
IBM
®

DB2

Universal

Database
™

Administration

Guide:

Performance

Version

8.2

SC09-4821-01

���

IBM
®

DB2

Universal

Database
™

Administration

Guide:

Performance

Version

8.2

SC09-4821-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

use

this

book

.

.

.

.

.

.

.

.

.

. x

How

this

book

is

structured

.

.

.

.

.

.

.

.

. x

A

brief

overview

of

the

other

Administration

Guide

volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Administration

Guide:

Planning

.

.

.

.

.

. xi

Administration

Guide:

Implementation

.

.

.

. xii

Part

1.

Introduction

to

performance

1

Chapter

1.

Introduction

to

performance

3

Elements

of

performance

.

.

.

.

.

.

.

.

.

. 3

Performance

tuning

guidelines

.

.

.

.

.

.

.

. 3

The

performance

tuning

process

.

.

.

.

.

.

.

. 5

Developing

a

performance

improvement

process

. 5

Performance

information

that

users

can

provide

. 6

Performance

tuning

limits

.

.

.

.

.

.

.

.

. 6

Quick-start

tips

for

performance

tuning

.

.

.

.

. 7

Chapter

2.

Architecture

and

processes

. 9

DB2

architecture

and

process

overview

.

.

.

.

. 9

Deadlocks

between

applications

.

.

.

.

.

.

. 11

Disk

storage

overview

.

.

.

.

.

.

.

.

.

.

. 12

Disk-storage

performance

factors

.

.

.

.

.

. 12

Database

directories

and

files

.

.

.

.

.

.

. 12

Table

space

overview

.

.

.

.

.

.

.

.

.

.

. 14

SMS

table

spaces

.

.

.

.

.

.

.

.

.

.

. 14

DMS

table

spaces

.

.

.

.

.

.

.

.

.

.

. 15

Illustration

of

the

DMS

table-space

address

map

17

Tables

and

indexes

.

.

.

.

.

.

.

.

.

.

.

. 18

Table

and

index

management

for

standard

tables

18

Table

and

index

management

for

MDC

tables

.

. 21

Index

structure

.

.

.

.

.

.

.

.

.

.

.

. 23

Processes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Log

processing

.

.

.

.

.

.

.

.

.

.

.

. 25

Insert

processing

.

.

.

.

.

.

.

.

.

.

. 26

Update

processing

.

.

.

.

.

.

.

.

.

.

. 27

Client-server

processing

model

.

.

.

.

.

.

. 28

Memory

management

.

.

.

.

.

.

.

.

.

. 32

Part

2.

Tuning

application

performance

.

.

.

.

.

.

.

.

.

.

. 37

Chapter

3.

Application

considerations

39

Concurrency

control

and

isolation

levels

.

.

.

.

. 39

Concurrency

issues

.

.

.

.

.

.

.

.

.

.

. 39

Performance

impact

of

isolation

levels

.

.

.

. 40

Specifying

the

isolation

level

.

.

.

.

.

.

. 43

Concurrency

control

and

locking

.

.

.

.

.

.

. 46

Locks

and

concurrency

control

.

.

.

.

.

.

. 46

Lock

attributes

.

.

.

.

.

.

.

.

.

.

.

. 47

Locks

and

performance

.

.

.

.

.

.

.

.

. 49

Guidelines

for

locking

.

.

.

.

.

.

.

.

.

. 53

Correcting

lock

escalation

problems

.

.

.

.

. 55

Evaluate

uncommitted

data

via

lock

deferral

.

. 56

Lock

type

compatibility

.

.

.

.

.

.

.

.

. 59

Lock

modes

and

access

paths

for

standard

tables

60

Lock

modes

for

table

and

RID

index

scans

of

MDC

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Locking

for

block

index

scans

for

MDC

tables

.

. 65

Factors

that

affect

locking

.

.

.

.

.

.

.

.

.

. 68

Factors

that

affect

locking

.

.

.

.

.

.

.

.

.

. 68

Locks

and

types

of

application

processing

.

.

. 68

Locks

and

data-access

methods

.

.

.

.

.

.

. 69

Index

types

and

next-key

locking

.

.

.

.

.

. 70

Optimization

factors

.

.

.

.

.

.

.

.

.

.

. 71

Optimization

class

guidelines

.

.

.

.

.

.

. 72

Optimization

classes

.

.

.

.

.

.

.

.

.

. 73

Setting

the

optimization

class

.

.

.

.

.

.

. 76

Tuning

applications

.

.

.

.

.

.

.

.

.

.

.

. 77

Guidelines

for

restricting

select

statements

.

.

. 77

Specifying

row

blocking

to

reduce

overhead

.

. 80

Query

tuning

guidelines

.

.

.

.

.

.

.

.

. 81

Data

sampling

in

SQL

queries

.

.

.

.

.

.

. 82

Efficient

SELECT

statements

.

.

.

.

.

.

.

. 83

Compound

SQL

guidelines

.

.

.

.

.

.

.

. 85

Character-conversion

guidelines

.

.

.

.

.

. 86

Guidelines

for

stored

procedures

.

.

.

.

.

. 87

Parallel

processing

for

applications

.

.

.

.

. 88

Improving

performance

by

binding

with

REOPT

89

Chapter

4.

Environmental

considerations

.

.

.

.

.

.

.

.

.

.

. 91

Database

partition

group

impact

on

query

optimization

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Table

space

impact

on

query

optimization

.

.

.

. 91

Server

options

affecting

federated

databases

.

.

. 94

Chapter

5.

System

catalog

statistics

.

. 95

Catalog

statistics

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Collecting

and

analyzing

catalog

statistics

.

.

.

. 96

Guidelines

for

collecting

and

updating

statistics

97

Collecting

catalog

statistics

.

.

.

.

.

.

.

. 98

Collecting

distribution

statistics

for

specific

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Collecting

index

statistics

.

.

.

.

.

.

.

. 100

Collecting

statistics

on

a

sample

of

the

table

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Collecting

statistics

using

a

statistics

profile

.

. 102

Automatic

statistics

collection

.

.

.

.

.

.

. 104

Using

automatic

statistics

collection

.

.

.

.

. 105

Statistics

collected

.

.

.

.

.

.

.

.

.

.

.

. 106

Catalog

statistics

tables

.

.

.

.

.

.

.

.

. 106

Statistical

information

that

is

collected

.

.

.

. 111

Distribution

statistics

.

.

.

.

.

.

.

.

.

. 112

Optimizer

use

of

distribution

statistics

.

.

.

. 115

Extended

examples

of

distribution-statistics

use

116

Detailed

index

statistics

.

.

.

.

.

.

.

.

. 120

©

Copyright

IBM

Corp.

1993

-

2004

iii

|

|

|

|

|

|

|

|

|

|

|

Sub-element

statistics

.

.

.

.

.

.

.

.

.

. 121

Catalog

statistics

that

users

can

update

.

.

.

.

. 122

Statistics

for

user-defined

functions

.

.

.

.

. 123

Catalog

statistics

for

modeling

and

what-if

planning

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Statistics

for

modeling

production

databases

.

. 125

General

rules

for

updating

catalog

statistics

manually

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Rules

for

updating

column

statistics

manually

128

Rules

for

updating

distribution

statistics

manually

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Rules

for

updating

table

and

nickname

statistics

manually

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Rules

for

updating

index

statistics

manually

.

. 131

Chapter

6.

Understanding

the

SQL

compiler

.

.

.

.

.

.

.

.

.

.

.

.

. 133

The

SQL

compiler

process

.

.

.

.

.

.

.

.

. 133

Configuration

parameters

that

affect

query

optimization

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Query

rewriting

.

.

.

.

.

.

.

.

.

.

.

. 139

Query

rewriting

methods

and

examples

.

.

. 139

Compiler

rewrite

example:

view

merges

.

.

. 140

Compiler

rewrite

example:

DISTINCT

elimination

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Compiler

rewrite

example:

implied

predicates

144

Column

correlation

for

multiple

predicates

.

. 145

Query

optimization

using

the

REOPT

bind

option

147

Data

access

methods

.

.

.

.

.

.

.

.

.

.

. 148

Data-access

methods

.

.

.

.

.

.

.

.

.

. 148

Data

access

through

index

scans

.

.

.

.

.

. 148

Types

of

index

access

.

.

.

.

.

.

.

.

.

. 151

Index

access

and

cluster

ratios

.

.

.

.

.

.

. 153

Predicate

terminology

.

.

.

.

.

.

.

.

.

. 154

Join

methods

and

strategies

.

.

.

.

.

.

.

. 156

Joins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Join

methods

.

.

.

.

.

.

.

.

.

.

.

. 157

Strategies

for

selecting

optimal

joins

.

.

.

.

. 160

Replicated

materialized-query

tables

in

partitioned

databases

.

.

.

.

.

.

.

.

.

. 162

Join

strategies

in

partitioned

databases

.

.

.

. 164

Join

methods

in

partitioned

databases

.

.

.

. 165

Effects

of

sorting

and

grouping

.

.

.

.

.

.

. 171

Optimization

strategies

.

.

.

.

.

.

.

.

.

. 173

Optimization

strategies

for

intra-partition

parallelism

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Optimization

strategies

for

MDC

tables

.

.

.

. 175

Materialized

query

tables

.

.

.

.

.

.

.

.

. 176

Federated

database

query-compiler

phases

.

.

. 178

Federated

database

pushdown

analysis

.

.

.

. 178

Guidelines

for

analyzing

where

a

federated

query

is

evaluated

.

.

.

.

.

.

.

.

.

.

. 182

Remote

SQL

generation

and

global

optimization

in

federated

databases

.

.

.

.

.

.

.

.

. 184

Global

analysis

of

federated

database

queries

186

Chapter

7.

SQL

Explain

facility

.

.

.

. 189

SQL

explain

facility

.

.

.

.

.

.

.

.

.

.

. 189

Tools

for

collecting

and

analyzing

explain

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Explain

tools

.

.

.

.

.

.

.

.

.

.

.

. 190

Guidelines

for

using

explain

information

.

.

. 191

Explain

information

collected

.

.

.

.

.

.

.

. 193

The

explain

tables

and

organization

of

explain

information

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Explain

information

for

data

objects

.

.

.

.

. 194

Explain

information

for

data

operators

.

.

.

. 195

Explain

information

for

instances

.

.

.

.

.

. 196

Guidelines

for

capturing

explain

information

198

Guidelines

for

analyzing

explain

information

.

.

. 200

The

Design

Advisor

.

.

.

.

.

.

.

.

.

.

. 201

Design

Advisor

output

.

.

.

.

.

.

.

.

. 202

Defining

a

workload

for

the

Design

Advisor

.

.

. 204

Using

the

Design

Advisor

to

migrate

from

a

single-partition

to

a

multiple-partition

database

.

. 205

Design

Advisor

limitations

and

restrictions

.

.

. 206

Part

3.

Tuning

and

configuring

your

system

.

.

.

.

.

.

.

.

.

.

. 209

Chapter

8.

Operational

performance

211

Memory

usage

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Organization

of

memory

use

.

.

.

.

.

.

. 211

Database

manager

shared

memory

.

.

.

.

. 213

The

FCM

buffer

pool

and

memory

requirements

215

Global

memory

and

parameters

that

control

it

216

Guidelines

for

tuning

parameters

that

affect

memory

usage

.

.

.

.

.

.

.

.

.

.

.

. 218

Buffer

pools

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Buffer

pool

management

.

.

.

.

.

.

.

. 220

Secondary

buffer

pools

in

extended

memory

on

32-bit

platforms

.

.

.

.

.

.

.

.

.

.

. 221

Buffer

pool

management

of

data

pages

.

.

.

. 223

Proactive

page

cleaning

.

.

.

.

.

.

.

.

. 224

Illustration

of

buffer

pool

data-page

management

.

.

.

.

.

.

.

.

.

.

.

. 225

Management

of

multiple

database

buffer

pools

226

Prefetching

concepts

.

.

.

.

.

.

.

.

.

.

. 229

Prefetching

data

into

the

buffer

pool

.

.

.

. 229

Sequential

prefetching

.

.

.

.

.

.

.

.

. 230

Block-based

buffer

pools

for

improved

sequential

prefetching

.

.

.

.

.

.

.

.

. 231

List

prefetching

.

.

.

.

.

.

.

.

.

.

.

. 232

I/O

management

.

.

.

.

.

.

.

.

.

.

.

. 233

I/O

server

configuration

for

prefetching

and

parallelism

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Illustration

of

prefetching

with

parallel

I/O

.

. 234

Parallel

I/O

management

.

.

.

.

.

.

.

. 235

Guidelines

for

sort

performance

.

.

.

.

.

. 236

Table

management

.

.

.

.

.

.

.

.

.

.

. 238

Table

reorganization

.

.

.

.

.

.

.

.

.

. 238

Determining

when

to

reorganize

tables

.

.

.

. 240

Choosing

a

table

reorganization

method

.

.

. 242

Index

management

.

.

.

.

.

.

.

.

.

.

. 244

Advantages

and

disadvantages

of

indexes

.

.

. 244

Index

planning

tips

.

.

.

.

.

.

.

.

.

. 246

Index

performance

tips

.

.

.

.

.

.

.

.

. 248

Index

cleanup

and

maintenance

.

.

.

.

.

. 251

Index

reorganization

.

.

.

.

.

.

.

.

.

. 252

Online

index

defragmentation

.

.

.

.

.

.

. 254

iv

Administration

Guide:

Performance

||

|

|

|

|

|

|

|

|

|

|

|

DMS

device

considerations

.

.

.

.

.

.

.

.

. 255

Agent

management

.

.

.

.

.

.

.

.

.

.

. 256

Database

agents

.

.

.

.

.

.

.

.

.

.

. 256

Database

agent

management

.

.

.

.

.

.

. 258

Configuration

parameters

that

affect

the

number

of

agents

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Connection-concentrator

improvements

for

client

connections

.

.

.

.

.

.

.

.

.

.

. 259

Agents

in

a

partitioned

database

.

.

.

.

.

. 261

The

database

system

monitor

information

.

.

.

. 262

Chapter

9.

Using

the

governor

.

.

.

. 265

The

Governor

utility

.

.

.

.

.

.

.

.

.

.

. 265

Governor

startup

and

shutdown

.

.

.

.

.

.

. 266

Starting

and

stopping

the

governor

.

.

.

.

. 266

The

Governor

daemon

.

.

.

.

.

.

.

.

. 267

Governor

configuration

.

.

.

.

.

.

.

.

.

. 268

Configuring

the

Governor

.

.

.

.

.

.

.

. 268

The

governor

configuration

file

.

.

.

.

.

. 269

Governor

rule

elements

.

.

.

.

.

.

.

.

. 271

Example

of

a

Governor

configuration

file

.

.

. 275

Governor

log

file

use

.

.

.

.

.

.

.

.

.

.

. 276

Governor

log

files

.

.

.

.

.

.

.

.

.

.

. 276

Governor

log

file

queries

.

.

.

.

.

.

.

. 280

Chapter

10.

Scaling

your

configuration

.

.

.

.

.

.

.

.

.

.

. 281

Management

of

database

server

capacity

.

.

.

. 281

Partitions

in

a

partitioned

database

.

.

.

.

.

. 282

Adding

a

partition

to

a

running

database

system

283

Adding

a

partition

to

a

stopped

database

system

on

Windows

NT

.

.

.

.

.

.

.

.

.

.

.

. 284

Adding

a

partition

to

a

stopped

database

system

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

Node-addition

error

recovery

.

.

.

.

.

.

.

. 287

Dropping

a

database

partition

.

.

.

.

.

.

.

. 288

Chapter

11.

Redistributing

Data

Across

Database

Partitions

.

.

.

.

. 289

Data

redistribution

.

.

.

.

.

.

.

.

.

.

. 289

Determining

whether

to

redistribute

data

.

.

.

. 290

Redistributing

data

across

partitions

.

.

.

.

.

. 291

Log

space

requirements

for

data

redistribution

.

. 293

Redistribution

error

recovery

.

.

.

.

.

.

.

. 294

Redistribute

stored

procedures

and

functions

.

.

. 295

get_swrd_settings

stored

procedure

.

.

.

.

. 295

set_swrd_settings

stored

procedure

.

.

.

.

. 296

analyze_log_space

stored

procedure

.

.

.

.

. 297

generate_Distfile

stored

procedure

.

.

.

.

. 298

stepwise_redistribute_dbpg

stored

procedure

298

db_partitions

UDF

.

.

.

.

.

.

.

.

.

.

. 299

Usage

example

.

.

.

.

.

.

.

.

.

.

.

. 300

Chapter

12.

Benchmark

testing

.

.

.

. 303

Benchmark

testing

.

.

.

.

.

.

.

.

.

.

.

. 303

Benchmark

preparation

.

.

.

.

.

.

.

.

.

. 304

Benchmark

test

creation

.

.

.

.

.

.

.

.

.

. 305

Examples

of

db2batch

tests

.

.

.

.

.

.

.

.

. 307

Benchmark

test

execution

.

.

.

.

.

.

.

.

. 311

Benchmark

test

analysis

example

.

.

.

.

.

.

. 312

Chapter

13.

Configuring

DB2

.

.

.

.

. 315

Configuration

parameters

.

.

.

.

.

.

.

.

. 315

Configuration

parameter

tuning

.

.

.

.

.

.

. 316

Configuring

DB2

with

configuration

parameters

317

Configuring

parameters

dynamically

.

.

.

.

. 320

Configuration

parameters

summary

.

.

.

.

.

. 323

Database

Manager

Configuration

Parameter

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Database

Configuration

Parameter

Summary

328

DB2

Administration

Server

(DAS)

Configuration

Parameter

Summary

.

.

.

.

.

.

.

.

.

. 334

Parameter

details

by

function

.

.

.

.

.

.

.

. 335

Capacity

management

.

.

.

.

.

.

.

.

.

. 336

Database

shared

memory

.

.

.

.

.

.

.

. 336

Application

shared

memory

.

.

.

.

.

.

. 346

Agent

private

memory

.

.

.

.

.

.

.

.

. 349

Agent/application

communication

memory

.

. 358

Database

manager

instance

memory

.

.

.

.

. 362

Locks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

I/O

and

storage

.

.

.

.

.

.

.

.

.

.

. 370

Agents

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

Stored

procedures

and

user-defined

functions

386

Logging

and

recovery

.

.

.

.

.

.

.

.

.

. 389

Database

log

files

.

.

.

.

.

.

.

.

.

.

. 390

Database

log

activity

.

.

.

.

.

.

.

.

.

. 399

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

Distributed

unit

of

work

recovery

.

.

.

.

. 418

Database

management

.

.

.

.

.

.

.

.

.

. 422

Query

Enabler

.

.

.

.

.

.

.

.

.

.

.

. 422

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 423

DB2

Data

Links

Manager

.

.

.

.

.

.

.

. 425

Status

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

Compiler

settings

.

.

.

.

.

.

.

.

.

.

. 431

Automated

maintenance

.

.

.

.

.

.

.

.

. 437

Communications

.

.

.

.

.

.

.

.

.

.

.

. 439

Communication

protocol

setup

.

.

.

.

.

. 439

DB2

Discovery

.

.

.

.

.

.

.

.

.

.

.

. 441

Partitioned

database

environment

.

.

.

.

.

. 443

Communications

.

.

.

.

.

.

.

.

.

.

. 443

Parallel

processing

.

.

.

.

.

.

.

.

.

.

. 449

Instance

management

.

.

.

.

.

.

.

.

.

. 451

Diagnostic

.

.

.

.

.

.

.

.

.

.

.

.

. 451

Database

system

monitor

parameters

.

.

.

. 455

System

management

.

.

.

.

.

.

.

.

.

. 456

Instance

administration

.

.

.

.

.

.

.

.

. 464

DB2

Administration

Server

.

.

.

.

.

.

.

.

. 477

authentication

-

Authentication

type

DAS

.

.

. 478

contact_host

-

Location

of

contact

list

.

.

.

. 478

das_codepage

-

DAS

code

page

.

.

.

.

.

. 479

das_territory

-

DAS

territory

.

.

.

.

.

.

. 479

dasadm_group

-

DAS

administration

authority

group

name

.

.

.

.

.

.

.

.

.

.

.

.

. 479

db2system

-

Name

of

the

DB2

server

system

480

discover

-

DAS

discovery

mode

.

.

.

.

.

. 481

exec_exp_task

-

Execute

expired

tasks

.

.

.

. 481

jdk_64_path

-

64-Bit

Software

Developer’s

Kit

for

Java

installation

path

DAS

.

.

.

.

.

.

. 482

jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path

DAS

.

.

.

.

.

.

.

.

.

. 482

sched_enable

-

Scheduler

mode

.

.

.

.

.

. 483

sched_userid

-

Scheduler

user

ID

.

.

.

.

.

. 484

Contents

v

|

|

smtp_server

-

SMTP

server

.

.

.

.

.

.

.

. 484

toolscat_db

-

Tools

catalog

database

.

.

.

.

. 485

toolscat_inst

-

Tools

catalog

database

instance

485

toolscat_schema

-

Tools

catalog

database

schema

486

Part

4.

Appendixes

.

.

.

.

.

.

.

. 487

Appendix

A.

DB2

Registry

and

Environment

Variables

.

.

.

.

.

.

. 489

DB2

registry

and

environment

variables

.

.

.

. 489

Registry

and

environment

variables

by

category

490

General

registry

variables

.

.

.

.

.

.

.

. 490

System

environment

variables

.

.

.

.

.

.

. 492

Communications

variables

.

.

.

.

.

.

.

. 496

Command-line

variables

.

.

.

.

.

.

.

.

. 499

MPP

configuration

variables

.

.

.

.

.

.

. 500

SQL

compiler

variables

.

.

.

.

.

.

.

.

. 502

Performance

variables

.

.

.

.

.

.

.

.

. 506

Data

links

variables

.

.

.

.

.

.

.

.

.

. 516

Miscellaneous

variables

.

.

.

.

.

.

.

.

. 518

Appendix

B.

Explain

tables

.

.

.

.

. 525

Explain

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 525

EXPLAIN_ARGUMENT

table

.

.

.

.

.

.

.

. 526

EXPLAIN_INSTANCE

table

.

.

.

.

.

.

.

. 530

EXPLAIN_OBJECT

table

.

.

.

.

.

.

.

.

.

. 532

EXPLAIN_OPERATOR

table

.

.

.

.

.

.

.

. 535

EXPLAIN_PREDICATE

table

.

.

.

.

.

.

.

. 537

EXPLAIN_STATEMENT

table

.

.

.

.

.

.

.

. 539

EXPLAIN_STREAM

table

.

.

.

.

.

.

.

.

. 541

ADVISE_INDEX

table

.

.

.

.

.

.

.

.

.

. 543

ADVISE_INSTANCE

table

.

.

.

.

.

.

.

.

. 546

ADVISE_MQT

table

.

.

.

.

.

.

.

.

.

.

. 547

ADVISE_PARTITION

table

.

.

.

.

.

.

.

.

. 548

ADVISE_TABLE

table

.

.

.

.

.

.

.

.

.

. 549

ADVISE_WORKLOAD

table

.

.

.

.

.

.

.

. 550

Appendix

C.

SQL

explain

tools

.

.

.

. 551

SQL

explain

tools

.

.

.

.

.

.

.

.

.

.

.

. 551

db2expln

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 552

db2expln

-

SQL

Explain

.

.

.

.

.

.

.

.

. 552

Usage

notes

for

db2expln

.

.

.

.

.

.

.

. 557

dynexpln

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 558

Explain

output

information

.

.

.

.

.

.

.

.

. 558

Description

of

db2expln

and

dynexpln

output

558

Table

access

information

.

.

.

.

.

.

.

.

. 559

Temporary

table

information

.

.

.

.

.

.

. 564

Join

information

.

.

.

.

.

.

.

.

.

.

. 566

Data

stream

information

.

.

.

.

.

.

.

.

. 568

Insert,

update,

and

delete

information

.

.

.

. 568

Block

and

row

identifier

preparation

information

.

.

.

.

.

.

.

.

.

.

.

.

. 569

Aggregation

information

.

.

.

.

.

.

.

. 570

Parallel

processing

information

.

.

.

.

.

. 571

Federated

query

information

.

.

.

.

.

.

. 573

Miscellaneous

information

.

.

.

.

.

.

.

. 574

Examples

of

db2expln

and

dynexpln

Output

.

.

. 576

Examples

of

db2expln

and

dynexpln

output

.

. 576

Example

one:

no

parallelism

.

.

.

.

.

.

. 576

Example

two:

single-partition

plan

with

intra-partition

parallelism

.

.

.

.

.

.

.

. 578

Example

three:

multipartition

plan

with

inter-partition

parallelism

.

.

.

.

.

.

.

. 579

Example

four:

multipartition

plan

with

inter-partition

and

intra-partition

parallelism

.

. 582

Example

five:

federated

database

plan

.

.

.

. 584

Appendix

D.

db2exfmt

-

Explain

Table

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

. 587

Appendix

E.

Cross-node

recovery

with

the

db2adutl

command

and

the

logarchopt1

and

vendoropt

database

configuration

parameters

.

.

.

.

.

. 589

Appendix

F.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 595

DB2

documentation

and

help

.

.

.

.

.

.

.

. 595

DB2

documentation

updates

.

.

.

.

.

.

. 595

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 596

DB2

Information

Center

installation

scenarios

.

. 597

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 600

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 602

Invoking

the

DB2

Information

Center

.

.

.

.

. 604

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 605

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 606

DB2

PDF

and

printed

documentation

.

.

.

.

. 607

Core

DB2

information

.

.

.

.

.

.

.

.

. 607

Administration

information

.

.

.

.

.

.

. 607

Application

development

information

.

.

.

. 608

Business

intelligence

information

.

.

.

.

.

. 609

DB2

Connect

information

.

.

.

.

.

.

.

. 609

Getting

started

information

.

.

.

.

.

.

.

. 610

Tutorial

information

.

.

.

.

.

.

.

.

.

. 610

Optional

component

information

.

.

.

.

.

. 610

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 611

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 612

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 612

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 613

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 614

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 615

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 615

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 615

DB2

troubleshooting

information

.

.

.

.

.

.

. 616

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 617

Keyboard

input

and

navigation

.

.

.

.

.

. 617

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 617

Compatibility

with

assistive

technologies

.

.

. 618

Accessible

documentation

.

.

.

.

.

.

.

. 618

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 618

vi

Administration

Guide:

Performance

||
||
||
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 620

Appendix

G.

Notices

.

.

.

.

.

.

.

. 621

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 623

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 625

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 637

Product

information

.

.

.

.

.

.

.

.

.

.

. 637

Contents

vii

|
||

viii

Administration

Guide:

Performance

About

this

book

The

Administration

Guide

in

its

three

volumes

provides

information

necessary

to

use

and

administer

the

DB2

relational

database

management

system

(RDBMS)

products,

and

includes:

v

Information

about

database

design

(found

in

Administration

Guide:

Planning)

v

Information

about

implementing

and

managing

databases

(found

in

Administration

Guide:

Implementation)

v

Information

about

configuring

and

tuning

your

database

environment

to

improve

performance

(found

in

Administration

Guide:

Performance)

Many

of

the

tasks

described

in

this

book

can

be

performed

using

different

interfaces:

v

The

Command

Line

Processor,

which

allows

you

to

access

and

manipulate

databases

from

a

graphical

interface.

From

this

interface,

you

can

also

execute

SQL

statements

and

DB2

utility

functions.

Most

examples

in

this

book

illustrate

the

use

of

this

interface.

For

more

information

about

using

the

command

line

processor,

see

the

Command

Reference.

v

The

application

programming

interface,

which

allows

you

to

execute

DB2

utility

functions

within

an

application

program.

For

more

information

about

using

the

application

programming

interface,

see

the

Administrative

API

Reference.

v

The

Control

Center,

which

allows

you

to

use

a

graphical

user

interface

to

perform

administrative

tasks

such

as

configuring

the

system,

managing

directories,

backing

up

and

recovering

the

system,

scheduling

jobs,

and

managing

media.

The

Control

Center

also

contains

Replication

Administration,

which

allows

you

set

up

the

replication

of

data

between

systems.

Further,

the

Control

Center

allows

you

to

execute

DB2

utility

functions

through

a

graphical

user

interface.

There

are

different

methods

to

invoke

the

Control

Center

depending

on

your

platform.

For

example,

use

the

db2cc

command

on

a

command

line,

select

the

Control

Center

icon

from

the

DB2

folder,

or

use

the

Start

menu

on

Windows

platforms.

For

introductory

help,

select

Getting

started

from

the

Help

pull-down

of

the

Control

Center

window.

The

Visual

Explain

tool

is

invoked

from

the

Control

Center.

The

Control

Center

is

available

in

three

views:

–

Basic.

This

view

shows

the

core

DB2

UDB

functions

on

essential

objects

such

as

databases,

tables,

and

stored

procedures.

–

Advanced.

This

view

has

all

of

the

objects

and

actions

available.

Use

this

view

if

you

are

working

in

an

enterprise

environment

and

you

want

to

connect

to

DB2

for

z/OS

or

IMS.

–

Custom.

This

view

gives

you

the

ability

to

tailor

the

object

tree

and

the

object

actions.

There

are

other

tools

that

you

can

use

to

perform

administration

tasks.

They

include:

v

The

Command

Editor

which

replaces

the

Command

Center

and

is

used

to

generate,

edit,

run,

and

manipulate

SQL

statements;

IMS

and

DB2

commands;

work

with

the

resulting

output;

and

to

view

a

graphical

representation

of

the

access

plan

for

explained

SQL

statements.

©

Copyright

IBM

Corp.

1993

-

2004

ix

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

v

The

Development

Center

to

provide

support

for

native

SQL

Persistent

Storage

Module

(PSM)

stored

procedures;

for

Java

stored

procedures

for

iSeries

Version

5

Release

3

and

later;

user-defined

functions

(UDFs);

and

structured

types.

v

The

Health

Center

provides

a

tool

to

assist

DBAs

in

the

resolution

of

performance

and

resource

allocation

problems.

v

The

Tools

Settings

to

change

the

settings

for

the

Control

Center,

Health

Center,

and

Replication

Center.

v

The

Journal

to

schedule

jobs

that

are

to

run

unattended.

v

The

Data

Warehouse

Center

to

manage

warehouse

objects.

Who

should

use

this

book

This

book

is

intended

primarily

for

database

administrators,

system

administrators,

security

administrators

and

system

operators

who

need

to

design,

implement

and

maintain

a

database

to

be

accessed

by

local

or

remote

clients.

It

can

also

be

used

by

programmers

and

other

users

who

require

an

understanding

of

the

administration

and

operation

of

the

DB2

Universal

Database™

(DB2

UDB)

relational

database

management

system.

How

this

book

is

structured

This

book

contains

information

about

the

following

major

topics:

Introduction

to

Performance

v

Chapter

1,

“Introduction

to

performance,”

introduces

concepts

and

considerations

for

managing

and

improving

DB2

UDB

performance.

v

Chapter

2,

“Architecture

and

processes,”

introduces

underlying

DB2

Universal

Database

architecture

and

processes.

Tuning

Application

Performance

v

Chapter

3,

“Application

considerations,”

describes

some

techniques

for

improving

database

performance

when

designing

your

applications.

v

Chapter

4,

“Environmental

considerations,”

describes

some

techniques

for

improving

database

performance

when

setting

up

your

database

environment.

v

Chapter

5,

“System

catalog

statistics,”

describes

how

statistics

about

your

data

can

be

collected

and

used

to

ensure

optimal

performance.

v

Chapter

6,

“Understanding

the

SQL

compiler,”

describes

what

happens

to

an

SQL

statement

when

it

is

compiled

using

the

SQL

compiler.

v

Chapter

7,

“SQL

Explain

facility,”

describes

the

Explain

facility,

which

allows

you

to

examine

the

choices

the

SQL

compiler

has

made

to

access

your

data.

Tuning

and

Configuring

Your

System

v

Chapter

8,

“Operational

performance,”

provides

an

overview

of

how

the

database

manager

uses

memory

and

other

considerations

that

affect

run-time

performance.

v

Chapter

9,

“Using

the

governor,”

provides

an

introduction

to

the

use

of

a

governor

to

control

some

aspects

of

database

management.

v

Chapter

10,

“Scaling

your

configuration,”

introduces

some

considerations

and

tasks

associated

with

increasing

the

size

of

your

database

systems.

v

Chapter

11,

“Redistributing

Data

Across

Database

Partitions,”

discusses

the

tasks

required

in

a

partitioned

database

environment

to

redistribute

data

across

partitions.

x

Administration

Guide:

Performance

|
|
|

v

Chapter

12,

“Benchmark

testing,”

provides

an

overview

of

benchmark

testing

and

how

to

perform

benchmark

testing.

v

Chapter

13,

“Configuring

DB2,”

discusses

the

database

manager

and

database

configuration

files

and

the

values

for

the

database

manager,

database,

and

DAS

configuration

parameters.

Appendixes

v

Appendix

A,

“DB2

Registry

and

Environment

Variables,”

presents

profile

registry

values

and

environment

variables.

v

Appendix

B,

“Explain

tables,”

The

explain

table

section

provides

information

about

the

tables

used

by

the

DB2

Explain

facility

and

how

to

create

those

tables.

v

Appendix

C,

“SQL

explain

tools,”

provides

information

on

using

the

DB2

explain

tools:

db2expln

and

dynexpln.

v

Appendix

D,

“db2exfmt

-

Explain

Table

Format,”

formats

the

contents

of

the

DB2

explain

tables.

A

brief

overview

of

the

other

Administration

Guide

volumes

Administration

Guide:

Planning

The

Administration

Guide:

Planning

is

concerned

with

database

design.

It

presents

logical

and

physical

design

issues

and

distributed

transaction

issues.

The

specific

chapters

and

appendixes

in

that

volume

are

briefly

described

here:

Database

Concepts

v

″Basic

relational

database

concepts″

presents

an

overview

of

database

objects,

including

recovery

objects,

storage

objects,

and

system

objects.

v

″Parallel

database

systems″

provides

an

introduction

to

the

types

of

parallelism

available

with

DB2.

v

″About

data

warehousing″

provides

an

overview

of

data

warehousing

and

data

warehousing

tasks.

Database

Design

v

″Logical

database

design″

discusses

the

concepts

and

guidelines

for

logical

database

design.

v

″Physical

database

design″

discusses

the

guidelines

for

physical

database

design,

including

considerations

related

to

data

storage.

v

″Designing

distributed

databases″

discusses

how

you

can

access

multiple

databases

in

a

single

transaction.

v

″Designing

for

Transaction

Managers″

discusses

how

you

can

use

your

databases

in

a

distributed

transaction

processing

environment.

Appendixes

v

″Incompatibilities

between

releases″

presents

the

incompatibilities

introduced

by

Version

7

and

Version

8,

as

well

as

future

incompatibilities

that

you

should

be

aware

of.

v

″National

language

support

(NLS)″

describes

DB2

National

Language

Support,

including

information

about

territories,

languages,

and

code

pages.

v

″Enabling

large

page

support

in

a

64-bit

environment

(AIX)″

discusses

the

support

for

a

16

MB

page

size

and

how

to

enable

this

support.

About

this

book

xi

Administration

Guide:

Implementation

The

Administration

Guide:

Implementation

is

concerned

with

the

implementation

of

your

database

design.

The

specific

chapters

and

appendixes

in

that

volume

are

briefly

described

here:

Implementing

Your

Design

v

″Before

creating

a

database″

describes

the

prerequisites

needed

before

creating

a

database

and

the

objects

within

a

database.

v

″Creating

and

using

a

DB2

Administration

Server

(DAS)″

discusses

what

a

DAS

is,

how

to

create

it,

and

how

to

use

it.

v

″Creating

a

database″

describes

those

tasks

associated

with

the

creation

of

a

database

and

related

database

objects.

v

″Creating

tables

and

other

related

table

objects″

describes

how

to

create

tables

with

specific

characteristics

when

implementing

your

database

design.

v

″Altering

a

Database″

discusses

what

must

be

done

before

altering

a

database

and

those

tasks

associated

with

the

modifying

or

dropping

of

a

database

or

related

database

objects.

v

″Altering

tables

and

other

related

table

objects″

describes

how

to

drop

tables

or

how

to

modify

specific

characteristics

associated

with

those

tables.

Dropping

and

modifying

related

table

objects

is

also

presented

here.

Database

Security

v

″Controlling

Database

Access″

describes

how

you

can

control

access

to

your

database’s

resources.

v

″Auditing

DB2

Activities″

describes

how

you

can

detect

and

monitor

unwanted

or

unanticipated

access

to

data.

Appendixes

v

″Conforming

to

the

naming

rules″

presents

the

rules

to

follow

when

naming

databases

and

objects.

v

″Using

automatic

client

rerouting″

discusses

the

automatic

rerouting

of

client

applications

and

how

to

enable

this

support.

v

″Using

lightweight

directory

access

protocol

(LDAP)

directory

services″

provides

information

about

how

you

can

use

LDAP

Directory

Services.

v

″Issuing

commands

to

multiple

database

partitions″

discusses

the

use

of

the

db2_all

and

rah

shell

scripts

to

send

commands

to

all

partitions

in

a

partitioned

database

environment.

v

″Windows

Management

Instrumentation

(WMI)

support″

describes

how

DB2

supports

this

management

infrastructure

standard

to

integrate

various

hardware

and

software

management

systems.

Also

discussed

is

how

DB2

integrates

with

WMI.

v

″Using

Windows

NT

security″

describes

how

DB2

Universal

Database

works

with

Windows

NT

security.

v

″Using

the

Windows

Performance

Monitor″

provides

information

about

registering

DB2

with

the

Windows

NT

Performance

Monitor,

and

using

the

performance

information.

v

″Using

Windows

database

partition

servers″

provides

information

about

the

utilities

available

to

work

with

database

partition

servers

on

Windows

NT

or

Windows

2000.

v

″Configuring

multiple

logical

nodes″

describes

how

to

configure

multiple

logical

nodes

in

a

partitioned

database

environment.

xii

Administration

Guide:

Performance

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

v

″Extending

the

Control

Center″

provides

information

about

how

you

can

extend

the

Control

Center

by

adding

new

tool

bar

buttons

including

new

actions,

adding

new

object

definitions,

and

adding

new

action

definitions.

Note:

Two

chapters

have

been

removed

from

this

book.

All

of

the

information

on

the

DB2

utilities

for

moving

data,

and

the

comparable

topics

from

the

Command

Reference

and

the

Administrative

API

Reference,

have

been

consolidated

into

the

Data

Movement

Utilities

Guide

and

Reference.

The

Data

Movement

Utilities

Guide

and

Reference

is

your

primary,

single

source

of

information

for

these

topics.

To

find

out

more

about

replication

of

data,

see

IBM

DB2

Information

Integrator

SQL

Replication

Guide

and

Reference.

All

of

the

information

on

the

methods

and

tools

for

backing

up

and

recovering

data,

and

the

comparable

topics

from

the

Command

Reference

and

the

Administrative

API

Reference,

have

been

consolidated

into

the

Data

Recovery

and

High

Availability

Guide

and

Reference.

The

Data

Recovery

and

High

Availability

Guide

and

Reference

is

your

primary,

single

source

of

information

for

these

topics.

About

this

book

xiii

xiv

Administration

Guide:

Performance

Part

1.

Introduction

to

performance

©

Copyright

IBM

Corp.

1993

-

2004

1

2

Administration

Guide:

Performance

Chapter

1.

Introduction

to

performance

The

sections

in

this

chapter

describe

performance

tuning

and

provide

some

suggestions

for:

v

Creating

a

performance

monitoring

and

tuning

plan

v

Using

user

information

about

performance

problems

v

Getting

a

quick

start

on

initial

performance

tuning

Elements

of

performance

Performance

is

the

way

a

computer

system

behaves

given

a

particular

work

load.

Performance

is

measured

in

terms

of

system

response

time,

throughput,

and

availability.

Performance

is

also

affected

by:

v

The

resources

available

in

your

system

v

How

well

those

resources

are

used

and

shared.

In

general,

you

tune

your

system

to

improve

its

cost-benefit

ratio.

Specific

goals

could

include:

v

Processing

a

larger,

or

more

demanding,

work

load

without

increasing

processing

costs

For

example,

to

increase

the

work

load

without

buying

new

hardware

or

using

more

processor

time

v

Obtaining

faster

system

response

times,

or

higher

throughput,

without

increasing

processing

costs

v

Reducing

processing

costs

without

degrading

service

to

your

users

Translating

performance

from

technical

terms

to

economic

terms

is

difficult.

Performance

tuning

certainly

costs

money

in

terms

of

user

time

as

well

as

processor

time,

so

before

you

undertake

a

tuning

project,

weigh

its

costs

against

its

possible

benefits.

Some

of

these

benefits

are

tangible:

v

More

efficient

use

of

resources

v

The

ability

to

add

more

users

to

the

system.

Other

benefits,

such

as

greater

user

satisfaction

because

of

quicker

response

time,

are

intangible.

All

of

these

benefits

should

be

considered.

Related

concepts:

v

“Performance

tuning

guidelines”

on

page

3

v

“Quick-start

tips

for

performance

tuning”

on

page

7

Related

tasks:

v

“Developing

a

performance

improvement

process”

on

page

5

Performance

tuning

guidelines

The

following

guidelines

should

help

you

develop

an

overall

approach

to

performance

tuning.

©

Copyright

IBM

Corp.

1993

-

2004

3

Remember

the

law

of

diminishing

returns:

Your

greatest

performance

benefits

usually

come

from

your

initial

efforts.

Further

changes

generally

produce

smaller

and

smaller

benefits

and

require

more

and

more

effort.

Do

not

tune

just

for

the

sake

of

tuning:

Tune

to

relieve

identified

constraints.

If

you

tune

resources

that

are

not

the

primary

cause

of

performance

problems,

this

has

little

or

no

effect

on

response

time

until

you

have

relieved

the

major

constraints,

and

it

can

actually

make

subsequent

tuning

work

more

difficult.

If

there

is

any

significant

improvement

potential,

it

lies

in

improving

the

performance

of

the

resources

that

are

major

factors

in

the

response

time.

Consider

the

whole

system:

You

can

never

tune

one

parameter

or

system

in

isolation.

Before

you

make

any

adjustments,

consider

how

it

will

affect

the

system

as

a

whole.

Change

one

parameter

at

a

time:

Do

not

change

more

than

one

performance

tuning

parameter

at

a

time.

Even

if

you

are

sure

that

all

the

changes

will

be

beneficial,

you

will

have

no

way

of

evaluating

how

much

each

change

contributed.

You

also

cannot

effectively

judge

the

trade-off

you

have

made

by

changing

more

than

one

parameter

at

a

time.

Every

time

you

adjust

a

parameter

to

improve

one

area,

you

almost

always

affect

at

least

one

other

area

that

you

may

not

have

considered.

By

changing

only

one

at

a

time,

this

allows

you

to

have

a

benchmark

to

evaluate

whether

the

change

does

what

you

want.

Measure

and

reconfigure

by

levels:

For

the

same

reasons

that

you

should

only

change

one

parameter

at

a

time,

tune

one

level

of

your

system

at

a

time.

You

can

use

the

following

list

of

levels

within

a

system

as

a

guide:

v

Hardware

v

Operating

System

v

Application

Server

and

Requester

v

Database

Manager

v

SQL

Statements

v

Application

Programs

Check

for

hardware

as

well

as

software

problems:

Some

performance

problems

may

be

corrected

by

applying

service

either

to

your

hardware,

or

to

your

software,

or

to

both.

Do

not

spend

excessive

time

monitoring

and

tuning

your

system

when

simply

applying

service

may

make

it

unnecessary.

Understand

the

problem

before

you

upgrade

your

hardware:

Even

if

it

seems

that

additional

storage

or

processor

power

could

immediately

improve

performance,

take

the

time

to

understand

where

your

bottlenecks

are.

You

may

spend

money

on

additional

disk

storage

only

to

find

that

you

do

not

have

the

processing

power

or

the

channels

to

exploit

it.

Put

fall-back

procedures

in

place

before

you

start

tuning:

As

noted

earlier,

some

tuning

can

cause

unexpected

performance

results.

If

this

leads

to

poorer

performance,

it

should

be

reversed

and

alternative

tuning

tried.

If

the

former

setup

is

saved

in

such

a

manner

that

it

can

be

simply

recalled,

the

backing

out

of

the

incorrect

information

becomes

much

simpler.

Related

concepts:

v

“Elements

of

performance”

on

page

3

v

“Quick-start

tips

for

performance

tuning”

on

page

7

4

Administration

Guide:

Performance

Related

tasks:

v

“Developing

a

performance

improvement

process”

on

page

5

The

performance

tuning

process

You

develop

a

performance

monitoring

and

tuning

plan,

taking

user

input

into

account,

and

recognizing

the

limits

of

tuning

in

your

system.

Developing

a

performance

improvement

process

The

performance

improvement

process

is

an

iterative,

long

term

approach

to

monitoring

and

tuning

aspects

of

performance.

Depending

on

the

result

of

monitoring,

you

and

your

performance

team

adjust

the

configuration

of

the

database

server

and

make

changes

to

the

applications

that

use

the

database

server.

Base

your

performance

monitoring

and

tuning

decisions

on

your

knowledge

of

the

kinds

of

applications

that

use

the

data

and

the

patterns

of

data

access.

Different

kinds

of

applications

have

different

performance

requirements.

Consider

the

following

outline

of

the

performance

improvement

process

as

a

guideline.

Procedure:

To

develop

a

performance

improvement

process:

1.

Define

performance

objectives.

2.

Establish

performance

indicators

for

the

major

constraints

in

the

system.

3.

Develop

and

execute

a

performance

monitoring

plan.

4.

Continually

analyze

the

results

of

monitoring

to

determine

which

resources

require

tuning.

5.

Make

one

adjustment

at

a

time.

Even

if

you

think

that

more

than

one

resource

requires

tuning,

or

if

several

tuning

options

are

available

for

the

resource

you

want

to

tune,

make

only

one

change

at

a

time

so

that

you

can

make

sure

that

your

tuning

efforts

are

producing

the

effect

you

want.

At

some

point,

you

can

no

longer

improve

performance

by

tuning

the

database

server

and

applications.

Then

you

need

to

upgrade

your

hardware.

Actual

performance

tuning

requires

trade-offs

among

system

resources.

For

example,

to

provide

improved

I/O

performance

you

might

increase

buffer

pool

sizes,

but

larger

buffer

pools

require

more

memory,

which

might

degrade

other

aspects

of

performance.

Related

concepts:

v

“Elements

of

performance”

on

page

3

v

“Performance

tuning

guidelines”

on

page

3

v

“Quick-start

tips

for

performance

tuning”

on

page

7

v

“Performance

tuning

limits”

on

page

6

v

“Performance

information

that

users

can

provide”

on

page

6

Chapter

1.

Introduction

to

performance

5

Performance

information

that

users

can

provide

The

first

sign

that

your

system

requires

tuning

might

be

complaints

from

users.

If

you

do

not

have

enough

time

to

set

performance

objectives

and

to

monitor

and

tune

in

a

comprehensive

manner,

you

can

address

performance

by

listening

to

your

users.

You

can

usually

determine

where

to

start

looking

for

a

problem

by

asking

a

few

simple

questions.

For

example,

you

might

ask

your

users:

v

What

do

you

mean

by

“slow

response”?

Is

it

10

%

slower

than

you

expect

it

to

be,

or

tens

of

times

slower?

v

When

did

you

notice

the

problem?

Is

it

recent

or

has

it

always

been

there?

v

Do

other

users

have

the

same

problem?

Are

these

users

one

or

two

individuals

or

a

whole

group?

v

If

a

group

of

users

is

experiencing

the

same

problems,

are

they

connected

to

the

same

local

area

network?

v

Do

the

the

problems

seem

to

be

related

to

a

specific

transaction

or

application

program?

v

Do

you

notice

any

pattern

in

the

problem

occurrence?

For

example,

does

the

problem

occur

at

a

specific

time

of

day,

such

as

during

lunch

hour,

or

is

it

more

or

less

continuous?

Related

concepts:

v

“Performance

tuning

guidelines”

on

page

3

Related

tasks:

v

“Developing

a

performance

improvement

process”

on

page

5

Performance

tuning

limits

Tuning

can

make

only

a

certain

amount

of

change

in

the

efficiency

of

a

system.

Consider

how

much

time

and

money

you

should

spend

on

improving

system

performance,

and

how

much

spending

additional

time

and

money

will

help

the

users

of

the

system.

For

example,

tuning

can

often

improve

performance

if

the

system

encounters

a

performance

bottleneck.

If

you

are

close

to

the

performance

limits

of

your

system

and

the

number

of

users

increases

by

about

ten

percent,

the

response

time

is

likely

to

increase

by

much

more

than

ten

percent.

In

this

situation,

you

need

to

determine

how

to

counterbalance

this

degradation

in

performance

by

tuning

your

system.

However,

there

is

a

point

beyond

which

tuning

cannot

help.

At

this

point,

consider

revising

your

goals

and

expectations

within

the

limits

of

your

environment.

For

significant

performance

improvements,

you

might

need

to

add

more

disk

storage,

faster

CPU,

additional

CPUs,

more

main

memory,

faster

communication

links,

or

a

combination

of

these.

Related

concepts:

v

“Management

of

database

server

capacity”

on

page

281

Related

tasks:

v

“Developing

a

performance

improvement

process”

on

page

5

6

Administration

Guide:

Performance

Quick-start

tips

for

performance

tuning

When

you

start

a

new

instance

of

DB2®,

consider

the

following

suggestions

for

a

basic

configuration:

v

Use

the

Configuration

Advisor

in

the

Control

Center

to

get

advice

about

reasonable

beginning

defaults

for

your

system.

The

defaults

shipped

with

DB2

should

be

tuned

for

your

unique

hardware

environment.

Gather

information

about

the

hardware

at

your

site

so

you

can

answer

the

wizard

questions.

You

can

apply

the

suggested

configuration

parameter

settings

immediately

or

let

the

wizard

create

a

script

based

on

your

answers

and

run

the

script

later.

This

script

also

provides

a

list

of

the

most

commonly

tuned

parameters

for

later

reference.

v

Use

other

wizards

in

the

Control

Center

and

Client

Configuration

Assistant

for

performance-related

administration

tasks.

These

tasks

are

usually

those

in

which

you

can

achieve

significant

performance

improvements

by

spending

spend

a

little

time

and

effort.

Other

wizards

can

help

you

improve

performance

of

individual

tables

and

general

data

access.

These

wizards

include

the

Create

Database,

Create

Table,

Index,

and

Configure

Multisite

Update

wizards.

The

Health

Center

provides

a

set

of

monitoring

and

tuning

tools.

v

Use

the

Design

Advisor

tool

from

the

Control

Center

or

using

the

db2advis

command

to

find

out

what

indexes,

materialized

query

tables,

multi-dimensional

clustering

tables,

and

database

partitions

will

improve

query

performance.

v

Use

the

ACTIVATE

DATABASE

command

to

start

databases.

In

a

partitioned

database,

this

command

activates

the

database

on

all

partitions

and

avoids

the

startup

time

required

to

initialize

the

database

when

the

first

application

connects.

Note:

If

you

use

the

ACTIVATE

DATABASE

command,

you

must

shut

down

the

database

with

the

DEACTIVATE

DATABASE

command.

The

last

application

that

disconnects

from

the

database

does

not

shut

it

down.

v

Consult

the

summary

tables

that

list

and

briefly

describe

each

configuration

parameter

available

for

the

database

manager

and

each

database.

These

summary

tables

contain

a

column

that

indicates

whether

tuning

the

parameter

results

in

high,

medium,low,

or

no

performance

changes,

either

for

better

or

for

worse.

Use

this

table

to

find

the

parameters

that

you

might

tune

for

the

largest

performance

improvements.

Related

concepts:

v

“The

database

system

monitor

information”

on

page

262

Related

reference:

v

“Configuration

parameters

summary”

on

page

323

Chapter

1.

Introduction

to

performance

7

8

Administration

Guide:

Performance

Chapter

2.

Architecture

and

processes

This

chapter

provides

general

information

about

the

DB2

architecture

and

process

schema.

DB2

architecture

and

process

overview

General

information

about

DB2®

architecture

and

processes

can

help

you

understand

detailed

information

provided

for

specific

topics.

The

following

figure

shows

a

general

overview

of

the

architecture

and

processes

for

DB2

UDB.

Page cleaners

Shared memory and semaphores,
TCPIP, Named pipes, NetBIOS,
SNA, IPX/SPX

Logger

Log buffer

Clients

UDB server

Buffer
Pool(s)

Hard disksHard drive

Log

Hard disks

Scatter/Gather
I/Os

Write log
requests

Async I/O
prefetch
requests

Common prefetch
request queue

Coordinator
agent

Subagents Subagents

UDB Client Library

Client
application

Client
application

Parallel, page
write requests

Prefetchers

Logical
agents

Parallel,
big-block,
read requests

Hard disks

Coordinator
agent

Deadlock
detector

Victim
notifications

Figure

1.

Architecture

and

Processes

Overview

©

Copyright

IBM

Corp.

1993

-

2004

9

On

the

client

side,

either

local

or

remote

applications,

or

both,

are

linked

with

the

DB2

Universal

Database™

client

library.

Local

clients

communicate

using

shared

memory

and

semaphores;

remote

clients

use

a

protocol

such

as

Named

Pipes

(NPIPE),

TCP/IP,

NetBIOS,

or

SNA.

On

the

server

side,

activity

is

controlled

by

engine

dispatchable

units

(EDUs).

In

all

figures

in

this

section,

EDUs

are

shown

as

circles

or

groups

of

circles.

EDUs

are

implemented

as

threads

in

a

single

process

on

Windows®-based

platforms

and

as

processes

on

UNIX®.

DB2

agents

are

the

most

common

type

of

EDUs.

These

agents

perform

most

of

the

SQL

processing

on

behalf

of

applications.

Prefetchers

and

page

cleaners

are

other

common

EDUs.

A

set

of

subagents

might

be

assigned

to

process

the

client

application

requests.

Multiple

subagents

can

be

assigned

if

the

machine

where

the

server

resides

has

multiple

processors

or

is

part

of

a

partitioned

database.

For

example,

in

a

symmetric

multiprocessing

(SMP)

environment,

multiple

SMP

subagents

can

exploit

the

many

processors.

All

agents

and

subagents

are

managed

using

a

pooling

algorithm

that

minimizes

the

creation

and

destruction

of

EDUs.

Buffer

pools

are

areas

of

database

server

memory

where

database

pages

of

user

table

data,

index

data,

and

catalog

data

are

temporarily

moved

and

can

be

modified.

Buffer

pools

are

a

key

determinant

of

database

performance

because

data

can

be

accessed

much

faster

from

memory

than

from

disk.

If

more

of

the

data

needed

by

applications

is

present

in

a

buffer

pool,

less

time

is

required

to

access

the

data

than

to

find

it

on

disk.

The

configuration

of

the

buffer

pools,

as

well

as

prefetcher

and

page

cleaner

EDUs,

controls

how

quickly

data

can

be

accessed

and

how

readily

available

it

is

to

applications.

v

Prefetchers

retrieve

data

from

disk

and

move

it

into

the

buffer

pool

before

applications

need

the

data.

For

example,

applications

needing

to

scan

through

large

volumes

of

data

would

have

to

wait

for

data

to

be

moved

from

disk

into

the

buffer

pool

if

there

were

no

data

prefetchers.

Agents

of

the

application

send

asynchronous

read-ahead

requests

to

a

common

prefetch

queue.

As

prefetchers

become

available,

they

implement

those

requests

by

using

big-block

or

scatter-read

input

operations

to

bring

the

requested

pages

from

disk

to

the

buffer

pool.

If

you

have

multiple

disks

for

storage

of

the

database

data,

the

data

can

be

striped

across

the

disks.

Striping

data

lets

the

prefetchers

use

multiple

disks

at

the

same

time

to

retrieve

data.

v

Page

cleaners

move

data

from

the

buffer

pool

back

out

to

disk.

Page

cleaners

are

background

EDUs

that

are

independent

of

the

application

agents.

They

look

for

pages

from

the

buffer

pool

that

are

no

longer

needed

and

write

the

pages

to

disk.

Page

cleaners

ensure

that

there

is

room

in

the

buffer

pool

for

the

pages

being

retrieved

by

the

prefetchers.

Without

the

independent

prefetchers

and

the

page

cleaner

EDUs,

the

application

agents

would

have

to

do

all

of

the

reading

and

writing

of

data

between

the

buffer

pool

and

disk

storage.

Related

concepts:

v

“Prefetching

data

into

the

buffer

pool”

on

page

229

v

“Deadlocks

between

applications”

on

page

11

v

“Database

directories

and

files”

on

page

12

10

Administration

Guide:

Performance

v

“Log

processing”

on

page

25

v

“Update

processing”

on

page

27

v

“Client-server

processing

model”

on

page

28

v

“Memory

management”

on

page

32

v

“Connection-concentrator

improvements

for

client

connections”

on

page

259

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“max_connections

-

Maximum

number

of

client

connections”

on

page

379

Deadlocks

between

applications

With

multiple

applications

working

with

data

from

the

database

there

are

opportunities

for

a

deadlock

to

occur

between

two

or

more

applications.

A

deadlock

is

created

when

one

application

is

waiting

for

another

application

to

release

a

lock

on

data.

Each

of

the

waiting

applications

is

locking

data

needed

by

another

application.

Mutual

waiting

for

the

other

application

to

release

a

lock

on

held

data

leads

to

a

deadlock.

The

applications

can

wait

forever

until

one

application

releases

the

lock

on

the

held

data.

A

deadlock

is

illustrated

in

the

following

figure.

Because

applications

do

not

voluntarily

release

locks

on

data

that

they

need,

a

deadlock

detector

process

is

required

to

break

deadlocks

and

allow

application

processing

to

continue.

As

its

name

suggests,

the

deadlock

detector

monitors

the

information

about

agents

waiting

on

locks.

The

deadlock

detector

arbitrarily

selects

one

of

the

applications

in

the

deadlock

and

releases

the

locks

currently

held

by

that

“volunteered”

application.

By

releasing

the

locks

of

that

application,

the

data

required

by

other

waiting

applications

is

made

available

for

use.

The

waiting

applications

can

then

access

the

data

required

to

complete

transactions.

Related

concepts:

v

“Locks

and

performance”

on

page

49

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure

2.

Deadlock

detector

Chapter

2.

Architecture

and

processes

11

v

“DB2

architecture

and

process

overview”

on

page

9

Disk

storage

overview

Understanding

how

data

is

stored

on

disk

helps

you

tune

I/O.

Disk-storage

performance

factors

The

hardware

that

makes

up

your

system

can

influence

the

performance

of

your

system.

As

an

example

of

the

influence

of

hardware

on

performance,

consider

some

of

the

implications

associated

with

disk

storage.

Four

aspects

of

disk-storage

management

affect

performance:

v

Division

of

storage

How

you

divide

a

limited

amount

of

storage

between

indexes

and

data

and

among

table

spaces

determines

to

a

large

degree

how

each

will

perform

in

different

situations.

v

Wasted

storage

Wasted

storage

in

itself

may

not

affect

the

performance

of

the

system

that

is

using

it,

but

wasted

storage

is

a

resource

that

could

be

used

to

improve

performance

elsewhere.

v

Distribution

of

disk

I/O

How

well

you

balance

the

demand

for

disk

I/O

across

several

disk

storage

devices,

and

controllers

can

affect

how

fast

the

database

manager

can

retrieve

information

from

disks.

v

Lack

of

available

storage

Reaching

the

limit

of

available

storage

can

degrade

overall

performance.

Related

concepts:

v

“DMS

device

considerations”

on

page

255

v

“Database

directories

and

files”

on

page

12

v

“SMS

table

spaces”

on

page

14

v

“DMS

table

spaces”

on

page

15

v

“Table

and

index

management

for

standard

tables”

on

page

18

v

“Table

and

index

management

for

MDC

tables”

on

page

21

Database

directories

and

files

When

you

create

a

database,

information

about

the

database

including

default

information

is

stored

in

a

directory

hierarchy.

The

hierarchical

directory

structure

is

created

for

you

at

a

location

that

is

determined

by

the

information

you

provide

in

the

CREATE

DATABASE

command.

If

you

do

not

specify

the

location

of

the

directory

path

or

drive

when

you

create

the

database,

the

default

location

is

used.

It

is

recommended

that

you

explicitly

state

where

you

would

like

the

database

created.

In

the

directory

you

specify

in

the

CREATE

DATABASE

command,

a

subdirectory

that

uses

the

name

of

the

instance

is

created.

This

subdirectory

ensures

that

databases

created

in

different

instances

under

the

same

directory

do

not

use

the

same

path.

Below

the

instance-name

subdirectory,

a

subdirectory

named

NODE0000

is

created.

This

subdirectory

differentiates

partitions

in

a

logically

12

Administration

Guide:

Performance

partitioned

database

environment.

Below

the

node-name

directory,

a

subdirectory

named

SQL00001

is

created.

This

name

of

this

subdirectory

uses

the

database

token

and

represents

the

database

being

created.

SQL00001

contains

objects

associated

with

the

first

database

created,

and

subsequent

databases

are

given

higher

numbers:

SQL00002,

and

so

on.

These

subdirectories

differentiate

databases

created

in

this

instance

on

the

directory

that

you

specified

in

the

CREATE

DATABASE

command.

The

directory

structure

appears

as

follows:

<your_directory>/<your_instance>/NODE0000/SQL00001/

The

database

directory

contains

the

following

files

that

are

created

as

part

of

the

CREATE

DATABASE

command.

v

The

files

SQLBP.1

and

SQLBP.2

contain

buffer

pool

information.

Each

file

has

a

duplicate

copy

to

provide

a

backup.

v

The

files

SQLSPCS.1

and

SQLSPCS.2

contain

table

space

information.

Each

file

has

a

duplicate

copy

to

provide

a

backup.

v

The

SQLDBCON

file

contains

database

configuration

information.

Do

not

edit

this

file.

To

change

configuration

parameters,

use

either

the

Control

Center

or

the

command-line

statements

UPDATE

DATABASE

CONFIGURATION

and

RESET

DATABASE

CONFIGURATION.

v

The

DB2RHIST.ASC

history

file

and

its

backup

DB2RHIST.BAK

contain

history

information

about

backups,

restores,

loading

of

tables,

reorganization

of

tables,

altering

of

a

table

space,

and

other

changes

to

a

database.

The

DB2TSCHNG.HIS

file

contains

a

history

of

table

space

changes

at

a

log-file

level.

For

each

log

file,

DB2TSCHG.HIS

contains

information

that

helps

to

identify

which

table

spaces

are

affected

by

the

log

file.

Table

space

recovery

uses

information

from

this

file

to

determine

which

log

files

to

process

during

table

space

recovery.

You

can

examine

the

contents

of

both

history

files

in

a

text

editor.

v

The

log

control

files,

SQLOGCTL.LFH

and

SQLOGMIR.LFH,

contain

information

about

the

active

logs.

Recovery

processing

uses

information

from

this

file

to

determine

how

far

back

in

the

logs

to

begin

recovery.

The

SQLOGDIR

subdirectory

contains

the

actual

log

files.

Note:

You

should

ensure

the

log

subdirectory

is

mapped

to

different

disks

than

those

used

for

your

data.

A

disk

problem

could

then

be

restricted

to

your

data

or

the

logs

but

not

both.

This

can

provide

a

substantial

performance

benefit

because

the

log

files

and

database

containers

do

not

compete

for

movement

of

the

same

disk

heads.

To

change

the

location

of

the

log

subdirectory,

change

the

newlogpath

database

configuration

parameter.

v

The

SQLINSLK

file

helps

to

ensure

that

a

database

is

used

by

only

one

instance

of

the

database

manager.

At

the

same

time

a

database

is

created,

a

detailed

deadlocks

event

monitor

is

also

created.

The

detailed

deadlocks

event

monitor

files

are

stored

in

the

database

directory

of

the

catalog

node.

When

the

event

monitor

reaches

its

maximum

number

of

files

to

output,

it

will

deactivate

and

a

message

is

written

to

the

notification

log.

This

prevents

the

event

monitor

from

consuming

too

much

disk

space.

Removing

output

files

that

are

no

longer

needed

will

allow

the

event

monitor

to

activate

again

on

the

next

database

activation.

Additional

information

for

SMS

database

directories

Chapter

2.

Architecture

and

processes

13

The

SQLT*

subdirectories

contain

the

default

System

Managed

Space

(SMS)

table

spaces

required

for

an

operational

database.

Three

default

table

spaces

are

created:

v

SQLT0000.0

subdirectory

contains

the

catalog

table

space

with

the

system

catalog

tables.

v

SQLT0001.0

subdirectory

contains

the

default

temporary

table

space.

v

SQLT0002.0

subdirectory

contains

the

default

user

data

table

space.

Each

subdirectory

or

container

has

a

file

created

in

it

called

SQLTAG.NAM.

This

file

marks

the

subdirectory

as

being

in

use

so

that

subsequent

table

space

creation

does

not

attempt

to

use

these

subdirectories.

In

addition,

a

file

called

SQL*.DAT

stores

information

about

each

table

that

the

subdirectory

or

container

contains.

The

asterisk

(*)

is

replaced

by

a

unique

set

of

digits

that

identifies

each

table.

For

each

SQL*.DAT

file

there

might

be

one

or

more

of

the

following

files,

depending

on

the

table

type,

the

reorganization

status

of

the

table,

or

whether

indexes,

LOB,

or

LONG

fields

exist

for

the

table:

v

SQL*.BKM

(contains

block

allocation

information

if

it

is

an

MDC

table)

v

SQL*.LF

(contains

LONG

VARCHAR

or

LONG

VARGRAPHIC

data)

v

SQL*.LB

(contains

BLOB,

CLOB,

or

DBCLOB

data)

v

SQL*.LBA

(contains

allocation

and

free

space

information

about

SQL*.LB

files)

v

SQL*.INX

(contains

index

table

data)

v

SQL*.IN1

(contains

index

table

data)

v

SQL*.DTR

(contains

temporary

data

for

a

reorganization

of

an

SQL*.DAT

file)

v

SQL*.LFR

(contains

temporary

data

for

a

reorganization

of

an

SQL*.LF

file)

v

SQL*.RLB

(contains

temporary

data

for

a

reorganization

of

an

SQL*.LB

file)

v

SQL*.RBA

(contains

temporary

data

for

a

reorganization

of

an

SQL*.LBA

file)

Related

concepts:

v

“Comparison

of

SMS

and

DMS

table

spaces”

in

the

Administration

Guide:

Planning

v

“DMS

device

considerations”

on

page

255

v

“SMS

table

spaces”

on

page

14

v

“DMS

table

spaces”

on

page

15

v

“Illustration

of

the

DMS

table-space

address

map”

on

page

17

v

“Understanding

the

recovery

history

file”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

Related

reference:

v

“CREATE

DATABASE

Command”

in

the

Command

Reference

Table

space

overview

The

following

sections

describe

table

spaces

and

discuss

the

two

types

of

table

spaces

available

in

DB2,

comparing

their

advantages

and

disadvantages.

SMS

table

spaces

System

Managed

Space

(SMS)

table

spaces

store

data

in

operating

system

files.

The

data

in

the

table

spaces

is

striped

by

extent

across

all

the

containers

in

the

system.

An

extent

is

a

group

of

consecutive

pages

defined

to

the

database.

The

file

extension

denotes

the

type

of

the

data

stored

in

the

file.

To

distribute

the

data

14

Administration

Guide:

Performance

|

|

evenly

across

all

containers

in

the

table

space,

the

starting

extents

for

tables

are

placed

in

round-robin

fashion

across

all

containers.

Such

distribution

of

extents

is

particularly

important

if

the

database

contains

many

small

tables.

In

an

SMS

table

space,

space

for

tables

is

allocated

on

demand.

The

amount

of

space

that

is

allocated

is

dependent

on

the

setting

of

the

multipage_alloc

database

configuration

parameter.

If

this

configuration

parameter

is

set

to

YES,

then

a

full

extent

will

be

allocated

when

space

is

required.

Otherwise,

space

will

be

allocated

one

page

at

a

time.

Prior

to

version

8.2,

the

default

setting

of

the

configuration

parameter

was

NO

which

caused

one

page

to

be

allocated

at

a

time.

This

default

could

be

changed

with

the

db2empfa

tool.

When

you

run

db2empfa,

the

multipage_alloc

database

configuration

parameter

is

set

to

YES.

In

version

8.2,

the

default

setting

of

the

configuration

parameter

is

set

to

YES

which

means

that

a

full

extent

is

allocated

at

a

time

by

default.

Multi-page

file

allocation

only

affects

the

data

and

index

portions

of

a

table.

This

means

that

the

.LF,

.LB,

and

.LBA

files

are

not

extended

one

extent

at

a

time.

When

all

space

in

a

single

container

in

an

SMS

table

space

is

allocated

to

tables,

the

table

space

is

considered

full,

even

if

space

remains

in

other

containers.

You

can

add

containers

to

an

SMS

table

space

only

on

a

partition

that

does

not

yet

have

any

containers.

Note:

SMS

table

spaces

can

take

advantage

of

file-system

prefetching

and

caching

.

Related

concepts:

v

“Table

space

design”

in

the

Administration

Guide:

Planning

v

“Comparison

of

SMS

and

DMS

table

spaces”

in

the

Administration

Guide:

Planning

Related

tasks:

v

“Adding

a

container

to

an

SMS

table

space

on

a

partition”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“multipage_alloc

-

Multipage

file

allocation

enabled”

on

page

429

v

“db2empfa

-

Enable

Multipage

File

Allocation

Command”

in

the

Command

Reference

DMS

table

spaces

With

database-managed

space

(DMS)

table

spaces,

the

database

manager

controls

the

storage

space.

A

list

of

devices

or

files

is

selected

to

belong

to

a

table

space

when

the

DMS

table

space

is

defined.

The

space

on

those

devices

or

files

is

managed

by

the

DB2®

database

manager.

As

with

SMS

table

spaces

and

containers,

DMS

table

spaces

and

the

database

manager

use

striping

by

extent

to

ensure

an

even

distribution

of

data

across

all

containers.

DMS

table

spaces

differ

from

SMS

table

spaces

in

that

for

DMS

table

spaces,

space

is

allocated

when

the

table

space

is

created

and

not

allocated

when

needed.

Also,

placement

of

data

can

differ

on

the

two

types

of

table

spaces.

For

example,

consider

the

need

for

efficient

table

scans:

it

is

important

that

the

pages

in

an

extent

are

physically

contiguous.

With

SMS,

the

file

system

of

the

operating

system

Chapter

2.

Architecture

and

processes

15

|
|
|
|
|
|
|
|
|
|

|
|

decides

where

each

logical

file

page

is

physically

placed.

The

pages

may,

or

may

not,

be

allocated

contiguously

depending

on

the

level

of

other

activity

on

the

file

system

and

the

algorithm

used

to

determine

placement.

With

DMS,

however,

the

database

manager

can

ensure

the

pages

are

physically

contiguous

because

it

interfaces

with

the

disk

directly.

Note:

Like

SMS

table

spaces,

DMS

file

containers

can

take

advantage

of

file-system

prefetching

and

caching.

However,

DMS

table

spaces

cannot.

There

is

one

exception

to

this

general

statement

regarding

contiguous

placement

of

pages

in

storage.

There

are

two

container

options

when

working

with

DMS

table

spaces:

raw

devices

and

files.

When

working

with

file

containers,

the

database

manager

allocates

the

entire

container

at

table

space

creation

time.

A

result

of

this

initial

allocation

of

the

entire

table

space

is

that

the

physical

allocation

is

typically,

but

not

guaranteed

to

be,

contiguous

even

though

the

file

system

is

doing

the

allocation.

When

working

with

raw

device

containers,

the

database

manager

takes

control

of

the

entire

device

and

always

ensures

the

pages

in

an

extent

are

contiguous.

Unlike

SMS

table

spaces,

the

containers

that

make

up

a

DMS

table

space

do

not

need

to

be

close

to

being

equal

in

their

capacity.

However,

it

is

recommended

that

the

containers

are

equal,

or

close

to

being

equal,

in

their

capacity.

Also,

if

any

container

is

full,

any

available

free

space

from

other

containers

can

be

used

in

a

DMS

table

space.

When

working

with

DMS

table

spaces,

you

should

consider

associating

each

container

with

a

different

disk.

This

allows

for

a

larger

table

space

capacity

and

the

ability

to

take

advantage

of

parallel

I/O

operations.

The

CREATE

TABLESPACE

statement

creates

a

new

table

space

within

a

database,

assigns

containers

to

the

table

space,

and

records

the

table

space

definition

and

attributes

in

the

catalog.

When

you

create

a

table

space,

the

extent

size

is

defined

as

a

number

of

contiguous

pages.

The

extent

is

the

unit

of

space

allocation

within

a

table

space.

Only

one

table

or

other

object,

such

as

an

index,

can

use

the

pages

in

any

single

extent.

All

objects

created

in

the

table

space

are

allocated

extents

in

a

logical

table

space

address

map.

Extent

allocation

is

managed

through

Space

Map

Pages

(SMP).

The

first

extent

in

the

logical

table

space

address

map

is

a

header

for

the

table

space

containing

internal

control

information.

The

second

extent

is

the

first

extent

of

Space

Map

Pages

(SMP)

for

the

table

space.

SMP

extents

are

spread

at

regular

intervals

throughout

the

table

space.

Each

SMP

extent

is

simply

a

bit

map

of

the

extents

from

the

current

SMP

extent

to

the

next

SMP

extent.

The

bit

map

is

used

to

track

which

of

the

intermediate

extents

are

in

use.

The

next

extent

following

the

SMP

is

the

object

table

for

the

table

space.

The

object

table

is

an

internal

table

that

tracks

which

user

objects

exist

in

the

table

space

and

where

their

first

Extent

Map

Page

(EMP)

extent

is

located.

Each

object

has

its

own

EMPs

which

provide

a

map

to

each

page

of

the

object

that

is

stored

in

the

logical

table

space

address

map.

Related

concepts:

v

“Table

space

design”

in

the

Administration

Guide:

Planning

v

“Comparison

of

SMS

and

DMS

table

spaces”

in

the

Administration

Guide:

Planning

16

Administration

Guide:

Performance

v

“DMS

device

considerations”

on

page

255

v

“Database

directories

and

files”

on

page

12

v

“SMS

table

spaces”

on

page

14

v

“Illustration

of

the

DMS

table-space

address

map”

on

page

17

Related

tasks:

v

“Adding

a

container

to

a

DMS

table

space”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“CREATE

TABLESPACE

statement”

in

the

SQL

Reference,

Volume

2

Illustration

of

the

DMS

table-space

address

map

The

following

figure

shows

the

logical

address

map

for

a

DMS

table

space.

The

object

table

is

an

internal

relational

table

that

maps

an

object

identifier

to

the

location

of

the

first

EMP

extent

in

the

table.

This

EMP

extent,

directly

or

indirectly,

maps

out

all

extents

in

the

object.

Each

EMP

contains

an

array

of

entries.

Each

entry

maps

an

object-relative

extent

number

to

a

table

space-relative

page

number

where

the

object

extent

is

located.

Direct

EMP

entries

directly

map

object-relative

addresses

to

table

space-relative

addresses.

The

last

EMP

page

in

the

first

EMP

extent

contains

indirect

entries.

Indirect

EMP

entries

map

to

EMP

pages

which

then

map

to

object

pages.

The

last

16

entries

in

the

last

EMP

page

in

the

first

EMP

extent

contain

double-indirect

entries.

The

extents

from

the

logical

table-space

address

map

are

striped

in

round-robin

order

across

the

containers

associated

with

the

table

space.

Header0

1

2

3
16
20
32

4

5

6

7

8

31968

Object
Table EMP

T1
T2

12
24

Table space (logical) address map

Indirect Entries

Maps object-relative
extent number within
T2 to table space-relative
page number

Object ID for
the table

First
EMP

Reserved

First Extent of SMPs

First Extent of Object Table

Extent Map for T1

First Extent of T1 Data Pages

Second Extent of T1 Data Pages

Extent Map for T2

First Extent of T2 Data Pages

Third Extent of T1 Data Pages

Second Extent of SMPs

...

...

...

...

...

...

Maps object-relative
extent number within
T1 to table space-relative
page number

Double Indirect Entries

Figure

3.

DMS

table

spaces

Chapter

2.

Architecture

and

processes

17

Related

concepts:

v

“DMS

device

considerations”

on

page

255

v

“Disk-storage

performance

factors”

on

page

12

v

“DMS

table

spaces”

on

page

15

Tables

and

indexes

The

following

sections

discuss

management

of

both

standard

and

MDC

tables,

and

indexes

on

these

tables.

Table

and

index

management

for

standard

tables

In

standard

tables,

data

is

logically

organized

as

a

list

of

data

pages.

These

data

pages

are

logically

grouped

together

based

on

the

extent

size

of

the

table

space.

Logical indexview ofLogical
table view

Physical
table view

. . .

. . .

. . .

. . .

0 4020

4021

4022

4023

252

1

2

3

4

876500

... ...

Data page format
Page Header

3800 -1 3400

Record 2

Record 1

Legend

user records

reserved for system records

FSCR

A
C

K S

K

RID

K
RID

4023,2

C
RID

RID RID

RID

...

RID (record ID) = Page 4023, Slot 2

Figure

4.

Logical

table,

record,

and

index

structure

for

standard

tables

18

Administration

Guide:

Performance

For

example,

if

the

extent

size

is

four,

pages

zero

to

three

are

part

of

the

first

extent,

pages

four

to

seven

are

part

of

the

second

extent,

and

so

on.

The

number

of

records

contained

within

each

data

page

can

vary

based

on

the

size

of

the

data

page

and

the

size

of

the

records.

A

maximum

of

255

records

can

fit

on

one

page.

Most

pages

contain

only

user

records.

However,

a

small

number

of

pages

include

special

internal

records,

that

are

used

by

DB2®

to

manage

the

table.

For

example,

in

a

standard

table

there

is

a

Free

Space

Control

Record

(FSCR)

on

every

500th

data

page.

These

records

map

the

free

space

for

new

records

on

each

of

the

following

500

data

pages

(until

the

next

FSCR).

This

available

free

space

is

used

when

inserting

records

into

the

table.

Logically,

index

pages

are

organized

as

a

B-tree

which

can

efficiently

locate

records

in

the

table

that

have

a

given

key

value.

The

number

of

entities

on

an

index

page

is

not

fixed

but

depends

on

the

size

of

the

key.

For

tables

in

DMS

table

spaces,

record

identifiers

(RIDs)

in

the

index

pages

use

table

space-relative

page

numbers,

not

object-relative

page

numbers.

This

allows

an

index

scan

to

directly

access

the

data

pages

without

requiring

an

Extent

Map

page

(EMP)

for

mapping.

Each

data

page

has

the

same

format.

A

page

header

begins

each

data

page.

After

the

page

header

there

is

a

slot

directory.

Each

entry

in

the

slot

directory

corresponds

to

a

different

record

on

the

page.

The

entry

itself

is

the

byte-offset

into

the

data

page

where

the

record

begins.

Entries

of

minus

one

(-1)

correspond

to

deleted

records.

Record

identifiers

and

pages

Record

identifiers

(RIDs)

are

a

three-byte

page

number

followed

by

a

one-byte

slot

number.

Type-2

index

records

also

contain

an

additional

byte

called

the

ridFlag.

The

ridFlag

stores

information

about

the

status

of

keys

in

the

index,

such

as

whether

this

key

has

been

marked

deleted.

Once

the

index

is

used

to

identify

a

RID,

the

RID

is

used

to

get

to

the

correct

data

page

and

slot

number

on

that

page.

Once

a

record

is

assigned

a

RID,

it

does

not

change

until

a

table

reorganization.

When

a

table

page

is

reorganized,

embedded

free

space

that

is

left

on

the

page

after

a

record

is

physically

deleted

is

converted

to

usable

free

space.

RIDs

are

redefined

based

on

movement

of

records

on

a

data

page

to

take

advantage

of

the

usable

free

space.

Data page and RID format

Page 473
Page Header
3800 3400-1

Record 2

Record 1

473

Page #

0
1 byte3 bytes

slot #

RID

Free space
(usable without page
reorganization *)

Embedded free space
(usable after online
page reorganization*)

* Exception: Any space reserved by an uncommitted
DELETE is not usable.

Supported page sizes:
4KB, 8KB,

16KB, 32KB
Set on table space creation.
Each table space must be
assigned a buffer pool with
a matching page size.

Figure

5.

Data

page

and

record-id

(RID)

format

Chapter

2.

Architecture

and

processes

19

DB2

supports

different

page

sizes.

Use

larger

page

sizes

for

workloads

that

tend

to

access

rows

sequentially.

For

example,

sequential

access

is

used

for

Decision

Support

applications

or

where

temporary

tables

are

extensively

used.

Use

smaller

page

sizes

for

workloads

that

tend

to

be

more

random

in

their

access.

For

example,

random

access

is

used

in

OLTP

environments.

Index

management

in

standard

tables

DB2

indexes

use

an

optimized

B-tree

implementation

based

on

an

efficient

and

high

concurrency

index

management

method

using

write-ahead

logging.

The

optimized

B-tree

implementation

has

bi-directional

pointers

on

the

leaf

pages

that

allows

a

single

index

to

support

scans

in

either

forward

or

reverse

direction.

Index

page

are

usually

split

in

half

except

at

the

high-key

page

where

a

90/10

split

is

used.

That

is,

the

high

ten

percent

of

the

index

keys

are

placed

on

a

new

page.

This

type

of

index

page

split

is

useful

for

workloads

where

INSERT

requests

are

often

completed

with

new

high-keys.

Starting

in

Version

8.1,

DB2

uses

type-2

indexes.

If

you

migrate

from

earlier

versions

of

DB2,

both

type-1

and

type-2

indexes

are

in

use

until

you

reorganize

indexes

or

perform

other

actions

that

convert

type-1

indexes

to

type-2.

The

index

type

determines

how

deleted

keys

are

physically

removed

from

the

index

pages.

v

For

type-1

indexes,

keys

are

removed

from

the

index

pages

during

key

deletion

and

index

pages

are

freed

when

the

last

index

key

on

the

page

is

removed.

v

For

type-2

indexes,

index

keys

are

removed

from

the

page

during

key

deletion

only

if

there

is

an

X

lock

on

the

table.

If

keys

cannot

be

removed

immediately,

they

are

marked

deleted

and

physically

removed

later.

For

more

information,

refer

to

the

section

that

describes

type-2

indexes.

If

you

have

enabled

online

index

defragmentation

by

setting

the

MINPCTUSED

clause

to

a

value

greater

than

zero

when

you

created

the

index,

index

leaf

pages

can

be

merged

online.

The

value

that

you

specify

is

the

threshold

for

the

minimum

percentage

of

space

used

on

the

index

leaf

pages.

After

a

key

is

removed

from

an

index

page,

if

the

percentage

of

space

used

on

the

page

is

at

or

below

the

value

given,

then

the

database

manager

attempts

to

merge

the

remaining

keys

with

those

of

a

neighboring

page.

If

there

is

sufficient

room,

the

merge

is

performed

and

an

index

leaf

page

is

deleted.

Online

index

defragmentation

can

improve

space

reuse,

but

if

the

MINPCTUSED

value

is

too

high

then

the

time

taken

to

attempt

a

merge

increases

and

becomes

less

likely

to

succeed.

The

recommended

value

for

this

clause

is

fifty

percent

or

less.

Note:

Because

online

defragmentation

occurs

only

when

keys

are

removed

from

an

index

page,

in

a

type-2

index

it

does

not

occur

if

keys

are

merely

marked

deleted,

but

have

not

been

physically

removed

from

the

page.

The

INCLUDE

clause

of

the

CREATE

INDEX

statement

allows

the

inclusion

of

a

specified

column

or

columns

on

the

index

leaf

pages

in

addition

to

the

key

columns.

This

can

increase

the

number

of

queries

that

are

eligible

for

index-only

access.

However,

this

can

also

increase

the

index

space

requirements

and,

possibly,

index

maintenance

costs

if

the

included

columns

are

updated

frequently.

The

maintenance

cost

of

updating

include

columns

is

less

than

that

of

updating

key

columns,

but

more

than

that

of

updating

columns

that

do

not

appear

in

the

index.

Ordering

the

index

B-tree

is

only

done

using

the

key

columns

and

not

the

included

columns.

20

Administration

Guide:

Performance

Related

concepts:

v

“Space

requirements

for

database

objects”

in

the

Administration

Guide:

Planning

v

“Considerations

when

choosing

table

spaces

for

your

tables”

in

the

Administration

Guide:

Planning

v

“Designing

multidimensional

clustering

(MDC)

tables”

in

the

Administration

Guide:

Planning

v

“Table

and

index

management

for

MDC

tables”

on

page

21

v

“Multidimensional

clustering

(MDC)

table

creation,

placement,

and

use”

in

the

Administration

Guide:

Planning

v

“Index

cleanup

and

maintenance”

on

page

251

v

“Insert

processing”

on

page

26

Table

and

index

management

for

MDC

tables

Table

and

index

organization

for

multi-dimensional

clustering

(MDC)

tables

is

based

on

the

same

logical

structures

as

standard

table

organization.

Like

standard

tables,

MDC

tables

are

organized

into

pages

that

contain

rows

of

data,

divided

into

columns,

and

the

rows

on

each

page

are

identified

by

row

IDs

(RIDs).

In

addition,

however,

the

pages

of

MDC

tables

are

grouped

into

extent-sized

blocks.

For

example,

in

the

illustration

below,

which

shows

a

table

with

an

extent

size

of

four,

the

first

four

pages,

numbered

0

through

3,

are

the

first

block

in

the

table.

The

next

set

of

pages,

numbered

4

through

7,

are

the

second

block

in

the

table.

Chapter

2.

Architecture

and

processes

21

The

first

block

contains

special

internal

records

that

are

used

by

DB2®

to

manage

the

table,

including

the

free-space

control

record

(FSCR).

In

subsequent

blocks,

the

Legend

user records

reservedX

U

F

in use

free

Logical view of block map
for first 3 blocks

Logical
index

view of
dimension block

reserved for system records

FSCR

A
C

K S

K

X

0

U

1

F

2 ...

BID

K
BID

252,0

C
BID

BID BID

BID

Logical
table view

Physical
table view

...

0 4020

4021

4022

4023

1

2

3

4 252

253

254

255

5

6

7

1488

1489

1490

1491

8

9

10

11

block 0

block 2

block 1

BID (block Id) = Page 252, slot 0
(first physical page of block, slot always 0)

Figure

6.

Logical

table,

record,

and

index

structure

for

MDC

tables

22

Administration

Guide:

Performance

first

page

contains

the

FSCR.

An

FSCR

maps

the

free

space

for

new

records

that

exists

on

each

of

the

pages

in

the

block.

This

available

free

space

is

used

when

inserting

records

into

the

table.

As

the

name

implies,

MDC

tables

cluster

data

on

more

than

one

dimension.

Each

dimension

is

determined

by

a

column

or

set

of

columns

that

you

specify

in

the

ORGANIZE

BY

DIMENSIONS

clause

of

the

CREATE

TABLE

statement.

When

you

create

an

MDC

table,

the

following

two

kinds

of

indexes

are

created

automatically:

v

A

dimension-block

index,

which

contains

pointers

to

each

occupied

block

for

a

single

dimension.

v

A

composite

block

index,

which

contains

all

dimension

key

columns.

The

composite

block

index

is

used

to

maintain

clustering

during

insert

and

update

activity.

The

optimizer

considers

access

plans

which

utilize

dimension-block

indexes

when

it

determines

the

most

efficient

access

plan

for

a

particular

query.

When

queries

have

predicates

on

dimension

values,

the

optimizer

can

use

the

dimension

block

index

to

identify,

and

fetch

from,

the

extents

that

contain

these

values.

Because

extents

are

physically

contiguous

pages

on

disk,

this

results

in

more

efficient

performance

and

minimizes

I/O.

In

addition,

you

can

create

specific

RID

indexes

if

analysis

of

data

access

plans

indicates

that

such

indexes

would

improve

query

performance.

Along

with

the

dimension

block

indexes

and

the

composite

block

index,

MDC

tables

maintain

a

block

map

that

contains

a

bitmap

that

indicates

the

availability

status

of

each

block.

The

following

attributes

are

coded

in

the

bitmap

list:

v

X

(reserved):

the

first

block

contains

only

system

information

for

the

table.

v

U

(in

use):

this

block

is

used

and

associated

with

a

dimension

block

index

v

L

(loaded):

this

block

has

been

loaded

by

a

current

load

operation

v

C

(check

constraint):

this

block

is

set

by

the

load

operation

to

specify

incremental

constraint

checking

during

the

load.

v

T

(refresh

table):

this

block

is

set

by

the

load

operation

to

specify

that

AST

maintenance

is

required.

v

F

(free):

If

no

other

attribute

is

set,

the

block

is

considered

free.

Because

each

block

has

an

entry

in

the

block

map

file,

the

file

grows

as

the

table

grows.

This

file

is

stored

as

a

separate

object.

In

an

SMS

tablespace

it

is

a

new

file

type.

In

a

DMS

table

space,

it

has

a

new

object

descriptor

in

the

object

table.

Related

concepts:

v

“Space

requirements

for

database

objects”

in

the

Administration

Guide:

Planning

v

“Designing

multidimensional

clustering

(MDC)

tables”

in

the

Administration

Guide:

Planning

v

“Multidimensional

clustering

(MDC)

table

creation,

placement,

and

use”

in

the

Administration

Guide:

Planning

v

“Insert

processing”

on

page

26

Index

structure

The

database

manager

uses

a

B+

tree

structure

for

index

storage.

A

B+

tree

has

one

or

more

levels,

as

shown

in

the

following

diagram,

in

which

RID

means

row

ID:

Chapter

2.

Architecture

and

processes

23

The

top

level

is

called

the

root

node.

The

bottom

level

consists

of

leaf

nodes

in

which

the

index

key

values

are

stored

with

pointers

to

the

row

in

the

table

that

contains

the

key

value.

Levels

between

the

root

and

leaf

node

levels

are

called

intermediate

nodes.

When

it

looks

for

a

particular

index

key

value,

the

index

manager

searches

the

index

tree,

starting

at

the

root

node.

The

root

contains

one

key

for

each

node

at

the

next

level.

The

value

of

each

of

these

keys

is

the

largest

existing

key

value

for

the

corresponding

node

at

the

next

level.

For

example,

if

an

index

has

three

levels

as

shown

in

the

figure,

then

to

find

an

index

key

value,

the

index

manager

searches

the

root

node

for

the

first

key

value

greater

than

or

equal

to

the

key

being

looked

for.

The

root

node

key

points

to

a

specific

intermediate

node.

The

index

manager

follows

this

procedure

through

the

intermediate

nodes

until

it

finds

the

leaf

node

that

contains

the

index

key

that

it

needs.

The

figure

shows

the

key

being

looked

for

as

“I”.

The

first

key

in

the

root

node

greater

than

or

equal

to

“I”

is

“N”.

This

points

to

the

middle

node

at

the

next

level.

The

first

key

in

that

intermediate

node

that

is

greater

than

or

equal

to

“I”

is

“L”.

This

points

to

a

specific

leaf

node

where

the

index

key

for

“I”

and

its

corresponding

row

ID

is

found.

The

row

ID

identifies

the

corresponding

row

in

the

base

table.

The

leaf

node

level

can

also

contain

pointers

to

previous

leaf

nodes.

These

pointers

allow

the

index

manager

to

scan

across

leaf

nodes

in

either

direction

to

retrieve

a

range

of

values

after

it

finds

one

value

in

the

range.

The

ability

to

scan

in

either

direction

is

only

possible

if

the

index

was

created

with

the

ALLOW

REVERSE

SCANS

clause.

For

multi-dimensional

clustering

(MDC)

tables,

a

block

index

is

created

automatically

for

each

clustering

dimension

that

you

specify

for

the

table.

An

additional

composite

block

index

is

also

created,

which

contains

a

key

part

for

each

column

involved

in

any

dimension

of

the

table.

These

indexes

contain

pointers

to

block

IDs

(BIDs)

instead

of

RIDs,

and

provide

data-access

improvements.

‘E ’ ‘Z ’‘N ’

‘F ’ ‘N ’‘L ’

(‘F’,rid) (‘M’,rid)
(‘N’,rid)

(‘G’,rid)
(‘I’,rid)
(‘K’,rid)

ROOT
NODE

INTERMEDIATE
NODES

LEAF
NODES

.

.

.

.

.

.

Figure

7.

B+

Tree

Structure

24

Administration

Guide:

Performance

In

DB2®

Version

8.1

and

later,

indexes

can

be

of

either

type

1

or

type

2.

A

type-1

index

is

the

older

index

style.

Indexes

that

you

created

in

earlier

versions

of

DB2

are

of

this

kind.

A

type-2

index

is

somewhat

larger

than

a

type-1

index

and

provides

features

that

minimize

next-key

locking.

The

one-byte

ridFlag

byte

stored

for

each

RID

on

the

leaf

page

of

a

type-2

index

is

used

to

mark

the

RID

as

logically

deleted

so

that

it

can

be

physically

removed

later.

For

each

variable

length

column

included

in

the

index,

one

additional

byte

stores

the

actual

length

of

the

column

value.

Type-2

indexes

might

also

be

larger

than

type-1

indexes

because

some

keys

might

be

marked

deleted

but

not

yet

physically

removed

from

the

index

page.

After

the

DELETE

or

UPDATE

transaction

is

committed,

the

keys

marked

deleted

can

be

cleaned

up.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

reorganization”

on

page

252

v

“Online

index

defragmentation”

on

page

254

Processes

The

following

sections

provide

general

descriptions

of

the

DB2

processes.

Log

processing

All

databases

maintain

log

files

that

keep

records

of

database

changes.

There

are

two

logging

strategy

choices:

v

Circular

logging,

in

which

the

log

records

fill

the

log

files

and

then

overwrite

the

initial

log

records

in

the

initial

log

file.

The

overwritten

log

records

are

not

recoverable.

v

Retain

log

records,

in

which

a

log

file

is

archived

when

it

fills

with

log

records.

New

log

files

are

made

available

for

log

records.

Retaining

log

files

enables

roll-forward

recovery.

Roll-forward

recovery

reapplies

changes

to

the

database

based

on

completed

units

of

work

(transactions)

that

are

recorded

in

the

log.

You

can

specify

that

roll-forward

recovery

is

to

the

end

of

the

logs,

or

to

a

particular

point

in

time

before

the

end

of

the

logs.

Regardless

of

the

logging

strategy,

all

changes

to

regular

data

and

index

pages

are

written

to

the

log

buffer.

The

data

in

the

log

buffer

is

written

to

disk

by

the

logger

process.

In

the

following

circumstances,

query

processing

must

wait

for

log

data

to

be

written

to

disk:

v

On

COMMIT

v

Before

the

corresponding

data

pages

are

written

to

disk,

because

DB2®

uses

write-ahead

logging.

The

benefit

of

write-ahead

logging

is

that

when

a

transaction

completes

by

executing

the

COMMIT

statement,

not

all

of

the

changed

data

and

index

pages

need

to

be

written

to

disk.

v

Before

some

changes

are

made

to

metadata,

most

of

which

result

from

executing

DDL

statements

v

On

writing

log

records

into

the

log

buffer,

if

the

log

buffer

is

full

DB2

manages

writing

log

data

to

disk

in

this

way

in

order

to

minimize

processing

delay.

In

an

environment

in

which

many

short

concurrent

transactions

occur,

most

of

the

processing

delay

is

caused

by

COMMIT

statements

that

must

wait

for

log

Chapter

2.

Architecture

and

processes

25

data

to

be

written

to

disk.

As

a

result,

the

logger

process

frequently

writes

small

amounts

of

log

data

to

disk,

with

additional

delay

caused

by

log

I/O

overhead.

To

balance

application

response

time

against

such

logging

delay,

set

the

mincommit

database

configuration

parameter

to

a

value

greater

than

1.

This

setting

might

cause

longer

delay

for

COMMIT

from

some

applications,

but

more

log

data

might

be

written

in

one

operation.

Changes

to

large

objects

(LOBs)

and

LONG

VARCHARs

are

tracked

through

shadow

paging.

LOB

column

changes

are

not

logged

unless

you

specify

log

retain

and

the

LOB

column

is

defined

on

the

CREATE

TABLE

statement

without

the

NOT

LOGGED

clause.

Changes

to

allocation

pages

for

LONG

or

LOB

data

types

are

logged

like

regular

data

pages.

Related

concepts:

v

“Update

processing”

on

page

27

v

“Client-server

processing

model”

on

page

28

Related

reference:

v

“mincommit

-

Number

of

commits

to

group”

on

page

403

Insert

processing

When

SQL

statements

use

INSERT

to

place

new

information

in

a

table,

an

INSERT

search

algorithm

first

searches

the

Free

Space

Control

Records

(FSCRs)

to

find

a

page

with

enough

space.

However,

even

when

the

FSCR

indicates

a

page

has

enough

free

space,

the

space

may

not

be

usable

because

it

is

reserved

by

an

uncommitted

DELETE

from

another

transaction.

To

ensure

that

uncommitted

free

space

is

usable,

you

should

COMMIT

transactions

frequently.

The

setting

of

the

DB2MAXFSCRSEARCH

registry

variable

determines

the

number

of

FSCRs

in

a

table

that

are

searched

for

an

INSERT.

The

default

value

for

this

registry

variable

is

five.

If

no

space

is

found

within

the

specified

number

of

FSCRs,

the

inserted

record

is

appended

at

the

end

of

the

table.

To

optimize

INSERT

speed,

subsequent

records

are

also

appended

to

the

end

of

the

table

until

two

extents

are

filled.

After

the

two

extents

are

filled,

the

next

INSERT

resumes

searching

at

the

FSCR

where

the

last

search

ended.

Note:

To

optimize

for

INSERT

speed

at

the

possible

expense

of

faster

table

growth,

set

the

DB2MAXFSCRSEARCH

registry

variable

to

a

small

number.

To

optimize

for

space

reuse

at

the

possible

expense

of

INSERT

speed,

set

DB2MAXFSCRSEARCH

to

a

larger

number.

After

all

FSCRs

in

the

entire

table

have

been

searched

in

this

way,

the

records

to

be

inserted

are

appended

without

additional

searching.

Searching

using

the

FSCRs

is

not

done

again

until

space

is

created

somewhere

in

the

table,

such

as

following

a

DELETE.

There

are

two

other

INSERT

algorithm

options,

as

follows:

v

APPEND

MODE

In

this

mode,

new

rows

are

always

appended

to

the

end

of

the

table.

No

searching

or

maintenance

of

FSCRs

takes

place.

This

option

is

enabled

using

the

ALTER

TABLE

APPEND

ON

statement,

and

can

improve

performance

for

tables

that

only

grow,

like

journals.

v

A

clustering

index

is

defined

on

the

table.

26

Administration

Guide:

Performance

In

this

case,

the

database

manager

attempts

to

insert

records

on

the

same

page

as

other

records

with

similar

index

key

values.

If

there

is

no

space

on

that

page,

the

attempt

is

made

to

put

the

record

into

the

surrounding

pages.

If

there

is

still

no

success,

the

FSCR

search

algorithm,

described

above,

is

used,

except

that

a

worst-fit

approach

is

used

instead

of

a

first-fit

approach.

This

worst-fit

approach

tends

to

choose

pages

with

more

free

space.

This

method

establishes

a

new

clustering

area

for

rows

with

this

key

value.

When

you

define

a

clustering

index

on

a

table,

use

ALTER

TABLE...

PCTFREE

before

you

either

load

or

reorganize

the

table.

The

PCTFREE

clause

specifies

the

percentage

of

free

space

that

should

remain

on

the

data

page

of

the

table

after

loading

and

reorganizing.

This

increases

the

probability

that

the

cluster

index

operation

will

find

free

space

on

the

appropriate

page.

Related

concepts:

v

“Table

and

index

management

for

standard

tables”

on

page

18

v

“Update

processing”

on

page

27

v

“Table

and

index

management

for

MDC

tables”

on

page

21

Update

processing

When

an

agent

updates

a

page,

the

database

manager

uses

the

following

protocol

to

minimize

the

I/O

required

by

the

transaction

and

ensure

recoverability.

1.

The

page

to

be

updated

is

pinned

and

latched

with

an

exclusive

lock.

A

log

record

is

written

to

the

log

buffer

describing

how

to

redo

and

undo

the

change.

As

part

of

this

action,

a

log

sequence

number

(LSN)

is

obtained

and

is

stored

in

the

page

header

of

the

page

being

updated.

2.

The

change

is

made

to

the

page.

3.

The

page

is

unlatched

and

unfixed.

The

page

is

considered

to

be

“dirty”

because

changes

to

the

page

have

not

been

written

out

to

disk.

4.

The

log

buffer

is

updated.

Both

the

data

in

the

log

buffer

and

the

“dirty”

data

page

are

forced

to

disk.

For

better

performance,

these

I/Os

are

delayed

until

a

convenient

point,

such

as

during

a

lull

in

the

system

load,

or

until

necessary

to

ensure

recoverability,

or

to

limit

recovery

time.

Specifically,

a

“dirty”

page

is

forced

to

disk

at

the

following

times:

v

When

another

agent

chooses

it

as

a

victim.

v

When

a

page

cleaner

acts

on

the

page

as

the

result

of:

–

Another

agent

choosing

it

as

a

victim.

–

The

chngpgs_thresh

database

configuration

parameter

percentage

value

is

exceeded.

When

this

value

is

exceeded,

asynchronous

page

cleaners

wake

up

and

write

changed

pages

to

disk.

If

proactive

page

cleaning

is

enabled,

this

value

is

irrelevant

and

does

not

trigger

page

cleaning.

–

The

softmax

database

configuration

parameter

percentage

value

is

exceeded.

Once

exceeded,

asynchronous

page

cleaners

wake

up

and

write

changed

pages

to

disk.

If

proactive

page

cleaning

is

enabled

for

the

database,

and

the

number

of

page

cleaners

has

been

properly

configured

for

the

database,

this

value

should

never

be

exceeded.

Chapter

2.

Architecture

and

processes

27

–

The

number

of

clean

pages

on

the

hate

list

drops

too

low.

Page

cleaners

only

react

to

this

condition

under

the

proactive

page

cleaning

method.

–

When

a

dirty

page

currently

contributes

to,

or

is

projected

to

contribute

to

an

LSNGAP

condition.

Page

cleaners

only

react

to

this

condition

under

the

proactive

page

cleaning

method.
v

When

the

page

was

updated

as

part

of

a

table

which

has

the

NOT

LOGGED

INITIALLY

clause

invoked

and

a

COMMIT

statement

is

issued.

When

the

COMMIT

statement

is

executed,

all

changed

pages

are

flushed

to

disk

to

ensure

recoverability.

Related

concepts:

v

“Log

processing”

on

page

25

v

“Client-server

processing

model”

on

page

28

Related

reference:

v

“softmax

-

Recovery

range

and

soft

checkpoint

interval”

on

page

405

v

“chngpgs_thresh

-

Changed

pages

threshold”

on

page

370

Client-server

processing

model

Local

and

remote

application

processes

can

work

with

the

same

database.

A

remote

application

is

one

that

initiates

a

database

action

from

a

machine

that

is

remote

from

the

database

machine.

Local

applications

are

directly

attached

to

the

database

at

the

server

machine.

Note:

How

DB2®

manages

client

connections

depends

on

whether

the

connection

concentrator

is

on

or

off.

The

connection

concentrator

is

ON

when

the

max_connections

database

manager

configuration

parameter

is

set

larger

than

the

max_coordagents

configuration

parameter.

v

If

the

connection

concentrator

is

OFF,

each

client

application

is

assigned

a

unique

EDU

called

a

coordinator

agent

that

coordinates

the

processing

for

that

application

and

communicates

with

it.

v

If

the

connection

concentrator

is

ON,

each

coordinator

agent

can

manage

many

client

connections,

one

at

a

time,

and

might

coordinate

the

other

worker

agents

to

do

this

work.

For

Internet

applications

with

many

relatively

transient

connections,

or

similar

applications

with

many

relatively

small

transactions,

the

connection

concentrator

improves

performance

by

allowing

many

more

client

applications

to

be

connected.

It

also

reduces

system

resource

use

for

each

connection.

Each

of

the

circles

of

the

following

figure

represent

engine

dispatchable

units

(EDUs)

which

are

known

as

“processes”

on

UNIX®

platforms,

and

“threads”

on

Windows®

NT.

A

means

of

communicating

between

an

application

and

the

database

manager

must

be

established

before

the

work

the

application

wants

done

at

the

database

can

be

carried

out.

At

A1

in

the

figure

below,

a

local

client

establishes

communications

first

through

the

db2ipccm.

At

A2,

the

db2ipccm

works

with

a

db2agent

EDU,

which

becomes

the

coordinator

agent

for

the

application

requests

from

the

local

client.

The

coordinator

agent

then

contacts

the

client

application

at

A3

to

establish

shared

memory

communications

between

the

client

application

and

the

coordinator.

The

application

at

the

local

client

is

connected

to

the

database

at

A4.

28

Administration

Guide:

Performance

At

B1

in

the

figure

below,

a

remote

client

establishes

communications

through

the

db2tcpcm

EDU.

If

any

other

communications

protocol

is

chosen,

the

appropriate

communication

manager

is

used.

The

db2tcpcm

EDU

establishes

TCP/IP

communication

between

the

client

application

and

the

db2tcpcm.

It

then

works

with

a

db2agent

at

B2,

which

becomes

the

coordinator

agent

for

the

application

and

passes

the

connection

to

this

agent.

At

B3

the

coordinator

agent

contacts

the

remote

client

application

and

is

connected

to

the

database.

Other

things

to

notice

in

this

figure:

v

Worker

agents

carry

out

application

requests.

v

There

are

four

types

of

worker

agents:

active

coordinator

agents,

active

subagents,

associated

subagents,

and

idle

agents.

v

Each

client

connection

is

linked

to

an

active

coordinator

agent.

v

In

a

partitioned

database

environment,

and

enabled

intra-partition

parallelism

environments,

the

coordinator

agents

distribute

database

requests

to

subagents

(db2agntp).

The

subagents

perform

the

requests

for

the

application.

v

There

is

an

agent

pool

(db2agent)

where

idle

and

pooled

agents

wait

for

new

work.

v

Other

EDUs

manage

client

connections,

logs,

two-phase

COMMITs,

backup

and

restore

tasks,

and

other

tasks.

App B

Remote client

App A

App A

App B

Local client

Server machine

EDUs per connection

db2ipccm

db2agent

db2agent

db2wdog

db2sysc

db2resyn

db2gds

db2cart

db2dart

db2agent

Unassociated idle agents

db2agntp

db2agntp

Active
subagents

Idle
subagents

db2agntp

db2agntp

logical
agents

Coordinator
agent

Coordinator
agent

db2tcpcm
B2B1

B4
B5

A1

EDUs per instance

A4
shared memory and semaphores

TCP

A3

A2

B3

Figure

8.

Process

model

overview

Chapter

2.

Architecture

and

processes

29

This

figure

shows

additional

engine

dispatchable

units

(EDUs)

that

are

part

of

the

server

machine

environment.

Each

active

database

has

its

own

shared

pool

of

prefetchers

(db2pfchr)

and

page

cleaners

(db2pclnr),

and

its

own

logger

(db2loggr)

and

deadlock

detector

(db2dlock).

Fenced

user-defined

functions

(UDFs)

and

stored

procedures,

which

are

not

shown

in

the

figure,

are

managed

to

minimize

costs

associated

with

their

creation

and

destruction.

The

default

for

the

keepfenced

database

manager

configuration

parameter

is

“YES”,

which

keeps

the

stored

procedure

process

available

for

re-use

at

the

next

stored

procedure

call.

Note:

Unfenced

UDFs

and

stored

procedures

run

directly

in

an

agent’s

address

space

for

better

performance.

However,

because

they

have

unrestricted

access

to

the

agent’s

address

space,

they

need

to

be

rigorously

tested

before

being

used.

The

multiple

partition

processing

model

is

a

logical

extension

of

the

single

partition

processing

model.

In

fact,

a

single

common

code

base

supports

both

modes

of

operation.

The

following

figure

shows

the

similarities

and

differences

between

the

single

partition

processing

model

as

seen

in

the

previous

two

figures,

and

the

multiple

partition

processing

model.

Server machine

App A

App B

EDUs per connection

db2agent

db2agent

db2agntp

db2agntp

Active
subagents

Idle
subagents

db2agntp

db2agntp

Coordinator
agent

Coordinator
agent

TEST database

PROD database

EDUs per active database EDUs per request

db2pclnr

db2bm, db2med, . . .

db2pfchr

db2pclnr

db2pfchr

db2udfp

db2dari

Fenced processes

Fenced UDF
processes

Fenced stored
procedure processes

db2loggr db2dlock

db2loggr db2dlock

Figure

9.

Process

model,

part

2

30

Administration

Guide:

Performance

Most

engine

dispatchable

units

(EDUs)

are

the

same

between

the

single

partition

processing

model

and

the

multiple

partition

processing

model.

In

a

multiple

partition

(or

node)

environment,

one

of

the

partitions

is

the

catalog

node.

The

catalog

keeps

all

of

the

information

relating

to

the

objects

in

the

database.

As

shown

in

the

figure

above,

because

Application

A

creates

the

PROD

database

on

Node0000,

the

catalog

for

the

PROD

database

is

created

on

this

node.

Similarly,

because

Application

B

creates

the

TEST

database

on

Node0001,

the

catalog

for

the

TEST

database

is

created

on

this

node.

You

might

want

to

create

your

databases

on

different

nodes

to

balance

the

extra

activity

associated

with

the

catalogs

for

each

database

across

the

nodes

in

your

system

environment.

Catalog node for TEST
db2glock

App A App B 2 create database
2 connect to TEST
2 load. . .
2 select . . .

DB TEST
DB
DB
DB

DB2 create database PROD
2 connect to PROD
2 load. . .
2 select . . .

DB
DB
DB

Catalog node for PROD
db2glock

db2pdbc db2pdbcdb2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

Figure

10.

Process

model

and

multiple

partitions

Chapter

2.

Architecture

and

processes

31

There

are

additional

EDUs

(db2pdbc

and

db2fcmd)

associated

with

the

instance

and

these

are

found

on

each

node

in

a

multiple

partition

database

environment.

These

EDUs

are

needed

to

coordinate

requests

across

database

partitions

and

to

enable

the

Fast

Communication

Manager

(FCM).

There

is

also

an

additional

EDU

(db2glock)

associated

with

the

catalog

node

for

the

database.

This

EDU

controls

global

deadlocks

across

the

nodes

where

the

active

database

is

located.

Each

CONNECT

from

an

application

is

represented

by

a

connection

that

is

associated

with

a

coordinator

agent

to

handle

the

connection.

The

coordinator

agent

is

the

agent

that

communicates

with

the

application,

receiving

requests

and

sending

replies.

It

can

either

satisfy

the

request

itself

or

coordinate

multiple

subagents

to

work

on

the

request.

The

partition

where

the

coordinator

agent

exists

is

called

the

coordinator

node

of

that

application.

The

coordinator

node

can

also

be

set

with

the

SET

CLIENT

CONNECT_NODE

command.

Parts

of

the

database

requests

from

the

application

are

sent

by

the

coordinator

node

to

subagents

at

the

other

partitions;

and

all

results

from

the

other

partitions

are

consolidated

at

the

coordinator

node

before

being

sent

back

to

the

application.

The

database

partition

where

the

CREATE

DATABASE

command

was

issued

is

called

the

“catalog

node”

for

the

database.

It

is

at

this

database

partition

that

the

catalog

tables

are

stored.

Typically,

all

user

tables

are

partitioned

across

a

set

of

nodes.

Note:

Any

number

of

partitions

can

be

configured

to

run

on

the

same

machine.

This

is

known

as

a

“multiple

logical

partition”,

or

“multiple

logical

node”,

configuration.

Such

a

configuration

is

very

useful

on

large

symmetric

multiprocessor

(SMP)

machines

with

very

large

main

memory.

In

this

environment,

communications

between

partitions

can

be

optimized

to

use

shared

memory

and

semaphores.

Related

concepts:

v

“DB2

architecture

and

process

overview”

on

page

9

v

“Log

processing”

on

page

25

v

“Update

processing”

on

page

27

v

“Memory

management”

on

page

32

v

“Connection-concentrator

improvements

for

client

connections”

on

page

259

Memory

management

A

primary

performance

tuning

task

is

deciding

how

to

divide

the

available

memory

among

the

areas

within

the

database.

You

tune

this

division

of

memory

by

setting

the

key

configuration

parameters

described

in

this

section.

All

engine

dispatchable

units

(EDUs)

in

a

partition

are

attached

to

the

Instance

Shared

Memory.

All

EDUs

doing

work

within

a

database

are

attached

to

the

Database

Shared

Memory

of

that

database.

All

EDUs

working

on

behalf

of

a

particular

application

are

attached

to

an

Application

Shared

Memory

region

for

that

application.

This

type

of

shared

memory

is

only

allocated

if

intra-

or

inter-partition

parallelism

is

enabled.

Finally,

each

EDU

has

its

own

private

memory.

32

Administration

Guide:

Performance

Instance

shared

memory

(also

known

as

database-manager

shared

memory)

is

allocated

when

the

database

is

started.

All

other

memory

is

attached

or

allocated

from

the

instance

shared

memory.

If

the

fast

communication

manager

(FCM)

is

used,

there

are

buffers

taken

from

this

memory.

FCM

is

used

for

internal

communications,

primarily

messages,

both

among

and

within

the

database

servers

in

a

particular

database

environment.

When

the

first

application

connects

or

attaches

to

a

database,

database

shared,

application

shared,

and

agent

private

memory

areas

are

allocated.

Instance

shared

memory

can

be

controlled

by

the

instance_memory

configuration

parameter.

By

default,

this

parameter

is

set

to

automatic

so

that

DB2®

calculates

the

amount

of

memory

allocated

for

the

instance.

Database

Shared

Memory

(also

known

as

Database

Global

Memory)

is

allocated

when

a

database

is

activated

or

connected

to

for

the

first

time.

This

memory

is

used

across

all

applications

that

might

connect

to

the

database.

Database

Shared

Memory

can

be

controlled

by

the

database_memory

configuration

parameter.

By

default,

this

parameter

is

set

to

automatic

so

that

DB2

calculates

the

amount

of

memory

allocated

for

the

database.

Many

different

memory

areas

are

contained

in

database

shared

memory

including:

v

Buffer

pools

v

Lock

list

v

Database

heap

–

and

this

includes

the

log

buffer

.

v

Utility

heap

v

Package

cache

v

Catalog

cache

Note:

Memory

can

be

allocated,

freed,

and

exchanged

between

different

areas

while

the

database

is

running.

For

example,

you

can

decrease

the

catalog

cache

and

then

increase

any

given

bufferpool

by

the

same

amount.

However,

before

changing

the

configuration

parameter

dynamically,

you

must

be

connected

to

that

database.

All

the

memory

areas

listed

above

can

be

changed

dynamically,

although

the

lock

list

memory

area

can

only

be

increased

dynamically,

and

not

decreased.

The

database

manager

configuration

parameter

numdb

specifies

the

number

of

local

databases

that

can

be

concurrently

active.

The

value

of

the

numdb

parameter

may

impact

the

total

amount

of

memory

allocated.

Application

shared

memory

(also

known

as

application

global

memory)

is

allocated

when

an

application

connects

to

a

database

only

in

a

partitioned

database

environment,

or

in

a

non-partitioned

database

with

intra-parallelism

enabled,

or

if

the

connection

concentrator

is

enabled.

This

memory

is

used

by

agents

that

do

the

work

requested

by

clients

connected

to

the

database.

The

database

manager

configuration

parameter

max_connections

sets

an

upper

limit

on

the

number

of

applications

that

can

connect

to

a

database.

Since

each

application

that

attaches

to

a

database

involves

the

allocation

of

some

memory,

allowing

a

larger

number

of

concurrent

applications

will

potentially

use

more

memory.

To

a

certain

extent,

the

maximum

number

of

applications

is

also

governed

by

the

database

manager

configuration

parameter

maxagents

or

max_coordagents

for

partitioned

environments.

The

maxagents

parameter

sets

an

upper

limit

to

the

total

Chapter

2.

Architecture

and

processes

33

number

of

database

manager

agents

in

a

partition.

These

database

manager

agents

include

active

coordinator

agents,

subagents,

inactive

agents,

and

idle

agents.

Agent

private

memory

is

allocated

for

an

agent

when

that

agent

is

created.

The

agent

private

memory

contains

memory

allocations

that

will

be

used

only

by

this

specific

agent,

such

as

the

sort

heap

and

the

application

heap.

There

are

a

few

special

types

of

shared

memory:

v

Agent/local

application

shared

memory.

This

memory

is

used

for

SQL

request

and

response

communications

between

an

agent

and

its

client

application.

v

UDF/agent

shared

memory.

This

memory

is

attached

to

by

agents

running

a

fenced

UDF

or

Stored

Procedure.

It

is

used

as

a

communications

area.

v

Extended

storage.

A

typically

very

large

(greater

than

4

GB)

region

of

shared

memory

used

as

an

extended

buffer

pool.

Agents/Prefetchers/Page

cleaners

are

not

permanently

attached

to

it,

but

attach

to

individual

segments

within

it

as

needed.

Extended

storage

acts

as

an

extended

look-aside

buffer

for

the

main

buffer

pools.

It

can

be

much

larger

than

4

GB.

For

32-bit

computers

with

large

amounts

of

main

memory,

look-aside

buffers

can

exploit

such

memory

performance

improvements.

The

extended

storage

cache

is

defined

in

terms

of

memory

segments.

For

64-bit

computers,

such

methods

are

not

needed

to

access

all

available

memory.

Note,

however,

that

if

you

use

some

of

the

real

addressable

memory

as

an

extended

storage

cache,

this

memory

can

no

longer

be

used

for

other

purposes

on

Database shared memory (permanently attached)

Buffer pools

Extended
buffer pool
(individual segments
attached on demand)

estore_seg_sz

Lock list

Package
cache

Shared
sorts

Database
heap

Utility heap

Disks

I/O

num_estore_segs (can be > 4Gb)

Memory copies

Figure

11.

How

extended

storage

is

used

by

buffer

pools

34

Administration

Guide:

Performance

the

machine

such

as

a

journaled

file-system

cache

or

as

a

process

private

address

space.

Assigning

additional

real

addressable

memory

to

the

extended

storage

cache

could

lead

to

higher

system

paging.

The

following

database

configuration

parameters

influence

the

amount

and

size

of

the

memory

available

for

extended

storage:

v

num_estore_segs

defines

the

number

of

extended

storage

memory

segments.

v

estore_seg_sz

defines

the

size

of

each

extended

memory

segment.

Each

table

space

is

assigned

a

buffer

pool.

An

extended

storage

cache

must

always

be

associated

with

one

or

more

specific

buffer

pools.

The

page

size

of

the

extended

storage

cache

must

match

the

page

size

of

the

buffer

pool

it

is

associated

with.

Related

concepts:

v

“Organization

of

memory

use”

on

page

211

v

“Database

manager

shared

memory”

on

page

213

v

“Global

memory

and

parameters

that

control

it”

on

page

216

v

“Buffer

pool

management”

on

page

220

v

“Secondary

buffer

pools

in

extended

memory

on

32-bit

platforms”

on

page

221

v

“Guidelines

for

tuning

parameters

that

affect

memory

usage”

on

page

218

v

“Connection-concentrator

improvements

for

client

connections”

on

page

259

Related

reference:

v

“estore_seg_sz

-

Extended

storage

memory

segment

size”

on

page

373

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“num_estore_segs

-

Number

of

extended

storage

memory

segments”

on

page

373

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“numdb

-

Maximum

number

of

concurrently

active

databases

including

host

and

iSeries

databases”

on

page

460

v

“max_connections

-

Maximum

number

of

client

connections”

on

page

379

v

“instance_memory

-

Instance

memory”

on

page

364

v

“database_memory

-

Database

shared

memory

size”

on

page

338

Chapter

2.

Architecture

and

processes

35

36

Administration

Guide:

Performance

Part

2.

Tuning

application

performance

©

Copyright

IBM

Corp.

1993

-

2004

37

38

Administration

Guide:

Performance

Chapter

3.

Application

considerations

A

number

of

factors

can

impact

the

run-time

performance

of

your

application.

This

chapter

describes

some

of

the

factors

to

consider

when

you

design

and

code

your

application,

and

later

when

you

tune

its

performance.

Concurrency

control

and

isolation

levels

The

following

sections

describe

the

effect

of

different

isolation

levels

on

concurrency.

Concurrency

issues

Because

many

users

access

and

change

data

in

a

relational

database,

the

database

manager

must

be

able

both

to

allow

users

to

make

these

changes

and

to

ensure

that

data

integrity

is

preserved.

Concurrency

refers

to

the

sharing

of

resources

by

multiple

interactive

users

or

application

programs

at

the

same

time.

The

database

manager

controls

this

access

to

prevent

undesirable

effects,

such

as:

v

Lost

updates.

Two

applications,

A

and

B,

might

both

read

the

same

row

from

the

database

and

both

calculate

new

values

for

one

of

its

columns

based

on

the

data

these

applications

read.

If

A

updates

the

row

with

its

new

value

and

B

then

also

updates

the

row,

the

update

performed

by

A

is

lost.

v

Access

to

uncommitted

data.

Application

A

might

update

a

value

in

the

database,

and

application

B

might

read

that

value

before

it

was

committed.

Then,

if

the

value

of

A

is

not

later

committed,

but

backed

out,

the

calculations

performed

by

B

are

based

on

uncommitted

(and

presumably

invalid)

data.

v

Nonrepeatable

reads.

Some

applications

involve

the

following

sequence

of

events:

application

A

reads

a

row

from

the

database,

then

goes

on

to

process

other

SQL

requests.

In

the

meantime,

application

B

either

modifies

or

deletes

the

row

and

commits

the

change.

Later,

if

application

A

attempts

to

read

the

original

row

again,

it

receives

the

modified

row

or

discovers

that

the

original

row

has

been

deleted.

v

Phantom

Read

Phenomenon.

The

phantom

read

phenomenon

occurs

when:

1.

Your

application

executes

a

query

that

reads

a

set

of

rows

based

on

some

search

criterion.

2.

Another

application

inserts

new

data

or

updates

existing

data

that

would

satisfy

your

application’s

query.

3.

Your

application

repeats

the

query

from

step

1

(within

the

same

unit

of

work).

Some

additional

(“phantom”)

rows

are

returned

as

part

of

the

result

set

that

were

not

returned

when

the

query

was

initially

executed

(step

1).

Note:

Declared

temporary

tables

have

no

concurrency

issues

because

they

are

available

only

to

the

application

that

declared

them.

This

type

of

table

only

exists

from

the

time

that

the

application

declares

it

until

the

application

completes

or

disconnects.

Concurrency

control

in

federated

database

systems

A

federated

database

system

supports

applications

and

users

submitting

SQL

statements

that

reference

two

or

more

database

management

systems

(DBMSs)

or

©

Copyright

IBM

Corp.

1993

-

2004

39

databases

in

a

single

statement.

To

reference

the

data

sources,

which

consist

of

a

DBMS

and

data,

DB2®

uses

nicknames.

Nicknames

are

aliases

for

objects

in

other

database

managers.

In

a

federated

system,

DB2

relies

on

the

concurrency

control

protocols

of

the

database

manager

that

hosts

the

requested

data.

A

DB2

federated

system

provides

location

transparency

for

database

objects.

For

example,

with

location

transparency

if

information

about

tables

and

views

is

moved,

references

to

that

information

through

nicknames

can

be

updated

without

changing

applications

that

request

the

information.

When

an

application

accesses

data

through

nicknames,

DB2

relies

on

the

concurrency

control

protocols

of

data-source

database

managers

to

ensure

isolation

levels.

Although

DB2

tries

to

match

the

requested

level

of

isolation

at

the

data

source

with

a

logical

equivalent,

results

may

vary

depending

on

data

source

capabilities.

Related

concepts:

v

“Performance

impact

of

isolation

levels”

on

page

40

Related

tasks:

v

“Specifying

the

isolation

level”

on

page

43

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

Performance

impact

of

isolation

levels

An

isolation

level

determines

how

data

is

locked

or

isolated

from

other

processes

while

the

data

is

being

accessed.

The

isolation

level

will

be

in

effect

for

the

duration

of

the

unit

of

work.

Applications

that

use

a

cursor

declared

with

a

DECLARE

CURSOR

statement

using

the

WITH

HOLD

clause

will

keep

the

chosen

isolation

level

for

the

duration

of

the

unit

of

work

in

which

the

OPEN

CURSOR

was

performed.

DB2®

supports

the

following

isolation

levels:

v

Repeatable

Read

v

Read

Stability

v

Cursor

Stability

v

Uncommitted

Read.

Note:

Some

host

database

servers

support

the

no

commit

isolation

level.

On

other

databases,

this

isolation

level

behaves

like

the

uncommitted

read

isolation

level.

Detailed

explanations

for

each

of

the

isolation

levels

follows

in

decreasing

order

of

performance

impact,

but

in

increasing

order

of

care

required

when

accessing

and

updating

data.

Repeatable

Read

Repeatable

Read

(RR)

locks

all

the

rows

an

application

references

within

a

unit

of

work.

Using

Repeatable

Read,

a

SELECT

statement

issued

by

an

application

twice

within

the

same

unit

of

work

in

which

the

cursor

was

opened,

gives

the

same

result

each

time.

With

Repeatable

Read,

lost

updates,

access

to

uncommitted

data,

and

phantom

rows

are

not

possible.

The

Repeatable

Read

application

can

retrieve

and

operate

on

the

rows

as

many

times

as

needed

until

the

unit

of

work

completes.

However,

no

other

applications

40

Administration

Guide:

Performance

can

update,

delete,

or

insert

a

row

that

would

affect

the

result

table,

until

the

unit

of

work

completes.

Repeatable

Read

applications

cannot

see

uncommitted

changes

of

other

applications.

With

Repeatable

Read,

every

row

that

is

referenced

is

locked,

not

just

the

rows

that

are

retrieved.

Appropriate

locking

is

performed

so

that

another

application

cannot

insert

or

update

a

row

that

would

be

added

to

the

list

of

rows

referenced

by

your

query,

if

the

query

was

re-executed.

This

prevents

phantom

rows

from

occurring.

For

example,

if

you

scan

10

000

rows

and

apply

predicates

to

them,

locks

are

held

on

all

10

000

rows,

even

though

only

10

rows

qualify.

Note:

The

Repeatable

Read

isolation

level

ensures

that

all

returned

data

remains

unchanged

until

the

time

the

application

sees

the

data,

even

when

temporary

tables

or

row

blocking

are

used.

Since

Repeatable

Read

may

acquire

and

hold

a

considerable

number

of

locks,

these

locks

may

exceed

the

number

of

locks

available

as

a

result

of

the

locklist

and

maxlocks

configuration

parameters.

In

order

to

avoid

lock

escalation,

the

optimizer

may

elect

to

acquire

a

single

table-level

lock

immediately

for

an

index

scan,

if

it

believes

that

lock

escalation

is

very

likely

to

occur.

This

functions

as

though

the

database

manager

has

issued

a

LOCK

TABLE

statement

on

your

behalf.

If

you

do

not

want

a

table-level

lock

to

be

obtained

ensure

that

enough

locks

are

available

to

the

transaction

or

use

the

Read

Stability

isolation

level.

Read

Stability

Read

Stability

(RS)

locks

only

those

rows

that

an

application

retrieves

within

a

unit

of

work.

It

ensures

that

any

qualifying

row

read

during

a

unit

of

work

is

not

changed

by

other

application

processes

until

the

unit

of

work

completes,

and

that

any

row

changed

by

another

application

process

is

not

read

until

the

change

is

committed

by

that

process.

That

is,

“nonrepeatable

read”

behavior

is

not

possible.

Unlike

repeatable

read,

with

Read

Stability,

if

your

application

issues

the

same

query

more

than

once,

you

may

see

additional

phantom

rows

(the

phantom

read

phenomenon).

Recalling

the

example

of

scanning

10

000

rows,

Read

Stability

only

locks

the

rows

that

qualify.

Thus,

with

Read

Stability,

only

10

rows

are

retrieved,

and

a

lock

is

held

only

on

those

ten

rows.

Contrast

this

with

Repeatable

Read,

where

in

this

example,

locks

would

be

held

on

all

10

000

rows.

The

locks

that

are

held

can

be

share,

next

share,

update,

or

exclusive

locks.

Note:

The

Read

Stability

isolation

level

ensures

that

all

returned

data

remains

unchanged

until

the

time

the

application

sees

the

data,

even

when

temporary

tables

or

row

blocking

are

used.

One

of

the

objectives

of

the

Read

Stability

isolation

level

is

to

provide

both

a

high

degree

of

concurrency

as

well

as

a

stable

view

of

the

data.

To

assist

in

achieving

this

objective,

the

optimizer

ensures

that

table

level

locks

are

not

obtained

until

lock

escalation

occurs.

The

Read

Stability

isolation

level

is

best

for

applications

that

include

all

of

the

following:

v

Operate

in

a

concurrent

environment

v

Require

qualifying

rows

to

remain

stable

for

the

duration

of

the

unit

of

work

v

Do

not

issue

the

same

query

more

than

once

within

the

unit

of

work,

or

do

not

require

that

the

query

get

the

same

answer

when

issued

more

than

once

in

the

same

unit

of

work.

Chapter

3.

Application

considerations

41

Cursor

Stability

Cursor

Stability

(CS)

locks

any

row

accessed

by

a

transaction

of

an

application

while

the

cursor

is

positioned

on

the

row.

This

lock

remains

in

effect

until

the

next

row

is

fetched

or

the

transaction

is

terminated.

However,

if

any

data

on

a

row

is

changed,

the

lock

must

be

held

until

the

change

is

committed

to

the

database.

No

other

applications

can

update

or

delete

a

row

that

a

Cursor

Stability

application

has

retrieved

while

any

updatable

cursor

is

positioned

on

the

row.

Cursor

Stability

applications

cannot

see

uncommitted

changes

of

other

applications.

Recalling

the

example

of

scanning

10

000

rows,

if

you

use

Cursor

Stability,

you

will

only

have

a

lock

on

the

row

under

your

current

cursor

position.

The

lock

is

removed

when

you

move

off

that

row

(unless

you

update

that

row).

With

Cursor

Stability,

both

nonrepeatable

read

and

the

phantom

read

phenomenon

are

possible.

Cursor

Stability

is

the

default

isolation

level

and

should

be

used

when

you

want

the

maximum

concurrency

while

seeing

only

committed

rows

from

other

applications.

Uncommitted

Read

Uncommitted

Read

(UR)

allows

an

application

to

access

uncommitted

changes

of

other

transactions.

The

application

also

does

not

lock

other

applications

out

of

the

row

it

is

reading,

unless

the

other

application

attempts

to

drop

or

alter

the

table.

Uncommitted

Read

works

differently

for

read-only

and

updatable

cursors.

Read-only

cursors

can

access

most

uncommitted

changes

of

other

transactions.

However,

tables,

views,

and

indexes

that

are

being

created

or

dropped

by

other

transactions

are

not

available

while

the

transaction

is

processing.

Any

other

changes

by

other

transactions

can

be

read

before

they

are

committed

or

rolled

back.

Note:

Cursors

that

are

updatable

operating

under

the

Uncommitted

Read

isolation

level

will

behave

as

if

the

isolation

level

was

cursor

stability.

When

it

runs

a

program

using

isolation

level

UR,

an

application

can

use

isolation

level

CS.

This

happens

because

the

cursors

used

in

the

application

program

are

ambiguous.

The

ambiguous

cursors

can

be

escalated

to

isolation

level

CS

because

of

a

BLOCKING

option.

The

default

for

the

BLOCKING

option

is

UNAMBIG.

This

means

that

ambiguous

cursors

are

treated

as

updatable

and

the

escalation

of

the

isolation

level

to

CS

occurs.

To

prevent

this

escalation,

you

have

the

following

two

choices:

v

Modify

the

cursors

in

the

application

program

so

that

they

are

unambiguous.

Change

the

SELECT

statements

to

include

the

FOR

READ

ONLY

clause.

v

Leave

cursors

ambiguous

in

the

application

program,

but

precompile

the

program

or

bind

it

with

the

BLOCKING

ALL

option

to

allow

any

ambiguous

cursors

to

be

treated

as

read-only

when

the

program

is

run.

As

in

the

example

given

for

Repeatable

Read,

of

scanning

10

000

rows,

if

you

use

Uncommitted

Read,

you

do

not

acquire

any

row

locks.

With

Uncommitted

Read,

both

nonrepeatable

read

behavior

and

the

phantom

read

phenomenon

are

possible.

The

Uncommitted

Read

isolation

level

is

most

42

Administration

Guide:

Performance

commonly

used

for

queries

on

read-only

tables,

or

if

you

are

executing

only

select

statements

and

you

do

not

care

whether

you

see

uncommitted

data

from

other

applications.

Summary

of

isolation

levels

The

following

table

summarizes

the

different

isolation

levels

in

terms

of

their

undesirable

effects.

Table

1.

Summary

of

isolation

levels

Isolation

Level

Access

to

uncommitted

data

Nonrepeatable

reads

Phantom

read

phenomenon

Repeatable

Read

(RR)

Not

possible

Not

possible

Not

possible

Read

Stability

(RS)

Not

possible

Not

possible

Possible

Cursor

Stability

(CS)

Not

possible

Possible

Possible

Uncommitted

Read

(UR)

Possible

Possible

Possible

The

table

below

provides

a

simple

heuristic

to

help

you

choose

an

initial

isolation

level

for

your

applications.

Consider

this

table

a

starting

point,

and

refer

to

the

previous

discussions

of

the

various

levels

for

factors

that

might

make

another

isolation

level

more

appropriate.

Table

2.

