAME = ’SAMPLE’

 ORDER BY TIMESTAMP ASC

The following is an example of output from this query.

TIMESTAMP APPL_ID DBPARTITIONNUM ...

-------------------------- -------------------------- -------------- ...

2005-11-13-12.51.37.772000 *LOCAL.DB2.050324175005 0 ...

 ...

2005-11-13-12.51.37.772001 *LOCAL.DB2.050324175005 0 ...

 ...

2005-11-13-12.51.37.781000 *LOCAL.DB2.050324175005 0 ...

 ...

2005-11-13-12.51.37.781001 *LOCAL.DB2.050324175005 0 ...

 ...

 ...

2005-11-17-14.12.39.036001 *LOCAL.DB2.041117191249 0 ...

2005-11-17-14.12.39.056000 *LOCAL.DB2.041117191249 0 ...

2005-11-17-14.13.04.450000 *LOCAL.DB2.041117191307 0 ...

2005-11-17-14.13.04.460000 *LOCAL.DB2.041117191307 0 ...

2005-11-17-14.18.29.042000 *LOCAL.DB2.041117190824 0 ...

...

...

...

Output from this query (continued).

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

Chapter 3. Supported administrative SQL routines and views 545

... MSG

... --...--

... ADM5502W The escalation of "143" locks on table

... "SYSIBM .SYSINDEXAUTH" to lock intent "X" was successful.

... ADM5502W The escalation of "144" locks on table

... "SYSIBM .SYSINDEXES" to lock intent "X" was successful.

... ADM5502W The escalation of "416" locks on table

... "SYSIBM .SYSINDEXCOLUSE" tolock intent "X" was successful.

... ADM5500W DB2 is performing lock escalation. The total

... number of locks currently held is "1129", and the target

... number of locks to hold is "564".

... ADM7506W Database quiesce has been requested.

... ADM7507W Database quiesce request has completed successfully.

... ADM7510W Database unquiesce has been requested.

... ADM7509W Database unquiesce request has completed successfully.

... ADM4500W A package cache overflow condition has occurred. There

... is no error but this indicates that the package cache has

... exceeded the configured maximum size. If this condition persists,

... you may want to adjust the PCKCACHESZ DB configuration parameter.

Example 2: Retrieve all critical errors logged on instance DB2 for database

partition 0 in the last day, sorted by most recent.

SELECT TIMESTAMP, DBNAME, MSG

 FROM TABLE (PD_GET_LOG_MSGS(CURRENT_TIMESTAMP - 1 DAYS)) AS T

 WHERE MSGSEVERITY = ’C’ AND INSTANCENAME = ’DB2’ AND

 DBPARTITIONNUM = 0

 ORDER BY TIMESTAMP DESC

The following is an example of output from this query.

TIMESTAMP DBNAME MSG

-------------------------- ----------- -------------------------

2004-11-04-13.49.17.022000 TESTSBCS ADM0503C An unexpected

 internal processing error

 has occurred. ALL DB2

 PROCESSES ASSOCIATED WITH

 THIS INSTANCE HAVE BEEN

 SHUTDOWN. Diagnostic

 information has been

 recorded. Contact IBM

 Support for further

 assistance.

2004-11-04-11.32.26.760000 SAMPLE ADM0503C An unexpected

 internal processing error

 has occurred. ALL DB2

 PROCESSES ASSOCIATED WITH

 THIS INSTANCE HAVE BEEN

 SHUTDOWN. Diagnostic

 information has been

 recorded. Contact IBM

 Support for further

 assistance.

 2 record(s) selected.

Example 3: Retrieve messages written by DB2 processes servicing

application with application ID of *LOCAL.DB2.050927195337, over the last

day.

SELECT TIMESTAMP, MSG

 FROM TABLE (PD_GET_LOG_MSGS(CURRENT_TIMESTAMP - 1 DAYS)) AS T

 WHERE APPL_ID = ’*LOCAL.DB2.050927195337’

The following is an example of output from this query.

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

546 Administrative SQL Routines and Views

TIMESTAMP MSG

-------------------------- --

2005-06-27-21.17.12.389000 ADM4500W A package cache overflow

 condition has occurred. There is no error

 but this indicates that the package cache

 has exceeded the configured maximum

 size. If this condition persists, you

 may want to adjust the PCKCACHESZ DB

 configuration parameter.

2005-06-27-18.41.22.248000 ADM4500W A package cache overflow

 condition has occurred. There is no error

 but this indicates that the package cache

 has exceeded the configured maximum

 size. If this condition persists, you

 may want to adjust the PCKCACHESZ DB

 configuration parameter.

2005-06-27-12.51.37.772001 ADM5502W The escalation of "143" locks

 on table "SYSIBM .SYSINDEXAUTH" to

 lock intent "X" was successful.

2005-06-27-12.51.37.772000 ADM5502W The escalation of "144" locks

 on table "SYSIBM .SYSINDEXES" to lock

 intent "X" was successful.

2005-06-27-12.51.37.761001 ADM5502W The escalation of "416" locks

 on table "SYSIBM .SYSINDEXCOLUSE" to

 lock intent "X" was successful.

...

Example 4: Find all instances of message ADM0504C in the notification log.

Note that the messages considered are not limited by a timestamp. This

could be an expensive operation if the notification logfile is very large.

SELECT TIMESTAMP, DBPARTITOINNUM, DBNAME, MSG

 FROM TABLE (PD_GET_LOG_MSGS(CAST(NULL AS TIMESTAMP))) AS T

 WHERE MSGNUM = 504 AND MSGTYPE = ’ADM’ AND MSGSEVERITY = ’C’

The following is an example of output from this query.

TIMESTAMP DBPARTITIONNUM DBNAME ...

-------------------------- -------------- -------------...

2005-11-23-21.56.41.240066 0 CAPTAIN ...

...

...

...

...

...

...

...

...

...

Output from this query (continued).

... APPL_ID MSG

... --------------------------------- -------------------------

... 9.26.15.148.36942.051124025612 ADM0504C An unexpected

... internal processing error

... has occurred. ALL DB2

... PROCESSES ASSOCIATED WITH

... THIS INSTANCE HAVE BEEN

... SUSPENDED. Diagnostic

... information has been

... recorded. Contact IBM

... Support for further

... assistance.

Information returned

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

Chapter 3. Supported administrative SQL routines and views 547

Note: In a partitioned database environment, the order in which log

messages are returned cannot be guaranteed. If the order of log records is

important, the results should be sorted by timestamp.

 Table 130. Information returned by the PDLOGMSGS_LAST24HOURS administrative view

and the PD_GET_LOG_MSGS table function

Column name Data type Description

TIMESTAMP TIMESTAMP The time when the entry was

logged.

TIMEZONE INTEGER Time difference (in minutes)

from Universal Coordinated

Time (UCT). For example,

-300 is EST.

INSTANCENAME VARCHAR(128) Name of the instance that

generated the message.

DBPARTITIONNUM SMALLINT The database partition that

generated the message. For a

non partitioned database

environment, 0 is returned.

DBNAME VARCHAR(128) The database on which the

error or event occurred.

PID BIGINT Process ID of the process that

generated the message.

PROCESSNAME VARCHAR(255) Name of process that

generated the message.

TID BIGINT ID of the thread within the

process that generated the

message.

APPL_ID VARCHAR(64) ID of the application for

which the process is working.

COMPONENT VARCHAR(255) The name of the DB2

component that wrote the

message. For messages

written by user applications

using the

db2AdminMsgWrite API,

″User Application″ is

returned.

FUNCTION VARCHAR(255) The name of the DB2

function that is providing the

message. For messages

written by user applications

using the

db2AdminMsgWrite API,

″User Function″ is returned.

PROBE INTEGER Unique internal identifier that

allows DB2 Customer

Support and Development to

locate the point in the DB2

source code that generated

the message.

MSGNUM INTEGER The numeric message

number for the error or

event.

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

548 Administrative SQL Routines and Views

Table 130. Information returned by the PDLOGMSGS_LAST24HOURS administrative view

and the PD_GET_LOG_MSGS table function (continued)

Column name Data type Description

MSGTYPE CHAR(3) Indicates the message type:

ADM (for messages written

to the administration

notification log) or NULL if

the message type cannot be

determined.

MSGSEVERITY CHAR(1) Message severity: C (critical),

E (error), W (warning), I

(informational) or NULL (if

the message severity could

not be determined).

MSG CLOB(16 KB) Notification log message text.

 Related concepts:

v “Interpreting administration notification log file entries” in Troubleshooting Guide

v “Administration notification log” in Administration Guide: Implementation

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “Administrative views versus table functions” on page 3

PDLOGMSGS_LAST24HOURS and PD_GET_LOG_MSGS

Chapter 3. Supported administrative SQL routines and views 549

REORGCHK_IX_STATS procedure – Retrieve index statistics

for reorganization evaluation

 The REORGCHK_IX_STATS procedure returns a result set containing index

statistics that indicate whether or not there is a need for reorganization.

 Syntax:

�� REORGCHK_IX_STATS (scope , criteria) ��

The schema is SYSPROC.

 Procedure parameters:

scope

An input argument of type CHAR(1) that specifies the scope of the tables that

are to be evaluated, using one of the following values:

’T’ Table

’S’ Schema

criteria

An input argument of type VARCHAR(259). If scope has a value of ’T’, specifies

a fully qualified table name, or accepts one of the following values: ALL,

USER, or SYSTEM. If scope has a value of ’S’, specifies a schema name.

 Authorization:

 v SELECT privilege on catalog tables.

v EXECUTE privilege on the REORGCHK_IX_STATS procedure.

 Example:

 CALL SYSPROC.REORGCHK_IX_STATS(’T’,’JESCOTT.EMPLOYEE’)

 Usage note:

 The procedure uses the SYSTOOLSTMPSPACE table space. If

SYSTOOLSTMPSPACE does not already exist, the procedure will create this table

space.

 Information returned:

 Table 131. Information returned by the REORGCHK_IX_STATS procedure

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema name.

TABLE_NAME VARCHAR(128) Table name.

INDEX_SCHEMA VARCHAR(128) Index schema name.

INDEX_NAME VARCHAR(128) Index name.

INDCARD BIGINT Number of index entries in the

index. This can be different than

table cardinality for some indexes.

For example, the index cardinality

on XML columns might be greater

than the table cardinality.

REORGCHK_IX_STATS

550 Administrative SQL Routines and Views

Table 131. Information returned by the REORGCHK_IX_STATS procedure (continued)

Column name Data type Description

NLEAF BIGINT Total number of index leaf pages.

NUM_EMPTY_LEAFS BIGINT Number of pseudo-empty index

leaf pages.

NLEVELS INTEGER Number of index levels.

NUMRIDS_DELETED BIGINT Number of pseudo-deleted RIDs.

FULLKEYCARD BIGINT Number of unique index entries

that are not marked deleted.

LEAF_RECSIZE BIGINT Record size of the index entry on a

leaf page. This is the average size

of the index entry excluding any

overhead and is calculated from

the average column length of all

columns participating in the index.

NONLEAF_RECSIZE BIGINT Record size of the index entry on a

non-leaf page. This is the average

size of the index entry excluding

any overhead and is calculated

from the average column length of

all columns participating in the

index except any INCLUDE

columns.

LEAF_PAGE_OVERHEAD BIGINT Reserved space on the index leaf

page for internal use.

NONLEAF_PAGE_OVERHEAD BIGINT Reserved space on the index

non-leaf page for internal use

F4 INTEGER F4 formula value.

F5 INTEGER F5 formula value.

F6 INTEGER F6 formula value.

F7 INTEGER F7 formula value.

F8 INTEGER F8 formula value.

REORG CHAR(5) A 5-character field, each character

mapping to one of the five

formulas: F4, F5, F6, F7, and F8; a

dash means that the formula value

is in the recommended range; an

asterisk means that the formula

value is out of the recommended

range, indicating a need for

reorganization.

 Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “REORGCHK_TB_STATS procedure – Retrieve table statistics for reorganization

evaluation” on page 553

v “REORGCHK command” in Command Reference

REORGCHK_IX_STATS

Chapter 3. Supported administrative SQL routines and views 551

Related samples:

v “spclient.c -- Call various stored procedures”

v “SpClient.java -- Call a variety of types of stored procedures from SpServer.java

(JDBC)”

REORGCHK_IX_STATS

552 Administrative SQL Routines and Views

REORGCHK_TB_STATS procedure – Retrieve table statistics

for reorganization evaluation

 The REORGCHK_TB_STATS procedure returns a result set containing table

statistics that indicate whether or not there is a need for reorganization.

 Syntax:

�� REORGCHK_TB_STATS (scope , criteria) ��

The schema is SYSPROC.

 Procedure parameters:

scope

An input argument of type CHAR(1) that specifies the scope of the tables that

are to be evaluated, using one of the following values:

’T’ Table

’S’ Schema

criteria

An input argument of type VARCHAR(259). If scope has a value of ’T’, specifies

a fully qualified table name, or accepts one of the following values: ALL,

USER, or SYSTEM. If scope has a value of ’S’, specifies a schema name.

 Authorization:

 v SELECT privilege on catalog tables.

v EXECUTE privilege on the REORGCHK_TB_STATS procedure.

 Example:

 CALL SYSPROC.REORGCHK_TB_STATS(’T’,’JESCOTT.EMPLOYEE’)

 Usage note:

 The procedure uses the SYSTOOLSTMPSPACE table space. If

SYSTOOLSTMPSPACE does not already exist, the procedure will create this table

space.

 Information returned:

 Table 132. Information returned by the REORGCHK_TB_STATS procedure

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema name.

TABLE_NAME VARCHAR(128) Table name.

CARD BIGINT Cardinality (number of rows in the

table).

OVERFLOW BIGINT Number of overflow rows.

NPAGES BIGINT Total number of pages on which

the rows of the table exist; -1 for a

view or alias, or if statistics are not

collected; -2 for a subtable or

hierarchy table.

REORGCHK_TB_STATS

Chapter 3. Supported administrative SQL routines and views 553

Table 132. Information returned by the REORGCHK_TB_STATS procedure (continued)

Column name Data type Description

FPAGES BIGINT Total number of pages; -1 for a

view or alias, or if statistics are not

collected; -2 for a subtable or

hierarchy table.

ACTIVE_BLOCKS BIGINT Total number of active blocks for a

multidimensional clustering (MDC)

table. This field is only applicable

to tables defined using the

ORGANIZE BY clause. It indicates

the number of blocks of the table

that contains data.

TSIZE BIGINT Size of the table.

F1 INTEGER F1 formula value.

F2 INTEGER F2 formula value.

F3 INTEGER F3 formula value.

REORG CHAR(3) A 3-character field, each character

mapping to one of the three

formulas: F1, F2, and F3; a dash

means that the formula value is in

the recommended range; an

asterisk means that the formula

value is out of the recommended

range, indicating a need for

reorganization

 Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “REORGCHK_IX_STATS procedure – Retrieve index statistics for reorganization

evaluation” on page 550

v “REORGCHK command” in Command Reference

 Related samples:

v “spclient.c -- Call various stored procedures”

v “SpClient.java -- Call a variety of types of stored procedures from SpServer.java

(JDBC)”

REORGCHK_TB_STATS

554 Administrative SQL Routines and Views

SQLERRM scalar functions – Retrieves error message

information

 There are two versions of the SQLERRM scalar function. The first allows for full

flexibility of message retrieval including using message tokens and language

selection. The second takes only an SQLCODE as an input parameter and returns

the short message in English.

SQLERRM scalar function

 This SQLERRM scalar function takes a message identifier, locale and token

input and returns the short or long message of type VARCHAR(32672) in

the specified locale. If the input locale is not supported by the server, the

message is returned in English.

 Syntax:

�� SQLERRM (msgid , tokens , token_delimiter , locale , �

� shortmsg) ��

 The schema is SYSPROC.

 Scalar function parameters:

msgid

An input argument of type VARCHAR(9) that represents the message

number for which the information should be retrieved. The message

number is the application return code prefixed with 'SQL', 'DBA' or

'CLI'. For example, 'SQL551', 'CLI0001'. The message number can also

be an SQLSTATE, for example, '42829'.

tokens

An input argument of type VARCHAR(70) that represents the error

message token list. Some messages might not have tokens. If this

parameter is null, then no token replacement occurs in the returned

message. Token replacement only occurs when returning the default

short messages. If the long message option is selected, no token

replacement occurs.

token_delimiter

An input argument of type VARCHAR(1) that represents the token

delimiter. This delimiter must be unique and not contained in any

tokens passed to the scalar function. If no delimiter is supplied, the

default delimiter used is the semicolon.

locale

An input argument of type VARCHAR(33) that represents the locale to

pass to the server in order to have the error message retrieved in that

language. If no locale is specified, or the server does not support the

locale, the message is returned in English and a warning is returned.

shortmsg

An input argument of type INTEGER that is used to indicate if the

long message should be returned instead of the default short message.

To return long messages, this value must be set to 0 or CAST(NULL as

INTEGER).

 Authorization:

SQLERRM

Chapter 3. Supported administrative SQL routines and views 555

EXECUTE privilege on the SQLERRM scalar function.

 Examples:

 Example 1: Retrieve the English short message for SQL0551N with tokens

"AYYANG", "UPDATE" and "SYSCAT.TABLES".

VALUES (SYSPROC.SQLERRM

 ('SQL551', 'AYYANG;UPDATE;SYSCAT.TABLES', ';', 'en_US', 1))

The following is an example of output returned.

1

--...--

SQL0551N "AYYANG" does not have the privilege to perform operation

 "UPDATE" on object "SYSCAT.TABLES"

Example 2: Retrieve the English error message associated with SQLSTATE

42501.

VALUES (SYSPROC.SQLERRM ('42501', '', '', 'en_US', 1))

The following is an example of output returned.

1

---...--

SQLSTATE 42501: The authorization ID does not have the privilege to

 perform the specified operation on the identified object.

Example 3: Retrieve the English long error message for SQL1001N.

VALUES (SYSPROC.SQLERRM ('SQL1001', '', '', 'en_US', 0))

The following is an example of output returned.

1

--...--

SQL1001N "<name>" is not a valid database name.

Explanation:

The syntax of the database name specified in the command is not

valid. The database name must contain 1 to 8 characters and all

the characters must be from the database manager base character

set.

 The command cannot be processed.

User Response:

Resubmit the command with the correct database name.

 sqlcode : -1001

 sqlstate : 2E000

SQLERRM scalar function

 This SQLERRM scalar function takes an SQLCODE as the only input and

returns the short message of type VARCHAR(32672) for the specified

SQLCODE in English.

 Syntax:

�� SQLERRM (sqlcode) ��

 The schema is SYSPROC.

SQLERRM

556 Administrative SQL Routines and Views

Scalar function parameter:

sqlcode

An input argument of type INTEGER that represents an SQLCODE.

 Authorization:

 EXECUTE privilege on the SQLERRM scalar function.

 Example:

 Retrieve the short message for SQLCODE SQL0551N.

VALUES (SYSPROC.SQLERRM (551))

The following is an example of output returned.

1

--...--

SQL0551N "" does not have the privilege to perform operation

 "" on object "".

 Related concepts:

v “Introduction to Messages” in Message Reference Volume 1

 Related reference:

v “Supported administrative SQL routines and views” on page 8

v “SQLSTATE messages” in Message Reference Volume 2

SQLERRM

Chapter 3. Supported administrative SQL routines and views 557

SYSINSTALLOBJECTS

 The SYSINSTALLOBJECTS procedure creates or drops the database objects that are

required for a specific tool.

 Syntax:

�� SYSINSTALLOBJECTS (tool-name , action , tablespace-name , �

� schema-name) ��

The schema is SYSPROC.

