
DB2®

Developing Perl and PHP Applications

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4234-00

���

DB2®

Developing Perl and PHP Applications

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4234-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

Part 1. Developing PHP Applications 1

Chapter 1. Introduction to Developing

PHP Applications 3

Introduction to PHP application development for

DB2 3

Setting up the PHP environment on Windows . . . 4

Setting up the PHP environment on Linux or UNIX . 5

Chapter 2. Developing PHP Applications

with ibm_db2 7

Connecting to a DB2 database with PHP (ibm_db2) . 7

Retrieving database metadata (ibm_db2) 8

Executing XQuery expressions in PHP (ibm_db2) . . 10

Executing a single SQL statement in PHP (ibm_db2) 11

Preparing and executing SQL statements in PHP

(ibm_db2) 12

Inserting large objects in PHP (ibm_db2) 14

Fetching columns from result sets in PHP (ibm_db2) 15

Fetching rows from result sets in PHP (ibm_db2) . . 16

Fetching large objects in PHP (ibm_db2) 17

Managing transactions in PHP (ibm_db2) 17

Handling errors and warning messages (ibm_db2) 18

Calling stored procedures with OUT or INOUT

parameters in PHP (ibm_db2) 20

Calling stored procedures that return multiple result

sets in PHP (ibm_db2) 21

Chapter 3. Developing PHP

Applications with PDO 23

Connecting to a DB2 database with PHP (PDO) . . 23

Executing a single SQL statement in PHP that

returns no result sets (PDO) 24

Executing a single SQL statement in PHP that

returns a result set (PDO) 25

Preparing and executing SQL statements (PDO) . . 26

Inserting large objects in PHP (PDO) 27

Fetching columns from result sets in PHP (PDO) . . 28

Fetching rows from result sets in PHP (PDO) . . . 29

Fetching large objects in PHP (PDO) 31

Managing transactions in PHP (PDO) 32

Handling errors and warnings in PHP (PDO) . . . 33

Calling stored procedures with OUT or INOUT

parameters in PHP (PDO) 33

Calling stored procedures that return multiple result

sets in PHP (PDO) 35

Chapter 4. ibm_db2 Extension

Reference 37

Connection functions 37

db2_autocommit - Returns or sets the

AUTOCOMMIT state for a database connection . 37

db2_close - Closes a database connection . . . 38

db2_commit - Commits a transaction 39

db2_conn_error - Returns a string containing the

SQLSTATE returned by the last connection

attempt 40

db2_conn_errormsg - Returns the last connection

error message and SQLCODE value 41

db2_connect - Returns a connection to a database 42

db2_pconnect - Returns a persistent connection to

a database 45

db2_rollback - Rolls back a transaction 46

Statement functions 48

db2_bind_param - Binds a PHP variable to an

SQL statement parameter 48

db2_exec - Executes an SQL statement directly . 50

db2_execute - Executes a prepared SQL statement 52

db2_free_result - Frees resources associated with

a result set 54

db2_free_stmt - Frees resources associated with

the indicated statement resource 54

db2_prepare - Prepares an SQL statement to be

executed 55

db2_stmt_error - Returns a string containing the

SQLSTATE returned by an SQL statement . . . 57

db2_stmt_errormsg - Returns a string containing

the last SQL statement error message 57

Fetch functions 58

db2_fetch_array - Returns an array, indexed by

column position, representing a row in a result

set 58

db2_fetch_assoc - Returns an array, indexed by

column name, representing a row in a result set . 60

db2_fetch_both - Returns an array, indexed by

both column name and position, representing a

row in a result set 61

db2_fetch_object - Returns an object with

properties representing columns in the fetched

row 63

db2_fetch_row - Sets the result set pointer to the

next row or requested row 64

db2_next_result - Requests the next result set

from a stored procedure 65

db2_result - Returns a single column from a row

in the result set 67

Metadata functions 68

Database metadata functions 68

Statement metadata functions 90

Chapter 5. PDO_ODBC Driver

Reference 99

PDO object methods 99

PDO::__construct - Creates a PDO instance

representing a connection to a database 99

PDO::beginTransaction - Initiates a transaction 101

PDO::commit - Commits a transaction 102

© Copyright IBM Corp. 2006 iii

PDO::errorCode - Fetch the SQLSTATE

associated with the last operation on the

database handle 102

PDO::errorInfo - Fetch extended error

information associated with the last operation

on the database handle 103

PDO::exec - Execute an SQL statement and

return the number of affected rows 104

PDO::getAttribute - Retrieve a database

connection attribute 105

PDO::getAvailableDrivers - Return an array of

available PDO drivers 106

PDO::lastInsertId - Returns the ID of the last

inserted row or sequence value 106

PDO::prepare - Prepares a statement for

execution and returns a statement object . . . 107

PDO::query - Executes an SQL statement,

returning a result set as a PDOStatement object . 108

PDO::quote - Quotes a string for use in a query 109

PDO::rollBack - Rolls back a transaction . . . 110

PDO::setAttribute - Set an attribute 111

PDOstatement object methods 112

PDOStatement::bindColumn - Bind a column to

a PHP variable 112

PDOStatement::bindParam - Binds a parameter

to the specified variable name 113

PDOStatement::bindValue - Binds a value to a

parameter 114

PDOStatement::closeCursor - Closes the cursor,

enabling the statement to be executed again . . 115

PDOStatement::columnCount - Returns the

number of columns in the result set 116

PDOStatement::errorCode - Fetch the SQLSTATE

associated with the last operation on the

statement handle 117

PDOStatement::errorInfo - Fetch extended error

information associated with the last operation

on the statement handle 117

PDOStatement::execute - Executes a prepared

statement 118

PDOStatement::fetch - Fetches the next row from

a result set 119

PDOStatement::fetchAll - Returns an array

containing all of the result set rows 122

PDOStatement::fetchColumn - Returns a single

column from the next row of a result set . . . 124

PDOStatement::getAttribute - Retrieve a

statement attribute 125

PDOStatement::getColumnMeta - Returns

metadata for a column in a result set 125

PDOStatement::nextRowset - Advances to the

next result set in a statement handle associated

with multiple result sets 127

PDOStatement::rowCount - Returns the number

of rows affected by the last SQL statement . . 128

PDOStatement::setAttribute - Set a statement

attribute 129

PDOStatement::setFetchMode - Set the default

fetch mode for this statement 129

Part 2. Developing Perl

Applications 131

Chapter 6. Developing Perl

Applications 133

Programming Considerations for Perl 133

Perl DBI 133

Database Connections in Perl 134

Fetching Results in Perl 134

Parameter Markers in Perl 135

SQLSTATE and SQLCODE Variables in Perl . . . 135

Perl Restrictions 135

Example of a Perl Program 136

Building Perl applications 136

Part 3. Appendixes 139

Appendix A. DB2 Database technical

information 141

Overview of the DB2 technical information . . . 141

Documentation feedback 141

DB2 technical library in hardcopy or PDF format 142

Ordering printed DB2 books 144

Displaying SQL state help from the command line

processor 145

Accessing different versions of the DB2

Information Center 146

Displaying topics in your preferred language in the

DB2 Information Center 146

Updating the DB2 Information Center installed on

your computer or intranet server 147

DB2 tutorials 149

DB2 troubleshooting information 149

Terms and Conditions 150

Appendix B. Notices 151

PHP Documentation Group copyright 153

Trademarks 153

Index 155

Contacting IBM 157

iv Developing Perl and PHP Applications

Part 1. Developing PHP Applications

© Copyright IBM Corp. 2006 1

2 Developing Perl and PHP Applications

Chapter 1. Introduction to Developing PHP Applications

Introduction to PHP application development for DB2

PHP: Hypertext Preprocessor (PHP) is an interpreted programming language

primarily intended for the development of Web applications. The first version of

PHP was created by Rasmus Lerdorf and contributed under an open source license

in 1995. PHP was initially a very simple HTML templating engine, but over time

the developers of PHP added database access functionality, rewrote the interpreter,

introduced object-oriented support, and improved performance. Today, PHP has

become a popular language for Web application development because of its focus

on practical solutions and support for the most commonly required functionality in

Web applications.

For the easiest install and configuration experience on Linux®, UNIX®, or

Windows® operating systems, you can download and install Zend Core for IBM for

use in production systems. Paid support for Zend Core for IBM is available from

Zend. On Windows, precompiled binary versions of PHP are available for

download from http://php.net/. Most Linux distributions include a precompiled

version of PHP. On UNIX operating systems that do not include a precompiled

version of PHP, you can compile your own version of PHP.

PHP is a modular language that enables you to customize the available

functionality through the use of extensions. These extensions can simplify tasks

such as reading, writing, and manipulating XML, creating SOAP clients and

servers, and encrypting communications between server and browser. The most

popular extensions for PHP, however, provide read and write access to databases

so that you can easily create a dynamic database-driven Web site. IBM® supports

access to DB2 databases from PHP applications through two extensions offering

distinct sets of features:

v ibm_db2 is an extension written, maintained, and supported by IBM for access

to DB2 databases. The ibm_db2 extension offers a procedural application

programming interface (API) that, in addition to the normal create, read, update,

and write database operations, also offers extensive access to the database

metadata. You can compile the ibm_db2 extension with either PHP 4 or PHP 5.

v PDO_ODBC is a driver for the PHP Data Objects (PDO) extension that offers

access to DB2 databases through the standard object-oriented database interface

introduced in PHP 5.1. Despite its name, you can compile the PDO_ODBC

extension directly against the DB2 libraries to avoid the communications

overhead and potential interference of an ODBC driver manager.

A third extension, Unified ODBC, has historically offered access to DB2 database

systems. It is not recommended that you write new applications with this

extension because ibm_db2 and PDO_ODBC both offer significant performance

and stability benefits over Unified ODBC. The ibm_db2 extension API makes

porting an application that was previously written for Unified ODBC almost as

easy as globally changing the odbc_ function name to db2_ throughout the source

code of your application.

 Related tasks:

v “Setting up the PHP environment on Linux or UNIX” on page 5

v “Setting up the PHP environment on Windows” on page 4

© Copyright IBM Corp. 2006 3

http://www.zend.com/core/ibm/
http://www.zend.com/
http://www.php.net/

Setting up the PHP environment on Windows

DB2 supports database access for client applications written in the PHP

programming language using either or both of the ibm_db2 extension and the

PDO_ODBC driver for the PHP Data Objects (PDO) extension. To install a binary

version of PHP with support for DB2 on Windows, you can download and install

the freely available Zend Core for IBM from http://zend.com/core/ibm/.

However, you can also manually install the precompiled binary version of PHP on

Windows.

 Prerequisites:

 The Apache HTTP Server must be installed on your system.

 Procedure:

 To install a precompiled version of PHP from http://www.php.net and enable

support for DB2 on Windows:

1. Download the latest version of the PHP zip package and the collection of PECL

modules zip package from http://www.php.net. The latest version of PHP at

the time of writing is PHP 5.1.2.

2. Extract the PHP zip package into an install directory.

3. Extract the collection of PECL modules zip package into the \ext\ subdirectory

of your PHP installation directory.

4. Create a new file named php.ini in your installation directory by making a

copy of the php.ini-recommended file.

5. Open the php.ini file in a text editor and add the following lines.

v To enable the PDO extension and PDO_ODBC driver:

extension=php_pdo.dll

extension=php_pdo_odbc.dll

Note: On Windows, the PDO_ODBC driver uses the Windows ODBC Driver

Manager to connect to database systems. To access DB2 database

systems with PDO_ODBC on Windows, you must install the IBM

DB2® Driver for ODBC and CLI.

v To enable the ibm_db2 extension:

extension=php_ibm_db2.dll

6. Enable PHP support in Apache HTTP Server 2.x by adding the following lines

to your httpd.conf file, in which phpdir refers to the PHP install directory:

LoadModule php5_module ’phpdir/php5apache2.dll’

AddType application/x-httpd-php .php

PHPIniDir ’phpdir’

7. Restart the Apache HTTP Server to enable the changed configuration.

 Related concepts:

v “Introduction to PHP application development for DB2” on page 3

 Related tasks:

v “Connecting to a DB2 database with PHP (ibm_db2)” on page 7

v “Connecting to a DB2 database with PHP (PDO)” on page 23

v “Setting up the PHP environment on Linux or UNIX” on page 5

4 Developing Perl and PHP Applications

http://www.zend.com/core/ibm/
http://www.php.net/
http://www.php.net/

Setting up the PHP environment on Linux or UNIX

 DB2 supports database access for client applications written in the PHP

programming language using either or both of the ibm_db2 extension and the

PDO_ODBC driver for the PHP Data Objects (PDO) extension. To install a binary

version of PHP with support for DB2 on Linux or AIX, you can download and

install the freely available Zend Core for IBM from http://zend.com/core/ibm/.

However, you can also manually compile and install PHP from source.

 Prerequisites:

v The Apache HTTP Server must be installed on your system.

v The DB2 development header files and libraries must be installed on your

system.

v The gcc compiler and other development packages including apache-devel,

autoconf, automake, bison, flex, gcc, and libxml2-devel package must be

installed on your system.

 Procedure:

 To compile PHP from source with support for DB2 on Linux or UNIX:

 1. Download the latest version of the PHP tarball from http://www.php.net. The

latest version of PHP at the time of writing is PHP 5.1.2.

 2. Untar the file by issuing the following command:

tar xjf php-5.1.2.tar.bz2

 3. Change directories into the newly created php-5.1.2 directory.

 4. Configure the makefile by issuing the configure command. Specify the

features and extensions you want to include in your custom version of PHP. A

typical configure command includes the following options:

./configure --enable-cli --disable-cgi --with-apxs2=/usr/sbin/apxs2

--with-zlib --with-pdo-odbc=ibm-db2

The configure options have the following effects:

--enable-cli

Enables the command line mode of PHP access.

--disable-cgi

Disables the Common Gateway Interface (CGI) mode of PHP access.

--with-apxs2=/usr/sbin/apxs2

Enables the Apache 2 dynamic server object (DSO) mode of PHP

access.

--with-zlib

Enables zlib compression support.

--with-pdo-odbc=ibm-db2

Enables the PDO_ODBC driver using the DB2 Call Level Interface

library to access database systems. To specify a location for the DB2

header files and libraries, append ,location where location refers to

the directory in which DB2 is installed.
 5. Compile the files by issuing the make command.

 6. Install the files by issuing the make install command. Depending on how

you configured the PHP install directory using the configure command, you

Chapter 1. Introduction to Developing PHP Applications 5

http://www.zend.com/core/ibm/
http://www.php.net/

might need root authority to successfully issue this command. This should

install the executable files and update the Apache HTTP Server configuration

to support PHP.

 7. Install the ibm_db2 extension by issuing the following command as a user

with root authority:

pecl install ibm_db2

This command downloads, configure, compiles, and installs the ibm_db2

extension for PHP.

 8. Copy the php.ini-recommended file to the configuration file path for your new

PHP installation. To determine the configuration file path, issue the php -i

command and look for the php.ini keyword. Rename the file to php.ini.

 9. Open the new php.ini file in a text editor and add the following lines, where

instance refers to the name of the DB2 instance on Linux or UNIX..

v To set the DB2 environment for PDO_ODBC:

pdo_odbc.db2instance_name=instance

v (Linux or UNIX) To enable the ibm_db2 extension and set the DB2

environment:

extension=ibm_db2.so

ibm_db2.instance_name=instance

10. Restart the Apache HTTP Server to enable the changed configuration.

 Related concepts:

v “Introduction to PHP application development for DB2” on page 3

 Related tasks:

v “Connecting to a DB2 database with PHP (ibm_db2)” on page 7

v “Connecting to a DB2 database with PHP (PDO)” on page 23

v “Setting up the PHP environment on Windows” on page 4

 Related reference:

v “PHP samples” in Samples Topics

6 Developing Perl and PHP Applications

Chapter 2. Developing PHP Applications with ibm_db2

Connecting to a DB2 database with PHP (ibm_db2)

You must connect to a DB2 database before you can create, update, delete, or

retrieve data from that data source. The ibm_db2 extension for PHP enables you to

connect to a DB2 database using either a cataloged connection or a direct TCP/IP

connection to the DB2 database management system. You can also create persistent

connections to a database. Persistent connections improve performance by keeping

the connection open between PHP requests and by reusing the connection when a

subsequent PHP script requests a connection with an identical set of credentials.

 Prerequisites:

 Before connecting to a DB2 database through the ibm_db2 extension, you must set

up the PHP environment on your system and enable the ibm_db2 extension.

 Procedure:

 1. Create a connection to a DB2 database:

v To create a non-persistent connection to a DB2 database, call db2_connect()

with a database value that specifies either a cataloged database name or a

complete database connection string for a direct TCP/IP connection.

v To create a persistent connection to a DB2 database, call db2_pconnect() with

a database value that specifies either a cataloged database name or a complete

database connection string for a direct TCP/IP connection.
2. Check the value returned by db2_connect() or db2_pconnect.

v If the value returned by db2_connect() or db2_pconnect is FALSE, the

connection attempt failed. You can retrieve diagnostic information through

db2_conn_error() and db2_conn_errormsg().

v If the value returned by db2_connect() or db2_pconnect is not FALSE, the

connection attempt succeeded. You can use the connection resource to create,

update, delete, or retrieve data with other ibm_db2 functions.

When you create a connection by calling db2_connect() , PHP closes the

connection to the database:

v When you call db2_close() for the connection,

v When you set the connection resource to NULL,

v Or when the PHP script finishes.

When you create a connection by calling db2_pconnect() , PHP ignores any calls to

db2_close() for the specified connection resource and keeps the connection to the

database open for subsequent PHP scripts.

 Related reference:

v “db2_pconnect - Returns a persistent connection to a database” on page 45

v “db2_close - Closes a database connection” on page 38

v “db2_conn_error - Returns a string containing the SQLSTATE returned by the

last connection attempt” on page 40

v “db2_conn_errormsg - Returns the last connection error message and SQLCODE

value” on page 41

© Copyright IBM Corp. 2006 7

v “db2_connect - Returns a connection to a database” on page 42

Retrieving database metadata (ibm_db2)

Some classes of applications, such as administration interfaces, need to

dynamically reflect the structure and SQL objects contained in arbitrary databases.

One approach to retrieving metadata about a database is to issue SELECT

statements directly against the system catalog tables; however, the schema of the

system catalog tables may change between versions of DB2, or the schema of the

system catalog tables on DB2 Database for Linux, UNIX, and Windows may differ

from the schema of the system catalog tables on DB2 for z/OS. Rather than

laboriously maintaining these differences in your application code, the ibm_db2

extension for PHP offers a standard set of functions that return metadata for

databases served by DB2 Database for Linux, UNIX, and Windows, Cloudscape™,

and, through DB2 Connect, DB2 for z/OS and DB2 Universal Database for iSeries.

 Prerequisites:

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a connection resource returned from db2_connect() or

db2_pconnect().

 Procedure:

 1. Call the function that returns the metadata which you require:

db2_client_info()

Returns metadata about the DB2 client software and configuration.

db2_column_privileges()

Lists the columns and associated privileges for a table.

db2_columns()

Lists the columns and associated metadata for a table.

db2_foreign_keys()

Lists the foreign keys for a table.

db2_primary_keys()

Lists the primary keys for a table.

db2_procedure_columns()

Lists the parameters for one or more stored procedures.

db2_procedures()

Lists the stored procedures registered in the database.

db2_server_info()

Returns metadata about the database management system software and

configuration.

db2_special_columns()

Lists the unique row identifiers for a table.

db2_statistics()

Lists the indexes and statistics for a table.

db2_table_privileges()

Lists tables and their associated privileges in the database.

8 Developing Perl and PHP Applications

Note that while most of the ibm_db2 metadata functions accept a qualifier or

catalog parameter, this parameter should only be set to a non-NULL value

when you are connected to DB2 for z/OS.

2. Depending on which metadata function you called,

v The db2_client_info() and db2_server_info() functions directly return a

single object with read-only properties. You can use the properties of these

objects to create an application that behaves differently depending on the

database management system to which it connects. For example, rather than

encoding a limit of the lowest common denominator for all possible database

management systems, a Web-based database administration application built

on the ibm_db2 extension could use the db2_server_info()-
>MAX_COL_NAME_LEN property to dynamically display text fields for naming

columns with maximum lengths that correspond to the maximum length of

column names on the database management system to which it is connected.

v The other metadata functions return result sets with columns defined for

each function. Retrieve rows from the result set using the normal ibm_db2

functions for this purpose.

Note that calling metadata functions consumes a significant amount of database

management system resources. If possible, consider caching the results of your

calls for subsequent usage.

 Related tasks:

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

 Related reference:

v “db2_foreign_keys - Returns a result set listing the foreign keys for a table” on

page 73

v “db2_primary_keys - Returns a result set listing primary keys for a table” on

page 74

v “db2_procedure_columns - Returns a result set listing stored procedure

parameters” on page 76

v “db2_procedures - Returns a result set listing the stored procedures registered in

a database” on page 78

v “db2_server_info - Returns an object with properties that describe the DB2

database management system” on page 79

v “db2_special_columns - Returns a result set listing the unique row identifier

columns for a table” on page 83

v “db2_statistics - Returns a result set listing the index and statistics for a table”

on page 85

v “db2_table_privileges - Returns a result set listing the tables and associated

privileges in a database” on page 87

v “db2_tables - Returns a result set listing the tables and associated metadata in a

database” on page 88

v “db2_client_info - Returns an object with properties that describe the DB2

database client” on page 68

v “db2_column_privileges - Returns a result set listing the columns and associated

privileges for a table” on page 70

v “db2_columns - Returns a result set listing the columns and associated metadata

for a table” on page 71

Chapter 2. Developing PHP Applications with ibm_db2 9

Executing XQuery expressions in PHP (ibm_db2)

After connecting to a DB2 database, your PHP script is ready to issue XQuery

expressions. The db2_exec() and db2_execute() functions execute SQL statements,

through which you can pass your XQuery expressions. A typical use of db2_exec()

is to set the default schema for your application in a common include file or base

class.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Restrictions:

 To avoid the security threat of injection attacks, db2_exec() should only be used to

execute SQL statements composed of static strings. Interpolation of PHP variables

representing user input into the XQuery expression can expose your application to

injection attacks.

 Procedure:

 1. Call db2_exec() with the following arguments:

a. The connection resource;

b. A string containing the SQL statement, including the XQuery expression.

The XQuery expression needs to be wrapped in a XMLQUERY clause in the

SQL statement.

c. (Optional): an array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set .
2. Check the value returned by db2_exec():

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.

10 Developing Perl and PHP Applications

Example:

<?php

$xquery = ’$doc/customerinfo/phone’;

$stmt = db2_exec($conn, "select xmlquery(’$xquery’

PASSING INFO AS \"doc\") from customer");?>

Executing a single SQL statement in PHP (ibm_db2)

After connecting to a DB2 database, most PHP scripts will execute one or more

SQL statements. The db2_exec() function executes a single SQL statement that

accepts no input parameters. A typical use of db2_exec() is to set the default

schema for your application in a common include file or base class.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Restrictions:

 To avoid the security threat of SQL injection attacks, db2_exec() should only be

used to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

 Procedure:

 1. Call db2_exec() with the following arguments:

a. The connection resource;

b. A string containing the SQL statement;

c. (Optional): an array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set .
2. Check the value returned by db2_exec():

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

Chapter 2. Developing PHP Applications with ibm_db2 11

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.

If the SQL statement selected rows using a scrollable cursor, or inserted, updated,

or deleted rows, you can call db2_num_rows() to return the number of rows that the

statement returned or affected. If the SQL statement returned a result set, you can

begin fetching rows.

 Related tasks:

v “Fetching columns from result sets in PHP (ibm_db2)” on page 15

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

 Related reference:

v “db2_exec - Executes an SQL statement directly” on page 50

Preparing and executing SQL statements in PHP (ibm_db2)

Most SQL statements in PHP applications use variable input to determine the

results of the SQL statement. To pass user-supplied input to an SQL statement

safely, prepare a statement using parameter markers (?) representing the variable

input. When you execute the prepared statement, you bind input values to the

parameter markers. The database engine ensures that each input value is treated as

a single parameter, preventing SQL injection attacks against your application.

Compared to statements issued through db2_exec(), prepared statements offer a

performance advantage because the database management system creates an access

plan for each prepared statement that it can reuse if the statement is reissued

subsequently.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Restrictions:

 You can only use parameter markers as a place holder for column or predicate

values. The SQL compiler would be unable to create an access plan for a statement

that used parameter markers in place of column names, table names, or other SQL

identifiers.

 Procedure:

 To prepare and execute an SQL statement:

1. Call db2_prepare() with the following arguments:

a. The connection resource

b. A string containing the SQL statement, including parameter markers (?) for

any column or predicate values that require variable input

c. (Optional): An array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

12 Developing Perl and PHP Applications

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set.
2. Check the value returned by db2_prepare().

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.
3. (Optional): Call db2_bind_param() for each parameter marker in the SQL

statement with the following arguments:

a. The statement resource

b. An integer representing the position of the parameter marker in the SQL

statement

c. The value to use in place of the parameter marker
4. Call db2_execute with the following arguments:

a. The statement resource

b. (Optional): An array containing the values to use in place of the parameter

markers, in order

 Example:

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";

$stmt = db2_prepare($conn, $sql);

if (!$stmt) {

 // Handle errors

}

// Explicitly bind parameters

db2_bind_param($stmt, 1, $_POST[’lower’]);

db2_bind_param($stmt, 2, $_POST[’upper’]);

db2_execute($stmt);

// Process results

// Invoke prepared statement again using dynamically bound parameters

db2_execute($stmt, array($_POST[’lower’], $_POST[’upper’]);

If you execute a prepared statement that returns one or more result sets, you can

begin retrieving rows from the statement resource by calling the

db2_fetch_array() , db2_fetch_assoc(), db2_fetch_both(), db2_fetch_object(), or

db2_fetch_row() functions.

Chapter 2. Developing PHP Applications with ibm_db2 13

Related tasks:

v “Fetching columns from result sets in PHP (ibm_db2)” on page 15

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

v “Handling errors and warning messages (ibm_db2)” on page 18

 Related reference:

v “db2_bind_param - Binds a PHP variable to an SQL statement parameter” on

page 48

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

Inserting large objects in PHP (ibm_db2)

The ibm_db2 extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

insert a large object into a database, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. Rather than loading

all of the data for a large object into a PHP string, and then passing that to DB2

through an INSERT statement, you can insert large objects directly from a file on

your PHP server.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Procedure:

 To insert a large object into the database directly from a file:

1. Call db2_prepare() to prepare an INSERT statement with a parameter marker

representing the large object column.

2. Set the value of a PHP variable to the path and name of the file that contains

the data for the large object. The path can be relative or absolute, and is subject

to the access permissions of the PHP executable.

3. Call db2_bind_param() to bind the parameter marker to the file that contains

the data for the large object. The third parameter is a string representing the

name of the PHP variable that holds the name of the file containing the data

for the large object. The fourth parameter is DB2_PARAM_FILE, which tells the

ibm_db2 extension to retrieve the data from a file.

4. Call db2_execute() to issue the INSERT statement and bind the data from the

file into the database.

 Example:

$stmt = db2_prepare($conn, "INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = "/opt/albums/spook/grooming.jpg";

$rc = db2_bind_param($stmt, 1, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

 Related tasks:

v “Fetching large objects in PHP (ibm_db2)” on page 17

14 Developing Perl and PHP Applications

Related reference:

v “db2_bind_param - Binds a PHP variable to an SQL statement parameter” on

page 48

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

Fetching columns from result sets in PHP (ibm_db2)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows of each result set. If your result set

includes columns with extremely large data (such as a column defined with a

BLOB or CLOB data type), you might prefer to retrieve the data on a

column-by-column basis to avoid using too much memory in your PHP process.

 Prerequisites:

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a statement resource returned from db2_exec() or db2_execute()

with one or more associated result sets.

 Procedure:

 1. Call the db2_fetch_row() function to advance the cursor to the next row in the

result set. The first time you call a fetch function for a given result set advances

the cursor to the first row of the result set. If you requested a scrollable cursor,

you can also specify the number of the row in the result set that you want to

retrieve.

2. Check the result returned by db2_fetch_row(). If the result is FALSE, there are

no more rows in the result set.

3. Call the db2_result() function to retrieve the value from the requested column

by passing either an integer representing the position of the column in the row

(starting with 0 for the first column), or a string representing the name of the

column.