Guidelines

for

choosing

an

isolation

level

Application

Type

High

data

stability

required

High

data

stability

not

required

Read-write

transactions

RS

CS

Read-only

transactions

RR

or

RS

UR

Choosing

the

appropriate

isolation

level

for

an

application

is

very

important

to

avoid

the

phenomena

that

are

intolerable

for

that

application.

The

isolation

level

affects

not

only

the

degree

of

isolation

among

applications

but

also

the

performance

characteristics

of

an

individual

application

since

the

CPU

and

memory

resources

that

are

required

to

obtain

and

free

locks

vary

with

the

isolation

level.

The

potential

for

deadlock

situations

also

varies

with

the

isolation

level.

Related

concepts:

v

“Concurrency

issues”

on

page

39

Related

tasks:

v

“Specifying

the

isolation

level”

on

page

43

Specifying

the

isolation

level

Because

the

isolation

level

determines

how

data

is

locked

and

isolated

from

other

processes

while

the

data

is

being

accessed,

you

should

select

an

isolation

level

that

balances

the

requirements

of

concurrency

and

data

integrity.

The

isolation

level

that

you

specify

is

in

effect

for

the

duration

of

the

unit

of

work.

The

isolation

level

can

be

specified

in

several

different

ways.

The

following

heuristics

are

used

in

determining

which

isolation

level

will

be

used

in

compiling

an

SQL

statement:

Chapter

3.

Application

considerations

43

Static

SQL:

v

If

an

isolation

clause

is

specified

in

the

statement,

then

the

value

of

that

clause

is

used.

v

If

no

isolation

clause

is

specifed

in

the

statement,

then

the

isolation

level

used

is

the

one

specified

for

the

package

at

the

time

when

the

package

was

bound

to

the

database.

Dynamic

SQL:

v

If

an

isolation

clause

is

specified

in

the

statement,

then

the

value

of

that

clause

is

used.

v

If

no

isolation

clause

is

specifed

in

the

statement,

and

a

SET

CURRENT

ISOLATION

statement

has

been

issued

within

the

current

session,

then

the

value

of

the

CURRENT

ISOLATION

special

register

is

used.

v

If

no

isolation

clause

is

specifed

in

the

statement,

and

no

SET

CURRENT

ISOLATION

statement

has

been

issued

within

the

current

session,

then

the

isolation

level

used

is

the

one

specified

for

the

package

at

the

time

when

the

package

was

bound

to

the

database.

Note:

Many

commercially

written

applications

provide

a

method

for

choosing

the

isolation

level.

Refer

to

the

application

documentation

for

information.

Procedure:

To

specify

the

isolation

level:

1.

At

precompile

or

bind

time:

For

an

application

written

in

a

supported

compiled

language,

use

the

ISOLATION

option

of

the

command

line

processor

PREP

or

BIND

commands.

You

can

also

use

the

PREP

or

BIND

APIs

to

specify

the

isolation

level.

v

If

you

create

a

bind

file

at

precompile

time,

the

isolation

level

is

stored

in

the

bind

file.

If

you

do

not

specify

an

isolation

level

at

bind

time,

the

default

is

the

isolation

level

used

during

precompilation.

v

If

you

do

not

specify

an

isolation

level,

the

default

of

cursor

stability

is

used.

Note:

To

determine

the

isolation

level

of

a

package,

execute

the

following

query:

SELECT

ISOLATION

FROM

SYSCAT.PACKAGES

WHERE

PKGNAME

=

’XXXXXXXX’

AND

PKGSCHEMA

=

’YYYYYYYY’

where

XXXXXXXX

is

the

name

of

the

package

and

YYYYYYYY

is

the

schema

name

of

the

package.

Both

of

these

names

must

be

in

all

capital

letters.

2.

On

database

servers

that

support

REXX:

When

a

database

is

created,

multiple

bind

files

that

support

the

different

isolation

levels

for

SQL

in

REXX

are

bound

to

the

database.

Other

command-line

processor

packages

are

also

bound

to

the

database

when

a

database

is

created.

REXX

and

the

command

line

processor

connect

to

a

database

using

a

default

isolation

level

of

cursor

stability.

Changing

to

a

different

isolation

level

does

not

change

the

connection

state.

It

must

be

executed

in

the

CONNECTABLE

AND

UNCONNECTED

state

or

in

the

IMPLICITLY

CONNECTABLE

state.

To

verify

the

isolation

level

in

use

by

a

REXX

application,

check

the

value

of

the

SQLISL

REXX

variable.

The

value

is

updated

every

time

the

CHANGE

SQLISL

command

is

executed.

44

Administration

Guide:

Performance

3.

At

the

statement

level:

Use

the

WITH

clause.

The

statement-level

isolation

level

overrides

the

isolation

level

specified

for

the

package

in

which

the

statement

appears.

You

can

specify

an

isolation

level

for

the

following

SQL

statements:

v

SELECT

v

SELECT

INTO

v

Searched

DELETE

v

INSERT

v

Searched

UPDATE

v

DECLARE

CURSOR
The

following

conditions

apply

to

isolation

levels

specified

for

statements:

v

The

WITH

clause

cannot

be

used

on

subqueries

v

The

WITH

UR

option

applies

only

to

read-only

operations.

In

other

cases,

the

statement

is

automatically

changed

from

UR

to

CS.
4.

From

CLI

or

ODBC

at

runtime:

Use

the

CHANGE

ISOLATION

LEVEL

command.

For

DB2

Call

Level

Interface

(DB2

CLI),

you

can

change

the

isolation

level

as

part

of

the

DB2

CLI

configuration.

At

runtime,

use

the

SQLSetConnectAttr

function

with

the

SQL_ATTR_TXN_ISOLATION

attribute

to

set

the

transaction

isolation

level

for

the

current

connection

referenced

by

the

ConnectionHandle.

You

can

also

use

the

TXNISOLATION

keyword

in

the

db2cli.ini

file

.

5.

When

working

with

JDBC

or

SQLJ

at

run

time:

Note:

JDBC

and

SQLJ

are

implemented

with

CLI

on

DB2,

which

means

the

db2cli.ini

settings

might

affect

what

is

written

and

run

using

JDBC

and

SQLJ.

Use

the

setTransactionIsolation

method

in

the

java.sql

interface

connection.

In

SQLJ,

you

run

the

db2profc

SQLJ

optimizer

to

create

a

package.

The

options

that

you

can

specify

for

this

package

include

its

isolation

level.

6.

For

dynamic

SQL

within

the

current

session:

Use

the

SET

CURRENT

ISOLATION

statement

to

set

the

isolation

level

for

dynamic

SQL

issued

within

a

session.

Issuing

this

statement

sets

the

CURRENT

ISOLATION

special

register

to

a

value

that

specifies

the

level

of

isolation

for

any

dynamic

SQL

statements

issued

within

the

current

session.

Once

set,

the

CURRENT

ISOLATION

special

register

provides

the

isolation

level

for

any

subsequent

dynamic

SQL

statement

compiled

within

the

session,

regardless

of

the

package

issuing

the

statement.

This

isolation

level

will

apply

until

the

session

is

ended

or

until

a

SET

CURRENT

ISOLATION

statement

is

issued

with

the

RESET

option.

Related

concepts:

v

“Concurrency

issues”

on

page

39

Related

reference:

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

3.

Application

considerations

45

Concurrency

control

and

locking

The

following

sections

describe

the

different

kinds

and

levels

of

locking

and

how

these

locks

are

determined

by

and

affect

data

access

performance.

Locks

and

concurrency

control

To

provide

concurrency

control

and

prevent

uncontrolled

data

access,

the

database

manager

places

locks

on

buffer

pools,

tables,

table

blocks,

or

table

rows.

A

lock

associates

a

database

manager

resource

with

an

application,

called

the

lock

owner,

to

control

how

other

applications

can

access

the

same

resource.

Although

most

locking

occurs

on

tables,

when

a

buffer

pool

is

created,

altered,

or

dropped,

a

buffer

pool

lock

is

set.

The

mode

used

with

this

lock

is

EXCLUSIVE

(X).

You

may

encounter

this

lock

when

a

snapshot

is

taken

using

the

Command

Line

Processor

(CLP).

When

viewing

the

snapshot,

you

will

see

that

the

lock

name

used

is

the

identifier

(ID)

of

the

buffer

pool

itself.

The

database

manager

uses

record-level

locking

or

table-level

locking

as

appropriate

based

on:

v

The

isolation

level

specified

at

precompile

time

or

when

an

application

is

bound

to

the

database.

The

isolation

level

can

be

one

of

the

following:

–

Uncommitted

Read

(UR)

–

Cursor

Stability

(CS)

–

Read

Stability

(RS)

–

Repeatable

Read

(RR)

The

different

isolation

levels

are

used

to

control

access

to

uncommitted

data,

prevent

lost

updates,

allow

non-repeatable

reads

of

data,

and

prevent

phantom

reads.

Use

the

minimum

isolation

level

that

satisfies

your

application

needs.

v

The

access

plan

selected

by

the

optimizer.

Table

scans,

index

scans,

and

other

methods

of

data

access

each

require

different

types

of

access

to

the

data.

v

The

LOCKSIZE

attribute

for

the

table.

The

LOCKSIZE

clause

on

the

ALTER

TABLE

statement

indicates

the

granularity

of

the

locks

used

when

the

table

is

accessed.

The

choices

are

either

ROW

for

row

locks,

or

TABLE

for

table

locks.

Use

ALTER

TABLE...

LOCKSIZE

TABLE

for

read-only

tables.

This

reduces

the

number

of

locks

required

by

database

activity.

v

The

amount

of

memory

devoted

to

locking.

The

amount

of

memory

devoted

to

locking

is

controlled

by

the

locklist

database

configuration

parameter.

If

the

lock

list

fills,

performance

can

degrade

due

to

lock

escalations

and

reduced

concurrency

on

shared

objects

in

the

database.

If

lock

escalations

occur

frequently,

increase

the

value

of

either

locklist

or

maxlocks,

or

both.

Ensure

that

all

transactions

COMMIT

frequently

to

free

held

locks.

In

general,

record-level

locking

is

used

unless

one

of

the

following

is

the

case:

v

The

isolation

level

chosen

is

uncommitted

read

(UR).

v

The

isolation

level

chosen

is

repeatable

read

(RR)

and

the

access

plan

requires

a

scan

with

no

predicates.

v

The

table

LOCKSIZE

attribute

is

“TABLE”.

v

The

lock

list

fills,

causing

escalation.

46

Administration

Guide:

Performance

v

There

is

an

explicit

table

lock

acquired

via

the

LOCK

TABLE

statement.

The

LOCK

TABLE

statement

prevents

concurrent

application

processes

from

either

changing

a

table

or

using

a

table.

A

lock

escalation

occurs

when

the

number

of

locks

held

on

rows

and

tables

in

the

database

equals

the

percentage

of

the

locklist

specified

by

the

maxlocks

database

configuration

parameter.

Lock

escalation

might

not

affect

the

table

that

acquires

the

lock

that

triggers

escalation.

To

reduce

the

number

of

locks

to

about

half

the

number

held

when

lock

escalation

begins,

the

database

manager

begins

converting

many

small

row

locks

to

table

locks

for

all

active

tables,

beginning

with

any

locks

on

large

object

(LOB)

or

long

VARCHAR

elements.

An

exclusive

lock

escalation

is

a

lock

escalation

in

which

the

table

lock

acquired

is

an

exclusive

lock.

Lock

escalations

reduce

concurrency.

Conditions

that

might

cause

lock

escalations

should

be

avoided.

The

duration

of

row

locking

varies

with

the

isolation

level

being

used:

v

UR

scans:

No

row

locks

are

held

unless

row

data

is

changing.

v

CS

scans:

Row

locks

are

only

held

while

the

cursor

is

positioned

on

the

row.

v

RS

scans:

Only

qualifying

row

locks

are

held

for

the

duration

of

the

transaction.

v

RR

scans:

All

row

locks

are

held

for

the

duration

of

the

transaction.

Related

concepts:

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

v

“Guidelines

for

locking”

on

page

53

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“dlchktime

-

Time

interval

for

checking

deadlock”

on

page

367

v

“diaglevel

-

Diagnostic

error

capture

level”

on

page

451

v

“locktimeout

-

Lock

timeout”

on

page

368

v

“Lock

type

compatibility”

on

page

59

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

60

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

62

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

65

Lock

attributes

Database

manager

locks

have

the

following

basic

attributes:

Mode

The

type

of

access

allowed

for

the

lock

owner

as

well

as

the

type

of

access

permitted

for

concurrent

users

of

the

locked

object.

It

is

sometimes

referred

to

as

the

state

of

the

lock.

Object

The

resource

being

locked.

The

only

type

of

object

that

you

can

lock

explicitly

is

a

table.

The

database

manager

also

imposes

locks

on

other

types

of

resources,

such

as

rows,

tables,

and

table

spaces.

For

multidimensional

clustering

(MDC)

tables,

block

locks

can

also

be

imposed.

The

object

being

locked

determines

the

granularity

of

the

lock.

Chapter

3.

Application

considerations

47

Duration

The

length

of

time

a

lock

is

held.

The

isolation

level

in

which

the

query

runs

affects

the

lock

duration.

The

following

table

shows

the

modes

and

their

effects

in

order

of

increasing

control

over

resources.

For

detailed

information

about

locks

at

various

levels,

refer

to

the

lock-mode

reference

tables.

Table

3.

Lock

Mode

Summary

Lock

Mode

Applicable

Object

Type

Description

IN

(Intent

None)

Table

spaces,

blocks,

tables

The

lock

owner

can

read

any

data

in

the

object,

including

uncommitted

data,

but

cannot

update

any

of

it.

Other

concurrent

applications

can

read

or

update

the

table.

IS

(Intent

Share)

Table

spaces,

blocks,

tables

The

lock

owner

can

read

data

in

the

locked

table,

but

cannot

update

this

data.

Other

applications

can

read

or

update

the

table.

NS

(Next

Key

Share)

Rows

The

lock

owner

and

all

concurrent

applications

can

read,

but

not

update,

the

locked

row.

This

lock

is

acquired

on

rows

of

a

table,

instead

of

an

S

lock,

where

the

isolation

level

of

the

application

is

either

RS

or

CS.

NS

lock

mode

is

not

used

for

next-key

locking.

It

is

used

instead

of

S

mode

during

CS

and

RS

scans

to

minimize

the

impact

of

next-key

locking

on

these

scans.

S

(Share)

Rows,

blocks,

tables

The

lock

owner

and

all

concurrent

applications

can

read,

but

not

update,

the

locked

data.

IX

(Intent

Exclusive)

Table

spaces,

blocks,

tables

The

lock

owner

and

concurrent

applications

can

read

and

update

data.

Other

concurrent

applications

can

both

read

and

update

the

table.

SIX

(Share

with

Intent

Exclusive)

Tables,

blocks

The

lock

owner

can

read

and

update

data.

Other

concurrent

applications

can

read

the

table.

U

(Update)

Rows,

blocks,

tables

The

lock

owner

can

update

data.

Other

units

of

work

can

read

the

data

in

the

locked

object,

but

cannot

attempt

to

update

it.

NW

(Next

Key

Weak

Exclusive)

Rows

When

a

row

is

inserted

into

an

index,

an

NW

lock

is

acquired

on

the

next

row.

For

type

2

indexes,

this

occurs

only

if

the

next

row

is

currently

locked

by

an

RR

scan.

The

lock

owner

can

read

but

not

update

the

locked

row.

This

lock

mode

is

similar

to

an

X

lock,

except

that

it

is

also

compatible

with

W

and

NS

locks.

X

(Exclusive)

Rows,

blocks,

tables,

buffer

pools

The

lock

owner

can

both

read

and

update

data

in

the

locked

object.

Only

uncommitted

read

applications

can

access

the

locked

object.

W

(Weak

Exclusive)

Rows

This

lock

is

acquired

on

the

row

when

a

row

is

inserted

into

a

table

that

does

not

have

type-2

indexes

defined.

The

lock

owner

can

change

the

locked

row.

To

determine

if

a

duplicate

value

has

been

committed

when

a

duplicate

value

is

found,

this

lock

is

also

used

during

insertion

into

a

unique

index.

This

lock

is

similar

to

an

X

lock

except

that

it

is

compatible

with

the

NW

lock.

Only

uncommitted

read

applications

can

access

the

locked

row.

Z

(Super

Exclusive)

Table

spaces,

tables

This

lock

is

acquired

on

a

table

in

certain

conditions,

such

as

when

the

table

is

altered

or

dropped,

an

index

on

the

table

is

created

or

dropped,

or

for

some

types

of

table

reorganization.

No

other

concurrent

application

can

read

or

update

the

table.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Locks

and

performance”

on

page

49

48

Administration

Guide:

Performance

Related

reference:

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“Lock

type

compatibility”

on

page

59

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

60

Locks

and

performance

Several

related

factors

affect

the

uses

of

locks

and

their

effect

on

application

performance.

The

following

factors

are

discussed

here:

v

Concurrency

and

granularity

v

Lock

compatibility

v

Lock

conversion

v

Lock

escalation

v

Lock

waits

and

timeouts

v

Deadlocks

Concurrency

and

granularity

If

one

application

holds

a

lock

on

a

database

object,

another

application

might

not

be

able

to

access

that

object.

For

this

reason,

row-level

locks

are

better

for

maximum

concurrency

than

table-level

locks.

However,

locks

require

storage

and

processing

time,

so

a

single

table

lock

minimizes

lock

overhead.

The

LOCKSIZE

clause

of

the

ALTER

TABLE

statement

specifies

the

scope

(granularity)

of

locks

at

either

row

or

table

level.

By

default,

row

locks

are

used.

Only

S

(Shared)

and

X

(Exclusive)

locks

are

requested

by

these

defined

table

locks.

The

ALTER

TABLE

statement

LOCKSIZE

ROW

clause

does

not

prevent

normal

lock

escalation

from

occurring.

A

permanent

table

lock

defined

by

the

ALTER

TABLE

statement

might

be

preferable

to

a

single-transaction

table

lock

using

LOCK

TABLE

statement

in

the

following

cases:

v

The

table

is

read-only,

and

will

always

need

only

S

locks.

Other

users

can

also

obtain

S

locks

on

the

table.

v

The

table

is

usually

accessed

by

read-only

applications,

but

is

sometimes

accessed

by

a

single

user

for

brief

maintenance,

and

that

user

requires

an

X

lock.

While

the

maintenance

program

runs,

the

read-only

applications

are

locked

out,

but

in

other

circumstances,

read-only

applications

can

access

the

table

concurrently

with

a

minimum

of

locking

overhead.

The

ALTER

TABLE

statement

specifies

locks

globally,

affecting

all

applications

and

users

that

access

that

table.

Individual

applications

might

use

the

LOCK

TABLE

statement

to

specify

table

locks

at

an

application

level

instead.

Lock

compatibility

Lock

compatibility

is

another

important

factor

in

concurrent

access

of

tables.

Lock

compatibility

refers

to

the

current

lock

on

the

object

and

the

type

of

lock

being

requested

on

that

object

and

determines

whether

the

request

can

be

granted.

Assume

that

application

A

holds

a

lock

on

a

table

that

application

B

also

wants

to

access.

The

database

manager

requests,

on

behalf

of

application

B,

a

lock

of

some

particular

mode.

If

the

mode

of

the

lock

held

by

A

permits

the

lock

requested

by

B,

the

two

locks

(or

modes)

are

said

to

be

compatible.

Chapter

3.

Application

considerations

49

If

the

lock

mode

requested

for

application

B

is

not

compatible

with

the

lock

held

by

application

A,

application

B

cannot

continue.

Instead,

it

must

wait

until

application

A

releases

its

lock,

and

all

other

existing

incompatible

locks

are

released.

Lock

conversion

Changing

the

mode

of

a

lock

already

held

is

called

a

conversion.

Lock

conversion

occurs

when

a

process

accesses

a

data

object

on

which

it

already

holds

a

lock,

and

the

access

mode

requires

a

more

restrictive

lock

than

the

one

already

held.

A

process

can

hold

only

one

lock

on

a

data

object

at

any

time,

although

it

can

request

a

lock

many

times

on

the

same

data

object

indirectly

through

a

query.

Some

lock

modes

apply

only

to

tables,

others

only

to

rows

or

blocks.

For

rows

or

blocks,

conversion

usually

occurs

if

an

X

is

needed

and

an

S

or

U

(Update)

lock

is

held.

IX

(Intent

Exclusive)

and

S

(Shared)

locks

are

special

cases

with

regard

to

lock

conversion,

however.

Neither

S

nor

IX

is

considered

to

be

more

restrictive

than

the

other,

so

if

one

of

these

is

held

and

the

other

is

required,

the

resulting

conversion

is

to

a

SIX

(Share

with

Intent

Exclusive)

lock.

All

other

conversions

result

in

the

requested

lock

mode

becoming

the

mode

of

the

lock

held

if

the

requested

mode

is

more

restrictive.

A

dual

conversion

might

also

occur

when

a

query

updates

a

row.

If

the

row

is

read

through

an

index

access

and

locked

as

S,

the

table

that

contains

the

row

has

a

covering

intention

lock.

But

if

the

lock

type

is

IS

instead

of

IX,

if

the

row

is

subsequently

changed

the

table

lock

is

converted

to

an

IX

and

the

row

to

an

X.

Lock

conversion

usually

takes

place

implicitly

as

a

query

is

executed.

Understanding

the

kinds

of

locks

obtained

for

different

queries

and

table

and

index

combinations

can

assist

you

in

designing

and

tuning

your

application.

Lock

Escalation

Lock

escalation

is

an

internal

mechanism

that

reduces

the

number

of

locks

held.

In

a

single

table,

locks

are

escalated

to

a

table

lock

from

many

row

locks,

or

for

multi-dimensional

clustering

(MDC)

tables,

from

many

row

or

block

locks.

Lock

escalation

occurs

when

applications

hold

too

many

locks

of

any

type.

Lock

escalation

can

occur

for

a

specific

database

agent

if

the

agent

exceeds

its

allocation

of

the

lock

list.

Such

escalation

is

handled

internally;

the

only

externally

detectable

result

might

be

a

reduction

in

concurrent

access

on

one

or

more

tables.

In

an

appropriately

configured

database,

lock

escalation

occurs

infrequently.

For

example,

lock

escalation

might

occur

when

an

application

designer

creates

an

index

on

a

large

table

to

increase

performance

and

concurrency

but

a

transaction

accesses

most

of

the

records

in

the

table.

In

this

case,

because

the

database

manager

cannot

predict

how

much

of

the

table

will

be

locked,

it

locks

each

record

individually

instead

of

locking

only

the

table

either

S

or

X.

In

this

case,

the

database

designer

might

consult

with

the

application

designer,

and

recommend

a

LOCK

TABLE

statement

for

this

transaction.

Occasionally,

the

process

receiving

the

internal

escalation

request

holds

few

or

no

row

locks

on

any

table,

but

locks

are

escalated

because

one

or

more

processes

hold

50

Administration

Guide:

Performance

many

locks.

The

process

might

not

request

another

lock

or

access

the

database

again

except

to

end

the

transaction.

Then

another

process

might

request

the

lock

or

locks

that

trigger

the

escalation

request.

Note:

Lock

escalation

might

also

cause

deadlocks.

For

example,

suppose

a

read-only

application

and

an

update

application

are

both

accessing

the

same

table.

If

the

update

application

has

exclusive

locks

on

many

rows

on

the

table,

the

database

manager

might

try

to

escalate

the

locks

on

this

table

to

an

exclusive

table

lock.

However,

the

table

lock

held

by

the

read-only

application

will

cause

the

exclusive

lock

escalation

request

to

wait.

If

the

read-only

application

requires

a

row

lock

on

a

row

already

locked

by

the

update

application,

this

creates

a

deadlock.

To

avoid

this

kind

of

problem,

either

code

the

update

application

to

lock

the

table

exclusively

when

it

starts

or

increase

the

size

of

the

lock

list.

Lock

waits

and

timeouts

Lock

timeout

detection

is

a

database

manager

feature

that

prevents

applications

from

waiting

indefinitely

for

a

lock

to

be

released

in

an

abnormal

situation.

For

example,

a

transaction

might

be

waiting

for

a

lock

held

by

another

user’s

application,

but

the

other

user

has

left

the

workstation

without

allowing

the

application

to

commit

the

transaction

that

would

release

the

lock.

To

avoid

stalling

an

application

in

such

a

case,

set

the

locktimeout

configuration

parameter

to

the

maximum

time

that

any

application

should

wait

to

obtain

a

lock.

Setting

this

parameter

helps

avoid

global

deadlocks,

especially

in

distributed

unit

of

work

(DUOW)

applications.

If

the

time

that

the

lock

request

is

pending

is

greater

than

the

locktimeout

value,

the

requesting

application

receives

an

error

and

its

transaction

is

rolled

back.

For

example,

if

program1

tries

to

acquire

a

lock

which

is

already

held

by

program2,

program1

returns

SQLCODE

-911

(SQLSTATE

40001)

with

reason

code

68

if

the

timeout

period

expires.

The

default

value

for

locktimeout

is

-1,

which

turns

off

lock

timeout

detection.

Note:

For

table,

row,

and

MDC

block

locks,

an

application

can

override

the

database

level

locktimeout

setting

by

using

SET

CURRENT

LOCK

TIMEOUT.

To

log

more

information

about

lock-request

timeouts

in

the

administration

notification

log,

set

the

database

manager

configuration

parameter

notifylevel

to

four.

The

logged

information

includes

the

locked

object,

the

lock

mode,

and

the

application

holding

the

lock.

The

current

dynamic

SQL

statement

or

static

package

name

might

also

be

logged.

A

dynamic

SQL

statement

is

logged

only

at

notifylevel

four.

Deadlocks

Contention

for

locks

can

result

in

deadlocks.

For

example,

suppose

that

Process

1

locks

table

A

in

X

(exclusive)

mode

and

Process

2

locks

table

B

in

X

mode.

If

Process

1

then

tries

to

lock

table

B

in

X

mode

and

Process

2

tries

to

lock

table

A

in

X

mode,

the

processes

are

in

a

deadlock.

In

a

deadlock,

both

processes

are

suspended

until

their

second

lock

request

is

granted,

but

neither

request

is

granted

until

one

of

the

processes

performs

a

commit

or

rollback.

This

state

continues

indefinitely

until

an

external

agent

activates

one

of

the

processes

and

forces

it

to

perform

a

rollback.

To

handle

deadlocks,

the

database

manager

uses

an

asynchronous

system

background

process

called

the

deadlock

detector.

The

deadlock

detector

becomes

Chapter

3.

Application

considerations

51

|
|

active

at

intervals

specified

by

the

dlchktime

configuration

parameter.

When

activated,

the

deadlock

detector

examines

the

lock

system

for

deadlocks.

In

a

partitioned

database,

each

partition

sends

lock

graphs

to

the

database

partition

that

contains

the

system

catalog

views.

Global

deadlock

detection

takes

place

on

this

partition.

If

it

finds

a

deadlock,

the

deadlock

detector

selects

one

deadlocked

process

as

the

victim

process

to

roll

back.

The

victim

process

is

awakened,

and

returns

SQLCODE

-911

(SQLSTATE

40001),

with

reason

code

2,

to

the

calling

application.

The

database

manager

rolls

back

the

selected

process

automatically.

When

the

rollback

is

complete,

the

locks

that

belonged

to

the

victim

process

are

released,

and

the

other

processes

involved

in

the

deadlock

can

continue.

To

ensure

good

performance,

select

the

proper

interval

for

the

deadlock

detector.

An

interval

that

is

too

short

causes

unnecessary

overhead,

and

an

interval

that

is

too

long

allows

a

deadlock

to

delay

a

process

for

an

unacceptable

amount

of

time.

For

example,

a

wake-up

interval

of

5

minutes

allows

a

deadlock

to

exist

for

almost

5

minutes,

which

can

seem

like

a

long

time

for

short

transaction

processing.

Balance®

the

possible

delays

in

resolving

deadlocks

with

the

overhead

of

detecting

them.

In

a

partitioned

database,

the

dlchktime

configuration

parameter

interval

is

applied

only

at

the

catalog

node.

If

a

large

number

of

deadlocks

are

detected

in

a

partitioned

database,

increase

the

value

of

the

dlchktime

parameter

to

account

for

lock

waits

and

communication

waits.

A

different

problem

occurs

when

an

application

with

more

than

one

independent

process

that

accesses

the

database

is

structured

to

make

deadlocks

likely.

An

example

is

an

application

in

which

several

processes

access

the

same

table

for

reads

and

then

writes.

If

the

processes

do

read-only

SQL

queries

at

first

and

then

do

SQL

updates

on

the

same

table,

the

chance

of

deadlocks

increases

because

of

potential

contention

between

the

processes

for

the

same

data.

For

instance,

if

two

processes

read

the

table,

and

then

update

the

table,

process

A

might

try

to

get

an

X

lock

on

a

row

on

which

process

B

has

an

S

lock,

and

vice

versa.

To

avoid

such

deadlocks,

applications

that

access

data

with

the

intention

of

modifying

it

should

do

one

of

the

following:

v

Use

the

FOR

UPDATE

OF

clause

when

performing

a

select.

This

clause

ensures

that

a

U

lock

is

imposed

when

process

A

attempts

to

read

the

data.

Row

blocking,

however,

is

disabled.

v

Use

the

WITH

RR

USE

AND

KEEP

UPDATE

LOCKS

or

the

WITH

RS

USE

AND

KEEP

UPDATE

LOCKS

clause

when

performing

the

query.

Either

clause

ensures

that

a

U

lock

is

imposed

when

process

A

attempts

to

read

the

data,

and

allows

row

blocking.

Note:

You

might

consider

defining

a

monitor

that

records

when

deadlocks

occur.

Use

the

SQL

statement

CREATE

EVENT

to

create

a

monitor.

At

the

same

time

a

database

is

created,

a

detailed

deadlocks

event

monitor

is

also

created.

As

with

any

monitor,

there

is

some

overhead

associated

with

this

event

monitor.

If

you

do

not

want

the

detailed

deadlocks

event

monitor,

then

the

event

monitor

can

be

dropped

using

the

command:

DROP

EVENT

MONITOR

db2detaildeadlock

To

limit

the

amount

of

disk

space

that

this

event

monitor

consumes,

the

event

monitor

deactivates,

and

a

message

is

written

to

the

administration

52

Administration

Guide:

Performance

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

notification

log,

once

it

has

reached

its

maximum

number

of

output

files.

Removing

output

files

that

are

no

longer

needed

allows

the

event

monitor

to

activate

again

on

the

next

database

activation.

In

a

federated

system

environment

in

which

an

application

accesses

nicknames,

the

data

requested

by

the

application

might

not

be

available

because

of

a

deadlock

at

a

data

source.

When

this

happens,

DB2®

relies

on

the

deadlock

handling

facilities

at

the

data

source.

If

deadlocks

occur

across

more

than

one

data

source,

DB2

relies

on

data

source

timeout

mechanisms

to

break

the

deadlock.

To

log

more

information

about

deadlocks,

set

the

database

manager

configuration

parameter

notifylevel

to

four.

The

administration

notification

log

stores

information

that

includes

the

object,

the

lock

mode,

and

the

application

holding

the

lock

on

the

object.

The

current

dynamic

SQL

statement

or

static

package

name

might

also

be

logged.

The

dynamic

SQL

statement

is

logged

only

if

notifylevel

is

four.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Deadlocks

between

applications”

on

page

11

Related

tasks:

v

“Correcting

lock

escalation

problems”

on

page

55

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level”

on

page

451

v

“locktimeout

-

Lock

timeout”

on

page

368

Guidelines

for

locking

Consider

the

following

guidelines

when

you

tune

locking

for

concurrency

and

data

integrity:

v

Create

small

units

of

work

with

frequent

COMMIT

statements

to

promote

concurrent

access

of

data

by

many

users.

Include

COMMIT

statements

when

your

application

is

logically

consistent,

that

is,

when

the

data

you

have

changed

is

consistent.

When

a

COMMIT

is

issued,

locks

are

released

except

for

table

locks

associated

with

cursors

declared

WITH

HOLD.

v

Specify

an

appropriate

isolation

level.

Locks

are

acquired

even

if

your

application

merely

reads

rows,

so

it

is

still

important

to

commit

read-only

units

of

work.

This

is

because

shared

locks

are

acquired

by

repeatable

read,

read

stability,

and

cursor

stability

isolation

levels

in

read-only

applications.

With

repeatable

read

and

read

stability,

all

locks

are

held

until

a

COMMIT

is

issued,

preventing

other

processes

from

updating

the

locked

data,

unless

you

close

your

cursor

using

the

WITH

RELEASE

clause.

In

addition,

catalog

locks

are

acquired

even

in

uncommitted

read

applications

using

dynamic

SQL.

The

database

manager

ensures

that

your

application

does

not

retrieve

uncommitted

data

(rows

that

have

been

updated

by

other

applications

but

are

not

yet

committed)

unless

you

are

using

the

uncommitted

read

isolation

level.

v

Use

the

LOCK

TABLE

statement

appropriately.

The

statement

locks

an

entire

table.

Only

the

table

specified

in

the

LOCK

TABLE

statement

is

locked.

Parent

and

dependent

tables

of

the

specified

table

are

not

locked.

You

must

determine

whether

locking

other

tables

that

can

be

accessed

is

Chapter

3.

Application

considerations

53

necessary

to

achieve

the

desired

result

in

terms

of

concurrency

and

performance.

The

lock

is

not

released

until

the

unit

of

work

is

committed

or

rolled

back.

LOCK

TABLE

IN

SHARE

MODE

You

want

to

access

data

that

is

consistent

in

time;

that

is,

data

current

for

a

table

at

a

specific

point

in

time.

If

the

table

experiences

frequent

activity,

the

only

way

to

ensure

that

the

entire

table

remains

stable

is

to

lock

it.

For

example,

your

application

wants

to

take

a

snapshot

of

a

table.

However,

during

the

time

your

application

needs

to

process

some

rows

of

a

table,

other

applications

are

updating

rows

you

have

not

yet

processed.

This

is

allowed

with

repeatable

read,

but

this

action

is

not

what

you

want.

As

an

alternative,

your

application

can

issue

the

LOCK

TABLE

IN

SHARE

MODE

statement:

no

rows

can

be

changed,

regardless

of

whether

you

have

retrieved

them

or

not.

You

can

then

retrieve

as

many

rows

as

you

need,

knowing

that

the

rows

you

have

retrieved

have

not

been

changed

just

before

you

retrieved

them.

With

LOCK

TABLE

IN

SHARE

MODE,

other

users

can

retrieve

data

from

the

table,

but

they

cannot

update,

delete,

or

insert

rows

into

the

table.

LOCK

TABLE

IN

EXCLUSIVE

MODE

You

want

to

update

a

large

part

of

the

table.

It

is

less

expensive

and

more

efficient

to

prevent

all

other

users

from

accessing

the

table

than

it

is

to

lock

each

row

as

it

is

updated,

and

then

unlock

the

row

later

when

all

changes

are

committed.

With

LOCK

TABLE

IN

EXCLUSIVE

MODE,

all

other

users

are

locked

out;

no

other

applications

can

access

the

table

unless

they

are

uncommitted

read

applications.
v

Use

ALTER

TABLE

statements

in

applications.

The

ALTER

TABLE

statement

with

the

LOCKSIZE

parameter

is

an

alternative

to

the

LOCK

TABLE

statement.

The

LOCKSIZE

parameter

lets

you

specify

a

lock

granularity

of

either

ROW

locks

or

TABLE

locks

for

the

next

table

access.

The

selection

of

ROW

locks

is

no

different

from

selecting

the

default

lock

size

when

a

table

is

created.

The

selection

of

TABLE

locks

may

improve

the

performance

of

queries

by

limiting

the

number

of

locks

that

need

to

be

acquired.

However,

concurrency

might

be

reduced

because

all

locks

are

on

the

complete

table.

Neither

choice

prevents

normal

lock

escalation.

v

Close

cursors

to

release

the

locks

that

they

hold.

When

you

close

a

cursor

with

the

CLOSE

CURSOR

statement

that

includes

the

WITH

RELEASE

clause,

the

database

manager

attempts

to

release

all

read

locks

that

have

been

held

for

the

cursor.

Table

read

locks

are

IS,

S,

and

U

table

locks.

Row-read

locks

are

S,

NS,

and

U

row

locks.

Block-read

locks

are

IS,

S,

and

U

block

locks.

The

WITH

RELEASE

clause

has

no

effect

on

cursors

that

are

operating

under

the

CS

or

UR

isolation

levels.

When

specified

for

cursors

that

are

operating

under

the

RS

or

RR

isolation

levels,

the

WITH

RELEASE

clause

ends

some

of

the

guarantees

of

those

isolation

levels.

Specifically,

a

RS

cursor

may

experience

the

nonrepeatable

read

phenomenon,

and

a

RR

cursor

may

experience

either

the

nonrepeatable

read

or

phantom

read

phenomenon.

If

a

cursor

that

is

originally

RR

or

RS

is

reopened

after

being

closed

using

the

WITH

RELEASE

clause,

then

new

read

locks

are

acquired.

54

Administration

Guide:

Performance

In

CLI

applications,

the

DB2®

CLI

connection

attribute

SQL_ATTR_CLOSE_BEHAVIOR

can

be

used

to

achieve

the

same

results

as

CLOSE

CURSOR

WITH

RELEASE.

v

In

a

partitioned

database,

when

you

changing

the

configuration

parameters

that

affecting

locking,

ensure

that

the

changes

are

made

to

all

of

the

partitions.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

v

“Factors

that

affect

locking”

on

page

68

Correcting

lock

escalation

problems

The

database

manager

can

automatically

escalate

locks

from

row

or

block

level

to

table

level.

The

maxlocks

database

configuration

parameter

specifies

when

lock

escalation

is

triggered.

The

table

that

acquires

the

lock

that

triggers

lock

escalation

might

not

be

affected.

Locks

are

first

escalated

for

the

table

with

the

most

locks,

beginning

with

tables

for

which

long

object

(LOBs)

and

long

VARCHAR

descriptors

are

locked,

then

the

table

with

the

next

highest

number

of

locks,

and

so

on,

until

the

number

of

locks

held

is

decreased

to

about

half

of

the

value

specified

by

maxlocks.

In

a

well

designed

database,

lock

escalation

rarely

occurs.

If

lock

escalation

reduces

concurrency

to

an

unacceptable

level,

however,

you

need

to

analyze

the

problem

and

decide

how

to

solve

it.

Prerequisites:

Ensure

that

lock

escalation

information

is

recorded.

Set

the

database

manager

configuration

parameter

notifylevel

to

3,

which

is

the

default,

or

to

4.

At

notifylevel

of

2,

only

the

error

SQLCODE

is

reported.

At

notifylevel

of

3

or

4,

when

lock

escalation

fails,

information

is

recorded

for

the

error

SQLCODE

and

the

table

for

which

the

escalation

failed.

The

current

SQL

statement

is

logged

only

if

it

is

a

currently

executing,

dynamic

SQL

statement

and

notifylevelis

set

to

4.

Procedure:

Follow

these

general

steps

to

diagnose

the

cause

of

unacceptable

lock

escalations

and

apply

a

remedy:

1.

Analyze

in

the

administration

notification

log

on

all

tables

for

which

locks

are

escalated.

This

log

file

includes

the

following

information:

v

The

number

of

locks

currently

held.

v

The

number

of

locks

needed

before

lock

escalation

is

completed.

v

The

table

identifier

information

and

table

name

of

each

table

being

escalated.

v

The

number

of

non-table

locks

currently

held.

v

The

new

table

level

lock

to

be

acquired

as

part

of

the

escalation.

Usually,

an

“S,”

or

Share

lock,

or

an

“X,”

or

eXclusive

lock

is

acquired.

v

The

internal

return

code

of

the

result

of

the

acquisition

of

the

new

table

lock

level.
2.

Use

the

information

in

administration

notification

log

to

decide

how

to

resolve

the

escalation

problem.

Consider

the

following

possibilities:

Chapter

3.

Application

considerations

55

v

Increase

the

number

of

locks

allowed

globally

by

increasing

the

value

of

the

maxlocks

or

the

locklist

parameters,

or

both,

in

the

database

configuration

file.

In

a

partitioned

database,

make

this

change

on

all

partitions.

You

might

choose

this

method

if

concurrent

access

to

the

table

by

other

processes

is

most

important.

However,

the

overhead

of

obtaining

record

level

locks

can

induce

more

delay

to

other

processes

than

is

saved

by

concurrent

access

to

a

table.

v

Adjust

the

process

or

processes

that

caused

the

escalation.

For

these

processes,

you

might

issue

LOCK

TABLE

statements

explicitly.

v

Change

the

degree

of

isolation.

Note

that

this

may

lead

to

decreased

concurrency,

however.

v

Increase

the

frequency

of

commits

to

reduce

the

number

of

locks

held

at

a

given

time.

v

Consider

frequent

COMMIT

statements

for

transactions

that

require

long

VARCHAR

or

various

kinds

of

long

object

(LOB)

data.

Although

this

kind

of

data

is

not

retrieved

from

disk

until

the

result

set

is

materialized,

the

descriptor

is

locked

when

the

data

is

first

referenced.

As

a

result,

many

more

locks

might

be

held

than

for

rows

that

contain

more

ordinary

kinds

of

data.

Related

reference:

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“diaglevel

-

Diagnostic

error

capture

level”

on

page

451

Evaluate

uncommitted

data

via

lock

deferral

To

improve

concurrency,

DB2®

now

permits

the

deferral

of

row

locks

for

CS

or

RS

isolation

scans

in

some

situations

until

a

record

is

known

to

satisfy

the

predicates

of

a

query.

By

default,

when

row-locking

is

performed

during

a

table

or

index

scan,

DB2

locks

each

row

that

is

scanned

before

determining

whether

the

row

qualifies

for

the

query.

To

improve

the

concurrency

of

scans,

it

may

be

possible

to

defer

row

locking

until

after

it

is

determined

that

a

row

qualifies

for

a

query.

To

take

advantage

of

this

feature,

enable

the

DB2_EVALUNCOMMITTED

registry

variable.

With

this

variable

enabled,

predicate

evaluation

can

occur

on

uncommitted

data.

This

means

that

a

row

that

contains

an

uncommitted

update

may

not

satisfy

the

query,

whereas

if

the

predicate

evaluation

waited

until

the

updated

transaction

completed,

the

row

may

satisfy

the

query.

Additionally,

uncommitted

deleted

rows

are

skipped

during

table

scans.

DB2

will

skip

deleted

keys

in

type-2

index

scans

if

the

DB2_SKIPDELETED

registry

variable

is

enabled.

These

registry

variable

settings

apply

at

compile

time

for

dynamic

SQL

and

at

bind

time

for

static

SQL.

This

means

that

even

if

the

registry

variable

is

enabled

at

runtime,

the

lock

avoidance

strategy

is

not

employed

unless

DB2_EVALUNCOMMITTED

was

enabled

at

bind

time.

If

the

registry

variable

is

enabled

at

bind

time

but

not

enabled

at

runtime,

the

lock

avoidance

strategy

is

still

in

effect.

For

static

SQL,

if

a

package

is

rebound,

the

registry

variable

setting

at

bind

time

is

the

setting

that

applies.

An

implicit

rebind

of

static

SQL

will

use

the

current

setting

of

the

DB2_EVALUNCOMMITTED.

56

Administration

Guide:

Performance

Applicability

of

evaluate

uncommitted

for

different

access

plans

Table

4.

RID

Index

Only

Access

Predicates

Evaluate

Uncommitted

None

No

SARGable

Yes

Table

5.

Data

Only

Access

(relational

or

deferred

RID

list)

Predicates

Evaluate

Uncommitted

None

No

SARGable

Yes

Table

6.

RID

Index

+

Data

Access

Predicates

Evaluate

Uncommitted

Index

Data

Index

access

Data

access

None

None

No

No

None

SARGable

No

No

SARGable

None

Yes

No

SARGable

SARGable

Yes

No

Table

7.

Block

Index

+

Data

Access

Predicates

Evaluate

Uncommitted

Index

Data

Index

access

Data

access

None

None

No

No

None

SARGable

No

Yes

SARGable

None

Yes

No

SARGable

SARGable

Yes

Yes

Example

The

following

example

provides

a

comparison

of

the

default

locking

behavior

and

the

new

evaluate

uncommitted

behavior.

The

table

below

is

the

ORG

table

from

the

SAMPLE

database.

DEPTNUMB

DEPTNAME

MANAGER

DIVISION

LOCATION

10

Head

Office

160

Corporate

New

York

15

New

England

50

Eastern

Boston

20

Mid

Atlantic

10

Eastern

Washington

38

South

Atlantic

30

Eastern

Atlanta

42

Great

Lakes

100

Midwest

Chicago

51

Plains

140

Midwest

Dallas

66

Pacific

270

Western

San

Francisco

84

Mountain

290

Western

Denver

The

following

transactions

are

acting

on

this

table,

with

the

default

Cursor

Stability

(CS)

isolation

level.

Table

8.

Transactions

on

the

ORG

table

with

the

CS

isolation

level

SESSION

1

SESSION

2

Chapter

3.

Application

considerations

57

Table

8.

Transactions

on

the

ORG

table

with

the

CS

isolation

level

(continued)

connect

to

SAMPLE

connect

to

SAMPLE

+c

update

org

set

deptnumb=5

where

manager=160

select

*

from

org

where

deptnumb

>=

10

The

uncommitted

UPDATE

in

Session

1

holds

an

exclusive

record

lock

on

the

first

row

in

the

table,

prohibiting

the

SELECT

query

in

Session

2

from

returning

even

though

the

row

being

updated

in

Session

1

does

not

currently

satisfy

the

query

in

Session

2.

This

is

because

the

CS

isolation

level

dictates

that

any

row

accessed

by

a

query

must

be

locked

while

the

cursor

is

positioned

on

that

row.

Session

2

cannot

obtain

a

lock

on

the

first

row

until

Session

1

releases

its

lock.

When

scanning

the

table,

the

lock-wait

in

Session

2

can

be

avoided

using

the

evaluate

uncommitted

feature

which

first

evaluates

the

predicate

and

then

locks

the

row

for

a

true

predicate

evaluation.

As

such,

the

query

in

Session

2

would

not

attempt

to

lock

the

first

row

in

the

table

thereby

increasing

application

concurrency.

Note

that

this

would

also

mean

that

predicate

evaluation

in

Session

2

would

occur

with

respect

to

the

uncommitted

value

of

deptnumb=5

in

Session

1.

The

query

in

Session

2

would

omit

the

first

row

in

its

result

set

despite

the

fact

that

a

rollback

of

the

update

in

Session

1

would

satisfy

the

query

in

Session

2.

If

the

order

of

operations

were

reversed,

concurrency

could

still

be

improved

with

evaluate

uncommitted.

Under

default

locking

behavior,

Session

2

would

first

acquire

a

row

lock

prohibiting

the

searched

UPDATE

in

Session

1

from

executing

even

though

the

UPDATE

in

Session

1

would

not

change

the

row

locked

by

the

query

of

Session

2.

If

the

searched

UPDATE

in

Session

1

first

attempted

to

examine

rows

and

then

only

lock

them

if

they

qualified,

the

query

in

Session

1

would

be

non-blocking.

Restrictions

The

following

external

restrictions

apply

to

this

new

functionality:

v

The

registry

variable

DB2_EVALUNCOMMITTED

must

be

enabled.

v

The

isolation

level

must

be

CS

or

RS.

v

Row

locking

is

to

occur.

v

SARGable

evaluation

predicates

exist.

v

Evaluation

uncommitted

is

not

applicable

to

scans

on

the

catalog

tables.

v

For

MDC

tables,

block

locking

can

be

deferred

for

an

index

scan;

however,

block

locking

will

not

be

deferred

for

table

scans.

v

Deferred

locking

will

not

occur

on

a

table

which

is

executing

an

inplace

table

reorg.

v

Deferred

locking

will

not

occur

for

an

index

scan

where

the

index

is

type-1.

v

For

Iscan-Fetch

plans,

row

locking

is

not

deferred

to

the

data

access

but

rather

the

row

is

locked

during

index

access

before

moving

to

the

row

in

the

table.

v

Deleted

rows

are

unconditionally

skipped

for

table

scans

while

deleted

type-2

index

keys

are

only

skipped

if

the

registry

variable

DB2_SKIPDELETED

is

enabled.

58

Administration

Guide:

Performance

Lock

type

compatibility

The

following

table

displays

information

about

the

circumstances

in

which

a

lock

request

can

be

granted

when

another

process

holds

or

is

requesting

a

lock

on

the

same

resource

in

a

given

state.

A

no

indicates

that

the

requestor

must

wait

until

all

incompatible

locks

are

released

by

other

processes.

Note

that

a

timeout

can

occur

when

a

requestor

is

waiting

for

a

lock.

A

yes

indicates

that

the

lock

is

granted

unless

an

earlier

requestor

is

waiting

for

the

resource.

Table

9.

Lock

Type

Compatibility

State

of

Held

Resource

State

Being

Requested

none

IN

IS

NS

S

IX

SIX

U

X

Z

NW

W

none

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

IN

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

IS

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

NS

yes

yes

yes

yes

yes

no

no

yes

no

no

yes

no

S

yes

yes

yes

yes

yes

no

no

yes

no

no

no

no

IX

yes

yes

yes

no

no

yes

no

no

no

no

no

no

SIX

yes

yes

yes

no

no

no

no

no

no

no

no

no

U

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

X

yes

yes

no

no

no

no

no

no

no

no

no

no

Z

yes

no

no

no

no

no

no

no

no

no

no

no

NW

yes

yes

no

yes

no

no

no

no

no

no

no

yes

W

yes

yes

no

no

no

no

no

no

no

no

yes

no

Note:

I

Intent

N

None

NS

Next

Key

Share

S

Share

X

Exclusive

U

Update

Z

Super

Exclusive

NW

Next

Key

Weak

Exclusive

W

Weak

Exclusive

Note:

v

yes

-

grant

lock

requested

immediately

v

no

-

wait

for

held

lock

to

be

released

or

timeout

to

occur

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

Related

reference:

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

60

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

65

Chapter

3.

Application

considerations

59

Lock

modes

and

access

paths

for

standard

tables

This

topic

includes

reference

information

about

locking

methods

for

standard

tables

for

different

data-access

plans.

The

following

tables

list

the

types

of

locks

obtained

for

standard

tables

at

each

level

for

different

access

plans.

Each

entry

is

made

up

of

two

parts:

table

lock

and

row

lock.

A

dash

indicates

that

a

particular

level

of

locking

is

not

done.

Notes:

1.

In

a

multi-dimensional

clustering

(MDC)

environment,

an

additional

lock

level,

BLOCK,

is

used.

2.

Lock

modes

can

be

changed

explicitly

with

the

lock-request-clause

of

a

select

statement.

Table

10.

Lock

Modes

for

Table

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operation

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

delete

Access

Method:

Table

scan

with

no

predicates

RR

S/-

U/-

SIX/X

X/-

X/-

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

Table

Scan

with

predicates

RR

S/-

U/-

SIX/X

U/-

SIX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IN/-

IX/U

IX/X

IX/U

IX/X

Note:

At

UR

isolation

level

with

IN

lock

for

type-1

indexes

or

if

there

are

predicates

on

include

columns

in

the

index,

the

isolation

level

is

upgraded

to

CS

and

the

locks

to

an

IS

table

lock

and

NS

row

locks.

Table

11.

Lock

Modes

for

RID

Index

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

Delete

Access

Method:

RID

index

scan

with

no

predicates

RR

S/-

IX/S

IX/X

X/-

X/-

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

RID

index

scan

with

a

single

qualifying

row

RR

IS/S

IX/U

IX/X

IX/X

IX/X

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

60

Administration

Guide:

Performance

|
|

Table

11.

Lock

Modes

for

RID

Index

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

Delete

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

Index

scan

with

start

and

stop

predicates

only

RR

IS/S

IX/S

IX/X

IX/X

IX/X

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

Index

Scan

with

index

and

other

predicates

(sargs,

resids)

only

RR

IS/S

IX/S

IX/X

IX/S

IX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IN/-

IX/U

IX/X

IX/U

IX/X

The

following

table

shows

the

lock

modes

for

cases

in

which

reading

of

the

data

pages

is

deferred

to

allow

the

list

of

rows

to

be:

v

Further

qualified

using

multiple

indexes

v

Sorted

for

efficient

prefetching

Table

12.

Lock

modes

for

index

scans

used

for

deferred

data

page

access

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

delete

Access

Method:

RID

index

scan

with

no

predicates

RR

IS/S

IX/S

X/-

RS

IN/-

IN/-

IN/-

CS

IN/-

IN/-

IN/-

UR

IN/-

IN/-

IN/-

Access

Method:

Deferred

Data

Page

Access,

after

a

RID

index

scan

with

no

predicates

RR

IN/-

IX/S

IX/X

X/-

X/-

RS

IS/NS

IX/U

IX/X

IX/X

IX/X

CS

IS/NS

IX/U

IX/X

IX/X

IX/X

UR

IN/-

IX/U

IX/X

IX/X

IX/X

Access

Method:

RID

index

scan

with

predicates

(sargs,

resids)

RR

IS/S

IX/S

IX/S

RS

IN/-

IN/-

IN/-

CS

IN/-

IN/-

IN/-

UR

IN/-

IN/-

IN/-

Chapter

3.

Application

considerations

61

Table

12.

Lock

modes

for

index

scans

used

for

deferred

data

page

access

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Update

or

delete

Access

Method:

RID

index

scan

with

start

and

stop

predicates

only

RR

IS/S

IX/S

IX/X

RS

IN/-

IN/-

IN/-

CS

IN/-

IN/-

IN/-

UR

IN/-

IN/-

IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

start

and

stop

predicates

only

RR

IN/-

IX/S

IX/X

IX/X

IX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IS/-

IX/U

IX/X

IX/U

IX/X

Access

Method:

Deferred

data-page

Access,

after

a

RID

index

scan

with

predicates

RR

IN/-

IX/S

IX/X

IX/S

IX/X

RS

IS/NS

IX/U

IX/X

IX/U

IX/X

CS

IS/NS

IX/U

IX/X

IX/U

IX/X

UR

IN/-

IX/U

IX/X

IX/U

IX/X

Related

concepts:

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

Related

reference:

v

“Lock

type

compatibility”

on

page

59

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

62

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

65

Lock

modes

for

table

and

RID

index

scans

of

MDC

tables

In

a

multi-dimensional

clustering

(MDC)

environment,

an

additional

lock

level,

BLOCK,

is

used.

The

following

tables

list

the

types

of

locks

obtained

at

each

level

for

different

access

plans.

Each

entry

is

made

up

of

three

parts:

table

lock,

block

lock,

and

row

lock.

A

dash

indicates

that

a

particular

level

of

locking

is

not

used.

Note:

Lock

modes

can

be

changed

explicitly

with

the

lock-request-clause

of

a

select

statement.

62

Administration

Guide:

Performance

|
|

Table

13.

Lock

Modes

for

Table

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operation

Searched

update

or

delete

Scan

Where

current

of

Scan

or

delete

Update

Access

Method:

Table

scan

with

no

predicates

RR

S/-/-

U/-/-

SIX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/U

IX/X/-

IX/I/-

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

Access

Method:

Table

Scan

with

predicates

on

dimension

columns

only

RR

S/-/-

U/-/-

SIX/IX/X

U/-/-

SIX/X/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/-

X/X/-

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/-

X/X/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/U/-

X/X/-

Access

Method:

Table

Scan

with

other

predicates

(sargs,

resids)

RR

S/-/-

U/-/-

SIX/IX/X

U/-/-

SIX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

The

following

two

tables

show

lock

modes

for

RID

indexes

on

MDC

tables.

Table

14.

Lock

Modes

for

RID

Index

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

RID

index

scan

with

no

predicates

RR

S/-/-

IX/IX/S

IX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

X/X/X

X/X/X

Access

Method:

RID

index

scan

with

single

qualifying

row

RR

IS/IS/S

IX/IX/U

IX/IX/X

X/X/X

X/X/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/X

X/X/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

X/X/X

X/X/X

Access

Method:

RID

index

scan

with

start

and

stop

predicates

only

RR

IS/IS/S

IX/IX/S

IX/IX/X

IX/IX/X

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

Access

Method:

Index

scan

with

index

predicates

only

Chapter

3.

Application

considerations

63

Table

14.

Lock

Modes

for

RID

Index

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

RR

IS/S/S

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Access

Method:

Index

scan

with

other

predicates

(sargs,

resids)

RR

IS/S/S

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Note:

In

the

following

table,

which

shows

lock

modes

for

RID

index

scans

used

for

deferred

data-page

access,

at

UR

isolation

level

with

IN

lock

for

type-1

indexes

or

if

there

are

predicates

on

include

columns

in

the

index,

the

isolation

level

is

upgraded

to

CS

and

the

locks

are

upgraded

to

an

IS

table

lock,

an

IS

block

lock,

and

NS

row

locks.

Table

15.

Lock

modes

for

RID

index

scans

used

for

deferred

data-page

access

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

RID

index

scan

with

no

predicates

RR

IS/S/S

IX/IX/S

X/-/-

RS

IN/IN/-

IN/IN/-

IN/IN/-

CS

IN/IN/-

IN/IN/-

IN/IN/-

UR

IN/IN/-

IN/IN/-

IN/IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

no

predicates

RR

IN/IN/-

IX/IX/S

IX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/X

IX/IX/X

Access

Method:

RID

index

scan

with

predicates

(sargs,

resids)

RR

IS/S/-

IX/IX/S

IX/IX/S

RS

IN/IN/-

IN/IN/-

IN/IN/-

CS

IN/IN/-

IN/IN/-

IN/IN/-

UR

IN/IN/-

IN/IN/-

IN/IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

predicates

(sargs,

resids)

RR

IN/IN/-

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

64

Administration

Guide:

Performance

Table

15.

Lock

modes

for

RID

index

scans

used

for

deferred

data-page

access

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Access

Method:

RID

index

scan

with

start

and

stop

predicates

only

RR

IS/IS/S

IX/IX/S

IX/IX/X

RS

IN/IN/-

IN/IN/-

IN/IN/-

CS

IN/IN/-

IN/IN/-

IN/IN/-

UR

IN/IN/-

IN/IN/-

IN/IN/-

Access

Method:

Deferred

data-page

access

after

a

RID

index

scan

with

start

and

stop

predicates

only

RR

IN/IN/-

IX/IX/S

IX/IX/X

IX/IX/X

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IS/-/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

Related

reference:

v

“Lock

type

compatibility”

on

page

59

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

60

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

65

Locking

for

block

index

scans

for

MDC

tables

The

following

tables

list

the

types

of

locks

obtained

at

each

level

for

different

access

plans.

Each

entry

is

made

up

of

three

parts:

table

lock,

block

lock,

and

row

lock.

A

dash

indicates

that

a

particular

level

of

locking

is

not

done.

Note:

Lock

modes

can

be

changed

explicitly

with

the

lock-request-clause

of

a

select

statement.

Table

16.

Lock

Modes

for

Index

Scans

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

With

no

predicates

RR

S/--/--

IX/IX/S

IX/IX/X

X/--/--

X/--/--

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

Chapter

3.

Application

considerations

65

|
|

Table

16.

Lock

Modes

for

Index

Scans

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

UR

IN/IN/-

IX/IX/U

IX/IX/X

X/X/--

X/X/--

Access

Method:

With

dimension

predicates

only

RR

IS/-/-

IX/IX/S

IX/IX/X

X/-/-

X/-/-

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/X/-

IX/X/-

Access

Method:

With

dimension

start

and

stop

predicates

only

RR

IS/S/-

IX/IX/S

IX/IX/S

IX/IX/S

IX/IX/S

RS

IX/IX/S

IX/IX/U

IX/IX/X

IX/IX/-

IX/IX/-

CS

IX/IX/S

IX/IX/U

IX/IX/X

IX/IX/-

IX/IX/-

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/-

IX/IX/-

Access

Method:

Index

Scan

with

predicates

RR

IS/S/-

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/-

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

The

following

table

lists

lock

modes

for

block

index

scans

used

for

deferred

data-page

access:

Table

17.

Lock

modes

for

block

index

scans

used

for

deferred

data-page

access

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

Access

Method:

Block

index

scan

with

no

predicates

RR

IS/S/--

IX/IX/S

X/--/--

RS

IN/IN/--

IN/IN/--

IN/IN/--

CS

IN/IN/--

IN/IN/--

IN/IN/--

UR

IN/IN/--

IN/IN/--

IN/IN/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

no

predicates

RR

IN/IN/--

IX/IX/S

IX/IX/X

X/--/--

X/--/--

RS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

CS

IS/IS/NS

IX/IX/U

IX/IX/X

X/X/--

X/X/--

UR

IN/IN/--

IX/IX/U

IX/IX/X

X/X/--

X/X/--

Access

Method:

Block

index

scan

with

dimension

predicates

only

RR

IS/S/--

IX/IX/--

IX/S/--

66

Administration

Guide:

Performance

Table

17.

Lock

modes

for

block

index

scans

used

for

deferred

data-page

access

(continued)

Isolation

Level

Read-only

and

ambiguous

scans

Cursored

operations

Searched

update

or

delete

Scan

Where

current

of

Scan

Delete

Update

RS

IS/IS/NS

IX/--/--

IX/--/--

CS

IS/IS/NS

IX/--/--

IX/--/--

UR

IN/IN/--

IX/--/--

IX/--/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

dimension

predicates

only

RR

IN/IN/--

IX/IX/S

IX/IX/X

IX/S/--

IX/X/--

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/--

IX/X/--

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/U/--

IX/X/--

UR

IN/IN/--

IX/IX/U

IX/IX/X

IX/U/--

IX/X/--

Access

Method:

Block

index

scan

with

start

and

stop

predicates

only

RR

IS/S/--

IX/IX/--

IX/X/--

RS

IN/IN/--

IN/IN/--

IN/IN/--

CS

IN/IN/--

IN/IN/--

IN/IN/--

UR

IN/IN/--

IN/IN/--

IN/IN/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

start

and

stop

predicates

only

RR

IN/IN/--

IX/IX/X

IX/X/--

RS

IS/IS/NS

IN/IN/--

IN/IN/--

CS

IS/IS/NS

IN/IN/--

IN/IN/--

UR

IS/--/--

IN/IN/--

IN/IN/--

Access

Method:

Block

index

scan

other

predicates

(sargs,

resids)

RR

IS/S/--

IX/IX/--

IX/IX/--

RS

IN/IN/--

IN/IN/--

IN/IN/--

CS

IN/IN/--

IN/IN/--

IN/IN/--

UR

IN/IN/--

IN/IN/--

IN/IN/--

Access

Method:

Deferred

data-page

access

after

a

block

index

scan

with

other

predicates

(sargs,

resids

RR

IN/IN/--

IX/IX/S

IX/IX/X

IX/IX/S

IX/IX/X

RS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

CS

IS/IS/NS

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

UR

IN/IN/--

IX/IX/U

IX/IX/X

IX/IX/U

IX/IX/X

Related

concepts:

v

“Locks

and

performance”

on

page

49

Related

reference:

v

“Lock

type

compatibility”

on

page

59

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

60

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

62

Chapter

3.

Application

considerations

67

Factors

that

affect

locking

The

following

factors

affect

the

mode

and

granularity

of

database

manager

locks:

v

The

type

of

processing

that

the

application

performs

v

The

data

access

method

v

Whether

indexes

are

type-2

or

type-1

v

Various

configuration

parameters

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

v

“Guidelines

for

locking”

on

page

53

v

“Index

cleanup

and

maintenance”

on

page

251

v

“Locks

and

types

of

application

processing”

on

page

68

v

“Locks

and

data-access

methods”

on

page

69

v

“Index

types

and

next-key

locking”

on

page

70

Factors

that

affect

locking

Locks

and

types

of

application

processing

For

the

purpose

of

determining

lock

attributes,

application

processing

can

be

classified

as

one

of

the

following

types:

v

Read-only

This

type

includes

all

select

statements

that

are

intrinsically

read-only,

have

an

explicit

FOR

READ

ONLY

clause,

or

are

ambiguous

but

which

the

SQL

compiler

assumes

to

be

read-only

because

of

the

value

of

the

BLOCKING

option

that

the

PREP

or

BIND

command

specifies.

This

processing

type

requires

only

Share

locks

(S,

NS,

or

IS).

v

Intent

to

change

This

type

includes

all

select

statements

with

the

FOR

UPDATE

clause,

with

the

USE

AND

KEEP

UPDATE

LOCKS

clause,

with

the

USE

AND

KEEP

EXCLUSIVE

LOCKS

clause,

or

for

which

the

SQL

compiler

interprets

an

ambiguous

statement

to

imply

that

change

is

intended.

This

type

uses

Share

and

Update

locks

(S,

U,

and

X

for

rows;

IX,

U,

X,

and

S

for

blocks;

IX,

U,

and

X

for

tables).

v

Change

This

type

includes

UPDATE,

INSERT,

and

DELETE,

but

not

UPDATE

WHERE

CURRENT

OF

or

DELETE

WHERE

CURRENT

OF.

This

type

requires

Exclusive

locks

(X

or

IX).

v

Cursor

controlled

This

type

includes

UPDATE

WHERE

CURRENT

OF

and

DELETE

WHERE

CURRENT

OF.

It

also

requires

Exclusive

locks

(X

or

IX).

A

statement

that

inserts,

updates

or

deletes

data

in

a

target

table,

based

on

the

result

from

a

sub-select

statement,

does

two

types

of

processing.

The

rules

for

read-only

processing

determine

the

locks

for

the

tables

returned

in

the

sub-select

statement.

The

rules

for

change

processing

determine

the

locks

for

the

target

table.

68

Administration

Guide:

Performance

|
|
|
|
|

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

v

“Guidelines

for

locking”

on

page

53

v

“Deadlocks

between

applications”

on

page

11

v

“Locks

and

data-access

methods”

on

page

69

v

“Index

types

and

next-key

locking”

on

page

70

Related

tasks:

v

“Correcting

lock

escalation

problems”

on

page

55

Related

reference:

v

“Lock

type

compatibility”

on

page

59

Locks

and

data-access

methods

An

access

plan

is

the

method

that

the

optimizer

selects

to

retrieve

data

from

a

specific

table.

The

access

plan

can

have

a

significant

effect

on

lock

modes.

For

example,

when

an

index

scan

is

used

to

locate

a

specific

row,

the

optimizer

will

probably

choose

row-level

locking

(IS)

for

the

table.

For

example,

if

the

EMPLOYEE

table

that

has

an

index

on

employee

number

(EMPNO),

access

through

an

index

might

be

used

to

select

information

for

a

single

employee

with

a

statement

that

contains

the

following

SELECT

clause:

SELECT

*

FROM

EMPLOYEE

WHERE

EMPNO

=

'000310';

If

an

index

is

not

used,

the

entire

table

must

be

scanned

in

sequence

to

find

the

selected

rows,

and

may

thus

acquire

a

single

table

level

lock

(S).

For

example,

if

there

is

no

index

on

the

column

SEX,

a

table

scan

might

be

used

to

select

all

male

employees

with

a

a

statement

that

contains

the

following

SELECT

clause:

SELECT

*

FROM

EMPLOYEE

WHERE

SEX

=

'M';

Note:

Cursor

controlled

processing

uses

the

lock

mode

of

the

underlying

cursor

until

the

application

finds

a

row

to

update

or

delete.

For

this

type

of

processing,

no

matter

what

the

lock

mode

of

a

cursor,

an

exclusive

lock

is

always

obtained

to

perform

the

update

or

delete.

Locking

in

range-clustered

tables

works

slighly

differently

from

standard

key

or

next-key

locking.

In

accessing

a

range

of

rows

in

a

range-clustered

table,

all

rows

in

the

range

are

locked,

even

when

some

of

those

rows

are

empty.

In

standard

key

or

next

key

locking,

only

rows

with

existing

records

are

locked.

Reference

tables

provide

detailed

information

about

which

locks

are

obtained

for

what

kind

of

access

plan.

Deferred

access

of

the

data

pages

implies

that

access

to

the

row

occurs

in

two

steps,

which

results

in

more

complex

locking

scenarios.

The

timing

of

lock

aquisition

and

the

persistence

of

the

locks

depend

on

the

isolation

level.

Because

the

Repeatable

Read

isolation

level

retains

all

locks

until

the

end

of

the

transaction,

the

locks

acquired

in

the

first

step

are

held

and

there

is

no

need

to

acquire

further

Chapter

3.

Application

considerations

69

locks

in

the

second

step.

For

the

Read

Stability

and

Cursor

Stability

isolation

levels,

locks

must

be

acquired

during

the

second

step.

To

maximize

concurrency,

locks

are

not

acquired

during

the

first

step

and

rely

on

the

reapplication

of

all

predicates

to

ensure

that

only

qualifying

rows

are

returned.

Related

concepts:

v

“Locks

and

concurrency

control”

on

page

46

v

“Lock

attributes”

on

page

47

v

“Locks

and

performance”

on

page

49

v

“Guidelines

for

locking”

on

page

53

v

“Locks

and

types

of

application

processing”

on

page

68

v

“Index

types

and

next-key

locking”

on

page

70

Related

tasks:

v

“Correcting

lock

escalation

problems”

on

page

55

Related

reference:

v

“Lock

type

compatibility”

on

page

59

v

“Lock

modes

and

access

paths

for

standard

tables”

on

page

60

v

“Lock

modes

for

table

and

RID

index

scans

of

MDC

tables”

on

page

62

v

“Locking

for

block

index

scans

for

MDC

tables”

on

page

65

Index

types

and

next-key

locking

As

transactions

cause

changes

to

type-1

indexes,

some

next-key

locking

occurs.

For

type-2

indexes,

minimal

next-key

locking

occurs.

v

Next-key

locking

for

type

2

indexes

Next-key

locking

occurs

when

a

key

is

inserted

into

an

index.

During

insertion

of

a

key

into

an

index,

the

row

that

corresponds

to

the

key

that

will

follow

the

new

key

in

the

index

is

locked

only

if

that

row

is

currently

locked

by

an

RR

index

scan.

The

lock

mode

used

for

the

next-key

lock

is

NW.

This

next-key

lock

is

released

before

the

key

insertion

is

actually

performed.

Key

insertion

occurs

when

a

row

is

inserted

into

a

table.

When

updates

to

a

row

result

in

a

change

to

the

value

of

the

index

key

for

that

row,

key

insertion

also

occurs

because

the

original

key

value

is

marked

deleted

and

the

new

key

value

is

inserted

into

the

index.

For

updates

that

affect

only

the

include

columns

of

an

index,

the

key

can

be

updated

in

place

and

no

next-key

locking

occurs.

During

RR

scans,

the

row

that

corresponds

to

the

key

that

follows

the

end

of

the

scan

range

is

locked

in

S

mode.

If

no

keys

follow

the

end

of

the

scan

range,

an

end-of-table

lock

is

acquired

to

lock

the

end

of

the

index.

If

the

key

that

follows

the

end

of

the

scan

range

is

marked

deleted,

the

scan

continues

to

lock

the

corresponding

rows

until

it

finds

a

key

that

is

not

marked

deleted,

when

it

locks

the

corresponding

row

for

that

key,

or

until

the

end

of

the

index

is

locked.

v

Next-key

locking

for

type-1

indexes:

Next-key

locks

occur

during

deletes

and

inserts

to

indexes

and

during

index

scans.

When

a

row

is

updated

in,

deleted

from,

or

inserted

into

a

table,

an

X

lock

is

obtained

on

that

row.

For

insertions

this

might

be

downgraded

to

a

W

lock.

When

the

key

is

deleted

from

the

table

index

or

inserted

into

it,

the

table

row

that

corresponds

to

the

key

that

follows

the

deleted

or

inserted

key

in

the

index

70

Administration

Guide:

Performance

is

locked.

For

updates

that

affect

the

value

of

the

key,

the

original

key

value

is

first

deleted

and

the

new

value

is

inserted,

so

two

next-key

locks

are

acquired.

The

duration

of

these

locks

is

determined

as

follows:

–

During

index

key

deletion,

the

lock

mode

on

the

next

key

is

X

and

the

lock

is

held

until

commit

time.

–

During

index

key

insertion,

the

lock

mode

on

the

next

key

is

NW.

This

lock

is

acquired

only

if

there

is

contention

for

the

lock,

in

which

case

the

lock

is

released

before

the

key

is

actually

inserted

into

the

index.

–

During

RR

scans,

the

table

row

that

corresponds

to

the

key

just

beyond

the

end

of

the

index

scan

range

is

locked

in

S

mode

and

is

held

until

commit

time.

–

During

CS/RS

scans,

the

row

corresponding

to

the

key

just

beyond

the

end

of

the

index

scan

range

is

locked

in

NS

mode

if

there

is

contention

for

the

lock.

This

lock

is

released

once

the

end

of

the

scan

range

is

verified.
The

next-key

locking

for

type-1

indexes

during

key

insertions

and

key

deletion

might

result

in

deadlocks.

The

following

example

shows

how

two

transactions

could

deadlock.

With

type

2

indexes,

such

deadlocks

do

not

occur.

Consider

the

following

example

of

an

index

that

contains

6

rows

with

the

following

values:

1

5

6

7

8

12.

1.

Transaction

1

deletes

the

row

with

key

value

8.

The

row

with

value

8

is

locked

in

X

mode.

When

the

corresponding

key

from

the

index

is

deleted,

the

row

with

value

12

is

locked

in

X

mode.

2.

Transaction

2

deletes

the

row

with

key

value

5.

The

row

with

value

5

is

locked

in

X

mode.

When

the

corresponding

key

from

the

index

is

deleted,

the

row

with

value

6

is

locked

in

X

mode.

3.

Transaction

1

inserts

a

row

with

key

value

4.

This

row

is

locked

in

W

mode.

When

inserting

the

new

key

into

the

index

is

attempted,

the

row

with

value

6

is

locked

in

NW

mode.

This

lock

attempt

will

wait

on

the

X

lock

that

transaction

2

has

on

this

row.

4.

Transaction

2

inserts

a

row

with

key

value

9.

This

row

is

locked

in

W

mode.

When

inserting

the

new

key

into

the

index

is

attempted,

the

row

with

key

value

12

is

locked

in

NW

mode.

This

lock

attempt

will

wait

on

the

X

lock

that

transaction

1

has

on

this

row.

When

type-1

indexes

are

used,

this

scenario

will

result

in

a

deadlock

and

one

of

these

transactions

will

be

rolled

back.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

performance

tips”

on

page

248

v

“Index

structure”

on

page

23

v

“Index

reorganization”

on

page

252

v

“Online

index

defragmentation”

on

page

254

v

“Index

cleanup

and

maintenance”

on

page

251

Optimization

factors

This

section

describes

the

factors

to

consider

when

you

specify

the

optimization

class

for

queries.

Chapter

3.

Application

considerations

71

Optimization

class

guidelines

When

you

compile

an

SQL

query,

you

can

specify

an

optimization

class

that

determines

how

the

optimizer

chooses

the

most

efficient

access

plan

for

that

query.

Although

you

can

specify

optimization

techniques

individually

to

improve

runtime

performance

for

the

query,

the

more

optimization

techniques

you

specify,

the

more

time

and

system

resources

query

compilation

will

require.

Note:

In

a

federated

database

query,

the

optimization

class

does

not

apply

to

the

remote

optimizer.

Setting

the

optimization

class

can

provide

some

of

the

advantages

of

explicitly

specifying

optimization

techniques,

particularly

for

the

following

reasons:

v

To

manage

very

small

databases

or

very

simple

dynamic

queries

v

To

accommodate

memory

limitations

at

compile

time

on

your

database

server

v

To

reduce

the

query

compilation

time,

such

as

PREPARE.

Most

statements

can

be

adequately

optimized

with

a

reasonable

amount

of

resources

by

using

optimization

class

5,

which

is

the

default

query

optimization

class.

At

a

given

optimization

class,

the

query

compilation

time

and

resource

consumption

is

primarily

influenced

by

the

complexity

of

the

query,

particularly

the

number

of

joins

and

subqueries.

However,

compilation

time

and

resource

usage

are

also

affected

by

the

amount

of

optimization

performed.

Query

optimization

classes

1,

2,

3,

5,

and

7

are

all

suitable

for

general-purpose

use.

Consider

class

0

only

if

you

require

further

reductions

in

query

compilation

time

and

you

know

that

the

SQL

statements

are

extremely

simple.

Tip:

To

analyze

queries

that

run

a

long

time,

run

the

query

with

db2batch

to

find

out

how

much

time

is

spent

in

compilation

and

how

much

is

spent

in

execution.If

compilation

requires

more

time,

reduce

the

optimization

class.

If

execution

requires

more

time,

consider

a

higher

optimization

class.

When

you

select

an

optimization

class,

consider

the

following

general

guidelines:

v

Start

by

using

the

default

query

optimization

class,

class

5.

v

To

use

a

class

other

than

the

default,

try

class

1,

2

or

3

first.

Classes

0,

1,

and

2

use

the

Greedy

join

enumeration

algorithm.

v

Use

optimization

class

1

or

2

if

you

have

many

tables

with

many

of

the

join

predicates

that

are

on

the

same

column,

and

if

compilation

time

is

a

concern.

v

Use

a

low

optimization

class

(0

or

1)

for

queries

having

very

short

run-times

of

less

than

one

second.

Such

queries

tend

to

have

the

following

characteristics:

–

Access

to

a

single

or

only

a

few

tables

–

Fetch

a

single

or

only

a

few

rows

–

Use

fully

qualified,

unique

indexes.

Online

transaction

processing

(OLTP)

transactions

are

good

examples

of

this

kind

of

SQL.
v

Use

a

higher

optimization

class

(3,

5,

or

7)

for

longer

running

queries

that

take

more

than

30

seconds.

v

Classes

3

and

above

use

the

Dynamic

Programming

join

enumeration

algorithm.

This

algorithm

considers

many

more

alternative

plans,

and

might

incur

significantly

more

compilation

time

than

classes

0,

1,

and

2,

especially

as

the

number

of

tables

increases.

72

Administration

Guide:

Performance

v

Use

optimization

class

9

only

if

you

have

specific

extraordinary

optimization

requirements

for

a

query.

Complex

queries

might

require

different

amounts

of

optimization

to

select

the

best

access

plan.

Consider

using

higher

optimization

classes

for

queries

that

have

the

following

characteristics:

v

Access

to

large

tables

v

A

large

number

of

predicates

v

Many

subqueries

v

Many

joins

v

Many

set

operators,

such

as

UNION

and

INTERSECT

v

Many

qualifying

rows

v

GROUP

BY

and

HAVING

operations

v

Nested

table

expressions

v

A

large

number

of

views.

Decision

support

queries

or

month-end

reporting

queries

against

fully

normalized

databases

are

good

examples

of

complex

queries

for

which

at

least

the

default

query

optimization

class

should

be

used.

Use

higher

query

optimization

classes

for

SQL

that

was

produced

by

a

query

generator.

Many

query

generators

create

inefficient

SQL.

Poorly

written

queries,

including

those

produced

by

a

query

generator,

require

additional

optimization

to

select

a

good

access

plan.

Using

query

optimization

class

2

and

higher

can

improve

such

SQL

queries.

Related

concepts:

v

“Configuration

parameters

that

affect

query

optimization”

on

page

136

v

“Benchmark

testing”

on

page

303

v

“Optimization

strategies

for

intra-partition

parallelism”

on

page

173

v

“Optimization

strategies

for

MDC

tables”

on

page

175

Related

tasks:

v

“Setting

the

optimization

class”

on

page

76

Related

reference:

v

“Optimization

classes”

on

page

73

Optimization

classes

You

can

specify

one

of

the

following

optimizer

classes

when

you

compile

an

SQL

query:

0

-

This

class

directs

the

optimizer

to

use

minimal

optimization

to

generate

an

access

plan.

This

optimization

class

has

the

following

characteristics:

v

Non-uniform

distribution

statistics

are

not

considered

by

the

optimizer.

v

Only

basic

query

rewrite

rules

are

applied.

v

Greedy

join

enumeration

occurs.

v

Only

nested

loop

join

and

index

scan

access

methods

are

enabled.

v

List

prefetch

and

index

ANDing

are

not

used

in

generated

access

methods.

v

The

star-join

strategy

is

not

considered.

This

class

should

only

be

used

in

circumstances

that

require

the

the

lowest

possible

query

compilation

overhead.

Query

optimization

class

0

is

Chapter

3.

Application

considerations

73

appropriate

for

an

application

that

consists

entirely

of

very

simple

dynamic

SQL

statements

that

access

well-indexed

tables.

1

-

This

optimization

class

has

the

following

characteristics:

v

Non-uniform

distribution

statistics

are

not

considered

by

the

optimizer.

v

Only

a

subset

of

the

query

rewrite

rules

are

applied.

v

Greedy

join

enumeration

occurs.

v

List

prefetch

and

index

ANDing

are

not

used

in

generated

access

methods

although

index

ANDing

is

still

used

when

working

with

the

semijoins

used

in

star

joins.

Optimization

class

1

is

similar

to

class

0

except

that

Merge

Scan

joins

and

table

scans

are

also

available.

2

-

This

class

directs

the

optimizer

to

use

a

degree

of

optimization

significantly

higher

than

class

1,

while

keeping

the

compilation

cost

significantly

lower

than

classes

3

and

above

for

complex

queries.

This

optimization

class

has

the

following

characteristics:

v

All

available

statistics,

including

both

frequency

and

quantile

non-uniform

distribution

statistics,

are

used.

v

All

query

rewrite

rules

are

applied,

including

routing

queries

to

materialized

query

tables,

except

computationally

intensive

rules

that

are

applicable

only

in

very

rare

cases.

v

Greedy

join

enumeration

is

used.

v

A

wide

range

of

access

methods

are

considered,

including

list

prefetch

and

materialized

query

table

routing.

v

The

star-join

strategy

is

considered,

if

applicable.

Optimization

class

2

is

similar

to

class

5

except

that

it

uses

Greedy

join

enumeration

instead

of

Dynamic

Programming.

This

class

has

the

most

optimization

of

all

classes

that

use

the

Greedy

join

enumeration

algorithm,

which

considers

fewer

alternatives

for

complex

queries,

and

therefore

consumes

less

compilation

time

than

classes

3

and

above.

Class

2

is

recommended

for

very

complex

queries

in

a

decision

support

or

online

analytic

processing

(OLAP)

environment.

In

such

environments,

specific

queries

are

rarely

repeated

exactly,

so

that

a

query

access

plan

is

unlikely

to

remain

in

the

cache

until

the

next

occurrence

of

the

query.

3

-

This

class

requests

a

moderate

amount

of

optimization.

This

class

comes

closest

to

matching

the

query

optimization

characteristics

of

DB2

for

MVS/ESA,

OS/390,

or

z/OS.

This

optimization

class

has

the

following

characteristics:

v

Non-uniform

distribution

statistics,

which

track

frequently

occurring

values,

are

used

if

available.

v

Most

query

rewrite

rules

are

applied,

including

subquery-to-join

transformations.

v

Dynamic

programming

join

enumeration,

as

follows:

–

Limited

use

of

composite

inner

tables

–

Limited

use

of

Cartesian

products

for

star

schemas

involving

look-up

tables
v

A

wide

range

of

access

methods

are

considered,

including

list

prefetch,

index

ANDing,

and

star

joins.

This

class

is

suitable

for

a

broad

range

of

applications.

This

class

improves

access

plans

for

queries

with

four

or

more

joins.

However,

the

optimizer

might

fail

to

consider

a

better

plan

that

might

be

chosen

with

the

default

optimization

class.

74

Administration

Guide:

Performance

5

-

This

class

directs

the

optimizer

to

use

a

significant

amount

of

optimization

to

generate

an

access

plan.

This

optimization

class

has

the

following

characteristics:

v

All

available

statistics

are

used,

including

both

frequency

and

quantile

distribution

statistics.

v

All

of

the

query

rewrite

rules

are

applied,

including

the

routing

of

queries

to

materialized

query

tables,

except

for

those

computationally

intensive

rules

which

are

applicable

only

in

very

rare

cases.

v

Dynamic

programming

join

enumeration,

as

follows:

–

Limited

use

of

composite

inner

tables

–

Limited

use

of

Cartesian

products

for

star

schemas

involving

look-up

tables
v

A

wide

range

of

access

methods

are

considered,

including

list

prefetch,

index

ANDing,

and

materialized

query

table

routing.

When

the

optimizer

detects

that

the

additional

resources

and

processing

time

are

not

warranted

for

complex

dynamic

SQL

queries,

optimization

is

reduced.

The

extent

or

size

of

the

reduction

depends

on

the

machine

size

and

the

number

of

predicates.

When

the

query

optimizer

reduces

the

amount

of

query

optimization,

it

continues

to

apply

all

the

query

rewrite

rules

that

would

normally

be

applied.

However,

it

does

use

the

Greedy

join

enumeration

method

and

reduces

the

number

of

access

plan

combinations

that

are

considered.

Query

optimization

class

5

is

an

excellent

choice

for

a

mixed

environment

consisting

of

both

transactions

and

complex

queries.

This

optimization

class

is

designed

to

apply

the

most

valuable

query

transformations

and

other

query

optimization

techniques

in

an

efficient

manner.

7

-

This

class

directs

the

optimizer

to

use

a

significant

amount

of

optimization

to

generate

an

access

plan.

It

is

the

same

as

query

optimization

class

5

except

that

it

does

not

reduce

the

amount

of

query

optimization

for

complex

dynamic

SQL

queries.

9

-

This

class

directs

the

optimizer

to

use

all

available

optimization

techniques.

These

include:

v

All

available

statistics

v

All

query

rewrite

rules

v

All

possibilities

for

join

enumerations,

including

Cartesian

products

and

unlimited

composite

inners

v

All

access

methods

This

class

can

greatly

expand

the

number

of

possible

access

plans

that

are

considered

by

the

optimizer.

You

might

use

this

class

to

find

out

whether

more

comprehensive

optimization

would

generate

a

better

access

plan

for

very

complex

and

very

long-running

queries

that

use

large

tables.

Use

Explain

and

performance

measurements

to

verify

that

a

better

plan

has

actually

been

found.

Related

concepts:

v

“Optimization

class

guidelines”

on

page

72

v

“Optimization

strategies

for

intra-partition

parallelism”

on

page

173

v

“Remote

SQL

generation

and

global

optimization

in

federated

databases”

on

page

184

v

“Optimization

strategies

for

MDC

tables”

on

page

175

Chapter

3.

Application

considerations

75

Related

tasks:

v

“Setting

the

optimization

class”

on

page

76

Setting

the

optimization

class

When

you

specify

an

optimization

level,

consider

whether

a

query

uses

static

or

dynamic

SQL,

and

whether

the

same

dynamic

SQL

is

repeatedly

executed.

For

static

SQL,

the

query

compilation

time

and

resources

are

expended

just

once

and

the

resulting

plan

can

be

used

many

times.

In

general,

static

SQL

should

always

use

the

default

query

optimization

class.

Because

dynamic

statements

are

bound

and

executed

at

run

time,

consider

whether

the

overhead

of

additional

optimization

for

dynamic

statements

improves

overall

performance.

However,

if

the

same

dynamic

SQL

statement

is

executed

repeatedly,

the

selected

access

plan

is

cached.

Such

statements

can

use

the

same

optimization

levels

as

static

SQL

statements.

If

you

think

that

a

query

that

might

benefit

from

additional

optimization,

but

you

are

not

sure,

or

you

are

concerned

about

compilation

time

and

resource

usage,

you

might

perform

some

benchmark

testing.

Procedure:

To

specify

a

query

optimization

class,

follow

these

steps:

1.

Analyze

the

performance

factors

either

informally

or

with

formal

tests

as

follows:

v

For

dynamic

SQL

statements,

tests

should

compare

the

average

run

time

for

the

statement.

Use

the

following

formula

to

estimate

an

average

run

time:

compile

time

+

sum

of

execution

times

for

all

iterations

--

number

of

iterations

In

this

formula,

the

number

of

iterations

represents

the

number

of

times

that

you

expect

that

the

SQL

statement

might

be

executed

each

time

it

is

compiled.

Note:

After

the

initial

compilation,

dynamic

SQL

statements

are

recompiled

when

a

change

to

the

environment

requires

it.

If

the

environment

does

not

change

after

an

SQL

statement

is

cached,

it

does

not

need

to

be

compiled

again

because

subsequent

PREPARE

statements

re-use

the

cached

statement.

v

For

static

SQL

statements,

compare

the

statement

run

times.

Although

you

might

also

be

interested

in

the

compile

time

of

static

SQL,

the

total

compile

and

run

time

for

the

statement

is

difficult

to

assess

in

any

meaningful

context.

Comparing

the

total

time

does

not

recognize

the

fact

that

a

static

SQL

statement

can

be

run

many

times

for

each

time

it

is

bound

and

that

it

is

generally

not

bound

during

run

time.
2.

Specify

the

optimization

class

as

follows:

v

Dynamic

SQL

statements

use

the

optimization

class

specified

by

the

CURRENT

QUERY

OPTIMIZATION

special

register

that

you

set

with

the

SQL

statement

SET.

For

example,

the

following

statement

sets

the

optimization

class

to

1:

SET

CURRENT

QUERY

OPTIMIZATION

=

1

To

ensure

that

a

dynamic

SQL

statement

always

uses

the

same

optimization

class,

you

might

include

a

SET

statement

in

the

application

program.

76

Administration

Guide:

Performance

If

the

CURRENT

QUERY

OPTIMIZATION

register

has

not

been

set,

dynamic

statements

are

bound

using

the

default

query

optimization

class.

The

default

value

for

both

dynamic

and

static

SQL

is

determined

by

value

of

the

database

configuration

parameter

dft_queryopt.

Class

5

is

the

default

value

of

this

parameter.

The

default

values

for

the

bind

option

and

the

special

register

are

also

read

from

the

dft_queryopt

database

configuration

parameter.

v

Static

SQL

statements

use

the

optimization

class

specified

on

the

PREP

and

BIND

commands.

The

QUERYOPT

column

in

the

SYSCAT.PACKAGES

catalog

table

records

the

optimization

class

used

to

bind

the

package.

If

the

package

is

rebound

either

implicitly

or

using

the

REBIND

PACKAGE

command,

this

same

optimization

class

is

used

for

the

static

SQL

statements.

To

change

the

optimization

class

for

such

static

SQL

statements,

use

the

BIND

command.

If

you

do

not

specify

the

optimization

class,

DB2

uses

the

default

optimization

as

specified

by

dft_queryopt

database

configuration

parameter.

Related

concepts:

v

“Optimization

class

guidelines”

on

page

72

Related

reference:

v

“Optimization

classes”

on

page

73

Tuning

applications

This

section

provides

guidelines

for

tuning

the

queries

that

applications

execute.

Guidelines

for

restricting

select

statements

The

optimizer

assumes

that

an

application

must

retrieve

all

of

the

rows

specified

by

SELECT

statement.

This

assumption

is

most

appropriate

in

OLTP

and

batch

environments.

However,

in

“browse”

applications,

queries

often

define

a

large

potential

answer

set

but

they

retrieve

only

first

few

rows,

usually

only

as

many

rows

as

are

required

to

fill

the

screen.

To

improve

performance

for

such

applications,

you

can

modify

the

SELECT

statement

in

the

following

ways:

v

Use

the

FOR

UPDATE

clause

to

specify

the

columns

that

could

be

updated

by

a

subsequent

positioned

UPDATE

statement.

v

Use

the

FOR

READ/FETCH

ONLY

clause

to

make

the

returned

columns

read

only.

v

Use

the

OPTIMIZE

FOR

n

ROWS

clause

to

give

priority

to

retrieving

the

first

n

rows

in

the

full

result

set.

v

Use

the

FETCH

FIRST

n

ROWS

ONLY

clause

to

retrieve

only

a

specified

number

of

rows.

v

Use

the

DECLARE

CURSOR

WITH

HOLD

statement

to

retrieve

rows

one

at

a

time.

Note:

Row

blocking

is

affected

if

you

use

the

FOR

UPDATE,

FETCH

FIRST

n

ROWS

ONLY,

or

the

OPTIMIZE

FOR

n

ROWS

clause

or

if

you

declare

your

cursor

as

SCROLLing.

The

following

sections

describe

the

performance

advantages

of

each

method.

FOR

UPDATE

Clause

Chapter

3.

Application

considerations

77

|
|
|

The

FOR

UPDATE

clause

limits

the

result

set

by

including

only

the

columns

that

can

be

updated

by

a

subsequent

positioned

UPDATE

statement.

If

you

specify

the

FOR

UPDATE

clause

without

column

names,

all

columns

that

can

be

updated

in

the

table

or

view

are

included.

If

you

specify

column

names,

each

name

must

be

unqualified

and

must

identify

a

column

of

the

table

or

view.

You

cannot

use

FOR

UPDATE

clause

in

the

following

circumstances:

v

If

the

cursor

associated

with

the

SELECT

statement

cannot

be

deleted.

v

If

at

least

one

of

the

selected

columns

is

a

column

that

cannot

be

updated

in

a

catalog

table

and

has

not

been

excluded

in

the

FOR

UPDATE

clause.

Use

the

DB2®

CLI

connection

attribute

SQL_ATTR_ACCESS_MODE

in

CLI

applications

for

the

same

purposes.

FOR

READ

or

FETCH

ONLY

Clause

The

FOR

READ

ONLY

clause

or

FOR

FETCH

ONLY

clause

ensures

that

read-only

results

are

returned.

Because

the

result

table

from

a

SELECT

on

a

view

defined

as

read-only

is

also

read

only,

this

clause

is

permitted

but

has

no

effect.

For

result

tables

where

updates

and

deletes

are

allowed,

specifying

FOR

READ

ONLY

may

improve

the

performance

of

FETCH

operations

if

the

database

manager

can

retrieve

blocks

of

data

instead

of

exclusive

locks.

Do

not

use

the

FOR

READ

ONLY

clause

for

queries

that

are

used

in

positioned

UPDATE

or

DELETE

statements.

The

DB2

CLI

connection

attribute

SQL_ATTR_ACCESS_MODE

can

be

used

in

CLI

applications

for

the

same

purposes.

OPTIMIZE

FOR

n

ROWS

Clause

The

OPTIMIZE

FOR

clause

declares

the

intent

to

retrieve

only

a

subset

of

the

result

or

to

give

priority

to

retrieving

only

the

first

few

rows.

The

optimizer

can

then

prefer

access

plans

that

minimize

the

response

time

for

retrieving

the

first

few

rows.

In

addition,

the

number

of

rows

that

are

sent

to

the

client

as

a

single

block

are

bounded

by

the

value

of

“n”

in

the

OPTIMIZE

FOR

clause.

Thus

the

OPTIMIZE

FOR

clause

affects

both

how

the

server

retrieves

the

qualifying

rows

from

the

database

by

the

server,

and

how

it

returns

the

qualifying

rows

to

the

client.

For

example,

suppose

you

are

querying

the

employee

table

for

the

employees

with

the

highest

salary

on

a

regular

basis.

SELECT

LASTNAME,FIRSTNAME,EMPNO,SALARY

FROM

EMPLOYEE

ORDER

BY

SALARY

DESC

You

have

defined

a

descending

index

on

the

SALARY

column.

However,

since

employees

are

ordered

by

employee

number,

the

salary

index

is

likely

to

be

very

poorly

clustered.

To

avoid

many

random

synchronous

I/Os,

the

optimizer

would

probably

choose

to

use

the

list

prefetch

access

method,

which

requires

sorting

the

row

identifiers

of

all

rows

that

qualify.

This

sort

causes

a

delay

before

the

first

qualifying

rows

can

be

returned

to

the

application.

To

prevent

this

delay,

add

the

OPTIMIZE

FOR

clause

to

the

statement

as

follows:

78

Administration

Guide:

Performance

SELECT

LASTNAME,FIRSTNAME,EMPNO,SALARY

FROM

EMPLOYEE

ORDER

BY

SALARY

DESC

OPTIMIZE

FOR

20

ROWS

In

this

case,

the

optimizer

probably

chooses

to

use

the

SALARY

index

directly

because

only

the

twenty

employees

with

the

highest

salaries

are

retrieved.

Regardless

of

how

many

rows

might

be

blocked,

a

block

of

rows

is

returned

to

the

client

every

twenty

rows.

With

the

OPTIMIZE

FOR

clause

the

optimizer

favors

access

plans

that

avoid

bulk

operations

or

interrupt

the

flow

of

rows,

such

as

sorts.

You

are

most

likely

to

influence

an

access

path

by

using

OPTIMIZE

FOR

1

ROW.

Using

this

clause

might

have

the

following

effects:

v

Join

sequences

with

composite

inner

tables

are

less

likely

because

they

require

a

temporary

table.

v

The

join

method

might

change.

A

nested

loop

join

is

the

most

likely

choice,

because

it

has

low

overhead

cost

and

is

usually

more

efficient

to

retrieve

a

few

rows.

v

An

index

that

matches

the

ORDER

BY

clause

is

more

likely

because

no

sort

is

required

for

the

ORDER

BY.

v

List

prefetch

is

less

likely

because

this

access

method

requires

a

sort.

v

Sequential

prefetch

is

less

likely

because

of

the

understanding

that

only

a

small

number

of

rows

is

required.

v

In

a

join

query,

the

table

with

the

columns

in

the

ORDER

BY

clause

is

likely

to

be

picked

as

the

outer

table

if

an

index

on

the

outer

table

provides

the

ordering

needed

for

the

ORDER

BY

clause.

Although

the

OPTIMIZE

FOR

clause

applies

to

all

optimization

levels,

it

works

best

for

optimization

class

3

and

higher

because

classes

below

3

use

Greedy

join

enumeration

method.

This

method

sometimes

results

in

access

plans

for

multi-table

joins

that

do

not

lend

themselves

to

quick

retrieval

of

the

first

few

rows.

The

OPTIMIZE

FOR

clause

does

not

prevent

you

from

retrieving

all

the

qualifying

rows.

If

you

do

retrieve

all

qualifying

rows,

the

total

elapsed

time

might

be

significantly

greater

than

if

the

optimizer

had

optimized

for

the

entire

answer

set.

If

a

packaged

application

uses

the

call

level

interface

(DB2

CLI

or

ODBC),

you

can

use

the

OPTIMIZEFORNROWS

keyword

in

the

db2cli.ini

configuration

file

to

have

DB2

CLI

automatically

append

an

OPTIMIZE

FOR

clause

to

the

end

of

each

query

statement.

When

data

is

selected

from

nicknames,

results

may

vary

depending

on

data

source

support.

If

the

data

source

referenced

by

the

nickname

supports

the

OPTIMIZE

FOR

clause

and

the

DB2

optimizer

pushes

down

the

entire

query

to

the

data

source,

then

the

clause

is

generated

in

the

remote

SQL

sent

to

the

data

source.

If

the

data

source

does

not

support

this

clause

or

if

the

optimizer

decides

that

the

least-cost

plan

is

local

execution,

the

OPTIMIZE

FOR

clause

is

applied

locally.

In

this

case,

the

DB2

optimizer

prefers

access

plans

that

minimize

the

response

time

for

retrieving

the

first

few

rows

of

a

query,

but

the

options

available

to

the

optimizer

for

generating

plans

are

slightly

limited

and

performance

gains

from

the

OPTIMIZE

FOR

clause

may

be

negligible.

Chapter

3.

Application

considerations

79

If

both

the

FETCH

FIRST

clause

and

the

OPTIMIZE

FOR

clause

are

specified,

the

lower

of

the

two

values

affects

the

communications

buffer

size.

The

two

values

are

considered

independent

of

each

other

for

optimization

purposes.

FETCH

FIRST

n

ROWS

ONLY

Clause

The

FETCH

FIRST

n

ROWS

ONLY

clause

sets

the

maximum

number

of

rows

that

can

be

retrieved.

Limiting

the

result

table

to

the

first

several

rows

can

improve

performance.

Only

n

rows

are

retrieved

regardless

of

the

number

of

rows

that

the

result

set

might

otherwise

contain.

If

you

specify

both

the

FETCH

FIRST

clause

and

the

OPTIMIZE

FOR

clause,

the

lower

of

the

two

values

affects

the

communications

buffer

size.

For

optimization

purposes

the

two

values

are

independent

of

each

other.

DECLARE

CURSOR

WITH

HOLD

Statement

When

you

declare

a

cursor

with

the

DECLARE

CURSOR

statement

that

includes

the

WITH

HOLD

clause,

open

cursors

remain

open

when

the

transaction

is

committed

and

all

locks

are

released,

except

locks

that

protect

the

current

cursor

position

of

open

WITH

HOLD

cursors.

If

the

transaction

is

rolled

back,

all

open

cursors

are

closed

and

all

locks

are

released

and

LOB

locators

are

freed.

The

DB2

CLI

connection

attribute

SQL_ATTR_CURSOR_HOLD

can

be

used

in

CLI

applications

to

achieve

the

same

results.

If

a

packaged

application

that

uses

the

call

level

interface

(DB2

CLI

or

ODBC),

use

the

CURSORHOLD

keyword

in

the

db2cli.ini

configuration

file

to

have

DB2

CLI

automatically

assume

the

WITH

HOLD

clause

for

every

declared

cursor.

Related

concepts:

v

“Query

tuning

guidelines”

on

page

81

v

“Efficient

SELECT

statements”

on

page

83

Specifying

row

blocking

to

reduce

overhead

Row

blocking

reduces

database

manager

overhead

for

cursors

by

retrieving

a

block

of

rows

in

a

single

operation.

Note:

The

block

of

rows

that

you

specify

is

a

number

of

pages

in

memory.

It

is

not

a

multi-dimensional

(MDC)

table

block,

which

is

physically

mapped

to

an

extent

on

disk.

Row

blocking

levels

are

specified

by

the

following

arguments

to

the

BIND

or

PREP

commands:

UNAMBIG

Blocking

occurs

for

read-only

cursors

and

cursors

not

specified

as

“FOR

UPDATE

OF”.

Ambiguous

cursors

are

treated

as

updateable.

ALL

Blocking

occurs

for

read-only

cursors

and

cursors

not

specified

as

“FOR

UPDATE

OF”.

Ambiguous

cursors

are

treated

as

read-only.

NO

Blocking

does

not

occur

for

any

cursors.

Ambiguous

cursors

are

treated

as

read-only.

Prerequisites:

80

Administration

Guide:

Performance

Two

database

manager

configuration

parameters

must

be

set

appropriately.

Both

values

are

set

as

a

number

of

pages

of

memory.

Note

the

values

of

these

parameters

for

use

in

block-size

calculations.

v

The

database

manager

configuration

parameter

aslheapsz

specifies

application

support

layer

heap

size

for

local

applications.

v

The

database

manager

configuration

parameter

rqrioblk

specifies

the

size

of

the

communication

buffer

between

remote

applications

and

their

database

agents

on

the

database

server.

Procedure:

To

specify

row

blocking:

1.

Use

the

values

of

the

aslheapsz

and

rqrioblk

configuration

parameters

to

estimate

how

many

rows

are

returned

for

each

block.

In

both

formulas

orl

is

the

output

row

length

in

bytes.

v

Use

the

following

formula

for

local

applications:

Rows

per

block

=

aslheapsz

*

4096

/

orl

The

number

of

bytes

per

page

is

4

096.

v

Use

the

following

formula

for

remote

applications:

Rows

per

block

=

rqrioblk

/

orl

2.

To

enable

row

blocking,

specify

an

appropriate

argument

to

the

BLOCKING

option

in

the

PREP

or

BIND

commands.

If

you

do

not

specify

a

BLOCKING

option,

the

default

row

blocking

type

is

UNAMBIG.

For

the

command

line

processor

and

call

level

interface,

the

default

row

blocking

type

is

ALL.

Note:

If

you

use

the

FETCH

FIRST

n

ROWS

ONLY

clause

or

the

OPTIMIZE

FOR

n

ROWS

clause

in

a

SELECT

statement,

the

number

of

rows

per

block

will

be

the

minimum

of

the

following:

v

The

value

calculated

in

the

above

formula

v

The

value

of

n

in

the

FETCH

FIRST

clause

v

The

value

of

n

in

the

OPTIMIZE

FOR

clause

Related

reference:

v

“aslheapsz

-

Application

support

layer

heap

size”

on

page

358

v

“rqrioblk

-

Client

I/O

block

size”

on

page

360

Query

tuning

guidelines

Follow

the

query-tuning

guidelines

to

fine-tune

the

SQL

statements

in

an

application

program.

The

guidelines

are

intended

to

help

you

minimize

the

use

of

system

resources

and

the

time

required

to

return

results

from

large

tables

and

complex

queries.

Note:

The

optimization

class

that

the

optimizer

uses

might

eliminate

the

need

for

some

fine

tuning

because

the

SQL

compiler

can

rewrite

the

SQL

code

into

more

efficient

forms.

Note

that

the

optimizer

choice

of

an

access

plan

is

also

affected

by

other

factors,

including

environmental

considerations

and

system

catalog

statistics.

If

you

conduct

benchmark

testing

of

the

performance

of

your

applications,

you

can

find

out

what

adjustments

might

improve

the

access

plan.

Chapter

3.

Application

considerations

81

Related

concepts:

v

“Guidelines

for

restricting

select

statements”

on

page

77

v

“Efficient

SELECT

statements”

on

page

83

v

“Compound

SQL

guidelines”

on

page

85

v

“Character-conversion

guidelines”

on

page

86

v

“Guidelines

for

stored

procedures”

on

page

87

v

“Parallel

processing

for

applications”

on

page

88

v

“Guidelines

for

sort

performance”

on

page

236

Related

tasks:

v

“Specifying

row

blocking

to

reduce

overhead”

on

page

80

Data

sampling

in

SQL

queries

Databases

are

growing

so

large

and

queries

on

those

databases

so

complex

that

it

is

often

impractical

and

sometimes

unnecessary

to

access

all

of

the

data

relevant

to

a

query.

In

some

cases,

a

user

is

interested

in

finding

overall

trends

or

patterns,

in

which

case

approximate

answers

within

some

margin

of

error

will

suffice.

One

way

to

speed

up

such

queries

is

to

perform

the

query

on

a

random

sample

of

the

database.

DB2®

allows

you

to

do

efficient

sampling

of

data

in

SQL

queries,

potentially

improving

performance

of

large

queries

by

orders

of

magnitude

while

maintaining

a

high

degree

of

accuracy.

The

most

common

application

of

sampling

is

for

aggregate

queries

such

as

AVG,

SUM,

and

COUNT,

where

reasonably

accurate

answers

of

the

aggregates

can

be

obtained

from

a

sample

of

the

data.

Sampling

can

also

be

used

to

obtain

a

random

subset

of

the

actual

rows

in

a

table

for

auditing

purposes

or

to

speed

up

data

mining

and

analysis

tasks.

DB2

provides

two

methods

of

sampling:

row-level

sampling

and

block-level

sampling.

Row-level

Bernoulli

sampling:

Row-level

Bernoulli

sampling

gets

a

sample

of

P

percent

of

the

table

rows

by

means

of

a

SARGable

predicate

that

includes

each

row

in

the

sample

with

a

probability

of

P/100

and

excludes

it

with

a

probability

of

1−P/100.

Row-level

Bernoulli

sampling

always

gets

a

valid,

random

sample

regardless

of

data

clustering.

However,

the

performance

of

this

type

of

sampling

is

very

poor

if

no

index

is

available

because

every

row

must

be

retrieved

and

the

sampling

predicate

applied

to

it.

If

there

is

no

index

then

there

are

no

I/O

savings

over

executing

a

query

without

sampling.

If

an

index

is

available,

then

performance

using

this

type

of

sampling

is

improved

because

the

sampling

predicate

is

applied

on

the

RIDS

inside

the

index

leaf

pages.

In

the

usual

case,

this

requires

one

I/O

per

selected

RID,

and

one

I/O

per

index

leaf

page.

System

page-level

sampling:

System

page-level

sampling

is

similar

to

row-level

sampling,

except

that

pages

are

sampled

and

not

rows.

A

page

is

included

in

the

sample

with

a

probability

of

P/100.

If

a

page

is

included,

all

of

the

rows

in

that

page

are

included.

82

Administration

Guide:

Performance

Performance

of

system

page-level

sampling

is

excellent

because

only

one

I/O

is

required

for

each

page

that

is

included

in

the

sample.

Compared

with

no

sampling,

page-level

sampling

improves

performance

by

orders

of

magnitude.

However,

the

accuracy

of

aggregate

estimates

tends

to

be

worse

under

page-level

sampling

than

row-level

sampling.

This

disparity

in

accuracy

is

most

pronounced

when

there

are

many

rows

per

block

or

when

the

columns

referenced

in

the

query

exhibit

a

high

degree

of

clustering

within

the

pages.

The

best

sampling

method

for

a

particular

task

will

be

determined

by

a

user’s

time

constraints

and

the

desired

degree

of

accuracy.

Specifying

the

sampling

method:

To

execute

a

query

on

a

random

sample

of

data

from

a

table,

you

can

use

the

TABLESAMPLE

clause

of

the

table-reference

clause

in

a

SQL

statement.

To

specify

the

method

of

sampling,

use

the

keywords

BERNOULLI

or

SYSTEM.

The

BERNOULLI

keyword

specifies

that

row-level

Bernoulli

sampling

is

performed.

The

SYSTEM

keyword

specifes

that

system

page-level

sampling

is

performed

unless

the

optimizer

determines

that

it

is

more

efficient

to

perform

row-level

Bernoulli

sampling

instead.

Related

reference:

v

“Subselect”

in

the

SQL

Reference,

Volume

1

Efficient

SELECT

statements

Because

SQL

is

a

flexible

high-level

language,

you

can

write

several

different

SELECT

statements

to

retrieve

the

same

data.

However,

the

performance

might

vary

for

the

different

forms

of

the

statement

as

well

as

for

the

different

classes

of

optimization.

Consider

the

following

guidelines

for

SELECT

statements:

v

Specify

only

columns

that

you

need.

Although

it

is

simpler

to

specify

all

columns

with

an

asterisk

(*),

unnecessary

processing

and

return

of

unneeded

columns

results.

v

Use

predicates

that

restrict

the

answer

set

to

only

those

rows

that

you

require

v

When

the

number

of

rows

you

need

is

significantly

less

than

the

total

number

of

rows

that

might

be

returned,

specify

the

OPTIMIZE

FOR

clause.

This

clause

affects

both

the

choice

of

access

plans

and

the

number

of

rows

that

are

blocked

in

the

communication

buffer.

v

When

the

number

of

rows

to

be

retrieved

is

small,

specify

only

the

OPTIMIZE

FOR

k

ROWS

clause.

You

do

not

need

the

FETCH

FIRST

n

ROWS

ONLY

clause.

However,

if

n

is

large

and

you

want

the

first

k

rows

quickly

with

a

possible

delay

for

the

subsequent

k

rows,

specify

both

clauses.

The

size

of

the

communication

buffers

is

based

on

the

lesser

of

n

and

k.

The

following

example

shows

both

clauses:

SELECT

EMPNAME,

SALARY

FROM

EMPLOYEE

ORDER

BY

SALARY

DESC

FETCH

FIRST

100

ROWS

ONLY

OPTIMIZE

FOR

20

ROWS

Chapter

3.

Application

considerations

83

v

To

take

advantage

of

row

blocking,

specify

the

FOR

READ

ONLY

or

FOR

FETCH

ONLY

clause

to

improve

performance.

In

addition,

concurrency

improves

because

exclusive

locks

are

never

held

on

the

rows

retrieved.

Additional

query

rewrites

can

also

occur.

Specifying

the

FOR

READ

ONLY

or

FOR

FETCH

ONLY

clause

as

well

as

the

BLOCKING

ALL

BIND

option

can

improve

the

performance

of

queries

against

nicknames

in

a

federated

system

in

a

similar

way.

v

For

cursors

that

will

be

updated

with

positioned

updates,

specify

the

FOR

UPDATE

OF

clause

to

allow

the

database

manager

to

choose

more

appropriate

locking

levels

initially

and

avoid

potential

deadlocks.

Note

that

FOR

UPDATE

cursors

cannot

take

advantage

of

row

blocking.

v

For

cursors

that

will

be

updated

with

searched

updates,

you

can

avoid

deadlocks

and

still

allow

row

blocking

by

forcing

U

locks

on

affected

rows

with

the

FOR

READ

ONLY

and

the

USE

AND

KEEP

UPDATE

LOCKS

clauses.

v

Avoid

numeric

data

type

conversions

whenever

possible.

When

comparing

values,

it

might

be

more

efficient

to

use

items

that

have

the

same

data

type.

If

conversions

are

necessary,

inaccuracies

due

to

limited

precision

and

performance

costs

due

to

run-time

conversions

might

result.

If

possible,

use

the

following

data

types:

–

Character

instead

of

varying

character

for

short

columns

–

Integer

instead

of

float

or

decimal

–

Datetime

instead

of

character

–

Numeric™

instead

of

character
v

To

decrease

the

possibility

that

a

sort

operation

will

occur,

omit

clauses

or

operations

such

as

DISTINCT

or

ORDER

BY

if

such

operations

are

not

required.

v

To

check

for

existence

of

rows

in

a

table,

select

a

single

row.

Either

open

a

cursor

and

fetch

one

row

or

perform

a

a

single-row

(SELECT

INTO)

selection.

Remember

to

check

for

the

SQLCODE

-811

error

if

more

than

one

row

is

found.

Unless

you

know

that

the

table

is

very

small,

do

not

use

the

following

statement

to

check

for

a

non-zero

value:

SELECT

COUNT(*)

FROM

TABLENAME

For

large

tables,

counting

all

the

rows

impacts

performance.

v

If

update

activity

is

low

and

tables

are

large,

define

indexes

on

columns

that

are

frequently

used

as

predicates.

v

Consider

using

an

IN

list

if

the

same

column

appears

in

multiple

predicate

clauses.

For

large

IN

lists

used

with

host

variables,

looping

a

subset

of

the

host

variables

might

improve

performance.

The

following

suggestions

apply

specifically

to

SELECT

statements

that

access

several

tables.

v

Use

join

predicates

to

join

tables.

A

join

predicate

is

a

comparison

between

two

columns

from

different

tables

in

a

join.

v

Define

indexes

on

the

columns

in

the

join

predicate

to

allow

the

join

to

be

processed

more

efficiently.

Indexes

also

benefit

UPDATE

and

DELETE

statements

that

contain

SELECT

statements

that

access

several

tables.

v

If

possible,

avoid

using

expressions

or

OR

clauses

with

join

predicates

because

the

database

manager

cannot

use

some

join

techniques.

As

a

result,

the

most

efficient

join

method

may

not

be

chosen.

v

In

a

partitioned

database

environment,

if

possible

ensure

that

both

of

the

tables

joined

are

partitioned

on

the

join

column.

Related

concepts:

84

Administration

Guide:

Performance

|
|
|
|

|
|
|

v

“Guidelines

for

restricting

select

statements”

on

page

77

v

“Query

tuning

guidelines”

on

page

81

Compound

SQL

guidelines

To

reduce

database

manager

overhead,

you

can

group

several

SQL

statements

into

a

single

executable

block.

Because

the

SQL

statements

in

the

block

are

substatements

that

could

be

executed

individually,

this

kind

of

code

is

called

compound

SQL.

In

addition

to

reducing

database

manager

overhead,

compound

SQL

reduces

the

number

of

requests

that

have

to

be

transmitted

across

the

network

for

remote

clients.

There

are

two

types

of

compound

SQL:

v

Atomic

The

application

receives

a

response

from

the

database

manager

when

all

substatements

have

completed

successfully

or

when

one

substatement

ends

in

an

error.

If

one

substatement

ends

in

an

error,

the

entire

block

is

considered

to

have

ended

in

an

error.

Any

changes

made

to

the

database

within

the

block

are

rolled

back.

Atomic

compound

SQL

is

not

supported

with

DB2

Connect

v

Not

Atomic

The

application

receives

a

response

from

the

database

manager

when

all

substatements

have

completed.

All

substatements

within

a

block

are

executed

regardless

of

whether

or

not

the

preceding

substatement

completed

successfully.

The

group

of

statements

can

only

be

rolled

back

if

the

unit

of

work

containing

the

NOT

ATOMIC

compound

SQL

is

rolled

back.

Compound

SQL

is

supported

in

stored

procedures,

which

are

also

known

as

DARI

routines,

and

in

the

following

application

development

processes:

v

Embedded

static

SQL

v

DB2

Call

Level

Interface

v

JDBC

Dynamic

Compound

SQL

Statements

Dynamic

compound

statements

are

compiled

by

DB2®

as

a

single

statement.

This

statement

can

be

used

effectively

for

short

scripts

that

require

little

control

flow

logic

but

significant

data

flow.

For

larger

constructs

with

nested

complex

control

flow,

consider

using

SQL

procedures.

In

a

dynamic

compound

statement

you

can

use

the

following

elements

in

declarations:

v

SQL

variables

in

variable

declarations

of

substatements

v

Conditions

in

the

substatements

based

on

the

SQLSTATE

values

of

the

condition

declaration

v

One

or

more

SQL

procedural

statements

Dynamic

compound

statements

can

also

use

several

flow

logic

statements,

such

as

the

FOR

statement,

the

IF

statement,

the

ITERATE

statement,

and

the

WHILE

statement.

Chapter

3.

Application

considerations

85

If

an

error

occurs

in

a

dynamic

compound

statement,

all

prior

SQL

statements

are

rolled

back

and

the

remaining

SQL

statements

in

the

dynamic

compound

statement

are

not

processed.

A

dynamic

compound

statement

can

be

embedded

in

a

trigger,

SQL

function,

or

SQL

method,

or

issued

through

dynamic

SQL

statements.

This

executable

statement

can

be

dynamically

prepared.

No

privileges

are

required

to

invoke

the

statement

but

the

authorization

ID

associated

with

the

statement

must

have

the

necessary

privileges

to

invoke

the

SQL

statements

in

the

compound

statement.

Related

concepts:

v

“Query

tuning

guidelines”

on

page

81

Character-conversion

guidelines

Data

conversion

might

be

required

to

map

data

between

application

and

database

code

pages

when

your

application

and

database

do

not

use

the

same

code

page.

Because

mapping

and

data

conversion

require

additional

overhead

application

performance

improves

if

the

application

and

database

use

the

same

code

page

or

the

identity

collating

sequence.

Character

conversion

occurs

in

the

following

circumstances:

v

When

a

client

or

application

runs

in

a

code

page

that

is

different

from

the

code

page

of

the

database

that

it

accesses.

The

conversion

occurs

on

the

database

server

machine

that

receives

the

data.

If

the

database

server

receives

the

data,

character

conversion

is

from

the

application

code

page

to

the

database

code

page.

If

the

application

machine

receives

the

data,

conversion

is

from

the

database

code

page

to

the

application

code

page.

v

When

a

client

or

application

that

imports

or

loads

a

file

runs

in

a

code

page

different

from

the

file

being

imported

or

loaded.

Character

conversion

does

not

occur

for

the

following

objects:

v

File

names.

v

Data

targeted

for

or

coming

from

a

column

for

which

the

FOR

BIT

DATA

attribute

is

assigned,

or

data

that

is

used

in

an

SQL

operation

whose

result

is

FOR

BIT

or

BLOB

data.

v

A

DB2®

product

or

platform

for

which

no

supported

conversion

function

to

or

from

EUC

or

UCS-2

is

installed.

Your

application

receives

an

SQLCODE

-332

(SQLSTATE

57017)

error

in

this

case.

The

conversion

function

and

conversion

tables

or

DBCS

conversion

APIs

that

the

database

manager

uses

when

it

converts

multi-byte

code

pages

depends

on

the

operating

system

environment.

Note:

Character

string

conversions

between

multi-byte

code

pages,

such

as

DBCS

with

EUC,

might

increase

or

decrease

length

of

a

string.

In

addition,

code

points

assigned

to

different

characters

in

the

PC

DBCS,

EUC,

and

UCS-2

code

sets

might

produce

different

results

when

same

characters

are

sorted.

Extended

UNIX®

Code

(EUC)

Code

Page

Support

86

Administration

Guide:

Performance

Host

variables

that

use

graphic

data

in

C

or

C++

applications

require

special

considerations

that

include

special

precompiler,

application

performance,

and

application

design

issues.

Many

characters

in

both

the

Japanese

and

Traditional

Chinese

EUC

code

pages

require

special

methods

of

managing

database

and

client

application

support

for

graphic

data,

which

require

double

byte

characters.

Graphic

data

from

these

EUC

code

pages

is

stored

and

manipulated

using

the

UCS-2

code

set.

Related

concepts:

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

on

page

182

Related

reference:

v

“Conversion

tables

for

code

pages

923

and

924”

in

the

Administration

Guide:

Planning

v

“Conversion

table

files

for

euro-enabled

code

pages”

in

the

Administration

Guide:

Planning

Guidelines

for

stored

procedures

Stored

procedures

permit

one

call

to

a

remote

database

to

execute

a

preprogrammed

procedure

in

a

database

application

environment

in

which

many

situations

are

repetitive.

For

example,

for

receiving

a

fixed

set

of

data,

performing

the

same

set

of

multiple

requests

against

a

database,

or

returning

a

fixed

set

of

data

might

represent

several

accesses

to

the

database.

Processing

a

single

SQL

statement

for

a

remote

database

requires

sending

two

transmissions:

one

request

and

one

receive.

Because

an

application

contains

many

SQL

statements

it

requires

many

transmissions

to

complete

its

work.

However,

when

a

database

client

uses

a

stored

procedure

that

encapsulates

many

SQL

statements,

it

requires

only

two

transmissions

for

the

entire

process.

Stored

procedures

usually

run

in

processes

separate

from

the

database

agents.

This

separation

requires

the

stored

procedure

and

agent

processes

to

communicate

through

a

router.

However,

a

special

kind

of

stored

procedure

that

runs

in

the

agent

process

might

improve

performance,

although

it

carries

significant

risks

of

corrupting

data

and

databases.

These

risky

stored

procedures

are

those

created

as

not

fenced.

For

a

not-fenced

stored

procedure,

nothing

separates

the

stored

procedure

from

the

database

control

structures

that

the

database

agent

uses.

If

a

DBA

wants

to

ensure

that

the

stored

procedure

operations

will

not

accidentally

or

maliciously

damage

the

database

control

structures,

the

not

fenced

option

is

omitted.

Because

of

the

risk

of

damaging

your

database,

use

not

fenced

stored

procedures

only

when

you

need

the

maximum

possible

performance

benefits.

In

addition,

make

absolutely

sure

that

the

procedure

is

well

coded

and

has

been

thoroughly

tested

before

allowing

it

to

run

as

a

not-fenced

stored

procedure.

If

a

fatal

error

occurs

while

running

a

not-fenced

stored

procedure,

the

database

manager

determines

whether

the

error

occurred

in

the

application

or

database

manager

code

and

performs

the

appropriate

recovery.

A

not-fenced

stored

procedure

can

corrupt

the

database

manager

beyond

recovery,

possibly

resulting

in

lost

data

and

the

possibility

of

a

corrupt

database.

Exercise

Chapter

3.

Application

considerations

87

extreme

caution

when

you

run

not-fenced

trusted

stored

procedures.

In

almost

all

cases,

the

proper

performance

analysis

of

an

application

results

in

the

good

performance

without

using

not-fenced

stored

procedures.

For

example,

triggers

might

improve

performance.

Related

concepts:

v

“Query

tuning

guidelines”

on

page

81

Parallel

processing

for

applications

DB2®

supports

parallel

environments

primarily

on

symmetric

multi-processor

(SMP)

machines,

but

also

to

a

limited

extent

on

uniprocessor

machines.

In

SMP

machines,

more

than

one

processor

can

access

the

database,

allowing

parallel

execution

of

complex

SQL

requests

to

be

divided

among

the

processors.

To

specify

the

degree

of

parallelism

to

implement

when

you

compile

an

application,

use

the

CURRENT

DEGREE

special

register,

or

the

DEGREE

bind

option.

Degree

refers

to

the

number

of

parts

of

a

query

that

execute

concurrently.

There

is

no

strict

relation

between

the

number

of

processors

and

the

value

that

you

select

for

the

degree

of

parallelism.

You

can

specify

more

or

less

than

the

number

of

processors

on

the

machine.

Even

for

uniprocessor

machines

you

can

set

a

degree

higher

than

one

to

improve

performance

in

some

ways.

Note,

however,

that

each

degree

of

parallelism

adds

to

the

system

memory

and

CPU

overhead.

Some

configuration

parameters

must

be

modified

to

optimize

performance

when

you

use

parallel

execution

of

queries.

In

particular,

for

an

environment

with

a

high

degree

of

parallelism,

you

should

review

and

modify

configuration

parameters

that

control

the

amount

of

shared

memory

and

prefetching.

The

following

three

configuration

parameters

control

and

manage

intra-partition

parallelism.

v

The

intra_parallel

database

manager

configuration

parameter

enables

or

disables

parallelism

support.

v

The

max_querydegree

database

configuration

parameter

sets

an

upper

limit

for

the

degree

of

parallelism

for

any

query

in

the

database.

This

value

overrides

the

CURRENT

DEGREE

special

register

and

the

DEGREE

bind

option.

v

The

dft_degree

database

configuration

parameter

sets

the

default

value

for

the

CURRENT

DEGREE

special

register

and

the

DEGREE

bind

option.

If

a

query

is

compiled

with

DEGREE

=

ANY,

the

database

manager

chooses

the

degree

of

intra-partition

parallelism

based

on

a

number

of

factors

including

the

number

of

processors

and

the

characteristics

of

the

query.

The

actual

degree

used

at

runtime

may

be

lower

than

the

number

of

processors

depending

on

these

factors

and

the

amount

of

activity

on

the

system.

Parallelism

may

be

lowered

before

query

execution

if

the

system

is

heavily

utilized.

This

occurs

because

intra-partition

parallelism

aggressively

uses

system

resources

to

reduce

the

elapsed

time

of

the

query,

which

may

adversely

affect

the

performance

of

other

database

users.

To

display

information

about

the

degree

of

parallelism

chosen

by

the

optimizer,

use

the

SQL

Explain

Facility

to

display

the

access

plan.

Use

the

database

system

monitor

to

display

information

about

the

degree

of

parallelism

actually

used

at

runtime.

Parallelism

in

non-SMP

environments

88

Administration

Guide:

Performance

You

can

specify

a

degree

of

parallelism

without

having

an

SMP

machine.

For

example,

I/O-bound

queries

on

a

uniprocessor

machine

may

benefit

from

declaring

a

degree

of

2

or

more.

In

this

case,

the

processor

might

not

have

to

wait

for

input

or

output

tasks

to

complete

before

starting

to

process

a

new

query.

Declaring

a

degree

of

2

or

more

does

not

directly

control

I/O

parallelism

on

a

uniprocessor

machine,

however.

Utilities

such

as

Load

can

control

I/O

parallelism

independently

of

such

a

declaration.

The

keyword

ANY

can

also

be

used

to

set

the

dft_degree

database

manager

configuration

parameter.

The

ANY

keyword

allows

the

optimizer

to

determine

the

degree

of

intra-partition

parallelism.

Related

concepts:

v

“Explain

tools”

on

page

190

v

“Optimization

strategies

for

intra-partition

parallelism”

on

page

173

Related

reference:

v

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

v

“intra_parallel

-

Enable

intra-partition

parallelism”

on

page

449

v

“dft_degree

-

Default

degree”

on

page

431

Improving

performance

by

binding

with

REOPT

SQL

queries

may

perform

poorly

during

execution

if

the

values

used

for

the

input

variables

such

as

parameter

markers,

host

variables,

and

special

registers,

are

outside

the

predictive

range

of

default

filter

factor

estimates.

Default

filter

factors,

used

for

scenarios

where

the

actual

data

value

is

not

known,

are

estimates

of

how

many

rows

will

actually

be

returned

at

runtime

when

the

actual

data

value

is

used.

The

REOPT

bind

option

specifies

whether

or

not

to

have

DB2®

optimize

an

access

path

using

values

for

host

variables,

parameter

markers,

and

special

registers.

REOPT

values

are

specified

by

the

following

arguments

to

the

BIND,

PREP

and

REBIND

commands:

REOPT

NONE

The

access

path

for

a

given

SQL

statement

containing

host

variables,

parameter

markers,

or

special

registers

will

not

be

optimized

using

real

values

for

these

variables;

The

default

estimates

for

the

these

variables

are

used

instead.

This

plan

is

cached

and

will

be

used

subsequently.

This

is

the

default

behavior.

REOPT

ONCE

The

access

path

for

a

given

SQL

statement

will

be

optimized

using

the

real

values

of

the

host

variables,

parameter

markers,

or

special

registers

when

the

query

is

first

executed.

This

plan

is

cached

and

used

subsequently.

REOPT

ALWAYS

The

access

path

for

a

given

SQL

statement

will

always

be

compiled

and

reoptimized

using

the

values

of

the

host

variables,

parameter

markers,

or

special

registers

known

at

each

execution

time.

Related

concepts:

v

“Effects

of

REOPT

on

static

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Effects

of

REOPT

on

dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

3.

Application

considerations

89

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|

90

Administration

Guide:

Performance

Chapter

4.

Environmental

considerations

In

addition

to

the

factors

that

you

consider

when

you

design

and

code

your

application,

which

are

described

in

Chapter

3,

“Application

considerations,”

on

page

39,

certain

environmental

factors

can

influence

the

access

plan

chosen

for

your

application.

For

more

information

about

factors

that

affect

the

SQL

optimizer

directly,

see

Chapter

5,

“System

catalog

statistics,”

on

page

95.

When

you

tune

applications

and

make

changes

to

the

environment,

rebind

your

applications

to

ensure

that

the

best

access

plan

is

used.

Database

partition

group

impact

on

query

optimization

In

partitioned

databases,

the

optimizer

recognizes

collocation

of

tables

and

uses

this

collocation

when

it

determines

the

best

access

plan

for

a

query.

If

tables

are

frequently

involved

in

join

queries,

they

should

be

divided

among

partitions

in

a

partitioned

database

so

that

the

rows

from

each

table

being

joined

are

located

on

the

same

database

partition.

During

the

join

operation,

the

collocation

of

the

data

from

both

joined

tables

prevents

moving

data

from

one

partition

to

another.

Place

both

tables

in

the

same

database

partition

group

to

ensure

that

the

data

from

the

tables

is

collocated.

In

a

partitioned

database,

depending

on

the

size

of

the

table,

spreading

data

over

more

partitions

reduces

the

estimated

time

(or

cost)

to

execute

a

query.

The

number

of

tables,

the

size

of

the

tables,

the

location

of

the

data

in

those

tables,

and

the

type

of

query,

such

as

whether

a

join

is

required,

all

affect

the

cost

of

the

query.

Related

concepts:

v

“Join

strategies

in

partitioned

databases”

on

page

164

v

“Join

methods

in

partitioned

databases”

on

page

165

v

“Partitions

in

a

partitioned

database”

on

page

282

Table

space

impact

on

query

optimization

Certain

characteristics

of

your

table

spaces

can

affect

the

access

plan

chosen

by

the

SQL

compiler:

v

Container

characteristics

Container

characteristics

can

have

a

significant

impact

on

the

I/O

cost

associated

during

query

execution.

When

it

selects

an

access

plan,

the

SQL

optimizer

considers

these

I/O

costs,

including

any

cost

differences

for

accessing

data

from

different

table

spaces.

Two

columns

in

the

SYSCAT.TABLESPACES

system

catalog

are

used

by

the

optimizer

to

help

estimate

the

I/O

costs

of

accessing

data

from

a

table

space:

–

OVERHEAD,

which

provides

an

estimate

in

milliseconds

of

the

time

required

by

the

container

before

any

data

is

read

into

memory.

This

overhead

activity

includes

the

container’s

I/O

controller

overhead

as

well

as

the

disk

latency

time,

which

includes

the

disk

seek

time.

You

may

use

the

following

formula

to

help

you

estimate

the

overhead

cost:

©

Copyright

IBM

Corp.

1993

-

2004

91

OVERHEAD

=

average

seek

time

in

milliseconds

+

(0.5

*

rotational

latency)

where:

-

0.5

represents

an

average

overhead

of

one

half

rotation

-

Rotational

latency

is

calculated

in

milliseconds

for

each

full

rotation,

as

follows:

(1

/

RPM)

*

60

*

1000

where

you:

v

Divide

by

rotations

per

minute

to

get

minutes

per

rotation

v

Multiply

by

60

seconds

per

minute

v

Multiply

by

1000

milliseconds

per

second.

As

an

example,

let

the

rotations

per

minute

for

the

disk

be

7

200.

Using

the

rotational-latency

formula,this

would

produce:

(1

/

7200)

*

60

*

1000

=

8.328

milliseconds

which

can

then

be

used

in

the

calculation

of

the

OVERHEAD

estimate

with

an

assumed

average

seek

time

of

11

milliseconds:

OVERHEAD

=

11

+

(0.5

*

8.328)

=

15.164

giving

an

estimated

OVERHEAD

value

of

about

15

milliseconds.

–

TRANSFERRATE,

which

provides

an

estimate

in

milliseconds

of

the

time

required

to

read

one

page

of

data

into

memory.

If

each

table-space

container

is

a

single

physical

disk

then

you

may

use

the

following

formula

to

help

you

estimate

the

transfer

cost

in

milliseconds

per

page:

TRANSFERRATE

=

(1

/

spec_rate)

*

1000

/

1

024

000

*

page_size

where:

-

spec_rate

represents

the

disk

specification

for

the

transfer

rate,

in

MB

per

second

-

Divide

by

spec_rate

to

get

seconds

per

MB

-

Multiply

by

1000

milliseconds

per

second

-

Divide

by

1

024

000

bytes

per

MB

-

Multiply

by

the

page

size

in

bytes

(for

example,

4

096

bytes

for

a

4

KB

page)

As

an

example,

suppose

the

specification

rate

for

the

disk

is

3

MB

per

second.

This

would

produce

the

following

calculation

TRANSFERRATE

=

(1

/

3)

*

1000

/

1024000

*

4096

=

1.333248

giving

an

estimated

TRANSFERRATE

value

of

about

1.3

milliseconds

per

page.