 Procedure parameters:

tool-name

An input argument of type VARCHAR(128) that specifies the name of the tool

that is to be loaded, using one of the following values:

v ’AM’ for creating activity monitor objects

v ’DB2AC’ for autonomous computing (health monitor)

v ’STMG_DBSIZE_INFO’ for storage management

v ’POLICY’ for policy (tables and triggers)

action

An input argument of type CHAR(1) that specifies the action that is to be

taken. Valid values are:

’C’ Create objects.

’D’ Drop objects.

tablespace-name

An input argument of type VARCHAR(128) that specifies the name of the table

space in which the objects are to be created. If a value is not specified, or the

value is an empty or blank string the default user space will be used if the tool

name is AM. Otherwise, the SYSTOOLSPACE table space will be used. If

SYSTOOLSPACE does not already exist, it will be created.

schema-name

Reserved for future use. The SYSTOOLS schema is always used regardless of

the name passed into this parameter.

 Example:

 CALL SYSPROC.SYSINSTALLOBJECTS(’AM’, ’C’, CAST (NULL AS VARCHAR(128)),

 CAST (NULL AS VARCHAR(128)))

 Related concepts:

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” in Administration

Guide: Planning

 Related reference:

v “Supported administrative SQL routines and views” on page 8

SYSINSTALLOBJECTS

558 Administrative SQL Routines and Views

Chapter 4. Deprecated administrative SQL routines

Deprecated SQL administrative routines and their replacement

routines or views

 In order to provide expanded support in DB2 Version 9 for the existing

administrative routines, some of the DB2 UDB for Linux, UNIX, and Windows

Version 8 routines have been replaced with new, more comprehensive routines or

views.

Applications that use the DB2 UDB for Linux, UNIX, and Windows Version 8 table

functions should be modified to use the new functions or administrative views.

The new table functions have the same base names as the original functions but

are suffixed with ’_Vxx’ for the version of the product in which they were added

(for example, _V91). In most cases, the new table functions and administrative

views return additional information. The administrative views will always be

based on the most current version of the table functions, and therefore allow for

more application portability. Since the columns might vary from one release to the

next (that is, some are added and some are deleted), it is recommended that

specific columns be selected from the administrative views, or that the result set be

described if a SELECT * statement is used by an application.

 Table 133. Deprecated SQL administrative routines and their replacement routines or views

DB2 UDB for Linux, UNIX, and

Windows Version 8 deprecated

function New DB2 Version 9 function or view

“GET_DB_CONFIG ” on page 563 “DBCFG administrative view – Retrieve database

configuration parameter information” on page 182

“GET_DBM_CONFIG ” on page

565

“DBMCFG administrative view – Retrieve database

manager configuration parameter information” on

page 184

“SNAP_GET_CONTAINER ” on

page 566

“SNAPCONTAINER administrative view and

SNAP_GET_CONTAINER_V91 table function –

Retrieve tablespace_container logical data group

snapshot information” on page 351

“SNAP_GET_DB ” on page 568 “SNAPDB administrative view and

SNAP_GET_DB_V91 table function – Retrieve

snapshot information from the dbase logical group”

on page 356

SNAP_GET_DETAILLOG (1) “SNAPDETAILLOG administrative view and

SNAP_GET_DETAILLOG_V91 table function –

Retrieve snapshot information from the detail_log

logical data group” on page 383

“SNAP_GET_DYN_SQL ” on page

576

“SNAPDYN_SQL administrative view and

SNAP_GET_DYN_SQL_V91 table function – Retrieve

dynsql logical group snapshot information” on page

387

“SNAP_GET_STO_PATHS ” on

page 579

“SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function –

Retrieve automatic storage path information” on page

421

© Copyright IBM Corp. 2006 559

Table 133. Deprecated SQL administrative routines and their replacement routines or

views (continued)

DB2 UDB for Linux, UNIX, and

Windows Version 8 deprecated

function New DB2 Version 9 function or view

“SNAP_GET_TAB ” on page 580 “SNAPTAB administrative view and

SNAP_GET_TAB_V91 table function – Retrieve table

logical data group snapshot information” on page 432

“SNAP_GET_TBSP ” on page 582 “SNAPTBSP administrative view and

SNAP_GET_TBSP_V91 table function – Retrieve

tablespace logical data group snapshot information”

on page 441

“SNAP_GET_TBSP_PART ” on

page 586

“SNAPTBSP_PART administrative view and

SNAP_GET_TBSP_PART_V91 table function –

Retrieve tablespace_nodeinfo logical data group

snapshot information” on page 447

“SNAPSHOT_AGENT ” on page

589

“SNAPAGENT administrative view and

SNAP_GET_AGENT table function – Retrieve agent

logical data group application snapshot information”

on page 315

“SNAPSHOT_APPL ” on page 590 “SNAPAPPL administrative view and

SNAP_GET_APPL table function – Retrieve appl

logical data group snapshot information” on page 324

“SNAPSHOT_APPL_INFO ” on

page 596

“SNAPAPPL_INFO administrative view and

SNAP_GET_APPL_INFO table function – Retrieve

appl_info logical data group snapshot information”

on page 334

“SNAPSHOT_BP ” on page 599 “SNAPBP administrative view and SNAP_GET_BP

table function – Retrieve bufferpool logical group

snapshot information” on page 341

“SNAPSHOT_CONTAINER ” on

page 602

“SNAPCONTAINER administrative view and

SNAP_GET_CONTAINER_V91 table function –

Retrieve tablespace_container logical data group

snapshot information” on page 351

“SNAPSHOT_DATABASE ” on

page 604

“SNAPDB administrative view and

SNAP_GET_DB_V91 table function – Retrieve

snapshot information from the dbase logical group”

on page 356

“SNAPSHOT_DBM ” on page 611 “SNAPDBM administrative view and

SNAP_GET_DBM table function – Retrieve the dbm

logical grouping snapshot information” on page 374

“SNAPSHOT_DYN_SQL ” on page

614

“SNAPDYN_SQL administrative view and

SNAP_GET_DYN_SQL_V91 table function – Retrieve

dynsql logical group snapshot information” on page

387

“SNAPSHOT_FCM ” on page 616 “SNAPFCM administrative view and

SNAP_GET_FCM table function – Retrieve the fcm

logical data group snapshot information” on page 392

“SNAPSHOT_FCMNODE ” on

page 618

“SNAPFCM_PART administrative view and

SNAP_GET_FCM_PART table function – Retrieve the

fcm_node logical data group snapshot information”

on page 395

“SNAPSHOT_FILEW ” on page 619 “SNAP_WRITE_FILE procedure” on page 313

Deprecated SQL administrative routines

560 Administrative SQL Routines and Views

Table 133. Deprecated SQL administrative routines and their replacement routines or

views (continued)

DB2 UDB for Linux, UNIX, and

Windows Version 8 deprecated

function New DB2 Version 9 function or view

“SNAPSHOT_LOCK ” on page 620 “SNAPLOCK administrative view and

SNAP_GET_LOCK table function – Retrieve lock

logical data group snapshot information” on page 403

“SNAPSHOT_LOCKWAIT ” on

page 622

“SNAPLOCKWAIT administrative view and

SNAP_GET_LOCKWAIT table function – Retrieve

lockwait logical data group snapshot information” on

page 409

“SNAPSHOT_QUIESCERS ” on

page 624

“SNAPTBSP_QUIESCER administrative view and

SNAP_GET_TBSP_QUIESCER table function –

Retrieve quiescer table space snapshot information”

on page 452

“SNAPSHOT_RANGES ” on page

626

“SNAPTBSP_RANGE administrative view and

SNAP_GET_TBSP_RANGE table function – Retrieve

range snapshot information” on page 456

“SNAPSHOT_STATEMENT ” on

page 628

“SNAPSTMT administrative view and

SNAP_GET_STMT table function – Retrieve statement

snapshot information” on page 415

“SNAPSHOT_SUBSECT ” on page

631

“SNAPSUBSECTION administrative view and

SNAP_GET_SUBSECTION table function – Retrieve

subsection logical monitor group snapshot

information” on page 425

“SNAPSHOT_SWITCHES ” on

page 633

“SNAPSWITCHES administrative view and

SNAP_GET_SWITCHES table function – Retrieve

database snapshot switch state information” on page

429

“SNAPSHOT_TABLE ” on page 635 “SNAPTAB administrative view and

SNAP_GET_TAB_V91 table function – Retrieve table

logical data group snapshot information” on page 432

“SNAPSHOT_TBREORG ” on page

637

“SNAPTAB_REORG administrative view and

SNAP_GET_TAB_REORG table function – Retrieve

table reorganization snapshot information” on page

436

“SNAPSHOT_TBS ” on page 639 “SNAPTBSP administrative view and

SNAP_GET_TBSP_V91 table function – Retrieve

tablespace logical data group snapshot information”

on page 441

“SNAPSHOT_TBS_CFG ” on page

642

“SNAPTBSP_PART administrative view and

SNAP_GET_TBSP_PART_V91 table function –

Retrieve tablespace_nodeinfo logical data group

snapshot information” on page 447

SNAPSHOT_UTIL (1) “SNAPUTIL administrative view and

SNAP_GET_UTIL table function – Retrieve

utility_info logical data group snapshot information”

on page 460

SNAPSHOT_UTIL_PROG (1) “SNAPUTIL_PROGRESS administrative view and

SNAP_GET_UTIL_PROGRESS table function –

Retrieve progress logical data group snapshot

information” on page 464

Deprecated SQL administrative routines

Chapter 4. Deprecated administrative SQL routines 561

Table 133. Deprecated SQL administrative routines and their replacement routines or

views (continued)

DB2 UDB for Linux, UNIX, and

Windows Version 8 deprecated

function New DB2 Version 9 function or view

“SQLCACHE_SNAPSHOT ” on

page 645

“SNAPDYN_SQL administrative view and

SNAP_GET_DYN_SQL_V91 table function – Retrieve

dynsql logical group snapshot information” on page

387. Information returned by the

SQLCACHE_SNAPSHOT table function is now

included in this new view and table function.

SYSFUN.GROUPS (1) This procedure has been deprecated.

SYSFUN.GROUPS_FOR_USER (1) “AUTH_LIST_GROUPS_FOR_AUTHID table function

– Retrieve group membership list for a given

authorization ID” on page 273

SYSFUN.USER_GROUPS (1) This procedure has been deprecated.

SYSFUN.USERS (1) This procedure has been deprecated.

“SYSINSTALLROUTINES ” on

page 647

This procedure has been deprecated.

Note: (1) These functions were present in DB2 UDB for Linux, UNIX, and

Windows Version 8, but were omitted from the documentation.

 Related reference:

v “Supported administrative SQL routines and views” on page 8

Deprecated SQL administrative routines

562 Administrative SQL Routines and Views

GET_DB_CONFIG

Note: This procedure has been deprecated and replaced by the “DBCFG

administrative view – Retrieve database configuration parameter

information” on page 182.

�� GET_DB_CONFIG () ��

The schema is SYSPROC.

The GET_DB_CONFIG procedure returns database configuration information. The

procedure does not take any arguments.

The procedure returns a single result set with two rows containing a column for

each parameter. The first column is named DBCONFIG_TYPE, as shown below.

 Table 134. Information returned by the GET_DB_CONFIG procedure

Column name Data type Description

DBCONFIG_TYPE INTEGER The row with a value of 0 in this column

contains the values of the database

configuration parameters stored on disk. The

row with a value of 1 in this column

contains the current values of the database

configuration parameters stored in memory.

This procedure requires a user temporary table space that is used to create a global

temporary table named DB_CONFIG to store the result set.

Example

Using the command line processor (CLP), change the value of the logretain and the

userexit database configuration parameters. Retrieve the original (on disk) and

updated (in memory) values by calling the GET_DB_CONFIG procedure and then

querying the resulting global temporary table (DB_CONFIG).

CONNECT TO SAMPLE

CREATE BUFFERPOOL MY8KPOOL SIZE 250 PAGESIZE 8K

CREATE USER TEMPORARY TABLESPACE MYTSP2 PAGESIZE

 8K MANAGED BY SYSTEM USING (’TSC2’) BUFFERPOOL MY8KPOOL

UPDATE DB CFG USING LOGRETAIN RECOVERY USEREXIT ON

CALL SYSPROC.GET_DB_CONFIG()

SELECT DBCONFIG_TYPE, LOGRETAIN, USEREXIT

 FROM SESSION.DB_CONFIG

CONNECT RESET

The following is an example of output from this query.

GET_DB_CONFIG

Chapter 4. Deprecated administrative SQL routines 563

DBCONFIG_TYPE LOGRETAIN USEREXIT

------------- ----------- -----------

 0 1 1

 1 0 0

 2 record(s) selected.

 Related reference:

v “Configuration parameters summary” in Performance Guide

v “GET_DBM_CONFIG ” on page 565

GET_DB_CONFIG

564 Administrative SQL Routines and Views

GET_DBM_CONFIG

Note: This table function has been deprecated and replaced by the “DBMCFG

administrative view – Retrieve database manager configuration parameter

information” on page 184.

�� GET_DBM_CONFIG () ��

The schema is SYSFUN.

The GET_DBM_CONFIG table function returns database manager configuration

information. The function does not take any arguments.

The function returns a table with two rows containing a column for each

parameter. The first column is named DBMCONFIG_TYPE, as shown below.

 Table 135. Information returned by the GET_DBM_CONFIG table function

Column name Data type Description

DBMCONFIG_TYPE INTEGER The row with a value of 0 in this column

contains the values of the database manager

configuration parameters stored on disk. The

row with a value of 1 in this column

contains the current values of the database

manager configuration parameters stored in

memory.

Example

Using the command line processor (CLP), change the value of the numdb and the

diaglevel database manager configuration parameters, and then retrieve the original

(on disk) and updated (in memory) values.

 UPDATE DBM CFG USING NUMDB 32 DIAGLEVEL 4

 CONNECT TO SAMPLE

 SELECT DBMCONFIG_TYPE, NUMDB, DIAGLEVEL

 FROM TABLE(SYSFUN.GET_DBM_CONFIG()) AS DBMCFG

 CONNECT RESET

The following is an example of output from this query.

DBMCONFIG_TYPE NUMDB DIAGLEVEL

-------------- ----------- -----------

 0 32 4

 1 8 3

 2 record(s) selected.

 Related reference:

v “Configuration parameters summary” in Performance Guide

v “GET_DB_CONFIG ” on page 563

v “Supported administrative SQL routines and views” on page 8

GET_DBM_CONFIG

Chapter 4. Deprecated administrative SQL routines 565

SNAP_GET_CONTAINER

Note: This table function has been deprecated and replaced by the

“SNAPCONTAINER administrative view and

SNAP_GET_CONTAINER_V91 table function – Retrieve

tablespace_container logical data group snapshot information” on page 351

�� SNAP_GET_CONTAINER (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_CONTAINER table function returns snapshot information from

the tablespace_container logical data group.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition. If the null value is

specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 136. Information returned by the SNAP_GET_CONTAINER table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor

element

CONTAINER_NAME VARCHAR(256) container_name - Container

Name monitor element

CONTAINER_ID BIGINT container_id - Container

Identification monitor

element

CONTAINER_TYPE SMALLINT container_type - Container

Type monitor element

TOTAL_PAGES BIGINT container_total_pages - Total

Pages in Container monitor

element

SNAP_GET_CONTAINER

566 Administrative SQL Routines and Views

Table 136. Information returned by the SNAP_GET_CONTAINER table function (continued)

Column name Data type

Description or

corresponding monitor

element

USABLE_PAGES BIGINT container_usable_pages -

Usable Pages in Container

monitor element

ACCESSIBLE SMALLINT container_accessible -

Accessibility of Container

monitor element

STRIPE_SET BIGINT container_stripe_set - Stripe

Set monitor element

DBPARTITIONNUM SMALLINT node_number - Node

Number monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_CONTAINER

Chapter 4. Deprecated administrative SQL routines 567

SNAP_GET_DB

Note: This table function has been deprecated and replaced by the “SNAPDB

administrative view and SNAP_GET_DB_V91 table function – Retrieve

snapshot information from the dbase logical group” on page 356

�� SNAP_GET_DB (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_DB table function returns snapshot information from the database.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 137. Information returned by the SNAP_GET_DB table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path monitor

element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input Database

Alias monitor element

DB_STATUS BIGINT db_status - Status of Database

monitor element

CATALOG_PARTITION SMALLINT catalog_node - Catalog Node

Number monitor element

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog Node

Network Name monitor element

SERVER_PLATFORM INTEGER server_platform - Server Operating

System monitor element

DB_LOCATION INTEGER db_location - Database Location

monitor element

SNAP_GET_DB

568 Administrative SQL Routines and Views

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

DB_CONN_TIME TIMESTAMP db_conn_time - Database

Activation Timestamp monitor

element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

LAST_BACKUP TIMESTAMP last_backup - Last Backup

Timestamp monitor element

CONNECTIONS_TOP BIGINT connections_top - Maximum

Number of Concurrent Connections

monitor element

TOTAL_CONS BIGINT total_cons - Connects Since

Database Activation monitor

element

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary

Connections monitor element

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications

Connected Currently monitor

element

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications

Executing in the Database

Currently monitor element

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of

Associated Agents monitor element

AGENTS_TOP BIGINT agents_top - Number of Agents

Created monitor element

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum

Number of Coordinating Agents

monitor element

LOCKS_HELD BIGINT locks_held - Locks Held monitor

element

LOCK_WAITS BIGINT lock_waits - Lock Waits monitor

element

LOCK_WAIT_TIME BIGINT lock_wait_time - Time Waited On

Locks monitor element

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total Lock List

Memory In Use monitor element

DEADLOCKS BIGINT deadlocks - Deadlocks Detected

monitor element

LOCK_ESCALS BIGINT lock_escals - Number of Lock

Escalations monitor element

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive Lock

Escalations monitor element

LOCKS_WAITING BIGINT locks_waiting - Current Agents

Waiting On Locks monitor element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of Lock