 Example:

<?php

$sql = ’SELECT name, breed FROM animals WHERE weight < ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(10));

while (db2_fetch_row($stmt)) {

 $name = db2_result($stmt, 0);

 $breed = db2_result($stmt, ’BREED’);

 print "$name $breed";

}

?>

 Related reference:

v “db2_fetch_row - Sets the result set pointer to the next row or requested row”

on page 64

v “db2_result - Returns a single column from a row in the result set” on page 67

Chapter 2. Developing PHP Applications with ibm_db2 15

Fetching rows from result sets in PHP (ibm_db2)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows.

 Prerequisites:

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a statement resource returned from db2_exec() or db2_execute()

with one or more associated result sets.

 Procedure:

 Call the ibm_db2 fetch function that returns the data from the row in the format

you prefer:

db2_fetch_array()

Returns an array containing the data corresponding to the columns of the

row indexed by column position starting at 0

db2_fetch_assoc()

Returns an array containing the data corresponding to the columns of the

row indexed by column name.

db2_fetch_both()

Returns an array containing the data corresponding to the columns of the

row indexed by both column name and by column position starting at 0.

db2_fetch_object()

Returns an object containing the data from the row. The object holds

properties matching the column names of the row which, when accessed,

return the corresponding values of the columns.

You must pass the statement resource as the first argument. If you requested a

scrollable cursor when you executed db2_exec() or db2_prepare(), you can pass an

absolute row number as the second argument. With the default forward-only

cursor, each call to a fetch method returns the next row in the result set. You can

continue fetching rows until the fetch method returns FALSE, which signifies that

you have reached the end of the result set.

 Example:

$stmt = db2_exec($conn, "SELECT firstnme, lastname FROM employee");

while ($row = db2_fetch_object($stmt)) {

 print "Name: <p>{$row->FIRSTNME} {$row->LASTNAME}</p>";

}

 Related tasks:

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

 Related reference:

v “db2_fetch_array - Returns an array, indexed by column position, representing a

row in a result set” on page 58

v “db2_fetch_assoc - Returns an array, indexed by column name, representing a

row in a result set” on page 60

16 Developing Perl and PHP Applications

v “db2_fetch_both - Returns an array, indexed by both column name and position,

representing a row in a result set” on page 61

v “db2_fetch_object - Returns an object with properties representing columns in

the fetched row” on page 63

Fetching large objects in PHP (ibm_db2)

The ibm_db2 extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

fetch a large object from a result set, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. If your ultimate goal

is to create a file that contains the data for a large object, you can save system

resources by fetching large objects directly into a file on your PHP server.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Procedure:

 To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream. For example, the return value

from a call to fopen().

2. Call db2_prepare() to create a SELECT statement.

3. Call db2_bind_param() to bind the output column for the large object to the

PHP variable representing the stream. The third parameter is a string

representing the name of the PHP variable that holds the name of the file that

is to contain the data from the large object. The fourth parameter is

DB2_PARAM_FILE, which tells the ibm_db2 extension to write the data into a file.

4. Call db2_execute() to issue the SQL statement.

5. Call an ibm_db2 fetch function of your choice (for example,

db2_fetch_object()), to retrieve the next row in the result set.

 Example:

$stmt = db2_prepare($conn, "SELECT name, picture FROM animal_pictures");

$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$rc = db2_bind_param($stmt, 1, "nickname", DB2_CHAR, 32);

$rc = db2_bind_param($stmt, 2, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

$rc = db2_fetch_object($stmt);

Managing transactions in PHP (ibm_db2)

By default, the ibm_db2 extension opens every connection in autocommit mode.

Autocommit mode helps prevent locking escalation issues that can impede the

performance of highly scalable Web applications. In some scripts, however, you

might need to roll back a transaction containing one or more SQL statements. The

ibm_db2 extension enables you to exert fine-grained control over your transactions.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

Chapter 2. Developing PHP Applications with ibm_db2 17

Restrictions:

 You must use a regular connection created with db2_connect() to control database

transactions in PHP. Persistent connections always use autocommit mode.

 Procedure:

 To begin a transaction:

1. Create a database connection using the "AUTOCOMMIT" => DB2_AUTOCOMMIT_OFF

setting in the db2_connect() options array. You can also turn autocommit off

for an existing connection resource by calling db2_autocommit($conn,

DB2_AUTOCOMMIT_OFF). Calling db2_autocommit() requires additional

communication from PHP to the database management system and may affect

the performance of your PHP scripts.

2. Issue one or more SQL statements within the scope of the database transaction

using the connection resource for which transactions have been enabled.

3. Commit or rollback the transaction:

v To commit the transaction, call db2_commit().

v To rollback the transaction, call db2_rollback().
4. (Optional): Return the database connection to autocommit mode by calling

db2_autocommit($conn, DB2_AUTOCOMMIT_ON). If you issue another SQL

statement without returning the database connection to autocommit mode, you

begin a new transaction that will require a commit or rollback.

If you issue SQL statements in a transaction and the script ends without explicitly

committing or rolling back the transaction, the ibm_db2 extension automatically

rolls back any work performed in the transaction.

 Example:

$conn = db2_connect(’SAMPLE’, ’db2inst1’, ’ibmdb2’, array(

 ’AUTOCOMMIT’ => DB2_AUTOCOMMIT_ON));

// Issue one or more SQL statements within the transaction

$result = db2_exec($conn, ’DELETE FROM TABLE employee’);

if ($result === FALSE) {

 print ’<p>Unable to complete transaction!</p>’;

 db2_rollback($conn);

}

else {

 print ’<p>Successfully completed transaction!</p>’;

 db2_commit($conn);

}

 Related reference:

v “db2_autocommit - Returns or sets the AUTOCOMMIT state for a database

connection” on page 37

v “db2_commit - Commits a transaction” on page 39

v “db2_rollback - Rolls back a transaction” on page 46

Handling errors and warning messages (ibm_db2)

Problems occasionally happen when you attempt to connect to a database or issue

an SQL statement. The password for your connection might be incorrect, the table

you referred to in a SELECT statement might not exist, or the syntax for an SQL

statement might be invalid. You need to code defensively and use the

18 Developing Perl and PHP Applications

error-handling functions offered by the ibm_db2 extension to enable your

application to recover gracefully from a problem.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Procedure:

 1. Check the value returned from the ibm_db2 function to ensure the function

returned successfully. If the function can return the value 0, such as

db2_num_rows(), you must explicitly test whether the value was FALSE using

PHP’s === operator.

2. If the function returned FALSE instead of the connection resource, statement

resource, or numeric value you expected, call the ibm_db2 error handling

function appropriate to the application context and the needs of your

application:

Connection errors

To retrieve the SQLSTATE returned by the last connection attempt, call

db2_conn_error(). To retrieve a descriptive error message appropriate

for an application error log, call db2_conn_errormsg().

$connection = db2_connect($database, $user, $password);

if (!$connection) {

 $this->state = db2_conn_error();

 return false;

}

SQL errors (executing SQL statements directly and fetching results)

To retrieve the SQLSTATE returned by the last attempt to prepare or

execute an SQL statement, or to fetch a result from a result set, call

db2_stmt_error(). To retrieve a descriptive error message appropriate

for an application error log, call db2_stmt_errormsg().

$stmt = db2_prepare($connection, "DELETE FROM employee

WHERE firstnme = ?");

if (!$stmt) {

 $this->state = db2_stmt_error();

 return false;

}

SQL errors (executing prepared statements)

If db2_prepare() returned successfully, but a subsequent call to

db2_execute() fails, call db2_stmt_error() or db2_stmt_errormsg() and

pass the resource returned from the call to db2_prepare() as the

argument.

$success = db2_execute($stmt, array(’Dan’);

if (!$success) {

 $this->state = db2_stmt_error($stmt);

 return $false;

}

3. To avoid the possibility of security vulnerabilities resulting from directly

displaying the raw SQLSTATE returned from the database, and to offer a better

overall user experience in your Web application, use a switch structure to

recover from known error states or return custom error messages.

switch($this->state):

 case ’22001’:

 // More data than allowed for the defined column

 $message = "You entered too many characters for this value.";

 break;

Chapter 2. Developing PHP Applications with ibm_db2 19

Related reference:

v “db2_conn_error - Returns a string containing the SQLSTATE returned by the

last connection attempt” on page 40

v “db2_conn_errormsg - Returns the last connection error message and SQLCODE

value” on page 41

v “db2_stmt_error - Returns a string containing the SQLSTATE returned by an

SQL statement” on page 57

v “db2_stmt_errormsg - Returns a string containing the last SQL statement error

message” on page 57

Calling stored procedures with OUT or INOUT parameters in PHP

(ibm_db2)

DB2 supports stored procedures with parameters that only accept an input value

(IN parameters), that only return an output value (OUT parameters), or that accept

an input value and return an output value (INOUT). With the ibm_db2 extension

for PHP you can handle IN parameters like any other parameter marker in an SQL

statement. However, the ibm_db2 extension also enables you to CALL stored

procedures with OUT and INOUT parameters and retrieve the output values from

those parameters.

 Prerequisites:

 You must set up the PHP environment on your system and enable the ibm_db2

extension.

 Procedure:

 To call a stored procedure with OUT or INOUT parameters:

1. Call db2_prepare() to prepare a CALL statement with parameter markers

representing the OUT and INOUT parameters.

2. Call db2_bind_param() to bind each parameter marker to the name of the PHP

variable that will hold the output value of the parameter after the CALL

statement has been issued. For INOUT parameters, the value of the PHP

variable is passed as the input value of the parameter when the CALL

statement is issued. Set the fourth parameter for db2_bind_param() to either

DB2_PARAM_OUT, representing an OUT parameter, or DB2_PARAM_INOUT,

representing an INOUT parameter.

3. Call db2_execute() to issue the CALL statement and bind the data from the

stored procedure into the PHP variables.

 Example:

$sql = ’CALL match_animal(?, ?)’;

$stmt = db2_prepare($conn, $sql);

$second_name = "Rickety Ride";

$weight = 0;

db2_bind_param($stmt, 1, "second_name", DB2_PARAM_INOUT);

db2_bind_param($stmt, 2, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

db2_execute($stmt);

20 Developing Perl and PHP Applications

print "Values of bound parameters _after_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

 Related reference:

v “db2_bind_param - Binds a PHP variable to an SQL statement parameter” on

page 48

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

Calling stored procedures that return multiple result sets in PHP

(ibm_db2)

DB2 enables you to create and call stored procedures that return more than one

result set. The ibm_db2 extension for PHP fully supports this capability through

the db2_next_result() function. You can use this function to fetch rows from

different result sets returned by a single call to the same stored procedure in any

order you prefer.

 Prerequisites:

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a statement resource returned from calling a stored procedure

with db2_exec() or db2_execute().

 Procedure:

 To return multiple result sets from a stored procedure:

1. The first result set is associated with the statement resource returned by the

CALL statement.

2. Pass the original statement resource as the first argument to db2_next_result()

to retrieve the second and subsequent result sets. This function returns FALSE

when no more result sets are available.

 Example:

$stmt = db2_exec($conn, ’CALL multiResults()’);

print "Fetching first result set\n";

while ($row = db2_fetch_array($stmt)) {

 // work with row

}

print "\nFetching second result set\n";

$result_2 = db2_next_result($stmt);

if ($result_2) {

 while ($row = db2_fetch_array($result_2)) {

 // work with row

 }

}

print "\nFetching third result set\n";

$result_3 = db2_next_result($stmt);

if ($result_3) {

 while ($row = db2_fetch_array($result_3)) {

 // work with row

 }

}

Chapter 2. Developing PHP Applications with ibm_db2 21

Related tasks:

v “Calling stored procedures with OUT or INOUT parameters in PHP (ibm_db2)”

on page 20

 Related reference:

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_next_result - Requests the next result set from a stored procedure” on page

65

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

22 Developing Perl and PHP Applications

Chapter 3. Developing PHP Applications with PDO

Connecting to a DB2 database with PHP (PDO)

You must connect to a DB2 database before you can create, update, delete, or

retrieve data from that data source. The PHP Data Objects (PDO) interface for PHP

enables you to connect to a DB2 database using either a cataloged connection or a

direct TCP/IP connection to the DB2 database management system through the

PDO_ODBC extension. You can also create persistent connections to a data source

that improve performance by keeping the connection open between PHP requests

and reusing the connection when a subsequent PHP script requests a connection

with an identical set of credentials.

 Prerequisites:

 You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_ODBC extensions.

 Procedure:

 1. Create a connection to the DB2 database by calling the PDO constructor within

a try{} block. Pass a DSN value that specifies odbc: for the PDO_ODBC

extension, followed by either a cataloged database name or a complete database

connection string for a direct TCP/IP connection.

v (Windows): By default, PDO_ODBC uses Windows ODBC Driver Manager

connection pooling to minimize connection resources and improve

connection performance.

v (Linux and UNIX): PDO_ODBC offers persistent connections if you pass

array(PDO::ATTR_PERSISTENT => TRUE) as the fourth argument to the PDO

constructor.
2. (Optional): Set error handling options for the PDO connection in the fourth

argument to the PDO constructor:

v by default, PDO sets an error message that can be retrieved through

PDO::errorInfo() and an SQLCODE that can be retrieved through

PDO::errorCode() when any error occurs; to request this mode explicitly, set

PDO::ATTR_ERRMODE => PDO::ERRMODE_SILENT

v to issue a PHP E_WARNING when any error occurs, in addition to setting the

error message and SQLCODE, set PDO::ATTR_ERRMODE =>

PDO::ERRMODE_WARNING

v to throw a PHP exception when any error occurs, set PDO::ATTR_ERRMODE =>

PDO::ERRMODE_EXCEPTION

3. Catch any exception thrown by the try{} block in a corresponding catch {}

block.

try {

 $connection = new PDO("odbc:SAMPLE", "db2inst1", "ibmdb2", array(

 PDO::ATTR_PERSISTENT => TRUE,

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION)

);

}

catch (Exception $e) {

 echo($e->getMessage());

}

© Copyright IBM Corp. 2006 23

When you create a connection through PDO, PHP closes the connection to the

database:

v when you set the PDO object to NULL,

v or when the PHP script finishes.

 Related reference:

v “PDO::__construct - Creates a PDO instance representing a connection to a

database” on page 99

v “PDO::errorCode - Fetch the SQLSTATE associated with the last operation on the

database handle” on page 102

v “PDO::errorInfo - Fetch extended error information associated with the last

operation on the database handle” on page 103

Executing a single SQL statement in PHP that returns no result sets

(PDO)

After connecting to a DB2 database, most PHP scripts will execute one or more

SQL statements. The PDO::exec() method executes a single SQL statement that

accepts no input parameters and returns no result set. A typical use of PDO::exec()

is to set the default schema for your application in a common include file or base

class.

 Prerequisites:

 You must set up the PHP environment on your system and enable the PDO_ODBC

extension.

 Restrictions:

 To avoid the security threat of SQL injection attacks, PDO::exec() should only be

used to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

 Procedure:

 To execute a single SQL statement in PHP:

1. Call the PDO::exec() method on the PDO connection object with a string

containing the SQL statement.

2. If the SQL statement inserted, modified, or deleted rows, PDO::exec() returns

an integer value representing the number of rows that were inserted, modified,

or deleted. To determine if PDO::exec() returned FALSE indicating an error

condition or 0 indicating that no rows were inserted, modified, or deleted, you

must use the === operator to strictly test the returned value against FALSE.

 Example:

$conn = new PDO(’odbc:SAMPLE’, ’db2inst1’, ’ibmdb2’);

$result = $conn->exec(’SET SCHEMA myapp’);

if ($result === FALSE) {

 print "Failed to set schema: " . $conn->errorMsg();

}

 Related tasks:

24 Developing Perl and PHP Applications

v “Executing a single SQL statement in PHP that returns a result set (PDO)” on

page 25

v “Preparing and executing SQL statements (PDO)” on page 26

 Related reference:

v “PDO::exec - Execute an SQL statement and return the number of affected rows”

on page 104

Executing a single SQL statement in PHP that returns a result set

(PDO)

After connecting to a DB2 database, most PHP scripts will execute one or more

SQL statements. The PDO::query() method executes a single SQL statement that

accepts no input parameters and returns one or more result sets. A typical use of

PDO::query() is to execute a static SELECT statement.

 Prerequisites:

 You must set up the PHP environment on your system and enable the PDO_ODBC

extension.

 Restrictions:

 To avoid the security threat of SQL injection attacks, PDO::query() should only be

used to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

 Procedure:

 To execute a single SQL statement in PHP that returns a result set:

1. Call the PDO::query() method on the PDO connection object with a string

containing the SQL statement.

2. Check the value returned by PDO::query().

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the PDO::errorCode() and PDO::errorInfo() methods.

v If the value is not FALSE, the SQL statement succeeded and returned a

PDOStatement resource that can be used in subsequent method calls.

 Example:

$conn = new PDO(’odbc:SAMPLE’, ’db2inst1’, ’ibmdb2’);

$result = $conn->query(’SELECT firstnme, lastname FROM employee’);

if (!$result) {

 print "<p>Could not retrieve employee list: " . $conn->errorMsg(). "</p>";

}

while ($row = $conn->fetch()) {

 print "<p>Name: {$row[0] $row[1]}</p>";

}

After creating a PDOStatement object with PDO::query(), you can immediately

begin retrieving rows from the object with the PDOStatement::fetch() or

PDOStatement::fetchAll() methods.

 Related tasks:

Chapter 3. Developing PHP Applications with PDO 25

v “Executing a single SQL statement in PHP that returns no result sets (PDO)” on

page 24

v “Preparing and executing SQL statements (PDO)” on page 26

 Related reference:

v “PDO::query - Executes an SQL statement, returning a result set as a

PDOStatement object” on page 108

Preparing and executing SQL statements (PDO)

Most SQL statements in PHP applications use variable input to determine the

results of the SQL statement. To pass user-supplied input to an SQL statement

safely, prepare a statement using parameter markers (?) or named variables

representing the variable input. When you execute the prepared statement, you

bind input values to the parameter markers. The database engine ensures that each

input value is treated as a single parameter, preventing SQL injection attacks

against your application. Compared to statements issued through PDO::exec(),

prepared statements offer a performance advantage because the database

management system creates an access plan for each prepared statement that it can

reuse if the statement is reissued subsequently.

 Prerequisites:

 You must set up the PHP environment on your system and enable the PDO_ODBC

extension.

 Restrictions:

v You can only use parameter markers as a place holder for column or predicate

values. The SQL compiler would be unable to create an access plan for a

statement that used parameter markers in place of column names, table names,

or other SQL identifiers.

v You cannot use both question mark parameter markers (?) and named parameter

markers (:name) in the same SQL statement.

 Procedure:

 To prepare and execute an SQL statement:

1. Call PDO::prepare() with the following arguments:

a. A string containing the SQL statement including either parameter markers

(?) or named variables (:name) for any column or predicate values that

require variable input

b. (Optional): An array containing statement options

PDO::ATTR_CURSOR

This option sets the type of cursor that PDO returns for result sets.

By default, PDO returns a forward-only cursor

(PDO::CURSOR_FWDONLY) which returns the next row in a result

set for every call to PDOStatement::fetch(). You can set this

parameter to PDO::CURSOR_SCROLL to request a scrollable cursor.
2. Check the value returned by PDO::prepare().

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the PDO::errorCode() and PDO::errorInfo() methods.

v If the value is not FALSE, the SQL statement succeeded and returned a

PDOStatement object that can be used in subsequent method calls.

26 Developing Perl and PHP Applications

3. (Optional): Call PDOStatement::bindParam() for each parameter marker in the

SQL statement with the following arguments:

a. The parameter identifier. For question mark parameter markers (?), this is

an integer representing the 1-indexed position of the parameter in the SQL

statement. For named parameter markers (:name), this is a string

representing the parameter name.

b. The value to use in place of the parameter marker
4. Call PDOStatement::execute(), optionally passing an array containing the

values to use in place of the parameter markers, either in order for question

mark parameter markers, or as a :name => value associative array for named

parameter markers.

 Example:

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";

$stmt = $conn->prepare($sql);

if (!$stmt) {

 // Handle errors

}

// Explicitly bind parameters

$stmt->bindParam(1, $_POST[’lower’]);

$stmt->bindParam(2, $_POST[’upper’]);

$stmt->execute($stmt);

// Invoke statement again using dynamically bound parameters

$stmt->execute($stmt, array($_POST[’lower’], $_POST[’upper’]);

If you successfully execute a prepared statement that returns one or more result

sets, you can begin retrieving rows from the statement resource by calling the

PDOStatement::fetch() or PDOStatement::fetchAll() methods.

 Related reference:

v “PDO::prepare - Prepares a statement for execution and returns a statement

object” on page 107

v “PDOStatement::bindParam - Binds a parameter to the specified variable name”

on page 113

v “PDOStatement::execute - Executes a prepared statement” on page 118

Inserting large objects in PHP (PDO)

The PDO extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

insert a large object into a database, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. Rather than loading

all of the data for a large object into a PHP string, and then passing that to DB2

through an INSERT statement, you can insert large objects directly from a file on

your PHP server.

 Prerequisites:

 You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_ODBC extensions.

 Procedure:

Chapter 3. Developing PHP Applications with PDO 27

To insert a large object into the database directly from a file:

1. Call PDO::prepare() to create a PDOStatement object from an INSERT

statement with a parameter marker representing the large object column.

2. Create a PHP variable representing a stream–for example, the return value from

a call to fopen().

3. Call PDOStatement::bindParam() to bind the parameter marker to the PHP

variable representing the stream of data for the large object. The third

parameter is a string representing the name of the PHP variable that holds the

name of the file containing the data for the large object. The fourth parameter is

a PHP constant, PDO::PARAM_LOB, which tells the PDO extension to retrieve the

data from a file.

4. Call PDOStatement::execute() to issue the INSERT statement and bind the data

from the file into the database.

 Example:

$stmt = $conn->prepare("INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = fopen("/opt/albums/spook/grooming.jpg", "rb");

$stmt->bindParam($stmt, 1, $picture, PDO::PARAM_LOB);

$stmt->execute();

 Related reference:

v “PDO::prepare - Prepares a statement for execution and returns a statement

object” on page 107

v “PDOStatement::bindParam - Binds a parameter to the specified variable name”

on page 113

v “PDOStatement::execute - Executes a prepared statement” on page 118

Fetching columns from result sets in PHP (PDO)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows of each result set. In some cases, you

only need to return a single column from each row in the result set. While you

could rewrite a SELECT statement for that purpose, you might not have the

privileges required to rewrite a stored procedure that returns more columns than

you require.

 Prerequisites:

v You must set up the PHP environment on your system and enable the PDO and

PDO_ODBC extensions.

v You must have a statement resource returned from PDO::query() or

PDOStatement::execute() with one or more associated result sets.

 Restrictions:

 If you decide to fetch a column from a row, instead of retrieving all of the columns

in the entire row simultaneously, you can only return a single column from each

row.

 Procedure:

 To return a single column from a single row in the result set:

28 Developing Perl and PHP Applications

1. Call the PDOStatement::fetchColumn() method, specifying the column you

want to retrieve as the first argument of the method. Column numbers start at

0. If you do not specify a column, PDOStatement::fetchColumn() returns the

first column in the row.

To return an array containing a single column from all of the remaining rows in

the result set:

1. Call the PDOStatement::fetchAll() method, passing PDO::FETCH_COLUMN as the

first argument, and the column you want to retrieve as the second argument, to

return an array of the values for the selected column from the result set.

Column numbers start at 0. If you do not specify a column,

PDOStatement::fetchAll(PDO::FETCH_COLUMN) returns the first column in the

row.

 Related tasks:

v “Fetching large objects in PHP (PDO)” on page 31

v “Fetching rows from result sets in PHP (PDO)” on page 29

 Related reference:

v “PDOStatement::fetchColumn - Returns a single column from the next row of a

result set” on page 124

v “PDO::query - Executes an SQL statement, returning a result set as a

PDOStatement object” on page 108

v “PDOStatement::execute - Executes a prepared statement” on page 118

v “PDOStatement::fetchAll - Returns an array containing all of the result set rows”

on page 122

Fetching rows from result sets in PHP (PDO)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows.

 Prerequisites:

v You must set up the PHP environment on your system and enable the PDO

extension.

v You must have a PDOStatement object returned from PDO::query() or

PDOStatement::execute() with one or more associated result sets.

 Procedure:

 To return a single row from a result set as an array or object, call the

PDOStatement::fetch() method.

To return all of the rows from the result set as an array of arrays or objects, call the

PDOStatement::fetchAll() method.

By default, PDO returns each row as an array indexed by column name and

0-indexed column position in the row. You can request a different return style by

passing one of the following constants as the first parameter of

PDOStatement::fetch():

PDO::FETCH_ASSOC

Returns an array indexed by column name as returned in your result set.

Chapter 3. Developing PHP Applications with PDO 29

PDO::FETCH_BOTH (default)

Returns an array indexed by both column name and 0-indexed column

number as returned in your result set

PDO::FETCH_BOUND

Returns TRUE and assigns the values of the columns in your result set to

the PHP variables to which they were bound with the

PDOStatement::bindParam() method.

PDO::FETCH_CLASS

Returns a new instance of the requested class, mapping the columns of the

result set to named properties in the class.

PDO::FETCH_INTO

Updates an existing instance of the requested class, mapping the columns

of the result set to named properties in the class.

PDO::FETCH_LAZY

Combines PDO::FETCH_BOTH and PDO::FETCH_OBJ, creating the object

variable names as they are accessed.

PDO::FETCH_NUM

Returns an array indexed by column number as returned in your result set,

starting at column 0.

PDO::FETCH_OBJ

Returns an anonymous object with property names that correspond to the

column names returned in your result set.

(Optional): If you requested a scrollable cursor when you called PDO::query() or

PDOStatement::execute(), you can pass two more arguments to

PDOStatement::fetch():

1. The fetch orientation for this fetch request:

PDO::FETCH_ORI_NEXT (default)

Fetches the next row in the result set.

PDO::FETCH_ORI_PRIOR

Fetches the previous row in the result set.

PDO::FETCH_ORI_FIRST

Fetches the first row in the result set.

PDO::FETCH_ORI_LAST

Fetches the last row in the result set.

PDO::FETCH_ORI_ABS

Fetches the absolute row in the result set. Requires a positive integer as

the third argument to PDOStatement::fetch().

PDO::FETCH_ORI_REL

Fetches the relative row in the result set. Requires a positive or negative

integer as the third argument to PDOStatement::fetch().
2. An integer requesting the absolute or relative row in the result set,

corresponding to the fetch orientation requested in the second argument to

PDOStatement::fetch().

PDOStatement::fetch() returns FALSE when the last row in the result set has been

retrieved for a forward-only result set.

 Example:

30 Developing Perl and PHP Applications

$stmt = $conn->query("SELECT firstnme, lastname FROM employee");

while ($row = $stmt->fetch(PDO::FETCH_NUM)) {

 print "Name: <p>{$row[0] $row[1]}</p>";

}

 Related tasks:

v “Fetching large objects in PHP (PDO)” on page 31

 Related reference:

v “PDOStatement::fetch - Fetches the next row from a result set” on page 119

v “PDOStatement::fetchAll - Returns an array containing all of the result set rows”

on page 122

Fetching large objects in PHP (PDO)

The PDO extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

fetch a large object from a result set, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. If your ultimate goal

is to create a file that contains the data for a large object, you can save system

resources by fetching large objects directly into a file on your PHP server.

 Prerequisites:

 You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_ODBC extensions.

 Procedure:

 To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream–for example, the return value from

a call to fopen().

2. Call PDO::prepare() to create a PDOStatement object from an SQL statement.

3. Call PDOStatement::bindColumn() to bind the output column for the large object

to the PHP variable representing the stream. The third parameter is a string

representing the name of the PHP variable that holds the name of the file that

is to contain the data from the large object. The fourth parameter is a PHP

constant, PDO::PARAM_LOB, which tells the PDO extension to write the data into

a file. Note that you must call PDOStatement::bindColumn() to assign a different

PHP variable for every column in the result set.

4. Call PDOStatement::execute() to issue the SQL statement.

5. Call PDOStatement::fetch(PDO::FETCH_BOUND) to retrieve the next row in the

result set, binding the column output into the PHP variables you associated

with the PDOStatement::bindColumn() method.