If

the

table

space

containers

are

not

single

physical

disks

but

are

arrays

of

disks

(such

as

RAID),

then

you

must

take

additional

considerations

into

account

when

you

attempt

to

determine

the

TRANSFERRATE

to

use.

If

the

array

is

relatively

small

then

you

can

multiply

the

spec_rate

by

the

number

of

disks,

assuming

that

the

bottleneck

is

at

the

disk

level.

However,

if

the

number

of

disks

in

the

array

making

up

the

container

is

large,

then

the

bottleneck

may

not

be

at

the

disk

level,

but

at

one

of

the

other

I/O

subsystem

components

such

as

disk

controllers,

I/O

busses,

or

the

system

bus.

In

this

case,

you

cannot

assume

that

the

I/O

throughput

92

Administration

Guide:

Performance

capability

is

the

product

of

the

spec_rate

and

the

number

of

disks.

Instead,

you

must

measure

the

actual

I/O

rate

in

MBs

during

a

sequential

scan.

For

example,

a

sequential

scan

could

be

select

count(*)

from

big_table

and

will

be

MBs

in

size.

Divide

the

result

by

the

number

of

containers

that

make

up

the

table

space

in

which

big_table

resides.

Use

the

result

as

a

substitute

for

spec_rate

in

the

formula

given

above.

For

example,

a

measured

sequential

I/O

rate

of

100

MBs

while

scanning

a

table

in

a

four

container

table

space

would

imply

25

MBs

per

container,

or

a

TRANSFERRATE

of

(1/25)

*

1000

/

1024000

*

4096

=

0.16

milliseconds

per

page.

Each

of

the

containers

assigned

to

a

table

space

may

reside

on

different

physical

disks.

For

best

results,

all

physical

disks

used

for

a

given

table

space

should

have

the

same

OVERHEAD

and

TRANSFERRATE

characteristics.

If

these

characteristics

are

not

the

same,

you

should

use

the

average

when

setting

the

values

for

OVERHEAD

and

TRANSFERRATE.

You

can

obtain

media-specific

values

for

these

columns

from

the

hardware

specifications

or

through

experimentation.

These

values

may

be

specified

on

the

CREATE

TABLESPACE

and

ALTER

TABLESPACE

statements.

Experimentation

becomes

especially

important

in

the

environment

mentioned

above

where

you

have

a

disk

array

as

a

container.

You

should

create

a

simple

query

that

moves

data

and

use

it

in

conjunction

with

a

platform-specific

measuring

utility.

You

can

then

re-run

the

query

with

different

container

configurations

within

your

table

space.

You

can

use

the

CREATE

and

ALTER

TABLESPACE

statements

to

change

how

data

is

transferred

in

your

environment.

The

I/O

cost

information

provided

through

these

two

values

could

influence

the

optimizer

in

a

number

of

ways,

including

whether

or

not

to

use

an

index

to

access

the

data,

and

which

table

to

select

for

the

inner

and

outer

tables

in

a

join.

v

Prefetching

When

considering

the

I/O

cost

of

accessing

data

from

a

table

space,

the

optimizer

also

considers

the

potential

impact

that

prefetching

data

and

index

pages

from

disk

can

have

on

the

query

performance.

Prefetching

data

and

index

pages

can

reduce

the

overhead

and

wait

time

associated

with

reading

the

data

into

the

buffer

pool.

The

optimizer

uses

the

information

from

the

PREFETCHSIZE

and

EXTENTSIZE

columns

in

SYSCAT.TABLESPACES

to

estimate

the

amount

of

prefetching

that

will

occur

for

a

table

space.

–

EXTENTSIZE

can

only

be

set

when

creating

a

table

space

(for

example

using

the

CREATE

TABLESPACE

statement).

The

default

extent

size

is

32

pages

(of

4

KB

each)

and

is

usually

sufficient.

–

PREFETCHSIZE

can

be

set

when

you

create

a

table

space

and

or

use

the

ALTER

TABLESPACE

statement.

The

default

prefetch

size

is

determined

by

the

value

of

the

DFT_PREFETCH_SZ

database

configuration

parameter

which

varies

depending

on

the

operating

system.

Review

the

recommendations

for

sizing

this

parameter

and

make

changes

as

needed

to

improve

the

data

movement.

The

following

shows

an

example

of

the

syntax

to

change

the

characteristics

of

the

RESOURCE

table

space:

ALTER

TABLESPACE

RESOURCE

PREFETCHSIZE

64

OVERHEAD

19.3

TRANSFERRATE

0.9

Chapter

4.

Environmental

considerations

93

After

making

any

changes

to

your

table

spaces,

consider

rebinding

your

applications

and

executing

the

RUNSTATS

utility

to

collect

the

latest

statistics

about

the

indexes

to

ensure

that

the

best

access

plans

are

used.

Related

concepts:

v

“Catalog

statistics

tables”

on

page

106

v

“The

SQL

compiler

process”

on

page

133

v

“Illustration

of

the

DMS

table-space

address

map”

on

page

17

Server

options

affecting

federated

databases

A

federated

system

is

composed

of

a

DB2®

DBMS

(the

federated

database)

and

one

or

more

data

sources.

You

identify

the

data

sources

to

the

federated

database

when

you

issue

CREATE

SERVER

statements.

When

you

issue

these

statements,

you

can

include

server

options

that

refine

and

control

aspects

of

federated

system

operations

involving

DB2

and

the

specified

data

source.

To

change

server

options

later,

use

ALTER

SERVER

statements.

Note:

You

must

install

the

distributed

join

installation

option

and

set

the

database

manager

parameter

federated

to

YES

before

you

can

create

servers

and

specify

server

options.

The

server

option

values

that

you

specify

affect

query

pushdown

analysis,

global

optimization

and

other

aspects

of

federated

database

operations.

For

example,

in

the

CREATE

SERVER

statement,

you

can

specify

performance

statistics

as

server

option

values,

such

as

the

cpu_ratio

option,

which

specifies

the

relative

speeds

of

the

CPUs

at

the

data

source

and

the

federated

server.

You

might

also

set

the

io_ratio

option

to

a

value

that

indicates

the

relative

rates

of

the

data

I/O

divides

at

the

source

and

the

federated

server.

When

you

execute

the

CREATE

SERVER

statement,

this

data

is

added

to

the

catalog

view

SYSCAT.SERVEROPTIONS,

and

the

optimizer

uses

it

in

developing

its

access

plan

for

the

data

source.

If

a

statistic

changes

(as

might

happen,

for

instance,

if

the

data

source

CPU

is

upgraded),

use

the

ALTER

SERVER

statement

to

update

SYSCAT.SERVEROPTIONS

with

this

change.

The

optimizer

then

uses

the

new

information

the

next

time

it

chooses

an

access

plan

for

the

data

source.

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“SYSCAT.SERVEROPTIONS

catalog

view”

in

the

SQL

Reference,

Volume

1

v

“federated

-

Federated

database

system

support”

on

page

458

v

“CREATE

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

94

Administration

Guide:

Performance

Chapter

5.

System

catalog

statistics

Statistical

data

stored

in

the

system

catalogs

helps

the

optimizer

choose

the

best

access

plan

for

queries.

Make

sure

that

you

execute

RUNSTATS

to

update

this

statistical

data:

v

At

frequent

regular

intervals

for

tables

whose

contents

changes

continually.

v

After

each

operation

that

adds

or

changes

data

in

a

significant

number

of

table

rows.

Such

operations

include

batch

updates

and

data

loading

that

adds

rows.

Catalog

statistics

When

the

SQL

compiler

optimizes

SQL

query

plans,

its

decisions

are

heavily

influenced

by

statistical

information

about

the

size

of

the

database

tables

and

indexes.

The

optimizer

also

uses

information

about

the

distribution

of

data

in

specific

columns

of

tables

and

indexes

if

these

columns

are

used

to

select

rows

or

join

tables.

The

optimizer

uses

this

information

to

estimate

the

costs

of

alternative

access

plans

for

each

query.

In

addition

to

table

size

and

data

distribution

information,

you

can

also

collect

statistical

information

about

the

cluster

ratio

of

indexes,

the

number

of

leaf

pages

in

indexes,

the

number

of

table

rows

that

overflow

their

original

pages,

and

the

number

of

filled

and

empty

pages

in

a

table.

You

use

this

information

to

decide

when

to

reorganize

tables

and

indexes.

Statistical

information

is

collected

for

specific

tables

and

indexes

in

the

local

database

when

you

execute

the

RUNSTATS

utility.

The

collected

statistics

are

stored

in

the

system

catalog

tables.

Statistics

are

collected

only

for

the

table

partition

that

resides

on

the

partition

where

you

execute

the

utility

or

the

first

partition

in

the

database

partition

group

that

contains

the

table.

Note:

Because

the

RUNSTATS

utility

does

not

support

use

of

nicknames,

you

update

statistics

differently

for

federated

database

queries.

If

queries

access

a

federated

database,

execute

RUNSTATS

for

the

tables

in

all

databases,

then

drop

and

recreate

the

nicknames

that

access

remote

tables

to

make

the

new

statistics

available

to

the

optimizer.

Consider

these

tips

to

improve

the

efficiency

of

RUNSTATS

and

the

usefulness

of

the

collected

statistics:

v

Collect

statistics

only

for

the

columns

used

to

join

tables

or

in

the

WHERE,

GROUP

BY,

and

similar

clauses

of

queries.

If

these

columns

are

indexed,

you

can

specify

the

columns

with

the

ONLY

ON

KEY

COLUMNS

clause

for

the

RUNSTATS

command.

v

Customize

the

values

for

num_freqvalues

and

num_quantiles

for

specific

tables

and

specific

columns

in

tables.

v

Collect

DETAILED

index

statistics

with

the

SAMPLE

DETAILED

clause

to

reduce

the

amount

of

background

calculation

performed

for

detailed

index

statistics.

The

SAMPLE

DETAILED

clause

reduces

the

time

required

to

collect

statistics,

and

produces

adequate

precision

in

most

cases.

©

Copyright

IBM

Corp.

1993

-

2004

95

v

When

you

create

an

index

for

a

populated

table,

add

the

COLLECT

STATISTICS

clause

to

create

statistics

as

the

index

is

created.

v

When

significant

numbers

of

table

rows

are

added

or

removed,

or

if

data

in

columns

for

which

you

collect

statistics

is

updated,

execute

RUNSTATS

again

to

update

the

statistics.

v

Since

RUNSTATS

only

collects

statistics

on

a

single

partition,

the

statistics

will

be

less

accurate

if

the

data

is

not

distributed

consistently

across

all

the

partitions.

If

you

suspect

that

there

is

skewed

data

distribution,

you

might

want

to

redistribute

the

data

across

the

partitions

using

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command

before

executing

RUNSTATS.

Distribution

statistics

are

not

collected:

v

When

the

num_freqvalues

and

num_quantiles

configuration

parameters

are

set

to

zero

(0)

v

When

the

distribution

of

data

is

known,

such

as

when

each

data

value

is

unique.

v

When

the

column

is

a

data

type

for

which

statistics

are

never

collected.

These

data

type

are

LONG,

large

object

(LOB),

or

structured

columns.

v

For

row

types

in

sub-tables,

the

table

level

statistics

NPAGES,

FPAGES,

and

OVERFLOW

are

not

collected.

v

If

quantile

distributions

are

requested,

but

there

is

only

one

non-NULL

value

in

the

column

v

For

extended

indexes

or

declared

temporary

tables

Note:

You

can

perform

a

RUNSTATS

on

a

declared

temporary

table,

but

the

resulting

statistics

are

not

stored

in

the

system

catalogs

because

declared

temporary

tables

do

not

have

catalog

entries.

However,

the

statistics

are

stored

in

memory

structures

that

represent

the

catalog

information

for

declared

temporary

tables.

In

some

cases,

therefore,

it

might

be

useful

to

perform

a

RUNSTATS

on

these

tables.

Related

concepts:

v

“Catalog

statistics

tables”

on

page

106

v

“Statistical

information

that

is

collected”

on

page

111

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“Statistics

for

modeling

production

databases”

on

page

125

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

Related

reference:

v

“num_freqvalues

-

Number

of

frequent

values

retained”

on

page

434

v

“num_quantiles

-

Number

of

quantiles

for

columns”

on

page

435

v

“RUNSTATS

Command”

in

the

Command

Reference

Collecting

and

analyzing

catalog

statistics

This

section

provides

guidelines

and

instructions

for

collecting

catalog

statistics,

as

well

as

some

hints

for

analyzing

the

collected

data

for

better

understanding

of

the

data

distribution,

clustering,

and

so

on.

96

Administration

Guide:

Performance

Guidelines

for

collecting

and

updating

statistics

The

RUNSTATS

command

collects

statistics

on

both

the

table

and

the

index

data

to

provide

the

optimizer

with

accurate

information

for

access

plan

selection.

Note:

RUNSTATS

only

collects

statistics

for

tables

on

the

partition

from

which

you

execute

it.

The

RUNSTATS

results

from

this

partition

are

extrapolated

to

the

other

partitions.

If

the

database

partition

from

which

you

execute

RUNSTATS

does

not

contain

a

table

partition,

the

request

is

sent

to

the

first

database

partition

in

the

database

partition

group

that

holds

a

partition

for

the

table.

Use

the

RUNSTATS

utility

to

collect

statistics

in

the

following

situations:

v

When

data

has

been

loaded

into

a

table

and

the

appropriate

indexes

have

been

created.

v

When

you

create

a

new

index

on

a

table.

You

need

execute

RUNSTATS

for

only

the

new

index

if

the

table

has

not

been

modified

since

you

last

ran

RUNSTATS

on

it.

v

When

a

table

has

been

reorganized

with

the

REORG

utility.

v

When

the

table

and

its

indexes

have

been

extensively

updated,

by

data

modifications,

deletions,

and

insertions.

(“Extensive”

in

this

case

may

mean

that

10

to

20

percent

of

the

table

and

index

data

has

been

affected.)

v

Before

binding

application

programs

whose

performance

is

critical

v

When

you

want

to

compare

current

and

previous

statistics.

If

you

update

statistics

at

regular

intervals

you

can

discover

performance

problems

early.

v

When

the

prefetch

quantity

is

changed.

v

When

you

have

used

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

utility.

Note:

In

previous

versions

of

DB2®,

this

command

used

the

NODEGROUP

keyword

instead

of

the

DATABASE

PARTITION

GROUP

keywords.

To

improve

RUNSTATS

performance

and

save

disk

space

used

to

store

statistics,

consider

specifying

only

the

columns

for

which

data

distribution

statistics

should

be

collected.

Ideally,

you

should

rebind

application

programs

after

running

statistics.

The

query

optimizer

might

choose

a

different

access

plan

if

it

has

new

statistics.

If

you

do

not

have

enough

time

to

collect

all

of

the

statistics

at

one

time,

you

might

run

RUNSTATS

to

update

statistics

on

only

a

few

tables

and

indexes

at

a

time,

rotating

through

the

set

of

tables.

If

inconsistencies

occur

as

a

result

of

activity

on

the

table

between

the

periods

where

you

run

RUNSTATS

with

a

selective

partial

update,

then

a

warning

message

(SQL0437W,

reason

code

6)

is

issued

during

query

optimization.

For

example,

you

first

use

RUNSTATS

to

gather

table

distribution

statistics.

Subsequently,

you

use

RUNSTATS

to

gather

index

statistics.

If

inconsistencies

occur

as

a

result

of

activity

on

the

table

and

are

detected

during

query

optimization,

the

warning

message

is

issued.

When

this

happens,

you

should

run

RUNSTATS

again

to

update

distribution

statistics.

To

ensure

that

the

index

statistics

are

synchronized

with

the

table,

execute

RUNSTATS

to

collect

both

table

and

index

statistics

at

the

same

time.

Index

statistics

retain

most

of

the

table

and

column

statistics

collected

from

the

last

run

of

RUNSTATS.

If

the

table

has

been

modified

extensively

since

the

last

time

its

table

statistics

were

gathered,

gathering

only

the

index

statistics

for

that

table

will

leave

the

two

sets

of

statistics

out

of

synchronization

on

all

nodes.

Chapter

5.

System

catalog

statistics

97

Invoking

RUNSTATS

on

a

production

system

may

negatively

impact

the

performance

of

the

production

workload.

The

RUNSTATS

utility

now

supports

a

throttling

option

which

can

be

used

to

limit

the

performance

impact

of

RUNSTATS

execution

during

high

levels

of

database

activity.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Optimizer

use

of

distribution

statistics”

on

page

115

v

“Automatic

statistics

collection”

on

page

104

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

v

“Collecting

index

statistics”

on

page

100

Collecting

catalog

statistics

You

collect

catalog

statistics

on

tables

and

indexes

to

provide

information

that

the

optimizer

uses

to

choose

the

best

access

plans

for

queries.

Prerequisites:

You

must

connect

to

the

database

that

contains

the

tables

and

indexes

and

have

one

of

the

following

authorization

levels:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table

Procedure:

To

collect

catalog

statistics:

1.

Connect

to

the

database

that

contains

the

tables

and

indexes

for

which

you

want

to

collect

statistical

information.

2.

From

the

DB2

command

line,

execute

the

RUNSTATS

command

with

appropriate

options.

These

options

allow

you

to

tailor

the

statistics

that

are

collected

for

the

queries

that

run

against

the

tables

and

indexes.

Note:

RUNSTATS

only

collects

statistics

for

tables

on

the

partition

from

which

you

execute

it.

The

RUNSTATS

results

from

this

partition

are

extrapolated

to

the

other

partitions.

If

the

database

partition

from

which

you

execute

RUNSTATS

does

not

contain

a

table

partition,

the

request

is

sent

to

the

first

database

partition

in

the

database

partition

group

that

holds

a

partition

for

the

table.

3.

When

RUNSTATS

is

complete,

issue

a

COMMIT

statement

to

release

locks.

4.

Rebind

packages

that

access

tables

and

indexes

for

which

you

have

regenerated

statistical

information.

To

use

a

graphical

user

interface

to

specify

options

and

collect

statistics,

use

the

Control

Center.

98

Administration

Guide:

Performance

|
|
|
|

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Guidelines

for

collecting

and

updating

statistics”

on

page

97

Related

tasks:

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

v

“Collecting

index

statistics”

on

page

100

v

“Determining

when

to

reorganize

tables”

on

page

240

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

Collecting

distribution

statistics

for

specific

columns

For

efficiency

both

of

RUNSTATS

and

subsequent

query-plan

analysis,

you

might

collect

distribution

statistics

on

only

the

table

columns

that

queries

use

in

WHERE,

GROUP

BY,

and

similar

clauses.

You

might

also

collect

cardinality

statistics

on

combined

groups

of

columns.

The

optimizer

uses

such

information

to

detect

column

correlation

when

it

estimates

selectivity

for

queries

that

reference

the

columns

in

the

group.

In

the

following

steps,

the

database

is

assumed

to

be

sales

and

to

contain

the

table

customers,

with

indexes

custidx1

and

custidx2.

Prerequisites:

You

must

connect

to

the

database

that

contains

the

tables

and

indexes

and

have

one

of

the

following

authorization

levels:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table

Note:

RUNSTATS

only

collects

statistics

for

tables

on

the

partition

from

which

you

execute

it.

The

RUNSTATS

results

from

this

partition

are

extrapolated

to

the

other

partitions.

If

the

database

partition

from

which

you

execute

RUNSTATS

does

not

contain

a

table

partition,

the

request

is

sent

to

the

first

database

partition

in

the

database

partition

group

that

holds

a

partition

for

the

table.

Procedure:

To

collect

statistics

on

specific

columns:

1.

Connect

to

the

sales

database.

2.

Execute

one

of

the

following

commands

at

the

DB2

command

line,

depending

on

your

requirements:

v

To

collect

distribution

statistics

on

columns

zip

and

ytdtotal:

RUNSTATS

ON

TABLE

sales.customers

WITH

DISTRIBUTION

ON

COLUMNS

(zip,

ytdtotal)

v

To

collect

distribution

statistics

on

the

same

columns,

but

adjust

the

distribution

defaults:

Chapter

5.

System

catalog

statistics

99

RUNSTATS

ON

TABLE

sales.customers

WITH

DISTRIBUTION

ON

COLUMNS

(zip,

ytdtotal

NUM_FREQVALUES

50

NUM_QUANTILES

75)

v

To

collect

distribution

statistics

on

the

columns

indexed

in

custidx1

and

custidx2:

RUNSTATS

ON

TABLE

sales.customer

ON

KEY

COLUMNS

v

To

collect

column

statistics

on

the

table

only

for

specific

columns

zip

and

ytdtotal

and

a

column

group

that

includes

region

and

territory:

RUNSTATS

ON

TABLE

sales.customers

ON

COLUMNS

(zip,

(region,

territory),

ytdtotal)

You

can

also

use

the

Control

Center

to

collect

distribution

statistics.

Related

concepts:

v

“Catalog

statistics

tables”

on

page

106

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

index

statistics”

on

page

100

Collecting

index

statistics

Collect

index

statistics

to

allow

the

optimizer

to

evaluate

whether

an

index

should

be

used

to

resolve

a

query.

In

the

following

steps,

the

database

is

assumed

be

sales

and

to

contain

the

table

customers,

with

indexes

custidx1

and

custidx2.

Prerequisites:

You

must

connect

to

the

database

that

contains

the

tables

and

indexes

and

have

one

of

the

following

authorization

levels:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table

Executing

RUNSTATS

with

the

SAMPLED

DETAILED

option

requires

2MB

of

the

statistics

heap.

Allocate

an

additional

488

4K

pages

to

the

stat_heap_sz

database

configuration

parameter

setting

for

this

additional

memory

requirement.

If

the

heap

appears

to

be

too

small,

RUNSTATS

returns

an

error

before

it

attempts

to

collect

statistics.

Procedure:

To

collect

detailed

statistics

for

an

index:

1.

Connect

to

the

sales

database.

2.

Execute

one

of

the

following

commands

at

the

DB2

command

line,

depending

on

your

requirements:

v

To

create

detailed

statistics

on

both

custidx1

and

custidx2:

RUNSTATS

ON

TABLE

sales.customers

AND

DETAILED

INDEXES

ALL

100

Administration

Guide:

Performance

v

To

create

detailed

statistics

on

both

indexes,

but

use

sampling

instead

of

performing

detailed

calculations

for

each

index

entry:

RUNSTATS

ON

TABLE

sales.customers

AND

SAMPLED

DETAILED

INDEXES

ALL

v

To

create

detailed

sampled

statistics

on

indexes

as

well

as

distribution

statistics

for

the

table

so

that

index

and

table

statistics

are

consistent:

RUNSTATS

ON

TABLE

sales.customers

WITH

DISTRIBUTION

ON

KEY

COLUMNS

AND

SAMPLED

DETAILED

INDEXES

ALL

You

can

also

use

the

Control

Center

to

collect

index

and

table

statistics.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Statistical

information

that

is

collected”

on

page

111

v

“Detailed

index

statistics”

on

page

120

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

Collecting

statistics

on

a

sample

of

the

table

data

Table

statistics

are

used

by

the

query

optimizer

in

selecting

the

best

access

plan

for

any

given

query,

so

it

is

important

that

statistics

remain

current

to

accurately

reflect

the

state

of

a

table

at

any

given

time.

As

the

activity

against

a

table

increases,

so

should

the

frequency

of

statistics

collection.

With

the

increasing

size

of

databases,

it

is

becoming

more

important

to

find

efficient

ways

to

collect

statistics.

Random

sampling

of

table

data

on

which

to

collect

statistics

can

improve

RUNSTATS

performance.

For

I/O

bound

or

CPU

bound

systems,

the

performance

benefits

can

be

enormous.

The

smaller

the

sample,

the

faster

RUNSTATS

completes.

Starting

in

Version

8.2,

the

RUNSTATS

command

provides

the

option

to

collect

statistics

on

a

sample

of

the

data

in

the

table

by

using

the

TABLESAMPLE

option.

This

feature

can

increase

the

efficiency

of

statistics

collection

since

sampling

uses

only

a

subset

of

the

data.

At

the

same

time,

the

sampling

methods

ensure

a

high

level

of

accuracy.

There

are

two

ways

to

specify

how

the

sample

is

to

be

collected.

The

BERNOULLI

method

samples

the

data

at

the

level

of

the

row.

During

a

full

table

scan

of

the

data

pages

each

row

is

considered

in

turn

and

is

selected

based

on

probability

P

as

specified

by

the

numeric

parameter.

It

is

only

on

these

selected

rows

that

statistics

will

be

collected.

In

a

similar

manner,

the

SYSTEM

method

samples

the

data

at

the

page-level.

Thus,

each

page

is

selected

on

probability

P

and

rejected

with

probability

1-P/100.

Performance

of

page-level

sampling

is

excellent

because

only

one

I/O

is

required

for

each

selected

page.

With

row-level

sampling,

I/O

costs

are

not

reduced

since

every

table

page

is

retrieved

in

a

full

table

scan.

However,

row-level

sampling

provides

significant

improvements,

even

if

the

amount

of

I/O

is

not

reduced,

because

gathering

statistics

is

CPU

intensive.

Row-level

sampling

will

provide

a

better

sample

than

page-level

sampling

in

situations

where

the

data

values

are

highly

clustered.

Compared

to

page

sampling,

Chapter

5.

System

catalog

statistics

101

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

the

row-level

sample

set

will

likely

be

a

better

reflection

of

the

data

since

it

will

include

P

percent

rows

from

each

data

page.

In

page-level

sampling

all

the

rows

of

P

percent

pages

will

be

in

the

sample

set.

If

the

rows

are

distributed

randomly

over

the

table,

then

the

accuracy

of

row

sampled

statistics

will

be

similar

to

the

accuracy

of

page

sampled

statistics.

Each

sample

is

randomly

generated

across

RUNSTATS

commands

unless

the

REPEATABLE

option

is

used.

With

the

REPEATABLE

clause,

the

same

sample

will

be

generated

as

in

the

last

execution

of

the

RUNSTATS

command

with

the

TABLESAMPLE

option.

Users

may

find

this

beneficial

in

cases

where

the

generation

of

consistent

statistics

is

desired

for

tables

of

constant

data.

Related

concepts:

v

“Data

sampling

in

SQL

queries”

on

page

82

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

Collecting

statistics

using

a

statistics

profile

The

RUNSTATS

utility

provides

an

option

to

register

and

use

a

statistics

profile,

which

is

a

set

of

options

that

specify

which

statistics

are

to

be

collected

on

a

particular

table,

for

example,

table

statistics,

index

statistics,

or

distribution

statistics.

This

feature

simplifies

statistics

collection

by

allowing

you

to

store

the

options

that

you

specify

when

you

issue

the

RUNSTATS

command

so

that

you

can

collect

the

same

statistics

repeatedly

on

a

table

without

having

to

re-type

the

command

options.

You

can

register

or

update

a

statistics

profile

with

or

without

actually

collecting

statistics.

For

example,

to

register

a

profile

and

collect

statistics

at

the

same

time,

issue

the

RUNSTATS

command

with

the

SET

PROFILE

option.

To

register

a

profile

only,

without

actually

collecting

statistics,

issue

the

RUNSTATS

command

with

the

SET

PROFILE

ONLY

option.

To

collect

statistics

using

a

statistics

profile

that

you

have

already

registered,

issue

the

RUNSTATS

command,

specifying

only

the

name

of

the

table

and

the

USE

PROFILE

option.

To

see

what

options

are

currently

specified

in

the

statistics

profile

for

a

particular

table,

you

can

query

the

catalog

tables

with

the

following

select

statement,

where

tablename

is

the

name

of

the

table

that

you

want

the

profile

for:

SELECT

STATISTICS_PROFILE

FROM

SYSIBM.SYSTABLES

WHERE

NAME

=

tablename

When

a

user

statistics

profile

is

registered,

a

RUNSTATS

command

string

corresponding

to

that

profile

is

at

the

same

time

built

and

stored

in

the

STATISTICS_PROFILE

column

of

the

catalog

table

SYSIBM.SYSTABLES.

If

the

command

string

size

for

the

registered

statistics

profile

is

larger

than

the

STATISTICS_PROFILE

column,

the

RUNSTATS

utility

builds

the

command

string

up

to

size

of

the

column

and

then

stores

the

truncated

string

in

the

SYSTABLES.STATISTICS_PROFILE

column.

An

internal

version

of

the

profile

is

also

maintained

in

the

system

catalogs

which

will

not

be

truncated.

102

Administration

Guide:

Performance

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

Automatic

statistics

profiling

Statistics

profiles

can

also

be

generated

automatically

by

the

DB2®

automatic

statistics

profiling

feature.

When

this

feature

is

enabled,

information

about

database

activity

is

collected

and

stored

it

in

a

query

feedback

warehouse.

Based

on

this

data,

a

statistics

profile

is

generated.

Enabling

this

feature

can

alleviate

the

problem

of

uncertainty

about

which

statistics

are

relevant

to

a

particular

workload

and

permits

the

collection

of

the

minimal

set

of

statistics

to

provide

optimal

database

workload

performance.

This

feature

can

be

used

with

the

automatic

statistics

collection

feature,

which

automatically

schedules

statistics

maintenance

based

on

the

information

contained

within

the

automatically

generated

statistics

profile.

To

enable

this

feature,

you

need

to

have

already

enabled

automatic

table

maintenance

by

setting

the

appropriate

configuration

parameters

.

The

AUTO_STATS_PROF

configuration

parameter

activates

the

collection

of

query

feedback

data,

and

the

AUTO_PROF_UPD

configuration

parameter

activates

the

generation

of

a

statistics

profile

for

use

by

automatic

statistics

collection.

Note:

Automatic

statistics

profile

generation

can

only

be

activated

in

DB2

serial

mode,

and

is

blocked

for

queries

in

federated,

SMP,

or

MPP

environments.

Statistics

profile

generation

is

best

suited

to

environments

running

large

complex

queries

that

apply

many

predicates,

often

having

correlations

in

the

data

of

the

predicate

columns,

and

joining

and

grouping

over

several

tables.

It

is

less

suitable

to

environments

with

a

primarily

transactional

workload.

There

are

a

few

different

ways

to

use

this

feature:

v

In

a

test

environment.

Set

AUTO_STATS_PROF

and

AUTO_PROF_UPD

to

ON

in

test

systems,

where

the

performance

overhead

of

runtime

monitoring

can

be

easily

tolerated.

When

the

test

system

uses

realistic

data

and

queries,

this

will

allow

for

learning

the

proper

correlations

and

settings

of

statistics

parameters

for

RUNSTATS,

which

then

will

be

stored

in

the

statistics

profiles.

These

profiles

can

then

be

transferred

to

the

production

system,

where

queries

can

benefit

without

incurring

any

monitoring

overhead.

v

To

address

performance

issues

for

specific

queries

in

a

production

environment.

If

performance

problems

for

a

particular

set

of

queries

is

detected

and

can

be

attributed

to

faulty

statistics

or

correlations,

you

can

turn

AUTO_STATS_PROF

on

and

execute

the

target

workload

for

a

period

of

time.

Automatic

statistics

profiling

will

analyze

the

query

feedback

and

create

recommendations

in

the

SYSTOOLS.OPT_FEEDBACK_RANKING*

tables.

You

can

inspect

these

recommendations

and

refine

the

statistics

profiles

manually

based

on

the

recommendations.

To

have

DB2

automatically

update

the

statistics

profiles

based

on

these

recommendations,

turn

AUTO_PROF_UPD

on

when

you

turn

AUTO_STATS_PROF

on.

Note:

There

is

some

performance

overhead

associated

with

monitoring

the

queries

and

storing

the

query

feedback

data

in

the

feedback

warehouse.

Creating

the

query

feedback

warehouse:

The

feedback

warehouse

consists

of

three

tables

in

the

SYSTOOLS

schema

that

store

information

about

the

predicates

encountered

during

query

execution.

The

three

tables

are

OPT_FEEDBACK_QUERY,

OPT_FEEDBACK_PREDICATE,

and

OPT_FEEDBACK_PREDICATE_COLUMN.

Chapter

5.

System

catalog

statistics

103

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

To

use

automatic

statistics

profiling,

you

need

to

first

create

the

query

feedback

warehouse

using

the

SYSINSTALLOBJECTS

stored

procedure.

This

stored

procedure

is

the

common

stored

procedure

for

creating

and

dropping

objects

in

the

SYSTOOLS

schema.

Invoke

the

SYSINSTALLOBJECTS

stored

procedure

as

follows:

call

SYSINSTALLOBJECTS

(

toolname,

action,

tablespacename,

schemaname)

where:

toolname

Specifies

the

name

of

the

tool

whose

objects

are

to

be

created

or

dropped.

In

this

case

″ASP″

or

″AUTO

STATS

PROFILING″.

action

Specifies

the

action

to

be

taken:

’C’

for

create,

’D’

for

drop.

tablespacename

The

name

of

the

table

space

in

which

the

the

feedback

warehouse

tables

will

be

created.

This

input

parameter

is

optional.

If

it

is

not

specified,

the

default

user

space

will

be

used.

schemaname

The

name

of

the

schema

with

which

the

objects

will

be

created

or

dropped.

This

parameter

is

currently

not

used.

For

example,

to

create

the

feedback

warehouse

in

table

space

″A″

enter:

call

SYSINSTALLOBJECTS

("ASP",

’C’,

"A",

"")

Related

concepts:

v

“Automatic

statistics

collection”

on

page

104

Related

tasks:

v

“Using

automatic

statistics

collection”

on

page

105

Automatic

statistics

collection

The

DB2®

optimizer

uses

catalog

statistics

to

determine

the

most

efficient

access

plan

for

any

given

query.

Having

out-of-date

or

incomplete

statistics

for

a

table

or

an

index

could

lead

the

optimizer

to

select

a

plan

that

is

not

optimal,

slowing

down

query

execution.

However,

deciding

which

statistics

to

collect

for

a

given

workload

is

complex,

and

keeping

these

statistics

up

to

date

is

time-consuming.

With

automatic

statistics

collection,

part

of

DB2’s

Automated

Table

Maintenance

feature,

you

can

let

DB2

determine

which

statistics

are

required

by

your

workload

and

which

statistics

need

to

be

updated.

With

automatic

statistics

collection

enabled,

DB2

will

automatically

run

the

RUNSTATS

utility

in

the

background

to

ensure

the

correct

statistics

are

collected

and

maintained.

The

performance

impact

of

automatic

statistics

collection

is

minimized

in

several

ways:

v

Statistic

collection

is

performed

using

throttled

RUNSTATS.

Throttling

controls

the

amount

of

resources

consumed

by

the

RUNSTATS

utility

based

on

current

database

activity:

as

database

activity

increases,

the

RUNSTATS

utility

runs

more

slowly,

reducing

its

resource

demands.

v

Only

the

minimal

set

of

statistics

for

optimizing

performance

are

collected.

This

is

achieved

through

the

use

of

statistics

profiling

which

uses

information

about

104

Administration

Guide:

Performance

|
|
|
|

|

|

|

|
|
|

||

|
|
|
|

|
|
|

|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

previous

database

activity

to

determine

which

statistics

are

required

by

the

database

workload,

and

how

quickly

those

statistics

will

become

out

of

date

given

the

type

of

activity

in

the

database.

v

Only

tables

with

high

levels

of

activity

(measured

through

the

number

of

updates,

deletes

and

inserts)

are

considered

for

statistic

collection.

Large

tables

(consisting

of

more

than

4000

pages)

are

also

sampled

to

determine

whether

the

high

table

activity

has

indeed

changed

the

statistics.

Statistics

for

these

large

tables

are

only

collected

if

warranted.

v

The

RUNSTATS

utility

is

automatically

scheduled

to

execute

during

the

optimal

maintenance

window

specified

in

your

maintenance

policy

definition.

This

policy

also

specifies

the

set

of

tables

that

are

within

the

scope

of

the

automatic

statistics

collection,

further

minimizing

unnecessary

resource

consumption.

v

While

automated

statistic

collection

is

being

performed,

the

affected

tables

are

still

available

for

regular

database

activity

(updates,

inserts,

deletes)as

if

RUNSTATS

were

not

running

on

the

table.

Related

concepts:

v

“Collecting

statistics

using

a

statistics

profile”

on

page

102

Related

tasks:

v

“Using

automatic

statistics

collection”

on

page

105

Related

reference:

v

“util_impact_lim

-

Instance

impact

policy”

on

page

463

v

“autonomic_switches

-

Automatic

maintenance

switches”

on

page

437

Using

automatic

statistics

collection

Having

accurate

and

complete

database

statistics

is

critical

to

efficient

data

access

and

optimal

workload

performance.

Use

the

automatic

statistics

collection

feature

of

the

Automated

Table

Maintenance

functionality

to

update

and

maintain

relevant

database

statistics.

You

can

optionally

enhance

this

functionality

in

a

serial

environment

by

collecting

query

data

and

generating

statistics

profiles

that

help

DB2

automatically

collect

the

exact

set

of

statistics

required

by

your

workload.

This

option

is

not

available

in

SMP,

MPP,

or

federated

environments.

Procedure:

You

can

turn

this

feature

on

using

either

the

graphical

user

interface

tools

or

the

command

line

interface.

v

To

set

up

your

database

for

automatic

statistics

collection

using

the

graphical

user

interface

tools:

1.

Open

the

Configure

Automatic

Maintenance

wizard

either

from

the

Control

Center

by

right-clicking

on

a

database

object

or

from

the

Health

Center

by

right-clicking

on

the

database

instance

that

you

want

to

configure

for

automatic

statistics

collection.

Select

Configure

Automatic

Maintenance

from

the

pop-up

window.

2.

Within

this

wizard,

you

can

enable

automatic

statistics

collection,

specify

the

tables

that

you

want

to

automatically

collect

statistics

from,

and

specify

a

maintenance

window

for

the

execution

of

the

RUNSTATS

utility.

3.

OPTIONAL:

To

enable

the

automatic

statistics

profile

generation,

set

the

following

two

configuration

parameters

to

″ON″

using

the

command

line

interface:

Chapter

5.

System

catalog

statistics

105

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

–

AUTO_STATS_PROF

–

AUTO_PROF_UPD
v

To

set

up

your

database

for

automatic

statistics

collection

using

the

command

line

interface:

1.

Set

each

of

the

following

configuration

parameters

to

″ON″:

–

AUTO_MAINT

–

AUTO_TBL_MAINT

–

AUTO_RUNSTATS
2.

OPTIONAL:

To

enable

the

automatic

statistics

profile

generation,

set

the

following

two

configuration

parameters

to

″ON″:

–

AUTO_STATS_PROF

–

AUTO_PROF_UPD

Related

concepts:

v

“Collecting

statistics

using

a

statistics

profile”

on

page

102

v

“Automatic

statistics

collection”

on

page

104

Related

reference:

v

“autonomic_switches

-

Automatic

maintenance

switches”

on

page

437

Statistics

collected

This

section

lists

the

catalog

statistics

tables

and

describes

the

use

of

the

fields

in

these

tables.

Sections

that

follow

the

statistics

tables

descriptions

explain

the

kind

of

data

that

can

be

collected

and

stored

in

the

tables.

Catalog

statistics

tables

The

following

tables

provide

information

about

the

system

catalog

tables

that

contain

catalog

statistics

and

the

RUNSTATS

options

that

collect

specific

statistics.

Table

18.

Table

Statistics

(SYSCAT.TABLES

and

SYSSTAT.TABLES)

Statistic

Description

RUNSTATS

Option

Table

Indexes

FPAGES

number

of

pages

being

used

by

a

table.

Yes

Yes

NPAGES

number

of

pages

containing

rows

Yes

Yes

OVERFLOW

number

of

rows

that

overflow

Yes

No

CARD

number

of

rows

in

table

(cardinality)

Yes

Yes

(Note

1)

ACTIVE_BLOCKS

for

MDC

tables,

the

total

number

of

occupied

blocks

Yes

No

Note:

1.

If

the

table

has

no

indexes

defined

and

you

request

statistics

for

indexes,

no

new

CARD

statistics

are

updated.

The

previous

CARD

statistics

are

retained.

106

Administration

Guide:

Performance

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

Table

19.

Column

Statistics

(SYSCAT.COLUMNS

and

SYSSTAT.COLUMNS)

Statistic

Description

RUNSTATS

Option

Table

Indexes

COLCARD

column

cardinality

Yes

Yes

(Note

1)

AVGCOLLEN

average

length

of

column

Yes

Yes

(Note

1)

HIGH2KEY

second

highest

value

in

column

Yes

Yes

(Note

1)

LOW2KEY

second

lowest

value

in

column

Yes

Yes

(Note

1)

NUMNULLS

the

number

of

NULLs

in

a

column

Yes

Yes

(Note

1)

SUB_COUNT

the

average

number

of

subelements

Yes

No

(Note

2)

SUB_DELIM_LENGTH

average

length

of

each

delimiter

separating

each

subelement

Yes

No

(Note

2)

Note:

1.

Column

statistics

are

gathered

for

the

first

column

in

the

index

key.

2.

These

statistics

provide

information

about

data

in

columns

that

contain

a

series

of

subfields

or

subelements

that

are

delimited

by

blanks.

The

SUB_COUNT

and

SUB_DELIM_LENGTH

statistics

are

collected

only

for

single-byte

character

set

string

columns

of

type

CHAR,

VARCHAR,

GRAPHIC,

and

VARGRAPHIC.

Table

20.

Multicolumn

Statistics

(SYSCAT.COLGROUPS

and

SYSSTAT.COLGROUPS)

Statistic

Description

RUNSTATS

Option

Table

Indexes

COLGROUPCARD

cardinality

of

the

column

group

Yes

No

Note:

The

multicolumn

distribution

statistics

listed

in

the

following

two

tables

are

not

collected

by

RUNSTATS.

You

can

update

them

manually,

however.

Table

21.

Multicolumn

Distribution

Statistics

(SYSCAT.COLGROUPDIST

and

SYSSTAT.COLGROUPDIST)

Statistic

Description

RUNSTATS

Option

Table

Indexes

TYPE

F

=

frequency

value

Q

=

quantile

value

Yes

No

ORDINAL

Ordinal

number

of

the

column

in

the

group

Yes

No

SEQNO

Sequence

number

n

that

represents

the

nth

TYPE

value

Yes

No

COLVALUE

the

data

value

as

a

character

literal

or

a

null

value

Yes

No

Chapter

5.

System

catalog

statistics

107

Table

22.

Multicolumn

Distribution

Statistics

2

(SYSCAT.COLGROUPDISTCOUNTS

and

SYSSTAT.COLGROUPDISTCOUNTS)

Statistic

Description

RUNSTATS

Option

Table

Indexes

TYPE

F

=

frequency

value

Q

=

quantile

value

Yes

No

SEQNO

Sequence

number

n

that

represents

the

nth

TYPE

value

Yes

No

VALCOUNT

If

TYPE

=

F,

VALCOUNT

is

the

number

of

occurrences

of

COLVALUEs

for

the

column

group

identified

by

this

SEQNO.

If

TYPE

=

Q,

VALCOUNT

is

the

number

of

rows

whose

value

is

less

than

or

equal

to

COLVALUEs

for

the

column

group

with

this

SEQNO.

Yes

No

DISTCOUNT

If

TYPE

=

Q,

this

column

contains

the

number

of

distinct

values

that

are

less

than

or

equal

to

COLVALUEs

for

the

column

group

with

this

SEQNO.

Null

if

unavailable.

Yes

No

Table

23.

Index

Statistics

(SYSCAT.INDEXES

and

SYSSTAT.INDEXES)

Statistic

Description

RUNSTATS

Option

Table

Indexes

NLEAF

number

of

index

leaf

pages

No

Yes

NLEVELS

number

of

index

levels

No

Yes

CLUSTERRATIO

degree

of

clustering

of

table

data

No

Yes

(Note

2)

CLUSTERFACTOR

finer

degree

of

clustering

No

Detailed

(Notes

1,2)

DENSITY

Ratio

(percentage)

of

SEQUENTIAL_PAGES

to

number

of

pages

in

the

range

of

pages

occupied

by

the

index

(Note

3)

No

Yes

FIRSTKEYCARD

number

of

distinct

values

in

first

column

of

the

index

No

Yes

108

Administration

Guide:

Performance

Table

23.

Index

Statistics

(SYSCAT.INDEXES

and

SYSSTAT.INDEXES)

(continued)

Statistic

Description

RUNSTATS

Option

Table

Indexes

FIRST2KEYCARD

number

of

distinct

values

in

first

two

columns

of

the

index

No

Yes

FIRST3KEYCARD

number

of

distinct

values

in

first

three

columns

of

the

index

No

Yes

FIRST4KEYCARD

number

of

distinct

values

in

first

four

columns

of

the

index

No

Yes

FULLKEYCARD

number

of

distinct

values

in

all

columns

of

the

index,

excluding

any

key

value

in

a

type-2

index

for

which

all

RIDs

are

marked

deleted

No

Yes

PAGE_FETCH_PAIRS

page

fetch

estimates

for

different

buffer

sizes

No

Detailed

(Notes

1,2)

SEQUENTIAL_PAGES

number

of

leaf

pages

located

on

disk

in

index

key

order,

with

few

or

no

large

gaps

between

them

No

Yes

AVERAGE_SEQUENCE_PAGES

average

number

of

index

pages

accessible

in

sequence.

This

is

the

number

of

index

pages

that

the

prefetchers

can

detect

as

being

in

sequence.

No

Yes

AVERAGE_RANDOM_PAGES

average

number

of

random

index

pages

between

sequential

page

accesses

No

Yes

AVERAGE_SEQUENCE_GAP

gap

between

sequences

No

Yes

AVERAGE_SEQUENCE_FETCH_PAGES

average

number

of

table

pages

accessible

in

sequence.

This

is

the

number

of

table

pages

that

the

prefetchers

can

detect

as

being

in

sequence

when

they

fetch

table

rows

using

the

index.

No

Yes

(Note

4)

Chapter

5.

System

catalog

statistics

109

Table

23.

Index

Statistics

(SYSCAT.INDEXES

and

SYSSTAT.INDEXES)

(continued)

Statistic

Description

RUNSTATS

Option

Table

Indexes

AVERAGE_RANDOM_FETCH_PAGES

average

number

of

random

table

pages

between

sequential

page

accesses

when

fetching

table

rows

using

the

index.

No

Yes

(Note

4)

AVERAGE_SEQUENCE_FETCH_GAP

gap

between

sequences

when

fetching

table

rows

using

the

index.

No

Yes

(Note

4)

NUMRIDS

the

number

of

record

identifiers

(RIDs)

in

the

index,

including

deleted

RIDs

in

type-2

indexes.

No

Yes

NUMRIDS_DELETED

the

total

number

of

RIDs

marked

deleted

in

the

index,

except

RIDs

on

leaf

pages

on

which

all

record

identifiers

are

marked

deleted

No

Yes

NUM_EMPTY_LEAFS

the

total

number

of

leaf

pages

on

which

all

record

identifiers

are

marked

deleted

No

Yes

Note:

1.

Detailed

index

statistics

are

gathered

by

specifying

the

DETAILED

clause

on

the

RUNSTATS

command.

2.

CLUSTERFACTOR

and

PAGE_FETCH_PAIRS

are

not

collected

with

the

DETAILED

clause

unless

the

table

is

of

a

respectable

size.

If

the

table

is

greater

than

about

25

pages,

then

CLUSTERFACTOR

and

PAGE_FETCH_PAIRS

statistics

are

collected.

In

this

case,

CLUSTERRATIO

is

-1

(not

collected).

If

the

table

is

a

relatively

small

table,

only

CLUSTERRATIO

is

filled

in

by

RUNSTATS

while

CLUSTERFACTOR

and

PAGE_FETCH_PAIRS

are

not.

If

the

DETAILED

clause

is

not

specified,

only

the

CLUSTERRATIO

statistic

is

collected.

3.

This

statistic

measures

the

percentage

of

pages

in

the

file

containing

the

index

that

belongs

to

that

table.

For

a

table

having

only

one

index

defined

on

it,

DENSITY

should

normally

be

100.

DENSITY

is

used

by

the

optimizer

to

estimate

how

many

irrelevant

pages

from

other

indexes

might

be

read,

on

average,

if

the

index

pages

were

prefetched.

4.

These

statistics

cannot

be

computed

when

this

table

is

in

a

DMS

table

space.

5.

Prefetch

statistics

will

not

be

collected

during

a

LOAD

or

CREATE

INDEX

even

if

statistics

collection

is

specified

when

the

command

is

invoked.

Prefetch

statistics

are

also

not

collected

if

the

Sequential

Detection

Flag

configuration

parameter

(seqdetect)

is

turned

off.

Table

24.

Column

Distribution

Statistics

(SYSCAT.COLDIST

and

SYSSTAT.COLDIST)

Statistic

Description

RUNSTATS

Option

Table

Indexes

DISTCOUNT

If

TYPE

is

Q,

the

number

of

distinct

values

that

are

less

than

or

equal

to

COLVALUE

statistics

Distribution

(Note

2)

No

110

Administration

Guide:

Performance

Table

24.

Column

Distribution

Statistics

(SYSCAT.COLDIST

and

SYSSTAT.COLDIST)

(continued)

Statistic

Description

RUNSTATS

Option

Table

Indexes

TYPE

Indicator

of

whether

row

provides

frequent-value

or

quantile

statistics

Distribution

No

SEQNO

Frequency

ranking

of

a

sequence

number

to

help

uniquely

identify

the

row

in

the

table

Distribution

No

COLVALUE

Data

value

for

which

frequency

or

quantile

statistic

is

collected

Distribution

No

VALCOUNT

Frequency

with

which

the

data

value

occurs

in

column,

or

for

quantiles,

the

number

of

values

less

than

or

equal

to

the

data

value

(COLVALUE)

Distribution

No

Note:

1.

Column

distribution

statistics

are

gathered

by

specifying

the

WITH

DISTRIBUTION

clause

on

the

RUNSTATS

command.

Note

that

distribution

statistics

may

not

be

gathered

unless

there

is

a

sufficient

lack

of

uniformity

in

the

column

values.

2.

DISTCOUNT

is

collected

only

for

columns

that

are

the

first

key

column

in

an

index.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Statistical

information

that

is

collected”

on

page

111

v

“Statistics

for

user-defined

functions”

on

page

123

v

“Statistics

for

modeling

production

databases”

on

page

125

Statistical

information

that

is

collected

When

you

execute

the

RUNSTATS

utility

for

a

table

or

for

a

table

and

its

associated

indexes,

the

following

kinds

of

statistical

information

are

always

stored

in

the

system

catalog

tables:

For

a

table

and

index:

v

The

number

of

pages

in

use

v

The

number

of

pages

that

contain

rows

v

The

number

of

rows

that

overflow

v

The

number

of

rows

in

the

table

(cardinality)

v

For

MDC

tables,

the

number

of

blocks

that

contain

data

For

each

column

in

the

table

and

the

first

column

in

the

index

key:

v

The

cardinality

of

the

column

v

The

average

length

of

the

column

v

The

second

highest

value

in

the

columns

v

The

second

lowest

value

in

the

column

v

The

number

of

NULLs

in

the

column

For

groups

of

columns

that

you

specify:

v

A

time-stamp

based

name

for

the

column

group

Chapter

5.

System

catalog

statistics

111

v

The

cardinality

of

the

column

group

For

indexes

only:

v

The

number

of

leaf

pages

v

The

number

of

index

levels

v

The

degree

of

clustering

of

the

table

data

to

this

index

v

The

ratio

of

leaf

pages

on

disk

in

index

key

order

to

the

number

of

pages

in

the

range

of

pages

occupied

by

the

index

v

The

number

of

distinct

values

in

the

first

column

of

the

index

v

The

number

of

distinct

values

in

the

first

two,

three,

and

four

columns

of

the

index

v

The

number

of

distinct

values

in

all

columns

of

the

index

v

The

number

of

leaf

pages

located

on

disk

in

index

key

order,

with

few

or

no

large

gaps

between

them

v

The

number

of

pages

on

which

all

RIDs

are

marked

deleted

v

The

number

of

RIDs

marked

deleted

on

pages

on

which

not

all

RIDs

are

marked

deleted

If

you

request

detailed

statistics

for

an

index,

you

also

store

finer

information

about

the

degree

of

clustering

of

the

table

to

the

index

and

the

page

fetch

estimates

for

different

buffer

sizes.

You

can

also

collect

the

following

kinds

statistics

about

tables

and

indexes:

v

Data

distribution

statistics

The

optimizer

uses

data

distribution

statistics

to

estimate

efficient

access

plans

for

tables

in

which

data

is

not

evenly

distributed

and

columns

have

a

significant

number

of

duplicate

values.

v

Detailed

index

statistics

The

optimizer

uses

detailed

index

statistics

to

determine

how

efficient

it

is

to

access

a

table

through

an

index.

v

Sub-element

statistics

The

optimizer

uses

sub-element

statistics

for

LIKE

predicates,

especially

those

that

search

for

a

pattern

embedded

within

a

string,

such

as

LIKE

%disk%.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

v

“Collecting

index

statistics”

on

page

100

Distribution

statistics

You

can

collect

two

kinds

of

data

distribution

statistics:

v

Frequency

statistics

These

statistics

provide

information

about

the

column

and

the

data

value

with

the

highest

number

of

duplicates,

the

next

highest

number

of

duplicate

values,

and

so

on

to

the

level

specified

by

the

value

of

the

num_freqvalues

database

configuration

parameter.

To

disable

collection

of

frequent-value

statistics,

set

num_freqvalues

to

0.

112

Administration

Guide:

Performance

You

can

also

set

num_freqvalues

as

RUNSTATS

options

for

each

table

and

for

specific

columns.

v

Quantile

statistics

These

statistics

provide

information

about

how

data

values

are

distributed

in

relation

to

other

values.

Called

K-quantiles,

these

statistics

represent

the

value

V

at

or

below

which

at

least

K

values

lie.

You

can

compute

a

K-quantile

by

sorting

the

values

in

ascending

order.

The

K-quantile

value

is

the

value

in

the

Kth

position

from

the

low

end

of

the

range.

To

specify

the

number

of

sections

into

which

the

column

data

values

should

be

grouped,

set

the

num_quantiles

database

configuration

parameter

to

a

value

between

2

and

32,767.

The

default

value

is

20,

which

ensures

an

optimizer

estimation

error

of

a

maximum

of

plus

or

minus

2.5%

for

any

equality

or

less-than

or

greater-than

predicate

and

a

maximum

error

of

plus

or

minus

5%

for

any

BETWEEN

predicate.

To

disable

collection

of

quantile

statistics,

set

num_quantiles

to

0

or

1.

You

can

set

num_quantiles

for

each

table

and

for

specific

columns.

Note:

If

you

specify

larger

num_freqvalues

and

num_quantiles

values,

more

CPU

resources

and

memory,

as

specified

by

the

stat_heap_sz

database

configuration

parameter,

are

required

when

you

execute

RUNSTATS.

When

to

collect

distribution

statistics

To

decide

whether

distribution

statistics

should

be

created

and

updated

for

a

given

table,

consider

the

following

two

factors:

v

Whether

applications

use

static

or

dynamic

SQL.

Distribution

statistics

are

most

useful

for

dynamic

SQL

and

static

SQL

that

does

not

use

host

variables.

When

using

SQL

with

host

variables,

the

optimizer

makes

limited

use

of

distribution

statistics.

v

Whether

data

in

columns

is

distributed

uniformly.

Create

distribution

statistics

if

at

least

one

column

in

the

table

has

a

highly

“non-uniform”

distribution

of

data

and

the

column

appears

frequently

in

equality

or

range

predicates;

that

is,

in

clauses

such

as

the

following:

WHERE

C1

=

KEY;

WHERE

C1

IN

(KEY1,

KEY2,

KEY3);

WHERE

(C1

=

KEY1)

OR

(C1

=

KEY2)

OR

(C1

=

KEY3);

WHERE

C1

<=

KEY;

WHERE

C1

BETWEEN

KEY1

AND

KEY2;

Two

types

of

non-uniform

data

distributions

might

occur,

possibly

together:

v

Data

might

be

clustered

in

one

or

more

sub-intervals

instead

of

being

evenly

spread

out

between

the

highest

and

lowest

data

value.

Consider

the

following

column,

in

which

the

data

is

clustered

in

the

range

(5,10):

C1

0.0

5.1

6.3

7.1

8.2

8.4

8.5

9.1

93.6

100.0

Chapter

5.

System

catalog

statistics

113

Quantile

statistics

help

the

optimizer

deal

with

this

kind

of

data

distribution.

To

help

determine

whether

column

data

is

not

uniformly

distributed,

execute

a

query

such

as

the

following

example:

SELECT

C1,

COUNT(*)

AS

OCCURRENCES

FROM

T1

GROUP

BY

C1

ORDER

BY

OCCURRENCES

DESC;

v

Duplicate

data

values

might

occur

often.

Consider

a

column

in

which

data

is

distributed

with

the

following

frequencies:

Data

Value

Frequency

20

5

30

10

40

10

50

25

60

25

70

20

80

5

To

help

the

optimizer

deal

with

duplicate

values,

create

both

quantile

and

frequent-value

statistics.

When

to

collect

index

statistics

only

You

might

collect

statistics

based

only

on

index

data

in

the

following

situations:

v

A

new

index

has

been

created

since

the

RUNSTATS

utility

was

run

and

you

do

not

want

to

collect

statistics

again

on

the

table

data.

v

There

have

been

many

changes

to

the

data

that

affect

the

first

column

of

an

index.

What

level

of

statistical

precision

to

specify

To

determine

the

precision

with

which

distribution

statistics

are

stored,

you

specify

the

database

configuration

parameters,

num_quantiles

and

num_freqvalues.

You

can

also

specify

these

parameters

as

RUNSTATS

options

when

you

collect

statistics

for

a

table

or

for

columns.

The

higher

you

set

these

values,

the

greater

precision

RUNSTATS

uses

when

it

create

and

updates

distribution

statistics.

However,

greater

precision

requires

greater

use

of

resources,

both

during

RUNSTATS

execution

and

in

the

storage

required

in

the

catalog

tables.

For

most

databases,

specify

between

10

and

100

for

the

num_freqvalues

database

configuration

parameter.

Ideally,

frequent-value

statistics

should

be

created

such

that

the

frequencies

of

the

remaining

values

are

either

approximately

equal

to

each

other

or

negligible

compared

to

the

frequencies

of

the

most

frequent

values.

The

database

manager

might

collect

less

than

this

number,

because

these

statistics

will

only

be

collected

for

data

values

that

occur

more

than

once.

If

you

need

to

collect

only

quantile

statistics,

set

num_freqvalues

to

zero.

To

set

the

number

of

quantiles,

specify

between

20

and

50

as

the

setting

of

the

num_quantiles

database

configuration

parameter.

A

rough

rule

of

thumb

for

determining

the

number

of

quantiles

is:

v

Determine

the

maximum

error

that

is

tolerable

in

estimating

the

number

of

rows

of

any

range

query,

as

a

percentage,

P

114

Administration

Guide:

Performance

v

The

number

of

quantiles

should

be

approximately

100/P

if

the

predicate

is

a

BETWEEN

predicate,

and

50/P

if

the

predicate

is

any

other

type

of

range

predicate

(<,

<=,

>,

or

>=).

For

example,

25

quantiles

should

result

in

a

maximum

estimate

error

of

4%

for

BETWEEN

predicates

and

of

2%

for

″>″

predicates.

In

general,

specify

at

least

10

quantiles.

More

than

50

quantiles

should

be

necessary

only

for

extremely

non-uniform

data.

If

you

need

only

frequent

value

statistics,

set

num_quantiles

to

zero.

If

you

set

this

parameter

to

“1”,

because

the

entire

range

of

values

fits

in

one

quantile,

no

quantile

statistics

are

collected.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Optimizer

use

of

distribution

statistics”

on

page

115

v

“Extended

examples

of

distribution-statistics

use”

on

page

116

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

Related

reference:

v

“num_freqvalues

-

Number

of

frequent

values

retained”

on

page

434

v

“num_quantiles

-

Number

of

quantiles

for

columns”

on

page

435

Optimizer

use

of

distribution

statistics

The

optimizer

uses

distribution

statistics

for

better

estimates

of

the

cost

of

various

possible

access

plans

to

satisfy

queries.

If

you

do

not

execute

RUNSTATS

with

the

WITH

DISTRIBUTION

clause,

the

catalog

statistics

tables

contain

information

only

about

the

size

of

the

table

and

the

highest

and

lowest

values

in

the

table,

the

degree

of

clustering

of

the

table

to

any

of

its

indexes,

and

the

number

of

distinct

values

in

indexed

columns.

Unless

it

has

additional

information

about

the

distribution

of

values

between

the

low

and

high

values,

the

optimizer

assumes

that

data

values

are

evenly

distributed.

If

data

values

differ

widely

from

each

other,

are

clustered

in

some

parts

of

the

range,

or

contain

many

duplicate

values,

the

optimizer

will

choose

a

less

than

optimal

access

plan.

Consider

the

following

example:

The

optimizer

needs

to

estimate

the

number

of

rows

containing

a

column

value

that

satisfies

an

equality

or

range

predicate

in

order

to

select

the

least

expensive

access

plan.

The

more

accurate

the

estimate,

the

greater

the

likelihood

that

the

optimizer

will

choose

the

optimal

access

plan.

For

example,

consider

the

query

SELECT

C1,

C2

FROM

TABLE1

WHERE

C1

=

’NEW

YORK’

AND

C2

<=

10

Assume

that

there

is

an

index

on

both

C1

and

C2.

One

possible

access

plan

is

to

use

the

index

on

C1

to

retrieve

all

rows

with

C1

=

’NEW

YORK’

and

then

check

each

Chapter

5.

System

catalog

statistics

115

retrieved

row

to

see

if

C2

<=

10.

An

alternate

plan

is

to

use

the

index

on

C2

to

retrieve

all

rows

with

C2

<=

10

and

then

check

each

retrieved

row

to

see

if

C1

=

’NEW

YORK’.

Because

the

primary

cost

in

executing

the

query

is

usually

the

cost

of

retrieving

the

rows,

the

best

plan

is

the

plan

that

requires

the

fewest

retrievals.

Choosing

this

plan

requires

estimating

the

number

of

rows

that

satisfy

each

predicate.

When

distribution

statistics

are

not

available

but

RUNSTATS

has

been

executed

against

a

table,

the

only

information

available

to

the

optimizer

is

the

second-highest

data

value

(HIGH2KEY),

second-lowest

data

value

(LOW2KEY),

number

of

distinct

values

(COLCARD),

and

number

of

rows

(CARD)

for

a

column.

The

number

of

rows

that

satisfy

an

equality

or

range

predicate

is

then

estimated

under

the

assumption

that

the

frequencies

of

the

data

values

in

a

column

are

all

equal

and

the

data

values

are

evenly

spread

out

over

the

interval

(LOW2KEY,

HIGH2KEY).

Specifically,

the

number

of

rows

satisfying

an

equality

predicate

C1

=

KEY

is

estimated

as

CARD/COLCARD,

and

the

number

of

rows

satisfying

a

range

predicate

C1

BETWEEN

KEY1

AND

KEY2

is

estimated

as:

KEY2

-

KEY1

x

CARD

(1)

HIGH2KEY

-

LOW2KEY

These

estimates

are

accurate

only

when

the

true

distribution

of

data

values

in

a

column

is

reasonably

uniform.

When

distribution

statistics

are

unavailable

and

either

the

frequencies

of

the

data

values

differ

widely

from

each

other

or

the

data

values

are

clustered

in

a

few

sub-intervals

of

the

interval

(LOW_KEY,HIGH_KEY),

the

estimates

can

be

off

by

orders

of

magnitude

and

the

optimizer

may

choose

a

less

than

optimal

access

plan.

When

distribution

statistics

are

available,

the

errors

described

above

can

be

greatly

reduced

by

using

frequent-value

statistics

to

compute

the

number

of

rows

that

satisfy

an

equality

predicate

and

using

frequent-value

statistics

and

quantiles

to

compute

the

number

of

rows

that

satisfy

a

range

predicate.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Distribution

statistics”

on

page

112

v

“Extended

examples

of

distribution-statistics

use”

on

page

116

Related

tasks:

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

Extended

examples

of

distribution-statistics

use

To

understand

how

the

optimizer

might

use

distribution

statistics,

consider

first

a

query

that

contains

an

equality

predicate

of

the

form

C1

=

KEY.

Example

for

Frequent-Value

Statistics

If

frequent-value

statistics

are

available,

the

optimizer

can

use

these

statistics

to

choose

an

appropriate

access

plan,

as

follows:

v

If

KEY

is

one

of

the

N

most

frequent

values,

then

the

optimizer

uses

the

frequency

of

KEY

that

is

stored

in

the

catalog.

116

Administration

Guide:

Performance

v

If

KEY

is

not

one

of

the

N

most

frequent

values,

the

optimizer

estimates

the

number

of

rows

that

satisfy

the

predicate

under

the

assumption

that

the

(COLCARD

-

N)

non-frequent

values

have

a

uniform

distribution.

That

is,

the

number

of

rows

is

estimated

as:

CARD

-

NUM_FREQ_ROWS

(2)

COLCARD

-

N

where

CARD

is

the

number

of

rows

in

the

table,

COLCARD

is

the

cardinality

of

the

column

and

NUM_FREQ_ROWS

is

the

total

number

of

rows

with

a

value

equal

to

one

of

the

N

most

frequent

values.

For

example,

consider

a

column

(C1)

for

which

the

frequency

of

the

data

values

is

as

follows:

Data

Value

Frequency

1

2

2

3

3

40

4

4

5

1

If

frequent-value

statistics

based

on

only

the

most

frequent

value

(that

is,

N

=

1)

are

available,

for

this

column,

the

number

of

rows

in

the

table

is

50

and

the

column

cardinality

is

5.

For

the

predicate

C1

=

3,

exactly

40

rows

satisfy

it.

If

the

optimizer

assumes

that

data

is

evenly

distributed,

it

estimates

the

number

of

rows

that

satisfy

the

predicate

as

50/5

=

10,

with

an

error

of

-75%.

If

the

optimizer

can

use

frequent-value

statistics,

the

number

of

rows

is

estimated

as

40,

with

no

error.

Consider

another

example

in

which

2

rows

satisfy

the

predicate

C1

=

1.

Without

frequent-value

statistics,

the

number

of

rows

that

satisfy

the

predicate

is

estimated

as

10,

an

error

of

400®%.

You

may

use

the

following

formula

to

calculate

the

estimation

error

(as

a

percentage):

estimated

rows

-

actual

rows

X

100

actual

rows

Using

the

frequent

value

statistics

(N

=

1),

the

optimizer

will

estimate

the

number

of

rows

containing

this

value

using

the

formula

(2)

given

above,

for

example:

(50

-

40)

=

3

(5

-

1)

and

the

error

is

reduced

by

an

order

of

magnitude

as

shown

below:

3

-

2

=

50%

2

Example

for

Quantile

Statistics

The

following

explanations

of

quantile

statistics

use

the

term

“K-quantile”.

The

K-quantile

for

a

column

is

the

smallest

data

value,

V,

such

that

at

least

“K”

rows

have

data

values

less

than

or

equal

to

V.

To

computer

a

K-quantile,

sort

the

rows

in

the

column

according

to

increasing

data

values;

the

K-quantile

is

the

data

value

in

the

Kth

row

of

the

sorted

column.

Chapter

5.

System

catalog

statistics

117

If

quantile

statistics

are

available,

the

optimizer

can

better

estimate

the

number

of

rows

that

satisfy

a

range

predicate,

as

illustrated

by

the

following

examples.

Consider

a

column

(C)

that

contains

the

following

values:

C

0.0

5.1

6.3

7.1

8.2

8.4

8.5

9.1

93.6

100.0

and

suppose

that

K-quantiles

are

available

for

K

=

1,

4,

7,

and

10,

as

follows:

K

K-quantile

1

0.0

4

7.1

7

8.5

10

100.0

First

consider

the

predicate

C

<=

8.5.

For

the

data

given

above,

exactly

7

rows

satisfy

this

predicate.

Assuming

a

uniform

data

distribution

and

using

formula

(1)

from

above,

with

KEY1

replaced

by

LOW2KEY,

the

number

of

rows

that

satisfy

the

predicate

is

estimated

as:

8.5

-

5.1

x

10

*=

0

93.6

-

5.1

where

*=

means

“approximately

equal

to”.

The

error

in

this

estimation

is

approximately

-100%.

If

quantile

statistics

are

available,

the

optimizer

estimates

the

number

of

rows

that

satisfy

this

same

predicate

(C

<=

8.5)

by

locating

8.5

as

the

highest

value

in

one

of

the

quantiles

and

estimating

the

number

of

rows

by

using

the

corresponding

value

of

K,

which

is

7.

In

this

case,

the

error

is

reduced

to

0.

Now

consider

the

predicate

C

<=

10.

Exactly

8

rows

satisfy

this

predicate.

If

the

optimizer

must

assume

a

uniform

data

distribution

and

use

formula

(1),

the

number

of

rows

that

satisfy

the

predicate

is

estimated

as

1,

an

error

of

-87.5%.

Unlike

the

previous

example,

the

value

10

is

not

one

of

the

stored

K-quantiles.

However,

the

optimizer

can

use

quantiles

to

estimate

the

number

of

rows

that

satisfy

the

predicate

as

r_1

+

r_2,

where

r_1

is

the

number

of

rows

satisfying

the

predicate

C

<=

8.5

and

r_2

is

the

number

of

rows

satisfying

the

predicate

C

>

8.5

AND

C

<=

10.

As

in

the

above

example,

r_1

=

7.

To

estimate

r_2

the

optimizer

uses

linear

interpolation:

10

-

8.5

r_2

*=

x

(number

of

rows

with

value

>

8.5

and

<=

100.0)

100

-

8.5

10

-

8.5

r_2

*=

x

(10

-

7)

100

-

8.5

118

Administration

Guide:

Performance

1.5

r_2

*=

x

(3)

91.5

r_2

*=

0

The

final

estimate

is

r_1

+

r_2

*=

7,

and

the

error

is

only

-12.5%.

Quantiles

improves

the

accuracy

of

the

estimates

in

the

above

examples

because

the

real

data

values

are

″clustered″

in

the

range

5

-

10,

but

the

standard

estimation

formulas

assume

that

the

data

values

are

spread

out

evenly

between

0

and

100.

The

use

of

quantiles

also

improves

accuracy

when

there

are

significant

differences

in

the

frequencies

of

different

data

values.

Consider

a

column

having

data

values

with

the

following

frequencies:

Data

Value

Frequency

20

5

30

5

40

15

50

50

60

15

70

5

80

5

Suppose

that

K-quantiles

are

available

for

K

=

5,

25,

75,

95,

and

100:

K

K-quantile

5

20

25

40

75

50

95

70

100

80

Also

suppose

that

frequent

value

statistics

are

available

based

on

the

3

most

frequent

values.

Consider

the

predicate

C

BETWEEN

20

AND

30.

From

the

distribution

of

the

data

values,

you

can

see

that

exactly

10

rows

satisfy

this

predicate.

Assuming

a

uniform

data

distribution

and

using

formula

(1),

the

number

of

rows

that

satisfy

the

predicate

is

estimated

as:

30

-

20

x

100

=

25

70

-

30

which

has

an

error

of

150%.

Using

frequent-value

statistics

and

quantiles,

the

number

of

rows

that

satisfy

the

predicate

is

estimated

as

r_1

+

r_2,

where

r_1

is

the

number

of

rows

that

satisfy

the

predicate

(C

=

20)

and

r_2

is

the

number

of

rows

that

satisfy

the

predicate

C

>

20

AND

C

<=

30.

Using

formula

(2),

r_1

is

estimated

as:

100

-

80

=

5

7

-

3

Using

linear

interpolation,

r_2

is

estimated

as:

Chapter

5.

System

catalog

statistics

119

30

-

20

x

(#

rows

with

value

>

20

and

<=

40)

40

-

20

30

-

20

=

x

(25

-

5)

40

-

20

=

10,

yielding

a

final

estimate

of

15

and

reducing

the

error

by

a

factor

of

3.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Distribution

statistics”

on

page

112

v

“Optimizer

use

of

distribution

statistics”

on

page

115

v

“Rules

for

updating

distribution

statistics

manually”

on

page

129

Related

tasks:

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

Detailed

index

statistics

If

you

execute

RUNSTATS

for

indexes

with

the

DETAILED

clause,

you

collect

statistical

information

about

indexes

that

allows

the

optimizer

to

estimate

how

many

data

page

fetches

will

be

required,

based

on

various

buffer-pool

sizes.

This

additional

information

helps

the

optimizer

make

better

estimates

of

the

cost

of

accessing

a

table

through

an

index.

Note:

When

you

collect

detailed

index

statistics,

RUNSTATS

takes

longer

and

requires

more

memory

and

CPU

processing.

The

SAMPLED

DETAILED

option,

for

which

information

calculated

only

for

a

statistically

significant

number

of

entries,

requires

2MB

of

the

statistics

heap.

Allocate

an

additional

488

4K

pages

to

the

stat_heap_sz

database

configuration

parameter

setting

for

this

additional

memory

requirement.

If

the

heap

appears

to

be

too

small,

RUNSTATS

returns

an

error

before

attempting

to

collect

statistics.

The

DETAILED

statistics

PAGE_FETCH_PAIRS

and

CLUSTERFACTOR

will

be

collected

only

if

the

table

is

of

a

sufficient

size:

around

25

pages.

In

this

case,

CLUSTERFACTOR

will

be

a

value

between

0

and

1;

and

CLUSTERRATIO

will

be

-1

(not

collected).

For

tables

smaller

than

25

pages,

CLUSTERFACTOR

will

be

-1

(not

collected),

and

CLUSTERRATIO

will

be

a

value

between

0

and

100;

even

if

the

DETAILED

clause

is

specified

for

an

index

on

that

table.

The

DETAILED

statistics

provide

concise

information

about

the

number

of

physical

I/Os

required

to

access

the

data

pages

of

a

table

if

a

complete

index

scan

is

performed

under

different

buffer

sizes.

As

RUNSTATS

scans

the

pages

of

the

index,

it

models

the

different

buffer

sizes,

and

gathers

estimates

of

how

often

a

page

fault

occurs.

For

example,

if

only

one

buffer

page

is

available,

each

new

page

referenced

by

the

index

results

in

a

page

fault.

In

a

worse

case,

each

row

might

reference

a

different

page,

resulting

in

at

most

the

same

number

of

I/Os

as

rows

in

the

indexed

table.

At

the

other

extreme,

when

the

buffer

is

big

enough

to

hold

the

entire

table

(subject

to

the

maximum

buffer

size),

then

all

table

pages

are

read

once.

As

a

result,

the

number

of

physical

I/Os

is

a

monotone,

non-increasing

function

of

the

buffer

size.

120

Administration

Guide:

Performance

The

statistical

information

also

provides

finer

estimates

of

the

degree

of

clustering

of

the

table

rows

to

the

index

order.

The

less

the

table

rows

are

clustered

in

relation

to

the

index,

the

more

I/Os

are

required

to

access

table

rows

through

the

index.

The

optimizer

considers

both

the

buffer

size

and

the

degree

of

clustering

when

it

estimates

the

cost

of

accessing

a

table

through

an

index.

You

should

collect

DETAILED

index

statistics

when

queries

reference

columns

that

are

not

included

in

the

index.

In

addition,

DETAILED

index

statistics

should

be

used

in

the

following

circumstances:

v

The

table

has

multiple

unclustered

indexes

with

varying

degrees

of

clustering

v

The

degree

of

clustering

is

non-uniform

among

the

key

values

v

The

values

in

the

index

are

updated

non-uniformly

It

is

difficult

to

evaluate

these

conditions

without

previous

knowledge

or

without

forcing

an

index

scan

under

varying

buffer

sizes

and

then

monitoring

the

physical

I/Os

that

result.

Probably

the

cheapest

way

to

determine

whether

any

of

these

situations

occur

is

to

collect

the

DETAILED

statistics

for

an

index,

examine

them,

and

retain

them

if

the

PAGE_FETCH_PAIRS

that

result

are

non-linear.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

index

statistics”

on

page

100

Sub-element

statistics

If

tables

contain

columns

that

contain

sub-fields

or

sub-elements

separated

by

blanks,

and

queries

reference

these

columns

in

WHERE

clauses,

you

should

collect

sub-element

statistics

to

ensure

the

best

access

plans.

For

example,

suppose

a

database

contains

a

table,

DOCUMENTS,

in

which

each

row

describes

a

document,

and

suppose

that

in

DOCUMENTS

there

is

a

column

called

KEYWORDS

that

contains

a

list

of

relevant

keywords

relating

to

this

document

for

text

retrieval

purposes.

The

values

in

KEYWORDS

might

be

as

follows:

’database

simulation

analytical

business

intelligence’

’simulation

model

fruit

fly

reproduction

temperature’

’forestry

spruce

soil

erosion

rainfall’

’forest

temperature

soil

precipitation

fire’

In

this

example,

each

column

value

consists

of

5

sub-elements,

each

of

which

is

a

word

(the

keyword),

separated

from

the

others

by

one

blank.

For

queries

that

specify

LIKE

predicates

on

such

columns

using

the

%

match_all

character:

SELECT

....

FROM

DOCUMENTS

WHERE

KEYWORDS

LIKE

’%simulation%’

it

is

often

beneficial

for

the

optimizer

to

know

some

basic

statistics

about

the

sub-element

structure

of

the

column.

The

following

statistics

are

collected

when

you

execute

RUNSTATS

with

the

LIKE

STATISTICS

clause:

Chapter

5.

System

catalog

statistics

121

SUB_COUNT

The

average

number

of

sub-elements.

SUB_DELIM_LENGTH

The

average

length

of

each

delimiter

separating

each

sub-element,

where

a

delimiter,

in

this

context,

is

one

or

more

consecutive

blank

characters.

In

the

KEYWORDS

column

example,

SUB_COUNT

is

5,

and

SUB_DELIM_LENGTH

is

1,

because

each

delimiter

is

a

single

blank

character.

The

DB2®_LIKE_VARCHAR

registry

variable

affects

the

way

in

which

the

optimizer

deals

with

a

predicate

of

the

form:

COLUMN

LIKE

’%xxxxxx’

where

xxxxxx

is

any

string

of

characters;

that

is,

any

LIKE

predicate

whose

search

value

starts

with

a

%

character.

(It

might

or

might

not

end

with

a

%

character).

These

are

referred

to

as

″wildcard

LIKE

predicates″.

For

all

predicates,

the

optimizer

has

to

estimate

how

many

rows

match

the

predicate.

For

wildcard

LIKE

predicates,

the

optimizer

assumes

that

the

COLUMN

being

matched

contains

a

series

of

elements

concatenated

together,

and

it

estimates

the

length

of

each

element

based

on

the

length

of

the

string,

excluding

leading

and

trailing

%

characters.

To

examine

the

values

of

the

sub-element

statistics,

query

SYSIBM.SYSCOLUMNS.

For

example:

select

substr(NAME,1,16),

SUB_COUNT,

SUB_DELIM_LENGTH

from

sysibm.syscolumns

where

tbname

=

’DOCUMENTS’

Note:

RUNSTATS

might

take

longer

if

you

use

the

LIKE

STATISTICS

clause.

For

example,

RUNSTATS

might

take

between

15%

and

40%,

and

longer

on

a

table

with

five

character

columns,

if

the

DETAILED

and

DISTRIBUTION

options

are

not

used.

If

either

the

DETAILED

or

the

DISTRIBUTION

option

is

specified,

the

overhead

percentage

is

less,

even

though

the

absolute

amount

of

overhead

is

the

same.

If

you

are

considering

using

this

option,

you

should

assess

this

overhead

against

improvements

in

query

performance.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

distribution

statistics

for

specific

columns”

on

page

99

Catalog

statistics

that

users

can

update

This

section

describes

the

catalog

statistics

data

that

users

can

update

manually

and

provides

guidelines

for

such

manual

changes.

In

some

cases,

this

statistical

data

is

not

collected

by

RUNSTATS

and

thus

must

be

added

manually.

In

other

cases,

you

might

import

collecte

statistics

data

to

a

test

database

and

change

the

collected

data

for

a

specific

purpose,

such

as

to

model

a

production

database

for

experiments.

122

Administration

Guide:

Performance

Warning:

In

a

production

database,

do

not

manually

update

data

collected

by

RUNSTATS.

Serious

performance

problems

might

result.

Statistics

for

user-defined

functions

To

create

statistical

information

for

user-defined

functions

(UDFs),

you

edit

the

SYSSTAT.FUNCTIONS

catalog

view.

If

UDF

statistics

are

available,

the

optimizer

can

use

them

when

it

estimates

costs

for

various

access

plans.

The

RUNSTATS

utility

does

not

collect

statistics

for

UDFs.

If

statistics

are

not

available

the

statistic

column

values

are

-1

and

the

optimizer

uses

default

values

that

assume

a

simple

UDF.

The

following

table

provides

information

about

the

statistic

columns

for

which

you

can

provide

estimates

to

improve

performance:

Table

25.

Function

Statistics

(SYSCAT.FUNCTIONS

and

SYSSTAT.FUNCTIONS)

Statistic

Description

IOS_PER_INVOC

Estimated

number

of

read/write

requests

executed

each

time

a

function

is

executed.

INSTS_PER_INVOC

Estimated

number

of

machine

instructions

executed

each

time

a

function

is

executed.

IOS_PER_ARGBYTE

Estimated

number

of

read/write

requests

executed

per

input

argument

byte.

INSTS_PER_ARGBYTES

Estimated

number

of

machine

instructions

executed

per

input

argument

byte.

PERCENT_ARGBYTES

Estimated

average

percent

of

input

argument

bytes

that

the

function

will

actually

process.

INITIAL_IOS

Estimated

number

of

read/write

requests

executed

only

the

first/last

time

the

function

is

invoked.

INITIAL_INSTS

Estimated

number

of

machine

instructions

executed

only

the

first/last

time

the

function

is

invoked.

CARDINALITY

Estimated

number

of

rows

generated

by

a

table

function.

For

example,

consider

a

UDF

(EU_SHOE)

that

converts

an

American

shoe

size

to

the

equivalent

European

shoe

size.

(These

two

shoe

sizes

could

be

UDTs.)

For

this

UDF,

you

might

set

the

statistic

columns

as

follows:

v

INSTS_PER_INVOC:

set

to

the

estimated

number

of

machine

instructions

required

to:

–

Invoke

EU_SHOE

–

Initialize

the

output

string

–

Return

the

result.
v

INSTS_PER_ARGBYTE:

set

to

the

estimated

number

of

machine

instructions

required

to

convert

the

input

string

into

a

European

shoe

size.

v

PERCENT_ARGBYTES:

set

to

100

indicating

that

the

entire

input

string

is

to

be

converted

v

INITIAL_INSTS,

IOS_PER_INVOC,

IOS_PER_ARGBYTE,

and

INITIAL_IOS:

set

each

to

0,

since

this

UDF

only

performs

computations.

Chapter

5.

System

catalog

statistics

123

PERCENT_ARGBYTES

would

be

used

by

a

function

that

does

not

always

process

the

entire

input

string.

For

example,

consider

a

UDF

(LOCATE)

that

accepts

two

arguments

as

input

and

returns

the

starting

position

of

the

first

occurrence

of

the

first

argument

within

the

second

argument.

Assume

that

the

length

of

the

first

argument

is

small

enough

to

be

insignificant

relative

to

the

second

argument

and,

on

average,

75

percent

of

the

second

argument

is

searched.

Based

on

this

information,

PERCENT_ARGBYTES

should

be

set

to

75.

The

above

estimate

of

the

average

of

75

percent

is

based

on

the

following

additional

assumptions:

v

Half

the

time

the

first

argument

is

not

found,

which

results

in

searching

the

entire

second

argument.

v

The

first

argument

is

equally

likely

to

appear

anywhere

within

the

second

argument,

which

results

in

searching

half

of

the

second

argument

(on

average)

when

the

first

argument

is

found.

You

can

use

INITIAL_INSTS

or

INITIAL_IOS

to

record

the

estimated

number

of

machine

instructions

or

read/write

requests

that

are

performed

only

the

first

or

last

time

the

function

is

invoked,

such

as

to

record

the

cost

of

setting

up

a

scratchpad

area.

To

obtain

information

about

I/Os

and

instructions

used

by

a

user-defined

function,

you

can

use

output

provided

by

your

programming

language

compiler

or

by

monitoring

tools

available

for

your

operating

system.

Related

concepts:

v

“Catalog

statistics

tables”

on

page

106

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

Catalog

statistics

for

modeling

and

what-if

planning

You

can

change

the

statistical

information

in

the

system

catalogs

so

that

it

does

not

reflect

the

actual

state

of

tables

and

indexes

but

allows

you

to

examine

various

possible

changes

to

the

database

for

planning

purposes.

The

ability

to

update

selected

system

catalog

statistics

allows

you

to:

v

Model

query

performance

on

a

development

system

using

production

system

statistics

v

Perform

“what-if”

query

performance

analysis.

Do

not

manually

update

statistics

on

a

production

system.

If

you

do,

the

optimizer

might

not

choose

the

best

access

plan

for

production

queries

that

contain

dynamic

SQL.

Requirements

You

must

have

explicit

DBADM

authority

for

the

database

to

modify

statistics

for

tables

and

indexes

and

their

components.

That

is,

your

user

ID

is

recorded

as

having

DBADM

authority

in

the

SYSCAT.DBAUTH

table.

Belonging

to

a

DBADM

group

does

not

explicitly

provide

this

authority.

A

DBADM

can

see

statistics

rows

for

all

users,

and

can

execute

SQL

UPDATE

statements

against

the

views

defined

in

the

SYSSTAT

schema

to

update

the

values

of

these

statistical

columns.

A

user

without

DBADM

authority

can

see

only

those

rows

which

contain

statistics

for

objects

over

which

they

have

CONTROL

privilege.

If

you

do

not

have

DBADM

authority,

you

can

change

statistics

for

individual

database

objects

if

you

have

the

following

privileges

for

each

object:

124

Administration

Guide:

Performance

v

Explicit

CONTROL

privilege

on

tables.

You

can

also

update

statistics

for

columns

and

indexes

for

these

tables.

v

Explicit

CONTROL

privilege

on

nicknames

in

a

federated

database

system.

You

can

also

update

statistics

for

columns

and

indexes

for

these

nicknames.

Note

that

the

update

only

affects

local

metadata

(data-source

table

statistics

are

not

changed).

These

updates

affect

only

the

global

access

strategy

generated

by

the

DB2®

optimizer.

v

Ownership

of

user-defined

functions

(UDFs)

The

following

shows

an

example

of

updating

the

table

statistics

for

the

EMPLOYEE

table:

UPDATE

SYSSTAT.TABLES

SET

CARD

=

10000,

NPAGES

=

1000,

FPAGES

=

1000,

OVERFLOW

=

2

WHERE

TABSCHEMA

=

’userid’

AND

TABNAME

=

’EMPLOYEE’

You

must

be

careful

when

manually

updating

catalog

statistics.

Arbitrary

changes

can

seriously

alter

the

performance

of

subsequent

queries.

Even

in

a

non-production

database

that

you

are

using

for

testing

or

modeling,

you

can

use

any

of

the

following

methods

to

refresh

updates

you

applied

to

these

tables

and

bring

the

statistics

to

a

consistent

state:

v

ROLLBACK

the

unit

of

work

in

which

the

changes

have

been

made

(assuming

the

unit

of

work

has

not

been

committed).

v

Use

the

RUNSTATS

utility

to

recalculate

and

refresh

the

catalog

statistics.

v

Update

the

catalog

statistics

to

indicate

that

statistics

have

not

been

gathered.

(For

example,

setting

column

NPAGES

to

-1

indicates

that

the

number-of-pages

statistic

has

not

been

collected.)

v

Replace

the

catalog

statistics

with

the

data

they

contained

before

you

made

any

changes.

This

method

is

possible

only

if

you

used

the

db2look

tool

to

capture

the

statistics

before

you

made

any

changes.

In

some

cases,

the

optimizer

may

determine

that

some

particular

statistical

value

or

combination

of

values

is

not

valid.

It

will

use

default

values

and

issue

a

warning.

Such

circumstances

are

rare,

however,

since

most

of

the

validation

is

done

when

updating

the

statistics.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Statistics

for

user-defined

functions”

on

page

123

v

“Statistics

for

modeling

production

databases”

on

page

125

Statistics

for

modeling

production

databases

Sometimes

you

may

want

your

test

system

to

contain

a

subset

of

your

production

system’s

data.

However,

access

plans

selected

for

such

a

test

system

are

not

necessarily

the

same

as

those

that

would

be

selected

on

the

production

system,

unless

the

catalog

statistics

and

the

configuration

parameters

for

the

test

system

are

updated

to

match

those

of

the

production

system.

A

productivity

tool,

db2look,

can

be

run

against

the

production

database

to

generate

the

update

statements

required

to

make

the

catalog

statistics

of

the

test

database

Chapter

5.

System

catalog

statistics

125

match

those

in

production.

These

update

statements

can

be

generated

by

using

db2look

in

mimic

mode

(-m

option).

In

this

case,

db2look

will

generate

a

command

processor

script

containing

all

the

statements

required

to

mimic

the

catalog

statistics

of

the

production

database.

This

can

be

useful

when

analyzing

SQL

statements

through

Visual

Explain

in

a

test

environment.

You

can

recreate

database

data

objects,

including

tables,

views,

indexes,

and

other

objects

in

a

database,

by

extracting

DDL

statements

with

db2look

-e.

You

can

run

the

command

processor

script

created

from

this

command

against

another

database

to

recreate

the

database.

You

can

use

-e

option

and

the

-m

option

together

in

a

script

that

re-creates

the

database

and

sets

the

statistics.

After

running

the

update

statements

produced

by

db2look

against

the

test

system,

the

test

system

can

be

used

to

validate

the

access

plans

to

be

generated

in

production.

Since

the

optimizer

uses

the

type

and

configuration

of

the

table

spaces

to

estimate

I/O

costs,

the

test

system

must

have

the

same

table

space

geometry

or

layout.

That

is,

the

same

number

of

containers

of

the

same

type,

either

SMS

or

DMS.

The

db2look

tool

is

found

under

the

bin

subdirectory.

For

more

information

on

how

to

use

this

productivity

tool,

type

the

following

on

a

command

line:

db2look

-h

The

Control

Center

also

provides

an

interface

to

the

db2look

utility

called

“Generate

SQL

-

Object

Name”.

Using

the

Control

Center

allows

the

results

file

from

the

utility

to

be

integrated

into

the

Script

Center.

You

can

also

schedule

the

db2look

command

from

the

Control

Center.

One

difference

when

using

the

Control

Center

is

that

only

single

table

analysis

can

be

done

as

opposed

to

a

maximum

of

thirty

tables

in

a

single

call

using

the

db2look

command.

You

should

also

be

aware

that

LaTex

and

Graphical

outputs

are

not

supported

from

the

Control

Center.

You

can

also

run

the

db2look

utility

against

an

OS/390

or

z/OS

database.

The

db2look

utility

extracts

the

DDL

and

UPDATE

statistics

statements

for

OS/390

objects.

This

is

very

useful

if

you

would

like

to

extract

OS/390

or

z/OS

objects

and

re-create

them

in

a

DB2®

Universal

Database

(UDB)

database.

/p>

There

are

some

differences

between

the

DB2

UDB

statistics

and

the

OS/390

statistics.

The

db2look

utility

performs

the

appropriate

conversions

from

DB2

for

OS/390

or

z/OS

to

DB2

UDB

when

this

is

applicable

and

sets

to

a

default

value

(-1)

the

DB2

UDB

statistics

for

which

a

DB2

for

OS/390

counterpart

does

not

exist.

Here

is

how

the

db2look

utility

maps

the

DB2

for

OS/390

or

z/OS

statistics

to

DB2

UDB

statistics.

In

the

discussion

below,

“UDB_x”

stands

for

a

DB2

UDB

statistics

column;

and,

“S390_x”

stands

for

a

DB2

for

OS/390

or

z/OS

statistics

column.

1.

Table

Level

Statistics.

UDB_CARD

=

S390_CARDF

UDB_NPAGES

=

S390_NPAGES

There

is

no

S390_FPAGES.

However,

DB2

for

OS/390

or

z/OS

has

another

statistics

called

PCTPAGES

which

represents

the

percentage

of

active

table

space

pages

that

contain

rows

of

the

table.

So

it

is

possible

to

calculate

UDB_FPAGES

based

on

S390_NPAGES

and

S390_PCTPAGES

as

follows:

UDB_FPAGES=(S390_NPAGES

*

100)/S390_PCTPAGES

126

Administration

Guide:

Performance

There

is

no

S390_OVERFLOW

to

map

to

UDB_OVERFLOW.

Therefore,

the

db2look

utility

just

sets

this

to

the

default

value:

UDB_OVERFLOW=-1

2.

Column

Level

Statistics.

UDB_COLCARD

=

S390_COLCARDF

UDB_HIGH2KEY

=

S390_HIGH2KEY

UDB_LOW2KEY

=

S390_LOW2KEY

There

is

no

S390_AVGCOLLEN

to

map

to

UDB_AVGCOLLEN

so

the

db2look

utility

just

sets

this

to

the

default

value:

UDB_AVGCOLLEN=-1

3.

Index

Level

Statistics.

UDB_NLEAF

=

S390_NLEAF

UDB_NLEVELS

=

S390_NLEVELS

UDB_FIRSTKEYCARD=

S390_FIRSTKEYCARD

UDB_FULLKEYCARD

=

S390_FULLKEYCARD

UDB_CLUSTERRATIO=

S390_CLUSTERRATIO

The

other

statistics

for

which

there

are

no

OS/390

or

z/OS

counterparts

are

just

set

to

the

default.

That

is:

UDB_FIRST2KEYCARD

=

-1

UDB_FIRST3KEYCARD

=

-1

UDB_FIRST4KEYCARD

=

-1

UDB_CLUSTERFACTOR

=

-1

UDB_SEQUENTIAL_PAGES

=

-1

UDB_DENSITY

=

-1

4.

Column

Distribution

Statistics.

There

are

two

types

of

statistics

in

DB2

for

OS/390

or

z/OS

SYSIBM.SYSCOLUMNS.

Type

“F”

for

frequent

values

and

type

“C”

for

cardinality.

Only

entries

of

type

“F”

are

applicable

to

DB2

for

UDB

and

these

are

the

ones

that

will

be

considered.

UDB_COLVALUE

=

S390_COLVALUE

UDB_VALCOUNT

=

S390_FrequencyF

*

S390_CARD

In

addition,

there

is

no

column

SEQNO

in

DB2

for

OS/390

SYSIBM.SYSCOLUMNS.

Because

this

required

for

DB2

for

UDB,

db2look

generates

one

automatically.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

Related

reference:

v

“db2look

-

DB2

Statistics

and

DDL

Extraction

Tool

Command”

in

the

Command

Reference

General

rules

for

updating

catalog

statistics

manually

When

you

update

catalog

statistics,

the

most

important

general

rule

is

to

ensure

that

valid

values,

ranges,

and

formats

of

the

various

statistics

are

stored

in

the

statistic

views.

It

is

also

important

to

preserve

the

consistency

of

relationships

between

various

statistics.

Chapter

5.

System

catalog

statistics

127

For

example,

COLCARD

in

SYSSTAT.COLUMNS

must

be

less

than

CARD

in

SYSSTAT.TABLES

(the

number

of

distinct

values

in

a

column

can’t

be

greater

than

the

number

of

rows).

Assume

that

you

want

to

reduce

COLCARD

from

100

to

25,

and

CARD

from

200

to

50.

If

you

update

SYSCAT.TABLES

first,

you

should

get

an

error

(since

CARD

would

be

less

than

COLCARD).

The

correct

order

is

to

update

COLCARD

in

SYSCAT.COLUMNS

first,

then

update

CARD

in

SYSSTAT.TABLES.

The

situation

occurs

in

reverse

if

you

want

to

increase

COLCARD

to

250

from

100,

and

CARD

to

300

from

200.

In

this

case,

you

must

update

CARD

first,

then

COLCARD.

When

a

conflict

is

detected

between

an

updated

statistic

and

another

statistic,

an

error

is

issued.

However,

errors

may

not

always

be

issued

when

conflicts

arise.

In

some

situations,

the

conflict

is

difficult

to

detect

and

report

in

an

error,

especially

if

the

two

related

statistics

are

in

different

catalogs.

For

this

reason,

you

should

be

careful

to

avoid

causing

such

conflicts.

The

most

common

checks

you

should

make,

before

updating

a

catalog

statistic,

are:

1.

Numeric™

statistics

must

be

-1

or

greater

than

or

equal

to

zero.

2.

Numeric

statistics

representing

percentages

(for

example,

CLUSTERRATIO

in

SYSSTAT.INDEXES)

must

be

between

0

and

100.

Note:

For

row

types,

the

table

level

statistics

NPAGES,

FPAGES,

and

OVERFLOW

are

not

updateable

for

a

sub-table.

Related

concepts:

v

“Catalog

statistics

tables”

on

page

106

v

“Statistics

for

user-defined

functions”

on

page

123

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“Statistics

for

modeling

production

databases”

on

page

125

v

“Rules

for

updating

column

statistics

manually”

on

page

128

v

“Rules

for

updating

distribution

statistics

manually”

on

page

129

v

“Rules

for

updating

table

and

nickname

statistics

manually”

on

page

130

v

“Rules

for

updating

index

statistics

manually”

on

page

131

Rules

for

updating

column

statistics

manually

When

you

are

updating

statistics

in

SYSSTAT.COLUMNS,

follow

the

guidelines

below.

v

When

manually

updating

HIGH2KEY

and

LOW2KEY

in

SYSSTAT.COLUMNS,

follow

the

behavior

of

the

generated

values:

–

The

values

for

HIGH2KEY,

LOW2KEY

must

be

valid

values

for

the

datatype

of

the

corresponding

user

column.

–

The

length

of

HIGH2KEY,

LOW2KEY

values

must

be

the

smaller

of

33

or

the

maximum

length

of

the

target

column

data

type,

not

including

additional

quotes

which

can

bring

the

length

of

the

string

up

to

68.

This

means

that

only

the

first

33

characters

of

the

value

in

the

corresponding

user

column

will

be

considered

in

determining

the

HIGH2KEY,

LOW2KEY

values.

–

The

HIGH2KEY/LOW2KEY

values

are

stored

in

such

a

way

that

they

can

be

used

on

the

SET

clause

of

an

UPDATE

statement

and

without

manipulation

on

cost

calculations.

For

character

strings,

this

means

single

quotes

are

added

to

the

beginning

and

end

of

the

string

and

an

extra

quote

is

added

for

every

quote

already

in

the

string.

Examples

of

user

column

values

and

their

128

Administration

Guide:

Performance

corresponding

values

in

the

HIGH2KEY,LOW2KEY

are

given

in

the

table

below.

Table

26.

HIGH2KEY

and

LOW2KEY

values

for

datatypes

Datatype

in

user

column

User

data

Corresponding

HIGH2KEY,

LOW2KEY

value

INTEGER

−12

−12

CHAR

abc

'abc'

CHAR

ab'c

'ab''c'

–

HIGH2KEY

should

be

greater

than

LOW2KEY

whenever

there

are

more

than

three

distinct

values

in

the

corresponding

column.
v

The

cardinality

of

a

column

(COLCARD

statistic

in

SYSSTAT.COLUMNS)

cannot

be

greater

than

the

cardinality

of

its

corresponding

table

(CARD

statistic

in

SYSSTAT.TABLES).

v

The

number

of

nulls

in

a

column

(NUMNULLS

statistic

in

SYSSTAT.COLUMNS)

cannot

be

greater

than

the

cardinality

of

its

corresponding

table

(CARD

statistic

in

SYSSTAT.TABLES).

v

No

statistics

are

supported

for

columns

with

data

types:

LONG

VARCHAR,

LONG

VARGRAPHIC,

BLOB,

CLOB,

DBCLOB.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

Rules

for

updating

distribution

statistics

manually

You

update

distribution

statistics

manually

only

to

model

a

production

database

or

perform

what-if

tests

on

an

artificially

constructed

database.

Do

not

update

distribution

statistics

on

a

production

database.

Make

sure

that

all

the

statistics

in

the

catalog

are

consistent.

Specifically,

for

each

column,

the

catalog

entries

for

the

frequent

data

statistics

and

quantiles

must

satisfy

the

following

constraints:

v

Frequent

value

statistics

(in

the

SYSSTAT.COLDIST

catalog).

These

constraints

include:

–

The

values

in

column

VALCOUNT

must

be

unchanging

or

decreasing

for

increasing

values

of

SEQNO.

–

The

number

of

values

in

column

COLVALUE

must

be

less

than

or

equal

to

the

number

of

distinct

values

in

the

column,

which

is

stored

in

column

COLCARD

in

catalog

view

SYSSTAT.COLUMNS.

–

The

sum

of

the

values

in

column

VALCOUNT

must

be

less

than

or

equal

to

the

number

of

rows

in

the

column,

which

is

stored

in

column

CARD

in

catalog

view

SYSSTAT.TABLES.

–

In

most

cases,

the

values

in

the

column

COLVALUE

should

lie

between

the

second-highest

and

second-lowest

data

values

for

the

column,

which

are

stored

in

columns

HIGH2KEY

and

LOW2KEY,

respectively,

in

catalog

view

SYSSTAT.COLUMNS.

There

may

be

one

frequent

value

greater

than

HIGH2KEY

and

one

frequent

value

less

than

LOW2KEY.
v

Quantiles

(in

the

SYSSTAT.COLDIST

catalog).

These

constraints

include:

Chapter

5.

System

catalog

statistics

129

–

The

values

in

column

COLVALUE

must

be

unchanging

or

decreasing

for

increasing

values

of

SEQNO

–

The

values

in

column

VALCOUNT

must

be

increasing

for

increasing

values

of

SEQNO

–

The

largest

value

in

column

COLVALUE

must

have

a

corresponding

entry

in

column

VALCOUNT

equal

to

the

number

of

rows

in

the

column

–

In

most

cases,

the

values

in

the

column

COLVALUE

should

lie

between

the

second-highest

and

second-lowest

data

values

for

the

column,

which

are

stored

in

columns

HIGH2KEY

and

LOW2KEY,

respectively,

in

catalog

view

SYSSTAT.COLUMNS.

Suppose

that

distribution

statistics

are

available

for

a

column

C1

with

“R”

rows

and

you

wish

to

modify

the

statistics

to

correspond

to

a

column

with

the

same

relative

proportions

of

data

values,

but

with

“(F

x

R)”

rows.

To

scale

up

the

frequent-value

statistics

by

a

factor

of

F,

each

entry

in

column

VALCOUNT

must

be

multiplied

by

F.

Similarly,

to

scale

up

the

quantiles

by

a

factor

of

F,

each

entry

in

column

VALCOUNT

must

be

multiplied

by

F.

If

you

do

not

follow

these

rules,

the

optimizer

might

use

the

wrong

filter

factor

and

cause

unpredictable

performance

when

you

run

the

query.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

Rules

for

updating

table

and

nickname

statistics

manually

The

only

statistical

values

that

you

can

update

in

SYSTAT.TABLES

are

CARD,

FPAGES,

NPAGES,

and

OVERFLOW,

and

for

MDC

tables,

ACTIVE_BLOCKS.

Keep

in

mind

that:

1.

CARD

must

be

greater

than

or

equal

to

all

COLCARD

values

in

SYSSTAT.COLUMNS

that

correspond

to

that

table.

2.

CARD

must

be

greater

than

NPAGES.

3.

FPAGES

must

be

greater

than

NPAGES.

4.

NPAGES

must

be

less

than

or

equal

to

any

″Fetch″

value

in

the

PAGE_FETCH_PAIRS

column

of

any

index

(assuming

this

statistic

is

relevant

for

the

index).

5.

CARD

must

not

be

less

than

or

equal

to

any

″Fetch″

value

in

the

PAGE_FETCH_PAIRS

column

of

any

index

(assuming

this

statistic

is

relevant

for

the

index).

When

working

within

a

federated

database

system,

use

caution

when

manually

providing

or

updating

statistics

on

a

nickname

over

a

remote

view.

The

statistical

information,

such

as

the

number

of

rows

this

nickname

will

return,

might

not

reflect

the

real

cost

to

evaluate

this

remote

view

and

thus

might

mislead

the

DB2®

optimizer.

Situations

that

can

benefit

from

statistics

updates

include

remote

views

defined

on

a

single

base

table

with

no

column

functions

applied

on

the

SELECT

list.

Complex

views

may

require

a

complex

tuning

process

which

might

require

that

each

query

be

tuned.

Consider

creating

local

views

over

nicknames

instead

so

the

DB2

optimizer

knows

how

to

derive

the

cost

of

the

view

more

accurately.

Related

concepts:

130

Administration

Guide:

Performance

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

Rules

for

updating

index

statistics

manually

When

you

update

the

statistics

in

SYSSTAT.INDEXES,

follow

the

rules

described

below:

1.

PAGE_FETCH_PAIRS

(in

SYSSTAT.

INDEXES)

must

adhere

to

the

following

rules:

v

Individual

values

in

the

PAGE_FETCH_PAIRS

statistic

must

be

separated

by

a

series

of

blank

delimiters.

v

Individual

values

in

the

PAGE_FETCH_PAIRS

statistic

must

not

be

longer

than

10

digits

and

must

be

less

than

the

maximum

integer

value

(MAXINT

=

2147483647).

v

There

must

always

be

a

valid

PAGE_FETCH_PAIRS

value

if

the

CLUSTERFACTOR

is

greater

than

zero.

v

There

must

be

exactly

11

pairs

in

a

single

PAGE_FETCH_PAIR

statistic.

v

Buffer

size

entries

of

PAGE_FETCH_PAIRS

must

be

ascending

in

value.

v

Any

buffer

size

value

in

a

PAGE_FETCH_PAIRS

entry

cannot

be

greater

than

MIN(NPAGES,

524287)

for

32-bit

operating

system

or

MIN(NPAGES,

2147483647)

for

64-bit

operating

system

where

NPAGES

is

the

number

of

pages

in

the

corresponding

table

(in

SYSSTAT.TABLES).

v

“Fetches”

entries

of

PAGE_FETCH_PAIRS

must

be

descending

in

value,

with

no

individual

“Fetches”

entry

being

less

than

NPAGES.

“Fetch”

size

values

in

a

PAGE_FETCH_PAIRS

entry

cannot

be

greater

than

the

CARD

(cardinality)

statistic

of

the

corresponding

table.

v

If

buffer

size

value

is

the

same

in

two

consecutive

pairs,

then

page

fetch

value

must

also

be

the

same

in

both

the

pairs

(in

SYSSTAT.TABLES).
A

valid

PAGE_FETCH_UPDATE

is:

PAGE_FETCH_PAIRS

=

’100

380

120

360

140

340

160

330

180

320

200

310

220

305

240

300

260

300

280

300

300

300’

where

NPAGES

=

300

CARD

=

10000

CLUSTERRATIO

=

-1

CLUSTERFACTOR

=

0.9

2.

CLUSTERRATIO

and

CLUSTERFACTOR

(in

SYSSTAT.INDEXES)

must

adhere

to

the

following

rules:

v

Valid

values

for

CLUSTERRATIO

are

-1

or

between

0

and

100.

v

Valid

values

for

CLUSTERFACTOR

are

-1

or

between

0

and

1.

v

At

least

one

of

the

CLUSTERRATIO

and

CLUSTERFACTOR

values

must

be

-1

at

all

times.

v

If

CLUSTERFACTOR

is

a

positive

value,

it

must

be

accompanied

by

a

valid

PAGE_FETCH_PAIR

statistic.
3.

The

following

rules

apply

to

FIRSTKEYCARD,

FIRST2KEYCARD,

FIRST3KEYCARD,

FIRST4KEYCARD,

and

FULLKEYCARD:

v

FIRSTKEYCARD

must

be

equal

to

FULLKEYCARD

for

a

single-column

index.

v

FIRSTKEYCARD

must

be

equal

to

COLCARD

(in

SYSSTAT.COLUMNS)

for

the

corresponding

column.

Chapter

5.

System

catalog

statistics

131

|
|
|
|

v

If

any

of

these

index

statistics

are

not

relevant,

you

should

set

them

to

-1.

For

example,

if

you

have

an

index

with

only

3

columns,

set

FIRST4KEYCARD

to

-1.

v

For

multiple

column

indexes,

if

all

the

statistics

are

relevant,

the

relationship

between

them

must

be:

FIRSTKEYCARD

<=

FIRST2KEYCARD

<=

FIRST3KEYCARD

<=

FIRST4KEYCARD

<=

FULLKEYCARD

<=

CARD

4.

The

following

rules

apply

to

SEQUENTIAL_PAGES

and

DENSITY:

v

Valid

values

for

SEQUENTIAL_PAGES

are

-1

or

between

0

and

NLEAF.

v

Valid

values

for

DENSITY

are

-1

or

between

0

and

100.

Related

concepts:

v

“Catalog

statistics”

on

page

95

v

“Catalog

statistics

tables”

on

page

106

v

“Catalog

statistics

for

modeling

and

what-if

planning”

on

page

124

v

“General

rules

for

updating

catalog

statistics

manually”

on

page

127

132

Administration

Guide:

Performance

Chapter

6.

Understanding

the

SQL

compiler

When

an

SQL

query

is

compiled,

a

number

of

steps

are

performed

before

the

selected

access

plan

is

either

executed

or

stored

in

the

system

catalog.

In

a

partitioned

database

environment,

all

of

the

work

done

on

an

SQL

query

by

the

SQL

Compiler

takes

place

at

the

database

partition

to

which

you

connect.

Before

the

compiled

query

runs,

it

is

sent

to

all

database

partitions

in

the

database.

The

topics

in

this

chapter

provide

more

information

about

how

the

SQL

compiler

compiles

and

optimizes

SQL

statements.

The

SQL

compiler

process

The

SQL

compiler

performs

several

steps

to

produce

an

access

plan

that

can

be

executed.

These

steps

are

shown

in

the

following

figure

and

described

in

the

sections

below

the

figure.

Note

that

some

steps

occur

only

for

queries

in

a

federated

database.

©

Copyright

IBM

Corp.

1993

-

2004

133

Query

Graph

Model

The

query

graph

model

is

an

internal,

in-memory

database

that

represents

the

query

as

it

is

processed

in

the

steps

described

below:

1.

Parse

Query

The

SQL

compiler

analyzes

the

SQL

query

to

validate

the

syntax.

If

any

syntax

errors

are

detected,

the

SQL

compiler

stops

processing

and

returns

the

appropriate

SQL

error

to

the

application

that

submitted

the

query.

When

parsing

is

complete,

an

internal

representation

of

the

query

is

created

and

stored

in

the

query

graph

model.

2.

Check

Semantics

The

compiler

ensures

that

there

are

no

inconsistencies

among

parts

of

the

statement.

As

a

simple

example

of

semantic

checking,

the

compiler

verifies

that

the

data

type

of

the

column

specified

for

the

YEAR

scalar

function

is

a

datetime

data

type.

SQL Query

Visual
Explain

db2exfmt
Tool

db2expln
Tool

SQL Compiler

Check
Semantics

Rewrite
Query

Optimize
Access Plan

Generate
Executable Code

Execute Plan

Query
Graph
Model

Access
Plan

Parse Query

Executable
Plan

Explain
Tables

Pushdown
Analysis

Remote SQL
Generation

Figure

12.

Steps

performed

by

SQL

compiler

134

Administration

Guide:

Performance

The

compiler

also

adds

the

behavioral

semantics

to

the

query

graph

model,

including

the

effects

of

referential

constraints,

table

check

constraints,

triggers,

and

views.

The

query

graph

model

contains

all

of

the

semantics

of

the

query,

including

query

blocks,

subqueries,

correlations,

derived

tables,

expressions,

data

types,

data

type

conversions,

code

page

conversions,

and

partitioning

keys.

3.

Rewrite

Query

The

compiler

uses

the

global

semantics

stored

in

the

query

graph

model

to

transform

the

query

into

a

form

that

can

be

optimized

more

easily

and

stores

the

result

in

the

query

graph

model.

For

example,

the

compiler

might

move

a

predicate,

altering

the

level

at

which

it

is

applied

and

potentially

improving

query

performance.

This

type

of

operation

movement

is

called

general

predicate

pushdown.

In

a

partitioned

database

environment,

the

following

query

operations

are

more

computationally

intensive:

v

Aggregation

v

Redistribution

of

rows

v

Correlated

subqueries,

which

are

subqueries

that

contain

a

reference

to

a

column

of

a

table

that

is

outside

of

the

subquery.
For

some

queries

in

a

partitioned

environment,

decorrelation

might

occur

as

part

of

rewriting

the

query.

4.

Pushdown

Analysis

(Federated

Databases)

The

major

task

in

this

step

is

to

recommend

to

the

optimizer

whether

an

operation

can

be

remotely

evaluated

or

pushed-down

at

a

data

source.

This

type

of

pushdown

activity

is

specific

to

data

source

queries

and

represents

an

extension

to

general

predicate

pushdown

operations.

This

step

is

bypassed

unless

you

are

executing

federated

database

queries.

5.

Optimize

Access

Plan

Using

the

query

graph

model

as

input,

the

optimizer

portion

of

the

compiler

generates

many

alternative

execution

plans

for

satisfying

the

query.

To

estimate

the

execution

cost

of

each

alternative

plan,

the

optimizer

uses

the

statistics

for

tables,

indexes,

columns

and

functions.

Then

it

chooses

the

plan

with

the

smallest

estimated

execution

cost.

The

optimizer

uses

the

query

graph

model

to

analyze

the

query

semantics

and

to

obtain

information

about

a

wide

variety

of

factors,

including

indexes,

base

tables,

derived

tables,

subqueries,

correlations

and

recursion.

The

optimizer

can

also

consider

another

type

of

pushdown

operation,

aggregation

and

sort,

which

can

improve

performance

by

pushing

the

evaluation

of

these

operations

to

the

Data

Management

Services

component.

The

optimizer

also

considers

whether

there

are

different

sized

buffer

pools

when

determining

page

size

selection.

That

the

environment

includes

a

partitioned

database

is

also

considered

as

well

as

the

ability

to

enhance

the

chosen

plan

for

the

possibility

of

intra-query

parallelism

in

a

symmetric

multi-processor

(SMP)

environment.

This

information

is

used

by

the

optimizer

to

help

select

the

best

access

plan

for

the

query.

The

output

of

this

step

of

the

compiler

is

an

access

plan.

This

access

plan

provides

the

information

captured

in

the

Explain

tables.

The

information

used

to

generate

the

access

plan

can

be

captured

with

an

explain

snapshot.

6.

Remote

SQL

Generation

(Federated

Databases)

Chapter

6.

Understanding

the

SQL

compiler

135

The

final

plan

selected

by

the

optimizer

might

consist

of

a

set

of

steps

that

operate

on

a

remote

data

source.

For

operations

that

are

performed

by

each

data

source,

the

remote

SQL

generation

step

creates

an

efficient

SQL

statement

based

on

the

data-source

SQL

dialect.

7.

Generate

“Executable”

Code

In

the

final

step,

the

compiler

uses

the

access

plan

and

the

query

graph

model

to

create

an

executable

access

plan,

or

section,

for

the

query.

This

code

generation

step

uses

information

from

the

query

graph

model

to

avoid

repetitive

execution

of

expressions

that

need

to

be

computed

only

once

for

a

query.

Examples

for

which

this

optimization

is

possible

include

code

page

conversions

and

the

use

of

host

variables.

To

enable

query

(re)optimization

of

static

and

dynamic

SQL

statements

that

have

host

variables,

special

registers,

or

parameter

markers,

bind

the

package

with

the

REOPT

bind

option.

If

used,

the

access

path

for

an

SQL

statement,

belonging

to

that

package

and

containing

host

variables,

parameter

markers

or

special

registers,

will

be

optimized

using

the

values

of

these

variables

rather

than

default

estimates

chosen

by

the

compiler.

This

optimization

takes

place

at

query

execution

time

when

the

values

are

available.

Information

about

access

plans

for

static

SQL

is

stored

in

the

system

catalog

tables.

When

the

package

is

executed,

the

database

manager

will

use

the

information

stored

in

the

system

catalog

tables

to

determine

how

to

access

the

data

and

provide

results

for

the

query.

This

information

is

used

by

the

db2expln

tool.

Note:

Execute

RUNSTATS

at

appropriate

intervals

on

tables

that

change

often.

The

optimizer

needs

up-to-date

statistical

information

about

the

tables

and

their

data

to

create

the

most

efficient

access

plans.

Rebind

your

application

to

take

advantage

of

updated

statistics.

If

RUNSTATS

is

not

executed

or

the

optimizer

suspects

that

RUNSTATS

was

executed

on

empty

or

nearly

empty

tables,

it

may

either

use

defaults

or

attempt

to

derive

certain

statistics

based

on

the

number

of

file

pages

used

to

store

the

table

on

disk

(FPAGES).

The

total

number

of

occupied

blocks

is

stored

in

the

ACTIVE_BLOCKS

column.

Related

concepts:

v

“Query

rewriting

methods

and

examples”

on

page

139

v

“Data-access

methods”

on

page

148

v

“Predicate

terminology”

on

page

154

v

“Joins”

on

page

156

v

“Effects

of

sorting

and

grouping”

on

page

171

v

“Optimization

strategies

for

intra-partition

parallelism”

on

page

173

v

“Materialized

query

tables”

on

page

176

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

on

page

182

v

“Advantages

of

Deferred

Binding”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Optimization

strategies

for

MDC

tables”

on

page

175

Configuration

parameters

that

affect

query

optimization

Several

configuration

parameters

affect

the

access

plan

chosen

by

the

SQL

compiler.

Many

of

these

are

appropriate

to

a

single-partition

database

and

some

are

only

appropriate

to

a

partitioned

database.

In

a

partitioned

database,

the

values

used

for

each

parameter

should

be

the

same

on

all

partitions.

136

Administration

Guide:

Performance

|
|
|
|
|
|
|

Note:

When

you

change

a

configuration

parameter

dynamically,

the

optimizer

might

not

read

the

changed

parameter

values

immediately

because

of

older

access

plans

in

the

package

cache.

To

reset

the

package

cache,

execute

the

FLUSH

PACKAGE

CACHE

command.

In

a

federated

system,

if

the

majority

of

your

queries

access

nicknames,

evaluate

the

types

of

queries

that

you

send

before

you

change

your

environment.

For

example,

in

a

federated

database

the

buffer

pool

does

not

cache

pages

from

data

sources,

which

are

the

DBMSs

and

data

within

the

federated

system.

For

this

reason,

increasing

the

size

of

the

buffer

does

not

guarantee

that

the

optimizer

will

consider

additional

access-plan

alternatives

when

it

chooses

an

access

plan

for

queries

that

contain

nicknames.

However,

the

optimizer

might

decide

that

local

materialization

of

data

source

tables

is

the

least-cost

route

or

a

necessary

step

for

a

sort

operation.

In

that

case,

increasing

the

resources

available

to

DB2®

Universal

Database

might

improve

performance.

The

following

configuration

parameters

or

factors

affect

the

access

plan

chosen

by

the

SQL

compiler:

v

The

size

of

the

buffer

pools

that

you

specified

when

you

created

or

altered

them.

When

the

optimizer

chooses

the

access

plan,

it

considers

the

I/O

cost

of

fetching

pages

from

disk

to

the

buffer

pool

and

estimates

the

number

of

I/Os

required

to

satisfy

a

query.

The

estimate

includes

a

prediction

of

buffer-pool

usage,

because

additional

physical

I/Os

are

not

required

to

read

rows

in

a

page

that

is

already

in

the

buffer

pool.

The

optimizer

considers

the

value

of

the

npages

column

in

the

BUFFERPOOLS

system

catalog

tables

and,

on

partitioned

databases,

the

BUFFERPOOLDBPARTITION

system

catalog

tables.

The

I/O

costs

of

reading

the

tables

can

have

an

impact

on:

–

How

two

tables

are

joined

–

Whether

an

unclustered

index

will

be

used

to

read

the

data
v

Default

Degree

(dft_degree)

The

dft_degree

configuration

parameter

specifies

parallelism

by

providing

a

default

value

for

the

CURRENT

DEGREE

special

register

and

the

DEGREE

bind

option.

A

value

of

one

(1)

means

no

intra-partition

parallelism.

A

value

of

minus

one

(-1)

means

the

optimizer

determines

the

degree

of

intra-partition

parallelism

based

on

the

number

of

processors

and

the

type

of

query.

v

Default

Query

Optimization

Class

(dft_queryopt)

Although

you

can

specify

a

query

optimization

class

when

you

compile

SQL

queries,

you

might

set

a

default

optimization

degree.

Note:

Intra-parallel

processing

does

not

occur

unless

you

enable

it

by

setting

the

intra_parallel

database

configuration

parameter.

v

Average

Number

of

Active

Applications

(avg_appls)

The

SQL

optimizer

uses

the

avg_appls

parameter

to

help

estimate

how

much

of

the

buffer

pool

might

be

available

at

run-time

for

the

access

plan

chosen.

Higher

values

for

this

parameter

can

influence

the

optimizer

to

choose

access

plans

that

are

more

conservative

in

buffer

pool

usage.

If

you

specify

a

value

of

1,

the

optimizer

considers

that

the

entire

buffer

pool

will

be

available

to

the

application.

v

Sort

Heap

Size

(sortheap)

If

the

rows

to

be

sorted

occupy

more

than

the

space

available

in

the

sort

heap,

several

sort

passes

are

performed,

where

each

pass

sorts

a

subset

of

the

entire

set

of

rows.

Each

sort

pass

is

stored

in

a

temporary

table

in

the

buffer

pool,

Chapter

6.

Understanding

the

SQL

compiler

137

which

might

be

written

to

disk.

When

all

the

sort

passes

are

complete,

these

sorted

subsets

are

merged

into

a

single

sorted

set

of

rows.

A

sort

is

considered

to

be

“piped”

if

it

does

not

require

a

temporary

table

to

store

the

final,

sorted

list

of

data.

That

is,

the

results

of

the

sort

can

be

read

in

a

single,

sequential

access.

Piped

sorts

result

in

better

performance

than

non-piped

sorts

and

will

be

used

if

possible.

When

choosing

an

access

plan,

the

optimizer

estimates

the

cost

of

the

sort

operations,

including

evaluating

whether

a

sort

can

be

piped,

by:

–

Estimating

the

amount

of

data

to

be

sorted

–

Looking

at

the

sortheap

parameter

to

determine

if

there

is

enough

space

for

the

sort

to

be

piped.
v

Maximum

Storage

for

Lock

List

(locklist)

and

Maximum

Percent

of

Lock

List

Before

Escalation

(maxlocks)

When

the

isolation

level

is

repeatable

read

(RR),

the

SQL

optimizer

considers

the

values

of

the

locklist

and

maxlocks

parameters

to

determine

whether

row

level

locks

might

be

escalated

to

a

table

level

lock.

If

the

optimizer

estimates

that

lock

escalation

will

occur

for

a

table

access,

then

it

chooses

a

table

level

lock

for

the

access

plan,

instead

of

incurring

the

overhead

of

lock

escalation

during

the

query

execution.

v

CPU

Speed

(cpuspeed)

The

SQL

optimizer

uses

the

CPU

speed

to

estimate

the

cost

of

performing

certain

operations.

CPU

cost

estimates

and

various

I/O

cost

estimates

help

select

the

best

access

plan

for

a

query.

The

CPU

speed

of

a

machine

can

have

a

significant

influence

on

the

access

plan

chosen.

This

configuration

parameter

is

automatically

set

to

an

appropriate

value

when

the

database

is

installed

or

migrated.

Do

not

adjust

this

parameter

unless

you

are

modelling

a

production

environment

on

a

test

system

or

assessing

the

impact

of

a

hardware

change.

Using

this

parameter

to

model

a

different

hardware

environment

allows

you

to

find

out

the

access

plans

that

might

be

chosen

for

that

environment.

To

have

DB2

recompute

the

value

of

this

automatic

configuration

parameter,

set

it

to

-1.

v

Statement

Heap

Size

(stmtheap)

Although

the

size

of

the

statement

heap

does

not

influence

the

optimizer

in

choosing

different

access

paths,

it

can

affect

the

amount

of

optimization

performed

for

complex

SQL

statements.

If

the

stmtheap

parameter

is

not

set

large

enough,

you

might

receive

an

SQL

warning

indicating

that

there

is

not

enough

memory

available

to

process

the

statement.

For

example,

SQLCODE

+437

(SQLSTATE

01602)

might

indicate

that

the

amount

of

optimization

that

has

been

used

to

compile

a

statement

is

less

than

the

amount

that

you

requested.

v

Maximum

Query

Degree

of

Parallelism

(max_querydegree)

When

the

max_querydegree

parameter

has

a

value

of

ANY,

the

optimizer

chooses

the

degree

of

parallelism

to

be

used.

If

other

than

ANY

is

present,

then

the

user-specified

value

determines

the

degree

of

parallelism

for

the

application.

v

Communications

Bandwidth

(comm_bandwidth)

Communications

bandwidth

is

used

by

the

optimizer

to

determine

access

paths.

The

optimizer

uses

the

value

in

this

parameter

to

estimate

the

cost

of

performing

certain

operations

between

the

database

partition

servers

of

a

partitioned

database.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

138

Administration

Guide:

Performance

v

“Data-access

methods”

on

page

148

v

“Optimization

strategies

for

intra-partition

parallelism”

on

page

173

v

“Optimization

strategies

for

MDC

tables”

on

page

175

Related

reference:

v

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

v

“comm_bandwidth

-

Communications

bandwidth”

on

page

456

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“stmtheap

-

Statement

heap

size”

on

page

357

v

“cpuspeed

-

CPU

speed”

on

page

457

v

“avg_appls

-

Average

number

of

active

applications”

on

page

378

v

“dft_degree

-

Default

degree”

on

page

431

Query

rewriting

This

section

the

ways

in

which

the

optimizer

can

rewrite

queries

to

improve

performance.

Query

rewriting

methods

and

examples

During

the

rewrite

query

stage,

the

SQL

compiler

transforms

SQL

statements

into

forms

that

can

be

optimized

more

easily,

and

as

a

result,

can

improve

the

possible

access

paths.

Rewriting

queries

is

particularly

important

for

very

complex

queries,

including

those

queries

with

many

subqueries

or

many

joins.

Query

generator

tools

often

create

these

types

of

very

complex

queries.

To

influence

the

number

of

query

rewrite

rules

that

are

applied

to

an

SQL

statement,

change

the

optimization

class.

To

see

some

of

the

results

of

the

query

rewrite,

use

the

Explain

facility

or

Visual

Explain.

Queries

might

be

rewritten

in

any

of

the

following

three

primary

ways:

v

Operation

merging

To

construct

the

query

so

that

it

has

the

fewest

number

of

operations,

especially

SELECT

operations,

the

SQL

compiler

rewrites

queries

to

merge

query

operations.

The

following

examples

illustrate

some

of

the

operations

that

can

be

merged:

–

Example

-

View

Merges

A

SELECT

statement

that

uses

views

can

restrict

the

join

order

of

the

table

and

can

also

introduce

redundant

joining

of

tables.

If

the

views

are

merged

during

query

rewrite,

these

restrictions

can

be

lifted.

–

Example

-

Subquery

to

Join

Transforms

If

a

SELECT

statement

contains

a

subquery,

selection

of

order

processing

of

the

tables

might

be

restricted.

–

Example

-

Redundant

Join

Elimination

During

query

rewrite,

redundant

joins

can

be

removed

to

simplify

the

SELECT

statement.

–

Example

-

Shared

Aggregation

Chapter

6.

Understanding

the

SQL

compiler

139

When

the

query

uses

different

functions,

rewriting

can

reduce

the

number

of

calculations

that

need

to

be

done.
v

Operation

movement

To

construct

the

query

with

the

minimum

number

of

operations

and

predicates,

the

compiler

rewrites

queries

to

move

query

operations.

The

following

examples

illustrate

some

of

the

operations

that

can

be

moved:

–

Example

-

DISTINCT

Elimination

During

query

rewrite,

the

optimizer

can

move

the

point

at

which

the

DISTINCT

operation

is

performed,

to

reduce

the

cost

of

this

operation.

In

the

extended

example

provided,

the

DISTINCT

operation

is

removed

completely.

–

Example

-

General

Predicate

Pushdown

During

query

rewrite,

the

optimizer

can

change

the

order

of

applying

predicates

so

that

more

selective

predicates

are

applied

to

the

query

as

early

as

possible.

–

Example

-

Decorrelation

In

a

partitioned

database

environment,

the

movement

of

results

sets

between

database

partitions

is

costly.

Reducing

the

size

of

what

must

be

broadcast

to

other

database

partitions,

or

reducing

the

number

of

broadcasts,

or

both,

is

an

objective

of

query

rewriting.
v

Predicate

Translation

The

SQL

compiler

rewrites

queries

to

translate

existing

predicates

to

more

optimal

predicates

for

the

specific

query.

The

following

examples

illustrate

some

of

the

predicates

that

might

be

translated:

–

Example

-

Addition

of

Implied

Predicates

During

query

rewrite,

predicates

can

be

added

to

the

query

to

allow

the

optimizer

to

consider

additional

table

joins

when

selecting

the

best

access

plan

for

the

query.

–

Example

-

ON

to

IN

Transformations

During

query

rewrite,

an

OR

predicate

can

be

translated

into

an

IN

predicate

for

a

more

efficient

access

plan.

The

SQL

compiler

can

also

translate

an

IN

predicate

into

an

OR

predicate

if

this

transformation

would

create

a

more

efficient

access

plan.

Related

concepts:

v

“Compiler

rewrite

example:

view

merges”

on

page

140

v

“Compiler

rewrite

example:

DISTINCT

elimination”

on

page

143

v

“Compiler

rewrite

example:

implied

predicates”

on

page

144

v

“Column

correlation

for

multiple

predicates”

on

page

145

Compiler

rewrite

example:

view

merges

Suppose

you

have

access

to

the

following

two

views

of

the

EMPLOYEE

table,

one

showing

employees

with

a

high

level

of

education

and

the

other

view

showing

employees

earning

more

than

$35,000:

CREATE

VIEW

EMP_EDUCATION

(EMPNO,

FIRSTNME,

LASTNAME,

EDLEVEL)

AS

SELECT

EMPNO,

FIRSTNME,

LASTNAME,

EDLEVEL

FROM

EMPLOYEE

WHERE

EDLEVEL

>

17

CREATE

VIEW

EMP_SALARIES

(EMPNO,

FIRSTNAME,

LASTNAME,

SALARY)

AS

SELECT

EMPNO,

FIRSTNME,

LASTNAME,

SALARY

FROM

EMPLOYEE

WHERE

SALARY

>

35000

140

Administration

Guide:

Performance

Now

suppose

you

perform

the

following

query

to

list

the

employees

who

have

a

high

education

level

and

who

are

earning

more

than

$35,000:

SELECT

E1.EMPNO,

E1.FIRSTNME,

E1.LASTNAME,

E1.EDLEVEL,

E2.SALARY

FROM

EMP_EDUCATION

E1,

EMP_SALARIES

E2

WHERE

E1.EMPNO

=

E2.EMPNO

During

query

rewrite,

these

two

views

could

be

merged

to

create

the

following

query:

SELECT

E1.EMPNO,

E1.FIRSTNME,

E1.LASTNAME,

E1.EDLEVEL,

E2.SALARY

FROM

EMPLOYEE

E1,

EMPLOYEE

E2

WHERE

E1.EMPNO

=

E2.EMPNO

AND

E1.EDLEVEL

>

17

AND

E2.SALARY

>

35000

By

merging

the

SELECT

statements

from

the

two

views

with

the

user-written

SELECT

statement,

the

optimizer

can

consider

more

choices

when

selecting

an

access

plan.

In

addition,

if

the

two

views

that

have

been

merged

use

the

same

base

table,

additional

rewriting

may

be

performed.

Example

-

Subquery

to

Join

Transformations

The

SQL

compiler

will

take

a

query

containing

a

subquery,

such

as:

SELECT

EMPNO,

FIRSTNME,

LASTNAME,

PHONENO

FROM

EMPLOYEE

WHERE

WORKDEPT

IN

(SELECT

DEPTNO

FROM

DEPARTMENT

WHERE

DEPTNAME

=

’OPERATIONS’)

and

convert

it

to

a

join

query

of

the

form:

SELECT

DISTINCT

EMPNO,

FIRSTNME,

LASTNAME,

PHONENO

FROM

EMPLOYEE

EMP,

DEPARTMENT

DEPT

WHERE

EMP.WORKDEPT

=

DEPT.DEPTNO

AND

DEPT.DEPTNAME

=

’OPERATIONS’

A

join

is

generally

much

more

efficient

to

execute

than

a

subquery.

Example

-

Redundant

Join

Elimination

Queries

can

sometimes

be

written

or

generated

which

have

unnecessary

joins.

Queries

such

as

the

following

could

also

be

produced

during

the

query

rewrite

stage.

SELECT

E1.EMPNO,

E1.FIRSTNME,

E1.LASTNAME,

E1.EDLEVEL,

E2.SALARY

FROM

EMPLOYEE

E1,

EMPLOYEE

E2

WHERE

E1.EMPNO

=

E2.EMPNO

AND

E1.EDLEVEL

>

17

AND

E2.SALARY

>

35000

In

this

query,

the

SQL

compiler

can

eliminate

the

join

and

simplify

the

query

to:

SELECT

EMPNO,

FIRSTNME,

LASTNAME,

EDLEVEL,

SALARY

FROM

EMPLOYEE

WHERE

EDLEVEL

>

17

AND

SALARY

>

35000

Chapter

6.

Understanding

the

SQL

compiler

141

Another

example

assumes

that

a

referential

constraint

exists

between

the

EMPLOYEE

and

DEPARTMENT

sample

tables

on

the

department

number.

First,

a

view

is

created.