Timeouts monitor element

SNAP_GET_DB

Chapter 4. Deprecated administrative SQL routines 569

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of

Indoubt Transactions monitor

element

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total Sort

Heap Allocated monitor element

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort Share

Heap Currently Allocated monitor

element

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort Share Heap

High Water Mark monitor element

TOTAL_SORTS BIGINT total_sorts - Total Sorts monitor

element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

ACTIVE_SORTS BIGINT active_sorts - Active Sorts monitor

element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

SNAP_GET_DB

570 Administrative SQL Routines and Views

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

POOL_ASYNC_INDEX_

 READ_REQS

BIGINT pool_async_index_read_reqs -

Buffer Pool Asynchronous Index

Read Requests monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer Pool

No Victim Buffers monitor element

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer Pool

Log Space Cleaners Triggered

monitor element

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer

Pool Victim Page Cleaners

Triggered monitor element

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer

Pool Threshold Cleaners Triggered

monitor element

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time Waited

for Prefetch monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

SNAP_GET_DB

Chapter 4. Deprecated administrative SQL routines 571

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

POOL_DATA_TO_ESTORE BIGINT pool_data_to_estore - Buffer Pool

Data Pages to Extended Storage

monitor element

POOL_INDEX_TO_ESTORE BIGINT pool_index_to_estore - Buffer Pool

Index Pages to Extended Storage

monitor element

POOL_INDEX_FROM_ESTORE BIGINT pool_index_from_estore - Buffer

Pool Index Pages from Extended

Storage monitor element

POOL_DATA_FROM_ESTORE BIGINT pool_data_from_estore - Buffer Pool

Data Pages from Extended Storage

monitor element

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit

Statements Attempted monitor

element

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback

Statements Attempted monitor

element

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL

Statements Attempted monitor

element

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL

Statements Attempted monitor

element

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed Statement

Operations monitor element

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL

Statements Executed monitor

element

UID_SQL_STMTS BIGINT uid_sql_stmts -

Update/Insert/Delete SQL

Statements Executed monitor

element

SNAP_GET_DB

572 Administrative SQL Routines and Views

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data Definition

Language (DDL) SQL Statements

monitor element

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal

Automatic Rebinds monitor

element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_COMMITS BIGINT int_commits - Internal Commits

monitor element

INT_ROLLBACKS BIGINT int_rollbacks - Internal Rollbacks

monitor element

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal

Rollbacks Due To Deadlock

monitor element

ROWS_DELETED BIGINT rows_deleted - Rows Deleted

monitor element

ROWS_INSERTED BIGINT rows_inserted - Rows Inserted

monitor element

ROWS_UPDATED BIGINT rows_updated - Rows Updated

monitor element

ROWS_SELECTED BIGINT rows_selected - Rows Selected

monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

BINDS_PRECOMPILES BIGINT binds_precompiles -

Binds/Precompiles Attempted

monitor element

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total Log

Available monitor element

TOTAL_LOG_USED BIGINT total_log_used - Total Log Space

Used monitor element

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum

Secondary Log Space Used monitor

element

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum Total

Log Space Used monitor element

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary Logs

Allocated Currently monitor

element

LOG_READS BIGINT log_reads - Number of Log Pages

Read monitor element

SNAP_GET_DB

Chapter 4. Deprecated administrative SQL routines 573

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

LOG_READ_TIME_S BIGINT log_read_time - Log Read Time

monitor element

LOG_READ_TIME_NS BIGINT log_read_time - Log Read Time

monitor element

LOG_WRITES BIGINT log_writes - Number of Log Pages

Written monitor element

LOG_WRITE_TIME_S BIGINT log_write_time - Log Write Time

monitor element

LOG_WRITE_TIME_NS BIGINT log_write_time - Log Write Time

monitor element

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of Log

Writes monitor element

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of Log

Reads monitor element

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number of

Partial Log Page Writes monitor

element

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of

Full Log Buffers monitor element

NUM_LOG_DATA_FOUND_

 IN_BUFFER

BIGINT num_log_data_found_in_buffer -

Number of Log Data Found In

Buffer monitor element

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application

with Oldest Transaction monitor

element

LOG_TO_REDO_FOR_RECOVERY BIGINT log_to_redo_for_recovery - Amount

of Log to be Redone for Recovery

monitor element

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages - Amount

of Log Space Accounted for by

Dirty Pages monitor element

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package

Cache Lookups monitor element

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package Cache

Inserts monitor element

PKG_CACHE_NUM_

 OVERFLOWS

BIGINT pkg_cache_num_overflows -

Package Cache Overflows monitor

element

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package

Cache High Water Mark monitor

element

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section

Lookups monitor element

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section

Inserts monitor element

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog Cache

Lookups monitor element

SNAP_GET_DB

574 Administrative SQL Routines and Views

Table 137. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type

Description or corresponding

monitor element

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog Cache

Inserts monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog Cache

High Water Mark monitor element

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top -

Maximum Private Workspace Size

monitor element

PRIV_WORKSPACE_NUM_

 OVERFLOWS

BIGINT priv_workspace_num_overflows -

Private Workspace Overflows

monitor element

PRIV_WORKSPACE_SECTION_

 INSERTS

BIGINT priv_workspace_section_inserts -

Private Workspace Section Inserts

monitor element

PRIV_WORKSPACE_SECTION_

 LOOKUPS

BIGINT priv_workspace_section_lookups -

Private Workspace Section Lookups

monitor element

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top -

Maximum Shared Workspace Size

monitor element

SHR_WORKSPACE_NUM_

 OVERFLOWS

BIGINT shr_workspace_num_overflows -

Shared Workspace Overflows

monitor element

SHR_WORKSPACE_SECTION_

 INSERTS

BIGINT shr_workspace_section_inserts -

Shared Workspace Section Inserts

monitor element

SHR_WORKSPACE_SECTION_

 LOOKUPS

BIGINT shr_workspace_section_lookups -

Shared Workspace Section Lookups

monitor element

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total Hash Joins

monitor element

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total Hash

Loops monitor element

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash Join

Overflows monitor element

HASH_JOIN_SMALL_

 OVERFLOWS

BIGINT hash_join_small_overflows - Hash

Join Small Overflows monitor

element

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number

of automatic storage paths monitor

element

DBPARTITIONNUM SMALLINT node_number - Node Number

monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_DB

Chapter 4. Deprecated administrative SQL routines 575

SNAP_GET_DYN_SQL

Note: This table function has been deprecated and replaced by the

“SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V91 table

function – Retrieve dynsql logical group snapshot information” on page 387

�� SNAP_GET_DYN_SQL (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_DYN_SQL table function returns snapshot information from the

dynsql logical data group.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 138. Information returned by the SNAP_GET_DYN_SQL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

NUM_EXECUTIONS BIGINT num_executions - Statement

Executions monitor element

NUM_COMPILATIONS BIGINT num_compilations - Statement

Compilations monitor element

PREP_TIME_WORST BIGINT prep_time_worst - Statement Worst

Preparation Time monitor element

PREP_TIME_BEST BIGINT prep_time_best - Statement Best

Preparation Time monitor element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

SNAP_GET_DYN_SQL

576 Administrative SQL Routines and Views

Table 138. Information returned by the SNAP_GET_DYN_SQL table function (continued)

Column name Data type

Description or corresponding

monitor element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

STMT_SORTS BIGINT stmt_sorts - Statement Sorts

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed Statement

Execution Time monitor element

TOTAL_EXEC_TIME_MS BIGINT total_exec_time - Elapsed Statement

Execution Time monitor element

TOTAL_USR_TIME BIGINT total_usr_cpu_time - Total User

CPU for a Statement monitor

element

TOTAL_USR_TIME_MS BIGINT total_usr_cpu_time - Total User

CPU for a Statement monitor

element

TOTAL_SYS_TIME BIGINT total_sys_cpu_time - Total System

CPU for a Statement monitor

element

TOTAL_SYS_TIME_MS BIGINT total_sys_cpu_time - Total System

CPU for a Statement monitor

element

SNAP_GET_DYN_SQL

Chapter 4. Deprecated administrative SQL routines 577

Table 138. Information returned by the SNAP_GET_DYN_SQL table function (continued)

Column name Data type

Description or corresponding

monitor element

STMT_TEXT CLOB stmt_text - SQL Dynamic Statement

Text monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_DYN_SQL

578 Administrative SQL Routines and Views

SNAP_GET_STO_PATHS

Note: This table function has been deprecated and replaced by the

“SNAPSTORAGE_PATHS administrative view and

SNAP_GET_STORAGE_PATHS table function – Retrieve automatic storage

path information” on page 421

�� SNAP_GET_STO_PATHS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_STO_PATHS table function returns snapshot information from the

storage_paths logical data group.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 139. Information returned by the SNAP_GET_STO_PATHS table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

DB_STORAGE_PATH VARCHAR(256) db_storage_path - Automatic

storage path monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_STO_PATHS

Chapter 4. Deprecated administrative SQL routines 579

SNAP_GET_TAB

Note: This table function has been deprecated and replaced by the “SNAPTAB

administrative view and SNAP_GET_TAB_V91 table function – Retrieve

table logical data group snapshot information” on page 432

�� SNAP_GET_TAB (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_TAB table function returns snapshot information from the table

logical data group.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 140. Information returned by the SNAP_GET_TAB table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABSCHEMA VARCHAR(128) table_schema - Table Schema

Name monitor element

TABNAME VARCHAR(128) table_name - Table Name

monitor element

TAB_FILE_ID BIGINT table_file_id - Table File ID

monitor element

TAB_TYPE BIGINT table_type - Table Type

monitor element

DATA_OBJECT_PAGES BIGINT data_object_pages - Data

Object Pages monitor element

INDEX_OBJECT_PAGES BIGINT index_object_pages - Index

Object Pages monitor element

LOB_OBJECT_PAGES BIGINT lob_object_pages - LOB

Object Pages monitor element

SNAP_GET_TAB

580 Administrative SQL Routines and Views

Table 140. Information returned by the SNAP_GET_TAB table function (continued)

Column name Data type

Description or

corresponding monitor

element

LONG_OBJECT_PAGES BIGINT long_object_pages - Long

Object Pages monitor element

ROWS_READ BIGINT rows_read - Rows Read

monitor element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses

to Overflowed Records

monitor element

PAGE_REORGS BIGINT page_reorgs - Page

Reorganizations monitor

element

DBPARTITIONNUM SMALLINT node_number - Node

Number monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_TAB

Chapter 4. Deprecated administrative SQL routines 581

SNAP_GET_TBSP

Note: This table function has been deprecated and replaced by the “SNAPTBSP

administrative view and SNAP_GET_TBSP_V91 table function – Retrieve

tablespace logical data group snapshot information” on page 441

�� SNAP_GET_TBSP (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_TBSP table function returns snapshot information from the

tablespace logical data group.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition. If the null value is

specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 141. Information returned by the SNAP_GET_TBSP table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

TBSP_ID BIGINT tablespace_id - Table Space

Identification monitor element

TBSP_TYPE SMALLINT tablespace_type - Table Space Type

monitor element

TBSP_CONTENT_TYPE SMALLINT tablespace_content_type - Table

Space Contents Type monitor

element

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table Space

Page Size monitor element

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table Space

Extent Size monitor element

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table

Space Prefetch Size monitor

element

SNAP_GET_TBSP

582 Administrative SQL Routines and Views

Table 141. Information returned by the SNAP_GET_TBSP table function (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_CUR_POOL_ID BIGINT tablespace_cur_pool_id - Buffer

Pool Currently Being Used monitor

element

TBSP_NEXT_POOL_ID BIGINT tablespace_next_pool_id - Buffer

Pool That Will Be Used at Next

Startup monitor element

FS_CACHING1 SMALLINT fs_caching - File System Caching

monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer

Pool Temporary Data Logical Reads

monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer

Pool Temporary Data Physical

Reads monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer

Pool Temporary Index Logical

Reads monitor element

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer

Pool Temporary Index Physical

Reads monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

SNAP_GET_TBSP

Chapter 4. Deprecated administrative SQL routines 583

Table 141. Information returned by the SNAP_GET_TBSP table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

POOL_ASYNC_INDEX_

 READ_REQS

BIGINT pool_async_index_read_reqs -

Buffer Pool Asynchronous Index

Read Requests monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer Pool

No Victim Buffers monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

POOL_DATA_TO_ESTORE BIGINT pool_data_to_estore - Buffer Pool

Data Pages to Extended Storage

monitor element

POOL_INDEX_TO_ESTORE BIGINT pool_index_to_estore - Buffer Pool

Index Pages to Extended Storage

monitor element

POOL_INDEX_FROM_ESTORE BIGINT pool_index_from_estore - Buffer

Pool Index Pages from Extended

Storage monitor element

POOL_DATA_FROM_ESTORE BIGINT pool_data_from_estore - Buffer Pool

Data Pages from Extended Storage

monitor element

SNAP_GET_TBSP

584 Administrative SQL Routines and Views

Table 141. Information returned by the SNAP_GET_TBSP table function (continued)

Column name Data type

Description or corresponding

monitor element

TBSP_REBALANCER_MODE BIGINT tablespace_rebalancer_mode -

Rebalancer Mode monitor element

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -

Using automatic storage monitor

element

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -

Auto-resize enabled monitor

element

1 If FS_CACHING is 0, file system caching is enabled, and if FS_CACHING is 1, file system

caching is disabled.

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_TBSP

Chapter 4. Deprecated administrative SQL routines 585

SNAP_GET_TBSP_PART

Note: This table function has been deprecated and replaced by the

“SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91

table function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

�� SNAP_GET_TBSP_PART (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_TBSP_PART table function returns snapshot information from the

tablespace_nodeinfo logical data group.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition. If the null value is

specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 142. Information returned by the SNAP_GET_TBSP_PART table function

Column name Data type

Description or corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was

taken.

TBSP_NAME VARCHAR

(128)

tablespace_name - Table Space Name

monitor element

TBSP_ID BIGINT tablespace_id - Table Space Identification

monitor element

TBSP_STATE BIGINT tablespace_state - Table Space State monitor

element

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table Space

Prefetch Size monitor element

TBSP_NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of

Quiescers monitor element

TBSP_STATE_CHANGE_

 OBJECT_ID

BIGINT tablespace_state_change_object_id - State

Change Object Identification monitor

element

SNAP_GET_TBSP_PART

586 Administrative SQL Routines and Views

Table 142. Information returned by the SNAP_GET_TBSP_PART table function (continued)

Column name Data type

Description or corresponding monitor

element

TBSP_STATE_CHANGE_

 TBSP_ID

BIGINT tablespace_state_change_ts_id - State

Change Table Space Identification monitor

element

TBSP_MIN_RECOVERY_

 TIME

TIMESTAMP tablespace_min_recovery_time - Minimum

Recovery Time For Rollforward monitor

element

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total Pages in Table

Space monitor element

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable Pages in

Table Space monitor element

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used Pages in

Table Space monitor element

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free Pages in Table

Space monitor element

TBSP_PENDING_FREE_

 PAGES

BIGINT tablespace_pending_free_pages - Pending

Free Pages in Table Space monitor element

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table Space High

Water Mark monitor element

REBALANCER_MODE BIGINT tablespace_rebalancer_mode - Rebalancer

Mode monitor element

REBALANCER_EXTENTS_

 REMAINING

BIGINT tablespace_rebalancer_extents_remaining -

Total Number of Extents to be Processed by

the Rebalancer monitor element

REBALANCER_EXTENTS_

 PROCESSED

BIGINT tablespace_rebalancer_extents_processed -

Number of Extents the Rebalancer has

Processed monitor element

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current

Rebalancer Priority monitor element

REBALANCER_START_

 TIME

TIMESTAMP tablespace_rebalancer_start_time -

Rebalancer Start Time monitor element

REBALANCER_RESTART_

 TIME

TIMESTAMP tablespace_rebalancer_restart_time -

Rebalancer Restart Time monitor element

REBALANCER_LAST_

 EXTENT_MOVED

BIGINT tablespace_rebalancer_last_extent_moved -

Last Extent Moved by the Rebalancer

monitor element

TBSP_NUM_RANGES BIGINT tablespace_num_ranges - Number of Ranges

in the Table Space Map monitor element

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers - Number of

Containers in Table Space monitor element

TBSP_INITIAL_SIZE BIGINT tablespace_initial_size - Initial table space

size monitor element

TBSP_CURRENT_SIZE BIGINT tablespace_current_size - Current table space

size monitor element

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum table space

size monitor element

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase size in

bytes monitor element

SNAP_GET_TBSP_PART

Chapter 4. Deprecated administrative SQL routines 587

Table 142. Information returned by the SNAP_GET_TBSP_PART table function (continued)

Column name Data type

Description or corresponding monitor

element

TBSP_INCREASE_SIZE_

 PERCENT

SMALLINT tablespace_increase_size_percent - Increase

size by percent monitor element

TBSP_LAST_RESIZE_

 TIME

TIMESTAMP tablespace_last_resize_time - Time of last

successful resize monitor element

TBSP_LAST_RESIZE_

 FAILED

SMALLINT tablespace_last_resize_failed - Last resize

attempt failed monitor element

DBPARTITIONNUM SMALLINT node_number - Node Number monitor

element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAP_GET_TBSP_PART

588 Administrative SQL Routines and Views

SNAPSHOT_AGENT

Note: This table function has been deprecated and replaced by the “SNAPAGENT

administrative view and SNAP_GET_AGENT table function – Retrieve agent

logical data group application snapshot information” on page 315.

�� SNAPSHOT_AGENT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_AGENT function returns information about agents from an

application snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 143. Information returned by the SNAPSHOT_AGENT table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application

Handle (agent ID) monitor

element

AGENT_PID BIGINT agent_pid - Process or Thread

ID monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_AGENT

Chapter 4. Deprecated administrative SQL routines 589

SNAPSHOT_APPL

Note: This table function has been deprecated and replaced by the “SNAPAPPL

administrative view and SNAP_GET_APPL table function – Retrieve appl

logical data group snapshot information” on page 324.

�� SNAPSHOT_APPL (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_APPL function returns general information from an application

snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 144. Information returned by the SNAPSHOT_APPL table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of

Work Log Space Used monitor

element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

SNAPSHOT_APPL

590 Administrative SQL Routines and Views

Table 144. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

POOL_DATA_TO_ESTORE BIGINT pool_data_to_estore - Buffer Pool

Data Pages to Extended Storage

monitor element

POOL_INDEX_TO_ESTORE BIGINT pool_index_to_estore - Buffer Pool

Index Pages to Extended Storage

monitor element

POOL_INDEX_FROM_ESTORE BIGINT pool_index_from_estore - Buffer

Pool Index Pages from Extended

Storage monitor element

POOL_DATA_FROM_ESTORE BIGINT pool_data_from_estore - Buffer Pool

Data Pages from Extended Storage

monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

LOCKS_HELD BIGINT locks_held - Locks Held monitor

element

LOCK_WAITS BIGINT lock_waits - Lock Waits monitor

element

LOCK_WAIT_TIME BIGINT lock_wait_time - Time Waited On

Locks monitor element

SNAPSHOT_APPL

Chapter 4. Deprecated administrative SQL routines 591

Table 144. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

LOCK_ESCALS BIGINT lock_escals - Number of Lock

Escalations monitor element

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive Lock

Escalations monitor element

DEADLOCKS BIGINT deadlocks - Deadlocks Detected

monitor element

TOTAL_SORTS BIGINT total_sorts - Total Sorts monitor

element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit

Statements Attempted monitor

element

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback

Statements Attempted monitor

element

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL

Statements Attempted monitor

element

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL

Statements Attempted monitor

element

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed Statement

Operations monitor element

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL

Statements Executed monitor

element

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data Definition

Language (DDL) SQL Statements

monitor element

UID_SQL_STMTS BIGINT uid_sql_stmts -

Update/Insert/Delete SQL

Statements Executed monitor

element

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal

Automatic Rebinds monitor

element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_COMMITS BIGINT int_commits - Internal Commits