 Example:

$stmt = $conn->prepare("SELECT name, picture FROM animal_pictures");

$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$stmt->bindColumn($stmt, 1, $nickname, PDO::PARAM_STR, 32);

$stmt->bindColumn($stmt, 2, $picture, PDO::PARAM_LOB);

$stmt->execute();

$stmt->fetch(PDO::FETCH_BOUND);

 Related tasks:

Chapter 3. Developing PHP Applications with PDO 31

v “Fetching rows from result sets in PHP (PDO)” on page 29

 Related reference:

v “PDO::prepare - Prepares a statement for execution and returns a statement

object” on page 107

v “PDOStatement::bindParam - Binds a parameter to the specified variable name”

on page 113

v “PDOStatement::execute - Executes a prepared statement” on page 118

v “PDOStatement::fetch - Fetches the next row from a result set” on page 119

Managing transactions in PHP (PDO)

By default, PDO opens every connection in autocommit mode. Autocommit mode

helps prevent locking escalation issues that can impede the performance of highly

scalable Web applications. In some scripts, however, you might need to roll back a

transaction containing one or more SQL statements. PDO enables you to exert

fine-grained control over your transactions.

 Prerequisites:

 You must set up the PHP environment on your system and enable the PDO

extension.

 Procedure:

 To begin a transaction:

1. Call PDO::beginTransaction() to begin a new transaction.

2. Issue one or more SQL statements within the scope of the database transaction

using the connection resource for which transactions have been enabled.

3. Commit or rollback the transaction:

v To commit the transaction, call PDO::commit().

v To rollback the transaction, call PDO::rollBack().

After you commit or rollback the transaction, PDO automatically resets the

database connection to autocommit mode. If you issue SQL statements in a

transaction and the script ends without explicitly committing or rolling back the

transaction, PDO automatically rolls back any work performed in the transaction.

 Example:

$conn = new PDO(’odbc:SAMPLE’, ’db2inst1’, ’ibmdb2’, array(

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION));

 // PDO::ERRMODE_EXCEPTION means an SQL error throws an exception

try {

 // Issue these SQL statements in a transaction within a try{} block

 $conn->beginTransaction();

 // One or more SQL statements

 $conn->commit();

}

catch (Exception $e) {

 // If something raised an exception in our transaction block of statements,

 // roll back any work performed in the transaction

 print ’<p>Unable to complete transaction!</p>’;

 $conn->rollBack();

}

32 Developing Perl and PHP Applications

Related reference:

v “PDO::beginTransaction - Initiates a transaction” on page 101

v “PDO::commit - Commits a transaction” on page 102

v “PDO::rollBack - Rolls back a transaction” on page 110

Handling errors and warnings in PHP (PDO)

Problems occasionally happen when you attempt to connect to a database or issue

an SQL statement. The password for your connection might be incorrect, the table

you referred to in a SELECT statement might not exist, or the syntax for an SQL

statement might be invalid. You need to code defensively and use the

error-handling functions offered by PDO to enable your application to recover

gracefully from a problem.

 Prerequisites:

 You must set up the PHP environment on your system and enable the PDO and

PDO_ODBC extensions.

 Restrictions:

 PDO gives you the option of handling errors as warnings, errors, or exceptions.

However, when you create a new PDO connection object, PDO always throws a

PDOException object if an error occurs. If you do not catch the exception, PHP

prints a backtrace of the error information which might expose your database

connection credentials, including your user name and password.

 Procedure:

v To catch a PDOException object and handle the associated error:

1. Wrap the call to the PDO constructor in a try block.

2. Following the try block, include a catch block that catches the PDOException

object.

3. Retrieve the error message associated with the error by invoking the

Exception::getMessage() method on the PDOException object.
v To retrieve the SQLSTATE associated with a PDO or PDOStatement object, invoke

the errorCode() method on the object.

v To retrieve an array of error information associated with a PDO or PDOStatement

object, invoke the errorInfo() method on the object. The array contains a string

representing the SQLSTATE as the first element, an integer representing the SQL

or CLI error code as the second element, and a string containing the full text

error message as the third element.

Calling stored procedures with OUT or INOUT parameters in PHP

(PDO)

DB2 supports stored procedures with parameters that only accept an input value

(IN parameters), that only return an output value (OUT parameters), or that accept

an input value and return an output value (INOUT). With the PDO_ODBC

extension for PHP you can handle IN parameters like any other parameter marker

in an SQL statement. However, the PDO_ODBC extension also enables you to

CALL stored procedures with OUT and INOUT parameters and retrieve the output

values from those parameters.

Chapter 3. Developing PHP Applications with PDO 33

Prerequisites:

 You must set up the PHP environment on your system and enable the PDO and

PDO_ODBC extensions.

 Procedure:

 To call a stored procedure with OUT or INOUT parameters:

1. Call PDO::prepare() to prepare a CALL statement with parameter markers

representing the OUT and INOUT parameters.

2. Call PDOStatement::bindParam() to bind each parameter marker to the name of

the PHP variable that will hold the output value of the parameter after the

CALL statement has been issued. For INOUT parameters, the value of the PHP

variable is passed as the input value of the parameter when the CALL

statement is issued. Set the third parameter for PDOStatement::bindParam() to

the type of data being bound:

PDO::PARAM_NULL

Represents the SQL NULL data type.

PDO::PARAM_INT

Represents SQL integer types.

PDO::PARAM_LOB

Represents SQL large object types.

PDO::PARAM_STR

Represents SQL character data types.
3. For an INOUT parameter, use the bitwise OR operator to append

PDO::PARAM_INPUT_OUTPUT to the type of data being bound.

4. Set the fourth parameter of PDOStatement::bindParam() to the maximum

expected length of the output value.

 Example:

$sql = ’CALL match_animal(?, ?)’;

$stmt = $conn->prepare($sql);

$second_name = "Rickety Ride";

$weight = 0;

$stmt->bindParam(1, $second_name, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 32);

$stmt->bindParam(2, $weight, PDO::PARAM_INT, 10);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

$stmt->execute();

print "Values of bound parameters _after_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

 Related tasks:

v “Calling stored procedures that return multiple result sets in PHP (PDO)” on

page 35

 Related reference:

v “PDO::prepare - Prepares a statement for execution and returns a statement

object” on page 107

34 Developing Perl and PHP Applications

v “PDOStatement::bindParam - Binds a parameter to the specified variable name”

on page 113

v “PDOStatement::execute - Executes a prepared statement” on page 118

Calling stored procedures that return multiple result sets in PHP (PDO)

DB2 enables you to create and call stored procedures that return more than one

result set. The PDO_ODBC extension for PHP supports this capability through the

nextRowset() method. You can use this method to fetch rows from different result

sets returned by a single call to the same stored procedure.

 Prerequisites:

v You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_ODBC extensions.

v You must have a PDOStatement object returned from calling a stored procedure

with PDO::query() or PDOStatement::execute().

 Procedure:

 To return multiple result sets from a stored procedure:

1. The first result set is associated with the PDOStatement object returned by the

CALL statement. You can fetch rows from the PDOStatement object until no

more rows are available in the first result set.

2. Call the nextRowset() method of the PDOStatement object to return the next

result set. You can fetch rows from the PDOStatement object until no more

rows are available in the next result set.

 Example:

$sql = ’CALL multiple_results()’;

$stmt = $conn->query($sql);

do {

 $rows = $stmt->fetchAll(PDO::FETCH_NUM);

 if ($rows) {

 print_r($rows);

 }

} while ($stmt->nextRowset());

 Related tasks:

v “Calling stored procedures with OUT or INOUT parameters in PHP (PDO)” on

page 33

 Related reference:

v “PDOStatement::nextRowset - Advances to the next result set in a statement

handle associated with multiple result sets” on page 127

Chapter 3. Developing PHP Applications with PDO 35

36 Developing Perl and PHP Applications

Chapter 4. ibm_db2 Extension Reference

Connection functions

db2_autocommit - Returns or sets the AUTOCOMMIT state for

a database connection

 Syntax:

 mixed db2_autocommit(resource connection, [bool value])

 Description:

 Sets or gets the AUTOCOMMIT behavior of the specified connection resource.

 Parameters:

 connection

 A valid database connection resource variable as returned from

db2_connect() or db2_pconnect().

value

 One of the following constants:

DB2_AUTOCOMMIT_OFF

 Turns AUTOCOMMIT off.

DB2_AUTOCOMMIT_ON

 Turns AUTOCOMMIT on.

 Return Values:

 When db2_autocommit() receives only the connection parameter, it returns the

current state of AUTOCOMMIT for the requested connection as an integer value. A

value of 0 indicates that AUTOCOMMIT is off, while a value of 1 indicates that

AUTOCOMMIT is on.

When db2_autocommit receives both the connection parameter and autocommit

parameter, it attempts to set the AUTOCOMMIT state of the requested connection

to the corresponding state. Returns TRUE on success or FALSE on failure.

 Examples:

 Retrieving the AUTOCOMMIT value for a connection:

 In the following example, a connection which has been created with

AUTOCOMMIT turned off is tested with the db2_autocommit() function.

<?php

$options = array(’autocommit’ => DB2_AUTOCOMMIT_OFF);

$conn = db2_connect($database, $user, $password, $options);

$ac = db2_autocommit($conn);

if ($ac == 0) {

© Copyright IBM Corp. 2006 37

print "$ac -- AUTOCOMMIT is off.";

} else {

 print "$ac -- AUTOCOMMIT is on.";

}

?>

The preceding example returns the following output:

0 -- AUTOCOMMIT is off.

 Setting the AUTOCOMMIT value for a connection:

 In the following example, a connection which was initially created with

AUTOCOMMIT turned off has its behavior changed to turn AUTOCOMMIT on.

<?php

$options = array(’autocommit’ => DB2_AUTOCOMMIT_OFF);

$conn = db2_connect($database, $user, $password, $options);

// Turn AUTOCOMMIT on

$rc = db2_autocommit($conn, DB2_AUTOCOMMIT_ON);

if ($rc) {

 print "Turning AUTOCOMMIT on succeeded.\n";

}

// Check AUTOCOMMIT state

$ac = db2_autocommit($conn);

if ($ac == 0) {

 print "$ac -- AUTOCOMMIT is off.";

} else {

 print "$ac -- AUTOCOMMIT is on.";

}

?>

The preceding example returns the following output:

Turning AUTOCOMMIT on succeeded.

1 -- AUTOCOMMIT is on.

 Related tasks:

v “Managing transactions in PHP (ibm_db2)” on page 17

 Related reference:

v “db2_commit - Commits a transaction” on page 39

v “db2_rollback - Rolls back a transaction” on page 46

db2_close - Closes a database connection

 Syntax:

 bool db2_close(resource connection)

 Description:

 This function closes a DB2 client connection created with db2_connect() and

returns the corresponding resources to the database management system.

If you attempt to close a persistent DB2 client connection created with

db2_pconnect(), the close request is ignored and the persistent DB2 client

connection remains available for the next caller.

db2_autocommit - Returns or sets the AUTOCOMMIT state for a database connection

38 Developing Perl and PHP Applications

Parameters:

 connection

 Specifies an active DB2 client connection.

 Return Values:

 Returns TRUE on success or FALSE on failure.

 Examples:

 Closing a connection:

 The following example demonstrates a successful attempt to close a connection to

an IBM DB2, Cloudscape, or Apache Derby database.

<?php

$conn = db2_connect(’SAMPLE’, ’db2inst1’, ’ibmdb2’);

$rc = db2_close($conn);

if ($rc) {

 echo "Connection was successfully closed.";

}

?>

The preceding example returns the following output:

Connection was successfully closed.

 Related tasks:

v “Connecting to a DB2 database with PHP (ibm_db2)” on page 7

 Related reference:

v “db2_connect - Returns a connection to a database” on page 42

v “db2_pconnect - Returns a persistent connection to a database” on page 45

db2_commit - Commits a transaction

 Syntax:

 bool db2_commit(resource connection)

 Description:

 Commits an in-progress transaction on the specified connection resource and

begins a new transaction. PHP applications normally default to AUTOCOMMIT

mode, so db2_commit() is not necessary unless AUTOCOMMIT has been turned off

for the connection resource.

 Parameters:

 connection

 A valid database connection resource variable as returned from

db2_connect().

 Return Values:

 Returns TRUE on success or FALSE on failure.

db2_close - Closes a database connection

Chapter 4. ibm_db2 Extension Reference 39

Related tasks:

v “Managing transactions in PHP (ibm_db2)” on page 17

 Related reference:

v “db2_rollback - Rolls back a transaction” on page 46

v “db2_autocommit - Returns or sets the AUTOCOMMIT state for a database

connection” on page 37

db2_conn_error - Returns a string containing the SQLSTATE

returned by the last connection attempt

 Syntax:

 string db2_conn_error([resource connection])

 Description:

 db2_conn_error() returns an SQLSTATE value representing the reason the last

attempt to connect to a database failed. As db2_connect() returns FALSE in the

event of a failed connection attempt, you do not pass any parameters to

db2_conn_error() to retrieve the SQLSTATE value.

If, however, the connection was successful but becomes invalid over time, you can

pass the connection parameter to retrieve the SQLSTATE value for a specific

connection.

To learn what the SQLSTATE value means, you can issue the following command

at a DB2 Command Line Processor prompt:

db2 ’? sqlstate-value'

You can also call db2_conn_errormsg() to retrieve an explicit error message and the

associated SQLCODE value.

 Parameters:

 connection

 A connection resource associated with a connection that initially succeeded,

but which over time became invalid.

 Return Values:

 Returns the SQLSTATE value resulting from a failed connection attempt. Returns

an empty string if there is no error associated with the last connection attempt.

 Examples:

 Retrieving an SQLSTATE value for a failed connection attempt:

 The following example demonstrates how to return an SQLSTATE value after

deliberately passing invalid parameters to db2_connect().

db2_commit - Commits a transaction

40 Developing Perl and PHP Applications

<?php

$conn = db2_connect(’badname’, ’baduser’, ’badpassword’);

if (!$conn) {

 print "SQLSTATE value: " . db2_conn_error();

}

?>

The preceding example returns the following output:

SQLSTATE value: 08001

 Related tasks:

v “Handling errors and warning messages (ibm_db2)” on page 18

 Related reference:

v “db2_conn_errormsg - Returns the last connection error message and SQLCODE

value” on page 41

v “db2_stmt_error - Returns a string containing the SQLSTATE returned by an

SQL statement” on page 57

v “db2_stmt_errormsg - Returns a string containing the last SQL statement error

message” on page 57

db2_conn_errormsg - Returns the last connection error

message and SQLCODE value

 Syntax:

 string db2_conn_errormsg([resource connection])

 Description:

 db2_conn_errormsg() returns an error message and SQLCODE value representing

the reason the last database connection attempt failed. As db2_connect() returns

FALSE in the event of a failed connection attempt, do not pass any parameters to

db2_conn_errormsg() to retrieve the associated error message and SQLCODE

value.

If, however, the connection was successful but becomes invalid over time, you can

pass the connection parameter to retrieve the associated error message and

SQLCODE value for a specific connection.

 Parameters:

 connection

 A connection resource associated with a connection that initially succeeded,

but which over time became invalid.

 Return Values:

 Returns a string containing the error message and SQLCODE value resulting from

a failed connection attempt. If there is no error associated with the last connection

attempt, db2_conn_errormsg() returns an empty string.

 Examples:

 Retrieving the error message returned by a failed connection attempt:

db2_conn_error - Returns a string containing the SQLSTATE returned by the last

connection attempt

Chapter 4. ibm_db2 Extension Reference 41

The following example demonstrates how to return an error message and

SQLCODE value after deliberately passing invalid parameters to db2_connect().

<?php

$conn = db2_connect(’badname’, ’baduser’, ’badpassword’);

if (!$conn) {

 print db2_conn_errormsg();

}

?>

The preceding example returns the following output:

[IBM][CLI Driver] SQL1013N The database alias name

or database name "BADNAME" could not be found. SQLSTATE=42705

 SQLCODE=-1013

 Related tasks:

v “Handling errors and warning messages (ibm_db2)” on page 18

 Related reference:

v “db2_conn_error - Returns a string containing the SQLSTATE returned by the

last connection attempt” on page 40

v “db2_stmt_error - Returns a string containing the SQLSTATE returned by an

SQL statement” on page 57

v “db2_stmt_errormsg - Returns a string containing the last SQL statement error

message” on page 57

db2_connect - Returns a connection to a database

 Syntax:

 resource db2_connect(string database, string username, string password, [array

options])

 Description:

 Creates a new connection to an IBM DB2, IBM Cloudscape, or Apache Derby

database.

 Parameters:

 database

 For a cataloged connection to a database, database represents the database

alias in the DB2 client catalog.

 For an uncataloged connection to a database, database represents a complete

connection string in the following format:

DRIVER={IBM DB2 ODBC DRIVER};DATABASE=database;HOSTNAME=hostname;

PORT=port;PROTOCOL=TCPIP;UID=username;PWD=password

where the parameters represent the following values:

database

 The name of the database.

hostname

 The hostname or IP address of the database server.

db2_conn_errormsg - Returns the last connection error message and SQLCODE value

42 Developing Perl and PHP Applications

port

 The TCP/IP port on which the database is listening for requests.

username

 The username with which you are connecting to the database.

password

 The password with which you are connecting to the database.

username

 The user name with which you are connecting to the database.

 For uncataloged connections, you must pass a NULL value or empty

string.

password

 The password with which you are connecting to the database.

 For uncataloged connections, you must pass a NULL value or empty

string.

options

 An associative array of connection options that affect the behavior of the

connection, where valid array keys include:

autocommit

 Passing the DB2_AUTOCOMMIT_ON value turns autocommit on

for this connection handle.

 Passing the DB2_AUTOCOMMIT_OFF value turns autocommit

off for this connection handle.

 Return Values:

 Returns a connection handle resource if the connection attempt is successful. If the

connection attempt fails, db2_connect() returns FALSE.

 Examples:

 Creating a cataloged connection:

 Cataloged connections require you to have previously cataloged the target database

through the DB2 Command Line Processor or DB2 Configuration Assistant.

<?php

$database = ’SAMPLE’;

$user = ’db2inst1’;

$password = ’ibmdb2’;

$conn = db2_connect($database, $user, $password);

if ($conn) {

 echo "Connection succeeded.";

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

db2_connect - Returns a connection to a database

Chapter 4. ibm_db2 Extension Reference 43

The preceding example returns the following output:

Connection succeeded.

 Creating an uncataloged connection:

 An uncataloged connection enables you to dynamically connect to a database.

<?php

$database = ’SAMPLE’;

$user = ’db2inst1’;

$password = ’ibmdb2’;

$hostname = ’localhost’;

$port = 50000;

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;" .

 "HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$user;PWD=$password;";

$conn = db2_connect($conn_string, ’’, ’’);

if ($conn) {

 echo "Connection succeeded.";

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

The preceding example returns the following output:

Connection succeeded.

 Creating a connection with autocommit off by default:

 Passing an array of options to db2_connect() enables you to modify the default

behavior of the connection handle.

<?php

$database = ’SAMPLE’;

$user = ’db2inst1’;

$password = ’ibmdb2’;

$options = array(’autocommit’ => DB2_AUTOCOMMIT_OFF);

$conn = db2_connect($database, $user, $password, $options);

if ($conn) {

 echo "Connection succeeded.\n";

 if (db2_autocommit($conn)) {

 echo "Autocommit is on.\n";

 }

 else {

 echo "Autocommit is off.\n";

 }

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

The preceding example returns the following output:

Connection succeeded.

Autocommit is off.

 Related tasks:

v “Connecting to a DB2 database with PHP (ibm_db2)” on page 7

db2_connect - Returns a connection to a database

44 Developing Perl and PHP Applications

Related reference:

v “db2_close - Closes a database connection” on page 38

v “db2_pconnect - Returns a persistent connection to a database” on page 45

db2_pconnect - Returns a persistent connection to a database

 Syntax:

 resource db2_pconnect(string database, string username, string password, [array

options])

 Description:

 Returns a persistent connection to an IBM DB2, IBM Cloudscape, or Apache Derby

database.

Calling db2_close() on a persistent connection always returns TRUE, but the

underlying DB2 client connection remains open and waiting to serve the next

matching db2_pconnect() request.

Note that you are strongly urged to only use persistent connections on connections

with autocommit turned on. If you attempt to combine transactions with persistent

connections, issuing db2_commit() or db2_rollback() against a persistent

connection will affect every persistent connection that is currently using the same

underlying DB2 client connection. You may also rapidly experience locking

escalation if you do not use autocommit for your persistent connections.

 Parameters:

 database

 The database alias in the DB2 client catalog.

username

 The username with which you are connecting to the database.

password

 The password with which you are connecting to the database.

options

 An associative array of connection options that affect the behavior of the

connection, where valid array keys include:

autocommit

 Passing the DB2_AUTOCOMMIT_ON value turns autocommit on

for this connection handle.

 Passing the DB2_AUTOCOMMIT_OFF value turns autocommit

off for this connection handle.

 Return Values:

 Returns a connection handle resource if the connection attempt is successful.

db2_pconnect() tries to reuse an existing connection resource that exactly matches

the database, username, and password parameters. If the connection attempt fails,

db2_pconnect() returns FALSE.

db2_connect - Returns a connection to a database

Chapter 4. ibm_db2 Extension Reference 45

Examples:

 A db2_pconnect() example:

 In the following example, the first call to db2_pconnect() returns a new persistent

connection resource. The second call to db2_pconnect() returns a persistent

connection resource that simply reuses the first persistent connection resource.

<?php

$database = ’SAMPLE’;

$user = ’db2inst1’;

$password = ’ibmdb2’;

$pconn = db2_pconnect($database, $user, $password);

if ($pconn) {

 echo "Persistent connection succeeded.";

}

else {

 echo "Persistent connection failed.";

}

$pconn2 = db2_pconnect($database, $user, $password);

if ($pconn) {

 echo "Second persistent connection succeeded.";

}

else {

 echo "Second persistent connection failed.";

}

?>

The preceding example returns the following output:

Persistent connection succeeded.

Second persistent connection succeeded.

 Related tasks:

v “Connecting to a DB2 database with PHP (ibm_db2)” on page 7

 Related reference:

v “db2_connect - Returns a connection to a database” on page 42

db2_rollback - Rolls back a transaction

 Syntax:

 bool db2_rollback(resource connection)

 Description:

 Rolls back an in-progress transaction on the specified connection resource and

begins a new transaction. PHP applications normally default to AUTOCOMMIT

mode, so db2_rollback() normally has no effect unless AUTOCOMMIT has been

turned off for the connection resource.

If the specified connection resource is a persistent connection, all transactions in

progress for all applications using that persistent connection will be rolled back.

For this reason, persistent connections are not recommended for use in applications

that require transactions.

db2_pconnect - Returns a persistent connection to a database

46 Developing Perl and PHP Applications

Parameters:

 connection

 A valid database connection resource variable as returned from

db2_connect() or db2_pconnect().

 Return Values:

 Returns TRUE on success or FALSE on failure.

 Examples:

 Rolling back a DELETE statement:

 In the following example, we count the number of rows in a table, turn off

AUTOCOMMIT mode on a database connection, delete all of the rows in the table

and return the count of 0 to prove that the rows have been removed. We then issue

db2_rollback() and return the updated count of rows in the table to show that the

number is the same as before we issued the DELETE statement. The return to the

original state of the table demonstrates that the roll back of the transaction

succeeded.

<?php

$conn = db2_connect($database, $user, $password);

if ($conn) {

 $stmt = db2_exec($conn, "SELECT count(*) FROM animals");

 $res = db2_fetch_array($stmt);

 echo $res[0] . "\n";

 // Turn AUTOCOMMIT off

 db2_autocommit($conn, DB2_AUTOCOMMIT_OFF);

 // Delete all rows from ANIMALS

 db2_exec($conn, "DELETE FROM animals");

 $stmt = db2_exec($conn, "SELECT count(*) FROM animals");

 $res = db2_fetch_array($stmt);

 echo $res[0] . "\n";

 // Roll back the DELETE statement

 db2_rollback($conn);

 $stmt = db2_exec($conn, "SELECT count(*) FROM animals");

 $res = db2_fetch_array($stmt);

 echo $res[0] . "\n";

 db2_close($conn);

}

?>

The preceding example returns the following output:

7

0

7

 Related tasks:

v “Managing transactions in PHP (ibm_db2)” on page 17

 Related reference:

v “db2_commit - Commits a transaction” on page 39

db2_rollback - Rolls back a transaction

Chapter 4. ibm_db2 Extension Reference 47

v “db2_autocommit - Returns or sets the AUTOCOMMIT state for a database

connection” on page 37

Statement functions

db2_bind_param - Binds a PHP variable to an SQL statement

parameter

 Syntax:

 bool db2_bind_param(resource stmt, int parameter-number, string variable-name, [int

parameter-type, [int data-type, [int precision, [int scale]]]])

 Description:

 Binds a PHP variable to an SQL statement parameter in a statement resource

returned by db2_prepare(). This function gives you more control over the

parameter type, data type, precision, and scale for the parameter than simply

passing the variable as part of the optional input array to db2_execute().

 Parameters:

 stmt

 A prepared statement returned from db2_prepare().

parameter-number

 Specifies the 1-indexed position of the parameter in the prepared

statement.

variable-name

 A string specifying the name of the PHP variable to bind to the parameter

specified by parameter-number.

parameter-type

 A constant specifying whether the PHP variable should be bound to the

SQL parameter as an input parameter (DB2_PARAM_IN), an output

parameter (DB2_PARAM_OUT), or as a parameter that accepts input and

returns output (DB2_PARAM_INOUT).

data-type

 A constant specifying the SQL data type that the PHP variable should be

bound as: one of DB2_BINARY, DB2_CHAR, DB2_DOUBLE, or

DB2_LONG .

precision

 Specifies the precision with which the variable should be bound to the

database.

scale

 Specifies the scale with which the variable should be bound to the

database.

 Return Values:

 Returns TRUE on success or FALSE on failure.

db2_rollback - Rolls back a transaction

48 Developing Perl and PHP Applications

Examples:

 Binding PHP variables to a prepared statement:

 The SQL statement in the following example uses two input parameters in the

WHERE clause. We call db2_bind_param() to bind two PHP variables to the

corresponding SQL parameters. Notice that the PHP variables do not have to be

declared or assigned before the call to db2_bind_param(); in the example,

$lower_limit is assigned a value before the call to db2_bind_param(), but

$upper_limit is assigned a value after the call to db2_bind_param(). The variables

must be bound and, for parameters that accept input, must have any value

assigned, before calling db2_execute().

<?php

$sql = ’SELECT name, breed, weight FROM animals

 WHERE weight > ? AND weight < ?’;

$conn = db2_connect($database, $user, $password);

$stmt = db2_prepare($conn, $sql);

// We can declare the variable before calling db2_bind_param()

$lower_limit = 1;

db2_bind_param($stmt, 1, "lower_limit", DB2_PARAM_IN);

db2_bind_param($stmt, 2, "upper_limit", DB2_PARAM_IN);

// We can also declare the variable after calling db2_bind_param()

$upper_limit = 15.0;

if (db2_execute($stmt)) {

 while ($row = db2_fetch_array($stmt)) {

 print "{$row[0]}, {$row[1]}, {$row[2]}\n";

 }

}

?>

The preceding example returns the following output:

Pook, cat, 3.2

Rickety Ride, goat, 9.7

Peaches, dog, 12.3

 Calling stored procedures with IN and OUT parameters:

 The stored procedure match_animal in the following example accepts three

different parameters:

1. an input (IN) parameter that accepts the name of the first animal as input

2. an input-output (INOUT) parameter that accepts the name of the second

animal as input and returns the string TRUE if an animal in the database

matches that name

3. an output (OUT) parameter that returns the sum of the weight of the two

identified animals

In addition, the stored procedure returns a result set consisting of the animals

listed in alphabetic order starting at the animal corresponding to the input value of

the first parameter and ending at the animal corresponding to the input value of

the second parameter.