CREATE

VIEW

PEPLVIEW

AS

SELECT

FIRSTNME,

LASTNAME,

SALARY,

DEPTNO,

DEPTNAME,

MGRNO

FROM

EMPLOYEE

E

DEPARTMENT

D

WHERE

E.WORKDEPT

=

D.DEPTNO

Then

a

query

such

as

the

following:

SELECT

LASTNAME,

SALARY

FROM

PEPLVIEW

becomes

SELECT

LASTNAME,

SALARY

FROM

EMPLOYEE

WHERE

WORKDEPT

NOT

NULL

Note

that

in

this

situation,

even

if

users

know

that

the

query

can

be

re-written,

they

may

not

be

able

to

do

so

because

they

do

not

have

access

to

the

underlying

tables.

They

may

only

have

access

to

the

view

shown

above.

Therefore,

this

type

of

optimization

has

to

be

performed

within

the

database

manager.

Redundancy

in

referential

integrity

joins

is

likely

where:

v

Views

are

defined

with

joins

v

Queries

are

automatically

generated.

For

example,

there

are

automated

tools

in

query

managers

which

prevent

users

from

writing

optimized

queries.

Example

-

Shared

Aggregation

Using

multiple

functions

within

a

query

can

generate

several

calculations

which

take

time.

Reducing

the

number

of

calculations

to

be

done

within

the

query

results

in

an

improved

plan.

The

SQL

compiler

takes

a

query

using

multiple

functions

such

as:

SELECT

SUM(SALARY+BONUS+COMM)

AS

OSUM,

AVG(SALARY+BONUS+COMM)

AS

OAVG,

COUNT(*)

AS

OCOUNT

FROM

EMPLOYEE;

and

transforms

the

query

in

the

following

way:

SELECT

OSUM,

OSUM/OCOUNT

OCOUNT

FROM

(SELECT

SUM(SALARY+BONUS+COMM)

AS

OSUM,

COUNT(*)

AS

OCOUNT

FROM

EMPLOYEE)

AS

SHARED_AGG;

This

rewrite

reduces

the

query

from

2

sums

and

2

counts

to

1

sum

and

1

count.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

v

“Query

rewriting

methods

and

examples”

on

page

139

142

Administration

Guide:

Performance

Compiler

rewrite

example:

DISTINCT

elimination

If

the

EMPNO

column

was

defined

as

the

primary

key

of

the

EMPLOYEE

table,

the

following

query:

SELECT

DISTINCT

EMPNO,

FIRSTNME,

LASTNAME

FROM

EMPLOYEE

would

be

rewritten

by

removing

the

DISTINCT

clause:

SELECT

EMPNO,

FIRSTNME,

LASTNAME

FROM

EMPLOYEE

In

the

above

example,

since

the

primary

key

is

being

selected,

the

SQL

compiler

knows

that

each

row

returned

will

already

be

unique.

In

this

case,

the

DISTINCT

key

word

is

redundant.

If

the

query

is

not

rewritten,

the

optimizer

would

need

to

build

a

plan

with

the

necessary

processing,

such

as

a

sort,

to

ensure

that

the

columns

are

distinct.

Example

-

General

Predicate

Pushdown

Altering

the

level

at

which

a

predicate

is

normally

applied

can

result

in

improved

performance.

For

example,

given

the

following

view

which

provides

a

list

of

all

employees

in

department

“D11”:

CREATE

VIEW

D11_EMPLOYEE

(EMPNO,

FIRSTNME,

LASTNAME,

PHONENO,

SALARY,

BONUS,

COMM)

AS

SELECT

EMPNO,

FIRSTNME,

LASTNAME,

PHONENO,

SALARY,

BONUS,

COMM

FROM

EMPLOYEE

WHERE

WORKDEPT

=

’D11’

And

given

the

following

query:

SELECT

FIRSTNME,

PHONENO

FROM

D11_EMPLOYEE

WHERE

LASTNAME

=

’BROWN’

The

query

rewrite

stage

of

the

compiler

will

push

the

predicate

LASTNAME

=

’BROWN’

down

into

the

view

D11_EMPLOYEE.

This

allows

the

predicate

to

be

applied

sooner

and

potentially

more

efficiently.

The

actual

query

that

could

be

executed

in

this

example

is:

SELECT

FIRSTNME,

PHONENO

FROM

EMPLOYEE

WHERE

LASTNAME

=

’BROWN’

AND

WORKDEPT

=

’D11’

Pushdown

of

predicates

is

not

limited

to

views.

Other

situations

in

which

predicates

may

be

pushed

down

include

UNIONs,

GROUP

BYs,

and

derived

tables

(nested

table

expressions

or

common

table

expressions).

Example

-

Decorrelation

In

a

partitioned

database

environment,

the

SQL

compiler

can

rewrite

the

following

query:

Find

all

the

employees

who

are

working

on

programming

projects

and

are

underpaid.

SELECT

P.PROJNO,

E.EMPNO,

E.LASTNAME,

E.FIRSTNAME,

E.SALARY+E.BONUS+E.COMM

AS

COMPENSATION

FROM

EMPLOYEE

E,

PROJECT

P

WHERE

P.EMPNO

=

E.EMPNO

Chapter

6.

Understanding

the

SQL

compiler

143

AND

P.PROJNAME

LIKE

’%PROGRAMMING%’

AND

E.SALARY+E.BONUS+E.COMM

<

(SELECT

AVG(E1.SALARY+E1.BONUS+E1.COMM)

FROM

EMPLOYEE

E1,

PROJECT

P1

WHERE

P1.PROJNAME

LIKE

’%PROGRAMMING%’

AND

P1.PROJNO

=

A.PROJNO

AND

E1.EMPNO

=

P1.EMPNO)

Since

this

query

is

correlated,

and

since

both

PROJECT

and

EMPLOYEE

are

unlikely

to

be

partitioned

on

PROJNO,

the

broadcast

of

each

project

to

each

database

partition

is

possible.

In

addition,

the

subquery

would

have

to

be

evaluated

many

times.

The

SQL

compiler

can

rewrite

the

query

as

follows:

v

Determine

the

distinct

list

of

employees

working

on

programming

projects

and

call

it

DIST_PROJS.

It

must

be

distinct

to

ensure

that

aggregation

is

done

once

only

for

each

project:

WITH

DIST_PROJS(PROJNO,

EMPNO)

AS

(SELECT

DISTINCT

PROJNO,

EMPNO

FROM

PROJECT

P1

WHERE

P1.PROJNAME

LIKE

’%PROGRAMMING%’)

v

Using

the

distinct

list

of

employees

working

on

the

programming

projects,

join

this

to

the

employee

table,

to

get

the

average

compensation

per

project,

AVG_PER_PROJ:

AVG_PER_PROJ(PROJNO,

AVG_COMP)

AS

(SELECT

P2.PROJNO,

AVG(E1.SALARY+E1.BONUS+E1.COMM)

FROM

EMPLOYEE

E1,

DIST_PROJS

P2

WHERE

E1.EMPNO

=

P2.EMPNO

GROUP

BY

P2.PROJNO)

v

Then

the

new

query

would

be:

SELECT

P.PROJNO,

E.EMPNO,

E.LASTNAME,

E.FIRSTNAME,

E.SALARY+E.BONUS+E.COMM

AS

COMPENSATION

FROM

PROJECT

P,

EMPLOYEE

E,

AVG_PER_PROG

A

WHERE

P.EMPNO

=

E.EMPNO

AND

P.PROJNAME

LIKE

’%PROGRAMMING%’

AND

P.PROJNO

=

A.PROJNO

AND

E.SALARY+E.BONUS+E.COMM

<

A.AVG_COMP

The

rewritten

SQL

query

computes

the

AVG_COMP

per

project

(AVG_PRE_PROJ)

and

can

then

broadcast

the

result

to

all

database

partitions

containing

the

EMPLOYEE

table.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

v

“Query

rewriting

methods

and

examples”

on

page

139

Compiler

rewrite

example:

implied

predicates

The

following

query

produces

a

list

of

the

managers

whose

departments

report

to

“E01”

and

the

projects

for

which

those

managers

are

responsible:

SELECT

DEPT.DEPTNAME

DEPT.MGRNO,

EMP.LASTNAME,

PROJ.PROJNAME

FROM

DEPARTMENT

DEPT,

EMPLOYEE

EMP,

PROJECT

PROJ

WHERE

DEPT.ADMRDEPT

=

’E01’

AND

DEPT.MGRNO

=

EMP.EMPNO

AND

EMP.EMPNO

=

PROJ.RESPEMP

The

query

rewrite

adds

the

following

implied

predicate:

144

Administration

Guide:

Performance

DEPT.MGRNO

=

PROJ.RESPEMP

As

a

result

of

this

rewrite,

the

optimizer

can

consider

additional

joins

when

it

is

trying

to

select

the

best

access

plan

for

the

query.

In

addition

to

the

above

predicate

transitive

closure,

query

rewrite

also

derives

additional

local

predicates

based

on

the

transitivity

implied

by

equality

predicates.

For

example,

the

following

query

lists

the

names

of

the

departments

whose

department

number

is

greater

than

“E00”

and

the

employees

who

work

in

those

departments.

SELECT

EMPNO,

LASTNAME,

FIRSTNAME,

DEPTNO,

DEPTNAME

FROM

EMPLOYEE

EMP,

DEPARTMENT

DEPT

WHERE

EMP.WORKDEPT

=

DEPT.DEPTNO

AND

DEPT.DEPTNO

>

’E00’

For

this

query,

the

rewrite

stage

adds

the

following

implied

predicate:

EMP.WORKDEPT

>

’E00’

As

a

result

of

this

rewrite,

the

optimizer

reduces

the

number

of

rows

to

be

joined.

Example

-

OR

to

IN

Transformations

Suppose

an

OR

clause

connects

two

or

more

simple

equality

predicates

on

the

same

column,

as

in

the

following

example:

SELECT

*

FROM

EMPLOYEE

WHERE

DEPTNO

=

’D11’

OR

DEPTNO

=

’D21’

OR

DEPTNO

=

’E21’

If

there

is

no

index

on

the

DEPTNO

column,

converting

the

OR

clause

to

the

following

IN

predicate

allows

the

query

to

be

processed

more

efficiently:

SELECT

*

FROM

EMPLOYEE

WHERE

DEPTNO

IN

(’D11’,

’D21’,

’E21’)

Note:

In

some

cases,

the

database

manager

might

convert

an

IN

predicate

to

a

set

of

OR

clauses

so

that

index

ORing

might

be

performed.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

v

“Query

rewriting

methods

and

examples”

on

page

139

Column

correlation

for

multiple

predicates

Your

applications

might

contain

queries

that

are

constructed

with

joins

such

that

more

than

one

join

predicate

joins

two

tables.

This

is

not

unusual

when

queries

need

to

determine

relationships

between

similar,

related

columns

in

different

tables.

For

example,

consider

a

manufacturer

who

makes

products

from

raw

material

of

various

colors,

elasticities

and

qualities.

The

finished

product

has

the

same

color

and

elasticity

as

the

raw

material

from

which

it

is

made.

The

manufacturer

issues

the

query:

Chapter

6.

Understanding

the

SQL

compiler

145

SELECT

PRODUCT.NAME,

RAWMATERIAL.QUALITY

FROM

PRODUCT,

RAWMATERIAL

WHERE

PRODUCT.COLOR

=

RAWMATERIAL.COLOR

AND

PRODUCT.ELASTICITY

=

RAWMATERIAL.ELASTICITY

This

query

returns

the

names

and

raw

material

quality

of

all

products.

There

are

two

join

predicates:

PRODUCT.COLOR

=

RAWMATERIAL.COLOR

PRODUCT.ELASTICITY

=

RAWMATERIAL.ELASTICITY

When

the

optimizer

chooses

a

plan

for

executing

this

query,

it

calculates

how

selective

each

of

the

two

predicates

is.

It

assumes

that

they

are

independent,

which

means

that

all

variations

of

elasticity

occur

for

each

color,

and

that

conversely

for

each

level

of

elasticity

there

is

raw

material

of

every

color.

It

then

estimate

the

overall

selectivity

of

the

pair

of

predicates

by

using

catalog

statistic

information

for

each

table

on

the

number

of

levels

of

elasticity

and

the

number

of

different

colors.

Based

on

this

estimate,

it

may

choose,

for

example,

a

nested

loop

join

in

preference

to

a

merge

join,

or

vice

versa.

However,

it

may

be

that

these

two

predicates

are

not

independent.

For

example,

it

may

be

that

the

highly

elastic

materials

are

available

in

only

a

few

colors,

and

the

very

inelastic

materials

are

only

available

in

a

few

other

colors

that

are

different

from

the

elastic

ones.

Then

the

combined

selectivity

of

the

predicates

eliminates

fewer

rows

so

the

query

will

return

more

rows.

Consider

the

extreme

case,

in

which

there

is

just

one

level

of

elasticity

for

each

color

and

vice

versa.

Now

either

one

of

the

predicates

logically

could

be

omitted

entirely

since

it

is

implied

by

the

other.

The

optimizer

might

no

longer

choose

the

best

plan.

For

example,

it

might

choose

a

nested

loop

join

plan

when

the

merge

join

would

be

faster.

With

other

database

products,

database

administrators

have

tried

to

solve

this

performance

problem

by

updating

statistics

in

the

catalog

to

try

to

make

one

of

the

predicates

appear

to

be

less

selective,

but

this

approach

can

cause

unwanted

side

effects

on

other

queries.

The

DB2®

UDB

optimizer

attempts

to

detect

and

compensate

for

correlation

of

join

predicates

if

you

define

an

index

on

those

columns

or

if

you

collect

and

maintain

group

column

statistics

on

the

appropriate

columns.

For

example,

in

elasticity

example

above,

you

might

define

a

unique

index

covering

either:

PRODUCT.COLOR,

PRODUCT.ELASTICITY

or

RAWMATERIAL.COLOR,

RAWMATERIAL.ELASTICITY

or

both.

For

the

optimizer

to

detect

correlation,

the

non-include

columns

of

this

index

must

be

only

the

correlated

columns.

The

index

may

also

contain

include

columns

to

allow

index-only

scans.

If

there

are

more

than

two

correlated

columns

in

join

predicates,

make

sure

that

you

define

the

unique

index

to

cover

all

of

them.

In

many

cases,

the

correlated

columns

in

one

table

are

its

primary

key.

Because

a

primary

key

is

always

unique,

you

do

not

need

to

define

another

unique

index.

After

creating

appropriate

indexes,

ensure

that

statistics

on

tables

are

up

to

date

and

that

they

have

not

been

manually

altered

from

the

true

values

for

any

reason,

such

as

to

attempt

to

influence

the

optimizer.

146

Administration

Guide:

Performance

|
|
|

The

optimizer

uses

the

information

in

the

FIRSTnKEYCARD

and

FULLKEYCARD

columns

of

the

unique

index

statistics

table

to

detect

cases

of

correlation,

and

dynamically

adjust

combined

selectivities

of

the

correlated

predicates,

thus

obtaining

a

more

accurate

estimate

of

the

join

size

and

cost.

As

an

alternative,

column

group

statistics

can

be

collected

on

a

set

of

columns.

In

the

elasticity

example

above,

you

might

gather

statistics

on

the

columns

PRODUCT.COLOR,

PRODUCT.ELASTICITY

and/or

RAWMATERIAL.COLOR,

RAWMATERIAL.ELASTCITY.

Column

group

statistics

are

collected

using

the

″ON

COLUMNS″

option

of

RUNSTATS.

For

example,

to

collect

the

column

group

statistics

on

PRODUCT.COLOR

and

PRODUCT.ELASTICITY,

issue

the

following

RUNSTATS

command:

RUNSTATS

ON

TABLE

product

ON

COLUMNS

((color,

elasticity))

Correlation

of

simple

equal

predicates

In

addition

to

JOIN

predicate

correlation,

the

optimizer

also

manages

correlation

with

simple

equal

predicates

of

the

type

COL

=

constant.

For

example,

consider

a

table

of

different

types

of

cars,

each

having

a

MAKE

(that

is,

a

manufacturer),

MODEL,

YEAR,

COLOR,

and

STYLE,

such

as

sedan,

station

wagon,

sports-utility

vehicle.

Because

almost

every

manufacturer

makes

the

same

standard

colors

available

on

each

of

their

models

and

styles,

year

after

year,

predicates

on

COLOR

are

likely

to

be

independent

of

those

on

MAKE,

MODEL,

STYLE,

or

YEAR.

However,

the

predicates

MAKE

and

MODEL

certainly

are

not

independent

since

only

a

single

car

maker

would

make

a

model

with

a

particular

name.

Identical

model

names

used

by

two

or

more

car

makers

is

very

unlikely

and

certainly

not

wanted

by

the

car

makers.

If

an

index

exists

on

the

two

columns

MAKE

and

MODEL

or

column

group

statistics

are

gathered,

the

optimizer

uses

the

statistical

information

about

the

index

or

columns

to

determine

the

combined

number

of

distinct

values

and

adjust

the

selectivity

or

cardinality

estimation

for

correlation

between

the

two

columns.

If

such

predicates

are

not

join

predicates,

the

optimizer

does

not

need

a

unique

index

to

make

the

adjustment.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

v

“Query

rewriting

methods

and

examples”

on

page

139

Query

optimization

using

the

REOPT

bind

option

To

enable

query

optimization

(or

reoptimization)

of

static

and

dynamic

SQL

statements

that

have

host

variables,

special

registers,

or

parameter

markers,

bind

the

package

with

the

REOPT

bind

option.

When

this

option

is

used,

the

access

path

for

an

SQL

statement

that

both

belongs

to

the

package

and

contains

host

variables,

parameter

markers

or

special

registers,

will

be

optimized

using

the

values

of

these

variables

rather

than

the

default

estimates

that

are

chosen

by

the

compiler.

The

optimization

takes

place

at

query

execution

time

when

the

values

are

available.

Related

concepts:

Chapter

6.

Understanding

the

SQL

compiler

147

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

v

“Effects

of

REOPT

on

static

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Effects

of

REOPT

on

dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Data

access

methods

This

section

describes

the

methods

the

optimizer

can

choose

to

access

data

required

by

a

query.

Data-access

methods

When

it

compiles

an

SQL

statement,

the

SQL

optimizer

estimates

the

execution

cost

of

different

ways

of

satisfying

the

query.

Based

on

its

estimates,

the

optimizer

selects

an

optimal

access

plan.

An

access

plan

specifies

the

order

of

operations

required

to

resolve

an

SQL

statement.

When

an

application

program

is

bound,

a

package

is

created.

This

package

contains

access

plans

for

all

of

the

static

SQL

statements

in

that

application

program.

Access

plans

for

dynamic

SQL

statements

are

created

at

the

time

that

the

application

is

executed.

There

are

two

ways

to

access

data

in

a

table:

v

Scanning

the

entire

table

sequentially

v

Locating

specific

table

rows

by

first

accessing

an

index

on

the

table

To

produce

the

results

that

the

query

requests,

rows

are

selected

depending

on

the

terms

of

the

predicate,

which

are

usually

stated

in

a

WHERE

clause.

The

selected

rows

in

accessed

tables

are

joined

to

produce

the

result

set,

and

the

result

set

might

be

further

processed

by

grouping

or

sorting

the

output.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

v

“Data

access

through

index

scans”

on

page

148

v

“Types

of

index

access”

on

page

151

v

“Index

access

and

cluster

ratios”

on

page

153

Data

access

through

index

scans

An

index

scan

occurs

when

the

database

manager

accesses

an

index

for

any

of

the

following

reasons:

v

To

narrow

the

set

of

qualifying

rows

(by

scanning

the

rows

in

a

certain

range

of

the

index)

before

accessing

the

base

table.

The

index

scan

range

(the

start

and

stop

points

of

the

scan)

is

determined

by

the

values

in

the

query

against

which

index

columns

are

being

compared.

v

To

order

the

output.

v

To

retrieve

the

requested

column

data

directly.

If

all

of

the

requested

data

is

in

the

index,

the

indexed

table

does

not

need

to

be

accessed.

This

is

known

as

an

index-only

access.

If

indexes

are

created

with

the

ALLOW

REVERSE

SCANS

option,

scans

may

also

be

performed

in

the

direction

opposite

to

that

with

which

they

were

defined.

Note:

The

optimizer

chooses

a

table

scan

if

no

appropriate

index

has

been

created

or

if

an

index

scan

would

be

more

costly.

An

index

scan

might

be

more

148

Administration

Guide:

Performance

|
|

|
|

costly

when

the

table

is

small

the

index-clustering

ratio

is

low,

or

the

query

requires

most

of

the

table

rows.

To

find

out

whether

the

access

plan

uses

a

table

scan

or

an

index

scan,

use

the

SQL

Explain

facility.

Index

Scans

to

Delimit

a

Range

To

determine

whether

an

index

can

be

used

for

a

particular

query,

the

optimizer

evaluates

each

column

of

the

index

starting

with

the

first

column

to

see

if

it

can

be

used

to

satisfy

equality

and

other

predicates

in

the

WHERE

clause.

A

predicate

is

an

element

of

a

search

condition

in

a

WHERE

clause

that

expresses

or

implies

a

comparison

operation.

Predicates

that

can

be

used

to

delimit

the

range

of

an

index

scan

in

the

following

cases:

v

Tests

for

equality

against

a

constant,

a

host

variable,

an

expression

that

evaluates

to

a

constant,

or

a

keyword

v

Tests

for

“IS

NULL”

or

“IS

NOT

NULL”

v

Tests

for

equality

against

a

basic

subquery,

which

is

a

subquery

that

does

not

contain

ANY,

ALL,

or

SOME,

and

the

subquery

does

not

have

a

correlated

column

reference

to

its

immediate

parent

query

block

(that

is,

the

SELECT

for

which

this

subquery

is

a

subselect).

v

Tests

for

strict

and

inclusive

inequality.

The

following

examples

illustrate

when

an

index

might

be

used

to

limit

a

range:

v

Consider

an

index

with

the

following

definition:

INDEX

IX1:

NAME

ASC,

DEPT

ASC,

MGR

DESC,

SALARY

DESC,

YEARS

ASC

In

this

case,

the

following

predicates

might

be

used

to

limit

the

range

of

the

scan

of

index

IX1:

WHERE

NAME

=

:hv1

AND

DEPT

=

:hv2

or

WHERE

MGR

=

:hv1

AND

NAME

=

:hv2

AND

DEPT

=

:hv3

Note

that

in

the

second

WHERE

clause,

the

predicates

do

not

have

to

be

specified

in

the

same

order

as

the

key

columns

appear

in

the

index.

Although

the

examples

use

host

variables,

other

variables

such

as

parameter

markers,

expressions,

or

constants

would

have

the

same

effect.

v

Consider

a

single

index

created

using

the

ALLOW

REVERSE

SCANS

parameter.

Such

indexes

support

scans

in

the

direction

defined

when

the

index

was

created

as

well

as

in

the

opposite

or

reverse

direction.

The

statement

might

look

something

like

this:

CREATE

INDEX

iname

ON

tname

(cname

DESC)

ALLOW

REVERSE

SCANS

In

this

case,

the

index

(iname)

is

formed

based

on

DESCending

values

in

cname.

By

allowing

reverse

scans,

although

the

index

on

the

column

is

defined

for

scans

in

descending

order,

a

scan

can

be

done

in

ascending

order.

The

actual

use

of

the

index

in

both

directions

is

not

controlled

by

you

but

by

the

optimizer

when

creating

and

considering

access

plans.

Chapter

6.

Understanding

the

SQL

compiler

149

In

the

following

WHERE

clause,

only

the

predicates

for

NAME

and

DEPT

would

be

used

in

delimiting

the

range

of

the

index

scan,

but

not

the

predicates

for

SALARY

or

YEARS:

WHERE

NAME

=

:hv1

AND

DEPT

=

:hv2

AND

SALARY

=

:hv4

AND

YEARS

=

:hv5

This

is

because

there

is

a

key

column

(MGR)

separating

these

columns

from

the

first

two

index

key

columns,

so

the

ordering

would

be

off.

However,

once

the

range

is

determined

by

the

NAME

=

:hv1

and

DEPT

=

:hv2

predicates,

the

remaining

predicates

can

be

evaluated

against

the

remaining

index

key

columns.

Index

Scans

to

Test

Inequality

Certain

inequality

predicates

can

delimit

the

range

of

an

index

scan.

There

are

two

types

of

inequality

predicates:

v

Strict

inequality

predicates

The

strict

inequality

operators

used

for

range

delimiting

predicates

are

greater

than

(

>

)

and

less

than

(

<

).

Only

one

column

with

strict

inequality

predicates

is

considered

for

delimiting

a

range

for

an

index

scan.

In

the

following

example,

the

predicates

on

the

NAME

and

DEPT

columns

can

be

used

to

delimit

the

range,

but

the

predicate

on

the

MGR

column

cannot

be

used.

WHERE

NAME

=

:hv1

AND

DEPT

>

:hv2

AND

DEPT

<

:hv3

AND

MGR

<

:hv4

v

Inclusive

inequality

predicates

The

following

are

inclusive

inequality

operators

that

can

be

used

for

range

delimiting

predicates:

–

>=

and

<=

–

BETWEEN

–

LIKE
For

delimiting

a

range

for

an

index

scan,

multiple

columns

with

inclusive

inequality

predicates

will

be

considered.

In

the

following

example,

all

of

the

predicates

can

be

used

to

delimit

the

range

of

the

index

scan:

WHERE

NAME

=

:hv1

AND

DEPT

>=

:hv2

AND

DEPT

<=

:hv3

AND

MGR

<=

:hv4

To

further

illustrate

this

example,

suppose

that

:hv2

=

404,

:hv3

=

406,

and

:hv4

=

12345.

The

database

manager

will

scan

the

index

for

all

of

departments

404

and

405,

but

it

will

stop

scanning

department

406

when

it

reaches

the

first

manager

that

has

an

employee

number

(MGR

column)

greater

than

12345.

Index

Scans

to

Order

Data

If

the

query

requires

output

in

sorted

order,

an

index

might

be

used

to

order

the

data

if

the

ordering

columns

appear

consecutively

in

the

index,

starting

from

the

first

index

key

column.

Ordering

or

sorting

can

result

from

operations

such

as

ORDER

BY,

DISTINCT,

GROUP

BY,

“=

ANY”

subquery,

“>

ALL”

subquery,

“<

ALL”

subquery,

INTERSECT

or

EXCEPT,

UNION.

An

exception

to

this

is

when

the

150

Administration

Guide:

Performance

index

key

columns

are

compared

for

equality

against

“constant

values”,

which

is

any

expression

that

evaluates

to

a

constant.

In

this

case

the

ordering

column

can

be

other

than

the

first

index

key

columns.

Consider

the

following

query:

WHERE

NAME

=

’JONES’

AND

DEPT

=

’D93’

ORDER

BY

MGR

For

this

query,

the

index

might

be

used

to

order

the

rows

because

NAME

and

DEPT

will

always

be

the

same

values

and

will

thus

be

ordered.

That

is,

the

preceding

WHERE

and

ORDER

BY

clauses

are

equivalent

to:

WHERE

NAME

=

’JONES’

AND

DEPT

=

’D93’

ORDER

BY

NAME,

DEPT,

MGR

A

unique

index

can

also

be

used

to

truncate

a

sort-order

requirement.

Consider

the

following

index

definition

and

ORDER

BY

clause:

UNIQUE

INDEX

IX0:

PROJNO

ASC

SELECT

PROJNO,

PROJNAME,

DEPTNO

FROM

PROJECT

ORDER

BY

PROJNO,

PROJNAME

Additional

ordering

on

the

PROJNAME

column

is

not

required

because

the

IX0

index

ensures

that

PROJNO

is

unique.

This

uniqueness

ensures

that

there

is

only

one

PROJNAME

value

for

each

PROJNO

value.

Related

concepts:

v

“Data-access

methods”

on

page

148

v

“Index

structure”

on

page

23

v

“Types

of

index

access”

on

page

151

v

“Index

access

and

cluster

ratios”

on

page

153

Types

of

index

access

In

some

cases,

the

optimizer

might

find

that

all

data

that

a

query

requires

from

a

table

can

be

retrieved

from

an

index

on

the

table.

In

other

cases,

the

optimizer

might

use

more

than

one

index

to

access

tables.

In

the

case

of

range-clustered

tables,

data

can

be

accessed

via

a

″virtual″

index,

which

computes

the

location

of

data

records.

Index-Only

Access

In

some

cases,

all

of

the

required

data

can

be

retrieved

from

the

index

without

accessing

the

table.

This

is

known

as

an

index-only

access.

To

illustrate

an

index-only

access,

consider

the

following

index

definition:

INDEX

IX1:

NAME

ASC,

DEPT

ASC,

MGR

DESC,

SALARY

DESC,

YEARS

ASC

The

following

query

can

be

satisfied

by

accessing

only

the

index,

and

without

reading

the

base

table:

Chapter

6.

Understanding

the

SQL

compiler

151

SELECT

NAME,

DEPT,

MGR,

SALARY

FROM

EMPLOYEE

WHERE

NAME

=

’SMITH’

Often,

however,

required

columns

that

do

not

appear

in

the

index.

To

obtain

the

data

for

these

columns,

the

table

rows

must

be

read.

To

allow

the

optimizer

to

choose

an

index-only

access,

create

a

unique

index

with

include

columns.

For

example,

consider

the

following

index

definition:

CREATE

UNIQUE

INDEX

IX1

ON

EMPLOYEE

(NAME

ASC)

INCLUDE

(DEPT,

MGR,

SALARY,

YEARS)

This

index

enforces

uniqueness

of

the

NAME

column

and

also

stores

and

maintains

data

for

DEPT,

MGR,

SALARY,

and

YEARS

columns,

which

allows

the

following

query

to

be

satisfied

by

accessing

only

the

index:

SELECT

NAME,

DEPT,

MGR,

SALARY

FROM

EMPLOYEE

WHERE

NAME=’SMITH’

When

you

consider

adding

INCLUDE

columns

to

an

index,

however,

consider

whether

the

additional

storage

space

and

maintenance

costs

are

justified.

If

queries

that

can

be

satisfied

by

reading

only

such

an

index

are

rarely

executed,

the

costs

might

not

be

justified.

Multiple

Index

Access

The

optimizer

can

choose

to

scan

multiple

indexes

on

the

same

table

to

satisfy

the

predicates

of

a

WHERE

clause.

For

example,

consider

the

following

two

index

definitions:

INDEX

IX2:

DEPT

ASC

INDEX

IX3:

JOB

ASC,

YEARS

ASC

The

following

predicates

can

be

satisfied

by

using

the

two

indexes:

WHERE

DEPT

=

:hv1

OR

(JOB

=

:hv2

AND

YEARS

>=

:hv3)

Scanning

index

IX2

produces

a

list

of

row

IDs

(RIDs)

that

satisfy

the

DEPT

=

:hv1

predicate.

Scanning

index

IX3

produces

a

list

of

RIDs

satisfying

the

JOB

=

:hv2

AND

YEARS

>=

:hv3

predicate.

These

two

lists

of

RIDs

are

combined

and

duplicates

removed

before

the

table

is

accessed.

This

is

known

as

index

ORing.

Index

ORing

may

also

be

used

for

predicates

specified

in

the

IN

clause,

as

in

the

following

example:

WHERE

DEPT

IN

(:hv1,

:hv2,

:hv3)

Although

the

purpose

of

index

ORing

is

to

eliminate

duplicate

RIDs,

the

objective

of

index

ANDing

is

to

find

common

RIDs.

Index

ANDing

might

occur

with

applications

that

create

multiple

indexes

on

corresponding

columns

in

the

same

table

and

a

query

using

multiple

AND

predicates

is

run

against

that

table.

Multiple

index

scans

against

each

indexed

column

in

such

a

query

produce

values

which

are

hashed

to

create

bitmaps.

The

second

bitmap

is

used

to

probe

the

first

bitmap

to

generate

the

qualifying

rows

that

are

fetched

to

create

the

final

returned

data

set.

For

example,

given

the

following

two

index

definitions:

152

Administration

Guide:

Performance

INDEX

IX4:

SALARY

ASC

INDEX

IX5:

COMM

ASC

the

following

predicates

could

be

resolved

using

these

two

indexes:

WHERE

SALARY

BETWEEN

20000

AND

30000

AND

COMM

BETWEEN

1000

AND

3000

In

this

example,

scanning

index

IX4

produces

a

bitmap

satisfying

the

SALARY

BETWEEN

20000

AND

30000

predicate.

Scanning

IX5

and

probing

the

bitmap

for

IX4

results

in

the

list

of

qualifying

RIDs

that

satisfy

both

predicates.

This

is

known

as

“dynamic

bitmap

ANDing”.

It

occurs

only

if

the

table

has

sufficient

cardinality

and

the

columns

have

sufficient

values

in

the

qualifying

range,

or

sufficient

duplication

if

equality

predicates

are

used.

To

realize

the

performance

benefits

of

dynamic

bitmaps

when

scanning

multiple

indexes,

it

may

be

necessary

to

change

the

value

of

the

sort

heap

size

(sortheap)

database

configuration

parameter,

and

the

sort

heap

threshold

(sheapthres)

database

manager

configuration

parameter.

Additional

sort

heap

space

is

required

when

dynamic

bitmaps

are

used

in

access

plans.

When

sheapthres

is

set

to

be

relatively

close

to

sortheap

(that

is,

less

than

a

factor

of

two

or

three

times

per

concurrent

query),

dynamic

bitmaps

with

multiple

index

access

must

work

with

much

less

memory

than

the

optimizer

anticipated.

The

solution

is

to

increase

the

value

of

sheapthres

relative

to

sortheap.

Note:

The

optimizer

does

not

combine

index

ANDing

and

index

ORing

in

accessing

a

single

table.

Index

Access

in

Range

clustered

tables

Unlike

standard

tables,

a

range

clustered

table

does

not

require

a

physical

index

that

maps

a

key

value

to

a

row

like

a

traditional

B-tree

index.

Instead,

it

leverages

the

sequential

nature

of

the

column

domain

and

uses

a

functional

mapping

to

generate

the

location

of

a

given

row

in

a

table.

In

the

simplest

example

of

this

mapping,

the

first

key

value

in

the

range

is

the

first

row

in

the

table,

and

the

second

value

in

the

range

is

the

second

row

in

the

table,

and

so

on.

The

optimizer

uses

the

range-clustered

property

of

the

table

to

generate

access

plans

based

on

a

perfectly

clustered

index

whose

only

cost

is

computing

the

range

clustering

function.

The

clustering

of

rows

within

the

table

is

guaranteed

because

range

clustered

tables

retain

their

original

key

value

ordering.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Data-access

methods”

on

page

148

v

“Data

access

through

index

scans”

on

page

148

v

“Index

access

and

cluster

ratios”

on

page

153

Index

access

and

cluster

ratios

When

it

chooses

an

access

plan,

the

optimizer

estimates

the

number

of

I/Os

required

to

fetch

required

pages

from

disk

to

the

buffer

pool.

This

estimate

includes

a

prediction

of

buffer-pool

usage,

since

additional

I/Os

are

not

required

to

read

rows

in

a

page

that

is

already

in

the

buffer

pool.

Chapter

6.

Understanding

the

SQL

compiler

153

For

index

scans,

information

from

the

system

catalog

tables

(SYSCAT.INDEXES)

helps

the

optimizer

estimate

I/O

cost

of

reading

data

pages

into

the

buffer

pool.

It

uses

information

from

the

following

columns

in

the

SYSCAT.INDEXES

table:

v

CLUSTERRATIO

information

indicates

the

degree

to

which

the

table

data

is

clustered

in

relation

to

this

index.

The

higher

the

number,

the

better

rows

are

ordered

in

index

key

sequence.

If

table

rows

are

in

close

to

index-key

sequence,

rows

can

be

read

from

a

data

page

while

the

page

is

in

the

buffer.

If

the

value

of

this

column

is

-1,

the

optimizer

uses

PAGE_FETCH_PAIRS

and

CLUSTERFACTOR

information

if

it

is

available.

v

PAGE_FETCH_PAIRS

contains

pairs

of

numbers

that

model

the

number

of

I/Os

required

to

read

the

data

pages

into

buffer

pools

of

various

sizes

together

with

CLUSTERFACTOR

information.

Data

is

collected

for

these

columns

only

if

you

execute

RUNSTATS

on

the

index

with

the

DETAILED

clause.

If

index

clustering

statistics

are

not

available,

the

optimizer

uses

default

values,

which

assume

poor

clustering

of

the

data

to

the

index.

The

degree

to

which

the

data

is

clustered

with

respect

to

the

index

can

have

a

significant

impact

on

performance

and

you

should

try

to

keep

one

of

the

indexes

on

the

table

close

to

100

percent

clustered.

In

general,

only

one

index

can

be

one

hundred

percent

clustered,

except

in

those

cases

where

the

keys

are

a

superset

of

the

keys

of

the

clustering

index

or

where

there

is

de

facto

correlation

between

the

key

columns

of

the

two

indexes.

When

you

reorganize

an

table,

you

can

specify

an

index

that

will

be

used

to

cluster

the

rows

and

attempt

to

preserve

this

characteristic

during

insert

processing.

Because

updates

and

inserts

may

make

the

table

less

well

clustered

in

relation

to

the

index,

you

might

need

to

periodically

reorganize

the

table.

To

reduce

the

frequency

of

reorganization

on

a

table

that

has

frequent

changes

due

to

INSERTs,

UPDATEs,

and

DELETES,

use

the

PCTFREE

parameter

when

you

alter

a

table.

This

allows

for

additional

inserts

to

be

clustered

with

the

existing

data.

Related

concepts:

v

“Index

performance

tips”

on

page

248

v

“Types

of

index

access”

on

page

151

Predicate

terminology

A

user

application

requests

a

set

of

rows

from

the

database

with

an

SQL

statement

that

specifies

qualifiers

for

the

specific

rows

to

be

returned

as

the

result

set.

These

qualifiers

usually

appear

in

the

WHERE

clause

of

the

query.

Such

qualifiers

are

called

predicates.

Predicates

can

be

grouped

into

four

categories

that

are

determined

by

how

and

when

the

predicate

is

used

in

the

evaluation

process.

The

categories

are

listed

below,

ordered

in

terms

of

performance

from

best

to

worst:

1.

Range

delimiting

predicates

2.

Index

SARGable

predicates

3.

Data

SARGable

predicates

4.

Residual

predicates.

Note:

SARGable

refers

to

a

term

that

can

be

used

as

a

search

argument.

154

Administration

Guide:

Performance

The

following

table

summarizes

the

predicate

categories.

Subsequent

sections

describe

each

category

in

more

detail.

Table

27.

Summary

of

Predicate

Type

Characteristics

Characteristic

Predicate

Type

Range

Delimiting

Index

SARGable

Data

SARGable

Residual

Reduce

index

I/O

Yes

No

No

No

Reduce

data

page

I/O

Yes

Yes

No

No

Reduce

number

of

rows

passed

internally

Yes

Yes

Yes

No

Reduce

number

of

qualifying

rows

Yes

Yes

Yes

Yes

Range-Delimiting

and

Index-SARGable

Predicates

Range

delimiting

predicates

limit

the

scope

of

an

index

scan.

They

provide

start

and

stop

key

values

for

the

index

search.

Index

SARGable

predicates

cannot

limit

the

scope

of

a

search,

but

can

be

evaluated

from

the

index

because

the

columns

involved

in

the

predicate

are

part

of

the

index

key.

For

example,

consider

the

following

index:

INDEX

IX1:

NAME

ASC,

DEPT

ASC,

MGR

DESC,

SALARY

DESC,

YEARS

ASC

Consider

also

a

query

that

contains

the

following

WHERE

clause:

WHERE

NAME

=

:hv1

AND

DEPT

=

:hv2

AND

YEARS

>

:hv5

The

first

two

predicates

(NAME

=

:hv1,

DEPT

=

:hv2)

are

range-delimiting

predicates,

while

YEARS

>

:hv5

is

an

index

SARGable

predicate.

The

optimizer

uses

the

index

data

when

it

evaluates

these

predicates

instead

of

reading

the

base

table.

These

index

SARGable

predicates

reduce

the

set

of

rows

that

need

to

be

read

from

the

table,

but

they

do

not

affect

the

number

of

index

pages

that

are

accessed.

Data

SARGable

Predicates

Predicates

that

cannot

be

evaluated

by

the

index

manager,

but

can

be

evaluated

by

data

management

services

are

called

data

SARGable

predicates.

These

predicates

usually

require

accessing

individual

rows

from

a

table.

If

required,

Data

Management

Services

retrieve

the

columns

needed

to

evaluate

the

predicate,

as

well

as

any

others

to

satisfy

the

columns

in

the

SELECT

list

that

could

not

be

obtained

from

the

index.

For

example,

consider

a

single

index

defined

on

the

PROJECT

table:

INDEX

IX0:

PROJNO

ASC

Chapter

6.

Understanding

the

SQL

compiler

155

For

the

following

query,

then,

the

DEPTNO

=

’D11’

predicate

is

considered

to

be

data

SARGable.

SELECT

PROJNO,

PROJNAME,

RESPEMP

FROM

PROJECT

WHERE

DEPTNO

=

’D11’

ORDER

BY

PROJNO

Residual

Predicates

Residual

predicates

require

more

I/O

costs

than

accessing

a

table.

They

might

have

the

following

characteristics:

v

Use

correlated

subqueries

v

Use

quantified

subqueries,

which

contain

ANY,

ALL,

SOME,

or

IN

clauses

v

Read

LONG

VARCHAR

or

LOB

data,

which

is

stored

in

a

file

that

is

separate

from

the

table

Such

predicates

are

evaluated

by

Relational

Data

Services.

Sometimes

predicates

that

are

applied

only

to

the

index

must

be

reapplied

when

the

data

page

is

accessed.

For

example,

access

plans

that

use

index

ORing

or

index

ANDing

always

reapply

the

predicates

as

residual

predicates

when

the

data

page

is

accessed.

Related

concepts:

v

“The

SQL

compiler

process”

on

page

133

Join

methods

and

strategies

This

section

describes

how

the

optimizer

joins

tables

as

required

to

return

results

to

a

query

and

explains

the

methods

and

strategies

that

the

optimizer

employs.

Joins

A

join

is

the

process

of

combining

information

from

two

or

more

tables

based

on

some

common

domain

of

information.

Rows

from

one

table

are

paired

with

rows

from

another

table

when

information

in

the

corresponding

rows

match

on

the

joining

criterion.

For

example,

consider

the

following

two

tables:

Table1

Table2

PROJ

PROJ_ID

PROJ_ID

NAME

A

1

1

Sam

B

2

3

Joe

C

3

4

Mary

D

4

1

Sue

2

Mike

To

join

Table1

and

Table2

where

the

ID

columns

have

the

same

values,

use

the

following

SQL

statement:

SELECT

PROJ,

x.PROJ_ID,

NAME

FROM

TABLE1

x,

TABLE2

y

WHERE

x.PROJ_ID

=

y.PROJ_ID

156

Administration

Guide:

Performance

This

query

yields

the

following

set

of

result

rows:

PROJ

PROJ_ID

NAME

A

1

Sam

A

1

Sue

B

2

Mike

C

3

Joe

D

4

Mary

Depending

on

the

existence

of

a

join

predicate,

as

well

as

various

costs

involved

as

determined

by

table

and

index

statistics,

the

optimizer

chooses

one

of

the

following

join

methods:

v

Nested-loop

join

v

Merge

join

v

Hash

join

When

two

tables

are

joined,

one

table

is

selected

as

the

outer

table

and

the

other

as

the

inner.

The

outer

table

is

accessed

first

and

is

scanned

only

once.

Whether

the

inner

table

is

scanned

multiple

times

depends

on

the

type

of

join

and

the

indexes

that

are

present.

Even

if

a

query

joins

more

than

two

tables,

the

optimizer

joins

only

two

tables

at

a

time.

If

necessary,

temporary

tables

are

created

to

hold

intermediate

results.

You

can

provide

explicit

join

operators,

such

as

INNER

or

LEFT

OUTER

JOIN

to

determine

how

tables

are

used

in

the

join.

Before

you

alter

a

query

in

this

way,

however,

you

should

allow

the

optimizer

to

determine

how

to

join

the

tables.

Then

analyze

query

performance

to

decide

whether

to

add

join

operators.

Related

concepts:

v

“Join

methods”

on

page

157

v

“Join

strategies

in

partitioned

databases”

on

page

164

v

“Join

methods

in

partitioned

databases”

on

page

165

v

“Join

information”

on

page

566

Join

methods

The

optimizer

can

choose

one

of

three

basic

join

strategies

when

queries

require

tables

to

be

joined.

v

Nested-loop

join

v

Merge

join

v

Hash

join

These

methods

are

described

in

the

following

sections.

Nested-Loop

Join

A

nested-loop

join

is

performed

in

one

of

the

following

two

ways:

v

Scanning

the

inner

table

for

each

accessed

row

of

the

outer

table

For

example,

consider

that

column

A

in

tables

T1

and

T2

have

the

following

values:

Chapter

6.

Understanding

the

SQL

compiler

157

Outer

table

T1:

column

A

Inner

table

T2:

column

A

2

3

3

2

3

2

3

1

To

perform

a

nested-loop

join,

the

database

manager

performs

the

following

steps:

1.

Read

the

first

row

from

T1.

The

value

for

A

is

“2”

2.

Scan

T2

until

a

match

(“2”)

is

found,

and

then

join

the

two

rows

3.

Scan

T2

until

the

next

match

(“2”)

is

found,

and

then

join

the

two

rows

4.

Scan

T2

to

the

end

of

the

table

5.

Go

back

to

T1

and

read

the

next

row

(“3”)

6.

Scan

T2,

starting

at

the

first

row,

until

a

match

(“3”)

is

found,

and

then

join

the

two

rows

7.

Scan

T2

until

the

next

match

(“3”)

is

found,

and

then

join

the

two

rows

8.

Scan

T2

to

the

end

of

the

table

9.

Go

back

to

T1

and

read

the

next

row

(“3”)

10.

Scan

T2

as

before,

joining

all

rows

which

match

(“3”).
v

Performing

an

index

lookup

on

the

inner

table

for

each

accessed

row

of

the

outer

table

This

method

can

be

used

for

the

specified

predicates

if

there

is

a

predicate

of

the

following

form:

expr(outer_table.column)

relop

inner_table.column

where

relop

is

a

relative

operator

(for

example

=,

>,

>=,

<,

or

<=)

and

expr

is

a

valid

expression

on

the

outer

table.

Consider

the

following

examples:

OUTER.C1

+

OUTER.C2

<=

INNER.C1

OUTER.C4

<

INNER.C3

This

method

might

significantly

reduce

the

number

of

rows

accessed

in

the

inner

table

for

each

access

of

the

outer

table,

although

it

depends

on

a

number

of

factors,

including

the

selectivity

of

the

join

predicate.

When

it

evaluates

a

nested

loop

join,

the

optimizer

also

decides

whether

to

sort

the

outer

table

before

performing

the

join.

If

it

orders

the

outer

table,

based

on

the

join

columns,

the

number

of

read

operations

to

access

pages

from

disk

for

the

inner

table

might

be

reduced,

because

they

are

more

likely

to

be

be

in

the

buffer

pool

already.

If

the

join

uses

a

highly

clustered

index

to

access

the

inner

table

and

if

the

outer

table

has

been

sorted,

the

number

of

index

pages

accessed

might

be

minimized.

In

addition,

if

the

optimizer

expects

that

the

join

will

make

a

later

sort

more

expensive,

it

might

also

choose

to

perform

the

sort

before

the

join.

A

later

sort

might

be

required

to

support

a

GROUP

BY,

DISTINCT,

ORDER

BY

or

merge

join.

Merge

Join

Merge

join,

sometimes

known

as

merge

scan

join

or

sort

merge

join,

requires

a

predicate

of

the

form

table1.column

=

table2.column.

This

is

called

an

equality

join

predicate.

Merge

join

requires

ordered

input

on

the

joining

columns,

either

through

index

access

or

by

sorting.

A

merge

join

cannot

be

used

if

the

join

column

is

a

LONG

field

column

or

a

large

object

(LOB)

column.

158

Administration

Guide:

Performance

In

a

merge

join,

the

joined

tables

are

scanned

at

the

same

time.

The

outer

table

of

the

merge

join

is

scanned

only

once.

The

inner

table

is

also

scanned

once

unless

repeated

values

occur

in

the

outer

table.

If

there

are

repeated

values

occur,

a

group

of

rows

in

the

inner

table

might

be

scanned

again.

For

example,

if

column

A

in

tables

T1

and

T2

has

the

following

values:

Outer

table

T1:

column

A

Inner

table

T2:

column

A

2

1

3

2

3

2

3

3

To

perform

a

merge

join,

the

database

manager

performs

the

following

steps:

1.

Read

the

first

row

from

T1.

The

value

for

A

is

“2”.

2.

Scan

T2

until

a

match

is

found,

and

then

join

the

two

rows.

3.

Keep

scanning

T2

while

the

columns

match,

joining

rows.

4.

When

the

“3”

in

T2

is

read,

go

back

to

T1

and

read

the

next

row.

5.

The

next

value

in

T1

is

“3”,

which

matches

T2,

so

join

the

rows.

6.

Keep

scanning

T2

while

the

columns

match,

joining

rows.

7.

The

end

of

T2

is

reached.

8.

Go

back

to

T1

to

get

the

next

row

—

note

that

the

next

value

in

T1

is

the

same

as

the

previous

value

from

T1,

so

T2

is

scanned

again

starting

at

the

first

“3”

in

T2.

The

database

manager

remembers

this

position.

Hash

Join

A

hash

join

requires

one

or

more

predicates

of

the

form

table1.columnX

=

table2.columnY,

for

which

the

column

types

are

the

same.

For

columns

of

type

CHAR,

the

length

must

be

the

same.

For

columns

of

type

DECIMAL,

the

precision

and

scale

must

be

the

same.

The

column

type

cannot

be

a

LONG

field

column,

or

a

large

object

(LOB)

column.

First,

the

designated

INNER

table

is

scanned

and

the

rows

copied

into

memory

buffers

drawn

from

the

sort

heap

specified

by

the

sortheap

database

configuration

parameter.

The

memory

buffers

are

divided

into

partitions

based

on

a

hash

value

that

is

computed

on

the

columns

of

the

join

predicates.

If

the

size

of

the

INNER

table

exceeds

the

available

sort

heap

space,

buffers

from

selected

partitions

are

written

to

temporary

tables.

When

the

inner

table

has

been

processed,

the

second,

or

OUTER,

table

is

scanned

and

its

rows

are

matched

to

rows

from

the

INNER

table

by

first

comparing

the

hash

value

computed

for

the

columns

of

the

join

predicates.

If

the

hash

value

for

the

OUTER

row

column

matches

the

hash

value

of

the

INNER

row

column,

the

actual

join

predicate

column

values

are

compared.

OUTER

table

rows

that

correspond

to

partitions

not

written

to

a

temporary

table

are

matched

immediately

with

INNER

table

rows

in

memory.

If

the

corresponding

INNER

table

partition

was

written

to

a

temporary

table,

the

OUTER

row

is

also

written

to

a

temporary

table.

Finally,

matching

pairs

of

partitions

from

temporary

tables

are

read,

and

the

hash

values

of

their

rows

are

matched,

and

the

join

predicates

are

checked.

Chapter

6.

Understanding

the

SQL

compiler

159

For

the

full

performance

benefits

of

hash

join,

you

might

need

to

change

the

value

of

the

sortheap

database

configuration

parameter

and

the

sheapthres

database

manager

configuration

parameter.

For

the

full

performance

benefits

of

hash

joins,

you

might

need

to

change

the

value

of

the

sortheap

database

configuration

parameter

and

the

sheapthres

database

manager

configuration

parameter.

Hash-join

performance

is

best

if

you

can

avoid

hash

loops

and

overflow

to

disk.

To

tune

hash-join

performance,

estimate

the

maximum

amount

of

memory

available

for

sheapthres,

then

tune

the

sortheap

parameter.

Increase

its

setting

until

you

avoid

as

many

hash

loops

and

disk

overflows

as

possible,

but

do

not

reach

the

limit

specified

by

the

sheapthres

parameter.

Increasing

the

sortheap

value

should

also

improve

performance

of

queries

that

have

multiple

sorts.

Related

concepts:

v

“Joins”

on

page

156

v

“Join

strategies

in

partitioned

databases”

on

page

164

v

“Join

methods

in

partitioned

databases”

on

page

165

v

“Join

information”

on

page

566

Related

reference:

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

Strategies

for

selecting

optimal

joins

The

optimizer

uses

various

methods

to

select

an

optimal

join

strategy

for

a

query.

Among

these

methods

are

the

following

search

strategies,

which

are

determined

by

the

optimization

class

of

the

query:

v

Greedy

join

enumeration

–

Efficient

with

respect

to

space

and

time

–

Single

direction

enumeration;

that

is,

once

a

join

method

is

selected

for

two

tables,

it

is

not

changed

during

further

optimization

–

Might

miss

the

best

access

plan

when

joining

many

tables.

If

your

query

joins

only

two

or

three

tables,

the

access

plan

chosen

by

the

greedy

join

enumeration

is

the

same

as

the

access

plan

chosen

by

dynamic

programming

join

enumeration.

This

is

particularly

true

if

the

query

has

many

join

predicates

on

the

same

column,

either

explicitly

specified,

or

implicitly

generated

through

predicate

transitive

closure.
v

Dynamic

programming

join

enumeration

–

Space

and

time

requirements

increase

exponentially

as

the

number

of

joined

tables

increases

–

Efficient

and

exhaustive

search

for

best

access

plan

–

Similar

to

the

strategy

used

by

DB2®

for

OS/390

or

z/OS.

The

join-enumeration

algorithm

is

an

important

determinant

of

the

number

of

plan

combinations

that

the

optimizer

explores.

Star-Schema

Joins

160

Administration

Guide:

Performance

The

tables

referenced

in

a

query

are

almost

always

related

by

join

predicates.

If

two

tables

are

joined

without

a

join

predicate,

the

Cartesian

product

of

the

two

tables

is

formed.

In

a

Cartesian

product,

every

qualifying

row

of

the

first

table

is

joined

with

every

qualifying

row

of

the

second,

creating

a

result

table

consisting

of

the

cross

product

of

the

size

of

the

two

tables

that

is

usually

very

large.

Since

such

a

plan

is

unlikely

to

perform

well,

the

optimizer

avoids

even

determining

the

cost

of

such

an

access

plan.

The

only

exceptions

occur

when

the

optimization

class

is

set

to

9

or

in

the

special

case

of

star

schemas.

A

star

schema

contains

a

central

table

called

the

fact

table

and

the

other

tables

are

called

dimension

tables.

The

dimension

tables

all

have

only

a

single

join

that

attaches

them

to

the

fact

table,

regardless

of

the

query.

Each

dimension

table

contains

additional

values

that

expand

information

about

a

particular

column

in

the

fact

table.

A

typical

query

consists

of

multiple

local

predicates

that

reference

values

in

the

dimension

tables

and

contains

join

predicates

connecting

the

dimension

tables

to

the

fact

table.

For

these

queries

it

might

be

beneficial

to

compute

the

Cartesian

product

of

multiple

small

dimension

tables

before

accessing

the

large

fact

table.

This

technique

is

beneficial

when

multiple

join

predicates

match

a

multi-column

index.

DB2

can

recognize

queries

against

databases

designed

with

star

schemas

that

have

at

least

two

dimension

tables

and

can

increase

the

search

space

to

include

possible

plans

that

compute

the

Cartesian

product

of

dimension

tables.

If

the

plan

that

computes

the

Cartesian

products

has

the

lowest

estimated

cost,

it

is

selected

by

the

optimizer.

The

star

schema

join

strategy

discussed

above

assumes

that

primary

key

indexes

are

used

in

the

join.

Another

scenario

involves

foreign

key

indexes.

If

the

foreign

key

columns

in

the

fact

table

are

single-column

indexes

and

there

is

a

relatively

high

selectivity

across

all

dimension

tables,

the

following

star

join

technique

can

be

used:

1.

Process

each

dimension

table

by:

v

Performing

a

semi-join

between

the

dimension

table

and

the

foreign

key

index

on

the

fact

table

v

Hashing

the

row

ID

(RID)

values

to

dynamically

create

a

bitmap.
2.

Use

AND

predicates

against

the

previous

bitmap

for

each

bitmap.

3.

Determine

the

surviving

RIDs

after

processing

the

last

bitmap.

4.

Optionally

sort

these

RIDs.

5.

Fetch

a

base

table

row.

6.

Rejoin

the

fact

table

with

each

of

its

dimension

tables,

accessing

the

columns

in

dimension

tables

that

are

needed

for

the

SELECT

clause.

7.

Reapply

the

residual

predicates.

This

technique

does

not

require

multi-column

indexes.

Explicit

referential-integrity

constraints

between

the

fact

table

and

the

dimension

tables

are

not

required,

although

the

relationship

between

the

fact

table

and

the

dimension

tables

should

actually

be

related

in

this

way.

The

dynamic

bitmaps

created

and

used

by

star

join

techniques

require

sort

heap

memory,

the

size

of

which

is

specified

by

the

Sort

Heap

Size

(sortheap)

database

configuration

parameter.

Composite

Tables

Chapter

6.

Understanding

the

SQL

compiler

161

When

the

result

of

joining

a

pair

of

tables

is

a

new

table

known

as

a

composite

table,

this

table

usually

becomes

the

outer

table

of

another

join

with

another

inner

table.

This

is

known

as

a

“composite

outer”

join.

In

some

cases,

particularly

when

using

the

greedy-join

enumeration

technique,

it

is

useful

to

make

the

result

of

joining

two

tables

the

inner

table

of

a

later

join.

When

the

inner

table

of

a

join

consists

of

the

result

of

joining

two

or

more

tables,

this

plan

is

a

“composite

inner”

join.

For

example,

consider

the

following

query:

SELECT

COUNT(*)

FROM

T1,

T2,

T3,

T4

WHERE

T1.A

=

T2.A

AND

T3.A

=

T4.A

AND

T2.Z

=

T3.Z

It

might

be

beneficial

to

join

table

T1

and

T2

(

T1xT2

),

then

join

T3

to

T4

(

T3xT4

)

and

finally

select

the

first

join

result

as

the

outer

table

and

the

second

join

result

as

the

inner

table.

In

the

final

plan

(

(T1xT2)

x

(T3xT4)

),

the

join

result

(T3xT4)

is

known

as

a

composite

inner.

Depending

on

the

query

optimization

class,

the

optimizer

places

different

constraints

on

the

maximum

number

of

tables

that

may

be

the

inner

table

of

a

join.

Composite

inner

joins

are

allowed

with

optimization

classes

5,

7,

and

9.

Related

concepts:

v

“Joins”

on

page

156

v

“Join

methods”

on

page

157

v

“Join

strategies

in

partitioned

databases”

on

page

164

v

“Join

methods

in

partitioned

databases”

on

page

165

Replicated

materialized-query

tables

in

partitioned

databases

Replicated

materialized

query

tables

improve

performance

of

frequently

executed

joins

in

a

partitioned

database

environment

by

allowing

the

database

to

manage

precomputed

values

of

the

table

data.

Consider

an

example

of

a

query

and

a

replicated

materialized

table.

The

following

assumptions

are

made:

v

The

SALES

table

is

in

the

multipartition

table

space

REGIONTABLESPACE,

and

is

partitioned

on

the

REGION

column.

v

The

EMPLOYEE

and

DEPARTMENT

tables

are

in

a

single-partition

database

partition

group.

Create

a

replicated

materialized

query

table

based

on

the

information

in

the

EMPLOYEE

table.

CREATE

TABLE

R_EMPLOYEE

AS

(

SELECT

EMPNO,

FIRSTNME,

MIDINIT,

LASTNAME,

WORKDEPT

FROM

EMPLOYEE

)

DATA

INITIALLY

DEFERRED

REFRESH

IMMEDIATE

IN

REGIONTABLESPACE

REPLICATED;

To

update

the

content

of

the

replicated

materialized

query

table,

run

the

following

statement:

REFRESH

TABLE

R_EMPLOYEE;

162

Administration

Guide:

Performance

Note:

After

using

the

REFRESH

statement,

you

should

run

RUNSTATS

on

the

replicated

table

as

you

would

any

other

table.

The

following

example

calculates

sales

by

employee,

the

total

for

the

department,

and

the

grand

total:

SELECT

d.mgrno,

e.empno,

SUM(s.sales)

FROM

department

AS

d,

employee

AS

e,

sales

AS

s

WHERE

s.sales_person

=

e.lastname

AND

e.workdept

=

d.deptno

GROUP

BY

ROLLUP(d.mgrno,

e.empno)

ORDER

BY

d.mgrno,

e.empno;

Instead

of

using

the

EMPLOYEE

table,

which

is

on

only

one

database

partition,

the

database

manager

uses

the

R_EMPLOYEE

table,

which

is

replicated

on

each

of

the

database

partitions

where

the

SALES

tables

is

stored.

The

performance

enhancement

occurs

because

the

employee

information

does

not

have

to

be

moved

across

the

network

to

each

database

partition

to

calculate

the

join.

Replicated

materialized

query

tables

in

collocated

joins

Replicated

materialized

query

tables

can

also

assist

in

the

collocation

of

joins.

For

example,

if

a

star

schema

contains

a

large

fact

table

spread

across

twenty

nodes,

the

joins

between

the

fact

table

and

the

dimension

tables

are

most

efficient

if

these

tables

are

collocated.

If

all

of

the

tables

are

in

the

same

database

partition

group,

at

most

one

dimension

table

is

partitioned

correctly

for

a

collocated

join.

The

other

dimension

tables

cannot

be

used

in

a

collocated

join

because

the

join

columns

on

the

fact

table

do

not

correspond

to

the

partitioning

key

of

the

fact

table.

Consider

a

table

called

FACT

(C1,

C2,

C3,

...)

partitioned

on

C1;

and

a

table

called

DIM1

(C1,

dim1a,

dim1b,

...)

partitioned

on

C1;

and

a

table

called

DIM2

(C2,

dim2a,

dim2b,

...)

partitioned

on

C2;

and

so

on.

In

this

case,

you

see

that

the

join

between

FACT

and

DIM1

is

perfect

because

the

predicate

DIM1.C1

=

FACT.C1

is

collocated.

Both

of

these

tables

are

partitioned

on

column

C1.

However,

the

join

between

DIM2

with

the

predicate

WHERE

DIM2.C2

=

FACT.C2

cannot

be

collocated

because

FACT

is

partitioned

on

column

C1

and

not

on

column

C2.

In

this

case,

you

might

replicate

DIM2

in

the

database

partition

group

of

the

fact

table

so

that

the

join

occurs

locally

on

each

partition.

Note:

The

replicated

materialized

query

tables

discussion

here

is

related

to

intra-database

replication.

Inter-database

replication

is

concerned

with

subscriptions,

control

tables,

and

data

located

in

different

databases

and

on

different

operating

systems.

When

you

create

a

replicated

materialized

query

table,

the

source

table

can

be

a

single-node

table

or

a

multi-node

table

in

a

database

partition

group.

In

most

cases,

the

replicated

table

is

small

and

can

be

placed

in

a

single-node

database

partition

group.

You

can

limit

the

data

to

be

replicated

by

specifying

only

a

subset

of

the

columns

from

the

table

or

by

specifying

the

number

of

rows

through

the

predicates

used,

or

by

using

both

methods.

The

data

capture

option

is

not

required

for

replicated

materialized

query

tables

to

function.

A

replicated

materialized

query

table

can

also

be

created

in

a

multi-node

database

partition

group

so

that

copies

of

the

source

table

are

created

on

all

of

the

Chapter

6.

Understanding

the

SQL

compiler

163

partitions.

Joins

between

a

large

fact

table

and

the

dimension

tables

are

more

likely

to

occur

locally

in

this

environment

that

if

you

broadcast

the

source

table

to

all

partitions.

Indexes

on

replicated

tables

are

not

created

automatically.

You

can

create

indexes

that

are

different

from

those

on

the

source

table.

However,

to

prevent

constraint

violations

that

are

not

present

on

the

source

tables,

you

cannot

create

unique

indexes

or

put

constraints

on

the

replicated

tables.

Constraints

are

disallowed

even

if

the

same

constraint

occurs

on

the

source

table.

Replicated

tables

can

be

referenced

directly

in

a

query,

but

you

cannot

use

the

NODENUMBER()

predicate

with

a

replicated

table

to

see

the

table

data

on

a

particular

partition.

Use

the

EXPLAIN

facility

to

see

if

a

replicated

materialized

query

table

was

used

by

the

access

plan

for

a

query.

Whether

the

access

plan

chosen

by

the

optimizer

uses

the

replicated

materialized

query

table

depends

on

the

information

that

needs

to

be

joined.

The

optimizer

might

not

use

the

replicated

materialized

query

table

if

the

optimizer

determines

that

it

would

be

cheaper

to

broadcast

the

original

source

table

to

the

other

partitions

in

the

database

partition

group.

Related

concepts:

v

“Joins”

on

page

156

Join

strategies

in

partitioned

databases

In

some

ways,

join

strategies

are

different

in

a

partitioned

database

than

in

a

non-partitioned

database.

Additional

techniques

can

be

applied

to

standard

join

methods

to

improve

performance.

One

consideration

for

those

tables

involved

in

frequent

joins

in

a

partitioned

database

is

that

of

table

collocation.

Table

collocation

provides

the

means

in

a

partitioned

database

to

locate

data

from

one

table

with

the

data

from

another

table

at

the

same

partition

based

on

the

same

partitioning

key.

Once

collocated,

data

to

be

joined

can

participate

in

a

query

without

having

to

be

moved

to

another

database

partition

as

part

of

the

query

activity.

Only

the

answer

set

for

the

join

is

moved

to

the

coordinator

node.

Table

Queues

The

descriptions

of

join

techniques

in

a

partitioned

database

use

the

following

terminology:

v

table

queue

A

mechanism

for

transferring

rows

between

database

partitions,

or

between

processors

in

a

single

partition

database.

v

directed

table

queue

A

table

queue

in

which

rows

are

hashed

to

one

of

the

receiving

database

partitions.

v

broadcast

table

queue

A

table

queue

in

which

rows

are

sent

to

all

of

the

receiving

database

partitions,

but

are

not

hashed.

A

table

queue

is

used

in

the

following

circumstances:

164

Administration

Guide:

Performance

v

To

pass

table

data

from

one

database

partition

to

another

when

using

inter-partition

parallelism

v

To

pass

table

data

within

a

database

partition

when

using

intra-partition

parallelism

v

To

pass

table

data

within

a

database

partition

when

using

a

single

partition

database.

Each

table

queue

is

passes

the

data

in

a

single

direction.

The

compiler

decides

where

table

queues

are

required,

and

includes

them

in

the

plan.

When

the

plan

is

executed,

the

connections

between

the

database

partitions

initiate

the

table

queues.

The

table

queues

close

as

processes

end.

There

are

several

types

of

table

queues:

v

Asynchronous

table

queues.

These

table

queues

are

known

as

asynchronous

because

they

read

rows

in

advance

of

any

FETCH

being

issued

by

the

application.

When

the

FETCH

is

issued,

the

row

is

retrieved

from

the

table

queue.

Asynchronous

table

queues

are

used

when

you

specify

the

FOR

FETCH

ONLY

clause

on

the

SELECT

statement.

If

you

are

only

fetching

rows,

the

asynchronous

table

queue

is

faster.

v

Synchronous

table

queues.

These

table

queues

are

known

as

synchronous

because

they

read

one

row

for

each

FETCH

that

is

issued

by

the

application.

At

each

database

partition,

the

cursor

is

positioned

on

the

next

row

to

be

read

from

that

database

partition.

Synchronous

table

queues

are

used

when

you

do

not

specify

the

FOR

FETCH

ONLY

clause

on

the

SELECT

statement.

In

a

partitioned

database

environment,

if

you

are

updating

rows,

the

database

manager

will

use

the

synchronous

table

queues.

v

Merging

table

queues.

These

table

queues

preserve

order.

v

Non-merging

table

queues.

These

table

queues

are

also

known

as

“regular”

table

queues.

They

do

not

preserve

order.

v

Listener

table

queues.

These

table

queues

are

use

with

correlated

subqueries.

Correlation

values

are

passed

down

to

the

subquery

and

the

results

are

passed

back

up

to

the

parent

query

block

using

this

type

of

table

queue.

Related

concepts:

v

“Joins”

on

page

156

v

“Join

methods”

on

page

157

v

“Join

methods

in

partitioned

databases”

on

page

165

Join

methods

in

partitioned

databases

The

following

figures

illustrate

join

methods

in

a

partitioned

database.

Note:

In

the

diagrams

q1,

q2,

and

q3

refer

to

table

queues

in

the

examples.

The

tables

that

are

referenced

are

divided

across

two

database

partitions

for

the

purpose

of

these

scenarios.

The

arrows

indicate

the

direction

in

which

the

table

queues

are

sent.

The

coordinator

node

is

partition

0.

Chapter

6.

Understanding

the

SQL

compiler

165

Collocated

Joins

A

collocated

join

occurs

locally

on

the

partition

where

the

data

resides.

The

partition

sends

the

data

to

the

other

partitions

after

the

join

is

complete.

For

the

optimizer

to

consider

a

collocated

join,

the

joined

tables

must

be

collocated,

and

all

pairs

of

the

corresponding

partitioning

key

must

participate

in

the

equality

join

predicates.

The

following

figure

provides

an

example.

Note:

Replicated

materialized

query

tables

enhance

the

likelihood

of

collocated

joins.

Broadcast

Outer-Table

Joins

Broadcast

outer-table

joins

are

a

parallel

join

strategy

that

can

be

used

if

there

are

no

equality

join

predicates

between

the

joined

tables.

It

can

also

be

used

in

other

situations

in

which

it

is

the

most

cost-effective

join

method.

For

example,

a

broadcast

outer-table

join

might

occur

when

there

is

one

very

large

table

and

one

very

small

table,

neither

of

which

is

partitioned

on

the

join

predicate

columns.

Instead

of

partitioning

both

tables,

it

might

be

cheaper

to

broadcast

the

smaller

table

to

the

larger

table.

The

following

figures

provide

an

example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

RESULTS

Both the LINEITEM and ORDERS tables are partitioned on the

ORDERKEY column. The join is done locally at each database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

q1

q1

Figure

13.

Collocated

Join

Example

166

Administration

Guide:

Performance

Directed

Outer-Table

Joins

In

the

directed

outer-table

join

strategy,

each

row

of

the

outer

table

is

sent

to

one

partition

of

the

inner

table,

based

on

the

partitioning

attributes

of

the

inner

table.

The

join

occurs

on

this

database

partition.

The

following

figure

provides

an

example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

q2 q2

q1

q1

q2q2

Figure

14.

Broadcast

Outer-Table

Join

Example

Chapter

6.

Understanding

the

SQL

compiler

167

Directed

Inner-Table

and

Outer-Table

Joins

In

the

directed

inner-table

and

outer-table

join

strategy,

rows

of

both

the

outer

and

inner

tables

are

directed

to

a

set

of

database

partitions,

based

on

the

values

of

the

joining

columns.

The

join

occurs

on

these

database

partitions.

The

following

figure

provides

an

example.

An

example

is

shown

in

the

following

figure.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

Read q1
Process
Return
COUNT

Scan
ORDERS

Apply
predicates

Hash
ORDERKEY

Write q2

Scan
ORDERS

Apply
predicates

Hash
ORDERKEY

Write q2

The LINEITEM table is partitioned on the ORDERKEY column.
The ORDERS table is partitioned on a different column.
The ORDERS table is hashed and sent to the correct LINEITEM
table database partition.
In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

Scan
LINEITEM

Apply
predicates

Read q2
Join
Insert into q1

Scan
LINEITEM

Apply
predicates

Read q2
Join
Insert into q1

q2 q2

q1

q1

q2q2

Figure

15.

Directed

Outer-Table

Join

Example

168

Administration

Guide:

Performance

Broadcast

Inner-Table

Joins

In

the

broadcast

inner-table

join

strategy,

the

inner

table

is

broadcast

to

all

the

database

partitions

of

the

outer

join

table.

The

following

figure

provides

an

example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

Neither table is partitioned on the ORDERKEY column.

Both tables are hashed and are sent to new database

partitions where they are joined.

Both table queue q2 and q3 are directed.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q2q2

q3 q3

q2

q3

q1

q1

q2

q3

Figure

16.

Directed

Inner-Table

and

Outer-Table

Join

Example

Chapter

6.

Understanding

the

SQL

compiler

169

Directed

Inner-Table

Joins

With

the

directed

inner-table

join

strategy,

each

row

of

the

inner

table

is

sent

to

one

database

partition

of

the

outer

join

table,

based

on

the

partitioning

attributes

of

the

outer

table.

The

join

occurs

on

this

database

partition.

The

following

figure

provides

an

example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table.
Table queue q3 is broadcast to all database partitions of the outer table.

Figure

17.

Broadcast

Inner-Table

Join

Example

170

Administration

Guide:

Performance

Related

concepts:

v

“Joins”

on

page

156

v

“Join

methods”

on

page

157

v

“Join

strategies

in

partitioned

databases”

on

page

164

Effects

of

sorting

and

grouping

When

the

optimizer

chooses

an

access

plan,

it

considers

the

performance

impact

of

sorting

data.

Sorting

occurs

when

no

index

satisfies

the

requested

ordering

of

fetched

rows.

Sorting

might

also

occur

when

the

optimizer

determines

that

a

sort

is

less

expensive

than

an

index

scan.

The

optimizer

sort

data

in

one

of

the

following

ways:

v

Piping

the

results

of

the

sort

when

the

query

is

executed.

v

Internal

handling

of

the

sort

within

the

database

manager.

Piped

versus

non-piped

sorts

If

the

final

sorted

list

of

data

can

be

read

in

a

single

sequential

pass,

the

results

can

be

piped.

Piping

is

quicker

than

non-piped

ways

of

communicating

the

results

of

the

sort.

The

optimizer

chooses

to

pipe

the

results

of

a

sort

whenever

possible.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is partitioned on the ORDERKEY column.

The LINEITEM table is partitioned on a different column.

The LINEITEM table is hashed and sent to the correct ORDERS table database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

Figure

18.

Directed

Inner-Table

Join

Example

Chapter

6.

Understanding

the

SQL

compiler

171

Whether

or

not

a

sort

is

piped,

the

sort

time

depends

on

a

number

of

factors,

including

the

number

of

rows

to

be

sorted,

the

key

size

and

the

row

width.

If

the

rows

to

be

sorted

occupy

more

than

the

space

available

in

the

sort

heap,

several

sort

passes

are

performed,

in

which

each

pass

sorts

a

subset

of

the

entire

set

of

rows.

Each

sort

pass

is

stored

in

a

temporary

table

in

the

buffer

pool.

If

there

is

not

enough

space

in

the

buffer

pool,

pages

from

this

temporary

table

might

be

written

to

disk.

When

all

the

sort

passes

are

complete,

these

sorted

subsets

must

be

merged

into

a

single

sorted

set

of

rows.

If

the

sort

is

piped,

the

rows

are

handed

directly

to

Relational

Data

Services

as

they

are

merged.

Group

and

sort

pushdown

operators

In

some

cases,

the

optimizer

can

choose

to

push

down

a

sort

or

aggregation

operation

to

Data

Management

Services

from

the

Relational

Data

Services

component.

Pushing

down

these

operations

improves

performance

by

allowing

the

Data

Management

Services

component

to

pass

data

directly

to

a

sort

or

aggregation

routine.

Without

this

pushdown,

Data

Management

Services

first

passes

this

data

to

Relational

Data

Services,

which

then

interfaces

with

the

sort

or

aggregation

routines.

For

example,

the

following

query

benefits

from

this

optimization:

SELECT

WORKDEPT,

AVG(SALARY)

AS

AVG_DEPT_SALARY

FROM

EMPLOYEE

GROUP

BY

WORKDEPT

Group

operations

in

sorts

When

sorting

produces

the

order

required

for

a

GROUP

BY

operation,

the

optimizer

can

perform

some

or

all

of

the

GROUP

BY

aggregations

while

doing

the

sort.

This

is

advantageous

if

the

number

of

rows

in

each

group

is

large.

It

is

even

more

advantageous

if

doing

some

of

the

grouping

during

the

sort

reduces

or

eliminates

the

need

for

the

sort

to

spill

to

disk.

An

aggregation

in

sort

requires

as

many

as

the

following

three

stages

of

aggregation

to

ensure

that

proper

results

are

returned.

1.

The

first

stage

of

aggregation,

partial

aggregation,

calculates

the

aggregate

values

until

the

sort

heap

is

filled.

In

partial

aggregation

unaggregated

data

is

taken

in

and

partial

aggregates

are

produced.

If

the

sort

heap

is

filled,

the

rest

of

the

data

spills

to

disk,

including

all

of

the

partial

aggregations

that

have

been

calculated

in

the

current

sort

heap.

After

the

sort

heap

is

reset,

new

aggregations

are

started.

2.

The

second

stage

of

aggregation,

intermediate

aggregation,

takes

all

of

the

spilled

sort

runs,

and

aggregates

further

on

the

grouping

keys.

The

aggregation

cannot

be

completed

because

the

grouping

key

columns

are

a

subset

of

the

partitioning

key

columns.

Intermediate

aggregation

uses

existing

partial

aggregates

to

produce

new

partial

aggregates.

This

stage

does

not

always

occur.

It

is

used

for

both

intra-partition

and

inter-partition

parallelism.

In

intra-partition

parallelism,

the

grouping

is

finished

when

a

global

grouping

key

is

available.

In

inter-partition

parallelism,

this

occurs

when

the

grouping

key

is

a

subset

of

the

partitioning

key

dividing

groups

across

partitions,

and

thus

requires

repartitioning

to

complete

the

aggregation.

A

similar

case

exists

in

intra-partition

parallelism

when

each

agent

finishes

merging

its

spilled

sort

runs

before

reducing

to

a

single

agent

to

complete

the

aggregation.

3.

The

last

stage

of

aggregation,

final

aggregation,

uses

all

of

the

partial

aggregates

and

produces

final

aggregates.

This

step

always

takes

place

in

a

GROUP

BY

operator.

Sort

cannot

perform

complete

aggregation

because

they

172

Administration

Guide:

Performance

cannot

guarantee

that

the

sort

will

not

split.

Complete

aggregation

takes

in

unaggregated

data

and

produces

final

aggregates.

If

partitioning

does

not

prohibit

its

use,

this

method

of

aggregation

is

usually

used

to

group

data

that

is

already

in

the

correct

order.

Related

concepts:

v

“Guidelines

for

sort

performance”

on

page

236

Related

reference:

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

Optimization

strategies

This

section

describes

the

particular

strategies

that

the

optimizer

might

use

for

intra-partition

parallelism

and

multi-dimensional

clustering

(MDC)

tables.

Optimization

strategies

for

intra-partition

parallelism

The

optimizer

can

choose

an

access

plan

to

execute

a

query

in

parallel

within

a

single

database

partition

if

a

degree

of

parallelism

is

specified

when

the

SQL

statement

is

compiled.

At

execution

time,

multiple

database

agents

called

subagents

are

created

to

execute

the

query.

The

number

of

subagents

is

less

than

or

equal

to

the

degree

of

parallelism

specified

when

the

SQL

statement

was

compiled.

To

parallelize

an

access

plan,

the

optimizer

divides

it

into

a

portion

that

is

run

by

each

subagent

and

a

portion

that

is

run

by

the

coordinating

agent.

The

subagents

pass

data

through

table

queues

to

the

coordinating

agent

or

to

other

subagents.

In

a

partitioned

database,

subagents

can

send

or

receive

data

through

table

queues

from

subagents

in

other

database

partitions.

Intra-partition

parallel

scan

strategies

Relational

scans

and

index

scans

can

be

performed

in

parallel

on

the

same

table

or

index.

For

parallel

relational

scans,

the

table

is

divided

into

ranges

of

pages

or

rows.

A

range

of

pages

or

rows

is

assigned

to

a

subagent.

A

subagent

scans

its

assigned

range

and

is

assigned

another

range

when

it

has

completed

its

work

on

the

current

range.

For

parallel

index

scans,

the

index

is

divided

into

ranges

of

records

based

on

index

key

values

and

the

number

of

index

entries

for

a

key

value.

The

parallel

index

scan

proceeds

like

the

parallel

table

scan

with

subagents

being

assigned

a

range

of

records.

A

subagent

is

assigned

a

new

range

when

it

has

complete

its

work

on

the

current

range.

The

optimizer

determines

the

scan

unit

(either

a

page

or

a

row)

and

the

scan

granularity.

Parallel

scans

provide

an

even

distribution

of

work

among

the

subagents.

The

goal

of

a

parallel

scan

is

to

balance

the

load

among

the

subagents

and

keep

them

equally

busy.

If

the

number

of

busy

subagents

equals

the

number

of

available

processors

and

the

disks

are

not

overworked

with

I/O

requests,

then

the

machine

resources

are

being

used

effectively.

Chapter

6.

Understanding

the

SQL

compiler

173

Other

access

plan

strategies

might

cause

data

imbalance

as

the

query

executes.

The

optimizer

chooses

parallel

strategies

that

maintain

data

balance

among

subagents.

Intra-partition

parallel

sort

strategies

The

optimizer

can

choose

one

of

the

following

parallel

sort

strategies:

v

Round-robin

sort

This

is

also

known

as

a

redistribution

sort.

This

method

uses

shared

memory

efficiently

redistribute

the

data

as

evenly

as

possible

to

all

subagents.

It

uses

a

round-robin

algorithm

to

provide

the

even

distribution.

It

first

creates

an

individual

sort

for

each

subagent.

During

the

insert

phase,

subagents

insert

into

each

of

the

individual

sorts

in

a

round-robin

fashion

to

achieve

a

more

even

distribution

of

data.

v

Partitioned

sort

This

is

similar

to

the

round-robin

sort

in

that

a

sort

is

created

for

each

subagent.

The

subagents

apply

a

hash

function

to

the

sort

columns

to

determine

into

which

sort

a

row

should

be

inserted.

For

example,

if

the

inner

and

outer

tables

of

a

merge

join

are

a

partitioned

sort,

a

subagent

can

use

merge

join

to

join

the

corresponding

partitions

and

execute

in

parallel.

v

Replicated

sort

This

sort

is

used

if

each

subagent

requires

all

of

the

sort

output.

One

sort

is

created

and

subagents

are

synchronized

as

rows

are

inserted

into

the

sort.

When

the

sort

is

completed,

each

subagent

reads

the

entire

sort.

If

the

number

of

rows

is

small,

this

sort

may

be

used

to

rebalance

the

data

stream.

v

Shared

sort

This

sort

is

the

same

as

a

replicated

sort,

except

the

subagents

open

a

parallel

scan

on

the

sorted

result

to

distribute

the

data

among

the

subagents

in

a

way

similar

to

the

round-robin

sort.

Intra-partition

parallel

temporary

tables

Subagents

can

cooperate

to

produce

a

temporary

table

by

inserting

rows

into

the

same

table.

This

is

called

a

shared

temporary

table.

The

subagents

can

open

private

scans

or

parallel

scans

on

the

shared

temporary

table

depending

on

whether

the

data

stream

is

to

be

replicated

or

partitioned.

Intra-partition

parallel

aggregation

strategies

Aggregation

operations

can

be

performed

in

parallel

by

subagents.

An

aggregation

operation

requires

the

data

to

be

ordered

on

the

grouping

columns.

If

a

subagent

can

be

guaranteed

to

receive

all

the

rows

for

a

set

of

grouping

column

values,

it

can

perform

a

complete

aggregation.

This

can

happen

if

the

stream

is

already

partitioned

on

the

grouping

columns

because

of

a

previous

partitioned

sort.

Otherwise,

the

subagent

can

perform

a

partial

aggregation

and

use

another

strategy

to

complete

the

aggregation.

Some

of

these

strategies

are:

v

Send

the

partially

aggregated

data

to

the

coordinator

agent

through

a

merging

table

queue.

The

coordinator

completes

the

aggregation.

v

Insert

the

partially

aggregated

data

into

a

partitioned

sort.

The

sort

is

partitioned

on

the

grouping

columns

and

guarantees

that

all

rows

for

a

set

of

grouping

columns

are

contained

in

one

sort

partition.

174

Administration

Guide:

Performance

v

If

the

stream

needs

to

be

replicated

to

balance

processing,

the

partially

aggregated

data

can

be

inserted

into

a

replicated

sort.

Each

subagent

completes

the

aggregation

using

the

replicated

sort,

and

receives

an

identical

copy

of

the

aggregation

result.

Intra-partition

parallel

join

strategies

Join

operations

can

be

performed

in

parallel

by

subagents.

Parallel

join

strategies

are

determined

by

the

characteristics

of

the

data

stream.

A

join

can

be

parallelized

by

partitioning

or

by

replicating

the

data

stream

on

the

inner

and

outer

tables

of

the

join,

or

both.

For

example,

a

nested

loop

join

can

be

parallelized

if

its

outer

stream

is

partitioned

for

a

parallel

scan

and

the

inner

stream

is

re-evaluated

independently

by

each

subagent.

A

merged

join

can

be

parallelized

if

its

inner

and

outer

streams

are

value-partitioned

for

partitioned

sorts.

Related

concepts:

v

“Parallel

processing

for

applications”

on

page

88

v

“Optimization

strategies

for

MDC

tables”

on

page

175

Optimization

strategies

for

MDC

tables

If

you

create

multi-dimensional

clustering

(MDC)

tables,

the

performance

of

many

queries

might

improve

because

the

optimizer

can

apply

additional

optimization

strategies.

These

strategies

are

primarily

based

on

the

improved

efficiency

of

block

indexes,

but

the

advantage

of

clustering

on

more

than

one

dimension

also

permits

faster

data

retrieval.

Note:

MDC

table

optimization

strategies

can

also

implement

the

performance

advantages

of

intra-partition

parallelism

and

inter-partition

parallelism.

Consider

the

following

specific

advantages

of

MDC

tables:

v

Dimension

block

index

lookups

can

identify

the

required

portions

of

the

table

and

quickly

scan

only

the

required

blocks.

v

Because

block

indexes

are

smaller

than

RID

indexes,

lookups

are

faster.

v

Index

ANDing

and

ORing

can

be

performed

at

the

block

level

and

combined

with

RIDs.

v

Data

is

guaranteed

to

be

clustered

on

extents,

which

makes

retrieval

faster.

Consider

the

following

simple

example

for

an

MDC

table

named

sales

with

dimensions

defined

on

the

region

and

month

columns:

SELECT

*

FROM

SALES

WHERE

MONTH=’March’

AND

REGION=’SE’

For

this

query,

the

optimizer

can

perform

a

dimension

block

index

lookup

to

find

blocks

in

which

the

month

of

March

and

the

SE

region

occur.

Then

it

can

quickly

scan

only

the

resulting

blocks

of

the

table

to

fetch

the

result

set.

Related

concepts:

v

“Table

and

index

management

for

MDC

tables”

on

page

21

Chapter

6.

Understanding

the

SQL

compiler

175

Materialized

query

tables

Materialized

query

tables

(MQTs)

are

a

powerful

way

to

improve

response

time

for

complex

queries,

especially

queries

that

might

require

some

of

the

following

operations:

v

Aggregated

data

over

one

or

more

dimensions

v

Joins

and

aggregates

data

over

a

group

of

tables

v

Data

from

a

commonly

accessed

subset

of

data,

that

is,

from

a

“hot”

horizontal

or

vertical

partition

v

Repartitioned

data

from

a

table,

or

part

of

a

table,

in

a

partitioned

database

environment

Knowledge

of

MQTs

is

integrated

into

the

SQL

compiler.

In

the

SQL

compiler,

the

query

rewrite

phase

and

the

optimizer

match

queries

with

MQTs

and

determine

whether

to

substitute

an

MQT

for

a

query

that

accesses

the

base

tables.

If

an

MQT

is

used,

the

EXPLAIN

facility

can

provide

information

about

which

MQT

was

selected.

Because

MQTs

behave

like

regular

tables

in

many

ways,

the

same

guidelines

for

optimizing

data

access

using

table

space

definitions,

creating

indexes,

and

issuing

RUNSTATS

apply

to

MQTs.

To

help

you

understand

the

power

of

MQTs,

the

following

example

shows

a

multidimensional

analysis

query

and

how

it

takes

advantage

of

MQTs.

In

this

example,

assume

a

database

scheme

in

which

a

data

warehouse

contains

a

set

of

customers

and

a

set

of

credit

card

accounts.

The

warehouse

records

the

set

of

transactions

that

are

made

with

the

credit

cards.

Each

transaction

contains

a

set

of

items

that

are

purchased

together.

This

schema

is

classified

as

a

multi-star

because

two

large

tables,

the

one

containing

transaction

items

and

the

other

identifying

the

purchase

transactions,

are

together

are

the

hub

of

the

star.

Three

hierarchical

dimensions

that

describe

a

transaction:

product,

location,

and

time.

The

product

hierarchy

is

stored

in

two

normalized

tables

representing

the

product

group

and

the

product

line.

The

location

hierarchy

contains

city,

state,

and

country

or

region

information

and

is

represented

in

a

single

de-normalized

table.

The

time

hierarchy

contains

day,

month,

and

year

information

and

is

encoded

in

a

single

date

field.

The

date

dimensions

are

extracted

from

the

date

field

of

the

transaction

using

built-in

functions.

Other

tables

in

this

schema

represent

account

information

for

customers

and

customer

information.

An

MQT

is

created

with

the

sum

and

count

of

sales

for

each

level

of

the

following

hierarchies:

v

Product

v

Location

v

Time,

composed

of

year,

month,

day.

Many

queries

can

be

satisfied

from

this

stored

aggregate

data.

The

following

example

shows

how

to

create

an

MQT

that

computes

sum

and

count

of

sales

along

the

product

group

and

line

dimensions;

along

the

city,

state,

and

country

dimension;

and

along

the

time

dimension.

It

also

includes

several

other

columns

in

its

GROUP

BY

clause.

CREATE

TABLE

dba.PG_SALESSUM

AS

(

SELECT

l.id

AS

prodline,

pg.id

AS

pgroup,

loc.country,

loc.state,

loc.city,

176

Administration

Guide:

Performance

l.name

AS

linename,

pg.name

AS

pgname,

YEAR(pdate)

AS

year,

MONTH(pdate)

AS

month,

t.status,

SUM(ti.amount)

AS

amount,

COUNT(*)

AS

count

FROM

cube.transitem

AS

ti,

cube.trans

AS

t,

cube.loc

AS

loc,

cube.pgroup

AS

pg,

cube.prodline

AS

l

WHERE

ti.transid

=

t.id

AND

ti.pgid

=

pg.id

AND

pg.lineid

=

l.id

AND

t.locid

=

loc.id

AND

YEAR(pdate)

>

1990

GROUP

BY

l.id,

pg.id,

loc.country,

loc.state,

loc.city,

year(pdate),

month(pdate),

t.status,

l.name,

pg.name

)

DATA

INITIALLY

DEFERRED

REFRESH

DEFERRED;

REFRESH

TABLE

dba.SALESCUBE;

Queries

that

can

take

advantage

of

such

pre-computed

sums

would

include

the

following:

v

Sales

by

month

and

product

group

v

Total

sales

for

years

after

1990

v

Sales

for

1995

or

1996

v

Sum

of

sales

for

a

product

group

or

product

line

v

Sum

of

sales

for

a

specific

product

group

or

product

line

AND

for

1995,

1996

v

Sum

of

sales

for

a

specific

country.

While

the

precise

answer

is

not

included

in

the

MQT

for

any

of

these

queries,

the

cost

of

computing

the

answer

using

the

MQT

could

be

significantly

less

than

using

a

large

base

table,

because

a

portion

of

the

answer

is

already

computed.

MQTs

can

reduce

expensive

joins,

sorts,

and

aggregation

of

base

data.

The

following

sample

queries

would

obtain

significant

performance

improvements

because

they

can

use

the

already

computed

results

in

the

example

MQT.

The

first

example

returns

the

total

sales

for

1995

and

1996:

SET

CURRENT

REFRESH

AGE=ANY

SELECT

YEAR(pdate)

AS

year,

SUM(ti.amount)

AS

amount

FROM

cube.transitem

AS

ti,

cube.trans

AS

t,

cube.loc

AS

loc,

cube.pgroup

AS

pg,

cube.prodline

AS

l

WHERE

ti.transid

=

t.id

AND

ti.pgid

=

pg.id

AND

pg.lineid

=

l.id

AND

t.locid

=

loc.id

AND

YEAR(pdate)

IN

(1995,

1996)

GROUP

BY

year(pdate);

The

second

example

returns

the

total

sales

by

product

group

for

1995

and

1996:

SET

CURRENT

REFRESH

AGE=ANY

SELECT

pg.id

AS

"PRODUCT

GROUP",

SUM(ti.amount)

AS

amount

FROM

cube.transitem

AS

ti,

cube.trans

AS

t,

cube.loc

AS

loc,

cube.pgroup

AS

pg,

cube.prodline

AS

l

WHERE

ti.transid

=

t.id

AND

ti.pgid

=

pg.id

Chapter

6.

Understanding

the

SQL

compiler

177

AND

pg.lineid

=

l.id

AND

t.locid

=

loc.id

AND

YEAR(pdate)

IN

(1995,

1996)

GROUP

BY

pg.id;

The

larger

the

base

tables

are,

the

larger

the

improvements

in

response

time

can

be

because

the

MQT

grows

more

slowly

than

the

base

table.

MQTs

can

effectively

eliminate

overlapping

work

among

queries

by

doing

the

computation

once

when

the

MQTs

are

built

and

refreshed

and

reusing

their

content

for

many

queries.

Related

concepts:

v

“The

Design

Advisor”

on

page

201

v

“Replicated

materialized-query

tables

in

partitioned

databases”

on

page

162

Federated

database

query-compiler

phases

This

section

describes

additional

query

processing

phases

in

a

federated

database

system.

It

also

provides

recommendations

for

improving

federated

database

query

performance.

Federated

database

pushdown

analysis

For

queries

in

federated

databases,

the

optimizer

performs

pushdown

analysis

to

find

out

whether

an

operation

can

be

performed

at

a

remote

data

source.

An

operation

might

be

a

function,

such

as

relational

operator,

system

or

user

function,

or

an

SQL

operator,

such

as

GROUP

BY,

ORDER

BY,

and

so

on.

Note:

Although

the

DB2®

SQL

compiler

has

much

information

about

data

source

SQL

support,

this

data

may

need

adjustment

over

time

because

data

sources

can

be

upgraded

and/or

customized.

In

such

cases,

make

enhancements

known

to

DB2

by

changing

local

catalog

information.

Use

DB2

DDL

statements

(such

as

CREATE

FUNCTION

MAPPING

and

ALTER

SERVER)

to

update

the

catalog.

If

functions

cannot

be

pushed

down

to

the

remote

data

source,

they

can

significantly

impact

query

performance.

Consider

the

effect

of

forcing

a

selective

predicate

to

be

evaluated

locally

instead

of

at

the

data

source.

Such

evaluation

could

require

DB2

to

retrieve

the

entire

table

from

the

remote

data

source

and

then

filter

it

locally

against

the

predicate.

Network

constraints

and

large

table

size

could

cause

performance

to

suffer.

Operators

that

are

not

pushed

down

can

also

significantly

affect

query

performance.

For

example,

having

a

GROUP

BY

operator

aggregate

remote

data

locally

could

also

require

DB2

to

retrieve

the

entire

table

from

the

remote

data

source.

For

example,

assume

that

a

nickname

N1

references

the

data

source

table

EMPLOYEE

in

a

DB2

for

OS/390®

or

z/OS

data

source.

Also

assume

that

the

table

has

10,000

rows,

that

one

of

the

columns

contains

the

last

names

of

employees,

and

that

one

of

the

columns

contains

salaries.

Consider

the

following

statement:

SELECT

LASTNAME,

COUNT(*)

FROM

N1

WHERE

LASTNAME

>

’B’

AND

SALARY

>

50000

GROUP

BY

LASTNAME;

Several

possibilities

are

considered,

depending

on

whether

the

collating

sequences

at

DB2

and

DB2

for

OS/390

or

z/OS

are

the

same:

178

Administration

Guide:

Performance

v

If

the

collating

sequences

are

the

same,

the

query

predicate

can

probably

be

pushed

down

to

DB2

for

OS/390

or

z/OS.

Filtering

and

grouping

results

at

the

data

source

is

usually

more

efficient

than

copying

the

entire

table

to

DB2

and

performing

the

operations

locally.

For

the

query

above,

the

predicate

and

the

GROUP

BY

operation

can

take

place

at

the

data

source.

v

If

the

collating

sequence

is

not

the

same,

the

entire

predicate

cannot

be

evaluated

at

the

data

source.

However,

the

optimizer

might

decide

to

pushdown

the

SALARY

>

50000

portion

of

the

predicate.

The

range

comparison

must

still

be

done

at

DB2.

v

If

the

collating

sequence

is

the

same,

and

the

optimizer

knows

that

the

local

DB2

server

is

very

fast,

the

optimizer

might

decide

that

performing

the

GROUP

BY

operation

locally

at

DB2

is

the

best

(least

cost)

approach.

The

predicate

is

evaluated

at

the

data

source.

This

is

an

example

of

pushdown

analysis

combined

with

global

optimization.

In

general,

the

goal

is

to

ensure

that

the

optimizer

evaluates

functions

and

operators

on

data

sources.

Many

factors

affect

whether

a

function

or

an

SQL

operator

is

evaluated

at

a

remote

data

source.

Factors

to

be

evaluated

are

classified

in

the

following

three

groups:

v

Server

characteristics

v

Nickname

characteristics

v

Query

characteristics

Server

characteristics

that

affect

pushdown

opportunities

Certain

data

source-specific

factors

can

affect

pushdown

opportunities.

In

general,

these

factors

exist

because

of

the

rich

SQL

dialect

supported

by

DB2.

This

dialect

might

offer

more

functionality

than

the

SQL

dialect

supported

by

a

server

accessed

by

a

query.

DB2

can

compensate

for

the

lack

of

function

at

a

data

server,

but

doing

so

may

require

that

the

operation

take

place

at

DB2.

SQL

Capabilities:

Each

data

source

supports

a

variation

of

the

SQL

dialect

and

different

levels

of

functionality.

For

example,

consider

the

GROUP

BY

list.

Most

data

sources

support

the

GROUP

BY

operator,

but

some

limit

the

number

of

items

on

the

GROUP

BY

list

or

have

restrictions

on

whether

an

expression

is

allowed

on

the

GROUP

BY

list.

If

there

is

a

restriction

at

the

remote

data

source,

DB2

might

have

to

perform

the

GROUP

BY

operation

locally.

SQL

Restrictions:

Each

data

source

might

have

different

SQL

restrictions.

For

example,

some

data

sources

require

parameter

markers

to

bind

values

to

remote

SQL

statements.

Therefore,

parameter

marker

restrictions

must

be

checked

to

ensure

that

each

data

source

can

support

such

a

bind

mechanism.

If

DB2

cannot

determine

a

good

method

to

bind

a

value

for

a

function,

this

function

must

be

evaluated

locally.

SQL

Limits:

Although

DB2

might

allow

the

use

of

larger

integers

than

its

remote

data

sources,

values

that

exceed

remote

limits

cannot

be

embedded

in

statements

sent

to

data

sources.

Therefore,

the

function

or

operator

that

operates

on

this

constant

must

be

evaluated

locally.

Server

Specifics:

Several

factors

fall

into

this

category.

One

example

is

whether

NULL

values

are

sorted

as

the

highest

or

lowest

value,

or

depend

on

the

ordering.

If

NULL

values

are

sorted

at

a

data

source

differently

from

DB2,

ORDER

BY

operations

on

a

nullable

expression

cannot

be

remotely

evaluated.

Chapter

6.

Understanding

the

SQL

compiler

179

Collating

Sequence:

Retrieving

data

for

local

sorts

and

comparisons

usually

decreases

performance.

Therefore,

consider

configuring

the

federated

database

to

use

the

same

collating

sequences

that

your

data

sources

use.

If

you

configure

a

federated

database

to

use

the

same

collating

sequence

that

a

data

source

uses

and

then

set

the

collating_sequence

server

option

to

’Y’,

the

optimizer

can

consider

pushing

down

many

query

operations

if

improved

performance

results.

The

following

operations

might

be

pushed

down

if

collating

sequences

are

the

same:

v

Comparisons

of

character

or

numeric

data

v

Character

range

comparison

predicates

v

Sorts

You

might

get

unusual

results,

however,

if

the

weighting

of

null

characters

is

different

between

the

federated

database

and

the

data

source.

Comparison

statements

might

return

unexpected

results

if

you

submit

statements

to

a

case-insensitive

data

source.

The

weights

assigned

to

the

characters

″I″

and

″i″

in

a

case-insensitive

data

source

are

the

same.

DB2,

by

default,

is

case

sensitive

and

assigns

different

weights

to

the

characters.

To

improve

performance,

the

federated

server

allows

sorts

and

comparisons

to

take

place

at

data

sources.

For

example,

in

DB2

UDB

for

OS/390

or

z/OS,

sorts

defined

by

ORDER

BY

clauses

are

implemented

by

a

collating

sequence

based

on

an

EBCDIC

code

page.

To

use

the

federated

server

to

retrieve

DB2

for

OS/390

or

z/OS

data

sorted

in

accordance

with

ORDER

BY

clauses,

configure

the

federated

database

so

that

it

uses

a

predefined

collating

sequence

based

on

the

EBCDIC

code

page.

If

the

collating

sequences

of

the

federated

database

and

the

data

source

differ,

DB2

retrieves

the

data

to

the

federated

database.

Because

users

expect

to

see

the

query

results

ordered

by

the

collating

sequence

defined

for

the

federated

server,

by

ordering

the

data

locally

the

federated

server

ensures

that

this

expectation

is

fulfilled.

Submit

your

query

in

pass-through

mode,

or

define

the

query

in

a

data

source

view

if

you

need

to

see

the

data

ordered

in

the

collating

sequence

of

the

data

source.

Server

Options:

Several

server

options

can

affect

pushdown

opportunities.

In

particular,

review

your

settings

for

collating_sequence,

varchar_no_trailing_blanks,

and

pushdown.

DB2

Type

Mapping

and

Function

Mapping

Factors:

The

default

local

data

type

mappings

provided

by

DB2

are

designed

to

provide

sufficient

buffer

space

for

each

data

source

data

type,

which

avoids

loss

of

data.

Users

can

customize

the

type

mapping

for

a

specific

data

source

to

suit

specific

applications.

For

example,

if

you

are

accessing

an

Oracle

data

source

column

with

a

DATE

data

type,

which

by

default

is

mapped

to

the

DB2

TIMESTAMP

data

type,

you

might

change

the

local

data

type

to

the

DB2

DATE

data

type.

In

the

following

three

cases,

DB2

can

compensate

for

functions

that

a

data

source

does

not

support:

v

The

function

does

not

exist

at

the

remote

data

source.

v

The

function

exists,

but

the

characteristics

of

the

operand

violate

function

restrictions.

An

example

of

this

situation

is

the

IS

NULL

relational

operator.

Most

data

sources

support

it,

but

some

may

have

restrictions,

such

as

only

allowing

a

column

name

on

the

left

hand

side

of

the

IS

NULL

operator.

180

Administration

Guide:

Performance

v

The

function

might

return

a

different

result

if

it

is

evaluated

remotely.

An

example

of

this

situation

is

the

’>’

(greater

than)

operator.

For

data

sources

with

different

collating

sequences,

the

greater

than

operator

might

return

different

results

than

if

it

is

evaluated

locally

by

DB2.

Nickname

characteristics

that

affect

pushdown

opportunities

The

following

nickname-specific

factors

can

affect

pushdown

opportunities.

Local

data

type

of

a

nickname

column:

Ensure

that

the

local

data

type

of

a

column

does

not

prevent

a

predicate

from

being

evaluated

at

the

data

source.

Use

the

default

data

type

mappings

to

avoid

possible

overflow.

However,

a

joining

predicate

between

two

columns

of

different

lengths

might

not

be

considered

at

the

data

source

whose

joining

column

is

shorter,

depending

on

how

DB2

binds

the

longer

column.

This

situation

can

affect

the

number

of

possibilities

that

the

DB2

optimizer

can

evaluate

in

a

joining

sequence.

For

example,

Oracle

data

source

columns

created

using

the

INTEGER

or

INT

data

type

are

given

the

type

NUMBER(38).

A

nickname

column

for

this

Oracle

data

type

is

given

the

local

data

type

FLOAT

because

the

range

of

a

DB2

integer

is

from

2**31

to

(-2**31)-1,

which

is

roughly

equal

to

NUMBER(9).

In

this

case,

joins

between

a

DB2

integer

column

and

an

Oracle

integer

column

cannot

take

place

at

the

DB2

data

source

(shorter

joining

column);

however,

if

the

domain

of

this

Oracle

integer

column

can

be

accommodated

by

the

DB2

INTEGER

data

type,

change

its

local

data

type

with

the

ALTER

NICKNAME

statement

so

that

the

join

can

take

place

at

the

DB2

data

source.

Column

Options:

Use

the

SQL

statement

ALTER

NICKNAME

to

add

or

change

column

options

for

nicknames.

Use

the

varchar_no_trailing_blanks

option

to

identify

a

column

that

contains

no

trailing

blanks.

The

compiler

pushdown

analysis

step

will

then

take

this

information

into

account

when

checking

all

operations

performed

on

columns

so

indicated.

Based

on

this

indication,

DB2

may

generate

a

different

but

equivalent

form

of

a

predicate

to

be

used

in

the

remote

SQL

statement

sent

to

a

data

source.

A

user

might

see

a

different

predicate

being

evaluated

against

the

data

source,

but

the

net

result

should

be

equivalent.

Use

the

numeric_string

option

to

indicate

whether

the

values

in

that

column

are

always

numbers

without

trailing

blanks.

The

table

below

describes

these

options.

Chapter

6.

Understanding

the

SQL

compiler

181

Table

28.

Column

Options

and

Their

Settings

Option

Valid

Settings

Default

Setting

numeric_string

‘Y’

Yes,

this

column

contains

only

strings

of

numeric

data.

IMPORTANT:

If

the

column

contains

only

numeric

strings

followed

by

trailing

blanks,

do

not

specify

‘Y’.

‘N’

No,

this

column

is

not

limited

to

strings

of

numeric

data.

If

you

set

numeric_string

to

‘Y’

for

a

column,

you

are

informing

the

optimizer

that

this

column

contains

no

blanks

that

could

interfere

with

sorting

of

the

column

data.

This

option

is

useful

when

the

collating

sequence

of

a

data

source

is

different

from

DB2.

Columns

marked

with

this

option

are

not

excluded

from

local

(data

source)

evaluation

because

of

a

different

collating

sequence.

‘N’

varchar_no_trailing_blanks

Specifies

whether

this

data

source

uses

non-blank

padded

VARCHAR

comparison

semantics.

For

variable-length

character

strings

that

contain

no

trailing

blanks,

non-blank-padded

comparison

semantics

of

some

DBMSs

return

the

same

results

as

DB2

comparison

semantics.

If

you

are

certain

that

all

VARCHAR

table/view

columns

at

a

data

source

contain

no

trailing

blanks,

consider

setting

this

server

option

to

’Y’

for

a

data

source.

This

option

is

often

used

with

Oracle

data

sources.

Ensure

that

you

consider

all

objects

that

might

have

nicknames,

including

views.

’Y’

This

data

source

has

non-blank-padded

comparison

semantics

similar

to

DB2.

’N’

This

data

source

does

not

have

the

same

non-blank-padded

comparison

semantics

as

DB2.

‘N‘

Query

characteristics

that

affect

pushdown

opportunities

A

query

can

reference

an

SQL

operator

that

might

involve

nicknames

from

multiple

data

sources.

The

operation

must

take

place

at

DB2

to

combine

the

results

from

two

referenced

data

sources

that

use

one

operator,

such

as

a

set

operator

(e.g.

UNION).

The

operator

cannot

be

evaluated

at

a

remote

data

source

directly.

Related

concepts:

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

on

page

182

Guidelines

for

analyzing

where

a

federated

query

is

evaluated

DB2®

provides

two

utilities

to

show

where

queries

are

evaluated:

v

Visual

explain.

Start

it

with

the

db2cc

command.

Use

it

to

view

the

query

access

plan

graph.

The

execution

location

for

each

operator

is

included

in

the

detailed

display

of

an

operator.

If

a

query

is

pushed

down,

you

should

see

a

RETURN

operator.

The

RETURN

operator

is

a

standard

DB2

operator.

For

a

SELECT

statement

that

selects

data

from

a

nickname,

you

also

see

a

SHIP

operator.

The

SHIP

operator

is

unique

to

federated

database

operations.

It

changes

the

server

property

of

the

data

flow

and

separates

local

operators

from

remote

operators.

The

SELECT

statement

is

generated

using

the

SQL

dialect

supported

by

the

data

source.

It

can

contain

any

valid

query

for

that

data

source.

If

an

INSERT,

DELETE,

or

UPDATE

query

can

be

entirely

pushed

down

to

the

remote

database,

you

might

not

see

a

SHIP

statement

in

the

access

plan.

All

remotely

executed

INSERT,

UPDATE,

and

DELETE

statements

are

shown

for

the

182

Administration

Guide:

Performance

RETURN

operator.

However,

if

a

query

cannot

be

entirely

pushed

down,

the

SHIP

operator

shows

which

operations

were

performed

remotely.

v

SQL

explain.

Start

it

with

the

db2expln

or

the

dynexpln

command.

Use

it

to

view

the

access

plan

strategy

as

text.

Understanding

why

a

query

is

evaluated

at

a

data

source

or

at

DB2

Consider

the

following

key

questions

when

you

investigate

ways

to

increase

pushdown

opportunities:

v

Why

isn’t

this

predicate

being

evaluated

remotely?

This

question

arises

when

a

predicate

is

very

selective

and

thus

could

be

used

to

filter

rows

and

reduce

network

traffic.

Remote

predicate

evaluation

also

affects

whether

a

join

between

two

tables

of

the

same

data

source

can

be

evaluated

remotely.

Areas

to

examine

include:

–

Subquery

predicates.

Does

this

predicate

contain

a

subquery

that

pertains

to

another

data

source?

Does

this

predicate

contain

a

subquery

involving

an

SQL

operator

that

is

not

supported

by

this

data

source?

Not

all

data

sources

support

set

operators

in

a

subquery

predicate.

–

Predicate

functions.

Does

this

predicate

contain

a

function

that

cannot

be

evaluated

by

this

remote

data

source?

Relational

operators

are

classified

as

functions.

–

Predicate

bind

requirements.

Does

this

predicate,

if

remotely

evaluated,

require

bind-in

of

some

value?

If

so,

would

it

violate

SQL

restrictions

at

this

data

source?

–

Global

optimization.

The

optimizer

may

have

decided

that

local

processing

is

more

cost

effective.
v

Why

isn’t

the

GROUP

BY

operator

evaluated

remotely?

There

are

several

areas

you

can

check:

–

Is

the

input

to

the

GROUP

BY

operator

evaluated

remotely?

If

the

answer

is

no,

examine

the

input.

–

Does

the

data

source

have

any

restrictions

on

this

operator?

Examples

include:

-

Limited

number

of

GROUP

BY

items

-

Limited

byte

counts

of

combined

GROUP

BY

items

-

Column

specification

only

on

the

GROUP

BY

list
–

Does

the

data

source

support

this

SQL

operator?

–

Global

optimization.

The

optimizer

may

have

decided

that

local

processing

is

more

cost

effective.

–

Does

the

GROUP

BY

operator

clause

contain

a

character

expression?

If

it

does,

verify

that

the

remote

data

source

has

the

same

case

sensitivity

as

DB2.
v

Why

isn’t

the

set

operator

evaluated

remotely?

There

are

several

areas

you

can

check:

–

Are

both

of

its

operands

completely

evaluated

at

the

same

remote

data

source?

If

the

answer

is

no

and

it

should

be

yes,

examine

each

operand.

–

Does

the

data

source

have

any

restrictions

on

this

set

operator?

For

example,

are

large

objects

or

long

fields

valid

input

for

this

specific

set

operator?
v

Why

isn’t

the

ORDER

BY

operation

evaluated

remotely?

Consider:

Chapter

6.

Understanding

the

SQL

compiler

183

–

Is

the

input

to

the

ORDER

BY

operation

evaluated

remotely?

If

the

answer

is

no,

examine

the

input.

–

Does

the

ORDER

BY

clause

contain

a

character

expression?

If

yes,

does

the

remote

data

source

not

have

the

same

collating

sequence

or

case

sensitivity

as

DB2?

–

Does

the

data

source

have

any

restrictions

on

this

operator?

For

example,

is

there

a

limited

number

of

ORDER

BY

items?

Does

the

data

source

restrict

column

specification

to

the

ORDER

BY

list?

Related

concepts:

v

“Character-conversion

guidelines”

on

page

86

v

“Global

analysis

of

federated

database

queries”

on

page

186

v

“Remote

SQL

generation

and

global

optimization

in

federated

databases”

on

page

184

v

“Federated

query

information”

on

page

573

Remote

SQL

generation

and

global

optimization

in

federated

databases

For

a

federated

database

query

that

uses

relational

nicknames,

the

access

strategy

might

involve

breaking

down

the

original

query

into

a

set

of

remote

query

units

and

then

combining

the

results.

This

generation

of

remote

SQL

helps

produce

a

globally

optimal

access

strategy

for

a

query.

The

optimizer

uses

the

output

of

pushdown

analysis

to

decide

whether

each

operation

is

evaluated

locally

at

DB2®

or

remotely

at

a

data

source.

It

bases

its

decision

on

the

output

of

its

cost

model,

which

includes

not

only

the

cost

of

evaluating

the

operation

but

also

the

cost

of

transmitting

the

data

or

messages

between

DB2

and

data

sources.

Although

the

goal

is

to

produce

an

optimized

query,

the

following

major

factors

affect

the

output

from

global

optimization

and

thus

affect

query

performance.

v

Server

characteristics

v

Nickname

characteristics

Server

characteristics

and

options

that

affect

global

optimization

The

following

data

source

server

factors

can

affect

global

optimization:

v

Relative

ratio

of

CPU

speed

Use

the

cpu_ratio

server

option

to

specify

how

fast

or

slow

the

data-source

CPU

speed

is

compared

with

the

DB2

CPU.

A

low

ratio

indicates

that

the

data-source

computer

CPU

is

faster

than

the

DB2

computer

CPU.

If

the

ratio

is

low,

the

DB2

optimizer

is

more

likely

to

consider

pushing

down

CPU-intensive

operations

to

the

data

source.

v

Relative

ratio

of

I/O

speed

Use

the

io_ratio

server

option

to

indicate

how

much

faster

or

slower

the

data

source

system

I/O

speed

is

compared

with

the

DB2

system.

A

low

ratio

indicates

that

the

data

source

workstation

I/O

speed

is

faster

than

the

DB2

workstation

I/O

speed.

If

the

ratio

is

low,

the

DB2

optimizer

considers

pushing

down

I/O-intensive

operations

to

the

data

source.

v

Communication

rate

between

DB2

and

the

data

source

184

Administration

Guide:

Performance

Use

the

comm_rate

server

option

to

indicate

network

capacity.

Low

rates,

which

indicate

a

slow

network

communication

between

DB2

and

the

data

source,

encourage

the

DB2

optimizer

to

reduce

the

number

of

messages

sent

to

or

from

this

data

source.

If

the

rate

is

set

to

0,

the

optimizer

creates

an

access

plan

that

requires

minimal

network

traffic.

v

Data

source

collating

sequence

Use

the

collating_sequence

server

option

to

specify

whether

a

data

source

collating

sequence

matches

the

local

DB2

database

collating

sequence.

If

this

option

is

not

set

to

’Y’,

the

optimizer

considers

the

data

retrieved

from

this

data

source

as

unordered.

v

Remote

plan

hints

Use

the

plan_hints

server

option

to

specify

that

plan

hints

should

be

generated

or

used

at

a

data

source.

By

default,

DB2

does

not

send

any

plan

hints

to

the

data

source.

Plan

hints

are

statement

fragments

that

provide

extra

information

for

data-source

optimizers.

For

some

queries

this

information

can

improve

performance.

The

plan

hints

can

help

the

data

source

optimizer

decide

whether

to

use

an

index,

which

index

to

use,

or

which

table

join

sequence

to

use.

If

plan

hints

are

enabled,

the

query

sent

to

the

data

source

contains

additional

information.

For

example,

a

statement

sent

to

an

Oracle

optimizer

with

plan

hints

might

look

like

this:

SELECT

/*+

INDEX

(table1,

t1index)*/

col1

FROM

table1

The

plan

hint

is

the

string

/*+

INDEX

(table1,

t1index)*/.

v

Information

in

the

DB2

optimizer

knowledge

base

DB2

has

an

optimizer

knowledge

base

that

contains

data

about

native

data

sources.

The

DB2

optimizer

does

not

generate

remote

access

plans

that

cannot

be

generated

by

specific

DBMSs.

In

other

words,

DB2

avoids

generating

plans

that

optimizers

at

remote

data

sources

cannot

understand

or

accept.

Nickname

characteristics

that

affect

global

optimization

The

following

nickname-specific

factors

can

affect

global

optimization.

Index

considerations:

To

optimize

queries,

DB2

can

use

information

about

indexes

at

data

sources.

For

this

reason,

it

is

important

that

the

index

information

available

to

DB2

is

current.

The

index

information

for

nicknames

is

initially

acquired

when

the

nickname

is

created.

Index

information

is

not

gathered

for

view

nicknames.

Creating

index

specifications

on

nicknames:

You

can

create

an

index

specification

for

a

nickname.

Index

specifications

build

an

index

definition

(not

an

actual

index)

in

the

catalog

for

the

DB2

optimizer

to

use.

Use

the

CREATE

INDEX

SPECIFICATION

ONLY

statement

to

create

index

specifications.

The

syntax

for

creating

an

index

specification

on

a

nickname

is

similar

to

the

syntax

for

creating

an

index

on

a

local

table.

Consider

creating

index

specifications

in

the

following

circumstances:

v

DB2

cannot

retrieve

any

index

information

from

a

data

source

during

nickname

creation.

v

You

want

an

index

for

a

view

nickname.

Chapter

6.

Understanding

the

SQL

compiler

185

v

You

want

to

encourage

the

DB2

optimizer

to

use

a

specific

nickname

as

the

inner

table

of

a

nested

loop

join.

The

user

can

create

an

index

on

the

joining

column

if

none

exists.

Before

you

issue

CREATE

INDEX

statements

against

a

nickname

for

a

view,

consider

whether

you

need

one.

If

the

view

is

a

simple

SELECT

on

a

table

with

an

index,

creating

local

indexes

on

the

nickname

to

match

the

indexes

on

the

table

at

the

data

source

can

significantly

improve

query

performance.

However,

if

indexes

are

created

locally

over

views

that

are

not

simple

select

statements,

such

as

a

view

created

by

joining

two

tables,

query

performance

might

suffer.

For

example,

you

create

an

index

over

a

view

that

is

a

join

of

two

tables,

the

optimizer

might

choose

that

view

as

the

inner

element

in

a

nested-loop

join.

The

query

will

have

poor

performance

because

the

join

is

evaluated

several

times.

An

alternative

is

to

create

nicknames

for

each

of

the

tables

referenced

in

the

data

source

view

and

create

a

local

view

at

DB2

that

references

both

nicknames.

Catalog

statistics

considerations:

System

catalog

statistics

describe

the

overall

size

of

nicknames

and

the

range

of

values

in

associated

columns.

The

optimizer

uses

these

statistics

when

it

calculates

the

least-cost

path

for

processing

queries

that

contain

nicknames.

Nickname

statistics

are

stored

in

the

same

catalog

views

as

table

statistics.

Although

DB2

can

retrieve

the

statistical

data

stored

at

a

data

source,

it

cannot

automatically

detect

updates

to

existing

statistical

data

at

data

sources.

Furthermore,

DB2

cannot

handle

changes

in

object

definition

or

structural

changes,

such

as

adding

a

column,

to

objects

at

data

sources.

If

the

statistical

data

or

structural

data

for

an

object

has

changed,

you

have

two

choices:

v

Run

the

equivalent

of

RUNSTATS

at

the

data

source.

Then

drop

the

current

nickname

and

re-create

it.

Use

this

approach

if

structural

information

has

changed.

v

Manually

update

the

statistics

in

the

SYSSTAT.TABLES

view.

This

approach

requires

fewer

steps

but

it

does

not

work

if

structural

information

has

changed.

Related

concepts:

v

“Server

options

affecting

federated

databases”

on

page

94

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

on

page

182

v

“Global

analysis

of

federated

database

queries”

on

page

186

Global

analysis

of

federated

database

queries

The

following

two

utilities

provided

show

global

access

plans:

v

Visual

Explain.

Start

it

from

the

Control

Center,

or

execute

the

db2cc

command,

which

starts

the

Control

Center.

Use

Visual

Explain

to

view

the

query

access

plan

graph.

The

execution

location

for

each

operator

is

included

in

the

detailed

display

of

an

operator.

You

can

also

find

the

remote

SQL

statement

generated

for

each

data

source

in

the

SHIP

or

RETURN

operator,

depending

on

the

type

of

the

query.

By

examining

the

details

of

each

operator,

you

can

see

the

number

of

rows

estimated

by

the

DB2®

optimizer

as

input

to

and

output

from

each

operator.

You

can

also

see

the

estimated

cost

to

execute

each

operator

including

the

communications

cost.

v

SQL

explain.

Start

it

with

the

db2expln

or

dynexpln

command.

Use

SQL

explain

to

view

the

access

plan

strategy

as

text.

Although

SQL

explain

does

not

provide

cost

information,

you

can

get

the

access

plan

generated

by

the

remote

optimizer

for

those

data

sources

supported

by

the

remote

explain

function.

186

Administration

Guide:

Performance

Understanding

DB2

optimization

decisions

Consider

the

following

optimization

questions

and

key

areas

to

investigate

for

performance

improvements:

v

Why

isn’t

a

join

between

two

nicknames

of

the

same

data

source

being

evaluated

remotely?

Areas

to

examine

include:

–

Join

operations.

Can

the

data

source

support

them?

–

Join

predicates.

Can

the

join

predicate

be

evaluated

at

the

remote

data

source?

If

the

answer

is

no,

examine

the

join

predicate.

–

Number

of

rows

in

the

join

result

(with

Visual

Explain).

Does

the

join

produce

a

much

larger

set

of

rows

than

the

two

nicknames

combined?

Do

the

numbers

make

sense?

If

the

answer

is

no,

consider

updating

the

nickname

statistics

manually

(SYSSTAT.TABLES).
v

Why

isn’t

the

GROUP

BY

operator

being

evaluated

remotely?

Areas

to

examine

include:

–

Operator

syntax.

Verify

that

the

operator

can

be

evaluated

at

the

remote

data

source.

–

Number

of

rows.

Check

the

estimated

number

of

rows

in

the

GROUP

BY

operator

input

and

output

using

visual

explain.

Are

these

two

numbers

very

close?

If

the

answer

is

yes,

the

DB2

optimizer

considers

it

more

efficient

to

evaluate

this

GROUP

BY

locally.

Also,

do

these

two

numbers

make

sense?

If

the

answer

is

no,

consider

updating

the

nickname

statistics

manually

(SYSSTAT.TABLES).
v

Why

is

the

statement

not

being

completely

evaluated

by

the

remote

data

source?

The

DB2

optimizer

performs

cost-based

optimization.

Even

if

pushdown

analysis

indicates

that

every

operator

can

be

evaluated

at

the

remote

data

source,

the

optimizer

still

relies

on

its

cost

estimate

to

generate

a

globally

optimal

plan.

There

are

a

great

many

factors

that

can

contribute

to

that

plan.

For

example,

even

though

the

remote

data

source

can

process

every

operation

in

the

original

query,

its

CPU

speed

is

much

slower

than

the

CPU

speed

for

DB2

and

thus

it

may

turn

out

to

be

more

beneficial

to

perform

the

operations

at

DB2

instead.

If

results

are

not

satisfactory,

verify

your

server

statistics

in

SYSCAT.SERVEROPTIONS.

v

Why

does

a

plan

generated

by

the

optimizer,

and

completely

evaluated

at

a

remote

data

source,

have

much

worse

performance

than

the

original

query

executed

directly

at

the

remote

data

source?

Areas

to

examine

include:

–

The

remote

SQL

statement

generated

by

the

DB2

optimizer.

Ensure

that

it

is

identical

to

the

original

query.

Check

for

predicate

ordering

changes.

A

good

query

optimizer

should

not

be

sensitive

to

the

predicate

ordering

of

a

query;

unfortunately,

not

all

DBMS

optimizers

are

identical,

and

thus

it

is

likely

that

the

optimizer

of

the

remote

data

source

may

generate

a

different

plan

based

on

the

input

predicate

ordering.

If

this

is

true,

this

is

a

problem

inherent

in

the

remote

optimizer.

Consider

either

modifying

the

predicate

ordering

on

the

input

to

DB2

or

contacting

the

service

organization

of

the

remote

data

source

for

assistance.

Also,

check

for

predicate

replacements.

A

good

query

optimizer

should

not

be

sensitive

to

equivalent

predicate

replacements;

unfortunately,

not

all

DBMS

optimizers

are

identical,

and

thus

it

is

possible

that

the

optimizer

of

the

Chapter

6.

Understanding

the

SQL

compiler

187

remote

data

source

may

generate

a

different

plan

based

on

the

input

predicate.

For

example,

some

optimizers

cannot

generate

transitive

closure

statements

for

predicates.

–

The

number

of

returned

rows.

You

can

get

this

number

from

Visual

Explain.

If

the

query

returns

a

large

number

of

rows,

network

traffic

is

a

potential

bottleneck.

–

Additional

functions.

Does

the

remote

SQL

statement

contain

additional

functions

compared

with

the

original

query?

Some

of

the

extra

functions

may

be

generated

to

convert

data

types.

Ensure

that

they

are

necessary.

Related

concepts:

v

“Server

options

affecting

federated

databases”

on

page

94

v

“Federated

database

pushdown

analysis”

on

page

178

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

on

page

182

v

“Remote

SQL

generation

and

global

optimization

in

federated

databases”

on

page

184

v

“Federated

query

information”

on

page

573

v

“Example

five:

federated

database

plan”

on

page

584

188

Administration

Guide:

Performance

Chapter

7.

SQL

Explain

facility

The

Explain

facility

allows

you

to

capture

information

about

the

access

plan

chosen

by

the

optimizer

as

well

as

performance

information

that

helps

you

tune

queries.

SQL

explain

facility

The

SQL

compiler

can

capture

information

about

the

access

plan

and

environment

of

static

or

dynamic

SQL

statements.

The

captured

information

helps

you

understand

how

individual

SQL

statements

are

executed

so

that

you

can

tune

the

statements

and

your

database

manager

configuration

to

improve

performance.

You

collect

and

use

explain

data

for

the

following

reasons:

v

To

understand

how

the

database

manager

accesses

tables

and

indexes

to

satisfy

your

query

v

To

evaluate

your

performance-tuning

actions

When

you

change

some

aspect

of

the

database

manager,

the

SQL

statements,

or

the

database,

you

should

examine

the

explain

data

to

find

out

how

your

action

has

changed

performance.

The

captured

information

includes:

v

Sequence

of

operations

to

process

the

query

v

Cost

information

v

Predicates

and

selectivity

estimates

for

each

predicate

v

Statistics

for

all

objects

referenced

in

the

SQL

statement

at

the

time

that

the

explain

information

is

captured

v

Values

for

the

host

variables,

parameter

markers,

or

special

registers

used

to

reoptimize

the

SQL

statement.

Before

you

can

capture

explain

information,

you

create

the

relational

tables

in

which

the

optimizer

stores

the

explain

information

and

you

set

the

special

registers

that

determine

what

kind

of

explain

information

is

captured.

To

display

explain

information,

you

can

use

either

a

command-line

tool

or

Visual

Explain.

The

tool

that

you

use

determines

how

you

set

the

registry

variables

that

determine

what

explain

data

is

collected.

For

example,

if

you

expect

to

use

Visual

Explain

only,

you

need

only

capture

snapshot

information.

If

you

expect

to

perform

detailed

analysis

with

one

of

the

command-line

utilities

or

with

custom

SQL

statements

against

the

explain

tables,

you

should

capture

all

explain

information.

Related

concepts:

v

“Explain

tools”

on

page

190

v

“Guidelines

for

using

explain

information”

on

page

191

v

“The

explain

tables

and

organization

of

explain

information”

on

page

193

v

“Guidelines

for

capturing

explain

information”

on

page

198

v

“Guidelines

for

analyzing

explain

information”

on

page

200

v

“SQL

explain

tools”

on

page

551

©

Copyright

IBM

Corp.

1993

-

2004

189

|
|

Tools

for

collecting

and

analyzing

explain

information

The

Explain

facility

can

be

executed

in

several

ways,

depending

on

the

kind

of

performance

analysis

that

you

want

to

perform.

This

section

describes

the

tools

that

implement

the

Explain

facility

and

the

ways

in

which

you

might

use

the

information

collected.

Explain

tools

DB2®

provides

a

comprehensive

explain

facility

that

provides

detailed

information

about

the

access

plan

that

the

optimizer

chooses

for

an

SQL

statement.

The

tables

that

store

explain

data

are

accessible

on

all

supported

platforms

and

contain

information

for

both

static

and

dynamic

SQL

statements.

Several

tools

or

methods

give

you

the

flexibility

you

need

to

capture,

display,

and

analyze

explain

information.

Detailed

optimizer

information

that

allows

for

in-depth

analysis

of

an

access

plan

is

stored

in

explain

tables

separate

from

the

actual

access

plan

itself.

Use

one

or

more

of

the

following

methods

of

getting

information

from

the

explain

tables:

v

Use

Visual

Explain

to

view

explain

snapshot

information

Invoke

Visual

Explain

from

the

Control

Center

to

see

a

graphical

display

of

a

query

access

plan.

You

can

analyze

both

static

and

dynamic

SQL

statements.

Visual

Explain

allows

you

to

view

snapshots

captured

or

taken

on

another

platform.

For

example,

a

Windows®

NT

client

can

graph

snapshots

generated

on

a

DB2

for

HP-UX

server.

To

do

this,

both

of

the

platforms

must

be

at

a

Version

5

level

or

later.

v

Use

the

db2exfmt

tool

to

display

explain

information

in

preformatted

output.

v

Use

the

db2expln

and

dynexpln

tools

To

see

the

access

plan

information

available

for

one

or

more

packages

of

static

SQL

statements,

use

the

db2expln

tool

from

the

command

line.

db2expln

shows

the

actual

implementation

of

the

chosen

access

plan.

It

does

not

show

optimizer

information.

The

dynexpln

tool,

which

uses

db2expln

within

it,

provides

a

quick

way

to

explain

dynamic

SQL

statements

that

contain

no

parameter

markers.

This

use

of

db2expln

from

within

dynexpln

is

done

by

transforming

the

input

SQL

statement

into

a

static

statement

within

a

pseudo-package.

When

this

occurs,

the

information

may

not

always

be

completely

accurate.

If

complete

accuracy

is

desired,

use

the

explain

facility.

The

db2expln

tool

does

provide

a

relatively

compact

and

English-like

overview

of

what

operations

will

occur

at

run-time

by

examining

the

actual

access

plan

generated.

v

Write

your

own

queries

against

the

explain

tables

Writing

your

own

queries

allows

for

easy

manipulation

of

the

output

and

for

comparison

among

different

queries

or

for

comparisons

of

the

same

query

over

time.

Note:

The

location

of

the

command-line

explain

tools

and

others,

such

as

db2batch,

dynexpln,

db2vexp

,

and

db2_all,

is

in

the

misc

subdirectory

of

the

sqllib

directory.

If

the

tools

are

moved

from

this

path,

the

command-line

methods

might

not

work.

190

Administration

Guide:

Performance

The

following

table

summarizes

the

different

tools

available

with

the

DB2

explain

facility

and

their

individual

characteristics.

Use

this

table

to

select

the

tool

most

suitable

for

your

environment

and

needs.

Table

29.

Explain

Facility

Tools

Desired

Characteristics

Visual

Explain

Explain

tables

db2exfmt

db2expln

dynexpln

GUI-interface

Yes

Text

output

Yes

Yes

Yes

“Quick

and

dirty”

static

SQL

analysis

Yes

Static

SQL

supported

Yes

Yes

Yes

Yes

Dynamic

SQL

supported

Yes

Yes

Yes

Yes

Yes*

CLI

applications

supported

Yes

Yes

Yes

Available

to

DRDA®

Application

Requesters

Yes

Detailed

optimizer

information

Yes

Yes

Yes

Suited

for

analysis

of

multiple

statements

Yes

Yes

Yes

Yes

Information

accessible

from

within

an

application

Yes

Note:

*

Indirectly

using

db2expln;

there

are

some

limitations.

Related

concepts:

v

“dynexpln”

on

page

558

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Related

reference:

v

Appendix

D,

“db2exfmt

-

Explain

Table

Format,”

on

page

587

v

“db2expln

-

SQL

Explain”

on

page

552

Guidelines

for

using

explain

information

You

use

explain

information

for

the

following

two

major

purposes:

v

To

understand

why

application

performance

has

changed

v

To

evaluate

performance

tuning

efforts

Analysis

of

performance

changes

To

help

you

understand

the

reasons

for

changes

in

query

performance,

you

need

the

before

and

after

explain

information

which

you

can

obtain

by

performing

the

following

steps:

v

Capture

explain

information

for

the

query

before

you

make

any

changes

and

save

the

resulting

explain

tables,

or

you

might

save

the

output

from

the

db2exfmt

explain

tool.

v

Save

or

print

the

current

catalog

statistics

if

you

do

not

want

to,

or

cannot,

access

Visual

Explain

to

view

this

information.

You

might

also

use

the

db2look

productivity

tool

to

help

perform

this

task.

Chapter

7.

SQL

Explain

facility

191

v

Save

or

print

the

data

definition

language

(DDL)

statements,

including

those

for

CREATE

TABLE,

CREATE

VIEW,

CREATE

INDEX,

CREATE

TABLESPACE.