monitor element

INT_ROLLBACKS BIGINT int_rollbacks - Internal Rollbacks

monitor element

SNAPSHOT_APPL

592 Administrative SQL Routines and Views

Table 144. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal

Rollbacks Due To Deadlock

monitor element

ROWS_DELETED BIGINT rows_deleted - Rows Deleted

monitor element

ROWS_INSERTED BIGINT rows_inserted - Rows Inserted

monitor element

ROWS_UPDATED BIGINT rows_updated - Rows Updated

monitor element

ROWS_SELECTED BIGINT rows_selected - Rows Selected

monitor element

BINDS_PRECOMPILES BIGINT binds_precompiles -

Binds/Precompiles Attempted

monitor element

OPEN_REM_CURS BIGINT open_rem_curs - Open Remote

Cursors monitor element

OPEN_REM_CURS_BLK BIGINT open_rem_curs_blk - Open Remote

Cursors with Blocking monitor

element

REJ_CURS_BLK BIGINT rej_curs_blk - Rejected Block Cursor

Requests monitor element

ACC_CURS_BLK BIGINT acc_curs_blk - Accepted Block

Cursor Requests monitor element

SQL_REQS_SINCE_COMMIT BIGINT sql_reqs_since_commit - SQL

Requests Since Last Commit

monitor element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of Lock

Timeouts monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

OPEN_LOC_CURS BIGINT open_loc_curs - Open Local

Cursors monitor element

OPEN_LOC_CURS_BLK BIGINT open_loc_curs_blk - Open Local

Cursors with Blocking monitor

element

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package

Cache Lookups monitor element

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package Cache

Inserts monitor element

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog Cache

Lookups monitor element

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog Cache

Inserts monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

CAT_CACHE_HEAP_FULL BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

SNAPSHOT_APPL

Chapter 4. Deprecated administrative SQL routines 593

Table 144. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

NUM_AGENTS BIGINT num_agents - Number of Agents

Working on a Statement monitor

element

AGENTS_STOLEN BIGINT agents_stolen - Stolen Agents

monitor element

ASSOCIATED_AGENTS_TOP BIGINT associated_agents_top - Maximum

Number of Associated Agents

monitor element

APPL_PRIORITY BIGINT appl_priority - Application Agent

Priority monitor element

APPL_PRIORITY_TYPE BIGINT appl_priority_type - Application

Priority Type monitor element

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time Waited

for Prefetch monitor element

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section

Lookups monitor element

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section

Inserts monitor element

LOCKS_WAITING BIGINT locks_waiting - Current Agents

Waiting On Locks monitor element

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total Hash Joins

monitor element

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total Hash

Loops monitor element

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash Join

Overflows monitor element

HASH_JOIN_SMALL_

 OVERFLOWS

BIGINT hash_join_small_overflows - Hash

Join Small Overflows monitor

element

APPL_IDLE_TIME BIGINT appl_idle_time - Application Idle

Time monitor element

UOW_LOCK_WAIT_TIME BIGINT uow_lock_wait_time - Total Time

Unit of Work Waited on Locks

monitor element

UOW_COMP_STATUS BIGINT uow_comp_status - Unit of Work

Completion Status monitor element

AGENT_USR_CPU_TIME_S BIGINT agent_usr_cpu_time - User CPU

Time used by Agent monitor

element

AGENT_USR_CPU_TIME_MS BIGINT agent_usr_cpu_time - User CPU

Time used by Agent monitor

element

AGENT_SYS_CPU_TIME_S BIGINT agent_sys_cpu_time - System CPU

Time used by Agent monitor

element

AGENT_SYS_CPU_TIME_MS BIGINT agent_sys_cpu_time - System CPU

Time used by Agent monitor

element

SNAPSHOT_APPL

594 Administrative SQL Routines and Views

Table 144. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type

Description or corresponding

monitor element

APPL_CON_TIME TIMESTAMP appl_con_time - Connection

Request Start Timestamp monitor

element

CONN_COMPLETE_TIME TIMESTAMP conn_complete_time - Connection

Request Completion Timestamp

monitor element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

UOW_START_TIME TIMESTAMP uow_start_time - Unit of Work Start

Timestamp monitor element

UOW_STOP_TIME TIMESTAMP uow_stop_time - Unit of Work Stop

Timestamp monitor element

PREV_UOW_STOP_TIME TIMESTAMP prev_uow_stop_time - Previous

Unit of Work Completion

Timestamp monitor element

UOW_ELAPSED_TIME_S BIGINT uow_elapsed_time - Most Recent

Unit of Work Elapsed Time monitor

element

UOW_ELAPSED_TIME_MS BIGINT uow_elapsed_time - Most Recent

Unit of Work Elapsed Time monitor

element

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement

Execution Elapsed Time monitor

element

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound

Communication Address monitor

element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_APPL

Chapter 4. Deprecated administrative SQL routines 595

SNAPSHOT_APPL_INFO

Note: This table function has been deprecated and replaced by the

“SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table

function – Retrieve appl_info logical data group snapshot information” on

page 334.

�� SNAPSHOT_APPL_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_APPL_INFO function returns general information from an

application snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 145. Information returned by the SNAPSHOT_APPL_INFO table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application

Handle (agent ID) monitor

element

APPL_STATUS BIGINT appl_status - Application

Status monitor element

CODEPAGE_ID BIGINT codepage_id - ID of Code

Page Used by Application

monitor element

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number

of Associated Agents monitor

element

COORD_PARTITION_NUM BIGINT coord_node - Coordinating

Node monitor element

SNAPSHOT_APPL_INFO

596 Administrative SQL Routines and Views

Table 145. Information returned by the SNAPSHOT_APPL_INFO table function (continued)

Column name Data type

Description or

corresponding monitor

element

AUTHORITY_LVL BIGINT authority_lvl - User

Authorization Level monitor

element

CLIENT_PID BIGINT client_pid - Client Process ID

monitor element

COORD_AGENT_PID BIGINT coord_agent_pid -

Coordinator Agent monitor

element

STATUS_CHANGE_TIME TIMESTAMP status_change_time -

Application Status Change

Time monitor element

CLIENT_PLATFORM SMALLINT client_platform - Client

Operating Platform monitor

element

CLIENT_PROTOCOL SMALLINT client_protocol - Client

Communication Protocol

monitor element

COUNTRY_CODE SMALLINT territory_code - Database

Territory Code monitor

element

APPL_NAME VARCHAR(256) appl_name - Application

Name monitor element

APPL_ID VARCHAR(128) appl_id - Application ID

monitor element

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence

Number monitor element

AUTH_ID VARCHAR(128) auth_id - Authorization ID

monitor element

CLIENT_NNAME VARCHAR(128) client_nname - Configuration

NNAME of Client monitor

element

CLIENT_PRDID VARCHAR(128) client_prdid - Client

Product/Version ID monitor

element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input

Database Alias monitor

element

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database

Alias Used by Application

monitor element

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

DB_PATH VARCHAR(1024) db_path - Database Path

monitor element

EXECUTION_ID VARCHAR(128) execution_id - User Login ID

monitor element

SNAPSHOT_APPL_INFO

Chapter 4. Deprecated administrative SQL routines 597

Table 145. Information returned by the SNAPSHOT_APPL_INFO table function (continued)

Column name Data type

Description or

corresponding monitor

element

CORR_TOKEN VARCHAR(128) corr_token - DRDA

Correlation Token monitor

element

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP

Monitor Client User ID

monitor element

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP

Monitor Client Workstation

Name monitor element

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP

Monitor Client Application

Name monitor element

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP Monitor

Client Accounting String

monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_APPL_INFO

598 Administrative SQL Routines and Views

SNAPSHOT_BP

Note: This table function has been deprecated and replaced by the “SNAPBP

administrative view and SNAP_GET_BP table function – Retrieve bufferpool

logical group snapshot information” on page 341.

�� SNAPSHOT_BP (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_BP function returns information from a buffer pool snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 146. Information returned by the SNAPSHOT_BP table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

SNAPSHOT_BP

Chapter 4. Deprecated administrative SQL routines 599

Table 146. Information returned by the SNAPSHOT_BP table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_DATA_TO_ESTORE BIGINT pool_data_to_estore - Buffer Pool

Data Pages to Extended Storage

monitor element

POOL_INDEX_TO_ESTORE BIGINT pool_index_to_estore - Buffer Pool

Index Pages to Extended Storage

monitor element

POOL_INDEX_FROM_ESTORE BIGINT pool_index_from_estore - Buffer

Pool Index Pages from Extended

Storage monitor element

SNAPSHOT_BP

600 Administrative SQL Routines and Views

Table 146. Information returned by the SNAPSHOT_BP table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_DATA_FROM_ESTORE BIGINT pool_data_from_estore - Buffer Pool

Data Pages from Extended Storage

monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

BP_NAME VARCHAR(128) bp_name - Buffer Pool Name

monitor element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path monitor

element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input Database

Alias monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_BP

Chapter 4. Deprecated administrative SQL routines 601

SNAPSHOT_CONTAINER

Note: This table function has been deprecated and replaced by the

“SNAPCONTAINER administrative view and

SNAP_GET_CONTAINER_V91 table function – Retrieve

tablespace_container logical data group snapshot information” on page 351

�� SNAPSHOT_CONTAINER (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_CONTAINER function returns container configuration

information from a tablespace snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 147. Information returned by the SNAPSHOT_CONTAINER table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLESPACE_ID BIGINT tablespace_id - Table Space

Identification monitor

element

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

CONTAINER_ID BIGINT container_id - Container

Identification monitor

element

CONTAINER_NAME VARCHAR(256) container_name - Container

Name monitor element

CONTAINER_TYPE SMALLINT container_type - Container

Type monitor element

TOTAL_PAGES BIGINT container_total_pages - Total

Pages in Container monitor

element

SNAPSHOT_CONTAINER

602 Administrative SQL Routines and Views

Table 147. Information returned by the SNAPSHOT_CONTAINER table function (continued)

Column name Data type

Description or

corresponding monitor

element

USABLE_PAGES BIGINT container_usable_pages -

Usable Pages in Container

monitor element

ACCESSIBLE BIGINT container_accessible -

Accessibility of Container

monitor element

STRIPE_SET BIGINT container_stripe_set - Stripe

Set monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_CONTAINER

Chapter 4. Deprecated administrative SQL routines 603

SNAPSHOT_DATABASE

Note: This table function has been deprecated and replaced by the “SNAPDB

administrative view and SNAP_GET_DB_V91 table function – Retrieve

snapshot information from the dbase logical group” on page 356

�� SNAPSHOT_DATABASE (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_DATABASE function returns information from a database

snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 148. Information returned by the SNAPSHOT_DATABASE table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum

Secondary Log Space Used monitor

element

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum Total

Log Space Used monitor element

TOTAL_LOG_USED BIGINT total_log_used - Total Log Space

Used monitor element

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total Log

Available monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

SNAPSHOT_DATABASE

604 Administrative SQL Routines and Views

Table 148. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_DATA_TO_ESTORE BIGINT pool_data_to_estore - Buffer Pool

Data Pages to Extended Storage

monitor element

POOL_INDEX_TO_ESTORE BIGINT pool_index_to_estore - Buffer Pool

Index Pages to Extended Storage

monitor element

POOL_INDEX_FROM_ESTORE BIGINT pool_index_from_estore - Buffer

Pool Index Pages from Extended

Storage monitor element

POOL_DATA_FROM_ESTORE BIGINT pool_data_from_estore - Buffer Pool

Data Pages from Extended Storage

monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

SNAPSHOT_DATABASE

Chapter 4. Deprecated administrative SQL routines 605

Table 148. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer Pool

Log Space Cleaners Triggered

monitor element

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer

Pool Victim Page Cleaners

Triggered monitor element

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer

Pool Threshold Cleaners Triggered

monitor element

LOCKS_HELD BIGINT locks_held - Locks Held monitor

element

LOCK_WAITS BIGINT lock_waits - Lock Waits monitor

element

LOCK_WAIT_TIME BIGINT lock_wait_time - Time Waited On

Locks monitor element

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total Lock List

Memory In Use monitor element

DEADLOCKS BIGINT deadlocks - Deadlocks Detected

monitor element

LOCK_ESCALS BIGINT lock_escals - Number of Lock

Escalations monitor element

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive Lock

Escalations monitor element

LOCKS_WAITING BIGINT locks_waiting - Current Agents

Waiting On Locks monitor element

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total Sort

Heap Allocated monitor element

SNAPSHOT_DATABASE

606 Administrative SQL Routines and Views

Table 148. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type

Description or corresponding

monitor element

TOTAL_SORTS BIGINT total_sorts - Total Sorts monitor

element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

ACTIVE_SORTS BIGINT active_sorts - Active Sorts monitor

element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit

Statements Attempted monitor

element

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback

Statements Attempted monitor

element

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL

Statements Attempted monitor

element

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL

Statements Attempted monitor

element

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed Statement

Operations monitor element

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL

Statements Executed monitor

element

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data Definition

Language (DDL) SQL Statements

monitor element

UID_SQL_STMTS BIGINT uid_sql_stmts -

Update/Insert/Delete SQL

Statements Executed monitor

element

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal

Automatic Rebinds monitor

element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_COMMITS BIGINT int_commits - Internal Commits

monitor element

INT_ROLLBACKS BIGINT int_rollbacks - Internal Rollbacks

monitor element

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal

Rollbacks Due To Deadlock

monitor element

ROWS_DELETED BIGINT rows_deleted - Rows Deleted

monitor element

SNAPSHOT_DATABASE

Chapter 4. Deprecated administrative SQL routines 607

Table 148. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type

Description or corresponding

monitor element

ROWS_INSERTED BIGINT rows_inserted - Rows Inserted

monitor element

ROWS_UPDATED BIGINT rows_updated - Rows Updated

monitor element

ROWS_SELECTED BIGINT rows_selected - Rows Selected

monitor element

BINDS_PRECOMPILES BIGINT binds_precompiles -

Binds/Precompiles Attempted

monitor element

TOTAL_CONS BIGINT total_cons - Connects Since

Database Activation monitor

element

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications

Connected Currently monitor

element

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications

Executing in the Database

Currently monitor element

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary Logs

Allocated Currently monitor

element

DB_STATUS BIGINT db_status - Status of Database

monitor element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of Lock

Timeouts monitor element

CONNECTIONS_TOP BIGINT connections_top - Maximum

Number of Concurrent Connections

monitor element

DB_HEAP_TOP BIGINT db_heap_top - Maximum Database

Heap Allocated monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

LOG_READS BIGINT log_reads - Number of Log Pages

Read monitor element

LOG_WRITES BIGINT log_writes - Number of Log Pages

Written monitor element

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package

Cache Lookups monitor element

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package Cache

Inserts monitor element

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog Cache

Lookups monitor element

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog Cache

Inserts monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

SNAPSHOT_DATABASE

608 Administrative SQL Routines and Views

Table 148. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type

Description or corresponding

monitor element

CAT_CACHE_HEAP_FULL BIGINT cat_cache_overflows - Catalog

Cache Overflows monitor element

CATALOG_PARTITION SMALLINT catalog_node - Catalog Node

Number monitor element

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary

Connections monitor element

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of

Associated Agents monitor element

AGENTS_TOP BIGINT agents_top - Number of Agents

Created monitor element

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum

Number of Coordinating Agents

monitor element

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time Waited

for Prefetch monitor element

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section

Lookups monitor element

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section

Inserts monitor element

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total Hash Joins

monitor element

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total Hash

Loops monitor element

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash Join

Overflows monitor element

HASH_JOIN_SMALL_

 OVERFLOWS

BIGINT hash_join_small_overflows - Hash

Join Small Overflows monitor

element

PKG_CACHE_NUM_

 OVERFLOWS

BIGINT pkg_cache_num_overflows -

Package Cache Overflows monitor

element

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package

Cache High Water Mark monitor

element

DB_CONN_TIME TIMESTAMP db_conn_time - Database

Activation Timestamp monitor

element

SQLM_ELM_LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

SQLM_ELM_LAST_BACKUP TIMESTAMP last_backup - Last Backup

Timestamp monitor element

APPL_CON_TIME TIMESTAMP appl_con_time - Connection

Request Start Timestamp monitor

element

DB_LOCATION INTEGER db_location - Database Location

monitor element

SNAPSHOT_DATABASE

Chapter 4. Deprecated administrative SQL routines 609

Table 148. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type

Description or corresponding

monitor element

SERVER_PLATFORM INTEGER server_platform - Server Operating

System monitor element

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application

with Oldest Transaction monitor

element

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog Node

Network Name monitor element

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input Database

Alias monitor element

DB_NAME VARCHAR(128) db_name - Database Name monitor

element

DB_PATH VARCHAR(1024) db_path - Database Path monitor

element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_DATABASE

610 Administrative SQL Routines and Views

SNAPSHOT_DBM

Note: This table function has been deprecated and replaced by the “SNAPDBM

administrative view and SNAP_GET_DBM table function – Retrieve the

dbm logical grouping snapshot information” on page 374.

�� SNAPSHOT_DBM (dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_DBM function returns information from a snapshot of the DB2

database manager.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If the null value is specified, the snapshot will be taken only if a file has not

previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 149. Information returned by the SNAPSHOT_DBM table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total Sort

Heap Allocated monitor element

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post

Threshold Sorts monitor element

PIPED_SORTS_REQUESTED BIGINT piped_sorts_requested - Piped Sorts

Requested monitor element

PIPED_SORTS_ACCEPTED BIGINT piped_sorts_accepted - Piped Sorts

Accepted monitor element

REM_CONS_IN BIGINT rem_cons_in - Remote Connections

To Database Manager monitor

element

REM_CONS_IN_EXEC BIGINT rem_cons_in_exec - Remote

Connections Executing in the

Database Manager monitor element

LOCAL_CONS BIGINT local_cons - Local Connections

monitor element

LOCAL_CONS_IN_EXEC BIGINT local_cons_in_exec - Local

Connections Executing in the

Database Manager monitor element

CON_LOCAL_DBASES BIGINT con_local_dbases - Local Databases

with Current Connects monitor

element

SNAPSHOT_DBM

Chapter 4. Deprecated administrative SQL routines 611

Table 149. Information returned by the SNAPSHOT_DBM table function (continued)

Column name Data type

Description or corresponding

monitor element

AGENTS_REGISTERED BIGINT agents_registered - Agents

Registered monitor element

AGENTS_WAITING_ON_TOKEN BIGINT agents_waiting_on_token - Agents

Waiting for a Token monitor

element

DB2_STATUS BIGINT db_status - Status of Database

monitor element

AGENTS_REGISTERED_TOP BIGINT agents_registered_top - Maximum

Number of Agents Registered

monitor element

AGENTS_WAITING_TOP BIGINT agents_waiting_top - Maximum

Number of Agents Waiting monitor

element

COMM_PRIVATE_MEM BIGINT comm_private_mem - Committed

Private Memory monitor element

IDLE_AGENTS BIGINT idle_agents - Number of Idle

Agents monitor element

AGENTS_FROM_POOL BIGINT agents_from_pool - Agents

Assigned From Pool monitor

element

AGENTS_CREATED_

 EMPTY_POOL

BIGINT agents_created_empty_pool -

Agents Created Due to Empty

Agent Pool monitor element

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum

Number of Coordinating Agents

monitor element

MAX_AGENT_OVERFLOWS BIGINT max_agent_overflows - Maximum

Agent Overflows monitor element

AGENTS_STOLEN BIGINT agents_stolen - Stolen Agents

monitor element

GW_TOTAL_CONS BIGINT gw_total_cons - Total Number of

Attempted Connections for DB2

Connect monitor element

GW_CUR_CONS BIGINT gw_cur_cons - Current Number of

Connections for DB2 Connect

monitor element

GW_CONS_WAIT_HOST BIGINT gw_cons_wait_host - Number of

Connections Waiting for the Host

to Reply monitor element

GW_CONS_WAIT_CLIENT BIGINT gw_cons_wait_client - Number of

Connections Waiting for the Client

to Send Request monitor element

POST_THRESHOLD_

 HASH_JOINS

BIGINT post_threshold_hash_joins - Hash

Join Threshold monitor element

INACTIVE_GW_AGENTS BIGINT idle_agents - Number of Idle

Agents monitor element

SNAPSHOT_DBM

612 Administrative SQL Routines and Views

Table 149. Information returned by the SNAPSHOT_DBM table function (continued)

Column name Data type

Description or corresponding

monitor element

NUM_GW_CONN_SWITCHES BIGINT num_gw_conn_switches -

Connection Switches monitor

element

DB2START_TIME TIMESTAMP db2start_time - Start Database

Manager Timestamp monitor

element

LAST_RESET TIMESTAMP last_reset - Last Reset Timestamp

monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_DBM

Chapter 4. Deprecated administrative SQL routines 613

SNAPSHOT_DYN_SQL

Note: This table function has been deprecated and replaced by the

“SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V91 table

function – Retrieve dynsql logical group snapshot information” on page 387

�� SNAPSHOT_DYN_SQL (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_DYN_SQL function returns information from a dynamic SQL

snapshot. It replaces the SQLCACHE_SNAPSHOT function, which is still available

for compatibility reasons.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 150. Information returned by the SNAPSHOT_DYN_SQL table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

ROWS_READ BIGINT rows_read - Rows Read

monitor element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

NUM_EXECUTIONS BIGINT num_executions - Statement

Executions monitor element

NUM_COMPILATIONS BIGINT num_compilations -

Statement Compilations

monitor element

PREP_TIME_WORST BIGINT prep_time_worst - Statement

Worst Preparation Time

monitor element

PREP_TIME_BEST BIGINT prep_time_best - Statement

Best Preparation Time

monitor element

SNAPSHOT_DYN_SQL

614 Administrative SQL Routines and Views

Table 150. Information returned by the SNAPSHOT_DYN_SQL table function (continued)

Column name Data type

Description or

corresponding monitor

element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal

Rows Deleted monitor

element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal

Rows Inserted monitor

element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal

Rows Updated monitor

element

STMT_SORTS BIGINT stmt_sorts - Statement Sorts

monitor element

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed

Statement Execution Time

monitor element

TOTAL_SYS_CPU_TIME BIGINT total_sys_cpu_time - Total

System CPU for a Statement

monitor element

TOTAL_USR_CPU_TIME BIGINT total_usr_cpu_time - Total

User CPU for a Statement

monitor element

STMT_TEXT CLOB(16M)1 stmt_text - SQL Dynamic

Statement Text monitor

element

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output of

the statement text is truncated at 64K.