<?php

$sql = ’CALL match_animal(?, ?, ?)’;

$conn = db2_connect($database, $user, $password);

$stmt = db2_prepare($conn, $sql);

db2_bind_param - Binds a PHP variable to an SQL statement parameter

Chapter 4. ibm_db2 Extension Reference 49

$name = "Peaches";

$second_name = "Rickety Ride";

db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

db2_bind_param($stmt, 2, "second_name", DB2_PARAM_INOUT);

db2_bind_param($stmt, 3, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$name} 2: {$second_name} 3: {$weight}\n\n";

if (db2_execute($stmt)) {

 print "Values of bound parameters _after_ CALL:\n";

 print " 1: {$name} 2: {$second_name} 3: {$weight}\n\n";

 print "Results:\n";

 while ($row = db2_fetch_array($stmt)) {

 print " {$row[0]}, {$row[1]}, {$row[2]}\n";

 }

}

?>

The preceding example returns the following output:

Values of bound parameters _before_ CALL:

 1: Peaches 2: Rickety Ride 3:

Values of bound parameters _after_ CALL:

 1: Peaches 2: TRUE 3: 22

Results:

 Peaches, dog, 12.3

 Pook, cat, 3.2

 Rickety Ride, goat, 9.7

 Related tasks:

v “Calling stored procedures with OUT or INOUT parameters in PHP (ibm_db2)”

on page 20

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

 Related reference:

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

db2_exec - Executes an SQL statement directly

 Syntax:

 resource db2_exec(resource connection, string statement, [array options])

 Description:

 Prepares and executes an SQL statement.

If you plan to interpolate PHP variables into the SQL statement, understand that

this is one of the more common security exposures. Consider calling db2_prepare()

to prepare an SQL statement with parameter markers for input values. Then you

can call db2_execute() to pass in the input values and avoid SQL injection attacks.

db2_bind_param - Binds a PHP variable to an SQL statement parameter

50 Developing Perl and PHP Applications

If you plan to repeatedly issue the same SQL statement with different parameters,

consider calling db2_prepare() and db2_execute() to enable the database

management system to reuse its access plan and increase the efficiency of your

database access.

 Parameters:

 connection

 A valid database connection resource variable as returned from

db2_connect() or db2_pconnect().

statement

 An SQL statement. The statement cannot contain any parameter markers.

options

 An associative array containing statement options. You can use this

parameter to request a scrollable cursor on database management system

that support this functionality.

cursor

 Passing the DB2_FORWARD_ONLY value requests a forward-only

cursor for this SQL statement. This is the default type of cursor,

and it is supported by all database management system. It is also

much faster than a scrollable cursor.

 Passing the DB2_SCROLLABLE value requests a scrollable cursor

for this SQL statement. This type of cursor enables you to fetch

rows non-sequentially from the database management system.

However, it is only supported by DB2 management system, and is

much slower than forward-only cursors.

 Return Values:

 Returns a statement resource if the SQL statement was issued successfully, or

FALSE if the database failed to execute the SQL statement.

 Examples:

 Creating a table with db2_exec():

 The following example uses db2_exec() to issue a set of DDL statements in the

process of creating a table.

<?php

$conn = db2_connect($database, $user, $password);

// Create the test table

$create = ’CREATE TABLE animals (id INTEGER, breed VARCHAR(32),

 name CHAR(16), weight DECIMAL(7,2))’;

$result = db2_exec($conn, $create);

if ($result) {

 print "Successfully created the table.\n";

}

// Populate the test table

$animals = array(

 array(0, ’cat’, ’Pook’, 3.2),

 array(1, ’dog’, ’Peaches’, 12.3),

 array(2, ’horse’, ’Smarty’, 350.0),

 array(3, ’gold fish’, ’Bubbles’, 0.1),

db2_exec - Executes an SQL statement directly

Chapter 4. ibm_db2 Extension Reference 51

array(4, ’budgerigar’, ’Gizmo’, 0.2),

 array(5, ’goat’, ’Rickety Ride’, 9.7),

 array(6, ’llama’, ’Sweater’, 150)

);

foreach ($animals as $animal) {

 $rc = db2_exec($conn, "INSERT INTO animals (id, breed, name, weight)

 VALUES ({$animal[0]}, ’{$animal[1]}’, ’{$animal[2]}’, {$animal[3]})");

 if ($rc) {

 print "Insert... ";

 }

}

?>

The preceding example returns the following output:

Successfully created the table.

Insert... Insert... Insert... Insert... Insert... Insert... Insert...

 Executing a SELECT statement with a scrollable cursor:

 The following example demonstrates how to request a scrollable cursor for an SQL

statement issued by db2_exec().

<?php

$conn = db2_connect($database, $user, $password);

$sql = "SELECT name FROM animals

 WHERE weight < 10.0

 ORDER BY name";

if ($conn) {

 require_once(’prepare.inc’);

 $stmt = db2_exec($conn, $sql, array(’cursor’ => DB2_SCROLLABLE));

 while ($row = db2_fetch_array($stmt)) {

 print "$row[0]\n";

 }

}

?>

The preceding example returns the following output:

Bubbles

Gizmo

Pook

Rickety Ride

 Related tasks:

v “Executing a single SQL statement in PHP (ibm_db2)” on page 11

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

 Related reference:

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

db2_execute - Executes a prepared SQL statement

 Syntax:

 bool db2_execute(resource stmt, [array parameters])

 Description:

 db2_execute() executes an SQL statement that was prepared by db2_prepare().

db2_exec - Executes an SQL statement directly

52 Developing Perl and PHP Applications

If the SQL statement returns a result set, for example, a SELECT statement or a

CALL to a stored procedure that returns one or more result sets, you can retrieve a

row as an array from the stmt resource using db2_fetch_assoc(),

db2_fetch_both(), or db2_fetch_array(). Alternatively, you can use

db2_fetch_row() to move the result set pointer to the next row and fetch a column

at a time from that row with db2_result().

Refer to db2_prepare() for a brief discussion of the advantages of using

db2_prepare() and db2_execute() rather than db2_exec().

 Parameters:

 stmt

 A prepared statement returned from db2_prepare().

parameters

 An array of input parameters matching any parameter markers contained

in the prepared statement.

 Return Values:

 Returns TRUE on success or FALSE on failure.

 Examples:

 Preparing and executing an SQL statement with parameter markers:

 The following example prepares an INSERT statement that accepts four parameter

markers, then iterates over an array of arrays containing the input values to be

passed to db2_execute().

<?php

$pet = array(0, ’cat’, ’Pook’, 3.2);

$insert = ’INSERT INTO animals (id, breed, name, weight)

 VALUES (?, ?, ?, ?)’;

$stmt = db2_prepare($conn, $insert);

if ($stmt) {

 $result = db2_execute($stmt, $pet);

 if ($result) {

 print "Successfully added new pet.";

 }

}

?>

The preceding example returns the following output:

Successfully added new pet.

 Calling a stored procedure with an OUT parameter:

 The following example prepares a CALL statement that accepts one parameter

marker representing an OUT parameter, binds the PHP variable $my_pets to the

parameter using db2_bind_param, then issues db2_execute to execute the CALL

statement. After the CALL to the stored procedure has been made, the value of

$num_pets changes to reflect the value returned by the stored procedure for that

OUT parameter.

db2_execute - Executes a prepared SQL statement

Chapter 4. ibm_db2 Extension Reference 53

<?php

$num_pets = 0;

$res = db2_prepare($conn, "CALL count_my_pets(?)");

$rc = db2_bind_param($res, 1, "num_pets", DB2_PARAM_OUT);

$rc = db2_execute($res);

print "I have $num_pets pets!";

?>

The preceding example returns the following output:

I have 7 pets!

 Related tasks:

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

 Related reference:

v “db2_exec - Executes an SQL statement directly” on page 50

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

db2_free_result - Frees resources associated with a result set

 Syntax:

 bool db2_free_result(resource stmt)

 Description:

 Frees the system and database resources that are associated with a result set. These

resources are freed implicitly when a script finishes, but you can call

db2_free_result() to explicitly free the result set resources before the end of the

script.

 Parameters:

 stmt

 A valid statement resource.

 Return Values:

 Returns TRUE on success or FALSE on failure.

 Related reference:

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_free_stmt - Frees resources associated with the indicated statement

resource” on page 54

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

db2_free_stmt - Frees resources associated with the indicated

statement resource

 Syntax:

 bool db2_free_stmt(resource stmt)

 Description:

db2_execute - Executes a prepared SQL statement

54 Developing Perl and PHP Applications

Frees the system and database resources that are associated with a statement

resource. These resources are freed implicitly when a script finishes, but you can

call db2_free_stmt() to explicitly free the statement resources before the end of the

script.

 Parameters:

 stmt

 A valid statement resource.

 Return Values:

 Returns TRUE on success or FALSE on failure.

 Related reference:

v “db2_execute - Executes a prepared SQL statement” on page 52

v “db2_free_result - Frees resources associated with a result set” on page 54

v “db2_prepare - Prepares an SQL statement to be executed” on page 55

db2_prepare - Prepares an SQL statement to be executed

 Syntax:

 resource db2_prepare(resource connection, string statement, [array options])

 Description:

 db2_prepare creates a prepared SQL statement which can include 0 or more

parameter markers (? characters) representing parameters for input, output, or

input/output. You can pass parameters to the prepared statement using

db2_bind_param(), or for input values only, as an array passed to db2_execute().

There are three main advantages to using prepared statements in your application:

1.

Performance: when you prepare a statement, the database management system

creates an optimized access plan for retrieving data with that statement.

Subsequently issuing the prepared statement with db2_execute() enables the

statements to reuse that access plan and avoids the overhead of dynamically

creating a new access plan for every statement you issue.

2.

Security: when you prepare a statement, you can include parameter markers for

input values. When you execute a prepared statement with input values for

placeholders, the database management system checks each input value to

ensure that the type matches the column definition or parameter definition.

3.

Advanced functionality: Parameter markers not only enable you to pass input

values to prepared SQL statements, they also enable you to retrieve OUT and

INOUT parameters from stored procedures using db2_bind_param().

 Parameters:

 connection

db2_free_stmt - Frees resources associated with the indicated statement resource

Chapter 4. ibm_db2 Extension Reference 55

A valid database connection resource variable as returned from

db2_connect() or db2_pconnect().

statement

 An SQL statement, optionally containing one or more parameter markers.

options

 An associative array containing statement options. You can use this

parameter to request a scrollable cursor on database management systems

that support this functionality.

cursor

 Passing the DB2_FORWARD_ONLY value requests a forward-only

cursor for this SQL statement. This is the default type of cursor,

and it is supported by all database database management systems.

It is also much faster than a scrollable cursor.

 Passing the DB2_SCROLLABLE value requests a scrollable cursor

for this SQL statement. This type of cursor enables you to fetch

rows non-sequentially from the database management system.

However, it is only supported by DB2 database management

systems, and is much slower than forward-only cursors.

 Return Values:

 Returns a statement resource if the SQL statement was successfully parsed and

prepared by the database management system. Returns FALSE if the database

management system returned an error. You can determine which error was

returned by calling db2_stmt_error() or db2_stmt_errormsg().

 Examples:

 Preparing and executing an SQL statement with parameter markers:

 The following example prepares an INSERT statement that accepts four parameter

markers, then iterates over an array of arrays containing the input values to be

passed to db2_execute().

<?php

$animals = array(

 array(0, ’cat’, ’Pook’, 3.2),

 array(1, ’dog’, ’Peaches’, 12.3),

 array(2, ’horse’, ’Smarty’, 350.0),

);

$insert = ’INSERT INTO animals (id, breed, name, weight)

 VALUES (?, ?, ?, ?)’;

$stmt = db2_prepare($conn, $insert);

if ($stmt) {

 foreach ($animals as $animal) {

 $result = db2_execute($stmt, $animal);

 }

}

?>

 Related tasks:

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

db2_prepare - Prepares an SQL statement to be executed

56 Developing Perl and PHP Applications

Related reference:

v “db2_bind_param - Binds a PHP variable to an SQL statement parameter” on

page 48

v “db2_execute - Executes a prepared SQL statement” on page 52

db2_stmt_error - Returns a string containing the SQLSTATE

returned by an SQL statement

 Syntax:

 string db2_stmt_error([resource stmt])

 Description:

 Returns a string containing the SQLSTATE value returned by an SQL statement.

If you do not pass a statement resource as an argument to db2_stmt_error(), the

driver returns the SQLSTATE value associated with the last attempt to return a

statement resource, for example, from db2_prepare() or db2_exec().

To learn what the SQLSTATE value means, you can issue the following command

at a DB2 Command Line Processor prompt:

db2 ’? sqlstate-value’

. You can also call db2_stmt_errormsg() to retrieve an explicit error message and

the associated SQLCODE value.

 Parameters:

 stmt

 A valid statement resource.

 Return Values:

 Returns a string containing an SQLSTATE value.

 Related tasks:

v “Handling errors and warning messages (ibm_db2)” on page 18

 Related reference:

v “db2_stmt_errormsg - Returns a string containing the last SQL statement error

message” on page 57

v “db2_conn_error - Returns a string containing the SQLSTATE returned by the

last connection attempt” on page 40

v “db2_conn_errormsg - Returns the last connection error message and SQLCODE

value” on page 41

db2_stmt_errormsg - Returns a string containing the last SQL

statement error message

 Syntax:

 string db2_stmt_errormsg([resource stmt])

db2_prepare - Prepares an SQL statement to be executed

Chapter 4. ibm_db2 Extension Reference 57

Description:

 Returns a string containing the last SQL statement error message.

If you do not pass a statement resource as an argument to db2_stmt_errormsg(),

the driver returns the error message associated with the last attempt to return a

statement resource, for example, from db2_prepare() or db2_exec().

 Parameters:

 stmt

 A valid statement resource.

 Return Values:

 Returns a string containing the error message and SQLCODE value for the last

error that occurred issuing an SQL statement.

 Related tasks:

v “Handling errors and warning messages (ibm_db2)” on page 18

 Related reference:

v “db2_conn_error - Returns a string containing the SQLSTATE returned by the

last connection attempt” on page 40

v “db2_conn_errormsg - Returns the last connection error message and SQLCODE

value” on page 41

v “db2_stmt_error - Returns a string containing the SQLSTATE returned by an

SQL statement” on page 57

Fetch functions

db2_fetch_array - Returns an array, indexed by column

position, representing a row in a result set

 Syntax:

 array db2_fetch_array(resource stmt, [int row_number])

 Description:

 Returns an array, indexed by column position, representing a row in a result set.

The columns are 0-indexed.

 Parameters:

 stmt

 A valid stmt resource containing a result set.

row_number

 Requests a specific 1-indexed row from the result set. Passing this

parameter results in a PHP warning if the result set uses a forward-only

cursor.

 Return Values:

db2_stmt_errormsg - Returns a string containing the last SQL statement error message

58 Developing Perl and PHP Applications

Returns a 0-indexed array with column values indexed by the column position

representing the next or requested row in the result set. Returns FALSE if there are

no rows left in the result set, or if the row requested by row_number does not

exist in the result set.

 Examples:

 Iterating through a forward-only cursor:

 If you call db2_fetch_array() without a specific row number, it automatically

retrieves the next row in the result set.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

$result = db2_execute($stmt);

while ($row = db2_fetch_array($stmt)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[0], $row[1], $row[2], $row[3]);

}

?>

The preceding example returns the following output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

 Retrieving specific rows with db2_fetch_array() from a scrollable cursor:

 If your result set uses a scrollable cursor, you can call db2_fetch_array() with a

specific row number. The following example retrieves every other row in the result

set, starting with the second row.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$result = db2_exec($stmt, $sql, array(’cursor’ => DB2_SCROLLABLE));

$i=2;

while ($row = db2_fetch_array($result, $i)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[0], $row[1], $row[2], $row[3]);

 $i = $i + 2;

}

?>

The preceding example returns the following output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

 Related tasks:

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

 Related reference:

v “db2_fetch_assoc - Returns an array, indexed by column name, representing a

row in a result set” on page 60

db2_fetch_array - Returns an array, indexed by column position, representing a row in a

result set

Chapter 4. ibm_db2 Extension Reference 59

v “db2_fetch_both - Returns an array, indexed by both column name and position,

representing a row in a result set” on page 61

v “db2_fetch_object - Returns an object with properties representing columns in

the fetched row” on page 63

db2_fetch_assoc - Returns an array, indexed by column name,

representing a row in a result set

 Syntax:

 array db2_fetch_assoc(resource stmt, [int row_number])

 Description:

 Returns an array, indexed by column name, representing a row in a result set.

 Parameters:

 stmt

 A valid stmt resource containing a result set.

row_number

 Requests a specific 1-indexed row from the result set. Passing this

parameter results in a PHP warning if the result set uses a forward-only

cursor.

 Return Values:

 Returns an associative array with column values indexed by the column name

representing the next or requested row in the result set. Returns FALSE if there are

no rows left in the result set, or if the row requested by row_number does not

exist in the result set.

 Examples:

 Iterating through a forward-only cursor:

 If you call db2_fetch_assoc() without a specific row number, it automatically

retrieves the next row in the result set.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

$result = db2_execute($stmt);

while ($row = db2_fetch_assoc($stmt)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[’ID’], $row[’NAME’], $row[’BREED’], $row[’WEIGHT’]);

}

?>

The preceding example returns the following output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

 Retrieving specific rows with db2_fetch_assoc() from a scrollable cursor:

db2_fetch_array - Returns an array, indexed by column position, representing a row in a

result set

60 Developing Perl and PHP Applications

If your result set uses a scrollable cursor, you can call db2_fetch_assoc() with a

specific row number. The following example retrieves every other row in the result

set, starting with the second row.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$result = db2_exec($stmt, $sql, array(’cursor’ => DB2_SCROLLABLE));

$i=2;

while ($row = db2_fetch_assoc($result, $i)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[’ID’], $row[’NAME’], $row[’BREED’], $row[’WEIGHT’]);

 $i = $i + 2;

}

?>

The preceding example returns the following output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

 Related tasks:

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

 Related reference:

v “db2_fetch_array - Returns an array, indexed by column position, representing a

row in a result set” on page 58

v “db2_fetch_both - Returns an array, indexed by both column name and position,

representing a row in a result set” on page 61

v “db2_fetch_object - Returns an object with properties representing columns in

the fetched row” on page 63

db2_fetch_both - Returns an array, indexed by both column

name and position, representing a row in a result set

 Syntax:

 array db2_fetch_both(resource stmt, [int row_number])

 Description:

 Returns an array, indexed by both column name and position, representing a row

in a result set. Note that the row returned by db2_fetch_both() requires more

memory than the single-indexed arrays returned by db2_fetch_assoc() or

db2_fetch_array().

 Parameters:

 stmt

 A valid stmt resource containing a result set.

row_number

 Requests a specific 1-indexed row from the result set. Passing this

parameter results in a PHP warning if the result set uses a forward-only

cursor.

db2_fetch_assoc - Returns an array, indexed by column name, representing a row in a

result set

Chapter 4. ibm_db2 Extension Reference 61

Return Values:

 Returns an associative array with column values indexed by both the column name

and 0-indexed column number. The array represents the next or requested row in

the result set. Returns FALSE if there are no rows left in the result set, or if the row

requested by row_number does not exist in the result set.

 Examples:

 Iterating through a forward-only cursor:

 If you call db2_fetch_both() without a specific row number, it automatically

retrieves the next row in the result set. The following example accesses columns in

the returned array by both column name and by numeric index.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

$result = db2_execute($stmt);

while ($row = db2_fetch_both($stmt)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[’ID’], $row[0], $row[’BREED’], $row[3]);

}

?>

The preceding example returns the following output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

 Retrieving specific rows with db2_fetch_both() from a scrollable cursor:

 If your result set uses a scrollable cursor, you can call db2_fetch_both() with a

specific row number. The following example retrieves every other row in the result

set, starting with the second row.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$result = db2_exec($stmt, $sql, array(’cursor’ => DB2_SCROLLABLE));

$i=2;

while ($row = db2_fetch_both($result, $i)) {

 printf ("%-5d %-16s %-32s %10s\n",

 $row[0], $row[’NAME’], $row[2], $row[’WEIGHT’]);

 $i = $i + 2;

}

?>

The preceding example returns the following output:

0 Pook cat 3.20

5 Rickety Ride goat 9.70

2 Smarty horse 350.00

 Related tasks:

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

 Related reference:

db2_fetch_both - Returns an array, indexed by both column name and position,

representing a row in a result set

62 Developing Perl and PHP Applications

v “db2_fetch_array - Returns an array, indexed by column position, representing a

row in a result set” on page 58

v “db2_fetch_assoc - Returns an array, indexed by column name, representing a

row in a result set” on page 60

v “db2_fetch_object - Returns an object with properties representing columns in

the fetched row” on page 63

db2_fetch_object - Returns an object with properties

representing columns in the fetched row

 Syntax:

 object db2_fetch_object(resource stmt, [int row_number])

 Description:

 Returns an object in which each property represents a column returned in the row

fetched from a result set.

 Parameters:

 stmt

 A valid stmt resource containing a result set.

row_number

 Requests a specific 1-indexed row from the result set. Passing this

parameter results in a PHP warning if the result set uses a forward-only

cursor.

 Return Values:

 Returns an object representing a single row in the result set. The properties of the

object map to the names of the columns in the result set.

The IBM DB2, Cloudscape, and Apache Derby database management systems

typically fold column names to upper-case, so the object properties will reflect that

case.

If your SELECT statement calls a scalar function to modify the value of a column,

the database management systems return the column number as the name of the

column in the result set. If you prefer a more descriptive column name and object

property, you can use the AS clause to assign a name to the column in the result

set.

Returns FALSE if no row was retrieved.

 Examples:

 A db2_fetch_object() example:

 The following example issues a SELECT statement with a scalar function, RTRIM(),

that removes whitespace from the end of the column. Rather than creating an

object with the properties ″BREED″ and ″2″, we use the AS clause in the SELECT

statement to assign the name ″name″ to the modified column. The database

db2_fetch_both - Returns an array, indexed by both column name and position,

representing a row in a result set

Chapter 4. ibm_db2 Extension Reference 63

management system folds the column names to upper-case, resulting in an object

with the properties ″BREED″ and ″NAME″.

<?php

$conn = db2_connect($database, $user, $password);

$sql = "SELECT breed, RTRIM(name) AS name

 FROM animals

 WHERE id = ?";

if ($conn) {

 $stmt = db2_prepare($conn, $sql);

 db2_execute($stmt, array(0));

 while ($pet = db2_fetch_object($stmt)) {

 echo "Come here, {$pet->NAME}, my little {$pet->BREED}!";

 }

 db2_close($conn);

}

?>

The preceding example returns the following output:

Come here, Pook, my little cat!

 Related tasks:

v “Fetching large objects in PHP (ibm_db2)” on page 17

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

 Related reference:

v “db2_fetch_array - Returns an array, indexed by column position, representing a

row in a result set” on page 58

v “db2_fetch_assoc - Returns an array, indexed by column name, representing a

row in a result set” on page 60

v “db2_fetch_both - Returns an array, indexed by both column name and position,

representing a row in a result set” on page 61

db2_fetch_row - Sets the result set pointer to the next row or

requested row

 Syntax:

 bool db2_fetch_row(resource stmt, [int row_number])

 Description:

 Use db2_fetch_row() to iterate through a result set, or to point to a specific row in

a result set if you requested a scrollable cursor.

To retrieve individual fields from the result set, call the db2_result() function.

Rather than calling db2_fetch_row() and db2_result(), most applications will call

one of db2_fetch_assoc(), db2_fetch_both(), or db2_fetch_array() to advance the

result set pointer and return a complete row as an array.

 Parameters:

 stmt

db2_fetch_object - Returns an object with properties representing columns in the fetched

row

64 Developing Perl and PHP Applications

A valid stmt resource.

row_number

 With scrollable cursors, you can request a specific row number in the result

set. Row numbering is 1-indexed.

 Return Values:

 Returns TRUE if the requested row exists in the result set. Returns FALSE if the

requested row does not exist in the result set.

 Examples:

 Iterating through a result set:

 The following example demonstrates how to iterate through a result set with

db2_fetch_row() and retrieve columns from the result set with db2_result().

<?php

$sql = ’SELECT name, breed FROM animals WHERE weight < ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(10));

while (db2_fetch_row($stmt)) {

 $name = db2_result($stmt, 0);

 $breed = db2_result($stmt, 1);

 print "$name $breed";

}

?>

The preceding example returns the following output:

cat Pook

gold fish Bubbles

budgerigar Gizmo

goat Rickety Ride

 Related tasks:

v “Fetching columns from result sets in PHP (ibm_db2)” on page 15

 Related reference:

v “db2_result - Returns a single column from a row in the result set” on page 67

db2_next_result - Requests the next result set from a stored

procedure

 Syntax:

 resource db2_next_result(resource stmt)

 Description:

 A stored procedure can return zero or more result sets. While you handle the first

result set in exactly the same way you would handle the results returned by a

simple SELECT statement, to fetch the second and subsequent result sets from a

stored procedure you must call the db2_next_result() function and return the

result to a uniquely named PHP variable.

 Parameters:

db2_fetch_row - Sets the result set pointer to the next row or requested row

Chapter 4. ibm_db2 Extension Reference 65

stmt

 A prepared statement returned from db2_exec() or db2_execute().

 Return Values:

 Returns a new statement resource containing the next result set if the stored

procedure returned another result set. Returns FALSE if the stored procedure did

not return another result set.

 Examples:

 Calling a stored procedure that returns multiple result sets:

 In the following example, we call a stored procedure that returns three result sets.

The first result set is fetched directly from the same statement resource on which

we invoked the CALL statement, while the second and third result sets are fetched

from statement resources returned from our calls to the db2_next_result()

function.

<?php

$conn = db2_connect($database, $user, $password);

if ($conn) {

 $stmt = db2_exec($conn, ’CALL multiResults()’);

 print "Fetching first result set\n";

 while ($row = db2_fetch_array($stmt)) {

 var_dump($row);

 }

 print "\nFetching second result set\n";

 $res = db2_next_result($stmt);

 if ($res) {

 while ($row = db2_fetch_array($res)) {

 var_dump($row);

 }

 }

 print "\nFetching third result set\n";

 $res2 = db2_next_result($stmt);

 if ($res2) {

 while ($row = db2_fetch_array($res2)) {

 var_dump($row);

 }

 }

 db2_close($conn);

}

?>

The preceding example returns the following output:

Fetching first result set

array(2) {

 [0]=>

 string(16) "Bubbles "

 [1]=>

 int(3)

}

array(2) {

 [0]=>

 string(16) "Gizmo "

 [1]=>

 int(4)

db2_next_result - Requests the next result set from a stored procedure

66 Developing Perl and PHP Applications

}

Fetching second result set

array(4) {

 [0]=>

 string(16) "Sweater "

 [1]=>

 int(6)

 [2]=>

 string(5) "llama"

 [3]=>

 string(6) "150.00"

}

array(4) {

 [0]=>

 string(16) "Smarty "

 [1]=>

 int(2)

 [2]=>

 string(5) "horse"

 [3]=>

 string(6) "350.00"

}

Fetching third result set

array(1) {

 [0]=>

 string(16) "Bubbles "

}

array(1) {

 [0]=>

 string(16) "Gizmo "

}

 Related tasks:

v “Calling stored procedures that return multiple result sets in PHP (ibm_db2)” on

page 21

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

db2_result - Returns a single column from a row in the result

set

 Syntax:

 mixed db2_result(resource stmt, mixed column)

 Description:

 Use db2_result() to return the value of a specified column in the current row of a

result set. You must call db2_fetch_row() before calling db2_result() to set the

location of the result set pointer.

 Parameters:

 stmt

 A valid stmt resource.

column

 Either an integer mapping to the 0-indexed field in the result set, or a

string matching the name of the column.

db2_next_result - Requests the next result set from a stored procedure

Chapter 4. ibm_db2 Extension Reference 67

Return Values:

 Returns the value of the requested field if the field exists in the result set. Returns

NULL if the field does not exist, and issues a warning.

 Examples:

 A db2_result() example:

 The following example demonstrates how to iterate through a result set with

db2_fetch_row() and retrieve columns from the result set with db2_result().

<?php

$sql = ’SELECT name, breed FROM animals WHERE weight < ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(10));

while (db2_fetch_row($stmt)) {

 $name = db2_result($stmt, 0);

 $breed = db2_result($stmt, ’BREED’);

 print "$name $breed";

}

?>

The preceding example returns the following output:

cat Pook

gold fish Bubbles

budgerigar Gizmo

goat Rickety Ride

 Related tasks:

v “Fetching columns from result sets in PHP (ibm_db2)” on page 15

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

 Related reference:

v “db2_fetch_row - Sets the result set pointer to the next row or requested row”

on page 64

Metadata functions

Database metadata functions

db2_client_info - Returns an object with properties that describe

the DB2 database client

 Syntax:

 object db2_client_info(resource connection)

 Description:

 This function returns an object with read-only properties that return information

about the DB2 database client. The following table lists the DB2 client properties:

 Table 1. DB2 client properties

Property name Return type Description

APPL_CODEPAGE int The application code page.

db2_result - Returns a single column from a row in the result set

68 Developing Perl and PHP Applications

Table 1. DB2 client properties (continued)

Property name Return type Description

CONN_CODEPAGE int The code page for the current

connection.