The

information

that

you

collect

in

this

way

provides

a

reference

point

for

future

analysis.

For

dynamic

SQL

statements,

you

can

collect

this

information

when

you

run

your

application

for

the

first

time.

For

static

SQL

statements,

you

can

also

collect

this

information

at

bind

time.

To

analyze

a

performance

change,

you

compare

the

information

that

you

collected

with

information

that

you

collect

about

the

query

and

environment

when

you

start

your

analysis.

As

a

simple

example,

your

analysis

might

show

that

an

index

is

no

longer

being

used

as

part

of

the

access

path.

Using

the

catalog

statistics

information

in

Visual

Explain,

you

might

notice

that

the

number

of

index

levels

(NLEVELS

column)

is

now

substantially

higher

than

when

the

query

was

first

bound

to

the

database.

You

might

then

choose

to

perform

one

of

these

actions:

v

Reorganize

the

index

v

Collect

new

statistics

for

your

table

and

indexes

v

Gather

explain

information

when

rebinding

your

query.

After

you

perform

one

of

the

actions,

examine

the

access

plan

again.

If

the

index

is

used

again,

performance

of

the

query

might

no

longer

be

a

problem.

If

the

index

is

still

not

used

or

if

performance

is

still

a

problem,

perform

a

second

action

and

examine

the

results.

Repeat

these

steps

until

the

problem

is

resolved.

Evaluation

of

performance

tuning

efforts

You

can

take

a

number

of

actions

to

help

improve

query

performance,

such

as

adjusting

configuration

parameters,

adding

containers,

collecting

fresh

catalog

statistics,

and

so

on.

After

you

make

a

change

in

any

of

these

areas,

you

can

use

the

SQL

explain

facility

to

determine

the

impact,

if

any,

that

the

change

has

on

the

access

plan

chosen.

For

example,

if

you

add

an

index

or

materialized

query

table

(MQT)

based

on

the

index

guidelines,

the

explain

data

can

help

you

determine

whether

the

index

or

materialized

query

table

is

actually

used

as

you

expected.

Although

the

explain

output

provides

information

that

allows

you

to

determine

the

access

plan

that

was

chosen

and

its

relative

cost,

the

only

way

to

accurately

measure

the

performance

improvement

for

a

query

is

to

use

benchmark

testing

techniques.

Related

concepts:

v

“SQL

explain

facility”

on

page

189

v

“The

explain

tables

and

organization

of

explain

information”

on

page

193

v

“Guidelines

for

capturing

explain

information”

on

page

198

v

“The

Design

Advisor”

on

page

201

v

“Materialized

query

tables”

on

page

176

Related

reference:

v

Appendix

D,

“db2exfmt

-

Explain

Table

Format,”

on

page

587

192

Administration

Guide:

Performance

Explain

information

collected

This

section

lists

and

describes

each

of

the

tables

that

store

explain

data,

describes

the

kind

of

information

that

you

can

retrieve

from

the

collected

data,

and

provides

guidelines

for

capturing

information

that

is

useful

for

your

performance

analysis.

The

explain

tables

and

organization

of

explain

information

All

explain

information

is

organized

around

the

concept

of

an

explain

instance.

An

explain

instance

represents

one

invocation

of

the

explain

facility

for

one

or

more

SQL

statements.

The

explain

information

captured

in

one

explain

instance

includes

the

SQL

compilation

environment

as

well

as

the

access

plan

chosen

to

satisfy

the

SQL

statement

being

compiled.

For

example,

an

explain

instance

might

consist

of

any

one

of

the

following:

v

All

eligible

SQL

statements

in

one

package

for

static

SQL

statements.

You

can

capture

explain

information

for

SELECT,

SELECT

INTO,

UPDATE,

INSERT,

VALUES,

VALUES

INTO,

and

DELETE

statements.

v

One

particular

SQL

statement

for

incremental

bind

SQL

statements

v

One

particular

SQL

statement

for

dynamic

SQL

statements

v

Each

EXPLAIN

SQL

statement

(whether

dynamic

or

static)

Explain

table

information

reflects

the

relationships

between

operators

and

data

objects

in

the

access

plan.

The

following

diagram

shows

the

relationships

between

these

tables.

Explain

information

is

stored

in

the

following

tables:

Table

30.

Relational

tables

that

store

explain

data

Table

Name

Description

EXPLAIN_ARGUMENT

Contains

information

about

the

unique

characteristics

for

each

individual

operator,

if

any.

EXPLAIN_INSTANCE

The

main

control

table

for

all

Explain

information.

Each

row

of

data

in

the

Explain

tables

is

explicitly

linked

to

one

unique

row

in

this

table.

Basic

information

about

the

source

of

the

SQL

statements

being

explained

and

environment

information

is

kept

in

this

table.

EXPLAIN_OBJECT

Identifies

those

data

objects

required

by

the

access

plan

generated

to

satisfy

the

SQL

statement.

EXPLAIN_OPERATOR

Contains

all

the

operators

needed

to

satisfy

the

SQL

statement

by

the

SQL

compiler.

EXPLAIN_PREDICATE

Identifies

the

predicates

that

are

applied

by

a

specific

operator.

EXPLAIN_STATEMENT

Contains

the

text

of

the

SQL

statement

as

it

exists

for

the

different

levels

of

explain

information.

The

original

SQL

statement

as

entered

by

the

user

is

stored

in

this

table

with

the

version

used

by

the

optimizer

to

choose

an

access

plan.

When

an

explain

snapshot

is

requested,

additional

explain

information

is

recorded

to

describe

the

access

plan

selected

by

the

SQL

optimizer.

This

information

is

stored

in

the

SNAPSHOT

column

of

the

EXPLAIN_STATEMENT

table

in

the

format

required

by

Visual

Explain.

This

format

is

not

usable

by

other

applications.

EXPLAIN_STREAM

Represents

the

input

and

output

data

streams

between

individual

operators

and

data

objects.

The

data

objects

themselves

are

represented

in

the

EXPLAIN_OBJECT

table.

The

operators

involved

in

a

data

stream

are

represented

in

the

EXPLAIN_OPERATOR

table.

Chapter

7.

SQL

Explain

facility

193

Table

30.

Relational

tables

that

store

explain

data

(continued)

Table

Name

Description

ADVISE_WORKLOAD

Allows

users

to

describe

a

workload

to

the

database.

Each

row

in

the

table

represents

an

SQL

statement

in

the

workload

and

is

described

by

an

associated

frequency.

The

db2advis

tool

uses

this

table

to

collect

and

store

workload

information.

ADVISE_INSTANCE

Contains

information

about

db2advis

execution,

including

start

time.

Contains

one

row

for

each

execution

of

db2advis.

ADVISE_INDEX

Stores

information

about

recommended

indexes.

The

table

can

be

populated

by

the

SQL

compiler,

the

db2advis

utility

or

a

user.

This

table

is

used

in

two

ways:

v

To

get

recommended

indexes.

v

To

evaluate

indexes

based

on

input

about

proposed

indexes.

ADVISE_MQT

Contains

the

CREATE

DDL,

the

query

defining

each

recommended

MQT,

the

statistics

for

each

MQT

such

as

COLSTATS

(per

column)

in

XML

form,

NUMROWS,

and

so

on,,

as

well

as

the

sampling

query

to

obtain

sampled

statistics

for

each

MQT.

ADVISE_TABLE

Stores

the

DDL

for

table

creation

using

the

final

Design

Advisor

recommendations

for

recommended

MQTs,

MDCs

and

partitioning,

depending

on

the

options

specified

and

the

recommendations

generated.

ADVISE_PARTITION

Stores

virtual

partitions

generated

and

evaluated

by

db2advis.

Note:

Not

all

of

the

tables

above

are

created

by

default.

To

create

them,

run

the

EXPLAIN.DDL

script

found

in

the

misc

subdirectory

of

the

sqllib

subdirectory.

Explain

tables

might

be

common

to

more

than

one

user.

However,

the

explain

tables

can

be

defined

for

one

user,

and

then

aliases

can

be

defined

for

each

additional

user

using

the

same

name

to

point

to

the

defined

tables.

Each

user

sharing

the

common

explain

tables

must

have

insert

permission

on

those

tables.

Related

concepts:

v

“SQL

explain

facility”

on

page

189

v

“Explain

information

for

data

objects”

on

page

194

v

“Explain

information

for

instances”

on

page

196

v

“Explain

information

for

data

operators”

on

page

195

v

“SQL

explain

tools”

on

page

551

Explain

information

for

data

objects

A

single

access

plan

may

use

one

or

more

data

objects

to

satisfy

the

SQL

statement.

Object

Statistics:

The

explain

facility

records

information

about

the

object,

such

as

the

following:

v

The

creation

time

v

The

last

time

that

statistics

were

collected

for

the

object

v

An

indication

of

whether

or

not

the

data

in

the

object

is

ordered

(only

table

or

index

objects)

v

The

number

of

columns

in

the

object

(only

table

or

index

objects)

194

Administration

Guide:

Performance

||
|

||
|
|
|

||
|
|

||

v

The

estimated

number

of

rows

in

the

object

(only

table

or

index

objects)

v

The

number

of

pages

that

the

object

occupies

in

the

buffer

pool

v

The

total

estimated

overhead,

in

milliseconds,

for

a

single

random

I/O

to

the

specified

table

space

where

this

object

is

stored

v

The

estimated

transfer

rate,

in

milliseconds,

to

read

a

4K

page

from

the

specified

table

space

v

Prefetch

and

extent

sizes,

in

4K

pages

v

The

degree

of

data

clustering

with

the

index

v

The

number

of

leaf

pages

used

by

the

index

for

this

object

and

the

number

of

levels

in

the

tree

v

The

number

of

distinct

full

key

values

in

the

index

for

this

object

v

The

total

number

of

overflow

records

in

the

table

Related

concepts:

v

“The

explain

tables

and

organization

of

explain

information”

on

page

193

v

“Explain

information

for

instances”

on

page

196

v

“Explain

information

for

data

operators”

on

page

195

v

“Guidelines

for

analyzing

explain

information”

on

page

200

Explain

information

for

data

operators

A

single

access

plan

may

perform

several

operations

on

the

data

to

satisfy

the

SQL

statement

and

provide

results

back

to

you.

The

SQL

compiler

determines

the

operations

required,

such

as

a

table

scan,

an

index

scan,

a

nested

loop

join,

or

a

group-by

operator.

In

addition

to

showing

the

operators

used

in

an

access

plan

and

information

about

each

operator,

explain

information

also

shows

the

cumulative

effects

of

the

access

plan.

Estimated

Cost

Information:

The

following

estimated

cumulative

costs

can

be

displayed

for

the

operators.

These

costs

are

for

the

chosen

access

plan,

up

to

and

including

the

operator

for

which

the

information

is

captured.

v

The

total

cost

(in

timerons)

v

The

number

of

page

I/Os

v

The

number

of

CPU

instructions

v

The

cost

(in

timerons)

of

fetching

the

first

row,

including

any

initial

overhead

required

v

The

communication

cost

(in

frames).

Timerons

are

an

invented

relative

unit

of

measure.

Timerons

are

determined

by

the

optimizer

based

on

internal

values

such

as

statistics

that

change

as

the

database

is

used.

As

a

result,

the

timerons

measure

for

a

SQL

statement

are

not

guaranteed

to

be

the

same

every

time

the

estimated

cost

in

timerons

is

determined.

Operator

Properties:

The

following

information

is

recorded

by

the

explain

facility

to

describe

the

properties

of

each

operator:

v

The

set

of

tables

that

have

been

accessed

v

The

set

of

columns

that

have

been

accessed

v

The

columns

on

which

the

data

is

ordered,

if

the

optimizer

determined

that

this

ordering

can

be

used

by

subsequent

operators

Chapter

7.

SQL

Explain

facility

195

v

The

set

of

predicates

that

have

been

applied

v

The

estimated

number

of

rows

that

will

be

returned

(cardinality)

Related

concepts:

v

“The

explain

tables

and

organization

of

explain

information”

on

page

193

v

“Explain

information

for

data

objects”

on

page

194

v

“Explain

information

for

instances”

on

page

196

v

“Guidelines

for

analyzing

explain

information”

on

page

200

Explain

information

for

instances

Explain

instance

information

is

stored

in

the

EXPLAIN_INSTANCE

table.

Additional

specific

information

about

each

SQL

statement

in

an

instance

is

stored

in

the

EXPLAIN_STATEMENT

table.

Explain

Instance

Identification:

Use

this

information

to

uniquely

identify

each

explain

instance

and

correlate

the

information

for

the

SQL

statements

to

a

given

invocation

of

the

facility:

v

The

user

who

requested

the

explain

information

v

When

the

explain

request

began

v

The

name

of

the

package

that

contains

the

explained

SQL

statement

v

The

schema

of

the

package

that

contains

the

explained

SQL

statement

v

The

version

of

the

package

that

contains

the

statement

v

Whether

snapshot

information

was

collected

Environmental

Settings:

Information

about

the

database

manager

environment

in

which

the

SQL

compiler

optimized

your

queries

is

captured.

The

environmental

information

includes

the

following:

v

The

version

and

release

number

for

the

level

of

DB2®

v

The

degree

of

parallelism

for

which

the

query

was

compiled

The

CURRENT

DEGREE

special

register,

the

DEGREE

bind

option,

the

SET

RUNTIME

DEGREE

API,

and

the

dft_degree

configuration

parameter

determine

the

degree

of

parallelism

for

which

a

particular

query

is

compiled.

v

Whether

the

SQL

statement

is

dynamic

or

static

v

The

query

optimization

class

used

to

compile

the

query

v

The

type

of

row

blocking

for

cursors

specified

when

compiling

the

query

v

The

isolation

level

in

which

the

query

runs

v

The

values

of

various

configuration

parameters

when

the

query

was

compiled.

The

following

parameters

are

recorded

when

an

explain

snapshot

is

taken:

–

Sort

Heap

Size

(sortheap)

–

Average

Number

of

Active

Applications

(avg_appls)

–

Database

Heap

(dbheap)

–

Maximum

Storage

for

Lock

List

(locklist)

–

Maximum

Percent

of

Lock

List

Before

Escalation

(maxlocks)

–

CPU

Speed

(cpuspeed)

–

Communications

Bandwidth

(comm_bandwidth)

196

Administration

Guide:

Performance

SQL

Statement

Identification:

More

than

one

SQL

statement

might

have

been

explained

for

each

explain

instance.

In

addition

to

information

that

uniquely

identifies

the

explain

instance,

the

following

information

helps

identify

individual

SQL

statements:

v

The

type

of

statement:

SELECT,

DELETE,

INSERT,

UPDATE,

positioned

DELETE,

positioned

UPDATE

v

The

statement

and

section

number

of

the

package

issuing

the

SQL

statement,

as

recorded

in

SYSCAT.STATEMENTS

catalog

view

The

QUERYTAG

and

QUERYNO

fields

in

the

EXPLAIN_STATEMENT

table

contain

identifiers

that

are

set

as

part

of

the

explain

process.

For

dynamic

explain

SQL

statements

submitted

during

a

CLP

or

CLI

session,

when

EXPLAIN

MODE

or

EXPLAIN

SNAPSHOT

is

active,

the

QUERYTAG

is

set

to

“CLP”

or

“CLI”.

In

this

case,

the

QUERYNO

value

defaults

to

a

number

that

is

incremented

by

one

or

more

for

each

statement.

For

all

other

dynamic

explain

SQL

statements,

which

are

not

from

CLP,

CLI,

or

do

not

use

the

EXPLAIN

SQL

statement,

QUERYTAG

is

set

to

blanks

and

QUERYNO

is

always

“1”.

Cost

Estimation:

For

each

explained

statement,

the

optimizer

records

an

estimate

of

the

relative

cost

of

executing

the

chosen

access

plan.

This

cost

is

stated

in

an

invented

relative

unit

of

measure

called

a

timeron.

No

estimate

of

elapsed

times

is

provided,

for

the

following

reasons:

v

The

SQL

optimizer

does

not

estimate

elapsed

time

but

only

resource

consumption.

v

The

optimizer

does

not

model

all

factors

that

can

affect

elapsed

time.

It

ignores

factors

that

do

not

affect

the

efficiency

of

the

access

plan.

A

number

of

runtime

factors

affect

the

elapsed

time,

including

the

system

workload,

the

amount

of

resource

contention,

the

amount

of

parallel

processing

and

I/O,

the

cost

of

returning

rows

to

the

user,

and

the

communication

time

between

the

client

and

server.

Statement

Text:

Two

versions

of

the

text

of

the

SQL

statement

are

recorded

for

each

statement

explained.

One

version

is

the

code

that

the

SQL

compiler

receives

from

the

application.

The

other

version

is

reverse-translated

from

the

internal

compiler

representation

of

the

query.

Although

this

translation

looks

similar

to

other

SQL

statements,

it

does

not

necessarily

follow

correct

SQL

syntax

nor

does

it

necessarily

reflect

the

actual

content

of

the

internal

representation

as

a

whole.

This

translation

is

provided

only

to

allow

you

to

understand

the

SQL

context

in

which

the

SQL

optimizer

chose

the

access

plan.

To

understand

how

the

SQL

compiler

has

rewritten

your

query

for

better

optimization,

compare

the

user-written

statement

text

to

the

internal

representation

of

the

SQL

statement.

The

rewritten

statement

also

shows

you

other

elements

in

the

environment

affecting

your

statement,

such

as

triggers

and

constraints.

Some

keywords

used

by

this

“optimized”

text

are:

$Cn

The

name

of

a

derived

column,

where

n

represents

an

integer

value.

$CONSTRAINT$

The

tag

used

to

indicate

the

name

of

a

constraint

added

to

the

original

SQL

statement

during

compilation.

Seen

in

conjunction

with

the

$WITH_CONTEXT$

prefix.

$DERIVED.Tn

The

name

of

a

derived

table,

where

n

represents

an

integer

value.

$INTERNAL_FUNC$

The

tag

indicates

the

presence

of

a

function

used

Chapter

7.

SQL

Explain

facility

197

by

the

SQL

compiler

for

the

explained

query

but

not

available

for

general

use.

$INTERNAL_PRED$

The

tag

indicates

the

presence

of

a

predicate

added

by

the

SQL

compiler

during

compilation

of

the

explained

query

but

not

available

for

general

use.

An

internal

predicate

is

used

by

the

compiler

to

satisfy

additional

context

added

to

the

original

SQL

statement

because

of

triggers

and

constraints.

RID

The

tag

used

to

identify

the

row

identifier

(RID)

column

for

a

particular

row.

$TRIGGER$

The

tag

used

to

indicate

the

name

of

a

trigger

added

to

the

original

SQL

statement

during

compilation.

Seen

in

conjunction

with

the

$WITH_CONTEXT$

prefix.

$WITH_CONTEXT$(...)

This

prefix

appears

at

the

start

of

the

text

when

additional

triggers

or

constraints

have

been

added

into

the

original

SQL

statement.

A

list

of

the

names

of

any

triggers

or

constraints

affecting

the

compilation

and

resolution

of

the

SQL

statement

appears

after

this

prefix.

Related

concepts:

v

“The

explain

tables

and

organization

of

explain

information”

on

page

193

v

“Explain

information

for

data

objects”

on

page

194

v

“Explain

information

for

data

operators”

on

page

195

v

“Guidelines

for

analyzing

explain

information”

on

page

200

Related

reference:

v

“comm_bandwidth

-

Communications

bandwidth”

on

page

456

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“dbheap

-

Database

heap”

on

page

339

v

“cpuspeed

-

CPU

speed”

on

page

457

v

“avg_appls

-

Average

number

of

active

applications”

on

page

378

v

“dft_degree

-

Default

degree”

on

page

431

Guidelines

for

capturing

explain

information

Explain

data

is

captured

if

you

request

it

when

an

SQL

statement

is

compiled.

Consider

how

you

expect

to

use

the

captured

information

when

you

request

explain

data.

Notes:

1.

If

incremental

bind

SQL

statements

are

compiled

at

run

time,

data

is

placed

in

the

explain

tables

at

run

time

and

not

bind

time.

For

these

statements,

the

explain

table

qualifier

and

authorization

ID

inserted

is

that

of

the

package

owner

and

not

that

of

the

user

running

the

package.

2.

Explain

information

is

captured

only

when

the

SQL

statement

is

compiled.

After

the

initial

compilation,

dynamic

SQL

statements

are

recompiled

when

a

change

to

the

environment

requires

it,

or

when

the

Explain

facility

is

active.

If

198

Administration

Guide:

Performance

|
|
|

you

issue

the

same

PREPARE

statement

for

the

same

SQL

statement,

the

SQL

statement

is

compiled

and

Explain

data

is

captured

every

time

this

statement

is

prepared

or

executed.

3.

If

a

package

is

bound

using

the

bind

option

REOPT

ONCE/ALWAYS,

SQL

statements

containing

host

variables,

parameter

markers,

or

special

registers

will

be

compiled

and

the

access

path

will

be

created

using

real

values

of

these

variables

if

they

are

known,

and

using

default

estimates

if

the

values

are

not

known

at

compilation

time.

4.

If

the

FOR

REOPT

ONCE

clause

is

used,

then

an

attempt

is

made

to

match

the

specified

SQL

statement

against

the

same

statement

in

the

package

cache.

The

values

of

this

already

reoptimized

cached

SQL

statement

will

be

used

to

reoptimize

the

specified

SQL

statement.

The

Explain

tables

will

contain

the

newly

generated

reoptimized

access

plan

and

the

values

used

for

this

reoptimization,

if

the

user

has

the

required

access

privileges.

5.

In

a

multi-partition

system,

the

statement

should

be

explained

on

the

same

partition

on

which

it

was

originally

compiled

and

reoptimized

using

REOPT

ONCE,

otherwise

an

error

will

be

returned.

Capturing

information

in

the

explain

tables

v

Static

or

incremental

bind

SQL

statements:

Specify

either

EXPLAIN

ALL

or

EXPLAIN

YES

options

on

the

BIND

or

the

PREP

commands

or

include

a

static

EXPLAIN

SQL

statement

in

the

source

program.

v

Dynamic

SQL

statements:

Explain

table

information

is

captured

in

any

of

the

following

cases:

–

The

CURRENT

EXPLAIN

MODE

special

register

is

set

to:

-

YES:

The

SQL

compiler

captures

explain

data

and

executes

the

SQL

statement.

-

EXPLAIN:

The

SQL

compiler

captures

explain

data,

but

does

not

execute

the

SQL

statement.

-

RECOMMEND

INDEXES:

The

SQL

compiler

captures

explain

data

and

the

recommended

indexes

are

placed

in

the

ADVISE_INDEX

table,

but

the

SQL

statement

is

not

executed.

-

EVALUATE

INDEXES:

The

SQL

compiler

uses

indexes

placed

by

the

user

in

the

ADVISE_INDEX

table

for

evaluation.

In

EVALUATE

INDEXES

mode,

all

dynamic

statements

are

explained

as

if

these

virtual

indexes

were

available.

The

SQL

compiler

then

chooses

to

use

the

virtual

indexes

if

they

improve

the

performance

of

the

statements.

Otherwise,

the

indexes

are

ignored.

To

find

out

if

proposed

indexes

are

useful,

review

the

EXPLAIN

results.
v

The

EXPLAIN

ALL

option

has

been

specified

on

the

BIND

or

PREP

command.

The

SQL

compiler

captures

explain

data

for

dynamic

SQL

at

run-time,

even

if

the

CURRENT

EXPLAIN

MODE

special

register

is

set

to

NO.

The

SQL

statement

also

executes

and

returns

the

results

of

the

query.

Capturing

explain

snapshot

information

When

an

explain

snapshot

is

requested,

explain

information

is

stored

in

the

SNAPSHOT

column

of

the

EXPLAIN_STATEMENT

table

in

the

format

required

by

Visual

Explain.

This

format

is

not

usable

by

other

applications.

Additional

information

on

the

contents

of

the

explain

snapshot

information

is

available

from

Visual

Explain

itself.

This

information

includes

information

about

data

objects

and

data

operators.

Chapter

7.

SQL

Explain

facility

199

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

Explain

snapshot

data

is

captured

when

an

SQL

statement

is

compiled

and

explain

data

has

been

requested,

as

follows:

v

Static

or

incremental

bind

SQL

statements:

An

explain

snapshot

is

captured

when

either

EXPLSNAP

ALL

or

EXPLSNAP

YES

clauses

are

specified

on

the

BIND

or

the

PREP

commands

or

when

the

source

program

includes

a

static

EXPLAIN

SQL

statement

that

uses

a

FOR

SNAPSHOT

or

a

WITH

SNAPSHOT

clause.

v

Dynamic

SQL

statements:

An

explain

snapshot

is

captured

in

any

of

the

following

cases:

–

You

issue

an

EXPLAIN

SQL

statement

with

a

FOR

SNAPSHOT

or

a

WITH

SNAPSHOT

clause.

With

the

FOR

SNAPSHOT

clause,

only

explain

snapshot

information

is

captured.

With

the

WITH

SNAPSHOT

clause,

all

explain

information

is

captured

in

addition

snapshot

information.

–

The

CURRENT

EXPLAIN

SNAPSHOT

special

register

is

set

to:

-

YES:

The

SQL

compiler

captures

snapshot

explain

data

and

executes

the

SQL

statement.

-

EXPLAIN:

The

SQL

compiler

captures

snapshot

explain

data,

but

does

not

execute

the

SQL

statement.
–

You

specify

the

EXPLSNAP

ALL

option

on

the

BIND

or

PREP

command.

The

SQL

compiler

captures

snapshot

explain

data

at

run-time,

even

if

the

setting

of

the

CURRENT

EXPLAIN

SNAPSHOT

special

register

is

NO.

It

also

executes

the

SQL

statement.

Related

concepts:

v

“SQL

explain

facility”

on

page

189

v

“Guidelines

for

using

explain

information”

on

page

191

v

“The

explain

tables

and

organization

of

explain

information”

on

page

193

v

“The

Design

Advisor”

on

page

201

v

“Guidelines

for

analyzing

explain

information”

on

page

200

v

“SQL

explain

tools”

on

page

551

Guidelines

for

analyzing

explain

information

Although

the

primary

use

of

explain

information

is

analysis

of

the

access

paths

for

SELECT

statements,

there

are

a

number

of

ways

in

which

analyzing

the

explain

data

can

help

you

to

tune

your

queries

and

environment.

Consider

the

following

kind

of

analysis:

v

Index

use

The

proper

indexes

can

significantly

benefit

performance.

Using

the

explain

output,

you

can

determine

if

the

indexes

you

have

created

to

help

a

specific

set

of

queries

are

being

used.

In

the

explain

output,

you

should

look

for

index

usage

in

the

following

areas:

–

Join

predicates

–

Local

predicates

–

GROUP

BY

clause

–

ORDER

BY

clause

–

The

select

list.

You

can

also

use

the

explain

facility

to

evaluate

whether

a

different

index

might

be

used

instead

of

an

existing

index

or

no

index

at

all.

After

you

create

a

new

index,

use

the

RUNSTATS

command

to

collect

statistics

for

that

index

and

200

Administration

Guide:

Performance

recompile

the

query.

Over

time

you

may

notice

through

the

explain

data

that

instead

of

an

index

scan,

a

table

scan

is

now

being

used.

This

can

result

from

a

change

in

the

clustering

of

the

table

data.

If

the

index

that

was

previously

being

used

now

has

a

low

cluster

ratio,

you

may

want

to

reorganize

the

table

to

cluster

its

data

according

to

that

index,

use

the

RUNSTATS

command

to

collect

statistics

for

both

index

and

table,

and

then

recompile

the

query.

To

determine

whether

reorganizing

table

has

improved

the

access

plan,

re-examine

the

explain

output

for

the

recompiled

query.

v

Access

type

Analyze

the

explain

output

and

look

for

types

of

access

to

the

data

that

are

not

usually

optimal

for

the

type

of

application

you

are

running.

For

example:

–

Online

transaction

processing

(OLTP)

queries

OLTP

applications

are

prime

candidates

to

use

index

scans

with

range

delimiting

predicates,

because

they

tend

to

return

only

a

few

rows

that

are

qualified

using

an

equality

predicate

against

a

key

column.

If

your

OLTP

queries

are

using

a

table

scan,

you

may

want

to

analyze

the

explain

data

to

determine

the

reasons

why

an

index

scan

was

not

used.

–

Browse-only

queries

The

search

criteria

for

a

“browse”

type

query

may

be

very

vague,

causing

a

large

number

of

rows

to

qualify.

If

users

usually

look

at

only

a

few

screens

of

the

output

data,

you

might

specify

that

the

entire

answer

set

need

not

be

computed

before

some

results

are

returned.

In

this

case,

the

goals

of

the

user

are

different

from

the

basic

operating

principle

of

the

optimizer,

which

attempts

to

minimize

resource

consumption

for

the

entire

query,

not

just

the

first

few

screens

of

data.

For

example,

if

the

explain

output

shows

that

both

merge

scan

join

and

sort

operators

were

used

in

the

access

plan,

then

the

entire

answer

set

will

be

materialized

in

a

temporary

table

before

any

rows

are

returned

to

the

application.

In

this

case,

you

can

attempt

to

change

the

access

plan

by

using

the

OPTIMIZE

FOR

clause

on

the

SELECT

statement.

If

you

specify

this

option,

the

optimizer

can

attempt

to

choose

an

access

plan

that

does

not

produce

the

entire

answer

set

in

a

temporary

table

before

returning

the

first

rows

to

the

application.
v

Join

methods

If

a

query

joins

two

tables,

check

the

type

of

join

being

used.

Joins

that

involve

more

rows,

such

as

those

in

decision-support

queries,

usually

run

faster

with

a

merge

join.

Joins

that

involve

only

a

few

rows,

such

as

OLTP

queries,

typically

run

faster

with

nested-loop

joins.

However,

there

may

be

extenuating

circumstances

in

either

case,

such

as

the

use

of

local

predicates

or

indexes,

that

might

change

how

these

typical

joins

work.

Related

concepts:

v

“SQL

explain

facility”

on

page

189

v

“SQL

explain

tools”

on

page

551

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

The

Design

Advisor

The

DB2®

Design

Advisor

is

a

tool

that

can

help

you

significantly

improve

your

workload

performance.

The

task

of

selecting

which

indexes,

MQTs,

clustering

dimensions,

or

partitions

to

create

for

a

complex

workload

can

be

quite

daunting.

The

Design

Advisor

identifies

all

of

the

objects

needed

to

improve

the

performance

Chapter

7.

SQL

Explain

facility

201

|

|
|
|
|

of

your

workload.

Given

a

set

of

SQL

statements

in

a

workload,

the

Design

Advisor

will

generate

recommendations

for:

v

New

indexes

v

New

materialized

query

tables

(MQTs)

v

Conversion

to

multidimensional

clustering

(MDC)

tables

v

Repartitioning

of

tables

v

Deletion

of

indexes

and

MQTs

unused

by

the

specified

workload

(through

the

GUI

tool)

You

can

have

the

Design

Advisor

implement

some

or

all

of

these

recommendations

immediately

or

schedule

them

for

a

later

time.

Using

either

the

Design

Advisor

GUI

or

the

command-line

tool,

the

Design

Advisor

can

help

simplify

the

following

tasks:

Planning

for

or

setting

up

a

new

database

While

designing

your

database

use

the

Design

Advisor

to:

v

Generate

design

alternatives

in

a

test

environment

of

a

partitioned

database

environment,

and

of

indexes,

MQTs,

and

MDC

tables.

v

For

partitioned

database

environments,

you

can

use

the

Design

Advisor

to:

–

Determine

the

partitioning

strategy

before

loading

data

into

a

database.

–

Assist

in

migrating

from

a

single-partition

DB2

database

to

a

multiple-partition

DB2

database.

–

Assist

in

migrating

from

another

database

product

to

a

multiple-partition

DB2

database.
v

Evaluate

indexes,

MQTs,

MDC

tables,

or

partitioning

strategies

that

have

been

generated

manually.

Workload

performance

tuning

After

your

database

is

set

up,

you

can

use

the

Design

Advisor

to:

v

Improve

performance

of

a

particular

statement

or

workload.

v

Improve

general

database

performance,

using

the

performance

of

a

sample

workload

as

a

gauge.

v

Improve

performance

of

the

most

frequently

executed

queries,

for

example,

as

identified

by

the

Activity

Monitor.

v

Determine

how

to

optimize

the

performance

of

a

new

key

query.

v

Respond

to

Health

Center

recommendations

regarding

shared

memory

utility

or

sort

heap

problems

in

a

sort-intensive

workload.

v

Find

objects

that

are

not

used

in

a

workload.

Design

Advisor

output

If

you

use

the

Design

Advisor

GUI,

you

can

view,

save,

or

implement

the

recommendations

from

within

the

Design

Advisor.

If

you

run

the

Design

Advisor

from

the

command

line,

the

output

is

printed

to

stdout

by

default,

and

saved

in

the

ADVISE_TABLE

and

ADVISE_INDEX

tables:

v

The

ADVISE_TABLE

contains

USE_TABLE='Y'

for

MQT,

MDC

tables,

and

partitioning

strategy

recommendations.

The

MQT

recommendations

can

also

be

found

in

the

ADVISE_MQT

table;

the

MDC

recommendations

can

also

be

found

in

the

ADVISE_TABLE

table;

and

the

partitioning

strategy

recommendations

can

also

be

found

in

the

202

Administration

Guide:

Performance

|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|

|

|
|
|
|

|
|

|
|
|

ADVISE_PARTITION

table.

The

RUN_ID

value

in

these

tables

corresponds

to

the

START_TIME

value

in

the

ADVISE_INSTANCE

table

for

each

execution

of

the

Design

Advisor.

v

The

ADVISE_INDEX

table

contains

USE_INDEX='Y'

or

'R'

for

index

recommendations.

The

ADVISE_INSTANCE

table

is

also

updated

with

one

row

each

time

that

the

Design

Advisor

runs:

v

The

START_TIME

field

and

the

END_TIME

field

show

the

start

and

stop

times

of

the

utility,

respectively.

v

The

STATUS

field

will

contain

'COMPLETED'

if

the

utility

ended

successfully.

v

The

MODE

field

indicates

whether

the

-m

option

was

used.

v

The

COMPRESSION

field

indicates

the

type

of

compression

used.

You

can

save

the

Design

Advisor

recommendations

to

a

file

using

the

-o

option.

The

saved

Design

Advisor

output

consists

of

the

following

elements:

v

CREATE

STATEMENTS

given

for

new

indexes,

MQTs,

partitioning

strategies,

and

MDC

tables.

v

REFRESH

statements

for

MQTs.

v

RUNSTATS

commands

for

new

objects.

v

Existing

MQTs

and

indexes

will

appear

in

the

recommended

script

if

they

were

and

are

used

to

execute

the

workload.

Note:

The

COLSTATS

column

of

the

ADVISE_MQT

table

contains

the

column

statistics

for

an

MQT.

The

statistics

are

in

an

XML

structure

as

follows:

<?xml

version=\"1.0\"

encoding=\"USASCII\"?>

<colstats>

<column>

<name>COLNAME1</name>

<colcard>1000</colcard>

<high2key>999</high2key>

<low2key>2</low2key>

</column>

....

<column>

<name>COLNAME100</name>

<colcard>55000</colcard>

<high2key>49999</high2key>

<low2key>100</low2key>

</column>

</colstats>

Note

that

the

XML

structure

can

contain

more

than

one

column.

For

each

column,

the

column

cardinality

(that

is,

the

number

of

values

in

the

column)

is

shown,

and

optionally,

the

high2

and

low2

keys.

After

some

minor

modifications,

you

can

run

this

output

file

as

a

CLP

script

to

create

the

recommended

objects.

The

modifications

that

you

might

want

to

perform

include:

v

Combining

all

of

the

RUNSTATS

command

statements

into

a

single

RUNSTATS

invocation

on

the

new

or

modified

objects.

v

Providing

more

usable

object

names

than

the

system-generated

IDs.

v

Removing

or

commenting

out

any

DDL

for

objects

that

you

do

not

want

to

implement

immediately.

Chapter

7.

SQL

Explain

facility

203

|
|
|

|
|

|
|

|
|

|

|

|

|
|

|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

Related

concepts:

v

“Data

partitioning”

in

the

Administration

Guide:

Planning

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

planning

tips”

on

page

246

v

“Materialized

query

tables”

on

page

176

v

“Multidimensional

clustering

tables”

in

the

Administration

Guide:

Planning

Related

reference:

v

“db2advis

-

DB2

Design

Advisor

Command”

in

the

Command

Reference

Defining

a

workload

for

the

Design

Advisor

A

workload

is

a

set

of

SQL

statements

that

the

database

manager

has

to

process

during

a

given

period

of

time.

For

example,

during

one

month

your

database

manager

may

have

to

process

1000

INSERTs,

10000

UPDATEs,

10000

SELECTs,

and

1000

DELETEs.

The

Design

Advisor

analyzes

a

specified

workload

and

considers

factors

such

as

the

type

of

workload

statements,

the

frequency

with

which

a

particular

statement

occurs,

and

characteristics

of

your

database

to

generate

recommendations

that

minimize

the

total

cost

to

run

the

workload.

Procedure:

Design

Advisor

GUI

method:

From

the

Design

Advisor

GUI

workload

page,

you

can

create

a

new

workload

file,

or

modify

a

previously

existing

workload

file.

You

can

import

statements

into

the

file

from

several

sources:

v

A

delimited

text

file

v

An

Event

Monitor

table

v

Query

Patroller

historical

data

tables

by

using

the

-qp

option

from

the

command

line

v

Explained

statements

in

the

EXPLAINED_STATEMENT

table

v

Recent

SQL

statements

that

have

been

captured

with

a

DB2

snapshot.

After

you

import

your

SQL

statements,

you

can

add,

change,

modify,

or

remove

statements

and

modify

their

frequency.

Design

Advisor

command-line

method:

From

the

command

line,

run

the

Design

Advisor

using:

v

A

single

SQL

statement

that

you

enter

in-line

with

the

command

v

A

set

of

dynamic

SQL

statements

captured

in

a

DB2

snapshot

v

A

set

of

SQL

statements

contained

in

a

workload

file.

To

run

the

Design

Advisor

on

dynamic

SQL

statements:

1.

Reset

the

database

monitor

with

the

following

command:

db2

reset

monitor

for

database

database-name

2.

Wait

for

an

appropriate

interval

of

time

for

the

execution

of

dynamic

SQL

statements

against

the

database.

204

Administration

Guide:

Performance

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|

|

|
|
|

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

3.

Issue

the

db2advis

command

with

the

-g

option.

If

you

want

to

save

the

dynamic

SQL

statements

in

the

ADVISE_WORKLOAD

table

for

later

reference,

use

the

-p

option

as

well.

To

run

the

Design

Advisor

on

a

set

of

SQL

statements

contained

in

a

workload

file:

1.

Create

a

workload

file

manually,

separating

each

SQL

statement

with

a

semicolon,

or

import

SQL

statements

from

one

or

more

of

the

sources

listed

above.

2.

Set

the

frequency

of

the

statements

in

the

workload.

Every

statement

in

the

workload

file

is

assigned

a

frequency

of

1

by

default.

The

frequency

of

an

SQL

statement

represents

the

number

of

times

the

statement

occurs

within

a

workload

relative

to

the

number

of

times

that

other

statements

occur.

For

example,

a

particular

SELECT

statement

might

occur

100

times

in

a

workload,

while

another

SELECT

statement

occurs

10

times.

To

represent

the

relative

frequency

of

these

two

statements,

you

could

assign

the

first

SELECT

statement

a

frequency

of

10,

while

the

second

select

statement

has

a

frequency

of

1.

You

can

manually

change

the

frequency

or

weight

that

a

particular

statement

has

in

the

workload

by

inserting

the

following

line

after

the

statement

-

-

#

SET

FREQUENCY

n

where

n

is

the

frequency

value

that

you

want

to

assign

to

the

statement.

3.

Run

the

db2advis

command

using

the

-i

option

followed

by

the

name

of

the

workload

file.

To

run

the

Design

Advisor

on

a

workload

contained

in

the

ADVISE_WORKLOAD

table,

run

db2advis

with

the

-w

option

followed

by

the

workload

name.

Related

concepts:

v

“The

Design

Advisor”

on

page

201

Using

the

Design

Advisor

to

migrate

from

a

single-partition

to

a

multiple-partition

database

You

can

use

the

Design

Advisor

to

help

you

migrate

from

a

single-partition

to

a

multiple-partition

database.

The

Design

Advisor

can

provide

you

with

recommendations

for

partitioning

your

data

and,

at

the

same

time,

provide

you

with

recommendations

for

new

indexes,

materialized

query

tables

(MQTs),

and

multi-dimensional

clustering

(MDC)

tables.

Procedure:

1.

Update

the

product

license

key

for

DB2

UDB

ESE.

2.

Create

at

least

one

table

space

in

a

multiple-partition

database

partition

group.

Note:

Because

the

Design

Advisor

can

only

recommend

repartitioning

to

existing

table

spaces,

the

table

spaces

that

you

want

the

Design

Advisor

to

consider

must

exist

in

the

partitioned

database

before

the

Design

Advisor

is

run.

3.

Run

the

Design

Advisor,

with

the

partitioning

feature

selected

in

the

Design

Advisor

GUI,

or

with

the

partitioning

option

specified

for

the

db2advis

command.

4.

If

you

are

using

the

Design

Advisor

in

the

Control

Center,

you

can

implement

the

partitioning

recommendations

automatically.

If

you

are

using

the

db2advis

command

you

will

need

to

modify

the

db2advis

output

file

slightly

before

running

the

DDL

statements

generated

by

the

Design

Advisor.

Chapter

7.

SQL

Explain

facility

205

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

Related

concepts:

v

“The

Design

Advisor”

on

page

201

Related

tasks:

v

“Registering

the

DB2

product

license

key

using

the

db2licm

command”

in

the

Installation

and

Configuration

Supplement

Design

Advisor

limitations

and

restrictions

1.

Restrictions

on

index

recommendations

v

Indexes

recommended

on

materialized

query

tables

(MQTs)

are

to

improve

the

workload

performance

as

opposed

to

REFRESH

TABLE

performance.

Also

if

updates,

inserts,

or

deletes

are

not

included

in

the

workload,

the

performance

of

changing

(for

example,

updating)

the

MQT

would

not

be

included

for

IMMEDIATE

MQTs.

For

this

reason,

it

is

recommended

that

these

MQTs

have

unique

indexes

created

on

the

IMMEDIATE

MQTs

implied

unique

key.

The

implied

unique

key

would

be

based

on

on

the

columns

in

the

GROUP

BY

clause

of

the

MQT

query

definition.

v

The

clustering

RID

index

is

only

recommended

when

multidimensional

clustering

is

to

be

selected.

The

advisor

will

include

RID

clustering

indexes

as

an

option

instead

of

creating

an

MDC

structure

for

a

table.
2.

Restrictions

on

MQT

recommendations

v

The

Design

Advisor

will

not

recommend

incremental

MQTs.

If

you

want

to

create

incremental

MQTs,

you

can

take

REFRESH

IMMEDIATE

MQTs

and

convert

these

to

incrementals

with

your

choice

of

staging

tables.

v

Indexes

recommended

for

MQTs

are

designed

to

improve

workload

performance

and

not

MQT

refresh

performance.

v

If

updates,

inserts,

or

deletes

are

not

included

in

the

specified

workload,

the

performance

impact

of

updating

a

recommended

REFRESH

IMMEDIATE

MQT

is

not

considered.

It

is

recommended

that

REFRESH

IMMEDIATE

MQTs

have

unique

indexes

created

on

the

implied

unique

key,

which

is

composed

of

the

columns

in

the

GROUP

BY

clause

of

the

MQT

query

definition.
3.

Restrictions

on

MDC

recommendations

v

Existing

tables

must

have

data

in

them;

otherwise,

MDC

will

not

be

considered

for

the

table.

v

MDC

recommendations

for

new

MQTs

will

not

be

considered

unless

the

sampling

option,

-r,

is

used

with

the

command,

or

MQT

sampling

is

selected

in

the

GUI

tool.

v

The

Design

Advisor

does

not

make

MDC

recommendations

for

typed

or

temporary

tables.

v

The

Design

Advisor

does

not

make

MDC

recommendations

for

federated

tables.

v

Storage

space

must

exist

for

the

sampling

data

used

during

the

execution

of

the

Design

Advisor,

otherwise

the

sampled

table

will

be

examined

only

for

base

columns

under

the

uncorrelated

assumption.

A

warning

message

will

be

generated

in

this

case.

v

Tables

without

statistics

collected

will

be

skipped

for

consideration.

v

The

Design

Advisor

does

not

make

recommendations

for

multicolumn

dimensions.

v

Existing

tables

must

have

data

in

them

for

sampling

to

work

in

MDC

selection.

206

Administration

Guide:

Performance

|

|

|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

4.

Restrictions

on

partitioning

recommendations

The

Design

Advisor

can

only

recommend

partitioning

on

DB2®

Enterprise

Server

Edition.

If

the

partitioning

options

are

specified

with

the

db2advis

command,

an

error

is

returned.

In

the

Design

Advisor

GUI,

the

partitioning

feature

is

not

selectable

in

a

single-partition

database

environment.

5.

Additional

restrictions

Simulation

catalog

tables

are

created

during

the

execution

of

the

Design

Advisor.

These

tables

are

dropped

when

the

Design

Advisor

execution

completes.

Incomplete

Design

Advisor

execution

may

result

in

some

of

these

tables

not

being

dropped.

In

this

situation,

you

can

use

the

Design

Advisor

to

drop

these

tables

by

restarting

the

utility

from

the

command

line.

To

remove

the

simulation

catalog

tables,

specify

both

the

-f

option

and

the

-n

option

(for

-n,

specifying

the

same

user

name

that

was

used

for

the

incomplete

execution).

If

you

do

not

specify

the

-f

option,

the

Design

Advisor

will

generate

the

DROP

statements

that

are

required

to

remove

the

tables.

You

should

create

a

separate

table

space

for

storing

these

simulated

catalog

tables

and

set

DROP

TABLE

RECOVERY

to

″OFF″.

This

will

allow

for

easier

cleanup

and

for

faster

Design

Advisor

execution.

Related

concepts:

v

“The

Design

Advisor”

on

page

201

Chapter

7.

SQL

Explain

facility

207

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|

|

208

Administration

Guide:

Performance

Part

3.

Tuning

and

configuring

your

system

©

Copyright

IBM

Corp.

1993

-

2004

209

210

Administration

Guide:

Performance

Chapter

8.

Operational

performance

This

chapter

provides

information

about

factors

that

affect

the

performance

of

SQL

queries

at

runtime.

You

might

also

refer

to

planning

information

about

physical

database

design

considerations,

particularly

for

the

advantages

of

partitioning,

multi-dimensional

clustering

(MDC)

tables,

and

similar

features.

Memory

usage

This

section

describes

how

the

database

manager

uses

memory

and

lists

the

parameters

that

control

the

database

manager

and

database

use

of

memory.

Organization

of

memory

use

Understanding

how

DB2®

organizes

memory

helps

you

tune

memory

use

for

good

performance.

Many

configuration

parameters

affect

memory

usage.

Some

may

affect

memory

on

the

server,

some

on

the

client,

and

some

on

both.

Furthermore,

memory

is

allocated

and

de-allocated

at

different

times

and

from

different

areas

of

the

system.

While

the

database

server

is

running,

you

can

increase

or

decrease

the

size

of

memory

areas

inside

the

database

shared

memory.

A

system

administrator

needs

to

consider

overall

balance

of

memory

usage

on

the

system.

Different

applications

running

on

the

operating

system

might

use

memory

in

different

ways.

For

example,

although

some

applications

may

use

the

operating-system

cache,

the

database

manager

uses

its

own

buffer

pool

for

data

caching

instead

of

the

operating-system

cache.

The

figure

below

shows

different

portions

of

memory

that

the

database

manager

allocates

for

various

uses.

Note:

This

figure

does

not

show

how

memory

is

used

in

an

Enterprise

Server

Edition

environment,

which

comprises

multiple

logical

nodes.

In

such

an

environment,

each

node

contains

a

Database

Manager

Shared

Memory

set.

©

Copyright

IBM

Corp.

1993

-

2004

211

Memory

is

allocated

for

each

instance

of

the

database

manager

when

the

following

events

occur:

v

When

the

database

manager

is

started

(db2start):

Database

manager

global

shared

memory

is

allocated

and

remains

allocated

until

the

database

manager

is

stopped

(db2stop).

This

area

contains

information

that

the

database

manager

uses

to

manage

activity

across

all

database

connections.

When

the

first

application

connects

to

a

database,

both

global

and

private

memory

areas

are

allocated.

v

When

a

database

is

activated

or

connected

to

for

the

first

time:

Database

global

memory

is

allocated.

Database

global

memory

is

used

across

all

applications

that

might

connect

to

the

database.

The

size

of

the

database

global

memory

is

specified

by

the

database_memory

configuration

parameter.

You

can

specify

more

memory

than

is

needed

initially

so

that

the

additional

memory

can

be

dynamically

distributed

later.

Although

the

total

amount

of

database

global

memory

cannot

be

increased

or

decreased

while

the

database

is

active,

memory

for

areas

contained

in

database

global

memory

can

be

adjusted.

Such

areas

include

the

buffer

pools,

the

lock

list,

the

database

heap

and

utility

heap,

and

the

package

cache,

and

the

catalog

cache.

In

an

environment

in

which

the

database

manager

intra-partition

parallelism

configuration

parameter

(intra_parallel)

is

enabled,

or

in

an

environment

in

which

the

connection

concentrator

is

enabled,

the

shared

sort

heap

is

also

allocated

as

part

of

the

database

global

memory.

v

When

an

application

connects

to

a

database:

In

a

partitioned

database

environment,

in

a

non-partitioned

database

with

the

database

manager

intra-partition

parallelism

configuration

parameter

(intra_parallel)

enabled,

or

in

an

environment

in

which

the

connection

concentrator

is

enabled,

multiple

applications

can

be

assigned

to

application

groups

to

share

memory.

Each

application

group

has

its

own

allocation

of

shared

memory.

In

the

application-group

shared

memory,

each

application

has

its

own

application

control

heap

but

uses

the

share

heap

of

the

application

group.

The

following

three

database

configuration

parameters

determine

the

size

of

the

application

group

memory:

–

The

appgroup_mem_sz

parameter,

which

specifies

the

size

of

the

shared

memory

for

the

application

group

–

The

groupheap_ratio

parameter,

which

specifies

the

percent

of

the

application-group

shared

memory

allowed

for

the

shared

heap

(maxappls)

. . .

. . .

(numdb)(1)

(1)

Database Manager
Shared Memory

Database
Global Memory

Database
Global Memory

Application
Global Memory

Application
Global Memory

Figure

19.

Types

of

memory

used

by

the

Database

Manager

212

Administration

Guide:

Performance

–

The

app_ctl_heap_sz

parameter,

which

specifies

the

size

of

the

control

heap

for

each

application

in

the

group.

The

performance

advantage

of

grouping

application

memory

use

is

improved

cache

and

memory-use

efficiency.

Some

elements

of

application

global

memory

can

also

be

resized

dynamically.

v

When

an

agent

is

created:

This

event

is

not

shown

in

the

figure.

Agent

private

memory

is

allocated

for

an

agent

when

the

agent

is

assigned

as

the

result

of

a

connect

request

or

a

new

SQL

request

in

a

parallel

environment,

Agent

private

memory

is

allocated

for

the

agent

and

contains

memory

allocations

that

is

used

only

by

this

specific

agent,

such

as

the

sort

heap

and

the

application

heap.

When

a

database

is

already

in

use

by

one

application,

only

agent

private

memory

and

application

global

shared

memory

is

allocated

for

subsequent

connecting

applications.

The

figure

also

lists

the

following

configuration

parameter

settings,

which

limit

the

amount

of

memory

that

is

allocated

for

each

specific

purposes.

Note

that

in

a

partitioned

database

environment,

this

memory

is

allocated

on

each

database

partition.

v

numdb

This

parameter

specifies

the

maximum

number

of

concurrent

active

databases

that

different

applications

can

use.

Because

each

database

has

its

own

global

memory

area,

the

amount

of

memory

that

might

be

allocated

increases

if

you

increase

the

value

of

this

parameter.

v

maxappls

This

parameter

specifies

the

maximum

number

of

applications

that

can

simultaneously

connect

to

a

single

database.

It

affects

the

amount

of

memory

that

might

be

allocated

for

agent

private

memory

and

application

global

memory

for

that

database.

Note

that

this

parameter

can

be

set

differently

for

every

database.

v

maxagents

and

max_coordagents

for

parallel

processing

These

parameters

are

not

shown

in

the

figure.

They

limit

the

number

of

database

manager

agents

that

can

exist

simultaneously

across

all

active

databases

in

an

instance.

Together

with

maxappls,

these

parameters

limit

the

amount

of

memory

allocated

for

agent

private

memory

and

application

global

memory.

Related

concepts:

v

“Database

manager

shared

memory”

on

page

213

v

“The

FCM

buffer

pool

and

memory

requirements”

on

page

215

v

“Global

memory

and

parameters

that

control

it”

on

page

216

v

“Guidelines

for

tuning

parameters

that

affect

memory

usage”

on

page

218

v

“Memory

management”

on

page

32

Database

manager

shared

memory

Memory

space

is

required

for

the

database

manager

to

run.

This

space

can

be

very

large,

especially

in

intra-partition

and

inter-partition

parallelism

environments.

The

following

figure

shows

how

memory

is

used

to

support

applications.

The

configuration

parameters

shown

allow

you

to

control

the

size

of

this

memory,

by

Chapter

8.

Operational

performance

213

limiting

the

number

and

size

of

memory

segments,

which

are

portions

of

logical

memory.

You

can

predict

and

control

the

size

of

this

space

by

reviewing

information

about

database

agents.

Agents

running

on

behalf

of

applications

require

substantial

Database manager shared memory (including FCM)

Monitor heap
()mon_heap_sz

Audit buffer size
()audit_buf_sz

Database global memory

Buffer pools

Extended memory cache

Lock list ()locklist

()app_ctl_heap_sz

Application global memory

Application heap
()applheapsz

Statement heap
()stmtheap

Agent stack
()agent_stack_sz

DRDA heap UDF memory

Statistics heap
()stat_heap_sz

Sort heap
()sortheap

Client I/O block
()rqrioblk (remote)

Java heap
()java_heap_sz

Agent/Application
shared memory

Note: Box size does not indicate relative size of memory.

Agent private memory

Application support
layer heap (aslheapsz)

Client I/O block
()rqrioblk (local)

Query heap
()query_heap_sz

Utility heap
()util_heap_sz

Backup buffer

Restore buffer
()restbufsz

Package cache
()pckcachesz

Database heap
()dbheap

Log buffer
()logbufsz

Catalog cache
()catalogcache_sz

Figure

20.

How

memory

is

used

by

the

database

manager

214

Administration

Guide:

Performance

memory

space,

especially

if

the

value

of

maxagents

is

set

too

high.

This

is

because

some

memory

is

pre-allocated

for

each

agent

based

on

the

value

of

maxagents.

If

maxagents

is

set

higher

than

necessary,

some

memory

will

be

pre-allocated

but

not

actually

used

by

the

database

manager,

causing

unnecessary

memory

consumption.

For

partitioned

database

systems,

the

fast

communications

manager

(FCM)

requires

substantial

memory

space,

especially

if

the

value

of

fcm_num_buffers

is

large.

In

addition,

the

FCM

memory

requirements

are

either

allocated

from

the

FCM

Buffer

Pool,

or

from

both

the

Database

Manager

Shared

Memory

and

the

FCM

Buffer

Pool,

depending

on

whether

or

not

the

partitioned

database

system

uses

multiple

logical

nodes.

Related

concepts:

v

“Organization

of

memory

use”

on

page

211

v

“Global

memory

and

parameters

that

control

it”

on

page

216

v

“Buffer

pool

management”

on

page

220

v

“Guidelines

for

tuning

parameters

that

affect

memory

usage”

on

page

218

v

“Memory

management”

on

page

32

The

FCM

buffer

pool

and

memory

requirements

If

you

have

a

partitioned

database

system

that

does

not

have

multiple

logical

nodes,

the

Database

Manager

Shared

Memory

and

FCM

Buffer

Pool

are

as

shown

below.

If

you

have

a

partitioned

database

system

that

uses

multiple

logical

nodes,

the

Database

Manager

Shared

Memory

and

FCM

Buffer

Pool

are

as

shown

below.

Database Manager Shared Memory**

FCM Message Anchors** FCM Request Blocks**

FCM Connection Entries**

FCM Buffers ()**fcm_num_buffers

Legend

** one for each logical node
* one shared by all logical nodes

Figure

21.

FCM

buffer

pool

when

multiple

logical

nodes

are

not

used

Chapter

8.

Operational

performance

215

For

configuring

the

fast

communications

manager

(FCM),

start

with

the

default

value

for

the

number

of

FCM

Buffers

(fcm_num_buffers).

For

more

information

about

FCM

on

AIX®

platforms,

refer

to

the

description

of

the

DB2_FORCE_FCP_BP

registry

variable.

To

tune

this

parameter,

use

the

database

system

monitor

to

monitor

the

low

water

mark

for

the

free

buffers.

Related

concepts:

v

“Database

manager

shared

memory”

on

page

213

Global

memory

and

parameters

that

control

it

Database

manager

shared

memory

is

made

up

of

the

following

components:

Database

Global

Memory

Database

Global

Memory

is

affected

by

the

following

configuration

parameters:

v

The

database_memory

parameter

provides

a

lower

bound

for

the

size

of

the

database

global

memory.

v

The

following

parameters

or

factors

specify

the

maximum

size

of

memory

segments:

–

The

size

of

the

buffer

pools.

–

Maximum

Storage

for

Lock

List

(locklist)

Database Manager Shared Memory**

FCM Buffer Shared Memory*

FCM Message Anchors** FCM Request Blocks**

FCM Connection Entries**

FCM Buffers ()*fcm_num_buffers

Legend

** one for each logical node
* one shared by all logical nodes

Figure

22.

FCM

buffer

pool

when

multiple

logical

nodes

are

used

216

Administration

Guide:

Performance

–

Database

Heap

(dbheap)

–

Utility

Heap

Size

(util_heap_sz)

–

Extended

Storage

Memory

Segment

Size

(estore_seg_sz)

–

Number

of

Extended

Storage

Memory

Segments

(num_estore_segs)

–

Package

Cache

Size

(pckcachesz)

–

Shared

Sort

Heap

(sheapthres_shr)

Application

Global

Memory

Application

Global

Memory

is

affected

by

the

Application

Control

Heap

Size

(app_ctl_heap_sz)

configuration

parameter.

For

parallel

systems,

space

is

also

required

for

the

application

control

heap,

which

is

shared

between

the

agents

that

are

working

for

the

same

application

at

one

database

partition.

The

heap

is

allocated

when

a

connection

is

requested

by

the

first

agent

to

receive

a

request

from

the

application.

The

agent

can

be

either

a

coordinating

agent

or

a

subagent.

Agent

Private

Memory

v

The

number

of

memory

segments

is

limited

by

the

lower

of:

–

The

total

of

the

maxappls

configuration

parameter

for

all

active

databases,

that

specifies

the

maximum

number

of

active

applications

permitted.

–

The

value

of

the

maxagents

configuration

parameter,

which

specifies

the

maximum

number

of

agents

permitted.
v

The

maximum

size

of

memory

segments

is

determined

by

the

values

of

the

following

parameters:

–

Application

Heap

Size

(applheapsz)

–

Sort

Heap

Size

(sortheap)

–

Statement

Heap

Size

(stmtheap)

–

Statistics

Heap

Size

(stat_heap_sz)

–

Query

Heap

Size

(query_heap_sz)

–

Agent

Stack

Size

(agent_stack_sz)

Agent/Application

Shared

Memory

v

The

total

number

of

agent/application

shared

memory

segments

for

local

clients

is

limited

by

the

lower

of

the

following

database

configuration

parameters:

–

The

total

of

maxappls

for

all

active

databases

–

The

value

of

maxagents

,

or

max_coordagents

for

parallel

systems.
v

Agent/Application

Shared

Memory

is

also

affected

by

the

following

database

configuration

parameters:

–

The

Application

Support

Layer

Heap

Size

(aslheapsz)parameter

–

The

Client

I/O

Block

Size

(rqrioblk)

parameter

Related

reference:

v

“estore_seg_sz

-

Extended

storage

memory

segment

size”

on

page

373

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“num_estore_segs

-

Number

of

extended

storage

memory

segments”

on

page

373

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

Chapter

8.

Operational

performance

217

v

“aslheapsz

-

Application

support

layer

heap

size”

on

page

358

v

“applheapsz

-

Application

heap

size”

on

page

350

v

“pckcachesz

-

Package

cache

size”

on

page

343

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“rqrioblk

-

Client

I/O

block

size”

on

page

360

v

“dbheap

-

Database

heap”

on

page

339

v

“stmtheap

-

Statement

heap

size”

on

page

357

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“agent_stack_sz

-

Agent

stack

size”

on

page

349

v

“query_heap_sz

-

Query

heap

size”

on

page

353

v

“util_heap_sz

-

Utility

heap

size”

on

page

345

v

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

v

“database_memory

-

Database

shared

memory

size”

on

page

338

Guidelines

for

tuning

parameters

that

affect

memory

usage

The

first

rule

for

setting

memory-allocation

parameters

is

never

to

set

them

at

their

highest

values

unless

such

a

value

has

been

carefully

justified.

This

rule

applies

even

to

systems

with

the

maximum

amount

of

memory.

Many

parameters

that

affect

memory

can

allow

the

database

manager

easily

and

quickly

to

take

up

all

of

the

available

memory

on

a

computer.

In

addition,

managing

large

amounts

of

memory

requires

additional

work

on

the

part

of

the

database

manager

and

thus

incurs

more

overhead.

Some

UNIX®

operating

systems

allocate

swap

space

when

a

process

allocates

memory

and

not

when

a

process

is

paged

out

to

swap

space.

For

these

systems,

make

sure

that

you

provide

as

much

paging

space

as

total

shared

memory

space.

For

most

configuration

parameters,

memory

is

only

committed

as

it

is

required.

These

parameters

determine

the

maximum

size

of

a

particular

memory

heap.

In

the

following

cases,

however,

the

full

amount

of

memory

specified

by

the

parameter

is

allocated:

v

Maximum

Storage

for

Lock

List

(locklist)

v

Application

Support

Layer

Heap

Size

(aslheapsz)

v

Number

of

FCM

Buffers

(fcm_num_buffers)

Note:

To

change

the

size

of

a

buffer

pool,

use

the

DDL

statement,

ALTER

BUFFERPOOL.

Parameters

that

affect

application-group

memory

use

The

parameters

that

affect

application-group

use

of

memory

apply

only

to

partitioned

databases,

databases

for

which

intra-parallel

processing

is

enabled,

and

databases

for

which

the

connection

concentrator

is

enabled.

The

following

parameters

determine

how

applications

in

application

groups

use

their

shared

memory:

v

The

appgroup_mem_sz

parameter

specifies

the

size

of

the

shared

memory

for

the

application

group.

Setting

the

appgroup_mem_sz

configuration

parameter

too

high

has

an

adverse

effect.

Because

all

applications

in

the

application

group

share

the

caches

in

the

application-group

heap,

having

too

many

applications

will

increase

cache

218

Administration

Guide:

Performance

contention.

On

the

other

hand,

if

each

application

group

contains

few

applications,

the

effect

of

the

cache

is

also

limited.

v

The

groupheap_ratio

parameter

specifies

the

percent

of

memory

allowed

for

the

shared

heap.

Setting

groupheap_ratio

too

low

limits

the

size

of

caches.

Setting

the

groupheap_ratio

too

high

causes

the

application

control

heap

to

be

too

small

and

might

cause

SQL

error

SQL0973,

which

warns

you

that

you

are

running

out

of

application

control-heap

memory

at

run

time.

v

The

app_ctl_heap_sz

parameter

specifies

the

size

of

the

control

heap

for

each

application

in

the

group.

Accept

the

default

setting

for

these

parameters

when

you

configure

your

database

server.

Adjust

the

settings

only

if

performance

suffers.

For

example,

set

appgroup_mem_sz

to

control

the

number

of

applications

in

each

application

group.

As

a

rule

of

thumb,

consider

that

10

is

too

small

and

100

is

too

many.

The

default

is

probably

appropriate.

Then

run

an

average

workload

and

use

the

Health

Center

utility

from

the

Control

Center

or

the

system

monitor

to

collect

information

about

the

hit

ratios

for

the

catalog

cache,

the

package

cache,

and

the

shared

workspace.

v

If

many

sql0973

errors

occur,

the

groupheap_ratio

setting

is

too

high.

v

If

the

memory

tracker

shows

that

the

average

and

maximum

usage

of

the

application

control

heap

is

far

below

app_ctl_heap_sz

*

(100

-

groupheap_ratio)/

100,

reduce

the

value

of

the

app_ctl_heap_sz

configuration

parameter.

v

If

the

cache

usage

indicates

that

the

caches

are

reaching

their

limit,

increase

the

value

of

the

group_heap_ratio

configuration

parameter

or

reduce

the

number

of

of

applications

in

the

application

group.

Notes:

v

Benchmark

tests

provide

the

best

information

about

setting

appropriate

values

for

memory

parameters.

In

benchmarking,

typical

and

worst-case

SQL

statements

are

run

against

the

server

and

the

values

of

the

parameters

are

modified

until

the

point

of

diminishing

return

for

performance

is

found.

If

performance

versus

parameter

values

is

graphed,

the

point

at

which

the

curve

begins

to

plateau

or

decline

indicates

the

point

at

which

additional

allocation

provides

no

additional

value

to

the

application

and

is

therefore

simply

wasting

memory.

v

The

upper

limits

of

memory

allocation

for

several

parameters

may

be

beyond

the

memory

capabilities

of

existing

hardware

and

operating

systems.

These

limits

allow

for

future

growth.

v

For

valid

parameter

ranges,

refer

to

the

detailed

information

about

each

parameter.

Related

concepts:

v

“Organization

of

memory

use”

on

page

211

v

“Database

manager

shared

memory”

on

page

213

v

“Global

memory

and

parameters

that

control

it”

on

page

216

Related

reference:

v

“app_ctl_heap_sz

-

Application

control

heap

size”

on

page

346

v

“fcm_num_buffers

-

Number

of

FCM

buffers”

on

page

444

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

v

“aslheapsz

-

Application

support

layer

heap

size”

on

page

358

Chapter

8.

Operational

performance

219

v

“pckcachesz

-

Package

cache

size”

on

page

343

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“dbheap

-

Database

heap”

on

page

339

v

“util_heap_sz

-

Utility

heap

size”

on

page

345

v

“catalogcache_sz

-

Catalog

cache

size”

on

page

336

v

“appgroup_mem_sz

-

Maximum

size

of

application

group

memory

set”

on

page

347

v

“groupheap_ratio

-

Percent

of

memory

for

application

group

heap”

on

page

348

Buffer

pools

Buffer

pools

are

a

critically

important

memory

component.

This

section

describes

buffer

pools

and

provides

information

about

managing

them

for

good

performance.

Buffer

pool

management

A

buffer

pool

is

memory

used

to

cache

table

and

index

data

pages

as

they

are

being

read

from

disk,

or

being

modified.

The

buffer

pool

improves

database

system

performance

by

allowing

data

to

be

accessed

from

memory

instead

of

from

disk.

Because

memory

access

is

much

faster

than

disk

access,

the

less

often

the

database

manager

needs

to

read

from

or

write

to

a

disk,

the

better

the

performance.

Because

most

data

manipulation

takes

place

in

buffer

pools,

configuring

buffer

pools

is

the

single

most

important

tuning

area.

Only

large

objects

and

long

field

data

are

not

manipulated

in

a

buffer

pool.

When

an

application

accesses

a

row

of

a

table

for

the

first

time,

the

database

manager

places

the

page

containing

that

row

in

the

buffer

pool.

The

next

time

any

application

requests

data,

the

database

manager

looks

for

it

in

the

buffer

pool.

If

the

requested

data

is

in

the

buffer

pool,

it

can

be

retrieved

without

disk

access,

resulting

in

faster

performance.

Memory

is

allocated

for

the

buffer

pool

when

a

database

is

activated

or

when

the

first

application

connects

to

the

database.

Buffer

pools

can

also

be

created,

dropped,

and

resized

while

the

database

is

manager

is

running.

If

you

use

the

IMMEDIATE

keyword

when

you

use

ALTER

BUFFERPOOL

to

increase

the

size

of

the

buffer

pool,

memory

is

allocated

as

soon

as

you

enter

the

command

if

the

memory

is

available.

If

the

memory

is

not

available,

the

changed

occurs

when

all

applications

are

disconnected

and

the

database

is

reactivated.

If

you

decrease

the

size

of

the

buffer

pool,

memory

is

deallocated

at

commit

time.

When

all

applications

are

disconnected,

the

buffer

pool

memory

is

de-allocated.

Note:

To

reduce

the

necessity

of

increasing

the

size

of

the

dbheap

database

configuration

parameter

when

buffer-pool

sizes

increase,

nearly

all

buffer-pool

memory,

which

includes

page

descriptors,

buffer-pool

descriptors,

and

the

hash

tables,

comes

out

of

the

database

shared

memory

set

and

is

sized

automatically.

To

ensure

that

an

appropriate

buffer

pool

is

available

in

all

circumstances,

DB2®

creates

small

buffer

pools,

one

with

each

page

size:

4K,

8K,

16K,

and

32K.

The

size

of

each

buffer

pool

is

16

pages.

These

buffer

pools

are

hidden

from

the

user.

They

are

not

present

in

the

system

catalogs

or

in

the

buffer

pool

system

files.

You

cannot

use

or

alter

them

directly,

but

DB2

uses

these

buffer

pools

in

the

following

circumstances:

220

Administration

Guide:

Performance

v

When

a

buffer

pool

of

the

required

page

size

is

inactive

because

not

enough

memory

was

available

to

create

it

after

a

CREATE

BUFFERPOOL

statement

was

executed

with

the

IMMEDIATE

keyword.

A

message

is

written

to

the

administration

notification

log.

If

necessary,

table

spaces

are

remapped

to

a

hidden

buffer

pool.

Performance

might

be

drastically

reduced.

v

When

the

ordinary

buffer

pools

cannot

be

brought

up

during

a

database

connect

This

problem

is

likely

to

have

a

serious

cause,

such

as

out-of-memory

condition.

Although

DB2

will

be

fully

functional

because

of

the

hidden

buffer

pools,

performance

will

degrade

drastically.

You

should

address

this

problem

immediately.

You

receive

a

warning

when

this

occurs

and

a

message

is

written

to

the

administration

notification

log.

Pages

remain

in

the

buffer

pool

until

the

database

is

shut

down,

or

until

the

space

occupied

by

a

page

is

required

for

another

page.

The

following

criteria

determine

which

page

is

removed

to

bring

in

another

page:

v

How

recently

the

page

was

referenced

v

The

probability

that

the

page

will

be

referenced

again

by

the

last

agent

that

looked

at

it

v

The

type

of

data

on

the

page

v

Whether

the

page

was

changed

in

memory

but

not

written

out

to

disk

(Changed

pages

are

always

written

to

disk

before

being

overwritten.)

In

order

for

pages

to

be

accessed

from

memory

again,

changed

pages

are

not

removed

from

the

buffer

pool

after

they

are

written

out

to

disk

unless

the

space

is

needed.

When

you

create

a

buffer

pool,

the

default

page

size

is

4

KB

but

you

can

specify

a

page

size

of

4

KB,

8

KB,

16

KB,

or

32

KB.

Because

pages

can

be

read

into

a

buffer

pool

only

if

the

table-space

page

size

is

the

same

as

the

buffer-pool

page

size,

the

page

size

of

your

table

spaces

should

determine

the

page

size

that

you

specify

for

buffer

pools.

You

cannot

alter

the

page

size

of

the

buffer

pool

after

you

create

it.

You

must

create

a

new

buffer

pool

with

a

different

page

size.

Note:

On

32-bit

platforms

that

run

Windows®

NT,

you

can

create

large

buffer

pools

if

you

have

enabled

Address

Windowing

Extensions

(AWE)

or

Advanced

Server

and

Data

Center

Server

on

Windows

2000.

Related

concepts:

v

“Organization

of

memory

use”

on

page

211

v

“Secondary

buffer

pools

in

extended

memory

on

32-bit

platforms”

on

page

221

v

“Buffer

pool

management

of

data

pages”

on

page

223

v

“Illustration

of

buffer

pool

data-page

management”

on

page

225

v

“Management

of

multiple

database

buffer

pools”

on

page

226

Secondary

buffer

pools

in

extended

memory

on

32-bit

platforms

On

64-bit

platforms,

large

virtual-addressable

memory

can

be

accessed

in

the

normal

way,

without

using

special

techniques.

On

32-bit

platforms,

however,

virtual

addressable

memory

is

usually

limited

to

between

2

GB

and

4

GB.

If

your

32-bit

machine

has

more

real

addressable

memory

than

the

maximum

amount,

you

Chapter

8.

Operational

performance

221

can

configure

any

additional

real

addressable

memory

beyond

virtual

addressable

memory

as

an

extended

storage

cache.

Any

of

the

defined

buffer

pools

can

use

an

extended

storage

cache

to

improve

performance.

You

define

the

extended

storage

cache

as

a

number

of

memory

segments.

If

you

define

some

of

the

real

addressable

memory

as

an

extended

storage

cache,

this

memory

can

no

longer

be

used

for

other

purposes,

such

as

a

JFS-cache

or

as

process

private

address

space.

More

system

paging

might

occur

if

you

allocate

real

addressable

memory

to

an

extended

storage

cache.

The

buffer

pools

perform

the

first-level

caching,

and

any

extended

storage

cache

is

used

by

the

buffer

pools

as

secondary-level

caching.

Ideally,

the

buffer

pools

hold

the

data

that

is

most

frequently

accessed,

while

the

extended

storage

cache

hold

data

that

is

accessed

less

frequently.

Note:

You

can

allocate

Windows®

2000

Address

Windowing

Extensions

(AWE)

buffer

pools

using

the

DB2_AWE

registry

variable.

Windows

AWE

is

a

set

of

memory

management

extensions

that

allow

applications

to

manipulate

memory

above

certain

limits,

which

depend

on

the

process

model

of

the

application.

For

information,

refer

to

your

Windows

system

documentation.

Note,

however,

that

if

you

use

the

memory

for

this

purpose

you

cannot

also

use

the

extended

storage

cache.

The

following

database

configuration

parameters

influence

the

amount

and

the

size

of

the

memory

available

for

extended

storage:

v

num_estore_segs

defines

the

number

of

extended

storage

memory

segments.

The

default

for

this

configuration

parameter

is

zero,

which

specifies

that

no

extended

storage

cache

exists.

v

estore_seg_sz

defines

the

size

of

each

extended

memory

segment.

This

size

is

determined

by

the

platform

on

which

the

extended

storage

cache

is

used.

Because

an

extended

storage

cache

is

an

extension

to

a

buffer

pool,

it

must

always

be

associated

with

one

or

more

specific

buffer

pools.

Therefore,

you

must

declare

which

buffer

pools

can

take

advantage

of

a

cache

once

it

is

created.

The

CREATE

and

ALTER

BUFFERPOOL

statements

have

the

attributes

NOT

EXTENDED

STORAGE

and

EXTENDED

STORAGE

that

control

cache

usage.

By

default

neither

IBMDEFAULTBP

nor

any

newly

created

buffer

pool

will

use

extended

storage.

Note:

If

you

use

buffer

pools

defined

with

different

page

sizes,

any

of

these

buffer

pools

can

be

defined

to

use

extended

storage.

The

page

size

used

with

extended

storage

support

is

the

largest

of

those

defined.

Although

the

database

manager

cannot

directly

manipulate

data

that

resides

in

the

extended

storage

cache,

it

can

transfer

data

from

the

extended

storage

cache

to

the

buffer

pool

much

faster

than

from

disk

storage.

When

a

row

of

data

is

needed

from

a

page

in

an

extended

storage

cache,

the

entire

page

is

read

into

the

corresponding

buffer

pool.

A

buffer

pool

and

its

defined

associated

extended

storage

cache

are

allocated

when

a

database

is

activated

or

when

the

first

connection

occurs.

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Memory

management”

on

page

32

222

Administration

Guide:

Performance

Related

reference:

v

“estore_seg_sz

-

Extended

storage

memory

segment

size”

on

page

373

v

“num_estore_segs

-

Number

of

extended

storage

memory

segments”

on

page

373

Buffer

pool

management

of

data

pages

Pages

in

the

buffer

pool

can

be

either

in-use

or

not,

and

they

can

be

dirty

or

clean:

v

In-use

pages

are

currently

being

read

or

updated.

While

a

page

is

in

use

by

an

agent,

it

can

be

read,

but

not

updated,

by

other

agents

or

prefetchers

in

the

database.

v

“Dirty”

pages

contain

data

that

has

been

changed

but

has

not

yet

been

written

to

disk.

v

After

a

changed

page

is

written

to

disk,

it

is

clean

but

remains

in

the

buffer

pool

until

its

space

is

needed

for

new

pages.

Clean

pages

can

also

be

migrated

to

an

associated

extended

storage

cache,

if

one

is

defined.

Page-cleaner

agents

In

a

well-tuned

system,

it

is

usually

the

page-cleaner

agents

that

write

changed

or

″dirty″

pages

to

disk.

Page-cleaner

agents

perform

I/O

as

background

processes

and

allow

applications

to

run

faster

because

their

agents

can

perform

actual

transaction

work.

Page-cleaner

agents

are

sometimes

referred

to

as

asynchronous

page

cleaners

or

asynchronous

buffer

writers

because

they

are

not

coordinated

with

the

work

of

other

agents

and

work

only

when

required.

To

improve

performance

in

update-intensive

workloads,

you

might

want

to

configure

more

page-cleaner

agents.

Performance

can

improve

if

more

page-cleaner

agents

are

available

to

write

dirty

pages

to

disk.

This

is

particularly

true

if

snapshots

reveal

that

there

are

a

significant

number

of

synchronous

data-page

or

index-page

writes

in

relation

to

the

number

of

asynchronous

data-page

or

index-page

writes.

Page

cleaning

and

fast

recovery

If

more

pages

have

been

written

to

disk,

recovery

of

the

database

is

faster

after

a

system

crash

because

the

database

manager

can

rebuild

more

of

the

buffer

pool

from

disk

instead

of

having

to

replay

transactions

from

the

database

log

files.

The

size

of

the

log

that

must

be

read

during

recovery

is

the

difference

between

the

location

of

the

following

records

in

the

log:

v

The

most

recently

written

log

record

v

The

log

record

that

describes

the

oldest

change

to

data

in

the

buffer

pool.

The

default

behavior

of

the

page

cleaners

is

that

page

cleaning

is

performed

if

the

size

of

the

log

that

would

need

to

be

replayed

during

recovery

exceeds

the

following

maximum:

logfilsiz

*

softmax

where:

v

logfilsiz

represents

the

size

of

the

log

files

Chapter

8.

Operational

performance

223

|

|
|
|

|
|

|
|
|

v

softmax

represents

the

percentage

of

log

files

to

be

recovered

following

a

database

crash.

For

example,

if

the

value

of

softmax

is

250,

then

2.5

log

files

will

contain

the

changes

that

need

to

be

recovered

if

a

crash

occurs.

To

minimize

log

read

time

during

recovery,

use

the

database

system

monitor

to

track

the

number

of

times

that

page

cleaning

is

performed.

The

system

monitor

pool_lsn_gap_clns

(buffer

pool

log

space

cleaners

triggered)

monitor

element

provides

this

information

if

you

have

not

enabled

proactive

page

cleaning

for

your

database.

If

you

have

enabled

this

alternate

page

cleaning,

this

condition

should

not

occur

and

the

pool_lsn_gap_clns

monitor

element

is

always

0.

The

log_held_by_dirty_pages

monitor

element

can

be

used

to

determine

if

the

page

cleaners

are

not

cleaning

enough

pages

to

meet

the

recovery

criteria

set

by

the

user.

If

log_held_by_dirty_pages

is

consistently

and

significantly

greater

than

logfilsiz

*

softmax,

then

either

more

page

cleaners

are

required,

or

softmax

needs

to

be

adjusted.

Related

concepts:

v

“Illustration

of

buffer

pool

data-page

management”

on

page

225

Related

reference:

v

“Performance

variables”

on

page

506

Proactive

page

cleaning

Starting

in

Version

8.1.4,

there

is

an

alternate

method

of

configuring

page

cleaning

in

your

system.

This

alternate

method

differs

from

the

default

behavior

in

that

page

cleaners

behave

more

proactively

in

choosing

which

dirty

pages

get

written

out

at

any

given

point

in

time.

This

new

method

of

page

cleaning

differs

from

the

default

page

cleaning

method

in

two

major

ways:

1.

Page

cleaners

do

not

respect

the

chngpgs_thresh

configuration

parameter.

In

this

alternative

method

of

page

cleaning,

page

cleaners

will

no

longer

react

in

response

to

value

of

the

chngpgs_thresh

configuration

parameter.

Instead

of

attempting

to

keep

some

percentage

of

the

buffer

pool

clean,

the

alternate

method

of

page

cleaning

provides

a

mechanism

whereby

the

agents

are

informed

of

the

location

of

good

victim

pages

that

have

just

been

written

out,

so

that

agents

do

not

have

to

search

the

buffer

pool

to

look

for

a

victim.

When

the

number

of

good

victim

pages

drops

below

an

acceptable

value,

the

page

cleaners

are

triggered,

and

proceed

to

search

the

entire

buffer

pool,

writing

out

potential

victim

pages,

and

informing

the

agents

of

the

location

of

these

pages.

2.

Page

cleaners

no

longer

respond

to

LSN

gap

triggers

issued

by

the

logger.

When

the

amount

of

log

space

encompassing

the

log

record

which

has

updated

the

oldest

page

in

the

buffer

pool

and

the

current

log

position

exceeds

that

allowed

by

the

softmax

parameter,

it

is

said

that

the

database

is

in

an

’LSN

gap’

situation.

Under

the

default

method

of

page

cleaning,

when

the

logger

detects

than

an

LSN

gap

has

occurred,

it

will

trigger

the

page

cleaners

to

write

out

all

the

pages

which

are

contributing

to

the

LSN

gap

situation.

That

is,

it

will

write

out

those

pages

which

are

older

than

what

is

allowed

by

the

softmax

parameter.

Page

cleaners

will

be

idle

for

some

period

of

time

while

no

LSN

gap

is

occurring.

Then,

once

an

LSN

gap

occurs,

the

page

cleaners

are

activated

to

write

a

large

number

of

pages

before

going

back

to

sleep.

This

can

result

in

the

saturation

of

the

I/O

subsystem,

which

then

affects

other

agents

which

are

224

Administration

Guide:

Performance

|
|
|
|
|
|

|
|
|
|
|

reading

or

writing

pages.

Furthermore,

by

the

time

an

LSN

gap

is

triggered,

it

is

possible

that

the

page

cleaners

will

not

be

able

to

clean

fast

enough

and

DB2®

might

run

out

of

log

space.

The

alternate

method

of

page

cleaning

modulates

this

behavior

by

spreading

out

the

same

number

of

writes

over

a

greater

period

of

time.

The

cleaners

do

this

by

proactively

cleaning

not

only

pages

the

pages

that

are

currently

in

an

LSN

gap

situation,

but

also

the

pages

that

will

come

into

an

LSN

gap

situation

soon,

based

on

the

current

level

of

activity.

To

use

the

new

method

of

page

cleaning,

set

the

DB2_USE_ALTERNATE_PAGE_CLEANING

registry

variable

to

″ON″.

Related

concepts:

v

“Buffer

pool

management

of

data

pages”

on

page

223

Illustration

of

buffer

pool

data-page

management

The

following

figure

illustrates

how

the

work

of

managing

the

buffer

pool

can

be

shared

between

page-cleaner

agents

and

database

agents,

compared

to

the

database

agents

performing

all

of

the

I/O.

Chapter

8.

Operational

performance

225

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Buffer

pool

management

of

data

pages”

on

page

223

Management

of

multiple

database

buffer

pools

Although

each

database

requires

at

least

one

buffer

pool,

you

might

create

several

buffer

pools,

each

of

a

different

size

or

with

a

different

page

size,

for

a

single

database

that

has

table

spaces

of

more

than

one

page

size.

Each

buffer

pool

has

a

minimum

size,

which

depends

on

the

platform.

A

new

database

has

a

default

buffer

pool

called

IBMDEFAULTBP

with

a

size

determined

by

the

platform

and

a

default

page

size

of

4

KB.

When

you

create

a

table

space

with

a

page

size

of

4

KB

and

do

not

assign

it

to

a

specific

buffer

pool,

Without Page Cleaners

With Page Cleaners

Buffer Pool

Buffer Pool

Database Agent

Database Agent

Asynchronous
Page Cleaner

Database Agent

Database Agent

Oops, there is no
room for this page

1.

There is room for
this page

Write the
pages to disk

Take out
dirty pages

Now I can
put this page in

3.

2. I have to move a
dirty page

A

A

Buffer Pool

A

AA

Figure

23.

Asynchronous

page

cleaner.

“Dirty”

pages

are

written

out

to

disk.

226

Administration

Guide:

Performance

the

table

space

is

assigned

to

the

default

buffer

pool.

You

can

resize

the

default

buffer

pool

and

change

its

attributes,

but

you

cannot

drop

it.

Note:

During

normal

database

manager

operation,

you

can

use

the

ALTER

BUFFERPOOL

command

to

resize

a

buffer

pool.

Page

sizes

for

buffer

pools

After

you

create

or

migrate

a

database,

you

can

create

other

buffer

pools.

For

example,

when

planning

your

database,

you

might

have

determined

that

8

KB

page

sizes

were

best

for

tables.

As

a

result,

you

should

create

a

buffer

pool

with

an

8

KB

page

size

as

well

as

one

or

more

table

spaces

with

the

same

page

size.

You

cannot

use

the

ALTER

TABLESPACE

statement

to

assign

a

table

space

to

a

buffer

pool

that

uses

a

different

page

size.

Note:

If

you

create

a

table

space

with

a

page

size

greater

than

4

KB,

such

as

8

KB,

16

KB,

or

32

KB,

you

need

to

assign

it

to

a

buffer

pool

that

uses

the

same

page

size.

If

this

buffer

pool

is

currently

not

active,

DB2®

attempts

to

assign

the

table

space

temporarily

to

another

active

buffer

pool

that

uses

the

same

page

size

if

one

or

to

one

of

the

default

“hidden”

buffer

pools

that

DB2

creates

when

the

first

client

connects

to

the

database.

When

the

database

is

activated

again,

and

the

originally

specified

buffer

pool

is

active,

then

DB2

assigns

the

table

space

to

that

buffer

pool.

When

you

create

a

buffer

pool,

you

specify

the

size

of

the

buffer

pool

as

a

required

parameter

of

the

DDL

statement

CREATE

BUFFERPOOL.

To

increase

or

decrease

the

buffer-pool

size

later,

use

the

DDL

statement

ALTER

BUFFERPOOL.

In

a

partitioned

database

environment,

each

buffer

pool

for

a

database

has

the

same

default

definition

on

all

database

partitions

unless

it

was

otherwise

specified

in

the

CREATE

BUFFERPOOL

statement,

or

the

buffer-pool

size

was

changed

by

the

ALTER

BUFFERPOOL

statement

for

a

particular

database

partition.

Advantages

of

large

buffer

pools

Large

buffer

pools

provide

the

following

advantages:

v

Enable

frequently

requested

data

pages

to

be

kept

in

the

buffer

pool,

which

allows

quicker

access.

Fewer

I/O

operations

can

reduce

I/O

contention,

thereby

providing

better

response

time

and

reducing

the

processor

resource

needed

for

I/O

operations.

v

Provide

the

opportunity

to

achieve

higher

transaction

rates

with

the

same

response

time.

v

Prevent

I/O

contention

for

frequently

used

disk

storage

devices

such

as

catalog

tables

and

frequently

referenced

user

tables

and

indexes.

Sorts

required

by

queries

also

benefit

from

reduced

I/O

contention

on

the

disk

storage

devices

that

contain

the

temporary

table

spaces.

Advantages

of

many

buffer

pools

If

any

of

the

following

conditions

apply

to

your

system,

you

should

use

only

a

single

buffer

pool:

v

The

total

buffer

space

is

less

than

10

000

4

KB

pages.

v

People

with

the

application

knowledge

to

do

specialized

tuning

are

not

available.

Chapter

8.

Operational

performance

227

v

You

are

working

on

a

test

system.

In

all

other

circumstances,

consider

using

more

than

one

buffer

pool

for

the

following

reasons:

v

Temporary

table

spaces

can

be

assigned

to

a

separate

buffer

pool

to

provide

better

performance

for

queries

that

require

temporary

storage,

especially

sort-intensive

queries.

v

If

data

must

be

accessed

repeatedly

and

quickly

by

many

short

update-transaction

applications,

consider

assigning

the

table

space

that

contains

the

data

to

a

separate

buffer

pool.

If

this

buffer

pool

is

sized

appropriately,

its

pages

have

a

better

chance

of

being

found,

contributing

to

a

lower

response

time

and

a

lower

transaction

cost.

v

You

can

isolate

data

into

separate

buffer

pools

to

favor

certain

applications,

data,

and

indexes.

For

example,

you

might

want

to

put

tables

and

indexes

that

are

updated

frequently

into

a

buffer

pool

that

is

separate

from

those

tables

and

indexes

that

are

frequently

queried

but

infrequently

updated.

This

change

will

reduce

the

impact

that

frequent

updates

on

the

first

set

of

tables

have

on

frequent

queries

on

the

second

set

of

tables.

v

You

can

use

smaller

buffer

pools

for

the

data

accessed

by

applications

that

are

seldom

used,

especially

for

an

application

that

requires

very

random

access

into

a

very

large

table.

In

such

a

case,

data

need

not

be

kept

in

the

buffer

pool

for

longer

than

a

single

query.

It

is

better

to

keep

a

small

buffer

pool

for

this

data,

and

free

the

extra

memory

for

other

uses,

such

as

for

other

buffer

pools.

v

After

separating

different

activities

and

data

into

separate

buffer

pools,

good

and

relatively

inexpensive

performance

diagnosis

data

can

be

produced

from

statistics

and

accounting

traces.

Buffer-pool

memory

allocation

at

startup

When

you

use

the

CREATE

BUFFERPOOL

command

to

create

a

buffer

pool

or

use

the

ALTER

BUFFERPOOL

command

to

alter

buffer

pools,

the

total

memory

that

is

required

by

all

buffer

pools

must

be

available

to

the

database

manager

so

that

all

of

the

buffer

pools

can

be

allocated

when

the

database

is

started.

If

you

create

or

modify

buffer

pools

while

the

database

manager

is

on-line,

additional

memory

should

be

available

in

database

global

memory.

If

you

specify

the

IMMEDIATE

keyword

when

you

create

a

new

buffer

pool

or

increase

the

size

of

an

existing

buffer

pool

and

the

required

memory

is

not

available,

the

database

manager

makes

the

change

the

next

time

the

database

is

activated.

On

32-bit

platforms,

the

memory

must

be

available

and

can

be

reserved

in

the

global

database

memory,

as

described

in

detailed

information

for

the

database_memory

database

configuration

parameter.

If

this

memory

is

not

available

when

a

database

starts,

the

database

manager

attempts

to

start

one

of

each

buffer

pool

defined

with

a

different

page

size.

However,

the

buffer

pools

are

started

only

with

a

minimal

size

of

16

pages

each.

To

specify

a

different

minimal

buffer-pool

size,

use

the

DB2_OVERRIDE_BPF

registry

variable

.

Whenever

a

buffer

pool

cannot

be

allocated

at

startup,

an

SQL1478W

(SQLSTATE

01626)

warning

is

returned.

The

database

continues

in

this

operational

state

until

its

configuration

is

changed

and

the

database

can

be

fully

restarted.

The

database

manager

starts

with

minimal-sized

values

only

to

allow

you

to

connect

to

the

database

so

that

you

can

reconfigure

the

buffer

pool

sizes

or

perform

other

critical

tasks.

As

soon

as

you

perform

these

tasks,

restart

the

database.

Do

not

operate

the

database

for

an

extended

time

in

such

a

state.

228

Administration

Guide:

Performance

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Secondary

buffer

pools

in

extended

memory

on

32-bit

platforms”

on

page

221

Prefetching

concepts

Prefetching

data

into

the

buffer

pools

usually

improves

performance

by

reducing

the

number

of

disk

accesses

and

retaining

frequently

accessed

data

in

memory.

Prefetching

data

into

the

buffer

pool

Prefetching

pages

means

that

one

or

more

pages

are

retrieved

from

disk

in

the

expectation

that

they

will

be

required

by

an

application.

Prefetching

index

and

data

pages

into

the

buffer

pool

can

help

improve

performance

by

reducing

the

I/O

wait

time.

In

addition,

parallel

I/O

enhances

prefetching

efficiency.

There

are

two

categories

of

prefetching:

v

Sequential

prefetch:

A

mechanism

that

reads

consecutive

pages

into

the

buffer

pool

before

the

pages

are

required

by

the

application.

v

List

prefetch:

Sometimes

called

list

sequential

prefetch.

Prefetches

a

set

of

non-consecutive

data

pages

efficiently.

These

two

methods

of

reading

data

pages

are

in

addition

to

a

normal

read.

A

normal

read

is

used

when

only

one

or

a

few

consecutive

pages

are

retrieved.

During

a

normal

read,

one

page

of

data

is

transferred.

Prefetching

and

Intra-Partition

Parallelism

Prefetching

is

important

to

the

performance

of

intra-partition

parallelism,

which

uses

multiple

subagents

when

scanning

an

index

or

a

table.

Such

parallel

scans

introduce

larger

data-consumption

rates,

which

require

higher

prefetch

rates.

The

cost

of

inadequate

prefetching

is

higher

for

parallel

scans

than

serial

scans.

If

prefetching

does

not

occur

for

a

serial

scan,

the

query

runs

more

slowly

because

the

agent

always

needs

to

wait

for

I/O.

If

prefetching

does

not

occur

for

a

parallel

scan,

all

subagents

might

need

to

wait

because

one

subagent

is

waiting

for

I/O.

Because

of

its

importance,

prefetching

is

performed

more

aggressively

with

intra-partition

parallelism.

The

sequential

detection

mechanism

tolerates

larger

gaps

between

adjacent

pages

so

that

the

pages

can

be

considered

sequential.

The

width

of

these

gaps

increases

with

the

number

of

subagents

involved

in

the

scan.

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Sequential

prefetching”

on

page

230

v

“List

prefetching”

on

page

232

v

“I/O

server

configuration

for

prefetching

and

parallelism”

on

page

233

v

“Illustration

of

prefetching

with

parallel

I/O”

on

page

234

Chapter

8.

Operational

performance

229

Sequential

prefetching

Reading

several

consecutive

pages

into

the

buffer

pool

using

a

single

I/O

operation

can

greatly

reduce

your

application

overhead.

In

addition,

multiple

parallel

I/O

operations

to

read

several

ranges

of

pages

into

the

buffer

pool

can

help

reduce

I/O

wait

time.

Prefetching

starts

when

the

database

manager

determines

that

sequential

I/O

is

appropriate

and

that

prefetching

might

improve

performance.

In

cases

such

as

table

scans

and

table

sorts,

the

database

manager

can

easily

determine

that

sequential

prefetch

will

improve

I/O

performance.

In

these

cases,

the

database

manager

automatically

starts

sequential

prefetch.

The

following

example,

which

probably

requires

a

table

scan,

would

be

a

good

candidate

for

sequential

prefetch:

SELECT

NAME

FROM

EMPLOYEE

Implications

of

the

PREFETCHSIZE

for

table

spaces

To

define

the

number

of

prefetched

pages

for

each

table

space,

use

the

PREFETCHSIZE

clause

in

either

the

CREATE

TABLESPACE

or

ALTER

TABLESPACE

statements.

The

value

that

you

specify

is

maintained

in

the

PREFETCHSIZE

column

of

the

SYSCAT.TABLESPACES

system

catalog

table.

It

is

a

good

practice

to

explicitly

set

the

PREFETCHSIZE

value

as

a

multiple

of

the

number

of

table

space

containers,

the

number

of

physical

disks

under

each

container

(if

a

RAID

device

is

used)

and

the

EXTENTSIZE

value

for

your

table

space,

which

is

the

number

of

pages

that

the

database

manager

writes

to

a

container

before

it

uses

a

different

container.

For

example,

if

the

extent

size

is

16

pages

and

the

table

space

has

two

containers,

you

might

set

the

prefetch

quantity

to

32

pages.

If

there

are

5

physical

disks

per

container,

then

you

might

set

the

prefetch

quantity

to

160

pages.

The

database

manager

monitors

buffer-pool

usage

to

ensure

that

prefetching

does

not

remove

pages

from

the

buffer

pool

if

another

unit

of

work

needs

them.

To

avoid

problems,

the

database

manager

can

limit

the

number

of

prefetched

pages

to

less

than

you

specify

for

the

table

space.

The

prefetch

size

can

have

significant

performance

implications,

particularly

for

large

table

scans.

Use

the

database

system

monitor

and

other

system

monitor

tools

to

help

you

tune

PREFETCHSIZE

for

your

table

spaces.

You

might

gather

information

about

whether:

v

There

are

I/O

waits

for

your

query,

using

monitoring

tools

available

for

your

operating

system.

v

Prefetch

is

occurring,

by

looking

at

the

pool_async_data_reads

(buffer

pool

asynchronous

data

reads)

data

element

provided

by

the

database

system

monitor.

If

there

are

I/O

waits

and

the

query

is

prefetching

data,

you

might

increase

the

value

of

PREFETCHSIZE.

If

the

prefetcher

is

not

the

cause

of

the

I/O

wait,

increasing

the

PREFETCHSIZE

value

will

not

improve

the

performance

of

your

query.

In

all

types

of

prefetch,

multiple

I/O

operations

might

be

performed

in

parallel

when

the

prefetch

size

is

a

multiple

of

the

extent

size

for

the

table

space

and

the

extents

of

the

table

space

are

in

separate

containers.

For

better

performance,

configure

the

containers

to

use

separate

physical

devices.

230

Administration

Guide:

Performance

|
|
|
|
|
|
|
|

Sequential

detection

In

some

cases

it

is

not

immediately

obvious

that

sequential

prefetch

will

improve

performance.

In

these

cases,

the

database

manager

can

monitor

I/O

and

activate

prefetching

if

sequential

page

reading

is

occurring.

In

this

case,

prefetching

is

activated

and

deactivated

by

the

database

manager

as

appropriate.

This

type

of

sequential

prefetch

is

known

as

sequential

detection

and

applies

to

both

index

and

data

pages.

Use

the

seqdetect

configuration

parameter

to

control

whether

the

database

manager

performs

sequential

detection.

For

example,

if

sequential

detection

is

turned

on,

the

following

SQL

statement

might

benefit

from

sequential

prefetch:

SELECT

NAME

FROM

EMPLOYEE

WHERE

EMPNO

BETWEEN

100

AND

3000

In

this

example,

the

optimizer

might

have

started

to

scan

the

table

using

an

index

on

the

EMPNO

column.

If

the

table

is

highly

clustered

with

respect

to

this

index,

then

the

data-page

reads

will

be

almost

sequential

and

prefetching

might

improve

performance,

so

data-page

prefetch

will

occur.

Index-page

prefetch

might

also

occur

in

this

example.

If

many

index

pages

must

be

examined

and

the

database

manager

detects

that

sequential

page

reading

of

the

index

pages

is

occurring,

then

index-page

prefetching

occurs.

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Prefetching

data

into

the

buffer

pool”

on

page

229

v

“List

prefetching”

on

page

232

v

“Block-based

buffer

pools

for

improved

sequential

prefetching”

on

page

231

Block-based

buffer

pools

for

improved

sequential

prefetching

Prefetching

pages

from

disk

is

expensive

because

of

I/O

overhead.

Throughput

can

be

significantly

improved

if

processing

is

overlapped

with

I/O.

Most

platforms

provide

high-performance

primitives

that

read

contiguous

pages

from

disk

into

non-contiguous

portions

of

memory.

These

primitives

are

usually

called

scattered

read

or

vectored

I/O.

On

some

platforms,

performance

of

these

primitives

cannot

compete

with

doing

I/O

in

large

block

sizes.

By

default,

the

buffer

pools

are

page-based,

which

means

that

contiguous

pages

on

disk

are

prefetched

into

non-contiguous

pages

in

memory.

Sequential

prefetching

can

be

enhanced

if

contiguous

pages

can

be

read

from

disk

into

contiguous

pages

within

a

buffer

pool.

You

can

create

block-based

buffer

pools

for

this

purpose.

A

block-based

buffer

pool

consist

of

both

a

page

area

and

a

block

area.

The

page

area

is

required

for

non-sequential

prefetching

workloads.

The

block

area

consist

of

blocks

where

each

block

contains

a

specified

number

of

contiguous

pages,

which

is

referred

to

as

the

block

size.

The

optimal

usage

of

a

block-based

buffer

pool

depends

on

the

specified

block

size.

The

block

size

is

the

granularity

at

which

I/O

servers

doing

sequential

prefetching

consider

doing

block-based

I/O.

The

extent

is

the

granularity

at

which

table

spaces

are

striped

across

containers.

Because

multiple

table

spaces

with

different

extent

sizes

can

be

bound

to

a

buffer

pool

defined

with

the

same

block

Chapter

8.

Operational

performance

231

size,

consider

how

the

extent

size

and

the

block

size

interact

for

efficient

use

of

buffer-pool

memory.

Buffer-pool

memory

can

be

wasted

in

the

following

circumstances:

v

If

the

extent

size,

which

determines

the

prefetch

request

size,

is

smaller

than

BLOCK_SIZE

specified

for

the

buffer

pool.

v

If

some

pages

requested

in

the

prefetch

request

are

already

present

in

the

page

area

of

the

buffer

pool.

The

I/O

server

allows

some

wasted

pages

in

each

buffer-pool

block,

but

if

too

much

of

a

block

would

be

wasted,

the

I/O

server

does

non-block-based

prefetching

into

the

page

area

of

the

buffer

pool.

This

is

not

optimal

performance.

For

optimal

performance,

bind

table

spaces

of

the

same

extent

size

to

a

buffer

pool

with

a

block

size

that

equals

the

table-space

extent

size.

Good

performance

can

be

achieved

if

the

extent

size

is

larger

than

the

block

size,

but

not

when

the

extent

size

is

smaller

than

the

block

size.

To

create

block-based

buffer

pools,

use

the

CREATE

and

ALTER

BUFFERPOOL

statements.

Block-based

buffer

pools

have

the

following

limitations:

v

A

buffer

pool

cannot

be

made

block-based

and

use

extended

storage

simultaneously.

v

Block-based

I/O

and

AWE

support

cannot

be

used

by

a

buffer

pool

simultaneously.

AWE

support

takes

precedence

over

block-based

I/O

support

when

both

are

enabled

for

a

given

buffer

pool.

In

this

situation,

the

block-based

I/O

support

is

disabled

for

the

buffer

pool.

It

is

re-enabled

when

the

AWE

support

is

disabled.

Note:

Block-based

buffer

pools

are

intended

for

sequential

prefetching.

If

your

applications

do

not

use

sequential

prefetching,

then

the

block

area

of

the

buffer

pool

is

wasted.

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Prefetching

data

into

the

buffer

pool”

on

page

229

v

“Sequential

prefetching”

on

page

230

List

prefetching

List

prefetch,

or

list

sequential

prefetch,

is

a

way

to

access

data

pages

efficiently

even

when

the

data

pages

needed

are

not

contiguous.

List

prefetch

can

be

used

in

conjunction

with

either

single

or

multiple

index

access.

If

the

optimizer

uses

an

index

to

access

rows,

it

can

defer

reading

the

data

pages

until

all

the

row

identifiers

(RIDs)

have

been

obtained

from

the

index.

For

example,

the

optimizer

could

perform

an

index

scan

to

determine

the

rows

and

data

pages

to

retrieve,

given

the

previously

defined

index

IX1:

INDEX

IX1:

NAME

ASC,

DEPT

ASC,

MGR

DESC,

SALARY

DESC,

YEARS

ASC

and

the

following

search

criteria:

WHERE

NAME

BETWEEN

’A’

and

’I’

232

Administration

Guide:

Performance

If

the

data

is

not

clustered

according

to

this

index,

list

prefetch

includes

a

step

that

sorts

the

list

of

RIDs

obtained

from

the

index

scan.

Related

concepts:

v

“Buffer

pool

management”

on

page

220

v

“Prefetching

data

into

the

buffer

pool”

on

page

229

v

“Sequential

prefetching”

on

page

230

I/O

management

This

section

describes

how

to

tune

I/O

servers

for

the

best

performance.

I/O

server

configuration

for

prefetching

and

parallelism

To

enable

prefetching,

the

database

manager

starts

separate

threads

of

control,

known

as

I/O

servers,

to

read

data

pages.

As

a

result,

the

query

processing

is

divided

into

two

parallel

activities:

data

processing

(CPU)

and

data

page

I/O.

The

I/O

servers

wait

for

prefetch

requests

from

the

CPU

processing

activity.

These

prefetch

requests

contain

a

description

of

the

I/O

needed

to

satisfy

the

query.

The

possible

prefetch

methods

determine

when

and

how

the

database

manager

generates

the

prefetch

requests.

Configuring

enough

I/O

servers

with

the

num_ioservers

configuration

parameter

can

greatly

enhance

the

performance

of

queries

for

which

prefetching

of

data

can

be

used.

To

maximize

the

opportunity

for

parallel

I/O,

set

num_ioservers

to

at

least

the

number

of

physical

disks

in

the

database.

It

is

better

to

overestimate

the

number

of

I/O

servers

than

to

underestimate.

If

you

specify

extra

I/O

servers,

these

servers

are

not

used,

and

their

memory

pages

are

paged

out.

As

a

result,

performance

does

not

suffer.

Each

I/O

server

process

is

numbered.

The

database

manager

always

uses

the

lowest

numbered

process,

so

some

of

the

upper

numbered

processes

might

never

be

used.

To

estimate

the

number

of

I/O

servers

that

you

might

need,

consider

the

following:

v

The

number

of

database

agents

that

could

be

writing

prefetch

requests

to

the

I/O

server

queue

concurrently.

v

The

highest

degree

to

which

the

I/O

servers

can

work

in

parallel.

Configuration

for

asynchronous

I/O

On

some

platforms,

DB2®

uses

asynchronous

I/O

(AIO)

to

improve

performance

of

activities

such

as

page

cleaning

and

prefetching.

AIO

is

most

effective

if

data

in

containers

is

distributed

across

multiple

disks.

Performance

also

benefits

from

tuning

the

underlying

operating

system

AIO

infrastructure.

For

example,

on

AIX®,

you

might

tune

AIO

on

the

operating

system.

When

AIO

works

on

either

SMS

or

DMS

file

containers,

operating

system

processes

called

AIO

servers

manage

the

I/O.

A

small

number

of

such

servers

might

restrict

the

benefit

of

AIO

by

limiting

the

number

of

AIO

requests.

To

configure

the

number

of

AIO

servers

on

AIX,

use

the

smit

AIO

minservers

and

maxservers

parameters.

Related

concepts:

v

“Parallel

processing

for

applications”

on

page

88

Chapter

8.

Operational

performance

233

v

“Illustration

of

prefetching

with

parallel

I/O”

on

page

234

v

“Parallel

I/O

management”

on

page

235

Related

reference:

v

“num_ioservers

-

Number

of

I/O

servers”

on

page

375

Illustration

of

prefetching

with

parallel

I/O

The

following

figure

illustrates

how

I/O

servers

are

used

to

prefetch

data

into

a

buffer

pool.

�1�

The

user

application

passes

the

SQL

request

to

the

database

agent

that

has

been

assigned

to

the

user

application

by

the

database

manager.

�2�,

�3�

The

database

agent

determines

that

prefetching

should

be

used

to

obtain

the

data

required

to

satisfy

the

SQL

request

and

writes

a

prefetch

request

to

the

I/O

server

queue.

Buffer Pool

Database Agent Database Agent

Asynchronous
Prefetch

Request

Database Agent

I/O ServerI/O Server

I/O Server
Queue

5

6

4

3

2

Logical
Buffer

Read

Big
Block
Read

Create
4K pages

User
Application

User
Application

User
Application

1

Figure

24.

Prefetching

data

using

I/O

servers

234

Administration

Guide:

Performance

�4�,

�5�

The

first

available

I/O

server

reads

the

prefetch

request

from

the

queue

and

then

reads

the

data

from

the

table

space

into

the

buffer

pool.

The

number

of

I/O

servers

that

can

fetch

data

from

a

table

space

at

the

same

time

depends

on

the

number

of

prefetch

requests

in

the

queue

and

the

number

of

I/O

servers

configured

by

the

num_ioservers

database

configuration

parameter.

�6�

The

database

agent

performs

the

necessary

operations

on

the

data

pages

in

the

buffer

pool

and

returns

the

result

to

the

user

application.

Related

concepts:

v

“Prefetching

data

into

the

buffer

pool”

on

page

229

v

“Sequential

prefetching”

on

page

230

v

“List

prefetching”

on

page

232

v

“I/O

server

configuration

for

prefetching

and

parallelism”

on

page

233

v

“Parallel

I/O

management”

on

page

235

v

“Agents

in

a

partitioned

database”

on

page

261

Parallel

I/O

management

If

multiple

containers

exist

for

a

table

space,

the

database

manager

can

initiate

parallel

I/O,

in

which

database

manager

uses

multiple

I/O

servers

to

process

the

I/O

requirements

of

a

single

query.

Each

I/O

server

processes

the

I/O

workload

for

a

separate

container,

so

that

several

containers

can

be

read

in

parallel.

Performing

I/O

in

parallel

can

result

in

significant

improvements

to

I/O

throughput.

Although

a

separate

I/O

server

can

handle

the

workload

for

each

container,

the

actual

number

of

I/O

servers

that

can

perform

I/O

in

parallel

is

limited

to

the

number

of

physical

devices

over

which

the

requested

data

is

spread.

For

this

reason,

you

need

as

many

I/O

servers

as

physical

devices.

Parallel

I/O

is

initiated

differently

in

the

following

cases:

v

Sequential

prefetch

For

sequential

prefetch,

parallel

I/O

is

initiated

when

the

prefetch

size

is

a

multiple

of

the

extent

size

for

a

table

space.

Each

prefetch

request

is

then

broken

into

many

small

requests

along

the

extent

boundaries.

These

small

requests

are

then

assigned

to

different

I/O

servers.

v

List

prefetch

For

list

prefetch,

each

list

of

pages

is

divided

into

smaller

lists

according

to

the

container

in

which

the

data

pages

are

stored.

These

smaller

lists

are

then

assigned

to

different

I/O

servers.

v

Database

or

table

space

backup

and

restore

For

backing

up

or

restoring

data,

the

number

of

parallel

I/O

requests

are

equal

to

the

backup

buffer

size

divided

by

the

extent

size

up

to

a

maximum

value

equal

to

the

number

of

containers.

v

Database

or

table

space

restore

For

restoring

data,

the

parallel

I/O

requests

are

initiated

and

split

the

same

way

as

that

used

for

sequential

prefetch.

Instead

of

restoring

the

data

into

the

buffer

pool,

the

data

is

moved

directly

from

the

restore

buffer

to

disk.

v

Load

Chapter

8.

Operational

performance

235

When

you

load

data,

you

can

specify

the

level

of

I/O

parallelism

with

the

LOAD

command

DISK_PARALLELISM

option.

If

you

do

not

specify

this

option,

the

database

manager

uses

a

default

value

based

on

the

cumulative

number

of

table

space

containers

for

all

table

spaces

associated

with

the

table.

For

optimal

performance

of

parallel

I/O,

ensure

that:

v

There

are

enough

I/O

servers.

Specify

slightly

more

I/O

servers

than

the

number

of

containers

used

for

all

table

spaces

within

the

database.

v

The

extent

size

and

prefetch

size

are

sensible

for

the

table

space.

To

prevent

over-use

of

the

buffer

pool,

prefetch

size

should

not

be

too

large.

An

ideal

size

is

a

multiple

of

the

extent

size,

the

number

of

physical

disks

under

each

container

(if

a

RAID

device

is

used)

and

the

number

of

table

space

containers.

The

extent

size

should

be

fairly

small,

with

a

good

value

being

in

the

range

of

8

to

32

pages.

v

The

containers

reside

on

separate

physical

drives.

v

All

containers

are

the

same

size

to

ensure

a

consistent

degree

of

parallelism.

If

one

or

more

containers

are

smaller

than

the

others,

they

reduce

the

potential

for

optimized

parallel

prefetch.

Consider

the

following

examples:

–

After

a

smaller

container

is

filled,

additional

data

is

stored

in

the

remaining

containers,

causing

the

containers

to

become

unbalanced.

Unbalanced

containers

reduce

the

performance

of

parallel

prefetching,

because

the

number

of

containers

from

which

data

can

be

prefetched

might

be

less

than

the

total

number

of

containers.

–

If

a

smaller

container

is

added

at

a

later

date

and

the

data

is

rebalanced,

the

smaller

container

will

contain

less

data

than

the

other

containers.

Its

small

amount

of

data

relative

to

the

other

containers

will

not

optimize

parallel

prefetching.

–

If

one

container

is

larger

and

all

of

the

other

containers

fill

up,

it

is

the

only

container

to

store

additional

data.

The

database

manager

cannot

use

parallel

prefetch

to

access

this

additional

data.
v

There

is

adequate

I/O

capacity

when

using

intra-partition

parallelism.

On

SMP

machines,

intra-partition

parallelism

can

reduce

the

elapsed

time

for

query

by

running

the

query

on

multiple

processors.

Sufficient

I/O

capacity

is

required

to

keep

each

processor

busy.

Usually

additional

physical

drives

are

required

to

provide

the

I/O

capacity.

The

prefetch

size

must

be

larger

for

prefetching

to

occur

at

higher

rates

and

use

I/O

capacity

effectively.

The

number

of

physical

drives

required

depends

on

the

speed

and

capacity

of

the

drives

and

the

I/O

bus

and

on

the

speed

of

the

processors.

Related

concepts:

v

“I/O

server

configuration

for

prefetching

and

parallelism”

on

page

233

v

“Illustration

of

prefetching

with

parallel

I/O”

on

page

234

v

“Guidelines

for

sort

performance”

on

page

236

Guidelines

for

sort

performance

Because

queries

often

require

sorted

or

grouped

results,

sorting

is

often

required,

and

the

proper

configuration

of

the

sort

heap

areas

is

crucial

to

good

query

performance.

Sorting

is

required

when:

v

No

index

exists

to

satisfy

a

requested

ordering

(for

example

a

SELECT

statement

that

uses

the

ORDER

BY

clause).

236

Administration

Guide:

Performance

v

An

index

exists

but

sorting

would

be

more

efficient

than

using

the

index

v

An

index

is

created.

v

An

index

is

dropped,

which

causes

index

page

numbers

to

be

sorted.

Sorting

involves

two

steps:

1.

A

sort

phase

A

sort

can

be

overflowed

or

non-overflowed.

If

the

sorted

data

cannot

fit

entirely

into

the

sort

heap,

which

is

a

block

of

memory

that

is

allocated

each

time

a

sort

is

performed,

it

overflows

into

temporary

database

tables.

Sorts

that

do

not

overflow

always

perform

better

than

those

that

do.

2.

Return

of

the

results

of

the

sort

phase.

The

return

can

be

piped

or

non-piped.

If

sorted

information

can

return

directly

without

requiring

a

temporary

table

to

store

a

final,

sorted

list

of

data,

it

is

a

piped

sort.

If

the

sorted

information

requires

a

temporary

table

to

be

returned,

it

is

a

non-piped

sort

.

A

piped

sort

always

performs

better

than

a

non-piped

sort.

Elements

that

affect

sorting

The

following

elements

affect

sort

performance:

v

The

settings

for

the

following

database

configuration

parameters:

–

Sort

heap

size,

(sortheap),

which

specifies

the

amount

of

memory

to

be

used

for

each

sort

–

Sort

heap

threshold

(sheapthres)

and

the

sort

heap

threshold

for

shared

sorts

(sheapthres_shr),

which

control

the

total

amount

of

memory

for

sorting

available

across

the

entire

instance

for

all

sorts
v

Statements

that

involve

a

large

amount

of

sorting

v

Missing

indexes

that

could

help

avoid

unnecessary

sorting

v

Application

logic

that

does

not

minimize

sorting

v

Parallel

sorting,

which

improves

the

performance

of

sorts

but

can

only

occur

if

the

statement

uses

intra-partition

parallelism.

In

general,

overall

sort

memory

available

across

the

instance

(sheapthres)

should

be

as

large

as

possible

without

causing

excessive

paging.

Although

a

sort

can

be

performed

entirely

in

sort

memory,

this

might

cause

excessive

page

swapping.

In

this

case,

you

lose

the

advantage

of

a

large

sort

heap.

For

this

reason,

you

should

use

an

operating

system

monitor

to

track

changes

in

system

paging

whenever

you

adjust

the

sorting

configuration

parameters.

Also

note

that

in

a

piped

sort,

the

sort

heap

is

not

freed

until

the

application

closes

the

cursor

associated

with

that

sort.

A

piped

sort

can

continue

to

use

up

memory

until

the

cursor

is

closed.

Note:

With

the

improvement

in

the

DB2®

partial-key

binary

sorting

technique

to

include

non-integer

data

type

keys,

some

additional

memory

is

required

when

sorting

long

keys.

If

long

keys

are

used

for

sorts,

increase

the

sortheap

configuration

parameter.

Techniques

for

managing

sorting

performance

Identify

particular

applications

and

statements

where

sorting

is

a

significant

performance

problem:

Chapter

8.

Operational

performance

237

v

Set

up

event

monitors

at

the

application

and

statement

level

to

help

you

identify

applications

with

the

longest

total

sort

time.

v

Within

each

of

these

applications,

find

the

statements

with

the

longest

total

sort

time.

v

Tune

these

statements

using

a

tool

such

as

Visual

Explain.

v

Ensure

that

appropriate

indexes

exist.

You

can

use

Visual

Explain

to

identify

all

the

sort

operations

for

a

given

statement.

Then

investigate

whether

or

not

an

appropriate

index

exists

for

each

table

accessed

by

the

statement.

Note:

You

can

search

through

the

explain

tables

to

identify

the

queries

that

have

sort

operations.

You

can

use

the

database

system

monitor

and

benchmarking

techniques

to

help

set

the

sortheap

and

sheapthres

configuration

parameters.

For

each

database

manager

and

its

databases:

v

Set

up

and

run

a

representative

workload.

v

For

each

applicable

database,

collect

average

values

for

the

following

performance

variables

over

the

benchmark

workload

period:

–

Total

sort

heap

in

use

–

Active

sorts
v

Set

sortheap

to

the

average

total

sort

heap

in

use

for

each

database.

v

Set

the

sheapthres.

To

estimate

an

appropriate

size:

1.

Determine

which

database

in

the

instance

has

the

largest

sortheap

value.

2.

Determine

the

average

size

of

the

sort

heap

for

this

database.

If

this

is

too

difficult

to

determine,

use

80%

of

the

maximum

sort

heap

3.

Set

sheapthres

to

the

average

number

of

active

sorts

times

the

average

size

of

the

sort

heap

computed

above.

This

is

a

recommended

initial

setting.

You

can

then

use

benchmark

techniques

to

refine

this

value.

Related

reference:

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

v

“sheapthres_shr

-

Sort

heap

threshold

for

shared

sorts”

on

page

344

Table

management

This

section

describes

methods

of

managing

tables

for

performance

improvements.

Table

reorganization

After

many

changes

to

table

data,

logically

sequential

data

may

be

on

non-sequential

physical

data

pages

so

that

the

database

manager

must

perform

additional

read

operations

to

access

data.

Additional

read

operations

are

also

required

if

a

significant

number

of

rows

have

been

deleted.

In

such

a

case,

you

might

consider

reorganizing

the

table

to

match

the

index

and

to

reclaim

space.

You

can

reorganize

the

system

catalog

tables

as

well

as

database

tables.

Note:

Because

reorganizing

a

table

usually

takes

more

time

than

running

statistics,

you

might

execute

RUNSTATS

to

refresh

the

current

statistics

for

your

data

and

rebind

your

applications.

If

refreshed

statistics

do

not

improve

238

Administration

Guide:

Performance

performance,

reorganization

might

help.

For

detailed

information

about

the

options

and

behavior

of

the

REORG

TABLE

utility,

refer

to

its

command

reference.

Consider

the

following

factors,

which

might

indicate

that

you

should

reorganize

a

table:

v

A

high

volume

of

insert,

update,

and

delete

activity

on

tables

accessed

by

queries

v

Significant

changes

in

the

performance

of

queries

that

use

an

index

with

a

high

cluster

ratio

v

Executing

RUNSTATS

to

refresh

statistical

information

does

not

improve

performance

v

The

REORGCHK

command

indicates

a

need

to

reorganize

your

table

v

The

tradeoff

between

the

cost

of

increasing

degradation

of

query

performance

and

the

cost

of

reorganizing

your

table,

which

includes

the

CPU

time,

the

elapsed

time,

and

the

reduced

concurrency

resulting

from

the

REORG

utility

locking

the

table

until

the

reorganization

is

complete.

Reducing

the

need

to

reorganize

tables

To

reduce

the

need

for

reorganizing

a

table,

perform

these

tasks

after

you

create

the

table:

v

Alter

table

to

add

PCTFREE

v

Create

clustering

index

with

PCTFREE

on

index

v

Sort

the

data

v

Load

the

data

After

you

have

performed

these

tasks,

the

table

with

its

clustering

index

and

the

setting

of

PCTFREE

on

table

helps

preserve

the

original

sorted

order.

If

enough

space

is

allowed

in

table

pages,

new

data

can

be

inserted

on

the

correct

pages

to

maintain

the

clustering

characteristics

of

the

index.

As

more

data

is

inserted

and

the

pages

of

the

table

become

full,

records

are

appended

to

the

end

of

the

table

so

that

the

table

gradually

becomes

unclustered.

If

you

perform

a

REORG

TABLE

or

a

sort

and

LOAD

after

you

create

a

clustering

index,

the

index

attempts

to

maintain

a

particular

order

of

data,

which

improves

the

CLUSTERRATIO

or

CLUSTERFACTOR

statistics

collected

by

the

RUNSTATS

utility.

Note:

Creating

multi-dimensional

clustering

(MDC)

tables

might

reduce

the

need

to

reorganize

tables.

For

MDC

tables,

clustering

is

maintained

on

the

columns

that

you

specify

as

arguments

to

the

ORGANIZE

BY

DIMENSIONS

clause

of

the

CREATE

TABLE

statement.

However,

REORGCHK

might

recommend

reorganization

of

an

MDC

table

if

it

considers

that

there

are

too

many

unused

blocks

or

that

blocks

should

be

compacted.

Related

concepts:

v

“Index

reorganization”

on

page

252

v

“DMS

device

considerations”

on

page

255

v

“SMS

table

spaces”

on

page

14

v

“DMS

table

spaces”

on

page

15

v

“Table

and

index

management

for

standard

tables”

on

page

18

v

“Snapshot

monitor”

in

the

System

Monitor

Guide

and

Reference

Chapter

8.

Operational

performance

239

v

“Table

and

index

management

for

MDC

tables”

on

page

21

Related

tasks:

v

“Determining

when

to

reorganize

tables”

on

page

240

v

“Choosing

a

table

reorganization

method”

on

page

242

Determining

when

to

reorganize

tables

Normal

database

activity,

such

as

repeated

inserts,

deletes,

and

updates,

can

affect

the

organization

of

the

data

in

your

tables

and

indexes

over

time

and

adversely

affect

database

performance.

The

RUNSTATS

utility

collects

statistical

information

about

the

organization

of

the

data

in

your

database

tables,

allowing

you

to

collect

statistical

information

about

table

size

and

data

distribution,

the

cluster

ratio

of

indexes,

the

number

of

leaf

pages

in

indexes,

the

number

of

table

rows

that

overflow

their

original

pages,

and

the

number

of

filled

and

empty

pages

in

a

table.

You

can

also

use

RUNSTATS

to

collect

information

about

prefetch

efficiency.

The

information

collected

by

RUNSTATS

is

stored

in

the

system

catalog

tables.

This

information

can

help

you

decide

when

to

reorganize

tables

and

indexes

and

what

type

of

reorganization

is

required.

In

addtion

to

using

RUNSTATS

to

capture

information

about

your

database

organization

at

a

single

point

in

time,

it

is

a

good

idea

to

run

RUNSTATS

regularly

to

identify

overall

trends

that

may

be

linked

to

changes

in

database

performance.

Note:

The

REORGCHK

command

also

returns

statistical

information

about

data

organization

and

can

advise

you

about

whether

particular

tables

need

to

be

reorganized.

However,

running

specific

queries

against

the

catalog

statistics

tables

at

regular

intervals

or

specific

times

can

provide

a

performance

history

that

allows

you

to

spot

trends

that

might

have

wider

implications

for

performance.

Procedure:

To

determine

whether

you

need

to

reorganize

tables,

query

the

catalog

statistics

tables

and

monitor

the

following

statistics:

1.

Overflow

of

rows

Query

the

OVERFLOW

column

in

the

SYSSTAT.TABLES

table

to

monitor

the

overflow

value.

The

values

in

this

column

represent

the

number

of

rows

that

do

not

fit

on

their

original

pages.

Row

data

can

overflow

when

VARCHAR

columns

are

updated

with

values

that

are

longer

than

the

initial

values.

In

such

cases,

a

pointer

is

kept

at

the

original

location

in

the

row

and

the

actual

value

is

stored

in

another

location

that

is

indicated

by

the

pointer.

This

can

impact

performance

because

the

database

manager

must

follow

the

pointer

to

find

the

contents

of

the

row.

This

two-step

process

increases

the

processing

time

and

might

also

increase

the

number

of

I/Os

required.

Reorganizing

the

table

data

will

eliminate

the

row

overflows;

therefore,

as

the

number

of

overflow

rows

increases,

the

potential

benefit

of

reorganizing

your

table

data

increases.

2.

Fetch

statistics

Query

the

three

following

columns

in

the

SYSCAT.INDEXES

and

SYSSTAT.INDEXES

catalog

statistics

tables

to

determine

the

effectiveness

of

the

240

Administration

Guide:

Performance

prefetchers

when

the

table

is

accessed

in

index

order.

These

statistics

characterize

the

average

performance

of

the

prefetchers

against

the

underlying

table.

v

The

AVERAGE_SEQUENCE_FETCH_PAGES

column

stores

the

average

number

of

pages

that

can

be

accessed

in

sequence

in

the

table.

Pages

that

can

be

accessed

in

sequence

are

eligible

for

prefetching.

A

small

number

indicates

that

the

prefetchers

are

not

as

effective

as

they

could

be

because

they

cannot

read

in

the

full

number

of

pages

specified

by

the

PREFETCHSIZE

setting

for

the

table

space.

A

large

number

indicates

that

the

prefetchers

are

performing

effectively.

For

a

clustered

index

and

table,

this

number

should

approach

the

value

of

NPAGES,

the

number

of

pages

that

contain

rows.

v

The

AVERAGE_RANDOM_FETCH_PAGES

column

stores

the

average

number

of

random

table

pages

between

sequential

page

accesses

when

fetching

table

rows

using

the

index.

The

prefetchers

ignore

small

numbers

of

random

pages

when

most

pages

are

in

sequence,

and

continue

to

prefetch

to

the

configured

prefetch

size.

As

the

table

becomes

more

disorganized,

the

number

of

random

fetch

pages

increases.

Such

disorganization

is

usually

caused

by

inserts

that

occur

out

of

sequence,

either

at

the

end

of

the

table

or

in

overflow

pages.

This

causes

fetches

that

slow

query

performance

when

the

index

is

used

to

access

a

range

of

values.

v

The

AVERAGE_SEQUENCE_FETCH_GAP

column

stores

the

average

gap

between

table

page

sequences

when

fetching

using

the

index.

Detected

through

a

scan

of

index

leaf

pages,

each

gap

represents

the

average

number

of

table

pages

that

must

be

randomly

fetched

between

sequences

of

table

pages.

These

occur

when

many

pages

are

accessed

randomly,

which

interrupts

the

prefetchers.

A

large

number

indicates

a

table

that

is

disorganized

or

poorly

clustered

to

the

index.
3.

Number

of

index

leaf

pages

that

contain

RIDs

marked

deleted

but

not

removed

In

type-2

indexes,

RIDs

are

not

usually

physically

deleted

when

the

RID

is

marked

deleted.

This

means

that

useful

space

might

be

occupied

by

these

logically

deleted

RIDs.

To

retrieve

the

number

of

leaf

pages

on

which

every

RID

is

marked

deleted,

query

the

NUM_EMPTY_LEAFS

column

of

the

SYSCAT.INDEXES

and

SYSSTAT.INDEXES

statistics

tables.

For

leaf

pages

on

which

not

all

RIDs

are

marked

deleted,

the

total

number

of

logically

deleted

RIDs

is

stored

in

the

NUMRIDS_DELETED

column.

Use

this

information

to

estimate

how

much

space

might

be

reclaimed

by

executing

REORG

INDEXES

with

the

CLEANUP

ALL

option.

To

reclaim

only

the

space

in

pages

on

which

all

RIDs

are

marked

deleted,

execute

REORG

INDEXES

with

the

CLEANUP

ONLY

PAGES

option.

4.

Cluster-ratio

and

cluster-factor

statistics

for

indexes

A

cluster-ratio

statistic

is

stored

in

the

CLUSTERRATIO

column

of

the

SYSTCAT.INDEXES

catalog

table.

This

value,

between

0

and

100,

represents

the

degree

of

data

clustering

with

the

index.

If

you

collect

DETAILED

index

statistics,

a

finer

cluster-factor

statistic

between

0

and

1

is

stored

in

the

CLUSTERFACTOR

column

instead,

and

the

value

of

CLUSTERRATIO

is

−1.

Only

one

of

these

two

clustering

statistics

can

be

recorded

in

the

SYSCAT.INDEXES

catalog

table.

To

compare

CLUSTERFACTOR

values

with

the

CLUSTERRATIO

values,

multiply

the

CLUSTERFACTOR

by

100

to

obtain

a

percentage.

Note:

In

general,

only

one

of

the

indexes

in

a

table

can

have

a

high

degree

of

clustering.

Index

scans

that

are

not

index-only

accesses

might

perform

better

with

higher

cluster

ratios.

A

low

cluster

ratio

leads

to

more

I/O

for

this

type

of

scan,

since

Chapter

8.

Operational

performance

241

after

the

first

access

of

each

data

page,

it

is

less

likely

that

the

page

is

still

in

the

buffer

pool

the

next

time

it

is

accessed.

Increasing

the

buffer

size

might

also

improve

the

performance

of

an

unclustered

index.

If

table

data

was

initially

clustered

on

a

certain

index,

and

the

clustering

statistics

information

indicates

that

the

data

is

now

poorly

clustered

for

that

same

index,

you

may

want

to

reorganize

the

table

to

cluster

the

data

again.

5.

Number

of

leaf

pages

Query

the

NLEAF

column

in

the

SYSCAT.INDEXES

table

to

find

out

the

number

of

leaf

pages

occupied

by

an

index.

The

number

tells

you

how

many

index

page

I/Os

are

needed

for

a

complete

scan

of

an

index.

Ideally,

an

index

should

take

up

the

minimum

amount

of

space

possible

to

reduce

the

I/Os

required

for

an

index

scan.

Random

update

activity

can

cause

page

splits

that

increase

the

size

of

the

index..

When

indexes

are

rebuilt

during

the

reorganization

of

a

table,

each

index

can

be

built

with

the

minimum

amount

of

space.

Note:

By

default,

ten

percent

free

space

is

left

on

each

index

page

when

the

indexes

are

built.

To

increase

the

free

space

amount,

specify

the

PCTFREE

parameter

when

you

create

the

index.

Whenever

you

reorganize

the

index,

the

PCTFREE

value

is

used.

Free

space

greater

than

ten

percent

might

reduce

frequency

of

index

reorganization

because

the

additional

space

can

accommodate

additional

index

inserts.

6.

Comparison

of

file

pages

To

calculate

the

number

of

empty

pages

in

a

table,

query

the

FPAGES

and

NPAGES

columns

in

SYSCAT.TABLES

and

subtract

the

NPAGES

number

from

the

FPAGES

number.

The

FPAGES

column

stores

the

total

number

of

pages

in

use;

the

NPAGES

column

stores

the

number

of

pages

that

contain

rows.

Empty

pages

can

occur

when

entire

ranges

of

rows

are

deleted.

As

the

number

of

empty

pages

increases,

the

need

for

a

table

reorganization

increases.

Reorganizing

the

table

reclaims

the

empty

pages

and

reduces

the

amount

of

space

used

by

a

table.

In

addition,

because

empty

pages

are

read

into

the

buffer

pool

for

a

table

scan,

reclaiming

unused

pages

can

improve

the

performance

of

a

table

scan.

Related

concepts:

v

“Catalog

statistics

tables”

on

page

106

v

“Table

reorganization”

on

page

238

v

“Index

reorganization”

on

page

252

Related

tasks:

v

“Collecting

catalog

statistics”

on

page

98

Choosing

a

table

reorganization

method

DB2®

provides

two

methods

of

reorganizing

tables:

classic

and

in-place.

In

general,

classic

table

reorganization

is

faster,

but

should

be

used

only

if

your

applications

function

without

write

access

to

tables

during

the

reorganization.

If

your

environment

does

not

allow

this

restriction,

although

in-place

reorganization

is

slower,

it

can

occur

in

the

background

while

normal

data

access

continues.

Consider

the

features

of

each

method

and

decide

which

method

is

more

appropriate

for

your

environment.