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_DYN_SQL

Chapter 4. Deprecated administrative SQL routines 615

SNAPSHOT_FCM

Note: This table function has been deprecated and replaced by the “SNAPFCM

administrative view and SNAP_GET_FCM table function – Retrieve the fcm

logical data group snapshot information” on page 392.

�� SNAPSHOT_FCM (dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_FCM function returns database manager level information

regarding the fast communication manager (FCM).

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 The function returns a table as shown below.

 Table 151. Information returned by the SNAPSHOT_FCM table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

BUFF_FREE BIGINT buff_free - FCM Buffers

Currently Free monitor

element

BUFF_FREE_BOTTOM BIGINT buff_free_bottom - Minimum

FCM Buffers Free monitor

element

MA_FREE BIGINT ma_free - Message Anchors

Currently Free monitor

element

MA_FREE_BOTTOM BIGINT ma_free_bottom - Minimum

Message Anchors monitor

element

CE_FREE BIGINT ce_free - Connection Entries

Currently Free monitor

element

CE_FREE_BOTTOM BIGINT ce_free_bottom - Minimum

Connection Entries monitor

element

RB_FREE BIGINT rb_free - Request Blocks

Currently Free monitor

element

RB_FREE_BOTTOM BIGINT rb_free_bottom - Minimum

Request Blocks monitor

element

PARTITION_NUMBER SMALLINT node_number - Node

Number monitor element

SNAPSHOT_FCM

616 Administrative SQL Routines and Views

Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_FCM

Chapter 4. Deprecated administrative SQL routines 617

SNAPSHOT_FCMNODE

Note: This table function has been deprecated and replaced by the

“SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table

function – Retrieve the fcm_node logical data group snapshot information”

on page 395.

�� SNAPSHOT_FCMNODE (dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_FCMNODE function returns information from a snapshot of the

fast communication manager in the database manager.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If the null value is specified, the snapshot will be taken only if a file has not

previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 152. Information returned by the SNAPSHOT_FCMNODE table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

CONNECTION_STATUS BIGINT connection_status -

Connection Status monitor

element

TOTAL_BUFFERS_SENT BIGINT total_buffers_sent - Total

FCM Buffers Sent monitor

element

TOTAL_BUFFERS_RCVD BIGINT total_buffers_rcvd - Total

FCM Buffers Received

monitor element

PARTITION_NUMBER SMALLINT node_number - Node

Number monitor element

 Related tasks:

v “Capturing database system snapshot information to a file using the

SNAP_WRITE_FILE stored procedure” in System Monitor Guide and Reference

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_FCMNODE

618 Administrative SQL Routines and Views

SNAPSHOT_FILEW

Note: This procedure has been deprecated and replaced by the

“SNAP_WRITE_FILE procedure” on page 313.

�� SNAPSHOT_FILEW (requestType , dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_FILEW procedure writes system snapshot data to a file located in

the tmp subdirectory of the instance directory. To execute the SNAPSHOT_FILEW

procedure, a user must have SYSADM, SYSCTRL, or SYSMAINT authority. The

saved snapshot can be read by users who do not have SYSADM, SYSCTRL, or

SYSMAINT authority by passing null values as the inputs to snapshot functions.

requestType

An input argument of type SMALLINT that specifies a valid snapshot request

type, as defined in sqlmon.h.

dbname

An input argument of type VARCHAR(128) that specifies a valid database

name in the same instance as the currently connected database when calling

this procedure. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type SMALLINT that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 Example: Take a snapshot of database manager information by specifying a request

type of 1 (which corresponds to SQLMA_DB2), and defaulting to the currently

connected database and current database partition.

 CALL SNAPSHOT_FILEW (1, CAST (NULL AS VARCHAR(128)), CAST (NULL AS SMALLINT))

This will result in snapshot data being written to /tmp/SQLMA_DB2.dat in the

instance directory on UNIX operating systems or to \tmp\SQLMA_DB2.dat in the

instance directory on a Windows operating system.

SNAPSHOT_FILEW

Chapter 4. Deprecated administrative SQL routines 619

SNAPSHOT_LOCK

Note: This table function has been deprecated and replaced by the “SNAPLOCK

administrative view and SNAP_GET_LOCK table function – Retrieve lock

logical data group snapshot information” on page 403.

�� SNAPSHOT_LOCK (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_LOCK function returns information from a lock snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 153. Information returned by the SNAPSHOT_LOCK table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application

Handle (agent ID) monitor

element

TABLE_FILE_ID BIGINT table_file_id - Table File ID

monitor element

LOCK_OBJECT_TYPE BIGINT lock_object_type - Lock

Object Type Waited On

monitor element

LOCK_MODE BIGINT lock_mode - Lock Mode

monitor element

LOCK_STATUS BIGINT lock_status - Lock Status

monitor element

LOCK_OBJECT_NAME BIGINT lock_object_name - Lock

Object Name monitor

element

SNAPSHOT_LOCK

620 Administrative SQL Routines and Views

Table 153. Information returned by the SNAPSHOT_LOCK table function (continued)

Column name Data type

Description or

corresponding monitor

element

PARTITION_NUMBER SMALLINT node_number - Node

Number monitor element

LOCK_ESCALATION SMALLINT lock_escalation - Lock

Escalation monitor element

TABLE_NAME VARCHAR(128) table_name - Table Name

monitor element

TABLE_SCHEMA VARCHAR(128) table_schema - Table Schema

Name monitor element

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_LOCK

Chapter 4. Deprecated administrative SQL routines 621

SNAPSHOT_LOCKWAIT

Note: This table function has been deprecated and replaced by the

“SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table

function – Retrieve lockwait logical data group snapshot information” on

page 409.

�� SNAPSHOT_LOCKWAIT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_LOCKWAIT function returns lock waits information from an

application snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 154. Information returned by the SNAPSHOT_LOCKWAIT table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application

Handle (agent ID) monitor

element

SUBSECTION_NUMBER BIGINT ss_number - Subsection

Number monitor element

LOCK_MODE BIGINT lock_mode - Lock Mode

monitor element

LOCK_OBJECT_TYPE BIGINT lock_object_type - Lock

Object Type Waited On

monitor element

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock -

Agent ID Holding Lock

monitor element

SNAPSHOT_LOCKWAIT

622 Administrative SQL Routines and Views

Table 154. Information returned by the SNAPSHOT_LOCKWAIT table function (continued)

Column name Data type

Description or

corresponding monitor

element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock

Wait Start Timestamp

monitor element

LOCK_MODE_REQUESTED BIGINT lock_mode_requested - Lock

Mode Requested monitor

element

PARTITION_NUMBER SMALLINT node_number - Node

Number monitor element

LOCK_ESCALLATION SMALLINT lock_escalation - Lock

Escalation monitor element

TABLE_NAME VARCHAR(128) table_name - Table Name

monitor element

TABLE_SCHEMA VARCHAR(128) table_schema - Table Schema

Name monitor element

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk -

Application ID Holding Lock

monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_LOCKWAIT

Chapter 4. Deprecated administrative SQL routines 623

SNAPSHOT_QUIESCERS

Note: This table function has been deprecated and replaced by the

“SNAPTBSP_QUIESCER administrative view and

SNAP_GET_TBSP_QUIESCER table function – Retrieve quiescer table space

snapshot information” on page 452.

�� SNAPSHOT_QUIESCERS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_QUIESCERS function returns information about quiescers from a

table space snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 The function returns a table as shown below.

 Table 155. Information returned by the SNAPSHOT_QUIESCERS table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table

Space Name monitor element

QUIESCER_TBS_ID BIGINT quiescer_ts_id - Quiescer

Table Space Identification

monitor element

QUIESCER_OBJ_ID BIGINT quiescer_obj_id - Quiescer

Object Identification monitor

element

QUIESCER_AUTH_ID BIGINT quiescer_auth_id - Quiescer

User Authorization

Identification monitor

element

QUIESCER_AGENT_ID BIGINT quiescer_agent_id - Quiescer

Agent Identification monitor

element

QUIESCER_STATE BIGINT quiescer_state - Quiescer

State monitor element

SNAPSHOT_QUIESCERS

624 Administrative SQL Routines and Views

Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_QUIESCERS

Chapter 4. Deprecated administrative SQL routines 625

SNAPSHOT_RANGES

Note: This table function has been deprecated and replaced by the

“SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE

table function – Retrieve range snapshot information” on page 456.

�� SNAPSHOT_RANGES (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_RANGES function returns information from a range snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 The function returns a table as shown below.

 Table 156. Information returned by the SNAPSHOT_RANGES table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLESPACE_ID BIGINT tablespace_id - Table Space

Identification monitor element

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

RANGE_NUMBER BIGINT range_number - Range Number

monitor element

RANGE_STRIPE_SET_NUMBER BIGINT range_stripe_set_number - Stripe

Set Number monitor element

RANGE_OFFSET BIGINT range_offset - Range Offset monitor

element

RANGE_MAX_PAGE BIGINT range_max_page_number -

Maximum Page in Range monitor

element

RANGE_MAX_EXTENT BIGINT range_max_extent - Maximum

Extent in Range monitor element

RANGE_START_STRIPE BIGINT range_start_stripe - Start Stripe

monitor element

RANGE_END_STRIPE BIGINT range_end_stripe - End Stripe

monitor element

SNAPSHOT_RANGES

626 Administrative SQL Routines and Views

Table 156. Information returned by the SNAPSHOT_RANGES table function (continued)

Column name Data type

Description or corresponding

monitor element

RANGE_ADJUSTMENT BIGINT range_adjustment - Range

Adjustment monitor element

RANGE_NUM_CONTAINER BIGINT range_num_containers - Number of

Containers in Range monitor

element

RANGE_CONTAINER_ID BIGINT range_container_id - Range

Container monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_RANGES

Chapter 4. Deprecated administrative SQL routines 627

SNAPSHOT_STATEMENT

Note: This table function has been deprecated and replaced by the “SNAPSTMT

administrative view and SNAP_GET_STMT table function – Retrieve

statement snapshot information” on page 415.

�� SNAPSHOT_STATEMENT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_STATEMENT function returns information about statements from

an application snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 157. Information returned by the SNAPSHOT_STATEMENT table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

AGENT_ID BIGINT agent_id - Application Handle

(agent ID) monitor element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

NUM_AGENTS BIGINT num_agents - Number of Agents

Working on a Statement monitor

element

AGENTS_TOP BIGINT agents_top - Number of Agents

Created monitor element

STMT_TYPE BIGINT stmt_type - Statement Type monitor

element

STMT_OPERATION BIGINT stmt_operation/operation -

Statement Operation monitor

element

SNAPSHOT_STATEMENT

628 Administrative SQL Routines and Views

Table 157. Information returned by the SNAPSHOT_STATEMENT table function (continued)

Column name Data type

Description or corresponding

monitor element

SECTION_NUMBER BIGINT section_number - Section Number

monitor element

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query Cost

Estimate monitor element

QUERY_CARD_ESTIMATE BIGINT query_card_estimate - Query

Number of Rows Estimate monitor

element

DEGREE_PARALLELISM BIGINT degree_parallelism - Degree of

Parallelism monitor element

STMT_SORTS BIGINT stmt_sorts - Statement Sorts

monitor element

TOTAL_SORT_TIME BIGINT total_sort_time - Total Sort Time

monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort Overflows

monitor element

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal Rows

Deleted monitor element

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal Rows

Updated monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal Rows

Inserted monitor element

FETCH_COUNT BIGINT fetch_count - Number of Successful

Fetches monitor element

STMT_START TIMESTAMP stmt_start - Statement Operation

Start Timestamp monitor element

STMT_STOP TIMESTAMP stmt_stop - Statement Operation

Stop Timestamp monitor element

STMT_USR_CPU_TIME_S BIGINT stmt_usr_cpu_time - User CPU

Time used by Statement monitor

element

STMT_USR_CPU_TIME_MS BIGINT stmt_usr_cpu_time - User CPU

Time used by Statement monitor

element

STMT_SYS_CPU_TIME_S BIGINT stmt_sys_cpu_time - System CPU

Time used by Statement monitor

element

STMT_SYS_CPU_TIME_MS BIGINT stmt_sys_cpu_time - System CPU

Time used by Statement monitor

element

STMT_ELAPSED_TIME_S BIGINT stmt_elapsed_time - Most Recent

Statement Elapsed Time monitor

element

STMT_ELAPSED_TIME_MS BIGINT stmt_elapsed_time - Most Recent

Statement Elapsed Time monitor

element

BLOCKING_CURSOR SMALLINT blocking_cursor - Blocking Cursor

monitor element

SNAPSHOT_STATEMENT

Chapter 4. Deprecated administrative SQL routines 629

Table 157. Information returned by the SNAPSHOT_STATEMENT table function (continued)

Column name Data type

Description or corresponding

monitor element

STMT_PARTITION_NUMBER SMALLINT stmt_node_number - Statement

Node monitor element

CURSOR_NAME VARCHAR(128) cursor_name - Cursor Name

monitor element

CREATOR VARCHAR(128) creator - Application Creator

monitor element

PACKAGE_NAME VARCHAR(128) package_name - Package Name

monitor element

STMT_TEXT CLOB(16M)1 stmt_text - SQL Dynamic Statement

Text monitor element

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output of

the statement text is truncated at 64K.

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_STATEMENT

630 Administrative SQL Routines and Views

SNAPSHOT_SUBSECT

Note: This table function has been deprecated and replaced by the

“SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION

table function – Retrieve subsection logical monitor group snapshot

information” on page 425.

�� SNAPSHOT_SUBSECT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_SUBSECT function returns information about subsections of

access plans from an application snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from all databases under

the database instance.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 158. Information returned by the SNAPSHOT_SUBSECT table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

STMT_TEXT CLOB(16M)1 stmt_text - SQL Dynamic Statement

Text monitor element

SS_EXEC_TIME BIGINT ss_exec_time - Subsection Execution

Elapsed Time monitor element

TQ_TOT_SEND_SPILLS BIGINT tq_tot_send_spills - Total Number

of Tablequeue Buffers Overflowed

monitor element

TQ_CUR_SEND_SPILLS BIGINT tq_cur_send_spills - Current

Number of Tablequeue Buffers

Overflowed monitor element

TQ_MAX_SEND_SPILLS BIGINT tq_max_send_spills - Maximum

Number of Tablequeue Buffers

Overflows monitor element

TQ_ROWS_READ BIGINT tq_rows_read - Number of Rows

Read from Tablequeues monitor

element

SNAPSHOT_SUBSECT

Chapter 4. Deprecated administrative SQL routines 631

Table 158. Information returned by the SNAPSHOT_SUBSECT table function (continued)

Column name Data type

Description or corresponding

monitor element

TQ_ROWS_WRITTEN BIGINT tq_rows_written - Number of Rows

Written to Tablequeues monitor

element

ROWS_READ BIGINT rows_read - Rows Read monitor

element

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

SS_USR_CPU_TIME BIGINT ss_usr_cpu_time - User CPU Time

used by Subsection monitor

element

SS_SYS_CPU_TIME BIGINT ss_sys_cpu_time - System CPU

Time used by Subsection monitor

element

SS_NUMBER INTEGER ss_number - Subsection Number

monitor element

SS_STATUS INTEGER ss_status - Subsection Status

monitor element

SS_PARTITION_NUMBER SMALLINT ss_node_number - Subsection Node

Number monitor element

TQ_PARTITION_WAITED_FOR SMALLINT tq_node_waited_for - Waited for

Node on a Tablequeue monitor

element

TQ_WAIT_FOR_ANY INTEGER tq_wait_for_any - Waiting for Any

Node to Send on a Tablequeue

monitor element

TQ_ID_WAITING_ON INTEGER tq_id_waiting_on - Waited on Node

on a Tablequeue monitor element

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output of

the statement text is truncated at 64K.

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_SUBSECT

632 Administrative SQL Routines and Views

SNAPSHOT_SWITCHES

Note: This table function has been deprecated and replaced by the

“SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table

function – Retrieve database snapshot switch state information” on page

429.

�� SNAPSHOT_SWITCHES (dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_SWITCHES function returns information about the database

snapshot switch state.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 The function returns a table as shown below.

 Table 159. Information returned by the SNAPSHOT_SWITCHES table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

UOW_SW_STATE SMALLINT State of the unit of work

monitor recording switch (0

or 1).

UOW_SW_TIME TIMESTAMP If the unit of work monitor

recording switch is on, the

date and time that this switch

was turned on.

STATEMENT_SW_STATE SMALLINT State of the SQL statement

monitor recording switch (0

or 1).

STATEMENT_SW_TIME TIMESTAMP If the SQL statement monitor

recording switch is on, the

date and time that this switch

was turned on.

TABLE_SW_STATE SMALLINT State of the table activity

monitor recording switch (0

or 1).

TABLE_SW_TIME TIMESTAMP If the table activity monitor

recording switch is on, the

date and time that this switch

was turned on.

BUFFPOOL_SW_STATE SMALLINT State of the buffer pool

activity monitor recording

switch (0 or 1).

SNAPSHOT_SWITCHES

Chapter 4. Deprecated administrative SQL routines 633

Table 159. Information returned by the SNAPSHOT_SWITCHES table function (continued)

Column name Data type

Description or

corresponding monitor

element

BUFFPOOL_SW_TIME TIMESTAMP If the buffer pool activity

monitor recording switch is

on, the date and time that

this switch was turned on.

LOCK_SW_STATE SMALLINT State of the lock monitor

recording switch (0 or 1).

LOCK_SW_TIME TIMESTAMP If the lock monitor recording

switch is on, the date and

time that this switch was

turned on.

SORT_SW_STATE SMALLINT State of the sorting monitor

recording switch (0 or 1).

SORT_SW_TIME TIMESTAMP If the sorting monitor

recording switch is on, the

date and time that this switch

was turned on.