DATA_SOURCE_NAME string The data source name (DSN)

used to create the current

connection to the database.

DRIVER_NAME string The name of the library that

implements the DB2 Call Level

Interface specification.

DRIVER_ODBC_VER string The version of ODBC that the

DB2 client supports. This returns

a string ″MM.mm″ where MM is

the major version and mm is the

minor version. The DB2 client

always returns ″03.51″.

DRIVER_VER string The version of the client, in the

form of a string ″MM.mm.uuuu″

where MM is the major version,

mm is the minor version, and

uuuu is the update. For example,

″08.02.0001″ represents major

version 8, minor version 2,

update 1.

ODBC_SQL_CONFORMANCE string The level of ODBC SQL

grammar supported by the

client:

MINIMUM

 Supports the minimum

ODBC SQL grammar.

CORE

 Supports the core

ODBC SQL grammar.

EXTENDED

 Supports extended

ODBC SQL grammar.

ODBC_VER string The version of ODBC that the

ODBC driver manager supports.

This returns a string

″MM.mm.rrrr″ where MM is the

major version, mm is the minor

version, and rrrr is the release.

The DB2 client always returns

″03.01.0000″.

 Parameters:

 connection

 Specifies an active DB2 client connection.

 Return Values:

 Returns an object on a successful call. Returns FALSE on failure.

db2_client_info - Returns an object with properties that describe the DB2 database client

Chapter 4. ibm_db2 Extension Reference 69

Examples:

 A db2_client_info example:

 To retrieve information about the client, you must pass a valid database connection

resource to db2_client_info().

<?php

$conn = db2_connect(’SAMPLE’, ’db2inst1’, ’ibmdb2’);

$client = db2_client_info($conn);

if ($client) {

 echo "DRIVER_NAME: "; var_dump($client->DRIVER_NAME);

 echo "DRIVER_VER: "; var_dump($client->DRIVER_VER);

 echo "DATA_SOURCE_NAME: "; var_dump($client->DATA_SOURCE_NAME);

 echo "DRIVER_ODBC_VER: "; var_dump($client->DRIVER_ODBC_VER);

 echo "ODBC_VER: "; var_dump($client->ODBC_VER);

 echo "ODBC_SQL_CONFORMANCE: "; var_dump($client->ODBC_SQL_CONFORMANCE);

 echo "APPL_CODEPAGE: "; var_dump($client->APPL_CODEPAGE);

 echo "CONN_CODEPAGE: "; var_dump($client->CONN_CODEPAGE);

}

else {

 echo "Error retrieving client information.

 Perhaps your database connection was invalid.";

}

db2_close($conn);

?>

The preceding example returns the following output:

DRIVER_NAME: string(8) "libdb2.a"

DRIVER_VER: string(10) "08.02.0001"

DATA_SOURCE_NAME: string(6) "SAMPLE"

DRIVER_ODBC_VER: string(5) "03.51"

ODBC_VER: string(10) "03.01.0000"

ODBC_SQL_CONFORMANCE: string(8) "EXTENDED"

APPL_CODEPAGE: int(819)

CONN_CODEPAGE: int(819)

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_server_info - Returns an object with properties that describe the DB2

database management system” on page 79

db2_column_privileges - Returns a result set listing the columns

and associated privileges for a table

 Syntax:

 resource db2_column_privileges(resource connection, [string qualifier, [string

schema, [string table-name, [string column-name]]]])

 Description:

 Returns a result set listing the columns and associated privileges for a table.

 Parameters:

 connection

db2_client_info - Returns an object with properties that describe the DB2 database client

70 Developing Perl and PHP Applications

A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables. To match all schemas, pass NULL or

an empty string.

table-name

 The name of the table or view. To match all tables in the database, pass

NULL or an empty string.

column-name

 The name of the column. To match all columns in the table, pass NULL or

an empty string.

 Return Values:

 Returns a statement resource with a result set containing rows describing the

column privileges for columns matching the specified parameters. The rows are

composed of the following columns:

 Column name Description

TABLE_CAT Name of the catalog. The value is NULL if

this table does not have catalogs.

TABLE_SCHEM Name of the schema.

TABLE_NAME Name of the table or view.

COLUMN_NAME Name of the column.

GRANTOR Authorization ID of the user who granted

the privilege.

GRANTEE Authorization ID of the user to whom the

privilege was granted.

PRIVILEGE The privilege for the column.

IS_GRANTABLE Whether the GRANTEE is permitted to

grant this privilege to other users.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_columns - Returns a result set listing the columns and associated metadata

for a table” on page 71

db2_columns - Returns a result set listing the columns and

associated metadata for a table

 Syntax:

 resource db2_columns(resource connection, [string qualifier, [string schema, [string

table-name, [string column-name]]]])

db2_column_privileges - Returns a result set listing the columns and associated

privileges for a table

Chapter 4. ibm_db2 Extension Reference 71

Description:

 Returns a result set listing the columns and associated metadata for a table.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables. To match all schemas, pass ’%’.

table-name

 The name of the table or view. To match all tables in the database, pass

NULL or an empty string.

column-name

 The name of the column. To match all columns in the table, pass NULL or

an empty string.

 Return Values:

 Returns a statement resource with a result set containing rows describing the

columns matching the specified parameters. The rows are composed of the

following columns:

 Column name Description

TABLE_CAT Name of the catalog. The value is NULL if

this table does not have catalogs.

TABLE_SCHEM Name of the schema.

TABLE_NAME Name of the table or view.

COLUMN_NAME Name of the column.

DATA_TYPE The SQL data type for the column

represented as an integer value.

TYPE_NAME A string representing the data type for the

column.

COLUMN_SIZE An integer value representing the size of the

column.

BUFFER_LENGTH Maximum number of bytes necessary to

store data from this column.

DECIMAL_DIGITS The scale of the column, or NULL where

scale is not applicable.

NUM_PREC_RADIX An integer value of either 10 (representing

an exact numeric data type), 2 (representing

an approximate numeric data type), or

NULL (representing a data type for which

radix is not applicable).

NULLABLE An integer value representing whether the

column is nullable or not.

db2_columns - Returns a result set listing the columns and associated metadata for a

table

72 Developing Perl and PHP Applications

Column name Description

REMARKS Description of the column.

COLUMN_DEF Default value for the column.

SQL_DATA_TYPE An integer value representing the size of the

column.

SQL_DATETIME_SUB Returns an integer value representing a

datetime subtype code, or NULL for SQL

data types to which this does not apply.

CHAR_OCTET_LENGTH Maximum length in octets for a character

data type column, which matches

COLUMN_SIZE for single-byte character set

data, or NULL for non-character data types.

ORDINAL_POSITION The 1-indexed position of the column in the

table.

IS_NULLABLE A string value where ’YES’ means that the

column is nullable and ’NO’ means that the

column is not nullable.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_column_privileges - Returns a result set listing the columns and associated

privileges for a table” on page 70

db2_foreign_keys - Returns a result set listing the foreign keys

for a table

 Syntax:

 resource db2_foreign_keys(resource connection, string qualifier, string schema,

string table-name)

 Description:

 Returns a result set listing the foreign keys for a table.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables. If schema is NULL,

db2_foreign_keys() matches the schema for the current connection.

table-name

 The name of the table.

db2_columns - Returns a result set listing the columns and associated metadata for a

table

Chapter 4. ibm_db2 Extension Reference 73

Return Values:

 Returns a statement resource with a result set containing rows describing the

foreign keys for the specified table. The result set is composed of the following

columns:

 Column name Description

PKTABLE_CAT Name of the catalog for the table containing

the primary key. The value is NULL if this

table does not have catalogs.

PKTABLE_SCHEM Name of the schema for the table containing

the primary key.

PKTABLE_NAME Name of the table containing the primary

key.

PKCOLUMN_NAME Name of the column containing the primary

key.

FKTABLE_CAT Name of the catalog for the table containing

the foreign key. The value is NULL if this

table does not have catalogs.

FKTABLE_SCHEM Name of the schema for the table containing

the foreign key.

FKTABLE_NAME Name of the table containing the foreign

key.

FKCOLUMN_NAME Name of the column containing the foreign

key.

KEY_SEQ 1-indexed position of the column in the key.

UPDATE_RULE Integer value representing the action applied

to the foreign key when the SQL operation

is UPDATE.

DELETE_RULE Integer value representing the action applied

to the foreign key when the SQL operation

is DELETE.

FK_NAME The name of the foreign key.

PK_NAME The name of the primary key.

DEFERRABILITY An integer value representing whether the

foreign key deferrability is

SQL_INITIALLY_DEFERRED,

SQL_INITIALLY_IMMEDIATE, or

SQL_NOT_DEFERRABLE.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_primary_keys - Returns a result set listing primary keys for a table” on

page 74

db2_primary_keys - Returns a result set listing primary keys for

a table

 Syntax:

db2_foreign_keys - Returns a result set listing the foreign keys for a table

74 Developing Perl and PHP Applications

resource db2_primary_keys(resource connection, string qualifier, string schema,

string table-name)

 Description:

 Returns a result set listing the primary keys for a table.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables. If schema is NULL,

db2_primary_keys() matches the schema for the current connection.

table-name

 The name of the table.

 Return Values:

 Returns a statement resource with a result set containing rows describing the

primary keys for the specified table. The result set is composed of the following

columns:

 Table 2. db2_primary_keys() result set columns

Column name Description

TABLE_CAT Name of the catalog for the table containing

the primary key. The value is NULL if this

table does not have catalogs.

TABLE_SCHEM Name of the schema for the table containing

the primary key.

TABLE_NAME Name of the table containing the primary

key.

COLUMN_NAME Name of the column containing the primary

key.

KEY_SEQ 1-indexed position of the column in the key.

PK_NAME The name of the primary key.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_foreign_keys - Returns a result set listing the foreign keys for a table” on

page 73

db2_primary_keys - Returns a result set listing primary keys for a table

Chapter 4. ibm_db2 Extension Reference 75

db2_procedure_columns - Returns a result set listing stored

procedure parameters

 Syntax:

 resource db2_procedure_columns(resource connection, string qualifier, string

schema, string procedure, string parameter)

 Description:

 Returns a result set listing the parameters for one or more stored procedures.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the procedures. This parameter accepts a

search pattern containing _ and % as wildcards.

procedure

 The name of the procedure. This parameter accepts a search pattern

containing _ and % as wildcards.

parameter

 The name of the parameter. This parameter accepts a search pattern

containing _ and % as wildcards. If this parameter is NULL, all parameters

for the specified stored procedures are returned.

 Return Values:

 Returns a statement resource with a result set containing rows describing the

parameters for the stored procedures matching the specified parameters. The rows

are composed of the following columns:

 Table 3. db2_procedure_columns() result set columns

Column name Description

PROCEDURE_CAT The catalog that contains the procedure. The

value is NULL if this table does not have

catalogs.

PROCEDURE_SCHEM Name of the schema that contains the stored

procedure.

PROCEDURE_NAME Name of the procedure.

COLUMN_NAME Name of the parameter.

db2_procedure_columns - Returns a result set listing stored procedure parameters

76 Developing Perl and PHP Applications

Table 3. db2_procedure_columns() result set columns (continued)

Column name Description

COLUMN_TYPE

An integer value representing the type of

the parameter:

Return value

Parameter type

1 (SQL_PARAM_INPUT)

Input (IN) parameter.

2 (SQL_PARAM_INPUT_OUTPUT)

Input/output (INOUT) parameter.

3 (SQL_PARAM_OUTPUT)

Output (OUT) parameter.

DATA_TYPE The SQL data type for the parameter

represented as an integer value.

TYPE_NAME A string representing the data type for the

parameter.

COLUMN_SIZE An integer value representing the size of the

parameter.

BUFFER_LENGTH Maximum number of bytes necessary to

store data for this parameter.

DECIMAL_DIGITS The scale of the parameter, or NULL where

scale is not applicable.

NUM_PREC_RADIX An integer value of either 10 (representing

an exact numeric data type), 2 (representing

an approximate numeric data type), or

NULL (representing a data type for which

radix is not applicable).

NULLABLE An integer value representing whether the

parameter is nullable or not.

REMARKS Description of the parameter.

COLUMN_DEF Default value for the parameter.

SQL_DATA_TYPE An integer value representing the size of the

parameter.

SQL_DATETIME_SUB Returns an integer value representing a

datetime subtype code, or NULL for SQL

data types to which this does not apply.

CHAR_OCTET_LENGTH Maximum length in octets for a character

data type parameter, which matches

COLUMN_SIZE for single-byte character set

data, or NULL for non-character data types.

ORDINAL_POSITION The 1-indexed position of the parameter in

the CALL statement.

IS_NULLABLE A string value where ’YES’ means that the

parameter accepts or returns NULL values

and ’NO’ means that the parameter does not

accept or return NULL values.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

db2_procedure_columns - Returns a result set listing stored procedure parameters

Chapter 4. ibm_db2 Extension Reference 77

Related reference:

v “db2_procedures - Returns a result set listing the stored procedures registered in

a database” on page 78

db2_procedures - Returns a result set listing the stored

procedures registered in a database

 Syntax:

 resource db2_procedures(resource connection, string qualifier, string schema, string

procedure)

 Description:

 Returns a result set listing the stored procedures registered in a database.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the procedures. This parameter accepts a

search pattern containing _ and % as wildcards.

procedure

 The name of the procedure. This parameter accepts a search pattern

containing _ and % as wildcards.

 Return Values:

 Returns a statement resource with a result set containing rows describing the

stored procedures matching the specified parameters. The rows are composed of

the following columns:

 Table 4. db2_procedures() result set columns

Column name Description

PROCEDURE_CAT The catalog that contains the procedure. The

value is NULL if this table does not have

catalogs.

PROCEDURE_SCHEM Name of the schema that contains the stored

procedure.

PROCEDURE_NAME Name of the procedure.

NUM_INPUT_PARAMS Number of input (IN) parameters for the

stored procedure.

NUM_OUTPUT_PARAMS Number of output (OUT) parameters for the

stored procedure.

NUM_RESULT_SETS Number of result sets returned by the stored

procedure.

REMARKS Any comments about the stored procedure.

db2_procedure_columns - Returns a result set listing stored procedure parameters

78 Developing Perl and PHP Applications

Table 4. db2_procedures() result set columns (continued)

Column name Description

PROCEDURE_TYPE Always returns 1, indicating that the stored

procedure does not return a return value.

db2_server_info - Returns an object with properties that describe

the DB2 database management system

 Syntax:

 object db2_server_info(resource connection)

 Description:

 This function returns an object with read-only properties that return information

about the IBM DB2, Cloudscape, or Apache Derby database management system.

The following table lists the database management system properties:

 Table 5. Database management system properties

Property name Return type Description

DBMS_NAME string The name of the database

management system to which

you are connected. For DB2

management systems this is a

combination of DB2 followed by

the operating system on which

the database management

system is running.

DBMS_VER string The version of the database

management system, in the form

of a string ″MM.mm.uuuu″

where MM is the major version,

mm is the minor version, and

uuuu is the update. For example,

″08.02.0001″ represents major

version 8, minor version 2,

update 1.

DB_CODEPAGE int The code page of the database to

which you are connected.

DB_NAME string The name of the database to

which you are connected.

db2_procedures - Returns a result set listing the stored procedures registered in a

database

Chapter 4. ibm_db2 Extension Reference 79

Table 5. Database management system properties (continued)

Property name Return type Description

DFT_ISOLATION string The default transaction isolation

level supported by the database

management system:

UR

 Uncommitted read:

changes are

immediately visible by

all concurrent

transactions.

CS

 Cursor stability: a row

read by one transaction

can be altered and

committed by a second

concurrent transaction.

RS

 Read stability: a

transaction can add or

remove rows matching

a search condition or a

pending transaction.

RR

 Repeatable read: data

affected by pending

transaction is not

available to other

transactions.

NC

 No commit: any

changes are visible at

the end of a successful

operation. Explicit

commits and rollbacks

are not allowed.

IDENTIFIER_QUOTE_CHAR string The character used to delimit an

identifier.

INST_NAME string The instance on the database

management system that

contains the database.

ISOLATION_OPTION array An array of the isolation options

supported by the database

management system. The

isolation options are described in

the DFT_ISOLATION property.

KEYWORDS array An array of the keywords

reserved by the database

management system.

db2_server_info - Returns an object with properties that describe the DB2 database

management system

80 Developing Perl and PHP Applications

Table 5. Database management system properties (continued)

Property name Return type Description

LIKE_ESCAPE_CLAUSE bool TRUE if the database

management system supports

the use of % and _ wildcard

characters. FALSE if the database

management system does not

support these wildcard

characters.

MAX_COL_NAME_LEN int Maximum length of a column

name supported by the database

management system, expressed

in bytes.

MAX_IDENTIFIER_LEN int Maximum length of an SQL

identifier supported by the

database management system,

expressed in characters.

MAX_INDEX_SIZE int Maximum size of columns

combined in an index supported

by the database management

system, expressed in bytes.

MAX_PROC_NAME_LEN int Maximum length of a procedure

name supported by the database

management system, expressed

in bytes.

MAX_ROW_SIZE int Maximum length of a row in a

base table supported by the

database management system,

expressed in bytes.

MAX_SCHEMA_NAME_LEN int Maximum length of a schema

name supported by the database

management system, expressed

in bytes.

MAX_STATEMENT_LEN int Maximum length of an SQL

statement supported by the

database management system,

expressed in bytes.

MAX_TABLE_NAME_LEN int Maximum length of a table

name supported by the database

management system, expressed

in bytes.

NON_NULLABLE_COLUMNS bool TRUE if the database

management system supports

columns that can be defined as

NOT NULL, FALSE if the

database management system

does not support columns

defined as NOT NULL.

PROCEDURES bool TRUE if the database

management system supports

the use of the CALL statement to

call stored procedures, FALSE if

the database management

system does not support the

CALL statement.

db2_server_info - Returns an object with properties that describe the DB2 database

management system

Chapter 4. ibm_db2 Extension Reference 81

Table 5. Database management system properties (continued)

Property name Return type Description

SPECIAL_CHARS string A string containing all of the

characters other than a-Z, 0-9,

and underscore that can be used

in an identifier name.

SQL_CONFORMANCE string The level of conformance to the

ANSI/ISO SQL-92 specification

offered by the database

management system:

ENTRY

 Entry-level SQL-92

compliance.

FIPS127

 FIPS-127-2 transitional

compliance.

FULL

 Full level SQL-92

compliance.

INTERMEDIATE

 Intermediate level

SQL-92 compliance.

 Parameters:

 connection

 Specifies an active DB2 client connection.

 Return Values:

 Returns an object on a successful call. Returns FALSE on failure.

 Examples:

 A db2_server_info() example:

 To retrieve information about the database management system, you must pass a

valid database connection resource to db2_server_info().

<?php

$conn = db2_connect(’sample’, ’db2inst1’, ’ibmdb2’);

$server = db2_server_info($conn);

if ($server) {

 echo "DBMS_NAME: "; var_dump($server->DBMS_NAME);

 echo "DBMS_VER: "; var_dump($server->DBMS_VER);

 echo "DB_CODEPAGE: "; var_dump($server->DB_CODEPAGE);

 echo "DB_NAME: "; var_dump($server->DB_NAME);

 echo "INST_NAME: "; var_dump($server->INST_NAME);

 echo "SPECIAL_CHARS: "; var_dump($server->SPECIAL_CHARS);

 echo "KEYWORDS: "; var_dump(sizeof($server->KEYWORDS));

 echo "DFT_ISOLATION: "; var_dump($server->DFT_ISOLATION);

 echo "ISOLATION_OPTION: ";

db2_server_info - Returns an object with properties that describe the DB2 database

management system

82 Developing Perl and PHP Applications

$il = ’’;

 foreach($server->ISOLATION_OPTION as $opt)

 {

 $il .= $opt." ";

 }

 var_dump($il);

 echo "SQL_CONFORMANCE: "; var_dump($server->SQL_CONFORMANCE);

 echo "PROCEDURES: "; var_dump($server->PROCEDURES);

 echo "IDENTIFIER_QUOTE_CHAR: "; var_dump($server->IDENTIFIER_QUOTE_CHAR);

 echo "LIKE_ESCAPE_CLAUSE: "; var_dump($server->LIKE_ESCAPE_CLAUSE);

 echo "MAX_COL_NAME_LEN: "; var_dump($server->MAX_COL_NAME_LEN);

 echo "MAX_ROW_SIZE: "; var_dump($server->MAX_ROW_SIZE);

 echo "MAX_IDENTIFIER_LEN: "; var_dump($server->MAX_IDENTIFIER_LEN);

 echo "MAX_INDEX_SIZE: "; var_dump($server->MAX_INDEX_SIZE);

 echo "MAX_PROC_NAME_LEN: "; var_dump($server->MAX_PROC_NAME_LEN);

 echo "MAX_SCHEMA_NAME_LEN: "; var_dump($server->MAX_SCHEMA_NAME_LEN);

 echo "MAX_STATEMENT_LEN: "; var_dump($server->MAX_STATEMENT_LEN);

 echo "MAX_TABLE_NAME_LEN: "; var_dump($server->MAX_TABLE_NAME_LEN);

 echo "NON_NULLABLE_COLUMNS: "; var_dump($server->NON_NULLABLE_COLUMNS);

 db2_close($conn);

}

?>

The preceding example returns the following output:

DBMS_NAME: string(9) "DB2/LINUX"

DBMS_VER: string(10) "08.02.0000"

DB_CODEPAGE: int(1208)

DB_NAME: string(6) "SAMPLE"

INST_NAME: string(8) "db2inst1"

SPECIAL_CHARS: string(2) "@#"

KEYWORDS: int(179)

DFT_ISOLATION: string(2) "CS"

ISOLATION_OPTION: string(12) "UR CS RS RR "

SQL_CONFORMANCE: string(7) "FIPS127"

PROCEDURES: bool(true)

IDENTIFIER_QUOTE_CHAR: string(1) """

LIKE_ESCAPE_CLAUSE: bool(true)

MAX_COL_NAME_LEN: int(30)

MAX_ROW_SIZE: int(32677)

MAX_IDENTIFIER_LEN: int(18)

MAX_INDEX_SIZE: int(1024)

MAX_PROC_NAME_LEN: int(128)

MAX_SCHEMA_NAME_LEN: int(30)

MAX_STATEMENT_LEN: int(2097152)

MAX_TABLE_NAME_LEN: int(128)

NON_NULLABLE_COLUMNS: bool(true)

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_client_info - Returns an object with properties that describe the DB2

database client” on page 68

db2_special_columns - Returns a result set listing the unique

row identifier columns for a table

 Syntax:

 resource db2_special_columns(resource connection, string qualifier, string schema,

string table_name, int scope)

db2_server_info - Returns an object with properties that describe the DB2 database

management system

Chapter 4. ibm_db2 Extension Reference 83

Description:

 Returns a result set listing the unique row identifier columns for a table.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables.

table_name

 The name of the table.

scope

 Integer value representing the minimum duration for which the unique

row identifier is valid. This can be one of the values listed in Table 6.

 Table 6. Minimum duration of validity for unique row identifiers

Integer value SQL constant Description

0 SQL_SCOPE_CURROW Row identifier is valid only

while the cursor is positioned on

the row.

1 SQL_SCOPE_TRANSACTION Row identifier is valid for the

duration of the transaction.

2 SQL_SCOPE_SESSION Row identifier is valid for the

duration of the connection.

 Return Values:

 Returns a statement resource with a result set containing rows with unique row

identifier information for a table. The rows are composed of the following

columns:

 Table 7. db2_special_columns() result set columns

Column name Description

SCOPE

See Table 6 for the definition of the values

specifying the minimum duration of validity

for unique row identifiers.

COLUMN_NAME Name of the unique column.

DATA_TYPE SQL data type for the column.

TYPE_NAME Character string representation of the SQL

data type for the column.

COLUMN_SIZE An integer value representing the size of the

column.

BUFFER_LENGTH Maximum number of bytes necessary to

store data from this column.

db2_special_columns - Returns a result set listing the unique row identifier columns for a

table

84 Developing Perl and PHP Applications

Table 7. db2_special_columns() result set columns (continued)

Column name Description

DECIMAL_DIGITS The scale of the column, or NULL where

scale is not applicable.

NUM_PREC_RADIX An integer value of either 10 (representing

an exact numeric data type), 2 (representing

an approximate numeric data type), or

NULL (representing a data type for which

radix is not applicable).

PSEUDO_COLUMN Always returns 1.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_statistics - Returns a result set listing the index and statistics for a table”

on page 85

db2_statistics - Returns a result set listing the index and

statistics for a table

 Syntax:

 resource db2_statistics(resource connection, string qualifier, string schema, string

table-name, bool unique)

 Description:

 Returns a result set listing the index and statistics for a table.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema that contains the targeted table. If this parameter is NULL, the

statistics and indexes are returned for the schema of the current user.

table_name

 The name of the table.

unique

 An integer value representing the type of index information to return.

0

 Return only the information for unique indexes on the table.

1

 Return the information for all indexes on the table.

db2_special_columns - Returns a result set listing the unique row identifier columns for a

table

Chapter 4. ibm_db2 Extension Reference 85

Return Values:

 Returns a statement resource with a result set containing rows describing the

statistics and indexes for the base tables matching the specified parameters. The

rows are composed of the following columns:

 Table 8. db2_statistics() result set columns

Column name Description

TABLE_CAT The catalog that contains the table. The

value is NULL if this table does not have

catalogs.

TABLE_SCHEM Name of the schema that contains the table.

TABLE_NAME Name of the table.

NON_UNIQUE

An integer value representing whether the

index prohibits unique values, or whether

the row represents statistics on the table

itself:

Return value

Parameter type

0 (SQL_FALSE)

The index allows duplicate values.

1 (SQL_TRUE)

The index values must be unique.

NULL This row provides statistics

information for the table itself.

INDEX_QUALIFIER A string value representing the qualifier that

would have to be prepended to

INDEX_NAME to fully qualify the index.

INDEX_NAME A string representing the name of the index.

TYPE

An integer value representing the type of

information contained in this row of the

result set:

Return value

Parameter type

0 (SQL_TABLE_STAT)

The row contains statistics about

the table itself.

1 (SQL_INDEX_CLUSTERED)

The row contains information about

a clustered index.

2 (SQL_INDEX_HASH)

The row contains information about

a hashed index.

3 (SQL_INDEX_OTHER)

The row contains information about

a type of index that is neither

clustered nor hashed.

ORDINAL_POSITION The 1-indexed position of the column in the

index. NULL if the row contains statistics

information about the table itself.

db2_statistics - Returns a result set listing the index and statistics for a table

86 Developing Perl and PHP Applications

Table 8. db2_statistics() result set columns (continued)

Column name Description

COLUMN_NAME The name of the column in the index. NULL

if the row contains statistics information

about the table itself.

ASC_OR_DESC A if the column is sorted in ascending order,

D if the column is sorted in descending

order, NULL if the row contains statistics

information about the table itself.

CARDINALITY

If the row contains information about an

index, this column contains an integer value

representing the number of unique values in

the index.

If the row contains information about the

table itself, this column contains an integer

value representing the number of rows in

the table.

PAGES

If the row contains information about an

index, this column contains an integer value

representing the number of pages used to

store the index.

If the row contains information about the

table itself, this column contains an integer

value representing the number of pages

used to store the table.

FILTER_CONDITION Always returns NULL.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_special_columns - Returns a result set listing the unique row identifier

columns for a table” on page 83

db2_table_privileges - Returns a result set listing the tables and

associated privileges in a database

 Syntax:

 resource db2_table_privileges(resource connection, [string qualifier, [string schema,

[string table_name]]])

 Description:

 Returns a result set listing the tables and associated privileges in a database.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

db2_statistics - Returns a result set listing the index and statistics for a table

Chapter 4. ibm_db2 Extension Reference 87

A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables. This parameter accepts a search

pattern containing _ and % as wildcards.

table_name

 The name of the table. This parameter accepts a search pattern containing _

and % as wildcards.

 Return Values:

 Returns a statement resource with a result set containing rows describing the

privileges for the tables that match the specified parameters. The rows are

composed of the following columns:

 Table 9. db2_privileges() result set columns

Column name Description

TABLE_CAT The catalog that contains the table. The

value is NULL if this table does not have

catalogs.