Procedure:

242

Administration

Guide:

Performance

To

choose

a

table

reorganization

method,

consider

the

features

of

the

following

methods:

v

Classic

table

reorganization

This

method

provides

the

fastest

table

reorganization,

especially

if

you

do

not

need

to

reorganize

LOB

or

LONG

data.

In

addition,

indexes

are

rebuilt

in

perfect

order

after

the

table

is

reorganized.

Read-only

applications

can

access

the

original

copy

of

the

table

except

during

the

last

phases

or

the

reorganization,

in

which

the

permanent

table

replaces

the

shadow

copy

of

the

table

and

the

indexes

are

rebuilt.

On

the

other

hand,

consider

the

following

possible

disadvantages:

–

Large

space

requirement

Because

classic

table

reorganization

creates

the

shadow

copy

of

the

table,

it

can

require

twice

as

much

space

as

the

original

table.

If

the

reorganized

table

is

larger

than

the

original,

reorganization

can

require

more

than

twice

as

much

space

as

the

original.

The

shadow

copy

can

be

built

in

a

temporary

tablespace

if

the

table

tablespace

is

not

large

enough,

but

the

replace

phase

performs

best

in

the

same

DMS

table

space.

Tables

in

SMS

table

spaces

must

always

store

the

shadow

copy

in

temporary

space.

–

Limited

table

access

Even

read-only

access

is

limited

to

the

first

phases

of

the

reorganization

process.

–

All

or

nothing

process

If

the

reorganization

fails

at

any

point,

it

must

be

restarted

from

the

beginning

on

the

nodes

where

it

failed.

–

Performed

within

the

controller

of

the

application

that

invokes

it

The

reorganization

can

be

stopped

only

by

that

application

or

by

a

user

who

understands

how

to

stop

the

process

and

has

authority

to

execute

the

FORCE

command

for

the

application.
Recommendation:

Choose

this

method

if

you

can

reorganize

tables

during

a

maintenance

window.

v

In-place

table

reorganization

The

in-place

method

is

slower

and

does

not

ensure

perfectly

ordered

data,

but

it

can

allow

applications

to

access

the

table

during

the

reorganization.

In

addition,

in-place

table

reorganization

can

be

paused

and

resumed

later

by

anyone

with

the

appropriate

authority

by

using

the

schema

and

table

name.

Note:

In-place

table

reorganization

is

allowed

only

on

tables

with

type-2

indexes

and

without

extended

indexes.

Consider

the

following

trade-offs:

–

Imperfect

index

reorganization

You

might

need

to

reorganize

indexes

later

to

reduce

index

fragmentation

and

reclaim

index

object

space.

–

Longer

time

to

complete

When

required,

in-place

reorganization

defers

to

concurrent

applications.

This

means

that

long-running

statements

or

RR

and

RS

readers

in

long-running

applications

can

slow

the

reorganization

progress.

In-place

reorganization

might

be

faster

in

an

OLTP

environment

in

which

many

small

transactions

occur.

–

Requires

more

log

space

Chapter

8.

Operational

performance

243

Because

in-place

table

reorganization

logs

its

activities

so

that

recovery

is

possible

after

an

unexpected

failure,

it

requires

more

log

space

than

classic

reorganization.

It

is

possible

that

in-place

reorganization

will

require

log

space

equal

to

several

times

the

size

of

the

reorganized

table.

The

amount

of

required

space

depends

on

the

number

of

rows

that

are

moved

and

the

number

and

size

of

the

indexes

on

the

table.
Recommendation:

Choose

in-place

table

reorganization

for

24x7

operations

with

minimal

maintenance

windows.

Refer

to

the

REORG

TABLE

syntax

descriptions

for

detailed

information

about

executing

these

table

reorganization

methods.

Monitoring

the

progress

of

table

reorganization

Information

about

the

current

progress

of

table

reorganization

is

written

to

the

history

file

for

database

activity.

The

history

file

contains

a

record

for

each

reorganization

event.

To

view

this

file,

execute

the

db2

list

history

command

for

the

database

that

contains

the

table

you

are

reorganizing.

You

can

also

use

table

snapshots

to

monitor

the

progress

of

table

reorganization.

Table

reorganization

monitoring

data

is

recorded

regardless

of

the

Database

Monitor

Table

Switch

setting.

If

an

error

occurs,

an

SQLCA

dump

is

written

to

the

history

file.

For

an

in-place

table

reorganization,

the

status

is

recorded

as

PAUSED.

Related

concepts:

v

“Table

reorganization”

on

page

238

v

“Index

reorganization”

on

page

252

Related

tasks:

v

“Determining

when

to

reorganize

tables”

on

page

240

Index

management

The

following

sections

describe

index

reorganization

for

performance

improvements.

Advantages

and

disadvantages

of

indexes

Although

the

optimizer

decides

whether

to

use

an

index

to

access

table

data,

except

in

the

following

case,

you

must

decide

which

indexes

might

improve

performance

and

create

these

indexes.

Exceptions

are

the

dimension

block

indexes

and

the

composite

block

index

that

are

created

automatically

for

each

dimension

that

you

specify

when

you

create

a

multi-dimensional

clustering

(MDC)

table.

You

must

also

execute

the

RUNSTATS

utility

to

collect

new

statistics

about

the

indexes

in

the

following

circumstances:

v

After

you

create

an

index

v

After

you

change

the

prefetch

size

244

Administration

Guide:

Performance

You

should

also

execute

the

RUNSTATS

utility

at

regular

intervals

to

keep

the

statistics

current.

Without

up-to-date

statistics

about

indexes,

the

optimizer

cannot

determine

the

best

data-access

plan

for

queries.

Note:

To

determine

whether

an

index

is

used

in

a

specific

package,

use

the

SQL

Explain

facility.

To

plan

indexes,

use

the

Design

Advisor

from

the

Control

Center

or

the

db2advis

tool

to

get

advice

about

indexes

that

might

be

used

by

one

or

more

SQL

statements.

Advantages

of

an

index

over

no

index

If

no

index

exists

on

a

table,

a

table

scan

must

be

performed

for

each

table

referenced

in

a

database

query.

The

larger

the

table,

the

longer

a

table

scan

takes

because

a

table

scan

requires

each

table

row

to

be

accessed

sequentially.

Although

a

table

scan

might

be

more

efficient

for

a

complex

query

that

requires

most

of

the

rows

in

a

table,

for

a

query

that

returns

only

some

table

rows

an

index

scan

can

access

table

rows

more

efficiently.

The

optimizer

chooses

an

index

scan

if

the

index

columns

are

referenced

in

the

SELECT

statement

and

if

the

optimizer

estimates

that

an

index

scan

will

be

faster

than

a

table

scan.

Index

files

generally

are

smaller

and

require

less

time

to

read

than

an

entire

table,

particularly

as

tables

grow

larger.

In

addition,

the

entire

index

may

not

need

to

be

scanned.

The

predicates

that

are

applied

to

the

index

reduce

the

number

of

rows

to

be

read

from

the

data

pages.

If

an

ordering

requirement

on

the

output

can

be

matched

with

an

index

column,

then

scanning

the

index

in

column

order

will

allow

the

rows

to

be

retrieved

in

the

correct

order

without

a

sort.

Each

index

entry

contains

a

search-key

value

and

a

pointer

to

the

row

containing

that

value.

If

you

specify

the

ALLOW

REVERSE

SCANS

parameter

in

the

CREATE

INDEX

statement,

the

values

can

be

searched

in

both

ascending

and

descending

order.

It

is

therefore

possible

to

bracket

the

search,

given

the

right

predicate.

An

index

can

also

be

used

to

obtain

rows

in

an

ordered

sequence,

eliminating

the

need

for

the

database

manager

to

sort

the

rows

after

they

are

read

from

the

table.

In

addition

to

the

search-key

value

and

row

pointer,

an

index

can

contain

include

columns,

which

are

non-indexed

columns

in

the

indexed

row.

Such

columns

might

make

it

possible

for

the

optimizer

to

get

required

information

only

from

the

index,

without

accessing

the

table

itself.

Note:

The

existence

of

an

index

on

the

table

being

queried

does

not

guarantee

an

ordered

result

set.

Only

an

ORDER

BY

clause

ensures

the

order

of

a

result

set.

Although

indexes

can

reduce

access

time

significantly,

they

can

also

have

adverse

effects

on

performance.

Before

you

create

indexes,

consider

the

effects

of

multiple

indexes

on

disk

space

and

processing

time:

v

Each

index

requires

storage

or

disk

space.

The

exact

amount

depends

on

the

size

of

the

table

and

the

size

and

number

of

columns

in

the

index.

v

Each

INSERT

or

DELETE

operation

performed

on

a

table

requires

additional

updating

of

each

index

on

that

table.

This

is

also

true

for

each

UPDATE

operation

that

changes

the

value

of

an

index

key.

v

The

LOAD

utility

rebuilds

or

appends

to

any

existing

indexes.

The

indexfreespace

MODIFIED

BY

parameter

can

be

specified

on

the

LOAD

command

to

override

the

index

PCTFREE

used

when

the

index

was

created.

Chapter

8.

Operational

performance

245

|
|
|

v

Each

index

potentially

adds

an

alternative

access

path

for

a

query

for

the

optimizer

to

consider,

which

increases

the

compilation

time.

Choose

indexes

carefully

to

address

the

needs

of

the

application

program.

Related

concepts:

v

“Space

requirements

for

indexes”

in

the

Administration

Guide:

Planning

v

“Index

planning

tips”

on

page

246

v

“Index

performance

tips”

on

page

248

v

“The

Design

Advisor”

on

page

201

v

“Table

reorganization”

on

page

238

v

“Index

reorganization”

on

page

252

v

“Table

and

index

management

for

standard

tables”

on

page

18

v

“Table

and

index

management

for

MDC

tables”

on

page

21

v

“Index

cleanup

and

maintenance”

on

page

251

Related

tasks:

v

“Creating

an

index”

in

the

Administration

Guide:

Implementation

v

“Collecting

catalog

statistics”

on

page

98

v

“Collecting

index

statistics”

on

page

100

Index

planning

tips

The

indexes

that

you

create

should

depend

on

the

data

and

the

queries

that

access

it.

Use

the

Design

Advisor

from

the

Control

Center

or

the

db2advis

tool

to

find

the

best

indexes

for

a

specific

query

or

for

the

set

of

queries

that

defines

a

workload.

This

tool

recommends

indexes

with

such

performance

enhancing

features

as

INCLUDE

columns,

inherited

unique

indexes,

and

ALLOW

REVERSE

SCANS

indexes.

The

following

guidelines

can

help

you

determine

how

to

create

useful

indexes

for

various

purposes:

v

To

avoid

some

sorts,

define

primary

keys

and

unique

keys,

wherever

possible,

by

using

the

CREATE

UNIQUE

INDEX

statement.

v

To

improve

data-retrieval,

add

INCLUDE

columns

to

unique

indexes.

Good

candidates

are

columns

that:

–

Are

accessed

frequently

and

therefore

would

benefit

from

index-only

access

–

Are

not

required

to

limit

the

range

of

index

scans

–

Do

not

affect

the

ordering

or

uniqueness

of

the

index

key.
v

To

access

small

tables

efficiently,

use

indexes

to

optimize

frequent

queries

to

tables

with

more

than

a

few

data

pages,

as

recorded

in

the

NPAGES

column

in

the

SYSCAT.TABLES

catalog

view.

You

should:

–

Create

an

index

on

any

column

you

will

use

when

joining

tables.

–

Create

an

index

on

any

column

from

which

you

will

be

searching

for

particular

values

on

a

regular

basis.
v

To

search

efficiently,

decide

between

ascending

and

descending

ordering

of

keys

depending

on

the

order

that

will

be

used

most

often.

Although

the

values

can

be

searched

in

reverse

direction

if

you

specify

the

ALLOW

REVERSE

SCANS

parameter

in

the

CREATE

INDEX

statement,

scans

in

the

specified

index

order

perform

slightly

better

than

reverse

scans.

246

Administration

Guide:

Performance

v

To

save

index

maintenance

costs

and

space:

–

Avoid

creating

indexes

that

are

partial

keys

of

other

index

keys

on

the

columns.

For

example,

if

there

is

an

index

on

columns

a,

b,

and

c,

then

a

second

index

on

columns

a

and

b

is

not

generally

useful.

–

Do

not

create

indexes

arbitrarily

on

all

columns.

Unnecessary

indexes

not

only

use

space,

but

also

cause

large

prepare

times.

This

is

especially

important

for

complex

queries,

when

an

optimization

class

with

dynamic

programming

join

enumeration

is

used.

Use

the

following

general

rule

for

the

typical

number

of

indexes

that

you

define

for

a

table.

This

number

is

based

on

the

primary

use

of

your

database:

-

For

online

transaction

processing

(OLTP)

environments,

create

one

or

two

indexes

-

For

read-only

query

environments,

you

might

create

more

than

five

indexes

-

For

mixed

query

and

OLTP

environments,

you

might

create

between

two

and

five

indexes.
v

To

improve

performance

of

delete

and

update

operations

on

the

parent

table,

create

indexes

on

foreign

keys.

v

To

improve

performance

of

DELETE

and

UPDATE

operations

involving

IMMEDIATE

and

INCREMENTAL

MQTs,

create

unique

indexes

on

the

implied

unique

key

of

the

MQT,

which

is

the

columns

in

the

GROUP

BY

clause

of

the

MQT

definition.

v

For

fast

sort

operations,

create

indexes

on

columns

that

are

frequently

used

to

sort

the

data.

v

To

improve

join

performance

with

a

multiple-column

index,

if

you

have

more

than

one

choice

for

the

first

key

column,

use

the

column

most

often

specified

with

the

“=”

(equijoin)

predicate

or

the

column

with

the

greatest

number

of

distinct

values

as

the

first

key.

v

To

help

keep

newly

inserted

rows

clustered

according

to

an

index

and

avoid

page

splits,

define

a

clustering

index.

A

clustering

index

should

significantly

reduce

the

need

for

reorganizing

the

table.

Use

the

PCTFREE

keyword

when

you

define

the

table

to

specify

how

much

free

space

should

be

left

on

the

page

to

allow

inserts

to

be

placed

appropriately

on

pages.

You

can

also

specify

the

pagefreespace

MODIFIED

BY

clause

of

the

LOAD

command.

v

To

enable

online

index

defragmentation,

use

the

MINPCTUSED

option

when

you

create

indexes.

MINPCTUSED

specifies

the

threshold

for

the

minimum

amount

of

used

space

on

an

index

leaf

page

as

well

as

enabling

online

index

defragmentation.

This

might

reduce

the

need

for

reorganization

at

the

cost

of

a

performance

penalty

during

key

deletions

if

these

deletions

physically

remove

keys

from

the

index

page.

Consider

creating

an

index

in

the

following

circumstances:

v

Create

an

index

on

columns

that

are

used

in

WHERE

clauses

of

the

queries

and

transactions

that

are

most

frequently

processed.

The

WHERE

clause:

WHERE

WORKDEPT=’A01’

OR

WORKDEPT=’E21’

will

generally

benefit

from

an

index

on

WORKDEPT,

unless

the

WORKDEPT

column

contains

many

duplicate

values.

v

Create

an

index

on

a

column

or

columns

to

order

the

rows

in

the

sequence

required

by

the

query.

Ordering

is

required

not

only

in

the

ORDER

BY

clause,

but

also

by

other

features,

such

as

the

DISTINCT

and

GROUP

BY

clauses.

The

following

example

uses

the

DISTINCT

clause:

SELECT

DISTINCT

WORKDEPT

FROM

EMPLOYEE

Chapter

8.

Operational

performance

247

The

database

manager

can

use

an

index

defined

for

ascending

or

descending

order

on

WORKDEPT

to

eliminate

duplicate

values.

This

same

index

could

also

be

used

to

group

values

in

the

following

example

with

a

GROUP

BY

clause:

SELECT

WORKDEPT,

AVERAGE(SALARY)

FROM

EMPLOYEE

GROUP

BY

WORKDEPT

v

Create

an

index

with

a

compound

key

that

names

each

column

referenced

in

a

statement.

When

an

index

is

specified

in

this

way,

data

can

be

retrieved

from

the

index

only,

which

is

more

efficient

than

accessing

the

table.

For

example,

consider

the

following

SQL

statement:

SELECT

LASTNAME

FROM

EMPLOYEE

WHERE

WORKDEPT

IN

(’A00’,’D11’,’D21’)

If

an

index

is

defined

for

the

WORKDEPT

and

LASTNAME

columns

of

the

EMPLOYEE

table,

the

statement

might

be

processed

more

efficiently

by

scanning

the

index

than

by

scanning

the

entire

table.

Note

that

since

the

predicate

is

on

WORKDEPT,

this

column

should

be

the

first

column

of

the

index.

v

Create

an

index

with

INCLUDE

columns

to

improve

the

use

of

indexes

on

tables.

Using

the

previous

example,

you

could

define

a

unique

index

as:

CREATE

UNIQUE

INDEX

x

ON

employee

(workdept)

INCLUDE

(lastname)

Specifying

lastname

as

an

INCLUDE

column

rather

than

as

part

of

the

index

key

means

that

lastname

is

stored

only

on

the

leaf

pages

of

the

index.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

performance

tips”

on

page

248

v

“The

Design

Advisor”

on

page

201

v

“Index

reorganization”

on

page

252

v

“Online

index

defragmentation”

on

page

254

v

“Multidimensional

clustering

(MDC)

table

creation,

placement,

and

use”

in

the

Administration

Guide:

Planning

Index

performance

tips

Consider

the

following

suggestions

for

using

and

managing

indexes:

v

Specify

parallelism

at

index

creation

and

reorganization

When

you

create

or

reorganize

indexes

on

large

tables

hosted

by

an

SMP

machine,

consider

setting

intra_parallel

to

YES

(1)

or

SYSTEM

(-1)

to

take

advantage

of

parallel

performance

improvements.

Multiple

processors

can

be

used

to

scan

and

sort

data.

v

Specify

a

large

utility

heap

Write

access

by

other

users

or

applications

to

the

underlying

table

is

supported

for

both

CREATE

INDEX

and

REORG

INDEXES.

When

you

expect

a

lot

of

update

activity

on

the

underlying

table

for

the

index

being

created

or

reorganized,

consider

configuring

a

large

utility

heap.

A

large

utility

heap

will

speed

up

the

index

creation

or

index

reorganization

during

the

catch

up

phase.

All

writing

activity

on

the

index

or

indexes

being

created

or

reorganized

is

logged

in

the

DB2®

logs

and

in

the

internal

memory

buffer

space.

The

internal

memory

buffer

space

is

a

designated

memory

area

allocated

on

demand

from

the

utility

heap

to

store

the

changes

to

the

index

being

created

or

reorganized.

It

is

the

use

of

this

memory

that

allows

the

catch

up

phase

to

work

quickly.

The

248

Administration

Guide:

Performance

allocated

memory

is

freed

once

the

create

or

reorganization

operations

complete.

Ensuring

that

there

is

enough

utility

heap

to

accommodate

all

or

most

of

the

changes

to

the

indexes

that

are

being

created

or

reorganized

can

have

a

very

positive

performance

impact

on

the

catch

up

phase.

v

Specify

separate

table

spaces

for

indexes

Indexes

can

be

stored

in

a

different

table

space

from

the

table

data.

This

can

allow

for

more

efficient

use

of

disk

storage

by

reducing

the

movement

of

read/write

heads

during

index

access.

You

can

also

create

index

table

spaces

on

faster

physical

devices.

In

addition,

you

can

assign

the

index

table

space

to

a

different

buffer

pool,

which

might

keep

the

index

pages

in

the

buffer

longer

because

they

do

not

compete

with

table

data

pages.

When

you

do

not

place

indexes

in

separate

table

spaces,

both

data

and

index

pages

use

the

same

extent

size

and

prefetch

quantity.

If

you

use

a

different

table

space

for

indexes,

you

can

select

different

values

for

all

the

characteristics

of

a

table

space.

Because

indexes

are

usually

smaller

than

tables

and

are

spread

over

fewer

containers,

indexes

often

have

smaller

extent

sizes,

such

as

8

and

16

pages.

The

SQL

optimizer

considers

the

speed

of

the

device

for

a

table

space

when

it

chooses

an

access

plan.

v

Ensure

the

degree

of

clustering

If

your

SQL

statement

requires

ordering,

such

as

ORDER

BY,

GROUP

BY,

and

DISTINCT,

the

optimizer

might

not

choose

the

index

even

though

it

satisfies

the

ordering

in

the

following

cases:

–

Index

clustering

is

poor.

For

information,

examine

the

CLUSTERRATIO

and

CLUSTERFACTOR

columns

of

SYSCAT.INDEXES.

–

The

table

is

so

small

that

it

is

cheaper

to

scan

the

table

and

sort

the

answer

set

in

memory.

–

There

are

competing

indexes

for

accessing

the

table.
After

you

create

a

clustering

index,

perform

a

REORG

TABLE

in

classic

mode,

which

creates

a

perfectly

organized

index.

To

recluster

the

table,

you

might

perform

a

sort

and

LOAD

instead.

In

general,

a

table

can

only

be

clustered

on

one

index.

Build

additional

indexes

after

you

build

the

clustering

index.

A

clustering

index

attempts

to

maintain

a

particular

order

of

data,

improving

the

CLUSTERRATIO

or

CLUSTERFACTOR

statistics

collected

by

the

RUNSTATS

utility.

To

help

maintain

the

clustering

ratio,

specify

an

appropriate

PCTFREE

when

you

alter

a

table

before

you

load

or

reorganize

that

table.

The

free

space

on

each

page

specified

by

PCTFREE

provides

space

for

inserts,

so

that

these

inserts

can

be

clustered

appropriately.

If

you

do

not

specify

PCTFREE

for

the

table,

reorganization

eliminates

all

extra

space.

Note:

Clustering

is

not

currently

maintained

during

updates

unless

you

are

using

range-clustered

tables.

That

is,

if

you

update

a

record

so

that

its

key

value

changes

in

the

clustering

index,

the

record

is

not

necessarily

moved

to

a

new

page

to

maintain

the

clustering

order.

To

maintain

clustering,

use

DELETE

and

then

INSERT

instead

of

UPDATE.

v

Keep

table

and

index

statistics

up-to-date

After

you

create

a

new

index,

run

the

RUNSTATS

utility

to

collect

index

statistics.

These

statistics

allow

the

optimizer

to

determine

whether

using

the

index

can

improve

access

performance.

v

Enable

online

index

defragmentation

Online

index

defragmentation

is

enabled

if

the

MINPCTUSED

clause

is

set

to

greater

than

zero

for

the

index.

Online

index

defragmentation

allows

indexes

to

Chapter

8.

Operational

performance

249

be

compacted

by

merging

leaf

pages

when

the

free

space

on

a

page

falls

at

or

below

the

specified

level

while

the

index

remains

available.

v

Reorganize

indexes

as

necessary

To

get

the

best

performance

from

your

indexes,

consider

reorganizing

your

indexes

periodically

because

updates

to

tables

can

cause

index

page

prefetch

to

become

less

effective.

To

reorganize

the

index,

either

drop

it

and

re-create

it

or

use

the

REORG

utility.

To

reduce

the

need

for

frequent

reorganization,

when

you

create

an

index

specify

an

appropriate

PCTFREE

to

leave

a

percentage

of

free

space

on

each

index

leaf

page

as

it

is

created.

During

future

activity,

records

can

be

inserted

into

the

index

with

less

likelihood

of

causing

index

page

splits.

Page

splits

cause

index

pages

not

to

be

contiguous

or

sequential,

which

in

turn

results

in

decreased

efficiency

of

index

page

prefetching.

Note:

The

PCTFREE

specified

when

you

create

the

index

is

retained

when

the

index

is

reorganized.

Dropping

and

re-creating

or

reorganizing

the

index

also

creates

a

new

set

of

pages

that

are

roughly

contiguous

and

sequential

and

improves

index

page

prefetch.

Although

more

costly

in

time

and

resources,

the

REORG

TABLE

utility

also

ensures

clustering

of

the

data

pages.

Clustering

has

greater

benefit

for

index

scans

that

access

a

significant

number

of

data

pages.

In

a

symmetric

multi-processor

(SMP)

environment,

if

the

intra_parallel

database

manager

configuration

parameter

is

YES

or

ANY,

the

“classic”

REORG

TABLE

mode,

which

uses

a

shadow

table

for

fast

table

reorganization,

can

use

multiple

processors

to

rebuild

the

indexes.

v

Analyze

EXPLAIN

information

about

index

usage

Periodically,

run

EXPLAIN

on

your

most

frequently

used

queries

and

verify

that

each

of

your

indexes

is

used

at

least

once.

If

an

index

is

not

used

in

any

query,

consider

dropping

that

index.

EXPLAIN

information

also

lets

you

see

if

table

scans

on

large

tables

are

processed

as

the

inner

table

of

nested

loop

joins.

If

they

are,

an

index

on

the

join-predicate

column

is

either

missing

or

considered

ineffective

for

applying

the

join

predicate.

v

Use

volatile

tables

for

tables

that

vary

widely

in

size

A

volatile

table

is

a

table

that

might

vary

in

size

at

run

time

from

empty

to

very

large.

For

this

kind

of

table,

in

which

the

cardinality

varies

greatly,

the

optimizer

might

generate

an

access

plan

that

favors

a

table

scan

instead

of

an

index

scan.

Declaring

a

table

“volatile”

using

the

ALTER

TABLE...VOLATILE

statement

allows

the

optimizer

to

use

an

index

scan

on

the

volatile

table.

The

optimizer

will

use

an

index

scan

instead

of

a

table

scan

regardless

of

the

statistics

in

the

following

circumstances:

–

All

columns

referenced

are

in

the

index

–

The

index

can

apply

a

predicate

in

the

index

scan.
If

the

table

is

a

typed

table,

using

the

ALTER

TABLE...VOLATILE

statement

is

supported

only

on

the

root

table

of

the

typed

table

hierarchy.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

planning

tips”

on

page

246

v

“Index

structure”

on

page

23

v

“Index

access

and

cluster

ratios”

on

page

153

250

Administration

Guide:

Performance

v

“Table

reorganization”

on

page

238

v

“Index

reorganization”

on

page

252

v

“Table

and

index

management

for

standard

tables”

on

page

18

v

“Online

index

defragmentation”

on

page

254

v

“Table

and

index

management

for

MDC

tables”

on

page

21

v

“Index

cleanup

and

maintenance”

on

page

251

Related

reference:

v

“intra_parallel

-

Enable

intra-partition

parallelism”

on

page

449

Index

cleanup

and

maintenance

After

you

create

indexes,

performance

degrades

unless

you

keep

the

index

compact

and

organized.

Consider

the

following

suggestions

to

keep

indexes

as

small

and

efficient

as

possible:

v

Enable

online

index

defragmentation

Create

indexes

with

the

MINPCTUSED

clause.

Drop

and

recreate

existing

indexes,

if

necessary.

v

Perform

frequent

COMMITs

or

get

X

locks

on

tables,

either

explicitly

or

by

lock

escalation,

if

frequent

COMMITS

are

not

possible.

Index

keys

marked

deleted

can

be

physically

removed

from

the

table

after

the

COMMIT.

X

locks

on

tables

allow

the

deleted

key

to

be

physically

removed

when

it

is

marked

deleted,

as

explained

below.

v

Use

REORGCHK

to

help

determine

when

to

reorganize

indexes

or

tables,

or

both,

and

when

to

use

the

REORG

INDEXES

with

the

CLEANUP

ONLY

option.

To

allow

read

and

write

access

to

the

index

during

reorganization,

run

REORG

INDEXES

with

the

ALLOW

WRITE

ACCESS

option.

Note:

In

DB2®

Version

8.1

and

later,

all

new

indexes

are

created

as

type-2

indexes.

The

one

exception

is

when

you

add

an

index

on

a

table

that

already

has

type-1

indexes.

In

this

case

only,

the

new

index

will

also

be

a

type-1

index.

To

find

out

what

type

of

index

exists

for

a

table,

execute

the

INSPECT

command.

To

convert

type-1

indexes

to

type-2

indexes,

execute

the

REORG

INDEXES

command.

The

primary

advantages

of

type-2

indexes

are

as

follows:

v

An

index

can

be

created

on

columns

whose

length

is

greater

than

255

bytes.

v

The

use

of

next-key

locking

is

reduced

to

a

minimum,

which

improves

concurrency.

Most

next-key

locking

is

eliminated

because

a

key

is

marked

deleted

instead

of

being

physically

removed

from

the

index

page.

For

information

about

key

locking,

refer

to

topics

that

discuss

the

performance

implications

of

locks.

Index

keys

that

are

marked

deleted

are

cleaned

up

in

the

following

circumstances:

v

During

subsequent

insert,

update,

or

delete

activity

During

key

insertion,

keys

that

are

marked

deleted

and

are

known

to

be

committed

are

cleaned

up

if

such

a

cleanup

might

avoid

the

need

to

perform

a

page

split

and

prevent

the

index

from

increasing

in

size.

Chapter

8.

Operational

performance

251

During

key

deletion,

when

all

keys

on

a

page

have

been

marked

deleted

an

attempt

is

made

to

find

another

index

page

where

all

the

keys

are

marked

deleted

and

all

those

deletions

have

committed.

If

such

a

page

is

found,

it

is

deleted

from

the

index

tree.

If

there

is

an

X

lock

on

the

table

when

a

key

is

deleted,

the

key

is

physically

deleted

instead

of

just

being

marked

deleted.

During

this

physical

deletion,

any

deleted

keys

on

the

same

page

are

also

removed

if

they

are

marked

deleted

and

known

to

be

committed.

v

When

you

execute

the

REORG

INDEXES

command

with

CLEANUP

options

The

CLEANUP

ONLY

PAGES

option

searches

for

and

frees

index

pages

on

which

all

keys

are

marked

deleted

and

known

to

be

committed.

The

CLEANUP

ONLY

ALL

option

frees

not

only

index

pages

on

which

all

keys

are

marked

deleted

and

known

to

be

committed,

but

it

also

removes

RIDs

marked

deleted

and

known

to

be

committed

on

pages

that

contain

some

undeleted

RIDs.

This

option

also

tries

to

merge

adjacent

leaf

pages

if

doing

so

results

in

a

merged

leaf

page

that

has

at

least

PCTFREE

free

space

on

the

merged

leaf

page.

The

PCTFREE

value

is

the

percent

of

free

space

defined

for

the

index

when

it

is

created.

The

default

PCTFREE

is

ten

percent.

If

two

pages

can

be

merged,

one

of

the

pages

will

be

freed.

v

Any

rebuild

of

an

index

Utilities

that

rebuild

indexes

include

the

following:

–

REORG

INDEXES

when

not

using

one

of

the

CLEANUP

options

–

REORG

TABLE

when

not

using

the

INPLACE

option

–

IMPORT

with

the

REPLACE

option

–

LOAD

with

the

INDEXING

MODE

REBUILD

option

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

planning

tips”

on

page

246

v

“Index

structure”

on

page

23

v

“Table

reorganization”

on

page

238

v

“Index

reorganization”

on

page

252

Index

reorganization

As

tables

are

updated

with

deletes

and

inserts,

index

performance

degrades

in

the

following

ways:

v

Fragmentation

of

leaf

pages

When

leaf

pages

are

fragmented,

I/O

costs

increase

because

more

leaf

pages

must

be

read

to

fetch

table

pages.

v

The

physical

index

page

order

no

longer

matches

the

sequence

of

keys

on

those

pages,

which

is

referred

to

as

a

badly

clustered

index.

When

leaf

pages

are

badly

clustered,

sequential

prefetching

is

inefficient

and

results

in

more

I/O

waits.

v

The

index

develops

more

than

its

maximally

efficient

number

of

levels.

In

this

case,

the

index

should

be

reorganized.

If

you

set

the

MINPCTUSED

parameter

when

you

create

an

index,

the

database

server

automatically

merges

index

leaf

pages

if

a

key

is

deleted

and

the

free

space

252

Administration

Guide:

Performance

is

less

than

the

specified

percent.

This

process

is

called

online

index

defragmentation.

However,

to

restore

index

clustering,

free

space,

and

reduce

leaf

levels,

you

can

use

one

of

the

following

methods:

v

Drop

and

recreate

the

index.

v

Use

the

REORG

INDEXES

command

to

reorganize

indexes

online.

You

might

choose

this

method

in

a

production

environment

because

it

allows

users

to

read

from

and

write

to

the

table

while

its

indexes

are

being

rebuilt.

v

Use

the

REORG

TABLE

command

with

options

that

allow

you

to

reorganize

both

the

table

and

its

indexes

off-line.

Online

index

reorganization

When

you

use

the

REORG

INDEXES

command

with

the

ALLOW

WRITE

ACCESS

option,

all

indexes

on

the

specified

table

are

rebuilt

while

read

and

write

access

to

the

table

is

allowed.

Any

changes

made

to

the

underlying

table

that

would

affect

indexes

while

the

reorganization

is

in

progress

are

logged

in

the

DB2®

logs.

In

addition,

the

same

changes

are

placed

in

the

internal

memory

buffer

space,

if

there

is

any

such

memory

space

available

for

use.

The

reorganization

will

process

the

logged

changes

to

catch

up

with

current

writing

activity

while

rebuilding

the

indexes.

The

internal

memory

buffer

space

is

a

designated

memory

area

allocated

on

demand

from

the

utility

heap

to

store

the

changes

to

the

index

being

created

or

reorganized.

The

use

of

the

memory

buffer

space

allows

the

index

reorganization

to

process

the

changes

by

directly

reading

from

memory

first,

and

then

reading

through

the

logs

if

necessary,

but

at

a

much

later

time.

The

allocated

memory

is

freed

once

the

reorganization

operation

completes.

Following

the

completion

of

the

reorganization,

the

rebuilt

index

might

not

be

perfectly

clustered.

If

PCTFREE

is

specified

for

an

index,

that

percent

of

space

is

preserved

on

each

page

during

reorganization.

Note:

The

CLEANUP

ONLY

option

of

the

REORG

INDEXES

command

does

not

fully

reorganize

indexes.

The

CLEANUP

ONLY

ALL

option

removes

keys

that

are

marked

deleted

and

are

known

to

be

committed.

It

also

frees

pages

in

which

all

keys

are

marked

deleted

and

are

known

to

be

committed.

When

pages

are

freed,

adjacent

leaf

pages

are

merged

if

doing

so

can

leave

at

least

PCTFREE

free

space

on

the

merged

page.

PCTFREE

is

the

percentage

of

free

space

defined

for

the

index

when

it

is

created.

The

CLEANUP

ONLY

PAGES

option

deletes

only

pages

in

which

all

keys

are

marked

deleted

and

are

known

to

be

committed.

REORG

INDEXES

has

the

following

requirements:

v

SYSADM,

SYSMAINT,

SYSCTRL

or

DBADM

authority,

or

CONTROL

privilege

on

the

indexes

and

table

v

An

amount

of

free

space

in

the

table

space

where

the

indexes

are

stored

equal

to

the

current

size

of

the

index

Consider

placing

indexes

subject

to

reorganization

in

a

large

table

space

when

you

issue

the

CREATE

TABLE

statement.

v

Additional

log

space

REORG

INDEXES

logs

its

activity.

As

a

result,

the

reorganization

might

fail,

especially

if

the

system

is

busy

and

other

concurrent

activity

is

logged.

Note:

If

a

REORG

INDEXES

ALL

with

the

ALLOW

NO

ACCESS

option

fails,

the

indexes

are

marked

bad

and

the

operation

is

not

undone.

However,

if

a

REORG

with

the

ALLOW

READ

ACCESS

or

a

REORG

with

the

ALLOW

WRITE

ACCESS

option

fails,

the

original

index

object

is

restored.

Chapter

8.

Operational

performance

253

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

planning

tips”

on

page

246

v

“Index

performance

tips”

on

page

248

v

“Online

index

defragmentation”

on

page

254

v

“Index

cleanup

and

maintenance”

on

page

251

Related

tasks:

v

“Choosing

a

table

reorganization

method”

on

page

242

Online

index

defragmentation

Online

index

defragmentation

is

enabled

by

the

user-definable

threshold

for

the

minimum

amount

of

used

space

on

an

index

leaf

page.

When

an

index

key

is

deleted

from

a

leaf

page

and

the

threshold

is

exceeded,

the

neighboring

index

leaf

pages

are

checked

to

determine

if

two

leaf

pages

can

be

merged.

If

there

is

sufficient

space

on

a

page

for

a

merge

of

two

neighboring

pages

to

take

place,

the

merge

occurs

immediately

in

the

background.

Online

defragmentation

of

the

index

is

only

possible

with

indexes

created

in

Version

6

and

later.

If

existing

indexes

require

the

ability

to

be

merged

online,

they

must

be

dropped

and

then

re-created

with

the

MINPCTUSED

clause.

Set

the

MINPCTUSED

value

to

less

than

one

hundred

(100).

The

recommended

value

for

MINPCTUSED

is

less

than

50

because

the

goal

is

to

merge

two

neighboring

index

leaf

pages.

A

value

of

zero

for

MINPCTUSED,

which

is

also

the

default,

disables

online

defragmentation.

Pages

in

the

index

are

freed

when

the

last

index

key

on

the

page

is

removed.

The

exception

to

this

rule

occurs

when

you

specify

MINPCTUSED

clause

in

the

CREATE

INDEX

statement.

The

MINPCTUSED

clause

specifies

a

percent

of

space

on

an

index

leaf

page.

When

an

index

key

is

deleted,

if

the

percent

of

filled

space

on

the

page

is

at

or

below

the

specified

value,

then

the

database

manager

tries

to

merge

the

remaining

keys

with

keys

on

an

adjacent

page.

If

there

is

sufficient

space

on

an

adjacent

page,

the

merge

is

performed

and

an

index

leaf

page

is

deleted.

Index

non-leaf

pages

are

not

merged

during

an

online

index

defragmentation.

However,

empty

non-leaf

pages

are

deleted

and

made

available

for

re-use

by

other

indexes

on

the

same

table.

To

free

these

non-leaf

pages

for

other

objects

in

a

DMS

storage

model

or

to

free

disk

space

in

an

SMS

storage

model,

perform

a

full

reorganization

of

the

table

or

indexes.

Full

reorganization

of

the

table

and

indexes

can

make

the

index

as

small

as

possible.

Index

non-leaf

pages

are

not

merged

during

an

online

index

defragmentation,

but

are

deleted

and

freed

for

re-use

if

they

become

empty.

The

number

of

levels

in

the

index

and

the

number

of

leaf

and

non-leaf

pages

might

be

reduced.

For

type-2

indexes,

keys

are

removed

from

a

page

during

key

deletion

only

when

there

is

an

X

lock

on

the

table.

During

such

an

operation,

online

index

defragmentation

will

be

effective.

However,

if

there

is

not

an

X

lock

on

the

table

during

key

deletion,

keys

are

marked

deleted

but

are

not

physically

removed

from

the

index

page.

As

a

result,

no

defragmentation

is

attempted.

To

defragment

type-2

indexes

in

which

keys

are

marked

deleted

but

remain

in

the

physical

index

page,

execute

the

REORG

INDEXES

command

with

the

CLEANUP

ONLY

ALL

option.

The

CLEANUP

ONLY

ALL

option

defragments

the

index,

254

Administration

Guide:

Performance

regardless

of

the

value

of

MINPCTUSED.

If

you

execute

REORG

INDEXES

with

the

CLEANUP

ONLY

ALL,

two

neighbouring

leaf

pages

are

merged

if

such

a

merge

can

leave

at

least

PCTFREE

free

space

on

the

merged

page.

PCTFREE

is

specified

at

index

creation

time

and

defaults

to

ten

percent.

Related

concepts:

v

“Advantages

and

disadvantages

of

indexes”

on

page

244

v

“Index

performance

tips”

on

page

248

v

“Index

structure”

on

page

23

v

“Index

reorganization”

on

page

252

DMS

device

considerations

If

you

use

Database

Managed

Storage

(DMS)

device

containers

for

table

spaces,

consider

the

following

factors

for

effective

administration:

v

File

system

caching

File

system

caching

is

performed

as

follows:

–

For

DMS

file

containers

(and

all

SMS

containers),

the

operating

system

might

cache

pages

in

the

file

system

cache

–

For

DMS

device

container

table

spaces,

the

operating

system

does

not

cache

pages

in

the

file

system

cache.

Note:

On

Windows®

NT,

the

registry

variable

DB2NTNOCACHE

specifies

whether

or

not

DB2®

will

open

database

files

with

a

NOCACHE

option.

If

DB2NTNOCACHE=ON,

file

system

caching

is

eliminated.

If

DB2NTNOCACHE=OFF,

the

operating

system

caches

DB2

files.

This

applies

to

all

data

except

for

files

that

contain

LONG

FIELDS

or

LOBS.

Eliminating

system

caching

allows

more

memory

to

be

available

to

the

database

so

that

the

buffer

pool

or

sortheap

can

be

increased.
v

Buffering

of

data

Table

data

read

from

disk

is

usually

available

in

the

database

buffer

pool.

In

some

cases,

a

data

page

might

be

freed

from

the

buffer

pool

before

the

application

has

actually

used

the

page,

particularly

if

the

buffer

pool

space

is

required

for

other

data

pages.

For

table

spaces

that

use

system

managed

storage

(SMS)

or

database

managed

storage

(DMS)

file

containers,

file

system

caching

above

can

eliminate

I/O

that

would

otherwise

have

been

required.

Table

spaces

using

database

managed

storage

(DMS)

device

containers

do

not

use

the

file

system

or

its

cache.

As

a

result,

you

might

increase

the

size

of

the

database

buffer

pool

and

reduce

the

size

of

the

file

system

cache

to

offset

the

fact

DMS

table

spaces

that

use

device

containers

do

not

use

double

buffering.

If

system-level

monitoring

tools

show

that

I/O

is

higher

for

a

DMS

table

space

using

device

containers

compared

to

the

equivalent

SMS

table

space,

this

difference

might

be

because

of

double

buffering.

v

Using

LOB

or

LONG

data

When

an

application

retrieves

either

LOB

or

LONG

data,

the

database

manager

does

not

cache

the

data

in

its

buffers,

Each

time

an

application

needs

one

of

these

pages,

the

database

manager

must

retrieve

it

from

disk.

However,

if

LOB

or

LONG

data

is

stored

in

SMS

or

DMS

file

containers,

file

system

caching

might

provide

buffering

and,

as

a

result,

better

performance.

Because

system

catalogs

contain

some

LOB

columns,

you

should

keep

them

in

SMS

table

spaces

or

in

DMS-file

table

spaces.

Chapter

8.

Operational

performance

255

Related

concepts:

v

“Database

directories

and

files”

on

page

12

v

“SMS

table

spaces”

on

page

14

v

“DMS

table

spaces”

on

page

15

Agent

management

This

section

describes

how

the

database

manager

uses

agents

and

how

to

manage

agents

for

good

performance.

Database

agents

For

each

database

that

an

application

accesses,

various

processes

or

threads

start

to

perform

the

various

application

tasks.

These

tasks

include

logging,

communication,

and

prefetching.

Database

agents

are

engine

dispatchable

unit

(EDU)

processes

or

threads.

Database

agents

do

the

work

in

the

database

manager

that

applications

request.

In

UNIX®

environments,

these

agents

run

as

processes.

In

Intel-based

operating

systems

such

Windows®,

the

agents

run

as

threads.

The

maximum

number

of

application

connections

is

controlled

by

the

max_connections

database

manager

configuration

parameter.

The

work

of

each

application

connection

is

coordinated

by

a

single

worker

agent.

A

worker

agent

carries

out

application

requests

but

has

no

permanent

attachment

to

any

particular

application.

The

coordinator

worker

agent

has

all

the

information

and

control

blocks

required

to

complete

actions

within

the

database

manager

that

were

requested

by

the

application.

There

are

four

types

of

worker

agents:

v

Idle

agents

v

Inactive

agents

v

Active

coordinator

agents

v

Subagents

Idle

agents

This

is

the

simplest

form

of

worker

agent.

It

does

not

have

an

outbound

connection

and

it

does

not

have

a

local

database

connection

or

an

instance

attachment.

Inactive

agents

An

inactive

agent

is

a

worker

agent

that

is

not

in

an

active

transaction,

does

not

have

an

outbound

connection,

and

does

not

have

a

local

database

connection

or

an

instance

attachment.

Inactive

agents

are

free

to

begin

doing

work

for

an

application

connection.

Active

coordinator

agents

Each

process

or

thread

of

a

client

application

has

a

single

active

agent

that

coordinates

its

work

on

a

database.

After

the

coordinator

agent

is

created,

it

performs

all

database

requests

on

behalf

of

its

application,

and

communicates

to

other

agents

using

inter-process

communication

(IPC)

or

remote

communication

protocols.

Each

agent

operates

with

its

own

private

memory

and

shares

database

manager

and

database

global

resources

such

256

Administration

Guide:

Performance

as

the

buffer

pool

with

other

agents.

When

a

transaction

completes,

the

active

coordinator

agent

may

become

an

inactive

agent.

When

a

client

disconnects

from

a

database

or

detaches

from

an

instance

its

coordinating

agent

will

be:

v

An

active

agent.

If

other

connections

are

waiting,

the

worker

agent

becomes

an

active

coordinator

agent.

v

Freed

and

marked

as

idle,

if

no

connections

are

waiting

and

the

maximum

number

of

pool

agents

has

not

been

reached.

v

Terminated

and

its

storage

freed,

if

no

connections

are

waiting

and

the

maximum

number

of

pool

agents

has

been

reached.

Subagents

In

partitioned

database

environments

and

environments

with

intra-partition

parallelism

enabled,

the

coordinator

agent

distributes

database

requests

to

subagents,

and

these

agents

perform

the

requests

for

the

application.

After

the

coordinator

agent

is

created,

it

handles

all

database

requests

on

behalf

of

its

application

by

coordinating

the

subagents

that

perform

requests

on

the

database.

Agents

that

are

not

performing

work

for

any

applications

and

that

are

waiting

to

be

assigned

are

considered

to

be

idle

agents

and

reside

in

an

agent

pool.

These

agents

are

available

for

requests

from

coordinator

agents

operating

for

client

programs

or

for

subagents

operating

for

existing

coordinator

agents.

The

number

of

available

agents

depends

on

the

database

manager

configuration

parameters

maxagents

and

num_poolagents.

When

an

agent

finishes

its

work

but

still

has

a

connection

to

a

database,

it

is

placed

in

the

agent

pool.

Regardless

of

whether

the

connection

concentrator

is

enabled

for

the

database,

if

an

agent

is

not

waked

up

to

serve

a

new

request

within

a

certain

period

of

time

and

the

current

number

of

active

and

pooled

agents

is

greater

than

num_poolagents,

the

agent

is

terminated.

Agents

from

the

agent

pool

(num_poolagents)

are

re-used

as

coordinator

agents

for

the

following

kinds

of

applications:

v

Remote

TCP/IP-based

applications

v

Local

applications

on

UNIX-based

operating

systems

v

Both

local

and

remote

applications

on

Windows

operating

systems.

Other

kinds

of

remote

applications

always

create

a

new

agent.

If

no

idle

agents

exist

when

an

agent

is

required,

a

new

agent

is

created

dynamically.

Because

creating

a

new

agent

requires

a

certain

amount

of

overhead

CONNECT

and

ATTACH

performance

is

better

if

an

idle

agent

can

be

activated

for

a

client.

When

a

subagent

is

performing

work

for

of

an

application,

it

is

associated

with

that

application.

After

it

completes

the

assigned

work,

it

can

be

placed

in

the

agent

pool,

but

it

remains

associated

with

the

original

application.

When

the

application

requests

additional

work,

the

database

manager

first

checks

the

idle

pool

for

associated

agents

before

it

creates

a

new

agent.

Related

concepts:

v

“Database

agent

management”

on

page

258

v

“Agents

in

a

partitioned

database”

on

page

261

v

“Connection-concentrator

improvements

for

client

connections”

on

page

259

Chapter

8.

Operational

performance

257

v

“Configuration

parameters

that

affect

the

number

of

agents”

on

page

258

Database

agent

management

Most

applications

establish

a

one-to-one

relationship

between

the

number

of

connected

applications

and

the

number

of

application

requests

that

can

be

processed

by

the

database.

However,

it

may

be

that

your

work

environment

is

such

that

you

require

a

many-to-one

relationship

between

the

number

of

connected

applications

and

the

number

of

application

requests

that

can

be

processed.

The

ability

to

control

these

factors

separately

is

provided

by

two

database

manager

configuration

parameters:

v

The

max_connections

parameter,

which

specifies

the

number

of

connected

applications

v

The

max_coordagents

parameter,

which

specifies

the

number

of

application

requests

that

can

be

processed

The

connection

concentrator

is

enabled

when

the

value

of

max_connections

is

greater

than

the

value

of

max_coordagents.

Because

each

active

coordinator

agents

requires

global

resource

overhead,

the

greater

the

number

of

these

agents

the

greater

the

chance

that

the

upper

limits

of

available

database

global

resources

will

be

reached.

To

prevent

reaching

the

upper

limits

of

available

database

global

resources,

you

might

set

the

value

of

max_connections

higher

than

the

value

of

max_coordagents.

Related

concepts:

v

“Agents

in

a

partitioned

database”

on

page

261

v

“Connection-concentrator

improvements

for

client

connections”

on

page

259

v

“Configuration

parameters

that

affect

the

number

of

agents”

on

page

258

Configuration

parameters

that

affect

the

number

of

agents

The

following

database

manager

configuration

parameters

determine

how

many

database

agents

are

created

and

how

they

are

managed:

v

Maximum

Number

of

Agents

(maxagents):

The

number

of

agents

that

can

be

working

at

any

one

time.

This

value

applies

to

the

total

number

of

agents

that

are

working

on

all

applications,

including

coordinator

agents,

subagents,

inactive

agents,

and

idle

agents.

v

Agent

Pool

Size

(num_poolagents):

The

total

number

of

agents,

including

active

agents

and

agents

in

the

agent

pool,

that

are

kept

available

in

the

system.

The

default

value

for

this

parameter

is

half

the

number

specified

for

maxagents.

v

Initial

Number

of

Agents

in

Pool

(num_initagents):

When

the

database

manager

is

started,

a

pool

of

worker

agents

is

created

based

on

this

value.

This

speeds

up

performance

for

initial

queries.

The

worker

agents

all

begin

as

idle

agents.

v

Maximum

Number

of

Connections

(max_connections):

specifies

the

maximum

number

of

connections

allowed

to

the

database

manager

system

on

each

partition.

v

Maximum

Number

of

Coordinating

Agents

(max_coordagents):

For

partitioned

database

environments

and

environments

with

intra-partition

parallelism

enabled

when

the

connection

coordinator

is

enabled,

this

value

limits

the

number

of

coordinating

agents.

258

Administration

Guide:

Performance

v

Maximum

Number

of

Concurrent

Agents

(maxcagents):

This

value

controls

the

number

of

tokens

permitted

by

the

database

manager.

For

each

database

transaction

(unit

of

work)

that

occurs

when

a

client

is

connected

to

a

database,

a

coordinating

agent

must

obtain

permission

to

process

the

transaction

from

the

database

manager.

This

permission

is

called

a

processing

token.

The

database

manager

permits

only

agents

that

have

a

processing

token

to

execute

a

unit

of

work

against

a

database.

If

a

token

is

not

available,

the

agent

must

wait

until

one

is

available

to

process

the

transaction.

This

parameter

can

be

useful

in

an

environment

in

which

peak

usage

requirements

exceed

system

resources

for

memory,

CPU,

and

disk.

For

example,

in

such

an

environment,

paging

might

cause

performance

degradation

for

peak

load

periods.

You

can

use

this

parameter

to

control

the

load

and

avoid

performance

degradation,

although

it

can

affect

either

concurrency

or

wait

time,

or

both.

Related

concepts:

v

“Database

agents”

on

page

256

v

“Database

agent

management”

on

page

258

v

“Agents

in

a

partitioned

database”

on

page

261

Connection-concentrator

improvements

for

client

connections

For

Internet

applications

with

many

relatively

transient

connections,

or

similar

kinds

of

applications,

the

connection

concentrator

improves

performance

by

allowing

many

more

client

connections

to

be

processed

efficiently.

It

also

reduces

memory

use

for

each

connection

and

decreases

the

number

of

context

switches.

Note:

The

connection

concentrator

is

enabled

when

the

value

of

max_connections

is

greater

than

the

value

of

max_coordagents.

In

an

environment

that

requires

many

simultaneous

user

connections,

you

can

enable

the

connection

concentrator

for

more

efficient

use

of

system

resources.

This

feature

incorporates

advantages

formerly

found

only

in

DB2

Connect

connection

pooling.

Both

connection

pooling

and

the

connection

concentrator

are

described

in

the

DB2

Connect

User’s

Guide.

After

the

first

connection,

the

connection

concentrator

reduces

the

connect

time

to

a

host.

When

a

disconnection

from

a

host

is

requested,

the

inbound

connection

is

dropped,

but

the

outbound

connection

to

the

host

is

kept

in

a

pool.

When

a

new

request

is

made

to

connect

to

the

host,

DB2®

tries

to

reuse

an

existing

outbound

connection

from

the

pool.

Note:

When

applications

use

connection

pooling

or

the

connection

concentrator,

for

best

performance

tune

the

parameters

that

control

the

size

of

the

block

of

data

that

is

cached.

For

more

information,

refer

to

the

DB2

Connect

User’s

Guide.

With

DB2Connect

connection

pooling

and

the

connection

concentrator,

the

active

agent

does

not

close

its

outbound

connection

after

a

client

disconnects,

but

is

placed

in

the

agent

pool

for

the

application,

where

it

becomes

a

logical

subagent,

which

is

controlled

by

a

logical

coordinator

agent.

with

an

active

connection

to

the

remote

host.

When

using

connection

pooling,

DB2

Connect™

is

restricted

to

inbound

TCP/IP

and

to

outbound

TCP/IP

and

SNA

connections.

When

working

with

SNA,

the

security

type

must

be

NONE

for

the

connection

to

be

placed

in

the

pool.

In

connection

pooling

these

idle

agents

are

called

inactive

agents.

The

pool

of

inactive

Chapter

8.

Operational

performance

259

agents

is

a

synonym

for

the

outbound

connection

pool.

The

connection

concentrator

implements

a

similar

method

of

retaining

inactive

agents

for

later

use

in

an

application-specific

pool.

Usage

examples:

1.

Consider

an

ESE

environment

with

a

single

database

partition

in

which,

on

average,

1000

users

are

connected

to

the

database.

At

times,

the

number

of

concurrent

transactions

is

as

high

as

200,

but

never

higher

than

250.

Transactions

are

short.

For

this

workload,

the

administrator

sets

the

following

database

manager

configuration

parameters:

v

max_connections

is

set

to

1000

to

ensure

support

for

the

average

number

of

connections.

v

max_coordagents

is

set

to

250

to

support

the

maximum

number

of

concurrent

transactions.

v

maxagents

is

set

high

enough

to

support

all

of

the

coordinator

agents

and

subagents

(where

applicable)

that

are

required

to

execute

transactions

on

the

node.

If

intra_parallel

is

OFF,

maxagents

is

set

to

250

because

in

such

an

environment,

there

are

no

subagents.

If

intra_parallel

is

ON,

maxagents

should

be

set

large

enough

to

accommodate

the

coordinator

agent

and

the

subagents

required

for

each

transaction

that

accesses

data

on

the

node.

For

example,

if

each

transaction

requires

4

subagents,

maxagents

should

be

set

to

(4+1)

*

250,

which

is

1250.

To

tune

maxagents

further,

take

monitor

snapshots

for

the

database

manager.

The

high-water

mark

of

the

agents

will

indicate

the

appropriate

setting

for

maxagents.

v

num_poolagents

is

set

to

at

least

250,

or

as

high

as

1250,

depending

on

the

value

of

maxagents

to

ensure

that

enough

database

agents

are

available

to

service

incoming

client

requests

without

the

overhead

of

creating

new

ones.

However,

this

number

could

be

lowered

to

reduce

resource

usage

during

low-usage

periods.

Setting

this

value

too

low

causes

agents

to

be

deallocated

instead

of

going

into

the

agent

pool,

which

requires

new

agents

to

be

created

before

the

server

is

able

to

handle

an

average

workload.

v

num_init_agents

is

set

to

be

the

same

as

num_poolagents

because

you

know

the

number

of

agents

that

should

be

active.

This

causes

the

database

to

create

the

appropriate

number

of

agents

when

it

starts

instead

of

creating

them

before

a

given

request

can

be

handled.

The

ability

of

the

underlying

hardware

to

handle

a

given

workload

is

not

discussed

here.

If

the

underlying

hardware

cannot

handle

X-number

of

agents

working

at

the

same

time,

then

you

need

to

reduce

this

number

to

the

maximum

that

the

hardware

can

support.

For

example,

if

the

maximum

is

only

1500

agents,

then

this

limits

the

maximum

number

of

concurrent

transactions

that

can

be

handled.

You

should

monitor

this

kind

of

performance-related

setting

because

it

is

not

always

possible

to

determine

exact

requests

sent

to

other

nodes

at

at

given

point

in

time.

2.

In

a

system

in

which

the

workload

needs

to

be

restricted

to

a

maximum

100

concurrent

transactions

and

the

same

number

of

connected

users

as

in

example

1,

you

can

set

database

manager

configuration

parameters

as

follows:

v

max_coordagents

is

set

to

100

v

num_poolagents

is

set

to

100

With

these

settings,

the

maximum

number

of

clients

that

can

concurrently

execute

transactions

is

100.

When

all

clients

disconnect,

100

agents

are

waiting

260

Administration

Guide:

Performance

to

service

new

client

connections.

However,

you

should

set

maxagents,

based

on

the

type

of

workload,

intra-query

parallelism

settings,

the

number

of

database

partitions,

and

the

underlying

hardware.

3.

Consider

next

an

ESE

installation

with

five

database

partitions,

in

which

each

partition

has

an

average

of

1000

user

connections,

and

the

concurrent

transactions

are

as

high

as

200

but

never

higher

than

250,

set

database

configuration

parameters

as

follows:

v

max_coordagents

is

set

to

250

because,

as

in

example

1,

at

most

250

clients

execute

transactions

concurrently.

v

maxagents

is

set

to

1500

Assuming

data

is

distributed

across

the

five

partitions,

each

transaction

may

execute

at

least

one

subsection

on

each

of

the

nodes

in

the

system.

((1

coordinator

agent

+

5

subagents)

*

250

=

1500.)

v

num_poolagents

is

set

to

1200.

(Assuming

an

average

of

200

concurrent

transaction

with

a

maximum

of

250.

As

a

result,

the

number

of

agents

required

on

average

will

be

(1+5)*200

=

1200.)

v

num_init_agents

is

set

to

be

the

same

as

num_poolagents,

as

in

example

1.
4.

In

a

system

for

which

you

do

not

want

to

enable

the

connection

concentrator

but

want

to

allow

for

250

connected

users

at

one

time,

set

the

database

manager

configuration

parameters

as

follows:

v

max_connections

is

set

to

250.

v

max_coordagents

is

set

to

250.

Related

concepts:

v

“Database

agents”

on

page

256

v

“Database

agent

management”

on

page

258

v

“DB2

architecture

and

process

overview”

on

page

9

v

“Memory

management”

on

page

32

Agents

in

a

partitioned

database

For

partitioned

database

environments

and

environments

with

intra-partition

parallelism

enabled,

each

partition

(that

is,

each

database

server

or

node)

has

its

own

pool

of

agents

from

which

subagents

are

drawn.

Because

of

this

pool,

subagents

do

not

have

to

be

created

and

destroyed

each

time

one

is

needed

or

is

finished

its

work.

The

subagents

can

remain

as

associated

agents

in

the

pool

and

be

used

by

the

database

manager

for

new

requests

from

the

application

they

are

associated

with.

Note:

If

the

connection

concentrator

is

enabled,

subagents

are

not

necessarily

associated

with

an

application.

For

partitioned

database

environments

and

environments

with

intra-partition

parallelism

enabled,

the

impact

to

performance

and

memory

costs

within

the

system

is

strongly

related

to

how

your

agent

pool

is

tuned:

v

The

database

manager

configuration

parameter

for

agent

pool

size

(num_poolagents)

affects

the

total

number

of

subagents

that

can

be

kept

associated

with

applications

on

a

partition,

which

is

also

called

a

node.

If

the

pool

size

is

too

small

and

the

pool

is

full,

a

subagent

disassociates

itself

from

the

application

it

is

working

on

and

terminates.

Because

subagents

must

be

constantly

created

and

re-associated

to

applications,

performance

suffers.

In

addition,

if

the

value

of

num_poolagents

is

too

small,

one

application

may

fill

the

pool

with

associated

subagents.

Then

when

another

application

requires

a

Chapter

8.

Operational

performance

261

new

subagent

and

has

no

subagents

in

its

associated

agent

pool,

it

will

“steal”

subagents

from

the

agent

pools

of

other

applications.

This

situation

is

costly,

and

causes

poor

performance.

v

Weigh

concerns

about

having

too

few

agents

against

the

resource

costs

of

allowing

too

many

agents

to

be

active

at

any

given

time.

For

example,

if

the

value

of

num_poolagents

is

too

large,

associated

subagents

may

sit

unused

in

the

pool

for

long

periods

of

time,

using

database

manager

resources

that

are

not

available

for

other

tasks.

Note:

When

the

connection

concentrator

is

enabled,

the

number

of

agents

specified

by

num_poolagents

is

only

advisory.

More

agents

might

be

in

the

agent

pool

at

any

given

time.

Other

asynchronous

processes

and

threads

In

addition

to

the

database

agents,

other

asynchronous

database-manager

activities

run

as

their

own

process

or

thread

including:

v

Database

I/O

servers

or

I/O

prefetchers

v

Database

asynchronous

page

cleaners

v

Database

loggers

v

Database

deadlock

detectors

v

Event

monitors

v

Communication

and

IPC

listeners

v

Table

space

container

rebalancers.

Related

concepts:

v

“I/O

server

configuration

for

prefetching

and

parallelism”

on

page

233

v

“Illustration

of

prefetching

with

parallel

I/O”

on

page

234

v

“Database

agents”

on

page

256

v

“Database

agent

management”

on

page

258

v

“Configuration

parameters

that

affect

the

number

of

agents”

on

page

258

The

database

system

monitor

information

The

DB2®

database

manager

maintains

data

about

its

operation,

its

performance,

and

the

applications

using

it.

This

data

is

maintained

as

the

database

manager

runs,

and

can

provide

important

performance

and

troubleshooting

information.

For

example,

you

can

find

out:

v

The

number

of

applications

connected

to

a

database,

their

status,

and

which

SQL

statements

each

application

is

executing,

if

any.

v

Information

that

shows

how

well

the

database

manager

and

database

are

configured,

and

helps

you

to

tune

them.

v

When

deadlocks

occurred

for

a

specified

database,

which

applications

were

involved,

and

which

locks

were

in

contention.

v

The

list

of

locks

held

by

an

application

or

a

database.

If

the

application

cannot

proceed

because

it

is

waiting

for

a

lock,

there

is

additional

information

on

the

lock,

including

which

application

is

holding

it.

Because

collecting

some

of

this

data

introduces

overhead

on

the

operation

of

DB2,

monitor

switches

are

available

to

control

which

information

is

collected.

To

set

262

Administration

Guide:

Performance

monitor

switches

explicitly,

use

the

UPDATE

MONITOR

SWITCHES

command

or

the

sqlmon()

API.

(You

must

have

SYSADM,

SYSCTRL,

or

SYSMAINT

authority.)

You

can

access

the

data

that

the

database

manager

maintains

either

by

taking

a

snapshot

or

by

using

an

event

monitor.

Taking

a

snapshot

You

can

take

a

snapshot

in

one

of

the

following

two

ways:

v

Use

the

GET

SNAPSHOT

command

from

the

command

line.

v

Write

your

own

application,

using

the

sqlmonss()

API

call.

Using

an

event

monitor

An

event

monitor

captures

system

monitor

information

after

particular

events

have

occurred,

such

as

the

end

of

a

transaction,

the

end

of

a

statement,

or

the

detection

of

a

deadlock.

This

information

can

be

written

to

files

or

to

a

named

pipe.

To

use

an

event

monitor:

1.

Create

its

definition

with

the

Control

Center

or

the

SQL

statement

CREATE

EVENT

MONITOR.

This

statement

stores

the

definition

in

database

system

catalogs.

2.

Activate

the

event

monitor

through

the

Control

Center,

or

with

the

SQL

statement:

SET

EVENT

MONITOR

evname

STATE

1

If

writing

to

a

named

pipe,

start

the

application

reading

from

the

named

pipe

before

activating

the

event

monitor.

You

can

either

write

your

own

application

to

do

this,

or

use

db2evmon.

Once

the

event

monitor

is

active

and

starts

writing

events

to

the

pipe,

db2evmon

will

read

them

as

they

are

being

generated

and

write

them

to

standard

output.

3.

Read

the

trace.

If

using

a

file

event

monitor,

you

can

view

the

binary

trace

that

it

creates

in

either

of

the

following

ways:

v

Use

the

db2evmon

tool

to

format

the

trace

to

standard

output.

v

Click

on

the

Event

Analyzer

icon

in

the

Control

Center

on

a

Windows®-based

operating

system

to

use

a

graphical

interface

to

view

the

trace,

search

for

keywords,

and

filter

out

unwanted

data.

Note:

If

the

database

system

that

you

are

monitoring

is

not

running

on

the

same

machine

as

the

Control

Center,

you

must

copy

the

event

monitor

file

to

the

same

machine

as

the

Control

Center

before

you

can

view

the

trace.

An

alternative

method

is

to

place

the

file

in

a

shared

file

system

accessible

to

both

machines.

Related

concepts:

v

“Quick-start

tips

for

performance

tuning”

on

page

7

Chapter

8.

Operational

performance

263

264

Administration

Guide:

Performance

Chapter

9.

Using

the

governor

This

chapter

describes

how

to

set

up

and

run

the

governor

tool

to

monitor

and

control

database

activity.

The

Governor

utility

The

governor

can

monitor

the

behavior

of

applications

that

run

against

a

database

and

can

change

certain

behavior,

depending

on

the

rules

that

you

specify

in

the

governor

configuration

file.

A

governor

instance

consists

of

a

front-end

utility

and

one

or

more

daemons.

Each

instance

of

the

governor

that

you

start

is

specific

to

an

instance

of

the

database

manager.

By

default,

when

you

start

the

governor

a

governor

daemon

starts

on

each

partition

of

a

partitioned

database.

However,

you

can

specify

that

a

daemon

be

started

on

a

single

partition

that

you

want

to

monitor.

Note:

When

the

governor

is

active,

its

snapshot

requests

might

affect

database

manager

performance.

To

improve

performance,

increase

the

governor

wake-up

interval

to

reduce

its

CPU

usage.

Each

governor

daemon

collects

information

about

the

applications

that

run

against

the

database.

If

then

checks

this

information

against

the

rules

that

you

specify

in

the

governor

configuration

file

for

this

database.

The

governor

manages

application

transactions

as

specified

by

the

rules

in

the

configuration

file.

For

example,

applying

a

rule

might

indicate

that

an

application

is

using

too

much

of

a

particular

resource.

The

rule

would

specify

the

action

to

take,

such

as

to

change

the

priority

of

the

application

or

force

it

to

disconnect

from

the

database.

If

the

action

associated

with

a

rule

changes

the

priority

of

the

application,

the

governor

changes

the

priority

of

agents

on

the

database

partition

where

the

resource

violation

occurred.

In

a

partitioned

database,

if

the

application

is

forced

to

disconnect

from

the

database,

the

action

occurs

even

if

the

daemon

that

detected

the

violation

is

running

on

the

coordinator

node

of

the

application.

The

governor

logs

any

actions

that

it

takes.

To

review

the

actions,

you

query

the

log

files.

Related

concepts:

v

“The

Governor

daemon”

on

page

267

v

“The

governor

configuration

file”

on

page

269

v

“Governor

log

files”

on

page

276

Related

tasks:

v

“Starting

and

stopping

the

governor”

on

page

266

v

“Configuring

the

Governor”

on

page

268

Related

reference:

v

“db2gov

-

DB2

Governor

Command”

in

the

Command

Reference

©

Copyright

IBM

Corp.

1993

-

2004

265

Governor

startup

and

shutdown

This

section

explains

how

to

start

and

stop

the

governor

tool

and

describes

the

activity

of

the

governor

daemon.

Starting

and

stopping

the

governor

The

governor

utility

monitors

applications

that

connect

to

a

database

and

changes

their

behavior

according

to

rules

that

you

specify

in

a

governor

configuration

file

for

that

database.

Prerequisites:

Before

you

start

the

governor,

you

must

create

the

configuration

file.

Restrictions:

To

start

or

stop

the

governor,

you

must

have

sysadm

or

sysctrl

authorization.

Procedure:

To

start

or

stop

the

governor:

1.

To

start

the

governor,

execute

the

db2gov

command

at

the

DB2

command

line.

Enter

the

following

required

parameters:

v

START

database_name

The

database

name

that

you

specify

must

match

the

name

of

the

database

in

the

configuration

file

that

you

specify.

An

error

is

returned

if

the

names

are

not

the

same.

Note

that

if

a

governor

is

running

for

more

than

one

database,

daemons

will

be

started

for

each

database.

v

config_file_name

The

name

of

the

configuration

file

for

the

governor

on

this

database.

If

the

file

is

not

in

the

default

location,

which

is

the

sqllib

directory,

you

must

include

the

path

as

well

as

the

file

name.

v

log_file_name

The

base

name

of

the

log

file

for

this

governor.

On

a

partitioned

database,

the

partition

number

is

added

for

each

partition

where

a

daemon

runs

for

this

instance

of

the

governor.

To

start

the

governor

on

a

single

partition

for

a

partitioned

database,

add

the

nodenum

option.

For

example,

to

start

the

governor

for

a

database

called

sales

on

only

node

3

of

a

partitioned

database

with

a

configuration

file

called

salescfg

and

a

log

file

called

saleslog,

enter

the

following

command:

db2gov

START

sales

nodenum

3

salescfg

saleslog

To

start

the

governor

on

all

partitions

of

the

sales

database,

enter

the

following

command:

db2gov

START

sales

salescfg

saleslog

2.

To

stop

the

governor,

enter

the

db2gov

command

with

the

STOP

option.

For

example,

to

stop

the

governor

on

all

partitions

of

the

sales

database,

enter

the

following

command:

db2gov

STOP

sales

To

stop

the

governor

on

only

partition

3,

enter

the

following

command:

db2gov

START

sales

nodenum

3

266

Administration

Guide:

Performance

Related

concepts:

v

“The

Governor

utility”

on

page

265

v

“The

Governor

daemon”

on

page

267

Related

reference:

v

“db2gov

-

DB2

Governor

Command”

in

the

Command

Reference

The

Governor

daemon

When

the

governor

daemon

starts,

either

when

you

execute

by

the

db2gov

utility

or

when

it

wakes

up,

it

runs

the

following

task

loop.

1.

It

checks

whether

its

governor

configuration

file

has

changed

or

has

not

yet

been

read.

If

either

condition

is

true,

the

daemon

reads

the

rules

in

the

file.

This

allows

you

to

change

the

behavior

of

the

governor

daemon

while

it

is

running.

2.

It

requests

snapshot

information

about

resource-use

statistics

for

each

application

and

agent

that

is

working

on

the

database.

Note:

On

some

platforms,

the

CPU

statistics

are

not

available

from

the

DB2®

Monitor.

In

this

case,

the

account

rule

and

the

CPU

limit

are

not

available.

3.

It

checks

the

statistics

for

each

application

against

the

rules

in

the

governor

configuration

file.

If

a

rule

applies

to

an

application,

the

governor

performs

the

specified

action.

Note:

The

governor

compares

accumulated

information

with

the

values

defined

in

the

configuration

file.

This

means

that

if

the

configuration

file

is

updated

with

new

values

that

an

application

may

have

already

breached,

the

governor

rules

concerning

that

breach

are

applied

immediately

to

the

application

at

the

next

governor

interval.

4.

It

writes

a

record

in

the

governor

log

file

for

any

action

that

it

takes.

Note:

The

governor

cannot

be

used

to

adjust

agent

priorities

if

the

agentpri

database

manager

configuration

parameter

is

anything

other

than

the

system

default.

(This

note

does

not

apply

to

Windows®

NT

platforms.)

When

the

governor

finishes

its

tasks,

it

sleeps

for

the

interval

specified

in

the

configuration

file.

when

the

interval

elapses,

the

governor

wakes

up

and

begins

the

task

loop

again.

When

the

governor

encounters

an

error

or

stop

signal,

it

does

cleanup

processing

before

it

ends.

Using

a

list

of

applications

whose

priorities

have

been

set,

the

cleanup

processing

resets

all

application

agent

priorities.

It

then

resets

the

priorities

of

any

agents

that

are

no

longer

working

on

an

application.

This

ensures

that

agents

do

not

remain

running

with

nondefault

priorities

after

the

governor

ends.

If

an

error

occurs,

the

governor

writes

a

message

to

the

administration

notification

log

to

indicate

that

it

ended

abnormally.

Note:

Although

the

governor

daemon

is

not

a

database

application,

and

therefore

does

not

maintain

a

connection

to

the

database,

it

does

have

an

instance

attachment.

Because

it

can

issue

snapshot

requests,

the

governor

daemon

can

detect

when

the

database

manager

ends.

Related

concepts:

Chapter

9.

Using

the

governor

267

v

“The

Governor

utility”

on

page

265

Related

tasks:

v

“Starting

and

stopping

the

governor”

on

page

266

Governor

configuration

This

section

explains

how

to

configure

the

governor

to

monitor

and

control

database

activity.

Configuring

the

Governor

To

configure

the

Governor,

you

create

a

configuration

file

that

determines

the

database

that

an

instance

of

the

Governor

monitors

and

how

it

manages

queries.

The

configuration

file

consists

of

a

set

of

rules.

The

first

three

rules

specify

the

database

to

monitor,

the

interval

at

which

to

write

log

records,

and

the

interval

at

which

to

wake

up

for

monitoring.

The

remaining

rules

specify

how

to

monitor

the

database

server

and

what

actions

to

take

in

specific

circumstances.

Procedure:

To

create

a

Governor

configuration

file:

1.

In

a

directory

that

is

mounted

or

available

from

all

database

manager

partitions,

create

an

ASCII

file

with

a

descriptive

name.

For

example,

the

configuration

file

for

a

governor

instance

that

monitors

the

sales

database

might

be

called

govcfgsales.

2.

Open

the

file

in

any

text

editor

and

enter

configuration

information

and

action

conditions.

End

each

rule

with

a

semicolon

(;).

The

following

configuration

information

is

recommended:

v

dbname:

The

name

or

alias

of

the

database

to

be

monitored.

v

account:

The

number

of

minutes

after

which

the

governor

instance

writes

CPU

usage

statistics

to

its

log

file.

This

option

is

not

available

on

Windows

NT.

v

interval:

The

number

of

seconds

after

which

the

governor

daemon

wakes

up

to

monitor

activity.

If

you

do

not

specify

an

interval,

the

default

value

of

120

seconds

is

used.

For

example,

the

first

three

rules

in

the

configuration

file

might

look

like

this:

{

Wake

up

once

a

second,

the

database

name

is

sales,

do

accounting

every

30

minutes.

}

interval

1;

dbname

sales;

account

30;

Add

rules

that

specify

the

conditions

to

monitor

and

the

action

to

take

if

the

rule

evaluates

to

true.

For

example,

you

might

add

a

rule

that

limits

to

an

hour

the

amount

of

time

that

a

unit

of

work

(UOW)

can

run

before

being

forced

to

disconnect

from

the

database,

as

follows:

setlimit

uowtime

3600

action

force;

3.

Save

the

file.

Related

concepts:

v

“The

governor

configuration

file”

on

page

269

v

“Governor

rule

elements”

on

page

271

268

Administration

Guide:

Performance

v

“Example

of

a

Governor

configuration

file”

on

page

275

v

“Governor

log

files”

on

page

276

Related

reference:

v

“db2gov

-

DB2

Governor

Command”

in

the

Command

Reference

The

governor

configuration

file

When

you

start

the

governor,

you

specify

the

configuration

file

that

contains

the

rules

that

govern

applications

running

against

the

database.

The

governor

evaluates

each

rule

and

acts

as

specified

when

the

rule

evaluates

to

true.

If

your

rule

requirements

change,

you

edit

the

configuration

file

without

stopping

the

governor.

Each

governor

daemon

detects

that

the

file

has

changed,

and

rereads

it.

The

configuration

file

must

be

created

in

a

directory

that

is

mounted

across

all

the

database

partitions

so

that

the

governor

daemon

on

each

partition

can

read

the

same

configuration

file.

The

configuration

file

consists

of

three

required

rules

that

identify

the

database

to

be

monitored,

the

interval

at

which

log

records

are

written,

and

the

sleep

interval

of

the

governor

daemons.

Following

these

parameters,

the

configuration

file

contains

a

set

of

optional

application-monitoring

rules

and

actions.

The

following

comments

apply

to

all

rules:

v

Delimit

comments

inside

{

}

braces.

v

Most

entries

can

be

specified

in

uppercase,

lowercase,

or

mixed

case

characters.

The

exception

is

the

application

name,

specified

as

an

argument

to

the

applname

rule,

which

is

case

sensitive.

v

Each

rule

ends

with

a

semicolon

(;).

Required

rules

The

following

rules

specify

the

database

to

be

monitored

and

the

interval

at

which

the

daemon

wakes

up

after

each

loop

of

activities.

Each

of

these

rules

is

specified

only

once

in

the

file.

dbname

The

name

or

alias

of

the

database

to

be

monitored.

account

nnn

Account

records

are

written

containing

CPU

usage

statistics

for

each

connection

at

the

specified

number

of

minutes.

Note:

This

option

is

not

available

in

the

Windows

NT

environment.

If

a

short

connect

session

occurs

entirely

within

the

account

interval,

no

log

record

is

written.

When

log

records

are

written,

they

contain

CPU

statistics

that

reflect

CPU

usage

since

the

previous

log

record

for

the

connection.

If

the

governor

is

stopped

then

restarted,

CPU

usage

may

be

reflected

in

two

log

records;

these

can

be

identified

through

the

application

IDs

in

the

log

records.

interval

The

interval,

in

seconds,

at

which

the

daemon

wakes

up.

If

you

do

not

specify

an

interval,

the

default

value,

120

seconds,

is

used.

Chapter

9.

Using

the

governor

269

Rules

that

govern

actions

Following

the

required

rules,

you

can

add

rules

that

specify

how

to

govern

the

applications.

These

rules

are

made

of

smaller

components

called

rule

clauses.

If

used,

the

clauses

must

be

entered

in

a

specific

order

in

the

rule

statement,

as

follows:

1.

desc

(optional):

a

comment

about

the

rule,

enclosed

in

quotation

marks

2.

time

(optional):

the

time

during

the

day

when

the

rule

is

evaluated

3.

authid

(optional):

one

or

more

authorization

IDs

under

which

the

application

executes

statements

4.

applname

(optional):

the

name

of

the

executable

or

object

file

that

connects

to

the

database.

This

name

is

case

sensitive.

The

application

name

must

be

surrounded

by

double

quotes

if

the

application

contains

spaces.

5.

setlimit:

the

limits

that

the

governor

checks.

These

can

be

one

of

several,

for

example,

CPU

time,

number

of

rows

returned,

or

idle

time..

6.

action

(optional):

the

action

to

take

if

a

limit

is

reached.

If

no

action

is

specified,

the

governor

reduces

the

priority

of

agents

working

for

the

application

by

10

when

a

limit

is

reached.

Actions

against

the

application

can

include

reducing

its

agent

priority,

forcing

it

to

disconnect

from

the

database,

or

setting

scheduling

options

for

its

operations.

You

combine

the

rule

clauses

to

form

a

rule,

using

each

clause

only

once

in

each

rule,

and

end

the

rule

with

a

semicolon,

as

shown

in

the

following

examples:

desc

"Allow

no

UOW

to

run

for

more

than

an

hour"

setlimit

uowtime

3600

action

force;

desc

"Slow

down

the

use

of

db2

CLP

by

the

novice

user"

authid

novice

applname

db2bp.exe

setlimit

cpu

5

locks

100

rowssel

250;

If

more

than

one

rule

applies

to

an

application,

all

are

applied.

Usually,

the

action

associated

with

the

rule

limit

encountered

first

is

the

action

that

is

applied

first.

An

exception

occurs

you

specify

if

-1

for

a

clause

in

a

rule.

In

this

case,

the

value

specified

for

the

clause

in

the

subsequent

rule

can

only

override

the

value

previously

specified

for

the

same

clause:

other

clauses

in

the

previous

rule

are

still

operative.

For

example,

one

rule

uses

the

rowssel

100000

uowtime

3600

clauses

to

specify

that

the

priority

of

an

application

is

decreased

either

if

its

elapsed

time

is

greater

than

1

hour

or

if

it

selects

more

than

100

000

rows.

A

subsequent

rule

uses

the

uowtime

-1

clause

to

specify

that

the

same

application

can

have

unlimited

elapsed

time.

In

this

case,

if

the

application

runs

for

more

than

1

hour,

its

priority

is

not

changed.

That

is,

uowtime

-1

overrides

uowtime

3600.

However,

if

it

selects

more

than

100

000

rows,

its

priority

is

lowered

because

rowssel

100000

is

still

valid.

Order

of

rule

application

The

governor

processes

rules

in

the

configuration

file

from

the

top

of

the

file

to

the

bottom.

However,

if

a

later

rule’s

setlimit

clause

is

more

relaxed

than

a

preceding

rule,

the

more

restrictive

rule

still

applies.

For

example,

in

the

following

configuration

file,

admin

will

be

limited

to

5000

rows

despite

the

later

rule

because

the

first

rule

is

more

restrictive.

270

Administration

Guide:

Performance

desc

"Force

anyone

selecting

5000

or

more

rows"

setlimit

rowssel

5000

action

force;

desc

"Allow

user

admin

to

select

more

rows"

authid

admin

setlimit

rowssel

10000

action

force;

To

ensure

that

a

less

restrictive

rule

overrides

a

more

restrictive

rule

that

occurs

earlier

in

the

file,

you

can

specify

the

-1

option

to

clear

the

previous

rule

before

applying

the

new

one.

For

example,

in

the

following

configuration

file,

the

initial

rule

limits

all

users

to

5000

rows.

The

second

rule

clears

this

limit

for

admin,

and

the

third

rule

resets

the

limit

for

admin

to

10000

rows.

desc

"Force

anyone

selecting

5000

or

more

rows"

setlimit

rowssel

5000

action

force;

desc

"Clear

the

rowssel

limit

for

admin"

authid

admin

setlimit

rowssel

-1;

desc

"Now

set

the

higher

rowssel

limit

for

admin"

authid

admin

setlimit

rowssel

10000

action

force;

Related

concepts:

v

“Governor

rule

elements”

on

page

271

v

“Example

of

a

Governor

configuration

file”

on

page

275

Governor

rule

elements

Each

rule

in

the

governor

configuration

file

is

made

up

of

clauses

that

specify

the

conditions

for

applying

the

rule

and

the

action

that

results

if

the

rule

evaluates

to

true.

The

clauses

must

be

specified

in

the

order

shown.

In

the

clause

descriptions,

[

]

indicates

an

optional

clause.

Optional

beginning

elements

[desc]

Specifies

a

text

description

for

the

rule.

The

description

must

be

enclosed

by

either

single

or

double

quotation

marks.

[time]

Specifies

the

time

period

during

which

the

rule

is

to

be

evaluated.

The

time

period

must

be

specified

in

the

following

format

time

hh:mm

hh:mm,

for

example,

time

8:00

18:00.

If

this

clause

is

not

specified,

the

rule

is

valid

24

hours

a

day.

[authid]

Specifies

one

or

more

authorization

IDs

(authid)

under

which

the

application

is

executing.

Multiple

authids

must

be

separated

by

a

comma

(,),

for

example

authid

gene,

michael,

james.

If

this

clause

does

not

appear

in

a

rule,

the

rule

applies

to

all

authids.

[applname]

Specifies

the

name

of

the

executable

(or

object

file)

that

makes

the

connection

to

the

database.

Multiple

application

names

must

be

separated

by

a

comma

(,),

for

example,

applname

db2bp,

batch,

geneprog.

If

this

clause

does

not

appear

in

a

rule,

the

rule

applies

to

all

application

names.

Notes:

1.

Application

names

are

case

sensitive.

Chapter

9.

Using

the

governor

271

2.

The

database

manager

truncates

all

application

names

to

20

characters.

You

should

ensure

that

the

application

you

want

to

govern

is

uniquely

identified

by

the

first

20

characters

of

its

application

name;

otherwise,

an

unintended

application

may

be

governed.

Application

names

specified

in

the

governor

configuration

file

are

truncated

to

20

characters

to

match

their

internal

representation.

Limit

clauses

setlimit

Specifies

one

or

more

limits

for

the

governor

to

check.

The

limits

can

only

be

-1

or

greater

than

0

(for

example,

cpu

-1

locks

1000

rowssel

10000).

At

least

one

of

the

limits

(cpu,

locks,

rowsread,

uowtime)

must

be

specified,

and

any

limit

not

specified

by

the

rule

is

not

limited

by

that

particular

rule.

The

governor

can

check

the

following

limits:

cpu

nnn

Specifies

the

number

of

CPU

seconds

that

can

be

consumed

by

an

application.

If

you

specify

-1,

the

governor

does

not

limit

the

application’s

CPU

usage.

Note:

This

option

is

not

available

in

the

Windows®

NT

environment.

locks

nnn

Specifies

the

number

of

locks

that

an

application

can

hold.

If

you

specify

-1,

the

governor

does

not

limit

the

number

of

locks

held

by

the

application.

rowssel

nnn

Specifies

the

number

of

rows

that

are

returned

to

the

application.

This

value

will

only

be

non-zero

at

the

coordinator

node.

If

you

specify

-1,

the

governor

does

not

limit

the

number

of

rows

that

can

be

selected.

uowtime

nnn

Specifies

the

number

of

seconds

that

can

elapse

from

the

time

that

a

unit

of

work

(UOW)

first

becomes

active.

If

you

specify

-1,

the

elapsed

time

is

not

limited.

Note:

If

you

used

the

sqlmon

(Database

System

Monitor

Switch)

API

to

deactivate

the

unit

of

work

switch,

this

will

affect

the

ability

of

the

governor

to

govern

applications

based

on

the

unit

of

work

elapsed

time.

The

governor

uses

the

monitor

to

collect

information

about

the

system.

If

you

turn

off

the

switches

in

the

database

manager

configuration

file,

then

it

is

turned

off

for

the

entire

instance,

and

governor

will

no

longer

receive

this

information.

idle

nnn

Specifies

the

number

of

idle

seconds

allowed

for

a

connection

before

a

specified

action

is

taken.

If

you

specify

-1,

the

connection’s

idle

time

is

not

limited.

rowsread

nnn

Specifies

the

number

of

rows

an

application

can

select.

If

you

specify

-1,

there

is

no

limit

on

the

number

of

rows

the

application

can

select.

272

Administration

Guide:

Performance

Note:

This

limit

is

not

the

same

as

rowssel.

The

difference

is

that

rowsread

is

the

count

of

the

number

of

rows

that

had

to

be

read

in

order

to

return

the

result

set.

The

number

of

rows

read

includes

reads

of

the

catalog

tables

by

the

engine

and

may

be

diminished

when

indices

are

used.

Action

clauses

[action]

Specifies

the

action

to

take

if

one

or

more

of

the

specified

limits

is

exceeded.

You

can

specify

the

following

actions.

Note:

If

a

limit

is

exceeded

and

the

action

clause

is

not

specified,

the

governor

reduces

the

priority

of

agents

working

for

the

application

by

10.

nice

nnn

Specifies

a

change

to

the

priority

of

agents

working

for

the

application.

Valid

values

are

from

−20

to

+20.

For

this

parameter

to

be

effective:

v

On

UNIX®-based

platforms,

the

agentpri

database

manager

parameter

must

be

set

to

the

default

value;

otherwise,

it

overrides

the

priority

clause.

v

On

Windows

platforms,

the

agentpri

database

manager

parameter

and

priority

action

may

be

used

together.

force

Specifies

to

force

the

agent

that

is

servicing

the

application.

(Issues

a

FORCE

APPLICATION

to

terminate

the

coordinator

agent.)

schedule

[class]

Scheduling

improves

the

priorities

of

the

agents

working

on

the

applications

with

the

goal

of

minimizing

the

average

response

times

while

maintaining

fairness

across

all

applications.

The

governor

chooses

the

top

applications

for

scheduling

based

on

the

following

three

criteria:

v

The

application

holding

the

most

locks

This

choice

is

an

attempt

to

reduce

the

number

of

lockwaits.

v

The

oldest

application

v

The

application

with

the

shortest

estimated

remaining

running

time.

This

choice

is

an

attempt

to

allow

as

many

short-lived

statements

as

possible

to

complete

during

the

interval.

The

top

three

applications

in

each

criteria

are

given

higher

priorities

than

all

other

applications

That

is,

the

top

application

in

each

criterion

group

is

given

the

highest

priority,

the

next

highest

applications

are

given

the

second

highest

priority

and

the

third-ranked

applications

are

given

the

third

highest

priority.

If

a

single

application

is

ranked

in

the

top

three

in

more

than

one

of

the

criteria,

it

is

given

the

appropriate

priority

for

the

criterion

in

which

it

ranked

highest,

and

the

next

highest

application

is

given

the

next

highest

priority

for

the

other

criteria.

For

example,

if

application

A

holds

the

most

locks

but

has

the

third

shortest

estimated

remaining

running

time,

it

is

given

the

highest

priority

Chapter

9.

Using

the

governor

273

for

the

first

criterion,

and

the

fourth

ranked

application

with

the

shortest

estimated

remaining

running

time

is

given

the

third

highest

priority

for

that

criterion.

The

applications

selected

by

this

governor

rule

are

divided

in

up

to

three

classes.

For

each

class,

the

governor

chooses

nine

applications,

which

are

the

top

three

applications

from

each

class,

based

on

the

criteria

listed

above.

If

you

specify

the

class

option,

all

applications

selected

by

this

rule

are

considered

a

single

class,

and

nine

applications

are

chosen

and

given

higher

priorities

as

described

above.

If

an

application

is

selected

in

more

than

one

governor

rule,

it

is

governed

by

the

last

rule

in

which

is

it

selected.

Note:

If

you

used

the

sqlmon

(Database

System

Monitor

Switch)

API

to

deactivate

the

statement

switch,

this

will

affect

the

ability

of

the

governor

to

govern

applications

based

on

the

statement

elapsed

time.

The

governor

uses

the

monitor

to

collect

information

about

the

system.

If

you

turn

off

the

switches

in

the

database

manager

configuration

file,

then

it

is

turned

off

for

the

entire

instance,

and

governor

will

no

longer

receive

this

information.

The

schedule

action

can:

v

Ensure

that

applications

in

different

groups

each

get

time

without

all

applications

splitting

time

evenly.

For

instance,

if

14

applications

(three

short,

five

medium,

and

six

long)

are

running

at

the

same

time,

they

may

all

have

poor

response

times

because

they

are

splitting

the

CPU.

The

database

administrator

can

set

up

two

groups,

medium-length

applications

and

long-length

applications.

Using

priorities,

the

governor

permits

all

the

short

applications

to

run,

and

ensures

that

at

most

three

medium

and

three

long

applications

run

simultaneously.

To

achieve

this,

the

governor

configuration

file

contains

one

rule

for

medium-length

applications,

and

another

rule

for

long

applications.

The

following

example

shows

a

portion

of

a

governor

configuration

file

that

illustrates

this

point:

desc

"Group

together

medium

applications

in

1

schedule

class"

applname

medq1,

medq2,

medq3,

medq4,

medq5

setlimit

cpu

-1

action

schedule

class;

desc

"Group

together

long

applications

in

1

schedule

class"

applname

longq1,

longq2,

longq3,

longq4,

longq5,

longq6

setlimit

cpu

-1

action

schedule

class;

v

Ensure

that

each

of

several

user

groups

(for

example,

organizational

departments)

gets

equal

prioritization.

If

one

group

is

running

a

large

number

of

applications,

the

administrator

can

ensure

that

other

groups

are

still

able

to

obtain

reasonable

response

times

for

their

applications.

For

instance,

in

a

case

involving

three

departments

(Finance,

Inventory,

and

Planning),

all

the

Finance

users

could

be

put

into

one

group,

all

the

Inventory

users

could

be

put

into

a

second,

and

all

the

Planning

users

could

be

put

into

a

third

group.

The

processing

274

Administration

Guide:

Performance

power

would

be

split

more

or

less

evenly

among

the

three

departments.

The

following

example

shows

a

portion

of

a

governor

configuration

file

that

illustrates

this

point:

desc

"Group

together

Finance

department

users"

authid

tom,

dick,

harry,

mo,

larry,

curly

setlimit

cpu

-1

action

schedule

class;

desc

"Group

together

Inventory

department

users"

authid

pat,

chris,

jack,

jill

setlimit

cpu

-1

action

schedule

class;

desc

"Group

together

Planning

department

users"

authid

tara,

dianne,

henrietta,

maureen,

linda,

candy

setlimit

cpu

-1

action

schedule

class;

v

Let

the

governor

schedule

all

applications.

If

the

class

option

is

not

included

with

the

action,

the

governor

creates

its

own

classes

based

on

how

many

active

applications

fall

under

the

schedule

action,

and

puts

applications

into

different

classes

based

on

the

DB2

query

compiler’s

cost

estimate

for

the

query

the

application

is

running.

The

administrator

can

choose

to

have

all

applications

scheduled

by

not

qualifying

which

applications

are

chosen.

That

is,

no

applname

or

authid

clauses

are

supplied,

and

the

setlimit

clause

causes

no

restrictions.

Note:

If

a

limit

is

exceeded

and

the

action

clause

is

not

specified,

the

governor

reduces

the

priority

of

agents

working

for

the

application.

Related

concepts:

v

“The

governor

configuration

file”

on

page

269

v

“Example

of

a

Governor

configuration

file”

on

page

275

Related

tasks:

v

“Configuring

the

Governor”

on

page

268

Example

of

a

Governor

configuration

file

The

following

example

shows

a

governor

configuration

file

that

sets

several

rules

with

actions:

{

Wake

up

once

a

second,

the

database

name

is

ibmsampl,

do

accounting

every

30

minutes.

}

interval

1;

dbname

ibmsampl;

account

30;

desc

"CPU

restrictions

apply

24

hours

a

day

to

everyone"

setlimit

cpu

600

rowssel

1000000

rowsread

5000000;

desc

"Allow

no

UOW

to

run

for

more

than

an

hour"

setlimit

uowtime

3600

action

force;

desc

’Slow

down

a

subset

of

applications’

applname

jointA,

jointB,

jointC,

quryA

setlimit

cpu

3

locks

1000

rowssel

500

rowsread

5000;

desc

"Have

governor

prioritize

these

6

long

apps

in

1

class"

applname

longq1,

longq2,

longq3,

longq4,

longq5,

longq6

setlimit

cpu

-1

Chapter

9.

Using

the

governor

275

action

schedule

class;

desc

"Schedule

all

applications

run

by

the

planning

dept"

authid

planid1,

planid2,

planid3,

planid4,

planid5

setlimit

cpu

-1

action

schedule;

desc

"Schedule

all

CPU

hogs

in

one

class

which

will

control

consumption"

setlimit

cpu

3600

action

schedule

class;

desc

"Slow

down

the

use

of

db2

CLP

by

the

novice

user"

authid

novice

applname

db2bp.exe

setlimit

cpu

5

locks

100

rowssel

250;

desc

"During

day

hours

do

not

let

anyone

run

for

more

than

10

seconds"

time

8:30

17:00

setlimit

cpu

10

action

force;

desc

"Allow

users

doing

performance

tuning

to

run

some

of

their

applications

during

lunch

hour"

time

12:00

13:00

authid

ming,

geoffrey,

john,

bill

applname

tpcc1,

tpcc2,

tpcA,

tpvG

setlimit

cpu

600

rowssel

120000

action

force;

desc

"Some

people

should

not

be

limited

--

database

administrator

and

a

few

others.

As

this

is

the

last

specification

in

the

file,

it

will

override

what

came

before."

authid

gene,

hershel,

janet

setlimit

cpu

-1

locks

-1

rowssel

-1

uowtime

-1;

desc

"Increase

the

priority

of

an

important

application

so

it

always

completes

quickly"

applname

V1app

setlimit

cpu

1

locks

1

rowssel

1

action

priority

-20;

Related

concepts:

v

“The

governor

configuration

file”

on

page

269

v

“Governor

rule

elements”

on

page

271

Related

tasks:

v

“Configuring

the

Governor”

on

page

268

Governor

log

file

use

This

section

describes

the

governor

log

files

and

explains

how

to

query

them

to

retrieve

information.

Governor

log

files

Whenever

a

governor

daemon

performs

an

action,

it

writes

a

record

to

its

log

file.

Actions

include

the

following:

v

Forcing

an

application

v

Reading

the

governor

configuration

file

v

Changing

an

application

priority

v

Encountering

an

error

or

warning

v

Starting

or

ending

Each

governor

daemon

has

a

separate

log

file.

Separate

log

files

prevent

file-locking

bottlenecks

that

might

result

when

many

governor

daemons

write

to

the

same

file

at

the

same

time.

To

merge

the

log

files

together

and

query

them,

use

the

db2govlg

utility.

276

Administration

Guide:

Performance

The

log

files

are

stored

in

the

log

subdirectory

of

the

sqllib

directory,

except

on

Windows®

NT,

where

the

log

subdirectory

is

under

the

instance

directory.

You

provide

the

base

name

for

the

log

file

when

you

start

the

governor

with

the

db2gov

command.

Make

sure

that

the

log

file

name

contains

the

database

name

to

distinguish

log

files

on

each

partition

of

each

that

is

governed.

To

ensure

that

the

filename

is

unique

for

each

governor

in

a

partitioned

database

environment,

the

partition

number

where

the

governor

daemon

runs

is

automatically

appended

to

the

log

file

name.

Log

file

record

format

Each

record

in

the

log

file

has

the

following

format:

Date

Time

NodeNum

RecType

Message

Note:

The

format

of

the

Date

and

Time

fields

is

yyyy-mm-dd

hh.mm.ss.

You

can

merge

the

log

files

for

each

database

partition

by

sorting

on

this

field.

The

NodeNum

field

indicates

the

number

of

the

database

partition

on

which

the

governor

is

running.

The

RecType

field

contains

different

values,

depending

on

the

type

of

log

record

being

written

to

the

log.

The

values

that

can

be

recorded

are:

v

START:

the

governor

was

started

v

STOP:

the

governor

was

stopped

v

FORCE:

an

application

was

forced

v

NICE:

the

priority

of

an

application

was

changed

v

ERROR:

an

error

occurred

v

WARNING:

a

warning

occurred

v

READCFG:

the

governor

read

the

configuration

file

v

ACCOUNT:

the

application

accounting

statistics.

v

SCHEDGRP:

a

change

in

agent

priorities

occurred.

Some

of

these

values

are

described

in

more

detail

below.

START

The

START

record

is

written

when

the

governor

is

started.

It

has

the

following

format:

Database

=

<database_name>

STOP

The

STOP

record

is

written

when

the

governor

is

stopped.

It

has

the

following

format:

Database

=

<database_name>

FORCE

The

FORCE

record

is

written

out

whenever

the

governor

determines

that

an

application

is

to

be

forced

as

required

by

a

rule

in

the

governor

configuration

file.

The

FORCE

record

has

the

following

format:

<appl_name>

<auth_id>

<appl_id>

<coord_partition>

<cfg_line>

<restriction_exceeded>

where:

<coord_partition>

Specifies

the

number

of

the

application’s

coordinating

partition.

<cfg_line>

Specifies

the

line

number

in

the

governor

configuration

file

where

the

rule

causing

the

application

to

be

forced

is

located.

Chapter

9.

Using

the

governor

277

<restriction_exceeded>

Provides

details

about

how

the

rule

was

exceeded.

This

can

contain

the

following

values:

v

CPU:

the

total

application

USR

cpu

plus

SYS

cpu

time

in

seconds

v

Locks:

the

total

locks

held

by

the

application

v

Rowssel:

the

total

rows

selected

by

the

application

v

Rowsread:

the

total

rows

read

by

the

application

v

Idle:

amount

of

time

the

application

was

idle

v

ET

(elapsed

time):

elapsed

time

since

the

application’s

current

unit

of

work

started

(the

uowtime

setlimit

was

exceeded)

NICE

The

NICE

record

is

written

when

the

priority

of

an

application

is

changed

via

a

priority

action

specified

in

the

governor

configuration

file.

The

NICE

record

has

the

following

format:

<appl_name>

<auth_id>

<appl_id>

<nice

value>

(<cfg_line>)

<restriction_exceeded>

where:

<nice

value>

Specifies

the

increment

(or

decrement)

that

will

be

made

to

the

priority

value

for

the

application’s

agent

process.

<cfg_line>

Specifies

the

line

number

in

the

governor

configuration

file

where

the

rule

causing

the

application’s

priority

to

be

changed

is

located.

<restriction_exceeded>

Provides

details

about

how

the

rule

was

exceeded.

This

can

contain

the

following

values:

v

CPU:

the

total

application

USR

cpu

plus

SYS

cpu

time

in

seconds

v

Locks:

the

total

locks

held

by

the

application

v

Rowssel:

the

total

rows

selected

by

the

application

v

Rowsread:

the

total

rows

read

by

the

application

v

Idle:

amount

of

time

the

application

was

idle

v

ET

(elapsed

time):

elapsed

time

since

the

application’s

current

unit

of

work

started

(the

uowtime

setlimit

was

exceeded)

ERROR

The

ERROR

record

is

written

when

the

governor

daemon

needs

to

shut

down.

WARNING

The

WARNING

record

is

written

to

the

governor

log

in

the

following

situations:

v

The

sqlefrce

API

was

called

to

force

an

application,

but

it

returned

a

positive

SQLCODE.

v

A

snapshot

call

returned

a

positive

SQLCODE

that

was

not

1611

(″SQL1661

No

data

was

returned″).

v

A

snapshot

call

returned

a

negative

SQLCODE

that

was

not

−1224

(″SQL

1224N

A

database

agent

could

not

be

started

to

service

a

request,

or

was

terminated

as

a

result

of

a

database

system

shutdown

or

a

force

command″)

or

−1032

(″SQL1032N

No

start

database

manager

command

was

issued″).

These

return

codes

occur

when

a

previously

active

instance

has

been

brought

down.

278

Administration

Guide:

Performance

v

In

a

UNIX®

environment,

an

attempt

was

made

to

install

a

signal

handler

and

the

attempt

failed.

ACCOUNT

The

ACCOUNT

record

is

written

to

the

governor

log

in

the

following

situations:

v

The

value

of

agent_usr_cpu

or

agent_sys_cpu

for

this

application

has

changed

since

the

last

ACCOUNT

record

was

written

for

this

application.

v

An

application

is

found

to

be

no

longer

active

The

ACCOUNT

record

has

the

following

format:

<auth_id>

<appl_id>

<applname>

<connect

time>

<agent_usr_cpu

delta>

<agent_sys_cpu

delta>

SCHEDGRP

The

SCHEDGRP

record

is

written

whenever:

v

An

application

is

added

to

a

scheduling

group

v

An

application

is

moved

from

one

scheduling

group

to

another.

The

SCHEDGRP

record

has

the

following

format:

<appl_name>

<auth_id>

<appl_id>

<cfg_line>

<restriction_exceeded>

where:

<cfg_line>

Specifies

the

line

number

in

the

governor

configuration

file

where

the

rule

causing

the

application

to

be

scheduled

is

located.

<restriction_exceeded>

Provides

details

about

how

the

rule

was

exceeded.

This

can

contain

the

following

values:

v

CPU:

the

total

application

USR

cpu

plus

SYS

cpu

time

in

seconds

v

Locks:

the

total

locks

held

by

the

application

v

Rowssel:

the

total

rows

selected

by

the

application

v

Rowsread:

the

total

rows

read

by

the

application

v

Idle:

amount

of

time

the

application

was

idle

v

ET

(elapsed

time):

elapsed

time

since

the

application’s

current

unit

of

work

started

(the

uowtime

setlimit

was

exceeded)

Because

standard

values

are

written,

you

can

query

the

log

files

for

different

types

of

actions.

The

Message

field

provides

other

nonstandard

information

that

varies

according

to

the

value

under

the

RecType

field.

For

instance,

a

FORCE

or

NICE

record

indicates

application

information

in

the

Message

field,

while

an

ERROR

record

includes

an

error

message.

An

example

log

file

is

as

follows:

Related

concepts:

v

“The

Governor

utility”

on

page

265

v

“Governor

log

file

queries”

on

page

280

1995-12-11

14.54.52

0

START

Database

=

TQTEST

1995-12-11

14.54.52

0

READCFG

Config

=

/u/db2instance/sqllib/tqtest.cfg

1995-12-11

14.54.53

0

ERROR

SQLMON

Error:

SQLCode

=

-1032

1995-12-11

14.54.54

0

ERROR

SQLMONSZ

Error:

SQLCode

=

-1032

Chapter

9.

Using

the

governor

279

Governor

log

file

queries

Each

governor

daemon

writes

to

its

own

log

file.

You

can

use

db2govlg

utility

to

query

the

log

file.

You

can

list

the

log

files

for

a

single

partition,

or

for

all

database

partitions,

sorted

by

date

and

time.

You

can

also

query

on

the

basis

of

the

RecType

log

field.

The

syntax

for

db2govlg

is

as

follows:

The

parameters

are

as

follows:

log-file

The

base

name

of

the

log

file

(or

files)

that

you

want

to

query.

nodenum

node-num

The

node

number

of

the

database

partition

on

which

the

governor

is

running.

rectype

record-type

The

type

of

record

that

you

want

to

query.

The

record

types

are:

v

START

v

READCFG

v

STOP

v

FORCE

v

NICE

v

ERROR

v

WARNING

v

ACCOUNT

There

are

no

authorization

restrictions

for

using

this

utility.

This

allows

all

users

to

query

whether

the

governor

has

affected

their

application.

If

you

want

to

restrict

access

to

this

utility,

you

can

change

the

group

permissions

for

the

db2govlg

file.

Related

concepts:

v

“The

Governor

utility”

on

page

265

v

“Governor

log

files”

on

page

276

��

db2govlg

log-file

nodenum

node-num

rectype

record-type

��

Figure

25.

Syntax

for

db2govlg

280

Administration

Guide:

Performance

Chapter

10.

Scaling

your

configuration

This

chapter

describes

how

you

can

manage

database

capacity,

primarily

by

adding

and

dropping

database

partitions.

Other

methods

of

increasing

capacity

include

adding

CPUs

and

adding

memory.

Management

of

database

server

capacity

If

database

manager

capacity

does

not

meet

your

present

or

future

needs,

you

can

expand

its

capacity

in

the

following

ways:

v

Add

disk

space

and

create

additional

containers.

v

Add

memory.

If

these

simple

strategies

do

not

add

the

capacity

you

need,

consider

the

following

methods:

v

Add

processors.

If

a

single-partition

configuration

with

a

single

processor

is

used

to

its

maximum

capacity,

you

might

either

add

processors

or

add

partitions.

The

advantage

of

adding

processors

is

greater

processing

power.

In

an

SMP

system,

processors

share

memory

and

storage

system

resources.

All

of

the

processors

are

in

one

system,

so

there

are

no

additional

overhead

considerations

such

as

communication

between

systems

and

coordination

of

tasks

between

systems.

Utilities

in

DB2®

such

as

load,

backup,

and

restore

can

take

advantage

of

the

additional

processors.

DB2

Universal

Database™

supports

this

environment.

Note:

Some

operating

systems,

such

as

the

Solaris

Operating

Environment,

can

dynamically

turn

processors

on-

and

off-line.

If

you

add

processors,

review

and

modify

some

database

configuration

parameters

that

determine

the

number

of

processors

used.

The

following

database

configuration

parameters

determine

the

number

of

processors

used

and

might

need

to

be

updated:

–

Default

degree

(dft_degree)

–

Maximum

degree

of

parallelism

(max_querydegree)

–

Enable

intra-partition

parallelism

(intra_parallel)

You

should

also

evaluate

parameters

that

determine

how

applications

perform

parallel

processing.

In

an

environment

where

TCP/IP

is

used

for

communication,

review

the

value

for

the

DB2TCPCONNMGRS

registry

variable.

v

Add

physical

nodes.

If

your

database

manager

is

currently

partitioned,

you

can

increase

both

data-storage

space

and

processing

power

by

adding

separate

single-processor

or

multiple-processor

physical

nodes.

The

memory

and

storage

system

resources

on

each

node

are

not

shared

with

the

other

nodes.

Although

adding

nodes

might

result

in

communication

and

task-coordination

issues,

this

choice

provides

the

advantage

of

balancing

data

and

user

access

across

more

than

one

system.

DB2

Universal

Database

supports

this

environment.

You

can

add

nodes

either

while

the

database

manager

system

is

running

or

while

it

is

stopped.

If

you

add

nodes

while

the

system

is

running,

however,

you

must

stop

and

restart

the

system

before

databases

migrate

to

the

new

node.

©

Copyright

IBM

Corp.

1993

-

2004

281

When

you

scale

your

system

by

changing

the

environment,

you

should

be

aware

of

the

impact

that

such

a

change

can

have

on

your

database

procedures

such

as

loading

data,

backing

up

the

database,

and

restoring

the

database.

When

you

add

a

new

database

partition,

you

cannot

drop

or

create

a

database

that

takes

advantage

of

the

new

partition

until

the

procedure

is

complete,

and

the

new

server

is

successfully

integrated

into

the

system.

Related

concepts:

v

“Partitions

in

a

partitioned

database”

on

page

282

Partitions

in

a

partitioned

database

You

can

add

database

partitions

to

the

partitioned

database

system

either

when

it

is

running,

or

when

it

is

stopped.

Because

adding

a

new

server

can

be

time

consuming,

you

may

want

to

do

it

when

the

database

manager

is

already

running.

Use

the

ADD

DBPARTITIONNUM

command

to

add

a

database

partition

to

a

system.

This

command

can

be

invoked

in

the

following

ways:

v

As

an

option

on

db2start

v

With

the

command-line

processor

ADD

DBPARTITIONNUM

command

v

With

the

API

function

sqleaddn

v

With

the

API

function

sqlepstart

If

your

system

is

stopped,

you

use

db2start.

If

it

is

running,

you

can

use

any

of

the

other

choices.

When

you

use

the

ADD

DBPARTITIONNUM

command

to

add

a

new

database

partition

to

the

system,

all

existing

databases

in

the

instance

are

expanded

to

the

new

database

partition.

You

can

also

specify

which

containers

to

use

for

temporary

table

spaces

for

the

databases.

The

containers

can

be:

v

The

same

as

those

defined

for

the

catalog

node

for

each

database.

(This

is

the

default.)

v

The

same

as

those

defined

for

another

database

partition.

v

Not

created

at

all.

You

must

use

the

ALTER

TABLESPACE

statement

to

add

temporary

table

space

containers

to

each

database

before

the

database

can

be

used.

You

cannot

use

a

database

on

the

new

partition

to

contain

data

until

one

or

more

database

partition

groups

are

altered

to

include

the

new

database

partition.

You

cannot

change

from

a

single-partition

system

to

a

multi-partition

system

by

simply

adding

a

partition

to

your

system.

This

is

because

the

redistribution

of

data

across

partitions

requires

a

partitioning

key

on

each

affected

table.

The

partitioning

keys

are

automatically

generated

when

a

table

is

created

in

a

multi-partition

environment.

In

a

single-partition

environment,

partitioning

keys

can

be

explicitly

created

with

the

CREATE

TABLE

or

ALTER

TABLE

SQL

statements.

Note:

If

no

databases

are

defined

in

the

system

and

you

are

running

Enterprise

Server

Edition

on

a

UNIX®-based

system,

edit

the

db2nodes.cfg

file

to

add

a

new

database

partition

definition;

do

not

use

any

of

the

procedures

described,

as

they

apply

only

when

a

database

exists.

282

Administration

Guide:

Performance

Windows

NT

Considerations:

If

you

are

using

Enterprise

Server

Edition

on

Windows

NT

and

have

no

databases

in

the

instance,

use

the

DB2NCRT

command

to

scale

the

database

system.

If,

however,

you

already

have

databases,

use

the

DB2START

ADDNODE

command

to

ensure

that

a

database

partition

is

created

for

each

existing

database

when

you

scale

the

system.

On

Windows

NT,

you

should

never

manually

edit

the

node

configuration

file

(db2nodes.cfg),

as

this

can

introduce

inconsistencies

into

the

file.

Related

tasks:

v

“Adding

a

partition

to

a

running

database

system”

on

page

283

v

“Adding

a

partition

to

a

stopped

database

system

on

Windows

NT”

on

page

284

v

“Dropping

a

database

partition”

on

page

288

Adding

a

partition

to

a

running

database

system

You

can

add

new

database

partitions

to

a

partitioned

database

system

while

it

is

running

and

while

applications

are

connected

to

databases.

However,

a

newly

added

server

does

not

become

available

to

all

databases

until

the

database

manager

is

shut

down

and

restarted.

Procedure:

To

add

a

database

partition

to

a

running

database

manager:

1.

On

any

existing

database

partition,

run

the

DB2START

command.

On

all

platforms,

specify

the

new

partition

values

for

DBPARTITIONNUM,

ADD

DBPARTITIONNUM,

HOSTNAME,

PORT,

and

NETNAME

parameters.

On

the

Windows

NT

platform,

you

also

specify

the

COMPUTER,

USER,

and

PASSWORD

parameters.

You

can

also

specify

the

source

for

any

temporary

table

space

container

definitions

that

need

to

be

created

with

the

databases.

If

you

do

not

provide

table

space

information,

temporary

table

space

container

definitions

are

retrieved

from

the

catalog

node

for

each

database.

When

the

DB2START

command

is

complete,

the

new

server

is

stopped.

2.

Stop

the

database

manager

on

all

partitions

by

running

the

DB2STOP

command.

When

you

stop

all

the

database

partitions

in

the

system,

the

node

configuration

file

is

updated

to

include

the

new

database

partition.

The

node

configuration

file

is

not

updated

with

the

new

server

information

until

DB2STOP

is

executed.

This

ensures

that

the

ADD

DBPARTITIONNUM

command,

which

is

called

when

you

specify

the

ADDNODE

parameter

to

the

DB2START

command,

runs

on

the

correct

database

partition.

When

the

utility

ends,

the

new

server

partition

is

stopped.

3.

Start

the

database

manager

by

running

the

DB2START

command.

The

newly

added

database

partition

is

now

started

along

with

the

rest

of

the

system.

When

all

the

database

partitions

in

the

system

are

running,

you

can

run

system-wide

activities,

such

as

creating

or

dropping

a

database.

Note:

You

might

have

to

issue

the

DB2START

command

twice

for

all

database

partition

servers

to

access

the

new

db2nodes.cfg

file.

4.

Back

up

all

databases

on

the

new

database

partition.

(Optional)

5.

Redistribute

data

to

the

new

database

partition.

(Optional)

Chapter

10.

Scaling

your

configuration

283

Related

concepts:

v

“Partitions

in

a

partitioned

database”

on

page

282

Related

tasks:

v

“Adding

a

partition

to

a

stopped

database

system

on

Windows

NT”

on

page

284

v

“Adding

a

partition

to

a

stopped

database

system

on

UNIX”

on

page

285

Adding

a

partition

to

a

stopped

database

system

on

Windows

NT

You

can

add

new

database

partitions

to

a

partitioned

database

system

while

it

is

stopped.

The

newly

added

database

partition

becomes

available

to

all

databases

when

the

database

manager

is

started

up

again.

Prerequisites:

You

must

install

the

new

server

before

you

can

create

a

partition

on

it.

Procedure:

To

add

a

partition

to

a

stopped

partitioned

database

server:

1.

Issue

DB2STOP

to

stop

all

the

database

partitions.

2.

Run

the

ADD

DBPARTITIONNUM

command

on

the

new

server.

A

database

partition

is

created

locally

for

every

database

that

already

exists

in

the

system.

The

database

parameters

for

the

new

database

partitions

are

set

to

the

default

value,

and

each

database

partition

remains

empty

until

you

move

data

to

it.

Update

the

database

configuration

parameter

values

to

match

those

on

the

other

database

partitions.

3.

Run

the

DB2START

command

to

start

the

database

system.

Note

that

the

node

configuration

file

(cfg

)

has

already

been

updated

to

include

the

new

server

during

the

installation

of

the

new

server.

4.

Update

the

configuration

file

on

the

new

partition

as

follows:

a.

On

any

existing

database

partition,

run

the

DB2START

command.

Specify

the

new

partition

values

for

DBPARTITIONNUM,

ADDDB2PARTITIONNUM,

HOSTNAME,

PORT,

and

NETNAME

parameters

as

well

as

the

COMPUTER,

USER,

and

PASSWORD

parameters.

You

can

also

specify

the

source

for

any

temporary

table-space

container

definitions

that

need

to

be

created

with

the

databases.

If

you

do

not

provide

table-space

information,

temporary

table-space

container

definitions

are

retrieved

from

the

catalog

node

for

each

database.

When

the

DB2START

command

is

complete,

the

new

server

is

stopped.

b.

Stop

the

entire

database

manager

by

running

the

DB2STOP

command.

When

you

stop

all

the

database

partitions

in

the

system,

the

node

configuration

file

is

updated

to

include

the

new

database

partition.

The

node

configuration

file

is

not

updated

with

the

new

server

information

until

DB2STOP

is

executed.

This

ensures

that

the

ADD

DB2PARTITIONNUM

command,

which

is

called

when

you

specify

the

ADDDB2PARTITIONNUM

parameter

to

the

DB2START

command,

runs

on

the

correct

database

partition.

When

the

utility

ends,

the

new

server

partition

is

stopped.
5.

Start

the

database

manager

by

running

the

DB2START

command.

The

newly

added

database

partition

is

now

started

with

the

rest

of

the

system.

284

Administration

Guide:

Performance

When

all

the

database

partitions

in

the

system

are

running,

you

can

run

system-wide

activities,

such

as

creating

or

dropping

a

database.

Note:

You

might

have

to

issue

the

DB2START

command

twice

for

all

database

partition

servers

to

access

the

new

db2nodes.cfg

file.

6.

Back

up

all

databases

on

the

new

database

partition.

(Optional)

7.

Redistribute

data

to

the

new

database

partition.

(Optional)

Related

concepts:

v

“Partitions

in

a

partitioned

database”

on

page

282

v

“Node-addition

error

recovery”

on

page

287

Related

tasks:

v

“Adding

a

partition

to

a

running

database

system”

on

page

283

v

“Adding

a

partition

to

a

stopped

database

system

on

UNIX”

on

page

285

Adding

a

partition

to

a

stopped

database

system

on

UNIX

You

can

add

new

database

partitions

to

a

partitioned

database

system

while

it

is

stopped.

The

newly

added

database

partition

becomes

available

to

all

databases

when

the

database

manager

is

started

up

again.

Prerequisites:

You

must

install

the

new

server

if

it

does

not

exist,

including

the

following

tasks:

v

Making

executables

accessible

(using

shared

file-system

mounts

or

local

copies)

v

Synchronizing

operating

system

files

with

those

on

existing

processors

v

Ensuring

that

the

sqllib

directory

is

accessible

as

a

shared

file

system

v

Ensuring

that

the

relevant

operating

system

parameters

(such

as

the

maximum

number

of

processes)

are

set

to

the

appropriate

values

You

must

also

register

the

host

name

with

the

name

server

or

in

the

hosts

file

in

the

etc

directory

on

all

database

partitions.

Procedure:

To

add

a

partition

to

a

stopped

partitioned

database

server:

1.

Issue

DB2STOP

to

stop

all

the

database

partitions.

2.

Run

the

ADD

DB2PARTITIONNUM

command

on

the

new

server.

A

database

partition

is

created

locally

for

every

database

that

already

exists

in

the

system.

The

database

parameters

for

the

new

database

partitions

are

set

to

the

default

value,

and

each

database

partition

remains

empty

until

you

move

data

to

it.

Update

the

database

configuration

parameter

values

to

match

those

on

the

other

database

partitions.

3.

Run

the

DB2START

command

to

start

the

database

system.

Note

that

the

node

configuration

file

(cfg

)

has

already

been

updated

to

include

the

new

server

during

the

installation

of

the

new

server.

4.

Update

the

configuration

file

on

the

new

partition

as

follows:

a.

On

any

existing

database

partition,

run

the

DB2START

command.

Chapter

10.

Scaling

your

configuration

285

Specify

the

new

partition

values

for

DB2PARTITIONNUM,

ADDDB2PARTITIONNUM,

HOSTNAME,

PORT,

and

NETNAME

parameters

as

well

as

the

COMPUTER,

USER,

and

PASSWORD

parameters.

You

can

also

specify

the

source

for

any

temporary

table-space

container

definitions

that

need

to

be

created

with

the

databases.

If

you

do

not

provide

table-space

information,

temporary

table-space

container

definitions

are

retrieved

from

the

catalog

node

for

each

database.

When

the

DB2START

command

is

complete,

the

new

server

is

stopped.

b.

Stop

the

entire

database

manager

by

running

the

DB2STOP

command.

When

you

stop

all

the

database

partitions

in

the

system,

the

node

configuration

file

is

updated

to

include

the

new

database

partition.

The

node

configuration

file

is

not

updated

with

the

new

server

information

until

DB2STOP

is

executed.

This

ensures

that

the

ADD

DB2PARTITIONNUM

command,

which

is

called

when

you

specify

the

ADDDB2PARTITIONNUM

parameter

to

the

DB2START

command,

runs

on

the

correct

database

partition.

When

the

utility

ends,

the

new

server

partition

is

stopped.
5.

Start

the

database

manager

by

running

the

DB2START

command.

The

newly

added

database

partition

is

now

started

with

the

rest

of

the

system.

When

all

the

database

partitions

in

the

system

are

running,

you

can

run

system-wide

activities,

such

as

creating

or

dropping

a

database.

Note:

You

might

have

to

issue

the

DB2START

command

twice

for

all

database

partition

servers

to

access

the

new

db2nodes.cfg

file.

6.

Back

up

all

databases

on

the

new

database

partition.

(Optional)

7.

Redistribute

data

to

the

new

database

partition.

(Optional)

You

can

also

update

the

configuration

file

manually,

as

follows:

1.

1.

Edit

the

db2nodes.cfg

file

and

add

the

new

database

partition

to

it.

2.

Issue

the

following

command

to

start

the

new

node:

DB2START

DB2PARTITIONNUM

partitionnum

Specify

the

number

you

are

assigning

to

the

new

database

partition

as

the

value

of

nodenum.

3.

If

the

new

server

is

to

be

a

logical

database

partition

(that

is,

it

is

not

node

0),

use

db2set

command

to

update

the

DB2PARTITIONNUM

registry

variable.

Specify

the

number

of

the

database

partition

you

are

adding.

4.

Run

the

ADD

NODE

command

on

the

new

database

partition.

This

command

creates

a

database

partition

locally

for

every

database

that

already

exists

in

the

system.

The

database

parameters

for

the

new

database

partitions

are

set

to

the

default

value,

and

each

database

partition

remains

empty

until

you

move

data

to

it.

Update

the

database

configuration

parameter

values

to

match

those

on

the

other

database

partitions.

5.

When

the

ADD

DB2PARTITIONNUM

command

completes,

issue

the

DB2START

command

to

start

the

other

database

partitions

in

the

system.

Do

not

perform

any

system-wide

activities,

such

as

creating

or

dropping

a

database,

until

all

database

partitions

are

successfully

started.

Related

concepts:

v

“Node-addition

error

recovery”

on

page

287

Related

tasks:

v

“Adding

a

partition

to

a

running

database

system”

on

page

283

286

Administration

Guide:

Performance

v

“Adding

a

partition

to

a

stopped

database

system

on

Windows

NT”

on

page

284

v

“Dropping

a

database

partition”

on

page

288

Node-addition

error

recovery

Because

in

version

8.1

and

later,

DB2®

creates

“hidden”

buffer

pools

to

provide

default

automatic

support

for

all

buffer-pool

page

sizes,

node-addition

does

not

fail

because

of

non-existent

buffer

pools.

However,

if

one

of

these

“hidden”

buffer

pools

is

used,

performance

might

be

seriously

affected

because

the

hidden

buffer

pools

are

very

small.

If

a

hidden

buffer

pool

is

used,

a

message

is

written

to

the

administration

notification

log.

Hidden

buffer

pools

are

used

in

node-addition

scenarios

in

the

following

circumstances:

v

You

add

nodes

to

a

partitioned

database

that

has

one

or

more

system

temporary

table

spaces

with

a

page

size

that

is

different

from

the

default

of

4

KB.

When

a

node

is

created,

only

the

IBMDEFAULTDP

buffer

pool

exists,

and

this

buffer

pool

has

a

page

size

of

4

KB.

Consider

the

following

examples:

1.

You

use

the

db2start

command

to

add

a

node

to

the

current

partitioned

database:

DB2START

DB2PARTITIONNUM

2

ADD

DB2PARTITIONNUM

HOSTNAME

newhost

PORT

2

2.

You

use

the

ADD

DB2PARTITIONNUM

command

after

you

manually

update

the

db2nodes.cfg

file

with

the

new

node

description.

One

way

to

prevent

these

problems

is

to

specify

the

WITHOUT

TABLESPACES

clause

on

the

ADD

NODE

or

the

db2start

command.

After

doing

this,

you

need

to

use

the

CREATE

BUFFERPOOL

statement

to

create

the

buffer

pools

using

,

and

associate

the

system

temporary

table

spaces

to

the

buffer

pool

using

the

ALTER

TABLESPACE

statement.

v

You

add

nodes

to

an

existing

database

partition

group

that

has

one

or

more

table

spaces

with

a

page

size

that

is

different

from

the

default

page

size,

which

is

4

KB.

This

occurs

because

the

non-default

page-size

buffer

pools

created

on

the

new

node

have

not

been

activated

for

the

table

spaces.

Note:

In

previous

versions

of

DB2,

this

command

used

the

NODEGROUP

keyword

instead

of

the

DATABASE

PARTITION

GROUP

keywords.

Consider

the

following

example:

–

You

use

the

ALTER

DATABASE

PARTITION

GROUP

statement

to

add

a

node

to

a

database

partition

group,

as

follows:

DB2START

CONNECT

TO

mpp1

ALTER

DATABASE

PARTITION

GROUP

ng1

ADD

NODE

(2)

One

way

to

prevent

this

problem

is

to

create

buffer

pools

for

each

page

size

and

then

to

reconnect

to

the

database

before

issuing

the

following

ALTER

DATABASE

PARTITION

GROUP

statement:

DB2START

CONNECT

TO

mpp1

CREATE

BUFFERPOOL

bp1

SIZE

1000

PAGESIZE

8192

CONNECT

RESET

CONNECT

TO

mpp1

ALTER

DATABASE

PARTITION

GROUP

ng1

ADD

NODE

(2)

Chapter

10.

Scaling

your

configuration

287

Note:

If

the

database

partition

group

has

table

spaces

with

the

default

page

size,

the

following

message

is

returned:

SQL1759W

Redistribute

nodegroup

is

required

to

change

data

positioning

for

objects

in

nodegroup

"ng1"

to

include

some

added

nodes

or

exclude

some

drop

nodes.

Related

tasks:

v

“Adding

a

partition

to

a

running

database

system”

on

page

283

v

“Adding

a

partition

to

a

stopped

database

system

on

Windows

NT”

on

page

284

Dropping

a

database

partition

You

can

drop

a

database

partition

that

is

not

being

used

by

any

database

and

free

the

computer

for

other

uses.

Prerequisites:

Verify

that

the

partition

is

not

in

use

by

issuing

the

DROP

NODE

VERIFY

command

or

the

sqledrpn

API.

v

If

you

receive

message

SQL6034W

(Node

not

used

in

any

database),

you

can

drop

the

partition.

v

If

you

receive

message

SQL6035W

(Node

in

use

by

database),

use

the

REDISTRIBUTE

NODEGROUP

command

to

redistribute

the

data

from

the

database

partition

that

you

are

dropping

to

other

database

partitions

from

the

database

alias.

Also

ensure

that

all

transactions

for

which

this

database

partition

was

the

coordinator

have

all

committed

or

rolled

back

successfully.

This

may

require

doing

crash

recovery

on

other

servers.

For

example,

if

you

drop

the

coordinator

database

partition

(that

is,

the

coordinator

node),

and

another

database

partition

participating

in

a

transaction

crashed

before

the

coordinator

node

was

dropped,

the

crashed

database

partition

will

not

be

able

to

query

the

coordinator

node

for

the

outcome

of

any

in-doubt

transactions.

Procedure:

To

drop

a

database

partition:

1.

Issue

the

DB2STOP

command

with

the

DROP

NODENUM

parameter

to

drop

the

database

partition.

After

the

command

completes

successfully,

the

system

is

stopped.

2.

Start

the

database

manager

with

the

DB2START

command.

Related

concepts:

v

“Management

of

database

server

capacity”

on

page

281

v

“Partitions

in

a

partitioned

database”

on

page

282

288

Administration

Guide:

Performance

Chapter

11.

Redistributing

Data

Across

Database

Partitions

This

chapter

provides

information

about

determining

when

to

redistribute

data

across

partitions,

how

to

perform

the

redistribution,

and

how

to

recover

from

redistribution

errors.

Data

redistribution

To

redistribute

table

data

among

the

partitions

in

a

partitioned

database,

you

use

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command.

Note:

In

previous

versions

of

DB2®,

this

command

used

the

NODEGROUP

keyword

instead

of

the

DATABASE

PARTITION

GROUP

keywords.

In

a

partitioned

database

you

might

redistribute

data

for

the

following

reasons:

v

To

balance

data

volumes

and

processing

loads

across

database

partitions.

Performance

improves

if

data

access

can

be

spread

out

over

more

than

one

partition.

v

To

introduce

skew

in

the

data

distribution

across

database

partitions.

Access

and

throughput

performance

might

improve

if

you

redistribute

data

in

a

frequently

accessed

table

so

that

infrequently

accessed

data

is

on

a

small

number

of

database

partitions

in

the

database

partitioning

group,

and

the

frequently

accessed

data

is

distributed

over

a

larger

number

of

partitions.

This

would

improve

access

performance

and

throughput

on

the

most

frequently

run

applications.

To

preserve

table

collocation,

use

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command

to

redistribute

data

at

the

database

partitioning

group

level.

All

tables

are

redistributed

in

a

single

operation.

To

achieve

a

specified

data

distribution,

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command

divides

tables

among

the

database

partitions

as

it

moves

the

rows.

Depending

on

the

option

you

specify,

the

utility

can

either

generate

a

target

partitioning

map

or

use

an

existing

partitioning

map

as

input.

How

data

is

redistributed

across

database

partitions

Data

redistribution

is

performed

on

the

set

of

tables

in

the

specified

database

partitioning

group

of

a

database.

You

must

connect

to

the

database

at

the

catalog

database

partition

before

executing

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command

to

invoke

the

Data

Redistribution

utility.

The

utility

uses

both

the

source

partitioning

map

and

the

target

partitioning

map

to

identify

which

hash

partitions

have

been

assigned

to

a

new

location,

which

is

a

new

database

partition

number.

All

rows

that

correspond

to

a

partition

that

has

a

new

location

are

moved

from

the

database

partition

specified

in

the

source

partitioning

map

to

the

database

partition

specified

in

the

target

partitioning

map.

The

Data

Redistribution

utility

performs

the

following

steps:

1.

Obtains

a

new

partitioning

map

ID

for

the

target

partitioning

map,

and

inserts

it

into

the

SYSCAT.PARTITIONMAPS

catalog

view.

©

Copyright

IBM

Corp.

1993

-

2004

289

2.

Updates

the

REBALANCE_PMAP_ID

column

in

the

SYSCAT.DBPARTITIONGROUPS

catalog

view

for

the

database

partitioning

group

with

the

new

partitioning

map

ID.

3.

Adds

any

new

database

partitions

to

the

SYSCAT.DBPARTITIONGROUPDEF

catalog

view.

4.

Sets

the

IN_USE

column

in

the

SYSCAT.DBPARTITIONGROUPDEF

catalog

view

to

’D’

for

any

database

partition

that

is

to

be

dropped.

5.

Does

a

COMMIT

for

the

catalog

updates.

6.

Creates

database

files

for

all

new

database

partitions.

7.

Redistributes

the

data

on

a

table-by-table

basis

for

every

table

in

the

database

partitioning

group,

in

the

following

steps:

a.

Locks

the

row

for

the

table

in

the

SYSTABLES

catalog

table.

b.

Invalidates

all

packages

that

involve

this

table.

The

partitioning

map

ID

associated

with

the

table

changes

because

the

table

rows

are

redistributed.

Because

the

packages

are

invalidated,

the

compiler

must

obtain

the

new

partitioning

information

for

the

table

and

generate

packages

accordingly.

c.

Locks

the

table

in

exclusive

mode.

d.

Uses

DELETEs

and

INSERTs

to

redistribute

the

data

in

the

table.

e.

If

the

redistribution

operation

succeeds,

it

issues

a

COMMIT

for

the

table

and

continues

with

the

next

table

in

the

database

partitioning

group.

If

the

operation

fails

before

the

table

is

fully

redistributed,

the

utility

Issues

a

ROLLBACK

on

updates

to

the

table,

ends

the

entire

redistribution

operation

and

returns

an

error.

8.

Deletes

database

files

and

deletes

entries

in

the

SYSCAT.NODEGROUPDEF

catalog

view

for

database

partitions

that

were

previously

marked

to

be

dropped.

9.

Updates

the

database

partitioning

group

record

in

the

SYSCAT.NODEGROUPS

catalog

view

to

set

PMAP_ID

to

the

value

of

REBALANCE_PMAP_ID

and

REBALANCE_PMAP_ID

to

NULL.