PARTITION_NUMBER SMALLINT node_number - Node

Number monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_SWITCHES

634 Administrative SQL Routines and Views

SNAPSHOT_TABLE

Note: This table function has been deprecated and replaced by the “SNAPTAB

administrative view and SNAP_GET_TAB_V91 table function – Retrieve

table logical data group snapshot information” on page 432

�� SNAPSHOT_TABLE (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_TABLE function returns activity information from a table

snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 160. Information returned by the SNAPSHOT_TABLE table function

Column name Data type

Description or

corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

ROWS_WRITTEN BIGINT rows_written - Rows Written

monitor element

ROWS_READ BIGINT rows_read - Rows Read

monitor element

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses

to Overflowed Records

monitor element

TABLE_FILE_ID BIGINT table_file_id - Table File ID

monitor element

TABLE_TYPE BIGINT table_type - Table Type

monitor element

PAGE_REORGS BIGINT page_reorgs - Page

Reorganizations monitor

element

SNAPSHOT_TABLE

Chapter 4. Deprecated administrative SQL routines 635

Table 160. Information returned by the SNAPSHOT_TABLE table function (continued)

Column name Data type

Description or

corresponding monitor

element

TABLE_NAME VARCHAR(128) table_name - Table Name

monitor element

TABLE_SCHEMA VARCHAR(128) table_schema - Table Schema

Name monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_TABLE

636 Administrative SQL Routines and Views

SNAPSHOT_TBREORG

Note: This table function has been deprecated and replaced by the

“SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG

table function – Retrieve table reorganization snapshot information” on page

436.

�� SNAPSHOT_TBREORG (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_TBREORG function returns table reorganization information in

the form of a result set. If no tables have been reorganized, 0 rows are returned. To

obtain real-time snapshot information, the user must have SYSADM, SYSCTRL, or

SYSMAINT authority.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 161. Information returned by the SNAPSHOT_TBREORG table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

TABLE_NAME VARCHAR(128) table_name - Table Name monitor

element

TABLE_SCHEMA VARCHAR(128) table_schema - Table Schema Name

monitor element

PAGE_REORGS BIGINT page_reorgs - Page Reorganizations

monitor element

REORG_PHASE BIGINT reorg_phase - Reorganize Phase

monitor element

REORG_MAX_PHASE INTEGER reorg_max_phase - Maximum

Reorganize Phase monitor element

REORG_CURRENT_COUNTER BIGINT reorg_current_counter - Reorganize

Progress monitor element

SNAPSHOT_TBREORG

Chapter 4. Deprecated administrative SQL routines 637

Table 161. Information returned by the SNAPSHOT_TBREORG table function (continued)

Column name Data type

Description or corresponding

monitor element

REORG_MAX_COUNTER BIGINT reorg_max_counter - Total Amount

of Reorganization monitor element

REORG_TYPE INTEGER reorg_type - Table Reorganize

Attributes monitor element

REORG_STATUS BIGINT reorg_status - Table Reorganize

Status monitor element

REORG_COMPLETION INTEGER reorg_completion - Reorganization

Completion Flag monitor element

REORG_START TIMESTAMP reorg_start - Table Reorganize Start

Time monitor element

REORG_END TIMESTAMP reorg_end - Table Reorganize End

Time monitor element

REORG_PHASE_START TIMESTAMP reorg_phase_start - Reorganize

Phase Start Time monitor element

REORG_INDEX_ID BIGINT reorg_index_id - Index Used to

Reorganize the Table monitor

element

REORG_TBSPC_ID BIGINT reorg_tbspc_id - Table Space Where

Table or Data partition is

Reorganized monitor element

PARTITION_NUMBER SMALLINT node_number - Node Number

monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_TBREORG

638 Administrative SQL Routines and Views

SNAPSHOT_TBS

Note: This table function has been deprecated and replaced by the “SNAPTBSP

administrative view and SNAP_GET_TBSP_V91 table function – Retrieve

tablespace logical data group snapshot information” on page 441

�� SNAPSHOT_TBS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_TBS function returns activity information from a table space

snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 162. Information returned by the SNAPSHOT_TBS table function

Column name Data type

Description or corresponding

monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the

snapshot was taken.

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer Pool

Data Logical Reads monitor

element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer Pool

Data Physical Reads monitor

element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer

Pool Asynchronous Data Reads

monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer Pool Data

Writes monitor element

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer

Pool Asynchronous Data Writes

monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer Pool

Index Logical Reads monitor

element

SNAPSHOT_TBS

Chapter 4. Deprecated administrative SQL routines 639

Table 162. Information returned by the SNAPSHOT_TBS table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer Pool

Index Physical Reads monitor

element

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer Pool

Index Writes monitor element

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer

Pool Asynchronous Index Writes

monitor element

POOL_READ_TIME BIGINT pool_read_time - Total Buffer Pool

Physical Read Time monitor

element

POOL_WRITE_TIME BIGINT pool_write_time - Total Buffer Pool

Physical Write Time monitor

element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool

Asynchronous Read Time monitor

element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer

Pool Asynchronous Write Time

monitor element

POOL_ASYNC_DATA_

 READ_REQS

BIGINT pool_async_data_read_reqs - Buffer

Pool Asynchronous Read Requests

monitor element

DIRECT_READS BIGINT direct_reads - Direct Reads From

Database monitor element

DIRECT_WRITES BIGINT direct_writes - Direct Writes to

Database monitor element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct Read

Requests monitor element

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct Write

Requests monitor element

DIRECT_READ_TIME BIGINT direct_read_time - Direct Read

Time monitor element

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct Write

Time monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread

Prefetch Pages monitor element

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer

Pool Asynchronous Index Reads

monitor element

POOL_DATA_TO_ESTORE BIGINT pool_data_to_estore - Buffer Pool

Data Pages to Extended Storage

monitor element

POOL_INDEX_TO_ESTORE BIGINT pool_index_to_estore - Buffer Pool

Index Pages to Extended Storage

monitor element

SNAPSHOT_TBS

640 Administrative SQL Routines and Views

Table 162. Information returned by the SNAPSHOT_TBS table function (continued)

Column name Data type

Description or corresponding

monitor element

POOL_INDEX_FROM_ESTORE BIGINT pool_index_from_estore - Buffer

Pool Index Pages from Extended

Storage monitor element

POOL_DATA_FROM_ESTORE BIGINT pool_data_from_estore - Buffer Pool

Data Pages from Extended Storage

monitor element

FILES_CLOSED BIGINT files_closed - Database Files Closed

monitor element

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table Space

Name monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_TBS

Chapter 4. Deprecated administrative SQL routines 641

SNAPSHOT_TBS_CFG

Note: This table function has been deprecated and replaced by the

“SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91

table function – Retrieve tablespace_nodeinfo logical data group snapshot

information” on page 447

�� SNAPSHOT_TBS_CFG (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_TBS_CFG function returns configuration information from a table

space snapshot.

dbname

An input argument of type VARCHAR(255) that specifies a valid database

name in the same instance as the currently connected database when calling

this function. Specify a database name that has a directory entry type of either

″Indirect″ or ″Home″, as returned by the LIST DATABASE DIRECTORY

command. Specify the null value to take the snapshot from the currently

connected database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid database partition

number. Specify -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

 If both parameters are set to NULL, the snapshot will be taken only if a file has

not previously been created by the SNAPSHOT_FILEW stored procedure for the

corresponding snapshot API request type.

The function returns a table as shown below.

 Table 163. Information returned by the SNAPSHOT_TBS_CFG table function

Column name Data type

Description or corresponding monitor

element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was

taken.

TABLESPACE_ID BIGINT tablespace_id - Table Space Identification

monitor element

TABLESPACE_NAME VARCHAR

(128)

tablespace_name - Table Space Name

monitor element

TABLESPACE_TYPE SMALLINT tablespace_type - Table Space Type monitor

element

TABLESPACE_STATE BIGINT tablespace_state - Table Space State monitor

element

NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of

Quiescers monitor element

STATE_CHANGE_OBJ_ID BIGINT tablespace_state_change_object_id - State

Change Object Identification monitor

element

SNAPSHOT_TBS_CFG

642 Administrative SQL Routines and Views

Table 163. Information returned by the SNAPSHOT_TBS_CFG table function (continued)

Column name Data type

Description or corresponding monitor

element

STATE_CHANGE_TBS_ID BIGINT tablespace_state_change_ts_id - State

Change Table Space Identification monitor

element

MIN_RECOVERY_TIME TIMESTAMP tablespace_min_recovery_time - Minimum

Recovery Time For Rollforward monitor

element

TBS_CONTENTS_TYPE SMALLINT tablespace_content_type - Table Space

Contents Type monitor element

BUFFERPOOL_ID BIGINT tablespace_cur_pool_id - Buffer Pool

Currently Being Used monitor element

NEXT_BUFFERPOOL_ID BIGINT tablespace_next_pool_id - Buffer Pool That

Will Be Used at Next Startup monitor

element

PAGE_SIZE BIGINT tablespace_page_size - Table Space Page Size

monitor element

EXTENT_SIZE BIGINT tablespace_extent_size - Table Space Extent

Size monitor element

PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table Space

Prefetch Size monitor element

TOTAL_PAGES BIGINT tablespace_total_pages - Total Pages in Table

Space monitor element

USABLE_PAGES BIGINT tablespace_usable_pages - Usable Pages in

Table Space monitor element

USED_PAGES BIGINT tablespace_used_pages - Used Pages in

Table Space monitor element

FREE_PAGES BIGINT tablespace_free_pages - Free Pages in Table

Space monitor element

PENDING_FREE_PAGES BIGINT tablespace_pending_free_pages - Pending

Free Pages in Table Space monitor element

HIGH_WATER_MARK BIGINT pool_watermark - Memory Pool Watermark

monitor element

REBALANCER_MODE BIGINT tablespace_rebalancer_mode - Rebalancer

Mode monitor element

REBALANCER_EXTENTS_

 REMAINING

BIGINT tablespace_rebalancer_extents_remaining -

Total Number of Extents to be Processed by

the Rebalancer monitor element

REBALANCER_EXTENTS_

 PROCESSED

BIGINT tablespace_rebalancer_extents_processed -

Number of Extents the Rebalancer has

Processed monitor element

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current

Rebalancer Priority monitor element

REBALANCER_START_

 TIME

TIMESTAMP tablespace_rebalancer_start_time -

Rebalancer Start Time monitor element

REBALANCER_RESTART_

 TIME

TIMESTAMP tablespace_rebalancer_restart_time -

Rebalancer Restart Time monitor element

SNAPSHOT_TBS_CFG

Chapter 4. Deprecated administrative SQL routines 643

Table 163. Information returned by the SNAPSHOT_TBS_CFG table function (continued)

Column name Data type

Description or corresponding monitor

element

LAST_EXTENT_MOVED BIGINT tablespace_rebalancer_last_extent_moved -

Last Extent Moved by the Rebalancer

monitor element

NUM_RANGES BIGINT tablespace_num_ranges - Number of Ranges

in the Table Space Map monitor element

NUM_CONTAINERS BIGINT tablespace_num_containers - Number of

Containers in Table Space monitor element

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SNAPSHOT_TBS_CFG

644 Administrative SQL Routines and Views

SQLCACHE_SNAPSHOT

Note: This table function has been deprecated and replaced by the

“SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V91 table

function – Retrieve dynsql logical group snapshot information” on page 387

�� SQLCACHE_SNAPSHOT () ��

The schema is SYSFUN.

The SQLCACHE_SNAPSHOT function returns the results of a snapshot of the DB2

dynamic SQL statement cache.

The function does not take any arguments. It returns a table, as shown below.

 Table 164. Information returned by SQLCACHE_SNAPSHOT table function

Column name Data type

Description or

corresponding monitor

element

NUM_EXECUTIONS INTEGER num_executions - Statement

Executions monitor element

NUM_COMPILATIONS INTEGER num_compilations -

Statement Compilations

monitor element

PREP_TIME_WORST INTEGER prep_time_worst - Statement

Worst Preparation Time

monitor element

PREP_TIME_BEST INTEGER prep_time_best - Statement

Best Preparation Time

monitor element

INT_ROWS_DELETED INTEGER int_rows_deleted - Internal

Rows Deleted monitor

element

INT_ROWS_INSERTED INTEGER int_rows_inserted - Internal

Rows Inserted monitor

element

ROWS_READ INTEGER rows_read - Rows Read

monitor element

INT_ROWS_UPDATED INTEGER int_rows_updated - Internal

Rows Updated monitor

element

ROWS_WRITE INTEGER rows_written - Rows Written

monitor element

STMT_SORTS INTEGER stmt_sorts - Statement Sorts

monitor element

TOTAL_EXEC_TIME_S INTEGER total_exec_time - Elapsed

Statement Execution Time

monitor element

TOTAL_EXEC_TIME_MS INTEGER total_exec_time - Elapsed

Statement Execution Time

monitor element

SQLCACHE_SNAPSHOT

Chapter 4. Deprecated administrative SQL routines 645

Table 164. Information returned by SQLCACHE_SNAPSHOT table function (continued)

Column name Data type

Description or

corresponding monitor

element

TOT_U_CPU_TIME_S INTEGER total_usr_cpu_time - Total

User CPU for a Statement

monitor element

TOT_U_CPU_TIME_MS INTEGER total_usr_cpu_time - Total

User CPU for a Statement

monitor element

TOT_S_CPU_TIME_S INTEGER total_sys_cpu_time - Total

System CPU for a Statement

monitor element

TOT_S_CPU_TIME_MS INTEGER total_sys_cpu_time - Total

System CPU for a Statement

monitor element

DB_NAME VARCHAR(128) db_name - Database Name

monitor element

STMT_TEXT CLOB(16M)1 stmt_text - SQL Dynamic

Statement Text monitor

element

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output of

the statement text is truncated at 64K.

 Related reference:

v “Snapshot monitor logical data groups and monitor elements” in System Monitor

Guide and Reference

SQLCACHE_SNAPSHOT

646 Administrative SQL Routines and Views

SYSINSTALLROUTINES

Note: This procedure has been deprecated. The procedure was used to create new

procedures and functions in DB2 UDB for Linux, UNIX, and Windows

Version 8.

�� SYSINSTALLROUTINES () ��

The schema is SYSPROC.

SYSINSTALLROUTINES

Chapter 4. Deprecated administrative SQL routines 647

SYSINSTALLROUTINES

648 Administrative SQL Routines and Views

Appendix A. DB2 Database technical information

Overview of the DB2 technical information

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

– Command help

– Message help
v Sample programs

IBM® periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD or downloaded

from Passport Advantage as new information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how we can improve the DB2 documentation, send an e-mail to

db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but

cannot respond to you directly. Provide specific examples wherever possible so

that we can better understand your concerns. If you are providing feedback on a

specific topic or help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

© Copyright IBM Corp. 2006 649

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Sample files” in Samples Topics

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 655

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 650

DB2 technical library in hardcopy or PDF format

 The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. DB2 Version 9 manuals in PDF

format can be downloaded from www.ibm.com/software/data/db2/udb/support/
manualsv9.html.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect or other DB2 products.

 Table 165. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

650 Administrative SQL Routines and Views

http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html

Table 165. DB2 technical information (continued)

Name Form Number Available in print

Developing SQL and External

Routines

SC10-4373 No

Developing Java Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 166. DB2 Connect-specific technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Appendix A. DB2 Database technical information 651

Table 166. DB2 Connect-specific technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 167. WebSphere® Information Integration technical information

Name Form Number Available in print

WebSphere Information

Integration: Administration Guide

for Federated Systems

SC19-1020 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1018 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

SC19-1034 No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1030 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “Overview of the DB2 technical information” on page 649

v “About the Release Notes” in Release notes

 Related tasks:

v “Ordering printed DB2 books” on page 652

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

652 Administrative SQL Routines and Views

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

 To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order.

 Related concepts:

v “Overview of the DB2 technical information” on page 649

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 650

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

Appendix A. DB2 Database technical information 653

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

 Related tasks:

v “Setting up access to DB2 contextual help and documentation” in Administration

Guide: Implementation

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the Tools —> Options —> Languages button. The Languages panel is

displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

654 Administrative SQL Routines and Views

http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Related concepts:

v “Overview of the DB2 technical information” on page 649

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics can be

available for download. The 'Last updated' value found at the bottom of most

topics indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the date of the most recent

downloadable update at http://www.ibm.com/software/data/db2/udb/support/
icupdate.html. You can then update your locally-installed Information Center if a

more recent downloadable update is available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM.

Note: Updates are also available on CD. For details on how to configure your

Information Center to install updates from CD, see the related links.
If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux®, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\doc\bin\help_start.bat

v On Linux:

Appendix A. DB2 Database technical information 655

http://www.ibm.com/software/data/db2/udb/support/icupdate.html
http://www.ibm.com/software/data/db2/udb/support/icupdate.html

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\doc\bin\help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file.

Do not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, run the help_end script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do

not use any other method to terminate the help_start script.
7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

656 Administrative SQL Routines and Views

DB2 tutorials

 The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 tutorials:

 To view the tutorial, click on the title.

Native XML data store

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

 Related concepts:

v “Visual Explain overview” in Administration Guide: Implementation

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “Overview of the DB2 technical information” on page 649