TABLE_SCHEM Name of the schema that contains the table.

TABLE_NAME Name of the table.

GRANTOR Authorization ID of the user who granted

the privilege.

GRANTEE Authorization ID of the user to whom the

privilege was granted.

PRIVILEGE The privilege that has been granted. This

can be one of ALTER, CONTROL, DELETE,

INDEX, INSERT, REFERENCES, SELECT, or

UPDATE.

IS_GRANTABLE A string value of ″YES″ or ″NO″ indicating

whether the grantee can grant the privilege

to other users.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_special_columns - Returns a result set listing the unique row identifier

columns for a table” on page 83

v “db2_statistics - Returns a result set listing the index and statistics for a table”

on page 85

v “db2_tables - Returns a result set listing the tables and associated metadata in a

database” on page 88

db2_tables - Returns a result set listing the tables and

associated metadata in a database

 Syntax:

db2_table_privileges - Returns a result set listing the tables and associated privileges in a

database

88 Developing Perl and PHP Applications

resource db2_tables(resource connection, [string qualifier, [string schema, [string

table-name, [string table-type]]]])

 Description:

 Returns a result set listing the tables and associated metadata in a database.

 Parameters:

 connection

 A valid connection to an IBM DB2, Cloudscape, or Apache Derby database.

qualifier

 A qualifier for DB2 for z/OS. For other databases, pass NULL or an empty

string.

schema

 The schema which contains the tables. This parameter accepts a search

pattern containing _ and % as wildcards.

table-name

 The name of the table. This parameter accepts a search pattern containing _

and % as wildcards.

table-type

 A list of comma-delimited table type identifiers. To match all table types,

pass NULL or an empty string. Valid table type identifiers include: ALIAS,

HIERARCHY TABLE, INOPERATIVE VIEW, NICKNAME,

MATERIALIZED QUERY TABLE, SYSTEM TABLE, TABLE, TYPED TABLE,

TYPED VIEW, and VIEW.

 Return Values:

 Returns a statement resource with a result set containing rows describing the tables

that match the specified parameters. The rows are composed of the following

columns:

 Table 10. db2_tables() result set columns

Column name Description

TABLE_CAT The catalog that contains the table. The

value is NULL if this table does not have

catalogs.

TABLE_SCHEM Name of the schema that contains the table.

TABLE_NAME Name of the table.

TABLE_TYPE Table type identifier for the table.

REMARKS Description of the table.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_special_columns - Returns a result set listing the unique row identifier

columns for a table” on page 83

db2_tables - Returns a result set listing the tables and associated metadata in a database

Chapter 4. ibm_db2 Extension Reference 89

v “db2_statistics - Returns a result set listing the index and statistics for a table”

on page 85

v “db2_table_privileges - Returns a result set listing the tables and associated

privileges in a database” on page 87

Statement metadata functions

db2_cursor_type - Returns the cursor type used by a statement

resource

 Syntax:

 int db2_cursor_type(resource stmt)

 Description:

 Returns the cursor type used by a statement resource. Use this to determine if you

are working with a forward-only cursor or scrollable cursor.

 Parameters:

 stmt

 A valid statement resource.

 Return Values:

 Returns either DB2_FORWARD_ONLY if the statement resource uses a

forward-only cursor or DB2_SCROLLABLE if the statement resource uses a

scrollable cursor.

 Related tasks:

v “Fetching rows from result sets in PHP (ibm_db2)” on page 16

db2_field_display_size - Returns the maximum number of bytes

required to display a column

 Syntax:

 int db2_field_display_size(resource stmt, mixed column)

 Description:

 Returns the maximum number of bytes required to display a column in a result

set.

 Parameters:

 stmt

 Specifies a statement resource containing a result set.

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

db2_tables - Returns a result set listing the tables and associated metadata in a database

90 Developing Perl and PHP Applications

Returns an integer value with the maximum number of bytes required to display

the specified column. If the column does not exist in the result set,

db2_field_display_size() returns FALSE.

 Related reference:

v “db2_field_num - Returns the position of the named column in a result set” on

page 92

v “db2_field_precision - Returns the precision of the indicated column in a result

set” on page 92

v “db2_field_scale - Returns the scale of the indicated column in a result set” on

page 93

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

v “db2_field_name - Returns the name of the column in the result set” on page 91

v “db2_field_width - Returns the width of the current value of the indicated

column in a result set” on page 94

db2_field_name - Returns the name of the column in the result

set

 Syntax:

 string db2_field_name(resource stmt, mixed column)

 Description:

 Returns the name of the specified column in the result set.

 Parameters:

 stmt

 Specifies a statement resource containing a result set.

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

 Returns a string containing the name of the specified column. If the specified

column does not exist in the result set, db2_field_name() returns FALSE.

 Related reference:

v “db2_field_display_size - Returns the maximum number of bytes required to

display a column” on page 90

v “db2_field_num - Returns the position of the named column in a result set” on

page 92

v “db2_field_precision - Returns the precision of the indicated column in a result

set” on page 92

v “db2_field_scale - Returns the scale of the indicated column in a result set” on

page 93

db2_field_display_size - Returns the maximum number of bytes required to display a

column

Chapter 4. ibm_db2 Extension Reference 91

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

v “db2_field_width - Returns the width of the current value of the indicated

column in a result set” on page 94

db2_field_num - Returns the position of the named column in a

result set

 Syntax:

 int db2_field_num(resource stmt, mixed column)

 Description:

 Returns the position of the named column in a result set.

 Parameters:

 stmt

 Specifies a statement resource containing a result set.

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

 Returns an integer containing the 0-indexed position of the named column in the

result set. If the specified column does not exist in the result set, db2_field_num()

returns FALSE.

 Related reference:

v “db2_field_display_size - Returns the maximum number of bytes required to

display a column” on page 90

v “db2_field_name - Returns the name of the column in the result set” on page 91

v “db2_field_precision - Returns the precision of the indicated column in a result

set” on page 92

v “db2_field_scale - Returns the scale of the indicated column in a result set” on

page 93

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

v “db2_field_width - Returns the width of the current value of the indicated

column in a result set” on page 94

db2_field_precision - Returns the precision of the indicated

column in a result set

 Syntax:

 int db2_field_precision(resource stmt, mixed column)

 Description:

 Returns the precision of the indicated column in a result set.

db2_field_name - Returns the name of the column in the result set

92 Developing Perl and PHP Applications

Parameters:

 stmt

 Specifies a statement resource containing a result set.

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

 Returns an integer containing the precision of the specified column. If the specified

column does not exist in the result set, db2_field_precision() returns FALSE.

 Related reference:

v “db2_field_display_size - Returns the maximum number of bytes required to

display a column” on page 90

v “db2_field_name - Returns the name of the column in the result set” on page 91

v “db2_field_num - Returns the position of the named column in a result set” on

page 92

v “db2_field_scale - Returns the scale of the indicated column in a result set” on

page 93

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

v “db2_field_width - Returns the width of the current value of the indicated

column in a result set” on page 94

db2_field_scale - Returns the scale of the indicated column in a

result set

 Syntax:

 int db2_field_scale(resource stmt, mixed column)

 Description:

 Returns the scale of the indicated column in a result set.

 Parameters:

 stmt

 Specifies a statement resource containing a result set.

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

 Returns an integer containing the scale of the specified column. If the specified

column does not exist in the result set, db2_field_scale() returns FALSE.

 Related reference:

db2_field_precision - Returns the precision of the indicated column in a result set

Chapter 4. ibm_db2 Extension Reference 93

v “db2_field_display_size - Returns the maximum number of bytes required to

display a column” on page 90

v “db2_field_name - Returns the name of the column in the result set” on page 91

v “db2_field_num - Returns the position of the named column in a result set” on

page 92

v “db2_field_precision - Returns the precision of the indicated column in a result

set” on page 92

v “db2_field_width - Returns the width of the current value of the indicated

column in a result set” on page 94

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

db2_field_type - Returns the data type of the indicated column in

a result set

 Syntax:

 string db2_field_type(resource stmt, mixed column)

 Description:

 Returns the data type of the indicated column in a result set.

 Parameters:

 stmt

 Specifies a statement resource containing a result set.

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

 Returns a string containing the defined data type of the specified column. If the

specified column does not exist in the result set, db2_field_type() returns FALSE.

db2_field_width - Returns the width of the current value of the

indicated column in a result set

 Syntax:

 int db2_field_width(resource stmt, mixed column)

 Description:

 Returns the width of the current value of the indicated column in a result set. This

is the maximum width of the column for a fixed-length data type, or the actual

width of the column for a variable-length data type.

 Parameters:

 stmt

 Specifies a statement resource containing a result set.

db2_field_scale - Returns the scale of the indicated column in a result set

94 Developing Perl and PHP Applications

column

 Specifies the column in the result set. This can either be an integer

representing the 0-indexed position of the column, or a string containing

the name of the column.

 Return Values:

 Returns an integer containing the width of the specified character or binary data

type column in a result set. If the specified column does not exist in the result set,

db2_field_width() returns FALSE.

 Related reference:

v “db2_field_display_size - Returns the maximum number of bytes required to

display a column” on page 90

v “db2_field_name - Returns the name of the column in the result set” on page 91

v “db2_field_num - Returns the position of the named column in a result set” on

page 92

v “db2_field_precision - Returns the precision of the indicated column in a result

set” on page 92

v “db2_field_scale - Returns the scale of the indicated column in a result set” on

page 93

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

db2_num_fields - Returns the number of fields contained in a

result set

 Syntax:

 int db2_num_fields(resource stmt)

 Description:

 Returns the number of fields contained in a result set. This is most useful for

handling the result sets returned by dynamically generated queries, or for result

sets returned by stored procedures, where your application cannot otherwise know

how to retrieve and use the results.

 Parameters:

 stmt

 A valid statement resource containing a result set.

 Return Values:

 Returns an integer value representing the number of fields in the result set

associated with the specified statement resource. Returns FALSE if the statement

resource is not a valid input value.

 Examples:

 Retrieving the number of fields in a result set:

db2_field_width - Returns the width of the current value of the indicated column in a

result set

Chapter 4. ibm_db2 Extension Reference 95

The following example demonstrates how to retrieve the number of fields returned

in a result set.

<?php

$sql = "SELECT id, name, breed, weight FROM animals ORDER BY breed";

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, $sql);

$columns = db2_num_fields($stmt);

echo "There are {$columns} columns in the result set.";

?>

The preceding example returns the following output:

There are 4 columns in the result set.

 Related tasks:

v “Retrieving database metadata (ibm_db2)” on page 8

 Related reference:

v “db2_field_display_size - Returns the maximum number of bytes required to

display a column” on page 90

v “db2_num_rows - Returns the number of rows affected by an SQL statement” on

page 96

v “db2_field_name - Returns the name of the column in the result set” on page 91

v “db2_field_num - Returns the position of the named column in a result set” on

page 92

v “db2_field_precision - Returns the precision of the indicated column in a result

set” on page 92

v “db2_field_scale - Returns the scale of the indicated column in a result set” on

page 93

v “db2_field_type - Returns the data type of the indicated column in a result set”

on page 94

v “db2_field_width - Returns the width of the current value of the indicated

column in a result set” on page 94

db2_num_rows - Returns the number of rows affected by an SQL

statement

 Syntax:

 int db2_num_rows(resource stmt)

 Description:

 Returns the number of rows deleted, inserted, or updated by an SQL statement.

To determine the number of rows that will be returned by a SELECT statement,

issue SELECT COUNT(*) with the same predicates as your intended SELECT

statement and retrieve the value.

If your application logic checks the number of rows returned by a SELECT

statement and branches if the number of rows is 0, consider modifying your

application to attempt to return the first row with one of db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_array(), or db2_fetch_row(), and branch if the fetch

function returns FALSE.

db2_num_fields - Returns the number of fields contained in a result set

96 Developing Perl and PHP Applications

If you issue a SELECT statement using a scrollable cursor, db2_num_rows() returns

the number of rows returned by the SELECT statement. However, the overhead

associated with scrollable cursors significantly degrades the performance of your

application, so if this is the only reason you are considering using scrollable

cursors, you should use a forward-only cursor and either call SELECT COUNT(*)

or rely on the boolean return value of the fetch functions to achieve the equivalent

functionality with much better performance.

 Parameters:

 stmt

 A valid stmt resource containing a result set.

 Return Values:

 Returns the number of rows affected by the last SQL statement issued by the

specified statement handle.

 Related tasks:

v “Executing a single SQL statement in PHP (ibm_db2)” on page 11

v “Preparing and executing SQL statements in PHP (ibm_db2)” on page 12

 Related reference:

v “db2_num_fields - Returns the number of fields contained in a result set” on

page 95

db2_num_rows - Returns the number of rows affected by an SQL statement

Chapter 4. ibm_db2 Extension Reference 97

db2_num_rows - Returns the number of rows affected by an SQL statement

98 Developing Perl and PHP Applications

Chapter 5. PDO_ODBC Driver Reference

PDO object methods

PDO::__construct - Creates a PDO instance representing a

connection to a database

 Syntax:

 PDO PDO::__construct(string dsn, [string username, [string password, [array

driver_options]]])

 Description:

 Creates a PDO instance to represent a connection to the requested database.

 Parameters:

 dsn

 The Data Source Name, or DSN, contains the information required to

connect to the database.

 In general, a DSN consists of the PDO driver name, followed by a colon,

followed by the PDO driver-specific connection syntax. To create a

cataloged connection to a DB2 database through the PDO_ODBC driver,

the DSN syntax is ″odbc:database-name″. For example, a DSN of

″odbc:SAMPLE″ connects to a cataloged DB2 database named SAMPLE

using the PDO_ODBC driver.

 To create an uncataloged connection to a DB2 database, the DSN syntax is

as follows:

odbc:DRIVER={IBM DB2 ODBC DRIVER};HOSTNAME=hostname;PORT=port;

DATABASE=database;PROTOCOL=TCPIP;UID= USER;PWD=password;

For example, the following DSN connects to a DB2 database named

SAMPLE running on LOCALHOST over TCP/IP port 50000, using a user

name of ″db2inst1″ and a password of ″ibmdb2″:

odbc:DRIVER={IBM DB2 ODBC DRIVER};HOSTNAME=localhost;PORT=50000;

DATABASE=SAMPLE;PROTOCOL=TCPIP;UID=db2inst1;PWD=ibmdb2;

 The dsn parameter supports three different methods of specifying the

arguments required to create a database connection:

 Driver invocation

 dsn contains the full DSN.

Uniform Resource Identifier (URI) invocation

 dsn consists of uri: followed by a URI that defines the location of a

file containing the DSN string. The URI can specify a local file or a

remote URL.

 uri:file:///path/to/dsnfile

© Copyright IBM Corp. 2006 99

Aliasing

 dsn consists of a name name that maps to pdo.dsn.name in

php.ini defining the DSN string.

 The alias must be defined in php.ini, and not .htaccess or

httpd.conf.

username

 The user name for the DSN string. This parameter is optional if you have

specified the UID= clause in the dsn parameter.

password

 The password for the DSN string. This parameter is optional if you have

specified the PWD= clause in the dsn parameter.

driver_options

 An associative array of driver-specific connection options.

 Return Values:

 Returns a PDO object representing a successful database connection, or throws an

exception if the connection attempt fails.

 Exceptions:

 PDO::construct throws a PDOException if the attempt to connect to the requested

database fails.

 Examples:

 Create a PDO instance via driver invocation:

<?php

/* Connect to an ODBC database using driver invocation */

$dsn = ’odbc:SAMPLE’;

$user = ’dbuser’;

$password = ’dbpass’;

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo ’Connection failed: ’ . $e->getMessage();

}

?>

 Create a PDO instance via URI invocation:

 The following example assumes that the file /usr/local/dbconnect exists with file

permissions that enable PHP to read the file. The file contains the PDO DSN to

connect to a DB2 database through the PDO_ODBC driver:

odbc:DRIVER={IBM DB2 ODBC DRIVER};HOSTNAME=localhost;

PORT=50000;DATABASE=SAMPLE;PROTOCOL=TCPIP;UID=db2inst1;PWD=ibmdb2;

The PHP script can then create a database connection by simply passing the uri:

parameter and pointing to the file URI:

<?php

/* Connect to an ODBC database using driver invocation */

$dsn = ’uri:file:///usr/local/dbconnect’;

PDO::__construct - Creates a PDO instance representing a connection to a database

100 Developing Perl and PHP Applications

$user = ’’;

$password = ’’;

try {

 $dbh = new PDO($dsn, $user, $password);

} catch (PDOException $e) {

 echo ’Connection failed: ’ . $e->getMessage();

}

?>

 Create a PDO instance using an alias:

 The following example assumes that php.ini contains the following entry to enable

a connection to a DB2 database cataloged as SAMPLE using only the alias MYDB:

[PDO]

pdo.dsn.MYDB="odbc:SAMPLE"

<?php

/* Connect to an ODBC database using an alias */

$dsn = ’mydb’;

$user = ’db2inst1’;

$password = ’ibmdb2’;

try {

 $dbh = new PDO($dsn, $user, $password);

}catch (PDOException $e) {

 echo ’Connection failed: ’ . $e->getMessage();

}

?>

PDO::beginTransaction - Initiates a transaction

 Syntax:

 bool PDO::beginTransaction()

 Description:

 Turns off autocommit mode. While autocommit mode is turned off, changes made

to the database via the PDO object instance are not committed until you end the

transaction by calling PDO::commit(). Calling PDO::rollback() will roll back all

changes to the database and return the connection to autocommit mode.

 Examples:

 Roll back a transaction:

 The following example begins a transaction and issues two statements that modify

the database before rolling back the changes.

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema and data */

$sth = $dbh->exec("DROP TABLE fruit");

$sth = $dbh->exec("UPDATE dessert

 SET name = ’hamburger’");

/* Recognize mistake and roll back changes */

PDO::__construct - Creates a PDO instance representing a connection to a database

Chapter 5. PDO_ODBC Driver Reference 101

$dbh->rollBack();

/* Database connection is now back in autocommit mode */

?>

PDO::commit - Commits a transaction

 Syntax:

 bool PDO::commit()

 Description:

 Commits a transaction, returning the database connection to autocommit mode

until the next call to PDO::beginTransaction() starts a new transaction.

 Examples:

 Commit a transaction:

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema */

$sth = $dbh->exec("DROP TABLE fruit");

/* Commit the changes */

$dbh->commit();

/* Database connection is now back in autocommit mode */

?>

PDO::errorCode - Fetch the SQLSTATE associated with the

last operation on the database handle

 Syntax:

 int PDO::errorCode()

 Description:

 Fetches the SQLSTATE associated with the last operation on the database handle.

 Return Values:

 Returns a SQLSTATE, a five-character alphanumeric identifier defined in the ANSI

SQL-92 standard. An SQLSTATE consists of a two-character class value followed

by a three-character subclass value. A class value of 01 indicates a warning and is

accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class values other than

’01’, except for the class ’IM’, indicate an error. The class ’IM’ is specific to

warnings and errors that derive from the implementation of PDO (or perhaps

ODBC, if you’re using the ODBC driver) itself. The subclass value ’000’ in any

class indicates that there is no subclass for that SQLSTATE.

PDO::errorCode() only retrieves error codes for operations performed directly on

the database handle. If you create a PDOStatement object through PDO::prepare()

or PDO::query() and invoke an error on the statement handle, PDO::errorCode()

PDO::beginTransaction - Initiates a transaction

102 Developing Perl and PHP Applications

will not reflect that error. You must call PDOStatement::errorCode() to return the

error code for an operation performed on a particular statement handle.

 Examples:

 Retrieving a SQLSTATE code:

<?php

/* Provoke an error -- the BONES table does not exist */

$dbh->exec("INSERT INTO bones(skull) VALUES (’lucy’)");

echo "\nPDO::errorCode(): ";

print $dbh->errorCode();

?>

The preceding example returns the following output:

PDO::errorCode(): 42S02

PDO::errorInfo - Fetch extended error information associated

with the last operation on the database handle

 Syntax:

 array PDO::errorInfo()

 Description:

 Return Values:

 PDO::errorInfo() returns an array of error information about the last operation

performed by this database handle. The array consists of the following fields:

 Element Information

0 SQLSTATE error code (a five-character

alphanumeric identifier defined in the ANSI

SQL standard).

1 Driver-specific error code.

2 Driver-specific error message.

PDO::errorInfo() only retrieves error information for operations performed

directly on the database handle. If you create a PDOStatement object through

PDO::prepare() or PDO::query() and invoke an error on the statement handle,

PDO::errorInfo() will not reflect the error from the statement handle. You must

call PDOStatement::errorInfo() to return the error information for an operation

performed on a particular statement handle.

 Examples:

 Displaying errorInfo() fields for a PDO_ODBC connection to a DB2 database:

<?php

/* Provoke an error -- the BONES table does not exist */

$err = $dbh->prepare(’SELECT skull FROM bones’);

$err->execute();

echo "\nPDO::errorInfo():\n";

print_r($err->errorInfo());

?>

PDO::errorCode - Fetch the SQLSTATE associated with the last operation on the database

handle

Chapter 5. PDO_ODBC Driver Reference 103

The preceding example returns the following output:

PDO::errorInfo():

Array

(

 [0] => 42S02

 [1] => -204

 [2] => [IBM][CLI Driver][DB2/LINUX] SQL0204N "DANIELS.BONES"

 is an undefined name. SQLSTATE=42704

)

PDO::exec - Execute an SQL statement and return the number

of affected rows

 Syntax:

 int PDO::exec(string statement)

 Description:

 PDO::exec() executes an SQL statement in a single function call, returning the

number of rows affected by the statement.

PDO::exec() does not return results from a SELECT statement. For a SELECT

statement that you only need to issue once during your program, consider issuing

PDO::query(). For a statement that you need to issue multiple times, prepare a

PDOStatement object with PDO::prepare() and issue the statement with

PDOStatement::execute().

 Parameters:

 statement

 The SQL statement to prepare and execute.

 Return Values:

 PDO::exec() returns the number of rows that were modified or deleted by the SQL

statement you issued. If no rows were affected, PDO::exec() returns 0.

This function may return Boolean FALSE, but may also return a non-Boolean value

which evaluates to FALSE, such as 0 or ″″. Use the === operator for testing the

return value of this function.

The following example incorrectly relies on the return value of PDO::exec(),

wherein a statement that affected 0 rows results in a call to die:

<?php

$db->exec() or die($db->errorInfo());

?>

 Examples:

 Issuing a DELETE statement:

 Count the number of rows deleted by a DELETE statement with no WHERE

clause.

<?php

$dbh = new PDO(’odbc:sample’, ’db2inst1’, ’ibmdb2’);

PDO::errorInfo - Fetch extended error information associated with the last operation on

the database handle

104 Developing Perl and PHP Applications

/* Delete all rows from the FRUIT table */

$count = $dbh->exec("DELETE FROM fruit WHERE colour = ’red’");

/* Return number of rows that were deleted */

print("Deleted $count rows.\n");

?>

The preceding example returns the following output:

Deleted 1 rows.

PDO::getAttribute - Retrieve a database connection attribute

 Syntax:

 mixed PDO::getAttribute(int attribute)

 Description:

 This function returns the value of a database connection attribute. To retrieve

PDOStatement attributes, refer to PDOStatement::getAttribute().

Note that some database and driver combinations may not support all of the

database connection attributes.

 Parameters:

 attribute

 One of the PDO::ATTR_* constants. The constants that apply to database

connections are as follows: PDO::ATTR_AUTOCOMMIT

PDO::ATTR_CASE PDO::ATTR_CLIENT_VERSION

PDO::ATTR_CONNECTION_STATUS PDO::ATTR_DRIVER_NAME

PDO::ATTR_ERRMODE PDO::ATTR_ORACLE_NULLS

PDO::ATTR_PERSISTENT PDO::ATTR_PREFETCH

PDO::ATTR_SERVER_INFO PDO::ATTR_SERVER_VERSION

PDO::ATTR_TIMEOUT

 Return Values:

 A successful call returns the value of the requested PDO attribute. An unsuccessful

call returns null.

 Examples:

 Retrieving database connection attributes:

<?php

$conn = new PDO(’odbc:sample’, ’db2inst1’, ’ibmdb2’);

$attributes = array(

 "AUTOCOMMIT", "ERRMODE", "CASE", "CLIENT_VERSION", "CONNECTION_STATUS",

 "ORACLE_NULLS", "PERSISTENT", "PREFETCH", "SERVER_INFO", "SERVER_VERSION",

 "TIMEOUT"

);

foreach ($attributes as $val) {

 echo "PDO::ATTR_$val: ";

 echo $conn->getAttribute(constant("PDO::ATTR_$val")) . "\n";

}

?>

PDO::exec - Execute an SQL statement and return the number of affected rows

Chapter 5. PDO_ODBC Driver Reference 105

PDO::getAvailableDrivers - Return an array of available PDO

drivers

 Syntax:

 array PDO::getAvailableDrivers()

 Description:

 This function returns a list of all PDO drivers which can be used to construct a

PDO object. This is a static method.

 Return Values:

 PDO::getAvailableDrivers() returns an array of PDO driver names. If no drivers

are available, it returns an empty array.

 Examples:

 A PDO::getAvailableDrivers example:

<?php

print_r(PDO::getAvailableDrivers());

?>

The preceding example returns the following output something similar to:

Array

(

 [0] => odbc

)

PDO::lastInsertId - Returns the ID of the last inserted row or

sequence value

 Syntax:

 string PDO::lastInsertId([string sequence-name])

 Description:

 Returns the ID of the last row that was inserted into the database using the same

PDO database connection.

 Parameters:

 sequence-name

 Name of the sequence object from which the ID should be returned. If you

do not specify this parameter, PDO_ODBC returns the value of the identity

column for the last inserted row.

 Return Values:

 If a sequence name was not specified for the name parameter,

PDOStatement::lastInsertId() returns a string representing the identity column of

the last row that was inserted into the database.

PDO::getAvailableDrivers - Return an array of available PDO drivers

106 Developing Perl and PHP Applications

If a sequence name was specified for the name parameter,

PDOStatement::lastInsertId() returns a string representing the last value

retrieved from the specified sequence object.

PDO::prepare - Prepares a statement for execution and

returns a statement object

 Syntax:

 PDOStatement PDO::prepare(string statement, [array driver_options])

 Description:

 Prepares an SQL statement to be executed by the PDOStatement::execute()

method. The SQL statement can contain zero or more named (:name) or question

mark (?) parameter markers for which real values will be substituted when the

statement is executed. You cannot use both named and question mark parameter

markers within the same SQL statement; pick one or the other parameter style.

Calling PDO::prepare() and PDOStatement::execute() for statements that will be

issued multiple times with different parameter values optimizes the performance

of your application by allowing the driver to negotiate client and server side

caching of the query plan and meta information, and helps to prevent SQL

injection attacks by eliminating the need to manually quote the parameters.

PDO supports named parameter markers in the PDO_ODBC driver for DB2 by

rewriting named parameters to question mark parameters.

 Parameters:

 statement

 This must be a valid SQL statement for the target database management

system.

driver_options

 This associative array sets attribute values for the PDOStatement object

that this method returns. You would most commonly use this to set the

PDO::ATTR_CURSOR value to PDO::CURSOR_SCROLL to request a

scrollable cursor.

 Return Values:

 If the database management system successfully prepares the statement,

PDO::prepare() returns a PDOStatement object.

 Examples:

 Prepare an SQL statement with named parameters:

<?php

/* Execute a prepared statement by passing an array of values */

$sql = ’SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour’;

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR, PDO::CURSOR_FWDONLY));

$sth->execute(array(’:calories’ => 150, ’:colour’ => ’red’));

PDO::lastInsertId - Returns the ID of the last inserted row or sequence value

Chapter 5. PDO_ODBC Driver Reference 107

$red = $sth->fetchAll();

$sth->execute(array(’:calories’ => 175, ’:colour’ => ’yellow’));

$yellow = $sth->fetchAll();

?>

 Prepare an SQL statement with question mark parameters:

<?php

/* Execute a prepared statement by passing an array of values */

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?’);

$sth->execute(array(150, ’red’));

$red = $sth->fetchAll();

$sth->execute(array(175, ’yellow’));

$yellow = $sth->fetchAll();

?>

PDO::query - Executes an SQL statement, returning a result

set as a PDOStatement object

 Syntax:

 PDOStatement PDO::query(string statement)

 Description:

 PDO::query() executes an SQL statement in a single function call, returning the

result set (if any) returned by the statement as a PDOStatement object.