10.

Deletes

the

old

partitioning

map

from

the

SYSCAT.PARTITIONMAPS

catalog

view.

11.

Does

a

COMMIT

for

all

changes.

Related

concepts:

v

“Log

space

requirements

for

data

redistribution”

on

page

293

v

“Redistribution

error

recovery”

on

page

294

Related

tasks:

v

“Redistributing

data

across

partitions”

on

page

291

v

“Determining

whether

to

redistribute

data”

on

page

290

Determining

whether

to

redistribute

data

Before

you

decide

to

repartition

data,

find

out

whether

data

is

distributed

unequally

among

partitions.

After

you

have

current

distribution

information,

you

can

use

this

information

to

create

a

custom

redistribution

file

or

partitioning

map.

Procedure:

To

get

information

about

current

data

distributions

for

partitions

in

a

database

partition

group:

290

Administration

Guide:

Performance

1.

Determine

if

any

database

partitions

have

unequal

distributions

of

rows.

For

the

largest

table,

use

an

appropriate

partitioning

column

and

enter

a

query

such

as

the

following:

SELECT

PARTITION(column_name),

COUNT(*)

FROM

table_name

GROUP

BY

PARTITION(column_name)

ORDER

BY

PARTITION(column_name)

DESC

FETCH

FIRST

100

ROWS

ONLY

The

PARTITION

and

DBPARTITIONNUM

SQL

functions

determine

the

current

data

distribution

across

hash

partitions

or

database

partitions.

The

PARTITION

function

returns

the

partitioning

map

index

for

each

row

of

the

table.

The

DBPARTITIONNUM

function

returns

the

partition

number

of

the

row.

2.

Execute

this

query

for

other

large

tables

that

are

partitioned

across

the

database

partition

group.

3.

Use

the

information

to

create

both

a

distribution

file

and

a

target

partitioning

map.

Note:

You

can

also

use

AutoLoader

utility

with

its

ANALYZE

option

to

create

a

data

distribution

file.

You

can

use

this

file

as

input

to

the

Data

Redistribution

utility.

Related

concepts:

v

“Data

redistribution”

on

page

289

v

“Log

space

requirements

for

data

redistribution”

on

page

293

Related

tasks:

v

“Redistributing

data

across

partitions”

on

page

291

Redistributing

data

across

partitions

In

a

partitioned

database,

you

might

redistribute

data

among

partitions

to

balance

data

access

in

the

following

cases:

v

When

some

partitions

contain

more

data

than

others

v

When

some

partitions

are

accessed

more

frequently

than

others

Prerequisites:

Log

file

size:

Ensure

that

log

files

are

large

enough

for

the

data

redistribution

operation.

The

log

file

on

each

affected

partition

must

be

large

enough

to

accommodate

the

INSERT

and

DELETE

operations

performed

there.

Replicated

materialized

query

tables:

If

the

data

in

a

database

partition

group

contains

replicated

materialized

query

tables,

you

must

drop

these

tables

before

you

redistribute

the

data.

After

data

is

redistributed,

you

can

recreate

the

materialized

query

tables.

Restrictions:

You

can

do

the

following

operations

on

objects

of

the

database

partition

group

while

the

utility

is

running.

You

cannot,

however,

do

them

on

the

table

that

is

being

redistributed.

You

can:

v

Create

indexes

on

other

tables.

The

CREATE

INDEX

statement

uses

the

partitioning

map

of

the

affected

table.

Chapter

11.

Redistributing

Data

Across

Database

Partitions

291

v

Drop

other

tables.

The

DROP

TABLE

statement

uses

the

partitioning

map

of

the

affected

table.

v

Drop

indexes

on

other

tables.

The

DROP

INDEX

statement

uses

the

partitioning

map

of

the

affected

table.

v

Query

other

tables.

v

Update

other

tables.

v

Create

new

tables

in

a

table

space

defined

in

the

database

partition

group.

The

CREATE

TABLE

statement

uses

the

target

partitioning

map.

v

Create

table

spaces

in

the

database

partition

group.

You

cannot

do

the

following

operations

while

the

utility

is

running:

v

Start

another

redistribution

operation

on

the

database

partition

group

v

Execute

an

ALTER

TABLE

statement

on

any

table

in

the

database

partition

group

v

Drop

the

database

partition

group

v

Alter

the

database

partition

group.

You

cannot

use

this

procedure

to

redistribute

data

after

adding

a

partition

to

a

single-partition

system

unless

all

affected

tables

have

a

partitioning

key.

The

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command

relies

on

partitioning

keys

to

redistribute

data.

The

partitioning

key

is

generated

automatically

when

a

table

is

created

in

a

multi-partition

database

partition

group,

or

can

be

explicitly

defined

using

the

CREATE

TABLE

or

ALTER

TABLE

SQL

statements.

If

your

tables

were

created

in

a

single-partition

partition

group,

and

you

did

not

define

the

partitioning

key

in

the

CREATE

TABLE

SQL

statement,

there

will

be

no

partitioning

keys

defined.

You

must

use

the

ALTER

TABLE

SQL

statement

to

create

a

partitioning

key

for

each

affected

table

before

redistributing

the

data.

Procedure:

To

redistribute

data

across

partitions

in

a

database

partition

group:

1.

Connect

to

the

database

partition

that

contains

the

system

catalog

tables.

2.

Perform

prerequisite

tasks,

if

necessary.

3.

Issue

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command.

Note:

In

previous

versions

of

DB2,

this

command

used

the

NODEGROUP

keyword

instead

of

the

DATABASE

PARTITION

GROUP

keywords.

Specify

the

following

arguments:

database

partition

group

name

You

must

specify

the

database

partition

group

within

which

data

is

to

be

redistributed.

UNIFORM

If

data

is

evenly

distributed

and

is

to

remain

evenly

distributed,

either

specify

UNIFORM

or

omit

any

distribution-type

argument.

UNIFORM

is

the

default.

USING

DISTFILE

distfile-name

To

specify

a

custom

distribution

that

corrects

or

creates

data

skew,

include

the

distribution

file

name.

The

Redistribute

Data

utility

uses

this

file

to

construct

a

target

partitioning

map.

USING

TARGETMAP

targetmap-name

The

Redistribute

Data

utility

uses

the

specified

target

map

directly.

292

Administration

Guide:

Performance

For

details,

refer

to

the

REDISTRIBUTE

DATABASE

PARTITION

GROUP

command-line

utility

information.

4.

After

redistribution

is

complete:

v

Recreate

any

replicated

materialized

query

tables

dropped

before

redistribution.

v

Execute

the

RUNSTATS

command

to

collect

data

distribution

statistics

for

the

SQL

compiler

and

optimizer

to

use

when

it

chooses

data

access

plans

for

queries.

Note:

The

Explain

tables

contain

information

about

the

partitioning

map

used

to

redistribute

data.

Related

concepts:

v

“Data

redistribution”

on

page

289

v

“Log

space

requirements

for

data

redistribution”

on

page

293

v

“Redistribution

error

recovery”

on

page

294

Related

tasks:

v

“Determining

whether

to

redistribute

data”

on

page

290

Log

space

requirements

for

data

redistribution

Before

you

redistribute

data

across

partitions,

consider

the

log-space

requirements.

The

log

must

be

large

enough

to

accommodate

the

INSERT

and

DELETE

operations

at

each

database

partition

where

data

is

being

redistributed.

The

heaviest

logging

requirements

will

be

either

on

the

database

partition

that

will

lose

the

most

data,

or

on

the

database

partition

that

will

gain

the

most

data.

If

you

are

moving

to

a

larger

number

of

database

partitions,

use

the

ratio

of

current

database

partitions

to

the

new

number

of

database

partitions

to

estimate

the

number

of

INSERT

and

DELETE

operations.

For

example,

consider

redistributing

data

that

is

uniformly

distributed

before

redistribution.

If

you

are

moving

from

four

to

five

database

partitions,

approximately

twenty

percent

of

the

four

original

database

partitions

will

move

to

the

new

database

partition.

This

means

that

twenty

percent

of

the

DELETE

operations

will

occur

on

each

of

the

four

original

database

partitions,

and

all

of

the

INSERT

operations

will

occur

on

the

new

database

partition.

Consider

a

non-uniform

distribution

of

the

data,

such

as

the

case

in

which

the

partitioning

key

contains

many

NULL

values.

In

this

case,

all

rows

that

contain

a

NULL

value

in

the

partitioning

key

move

from

one

database

partition

under

the

old

partitioning

scheme

and

to

a

different

database

partition

under

the

new

partitioning

scheme.

As

a

result,

the

amount

of

log

space

required

on

those

two

database

partitions

increases,

perhaps

well

beyond

the

amount

calculated

by

assuming

uniform

distribution.

The

redistribution

of

each

table

is

a

single

transaction.

For

this

reason,

when

you

estimate

log

space,

you

multiply

the

percentage

of

change,

such

as

twenty

percent,

by

the

size

of

the

largest

table.

Consider,

however,

that

the

largest

table

might

be

uniformly

distributed

but

the

second

largest

table,

for

example,

might

have

one

or

more

inflated

database

partitions.

In

such

a

case,

consider

using

the

non-uniformly

distributed

table

instead

of

the

largest

one.

Chapter

11.

Redistributing

Data

Across

Database

Partitions

293

Note:

After

you

estimate

the

maximum

amount

of

data

to

be

inserted

and

deleted

at

a

database

partition,

double

that

estimate

to

determine

the

peak

size

of

the

active

log.

If

this

estimate

is

greater

than

the

active

log

limit

of

256

GB,

then

the

data

redistribution

must

be

done

in

steps.

Use

the

“makepmap”

utility

to

generate

a

series

of

target

partition

maps,

one

for

each

step.

You

might

also

set

the

logsecond

database

configuration

parameter

to

-1

to

avoid

most

log

space

problems.

Related

concepts:

v

“Data

redistribution”

on

page

289

Redistribution

error

recovery

After

the

redistribution

operation

begins

to

execute,

a

file

is

written

to

the

redist

subdirectory

of

the

sqllib

directory.

This

status

file

lists

any

operations

that

are

done

on

database

partitions,

the

names

of

the

tables

that

were

redistributed,

and

the

completion

status

of

the

operation.

If

a

table

cannot

be

redistributed,

its

name

and

the

applicable

SQLCODE

is

listed

in

the

file.

If

the

redistribution

operation

cannot

begin

because

of

an

incorrect

input

parameter,

the

file

is

not

written

and

an

SQLCODE

is

returned.

The

file

has

the

following

naming

convention:

For

UNIX®

platforms:

databasename.database

partition

groupname.timestamp

For

non-UNIX

platforms:

databasename\database

partition

groupname\date\time

Note:

On

non-UNIX

platforms,

only

the

first

eight

(8)

bytes

of

the

database

partition

group

name

are

used.

If

the

data

redistribution

operation

fails,

some

tables

may

be

redistributed,

while

others

are

not.

This

occurs

because

data

redistribution

is

performed

a

table

at

a

time.

You

have

two

options

for

recovery:

v

Use

the

CONTINUE

option

to

continue

the

operation

to

redistribute

the

remaining

tables.

v

Use

the

ROLLBACK

option

to

undo

the

redistribution

and

set

the

redistributed

tables

back

to

their

original

state.

The

rollback

operation

can

take

about

the

same

amount

of

time

as

the

original

redistribution

operation.

Before

you

can

use

either

option,

a

previous

data

redistribution

operation

must

have

failed

such

that

the

REBALANCE_PMID

column

in

the

SYSCAT.DBPARTITIONGROUPS

table

is

set

to

a

non-NULL

value.

If

you

happen

to

delete

the

status

file

by

mistake,

you

can

still

attempt

a

CONTINUE

operation.

Related

concepts:

v

“Data

redistribution”

on

page

289

Related

tasks:

v

“Redistributing

data

across

partitions”

on

page

291

294

Administration

Guide:

Performance

Redistribute

stored

procedures

and

functions

The

stepwise

redistribute

stored

procedures

can

be

used

to

safely

redistribute

a

database

partition

group

in

a

number

of

steps:

1.

Analyze

the

database

partition

group

regarding

log

space

availability

and

data

skew.

2.

Create

data

distribution

file

for

a

given

table.

3.

Create

and

report

the

content

of

a

stepwise

redistribution

plan

for

the

database

partition

group.

4.

Redistribute

the

database

partition

group

according

to

the

plan.

When

working

with

individual

parameters

in

the

following

procedures,

“-1”

is

used

as

an

output

value

for

parameters

when

their

values

cannot

be

obtained.

Note:

The

redistribute

stored

procedures

and

functions

work

only

in

partitioned

databases,

where

a

partitioning

key

has

been

defined

for

each

table.

get_swrd_settings

stored

procedure

The

get_swrd_settings

function

reads

the

existing

redistribute

registry

records

for

the

given

database

partition

group.

Table

31.

get_swrd_settings,

input

parameters

Name

Data

type

Description

dbpgName

VARCHAR(128)

The

database

partition

group

name,

against

which

the

redistribute

process

is

to

run.

matchingSpec

SMALLINT

Bitwise

field

indentifier(s)

from

Table

32

indicating

the

target

fields

to

be

returned

by

the

output

parameters

in

Table

33

on

page

296.

Those

output

parameters

that

are

not

required

can

be

set

to

null.

For

example,

if

matchingSpec

is

set

to

96,

which

is

the

integer

value

of

(REDIST_STAGE_SIZE

|

REDIST_NEXT_STEP),

the

caller

of

this

function

only

needs

to

provide

stageSize

and

nextStep

to

receive

the

values,

and

the

rest

of

the

output

parameters

can

be

null.

Table

32.

Bitwise

field

indentifiers

Field

Name

Hexadecimal

value

Decimal

value

REDIST_METHOD

0x0001<<0

1

REDIST_PMAP_FILE

0x0001<<1

2

REDIST_DIST_FILE

0x0001<<2

4

REDIST_STEP_SIZE

0x0001<<3

8

REDIST_NUM_STEPS

0x0001<<4

16

REDIST_STAGE_SIZE

0x0001<<5

32

REDIST_NEXT_STEP

0x0001<<6

64

REDIST_PROCESS_STATE

0x0001<<7

128

REDIST_PWEIGHT_START_NODE

0x0001<<8

256

REDIST_PWEIGHT

0x0001<<9

512

Chapter

11.

Redistributing

Data

Across

Database

Partitions

295

Table

33.

get_swrd_settings,

output

parameters

Name

Data

type

Description

redistMethod

SMALLINT

The

number

indicating

the

redistribute

is

to

run

using

the

distribution

file

or

target

partitioning

map.

pMapFile

VARCHAR

(255)

The

full

path

file

name

of

the

target

partition

map.

distFile

VARCHAR

(255)

The

full

path

file

name

of

the

data

distribution

file.

stepSize

BIGINT

The

maximum

number

of

rows

that

can

be

moved

before

a

commit

must

be

called

to

prevent

a

log

full

situation.

The

number

can

be

moved

in

each

redistribution

step.

totalSteps

SMALLINT

The

number

of

steps

it

takes

to

completely

redistribute

the

given

database

partition

group.

stageSize

SMALLINT

The

number

of

steps

to

be

run

consecutively.

nextStep

SMALLINT

The

index

separating

which

steps

have

been

completed,

and

what

still

needs

to

be

run.

processState

SMALLINT

A

flag

which

can

be

set

by

the

user

to

stop

the

redistribute

stage

at

the

nextStep.

pNumber

VARCHAR(6000)

A

pre-allocated

string

which

will

be

populated

with

all

the

partition

numbers

in

the

database

partition

group

corresponding

to

the

partition

weight.

The

partition

numbers

in

the

string

are

separated

by

a

“,”.

pWeight

VARCHAR(6000)

A

pre-allocated

string

which

will

be

populated

with

all

the

relative

weights

of

the

volume

on

each

partition

that

has

been

specified

through

the

SET_SWRD_SETTINGS

stored

procedure.

The

partition

weights

in

the

string

are

separated

by

a

“,”.

set_swrd_settings

stored

procedure

The

set_swrd_settings

function

creates

or

make

changes

to

the

redistribute

registry.

If

the

registry

does

not

exist,

it

creates

it

and

add

records

into

it.

If

the

registry

already

exists,

it

uses

overwriteSpec

to

identify

which

of

the

field

values

need

to

be

overwritten.

The

overwriteSpec

field

enables

this

function

to

take

NULL

inputs

for

the

fields

that

do

not

need

to

be

updated.

The

value

“-2”can

be

used

for

stepSize

and

totalSteps

in

this

procedure

to

indicate

that

the

number

is

unlimited.

Table

34.

set_swrd_settings,

input

parameters

Name

Data

type

Description

dbpgName

VARCHAR(128)

The

database

partition

group

name,

against

which

the

redistribute

process

is

to

run.

overwriteSpec

SMALLINT

Bitwise

field

indentifier(s)

from

Table

32

on

page

295

indicating

the

target

fields

to

be

written

or

overwritten

into

the

redistribute

settings

registry.

redistMethod

SMALLINT

The

number

indicating

the

redistribute

is

to

run

using

the

distribution

file

or

target

partitioning

map.

pMapFile

VARCHAR

(255)

The

full

path

file

name

of

the

target

partition

map.

distFile

VARCHAR

(255)

The

full

path

file

name

of

the

data

distribution

file.

stepSize

BIGINT

The

maximum

number

of

rows

that

can

be

moved

before

a

commit

must

be

called

to

prevent

a

log

full

situation.

The

number

can

be

moved

in

each

redistribution

step.

296

Administration

Guide:

Performance

Table

34.

set_swrd_settings,

input

parameters

(continued)

Name

Data

type

Description

totalSteps

SMALLINT

The

number

of

steps

it

takes

to

completely

redistribute

the

given

database

partition

group.

stageSize

SMALLINT

The

number

of

steps

to

be

run

consecutively.

nextStep

SMALLINT

The

index

separating

which

steps

have

been

completed,

and

what

still

needs

to

be

run.

processState

SMALLINT

A

flag

which

can

be

set

by

the

user

to

stop

the

redistribute

stage

at

the

nextStep.

pNumber

VARCHAR(6000)

A

string

containing

all

the

partition

numbers

corresponding

to

the

partition

weight.

Each

partition

number

is

between

0

and

999,

and

the

numbers

are

separated

by

“,”.

No

spaces

are

allowed

in

the

string.

pWeight

VARCHAR(6000)

A

string

containing

all

the

partition

weights

the

user

has

specified

corresponding

to

the

partition

numbers

in

the

pNumber

string.

Each

partition

weight

is

a

number

between

0

and

SQL_MAXSMALLVAL,

and

the

numbers

are

separated

by

“,”.

No

spaces

are

allowed

in

the

string.

analyze_log_space

stored

procedure

The

analyze_log_space

function

returns

a

result

set

(an

open

cursor)

of

the

log

space

analysis

results,

containing

the

following

fields

for

each

of

the

database

partitions

of

the

given

database

partition

group.

Table

35.

analyze_log_space

fields

Column

name

Column

type

Description

PARTITION_NUM

SMALLINT

The

partition

number

of

the

log

space

analysis

TOTAL_LOG_SIZE

BIGINT

Total

log

space

allocated

in

bytes,

-1

indicates

unlimited

size

AVAIL_LOG_SPACE

BIGINT

The

amount

of

log

space

in

bytes

that

is

free

and

can

be

used

by

the

redistribute

process

DATA_SKEW

BIGINT

The

absolute

value

in

bytes

of

the

size

of

data

which

is

deviated

from

the

target

level

REQ_LOG_SPACE

BIGINT

The

amount

of

space

in

bytes

required

to

reach

the

desired

data

distribution

NUM_OF_STEPS

SMALLINT

The

number

of

steps

needed

to

reduce

the

data

skew

to

zero

MAX_STEP_SIZE

BIGINT

The

maximum

amount

of

data

in

bytes

that

can

be

moved

at

a

time,

without

causing

a

log

full

error

Table

36.

analyze_log_space,

input

parameters

Name

Data

type

Description

inDBPGroup

VARCHAR(128)

the

database

partition

group

name

inMainTbSchema

VARCHAR(128)

the

schema

of

the

main

table

inMainTable

VARCHAR(128)

the

main

table

within

the

database

partition

group

(most

likely,

it

is

the

largest

table

in

the

dbpg)

Chapter

11.

Redistributing

Data

Across

Database

Partitions

297

Table

36.

analyze_log_space,

input

parameters

(continued)

Name

Data

type

Description

useTbType

SMALLINT

indicator

for

analysis

types:

SWRD_USE_STMG_TABLE

1:

indicating

using

info

in

storage

management

tables

to

find

table

row

count

per

partition

SWRD_USE_REALTIME_ANALYSIS

2:

indicating

using

select

query

to

find

table

row

count

per

partition

inStmgTime

VARCHAR(26)

The

timestamp

for

the

storage

management

record.

This

parameter

is

ignored

when

analysisType

is

set

to

SWRD_USE_REALTIME_ANALYSIS.

addDropOption

CHAR(1)

indicator

for

adding

or

dropping

partitions

’A’

Adding

partitions

’D’

Dropping

partitions

’N’

No

adding

or

dropping

addDropList

VARCHAR(6000)

Partitions

to

be

added

or

dropped

listed

in

a

string,

separated

by

commas

(,)

pNumber

VARCHAR(6000)

A

string

containing

all

the

partition

numbers

corresponding

to

the

partition

weight.

Each

partition

number

is

between

0

and

999,

and

the

numbers

are

separated

by

“,”.

No

spaces

are

allowed

in

the

string.

pWeight

VARCHAR(6000)

A

string

containing

all

the

partition

weights

the

user

has

specified

corresponding

to

the

partition

numbers

in

the

pNumber

string.

Each

partition

weight

is

a

number

between

0

and

SQL_MAXSMALLVAL,

and

the

numbers

are

separated

by

“,”.

No

spaces

are

allowed

in

the

string.

generate_Distfile

stored

procedure

The

generate_Distfile

function

generates

a

data

distribution

file

for

the

given

table

and

saves

it

under

the

given

fileName.

Table

37.

generate_Distfile,

input

parameters

Name

Data

type

Description

inTbSchema

VARCHAR(128)

the

table

schema

name

inTbName

VARCHAR(128)

the

table

name

Table

38.

generate_Distfile,

input

and

output

parameters

Name

Data

type

Description

fileName

VARCHAR(255)

The

data

distribution

file

name.

If

the

given

file

name

is

just

a

file

name,

the

file

will

be

saved

the

instance/tmp

directory,

and

the

full

file

path

name

will

be

returned

by

the

parameter.

stepwise_redistribute_dbpg

stored

procedure

The

stepwise_redistribute_dbpg

function

redistributes

part

of

the

database

partition

group

according

to

the

input

and

the

setting

file.

Step

1.

The

settings

registry

is

searched

using

the

inDbPGroup

name:

v

If

the

registry

is

not

found,

an

error

is

returned

298

Administration

Guide:

Performance

v

If

the

registry

is

found,

the

following

values

are

read:

–

Current

step

–

Number

of

steps

–

Partitioning

map

name

–

Maximum

data

size

(can

be

moved

in

each

step)

–

Process

state

–

Partition

weights

You

can

redistribute

the

database

partition

group

all

at

once

by

inputing

inNumSteps

as

-1

(SWRD_UNLIMITED_STEPS)
Step

2.

If

registry

process

state

is

SWRD_STOP,

the

process

is

stopped

and

a

warning

message

is

returned.

If

the

process

state

is

SWRD_CONTINUE,

the

process

continues.

Step

3.

If

inStartingPoint

is

not

NULL

and

valid,

the

corresponding

registry

value

is

overwritten,

otherwise

the

registry

value

for

the

current

step

is

read

and

used

as

the

starting

point

of

this

step.

Step

4.

The

partitioning

map

for

the

current

step

is

then

generated

and

the

partition

weights

are

retrieved

from

the

settings

registry.

If

an

existing

complete

partitioning

map

or

distfile

has

been

provided,

the

partitioning

map

will

be

generated

accordingly.

Step

5.

The

Redistribute

API

is

called

using

the

partitioning

map

option.

When

the

process

completes,

the

registry

value

for

the

next

step

is

incremented.

Steps

1

to

5

are

repeated

for

the

number

of

steps

indicated

in

the

registry.

The

value

“-2”

can

be

used

in

this

procedure

to

indicate

that

the

number

is

unlimited.

Table

39.

stepwise_redistribute_dbpg

input

parameters

Name

Data

type

Description

inDBPGroup

VARCHAR(128)

The

name

of

the

target

database

partition

group

inStartingPoint

SMALLINT

This

parameter

can

be

NULL.

If

it

is

not

null

and

pointing

to

a

positive

number,

it

is

used

to

overwrite

the

″nextStep″

value

given

by

the

swrd

settings

registry.

This

can

be

a

useful

option

when

you

want

to

rerun

SWRD

from

a

particular

step.

inNumSteps

SMALLINT

The

number

of

steps

to

run.

If

not

null

and

pointing

to

a

positive

number,

it

is

used

to

overwrite

the

″numSteps″

value

given

by

the

swrd

settings

registry.

This

can

be

a

useful

option

when

you

want

to

rerun

SWRD

with

a

different

number

of

steps

than

what

is

specified

in

the

settings.

For

example,

if

there

are

five

steps

in

a

scheduled

stage,

and

the

SWRD

process

failed

at

step

3,

after

correcting

the

error

condition,

SWRD

can

be

called

to

run

the

remaining

three

steps.

db_partitions

UDF

The

db_partitions

user-defined

function

parses

through

the

db2nodes.cfg

file,

and

returns

a

row

for

each

partition

found.

Input

parameters:

none

Chapter

11.

Redistributing

Data

Across

Database

Partitions

299

Table

40.

db_partitions

output

parameters

Name

Data

type

Description

PARTITION_NUMBER

SMALLINT

partition

number

HOST_NAME

VARCHAR(128)

host

name

(for

Intel

platforms,

this

is

the

machine

name)

PORT_NUMBER

SMALLINT

logical

port

number

SWITCH_NAME

VARCHAR(128)

net

switch

name

(can

be

NULL)

Usage

example

The

following

is

an

example

of

a

CLP

script

on

AIX:

#

#

Set

the

database

you

wish

to

connect

to

#

dbName="SAMPLE"

#

#

Set

the

target

database

partition

group

name

#

dbpgName="IBMDEFAULTGROUP"

#

#

Specify

the

table

name

and

schema

#

tbSchema="$USER"

tbName="STAFF"

#

#

Specify

the

name

of

the

data

distribution

file

#

distFile="$HOME/sqllib/function/$dbName.IBMDEFAULTGROUP_swrdData.dst"

export

DB2INSTANCE=$USER

export

DB2COMM=TCPIP

#

#

Invoke

call

statements

in

clp

#

db2start

db2

-v

"connect

to

$dbName"

#

#

Analysing

the

effect

of

adding

a

partition

without

applying

the

changes

-

a

’what

if’

#

hypothetical

analysis

#

#

-

In

the

following

case,

the

hypothesis

is

adding

partition

40,

50

and

60

to

the

#

database

partition

group,

and

for

partitions

10,20,30,40,50,60,

using

a

respective

#

target

ratio

of

1:2:1:2:1:2.

#

#

NOTE:

in

this

example

only

partitions

10,

20

and

30

actually

exist

in

the

database

#

partition

group

#

db2

-v

"call

sysproc.analyze_log_space(’$dbpgName’,

’$tbSchema’,

’$tbName’,

2,

’

’,

’A’,

’40,50,60’,

’10,20,30,40,50,60’,

’1,2,1,2,1,2’)"

#

#

Analysing

the

effect

of

droping

a

partition

without

applying

the

changes

#

#

-

In

the

following

case,

the

hypothesis

is

dropping

partition

30

from

the

database

#

partition

group,

and

redistributing

the

data

in

partitions

10

and

20

using

a

#

respective

target

ratio

of

1

:

1

#

#

NOTE:

In

this

example

all

partitions

10,

20

and

30

should

exist

in

the

database

300

Administration

Guide:

Performance

#

partition

group

#

db2

-v

"call

sysproc.analyze_log_space(’$dbpgName’,

’$tbSchema’,

’$tbName’,

2,

’

’,

’D’,

’30’,

’10,20’,’1,1’)"

#

#

Generate

a

data

distribution

file

to

be

used

by

the

redistribute

process

#

db2

-v

"call

sysproc.generate_distfile(’$tbSchema’,

’$tbName’,

’$distFile’)"

#

#

Write

a

step

wise

redistribution

plan

into

a

registry

#

#

Setting

the

10th

parameter

to

1,

may

cause

a

currently

running

step

wise

redistribute

#

stored

procedure

to

complete

the

current

step

and

stop,

until

this

parameter

is

reset

#

to

0,

and

the

redistribute

stored

procedure

is

called

again.

#

db2

-v

"call

sysproc.set_swrd_settings(’$dbpgName’,

255,

0,

’

’,

’$distFile’,

1000,

12,

2,

1,

0,

’10,20,30’,

’50,50,50’)"

#

#

Report

the

content

of

the

step

wise

redistribution

plan

for

the

given

database

#

partition

group.

#

db2

-v

"call

sysproc.get_swrd_settings(’$dbpgName’,

255,

?,

?,

?,

?,

?,

?,

?,

?,

?,

?)"

#

#

Redistribute

the

database

partition

group

"dbpgName"

according

to

the

redistribution

#

plan

stored

in

the

registry

by

set_swrd_settings.

It

starting

with

step

3

and

#

redistributes

the

data

until

2

steps

in

the

redistribution

plan

are

completed.

#

db2

-v

"call

sysproc.stepwise_redistribute_dbpg(’$dbpgName’,

3,

2)"

Related

concepts:

v

“Data

redistribution”

on

page

289

Chapter

11.

Redistributing

Data

Across

Database

Partitions

301

302

Administration

Guide:

Performance

Chapter

12.

Benchmark

testing

This

chapter

explains

the

benchmarking

process

and

how

to

use

the

db2batch

utility

to

perform

benchmark

testing

of

a

database

workload.

Benchmark

testing

Benchmark

testing

is

a

normal

part

of

the

application

development

life

cycle.

It

is

a

team

effort

that

involves

both

application

developers

and

database

administrators

(DBAs),

and

should

be

performed

against

your

application

in

order

to

determine

current

performance

and

improve

it.

If

the

application

code

has

been

written

as

efficiently

as

possible,

additional

performance

gains

might

be

realized

from

tuning

the

database

and

database

manager

configuration

parameters.

You

can

even

tune

application

parameters

to

meet

the

requirements

of

the

application

better.

You

run

different

types

of

benchmark

tests

to

discover

specific

kinds

of

information:

v

A

transaction

per

second

benchmark

determines

the

throughput

capabilities

of

the

database

manager

under

certain

limited

laboratory

conditions.

v

An

application

benchmark

tests

the

same

throughput

capabilities

under

conditions

that

are

closer

production

conditions.

Benchmarking

tuning

configuration

parameters

is

based

upon

these

“real-world”

conditions,

and

requires

repeatedly

running

SQL

taken

from

your

application

with

varying

parameter

values

until

the

application

runs

as

efficiently

as

possible.

The

benchmarking

methods

described

here

are

oriented

toward

tuning

configuration

parameters.

However,

the

same

basic

technique

can

be

used

for

tuning

other

factors

that

affect

performance,

such

as:

v

SQL

statements

v

Indexes

v

Table

space

configuration

v

Application

code

v

Hardware

configuration.

Benchmarking

is

helpful

in

understanding

how

the

database

manager

responds

under

varying

conditions.

You

can

create

scenarios

that

test

deadlock

handling,

utility

performance,

different

methods

of

loading

data,

transaction

rate

characteristics

as

more

users

are

added,

and

even

the

effect

on

the

application

of

using

a

new

release

of

the

product.

Benchmark

testing

methods

Benchmark

tests

are

based

on

a

repeatable

environment

so

that

the

same

test

run

under

the

same

conditions

will

yield

results

that

you

can

legitimately

compare.

You

might

begin

benchmarking

by

running

the

test

application

in

a

normal

environment.

As

you

narrow

down

a

performance

problem,

you

can

develop

specialized

test

cases

that

limit

the

scope

of

the

function

that

you

are

testing.

The

specialized

test

cases

need

not

emulate

an

entire

application

to

obtain

valuable

information.

Start

with

simple

measurements,

and

increase

the

complexity

only

when

necessary.

©

Copyright

IBM

Corp.

1993

-

2004

303

Characteristics

of

good

benchmarks

or

measurements

include:

v

Tests

are

repeatable.

v

Each

iteration

of

a

test

starts

in

the

same

system

state.

v

No

other

functions

or

applications

are

active

in

the

system

unless

the

scenario

includes

some

amount

of

other

activity

going

on

in

the

system.

Note:

Started

applications

use

memory

even

when

they

are

minimized

or

idle.

This

increases

the

probability

that

paging

will

skew

the

results

of

the

benchmark

and

violates

the

repeatability

rule.

v

The

hardware

and

software

used

for

benchmarking

match

your

production

environment.

For

benchmarking,

you

create

a

scenario

and

then

applications

in

this

scenario

several

times,

capturing

key

information

during

each

run.

Capturing

key

information

after

each

run

is

of

primary

importance

in

determining

the

changes

that

might

improve

performance

of

both

the

application

and

the

database.

Related

concepts:

v

“Benchmark

preparation”

on

page

304

v

“Benchmark

test

creation”

on

page

305

v

“Benchmark

test

execution”

on

page

311

v

“Benchmark

test

analysis

example”

on

page

312

Benchmark

preparation

Complete

the

logical

design

of

the

database

against

which

the

application

runs

before

you

start

performance

benchmarking.

Set

up

and

populate

tables,

views,

and

indexes.

Normalize

tables,

bind

application

packages,

and

populate

tables

with

realistic

data.

You

should

also

have

determined

the

final

physical

design

of

the

database.

Place

database

manager

objects

in

their

final

disk

locations,

size

log

files,

determining

the

location

of

work

files

and

backup,

and

test

backup

procedures.

In

addition,

check

packages

to

make

sure

that

performance

options

such

as

row

blocking

are

enabled

when

possible.

You

should

have

reached

a

point

in

application

programming

and

testing

phases

that

will

enable

you

to

create

your

benchmark

programs.

Although

the

practical

limits

of

an

application

might

be

revealed

during

the

benchmark

testing,

the

purpose

of

the

benchmark

described

here

is

to

measure

performance,

not

to

detect

defects

or

abends.

Your

benchmarking

test

program

will

need

to

run

in

as

accurate

a

representation

of

the

final

production

environment

as

possible.

Ideally,

it

should

run

on

the

same

model

of

server

with

the

same

memory

and

disk

configurations.

This

is

especially

important

when

the

application

will

ultimately

involve

large

numbers

of

users

and

large

amounts

of

data.

The

operating

system

itself

and

any

communications

or

file-serving

facilities

used

directly

by

the

benchmark

should

also

have

been

tuned.

Make

sure

that

you

run

benchmark

tests

with

a

production-size

database.

An

individual

SQL

statement

should

return

as

much

data

and

require

as

much

sorting

as

in

production.

This

rule

ensures

that

the

application

will

test

representative

memory

requirements.

304

Administration

Guide:

Performance

SQL

statements

to

be

benchmarked

should

be

either

representative

or

worst-case,

as

described

below:

Representative

SQL

Representative

SQL

includes

those

statements

that

are

executed

during

typical

operations

of

the

application

being

benchmarked.

The

statements

that

are

selected

will

depend

on

the

nature

of

the

application.

For

example,

a

data-entry

application

might

test

an

INSERT

statement,

while

a

banking

transaction

might

test

a

FETCH,

an

UPDATE,

and

several

INSERTs.

Consider

the

frequency

of

execution

and

volume

of

data

processed

by

the

statements

chosen

average.

If

the

volumes

are

excessive,

consider

the

statements

under

the

worst-case

category,

even

if

they

are

typical

SQL

statements.

Worst-case

SQL

Statements

falling

in

this

category

include:

v

Statements

that

are

executed

frequently.

v

Statements

that

have

high

volumes

of

data

being

processed.

v

Statements

that

are

time-critical.

For

example,

an

application

that

is

run

when

a

telephone

call

is

received

from

a

customer

and

the

statements

must

be

run

to

retrieve

and

update

the

customer’s

information

while

the

customer

is

waiting.

v

Statements

with

the

largest

number

of

tables

being

joined

or

with

the

most

complex

SQL

in

the

application.

For

example,

a

banking

application

that

produces

combined

customer

statements

of

monthly

activity

for

all

their

different

types

of

accounts.

A

common

table

may

list

customer

address

and

account

numbers;

however,

several

other

tables

must

be

joined

to

process

and

integrate

all

of

the

necessary

account

transaction

information.

Multiply

the

work

necessary

for

one

account

by

the

several

thousand

accounts

that

must

be

processed

during

the

same

period,

and

the

potential

time

savings

drives

the

performance

requirements.

v

Statements

that

have

a

poor

access

path,

such

as

one

that

is

not

executed

very

often

and

is

not

supported

by

the

indexes

that

have

been

created

for

the

tables

involved.

v

Statements

that

have

a

long

elapsed

time.

v

A

statement

that

is

only

executed

at

application

initialization

but

has

disproportionate

resource

requirements.

For

example,

an

application

that

generates

a

list

of

account

work

that

must

be

processed

during

the

day.

When

the

application

is

started,

the

first

major

SQL

statement

causes

a

7-way

join,

which

creates

a

very

large

list

of

all

the

accounts

for

which

this

application

user

is

responsible.

The

statement

might

only

be

run

a

few

times

per

day,

but

takes

several

minutes

to

run

when

it

has

not

been

tuned

properly.

Related

concepts:

v

“Benchmark

testing”

on

page

303

v

“Benchmark

test

creation”

on

page

305

Benchmark

test

creation

Consider

a

variety

of

factors

when

you

design

and

implement

a

benchmark

program.

Because

the

main

purpose

of

the

program

is

to

simulate

a

user

application,

the

overall

structure

of

the

program

varies.

You

might

use

the

entire

application

as

the

benchmark

and

simply

introduce

a

means

for

timing

the

SQL

Chapter

12.

Benchmark

testing

305

statements

to

be

analyzed.

For

large

or

complex

applications,

it

might

be

more

practical

to

include

only

blocks

that

contain

the

important

statements.

To

test

the

performance

of

specific

SQL

statements,

you

might

include

these

statements

alone

in

the

benchmark

program

along

with

the

necessary

CONNECT,

PREPARE,

OPEN,

and

other

statements

and

a

timing

mechanism.

Another

factor

to

consider

is

the

type

of

benchmark

to

use.

One

option

is

to

run

a

set

of

SQL

statements

repeatedly

over

a

time

interval.

The

ratio

of

the

number

of

statements

executed

and

this

time

interval

would

give

the

throughput

for

the

application.

Another

option

is

simply

to

determine

the

time

required

to

execute

individual

SQL

statements.

For

all

benchmark

testing,

you

need

an

efficient

timing

system

to

calculate

the

elapsed

time,

whether

for

individual

SQL

statements

or

the

application

as

a

whole.

To

simulate

applications

in

which

individual

SQL

statements

are

executed

in

isolation,

it

might

be

important

to

track

times

for

CONNECT,

PREPARE,

and

COMMIT

statements.

However,

for

programs

that

process

many

different

statements,

perhaps

only

a

single

CONNECT

or

COMMIT

is

necessary,

and

focusing

on

just

the

execution

time

for

an

individual

statement

might

be

the

priority.

Although

the

elapsed

time

for

each

query

is

an

important

factor

in

performance

analysis,

it

might

not

necessarily

reveal

bottlenecks.

For

example,

information

on

CPU

usage,

locking,

and

buffer

pool

I/O

might

show

that

the

application

is

I/O

bound

and

is

not

using

the

CPU

to

its

full

capacity.

A

benchmark

program

should

allow

you

to

obtain

this

kind

of

data

for

a

more

detailed

analysis

if

needed.

Not

all

applications

send

the

entire

set

of

rows

retrieved

from

a

query

to

some

output

device.

For

example,

the

whole

answer

set

might

be

input

for

another

program,

so

that

none

of

the

rows

from

the

first

application

are

sent

as

output.

Formatting

data

for

screen

output

usually

has

high

CPU

cost

and

might

not

reflect

user

need.

To

provide

an

accurate

simulation,

a

benchmark

program

should

reflect

the

row

handling

of

the

specific

application.

If

rows

are

sent

to

an

output

device,

inefficient

formatting

could

consume

the

majority

of

CPU

processing

time

and

misrepresent

the

actual

performance

of

the

SQL

statement

itself.

The

db2batch

Benchmark

Tool:

A

benchmark

tool

(db2batch)

is

provided

in

the

bin

subdirectory

of

your

instance

sqllib

directory.

This

tool

uses

many

of

guidelines

for

creating

a

benchmark

program.

This

tool

can

read

SQL

statements

from

either

a

flat

file

or

standard

input,

dynamically

describe

and

prepare

the

statements,

and

return

an

answer

set.

It

also

allows

you

to

control

the

size

of

the

answer

set,

as

well

as

the

number

of

rows

that

are

sent

from

this

answer

set

to

an

output

device.

You

can

specify

the

level

of

performance-related

information

supplied,

including

the

elapsed

time,

CPU

and

buffer

pool

usage,

locking,

and

other

statistics

collected

from

the

database

monitor.

If

you

are

timing

a

set

of

SQL

statements,

db2batch

also

summarizes

the

performance

results

and

provides

both

arithmetic

and

geometric

means.

For

syntax

and

options,

type

db2batch

-h

on

a

command

line.

This

benchmarking

tool

also

has

a

CLI

option.

With

this

option,

you

can

specify

a

cache

size.

In

the

following

example,

db2batch

is

run

in

CLI

mode

with

a

cache

size

of

30

statements:

db2batch

-d

sample

-f

db2batch.sql

-cli

30

306

Administration

Guide:

Performance

It

is

possible

to

run

db2batch

remotely.

If

you

use

either

the

-f

<filename>

or

the

-o

<options>

command

parameters

of

the

benchmark

tool

then:

v

The

control

options

perf_detail

and

-p

<perf_detail>

(specifying

the

level

of

performance

information

to

be

returned)

when

set

to

greater

than

one

are

not

supported

when

running

remotely.

Other

than

these

two

items,

the

perf_detail

and

-p

<perf_detail>

control

option

values

are

supported

and

are

valid

for

all

DB2®

Universal

Database

platforms.

Examples

of

db2batch

tests

The

following

example

shows

how

db2batch

could

be

used

with

an

input

file

db2batch.sql:

Chapter

12.

Benchmark

testing

307

Using

the

following

invocation

of

the

benchmark

tool:

db2batch

-d

sample

-f

db2batch.sql

Produces

the

following

output:

--

db2batch.sql

--

--#SET

PERF_DETAIL

3

ROWS_OUT

5

--

This

query

lists

employees,

the

name

of

their

department

--

and

the

number

of

activities

to

which

they

are

assigned

for

--

employees

who

are

assigned

to

more

than

one

activity

less

than

--

full-time.

--#COMMENT

Query

1

select

lastname,

firstnme,

deptname,

count(*)

as

num_act

from

employee,

department,

emp_act

where

employee.workdept

=

department.deptno

and

employee.empno

=

emp_act.empno

and

emp_act.emptime

<

1

group

by

lastname,

firstnme,

deptname

having

count(*)

>

2;

--#SET

PERF_DETAIL

1

ROWS_OUT

5

--#COMMENT

Query

2

select

lastname,

firstnme,

deptname,

count(*)

as

num_act

from

employee,

department,

emp_act

where

employee.workdept

=

department.deptno

and

employee.empno

=

emp_act.empno

and

emp_act.emptime

<

1

group

by

lastname,

firstnme,

deptname

having

count(*)

<=

2;

Figure

26.

Sample

Benchmark

Input

File:

db2batch.sql

--#SET

PERF_DETAIL

3

ROWS_OUT

5

Query

1

Statement

number:

1

select

lastname,

firstnme,

deptname,

count(*)

as

num_act

from

employee,

department,

emp_act

where

employee.workdept

=

department.deptno

and

employee.empno

=

emp_act.empno

and

emp_act.emptime

<

1

group

by

lastname,

firstnme,

deptname

having

count(*)

>

2

Figure

27.

Sample

Output

From

db2batch

(Part

1)

308

Administration

Guide:

Performance

LASTNAME

FIRSTNME

DEPTNAME

NUM_ACT

JEFFERSON

JAMES

ADMINISTRATION

SYSTEMS

3

JOHNSON

SYBIL

ADMINISTRATION

SYSTEMS

4

NICHOLLS

HEATHER

INFORMATION

CENTER

4

PEREZ

MARIA

ADMINISTRATION

SYSTEMS

4

SMITH

DANIEL

ADMINISTRATION

SYSTEMS

7

Number

of

rows

retrieved

is:

5

Number

of

rows

sent

to

output

is:

5

Elapsed

Time

is:

0.074

seconds

Locks

held

currently

=

0

Lock

escalations

=

0

Total

sorts

=

5

Total

sort

time

(ms)

=

0

Sort

overflows

=

0

Buffer

pool

data

logical

reads

=

13

Buffer

pool

data

physical

reads

=

5

Buffer

pool

data

writes

=

0

Buffer

pool

index

logical

reads

=

3

Buffer

pool

index

physical

reads

=

0

Buffer

pool

index

writes

=

0

Total

buffer

pool

read

time

(ms)

=

23

Total

buffer

pool

write

time

(ms)

=

0

Asynchronous

pool

data

page

reads

=

0

Asynchronous

pool

data

page

writes

=

0

Asynchronous

pool

index

page

reads

=

0

Asynchronous

pool

index

page

writes

=

0

Total

elapsed

asynchronous

read

time

=

0

Total

elapsed

asynchronous

write

time

=

0

Asynchronous

read

requests

=

0

LSN

Gap

cleaner

triggers

=

0

Dirty

page

steal

cleaner

triggers

=

0

Dirty

page

threshold

cleaner

triggers

=

0

Direct

reads

=

8

Direct

writes

=

0

Direct

read

requests

=

4

Direct

write

requests

=

0

Direct

read

elapsed

time

(ms)

=

0

Direct

write

elapsed

time

(ms)

=

0

Rows

selected

=

5

Log

pages

read

=

0

Log

pages

written

=

0

Catalog

cache

lookups

=

3

Catalog

cache

inserts

=

3

Buffer

pool

data

pages

copied

to

ext

storage

=

0

Buffer

pool

index

pages

copied

to

ext

storage

=

0

Buffer

pool

data

pages

copied

from

ext

storage

=

0

Buffer

pool

index

pages

copied

from

ext

storage

=

0

Total

Agent

CPU

Time

(seconds)

=

0.02

Post

threshold

sorts

=

0

Piped

sorts

requested

=

5

Piped

sorts

accepted

=

5

Figure

28.

Sample

Output

From

db2batch

(Part

1)

Chapter

12.

Benchmark

testing

309

The

above

sample

output

includes

specific

data

elements

returned

by

the

database

system

monitor.

In

the

next

example

(on

UNIX®),

just

the

materialized

query

table

is

produced.

db2batch

-d

sample

-f

db2batch.sql

-r

/dev/null,

Produces

just

the

materialized

query

table.

Using

the

-r

option,

outfile1

was

replaced

by

/dev/null

and

outfile2

(which

contains

just

the

materialized

query

table)

is

empty,

so

db2batch

sends

the

output

to

the

screen:

Related

concepts:

v

“Benchmark

test

creation”

on

page

305

v

“Benchmark

test

execution”

on

page

311

v

“Benchmark

test

analysis

example”

on

page

312

--#SET

PERF_DETAIL

1

ROWS_OUT

5

Query

2

Statement

number:

2

select

lastname,

firstnme,

deptname,

count(*)

as

num_act

from

employee,

department,

emp_act

where

employee.workdept

=

department.deptno

and

employee.empno

=

emp_act.empno

and

emp_act.emptime

<

1

group

by

lastname,

firstnme,

deptname

having

count(*)

<=

2

LASTNAME

FIRSTNME

DEPTNAME

NUM_ACT

GEYER

JOHN

SUPPORT

SERVICES

2

GOUNOT

JASON

SOFTWARE

SUPPORT

2

HAAS

CHRISTINE

SPIFFY

COMPUTER

SERVICE

DIV.

2

JONES

WILLIAM

MANUFACTURING

SYSTEMS

2

KWAN

SALLY

INFORMATION

CENTER

2

Number

of

rows

retrieved

is:

8

Number

of

rows

sent

to

output

is:

5

Elapsed

Time

is:

0.037

seconds

Summary

of

Results

==================

Elapsed

Agent

CPU

Rows

Rows

Statement

#

Time

(s)

Time

(s)

Fetched

Printed

1

0.074

0.020

5

5

2

0.037

Not

Collected

8

5

Arith.

mean

0.055

Geom.

mean

0.052

Figure

29.

Sample

Output

from

db2batch

(Part

2)

Summary

of

Results

==================

Elapsed

Agent

CPU

Rows

Rows

Statement

#

Time

(s)

Time

(s)

Fetched

Printed

1

0.074

0.020

5

5

2

0.037

Not

Collected

8

5

Arith.

mean

0.055

Geom.

mean

0.052

Figure

30.

Sample

Output

from

db2batch

--

Materialized

Query

Table

Only

310

Administration

Guide:

Performance

Benchmark

test

execution

For

one

type

of

database

benchmark,

you

choose

a

configuration

parameter

and

run

the

test

with

different

values

for

that

parameter

until

the

maximum

benefit

is

achieved.

A

single

test

should

include

executing

the

application

through

several

iterations

(for

example,

20

or

30

times)

with

the

same

parameter

value

to

get

an

average

timing,

which

shows

the

effect

of

parameter

changes

more

clearly.

When

you

run

the

benchmark,

the

first

iteration,

which

is

called

a

warm-up

run,

should

be

considered

a

separate

case

from

the

subsequent

iterations,

which

are

called

normal

runs.

Because

the

warm-up

run

includes

some

start-up

activities,

such

as

initializing

the

buffer

pool,

and

consequently,

takes

somewhat

longer

than

normal

runs.

Although

the

information

from

the

warm-up

run

might

be

realistically

valid,

it

is

not

statistically

valid.

When

you

calculate

the

average

timing

or

CPU

for

a

specific

set

of

parameter

values,

use

only

the

results

from

normal

runs.

You

might

consider

using

the

Configuration

Advisor

to

create

the

warm-up

run

of

the

benchmark.

The

questions

that

the

Configuration

Advisor

asks

can

provide

insight

into

some

things

to

consider

when

you

adjust

the

configuration

of

your

environment

for

the

normal

runs

during

your

benchmark

activity.

You

can

start

the

Configuration

Advisor

from

the

Control

Center

or

by

executing

the

db2

autoconfigure

command

with

appropriate

options.

If

benchmarking

uses

individual

queries,

ensure

that

you

minimize

the

potential

effects

of

previous

queries

by

flushing

the

buffer

pool.

To

flush

the

buffer

pool,

read

a

number

of

pages

that

irrelevant

to

your

query

and

to

fill

the

buffer

pool.

After

you

complete

the

iterations

for

a

single

set

of

parameter

values,

you

can

change

a

single

parameter.

However,

between

each

iteration,

perform

the

following

tasks

to

restore

the

benchmark

environment

to

its

original

state:

v

.

If

the

catalog

statistics

were

updated

for

the

test,

make

sure

that

the

same

values

for

the

statistics

are

used

for

every

iteration.

v

The

data

used

in

the

tests

must

be

consistent

if

it

is

updated

by

the

tests.

This

can

be

done

by:

–

Using

the

RESTORE

utility

to

restore

the

entire

database.

The

backup

copy

of

the

database

contains

its

previous

state,

ready

for

the

next

test.

–

Using

the

IMPORT

or

LOAD

utility

to

restore

an

exported

copy

of

the

data.

This

method

allows

you

to

restore

only

the

data

that

has

been

affected.

REORG

and

RUNSTATS

utilities

should

be

run

against

the

tables

and

indexes

that

contain

this

data.
v

To

return

the

application

to

its

original

state,

re-bind

it

to

the

database.

In

summary,

follow

these

steps

or

iterations

to

benchmark

a

database

application:

Step

1

Leave

the

database

and

database

manager

tuning

parameters

at

their

default

values

except

for:

v

Those

parameters

significant

to

the

workload

and

the

objectives

of

the

test.

(You

rarely

have

enough

time

to

perform

benchmark

testing

to

tune

all

of

the

parameters,

so

you

may

want

to

start

by

using

your

best

guess

for

some

of

the

parameters

and

tune

from

that

point.)

v

Log

sizes,

which

should

be

determined

during

unit

and

system

testing

of

your

application.

v

Any

parameters

that

must

be

changed

to

enable

your

application

to

run

(that

is,

the

changes

needed

to

prevent

negative

SQL

return

codes

from

such

events

as

running

out

of

memory

for

the

statement

heap).

Chapter

12.

Benchmark

testing

311

Run

your

set

of

iterations

for

this

initial

case

and

calculate

the

average

timing

or

CPU.

Step

2

Select

one

and

only

one

tuning

parameter

to

be

tested,

and

change

its

value.

Step

3

Run

another

set

of

iterations

and

calculate

the

average

timing

or

CPU.

Step

4

Depending

on

the

results

of

the

benchmark

test,

do

one

of

the

following:

v

If

performance

improves,

change

the

value

of

the

same

parameter

and

return

to

Step

3.

Keep

changing

this

parameter

until

the

maximum

benefit

is

shown.

v

If

performance

degrades

or

remains

unchanged,

return

the

parameter

to

its

previous

value,

return

to

Step

2,

and

select

a

new

parameter.

Repeat

this

procedure

until

all

parameters

have

been

tested.

Note:

If

you

were

to

graph

the

performance

results,

you

would

be

looking

for

the

point

where

the

curve

begins

to

plateau

or

decline.

You

can

write

a

driver

program

to

help

you

with

your

benchmark

testing.

This

driver

program

could

be

written

using

a

language

such

as

REXX

or,

for

UNIX®-based

platforms,

using

shell

scripts.

This

driver

program

would

execute

the

benchmark

program,

pass

it

the

appropriate

parameters,

drive

the

test

through

multiple

iterations,

restore

the

environment

to

a

consistent

state,

set

up

the

next

test

with

new

parameter

values,

and

collect/consolidate

the

test

results.

These

driver

programs

can

be

flexible

enough

that

they

could

be

used

to

run

the

entire

set

of

benchmark

tests,

analyze

the

results,

and

provide

a

report

of

the

final

and

best

parameter

values

for

the

given

test.

Related

concepts:

v

“Benchmark

testing”

on

page

303

v

“Benchmark

preparation”

on

page

304

v

“Examples

of

db2batch

tests”

on

page

307

Benchmark

test

analysis

example

Output

from

the

benchmark

program

should

include

an

identifier

for

each

test,

the

iteration

of

the

program

execution,

the

statement

number,

and

the

timing

for

the

execution.

A

summary

of

benchmarking

results

after

a

series

of

measurements

might

look

like

the

following:

312

Administration

Guide:

Performance

Note:

The

data

in

the

above

report

is

shown

for

illustration

purposes

only.

It

does

not

represent

measured

results.

Analysis

shows

that

the

CONNECT

(statement

01)

took

1.34

seconds,

the

OPEN

CURSOR

(statement

10)

took

2

minutes

and

8.15

seconds,

the

FETCHES

(statement

15)

returned

seven

rows

with

the

longest

delay

being

.28

seconds,

the

CLOSE

CURSOR

(statement

20)

took

.84

seconds,

and

the

CONNECT

RESET

(statement

99)

took

.03

seconds.

If

your

program

can

output

data

in

a

delimited

ASCII

format,

it

could

later

be

imported

into

a

database

table

or

a

spreadsheet

for

further

statistical

analysis.

Sample

output

for

a

benchmark

report

might

be:

Note:

The

data

in

the

above

report

is

shown

for

illustration

purposes

only.

It

does

not

represent

any

measured

results.

Related

concepts:

v

“Benchmark

testing”

on

page

303

v

“Benchmark

test

creation”

on

page

305

v

“Benchmark

test

execution”

on

page

311

Test

Iter.

Stmt

Timing

SQL

Statement

Numbr

Numbr

Numbr

(hh:mm:ss.ss)

002

05

01

00:00:01.34

CONNECT

TO

SAMPLE

002

05

10

00:02:08.15

OPEN

cursor_01

002

05

15

00:00:00.24

FETCH

cursor_01

002

05

15

00:00:00.23

FETCH

cursor_01

002

05

15

00:00:00.28

FETCH

cursor_01

002

05

15

00:00:00.21

FETCH

cursor_01

002

05

15

00:00:00.20

FETCH

cursor_01

002

05

15

00:00:00.22

FETCH

cursor_01

002

05

15

00:00:00.22

FETCH

cursor_01

002

05

20

00:00:00.84

CLOSE

cursor_01

002

05

99

00:00:00.03

CONNECT

RESET

Figure

31.

Benchmark

Sample

Results

PARAMETER

VALUES

FOR

EACH

BENCHMARK

TEST

TEST

NUMBER

001

002

003

004

005

locklist

63

63

63

63

63

maxappls

8

8

8

8

8

applheapsz

48

48

48

48

48

dbheap

128

128

128

128

128

sortheap

256

256

256

256

256

maxlocks

22

22

22

22

22

stmtheap

1024

1024

1024

1024

1024

SQL

STMT

AVERAGE

TIMINGS

(seconds)

01

01.34

01.34

01.35

01.35

01.36

10

02.15

02.00

01.55

01.24

01.00

15

00.22

00.22

00.22

00.22

00.22

20

00.84

00.84

00.84

00.84

00.84

99

00.03

00.03

00.03

00.03

00.03

Figure

32.

Benchmark

Sample

Timings

Report

Chapter

12.

Benchmark

testing

313

314

Administration

Guide:

Performance

Chapter

13.

Configuring

DB2

Configuration

parameters

When

a

DB2

Universal

Database™

instance

or

a

database

is

created,

a

corresponding

configuration

file

is

created

with

default

parameter

values.

You

can

modify

these

parameter

values

to

improve

performance

and

other

characteristics

of

the

instance

or

database.

Configuration

files

contain

parameters

that

define

values

such

as

the

resources

allocated

to

the

DB2

UDB

products

and

to

individual

databases,

and

the

diagnostic

level.

There

are

two

types

of

configuration

files:

v

The

database

manager

configuration

file

for

each

DB2

UDB

instance

v

The

database

configuration

file

for

each

individual

database.

The

database

manager

configuration

file

is

created

when

a

DB2

UDB

instance

is

created.

The

parameters

it

contains

affect

system

resources

at

the

instance

level,

independent

of

any

one

database

that

is

part

of

that

instance.

Values

for

many

of

these

parameters

can

be

changed

from

the

system

default

values

to

improve

performance

or

increase

capacity,

depending

on

your

system’s

configuration.

There

is

one

database

manager

configuration

file

for

each

client

installation

as

well.

This

file

contains

information

about

the

client

enabler

for

a

specific

workstation.

A

subset

of

the

parameters

available

for

a

server

are

applicable

to

the

client.

Database

manager

configuration

parameters

are

stored

in

a

file

named

db2systm.

This

file

is

created

when

the

instance

of

the

database

manager

is

created.

In

UNIX-based

environments,

this

file

can

be

found

in

the

sqllib

subdirectory

for

the

instance

of

the

database

manager.

In

Windows,

the

default

location

of

this

file

is

the

instance

subdirectory

of

the

sqllib

directory.

If

the

DB2INSTPROF

variable

is

set,

the

file

is

in

the

instance

subdirectory

of

the

directory

specified

by

the

DB2INSTPROF

variable.

In

a

partitioned

database

environment,

this

file

resides

on

a

shared

file

system

so

that

all

database

partition

servers

have

access

to

the

same

file.

The

configuration

of

the

database

manager

is

the

same

on

all

database

partition

servers.

Most

of

the

parameters

either

affect

the

amount

of

system

resources

that

will

be

allocated

to

a

single

instance

of

the

database

manager,

or

they

configure

the

setup

of

the

database

manager

and

the

different

communications

subsystems

based

on

environmental

considerations.

In

addition,

there

are

other

parameters

that

serve

informative

purposes

only

and

cannot

be

changed.

All

of

these

parameters

have

global

applicability

independent

of

any

single

database

stored

under

that

instance

of

the

database

manager.

A

database

configuration

file

is

created

when

a

database

is

created,

and

resides

where

that

database

resides.

There

is

one

configuration

file

per

database.

Its

parameters

specify,

among

other

things,

the

amount

of

resource

to

be

allocated

to

that

database.

Values

for

many

of

the

parameters

can

be

changed

to

improve

performance

or

increase

capacity.

Different

changes

may

be

required,

depending

on

the

type

of

activity

in

a

specific

database.

©

Copyright

IBM

Corp.

1993

-

2004

315

|
|
|
|

Parameters

for

an

individual

database

are

stored

in

a

configuration

file

named

SQLDBCON.

This

file

is

stored

along

with

other

control

files

for

the

database

in

the

SQLnnnnn

directory,

where

nnnnn

is

a

number

assigned

when

the

database

was

created.

Each

database

has

its

own

configuration

file,

and

most

of

the

parameters

in

the

file

specify

the

amount

of

resources

allocated

to

that

database.

The

file

also

contains

descriptive

information,

as

well

as

flags

that

indicate

the

status

of

the

database.

In

a

partitioned

database

environment,

a

separate

SQLDBCON

file

exists

for

each

database

partition.

The

values

in

the

SQLDBCON

file

may

be

the

same

or

different

at

each

database

partition,

but

the

recommendation

is

that

the

database

configuration

parameter

values

be

the

same

on

all

partitions.

Related

concepts:

v

“Configuration

parameter

tuning”

on

page

316

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

on

page

317

Configuration

parameter

tuning

The

disk

space

and

memory

allocated

by

the

database

manager

on

the

basis

of

default

values

of

the

parameters

may

be

sufficient

to

meet

your

needs.

In

some

situations,

however,

you

may

not

be

able

to

achieve

maximum

performance

using

these

default

values.

Since

the

default

values

are

oriented

towards

machines

with

relatively

small

memory

and

dedicated

as

database

servers,

you

may

need

to

modify

them

if

your

environment

has:

v

Large

databases

v

Large

numbers

of

connections

v

High

performance

requirements

for

a

specific

application

v

Unique

query

or

transaction

loads

or

types

v

Different

machine

configuration

or

usage.

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure

33.

Relationship

between

database

objects

and

configuration

files

316

Administration

Guide:

Performance

Each

transaction

processing

environment

is

unique

in

one

or

more

aspects.

These

differences

can

have

a

profound

impact

on

the

performance

of

the

database

manager

when

using

the

default

configuration.

For

this

reason,

you

are

strongly

advised

to

tune

your

configuration

for

your

environment.

A

good

starting

point

for

tuning

your

configuration

is

the

Performance

Configuration

wizard

or

the

AUTOCONFIGURE

command.

Different

types

of

applications

and

users

have

different

response

time

requirements

and

expectations.

Applications

could

range

from

simple

data

entry

screens

to

strategic

applications

involving

dozens

of

complex

SQL

statements

accessing

dozens

of

tables

per

unit

of

work.

For

example,

response

time

requirements

could

vary

considerably

in

a

telephone

customer

service

application

versus

a

batch

report

generation

application.

Some

configuration

parameters

can

be

set

to

automatic.

DB2®

will

then

automatically

adjust

these

parameters

to

reflect

the

current

resource

requirements.

Related

concepts:

v

“Configuration

parameters”

on

page

315

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

on

page

317

Related

reference:

v

“Configuration

parameters

summary”

on

page

323

Configuring

DB2

with

configuration

parameters

Database

manager

configuration

parameters

are

stored

in

a

file

named

db2systm.

Database

configuration

parameters

are

stored

in

a

file

named

SQLDBCON.

These

files

cannot

be

directly

edited,

and

can

only

be

changed

or

viewed

via

a

supplied

API

or

by

a

tool

which

calls

that

API.

Attention:

If

you

edit

db2systm

or

SQLDBCON

using

a

method

other

than

those

provided

by

DB2,

you

may

make

the

database

unusable.

We

strongly

recommend

that

you

do

not

change

these

files

using

methods

other

than

those

documented

and

supported

by

DB2.

You

may

use

one

of

the

following

methods

to

reset,

update,

and

view

configuration

parameters:

v

Using

the

Control

Center.

The

Configure

Instance

notebook

can

be

used

to

set

the

database

manager

configuration

parameters

on

either

a

client

or

a

server.

The

Configure

Database

notebook

can

be

used

to

alter

the

value

of

database

configuration

parameters.

The

DB2

Control

Center

also

provides

the

Configuration

Advisor

to

alter

the

value

of

configuration

parameters.

This

advisor

generates

values

for

parameters

based

on

the

responses

you

provide

to

a

set

of

questions,

such

as

the

workload

and

the

type

of

transactions

that

run

against

the

database.

In

a

partitioned

database

environment,

the

SQLDBCON

file

exists

for

each

database

partition.

The

Configure

Database

notebook

will

change

the

value

on

all

partitions

if

you

launch

the

notebook

from

the

database

object

in

the

tree

view

of

the

Control

Center.

If

you

launch

the

notebook

from

a

database

partition

Chapter

13.

Configuring

DB2

317

object,

then

it

will

only

change

the

values

for

that

partition.

(We

recommend,

however,

that

the

configuration

parameter

values

be

the

same

on

all

partitions.)

Note:

The

Configuration

Advisor

is

not

available

in

the

partitioned

database

environment.

v

Using

the

command

line

processor.

Commands

to

change

the

settings

can

be

quickly

and

conveniently

entered:

For

database

manager

configuration

parameters:

–

GET

DATABASE

MANAGER

CONFIGURATION

(or

GET

DBM

CFG)

–

UPDATE

DATABASE

MANAGER

CONFIGURATION

(or

UPDATE

DBM

CFG)

–

RESET

DATABASE

MANAGER

CONFIGURATION

(or

RESET

DBM

CFG)

to

reset

all

database

manager

parameters

to

their

default

values

–

AUTOCONFIGURE.

For

database

configuration

parameters:

–

GET

DATABASE

CONFIGURATION

(or

GET

DB

CFG)

–

UPDATE

DATABASE

CONFIGURATION

(or

UPDATE

DB

CFG)

–

RESET

DATABASE

CONFIGURATION

(or

RESET

DB

CFG)

to

reset

all

database

parameters

to

their

default

values

–

AUTOCONFIGURE.
v

Using

the

application

programming

interfaces

(APIs).

The

APIs

can

easily

be

called

from

an

application

or

a

host-language

program.

v

Using

the

Configuration

Assistant

(for

database

manager

configuration

parameters).

You

can

only

use

the

Configuration

Assistant

to

set

the

database

manager

configuration

parameters

on

a

client.

For

some

database

manager

configuration

parameters,

the

database

manager

must

be

stopped

(db2stop)

and

then

restarted

(db2start)

for

the

new

parameter

values

to

take

effect.

For

some

database

parameters,

changes

will

only

take

effect

when

the

database

is

reactivated.

In

these

cases,

all

applications

must

first

disconnect

from

the

database.

(If

the

database

was

activated,

then

it

must

be

deactivated

and

reactivated.)

Then,

at

the

first

new

connect

to

the

database,

the

changes

will

take

effect.

Other

parameters

can

be

changed

online;

these

are

called

configurable

online

configuration

parameters.

If

you

change

the

setting

of

a

configurable

online

database

manager

configuration

parameter

while

you

are

attached

to

an

instance,

the

default

behavior

of

the

UPDATE

DBM

CFG

command

will

be

to

apply

the

change

immediately.

If

you

do

not

want

the

change

applied

immediately,

use

the

DEFERRED

option

on

the

UPDATE

DBM

CFG

command.

To

change

a

database

manager

configuration

parameter

online:

db2

attach

to

<instance-name>

db2

update

dbm

cfg

using

<parameter-name>

<value>

db2

detach

For

clients,

changes

to

the

database

manager

configuration

parameters

take

effect

the

next

time

the

client

connects

to

a

server.

318

Administration

Guide:

Performance

If

you

change

a

configurable

online

database

configuration

parameter

while

connected,

the

default

behavior

is

to

apply

the

change

online,

wherever

possible.

You

should

note

that

some

parameter

changes

may

take

a

noticeable

amount

of

time

to

take

effect

due

to

the

overhead

associated

with

allocating

space.

To

change

configuration

parameters

online

from

the

command

line

processor,

a

connection

to

the

database

is

required.

To

change

a

database

configuration

parameter

online:

db2

connect

to

<dbname>

db2

update

db

cfg

using

<parameter-name>

<parameter-value>

db2

connect

reset

Each

configurable

online

configuration

parameter

has

a

propagation

class

associated

with

it.

The

propagation

class

indicates

when

you

can

expect

a

change

to

the

configuration

parameter

to

take

effect.

There

are

three

propagation

classes:

v

Immediate:

Parameters

that

change

immediately

upon

command

or

API

invocation.

For

example,

diaglevel

has

a

propagation

class

of

immediate.

v

Statement

boundary:

Parameters

that

change

on

statement

and

statement-like

boundaries.

For

example,

if

you

change

the

value

of

sortheap,

all

new

SQL

requests

will

start

using

the

new

value.

v

Transaction

boundary:

Parameters

that

change

on

transaction

boundaries.

For

example,

a

new

value

for

dl_expint

is

updated

after

a

COMMIT

statement.

Changing

some

database

configuration

parameters

can

influence

the

access

plan

chosen

by

the

SQL

optimizer.

After

changing

any

of

these

parameters,

you

should

consider

rebinding

your

applications

to

ensure

the

best

access

plan

is

being

used

for

your

SQL

statements.

Any

parameters

that

were

modified

online

(for

example,

by

using

the

UPDATE

DATABASE

CONFIGURATION

IMMEDIATE

command)

will

cause

the

SQL

optimizer

to

choose

new

access

plans

for

new

SQL

statements.

However,

the

SQL

statement

cache

will

not

be

purged

of

existing

entries.

To

clear

the

contents

of

the

SQL

cache,

use

the

FLUSH

PACKAGE

CACHE

statement.

While

new

parameter

values

may

not

be

immediately

effective,

viewing

the

parameter

settings

(using

GET

DATABASE

MANAGER

CONFIGURATION

or

GET

DATABASE

CONFIGURATION

commands)

will

always

show

the

latest

updates.

Viewing

the

parameter

settings

using

the

SHOW

DETAIL

clause

on

these

commands

will

show

both

the

latest

updates

and

the

values

in

memory.

Note:

A

number

of

configuration

parameters

(for

example,

userexit)

are

described

as

having

acceptable

values

of

either

“Yes”

or

“No”,

or

“On”

or

“Off”

in

the

help

and

other

DB2

documentation.

To

clarify

what

may

be

confusing,

“Yes”

should

be

considered

equivalent

to

“On”

and

“No”

should

be

considered

equivalent

to

“Off”.

Related

concepts:

v

“Configuration

parameters”

on

page

315

v

“Configuration

parameter

tuning”

on

page

316

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

319

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“Configuration

parameters

summary”

on

page

323

v

“FLUSH

PACKAGE

CACHE

statement”

in

the

SQL

Reference,

Volume

2

Configuring

parameters

dynamically

DB2

allows

you

to

take

advantage

of

dynamic

configuration.

You

can

change

certain

configuration

parameters

in

a

DB2

database

or

instance

while

that

database

is

running,

accepting

connections

or

processing

transactions.

Following

is

an

example

of

how

you

might

take

advantage

of

dynamic

configuration

features

in

DB2.

In

this

scenario,

a

database

server

is

configured

with

4

GB

of

memory,

of

which

3.5

GB

are

available

to

the

database

manager.

There

are

8

processors.

The

database

server

is

dedicated

to

a

single

database

called

DB2DYN

running

on

instance

DB2INST.

The

database

workload

varies

throughout

the

day

and

week,

as

follows:

v

The

daytime

workload

(05:00-20:00)

includes

many

connections

and

concurrent

transactions.

v

The

end

of

day

workload

(20:00-24:00)

includes

summary

reports

and

decision-support

queries,

with

few

connections

and

transactions.

v

The

daily

maintenance

workload

(24:00-05:00)

includes

online

load

operations,

incremental

backups,

index

creations,

and

so

on.

v

The

weekly

maintenance

workload

includes

large

table

reorganization

operations,

runstats

operations,

and

larger

index

creations.

Given

these

workload

characteristics,

you

could

configure

the

system

as

shown

in

the

following

table.

Daytime

(05:00

-

20:00)

End

of

Day

(20:00

-

24:00)

Daily

Maintenance

(24:00

-

05:00)

Weekly

Maintenance

(Sundays)

Database

activity

Heavy

transaction

workload

Decision-support

queries

Load,

backup,

index

creation

Reorg

and

runstats

executed

in

buffer

pool

1

Buffer

pool

1

(MB)

1000

500

500

2000

Buffer

pool

2

(MB)

1000

500

500

200

Sort

heap

(MB)

0.1

20

200

200

Catalog

cache

(MB)

200

200

50

50

Package

cache

(MB)

800

200

200

200

Utility

heap

(MB)

0

0

1000

0

Diag

level

1

3

4

4

You

could

begin

by

setting

the

database

configuration

parameter

database_memory

to

3.5

GB,

thereby

reserving

this

specified

amount

of

available

memory

for

the

database.

This

is

a

one

time

operation

which,

when

complete,

will

give

the

database

3.5

gigabytes

(or

917

504

4-kilobyte

pages)

of

reserved

memory

for

buffer

pool

creation

or

configuration

adjustment.

db2start

db2

update

db

cfg

for

db2dyn

using

database_memory

917504

db2stop

You

could

then

use

the

following

scripts

to

transition

the

database

from

one

configuration

to

another.

(These

scripts

can

be

scheduled

to

run

at

the

appropriate

times.)

320

Administration

Guide:

Performance

MorningConfiguration.sh

#

This

script

is

used

to

prepare

#

the

database

server

for

the

#

morning

configuration,

#

for

a

workload

consisting

of

#

a

large

number

of

OLTP

connections

and

#

concurent

transactions.

db2

connect

to

db2dyn

db2

update

db

cfg

using

sortheap

25

db2

update

db

cfg

using

util_heap_sz

32

db2

alter

bufferpool

bufferpool1

size

262144

db2

commit

db2

update

db

cfg

using

catcachesz

51200

db2

update

db

cfg

using

pkcachesz

204800

db2

alter

bufferpool

bufferpool2

size

262144

db2

commit

db2

flush

package

cache

dynamic

db2

get

db

cfg

show

detail

db2

connect

reset

db2

attach

to

instance

db2inst

db2

update

dbm

cfg

using

diaglevel

1

db2

get

dbm

cfg

show

detail

db2

detach

EveningConfiguration.sh

#

This

script

is

used

to

prepare

#

the

database

server

for

the

#

evening

configuration,

#

for

a

workload

consisting

of

#

decision-support

queries.

db2

connect

to

db2dyn

db2

alter

bufferpool

bufferpool1

size

131072

db2

commit

db2

alter

bufferpool

bufferpool2

size

131072

db2

commit

db2

update

db

cfg

using

pkcachesz

51200

db2

update

db

cfg

using

catcachesz

51200

db2

update

db

cfg

using

util_heap_sz

32

db2

update

db

cfg

using

sortheap

5120

db2

flush

package

cache

dynamic

db2

get

db

cfg

show

detail

db2

connect

reset

db2

attach

to

instance

db2inst

db2

update

dbm

cfg

using

diaglevel

3

db2

get

dbm

cfg

show

detail

db2

detach

NightTimeConfiguration.sh

#

This

script

is

used

to

prepare

#

the

database

server

for

the

#

daily

maintenance

configuration,

#

for

a

workload

consisting

of

#

index

creation

and

load

and

backup

#

operations.

db2

connect

to

db2dyn

Chapter

13.

Configuring

DB2

321

db2

alter

bufferpool

bufferpool1

size

131072

db2

commit

db2

alter

bufferpool

bufferpool2

size

131072

db2

commit

db2

update

db

cfg

using

catcachesz

51200

db2

update

db

cfg

using

pkcachesz

51200

db2

update

db

cfg

using

sortheap

51200

db2

update

db

cfg

using

util_heap_sz

262144

db2

flush

package

cache

dynamic

db2

get

db

cfg

show

detail

db2

connect

reset

db2

attach

to

instance

db2inst

db2

update

dbm

cfg

using

diaglevel

4

db2

get

dbm

cfg

show

detail

db2

detach

MaintenanceConfiguration.sh

#

This

script

is

used

to

prepare

#

the

database

server

for

the

#

weekly

maintenance

configuration,

#

for

a

workload

consisting

of

#

reorg

and

runstats

operations

executed

#

in

buffer

pool

1.

db2

connect

to

db2dyn

db2

update

db

cfg

using

util_heap_sz

32

db2

alter

bufferpool

bufferpool2

size

51200

db2

commit

db2

update

db

cfg

using

sortheap

5120

db2

update

db

cfg

using

catcachesz

51200

db2

update

db

cfg

using

pkcachesz

51200

db2

alter

bufferpool

bufferpool1

size

524288

db2

commit

db2

flush

package

cache

dynamic

db2

get

db

cfg

show

detail

db2

connect

reset

db2

attach

to

instance

db2inst

db2

update

dbm

cfg

using

diaglevel

4

db2

get

dbm

cfg

show

detail

db2

detach

Note

that

the

order

of

operations

differs

from

one

script

to

the

next.

Operations

that

reduce

memory

requirements

should

be

completed

before

operations

that

increase

memory

requirements;

otherwise,

the

increases

might

fail.

All

buffer

pool

resizings

are

followed

by

a

commit

operation,

because

buffer

pool

changes

are

SQL

operations

and

are

part

of

the

transaction.

The

package

cache

is

flushed

after

each

reconfiguration

to

signal

the

optimizer

that

the

configuration

has

undergone

a

significant

change,

and

that

all

existing

dynamic

SQL

access

plans

are

now

invalid.

Dynamic

database

manager

reconfiguration

operations

are

performed

while

an

application

is

attached

to

the

instance,

and

dynamic

database

operations

are

performed

while

an

application

is

connected

to

the

database.

322

Administration

Guide:

Performance

The

SHOW

DETAIL

clause

on

the

GET

DATABASE

MANAGER

CONFIGURATION

command,

or

the

GET

DATABASE

CONFIGURATION

command,

can

be

used

to

verify

that

a

dynamic

reconfiguration

operation

has

taken

effect.

Other

database

configuration

parameters

that

could

have

been

changed

dynamically

in

this

scenario

include:

v

The

locklist

parameter,

which

can

be

increased

dynamically

if

the

database

experiences

frequent

lock

escalations.

However,

the

value

of

this

parameter

cannot

be

decreased

dynamically.

v

The

dft_queryopt

parameter,

which

applies

to

new

connections

only,

and

can

be

used

to

increase

the

optimization

level

prior

to

the

start

of

the

decision-support

workload.

v

The

dft_degree

parameter,

which

also

applies

to

new

connections

only,

and

can

be

used

to

provide

decision-support

queries

with

added

intra-query

parallelism.

Configuration

parameters

summary

Database

Manager

Configuration

Parameter

Summary

The

following

table

lists

the

parameters

in

the

database

manager

configuration

file

for

database

servers.

When

changing

the

database

manager

configuration

parameters,

consider

the

detailed

information

for

each

parameter.

Specific

operating

environment

information

including

defaults

is

part

of

each

parameter

description.

For

some

database

manager

configuration

parameters,

the

database

manager

must

be

stopped

(db2stop)

and

then

restarted

(db2start)

for

the

new

parameter

values

to

take

effect.

Other

parameters

can

be

changed

online;

these

are

called

configurable

online

configuration

parameters.

If

you

change

the

setting

of

a

configurable

online

database

manager

configuration

parameter

while

you

are

attached

to

an

instance,

the

default

behavior

of

the

UPDATE

DBM

CFG

command

is

to

apply

the

change

immediately.

If

you

do

not

want

the

change

applied

immediately,

use

the

DEFERRED

option

on

the

UPDATE

DBM

CFG

command.

The

column

“Auto.”

in

the

following

table

indicates

whether

the

parameter

supports

the

AUTOMATIC

keyword

on

the

UPDATE

DATABASE

MANAGER

CONFIGURATION

command.

If

you

set

a

parameter

to

automatic,

DB2

will

automatically

adjust

the

parameter

to

reflect

current

resource

requirements.

The

column

“Perf.

Impact”

provides

an

indication

of

the

relative

importance

of

each

parameter

as

it

relates

to

system

performance.

It

is

impossible

for

this

column

to

apply

accurately

to

all

environments;

you

should

view

this

information

as

a

generalization.

v

High

—

indicates

the

parameter

can

have

a

significant

impact

on

performance.

You

should

consciously

decide

the

values

of

these

parameters,

which,

in

some

cases,

means

that

you

will

accept

the

default

values

provided.

v

Medium

—

indicates

the

the

parameter

can

have

some

impact

on

performance.

Your

specific

environment

and

needs

will

determine

how

much

tuning

effort

should

be

focused

on

these

parameters.

v

Low

—

indicates

that

the

parameter

has

a

less

general

or

less

significant

impact

on

performance.

v

None

—

indicates

that

the

parameter

does

not

directly

impact

performance.

Although

you

do

not

have

to

tune

these

parameters

for

performance

Chapter

13.

Configuring

DB2

323

enhancement,

they

can

be

very

important

for

other

aspects

of

your

system

configuration,

such

as

communication

support,

for

example.

The

columns

“Token”,

“Token

Value”,

and

“Data

Type”

provide

information

that

you

will

need

when

calling

the

db2CfgGet

or

the

db2CfgSet

API.

This

information

includes

configuration

parameter

identifiers,

entries

for

the

token

element

in

the

db2CfgParam

data

structure,

and

data

types

for

values

that

are

passed

to

the

structure.

Table

41.

Configurable

Database

Manager

Configuration

Parameters

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

agent_stack_sz

No

No

Low

SQLF_KTN_AGENT_STACK_SZ

61

Uint16

“agent_stack_sz

-

Agent

stack

size”

on

page

349

agentpri

No

No

High

SQLF_KTN_AGENTPRI

26

Sint16

“agentpri

-

Priority

of

agents”

on

page

377

aslheapsz

No

No

High

SQLF_KTN_ASLHEAPSZ

15

Uint32

“aslheapsz

-

Application

support

layer

heap

size”

on

page

358

audit_buf_sz

No

No

High

SQLF_KTN_AUDIT_BUF_SZ

312

Sint32

“audit_buf_sz

-

Audit

buffer

size”

on

page

362

authentication1

No

No

Low

SQLF_KTN_AUTHENTICATION

78

Uint16

“authentication

-

Authentication

type”

on

page

464

catalog_noauth

Yes

No

None

SQLF_KTN_CATALOG_NOAUTH

314

Uint16

“catalog_noauth

-

Cataloging

allowed

without

authority”

on

page

465

clnt_krb_plugin

No

No

None

SQLF_KTN_CLNT_KRB_PLUGIN

812

char(33)

“clnt_krb_plugin

-

Client

Kerberos

plug-in”

on

page

466

clnt_pw_plugin

No

No

None

SQLF_KTN_CLNT_PW_PLUGIN

811

char(33)

“clnt_pw_plugin

-

Client

userid-password

plug-in”

on

page

466

comm_bandwidth

Yes

No

Medium

SQLF_KTN_COMM_BANDWIDTH

307

float

“comm_bandwidth

-

Communications

bandwidth”

on

page

456

conn_elapse

Yes

No

Medium

SQLF_KTN_CONN_ELAPSE

508

Uint16

“conn_elapse

-

Connection

elapse

time”

on

page

443

cpuspeed

Yes

No

Low2

SQLF_KTN_CPUSPEED

42

float

“cpuspeed

-

CPU

speed”

on

page

457

datalinks

No

No

Low

SQLF_KTN_DATALINKS

603

Sint16

“datalinks

-

Enable

Data

Links

support”

on

page

426

dft_account_str

Yes

No

None

SQLF_KTN_DFT_ACCOUNT_STR

28

char(25)

“dft_account_str

-

Default

charge-back

account”

on

page

458

dft_monswitches

v

dft_mon_bufpool

v

dft_mon_lock

v

dft_mon_sort

v

dft_mon_stmt

v

dft_mon_table

v

dft_mon_timestamp

v

dft_mon_uow

Yes

No

Medium

SQLF_KTN_DFT_MONSWITCHES3

v

SQLF_KTN_DFT_MON_BUFPOOL

v

SQLF_KTN_DFT_MON_LOCK

v

SQLF_KTN_DFT_MON_SORT

v

SQLF_KTN_DFT_MON_STMT

v

SQLF_KTN_DFT_MON_TABLE

v

SQLF_KTN_DFT_MON_

TIMESTAMP

v

SQLF_KTN_DFT_MON_UOW

29

v

33

v

34

v

35

v

31

v

32

v

36

v

30

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

v

Uint16

“dft_monswitches

-

Default

database

system

monitor

switches”

on

page

455

dftdbpath

Yes

No

None

SQLF_KTN_DFTDBPATH

27

char(215)

“dftdbpath

-

Default

database

path”

on

page

467

diaglevel

Yes

No

Low

SQLF_KTN_DIAGLEVEL

64

Uint16

“diaglevel

-

Diagnostic

error

capture

level”

on

page

451

diagpath

Yes

No

None

SQLF_KTN_DIAGPATH

65

char(215)

“diagpath

-

Diagnostic

data

directory

path”

on

page

452

dir_cache

No

No

Medium

SQLF_KTN_DIR_CACHE

40

Uint16

“dir_cache

-

Directory

cache

support”

on

page

363

discover4

No

No

Medium

SQLF_KTN_DISCOVER

304

Uint16

“discover

-

Discovery

mode”

on

page

441

discover_inst

Yes

No

Low

SQLF_KTN_DISCOVER_INST

308

Uint16

“discover_inst

-

Discover

server

instance”

on

page

442

324

Administration

Guide:

Performance

||||||||
|

Table

41.

Configurable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

fcm_num_anchors

Yes

Yes

Medium

SQLF_KTN_FCM_NUM_ANCHORS

506

Sint32

“fcm_num_anchors

-

Number

of

FCM

message

anchors”

on

page

444

fcm_num_buffers

Yes

Yes

Medium

SQLF_KTN_FCM_NUM_BUFFERS

503

Uint32

“fcm_num_buffers

-

Number

of

FCM

buffers”

on

page

444

fcm_num_connect

Yes

Yes

Medium

SQLF_KTN_FCM_NUM_CONNECT

505

Sint32

“fcm_num_connect

-

Number

of

FCM

connection

entries”

on

page

446

fcm_num_rqb

Yes

Yes

Medium

SQLF_KTN_FCM_NUM_RQB

504

Uint32

“fcm_num_rqb

-

Number

of

FCM

request

blocks”

on

page

446

fed_noauth

Yes

No

None

SQLF_KTN_FED_NOAUTH

806

Uint16

“fed_noauth

-

Bypass

federated

authentication”

on

page

468

federated

No

No

Medium

SQLF_KTN_FEDERATED

604

Sint16

“federated

-

Federated

database

system

support”

on

page

458

fenced_pool

No

No

Medium

SQLF_KTN_FENCED_POOL

80

Sint32

“fenced_pool

-

Maximum

number

of

fenced

processes”

on

page

386

group_plugin

No

No

None

SQLF_KTN_GROUP_PLUGIN

810

char(33)

“group_plugin

-

Group

plug-in”

on

page

468

health_mon

Yes

No

Low

SQLF_KTN_HEALTH_MON

804

Uint16

“health_mon

-

Health

monitoring”

on

page

453

indexrec5

Yes

No

Medium

SQLF_KTN_INDEXREC

20

Uint16

“indexrec

-

Index

re-creation

time”

on

page

413

instance_memory

No

Yes

Medium

SQLF_KTN_INSTANCE_MEMORY

803

Uint64

“instance_memory

-

Instance

memory”

on

page

364

intra_parallel

No

No

High

SQLF_KTN_INTRA_PARALLEL

306

Sint16

“intra_parallel

-

Enable

intra-partition

parallelism”

on

page

449

java_heap_sz

No

No

High

SQLF_KTN_JAVA_HEAP_SZ

310

Sint32

“java_heap_sz

-

Maximum

Java

interpreter

heap

size”

on

page

365

jdk_path

No

No

None

SQLF_KTN_JDK_PATH

311

char(255)

“jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path”

on

page

459

keepfenced

No

No

Medium

SQLF_KTN_KEEPFENCED

81

Uint16

“keepfenced

-

Keep

fenced

process”

on

page

388

local_gssplugin

No

No

None

SQLF_KTN_LOCAL_GSSPLUGIN

816

char(33)

“local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization”

on

page

469

max_connections

No

No

Medium

SQLF_DBTN_MAX_CONNECTIONS

802

Sint32

“max_connections

-

Maximum

number

of

client

connections”

on

page

379

max_connretries

Yes

No

Medium

SQLF_KTN_MAX_CONNRETRIES

509

Uint16

“max_connretries

-

Node

connection

retries”

on

page

447

max_coordagents

No

No

Medium

SQLF_KTN_MAX_COORDAGENTS

501

Sint32

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

max_querydegree

Yes

No

High

SQLF_KTN_MAX_QUERYDEGREE

303

Sint32

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

max_time_diff

No

No

Medium

SQLF_KTN_MAX_TIME_DIFF

510

Uint16

“max_time_diff

-

Maximum

time

difference

among

nodes”

on

page

448

maxagents

No

No

Medium

SQLF_KTN_MAXAGENTS

12

Uint32

“maxagents

-

Maximum

number

of

agents”

on

page

380

maxcagents

No

No

Medium

SQLF_KTN_MAXCAGENTS

13

Sint32

“maxcagents

-

Maximum

number

of

concurrent

agents”

on

page

383

maxtotfilop

No

No

Medium

SQLF_KTN_MAXTOTFILOP

45

Uint16

“maxtotfilop

-

Maximum

total

files

open”

on

page

384

min_priv_mem

No

No

Medium

SQLF_KTN_MIN_PRIV_MEM

43

Uint32

“min_priv_mem

-

Minimum

committed

private

memory”

on

page

351

Chapter

13.

Configuring

DB2

325

||||||||
|

||||||||
|
|

Table

41.

Configurable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

mon_heap_sz

No

No

Low

SQLF_KTN_MON_HEAP_SZ

79

Uint16

“mon_heap_sz

-

Database

system

monitor

heap

size”

on

page

366

nname

No

No

None

SQLF_KTN_NNAME

7

char(8)

“nname

-

NetBIOS

workstation

name”

on

page

439

notifylevel

Yes

No

Low

SQLF_KTN_NOTIFYLEVEL

605

Sint16

“notifylevel

-

Notify

level”

on

page

453

num_initagents

No

No

Medium

SQLF_KTN_NUM_INITAGENTS

500

Uint32

“num_initagents

-

Initial

number

of

agents

in

pool”

on

page

385

num_initfenced

No

No

Medium

SQLF_KTN_NUM_INITFENCED

601

Sint32

“num_initfenced

-

Initial

number

of

fenced

processes”

on

page

389

num_poolagents

No

No

High

SQLF_KTN_NUM_POOLAGENTS

502

Sint32

“num_poolagents

-

Agent

pool

size”

on

page

385

numdb

No

No

Low

SQLF_KTN_NUMDB

6

Uint16

“numdb

-

Maximum

number

of

concurrently

active

databases

including

host

and

iSeries

databases”

on

page

460

priv_mem_thresh

No

No

Medium

SQLF_KTN_PRIV_MEM_THRESH

44

Sint32

“priv_mem_thresh

-

Private

memory

threshold”

on

page

352

query_heap_sz

No

No

Medium

SQLF_KTN_QUERY_HEAP_SZ

49

Sint32

“query_heap_sz

-

Query

heap

size”

on

page

353

resync_interval

No

No

None

SQLF_KTN_RESYNC_INTERVAL

68

Uint16

“resync_interval

-

Transaction

resync

interval”

on

page

418

rqrioblk

No

No

High

SQLF_KTN_RQRIOBLK

1

Uint16

“rqrioblk

-

Client

I/O

block

size”

on

page

360

sheapthres

No

No

High

SQLF_KTN_SHEAPTHRES

21

Uint32

“sheapthres

-

Sort

heap

threshold”

on

page

354

spm_log_file_sz

No

No

Low

SQLF_KTN_SPM_LOG_FILE_SZ

90

Sint32

“spm_log_file_sz

-

Sync

point

manager

log

file

size”

on

page

419

spm_log_path

No

No

Medium

SQLF_KTN_SPM_LOG_PATH

313

char(226)

“spm_log_path

-

Sync

point

manager

log

file

path”

on

page

420

spm_max_resync

No

No

Low

SQLF_KTN_SPM_MAX_RESYNC

91

Sint32

“spm_max_resync

-

Sync

point

manager

resync

agent

limit”

on

page

420

spm_name

No

No

None

SQLF_KTN_SPM_NAME

92

char(8)

“spm_name

-

Sync

point

manager

name”

on

page

421

srvcon_auth

No

No

None

SQLF_KTN_SRVCON_AUTH

815

Uint16

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

469

srvcon_gssplugin_list

No

No

None

SQLF_KTN_SRVCON_GSSPLUGIN_

LIST

814

char(256)

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server”

on

page

470

srv_plugin_mode

No

No

None

SQLF_KTN_SRV_PLUGIN_MODE

809

Uint16

“srv_plugin_mode

-

Server

plug-in

mode”

on

page

471

srvcon_pw_plugin

No

No

None

SQLF_KTN_SRVCON_PW_PLUGIN

813

char(33)

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server”

on

page

471

start_stop_time

Yes

No

Low

SQLF_KTN_START_STOP_TIME

511

Uint16

“start_stop_time

-

Start

and

stop

timeout”

on

page

448

svcename

No

No

None

SQLF_KTN_SVCENAME

24

char(14)

“svcename

-

TCP/IP

service

name”

on

page

439

sysadm_group

No

No

None

SQLF_KTN_SYSADM_GROUP

39

char(16)

“sysadm_group

-

System

administration

authority

group

name”

on

page

472

sysctrl_group

No

No

None

SQLF_KTN_SYSCTRL_GROUP

63

char(16)

“sysctrl_group

-

System

control

authority

group

name”

on

page

473

sysmaint_group

No

No

None

SQLF_KTN_SYSMAINT_GROUP

62

char(16)

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

473

326

Administration

Guide:

Performance

||||||||
|
|
|||||
|
|||
|
|
|
||||||||
|
||||||||
|
|
|

Table

41.

Configurable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

sysmon_group

No

No

None

SQLF_KTN_SYSMON

808

char(9)

“sysmon_group

-

System

monitor

authority

group

name”

on

page

474

tm_database

No

No

None

SQLF_KTN_TM_DATABASE

67

char(8)

“tm_database

-

Transaction

manager

database

name”

on

page

421

tp_mon_name

No

No

None

SQLF_KTN_TP_MON_NAME

66

char(19)

“tp_mon_name

-

Transaction

processor

monitor

name”

on

page

461

tpname

No

No

None

SQLF_KTN_TPNAME

25

char(64)

“tpname

-

APPC

transaction

program

name”

on

page

440

trust_allclnts6

No

No

None

SQLF_KTN_TRUST_ALLCLNTS

301

Uint16

“trust_allclnts

-

Trust

all

clients”

on

page

475

trust_clntauth

No

No

None

SQLF_KTN_TRUST_CLNTAUTH

302

Uint16

“trust_clntauth

-

Trusted

clients

authentication”

on

page

476

use_sna_auth

Yes

No

None

SQLF_KTN_USE_SNA_AUTH

805

Uint16

“use_sna_auth

-

Use

SNA

authentication”

on

page

477

util_impact_lim

Yes

No

High

SQLF_KTN_UTIL_IMPACT_LIM

807

Uint32

“util_impact_lim

-

Instance

impact

policy”

on

page

463

Notes:

1.

Valid

values

(defined

in

sqlenv.h):

SQL_AUTHENTICATION_SERVER

(0)

SQL_AUTHENTICATION_CLIENT

(1)

SQL_AUTHENTICATION_DCS

(2)

SQL_AUTHENTICATION_DCE

(3)

SQL_AUTHENTICATION_SVR_ENCRYPT

(4)

SQL_AUTHENTICATION_DCS_ENCRYPT

(5)

SQL_AUTHENTICATION_DCE_SVR_ENC

(6)

SQL_AUTHENTICATION_KERBEROS

(7)

SQL_AUTHENTICATION_KRB_SVR_ENC

(8)

SQL_AUTHENTICATION_GSSPLUGIN

(9)

SQL_AUTHENTICATION_GSS_SVR_ENC

(10)

SQL_AUTHENTICATION_DATAENC

(11)

SQL_AUTHENTICATION_DATAENC_CMP

(12)

SQL_AUTHENTICATION_NOT_SPEC

(255)

2.

The

cpuspeed

parameter

can

have

a

significant

impact

on

performance,

but

you

should

use

the

default

value,

except

in

very

specific

circumstances,

as

documented

in

the

parameter

description.

3.

Bit

1

(xxxx

xxx1):

dft_mon_uow

Bit

2

(xxxx

xx1x):

dft_mon_stmt

Bit

3

(xxxx

x1xx):

dft_mon_table

Bit

4

(xxxx

1xxx):

dft_mon_buffpool

Bit

5

(xxx1

xxxx):

dft_mon_lock

Bit

6

(xx1x

xxxx):

dft_mon_sort

Bit

7

(x1xx

xxxx):

dft_mon_timestamp

4.

Valid

values

(defined

in

sqlutil.h):

SQLF_DSCVR_KNOWN

(1)

SQLF_DSCVR_SEARCH

(2)

5.

Valid

values

(defined

in

sqlutil.h):

SQLF_INX_REC_SYSTEM

(0)

SQLF_INX_REC_REFERENCE

(1)

6.

Valid

values

(defined

in

sqlutil.h):

SQLF_TRUST_ALLCLNTS_NO

(0)

SQLF_TRUST_ALLCLNTS_YES

(1)

SQLF_TRUST_ALLCLNTS_DRDAONLY

(2)

Table

42.

Informational

Database

Manager

Configuration

Parameters

Parameter

Token

Token

Value

Data

Type

Additional

Information

nodetype1

SQLF_KTN_NODETYPE

100

Uint16

“nodetype

-

Machine

node

type”

on

page

459

Chapter

13.

Configuring

DB2

327

||||||||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table

42.

Informational

Database

Manager

Configuration

Parameters

(continued)

Parameter

Token

Token

Value

Data

Type

Additional

Information

release

SQLF_KTN_RELEASE

101

Uint16

“release

-

Configuration

file

release

level”

on

page

425

Notes:

1.

Valid

values

(defined

in

sqlutil.h):

SQLF_NT_STANDALONE

(0)

SQLF_NT_SERVER

(1)

SQLF_NT_REQUESTOR

(2)

SQLF_NT_STAND_REQ

(3)

SQLF_NT_MPP

(4)

SQLF_NT_SATELLITE

(5)

Database

Configuration

Parameter

Summary

The

following

table

lists

the

parameters

in

the

database

configuration

file.

When

changing

the

database

configuration

parameters,

consider

the

detailed

information

for

the

parameter.

For

some

database

configuration

parameters,

changes

will

only

take

effect

when

the

database

is

reactivated.

In

these

cases,

all

applications

must

first

disconnect

from

the

database.

(If

the

database

was

activated,

then

it

must

be

deactivated

and

reactivated.)

The

changes

take

effect

at

the

next

connection

to

the

database.

Other

parameters

can

be

changed

online;

these

are

called

configurable

online

configuration

parameters.

The

column

“Auto.”

in

the

following

table

indicates

whether

the

parameter

supports

the

AUTOMATIC

keyword

on

the

UPDATE

DATABASE

MANAGER

CONFIGURATION

command.

If

you

set

a

parameter

to

automatic,

DB2

will

automatically

adjust

the

parameter

to

reflect

current

resource

requirements.

The

column

“Perf.

Impact”

provides

an

indication

of

the

relative

importance

of

each

parameter

as

it

relates

to

system

performance.

It

is

impossible

for

this

column

to

apply

accurately

to

all

environments;

you

should

view

this

information

as

a

generalization.

v

High

—

indicates

that

the

parameter

can

have

a

significant

impact

on

performance.

You

should

consciously

decide

the

values

of

these

parameters,

which,

in

some

cases,

means

that

you

will

accept

the

default

values

provided.

v

Medium

—

indicates

that

the

parameter

can

have

some

impact

on

performance.

Your

specific

environment

and

needs

will

determine

how

much

tuning

effort

should

be

focused

on

these

parameters.

v

Low

—

indicates

that

the

parameter

has

a

less

general

or

less

significant

impact

on

performance.

v

None

—

indicates

that

the

parameter

does

not

directly

impact

performance.

Although

you

do

not

have

to

tune

these

parameters

for

performance

enhancement,

they

can

be

very

important

for

other

aspects

of

your

system

configuration,

such

as

communication

support,

for

example.

The

columns

“Token”,

“Token

Value”,

and

“Data

Type”

provide

information

that

you

will

need

when

calling

the

db2CfgGet

or

the

db2CfgSet

API.

This

information

328

Administration

Guide:

Performance

includes

configuration

parameter

identifiers,

entries

for

the

token

element

in

the

db2CfgParam

data

structure,

and

data

types

for

values

that

are

passed

to

the

structure.

Table

43.

Configurable

Database

Configuration

Parameters

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

alt_collate

No

No

None

SQLF_DBTN_ALT_COLLATE

809

Uint32

“alt_collate

-

Alternate

collating

sequence”

on

page

423

app_ctl_heap_sz

No

No

Medium

SQLF_DBTN_APP_CTL_HEAP_SZ

500

Uint16

“app_ctl_heap_sz

-

Application

control

heap

size”

on

page

346

appgroup_mem_sz

No

No

Medium

SQLF_DBTN_APPGROUP_MEM_SZ

800

Uint32

“appgroup_mem_sz

-

Maximum

size

of

application

group

memory

set”

on

page

347

applheapsz

No

No

Medium

SQLF_DBTN_APPLHEAPSZ

51

Uint16

“applheapsz

-

Application

heap

size”

on

page

350

archretrydelay

Yes

No

None

SQLF_DBTN_ARCHRETRYDELAY

828

Uint16

“archretrydelay

-

Archive

retry

delay

on

error”

on

page

399

autonomic_switches

v

auto_maint

v

auto_db_backup

v

auto_tbl_maint

v

auto_runstats

v

auto_stats_prof

v

auto_prof_upd

v

auto_reorg

Yes

No

Medium

SQLF_DBTN_AUTONOMIC_SWITCHES1

v

SQLF_ENABLE_AUTO_MAINT

v

SQLF_ENABLE_AUTO_DB_BACKUP

v

SQLF_ENABLE_AUTO_TBL_MAINT

v

SQLF_ENABLE_AUTO_RUNSTATS

v

SQLF_ENABLE_AUTO_STATS_PROF

v

SQLF_ENABLE_AUTO_PROF_UPD

v

SQLF_ENABLE_AUTO_REORG

830

v

831

v

833

v

835

v

837

v

839

v

844

v

841

Uint32

“autonomic_switches

-

Automatic

maintenance

switches”

on

page

437

autorestart

Yes

No

Low

SQLF_DBTN_AUTO_RESTART

25

Uint16

“autorestart

-

Auto

restart

enable”

on

page

408

avg_appls

Yes

No

High

SQLF_DBTN_AVG_APPLS

47

Uint16

“avg_appls

-

Average

number

of

active

applications”

on

page

378

blk_log_dsk_ful

Yes

No

None

SQLF_DBTN_BLK_LOG_DSK_FUL

804

Uint16

“blk_log_dsk_ful

-

Block

on

log

disk

full”

on

page

399

catalogcache_sz

Yes

No

High

SQLF_DBTN_CATALOGCACHE_SZ

56

Sint32

“catalogcache_sz

-

Catalog

cache

size”

on

page

336

chngpgs_thresh

No

No

High

SQLF_DBTN_CHNGPGS_THRESH

38

Uint16

“chngpgs_thresh

-

Changed

pages

threshold”

on

page

370

database_memory

No

Yes

Medium

SQLF_DBTN_DATABASE_MEMORY

803

Uint64

“database_memory

-

Database

shared

memory

size”

on

page

338

dbheap

Yes

No

Medium

SQLF_DBTN_DB_HEAP

58

Uint64

“dbheap

-

Database

heap”

on

page

339

dft_degree

Yes

No

High

SQLF_DBTN_DFT_DEGREE

301

Sint32

“dft_degree

-

Default

degree”

on

page

431

dft_extent_sz

Yes

No

Medium

SQLF_DBTN_DFT_EXTENT_SZ

54

Uint32

“dft_extent_sz

-

Default

extent

size

of

table

spaces”

on

page

371

dft_loadrec_ses

Yes

No

Medium

SQLF_DBTN_DFT_LOADREC_SES

42

Sint16

“dft_loadrec_ses

-

Default

number

of

load

recovery

sessions”

on

page

409

dft_mttb_types

No

No

None

SQLF_DBTN_DFT_MTTB_TYPES

843

Uint32

“dft_mttb_types

-

Default

maintained

table

types

for

optimization”

on

page

431

dft_prefetch_sz

Yes

Yes

Medium

SQLF_DBTN_DFT_PREFETCH_SZ

40

Sint16

“dft_prefetch_sz

-

Default

prefetch

size”

on

page

372

dft_queryopt

Yes

No

Medium

SQLF_DBTN_DFT_QUERYOPT

57

Sint32

“dft_queryopt

-

Default

query

optimization

class”

on

page

432

Chapter

13.

Configuring

DB2

329

||||||||
|
|
|
|
|
|
|
|
|
|

||||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|

|

Table

43.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

dft_refresh_age

No

No

Medium

SQLF_DBTN_DFT_REFRESH_AGE

702

char(22)

“dft_refresh_age

-

Default

refresh

age”

on

page

433

dft_sqlmathwarn

No

No

None

SQLF_DBTN_DFT_SQLMATHWARN

309

Sint16

“dft_sqlmathwarn

-

Continue

upon

arithmetic

exceptions”

on

page

433

discover_db

Yes

No

Medium

SQLF_DBTN_DISCOVER

308

Uint16

“discover_db

-

Discover

database”

on

page

442

dl_expint

Yes

No

None

SQLF_DBTN_DL_EXPINT

350

Sint32

“dl_expint

-

Data

Links

access

token

expiry

interval”

on

page

426

dl_num_copies

Yes

No

None

SQLF_DBTN_DL_NUM_COPIES

351

Uint16

“dl_num_copies

-

Data

Links

number

of

copies”

on

page

426

dl_time_drop

Yes

No

None

SQLF_DBTN_DL_TIME_DROP

353

Uint16

“dl_time_drop

-

Data

Links

time

after

drop”

on

page

427

dl_token

Yes

No

Low

SQLF_DBTN_DL_TOKEN

602

char(10)

“dl_token

-

Data

Links

token

algorithm”

on

page

427

dl_upper

Yes

No

None

SQLF_DBTN_DL_UPPER

603

Sint16

“dl_upper

-

Data

Links

token

in

uppercase”

on

page

428

dl_wt_iexpint

Yes

No

None

SQLF_DBTN_DL_WT_IEXPINT

354

Sint32

“dl_wt_iexpint

-

Data

Links

write

token

initial

expiry

interval”

on

page

428

dlchktime

Yes

No

Medium

SQLF_DBTN_DLCHKTIME

9

Uint32

“dlchktime

-

Time

interval

for

checking

deadlock”

on

page

367

dyn_query_mgmt

No

No

Low

SQLF_DBTN_DYN_QUERY_MGMT

604

Uint16

“dyn_query_mgmt

-

Dynamic

SQL

query

management”

on

page

422

estore_seg_sz

No

No

Medium

SQLF_DBTN_ESTORE_SEG_SZ

303

Sint32

“estore_seg_sz

-

Extended

storage

memory

segment

size”

on

page

373

failarchpath

Yes

No

None

SQLF_DBTN_FAILARCHPATH

826

char(243)

“failarchpath

-

Failover

log

archive

path”

on

page

400

groupheap_ratio

No

No

Medium

SQLF_DBTN_GROUPHEAP_RATIO

801

Uint16

“groupheap_ratio

-

Percent

of

memory

for

application

group

heap”

on

page

348

hadr_local_host

No

No

None

SQLF_DBTN_HADR_LOCAL_HOST

811

char(256)

“hadr_local_host

-

HADR

local

host

name”

on

page

410

hadr_local_svc

No

No

None

SQLF_DBTN_HADR_LOCAL_SVC

812

char(41)

“hadr_local_svc

-

HADR

local

service

name”

on

page

410

hadr_remote_host

No

No

None

SQLF_DBTN_HADR_REMOTE_HOST

813

char(256)

“hadr_remote_host

-

HADR

remote

host

name”

on

page

411

hadr_remote_inst

No

No

None

SQLF_DBTN_HADR_REMOTE_INST

815

char(9)

“hadr_remote_inst

-

HADR

instance

name

of

the

remote

server”

on

page

411

hadr_remote_svc

No

No

None

SQLF_DBTN_HADR_REMOTE_SVC

814

char(41)

“hadr_remote_svc

-

HADR

remote

service

name”

on

page

412

hadr_syncmode

No

No

None

SQLF_DBTN_HADR_SYNCMODE

817

Uint32

“hadr_syncmode

-

HADR

synchronization

mode

for

log

write

in

peer

state”

on

page

412

hadr_timeout

No

No

None

SQLF_DBTN_HADR_TIMEOUT

816

Sint32

“hadr_timeout

-

HADR

timeout

value”

on

page

413

indexrec2

Yes

No

Medium

SQLF_DBTN_INDEXREC

30

Uint16

“indexrec

-

Index

re-creation

time”

on

page

413

330

Administration

Guide:

Performance

||||||||
|

||||||||
|
|
||||||||
|
|
||||||||
|
|
||||||||
|
|
||||||||
|
|
||||||||
|
|
|
||||||||
|

Table

43.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

locklist

Yes

No

High

when

it

affects

escalation

SQLF_DBTN_LOCK_LIST

704

Uint64

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

locktimeout

No

No

Medium

SQLF_DBTN_LOCKTIMEOUT

34

Sint16

“locktimeout

-

Lock

timeout”

on

page

368

logarchmeth1

Yes

No

None

SQLF_DBTN_LOGARCHMETH1

822

Uint16

“logarchmeth1

-

Primary

log

archive

method”

on

page

400

logarchmeth2

Yes

No

None

SQLF_DBTN_LOGARCHMETH2

823

Uint16

“logarchmeth2

-

Secondary

log

archive

method”

on

page

401

logarchopt1

Yes

No

None

SQLF_DBTN_LOGARCHOPT1

824

char(243)

“logarchopt1

-

Primary

log

archive

options”

on

page

401

logarchopt2

Yes

No

None

SQLF_DBTN_LOGARCHOPT2

825

char(243)

“logarchopt2

-

Secondary

log

archive

options”

on

page

402

logbufsz

No

No

High

SQLF_DBTN_LOGBUFSZ

33

Uint16

“logbufsz

-

Log

buffer

size”

on

page

342

logfilsiz

No

No

Medium

SQLF_DBTN_LOGFIL_SIZ

92

Uint32

“logfilsiz

-

Size

of

log

files”

on

page

390

logindexbuild

Yes

Yes

None

SQLF_DBTN_LOGINDEXBUILD

818

Uint32

“logindexbuild

-

Log

index

pages

created”

on

page

402

logprimary

No

No

Medium

SQLF_DBTN_LOGPRIMARY

16

Uint16

“logprimary

-

Number

of

primary

log

files”

on

page

391

logretain3

No

No

Low

SQLF_DBTN_LOG_RETAIN

23

Uint16

“logretain

-

Log

retain

enable”

on

page

403

logsecond

Yes

No

Medium

SQLF_DBTN_LOGSECOND

17

Uint16

“logsecond

-

Number

of

secondary

log

files”

on

page

393

max_log

Yes

Yes

SQLF_DBTN_MAX_LOG

807

Uint16

“max_log

-

Maximum

log

per

transaction”

on

page

394

maxappls

Yes

Yes

Medium

SQLF_DBTN_MAXAPPLS

6

Uint16

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

maxfilop

Yes

No

Medium

SQLF_DBTN_MAXFILOP

3

Uint16

“maxfilop

-

Maximum

database

files

open

per

application”

on

page

383

maxlocks

Yes

No

High

when

it

affects

escalation

SQLF_DBTN_MAXLOCKS

15

Uint16

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

min_dec_div_3

No

No

High

SQLF_DBTN_MIN_DEC_DIV_3

605

Sint32

“min_dec_div_3

-

Decimal

division

scale

to

3”

on

page

359

mincommit

Yes

No

High

SQLF_DBTN_MINCOMMIT

32

Uint16

“mincommit

-

Number

of

commits

to

group”

on

page

403

mirrorlogpath

No

No

Low

SQLF_DBTN_MIRRORLOGPATH

806

char(242)

“mirrorlogpath

-

Mirror

log

path”

on

page

395

newlogpath

No

No

Low

SQLF_DBTN_NEWLOGPATH

20

char(242)

“newlogpath

-

Change

the

database

log

path”

on

page

396

num_db_backups

Yes

No

None

SQLF_DBTN_NUM_DB_BACKUPS

601

Uint16

“num_db_backups

-

Number

of

database

backups”

on

page

415

num_estore_segs

No

No

Medium

SQLF_DBTN_NUM_ESTORE_SEGS

304

Sint32

“num_estore_segs

-

Number

of

extended

storage

memory

segments”

on

page

373

Chapter

13.

Configuring

DB2

331

||||||||
|
|
||||||||
|
|
||||||||
|
|
||||||||
|
|

||||||||
|

Table

43.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

num_freqvalues

Yes

No

Low

SQLF_DBTN_NUM_FREQVALUES

36

Uint16

“num_freqvalues

-

Number

of

frequent

values

retained”

on

page

434

num_iocleaners

No

No

High

SQLF_DBTN_NUM_IOCLEANERS

37

Uint16

“num_iocleaners

-

Number

of

asynchronous

page

cleaners”

on

page

374

num_ioservers

No

No

High

SQLF_DBTN_NUM_IOSERVERS

39

Uint16

“num_ioservers

-

Number

of

I/O

servers”

on

page

375

num_log_span

Yes

Yes

SQLF_DBTN_NUM_LOG_SPAN

808

Uint16

“num_log_span

-

Number

log

span”

on

page

397

num_quantiles

Yes

No

Low

SQLF_DBTN_NUM_QUANTILES

48

Uint16

“num_quantiles

-

Number

of

quantiles

for

columns”

on

page

435

numarchretry

Yes

No

None

SQLF_DBTN_NUMARCHRETRY

827

Uint16

“numarchretry

-

Number

of

retries

on

error”

on

page

405

overflowlogpath

No

No

Medium

SQLF_DBTN_OVERFLOWLOGPATH

805

char(242)

“overflowlogpath

-

Overflow

log

path”

on

page

398

pckcachesz

Yes

No

High

SQLF_DBTN_PCKCACHE_SZ

505

Uint32

“pckcachesz

-

Package

cache

size”

on

page

343

rec_his_retentn

No

No

None

SQLF_DBTN_REC_HIS_RETENTN

43

Sint16

“rec_his_retentn

-

Recovery

history

retention

period”

on

page

415

seqdetect

Yes

No

High

SQLF_DBTN_SEQDETECT

41

Uint16

“seqdetect

-

Sequential

detection

flag”

on

page

376

sheapthres_shr

No

No

High

SQLF_DBTN_SHEAPTHRES_SHR

802

Uint32

“sheapthres_shr

-

Sort

heap

threshold

for

shared

sorts”

on

page

344

softmax

No

No

Medium

SQLF_DBTN_SOFTMAX

5

Uint16

“softmax

-

Recovery

range

and

soft

checkpoint

interval”

on

page

405

sortheap

Yes

No

High

SQLF_DBTN_SORT_HEAP

52

Uint32

“sortheap

-

Sort

heap

size”

on

page

355

stat_heap_sz

No

No

Low

SQLF_DBTN_STAT_HEAP_SZ

45

Uint32

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

stmtheap

Yes

No

Medium

SQLF_DBTN_STMT_HEAP

821

Uint32

“stmtheap

-

Statement

heap

size”

on

page

357

trackmod

No

No

Low

SQLF_DBTN_TRACKMOD

703

Uint16

“trackmod

-

Track

modified

pages

enable”

on

page

416

tsm_mgmtclass

Yes

No

None

SQLF_DBTN_TSM_MGMTCLASS

307

char(30)

“tsm_mgmtclass

-

Tivoli

Storage

Manager

management

class”

on

page

416

tsm_nodename

Yes

No

None

SQLF_DBTN_TSM_NODENAME

306

char(64)

“tsm_nodename

-

Tivoli

Storage

Manager

node

name”

on

page

417

tsm_owner

Yes

No

None

SQLF_DBTN_TSM_OWNER

305

char(64)

“tsm_owner

-

Tivoli

Storage

Manager

owner

name”

on

page

417

tsm_password

Yes

No

None

SQLF_DBTN_TSM_PASSWORD

501

char(64)

“tsm_password

-

Tivoli

Storage

Manager

password”

on

page

418

userexit

No

No

Low

SQLF_DBTN_USER_EXIT

24

Uint16

“userexit

-

User

exit

enable”

on

page

406

util_heap_sz

Yes

No

Low

SQLF_DBTN_UTIL_HEAP_SZ

55

Uint32

“util_heap_sz

-

Utility

heap

size”

on

page

345

vendoropt

Yes

No

None

SQLF_DBTN_VENDOROPT

829

char(242)

“vendoropt

-

Vendor

options”

on

page

407

332

Administration

Guide:

Performance

||||||||
|

|||

||||||||
|

Table

43.

Configurable

Database

Configuration

Parameters

(continued)

Parameter

Cfg.

Online

Auto.

Perf.

Impact

Token

Token

Value

Data

Type

Additional

Information

Notes:

1.

Default

=>

Bit

1

on

(xxxx

xxxx

xxxx

xxx1):

auto_maint

Bit

2

off

(xxxx

xxxx

xxxx

xx0x):

auto_db_backup

Bit

3

on

(xxxx

xxxx

xxxx

x0xx):

auto_tbl_maint

Bit

4

on

(xxxx

xxxx

xxxx

1xxx):

auto_runstats

Bit

5

off

(xxxx

xxxx

xxx1

xxxx):

auto_stats_prof

Bit

6

off

(xxxx

xxxx

xx0x

xxxx):

auto_prof_upd

Bit

7

off

(xxxx

xxxx

x0xx

xxxx):

auto_reorg

0

0

1

9

Maximum

=>

Bit

1

on

(xxxx

xxxx

xxxx

xxx1):

auto_maint

Bit

2

off

(xxxx

xxxx

xxxx

xx1x):

auto_db_backup

Bit

3

on

(xxxx

xxxx

xxxx

x1xx):

auto_tbl_maint

Bit

4

on

(xxxx

xxxx

xxxx

1xxx):

auto_runstats

Bit

5

off

(xxxx

xxxx

xxx1

xxxx):

auto_stats_prof

Bit

6

off

(xxxx

xxxx

xx1x

xxxx):

auto_prof_upd

Bit

7

off

(xxxx

xxxx

x1xx

xxxx):

auto_reorg

0

0

7

F

2.

Valid

values

(defined

in

sqlutil.h):

SQLF_INX_REC_SYSTEM

(0)

SQLF_INX_REC_REFERENCE

(1)

SQLF_INX_REC_RESTART

(2)

3.

Valid

values

(defined

in

sqlutil.h):

SQLF_LOGRETAIN_NO

(0)

SQLF_LOGRETAIN_RECOVERY

(1)

SQLF_LOGRETAIN_CAPTURE

(2)

Table

44.

Informational

Database

Configuration

Parameters

Parameter

Token

Token

Value

Data

Type

Additional

Information

backup_pending

SQLF_DBTN_BACKUP_PENDING

112

Uint16

“backup_pending

-

Backup

pending

indicator”

on

page

429

codepage

SQLF_DBTN_CODEPAGE

101

Uint16

“codepage

-

Code

page

for

the

database”

on

page

423

codeset

SQLF_DBTN_CODESET

120

char(9)1

“codeset

-

Codeset

for

the

database”

on

page

424

collate_info

SQLF_DBTN_COLLATE_INFO

44

char(260)

“collate_info

-

Collating

information”

on

page

424

country

SQLF_DBTN_COUNTRY

100

Uint16

“country

-

Database

territory

code”

on

page

424

database_consistent

SQLF_DBTN_CONSISTENT

111

Uint16

“database_consistent

-

Database

is

consistent”

on

page

429

database_level

SQLF_DBTN_DATABASE_LEVEL

124

Uint16

“database_level

-

Database

release

level”

on

page

424

hadr_db_role

SQLF_DBTN_HADR_DB_ROLE

810

Uint32

“hadr_db_role

-

HADR

database

role”

on

page

409

log_retain_status

SQLF_DBTN_LOG_RETAIN_STATUS

114

Uint16

“log_retain_status

-

Log

retain

status

indicator”

on

page

429

Chapter

13.

Configuring

DB2

333

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||||
|
|

Table

44.

Informational

Database

Configuration

Parameters

(continued)

Parameter

Token

Token

Value

Data

Type

Additional

Information

loghead

SQLF_DBTN_LOGHEAD

105

char(12)

“loghead

-

First

active

log

file”

on

page

391

logpath

SQLF_DBTN_LOGPATH

103

char(242)

“logpath

-

Location

of

log

files”

on

page

391

multipage_alloc

SQLF_DBTN_MULTIPAGE_ALLOC

506

Uint16

“multipage_alloc

-

Multipage

file

allocation

enabled”

on

page

429

numsegs

SQLF_DBTN_NUMSEGS

122

Uint16

“numsegs

-

Default

number

of

SMS

containers”

on

page

376

release

SQLF_DBTN_RELEASE

102

Uint16

“release

-

Configuration

file

release

level”

on

page

425

restore_pending

SQLF_DBTN_RESTORE_PENDING

503

Uint16

“restore_pending

-

Restore

pending”

on

page

430

rollfwd_pending

SQLF_DBTN_ROLLFWD_PENDING

113

Uint16

“rollfwd_pending

-

Roll

forward

pending

indicator”

on

page

430

territory

SQLF_DBTN_TERRITORY

121

char(5)2

“territory

-

Database

territory”

on

page

425

user_exit_status

SQLF_DBTN_USER_EXIT_STATUS

115

Uint16

“user_exit_status

-

User

exit

status

indicator”

on

page

430

Notes:

1.

char(17)

on

HP-UX

and

Solaris

Operating

Environment.

2.

char(33)

on

HP-UX

and

Solaris

Operating

Environment.

DB2

Administration

Server

(DAS)

Configuration

Parameter

Summary

Table

45.

DAS

Configuration

Parameters

Parameter

Parameter

Type

Additional

Information

authentication

Configurable

“authentication

-

Authentication

type

DAS”

on

page

478

contact_host

Configurable

Online

“contact_host

-

Location

of

contact

list”

on

page

478

das_codepage

Configurable

Online

“das_codepage

-

DAS

code

page”

on

page

479

das_territory

Configurable

Online

“das_territory

-

DAS

territory”

on

page

479

dasadm_group

Configurable

“dasadm_group

-

DAS

administration

authority

group

name”

on

page

479

db2system

Configurable

Online

“db2system

-

Name

of

the

DB2

server

system”

on

page

480

discover

Configurable

Online

“discover

-

DAS

discovery

mode”

on

page

481

exec_exp_task

Configurable

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

jdk_64_path

Configurable

Online

“jdk_64_path

-

64-Bit

Software

Developer’s

Kit

for

Java

installation

path

DAS”

on

page

482

334

Administration

Guide:

Performance

Table

45.

DAS

Configuration

Parameters

(continued)

Parameter

Parameter

Type

Additional

Information

jdk_path

Configurable

Online

“jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path

DAS”

on

page

482

sched_enable

Configurable

“sched_enable

-

Scheduler

mode”

on

page

483

sched_userid

Informational

“sched_userid

-

Scheduler

user

ID”

on

page

484

smtp_server

Configurable

Online

“smtp_server

-

SMTP

server”

on

page

484

toolscat_db

Configurable

“toolscat_db

-

Tools

catalog

database”

on

page

485

toolscat_inst

Configurable

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

toolscat_schema

Configurable

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

Parameter

details

by

function

The

following

sections

provide

additional

details

to

assist

in

understanding

and

tuning

the

different

configuration

parameters.

This

discussion

of

the

individual

parameters

is

organized

based

on

their

function

or

purpose:

v

“Capacity

management”

on

page

336

v

“Logging

and

recovery”

on

page

389

v

“Database

management”

on

page

422

v

“Communications”

on

page

439

v

“Partitioned

database

environment”

on

page

443

v

“Instance

management”

on

page

451

v

“DB2

Administration

Server”

on

page

477

The

discussion

of

each

parameter

includes

the

following

information:

Configuration

Type

Indicates

which

configuration

file

contains

the

setting

for

the

parameter:

v

Database

manager

affects

an

instance

of

the

database

manager

and

all

databases

defined

within

that

instance

v

Database

affects

a

specific

database

Parameter

Type

Indicates

whether

or

not

you

can

change

the

parameter

value,

and

whether

the

change

will

take

effect

online:

v

Configurable

A

range

of

values

are

possible

and

the

parameter

may

need

to

be

tuned

based

on

the

database

administrator’s

knowledge

of

the

applications

or

from

benchmarking

experience.

v

Configurable

online

A

range

of

values

are

possible

and

the

parameter

may

need

to

be

tuned

based

on

the

database

administrator’s

knowledge

of

the

applications

and/or

from

benchmarking

experience.

Changes

can

be

applied

while

the

database

is

online,

without

having

to

stop

and

restart

the

database

manager,

or

reactivate

the

database.

v

Informational

Chapter

13.

Configuring

DB2

335

These

parameters

are

changed

only

by

the

database

manager

itself

and

will

contain

information

such

as

the

release

of

DB2

that

a

database

was

created

under

or

an

indication

that

a

required

backup

is

pending.

Capacity

management

There

are

a

number

of

configuration

parameters

at

both

the

database

and

database

manager

levels

that

can

impact

the

throughput

on

your

system.

These

parameters

are

categorized

in

the

following

groups:

v

“Database

shared

memory”

v

“Application

shared

memory”

on

page

346

v

“Agent

private

memory”

on

page

349

v

“Agent/application

communication

memory”

on

page

358

v

“Database

manager

instance

memory”

on

page

362

v

“Locks”

on

page

367

v

“I/O

and

storage”

on

page

370

v

“Agents”

on

page

376

v

“Stored

procedures

and

user-defined

functions”

on

page

386

Database

shared

memory

The

following

parameters

affect

the

database

global

memory

allocated

on

your

system:

v

“catalogcache_sz

-

Catalog

cache

size”

v

“database_memory

-

Database

shared

memory

size”

on

page

338

v

“dbheap

-

Database

heap”

on

page

339

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“logbufsz

-

Log

buffer

size”

on

page

342

v

“pckcachesz

-

Package

cache

size”

on

page

343

v

“sheapthres_shr

-

Sort

heap

threshold

for

shared

sorts”

on

page

344

v

“util_heap_sz

-

Utility

heap

size”

on

page

345

catalogcache_sz

-

Catalog

cache

size

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

-1

[

8

–

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

is

initialized

When

Freed

When

the

database

is

shut

down

This

parameter

is

allocated

out

of

the

database

shared

memory,

and

is

used

to

cache

system

catalog

information.

In

a

partitioned

database

system,

there

is

one

catalog

cache

for

each

database

partition.

Caching

catalog

information

at

individual

partitions

allows

the

database

manager

to

reduce

its

internal

overhead

by

eliminating

the

need

to

access

the

system

336

Administration

Guide:

Performance

catalogs

(or

the

catalog

node

in

a

partitioned

database

environment)

to

obtain

information

that

has

previously

been

retrieved.

The

catalog

cache

is

used

to

store:

v

SYSTABLES

information

(including

packed

descriptors)

v

authorization

information,

including

SYSDBAUTH

information

and

execute

privileges

for

routines

v

SYSROUTINES

information

The

use

of

the

catalog

cache

can

help

improve

the

overall

performance

of:

v

binding

packages

and

compiling

SQL

statements

v

operations

that

involve

checking

database-level

privileges

v

operations

that

involve

checking

execute

privileges

for

routines

v

applications

that

are

connected

to

non-catalog

nodes

in

a

partitioned

database

environment

By

taking

the

default

(-1)

in

a

server

or

partitioned

database

environment,

the

value

used

to

calculate

the

page

allocation

is

four

times

the

value

specified

for

the

maxappls

configuration

parameter.

The

exception

to

this

occurs

if

four

times

maxappls

is

less

than

8.

In

this

situation,

the

default

value

of

-1

will

set

catalogcache_sz

to

8.

Recommendation:

Start

with

the

default

value

and

tune

it

by

using

the

database

system

monitor.

When

tuning

this

parameter,

you

should

consider

whether

the

extra

memory

being

reserved

for

the

catalog

cache

might

be

more

effective

if

it

was

allocated

for

another

purpose,

such

as

the

buffer

pool

or

package

cache.

Tuning

this

parameter

is

particularly

important

if

a

workload

involves

many

SQL

compilations

for

a

brief

period

of

time,

with

few

or

no

SQL

compilations

thereafter.

If

the

cache

is

too

large,

memory

might

be

wasted

holding

copies

of

information

that

will

no

longer

be

used.

In

an

partitioned

database

environment,

consider

if

the

catalogcache_sz

at

the

catalog

node

needs

to

be

set

larger

since

catalog

information

that

is

required

at

non-catalog

nodes

will

always

first

be

cached

at

the

catalog

node.

The

cat_cache_lookups

(catalog

cache

lookups),

cat_cache_inserts

(catalog

cache

inserts),

cat_cache_overflows

(catalog

cache

overflows),

and

cat_cache_size_top

(catalog

cache

high

water

mark)

monitor

elements

can

help

you

determine

whether

you

should

adjust

this

configuration

parameter.

Note:

The

catalog

cache

exists

on

all

nodes

in

a

partitioned

database

environment.

Since

there

is

a

local

database

configuration

file

for

each

node,

each

node’s

catalogcache_sz

value

defines

the

size

of

the

local

catalog

cache.

In

order

to

provide

efficient

caching

and

avoid

overflow

scenarios,

you

need

to

explicitly

set

the

catalogcache_sz

value

at

each

node

and

consider

the

feasibility

of

possibly

setting

the

catalogcache_sz

on

non-catalog

nodes

to

be

smaller

than

that

of

the

catalog

node;

keep

in

mind

that

information

that

is

required

to

be

cached

at

non-catalog

nodes

will

be

retrieved

from

the

catalog

node’s

cache.

Hence,

a

catalog

cache

at

a

non-catalog

node

is

like

a

subset

of

the

information

in

the

catalog

cache

at

the

catalog

node.

In

general,

more

cache

space

is

required

if

a

unit

of

work

contains

several

dynamic

SQL

statements

or

if

you

are

binding

packages

that

contain

a

large

number

of

static

SQL

statements.

Chapter

13.

Configuring

DB2

337

Related

reference:

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“cat_cache_lookups

-

Catalog

Cache

Lookups

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“cat_cache_inserts

-

Catalog

Cache

Inserts

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“cat_cache_overflows

-

Catalog

Cache

Overflows

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“cat_cache_size_top

-

Catalog

Cache

High

Water

Mark

monitor

element”

in

the

System

Monitor

Guide

and

Reference

database_memory

-

Database

shared

memory

size

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Automatic

[

0

—

4

294

967

295

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

is

activated

When

Freed

When

the

database

is

deactivated

This

parameter

specifies

the

amount

of

shared

memory

that

is

reserved

for

the

database

shared

memory

region.

If

this

amount

is

less

than

the

amount

calculated

from

the

individual

parameters

(for

example,

locklist,

utility

heap,

bufferpools,

and

so

on),

the

larger

amount

will

be

used.

To

simplify

the

management

of

this

parameter,

the

AUTOMATIC

setting

instructs

DB2

to

calculate

the

amount

of

memory

needed,

and

to

allocate

it

at

database

activation

time.

DB2

will

also

allocate

some

additional

memory

for

an

overflow

buffer.

The

overflow

buffer

is

used

to

satisfy

peak

memory

requirements

for

any

heap

in

the

database

shared

memory

region

whenever

a

heap

exceeds

its

configured

size.

Other

operations,

such

as

dynamic

configuration

updates,

also

have

access

to

this

overflow

buffer.

The

db2pd

command,

with

the

-memsets

option,

can

be

used

to

monitor

the

amount

of

unused

memory

left

in

the

overflow

buffer.

On

64-bit

DB2

for

AIX,

the

database

real

shared

memory

usage

grows

dynamically

to

accommodate

the

needs

of

the

database

up

to

a

size

of

64GB,

so

there

is

no

need

to

explicitly

control

the

DATABASE_MEMORY

parameter.

However,

setting

the

DB2_PINNED_BP

or

DB2_LGPAGE_BP

registry

variable

will

restrict

the

ability

to

grow

database

shared

memory.

See

the

description

of

these

registry

variables

in

“Performance

variables”.

338

Administration

Guide:

Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Recommendation:

This

value

will

usually

remain

at

AUTOMATIC.

However,

it

can

be

used

to

reserve

additional

memory

for

future

expansion.

For

example,

the

additional

memory

can

be

used

for

creating

new

buffer

pools,

or

increasing

the

sizes

of

existing

buffer

pools.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“Performance

variables”

on

page

506

v

“db2pd

-

Monitor

and

Troubleshoot

DB2

Command”

in

the

Command

Reference

dbheap

-

Database

heap

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

UNIX

1200

[

32

–

524

288

]

Windows

Database

server

with

local

and

remote

clients

600

[

32

–

524

288

]

Windows

64-bit

Database

server

with

local

clients

600

[

32

–

524

288

]

Windows

32-bit

Database

server

with

local

clients

300

[

32

–

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

is

activated

When

Freed

When

the

database

is

deactivated

There

is

one

database

heap

per

database,

and

the

database

manager

uses

it

on

behalf

of

all

applications

connected

to

the

database.