Appendix A. DB2 Database technical information 657

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

658 Administrative SQL Routines and Views

Appendix B. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 659

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

660 Administrative SQL Routines and Views

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Itanium®, Pentium®, and Xeon® are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 661

http://www.ibm.com/legal/copytrade.shtml

662 Administrative SQL Routines and Views

Index

A
ADD CONTACT command

using ADMIN_CMD 44

ADD CONTACTGROUP command
using ADMIN_CMD 46

ADMIN_CMD procedure 38

removing messages 43

retrieving messages 41

supported commands
ADD CONTACT 44

ADD CONTACTGROUP 46

AUTOCONFIGURE 48

BACKUP DATABASE 53

DESCRIBE 58

DROP CONTACT 68

DROP CONTACTGROUP 69

EXPORT 70

FORCE APPLICATION 76

GET STMM TUNING

DBPARTITIONNUM 78

IMPORT 80

INITIALIZE TAPE 94

LOAD 96

PRUNE HISTORY/LOGFILE 115

QUIESCE DATABASE 117

QUIESCE TABLESPACES FOR

TABLE 119

REDISTRIBUTE DATABASE

PARTITION GROUP 122

REORG INDEXES/TABLE 126

RESET ALERT

CONFIGURATION 136

RESET DATABASE

CONFIGURATION 139

RESET DATABASE MANAGER

CONFIGURATION 141

REWIND TAPE 143

RUNSTATS 144

SET TAPE POSITION 156

UNQUIESCE DATABASE 157

UPDATE ALERT

CONFIGURATION 159

UPDATE CONTACT 164

UPDATE CONTACTGROUP 166

UPDATE DATABASE

CONFIGURATION 168

UPDATE DATABASE MANAGER

CONFIGURATION 171

UPDATE HEALTH

NOTIFICATION CONTACT

LIST 174

UPDATE HISTORY 176

UPDATE STMM TUNING

DBPARTITIONNUM 178

ADMIN_COPY_SCHEMA

procedure 498

ADMIN_DROP_SCHEMA

procedure 503

ADMIN_GET_MSGS table function 41

ADMIN_GET_TAB_INFO table

function 506

ADMIN_REMOVE_MSGS procedure 43

administrative SQL routines
supported 8

administrative views 2

ADMINTABINFO 506

APPL_PERFORMANCE 286

APPLICATIONS 280

authorization 6

AUTHORIZATIONIDS 275

BP_HITRATIO 288

BP_READ_IO 290

BP_WRITE_IO 292

CONTACTGROUPS 523

CONTACTS 525

CONTAINER_UTILIZATION 294

DB_HISTORY 527

DBCFG 182

DBMCFG 184

DBPATHS 532

ENV_INST_INFO 189

ENV_PROD_INFO 191

ENV_SYS_INFO 193

LOCKS_HELD 297

LOCKWAIT 301

LOG_UTILIZATION 306

LONG_RUNNING_SQL 308

NOTIFICATIONLIST 542

OBJECTOWNERS 276

PDLOGMSGS_LAST24HOURS 543

PRIVILEGES 278

QUERY_PREP_COST 311

REG_VARIABLES 187

SNAPAGENT 315

SNAPAGENT_MEMORY_POOL 319

SNAPAPPL 324

SNAPAPPL_INFO 334

SNAPBP 341

SNAPBP_PART 347

SNAPCONTAINER 351

SNAPDB 356

SNAPDB_MEMORY_POOL 369

SNAPDBM 374

SNAPDBM_MEMORY_POOL 379

SNAPDETAILLOG 383

SNAPDYN_SQL 387

SNAPFCM 392

SNAPFCM_PART 395

SNAPHADR 398

SNAPLOCK 403

SNAPLOCKWAIT 409

SNAPSTMT 415

SNAPSTORAGE_PATHS 421

SNAPSUBSECTION 425

SNAPSWITCHES 429

SNAPTAB 432

SNAPTAB_REORG 436

SNAPTBSP 441

SNAPTBSP_QUIESCER 452

SNAPTBSP_RANGE 456

SNAPTBSPPART 447

SNAPUTIL 460

administrative views (continued)
SNAPUTIL_PROGRESS 464

supported 8

TBSP_UTILIZATION 467

TOP_DYNAMIC_SQL 472

versus table functions 3

ADMINTABINFO administrative

view 506

ALTOBJ procedure 516

AM_BASE_RPT_RECOMS table

function 18

AM_BASE_RPTS table function 20

AM_DROP_TASK procedure 22

AM_GET_LOCK_CHN_TB procedure 23

AM_GET_LOCK_CHNS procedure 25

AM_GET_LOCK_RPT procedure 26

AM_GET_RPT procedure 34

AM_SAVE_TASK procedure 36

ANALYZE_LOG_SPACE procedure 480

APPL_PERFORMANCE administrative

view 286

APPLICATION_ID scalar function 519

APPLICATIONS administrative

view 280

AUTH_LIST_GROUPS_FOR_AUTHID

table function 273

AUTHORIZATIONIDS administrative

view 275

authorizations
for administrative views 6

retrieving authorization IDs 275

retrieving group membership 273

AUTOCONFIGURE command
using ADMIN_CMD 48

B
BACKUP DATABASE command

using ADMIN_CMD 53

BP_HITRATIO administrative view 288

BP_READ_IO administrative view 290

BP_WRITE_IO administrative view 292

C
CAPTURE_STORAGEMGMT_INFO

procedure 493

commands
ADD CONTACT 44

ADD CONTACTGROUP 46

AUTOCONFIGURE 48

BACKUP DATABASE 53

calling from a procedure 38

DESCRIBE 58

DROP CONTACT 68

DROP CONTACTGROUP 69

EXPORT 70

FORCE APPLICATION 76

GET STMM TUNING

DBPARTITIONNUM 78

© Copyright IBM Corp. 2006 663

commands (continued)
IMPORT 80

INITIALIZE TAPE 94

LOAD 96

PRUNE HISTORY/LOGFILE 115

QUIESCE DATABASE 117

QUIESCE TABLESPACES FOR

TABLE 119

REDISTRIBUTE DATABASE

PARTITION GROUP 122

REORG INDEXES/TABLE 126

RESET ALERT

CONFIGURATION 136

RESET DATABASE

CONFIGURATION 139

RESET DATABASE MANAGER

CONFIGURATION 141

REWIND TAPE 143

RUNSTATS 144

SET TAPE POSITION 156

UNQUIESCE DATABASE 157

UPDATE ALERT

CONFIGURATION 159

UPDATE CONTACT 164

UPDATE CONTACTGROUP 166

UPDATE DATABASE

CONFIGURATION 168

UPDATE DATABASE MANAGER

CONFIGURATION 171

UPDATE HEALTH NOTIFICATION

CONTACT LIST 174

UPDATE HISTORY 176

UPDATE STMM TUNING

DBPARTITIONNUM 178

COMPILATION_ENV table function 520

contact lists
retrieving contact groups lists 523

retrieving contacts 525

CONTACTGROUPS administrative

view 523

contacting IBM 665

contacts
retrieving contact groups 523

retrieving contact lists 525

CONTACTS administrative view 525

CONTAINER_UTILIZATION

administrative view 294

copying
schemas and objects 498

CREATE_STORAGEMGMT_TABLES

procedure 495

D
database configuration

retrieving parameters 182

database manager configuration
retrieving parameters 184

database paths
retrieving 532

DB_HISTORY administrative view 527

DB_PARTITIONS table function 180

DB2 Information Center
updating 655

versions 654

viewing in different languages 654

DBCFG administrative view 182

DBMCFG administrative view 184

DBPATHS administrative view 532

deprecated
procedures 563, 619, 647

table functions 565, 566, 568, 576,

579, 580, 582, 586, 589, 590, 596, 599,

602, 604, 611, 614, 616, 618, 620, 622,

624, 626, 628, 631, 633, 635, 637, 639,

642, 645

deprecated functionality
SQL administrative routines 559

DESCRIBE command
using ADMIN_CMD 58

documentation 649, 650

terms and conditions of use 658

DROP CONTACT command
using ADMIN_CMD 68

DROP CONTACTGROUP command
using ADMIN_CMD 69

DROP_STORAGEMGMT_TABLES

procedure 497

dropping
schemas schemas and objects 503

E
ENV_INST_INFO administrative

view 189

ENV_PROD_INFO administrative

view 191

ENV_SYS_INFO administrative

view 193

error messages
retrieving information 555

EXPLAIN_GET_MSGS table

function 536

EXPORT command
using ADMIN_CMD 70

F
FORCE APPLICATION command

using ADMIN_CMD 76

functions
scalar

APPLICATION_ID 519

GET_ROUTINE_OPTS 474

MQPUBLISH 244

MQREAD 247

MQREADCLOB 255

MQRECEIVE 257

MQRECEIVECLOB 265

MQSEND 267

MQSUBSCRIBE 269

MQUNSUBSCRIBE 271

SQLERRM 555

supported 8

table functions 2

ADMIN_GET_MSGS 41

ADMIN_GET_TAB_INFO 506

AM_BASE_RPT_RECOMS 18

AM_BASE_RPTS 20

AUTH_LIST_GROUPS_FOR_AUTHID 273

COMPILATION_ENV 520

DB_PARTITIONS 180

deprecated 559

functions (continued)
table functions (continued)

EXPLAIN_GET_MSGS 536

GET_DB_CONFIG 563

GET_DBM_CONFIG 565

HEALTH_CONT_HI 195

HEALTH_CONT_HI_HIS 197

HEALTH_CONT_INFO 199

HEALTH_DB_HI 201

HEALTH_DB_HI_HIS 205

HEALTH_DB_HIC 209

HEALTH_DB_HIC_HIS 211

HEALTH_DB_INFO 214

HEALTH_DBM_HI 216

HEALTH_DBM_HI_HIS 218

HEALTH_DBM_INFO 221

HEALTH_GET_ALERT_ACTION_CFG 223

HEALTH_GET_ALERT_CFG 226

HEALTH_GET_IND_DEFINITION 230

HEALTH_TBS_HI 235

HEALTH_TBS_HI_HIS 238

HEALTH_TBS_INFO 242

MQREADALL 249

MQREADALLCLOB 252

MQRECEIVEALL 259

MQRECEIVEALLCLOB 262

PD_GET_LOG_MSGS 543

SNAP_GET_AGENT 315

SNAP_GET_AGENT_MEMORY_POOL 319

SNAP_GET_APPL 324

SNAP_GET_APPL_INFO 334

SNAP_GET_BP 341

SNAP_GET_BP_PART 347

SNAP_GET_CONTAINER

(deprecated) 566

SNAP_GET_CONTAINER_V91 351

SNAP_GET_DB (deprecated) 568

SNAP_GET_DB_MEMORY_POOL 369

SNAP_GET_DB_V91 356

SNAP_GET_DBM 374

SNAP_GET_DBM_MEMORY_POOL 379

SNAP_GET_DETAIL_LOG_V91 383

SNAP_GET_DYN_SQL

(deprecated) 576

SNAP_GET_DYN_SQL_V91 387

SNAP_GET_FCM 392

SNAP_GET_FCM_PART 395

SNAP_GET_HADR 398

SNAP_GET_LOCK 403

SNAP_GET_LOCKWAIT 409

SNAP_GET_STMT 415

SNAP_GET_STO_PATHS

(deprecated) 579

SNAP_GET_STORAGE_PATHS 421

SNAP_GET_SUBSECTION 425

SNAP_GET_SWITCHES 429

SNAP_GET_TAB

(deprecated) 580

SNAP_GET_TAB_REORG 436

SNAP_GET_TAB_V91 432

SNAP_GET_TBSP

(deprecated) 582

SNAP_GET_TBSP_PART

(deprecated) 586

SNAP_GET_TBSP_PART_V91 447

SNAP_GET_TBSP_QUIESCER 452

SNAP_GET_TBSP_RANGE 456

664 Administrative SQL Routines and Views

functions (continued)
table functions (continued)