For a query that you need to issue multiple times, you will realize better

performance if you prepare a PDOStatement object using PDO::prepare() and issue

the statement with multiple calls to PDOStatement::execute().

If you do not fetch all of the data in a result set before issuing your next call to

PDO::query, your call may fail. Call PDOStatement::closeCursor() to release the

database resources associated with the PDOStatement object before issuing your

next call to PDO::query().

 Parameters:

 statement

 The SQL statement to prepare and execute.

 Return Values:

 PDO::query() returns a PDOStatement object.

 Examples:

 Demonstrate PDO::query:

 A nice feature of PDO::query() is that it enables you to iterate over the rowset

returned by a successfully executed SELECT statement.

<?php

function getFruit($conn) {

 $sql = ’SELECT name, colour, calories FROM fruit ORDER BY name’;

 foreach ($conn->query($sql) as $row) {

 print $row[’NAME’] . "\t";

PDO::prepare - Prepares a statement for execution and returns a statement object

108 Developing Perl and PHP Applications

print $row[’COLOUR’] . "\t";

 print $row[’CALORIES’] . "\n";

 }

}

?>

The preceding example returns the following output:

apple red 150

banana yellow 250

kiwi brown 75

lemon yellow 25

orange orange 300

pear green 150

watermelon pink 90

PDO::quote - Quotes a string for use in a query

 Syntax:

 string PDO::quote(string string, [int parameter_type])

 Description:

 The PDO_ODBC driver for DB2 does not support this method. PDO::quote() is

intended to place quotes around the input string and escape any single quotes

within the input string.

If you are using this function to build SQL statements, you are strongly

recommended to use PDO::prepare() to prepare SQL statements with bound

parameters instead of using PDO::quote() to interpolate user input into a SQL

statement. Prepared statements with bound parameters are not only more portable,

more convenient, and vastly more secure, but are also much faster than

interpolating user input into slight variations on the same basic SQL statement.

 Parameters:

 string

 The string to be quoted.

parameter_type

 Provides a data type hint for drivers that have alternate quoting styles. The

default value is PDO::PARAM_STR.

 Return Values:

 Returns a quoted string that is theoretically safe to pass into an SQL statement.

Returns FALSE if the driver does not support quoting in this way.

 Examples:

 Quoting a normal string:

<?php

$conn = new PDO(’sqlite:/home/lynn/music.sql3’);

/* Simple string */

PDO::query - Executes an SQL statement, returning a result set as a PDOStatement object

Chapter 5. PDO_ODBC Driver Reference 109

$string = ’Nice’;

print "Unquoted string: $string\n";

print "Quoted string: " . $conn->quote($string) . "\n";

?>

The preceding example returns the following output:

Unquoted string: Nice

Quoted string: ’Nice’

 Quoting a dangerous string:

<?php

$conn = new PDO(’sqlite:/home/lynn/music.sql3’);

/* Dangerous string */

$string = ’Naughty \’ string’;

print "Unquoted string: $string\n";

print "Quoted string:" . $conn->quote($string) . "\n";

?>

The preceding example returns the following output:

Unquoted string: Naughty ’ string

Quoted string: ’Naughty ’’ string’

 Quoting a complex string:

<?php

$conn = new PDO(’sqlite:/home/lynn/music.sql3’);

/* Complex string */

$string = "Co’mpl’’ex \"st’\"ring";

print "Unquoted string: $string\n";

print "Quoted string: " . $conn->quote($string) . "\n";

?>

The preceding example returns the following output:

Unquoted string: Co’mpl’’ex "st’"ring

Quoted string: ’Co’’mpl’’’’ex "st’’"ring’

PDO::rollBack - Rolls back a transaction

 Syntax:

 bool PDO::rollBack()

 Description:

 Rolls back the current transaction, as initiated by PDO::beginTransaction(). It is an

error to call this method if no transaction is active.

If the database was set to autocommit mode, this function will restore autocommit

mode after it has rolled back the transaction.

 Examples:

 Roll back a transaction:

 The following example begins a transaction and issues two statements that modify

the database before rolling back the changes.

PDO::quote - Quotes a string for use in a query

110 Developing Perl and PHP Applications

<?php

/* Begin a transaction, turning off autocommit */

$dbh->beginTransaction();

/* Change the database schema and data */

$sth = $dbh->exec("DROP TABLE fruit");

$sth = $dbh->exec("UPDATE dessert

 SET name = ’hamburger’");

/* Recognize mistake and roll back changes */

$dbh->rollBack();

/* Database connection is now back in autocommit mode */

?>

PDO::setAttribute - Set an attribute

 Syntax:

 bool PDO::setAttribute(int attribute, mixed value)

 Description:

 Sets an attribute on the database handle. The available generic attributes are listed

below.

PDO::ATTR_CASE: Forces column names to a specific case.

v PDO::CASE_LOWER: Force column names to lower case.

v PDO::CASE_NATURAL: Leave column names as returned by the

database driver.

v PDO::CASE_UPPER: Force column names to upper case.

PDO::ATTR_ERRMODE: Error reporting.

v PDO::ERRMODE_SILENT: Just set error codes.

v PDO::ERRMODE_WARNING: Raise E_WARNING level errors.

v PDO::ERRMODE_EXCEPTION: Throw exceptions.

PDO::ATTR_ORACLE_NULLS : Conversion of NULL and empty strings.

v PDO::NULL_NATURAL: No conversion.

v PDO::NULL_EMPTY_STRING: Empty string is converted to NULL.

v PDO::NULL_TO_STRING: NULL is converted to an empty string.

PDO::ATTR_STRINGIFY_FETCHES:

Convert numeric values to strings when fetching. Requires bool.

PDO::ATTR_STATEMENT_CLASS:

Set user-supplied statement class derived from PDOStatement. Cannot be

used with persistent PDO instances. Requires array(string classname,

array(mixed ctor_args)).

PDO::ATTR_AUTOCOMMIT:

Whether to autocommit every single statement.

PDO::rollBack - Rolls back a transaction

Chapter 5. PDO_ODBC Driver Reference 111

PDOstatement object methods

PDOStatement::bindColumn - Bind a column to a PHP variable

 Syntax:

 bool PDOStatement::bindColumn(mixed column, mixed param, [int type])

 Description:

 PDOStatement::bindColumn() arranges to have a particular variable bound to a

given column in the result-set from a query. Each call to PDOStatement::fetch() or

PDOStatement::fetchAll() will update all the variables that are bound to columns.

Since information about the columns is not always available to PDO until the

statement is executed, portable applications should call this function after

PDO::execute().

 Parameters:

 column

 Number of the column (1-indexed) or name of the column in the result set.

If using the column name, be aware that the name should match the case

of the column, as returned by the driver.

param

 Name of the PHP variable to which the column will be bound.

type

 Data type of the parameter, specified by the PDO::PARAM_* constants.

 Examples:

 Binding result set output to PHP variables:

 Binding columns in the result set to PHP variables is an effective way to make the

data contained in each row immediately available to your application. The

following example demonstrates how PDO allows you to bind and retrieve

columns with a variety of options and with intelligent defaults.

<?php

function readData($dbh) {

 $sql = ’SELECT name, colour, calories FROM fruit’;

 try {

 $stmt = $dbh->prepare($sql);

 $stmt->execute();

 /* Bind by column number */

 $stmt->bindColumn(1, $name);

 $stmt->bindColumn(2, $colour);

 /* Bind by column name */

 $stmt->bindColumn(’calories’, $cals);

 while ($row = $stmt->fetch(PDO::FETCH_BOUND)) {

 $data = $name . "\t" . $colour . "\t" . $cals . "\n";

 print $data;

 }

 }

PDO::setAttribute - Set an attribute

112 Developing Perl and PHP Applications

catch (PDOException $e) {

 print $e->getMessage();

 }

}

readData($dbh);

?>

The preceding example returns the following output:

apple red 150

banana yellow 175

kiwi green 75

orange orange 150

mango red 200

strawberry red 25

PDOStatement::bindParam - Binds a parameter to the

specified variable name

 Syntax:

 bool PDOStatement::bindParam(mixed parameter, mixed variable, [int data_type,

[int length, [mixed driver_options]]])

 Description:

 Binds a PHP variable to a corresponding named or question mark placeholder in

the SQL statement that was use to prepare the statement. Unlike

PDOStatement::bindValue(), the variable is bound as a reference and will only be

evaluated at the time that PDOStatement::execute() is called.

Most parameters are input parameters, that is, parameters that are used in a

read-only fashion to build up the query. PDO_ODBC supports the invocation of

stored procedures that return data as output (OUT) parameters, as well as INOUT

parameters that both pass an input value to the database and are updated with an

output value after the CALL statement.

 Parameters:

 parameter

 Parameter identifier. For a prepared statement using named placeholders,

this will be a parameter name of the form :name. For a prepared statement

using question mark placeholders, this will be the 1-indexed position of the

parameter.

variable

 Name of the PHP variable to bind to the SQL statement parameter.

data_type

 Explicit data type for the parameter using the PDO::PARAM_* constants. To

return an INOUT parameter from a stored procedure, use the bitwise OR

operator to set the PDO::PARAM_INPUT_OUTPUT bits for the data_type

parameter.

length

 Length of the data type. To indicate that a parameter is an OUT parameter

from a stored procedure, you must explicitly set the length.

PDOStatement::bindColumn - Bind a column to a PHP variable

Chapter 5. PDO_ODBC Driver Reference 113

driver_options

 Examples:

 Execute a prepared statement with named placeholders:

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour’);

$sth->bindParam(’:calories’, $calories, PDO::PARAM_INT);

$sth->bindParam(’:colour’, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

 Execute a prepared statement with question mark placeholders:

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?’);

$sth->bindParam(1, $calories, PDO::PARAM_INT);

$sth->bindParam(2, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

 Call a stored procedure with an INOUT parameter:

<?php

/* Call a stored procedure with an INOUT parameter */

$colour = ’red’;

$sth = $dbh->prepare(’CALL puree_fruit(?)’);

$sth->bindParam(1, $colour, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 12);

$sth->execute();

print("After pureeing fruit, the colour is: $colour");

?>

PDOStatement::bindValue - Binds a value to a parameter

 Syntax:

 bool PDOStatement::bindValue(mixed parameter, mixed value, [int data_type])

 Description:

 Binds a value to a corresponding named or question mark placeholder in the SQL

statement that was use to prepare the statement.

 Parameters:

 parameter

 Parameter identifier. For a prepared statement using named placeholders,

this will be a parameter name of the form :name. For a prepared statement

using question mark placeholders, this will be the 1-indexed position of the

parameter.

value

PDOStatement::bindParam - Binds a parameter to the specified variable name

114 Developing Perl and PHP Applications

The value to bind to the parameter.

data_type

 Explicit data type for the parameter using the PDO::PARAM_* constants.

 Examples:

 Execute a prepared statement with named placeholders:

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour’);

$sth->bindValue(’:calories’, $calories, PDO::PARAM_INT);

$sth->bindValue(’:colour’, $colour, PDO::PARAM_STR);

$sth->execute();

?>

 Execute a prepared statement with question mark placeholders:

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?’);

$sth->bindValue(1, $calories, PDO::PARAM_INT);

$sth->bindValue(2, $colour, PDO::PARAM_STR);

$sth->execute();

?>

PDOStatement::closeCursor - Closes the cursor, enabling the

statement to be executed again

 Syntax:

 bool PDOStatement::closeCursor()

 Description:

 PDOStatement::closeCursor() frees up the connection to the database so that other

SQL statements may be issued, but leaves the statement in a state that enables it to

be executed again.

 Examples:

 A PDOStatement::closeCursor() example:

 In the following example, the $stmt PDOStatement object returns multiple rows but

the application fetches only the first row, leaving the PDOStatement object

representing a result set with unfetched rows. To ensure that the application will

work with all databases and PDO drivers, the author inserts a call to

PDOStatement::closeCursor() on $stmt before executing the $otherStmt

PDOStatement object.

PDOStatement::bindValue - Binds a value to a parameter

Chapter 5. PDO_ODBC Driver Reference 115

<?php

/* Create a PDOStatement object */

$stmt = $dbh->prepare(’SELECT foo FROM bar’);

/* Create a second PDOStatement object */

$stmt = $dbh->prepare(’SELECT foobaz FROM foobar’);

/* Execute the first statement */

$stmt->execute();

/* Fetch only the first row from the results */

$stmt->fetch();

/* The following call to closeCursor() may be required by some drivers */

$stmt->closeCursor();

/* Now we can execute the second statement */

$otherStmt->execute();

?>

PDOStatement::columnCount - Returns the number of

columns in the result set

 Syntax:

 int PDOStatement::columnCount()

 Description:

 Use PDOStatement::columnCount() to return the number of columns in the result

set represented by the PDOStatement object.

If the PDOStatement object was returned from PDO::query(), the column count is

immediately available.

If the PDOStatement object was returned from PDO::prepare(), an accurate column

count will not be available until you invoke PDOStatement::execute().

 Return Values:

 Returns the number of columns in the result set represented by the PDOStatement

object. If there is no result set, PDOStatement::columnCount() returns 0.

 Examples:

 Counting columns:

 This example demonstrates how PDOStatement::columnCount() operates with and

without a result set.

<?php

$dbh = new PDO(’odbc:sample’, ’db2inst1’, ’ibmdb2’);

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

/* Count the number of columns in the (non-existent) result set */

$colcount = $sth->columnCount();

print("Before execute(), result set has $colcount columns (should be 0)\n");

$sth->execute();

PDOStatement::closeCursor - Closes the cursor, enabling the statement to be executed

again

116 Developing Perl and PHP Applications

/* Count the number of columns in the result set */

$colcount = $sth->columnCount();

print("After execute(), result set has $colcount columns (should be 2)\n");

?>

The preceding example returns the following output:

Before execute(), result set has 0 columns (should be 0)

After execute(), result set has 2 columns (should be 2)

PDOStatement::errorCode - Fetch the SQLSTATE associated

with the last operation on the statement handle

 Syntax:

 int PDOStatement::errorCode()

 Description:

 Return Values:

 Identical to PDO::errorCode(), except that PDOStatement::errorCode() only

retrieves error codes for operations that are performed with PDOStatement objects.

 Examples:

 Retrieving a SQLSTATE code:

<?php

/* Provoke an error -- the BONES table does not exist */

$err = $dbh->prepare(’SELECT skull FROM bones’);

$err->execute();

echo "\nPDOStatement::errorCode(): ";

print $err->errorCode();

?>

The preceding example returns the following output:

PDOStatement::errorCode(): 42S02

PDOStatement::errorInfo - Fetch extended error information

associated with the last operation on the statement handle

 Syntax:

 array PDOStatement::errorInfo()

 Description:

 Return Values:

 PDOStatement::errorInfo() returns an array of error information about the last

operation performed by this statement handle. The array consists of the following

fields:

PDOStatement::columnCount - Returns the number of columns in the result set

Chapter 5. PDO_ODBC Driver Reference 117

Element Information

0 SQLSTATE error code (a five-character

alphanumeric identifier defined in the ANSI

SQL standard).

1 Driver-specific error code.

2 Driver-specific error message.

 Examples:

 Displaying errorInfo() fields for a PDO_ODBC connection to a DB2 database:

<?php

/* Provoke an error -- the BONES table does not exist */

$sth = $dbh->prepare(’SELECT skull FROM bones’);

$sth->execute();

echo "\nPDOStatement::errorInfo():\n";

$arr = $sth->errorInfo();

print_r($arr);

?>

The preceding example returns the following output:

PDOStatement::errorInfo():

Array

(

 [0] => 42S02

 [1] => -204

 [2] => [IBM][CLI Driver][DB2/LINUX] SQL0204N "DANIELS.BONES"

 is an undefined name.SQLSTATE=42704

)

PDOStatement::execute - Executes a prepared statement

 Syntax:

 bool PDOStatement::execute([array input-parameters])

 Description:

 Execute the prepared statement. If the prepared statement included parameter

markers, you must either:

v call PDOStatement::bindParam() to bind PHP variables to the parameter markers:

bound variables pass their value as input and receive the output value, if any, of

their associated parameter markers

v or pass an array of input-only parameter values to the input-parameters argument

 Examples:

 Execute a prepared statement with bound variables:

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour’);

PDOStatement::errorInfo - Fetch extended error information associated with the last

operation on the statement handle

118 Developing Perl and PHP Applications

$sth->bindParam(’:calories’, $calories, PDO::PARAM_INT);

$sth->bindParam(’:colour’, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

 Execute a prepared statement with an array of insert values:

<?php

/* Execute a prepared statement by passing an array of insert values */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < :calories AND colour = :colour’);

$sth->execute(array(’:calories’ => $calories, ’:colour’ => $colour));

?>

 Execute a prepared statement with question mark placeholders:

<?php

/* Execute a prepared statement by binding PHP variables */

$calories = 150;

$colour = ’red’;

$sth = $dbh->prepare(’SELECT name, colour, calories

 FROM fruit

 WHERE calories < ? AND colour = ?’);

$sth->bindParam(1, $calories, PDO::PARAM_INT);

$sth->bindParam(2, $colour, PDO::PARAM_STR, 12);

$sth->execute();

?>

PDOStatement::fetch - Fetches the next row from a result set

 Syntax:

 mixed PDOStatement::fetch([int fetch_style, [int cursor_orientation, [int

cursor_offset]]])

 Description:

 Fetches a row from a result set associated with a PDOStatement object. The

fetch_style parameter determines how PDO returns the row.

 Parameters:

 fetch_style

Controls how the next row will be returned to the caller. This value must

be one of the PDO::FETCH_* constants, defaulting to

PDO::FETCH_BOTH.

PDO::FETCH_ASSOC

returns an array indexed by column name as returned in your

result set

PDO::FETCH_BOTH (default)

returns an array indexed by both column name and 0-indexed

column number as returned in your result set

PDO::FETCH_BOUND

returns TRUE and assigns the values of the columns in your result

set to the PHP variables to which they were bound with the

PDOStatement::bindParam() method

PDOStatement::execute - Executes a prepared statement

Chapter 5. PDO_ODBC Driver Reference 119

PDO::FETCH_CLASS

returns a new instance of the requested class, mapping the

columns of the result set to named properties in the class

PDO::FETCH_INTO

updates an existing instance of the requested class, mapping the

columns of the result set to named properties in the class

PDO::FETCH_LAZY

combines PDO::FETCH_BOTH and PDO::FETCH_OBJ, creating

the object variable names as they are accessed

PDO::FETCH_NUM

returns an array indexed by column number as returned in your

result set, starting at column 0

PDO::FETCH_OBJ

returns an anonymous object with property names that correspond

to the column names returned in your result set

cursor_orientation

For a PDOStatement object representing a scrollable cursor, this value

determines which row will be returned to the caller. This value must be

one of the PDO::FETCH_ORI_* constants, defaulting to

PDO::FETCH_ORI_NEXT. To request a scrollable cursor for your

PDOStatement object, you must set the PDO::ATTR_CURSOR attribute to

PDO::CURSOR_SCROLL when you prepare the SQL statement with

PDO::prepare().

offset

 For a PDOStatement object representing a scrollable cursor for which the

cursor_orientation parameter is set to PDO::FETCH_ORI_ABS, this value

specifies the absolute number of the row in the result set that shall be

fetched.

 For a PDOStatement object representing a scrollable cursor for which the

cursor_orientation parameter is set to PDO::FETCH_ORI_REL, this value

specifies the row to fetch relative to the cursor position before

PDOStatement::fetch() was called.

 Examples:

 Fetching rows using different fetch styles:

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Exercise PDOStatement::fetch styles */

print("PDO::FETCH_ASSOC: ");

print("Return next row as an array indexed by column name\n");

$result = $sth->fetch(PDO::FETCH_ASSOC);

print_r($result);

print("\n");

print("PDO::FETCH_BOTH: ");

print("Return next row as an array indexed by both column name and number\n");

$result = $sth->fetch(PDO::FETCH_BOTH);

print_r($result);

print("\n");

print("PDO::FETCH_LAZY: ");

print("Return next row as an anonymous object with column names as properties\n");

PDOStatement::fetch - Fetches the next row from a result set

120 Developing Perl and PHP Applications

$result = $sth->fetch(PDO::FETCH_LAZY);

print_r($result);

print("\n");

print("PDO::FETCH_OBJ: ");

print("Return next row as an anonymous object with column names as properties\n");

$result = $sth->fetch(PDO::FETCH_OBJ);

print $result->NAME;

print("\n");

?>

The preceding example returns the following output:

PDO::FETCH_ASSOC: Return next row as an array indexed by column name

Array

(

 [NAME] => apple

 [COLOUR] => red

)

PDO::FETCH_BOTH: Return next row as an array indexed by both column name and number

Array

(

 [NAME] => banana

 [0] => banana

 [COLOUR] => yellow

 [1] => yellow

)

PDO::FETCH_LAZY: Return next row as an anonymous object with column names as

properties

PDORow Object

(

 [NAME] => orange

 [COLOUR] => orange

)

PDO::FETCH_OBJ: Return next row as an anonymous object with column names as

properties

kiwi

 Fetching rows with a scrollable cursor:

<?php

function readDataForwards($dbh) {

 $sql = ’SELECT hand, won, bet FROM mynumbers ORDER BY BET’;

 try {

 $stmt = $dbh->prepare($sql, array(PDO::ATTR_CURSOR, PDO::CURSOR_SCROLL));

 $stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_NEXT)) {

 $data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 print $data;

 }

 $stmt = null;

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

function readDataBackwards($dbh) {

 $sql = ’SELECT hand, won, bet FROM mynumbers ORDER BY bet’;

 try {

 $stmt = $dbh->prepare($sql, array(PDO::ATTR_CURSOR, PDO::CURSOR_SCROLL));

 $stmt->execute();

 $row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_LAST);

 do {

 $data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 print $data;

PDOStatement::fetch - Fetches the next row from a result set

Chapter 5. PDO_ODBC Driver Reference 121

} while ($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_PRIOR));

 $stmt = null;

 }

 catch (PDOException $e) {

 print $e->getMessage();

 }

}

print "Reading forwards:\n";

readDataForwards($conn);

print "Reading backwards:\n";

readDataBackwards($conn);

?>

The preceding example returns the following output:

Reading forwards:

21 10 5

16 0 5

19 20 10

Reading backwards:

19 20 10

16 0 5

21 10 5

PDOStatement::fetchAll - Returns an array containing all of

the result set rows

 Syntax:

 array PDOStatement::fetchAll([int fetch_style, [int column_index]])

 Description:

 Returns an array containing all of the result set rows.

 Parameters:

 fetch_style

 Controls the contents of the returned array as documented in

PDOStatement::fetch(). Defaults to PDO::FETCH_BOTH.

 To return an array consisting of all values of a single column from the

result set, specify PDO::FETCH_COLUMN. You can specify which column

you want with the column-index parameter.

 To fetch only the unique values of a single column from the result set,

bitwise-OR PDO::FETCH_COLUMN with PDO::FETCH_UNIQUE.

 To return an associative array grouped by the values of a specified column,

bitwise-OR PDO::FETCH_COLUMN with PDO::FETCH_GROUP.

column_index

 Returns the indicated 0-indexed column when the value of fetch_style is

PDO::FETCH_COLUMN. Defaults to 0.

 Return Values:

PDOStatement::fetch - Fetches the next row from a result set

122 Developing Perl and PHP Applications

PDOStatement::fetchAll returns an array containing all of the remaining rows in

the result set. The array represents each row as either an array of column values or

an object with properties corresponding to each column name.

Using this method to fetch large result sets will result in a heavy demand on

system and possibly network resources. Rather than retrieving all of the data and

manipulating it in PHP, consider using the database management system to

manipulate the result sets. For example, use the WHERE and SORT BY clauses in

SQL to restrict results before retrieving and processing them with PHP.

 Examples:

 Fetch all remaining rows in a result set:

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch all of the remaining rows in the result set */

print("Fetch all of the remaining rows in the result set:\n");

$result = $sth->fetchAll();

print_r($result);

?>

The preceding example returns the following output:

Fetch all of the remaining rows in the result set:

Array

(

 [0] => Array

 (

 [NAME] => pear

 [0] => pear

 [COLOUR] => green

 [1] => green

)

 [1] => Array

 (

 [NAME] => watermelon

 [0] => watermelon

 [COLOUR] => pink

 [1] => pink

)

)

 Fetching all values of a single column from a result set:

 The following example demonstrates how to return all of the values of a single

column from a result set, even though the SQL statement itself may return multiple

columns per row.

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch all of the values of the first column */

$result = $sth->fetchAll(PDO::FETCH_COLUMN, 0);

var_dump($result);

?>

The preceding example returns the following output:

PDOStatement::fetchAll - Returns an array containing all of the result set rows

Chapter 5. PDO_ODBC Driver Reference 123

Array(3)

(

 [0] =>

 string(5) => apple

 [1] =>

 string(4) => pear

 [2] =>

 string(10) => watermelon

)

 Grouping all values by a single column:

 The following example demonstrates how to return an associative array grouped

by the values of the specified column in the result set. The array contains three

keys: values apple and pear are returned as arrays that contain two different

colors, while watermelon is returned as an array that contains only one color.

<?php

$insert = $dbh->prepare("INSERT INTO fruit(name, colour) VALUES (?, ?)");

$insert->execute(’apple’, ’green’);

$insert->execute(’pear’, ’yellow’);

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Group values by the first column */

var_dump($sth->fetchAll(PDO::FETCH_COLUMN|PDO::FETCH_GROUP));

?>

The preceding example returns the following output:

array(3) {

 ["apple"]=>

 array(2) {

 [0]=>

 string(5) "green"

 [1]=>

 string(3) "red"

 }

 ["pear"]=>

 array(2) {

 [0]=>

 string(5) "green"

 [1]=>

 string(6) "yellow"

 }

 ["watermelon"]=>

 array(1) {

 [0]=>

 string(5) "green"

 }

}

PDOStatement::fetchColumn - Returns a single column from

the next row of a result set

 Syntax:

 string PDOStatement::fetchColumn([int column_number])

 Description:

 Returns a single column from the next row of a result set.

PDOStatement::fetchAll - Returns an array containing all of the result set rows

124 Developing Perl and PHP Applications

Parameters:

 column_number

 0-indexed number of the column you wish to retrieve from the row. If no

value is supplied, PDOStatement::fetchColumn() fetches the first column.

 Return Values:

 PDOStatement::fetchColumn() returns a single column in the next row of a result

set.

There is no way to return another column from the same row if you use

PDOStatement::fetchColumn() to retrieve data.

 Examples:

 Return first column of the next row:

<?php

$sth = $dbh->prepare("SELECT name, colour FROM fruit");

$sth->execute();

/* Fetch the first column from the next row in the result set */

print("Fetch the first column from the next row in the result set:\n");

$result = $sth->fetchColumn();

print("name = $result\n");

print("Fetch the second column from the next row in the result set:\n");

$result = $sth->fetchColumn(1);

print("colour = $result\n");

?>

The preceding example returns the following output:

Fetch the first column from the next row in the result set:

name = lemon

Fetch the second column from the next row in the result set:

colour = red

PDOStatement::getAttribute - Retrieve a statement attribute

 Syntax:

 mixed PDOStatement::getAttribute(int attribute)

 Description:

 Gets an attribute of the statement. Currently, the only attribute that can be

retrieved is PDO::ATTR_CURSOR_NAME, which returns the name of the cursor

corresponding to this PDOStatement object.

PDOStatement::getColumnMeta - Returns metadata for a

column in a result set

 Syntax:

 mixed PDOStatement::getColumnMeta(int column)

 Description:

PDOStatement::fetchColumn - Returns a single column from the next row of a result set

Chapter 5. PDO_ODBC Driver Reference 125

Retrieves the metadata for a 0-indexed column in a result set as an associative

array.

 Parameters:

 column

 The 0-indexed column in the result set.

 Return Values:

 Returns an associative array containing the following values representing the

metadata for a single column:

 Table 11. Column metadata

Name Value

native_type The PHP native type used to represent the

column value.

driver:decl_type The SQL type used to represent the column

value in the database. If the column in the

result set is the result of a function, this

value is not returned by

PDOStatement::getColumnMeta().

flags Any flags set for this column.

name The name of this column as returned by the

database.

len The length of this column. Normally -1 for

types other than floating point decimals.

precision The numeric precision of this column.

Normally 0 for types other than floating

point decimals.

pdo_type The type of this column as represented by

the PDO::PARAM_* constants.