SNAP_GET_TBSP_V91 441

SNAP_GET_UTIL 460

SNAP_GET_UTIL_PROGRESS 464

SNAPSHOT_AGENT

(deprecated) 589

SNAPSHOT_APPL

(deprecated) 590

SNAPSHOT_APPL_INFO

(deprecated) 596

SNAPSHOT_BP (deprecated) 599

SNAPSHOT_CONTAINER

(deprecated) 602

SNAPSHOT_DATABASE

(deprecated) 604

SNAPSHOT_DBM

(deprecated) 611

SNAPSHOT_DYN_SQL

(deprecated) 614

SNAPSHOT_FCM

(deprecated) 616

SNAPSHOT_FCMNODE

(deprecated) 618

SNAPSHOT_LOCK

(deprecated) 620

SNAPSHOT_LOCKWAIT

(deprecated) 622

SNAPSHOT_QUIESCERS

(deprecated) 624

SNAPSHOT_RANGES

(deprecated) 626

SNAPSHOT_STATEMENT

(deprecated) 628

SNAPSHOT_SUBSECT

(deprecated) 631

SNAPSHOT_SWITCHES

(deprecated) 633

SNAPSHOT_TABLE

(deprecated) 635

SNAPSHOT_TBREORG

(deprecated) 637

SNAPSHOT_TBS

(deprecated) 639

SNAPSHOT_TBS_CFG

(deprecated) 642

SQLCACHE_SNAPSHOT

(deprecated) 645

supported 8

versus administrative views 3

G
GENERATE_DISTFILE procedure 483

GET STMM TUNING

DBPARTITIONNUM command
using ADMIN_CMD 78

GET_DB_CONFIG table function 563

GET_DBM_CONFIG table function 565

GET_DBSIZE_INFO procedure 539

GET_ROUTINE_OPTS scalar

function 474

GET_ROUTINE_SAR procedure 475

GET_SWRD_SETTINGS procedure 485

groups
retrieving group membership 273

H
health alerts

retrieving alert action

configuration 223

retrieving alert configuration 226

health indicators
retrieving definitions 230

HEALTH_CONT_HI table function 195

HEALTH_CONT_HI_HIS table

function 197

HEALTH_CONT_INFO table

function 199

HEALTH_DB_HI table function 201

HEALTH_DB_HI_HIS table function 205

HEALTH_DB_HIC table function 209

HEALTH_DB_HIC_HIS table

function 211

HEALTH_DB_INFO table function 214

HEALTH_DBM_HI table function 216

HEALTH_DBM_HI_HIS table

function 218

HEALTH_DBM_INFO table

function 221

HEALTH_GET_ALERT_ACTION_CFG

table function 223

HEALTH_GET_ALERT_CFG table

function 226

HEALTH_GET_IND_DEFINITION table

function 230

HEALTH_HI_REC procedure 233

HEALTH_TBS_HI table function 235

HEALTH_TBS_HI_HIS table

function 238

HEALTH_TBS_INFO table function 242

help
displaying 654

for SQL statements 653

history file
retrieve information 527

I
IMPORT command

using ADMIN_CMD 80

Information Center
updating 655

versions 654

viewing in different languages 654

INITIALIZE TAPE command
using ADMIN_CMD 94

installed
retrieving DB2 product

information 191

instance
retrieving current instance

information 189

L
LOAD command

using ADMIN_CMD 96

LOCKS_HELD administrative view 297

LOCKWAIT administrative view 301

LOG_UTILIZATION administrative

view 306

LONG_RUNNING_SQL administrative

view 308

M
MQPUBLISH scalar function 244

MQREAD scalar function 247

MQREADALL table function 249

MQREADALLCLOB table function 252

MQREADCLOB scalar function 255

MQRECEIVE scalar function 257

MQRECEIVEALL table function 259

MQRECEIVEALLCLOB table

function 262

MQRECEIVECLOB scalar function 265

MQSEND scalar function 267

MQSUBSCRIBE scalar function 269

MQUNSUBSCRIBE scalar function 271

N
notices 659

notification lists
retrieving contact list 542

notification log messages
retrieving 543

NOTIFICATIONLIST administrative

view 542

O
OBJECTOWNERS administrative

view 276

objects
retrieving object ownership 276

ordering DB2 books 652

P
PD_GET_LOG_MSGS table function 543

PDLOGMSGS_LAST24HOURS

administrative view 543

printed books
ordering 652

privileges
retrieving 278

PRIVILEGES administrative view 278

problem determination
online information 657

retrieving DB2 notification log

messages 543

tutorials 657

procedures 2

ADMIN_CMD 38

ADMIN_COPY_SCHEMA 498

ADMIN_DROP_SCHEMA 503

ADMIN_REMOVE_MSGS 43

ALTOBJ 516

AM_DROP_TASK 22

AM_GET_LOCK_CHN_TB 23

AM_GET_LOCK_CHNS 25

AM_GET_LOCK_RPT 26

AM_GET_RPT 34

AM_SAVE_TASK 36

ANALYZE_LOG_SPACE 480

Index 665

procedures (continued)
CAPTURE_STORAGEMGMT_INFO 493

CREATE_STORAGEMGMT_TABLES 495

deprecated 559

DROP_STORAGEMGMT_TABLES 497

GENERATE_DISTFILE 483

GET_DBSIZE_INFO 539

GET_ROUTINE_SAR 475

GET_SWRD_SETTINGS 485

HEALTH_HI_REC 233

PUT_ROUTINE_SAR 476

REBIND_ROUTINE_PACKAGE 478

REORGCHK_IX_STATS 550

REORGCHK_TB_STATS 553

SET_ROUTINE_OPTS 479

SET_SWRD_SETTINGS 488

SNAP_WRITE_FILE 313

SNAPSHOT_FILEW

(deprecated) 619

STEPWISE_REDISTRIBUTE_DBPG 491

supported 8

SYSINSTALLOBJECTS 558

SYSINSTALLROUTINES 647

PRUNE HISTORY/LOGFILE command
using ADMIN_CMD 115

PUT_ROUTINE_SAR procedure 476

Q
QUERY_PREP_COST administrative

view 311

QUIESCE DATABASE command
using ADMIN_CMD 117

QUIESCE TABLESPACES FOR TABLE

command
using ADMIN_CMD 119

R
REBIND_ROUTINE_PACKAGE

procedure 478

REDISTRIBUTE DATABASE PARTITION

GROUP command
using ADMIN_CMD 122

redistributing data
procedures 480, 483, 485, 488, 491

REG_VARIABLES administrative

view 187

registry variables
retrieving settings in use 187

REORG INDEXES/TABLE command
using ADMIN_CMD 126

REORGCHK_IX_STATS procedure 550

REORGCHK_TB_STATS procedure 553

RESET ALERT CONFIGURATION

command
using ADMIN_CMD 136

RESET DATABASE CONFIGURATION

command
using ADMIN_CMD 139

RESET DATABASE MANAGER

CONFIGURATION command
using ADMIN_CMD 141

REWIND TAPE command
using ADMIN_CMD 143

routines
SQL administrative

supported 8

SQL administrative routines 559

RUNSTATS command
using ADMIN_CMD 144

S
scalar functions

SQLERRM 555

schemas
copying schemas and objects 498

dropping schemas and objects 503

SET TAPE POSITION command
using ADMIN_CMD 156

SET_ROUTINE_OPTS procedure 479

SET_SWRD_SETTINGS procedure 488

SNAP_GET_AGENT table function 315

SNAP_GET_AGENT_MEMORY_POOL

table function 319

SNAP_GET_APPL table function 324

SNAP_GET_APPL_INFO table

function 334

SNAP_GET_BP table function 341

SNAP_GET_BP_PART table function 347

SNAP_GET_CONTAINER deprecated

table function 566

SNAP_GET_CONTAINER_V91 table

function 351

SNAP_GET_DB deprecated table

function 568

SNAP_GET_DB_MEMORY_POOL table

function 369

SNAP_GET_DB_V91 table function 356

SNAP_GET_DBM table function 374

SNAP_GET_DBM_MEMORY_POOL table

function 379

SNAP_GET_DETAIL_LOG_V91 table

function 383

SNAP_GET_DYN_SQL deprecated table

function 576

SNAP_GET_DYN_SQL_V91 table

function 387

SNAP_GET_FCM table function 392

SNAP_GET_FCM_PART table

function 395

SNAP_GET_HADR table function 398

SNAP_GET_LOCK table function 403

SNAP_GET_LOCKWAIT table

function 409

SNAP_GET_STMT table function 415

SNAP_GET_STO_PATHS deprecated

table function 579

SNAP_GET_STORAGE_PATHS table

function 421

SNAP_GET_SUBSECTION table

function 425

SNAP_GET_SWITCHES table

function 429

SNAP_GET_TAB deprecated table

function 580

SNAP_GET_TAB_REORG table

function 436

SNAP_GET_TAB_V91 table function 432

SNAP_GET_TBSP deprecated table

function 582

SNAP_GET_TBSP_PART deprecated table

function 586

SNAP_GET_TBSP_PART_V91 table

function 447

SNAP_GET_TBSP_QUIESCER table

function 452

SNAP_GET_TBSP_RANGE table

function 456

SNAP_GET_TBSP_V91 table

function 441

SNAP_GET_UTIL table function 460

SNAP_GET_UTIL_PROGRESS table

function 464

SNAP_WRITE_FILE procedure 313

SNAPAGENT administrative view 315

SNAPAGENT_MEMORY_POOL

administrative view 319

SNAPAPPL administrative view 324

SNAPAPPL_INFO administrative

view 334

SNAPBP administrative view 341

SNAPBP_PART administrative view 347

SNAPCONTAINER administrative

view 351

SNAPDB administrative view 356

SNAPDB_MEMORY_POOL

administrative view 369

SNAPDBM administrative view 374

SNAPDBM_MEMORY_POOL

administrative view 379

SNAPDETAILLOG administrative

view 383

SNAPDYN_SQL administrative

view 387

SNAPFCM administrative view 392

SNAPFCM_PART administrative

view 395

SNAPHADR administrative view 398

SNAPLOCK administrative view 403

SNAPLOCKWAIT administrative

view 409

SNAPSHOT_AGENT deprecated table

function 589

SNAPSHOT_APPL deprecated table

function 590

SNAPSHOT_APPL_INFO deprecated

table function 596

SNAPSHOT_BP deprecated table

function 599

SNAPSHOT_CONTAINER deprecated

table function 602

SNAPSHOT_DATABASE deprecated

table function 604

SNAPSHOT_DBM deprecated table

function 611

SNAPSHOT_DYN_SQL deprecated table

function 614

SNAPSHOT_FCM deprecated table

function 616

SNAPSHOT_FCMNODE deprecated table

function 618

SNAPSHOT_FILEW deprecated

procedure 619

SNAPSHOT_LOCK deprecated table

function 620

SNAPSHOT_LOCKWAIT deprecated

table function 622

666 Administrative SQL Routines and Views

SNAPSHOT_QUIESCERS deprecated

table function 624

SNAPSHOT_RANGES deprecated table

function 626

SNAPSHOT_STATEMENT deprecated

table function 628

SNAPSHOT_SUBSECT deprecated table

function 631

SNAPSHOT_SWITCHES deprecated table

function 633

SNAPSHOT_TABLE deprecated table

function 635

SNAPSHOT_TBREORG deprecated table

function 637

SNAPSHOT_TBS deprecated table

function 639

SNAPSHOT_TBS_CFG deprecated table

function 642

SNAPSTMT administrative view 415

SNAPSTORAGE_PATHS administrative

view 421

SNAPSUBSECTION administrative

view 425

SNAPSWITCHES administrative

view 429

SNAPTAB administrative view 432

SNAPTAB_REORG administrative

view 436

SNAPTBSP administrative view 441

SNAPTBSP_QUIESCER administrative

view 452

SNAPTBSP_RANGE administrative

view 456

SNAPTBSPPART administrative

view 447

SNAPUTIL administrative view 460

SNAPUTIL_PROGRESS administrative

view 464

split mirror
retrieving database paths 532

SQL administrative routines
deprecated routines 559

SQL statements
displaying help 653

SQLCACHE_SNAPSHOT deprecated

table function 645

SQLERRM scalar function 555

STEPWISE_REDISTRIBUTE_DBPG

procedure 491

storage management tool
stored procedures 493, 495, 497

supported functions 8

SYSINSTALLOBJECTS procedure 558

SYSINSTALLROUTINES deprecated

procedure 647

system information
retrieving 193

T
table functions

ADMIN_GET_MSGS 41

ADMIN_GET_TAB_INFO 506

AUTH_LIST_GROUPS_FOR_AUTHID 273

deprecated 559

HEALTH_GET_ALERT_ACTION_CFG 223

HEALTH_GET_ALERT_CFG 226

table functions (continued)
HEALTH_GET_IND_DEFINITION 230

PD_GET_LOG_MSGS 543

SNAP_GET_AGENT 315

SNAP_GET_AGENT_MEMORY_POOL 319

SNAP_GET_APPL 324

SNAP_GET_APPL_INFO 334

SNAP_GET_BP 341

SNAP_GET_BP_PART 347

SNAP_GET_CONTAINER_V91 351

SNAP_GET_DB_MEMORY_POOL 369

SNAP_GET_DB_V91 356

SNAP_GET_DBM 374

SNAP_GET_DBM_MEMORY_POOL 379

SNAP_GET_DETAIL_LOG_V91 383

SNAP_GET_DYN_SQL_V91 387

SNAP_GET_FCM 392

SNAP_GET_FCM_PART 395

SNAP_GET_HADR 398

SNAP_GET_LOCK 403

SNAP_GET_LOCKWAIT 409

SNAP_GET_STMT 415

SNAP_GET_STORAGE_PATHS 421

SNAP_GET_SUBSECTION 425

SNAP_GET_SWITCHES 429

SNAP_GET_TAB_REORG 436

SNAP_GET_TAB_V91 432

SNAP_GET_TBSP_PART_V91 447

SNAP_GET_TBSP_QUIESCER 452

SNAP_GET_TBSP_RANGE 456

SNAP_GET_TBSP_V91 441

SNAP_GET_UTIL 460

SNAP_GET_UTIL_PROGRESS 464

supported 8

versus administrative views 3

tables
retrieving size and state 506

TBSP_UTILIZATION administrative

view 467

terms and conditions
use of publications 658

TOP_DYNAMIC_SQL administrative

view 472

troubleshooting
online information 657

tutorials 657

tutorials
troubleshooting and problem

determination 657

Visual Explain 657

U
UNQUIESCE DATABASE command

using ADMIN_CMD 157

UPDATE ALERT CONFIGURATION

command
using ADMIN_CMD 159

UPDATE CONTACT command
using ADMIN_CMD 164

UPDATE CONTACTGROUP command
using ADMIN_CMD 166

UPDATE DATABASE CONFIGURATION

command
using ADMIN_CMD 168

UPDATE DATABASE MANAGER

CONFIGURATION command
using ADMIN_CMD 171

UPDATE HEALTH NOTIFICATION

CONTACT LIST command
using ADMIN_CMD 174

UPDATE HISTORY command
using ADMIN_CMD 176

UPDATE STMM TUNING

DBPARTITIONNUM Command
using ADMIN_CMD 178

updates
DB2 Information Center 655

Information Center 655

V
views

administrative views
ADMINTABINFO 506

APPL_PERFORMANCE 286

APPLICATIONS 280

AUTHORIZATIONIDS 275

BP_HITRATIO 288

BP_READ_IO 290

BP_WRITE_IO 292

CONTACTGROUPS 523

CONTACTS 525

CONTAINER_UTILIZATION 294

DB_HISTORY 527

DBCFG 182

DBMCFG 184

DBPATHS 532

ENV_INST_INFO 189

ENV_PROD_INFO 191

ENV_SYS_INFO 193

LOCKS_HELD 297

LOCKWAIT 301

LOG_UTILIZATION 306

LONG_RUNNING_SQL 308

NOTIFICATIONLIST 542

OBJECTOWNERS 276

PDLOGMSGS_LAST24HOURS 543

PRIVILEGES 278

QUERY_PREP_COST 311

REG_VARIABLES 187

SNAPAGENT 315

SNAPAGENT_MEMORY_POOL 319

SNAPAPPL 324

SNAPAPPL_INFO 334

SNAPBP 341

SNAPBP_PART 347

SNAPCONTAINER 351

SNAPDB 356

SNAPDB_MEMORY_POOL 369

SNAPDBM 374

SNAPDBM_MEMORY_POOL 379

SNAPDETAILLOG 383

SNAPDYN_SQL 387

SNAPFCM 392

SNAPFCM_PART 395

SNAPHADR 398

SNAPLOCK 403

SNAPLOCKWAIT 409

SNAPSTMT 415

SNAPSTORAGE_PATHS 421

SNAPSUBSECTION 425

Index 667

views (continued)
administrative views (continued)

SNAPSWITCHES 429

SNAPTAB 432

SNAPTAB_REORG 436

SNAPTBSP 441

SNAPTBSP_QUIESCER 452

SNAPTBSP_RANGE 456

SNAPTBSPPART 447

SNAPUTIL 460

SNAPUTIL_PROGRESS 464

TBSP_UTILIZATION 467

TOP_DYNAMIC_SQL 472

Visual Explain
tutorial 657

668 Administrative SQL Routines and Views

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 2006 669

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

670 Administrative SQL Routines and Views

����

Printed in USA

SC10-4293-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
DB

2
Ve

rs
io

n
9

Ad
m

in
is

tra
tiv

e
SQ

L
Ro

ut
in

es

an

d
Vi

ew
s

�
�

�

	Contents
	Chapter 1. Introduction
	Administrative SQL routines and views
	Administrative views versus table functions

	Chapter 2. Authorization
	Authorization for administrative views

	Chapter 3. Supported administrative SQL routines and views
	Supported administrative SQL routines and views
	Activity monitor administrative SQL routines and views
	AM_BASE_RPT_RECOMS – Recommendations for activity reports
	AM_BASE_RPTS – Activity monitor reports
	AM_DROP_TASK – Delete a monitoring task
	AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular format
	AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific application
	AM_GET_LOCK_RPT – Retrieve application lock details
	AM_GET_RPT – Retrieve activity monitor data
	AM_SAVE_TASK – Create or modify a monitoring task

	ADMIN_CMD stored procedure and associated administrative SQL routines
	ADMIN_CMD – Run administrative commands
	ADMIN_GET_MSGS table function – Retrieve messages generated by a data movement utility that is executed through the ADMIN_CMD procedure
	ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data movement utility that is executed through the ADMIN_CMD procedure
	ADD CONTACT command using the ADMIN_CMD procedure
	ADD CONTACTGROUP command using the ADMIN_CMD procedure
	AUTOCONFIGURE command using the ADMIN_CMD procedure
	BACKUP DATABASE command using the ADMIN_CMD procedure
	DESCRIBE command using the ADMIN_CMD procedure
	DROP CONTACT command using the ADMIN_CMD procedure
	DROP CONTACTGROUP command using the ADMIN_CMD procedure
	EXPORT command using the ADMIN_CMD procedure
	FORCE APPLICATION command using the ADMIN_CMD procedure
	GET STMM TUNING DBPARTITIONNUM command using the ADMIN_CMD procedure
	IMPORT command using the ADMIN_CMD procedure
	INITIALIZE TAPE command using the ADMIN_CMD procedure
	LOAD command using the ADMIN_CMD procedure
	PRUNE HISTORY/LOGFILE command using the ADMIN_CMD procedure
	QUIESCE DATABASE command using the ADMIN_CMD procedure
	QUIESCE TABLESPACES FOR TABLE command using the ADMIN_CMD procedure
	REDISTRIBUTE DATABASE PARTITION GROUP command using the ADMIN_CMD procedure
	REORG INDEXES/TABLE command using the ADMIN_CMD procedure
	RESET ALERT CONFIGURATION command using the ADMIN_CMD procedure
	RESET DATABASE CONFIGURATION command using the ADMIN_CMD procedure
	RESET DATABASE MANAGER CONFIGURATION command using the ADMIN_CMD procedure
	REWIND TAPE command using the ADMIN_CMD procedure
	RUNSTATS command using the ADMIN_CMD procedure
	SET TAPE POSITION command using the ADMIN_CMD procedure
	UNQUIESCE DATABASE command using the ADMIN_CMD procedure
	UPDATE ALERT CONFIGURATION command using the ADMIN_CMD procedure
	UPDATE CONTACT command using the ADMIN_CMD procedure
	UPDATE CONTACTGROUP command using the ADMIN_CMD procedure
	UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD procedure
	UPDATE DATABASE MANAGER CONFIGURATION command using the ADMIN_CMD procedure
	UPDATE HEALTH NOTIFICATION CONTACT LIST command using the ADMIN_CMD procedure
	UPDATE HISTORY command using the ADMIN_CMD procedure
	UPDATE STMM TUNING DBPARTITIONNUM command using the ADMIN_CMD procedure

	Configuration administrative SQL routines and views
	DB_PARTITIONS
	DBCFG administrative view – Retrieve database configuration parameter information
	DBMCFG administrative view – Retrieve database manager configuration parameter information
	REG_VARIABLES administrative view – Retrieve DB2 registry settings in use

	Environment administrative SQL routines and views
	ENV_INST_INFO administrative view – Retrieve information about the current instance
	ENV_PROD_INFO administrative view – Retrieve information about installed DB2 products
	ENV_SYS_INFO administrative view – Retrieve information about the system

	Health snapshot administrative SQL routines and views
	HEALTH_CONT_HI
	HEALTH_CONT_HI_HIS
	HEALTH_CONT_INFO
	HEALTH_DB_HI
	HEALTH_DB_HI_HIS
	HEALTH_DB_HIC
	HEALTH_DB_HIC_HIS
	HEALTH_DB_INFO
	HEALTH_DBM_HI
	HEALTH_DBM_HI_HIS
	HEALTH_DBM_INFO
	HEALTH_GET_ALERT_ACTION_CFG table function –Retrieve health alert action configuration settings
	HEALTH_GET_ALERT_CFG table function – Retrieve health alert configuration settings
	HEALTH_GET_IND_DEFINITION table function – Retrieve health indicator definitions
	HEALTH_HI_REC
	HEALTH_TBS_HI
	HEALTH_TBS_HI_HIS
	HEALTH_TBS_INFO

	MQSeries administrative SQL routines and views
	MQPUBLISH
	MQREAD
	MQREADALL
	MQREADALLCLOB
	MQREADCLOB
	MQRECEIVE
	MQRECEIVEALL
	MQRECEIVEALLCLOB
	MQRECEIVECLOB
	MQSEND
	MQSUBSCRIBE
	MQUNSUBSCRIBE

	Security administrative SQL routines and views
	AUTH_LIST_GROUPS_FOR_AUTHID table function – Retrieve group membership list for a given authorization ID
	AUTHORIZATIONIDS administrative view – Retrieve authorization IDs and types
	OBJECTOWNERS administrative view – Retrieve object ownership information
	PRIVILEGES administrative view – Retrieve privilege information

	Snapshot administrative SQL routines and views
	APPLICATIONS administrative view – Retrieve connected database application information
	APPL_PERFORMANCE administrative view – Retrieve percentage of rows selected for an application
	BP_HITRATIO administrative view – Retrieve bufferpool hit ratio information
	BP_READ_IO administrative view – Retrieve bufferpool read performance information
	BP_WRITE_IO administrative view – Retrieve bufferpool write performance information
	CONTAINER_UTILIZATION administrative view – Retrieve table space container and utilization information
	LOCKS_HELD administrative view – Retrieve information on locks held
	LOCKWAITS administrative view – Retrieve current lockwaits information
	LOG_UTILIZATION administrative view – Retrieve log utilization information
	LONG_RUNNING_SQL administrative view
	QUERY_PREP_COST administrative view – Retrieve statement prepare time information
	SNAP_WRITE_FILE procedure
	SNAPAGENT administrative view and SNAP_GET_AGENT table function – Retrieve agent logical data group application snapshot information
	SNAPAGENT_MEMORY_POOL administrative view and SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool logical data group snapshot information
	SNAPAPPL administrative view and SNAP_GET_APPL table function – Retrieve appl logical data group snapshot information
	SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO table function – Retrieve appl_info logical data group snapshot information
	SNAPBP administrative view and SNAP_GET_BP table function – Retrieve bufferpool logical group snapshot information
	SNAPBP_PART administrative view and SNAP_GET_BP_PART table function – Retrieve bufferpool_nodeinfo logical data group snapshot information
	SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91 table function – Retrieve tablespace_container logical data group snapshot information
	SNAPDB administrative view and SNAP_GET_DB_V91 table function – Retrieve snapshot information from the dbase logical group
	SNAPDB_MEMORY_POOL administrative view and SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level memory usage information
	SNAPDBM administrative view and SNAP_GET_DBM table function – Retrieve the dbm logical grouping snapshot information
	SNAPDBM_MEMORY_POOL administrative view and SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database manager level memory usage information
	SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91 table function – Retrieve snapshot information from the detail_log logical data group
	SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V91 table function – Retrieve dynsql logical group snapshot information
	SNAPFCM administrative view and SNAP_GET_FCM table function – Retrieve the fcm logical data group snapshot information
	SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table function – Retrieve the fcm_node logical data group snapshot information
	SNAPHADR administrative view and SNAP_GET_HADR table function – Retrieve hadr logical data group snapshot information
	SNAPLOCK administrative view and SNAP_GET_LOCK table function – Retrieve lock logical data group snapshot information
	SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table function – Retrieve lockwait logical data group snapshot information
	SNAPSTMT administrative view and SNAP_GET_STMT table function – Retrieve statement snapshot information
	SNAPSTORAGE_PATHS administrative view and SNAP_GET_STORAGE_PATHS table function – Retrieve automatic storage path information
	SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table function – Retrieve subsection logical monitor group snapshot information
	SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table function – Retrieve database snapshot switch state information
	SNAPTAB administrative view and SNAP_GET_TAB_V91 table function – Retrieve table logical data group snapshot information
	SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function – Retrieve table reorganization snapshot information
	SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function – Retrieve tablespace logical data group snapshot information
	SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table function – Retrieve tablespace_nodeinfo logical data group snapshot information
	SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER table function – Retrieve quiescer table space snapshot information
	SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table function – Retrieve range snapshot information
	SNAPUTIL administrative view and SNAP_GET_UTIL table function – Retrieve utility_info logical data group snapshot information
	SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function – Retrieve progress logical data group snapshot information
	TBSP_UTILIZATION administrative view – Retrieve table space configuration and utilization information
	TOP_DYNAMIC_SQL administrative view – Retrieve information on the top dynamic SQL statements

	SQL procedure administrative SQL routines and views
	GET_ROUTINE_OPTS
	GET_ROUTINE_SAR
	PUT_ROUTINE_SAR
	REBIND_ROUTINE_PACKAGE
	SET_ROUTINE_OPTS

	Stepwise redistribute administrative SQL routines
	ANALYZE_LOG_SPACE procedure – Retrieve log space analysis information
	GENERATE_DISTFILE procedure – Generate a data distribution file
	GET_SWRD_SETTINGS procedure – Retrieve redistribute information
	SET_SWRD_SETTINGS procedure – Create or change redistribute registry
	STEPWISE_REDISTRIBUTE_DBPG procedure – Redistribute part of database partition group

	Storage management tool administrative SQL routines
	CAPTURE_STORAGEMGMT_INFO procedure – Retrieve storage-related information for a given root object
	CREATE_STORAGEMGMT_TABLES procedure – Create storage management tables
	DROP_STORAGEMGMT_TABLES procedure – Drop all storage management tables

	Miscellaneous administrative SQL routines and views
	ADMIN_COPY_SCHEMA procedure – Copy a specific schema and its objects
	ADMIN_DROP_SCHEMA procedure – Drop a specific schema and its objects
	ADMINTABINFO administrative view and ADMIN_GET_TAB_INFO table function – Retrieve size and state information for tables
	ALTOBJ
	APPLICATION_ID
	COMPILATION_ENV table function – Retrieve compilation environment elements
	CONTACTGROUPS administrative view – Retrieve the list of contact groups
	CONTACTS administrative view – Retrieve list of contacts
	DB_HISTORY administrative view – Retrieve history file information
	DBPATHS administrative view – Retrieve database paths
	EXPLAIN_GET_MSGS
	GET_DBSIZE_INFO
	NOTIFICATIONLIST administrative view – Retrieve contact list for health notification
	PDLOGMSGS_LAST24HOURS administrative view and PD_GET_LOG_MSGS table function – Retrieve problem determination messages
	REORGCHK_IX_STATS procedure – Retrieve index statistics for reorganization evaluation
	REORGCHK_TB_STATS procedure – Retrieve table statistics for reorganization evaluation
	SQLERRM scalar functions – Retrieves error message information
	SYSINSTALLOBJECTS

	Chapter 4. Deprecated administrative SQL routines
	Deprecated SQL administrative routines and their replacement routines or views
	GET_DB_CONFIG
	GET_DBM_CONFIG
	SNAP_GET_CONTAINER
	SNAP_GET_DB
	SNAP_GET_DYN_SQL
	SNAP_GET_STO_PATHS
	SNAP_GET_TAB
	SNAP_GET_TBSP
	SNAP_GET_TBSP_PART
	SNAPSHOT_AGENT
	SNAPSHOT_APPL
	SNAPSHOT_APPL_INFO
	SNAPSHOT_BP
	SNAPSHOT_CONTAINER
	SNAPSHOT_DATABASE
	SNAPSHOT_DBM
	SNAPSHOT_DYN_SQL
	SNAPSHOT_FCM
	SNAPSHOT_FCMNODE
	SNAPSHOT_FILEW
	SNAPSHOT_LOCK
	SNAPSHOT_LOCKWAIT
	SNAPSHOT_QUIESCERS
	SNAPSHOT_RANGES
	SNAPSHOT_STATEMENT
	SNAPSHOT_SUBSECT
	SNAPSHOT_SWITCHES
	SNAPSHOT_TABLE
	SNAPSHOT_TBREORG
	SNAPSHOT_TBS
	SNAPSHOT_TBS_CFG
	SQLCACHE_SNAPSHOT
	SYSINSTALLROUTINES

	Appendix A. DB2 Database technical information
	Overview of the DB2 technical information
	Documentation feedback

	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Trademarks

	Index
	Contacting IBM