Returns FALSE if the requested column does not exist in the result set, or if no

result set exists.

 Examples:

 Retrieving column metadata:

 The following example shows the results of retrieving the metadata for a single

column generated by a function (COUNT).

<?php

$select = $DB->query(’SELECT COUNT(*) FROM fruit’);

$meta = $select->getColumnMeta(0);

var_dump($meta);

?>

The preceding example returns the following output:

array(6) {

 ["native_type"]=>

 string(7) "integer"

 ["flags"]=>

 array(0) {

 }

PDOStatement::getColumnMeta - Returns metadata for a column in a result set

126 Developing Perl and PHP Applications

["name"]=>

 string(8) "COUNT(*)"

 ["len"]=>

 int(-1)

 ["precision"]=>

 int(0)

 ["pdo_type"]=>

 int(2)

}

PDOStatement::nextRowset - Advances to the next result set

in a statement handle associated with multiple result sets

 Syntax:

 bool PDOStatement::nextRowset()

 Description:

 Some database management systems, such as DB2, support stored procedures that

return more than one result set (also known as a result set).

PDOStatement::nextRowSet() enables you to access the second and subsequent

result sets associated with a PDOStatement object. Each result set can have a

different set of columns from the preceding result set.

 Return Values:

 Returns TRUE on success or FALSE on failure.

 Examples:

 Fetching multiple result sets returned from a stored procedure:

 The following example shows how to call a stored procedure,

MULTIPLE_RESULTS, that returns three result sets. We use a do-while loop to loop

over the PDOStatement::nextRowset() method, which returns false and terminates

the loop when no more result sets can be returned.

<?php

$sql = ’CALL multiple_results()’;

$stmt = $conn->query($sql);

$i = 1;

do {

 $rowset = $stmt->fetchAll(PDO::FETCH_NUM);

 if ($rowset) {

 printResultSet($rowset, $i);

 }

 $i++;

} while ($stmt->nextRowset());

function printResultSet(&$rowset, $i) {

 print "Result set $i:\n";

 foreach ($rowset as $row) {

 foreach ($row as $col) {

 print $col . "\t";

 }

 print "\n";

 }

 print "\n";

}

?>

PDOStatement::getColumnMeta - Returns metadata for a column in a result set

Chapter 5. PDO_ODBC Driver Reference 127

The preceding example returns the following output:

Result set 1:

apple red

banana yellow

Result set 2:

orange orange 150

banana yellow 175

Result set 3:

lime green

apple red

banana yellow

PDOStatement::rowCount - Returns the number of rows

affected by the last SQL statement

 Syntax:

 int PDOStatement::rowCount()

 Description:

 PDOStatement::rowCount() returns the number of rows affected by the last

DELETE, INSERT, or UPDATE statement executed by the corresponding

PDOStatement object.

If the last SQL statement executed by the associated PDOStatement was a SELECT

statement issued with a scrollable cursor, DB2 returns the number of rows returned

by that statement. However, scrollable cursors require more system resources on

the database management system and are not recommended for general usage.

 Examples:

 Return the number of deleted rows:

 PDOStatement::rowCount() returns the number of rows affected by a DELETE,

INSERT, or UPDATE statement.

<?php

/* Delete all rows from the FRUIT table */

$del = $dbh->prepare(’DELETE FROM fruit’);

$del->execute();

/* Return number of rows that were deleted */

print("Return number of rows that were deleted:\n");

$count = $del->rowCount();

print("Deleted $count rows.\n");

?>

The preceding example returns the following output:

Deleted 9 rows.

 Counting rows returned by a SELECT statement:

 For most databases, PDOStatement::rowCount() does not return the number of rows

affected by a SELECT statement. Instead, use PDO::query() to issue a SELECT

COUNT(*) statement with the same predicates as your intended SELECT

PDOStatement::nextRowset - Advances to the next result set in a statement handle

associated with multiple result sets

128 Developing Perl and PHP Applications

statement, then use PDOStatement::fetchColumn() to retrieve the number of rows

that will be returned. Your application can then perform the correct action.

<?php

$sql = "SELECT COUNT(*) FROM fruit WHERE calories > 100";

if ($res = $conn->query($sql)) {

 /* Check the number of rows that match the SELECT statement */

 if ($res->fetchColumn() > 0) {

 /* Issue the real SELECT statement and work with the results */

 $sql = "SELECT name FROM fruit WHERE calories > 100";

 foreach ($conn->query($sql) as $row) {

 print "Name: " . $row[’NAME’] . "\n";

 }

 }

 /* No rows matched -- do something else */

 else {

 print "No rows matched the query.";

 }

}

$res = null;

$conn = null;

?>

The preceding example returns the following output:

apple

banana

orange

pear

PDOStatement::setAttribute - Set a statement attribute

 Syntax:

 bool PDOStatement::setAttribute(int attribute, mixed value)

 Description:

 Sets an attribute on the statement. Currently, you can only set the

PDO::ATTR_CURSOR_NAME attribute to set the name of the cursor associated

with this PDOStatement object.

PDOStatement::setFetchMode - Set the default fetch mode for

this statement

 Syntax:

 bool PDOStatement::setFetchMode(int mode)

 Description:

 Parameters:

 mode

 The fetch mode must be one of the PDO::FETCH_* constants.

 Return Values:

PDOStatement::rowCount - Returns the number of rows affected by the last SQL

statement

Chapter 5. PDO_ODBC Driver Reference 129

Returns 1 on success or FALSE on failure.

 Examples:

 Setting the fetch mode:

 The following example demonstrates how PDOStatement::setFetchMode() changes

the default fetch mode for a PDOStatement object.

<?php

$sql = ’SELECT name, colour, calories FROM fruit’;

try {

 $stmt = $dbh->query($sql);

 $result = $stmt->setFetchMode(PDO::FETCH_NUM);

 while ($row = $stmt->fetch()) {

 print $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

 }

}

catch (PDOException $e) {

 print $e->getMessage();

}

?>

The preceding example returns the following output:

apple red 150

banana yellow 250

orange orange 300

kiwi brown 75

lemon yellow 25

pear green 150

watermelon pink 90

PDOStatement::setFetchMode - Set the default fetch mode for this statement

130 Developing Perl and PHP Applications

Part 2. Developing Perl Applications

© Copyright IBM Corp. 2006 131

132 Developing Perl and PHP Applications

Chapter 6. Developing Perl Applications

Programming Considerations for Perl

 Perl is a popular programming language that is freely available for many operating

systems. Using the DBD::DB2 driver available from http://www.ibm.com/
software/data/db2/perl with the Perl Database Interface (DBI) Module available

from http://www.perl.com, you can create DB2 applications using Perl.

Because Perl is an interpreted language and the Perl DBI Module uses dynamic

SQL, Perl is an ideal language for quickly creating and revising prototypes of DB2

applications. The Perl DBI Module uses an interface that is quite similar to the CLI

and JDBC interfaces, which makes it easy for you to port your Perl prototypes to

CLI and JDBC.

Most database vendors provide a database driver for the Perl DBI Module, which

means that you can also use Perl to create applications that access data from many

different database servers. For example, you can write a Perl DB2 application that

connects to an Oracle database using the DBD::Oracle database driver, fetch data

from the Oracle database, and insert the data into a DB2 database using the

DBD::DB2 database driver.

 Related concepts:

v “Database Connections in Perl” on page 134

v “Example of a Perl Program” on page 136

 Related tasks:

v “Building Perl applications” on page 136

Perl DBI

 DB2 supports the Perl Database Interface (DBI) specification for data access

through the DBD::DB2 driver. The DB2 Perl DBI website is located at:

 http://www.ibm.com/software/data/db2/perl/

and contains the latest DBD::DB2 driver, and related information.

Perl is an interpreted language and the Perl DBI Module uses dynamic SQL. These

properties make Perl an ideal language for quickly creating and revising DB2

applications. The Perl DBI Module uses an interface that is quite similar to the CLI

and JDBC interfaces, which makes it easy to port Perl applications to CLI and

JDBC, or to port CLI and JDBC applications to Perl.

 Related concepts:

v “Programming Considerations for Perl” on page 133

© Copyright IBM Corp. 2006 133

http://www.ibm.com/software/data/db2/perl/
http://www.ibm.com/software/data/db2/perl/
http://www.perl.com/
http://www.ibm.com/software/data/db2/perl/

Database Connections in Perl

 To enable Perl to load the DBI module, you must include the following line in

your DB2 application:

 use DBI;

The DBI module automatically loads the DBD::DB2 driver when you create a

database handle using the DBI->connect statement with the following syntax:

 my $dbhandle = DBI->connect(‘dbi:DB2:dbalias’, $userID, $password);

where:

$dbhandle

represents the database handle returned by the connect statement

dbalias

represents a DB2 alias cataloged in your DB2 database directory

$userID

represents the user ID used to connect to the database

$password

represents the password for the user ID used to connect to the database

Fetching Results in Perl

 Because the Perl DBI Module only supports dynamic SQL, you do not use host

variables in your Perl DB2 applications.

 Procedure:

 To return results from an SQL query, perform the following steps:

1. Create a database handle by connecting to the database with the DBI->connect

statement.

2. Create a statement handle from the database handle. For example, you can call

prepare with an SQL statement as a string argument to return statement handle

$sth from the database handle, as demonstrated in the following Perl statement:

 my $sth = $dbhandle->prepare(

 ’SELECT firstnme, lastname

 FROM employee ’

);

3. Execute the SQL statement by calling execute on the statement handle. A

successful call to execute associates a result set with the statement handle. For

example, you can execute the statement prepared in the previous example

using the following Perl statement:

 #Note: $rc represents the return code for the execute call

 my $rc = $sth->execute();

4. Fetch a row from the result set associated with the statement handle with a call

to fetchrow(). The Perl DBI returns a row as an array with one value per

column. For example, you can return all of the rows from the statement handle

in the previous example using the following Perl statement:

 while (($firstnme, $lastname) = $sth->fetchrow()) {

 print "$firstnme $lastname\n";

 }

 Related concepts:

134 Developing Perl and PHP Applications

v “Database Connections in Perl” on page 134

Parameter Markers in Perl

 To enable you to execute a prepared statement using different input values for

specified fields, the Perl DBI module enables you to prepare and execute a

statement using parameter markers. To include a parameter marker in an SQL

statement, use the question mark (?) character.

The following Perl code creates a statement handle that accepts a parameter

marker for the WHERE clause of a SELECT statement. The code then executes the

statement twice using the input values 25000 and 35000 to replace the parameter

marker.

 my $sth = $dbhandle->prepare(

 ’SELECT firstnme, lastname

 FROM employee

 WHERE salary > ?’

);

 my $rc = $sth->execute(25000);

 ...
 my $rc = $sth->execute(35000);

SQLSTATE and SQLCODE Variables in Perl

 To return the SQLSTATE associated with a Perl DBI database handle or statement

handle, call the state method. For example, to return the SQLSTATE associated

with the database handle $dbhandle, include the following Perl statement in your

application:

 my $sqlstate = $dbhandle->state;

To return the SQLCODE associated with a Perl DBI database handle or statement

handle, call the err method. To return the message for an SQLCODE associated

with a Perl DBI database handle or statement handle, call the errstr method. For

example, to return the SQLCODE associated with the database handle $dbhandle,

include the following Perl statement in your application:

 my $sqlcode = $dbhandle->err;

Perl Restrictions

 The Perl DBI module supports only dynamic SQL. When you need to execute a

statement multiple times, you can improve the performance of your Perl DB2

applications by issuing a prepare call to prepare the statement.

Perl does not support multiple-thread database access.

For current information on the restrictions of the version of the DBD::DB2 driver

that you install on your workstation, refer to the CAVEATS file in the DBD::DB2

driver package.

 Related concepts:

v “Programming Considerations for Perl” on page 133

Chapter 6. Developing Perl Applications 135

Example of a Perl Program

 Following is an example of an application written in Perl:

 #!/usr/bin/perl

 use DBI;

 my $database=’dbi:DB2:sample’;

 my $user=’’;

 my $password=’’;

 my $dbh = DBI->connect($database, $user, $password)

 or die "Can’t connect to $database: $DBI::errstr";

 my $sth = $dbh->prepare(

 q{ SELECT firstnme, lastname

 FROM employee }

)

 or die "Can’t prepare statement: $DBI::errstr";

 my $rc = $sth->execute

 or die "Can’t execute statement: $DBI::errstr";

 print "Query will return $sth->{NUM_OF_FIELDS} fields.\n\n";

 print "$sth->{NAME}->[0]: $sth->{NAME}->[1]\n";

 while (($firstnme, $lastname) = $sth->fetchrow()) {

 print "$firstnme: $lastname\n";

 }

 # check for problems which may have terminated the fetch early

 warn $DBI::errstr if $DBI::err;

 $sth->finish;

 $dbh->disconnect;

 Related concepts:

v “Programming Considerations for Perl” on page 133

 Related tasks:

v “Building Perl applications” on page 136

 Related reference:

v “Perl Samples” in Samples Topics

Building Perl applications

 DB2 supports database access for client applications written in Perl 5.8 or later. At

the time of printing, release 0.78 of the DB2 driver (DBD::DB2) for the Perl

Database Interface (Perl DBI) Version 1.41 or later is supported and available for

AIX, HP-UX, Linux, Solaris and Windows. For information on how to obtain the

latest driver, visit http://www.ibm.com/db2/perl.

DB2 provides Perl sample programs located on UNIX in the sqllib/samples/perl

directory, and on Windows in the sqllib\samples\perl directory.

 Procedure:

 To run the perl interpreter on a DB2 Perl program on the command line, enter the

interpreter name and the program name (including extension):

136 Developing Perl and PHP Applications

http://www.ibm.com/software/data/db2/perl/

v If connecting locally on the server:

 perl dbauth.pl

v If connecting from a remote client:

 perl dbauth.pl sample <userid> <password>

Some programs require support files to be run. The tbsel sample program requires

several tables created by the tbselcreate.db2 CLP script. The tbselinit script

(UNIX), or the tbselinit.bat batch file (Windows), first calls tbseldrop.db2 to

drop the tables if they exist, and then calls tbselcreate.db2 to create them. So to

run the program, you would enter the following commands:

v If connecting locally on the server:

 tbselinit

 perl tbsel.pl

v If connecting from a remote client:

 tbselinit

 perl tbsel.pl sample <userid> <password>

Note: For a remote client, you need to modify the connect statement in the

tbselinit or tbselinit.bat file to hardcode your user ID and password:

db2 connect to sample user <userid> using <password>

Calling routines

DB2 client applications can access routines (stored procedures and user-defined

functions) that are created by supported host languages or by SQL procedures. For

example, the sample program spclient.pl can access the SQL procedures spserver

shared library, if it exists in the database.

Note: To build a host language routine, you must have the appropriate compiler

set up on the server. SQL procedures do not require a compiler. The shared

library can only be built on the server, and not from a remote client.

To demonstrate calling SQL procedures, go to the samples/sqlproc directory

(UNIX) or the samples\sqlproc directory (Windows) on the server, and run the

following commands to create and catalog the SQL procedures in the spserver

library:

 db2 connect to sample

 db2 -td@ -vf spserver.db2

Next, come back to the perl samples directory (this can be on a remote client

machine), and run the Perl interpreter on the client program to access the spserver

shared library:

v If connecting locally on the server, enter the following command:

 perl spclient

v If connecting from a remote client, enter the following command:

 perl spclient sample <userid> <password>

 Related concepts:

v “Perl DBI” on page 133

v “Programming Considerations for Perl” on page 133

 Related reference:

v “Perl Samples” in Samples Topics

Chapter 6. Developing Perl Applications 137

138 Developing Perl and PHP Applications

Part 3. Appendixes

© Copyright IBM Corp. 2006 139

140 Developing Perl and PHP Applications

Appendix A. DB2 Database technical information

Overview of the DB2 technical information

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

– Command help

– Message help
v Sample programs

IBM periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD or downloaded

from Passport Advantage as new information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how we can improve the DB2 documentation, send an e-mail to

db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but

cannot respond to you directly. Provide specific examples wherever possible so

that we can better understand your concerns. If you are providing feedback on a

specific topic or help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

© Copyright IBM Corp. 2006 141

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Sample files” in Samples Topics

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 147

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 142

DB2 technical library in hardcopy or PDF format

 The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. DB2 Version 9 manuals in PDF

format can be downloaded from www.ibm.com/software/data/db2/udb/support/
manualsv9.html.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect™ or other DB2 products.

 Table 12. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

142 Developing Perl and PHP Applications

http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html

Table 12. DB2 technical information (continued)

Name Form Number Available in print

Developing SQL and External

Routines

SC10-4373 No

Developing Java Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 13. DB2 Connect-specific technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Appendix A. DB2 Database technical information 143

Table 13. DB2 Connect-specific technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 14. WebSphere® Information Integration technical information

Name Form Number Available in print

WebSphere Information

Integration: Administration Guide

for Federated Systems

SC19-1020 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1018 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

SC19-1034 No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1030 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “Overview of the DB2 technical information” on page 141

v “About the Release Notes” in Release Notes

 Related tasks:

v “Ordering printed DB2 books” on page 144

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

144 Developing Perl and PHP Applications

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

 To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order.

 Related concepts:

v “Overview of the DB2 technical information” on page 141

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 142

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

Appendix A. DB2 Database technical information 145

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

 Related tasks:

v “Setting up access to DB2 contextual help and documentation” in Administration

Guide: Implementation

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the Tools —> Options —> Languages button. The Languages panel is

displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

146 Developing Perl and PHP Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Related concepts:

v “Overview of the DB2 technical information” on page 141

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics can be

available for download. The 'Last updated' value found at the bottom of most

topics indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the date of the most recent

downloadable update at http://www.ibm.com/software/data/db2/udb/support/
icupdate.html. You can then update your locally-installed Information Center if a

more recent downloadable update is available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM.

Note: Updates are also available on CD. For details on how to configure your

Information Center to install updates from CD, see the related links.
If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\doc\bin\help_start.bat

v On Linux:

Appendix A. DB2 Database technical information 147

http://www.ibm.com/software/data/db2/udb/support/icupdate.html
http://www.ibm.com/software/data/db2/udb/support/icupdate.html

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\doc\bin\help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file.

Do not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, run the help_end script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do

not use any other method to terminate the help_start script.
7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

148 Developing Perl and PHP Applications

DB2 tutorials

 The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 tutorials:

 To view the tutorial, click on the title.

Native XML data store

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

 Related concepts:

v “Visual Explain overview” in Administration Guide: Implementation

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “Overview of the DB2 technical information” on page 141

Appendix A. DB2 Database technical information 149

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

150 Developing Perl and PHP Applications

Appendix B. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 151

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

152 Developing Perl and PHP Applications

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

PHP Documentation Group copyright

This documentation incorporates text which is copyright 1997-2005 by the PHP

Documentation Group. The text was taken by permission from the PDO and

ibm_db2 sections of the PHP Manual (http://php.net/manual/) under the

following terms:

v Copyright (c) 1997-2005 by the PHP Documentation Group. This material may

be distributed only subject to the terms and conditions set forth in the Open

Publication License, v1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

v Distribution of substantively modified versions of this document is prohibited

without the explicit permission of the copyright holder.

v Distribution of the work or derivative of the work in any standard (paper) book

form is prohibited unless prior permission is obtained from the copyright holder.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Itanium®, Pentium®, and Xeon® are trademarks of Intel Corporation in the

United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 153

http://www.ibm.com/legal/copytrade.shtml

154 Developing Perl and PHP Applications

Index

A
application design

Perl example 136

prototyping in Perl 133

application development
Perl

building applications 136

PHP
building applications 5

application programs
Perl DBI 133

C
contacting IBM 157

D
databases

connecting with Perl 134

DB2 Information Center
updating 147

versions 146

viewing in different languages 146

documentation 141, 142

terms and conditions of use 150

dynamic SQL
Perl support 133

E
error handling

Perl 135

examples
Perl program 136

H
help

displaying 146

for SQL statements 145

host variables
unsupported in Perl 134

I
Information Center

updating 147

versions 146

viewing in different languages 146

N
notices 151

O
ordering DB2 books 144

P
parameter markers

Perl 135

Perl
application example 136

building applications 136

connecting to database 134

Database Interface (DBI)

specification 133

drivers 133

parameter markers 135

programming considerations 133

restrictions 135

returning data 134

SQLCODEs 135

SQLSTATEs 135

PHP
building applications 5

printed books
ordering 144

problem determination
online information 149

tutorials 149

R
retrieving data

Perl 134

S
SQL statements

displaying help 145

static SQL
Perl, unsupported 135

T
terms and conditions

use of publications 150

troubleshooting
online information 149

tutorials 149

tutorials
troubleshooting and problem

determination 149

Visual Explain 149

U
updates

DB2 Information Center 147

Information Center 147

V
Visual Explain

tutorial 149

© Copyright IBM Corp. 2006 155

156 Developing Perl and PHP Applications

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 2006 157

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

158 Developing Perl and PHP Applications

����

Printed in USA

SC10-4234-00

	Contents
	Part 1. Developing PHP Applications
	Chapter 1. Introduction to Developing PHP Applications
	Introduction to PHP application development for DB2
	Setting up the PHP environment on Windows
	Setting up the PHP environment on Linux or UNIX

	Chapter 2. Developing PHP Applications with ibm_db2
	Connecting to a DB2 database with PHP (ibm_db2)
	Retrieving database metadata (ibm_db2)
	Executing XQuery expressions in PHP (ibm_db2)
	Executing a single SQL statement in PHP (ibm_db2)
	Preparing and executing SQL statements in PHP (ibm_db2)
	Inserting large objects in PHP (ibm_db2)
	Fetching columns from result sets in PHP (ibm_db2)
	Fetching rows from result sets in PHP (ibm_db2)
	Fetching large objects in PHP (ibm_db2)
	Managing transactions in PHP (ibm_db2)
	Handling errors and warning messages (ibm_db2)
	Calling stored procedures with OUT or INOUT parameters in PHP (ibm_db2)
	Calling stored procedures that return multiple result sets in PHP (ibm_db2)

	Chapter 3. Developing PHP Applications with PDO
	Connecting to a DB2 database with PHP (PDO)
	Executing a single SQL statement in PHP that returns no result sets (PDO)
	Executing a single SQL statement in PHP that returns a result set (PDO)
	Preparing and executing SQL statements (PDO)
	Inserting large objects in PHP (PDO)
	Fetching columns from result sets in PHP (PDO)
	Fetching rows from result sets in PHP (PDO)
	Fetching large objects in PHP (PDO)
	Managing transactions in PHP (PDO)
	Handling errors and warnings in PHP (PDO)
	Calling stored procedures with OUT or INOUT parameters in PHP (PDO)
	Calling stored procedures that return multiple result sets in PHP (PDO)

	Chapter 4. ibm_db2 Extension Reference
	Connection functions
	db2_autocommit - Returns or sets the AUTOCOMMIT state for a database connection
	db2_close - Closes a database connection
	db2_commit - Commits a transaction
	db2_conn_error - Returns a string containing the SQLSTATE returned by the last connection attempt
	db2_conn_errormsg - Returns the last connection error message and SQLCODE value
	db2_connect - Returns a connection to a database
	db2_pconnect - Returns a persistent connection to a database
	db2_rollback - Rolls back a transaction

	Statement functions
	db2_bind_param - Binds a PHP variable to an SQL statement parameter
	db2_exec - Executes an SQL statement directly
	db2_execute - Executes a prepared SQL statement
	db2_free_result - Frees resources associated with a result set
	db2_free_stmt - Frees resources associated with the indicated statement resource
	db2_prepare - Prepares an SQL statement to be executed
	db2_stmt_error - Returns a string containing the SQLSTATE returned by an SQL statement
	db2_stmt_errormsg - Returns a string containing the last SQL statement error message

	Fetch functions
	db2_fetch_array - Returns an array, indexed by column position, representing a row in a result set
	db2_fetch_assoc - Returns an array, indexed by column name, representing a row in a result set
	db2_fetch_both - Returns an array, indexed by both column name and position, representing a row in a result set
	db2_fetch_object - Returns an object with properties representing columns in the fetched row
	db2_fetch_row - Sets the result set pointer to the next row or requested row
	db2_next_result - Requests the next result set from a stored procedure
	db2_result - Returns a single column from a row in the result set

	Metadata functions
	Database metadata functions
	db2_client_info - Returns an object with properties that describe the DB2 database client
	db2_column_privileges - Returns a result set listing the columns and associated privileges for a table
	db2_columns - Returns a result set listing the columns and associated metadata for a table
	db2_foreign_keys - Returns a result set listing the foreign keys for a table
	db2_primary_keys - Returns a result set listing primary keys for a table
	db2_procedure_columns - Returns a result set listing stored procedure parameters
	db2_procedures - Returns a result set listing the stored procedures registered in a database
	db2_server_info - Returns an object with properties that describe the DB2 database management system
	db2_special_columns - Returns a result set listing the unique row identifier columns for a table
	db2_statistics - Returns a result set listing the index and statistics for a table
	db2_table_privileges - Returns a result set listing the tables and associated privileges in a database
	db2_tables - Returns a result set listing the tables and associated metadata in a database

	Statement metadata functions
	db2_cursor_type - Returns the cursor type used by a statement resource
	db2_field_display_size - Returns the maximum number of bytes required to display a column
	db2_field_name - Returns the name of the column in the result set
	db2_field_num - Returns the position of the named column in a result set
	db2_field_precision - Returns the precision of the indicated column in a result set
	db2_field_scale - Returns the scale of the indicated column in a result set
	db2_field_type - Returns the data type of the indicated column in a result set
	db2_field_width - Returns the width of the current value of the indicated column in a result set
	db2_num_fields - Returns the number of fields contained in a result set
	db2_num_rows - Returns the number of rows affected by an SQL statement

	Chapter 5. PDO_ODBC Driver Reference
	PDO object methods
	PDO::__construct - Creates a PDO instance representing a connection to a database
	PDO::beginTransaction - Initiates a transaction
	PDO::commit - Commits a transaction
	PDO::errorCode - Fetch the SQLSTATE associated with the last operation on the database handle
	PDO::errorInfo - Fetch extended error information associated with the last operation on the database handle
	PDO::exec - Execute an SQL statement and return the number of affected rows
	PDO::getAttribute - Retrieve a database connection attribute
	PDO::getAvailableDrivers - Return an array of available PDO drivers
	PDO::lastInsertId - Returns the ID of the last inserted row or sequence value
	PDO::prepare - Prepares a statement for execution and returns a statement object
	PDO::query - Executes an SQL statement, returning a result set as a PDOStatement object
	PDO::quote - Quotes a string for use in a query
	PDO::rollBack - Rolls back a transaction
	PDO::setAttribute - Set an attribute

	PDOstatement object methods
	PDOStatement::bindColumn - Bind a column to a PHP variable
	PDOStatement::bindParam - Binds a parameter to the specified variable name
	PDOStatement::bindValue - Binds a value to a parameter
	PDOStatement::closeCursor - Closes the cursor, enabling the statement to be executed again
	PDOStatement::columnCount - Returns the number of columns in the result set
	PDOStatement::errorCode - Fetch the SQLSTATE associated with the last operation on the statement handle
	PDOStatement::errorInfo - Fetch extended error information associated with the last operation on the statement handle
	PDOStatement::execute - Executes a prepared statement
	PDOStatement::fetch - Fetches the next row from a result set
	PDOStatement::fetchAll - Returns an array containing all of the result set rows
	PDOStatement::fetchColumn - Returns a single column from the next row of a result set
	PDOStatement::getAttribute - Retrieve a statement attribute
	PDOStatement::getColumnMeta - Returns metadata for a column in a result set
	PDOStatement::nextRowset - Advances to the next result set in a statement handle associated with multiple result sets
	PDOStatement::rowCount - Returns the number of rows affected by the last SQL statement
	PDOStatement::setAttribute - Set a statement attribute
	PDOStatement::setFetchMode - Set the default fetch mode for this statement

	Part 2. Developing Perl Applications
	Chapter 6. Developing Perl Applications
	Programming Considerations for Perl
	Perl DBI
	Database Connections in Perl
	Fetching Results in Perl
	Parameter Markers in Perl
	SQLSTATE and SQLCODE Variables in Perl
	Perl Restrictions
	Example of a Perl Program
	Building Perl applications

	Part 3. Appendixes
	Appendix A. DB2 Database technical information
	Overview of the DB2 technical information
	Documentation feedback

	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	PHP Documentation Group copyright
	Trademarks

	Index
	Contacting IBM