It

contains

control

block

information

for

tables,

indexes,

table

spaces,

and

buffer

pools.

It

also

contains

space

for

the

log

buffer

(logbufsz)

and

temporary

memory

used

by

utilities.

Therefore,

the

size

of

the

heap

will

be

dependent

on

a

large

number

of

variables.

The

control

block

information

is

kept

in

the

heap

until

all

applications

disconnect

from

the

database.

The

minimum

amount

the

database

manager

needs

to

get

started

is

allocated

at

the

first

connection.

The

data

area

is

expanded

as

needed

until

all

the

overflow

memory

area

in

the

database

shared

memory

is

used.

You

can

use

the

database

system

monitor

to

track

the

highest

amount

of

memory

that

was

used

for

the

database

heap,

using

the

db_heap_top

(maximum

database

heap

allocated)

element.

Related

reference:

v

“logbufsz

-

Log

buffer

size”

on

page

342

v

“db_heap_top

-

Maximum

Database

Heap

Allocated

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

339

|
|
|

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

locklist

-

Maximum

storage

for

lock

list

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

UNIX

100

[

4

–

524

288

]

Windows

Database

server

with

local

and

remote

clients

50

[

4

–

524

288

]

Windows

64-bit

Database

server

with

local

clients

50

[

4

–

60

000

]

Windows

32-bit

Database

server

with

local

clients

25

[

4

–

60

000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

first

application

connects

to

the

database

When

Freed

When

last

application

disconnects

from

the

database

This

parameter

indicates

the

amount

of

storage

that

is

allocated

to

the

lock

list.

There

is

one

lock

list

per

database

and

it

contains

the

locks

held

by

all

applications

concurrently

connected

to

the

database.

Locking

is

the

mechanism

that

the

database

manager

uses

to

control

concurrent

access

to

data

in

the

database

by

multiple

applications.

Both

rows

and

tables

can

be

locked.

The

database

manager

can

also

acquire

locks

for

internal

use.

This

parameter

can

be

changed

online,

but

it

can

only

be

increased

online,

not

decreased.

If

you

want

to

decrease

the

value

of

locklist,

you

will

have

to

reactivate

the

database.

On

32-bit

platforms,

each

lock

requires

36

or

72

bytes

of

the

lock

list,

depending

on

whether

other

locks

are

held

on

the

object:

v

72

bytes

are

required

to

hold

a

lock

on

an

object

that

has

no

other

locks

held

on

it

v

36

bytes

are

required

to

record

a

lock

on

an

object

that

has

an

existing

lock

held

on

it.

On

64-bit

platforms,

each

lock

requires

56

or

112

bytes

of

the

lock

list,

depending

on

whether

other

locks

are

held

on

the

object:

v

112

bytes

are

required

to

hold

a

lock

on

an

object

that

has

no

other

locks

held

on

it

v

56

bytes

are

required

to

record

a

lock

on

an

object

that

has

an

existing

lock

held

on

it.

When

the

percentage

of

the

lock

list

used

by

one

application

reaches

maxlocks,

the

database

manager

will

perform

lock

escalation,

from

row

to

table,

for

the

locks

held

by

the

application

(described

below).

Although

the

escalation

process

itself

does

not

take

much

time,

locking

entire

tables

(versus

individual

rows)

decreases

340

Administration

Guide:

Performance

concurrency,

and

overall

database

performance

might

decrease

for

subsequent

accesses

against

the

affected

tables.

Suggestions

of

how

to

control

the

size

of

the

lock

list

are:

v

Perform

frequent

COMMITs

to

release

locks.

v

When

performing

many

updates,

lock

the

entire

table

before

updating

(using

the

SQL

LOCK

TABLE

statement).

This

will

use

only

one

lock,

keeps

others

from

interfering

with

the

updates,

but

does

reduce

concurrency

of

the

data.

You

can

also

use

the

LOCKSIZE

option

of

the

ALTER

TABLE

statement

to

control

how

locking

is

done

for

a

specific

table.

Use

of

the

Repeatable

Read

isolation

level

might

result

in

an

automatic

table

lock.

v

Use

the

Cursor

Stability

isolation

level

when

possible

to

decrease

the

number

of

share

locks

held.

If

application

integrity

requirements

are

not

compromised

use

Uncommitted

Read

instead

of

Cursor

Stability

to

further

decrease

the

amount

of

locking.

Once

the

lock

list

is

full,

performance

can

degrade

since

lock

escalation

will

generate

more

table

locks

and

fewer

row

locks,

thus

reducing

concurrency

on

shared

objects

in

the

database.

Additionally

there

might

be

more

deadlocks

between

applications

(since

they

are

all

waiting

on

a

limited

number

of

table

locks),

which

will

result

in

transactions

being

rolled

back.

Your

application

will

receive

an

SQLCODE

of

-912

when

the

maximum

number

of

lock

requests

has

been

reached

for

the

database.

Recommendation:

If

lock

escalations

are

causing

performance

concerns

you

might

need

to

increase

the

value

of

this

parameter

or

the

maxlocks

parameter.

You

can

use

the

database

system

monitor

to

determine

if

lock

escalations

are

occurring.

Refer

to

the

lock_escals

(lock

escalations)

monitor

element.

The

following

steps

might

help

in

determining

the

number

of

pages

required

for

your

lock

list:

1.

Calculate

a

lower

bound

for

the

size

of

your

lock

list,

using

one

of

the

following

calculations,

depending

on

your

environment:

a.

(512

*

x

*

maxappls)

/

4096

b.

with

Concentrator

enabled:

(512

*

x

*

max_coordagents)

/

4096

c.

in

a

partitioned

database

with

Concentrator

enabled:

(512

*

x

*

max_coordagents

*

number

of

database

partitions)

/

4096

where

512

is

an

estimate

of

the

average

number

of

locks

per

application

and

x

is

the

number

of

bytes

required

for

each

lock

against

an

object

that

has

an

existing

lock

(36

bytes

on

32-bit

platforms,

56

bytes

on

64-bit

platforms).

2.

Calculate

an

upper

bound

for

the

size

of

your

lock

list:

(512

*

y

*

maxappls)

/

4096

where

y

is

the

number

of

bytes

required

for

the

first

lock

against

an

object

(72

bytes

on

32-bit

platforms,

112

bytes

on

64-bit

platforms).

3.

Estimate

the

amount

of

concurrency

you

will

have

against

your

data

and

based

on

your

expectations,

choose

an

initial

value

for

locklist

that

falls

between

the

upper

and

lower

bounds

that

you

have

calculated.

4.

Using

the

database

system

monitor,

as

described

below,

tune

the

value

of

this

parameter.

Chapter

13.

Configuring

DB2

341

You

can

use

the

database

system

monitor

to

determine

the

maximum

number

of

locks

held

by

a

given

transaction.

Refer

to

the

locks_held_top

(maximum

number

of

locks

held)

monitor

element.

This

information

can

help

you

validate

or

adjust

the

estimated

number

of

locks

per

application.

In

order

to

perform

this

validation,

you

will

have

to

sample

several

applications,

noting

that

the

monitor

information

is

provided

at

a

transaction

level,

not

an

application

level.

You

might

also

want

to

increase

locklist

if

maxappls

is

increased,

or

if

the

applications

being

run

perform

infrequent

commits.

You

should

consider

rebinding

applications

(using

the

REBIND

command)

after

changing

this

parameter.

Related

reference:

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“lock_escals

-

Number

of

Lock

Escalations

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“locks_held_top

-

Maximum

Number

of

Locks

Held

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“REBIND

Command”

in

the

Command

Reference

logbufsz

-

Log

buffer

size

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

32-bit

platforms

8

[

4

—

4

096

]

64-bit

platforms

8

[

4

—

65

535

]

Unit

of

Measure

Pages

(4

KB)

This

parameter

allows

you

to

specify

the

amount

of

the

database

heap

(defined

by

the

dbheap

parameter)

to

use

as

a

buffer

for

log

records

before

writing

these

records

to

disk.

The

log

records

are

written

to

disk

when

one

of

the

following

occurs:

v

A

transaction

commits

or

a

group

of

transactions

commit,

as

defined

by

the

mincommit

configuration

parameter

v

The

log

buffer

is

full

v

As

a

result

of

some

other

internal

database

manager

event.

This

parameter

must

also

be

less

than

or

equal

to

the

dbheap

parameter.

Buffering

the

log

records

will

result

in

more

efficient

logging

file

I/O

because

the

log

records

will

be

written

to

disk

less

frequently

and

more

log

records

will

be

written

at

each

time.

342

Administration

Guide:

Performance

Recommendation:

Increase

the

size

of

this

buffer

area

if

there

is

considerable

read

activity

on

a

dedicated

log

disk,

or

there

is

high

disk

utilization.

When

increasing

the

value

of

this

parameter,

you

should

also

consider

the

dbheap

parameter

since

the

log

buffer

area

uses

space

controlled

by

the

dbheap

parameter.

You

can

use

the

database

system

monitor

to

determine

how

much

of

the

log

buffer

space

is

used

for

a

particular

transaction

(or

unit

of

work).

Refer

to

the

log_space_used

(unit

of

work

log

space

used)

monitor

element.

Related

reference:

v

“mincommit

-

Number

of

commits

to

group”

on

page

403

v

“dbheap

-

Database

heap”

on

page

339

v

“uow_log_space_used

-

Unit

of

Work

Log

Space

Used

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

pckcachesz

-

Package

cache

size

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

32-bit

platforms

-1

[

-1,

32

—

128

000

]

64-bit

platforms

-1

[

-1,

32

—

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

is

initialized

When

Freed

When

the

database

is

shut

down

This

parameter

is

allocated

out

of

the

database

shared

memory,

and

is

used

for

caching

of

sections

for

static

and

dynamic

SQL

statements

on

a

database.

In

a

partitioned

database

system,

there

is

one

package

cache

for

each

database

partition.

Caching

packages

allows

the

database

manager

to

reduce

its

internal

overhead

by

eliminating

the

need

to

access

the

system

catalogs

when

reloading

a

package;

or,

in

the

case

of

dynamic

SQL,

eliminating

the

need

for

compilation.

Sections

are

kept

in

the

package

cache

until

one

of

the

following

occurs:

v

The

database

is

shut

down

v

The

package

or

dynamic

SQL

statement

is

invalidated

v

The

cache

runs

out

of

space.

This

caching

of

the

section

for

a

static

or

dynamic

SQL

statement

can

improve

performance

especially

when

the

same

statement

is

used

multiple

times

by

applications

connected

to

a

database.

This

is

particularly

important

in

a

transaction

processing

application.

Chapter

13.

Configuring

DB2

343

By

taking

the

default

(-1),

the

value

used

to

calculate

the

page

allocation

is

eight

times

the

value

specified

for

the

maxappls

configuration

parameter.

The

exception

to

this

occurs

if

eight

times

maxappls

is

less

than

32.

In

this

situation,

the

default

value

of

-1

will

set

pckcachesz

to

32.

Recommendation:

When

tuning

this

parameter,

you

should

consider

whether

the

extra

memory

being

reserved

for

the

package

cache

might

be

more

effective

if

it

was

allocated

for

another

purpose,

such

as

the

buffer

pool

or

catalog

cache.

For

this

reason,

you

should

use

benchmarking

techniques

when

tuning

this

parameter.

Tuning

this

parameter

is

particularly

important

when

several

sections

are

used

initially

and

then

only

a

few

are

run

repeatedly.

If

the

cache

is

too

large,

memory

is

wasted

holding

copies

of

the

initial

sections.

The

following

monitor

elements

can

help

you

determine

whether

you

should

adjust

this

configuration

parameter:

v

pkg_cache_lookups

(package

cache

lookups)

v

pkg_cache_inserts

(package

cache

inserts)

v

pkg_cache_size_top

(package

cache

high

water

mark)

v

pkg_cache_num_overflows

(package

cache

overflows)

Note:

The

package

cache

is

a

working

cache,

so

you

cannot

set

this

parameter

to

zero.

There

must

be

sufficient

memory

allocated

in

this

cache

to

hold

all

sections

of

the

SQL

statements

currently

being

executed.

If

there

is

more

space

allocated

than

currently

needed,

then

sections

are

cached.

These

sections

can

simply

be

executed

the

next

time

they

are

needed

without

having

to

load

or

compile

them.

The

limit

specified

by

the

pckcachesz

parameter

is

a

soft

limit.

This

limit

can

be

exceeded,

if

required,

if

memory

is

still

available

in

the

database

shared

set.

You

can

use

the

pkg_cache_size_top

monitor

element

to

determine

the

largest

that

the

package

cache

has

grown,

and

the

pkg_cache_num_overflows

monitor

element

to

determine

how

many

times

the

limit

specified

by

the

pckcachesz

parameter

has

been

exceeded.

Related

reference:

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“pkg_cache_lookups

-

Package

Cache

Lookups

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“pkg_cache_inserts

-

Package

Cache

Inserts

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“pkg_cache_num_overflows

-

Package

Cache

Overflows

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“pkg_cache_size_top

-

Package

Cache

High

Water

Mark

monitor

element”

in

the

System

Monitor

Guide

and

Reference

sheapthres_shr

-

Sort

heap

threshold

for

shared

sorts

Configuration

Type

Database

Parameter

Type

Configurable

344

Administration

Guide:

Performance

Default

[Range]

32-bit

platforms

sheapthres

[

250

—

2

097

152

]

64-bit

platforms

sheapthres

[

250

—

2

147

483

647

]

Unit

of

Measure

Pages

(4

KB)

This

parameter

represents

a

hard

limit

on

the

total

amount

of

database

shared

memory

that

can

be

used

for

sorting

at

any

one

time.

When

the

total

amount

of

shared

memory

for

active

shared

sorts

reaches

this

limit,

subsequent

sorts

will

fail

(SQL0955C).

If

the

value

of

sheapthres_shr

is

0,

the

threshold

for

shared

sort

memory

will

be

equal

to

the

value

of

the

sheapthres

database

manager

configuration

parameter,

which

is

also

used

to

represent

the

sort

memory

threshold

for

private

sorts.

If

the

value

of

sheapthres_shr

is

non-zero,

then

this

non-zero

value

will

be

used

for

the

shared

sort

memory

threshold.

sheapthres_shr

is

only

meaningful

in

two

cases:

v

if

the

intra_parallel

database

manager

configuration

parameter

is

set

to

yes,

because

when

intra_parallel

is

set

to

no,

there

will

be

no

shared

sorts.

v

if

the

Concentrator

is

on

(that

is,

when

max_connections

is

greater

than

max_coordagents),

because

sorts

that

use

a

cursor

declared

with

the

WITH

HOLD

option

will

be

allocated

from

shared

memory.

Related

reference:

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

util_heap_sz

-

Utility

heap

size

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

5000

[

16

–

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

As

required

by

the

database

manager

utilities

When

Freed

When

the

utility

no

longer

needs

the

memory

This

parameter

indicates

the

maximum

amount

of

memory

that

can

be

used

simultaneously

by

the

BACKUP,

RESTORE,

and

LOAD

(including

load

recovery)

utilities.

Recommendation:

Use

the

default

value

unless

your

utilities

run

out

of

space,

in

which

case

you

should

increase

this

value.

If

memory

on

your

system

is

constrained,

you

might

wish

to

lower

the

value

of

this

parameter

to

limit

the

memory

used

by

the

database

utilities.

If

the

parameter

is

set

too

low

and

no

more

memory

is

available

in

the

overflow

area,

you

might

not

be

able

to

concurrently

run

utilities.

You

should

update

this

parameter

dynamically

as

needed.

For

a

small

Chapter

13.

Configuring

DB2

345

|
|
|
|
|
|

number

of

utilities,

set

this

parameter

to

a

small

value.

For

a

large

number

of

utilites,

or

for

memory

intensive

utilities,

you

should

set

this

parameter

to

a

larger

value.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Application

shared

memory

The

following

parameters

specify

the

work

area

that

is

used

by

all

agents

(both

coordinating

and

subagents)

that

work

for

an

application:

v

“app_ctl_heap_sz

-

Application

control

heap

size”

v

“appgroup_mem_sz

-

Maximum

size

of

application

group

memory

set”

on

page

347

v

“groupheap_ratio

-

Percent

of

memory

for

application

group

heap”

on

page

348

app_ctl_heap_sz

-

Application

control

heap

size

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

Database

server

with

local

and

remote

clients

128

[1–64

000]

Database

server

with

local

clients

64

[1–64

000]

(for

non-UNIX

platforms)

128

[1–64

000]

(for

UNIX-based

platforms)

Partitioned

database

server

with

local

and

remote

clients

512

[1–64

000]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

an

application

starts

When

Freed

When

an

application

completes

For

partitioned

databases,

and

for

non-partitioned

databases

with

intra-parallelism

enabled

(intra_parallel=ON),

this

parameter

specifies

the

average

size

of

the

shared

memory

area

allocated

for

an

application.

For

non-partitioned

databases

where

intra-parallelism

is

disabled

(intra_parallel=OFF),

this

is

the

maximum

private

memory

that

will

be

allocated

for

the

heap.

There

is

one

application

control

heap

per

connection

per

partition.

The

application

control

heap

is

required

primarily

for

sharing

information

between

agents

working

on

behalf

of

the

same

request.

Usage

of

this

heap

is

minimal

for

non-partitioned

databases

when

running

queries

with

a

degree

of

parallelism

equal

to

1.

346

Administration

Guide:

Performance

|
|
|

This

heap

is

also

used

to

store

descriptor

information

for

declared

temporary

tables.

The

descriptor

information

for

all

declared

temporary

tables

that

have

not

been

explicitly

dropped

is

kept

in

this

heap’s

memory

and

cannot

be

dropped

until

the

declared

temporary

table

is

dropped.

Recommendation:

Initially,

start

with

the

default

value.

You

might

have

to

set

the

value

higher

if

you

are

running

complex

applications,

if

you

have

a

system

that

contains

a

large

number

of

database

partitions,

or

if

you

use

declared

temporary

tables.

The

amount

of

memory

needed

increases

with

the

number

of

concurrently

active

declared

temporary

tables.

A

declared

temporary

table

with

many

columns

has

a

larger

table

descriptor

size

than

a

table

with

few

columns,

so

having

a

large

number

of

columns

in

an

application’s

declared

temporary

tables

also

increases

the

demand

on

the

application

control

heap.

Related

reference:

v

“intra_parallel

-

Enable

intra-partition

parallelism”

on

page

449

v

“applheapsz

-

Application

heap

size”

on

page

350

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“appgroup_mem_sz

-

Maximum

size

of

application

group

memory

set”

on

page

347

v

“groupheap_ratio

-

Percent

of

memory

for

application

group

heap”

on

page

348

appgroup_mem_sz

-

Maximum

size

of

application

group

memory

set

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

UNIX

Database

server

with

local

clients

(other

than

32-bit

HP-UX)

20

000

[

1

–

1

000

000

]

32-bit

HP-UX

v

Database

server

with

local

clients

v

Database

server

with

local

and

remote

clients

v

Partitioned

database

server

with

local

and

remote

clients

10

000

[

1

–

1

000

000

]

Windows

Database

server

with

local

clients

10

000

[

1

–

1

000

000

]

Database

server

with

local

and

remote

clients

(other

than

32-bit

HP-UX)

30

000

[

1

–

1

000

000

]

Partitioned

database

server

with

local

and

remote

clients

(other

than

32-bit

HP-UX)

40

000

[

1

–

1

000

000

]

Unit

of

Measure

Pages

(4

KB)

Chapter

13.

Configuring

DB2

347

This

parameter

determines

the

size

of

the

application

group

shared

memory

segment.

Information

that

needs

to

be

shared

between

agents

working

on

the

same

application

is

stored

in

the

application

group

shared

memory

segment.

In

a

partitioned

database,

or

in

a

non-partitioned

database

with

intra-partition

parallelism

enabled

or

concentrator

enabled,

multiple

applications

share

one

application

group.

One

application

group

shared

memory

segment

is

allocated

for

the

application

group.

Within

the

application

group

shared

memory

segment,

each

application

will

have

its

own

application

control

heap,

and

all

applications

will

share

one

application

group

shared

heap.

The

number

of

applications

in

one

application

group

is

calculated

by:

appgroup_mem_sz

/

app_ctl_heap_sz

The

application

group

shared

heap

size

is

calculated

by:

appgroup_mem_sz

*

groupheap_ratio

/

100

The

size

of

each

application

control

heap

is

calculated

by:

app_ctl_heap_sz

*

(100

-

groupheap_ratio)

/

100

Recommendation:

Retain

the

default

value

of

this

parameter

unless

you

are

experiencing

performance

problems.

Related

reference:

v

“app_ctl_heap_sz

-

Application

control

heap

size”

on

page

346

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“groupheap_ratio

-

Percent

of

memory

for

application

group

heap”

on

page

348

groupheap_ratio

-

Percent

of

memory

for

application

group

heap

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

70

[

1

–

99

]

Unit

of

Measure

Percentage

This

parameter

specifies

the

percentage

of

memory

in

the

application

control

shared

memory

set

devoted

to

the

application

group

shared

heap.

This

parameter

does

not

have

any

effect

on

a

non-partitioned

database

with

concentrator

OFF

and

intra-partition

parallelism

disabled.

Recommendation:

Retain

the

default

value

of

this

parameter

unless

you

are

experiencing

performance

problems.

Related

reference:

v

“app_ctl_heap_sz

-

Application

control

heap

size”

on

page

346

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

348

Administration

Guide:

Performance

v

“appgroup_mem_sz

-

Maximum

size

of

application

group

memory

set”

on

page

347

Agent

private

memory

The

following

parameters

affect

the

amount

of

memory

used

for

each

database

agent:

v

“agent_stack_sz

-

Agent

stack

size”

v

“applheapsz

-

Application

heap

size”

on

page

350

v

“min_priv_mem

-

Minimum

committed

private

memory”

on

page

351

v

“priv_mem_thresh

-

Private

memory

threshold”

on

page

352

v

“query_heap_sz

-

Query

heap

size”

on

page

353

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

v

“stmtheap

-

Statement

heap

size”

on

page

357

agent_stack_sz

-

Agent

stack

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

16

[

8

–

1000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

an

agent

is

initialized

to

do

work

for

an

application

When

Freed

When

an

agent

completes

the

work

to

be

done

for

an

application

The

agent

stack

is

the

virtual

memory

that

is

allocated

by

DB2

for

each

agent.

This

memory

is

committed

when

it

is

required

to

process

an

SQL

statement.

You

can

use

this

parameter

to

optimize

memory

utilization

of

the

server

for

a

given

set

of

applications.

More

complex

queries

will

use

more

stack

space,

compared

to

the

space

used

for

simple

queries.

This

parameter

is

used

to

set

the

initial

committed

stack

size

for

each

agent

in

a

Windows

environment.

By

default,

each

agent

stack

can

grow

up

to

the

default

reserve

stack

size

of

256

KB

(64

4-KB

pages).

This

limit

is

sufficient

for

most

database

operations.

However,

when

preparing

a

large

SQL

statement,

the

agent

can

run

out

of

stack

space

and

the

system

will

generate

a

stack

overflow

exception

(0xC000000D).

When

this

happens,

the

server

will

shut

down

because

the

error

is

non-recoverable.

The

agent

stack

size

can

be

increased

by

setting

agent_stack_sz

to

a

value

larger

than

the

default

reserve

stack

size

of

64

pages.

Note

that

the

value

for

agent_stack_sz,

when

larger

than

the

default

reserve

stack

size,

is

rounded

by

the

Windows

operating

system

to

the

nearest

multiple

of

1

MB;

setting

the

agent

stack

Chapter

13.

Configuring

DB2

349

size

to

128

4-KB

pages

actually

reserves

a

1

MB

stack

for

each

agent.

Setting

the

value

for

agent_stack_sz

less

than

the

default

reserve

stack

size

will

have

no

effect

on

the

maximum

limit

because

the

stack

still

grows

if

necessary

up

to

the

default

reserve

stack

size.

In

this

case,

the

value

for

agent_stack_sz

is

the

initial

committed

memory

for

the

stack

when

an

agent

is

created.

You

can

change

the

default

reserve

stack

size

by

using

the

db2hdr

utility

to

change

the

header

information

for

the

db2syscs.exe

file.

Changing

the

default

reserve

stack

size

will

affect

all

threads

while

changing

agent_stack_sz

only

affects

the

stack

size

for

agents.

The

advantage

of

changing

the

default

stack

size

using

the

db2hdr

utility

is

that

it

provides

a

better

granularity,

therefore

allowing

the

stack

size

to

be

set

at

the

minimum

required

stack

size.

However,

you

will

have

to

stop

and

restart

DB2

for

a

change

to

db2syscs.exe

to

take

effect.

Recommendation:

In

most

cases

you

should

be

able

to

use

the

default

stack

size.

Only

if

your

environment

includes

many

highly

complex

queries

should

you

need

to

increase

the

value

of

this

parameter.

You

might

be

able

to

reduce

the

stack

size

in

order

to

make

more

address

space

available

to

other

clients,

if

your

environment

matches

the

following:

v

Contains

only

simple

applications

(for

example

light

OLTP),

in

which

there

are

never

complex

queries

v

Requires

a

relatively

large

number

of

concurrent

clients

(for

example,

more

than

100).

The

agent

stack

size

and

the

number

of

concurrent

clients

are

inversely

related:

a

larger

stack

size

reduces

the

potential

number

of

concurrent

clients

that

can

be

running.

This

occurs

because

address

space

is

limited

on

Windows

platforms.

This

parameter

does

not

apply

to

UNIX-based

platforms.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

applheapsz

-

Application

heap

size

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

32-bit

Database

server

with

local

and

remote

clients

256

[

16

–

60

000

]

64-bit

Database

server

with

local

and

remote

clients

256

[

16

–

60

000

]

32-bit

Partitioned

database

server

with

local

and

remote

clients

64

[

16

–

60

000

]

350

Administration

Guide:

Performance

64-bit

Partitioned

database

server

with

local

and

remote

clients

128

[

16

–

60

000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

an

agent

is

initialized

to

do

work

for

an

application

When

Freed

When

an

agent

completes

the

work

to

be

done

for

an

application

This

parameter

defines

the

number

of

private

memory

pages

available

to

be

used

by

the

database

manager

on

behalf

of

a

specific

agent

or

subagent.

The

heap

is

allocated

when

an

agent

or

subagent

is

initialized

for

an

application.

The

amount

allocated

will

be

the

minimum

amount

needed

to

process

the

request

given

to

the

agent

or

subagent.

As

the

agent

or

subagent

requires

more

heap

space

to

process

larger

SQL

statements,

the

database

manager

will

allocate

memory

as

needed,

up

to

the

maximum

specified

by

this

parameter.

Note:

In

a

partitioned

database

environment,

the

application

control

heap

(app_ctl_heap_sz)

is

used

to

store

copies

of

the

executing

sections

of

SQL

statements

for

agents

and

subagents.

SMP

subagents,

however,

use

applheapsz,

as

do

agents

in

all

other

environments.

Recommendation:

Increase

the

value

of

this

parameter

if

your

applications

receive

an

error

indicating

that

there

is

not

enough

storage

in

the

application

heap.

The

application

heap

(applheapsz)

is

allocated

out

of

agent

private

memory.

Related

reference:

v

“app_ctl_heap_sz

-

Application

control

heap

size”

on

page

346

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

min_priv_mem

-

Minimum

committed

private

memory

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

32

[

32

–

112

000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

manager

is

started

When

Freed

When

the

database

manager

is

stopped

This

parameter

specifies

the

number

of

pages

that

the

database

server

process

will

reserve

as

private

virtual

memory,

when

a

database

manager

instance

is

started

Chapter

13.

Configuring

DB2

351

(db2start).

If

the

server

requires

more

private

memory,

it

will

try

to

obtain

more

from

the

operating

system

when

required.

This

parameter

does

not

apply

to

UNIX-based

systems.

Recommendation:

Use

the

default

value.

You

should

only

change

the

value

of

this

parameter

if

you

want

to

commit

more

memory

to

the

database

server.

This

action

will

save

on

allocation

time.

You

should

be

careful,

however,

that

you

do

not

set

that

value

too

high,

as

it

can

impact

the

performance

of

non-DB2

applications.

Related

reference:

v

“priv_mem_thresh

-

Private

memory

threshold”

on

page

352

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

priv_mem_thresh

-

Private

memory

threshold

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

20

000

[

-1;

32

–

112

000

]

Unit

of

Measure

Pages

(4

KB)

This

parameter

is

used

to

determine

the

amount

of

unused

agent

private

memory

that

will

be

kept

allocated,

ready

to

be

used

by

new

agents

that

are

started.

It

does

not

apply

to

UNIX-based

platforms.

A

value

of

-1

will

cause

this

parameter

to

use

the

value

of

the

min_priv_mem

parameter.

Recommendation:

When

setting

this

parameter,

you

should

consider

the

client

connection/disconnection

patterns

as

well

as

the

memory

requirements

of

other

processes

on

the

same

machine.

If

there

is

only

a

brief

period

during

which

many

clients

are

concurrently

connected

to

the

database,

a

high

threshold

will

prevent

unused

memory

from

being

decommitted

and

made

available

to

other

processes.

This

case

results

in

poor

memory

management

which

can

affect

other

processes

which

require

memory.

If

the

number

of

concurrent

clients

is

more

uniform

and

there

are

frequent

fluctuations

in

this

number,

a

high

threshold

will

help

to

ensure

memory

is

available

for

the

client

processes

and

reduce

the

overhead

to

allocate

and

deallocate

memory.

352

Administration

Guide:

Performance

Related

reference:

v

“min_priv_mem

-

Minimum

committed

private

memory”

on

page

351

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

query_heap_sz

-

Query

heap

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

1000

[

2

–

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

an

application

(either

local

or

remote)

connects

to

the

database

When

Freed

When

the

application

disconnects

from

the

database,

or

detaches

from

the

instance

This

parameter

specifies

the

maximum

amount

of

memory

that

can

be

allocated

for

the

query

heap.

A

query

heap

is

used

to

store

each

query

in

the

agent’s

private

memory.

The

information

for

each

query

consists

of

the

input

and

output

SQLDA,

the

statement

text,

the

SQLCA,

the

package

name,

creator,

section

number,

and

consistency

token.

This

parameter

is

provided

to

ensure

that

an

application

does

not

consume

unnecessarily

large

amounts

of

virtual

memory

within

an

agent.

The

query

heap

is

also

used

for

the

memory

allocated

for

blocking

cursors.

This

memory

consists

of

a

cursor

control

block

and

a

fully

resolved

output

SQLDA.

The

initial

query

heap

allocated

will

be

the

same

size

as

the

application

support

layer

heap,

as

specified

by

the

aslheapsz

parameter.

The

query

heap

size

must

be

greater

than

or

equal

to

two

(2),

and

must

be

greater

than

or

equal

to

the

aslheapsz

parameter.

If

this

query

heap

is

not

large

enough

to

handle

a

given

request,

it

will

be

reallocated

to

the

size

required

by

the

request

(not

exceeding

query_heap_sz).

If

this

new

query

heap

is

more

than

1.5

times

larger

than

aslheapsz,

the

query

heap

will

be

reallocated

to

the

size

of

aslheapsz

when

the

query

ends.

Recommendation:

In

most

cases

the

default

value

will

be

sufficient.

As

a

minimum,

you

should

set

query_heap_sz

to

a

value

at

least

five

times

larger

than

aslheapsz.

This

will

allow

for

queries

larger

than

aslheapsz

and

provide

additional

memory

for

three

or

four

blocking

cursors

to

be

open

at

a

given

time.

If

you

have

very

large

LOBs,

you

might

need

to

increase

the

value

of

this

parameter

so

the

query

heap

will

be

large

enough

to

accommodate

those

LOBs.

Related

reference:

Chapter

13.

Configuring

DB2

353

v

“aslheapsz

-

Application

support

layer

heap

size”

on

page

358

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

sheapthres

-

Sort

heap

threshold

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

UNIX

32-bit

platforms

20

000

[

250

—

2

097

152

]

Windows

platforms

10

000

[

250

—

2

097

152

]

64-bit

platforms

20

000

[

250

—

2

147

483

647

]

Unit

of

Measure

Pages

(4

KB)

Private

and

shared

sorts

use

memory

from

two

different

memory

sources.

The

size

of

the

shared

sort

memory

area

is

statically

predetermined

at

the

time

of

the

first

connection

to

a

database

based

on

the

value

of

sheapthres.

The

size

of

the

private

sort

memory

area

is

unrestricted.

The

sheapthres

parameter

is

used

differently

for

private

and

shared

sorts:

v

For

private

sorts,

this

parameter

is

an

instance-wide

soft

limit

on

the

total

amount

of

memory

that

can

be

consumed

by

private

sorts

at

any

given

time.

When

the

total

private-sort

memory

consumption

for

an

instance

reaches

this

limit,

the

memory

allocated

for

additional

incoming

private-sort

requests

will

be

considerably

reduced.

v

For

shared

sorts,

this

parameter

is

a

database-wide

hard

limit

on

the

total

amount

of

memory

consumed

by

shared

sorts

at

any

given

time.

When

this

limit

is

reached,

no

further

shared-sort

memory

requests

will

be

allowed

(until

the

total

shared-sort

memory

consumption

falls

below

the

limit

specified

by

sheapthres).

(An

alternate

way

to

configure

the

shared-sort

maximum

value

in

certain

circumstances

is

to

use

the

sheapthres_shr

database

configuration

parameter.)

Examples

of

operations

that

use

the

sort

heap

include:

sorts,

hash

joins,

dynamic

bitmaps

(used

for

index

ANDing

and

Star

Joins),

and

operations

where

the

table

is

in

memory.

Explicit

definition

of

the

threshold

prevents

the

database

manager

from

using

excessive

amounts

of

memory

for

large

numbers

of

sorts.

354

Administration

Guide:

Performance

There

is

no

reason

to

increase

the

value

of

this

parameter

when

moving

from

a

non-partitioned

to

a

partitioned

database

environment.

Once

you

have

tuned

the

database

and

database

manager

configuration

parameters

on

a

single

database

partition

environment,

the

same

values

will

in

most

cases

work

well

in

a

partitioned

database

environment.

The

Sort

Heap

Threshold

parameter,

as

a

database

manager

configuration

parameter,

applies

across

the

entire

DB2

instance.

The

only

way

to

set

this

parameter

to

different

values

on

different

nodes

or

partitions,

is

to

create

more

than

one

DB2

instance.

This

will

require

managing

different

DB2

databases

over

different

database

partition

groups.

Such

an

arrangement

defeats

the

purpose

of

many

of

the

advantages

of

a

partitioned

database

environment.

Recommendation:

Ideally,

you

should

set

this

parameter

to

a

reasonable

multiple

of

the

largest

sortheap

parameter

you

have

in

your

database

manager

instance.

This

parameter

should

be

at

least

two

times

the

largest

sortheap

defined

for

any

database

within

the

instance.

If

you

are

doing

private

sorts

and

your

system

is

not

memory

constrained,

an

ideal

value

for

this

parameter

can

be

calculated

using

the

following

steps:

1.

Calculate

the

typical

sort

heap

usage

for

each

database:

(typical

number

of

concurrent

agents

running

against

the

database)

*

(sortheap,

as

defined

for

that

database)

2.

Calculate

the

sum

of

the

above

results,

which

provides

the

total

sort

heap

that

could

be

used

under

typical

circumstances

for

all

databases

within

the

instance.

You

should

use

benchmarking

techniques

to

tune

this

parameter

to

find

the

proper

balance

between

sort

performance

and

memory

usage.

You

can

use

the

database

system

monitor

to

track

the

sort

activity,

using

the

post

threshold

sorts

(post_threshold_sorts)

monitor

element.

Related

reference:

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“post_threshold_sorts

-

Post

Threshold

Sorts

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“sheapthres_shr

-

Sort

heap

threshold

for

shared

sorts”

on

page

344

sortheap

-

Sort

heap

size

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Statement

boundary

Default

[Range]

32-bit

platforms

256

[

16

–

524

288

]

Chapter

13.

Configuring

DB2

355

64-bit

platforms

256

[

16

–

4

194

303

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

As

needed

to

perform

sorts

When

Freed

When

sorting

is

complete

This

parameter

defines

the

maximum

number

of

private

memory

pages

to

be

used

for

private

sorts,

or

the

maximum

number

of

shared

memory

pages

to

be

used

for

shared

sorts.

If

the

sort

is

a

private

sort,

then

this

parameter

affects

agent

private

memory.

If

the

sort

is

a

shared

sort,

then

this

parameter

affects

the

database

shared

memory.

Each

sort

has

a

separate

sort

heap

that

is

allocated

as

needed,

by

the

database

manager.

This

sort

heap

is

the

area

where

data

is

sorted.

If

directed

by

the

optimizer,

a

smaller

sort

heap

than

the

one

specified

by

this

parameter

is

allocated

using

information

provided

by

the

optimizer.

Recommendation:

When

working

with

the

sort

heap,

you

should

consider

the

following:

v

Appropriate

indexes

can

minimize

the

use

of

the

sort

heap.

v

Hash

join

buffers

and

dynamic

bitmaps

(used

for

index

ANDing

and

Star

Joins)

use

sort

heap

memory.

Increase

the

size

of

this

parameter

when

these

techniques

are

used.

v

Increase

the

size

of

this

parameter

when

frequent

large

sorts

are

required.

v

When

increasing

the

value

of

this

parameter,

you

should

examine

whether

the

sheapthres

parameter

in

the

database

manager

configuration

file

also

needs

to

be

adjusted.

v

The

sort

heap

size

is

used

by

the

optimizer

in

determining

access

paths.

You

should

consider

rebinding

applications

(using

the

REBIND

command)

after

changing

this

parameter.

Related

reference:

v

“sheapthres

-

Sort

heap

threshold”

on

page

354

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“REBIND

Command”

in

the

Command

Reference

v

“sheapthres_shr

-

Sort

heap

threshold

for

shared

sorts”

on

page

344

stat_heap_sz

-

Statistics

heap

size

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

4384

[

1096

–

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

RUNSTATS

utility

is

started

When

Freed

When

the

RUNSTATS

utility

is

completed

This

parameter

indicates

the

maximum

size

of

the

heap

used

in

collecting

statistics

using

the

RUNSTATS

command.

356

Administration

Guide:

Performance

Recommendation:

The

default

value

is

appropriate

when

no

distribution

statistics

are

collected

or

when

distribution

statistics

are

only

being

collected

for

relatively

narrow

tables.

The

minimum

value

is

not

recommended

when

distribution

statistics

are

being

gathered,

as

only

tables

containing

1

or

2

columns

will

fit

in

the

heap.

You

should

adjust

this

parameter

based

on

the

number

of

columns

for

which

statistics

are

being

collected.

Narrow

tables,

with

relatively

few

columns,

require

less

memory

for

distribution

statistics

to

be

gathered.

Wide

tables,

with

many

columns,

require

significantly

more

memory.

If

you

are

gathering

distribution

statistics

for

tables

which

are

very

wide

and

require

a

large

statistics

heap,

you

might

wish

to

collect

the

statistics

during

a

period

of

low

system

activity

so

you

do

not

interfere

with

the

memory

requirements

of

other

users.

Related

reference:

v

“num_freqvalues

-

Number

of

frequent

values

retained”

on

page

434

v

“num_quantiles

-

Number

of

quantiles

for

columns”

on

page

435

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

stmtheap

-

Statement

heap

size

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Statement

boundary

Default

[Range]

2048

[

128

–

65

535

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

For

each

statement

during

precompiling

or

binding

When

Freed

When

precompiling

or

binding

of

each

statement

is

complete

The

statement

heap

is

used

as

a

work

space

for

the

SQL

compiler

during

compilation

of

an

SQL

statement.

This

parameter

specifies

the

size

of

this

work

space.

This

area

does

not

stay

permanently

allocated,

but

is

allocated

and

released

for

every

SQL

statement

handled.

Note

that

for

dynamic

SQL

statements,

this

work

area

will

be

used

during

execution

of

your

program;

whereas,

for

static

SQL

statements,

it

is

used

during

the

bind

process

but

not

during

program

execution.

Recommendation:

In

most

cases

the

default

value

of

this

parameter

will

be

acceptable.

If

you

have

very

large

SQL

statements

and

the

database

manager

issues

an

error

(that

the

statement

is

too

complex)

when

it

attempts

to

optimize

a

statement,

you

should

increase

the

value

of

this

parameter

in

regular

increments

(such

as

256

or

1024)

until

the

error

situation

is

resolved.

Related

reference:

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“applheapsz

-

Application

heap

size”

on

page

350

Chapter

13.

Configuring

DB2

357

v

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Agent/application

communication

memory

The

following

parameters

affect

the

amount

of

memory

that

is

allocated

to

allow

data

to

be

passed

between

your

application

and

agent

processes:

v

“aslheapsz

-

Application

support

layer

heap

size”

v

“min_dec_div_3

-

Decimal

division

scale

to

3”

on

page

359

v

“rqrioblk

-

Client

I/O

block

size”

on

page

360

aslheapsz

-

Application

support

layer

heap

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

15

[

1

–

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

manager

agent

process

is

started

for

the

local

application

When

Freed

When

the

database

manager

agent

process

is

terminated

The

application

support

layer

heap

represents

a

communication

buffer

between

the

local

application

and

its

associated

agent.

This

buffer

is

allocated

as

shared

memory

by

each

database

manager

agent

that

is

started.

If

the

request

to

the

database

manager,

or

its

associated

reply,

do

not

fit

into

the

buffer

they

will

be

split

into

two

or

more

send-and-receive

pairs.

The

size

of

this

buffer

should

be

set

to

handle

the

majority

of

requests

using

a

single

send-and-receive

pair.

The

size

of

the

request

is

based

on

the

storage

required

to

hold:

v

The

input

SQLDA

v

All

of

the

associated

data

in

the

SQLVARs

v

The

output

SQLDA

v

Other

fields

which

do

not

generally

exceed

250

bytes.

In

addition

to

this

communication

buffer,

this

parameter

is

also

used

for

two

other

purposes:

v

It

is

used

to

determine

the

I/O

block

size

when

a

blocking

cursor

is

opened.

This

memory

for

blocked

cursors

is

allocated

out

of

the

application’s

private

address

space,

so

you

should

determine

the

optimal

amount

of

private

memory

to

allocate

for

each

application

program.

If

the

database

client

cannot

allocate

space

for

a

blocking

cursor

out

of

an

application’s

private

memory,

a

non-blocking

cursor

will

be

opened.

358

Administration

Guide:

Performance

v

It

is

used

to

determine

the

communication

size

between

agents

and

db2fmp

processes.

(A

db2fmp

process

can

be

a

user-defined

function

or

a

fenced

stored

procedure.)

The

number

of

bytes

is

allocated

from

shared

memory

for

each

db2fmp

process

or

thread

that

is

active

on

the

system.

The

data

sent

from

the

local

application

is

received

by

the

database

manager

into

a

set

of

contiguous

memory

allocated

from

the

query

heap.

The

aslheapsz

parameter

is

used

to

determine

the

initial

size

of

the

query

heap

(for

both

local

and

remote

clients).

The

maximum

size

of

the

query

heap

is

defined

by

the

query_heap_sz

parameter.

Recommendation:

If

your

application’s

requests

are

generally

small

and

the

application

is

running

on

a

memory

constrained

system,

you

might

wish

to

reduce

the

value

of

this

parameter.

If

your

queries

are

generally

very

large,

requiring

more

than

one

send

and

receive

request,

and

your

system

is

not

constrained

by

memory,

you

might

wish

to

increase

the

value

of

this

parameter.

Use

the

following

formula

to

calculate

a

minimum

number

of

pages

for

aslheapsz:

aslheapsz

>=

(

sizeof(input

SQLDA)

+

sizeof(each

input

SQLVAR)

+

sizeof(output

SQLDA)

+

250

)

/

4096

where

sizeof(x)

is

the

size

of

x

in

bytes

that

calculates

the

number

of

pages

of

a

given

input

or

output

value.

You

should

also

consider

the

effect

of

this

parameter

on

the

number

and

potential

size

of

blocking

cursors.

Large

row

blocks

might

yield

better

performance

if

the

number

or

size

of

rows

being

transferred

is

large

(for

example,

if

the

amount

of

data

is

greater

than

4

096

bytes).

However,

there

is

a

trade-off

in

that

larger

record

blocks

increase

the

size

of

the

working

set

memory

for

each

connection.

Larger

record

blocks

might

also

cause

more

fetch

requests

than

are

actually

required

by

the

application.

You

can

control

the

number

of

fetch

requests

using

the

OPTIMIZE

FOR

clause

on

the

SELECT

statement

in

your

application.

Related

reference:

v

“query_heap_sz

-

Query

heap

size”

on

page

353

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

min_dec_div_3

-

Decimal

division

scale

to

3

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

No

[

Yes,

No

]

The

min_dec_div_3

database

configuration

parameter

is

provided

as

a

quick

way

to

enable

a

change

to

computation

of

the

scale

for

decimal

division

in

SQL.

min_dec_div_3

can

be

set

to

″Yes″

or

″No″.

The

default

value

for

min_dec_div_3

is

″No″.

Chapter

13.

Configuring

DB2

359

The

min_dec_div_3

database

configuration

parameter

changes

the

resulting

scale

of

a

decimal

arithmetic

operation

involving

division.

If

the

value

is

″No″,

the

scale

is

calculated

as

31-p+s-s’.

If

set

to

″Yes″,

the

scale

is

calculated

as

MAX(3,

31-p+s-s’).

This

causes

the

result

of

decimal

division

to

always

have

a

scale

of

at

least

3.

Precision

is

always

31.

Changing

this

database

configuration

parameter

might

cause

changes

to

applications

for

existing

databases.

This

can

occur

when

the

resulting

scale

for

decimal

division

would

be

impacted

by

changing

this

database

configuration

parameter.

Listed

below

are

some

possible

scenarios

that

might

impact

applications.

These

scenarios

should

be

considered

before

changing

the

min_dec_div_3

on

a

database

server

with

existing

databases.

v

If

the

resulting

scale

of

one

of

the

view

columns

is

changed,

a

view

that

is

defined

in

an

environment

with

one

setting

could

fail

with

SQLCODE

-344

when

referenced

after

the

database

configuration

parameter

is

changed.

The

message

SQL0344N

refers

to

recursive

common

table

expressions,

however,

if

the

object

name

(first

token)

is

a

view,

then

you

will

need

to

drop

the

view

and

create

it

again

to

avoid

this

error.

v

A

static

package

will

not

change

behavior

until

the

package

is

rebound,

either

implicitly

or

explicitly.

For

example,

after

changing

the

value

from

NO

to

YES,

the

additional

scale

digits

might

not

be

included

in

the

results

until

rebind

occurs.

For

any

changed

static

packages,

an

explicit

REBIND

command

can

be

used

to

force

a

rebind.

v

A

check

constraint

involving

decimal

division

might

restrict

some

values

that

were

previously

accepted.

Such

rows

now

violate

the

constraint

but

will

not

be

detected

until

one

of

the

columns

involved

in

the

check

constraint

row

is

updated

or

the

SET

INTEGRITY

statement

with

the

IMMEDIATE

CHECKED

option

is

processed.

To

force

checking

of

such

a

constraint,

perform

an

ALTER

TABLE

statement

in

order

to

drop

the

check

constraint

and

then

perform

an

ALTER

TABLE

statement

to

add

the

constraint

again.

Note:

min_dec_div_3

also

has

the

following

limitations:

1.

The

command

GET

DB

CFG

FOR

DBNAME

will

not

display

the

min_dec_div_3

setting.

The

best

way

to

determine

the

current

setting

is

to

observe

the

side-effect

of

a

decimal

division

result.

For

example,

consider

the

following

statement:

VALUES

(DEC(1,31,0)/DEC(1,31,5))

If

this

statement

returns

sqlcode

SQL0419N,

the

database

does

not

have

min_dec_div_3

support,

or

it

is

set

to

″No″.

If

the

statement

returns

1.000,

min_dec_div_3

is

set

to

″Yes″.

2.

min_dec_div_3

does

not

appear

in

the

list

of

configuration

keywords

when

you

run

the

following

command:

?

UPDATE

DB

CFG

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

rqrioblk

-

Client

I/O

block

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

360

Administration

Guide:

Performance

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

32

767

[

4

096

–

65

535

]

Unit

of

Measure

Bytes

When

Allocated

v

When

a

remote

client

application

issues

a

connection

request

for

a

server

database

v

When

a

blocking

cursor

is

opened,

additional

blocks

are

opened

at

the

client

When

Freed

v

When

the

remote

application

disconnects

from

the

server

database

v

When

the

blocking

cursor

is

closed

This

parameter

specifies

the

size

of

the

communication

buffer

between

remote

applications

and

their

database

agents

on

the

database

server.

When

a

database

client

requests

a

connection

to

a

remote

database,

this

communication

buffer

is

allocated

on

the

client.

On

the

database

server,

a

communication

buffer

of

32

767

bytes

is

initially

allocated,

until

a

connection

is

established

and

the

server

can

determine

the

value

of

rqrioblk

at

the

client.

Once

the

server

knows

this

value,

it

will

reallocate

its

communication

buffer

if

the

client’s

buffer

is

not

32

767

bytes.

In

addition

to

this

communication

buffer,

this

parameter

is

also

used

to

determine

the

I/O

block

size

at

the

database

client

when

a

blocking

cursor

is

opened.

This

memory

for

blocked

cursors

is

allocated

out

of

the

application’s

private

address

space,

so

you

should

determine

the

optimal

amount

of

private

memory

to

allocate

for

each

application

program.

If

the

database

client

cannot

allocate

space

for

a

blocking

cursor

out

of

an

application’s

private

memory,

a

non-blocking

cursor

will

be

opened.

Recommendation:

For

non-blocking

cursors,

a

reason

for

increasing

the

value

of

this

parameter

would

be

if

the

data

(for

example,

large

object

data)

to

be

transmitted

by

a

single

SQL

statement

is

so

large

that

the

default

value

is

insufficient.

You

should

also

consider

the

effect

of

this

parameter

on

the

number

and

potential

size

of

blocking

cursors.

Large

row

blocks

might

yield

better

performance

if

the

number

or

size

of

rows

being

transferred

is

large

(for

example,

if

the

amount

of

data

is

greater

than

4

096

bytes).

However,

there

is

a

trade-off

in

that

larger

record

blocks

increase

the

size

of

the

working

set

memory

for

each

connection.

Larger

record

blocks

might

also

cause

more

fetch

requests

than

are

actually

required

by

the

application.

You

can

control

the

number

of

fetch

requests

using

the

OPTIMIZE

FOR

clause

on

the

SELECT

statement

in

your

application.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

361

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Database

manager

instance

memory

The

following

parameters

affect

memory

that

is

allocated

and

used

at

an

instance

level:

v

“audit_buf_sz

-

Audit

buffer

size”

v

“dir_cache

-

Directory

cache

support”

on

page

363

v

“instance_memory

-

Instance

memory”

on

page

364

v

“java_heap_sz

-

Maximum

Java

interpreter

heap

size”

on

page

365

v

“mon_heap_sz

-

Database

system

monitor

heap

size”

on

page

366

audit_buf_sz

-

Audit

buffer

size

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

0

[

0

–

65

000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

DB2

is

started

When

Freed

When

DB2

is

stopped

This

parameter

specifies

the

size

of

the

buffer

used

when

auditing

the

database.

The

default

value

for

this

parameter

is

zero

(0).

If

the

value

is

zero

(0),

the

audit

buffer

is

not

used.

If

the

value

is

greater

than

zero

(0),

space

is

allocated

for

the

audit

buffer

where

the

audit

records

will

be

placed

when

they

are

generated

by

the

audit

facility.

The

value

times

4

KB

pages

is

the

amount

of

space

allocated

for

the

audit

buffer.

The

audit

buffer

cannot

be

allocated

dynamically;

DB2

must

be

stopped

and

then

restarted

before

the

new

value

for

this

parameter

takes

effect.

By

changing

this

parameter

from

the

default

to

some

value

larger

than

zero

(0),

the

audit

facility

writes

records

to

disk

asynchronously

compared

to

the

execution

of

the

statements

generating

the

audit

records.

This

improves

DB2

performance

over

leaving

the

parameter

value

at

zero

(0).

The

value

of

zero

(0)

means

the

audit

facility

writes

records

to

disk

synchronously

with

(at

the

same

time

as)

the

execution

of

the

statements

generating

the

audit

records.

The

synchronous

operation

during

auditing

decreases

the

performance

of

applications

running

in

DB2.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

362

Administration

Guide:

Performance

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

dir_cache

-

Directory

cache

support

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Yes

[

Yes;

No

]

When

Allocated

v

When

an

application

issues

its

first

connect,

the

application

directory

cache

is

allocated

v

When

a

database

manager

instance

is

started

(db2start),

the

server

directory

cache

is

allocated.

When

Freed

v

When

an

the

application

process

terminates,

the

application

directory

cache

is

freed

v

When

a

database

manager

instance

is

stopped

(db2stop),

the

server

directory

cache

is

freed.

By

setting

dir_cache

to

Yes

the

database,

node

and

DCS

directory

files

will

be

cached

in

memory.

The

use

of

the

directory

cache

reduces

connect

costs

by

eliminating

directory

file

I/O

and

minimizing

the

directory

searches

required

to

retrieve

directory

information.

There

are

two

types

of

directory

caches:

v

An

application

directory

cache

that

is

allocated

and

used

for

each

application

process

on

the

machine

at

which

the

application

is

running.

v

A

server

directory

cache

that

is

allocated

and

used

for

some

of

the

internal

database

manager

processes.

For

application

directory

caches,

when

an

application

issues

its

first

connect,

each

directory

file

is

read

and

the

information

is

cached

in

private

memory

for

this

application.

The

cache

is

used

by

the

application

process

on

subsequent

connect

requests

and

is

maintained

for

the

life

of

the

application

process.

If

a

database

is

not

found

in

the

application

directory

cache,

the

directory

files

are

searched

for

the

information,

but

the

cache

is

not

updated.

If

the

application

modifies

a

directory

entry,

the

next

connect

within

that

application

will

cause

the

cache

for

this

application

to

be

refreshed.

The

application

directory

cache

for

other

applications

will

not

be

refreshed.

When

the

application

process

terminates,

the

cache

is

freed.

(To

refresh

the

directory

cache

used

by

a

command

line

processor

session,

issue

a

db2

terminate

command.)

For

server

directory

caches,

when

a

database

manager

instance

is

started

(db2start),

each

directory

file

is

read

and

the

information

is

cached

in

the

server

Chapter

13.

Configuring

DB2

363

memory.

This

cache

is

maintained

until

the

instance

is

stopped

(db2stop).

If

a

directory

entry

is

not

found

in

this

cache,

the

directory

files

are

searched

for

the

information.

This

server

directory

cache

is

never

refreshed

during

the

time

the

instance

is

running.

Recommendation:

Use

directory

caching

if

your

directory

files

do

not

change

frequently

and

performance

is

critical.

In

addition,

on

remote

clients,

directory

caching

can

be

beneficial

if

your

applications

issue

several

different

connection

requests.

In

this

case,

caching

reduces

the

number

of

times

a

single

application

must

read

the

directory

files.

Directory

caching

can

also

improve

the

performance

of

taking

database

system

monitor

snapshots.

In

addition,

you

should

explicitly

reference

the

database

name

on

the

snapshot

call,

instead

of

using

database

aliases.

Note:

Errors

might

occur

when

performing

snapshot

calls

if

directory

caching

is

turned

on

and

if

databases

are

cataloged,

uncataloged,

created,

or

dropped

after

the

database

manager

is

started.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

instance_memory

-

Instance

memory

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Automatic

[

8

—

524

288

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

instance

is

started

When

Freed

When

the

instance

is

stopped

This

parameter

specifies

the

amount

of

memory

that

should

be

reserved

for

instance

management.

This

includes

memory

areas

that

describe

the

databases

on

the

instance.

If

you

set

this

parameter

to

AUTOMATIC,

DB2

will

calculate

the

amount

of

instance

memory

needed

for

the

current

configuration.

DB2

will

also

allocate

some

additional

memory

for

an

overflow

buffer.

The

overflow

buffer

is

used

to

satisfy

peak

memory

requirements

for

any

heap

in

the

instance

shared

memory

region

whenever

a

heap

exceeds

its

configured

size.

Other

operations,

such

as

dynamic

configuration

updates,

also

have

access

to

this

overflow

buffer.

The

db2pd

364

Administration

Guide:

Performance

|
|
|
|
|
|

command,

with

the

-memsets

option,

can

be

used

to

monitor

the

amount

of

unused

memory

left

in

the

overflow

buffer.

Related

reference:

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“numdb

-

Maximum

number

of

concurrently

active

databases

including

host

and

iSeries

databases”

on

page

460

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“db2pd

-

Monitor

and

Troubleshoot

DB2

Command”

in

the

Command

Reference

java_heap_sz

-

Maximum

Java

interpreter

heap

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

512

[0

-

524

288]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

a

Java

stored

procedure

or

UDF

starts

When

Freed

When

the

db2fmp

process

(fenced)

or

the

db2agent

process

(trusted)

terminates.

This

parameter

determines

the

maximum

size

of

the

heap

that

is

used

by

the

Java

interpreter

started

to

service

Java

DB2

stored

procedures

and

UDFs.

There

is

one

heap

for

each

DB2

process

(one

for

each

agent

or

subagent

on

UNIX-based

platforms,

and

one

for

each

instance

on

other

platforms).

There

is

one

heap

for

each

fenced

UDF

and

fenced

stored

procedure

process.

There

is

one

heap

per

agent

(not

including

sub-agents)

for

trusted

routines.

There

is

one

heap

per

db2fmp

process

running

a

Java

stored

procedure.

For

multithreaded

db2fmp

processes,

multiple

applications

using

threadsafe

fenced

routines

are

serviced

from

a

single

heap.

In

all

situations,

only

the

agents

or

processes

that

run

Java

UDFs

or

stored

procedures

ever

allocate

this

memory.

On

partitioned

database

systems,

the

same

value

is

used

at

each

partition.

Related

reference:

v

“jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path”

on

page

459

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

365

|
|

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

mon_heap_sz

-

Database

system

monitor

heap

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

UNIX

90

[

0

–

60

000

]

Windows

Database

server

with

local

and

remote

clients

66

[

0

–

60

000

]

Windows

Database

server

with

local

clients

46

[

0

–

60

000

]

Unit

of

Measure

Pages

(4

KB)

When

Allocated

When

the

database

manager

is

started

with

the

db2start

command

When

Freed

When

the

database

manager

is

stopped

with

the

db2stop

command

This

parameter

determines

the

amount

of

the

memory,

in

pages,

to

allocate

for

database

system

monitor

data.

Memory

is

allocated

from

the

monitor

heap

when

you

perform

database

monitoring

activities

such

as

taking

a

snapshot,

turning

on

a

monitor

switch,

resetting

a

monitor,

or

activating

an

event

monitor.

A

value

of

zero

prevents

the

database

manager

from

collecting

database

system

monitor

data.

Recommendation:

The

amount

of

memory

required

for

monitoring

activity

depends

on

the

number

of

monitoring

applications

(applications

taking

snapshots

or

event

monitors),

which

switches

are

set,

and

the

level

of

database

activity.

If

the

available

memory

in

this

heap

runs

out

and

the

overflow

buffer

has

no

unused

memory,

one

of

the

following

will

occur:

v

When

the

first

application

connects

to

the

database

for

which

this

event

monitor

is

defined,

an

error

message

is

written

to

the

administration

notification

log.

v

If

an

event

monitor

being

started

dynamically

using

the

SET

EVENT

MONITOR

statement

fails,

an

error

code

is

returned

to

your

application.

v

If

a

monitor

command

or

API

subroutine

fails,

an

error

code

is

returned

to

your

application.

Related

concepts:

v

“Database

system

monitor

memory

requirements”

in

the

System

Monitor

Guide

and

Reference

Related

reference:

366

Administration

Guide:

Performance

|
|

v

“dft_monswitches

-

Default

database

system

monitor

switches”

on

page

455

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Locks

The

following

parameters

influence

how

locking

is

managed

in

your

environment:

v

“dlchktime

-

Time

interval

for

checking

deadlock”

v

“locktimeout

-

Lock

timeout”

on

page

368

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

See

also

“locklist

-

Maximum

storage

for

lock

list”

on

page

340.

dlchktime

-

Time

interval

for

checking

deadlock

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

10

000

(10

seconds)

[

1

000

–

600

000

]

Unit

of

Measure

Milliseconds

A

deadlock

occurs

when

two

or

more

applications

connected

to

the

same

database

wait

indefinitely

for

a

resource.

The

waiting

is

never

resolved

because

each

application

is

holding

a

resource

that

the

other

needs

to

continue.

The

deadlock

check

interval

defines

the

frequency

at

which

the

database

manager

checks

for

deadlocks

among

all

the

applications

connected

to

a

database.

Notes:

1.

In

a

partitioned

database

environment,

this

parameter

applies

to

the

catalog

node

only.

2.

In

a

partitioned

database

environment,

a

deadlock

is

not

flagged

until

after

the

second

iteration.

Recommendation:

Increasing

this

parameter

decreases

the

frequency

of

checking

for

deadlocks,

thereby

increasing

the

time

that

application

programs

must

wait

for

the

deadlock

to

be

resolved.

Decreasing

this

parameter

increases

the

frequency

of

checking

for

deadlocks,

thereby

decreasing

the

time

that

application

programs

must

wait

for

the

deadlock

to

be

resolved

but

increasing

the

time

that

the

database

manager

takes

to

check

for

deadlocks.

If

the

deadlock

interval

is

too

small,

it

can

decrease

run-time

performance,

because

the

database

manager

is

frequently

performing

deadlock

detection.

If

this

parameter

is

set

lower

to

improve

concurrency,

you

should

ensure

that

maxlocks

and

locklist

are

set

appropriately

to

avoid

unnecessary

lock

escalation,

which

can

result

in

more

lock

contention

and

as

a

result,

more

deadlock

situations.

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

Chapter

13.

Configuring

DB2

367

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

locktimeout

-

Lock

timeout

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

-1

[

-1;

0

–

32

767

]

Unit

of

Measure

Seconds

This

parameter

specifies

the

number

of

seconds

that

an

application

will

wait

to

obtain

a

lock.

This

helps

avoid

global

deadlocks

for

applications.

If

you

set

this

parameter

to

0,

locks

are

not

waited

for.

In

this

situation,

if

no

lock

is

available

at

the

time

of

the

request,

the

application

immediately

receives

a

-911.

If

you

set

this

parameter

to

-1,

lock

timeout

detection

is

turned

off.

In

this

situation

a

lock

will

be

waited

for

(if

one

is

not

available

at

the

time

of

the

request)

until

either

of

the

following:

v

The

lock

is

granted

v

A

deadlock

occurs.

Recommendation:

In

a

transaction

processing

(OLTP)

environment,

you

can

use

an

initial

starting

value

of

30

seconds.

In

a

query-only

environment

you

could

start

with

a

higher

value.

In

both

cases,

you

should

use

benchmarking

techniques

to

tune

this

parameter.

When

working

with

Data

Links

Manager,

if

you

see

lock

timeouts

in

the

administration

notification

log

of

the

Data

Links

Manager

(dlfm)

instance,

then

you

should

increase

the

value

of

locktimeout.

You

should

also

consider

increasing

the

value

of

locklist.

The

value

should

be

set

to

quickly

detect

waits

that

are

occurring

because

of

an

abnormal

situation,

such

as

a

transaction

that

is

stalled

(possibly

as

a

result

of

a

user

leaving

their

workstation).

You

should

set

it

high

enough

so

valid

lock

requests

do

not

time-out

because

of

peak

workloads,

during

which

time,

there

is

more

waiting

for

locks.

You

can

use

the

database

system

monitor

to

help

you

track

the

number

of

times

an

application

(connection)

experienced

a

lock

timeout

or

that

a

database

detected

a

timeout

situation

for

all

applications

that

were

connected.

High

values

of

the

lock_timeout

(number

of

lock

timeouts)

monitor

element

can

be

caused

by:

v

Too

low

a

value

for

this

configuration

parameter.

v

An

application

(transaction)

that

is

holding

locks

for

an

extended

period.

You

can

use

the

database

system

monitor

to

further

investigate

these

applications.

v

A

concurrency

problem,

that

could

be

caused

by

lock

escalations

(from

row-level

to

a

table-level

lock).

Related

reference:

368

Administration

Guide:

Performance

|

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“lock_timeouts

-

Number

of

Lock

Timeouts

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

maxlocks

-

Maximum

percent

of

lock

list

before

escalation

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

UNIX

10

[

1

–

100

]

Windows

22

[

1

–

100

]

Unit

of

Measure

Percentage

Lock

escalation

is

the

process

of

replacing

row

locks

with

table

locks,

reducing

the

number

of

locks

in

the

list.

This

parameter

defines

a

percentage

of

the

lock

list

held

by

an

application

that

must

be

filled

before

the

database

manager

performs

escalation.

When

the

number

of

locks

held

by

any

one

application

reaches

this

percentage

of

the

total

lock

list

size,

lock

escalation

will

occur

for

the

locks

held

by

that

application.

Lock

escalation

also

occurs

if

the

lock

list

runs

out

of

space.

The

database

manager

determines

which

locks

to

escalate

by

looking

through

the

lock

list

for

the

application

and

finding

the

table

with

the

most

row

locks.

If

after

replacing

these

with

a

single

table

lock,

the

maxlocks

value

is

no

longer

exceeded,

lock

escalation

will

stop.

If

not,

it

will

continue

until

the

percentage

of

the

lock

list

held

is

below

the

value

of

maxlocks.

The

maxlocks

parameter

multiplied

by

the

maxappls

parameter

cannot

be

less

than

100.

Recommendation:

The

following

formula

allows

you

to

set

maxlocks

to

allow

an

application

to

hold

twice

the

average

number

of

locks:

maxlocks

=

2

*

100

/

maxappls

Where

2

is

used

to

achieve

twice

the

average

and

100

represents

the

largest

percentage

value

allowed.

If

you

have

only

a

few

applications

that

run

concurrently,

you

could

use

the

following

formula

as

an

alternative

to

the

first

formula:

maxlocks

=

2

*

100

/

(average

number

of

applications

running

concurrently)

One

of

the

considerations

when

setting

maxlocks

is

to

use

it

in

conjunction

with

the

size

of

the

lock

list

(locklist).

The

actual

limit

of

the

number

of

locks

held

by

an

application

before

lock

escalation

occurs

is:

maxlocks

*

locklist

*

4

096

/

(100

*

36)

on

a

32-bit

system

maxlocks

*

locklist

*

4

096

/

(100

*

56)

on

a

64-bit

system

Chapter

13.

Configuring

DB2

369

Where

4

096

is

the

number

of

bytes

in

a

page,

100

is

the

largest

percentage

value

allowed

for

maxlocks,

and

36

is

the

number

of

bytes

per

lock

on

a

32-bit

system,

and

56

is

the

number

of

bytes

per

lock

on

a

64-bit

system.

If

you

know

that

one

of

your

applications

requires

1

000

locks,

and

you

do

not

want

lock

escalation

to

occur,

then

you

should

choose

values

for

maxlocks

and

locklist

in

this

formula

so

that

the

result

is

greater

than

1

000.

(Using

10

for

maxlocks

and

100

for

locklist,

this

formula

results

in

greater

than

the

1

000

locks

needed.)

If

maxlocks

is

set

too

low,

lock

escalation

happens

when

there

is

still

enough

lock

space

for

other

concurrent

applications.

If

maxlocks

is

set

too

high,

a

few

applications

can

consume

most

of

the

lock

space,

and

other

applications

will

have

to

perform

lock

escalation.

The

need

for

lock

escalation

in

this

case

results

in

poor

concurrency.

You

can

use

the

database

system

monitor

to

help

you

track

and

tune

this

configuration

parameter.

Related

reference:

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

I/O

and

storage

The

following

parameters

can

influence

I/O

and

storage

costs

related

to

the

operation

of

your

database:

v

“chngpgs_thresh

-

Changed

pages

threshold”

v

“dft_extent_sz

-

Default

extent

size

of

table

spaces”

on

page

371

v

“dft_prefetch_sz

-

Default

prefetch

size”

on

page

372

v

“estore_seg_sz

-

Extended

storage

memory

segment

size”

on

page

373

v

“num_estore_segs

-

Number

of

extended

storage

memory

segments”

on

page

373

v

“num_iocleaners

-

Number

of

asynchronous

page

cleaners”

on

page

374

v

“num_ioservers

-

Number

of

I/O

servers”

on

page

375

v

“numsegs

-

Default

number

of

SMS

containers”

on

page

376

v

“seqdetect

-

Sequential

detection

flag”

on

page

376

chngpgs_thresh

-

Changed

pages

threshold

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

60

[

5

–

99

]

Unit

of

Measure

Percentage

Asynchronous

page

cleaners

will

write

changed

pages

from

the

buffer

pool

(or

the

buffer

pools)

to

disk

before

the

space

in

the

buffer

pool

is

required

by

a

database

agent.

As

a

result,

database

agents

should

not

have

to

wait

for

changed

pages

to

be

written

out

so

that

they

might

use

the

space

in

the

buffer

pool.

This

improves

overall

performance

of

the

database

applications.

370

Administration

Guide:

Performance

You

can

use

this

parameter

to

specify

the

level

(percentage)

of

changed

pages

at

which

the

asynchronous

page

cleaners

will

be

started,

if

they

are

not

currently

active.

When

the

page

cleaners

are

started,

they

will

build

a

list

of

the

pages

to

write

to

disk.

Once

they

have

completed

writing

those

pages

to

disk,

they

will

become

inactive

again

and

wait

for

the

next

trigger

to

start.

In

a

read-only

(for

example,

query)

environment,

these

page

cleaners

are

not

used.

When

the

DB2_USE_ALTERNATE_PAGE_CLEANING

registry

variable

is

set

(that

is,

the

alternate

method

of

page

cleaning

is

used),

the

chngpgs_thresh

parameter

has

no

effect,

and

DB2

automatically

determines

how

many

dirty

pages

to

maintain

in

the

buffer

pool.

Recommendation:

For

databases

with

a

heavy

update

transaction

workload,

you

can

generally

ensure

that

there

are

enough

clean

pages

in

the

buffer

pool

by

setting

the

parameter

value

to

be

equal-to

or

less-than

the

default

value.

A

percentage

larger

than

the

default

can

help

performance

if

your

database

has

a

small

number

of

very

large

tables.

Related

reference:

v

“num_iocleaners

-

Number

of

asynchronous

page

cleaners”

on

page

374

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dft_extent_sz

-

Default

extent

size

of

table

spaces

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

32

[

2

–

256

]

Unit

of

Measure

Pages

When

a

table

space

is

created,

EXTENTSIZE

n

can

be

optionally

specified,

where

n

is

the

extent

size.

If

you

do

not

specify

the

extent

size

on

the

CREATE

TABLESPACE

statement,

the

database

manager

uses

the

value

given

by

this

parameter.

Recommendation:

In

many

cases,

you

will

want

to

explicitly

specify

the

extent

size

when

you

create

the

table

space.

Before

choosing

a

value

for

this

parameter,

you

should

understand

how

you

would

explicitly

choose

an

extent

size

for

the

CREATE

TABLESPACE

statement.

Related

concepts:

v

“Extent

size”

in

the

Administration

Guide:

Planning

Related

reference:

v

“dft_prefetch_sz

-

Default

prefetch

size”

on

page

372

v

“CREATE

TABLESPACE

statement”

in

the

SQL

Reference,

Volume

2

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

371

dft_prefetch_sz

-

Default

prefetch

size

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

UNIX

Automatic

[

0

—

32

767

]

Windows

Automatic

[

0

—

32

767

]

Unit

of

Measure

Pages

When

a

table

space

is

created,

PREFETCHSIZE

n

can

optionally

be

specified,

where

n

represents

the

number

of

pages

the

database

manager

will

read

if

prefetching

is

being

performed.

If

you

do

not

specify

the

prefetch

size

on

invocation

of

the

CREATE

TABLESPACE

statement,

the

database

manager

uses

the

current

value

of

the

dft_prefetch_sz

parameter.

If

a

table

space

is

created

with

AUTOMATIC

DFT_PREFETCH_SZ,

the

prefetch

size

of

the

table

space

will

become

AUTOMATIC,

which

means

that

DB2

will

automatically

calculate

and

update

the

prefetch

size

of

the

table

space,

using

the

following

equation:

prefetch

size

=

(#

containers)

*

(#

physical

spindles)

*

extent

size

where

the

number

of

physical

spindles

defaults

to

1

and

can

be

specified

through

the

DB2

registry

variable

DB2_PARALLEL_IO.

This

calculation

is

performed:

v

At

database

start-up

time

v

When

a

table

space

is

first

created

with

AUTOMATIC

prefetch

size

v

When

the

number

of

containers

for

a

table

space

changes

through

execution

of

an

ALTER

TABLESPACE

statement

v

When

the

prefetch

size

for

a

table

space

is

updated

to

be

AUTOMATIC

through

execution

of

an

ALTER

TABLESPACE

statement

The

AUTOMATIC

state

of

the

prefetch

size

can

be

turned

on

or

off

as

soon

as

the

prefetch

size

is

updated

manually

through

invocation

of

the

ALTER

TABLESPACE

statement.

Recommendation:

Using

system

monitoring

tools,

you

can

determine

if

your

CPU

is

idle

while

the

system

is

waiting

for

I/O.

Increasing

the

value

of

this

parameter

can

help

if

the

table

spaces

being

used

do

not

have

a

prefetch

size

defined

for

them.

This

parameter

provides

the

default

for

the

entire

database,

and

it

might

not

be

suitable

for

all

table

spaces

within

the

database.

For

example,

a

value

of

32

might

be

suitable

for

a

table

space

with

an

extent

size

of

32

pages,

but

not

suitable

for

a

table

space

with

an

extent

size

of

25

pages.

Ideally,

you

should

explicitly

set

the

prefetch

size

for

each

table

space.

To

help

minimize

I/O

for

table

spaces

defined

with

the

default

extent

size

(dft_extent_sz),

you

should

set

this

parameter

as

a

factor

or

whole

multiple

of

the

value

of

the

dft_extent_sz

parameter.

For

example,

if

the

dft_extent_sz

parameter

is

32,

you

could

set

dft_prefetch_sz

to

16

(a

fraction

of

32)

or

to

64

(a

whole

multiple

of

32).

If

the

prefetch

size

is

a

multiple

of

the

extent

size,

the

database

manager

might

perform

I/O

in

parallel,

if

the

following

conditions

are

true:

v

The

extents

being

prefetched

are

on

different

physical

devices

372

Administration

Guide:

Performance

|

|

|
|
|
|

|

|
|

|

|

|
|

|
|

|
|
|

v

Multiple

I/O

servers

are

configured

(num_ioservers).

Related

reference:

v

“ALTER

TABLESPACE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLESPACE

statement”

in

the

SQL

Reference,

Volume

2

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“System

environment

variables”

on

page

492

estore_seg_sz

-

Extended

storage

memory

segment

size

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

16

000

[0

–

1

048

575]

Unit

of

Measure

Pages

(4

KB)

This

parameter

specifies

the

number

of

pages

in

each

of

the

extended

memory

segments

in

the

database.

This

parameter

is

only

used

if

your

machine

has

more

real

addressable

memory

than

the

maximum

amount

of

virtual

addressable

memory.

Recommendation:

This

parameter

only

has

an

effect

when

extended

storage

is

available,

and

is

used

as

shown

by

the

num_estore_segs

parameter.

When

specifying

the

number

of

pages

to

be

used

in

each

extended

memory

segment,

you

should

also

consider

the

number

of

extended

memory

segments

by

reviewing

and

modifying

the

num_estore_segs

parameter.

Related

reference:

v

“num_estore_segs

-

Number

of

extended

storage

memory

segments”

on

page

373

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

num_estore_segs

-

Number

of

extended

storage

memory

segments

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

0

[

0

–

2

147

483

647

]

This

parameter

specifies

the

number

of

extended

storage

memory

segments

available

for

use

by

the

database.

The

default

is

no

extended

storage

memory

segments.

Recommendation:

Only

use

this

parameter

to

establish

the

use

of

extended

storage

memory

segments

if

your

platform

environment

has

more

memory

than

the

maximum

address

space

and

you

wish

to

use

this

memory.

When

specifying

the

number

of

segments,

you

should

also

consider

the

size

of

the

each

of

the

segments

by

reviewing

and

modifying

the

estore_seg_sz

parameter.

Chapter

13.

Configuring

DB2

373

When

both

the

num_estore_segs

and

estore_seg_sz

configuration

parameters

are

set,

you

should

specify

which

buffer

pools

will

use

the

extended

memory

through

the

CREATE/ALTER

BUFFERPOOL

statements.

Related

reference:

v

“estore_seg_sz

-

Extended

storage

memory

segment

size”

on

page

373

v

“ALTER

BUFFERPOOL

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

BUFFERPOOL

statement”

in

the

SQL

Reference,

Volume

2

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

num_iocleaners

-

Number

of

asynchronous

page

cleaners

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

1

[

0

–

255

]

Unit

of

Measure

Counter

This

parameter

allows

you

to

specify

the

number

of

asynchronous

page

cleaners

for

a

database.

These

page

cleaners

write

changed

pages

from

the

buffer

pool

to

disk

before

the

space

in

the

buffer

pool

is

required

by

a

database

agent.

As

a

result,

database

agents

should

not

have

to

wait

for

changed

pages

to

be

written

out

so

that

they

might

use

the

space

in

the

buffer

pool.

This

improves

overall

performance

of

the

database

applications.

If

you

set

the

parameter

to

zero

(0),

no

page

cleaners

are

started

and

as

a

result,

the

database

agents

will

perform

all

of

the

page

writes

from

the

buffer

pool

to

disk.

This

parameter

can

have

a

significant

performance

impact

on

a

database

stored

across

many

physical

storage

devices,

since

in

this

case

there

is

a

greater

chance

that

one

of

the

devices

will

be

idle.

If

no

page

cleaners

are

configured,

your

applications

might

encounter

periodic

log

full

conditions.

If

the

applications

for

a

database

primarily

consist

of

transactions

that

update

data,

an

increase

in

the

number

of

cleaners

will

speed

up

performance.

Increasing

the

page

cleaners

will

also

decrease

recovery

time

from

soft

failures,

such

as

power

outages,

because

the

contents

of

the

database

on

disk

will

be

more

up-to-date

at

any

given

time.

Recommendation:

Consider

the

following

factors

when

setting

the

value

for

this

parameter:

v

Application

type

–

If

it

is

a

query-only

database

that

will

not

have

updates,

set

this

parameter

to

be

zero

(0).

The

exception

would

be

if

the

query

work

load

results

in

many

TEMP

tables

being

created

(you

can

determine

this

by

using

the

explain

utility).

–

If

transactions

are

run

against

the

database,

set

this

parameter

to

be

between

one

and

the

number

of

physical

storage

devices

used

for

the

database.
v

Workload

Environments

with

high

update

transaction

rates

might

require

more

page

cleaners

to

be

configured.

v

Buffer

pool

sizes

374

Administration

Guide:

Performance

Environments

with

large

buffer

pools

might

also

require

more

page

cleaners

to

be

configured.

You

can

use

the

database

system

monitor

to

help

you

tune

this

configuration

parameter

using

information

from

the

event

monitor

about

write

activity

from

a

buffer

pool:

v

The

parameter

can

be

reduced

if

both

of

the

following

conditions

are

true:

–

pool_data_writes

is

approximately

equal

to

pool_async_data_writes

–

pool_index_writes

is

approximately

equal

to

pool_async_index_writes.
v

The

parameter

should

be

increased

if

either

of

the

following

conditions

are

true:

–

pool_data_writes

is

much

greater

than

pool_async_data_writes

–

pool_index_writes

is

much

greater

than

pool_async_index_writes.

Related

reference:

v

“chngpgs_thresh

-

Changed

pages

threshold”

on

page

370

v

“pool_data_writes

-

Buffer

Pool

Data

Writes

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“pool_index_writes

-

Buffer

Pool

Index

Writes

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“pool_async_data_writes

-

Buffer

Pool

Asynchronous

Data

Writes

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“pool_async_index_writes

-

Buffer

Pool

Asynchronous

Index

Writes

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

num_ioservers

-

Number

of

I/O

servers

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

3

[

1

–

255

]

Unit

of

Measure

Counter

When

Allocated

When

an

application

connects

to

a

database

When

Freed

When

an

application

disconnects

from

a

database

I/O

servers

are

used

on

behalf

of

the

database

agents

to

perform

prefetch

I/O

and

asynchronous

I/O

by

utilities

such

as

backup

and

restore.

This

parameter

specifies

the

number

of

I/O

servers

for

a

database.

No

more

than

this

number

of

I/Os

for

prefetching

and

utilities

can

be

in

progress

for

a

database

at

any

time.

An

I/O

server

waits

while

an

I/O

operation

that

it

initiated

is

in

progress.

Non-prefetch

I/Os

are

scheduled

directly

from

the

database

agents

and

as

a

result

are

not

constrained

by

num_ioservers.

Recommendation:

In

order

to

fully

exploit

all

the

I/O

devices

in

the

system,

a

good

value

to

use

is

generally

one

or

two

more

than

the

number

of

physical

devices

on

which

the

database

resides.

It

is

better

to

configure

additional

I/O

servers,

since

there

is

minimal

overhead

associated

with

each

I/O

server

and

any

unused

I/O

servers

will

remain

idle.

Related

reference:

Chapter

13.

Configuring

DB2

375

v

“dft_prefetch_sz

-

Default

prefetch

size”

on

page

372

v

“seqdetect

-

Sequential

detection

flag”

on

page

376

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

numsegs

-

Default

number

of

SMS

containers

Configuration

Type

Database

Parameter

Type

Informational

Unit

of

Measure

Counter

This

parameter,

which

only

applies

to

SMS

table

spaces,

indicates

the

number

of

containers

that

will

be

created

within

the

default

table

spaces.

This

parameter

will

show

the

information

used

when

you

created

your

database,

whether

it

was

specified

explicitly

or

implicitly

on

the

CREATE

DATABASE

command.

The

CREATE

TABLESPACE

statement

does

not

use

this

parameter

in

any

way.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

seqdetect

-

Sequential

detection

flag

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

Yes

[

Yes;

No

]

The

database

manager

can

monitor

I/O

and

if

sequential

page

reading

is

occurring

the

database

manager

can

activate

I/O

prefetching.

This

type

of

sequential

prefetch

is

known

as

sequential

detection.

You

can

use

the

seqdetect

configuration

parameter

to

control

whether

the

database

manager

should

perform

sequential

detection.

If

this

parameter

is

set

to

No,

prefetching

takes

place

only

if

the

database

manager

knows

it

will

be

useful,

for

example

table

sorts,

table

scans,

or

list

prefetch.

Recommendation:

In

most

cases,

you

should

use

the

default

value

for

this

parameter.

Try

turning

sequential

detection

off,

only

if

other

tuning

efforts

were

unable

to

correct

serious

query

performance

problems.

Related

reference:

v

“dft_prefetch_sz

-

Default

prefetch

size”

on

page

372

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Agents

The

following

parameters

can

influence

the

number

of

applications

that

can

be

run

concurrently

and

achieve

optimal

performance:

v

“agentpri

-

Priority

of

agents”

on

page

377

v

“avg_appls

-

Average

number

of

active

applications”

on

page

378

376

Administration

Guide:

Performance

v

“max_connections

-

Maximum

number

of

client

connections”

on

page

379

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“maxcagents

-

Maximum

number

of

concurrent

agents”

on

page

383

v

“maxfilop

-

Maximum

database

files

open

per

application”

on

page

383

v

“maxtotfilop

-

Maximum

total

files

open”

on

page

384

v

“num_initagents

-

Initial

number

of

agents

in

pool”

on

page

385

v

“num_poolagents

-

Agent

pool

size”

on

page

385

agentpri

-

Priority

of

agents

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

AIX

-1

[

41

-

125

]

Other

UNIX

-1

[

41

-

128

]

Windows

-1

[

0

-

6

]

This

parameter

controls

the

priority

given

both

to

all

agents,

and

to

other

database

manager

instance

processes

and

threads,

by

the

operating

system

scheduler.

In

a

partitioned

database

environment,

this

also

includes

both

coordinating

and

subagents,

the

parallel

system

controllers,

and

the

FCM

daemons.

This

priority

determines

how

CPU

time

is

given

to

the

DB2

processes,

agents,

and

threads

relative

to

the

other

processes

and

threads

running

on

the

machine.

When

the

parameter

is

set

to

-1,

no

special

action

is

taken

and

the

database

manager

is

scheduled

in

the

normal

way

that

the

operating

system

schedules

all

processes

and

threads.

When

the

parameter

is

set

to

a

value

other

than

-1,

the

database

manager

will

create

its

processes

and

threads

with

a

static

priority

set

to

the

value

of

the

parameter.

Therefore,

this

parameter

allows

you

to

control

the

priority

with

which

the

database

manager

processes

and

threads

will

execute

on

your

machine.

You

can

use

this

parameter

to

increase

database

manager

throughput.

The

values

for

setting

this

parameter

are

dependent

on

the

operating

system

on

which

the

database

manager

is

running.

For

example,

in

a

UNIX-based

environment,

numerically

low

values

yield

high

priorities.

When

the

parameter

is

set

to

a

value

between

41

and

125,

the

database

manager

creates

its

agents

with

a

UNIX

static

priority

set

to

the

value

of

the

parameter.

This

is

important

in

UNIX-based

environments

because

numerically

low

values

yield

high

priorities

for

the

database

manager,

but

other

processes

(including

applications

and

users)

might

experience

delays

because

they

cannot

obtain

enough

CPU

time.

You

should

balance

the

setting

of

this

parameter

with

the

other

activity

expected

on

the

machine.

Chapter

13.

Configuring

DB2

377

Recommendation:

The

default

value

should

be

used

initially.

This

value

provides

a

good

compromise

between

response

time

to

other

users/applications

and

database

manager

throughput.

If

database

performance

is

a

concern,

you

can

use

benchmarking

techniques

to

determine

the

optimum

setting

for

this

parameter.

You

should

take

care

when

increasing

the

priority

of

the

database

manager

because

performance

of

other

user

processes

can

be

severely

degraded,

especially

when

the

CPU

utilization

is

very

high.

Increasing

the

priority

of

the

database

manager

processes

and

threads

can

have

significant

performance

benefits.

Note:

If

you

set

this

parameter

to

a

non-default

value

on

UNIX-based

platforms,

you

cannot

use

the

governor

to

alter

agent

priorities.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

avg_appls

-

Average

number

of

active

applications

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Statement

boundary

Default

[Range]

1

[

1

–

maxappls

]

Unit

of

Measure

Counter

This

parameter

is

used

by

the

SQL

optimizer

to

help

estimate

how

much

buffer

pool

will

be

available

at

run-time

for

the

access

plan

chosen.

Recommendation:

When

running

DB2

in

a

multi-user

environment,

particularly

with

complex

queries

and

a

large

buffer

pool,

you

might

want

the

SQL

optimizer

to

know

that

multiple

query

users

are

using

your

system

so

that

the

optimizer

should

be

more

conservative

in

assumptions

of

buffer

pool

availability.

When

setting

this

parameter,

you

should

estimate

the

number

of

complex

query

applications

that

typically

use

the

database.

This

estimate

should

exclude

all

light

OLTP

applications.

If

you

have

trouble

estimating

this

number,

you

can

multiply

the

following:

v

An

average

number

of

all

applications

running

against

your

database.

The

database

system

monitor

can

provide

information

about

the

number

of

applications

at

any

given

time

and

using

a

sampling

technique,

you

can

calculate

an

average

over

a

period

of

time.

The

information

from

the

database

system

monitor

includes

both

OLTP

and

non-OLTP

applications.

v

Your

estimate

of

the

percentage

of

complex

query

applications.

As

with

adjusting

other

configuration

parameters

that

affect

the

optimizer,

you

should

adjust

this

parameter

in

small

increments.

This

allows

you

to

minimize

path

selection

differences.

378

Administration

Guide:

Performance

You

should

consider

rebinding

applications

(using

the

REBIND

PACKAGE

command)

after

changing

this

parameter.

Related

reference:

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

max_connections

-

Maximum

number

of

client

connections

Configuration

Type

Database

manager

Parameter

Type

Configurable

Default

[Range]

-1

(max_coordagents)

[

-1;

max_coordagents

—

64

000

]

When

the

Concentrator

is

off,

this

parameter

indicates

the

maximum

number

of

client

connections

allowed

per

partition.

The

Concentrator

is

off

when

max_connections

is

equal

to

max_coordagents.

The

Concentrator

is

on

when

max_connections

is

greater

than

max_coordagents.

This

parameter

controls

the

maximum

number

of

applications

that

can

be

connected

to

the

instance.

Typically,

each

application

is

assigned

a

coordinator

agent.

An

agent

facilitates

the

operations

between

the

application

and

the

database.

When

the

default

value

for

this

parameter

is

used,

the

concentrator

feature

is

not

activated.

As

a

result,

each

agent

operates

with

its

own

private

memory

and

shares

database

manager

and

database

global

resources

such

as

the

buffer

pool

with

other

agents.

When

the

parameter

is

set

to

a

value

greater

than

the

default,

the

concentrator

feature

is

activated.

The

intent

of

the

concentrator

is

to

reduce

the

server

resources

per

client

application

to

a

point

where

a

DB2

Connect

gateway

can

handle

greater

than

10

000

client

connections.

A

value

or

-1

indicates

that

the

limit

is

max_coordagents.

In

previous

versions

of

DB2,

this

parameter

was

called

max_logicagents.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

max_coordagents

-

Maximum

number

of

coordinating

agents

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Chapter

13.

Configuring

DB2

379

Default

[Range]

-1

(maxagents

–

num_initagents)

[-1,

0

–

maxagents]

For

partitioned

database

environments

and

environments

in

which

intra_parallel

is

set

to

Yes,

the

default

is

maxagents

minus

num_initagents;

otherwise,

the

default

is

maxagents.

This

ensures

that,

in

non-partitioned

database

environments,

max_coordagents

always

equals

maxagents,

unless

the

system

is

configured

for

intra-partition

parallelism.

If

you

do

not

have

a

partitioned

database

environment,

and

have

not

enabled

the

intra_parallel

parameter,

max_coordagents

must

equal

maxagents.

When

the

Concentrator

is

off,

that

is,

when

max_connections

is

equal

to

max_coordagents,

this

parameter

determines

the

maximum

number

of

coordinating

agents

that

can

exist

at

one

time

on

a

server

in

a

partitioned

or

non-partitioned

database

environment.

One

coordinating

agent

is

acquired

for

each

local

or

remote

application

that

connects

to

a

database

or

attaches

to

an

instance.

Requests

that

require

an

instance

attachment

include

CREATE

DATABASE,

DROP

DATABASE,

and

Database

System

Monitor

commands.

When

the

Concentrator

is

on,

that

is,

when

max_connections

is

greater

than

max_coordagents,

there

might

be

more

connections

than

coordinator

agents

to

service

them.

An

application

is

in

an

active

state

only

if

there

is

a

coordinator

agent

servicing

it.

Otherwise,

the

application

is

in

an

inactive

state.

Requests

from

an

active

application

will

be

serviced

by

the

database

coordinator

agent

(and

subagents

in

SMP

or

MPP

configurations).

Requests

from

an

inactive

application

will

be

queued

until

a

database

coordinator

agent

is

assigned

to

service

the

application,

when

the

application

becomes

active.

As

a

result,

this

parameter

can

be

used

to

control

the

load

on

the

system.

Related

reference:

v

“num_initagents

-

Initial

number

of

agents

in

pool”

on

page

385

v

“num_poolagents

-

Agent

pool

size”

on

page

385

v

“intra_parallel

-

Enable

intra-partition

parallelism”

on

page

449

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

maxagents

-

Maximum

number

of

agents

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

380

Administration

Guide:

Performance

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

200

[

1

–

64

000

]

400

[

1

–

64

000

]

on

Partitioned

database

server

with

local

and

remote

clients

Unit

of

Measure

Counter

This

parameter

indicates

the

maximum

number

of

database

manager

agents,

whether

coordinator

agents

or

subagents,

available

at

any

given

time

to

accept

application

requests.

If

you

want

to

limit

the

number

of

coordinating

agents,

use

the

max_coordagents

parameter.

This

parameter

can

be

useful

in

memory

constrained

environments

to

limit

the

total

memory

usage

of

the

database

manager,

because

each

additional

agent

requires

additional

memory.

Recommendation:

The

value

of

maxagents

should

be

at

least

the

sum

of

the

values

for

maxappls

in

each

database

allowed

to

be

accessed

concurrently.

If

the

number

of

databases

is

greater

than

the

numdb

parameter,

then

the

safest

course

is

to

use

the

product

of

numdb

with

the

largest

value

for

maxappls.

Each

additional

agent

requires

some

resource

overhead

that

is

allocated

at

the

time

the

database

manager

is

started.

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“num_poolagents

-

Agent

pool

size”

on

page

385

v

“maxcagents

-

Maximum

number

of

concurrent

agents”

on

page

383

v

“fenced_pool

-

Maximum

number

of

fenced

processes”

on

page

386

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“min_priv_mem

-

Minimum

committed

private

memory”

on

page

351

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

maxappls

-

Maximum

number

of

active

applications

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Automatic

[

Automatic;

1

–

60

000

]

Unit

of

Measure

Counter

This

parameter

specifies

the

maximum

number

of

concurrent

applications

that

can

be

connected

(both

local

and

remote)

to

a

database.

Since

each

application

that

Chapter

13.

Configuring

DB2

381

attaches

to

a

database

causes

some

private

memory

to

be

allocated,

allowing

a

larger

number

of

concurrent

applications

will

potentially

use

more

memory.

Setting

maxappls

to

automatic

has

the

effect

of

allowing

any

number

of

connected

applications.

DB2

will

dynamically

allocate

the

resources

it

needs

to

support

new

applications.

If

you

do

not

want

to

set

this

parameter

to

automatic,

the

value

of

this

parameter

must

be

equal

to

or

greater

than

the

sum

of

the

connected

applications,

plus

the

number

of

these

same

applications

that

might

be

concurrently

in

the

process

of

completing

a

two-phase

commit

or

rollback.

Then

add

to

this

sum

the

anticipated

number

of

indoubt

transactions

that

might

exist

at

any

one

time.

When

an

application

attempts

to

connect

to

a

database,

but

maxappls

has

already

been

reached,

an

error

is

returned

to

the

application

indicating

that

the

maximum

number

of

applications

have

been

connected

to

the

database.

As

more

applications

use

the

Data

Links

Manager,

the

value

of

maxappls

should

be

increased.

Use

the

following

formula

to

compute

the

value

you

need:

<maxappls>

=

5

*

(number

of

nodes)

+

(peak

number

of

active

applications

using

Data

Links

Manager)

The

maximum

supported

value

for

Data

Links

Manager

is

2

000.

In

a

partitioned

database

environment,

this

is

the

maximum

number

of

applications

that

can

be

concurrently

active

against

a

database

partition.

This

parameter

limits

the

number

of

active

applications

against

the

database

partition

on

a

database

partition

server,

regardless

of

whether

the

server

is

the

coordinator

node

for

the

application

or

not.

The

catalog

node

in

a

partitioned

database

environment

requires

a

higher

value

for

maxappls

than

is

the

case

for

other

types

of

environments

because,

in

the

partitioned

database

environment,

every

application

requires

a

connection

to

the

catalog

node.

Recommendation:

Increasing

the

value

of

this

parameter

without

lowering

the

maxlocks

parameter

or

increasing

the

locklist

parameter

could

cause

you

to

reach

the

database

limit

on

locks

(locklist)

rather

than

the

application

limit

and

as

a

result

cause

pervasive

lock

escalation

problems.

To

a

certain

extent,

the

maximum

number

of

applications

is

also

governed

by

maxagents.

An

application

can

only

connect

to

the

database,

if

there

is

an

available

connection

(maxappls)

as

well

as

an

available

agent

(maxagents).

In

addition,

the

maximum

number

of

applications

is

also

controlled

by

the

max_coordagents

configuration

parameter,

because

no

new

applications

(that

is,

coordinator

agents)

can

be

started

if

max_coordagents

has

been

reached.

Related

tasks:

v

“Manually

resolving

indoubt

transactions”

in

the

Administration

Guide:

Planning

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“maxlocks

-

Maximum

percent

of

lock

list

before

escalation”

on

page

369

v

“avg_appls

-

Average

number

of

active

applications”

on

page

378

382

Administration

Guide:

Performance

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

maxcagents

-

Maximum

number

of

concurrent

agents

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

-1

(max_coordagents)

[-1;

1

–

max_coordagents

]

Unit

of

Measure

Counter

The

maximum

number

of

database

manager

agents

that

can

be

concurrently

executing

a

database

manager

transaction.

This

parameter

is

used

to

control

the

load

on

the

system

during

periods

of

high

simultaneous

application

activity.

For

example,

you

might

have

a

system

requiring

a

large

number

of

connections

but

with

a

limited

amount

of

memory

to

serve

those

connections.

Adjusting

this

parameter

can

be

useful

in

such

an

environment,

where

a

period

of

high

simultaneous

activity

could

cause

excessive

operating

system

paging.

This

parameter

does

not

limit

the

number

of

applications

that

can

have

connections

to

a

database.

It

only

limits

the

number

of

database

manager

agents

that

can

be

processed

concurrently

by

the

database

manager

at

any

one

time,

thereby

limiting

the

usage

of

system

resources

during

times

of

peak

processing.

A

value

of

−1

indicates

that

the

limit

is

max_coordagents.

Recommendation:

In

most

cases

the

default

value

for

this

parameter

will

be

acceptable.

In

cases

where

the

high

concurrency

of

applications

is

causing

problems,

you

can

use

benchmark

testing

to

tune

this

parameter

to

optimize

the

performance

of

the

database.

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

maxfilop

-

Maximum

database

files

open

per

application

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Transaction

boundary

Chapter

13.

Configuring

DB2

383

Default

[Range]

UNIX

64

[

2

–

1950

]

Windows

64

[

2

–

32

768

]

Unit

of

Measure

Counter

This

parameter

specifies

the

maximum

number

of

file

handles

that

can

be

open

for

each

database

agent.

If

opening

a

file

causes

this

value

to

be

exceeded,

some

files

in

use

by

this

agent

are

closed.

If

maxfilop

is

too

small,

the

overhead

of

opening

and

closing

files

so

as

not

to

exceed

this

limit

will

become

excessive

and

might

degrade

performance.

Both

SMS

table

spaces

and

DMS

table

space

file

containers

are

treated

as

files

in

the

database

manager’s

interaction

with

the

operating

system,

and

file

handles

are

required.

More

files

are

generally

used

by

SMS

table

spaces

compared

to

the

number

of

containers

used

for

a

DMS

file

table

space.

Therefore,

if

you

are

using

SMS

table

spaces,

you

will

need

a

larger

value

for

this

parameter

compared

to

what

you

would

require

for

DMS

file

table

spaces.

You

can

also

use

this

parameter

to

ensure

that

the

overall

total

of

file

handles

used

by

the

database

manager

does

not

exceed

the

operating

system

limit

by

limiting

the

number

of

handles

per

agent

to

a

specific

number;

the

actual

number

will

vary

depending

on

the

number

of

agents

running

concurrently.

Related

reference:

v

“maxappls

-

Maximum

number

of

active

applications”

on

page

381

v

“maxtotfilop

-

Maximum

total

files

open”

on

page

384

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

maxtotfilop

-

Maximum

total

files

open

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

16

000

[

100

–

32

768

]

Unit

of

Measure

Counter

This

parameter

defines

the

maximum

number

of

files

that

can

be

opened

by

all

agents

and

other

threads

executing

in

a

single

database

manager

instance.

If

opening

a

file

causes

this

value

to

be

exceeded,

an

error

is

returned

to

your

application.

Note:

This

parameter

does

not

apply

to

UNIX-based

platforms.

384

Administration

Guide:

Performance

Recommendation:

When

setting

this

parameter,

you

should

consider

the

number

of

file

handles

that

could

be

used

for

each

database

in

the

database

manager

instance.

To

estimate

an

upper

limit

for

this

parameter:

1.

Calculate

the

maximum

number

of

file

handles

that

could

be

opened

for

each

database

in

the

instance,

using

the

following

formula:

maxappls

*

maxfilop

2.

Calculate

the

sum

of

above

results

and

verify

that

it

does

not

exceed

the

parameter

maximum.

If

a

new

database

is

created,

you

should

re-evaluate

the

value

for

this

parameter.

Related

reference:

v

“maxfilop

-

Maximum

database

files

open

per

application”

on

page

383

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

num_initagents

-

Initial

number

of

agents

in

pool

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

0

[0

—

num_poolagents]

This

parameter

determines

the

initial

number

of

idle

agents

that

are

created

in

the

agent

pool

at

DB2START

time.

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“num_poolagents

-

Agent

pool

size”

on

page

385

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

num_poolagents

-

Agent

pool

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

Chapter

13.

Configuring

DB2

385

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

-1

(maxagents

/

2)

[-1;

0

—

maxagents]

When

the

Concentrator

is

off,

that

is,

when

max_connections

is

equal

to

max_coordagents,

this

parameter

determines

the

maximum

size

of

the

idle

agent

pool.

Idle

agents

can

be

used

as

parallel

subagents

or

as

coordinator

agents.

If

more

agents

are

created

than

is

indicated

by

the

value

of

this

parameter,

they

will

be

terminated

when

they

finish

executing

their

current

request,

rather

than

be

returned

to

the

pool.

When

the

Concentrator

is

on,

that

is,

when

max_connections

is

greater

than

max_coordagents,

agents

will

always

be

returned

to

the

pool,

regardless

of

the

value

of

this

parameter.

Based

on

the

system

load

and

the

time

agents

remain

idle

in

the

pool,

agents

might

terminate

themselves,

as

necessary,

to

reduce

the

size

of

the

idle

pool

to

the

configured

parameter

value.

Except

when

the

Concentrator

is

on,

if

the

value

of

this

parameter

is

0,

agents

will

be

created

as

needed,

and

will

terminate

once

they

finish

executing

their

current

request.

Recommendation:

If

you

run

a

decision-support

environment

in

which

few

applications

connect

concurrently,

set

num_poolagents

to

a

small

value

to

avoid

having

an

agent

pool

that

is

full

of

idle

agents.

If

you

run

a

transaction

processing

environment

in

which

many

applications

are

concurrently

connected,

increase

the

value

of

num_poolagents

to

avoid

the

costs

associated

with

the

frequent

creation

and

termination

of

agents.

Related

reference:

v

“num_initagents

-

Initial

number

of

agents

in

pool”

on

page

385

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Stored

procedures

and

user-defined

functions

The

following

parameters

can

affect

fenced

stored

procedure

and

user-defined

function

performance:

v

“fenced_pool

-

Maximum

number

of

fenced

processes”

v

“keepfenced

-

Keep

fenced

process”

on

page

388

v

“num_initfenced

-

Initial

number

of

fenced

processes”

on

page

389

fenced_pool

-

Maximum

number

of

fenced

processes

Configuration

Type

Database

manager

386

Administration

Guide:

Performance

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

-1

(max_coordagents)

Unit

of

Measure

Counter

For

threaded

db2fmp

processes

(processes

serving

threadsafe

stored

procedures

and

UDFs),

this

parameter

represents

the

number

of

threads

cached

in

each

db2fmp

process.

For

nonthreaded

db2fmp

processes,

this

parameter

represents

the

number

of

processes

cached.

Recommendation:

If

your

environment

uses

fenced

stored

procedures

or

user

defined

functions,

then

this

parameter

can

be

used

to

ensure

that

an

appropriate

number

of

db2fmp

processes

are

available

to

process

the

maximum

number

of

concurrent

stored

procedures

and

UDFs

that

run

on

the

instance,

ensuring

that

no

new

fenced

mode

processes

need

to

be

created

as

part

of

stored

procedure

and

UDF

execution.

If

the

parameter

is

set

to

−1,

the

maximum

number

of

cached

db2fmp

processes

will

be

the

same

as

the

value

set

in

the

max_coordagents

parameter.

If

you

find

that

the

default

value

is

not

appropriate

for

your

environment

because

an

inappropriate

amount

of

system

resource

is

being

given

to

db2fmp

processes

and

is

affecting

performance

of

the

database

manager,

the

following

might

be

useful

in

providing

a

starting

point

for

tuning

this

parameter:

fenced_pool

=

#

of

applications

allowed

to

make

stored

procedure

and

UDF

calls

at

one

time

If

keepfenced

is

set

to

yes,

then

each

db2fmp

process

that

is

created

in

the

cache

pool

will

continue

to

exist

and

use

system

resources

even

after

the

fenced

routine

call

has

been

processed

and

returned

to

the

agent.

If

keepfenced

is

set

to

no,

then

nonthreaded

db2fmp

processes

will

terminate

when

they

complete

execution,

and

there

is

no

cache

pool.

Multithreaded

db2fmp

processes

will

continue

to

exist,

but

no

threads

will

be

pooled

in

these

processes.

This

means

that

even

when

keepfenced

is

set

no

you

can

have

one

threaded

C

db2fmp

process

and

one

threaded

Java

db2fmp

process

on

your

system.

In

previous

versions

of

DB2,

this

parameter

was

known

as

maxdari.

Related

reference:

v

“max_coordagents

-

Maximum

number

of

coordinating

agents”

on

page

379

v

“maxagents

-

Maximum

number

of

agents”

on

page

380

v

“keepfenced

-

Keep

fenced

process”

on

page

388

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

387

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“num_initfenced

-

Initial

number

of

fenced

processes”

on

page

389

keepfenced

-

Keep

fenced

process

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Yes

[

Yes;

No

]

This

parameter

indicates

whether

or

not

a

fenced

mode

process

is

kept

after

a

fenced

mode

routine

call

is

complete.

Fenced

mode

processes

are

created

as

separate

system

entities

in

order

to

isolate

user-written

fenced

mode

code

from

the

database

manager

agent

process.

This

parameter

is

only

applicable

on

database

servers.

If

keepfenced

is

set

to

no,

and

the

routine

being

executed

is

not

threadsafe,

a

new

fenced

mode

process

is

created

and

destroyed

for

each

fenced

mode

invocation.

If

keepfenced

is

set

to

no,

and

the

routine

being

executed

is

threadsafe,

the

fenced

mode

process

persists,

but

the

thread

created

for

the

call

is

terminated.

If

keepfenced

is

set

to

yes,

a

fenced

mode

process

or

thread

is

reused

for

subsequent

fenced

mode

calls.

When

the

database

manager

is

stopped,

all

outstanding

fenced

mode

processes

and

threads

will

be

terminated.

Setting

this

parameter

to

yes

will

result

in

additional

system

resources

being

consumed

by

the

database

manager

for

each

fenced

mode

process

that

is

activated,

up

to

the

value

contained

in

the

fenced_pool

parameter.

A

new

process

is

only

created

when

no

existing

fenced

mode

process

is

available

to

process

a

subsequent

fenced

routine

invocation.

This

parameter

is

ignored

if

fenced_pool

is

set

to

0.

Recommendation:

In

an

environment

in

which

the

number

of

fenced

mode

requests

is

large

relative

to

the

number

of

non-fenced

mode

requests,

and

system

resources

are

not

constrained,

then

this

parameter

can

be

set

to

yes.

This

will

improve

the

fenced

mode

process

performance

by

avoiding

the

initial

fenced

mode

process

creation

overhead

since

an

existing

fenced

mode

process

will

be

used

to

process

the

call.

In

particular,

for

Java

routines,

this

will

save

the

cost

of

starting

the

Java

Virtual

Machine

(JVM),

a

very

significant

performance

improvement.

For

example,

in

an

OLTP

debit-credit

banking

transaction

application,

the

code

to

perform

each

transaction

could

be

performed

in

a

stored

procedure

which

executes

in

a

fenced

mode

process.

In

this

application,

the

main

workload

is

performed

out

of

fenced

mode

processes.

If

this

parameter

is

set

to

no,

each

transaction

incurs

the

overhead

of

creating

a

new

fenced

mode

process,

resulting

in

a

significant

performance

reduction.

If,

however,

this

parameter

is

set

to

yes,

each

transaction

would

try

to

use

an

existing

fenced

mode

process,

which

would

avoid

this

overhead.

In

previous

versions

of

DB2,

this

parameter

was

known

as

keepdari.

388

Administration

Guide:

Performance

Related

reference:

v

“fenced_pool

-

Maximum

number

of

fenced

processes”

on

page

386

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

num_initfenced

-

Initial

number

of

fenced

processes

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

0

[

0

—

max_connections

+

(maxagents

-

max_coordagents)

]

This

parameter

indicates

the

initial

number

of

nonthreaded,

idle

db2fmp

processes

that

are

created

in

the

db2fmp

pool

at

DB2START

time.

Setting

this

parameter

will

reduce

the

initial

startup

time

for

running

non-threadsafe

C

and

Cobol

routines.

This

parameter

is

ignored

if

keepfenced

is

not

specified.

It

is

much

more

important

to

set

fenced_pool

to

an

appropriate

size

for

your

system

than

to

start

up

a

number

of

db2fmp

processes

at

DB2START

time.

In

previous

versions

of

DB2,

this

parameter

was

known

as

num_initdaris.

Related

reference:

v

“keepfenced

-

Keep

fenced

process”

on

page

388

v

“fenced_pool

-

Maximum

number

of

fenced

processes”

on

page

386

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Logging

and

recovery

Recovering

your

environment

can

be

very

important

to

prevent

the

loss

of

critical

data.

A

number

of

parameters

are

available

to

help

you

manage

your

environment

and

to

ensure

that

you

can

perform

adequate

recovery

of

your

data

or

transactions.

These

parameters

are

grouped

into

the

following

categories:

v

“Database

log

files”

on

page

390

v

“Database

log

activity”

on

page

399

v

“Recovery”

on

page

408

v

“Distributed

unit

of

work

recovery”

on

page

418

Chapter

13.

Configuring

DB2

389

Database

log

files

The

following

parameters

provide

information

about

number,

size

and

status

of

the

files

used

for

database

logging:

v

“logfilsiz

-

Size

of

log

files”

v

“loghead

-

First

active

log

file”

on

page

391

v

“logpath

-

Location

of

log

files”

on

page

391

v

“logprimary

-

Number

of

primary

log

files”

on

page

391

v

“logsecond

-

Number

of

secondary

log

files”

on

page

393

v

“max_log

-

Maximum

log

per

transaction”

on

page

394

v

“mirrorlogpath

-

Mirror

log

path”

on

page

395

v

“newlogpath

-

Change

the

database

log

path”

on

page

396

v

“num_log_span

-

Number

log

span”

on

page

397

v

“overflowlogpath

-

Overflow

log

path”

on

page

398

logfilsiz

-

Size

of

log

files

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

UNIX

1000

[

4

—

262

144

]

Windows

1000

[

4

—

262

144

]

Unit

of

Measure

Pages

(4

KB)

This

parameter

defines

the

size

of

each

primary

and

secondary

log

file.

The

size

of

these

log

files

limits

the

number

of

log

records

that

can

be

written

to

them

before

they

become

full

and

a

new

log

file

is

required.

The

use

of

primary

and

secondary

log

files

as

well

as

the

action

taken

when

a

log

file

becomes

full

are

dependent

on

the

type

of

logging

that

is

being

performed:

v

Circular

logging

A

primary

log

file

can

be

reused

when

the

changes

recorded

in

it

have

been

committed.

If

the

log

file

size

is

small

and

applications

have

processed

a

large

number

of

changes

to

the

database

without

committing

the

changes,

a

primary

log

file

can

quickly

become

full.

If

all

primary

log

files

become

full,

the

database

manager

will

allocate

secondary

log

files

to

hold

the

new

log

records.

v

Log

retention

logging

When

a

primary

log

file

is

full,

the

log

is

archived

and

a

new

primary

log

file

is

allocated.

Recommendation:

You

must

balance

the

size

of

the

log

files

with

the

number

of

primary

log

files:

v

The

value

of

the

logfilsiz

should

be

increased

if

the

database

has

a

large

number

of

update,

delete,

or

insert

transactions

running

against

it

which

will

cause

the

log

file

to

become

full

very

quickly.

Note:

The

upper

limit

of

log

file

size,

combined

with

the

upper

limit

of

the

number

of

log

files

(logprimary

+

logsecond),

gives

an

upper

limit

of

256

GB

of

active

log

space.

390

Administration

Guide:

Performance

|

A

log

file

that

is

too

small

can

affect

system

performance

because

of

the

overhead

of

archiving

old

log

files,

allocating

new

log

files,

and

waiting

for

a

usable

log

file.

v

The

value

of

the

logfilsiz

should

be

reduced

if

disk

space

is

scarce,

since

primary

logs

are

preallocated

at

this

size.

A

log

file

that

is

too

large

can

reduce

your

flexibility

when

managing

archived

log

files

and

copies

of

log

files,

since

some

media

might

not

be

able

to

hold

an

entire

log

file.

If

you

are

using

log

retention,

the

current

active

log

file

is

closed

and

truncated

when

the

last

application

disconnects

from

a

database.

When

the

next

connection

to

the

database

occurs,

the

next

log

file

is

used.

Therefore,

if

you

understand

the

logging

requirements

of

your

concurrent

applications,

you

might

be

able

to

determine

a

log

file

size

that

will

not

allocate

excessive

amounts

of

wasted

space.

Related

reference:

v

“logprimary

-

Number

of

primary

log

files”

on

page

391

v

“logsecond

-

Number

of

secondary

log

files”

on

page

393

v

“softmax

-

Recovery

range

and

soft

checkpoint

interval”

on

page

405

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

loghead

-

First

active

log

file

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

contains

the

name

of

the

log

file

that

is

currently

active.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logpath

-

Location

of

log

files

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

contains

the

current

path

being

used

for

logging

purposes.

You

cannot

change

this

parameter

directly

as

it

is

set

by

the

database

manager

after

a

change

to

the

newlogpath

parameter

becomes

effective.

When

a

database

is

created,

the

recovery

log

file

for

it

is

created

in

a

subdirectory

of

the

directory

containing

the

database.

The

default

is

a

subdirectory

named

SQLOGDIR

under

the

directory

created

for

the

database.

Related

reference:

v

“newlogpath

-

Change

the

database

log

path”

on

page

396

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logprimary

-

Number

of

primary

log

files

Configuration

Type

Database

Parameter

Type

Configurable

Chapter

13.

Configuring

DB2

391

Default

[Range]

3

[

2

–

256

]

Unit

of

Measure

Counter

When

Allocated

v

The

database

is

created

v

A

log

is

moved

to

a

different

location

(which

occurs

when

the

logpath

parameter

is

updated)

v

Following

a

increase

in

the

value

of

this

parameter

(logprimary),

during

the

next

database

connection

after

all

users

have

disconnected

v

A

log

file

has

been

archived

and

a

new

log

file

is

allocated

(the

logretain

or

userexit

parameter

must

be

enabled)

v

If

the

logfilsiz

parameter

has

been

changed,

the

active

log

files

are

re-sized

during

the

next

database

connection

after

all

users

have

disconnected.

When

Freed

Not

freed

unless

this

parameter

decreases.

If

decreased,

unneeded

log

files

are

deleted

during

the

next

connection

to

the

database.

The

primary

log

files

establish

a

fixed

amount

of

storage

allocated

to

the

recovery

log

files.

This

parameter

allows

you

to

specify

the

number

of

primary

log

files

to

be

preallocated.

Under

circular

logging,

the

primary

logs

are

used

repeatedly

in

sequence.

That

is,

when

a

log

is

full,

the

next

primary

log

in

the

sequence

is

used

if

it

is

available.

A

log

is

considered

available

if

all

units

of

work

with

log

records

in

it

have

been

committed

or

rolled-back.

If

the

next

primary

log

in

sequence

is

not

available,

then

a

secondary

log

is

allocated

and

used.

Additional

secondary

logs

are

allocated

and

used

until

the

next

primary

log

in

the

sequence

becomes

available

or

the

limit

imposed

by

the

logsecond

parameter

is

reached.

These

secondary

log

files

are

dynamically

deallocated

as

they

are

no

longer

needed

by

the

database

manager.

The

number

of

primary

and

secondary

log

files

must

comply

with

the

following:

v

If

logsecond

has

a

value

of

-1,

logprimary

<=

256.

v

If

logsecond

does

not

have

a

value

of

-1,

(logprimary

+

logsecond)

<=

256.

Recommendation:

The

value

chosen

for

this

parameter

depends

on

a

number

of

factors,

including

the

type

of

logging

being

used,

the

size

of

the

log

files,

and

the

type

of

processing

environment

(for

example,

length

of

transactions

and

frequency

of

commits).

Increasing

this

value

will

increase

the

disk

requirements

for

the

logs

because

the

primary

log

files

are

preallocated

during

the

very

first

connection

to

the

database.

If

you

find

that

secondary

log

files

are

frequently

being

allocated,

you

might

be

able

to

improve

system

performance

by

increasing

the

log

file

size

(logfilsiz)

or

by

increasing

the

number

of

primary

log

files.

For

databases

that

are

not

frequently

accessed,

in

order

to

save

disk

storage,

set

the

parameter

to

2.

For

databases

enabled

for

roll-forward

recovery,

set

the

parameter

larger

to

avoid

the

overhead

of

allocating

new

logs

almost

immediately.

392

Administration

Guide:

Performance

You

can

use

the

database

system

monitor

to

help

you

size

the

primary

log

files.

Observation

of

the

following

monitor

values

over

a

period

of

time

will

aid

in

better

tuning

decisions,

as

average

values

might

be

more

representative

of

your

ongoing

requirements.

v

sec_log_used_top

(maximum

secondary

log

space

used)

v

tot_log_used_top

(maximum

total

log

space

used)

v

sec_logs_allocated

(secondary

logs

allocated

currently)

Related

reference:

v

“logfilsiz

-

Size

of

log

files”

on

page

390

v

“logsecond

-

Number

of

secondary

log

files”

on

page

393

v

“logretain

-

Log

retain

enable”

on

page

403

v

“userexit

-

User

exit

enable”

on

page

406

v

“sec_log_used_top

-

Maximum

Secondary

Log

Space

Used

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“tot_log_used_top

-

Maximum

Total

Log

Space

Used

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“sec_logs_allocated

-

Secondary

Logs

Allocated

Currently

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logsecond

-

Number

of

secondary

log

files

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

2

[-1;

0

–

254

]

Unit

of

Measure

Counter

When

Allocated

As

needed

when

logprimary

is

insufficient

(see

detail

below)

When

Freed

Over

time

as

the

database

manager

determines

they

will

no

longer

be

required.

This

parameter

specifies

the

number

of

secondary

log

files

that

are

created

and

used

for

recovery

log

files

(only

as

needed).

When

the

primary

log

files

become

full,

the

secondary

log

files

(of

size

logfilsiz)

are

allocated

one

at

a

time

as

needed,

up

to

a

maximum

number

as

controlled

by

this

parameter.

An

error

code

will

be

returned

to

the

application,

and

the

database

will

be

shut

down,

if

more

secondary

log

files

are

required

than

are

allowed

by

this

parameter.

If

you

set

logsecond

to

-1,

the

database

is

configured

with

infinite

active

log

space.

There

is

no

limit

on

the

size

or

the

number

of

in-flight

transactions

running

on

the

database.

If

you

set

logsecond

to

-1,

you

still

use

the

logprimary

and

logfilsiz

configuration

parameters

to

specify

how

many

log

files

DB2

should

keep

in

the

active

log

path.

If

DB2

needs

to

read

log

data

from

a

log

file,

but

the

file

is

not

in

the

active

log

path,

DB2

will

invoke

the

userexit

program

to

retrieve

the

log

file

from

the

archive

to

the

active

log

path.

(DB2

will

retrieve

the

files

to

the

overflow

log

path,

if

you

have

configured

one.)

Once

the

log

file

is

retrieved,

DB2

will

cache

Chapter

13.

Configuring

DB2

393

this

file

in

the

active

log

path

so

that

other

reads

of

log

data

from

the

same

file

will

be

fast.

DB2

will

manage

the

retrieval,

caching,

and

removal

of

these

log

files

as

required.

If

your

log

path

is

a

raw

device,

you

must

configure

the

overflowlogpath

configuration

parameter

in

order

to

set

logsecond

to

-1.

By

setting

logsecond

to

-1,

you

will

have

no

limit

on

the

size

of

the

unit

of

work

or

the

number

of

concurrent

units

of

work.

However,

rollback

(both

at

the

savepoint

level

and

at

the

unit

of

work

level)

could

be

very

slow

due

to

the

need

to

retrieve

log

files

from

the

archive.

Crash

recovery

could

also

be

very

slow

for

the

same

reason.

DB2

will

write

a

message

to

the

administration

notification

log

to

warn

you

that

the

current

set

of

active

units

of

work

has

exceeded

the

primary

log

files.

This

is

an

indication

that

rollback

or

crash

recovery

could

be

extremely

slow.

To

set

logsecond

to

-1

the

userexit

configuration

parameter

must

be

set

to

yes.

Recommendation:

Use

secondary

log

files

for

databases

that

have

periodic

needs

for

large

amounts

of

log

space.

For

example,

an

application

that

is

run

once

a

month

might

require

log

space

beyond

that

provided

by

the

primary

log

files.

Since

secondary

log

files

do

not

require

permanent

file

space

they

are

advantageous

in

this

type

of

situation.

Related

reference:

v

“logfilsiz

-

Size

of

log

files”

on

page

390

v

“logprimary

-

Number

of

primary

log

files”

on

page

391

v

“logretain

-

Log

retain

enable”

on

page

403

v

“userexit

-

User

exit

enable”

on

page

406

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“overflowlogpath

-

Overflow

log

path”

on

page

398

max_log

-

Maximum

log

per

transaction

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

0

[

0

—

100

]

Unit

of

Measure

Percentage

If

the

value

is

not

0,

this

parameter

indicates

the

percentage

of

active

log

space

that

can

be

consumed

by

one

transaction.

If

the

value

is

set

to

0,

there

is

no

limit

regarding

how

much

space

(as

a

percentage

of

total

active

log

space)

one

single

transaction

can

consume.

This

was

the

behavior

of

transactions

prior

to

Version

8.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

394

Administration

Guide:

Performance

v

“num_log_span

-

Number

log

span”

on

page

397

mirrorlogpath

-

Mirror

log

path

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

path

or

device]

This

parameter

allows

you

to

specify

a

string

of

up

to

242

bytes

for

the

mirror

log

path.

The

string

must

point

to

a

path

name,

and

it

must

be

a

fully

qualified

path

name,

not

a

relative

path

name.

Note:

In

a

partitioned

database

environment,

the

node

number

is

automatically

appended

to

the

path.

This

is

done

to

maintain

the

uniqueness

of

the

path

in

multiple

logical

node

configurations.

If

mirrorlogpath

is

configured,

DB2

will

create

active

log

files

in

both

the

log

path

and

the

mirror

log

path.

All

log

data

will

be

written

to

both

paths.

The

mirror

log

path

has

a

duplicated

set

of

active

log

files,

such

that

if

there

is

a

disk

error

or

human

error

that

destroys

active

log

files

on

one

of

the

paths,

the

database

can

still

function.

If

the

mirror

log

path

is

changed,

there

might

be

log

files

in

the

old

mirror

log

path.

These

log

files

might

not

have

been

archived,

so

you

might

need

to

archive

these

log

files

manually.

Also,

if

you

are

running

replication

on

this

database,

replication

might

still

need

the

log

files

from

before

the

log

path

change.

If

the

database

is

configured

with

the

User

Exit

Enable

(userexit)

database

configuration

parameter

set

to

Yes,

and

if

all

the

log

files

have

been

archived

either

by

DB2

automatically

or

by

yourself

manually,

then

DB2

will

be

able

to

retrieve

the

log

files

to

complete

the

replication

process.

Otherwise,

you

can

copy

the

files

from

the

old

mirror

log

path

to

the

new

mirror

log

path.

If

logpath

or

newlogpath

specifies

a

raw

device

as

the

location

where

the

log

files

are

stored,

mirror

logging,

as

indicated

by

mirrorlogpath,

is

not

allowed.

If

logpath

or

newlogpath

specifies

a

file

path

as

the

location

where

the

log

files

are

stored,

mirror

logging

is

allowed

and

mirrorlogpath

must

also

specify

a

file

path.

Recommendation:

Just

like

the

log

files,

the

mirror

log

files

should

be

on

a

physical

disk

that

does

not

have

high

I/O.

It

is

strongly

recommended

that

this

path

be

on

a

separate

device

than

the

primary

log

path.

You

can

use

the

database

system

monitor

to

track

the

number

of

I/Os

related

to

database

logging.

The

following

data

elements

return

the

amount

of

I/O

activity

related

to

database

logging.

You

can

use

an

operating

system

monitor

tool

to

collect

information

about

other

disk

I/O

activity,

then

compare

the

two

types

of

I/O

activity.

v

log_reads

(number

of

log

pages

read)

v

log_writes

(number

of

log

pages

written).

Related

reference:

v

“logpath

-

Location

of

log

files”

on

page

391

v

“newlogpath

-

Change

the

database

log

path”

on

page

396

Chapter

13.

Configuring

DB2

395

v

“log_reads

-

Number

of

Log

Pages

Read

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“log_writes

-

Number

of

Log

Pages

Written

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“overflowlogpath

-

Overflow

log

path”

on

page

398

newlogpath

-

Change

the

database

log

path

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

path

or

device]

This

parameter

allows

you

to

specify

a

string

of

up

to

242

bytes

to

change

the

location

where

the

log

files

are

stored.

The

string

can

point

to

either

a

path

name

or

to

a

raw

device.

If

the

string

points

to

a

path

name,

it

must

be

a

fully

qualified

path

name,

not

a

relative

path

name.

Note:

In

a

partitioned

database

environment,

the

node

number

is

automatically

appended

to

the

path.

This

is

done

to

maintain

the

uniqueness

of

the

path

in

multiple

logical

node

configurations.

If

you

want

to

use

replication,

and

your

log

path

is

a

raw

device,

the

overflowlogpath

configuration

parameter

must

be

configured.

To

specify

a

device,

specify

a

string

that

the

operating

system

identifies

as

a

device.

For

example:

v

On

Windows

NT,

\\.\d:

or

\\.\PhysicalDisk5

Note:

You

must

have

Windows

NT

Version

4.0

with

Service

Pack

3

or

later

installed

to

be

able

to

write

logs

to

a

device.

v

On

UNIX-based

platforms,

/dev/rdblog8

Note:

You

can

only

specify

a

device

on

AIX,

Windows

2000,

Windows

NT,

Solaris

Operating

Environment,

HP-UX,

and

Linux

platforms.

The

new

setting

does

not

become

the

value

of

logpath

until

both

of

the

following

occur:

v

The

database

is

in

a

consistent

state,

as

indicated

by

the

database_consistent

parameter.

v

All

users

are

disconnected

from

the

database

When

the

first

new

connection

is

made

to

the

database,

the

database

manager

will

move

the

logs

to

the

new

location

specified

by

logpath.

There

might

be

log

files

in

the

old

log

path.

These

log

files

might

not

have

been

archived.

You

might

need

to

archive

these

log

files

manually.

Also,

if

you

are

running

replication

on

this

database,

replication

might

still

need

the

log

files

from

before

the

log

path

change.

If

the

database

is

configured

with

the

User

Exit

Enable

(userexit)

database

configuration

parameter

set

to

Yes,

and

if

all

the

log

files

have

been

archived

either

by

DB2

automatically

or

by

yourself

manually,

then

DB2

will

396

Administration

Guide:

Performance

be

able

to

retrieve

the

log

files

to

complete

the

replication

process.

Otherwise,

you

can

copy

the

files

from

the

old

log

path

to

the

new

log

path.

If

logpath

or

newlogpath

specifies

a

raw

device

as

the

location

where

the

log

files

are

stored,

mirror

logging,

as

indicated

by

mirrorlogpath,

is

not

allowed.

If

logpath

or

newlogpath

specifies

a

file

path

as

the

location

where

the

log

files

are

stored,

mirror

logging

is

allowed

and

mirrorlogpath

must

also

specify

a

file

path.

Recommendation:

Ideally,

the

log

files

will

be

on

a

physical

disk

which

does

not

have

high

I/O.

For

instance,

avoid

putting

the

logs

on

the

same

disk

as

the

operating

system

or

high

volume

databases.

This

will

allow

for

efficient

logging

activity

with

a

minimum

of

overhead

such

as

waiting

for

I/O.

You

can

use

the

database

system

monitor

to

track

the

number

of

I/Os

related

to

database

logging.

The

monitor

elements

log_reads

(number

of

log

pages

read)

and

log_writes

(number

of

log

pages

written)

return

the

amount

of

I/O

activity

related

to

database

logging.

You

can

use

an

operating

system

monitor

tool

to

collect

information

about

other

disk

I/O

activity,

then

compare

the

two

types

of

I/O

activity.

Related

reference:

v

“logpath

-

Location

of

log

files”

on

page

391

v

“database_consistent

-

Database

is

consistent”

on

page

429

v

“log_reads

-

Number

of

Log

Pages

Read

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“log_writes

-

Number

of

Log

Pages

Written

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

num_log_span

-

Number

log

span

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

0

[

0

—

65

535

]

Unit

of

Measure

Counter

If

the

value

is

not

0,

this

parameter

indicates

the

number

of

active

log

files

that

one

active

transaction

is

allowed

to

span.

If

the

value

is

set

to

0,

there

is

no

limit

to

how

many

log

files

one

single

transaction

can

span.

This

was

the

behavior

of

transactions

prior

to

Version

8.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“max_log

-

Maximum

log

per

transaction”

on

page

394

Chapter

13.

Configuring

DB2

397

overflowlogpath

-

Overflow

log

path

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

path

]

This

parameter

can

be

used

for

several

functions,

depending

on

your

logging

requirements.

v

This

parameter

allows

you

to

specify

a

location

for

DB2

to

find

log

files

that

are

needed

for

a

rollforward

operation.

It

is

similar

to

the

OVERFLOW

LOG

PATH

option

on

the

ROLLFORWARD

command.

Instead

of

always

specifying

OVERFLOW

LOG

PATH

on

every

ROLLFORWARD

command,

you

can

set

this

configuration

parameter

once.

However,

if

both

are

used,

the

OVERFLOW

LOG

PATH

option

will

overwrite

the

overflowlogpath

configuration

parameter,

for

that

particular

rollforward

operation.

v

If

logsecond

is

set

to

-1,

overflowlogpath

allows

you

to

specify

a

directory

for

DB2

to

store

active

log

files

retrieved

from

the

archive.

(Active

log

files

have

to

be

retrieved

for

rollback

operations

if

they

are

no

longer

in

the

active

log

path).

Without

overflowlogpath,

DB2

will

retrieve

the

log

files

into

the

active

log

path.

Using

overflowlogpath

allows

you

to

provide

additional

resource

for

DB2

to

store

the

retrieved

log

files.

The

benefit

includes

spreading

the

I/O

cost

to

different

disks,

and

allowing

more

log

files

to

be

stored

in

the

active

log

path.

v

If

you

need

to

use

the

db2ReadLog

API

(prior

to

DB2

V8,

db2ReadLog

was

called

sqlurlog)

for

replication,

for

example,

overflowlogpath

allows

you

to

specify

a

location

for

DB2

to

search

for

log

files

that

are

needed

for

this

API.

If

the

log

file

is

not

found

(in

either

the

active

log

path

or

the

overflow

log

path)

and

the

database

is

configured

with

userexit

enabled,

DB2

will

retrieve

the

log

file.

overflowlogpath

also

allows

you

to

specify

a

directory

for

DB2

to

store

the

log

files

retrieved.

The

benefit

comes

from

reducing

the

I/O

cost

on

the

active

log

path

and

allowing

more

log

files

to

be

stored

in

the

active

log

path.

v

If

you

have

configured

a

raw

device

for

the

active

log

path,

overflowlogpath

must

be

configured

if

you

want

to

set

logsecond

to

-1,

or

if

you

want

to

use

the

db2ReadLog

API.

To

set

overflowlogpath,

specify

a

string

of

up

to

242

bytes.

The

string

must

point

to

a

path

name,

and

it

must

be

a

fully

qualified

path

name,

not

a

relative

path

name.

The

path

name

must

be

a

directory,

not

a

raw

device.

Note:

In

a

partitioned

database

environment,

the

node

number

is

automatically

appended

to

the

path.

This

is

done

to

maintain

the

uniqueness

of

the

path

in

multiple

logical

node

configurations.

Related

reference:

v

“logsecond

-

Number

of

secondary

log

files”

on

page

393

v

“db2ReadLog

-

Asynchronous

Read

Log”

in

the

Administrative

API

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“ROLLFORWARD

DATABASE

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

398

Administration

Guide:

Performance

Database

log

activity

The

following

parameters

can

influence

the

type

and

performance

of

database

logging:

v

“archretrydelay

-

Archive

retry

delay

on

error”

v

“blk_log_dsk_ful

-

Block

on

log

disk

full”

v

“failarchpath

-

Failover

log

archive

path”

on

page

400

v

“logarchmeth1

-

Primary

log

archive

method”

on

page

400

v

“logarchmeth2

-

Secondary

log

archive

method”

on

page

401

v

“logarchopt1

-

Primary

log

archive

options”

on

page

401

v

“logarchopt2

-

Secondary

log

archive

options”

on

page

402

v

“logindexbuild

-

Log

index

pages

created”

on

page

402

v

“logretain

-

Log

retain

enable”

on

page

403

v

“mincommit

-

Number

of

commits

to

group”

on

page

403

v

“numarchretry

-

Number

of

retries

on

error”

on

page

405

v

“softmax

-

Recovery

range

and

soft

checkpoint

interval”

on

page

405

v

“userexit

-

User

exit

enable”

on

page

406

v

“vendoropt

-

Vendor

options”

on

page

407

archretrydelay

-

Archive

retry

delay

on

error

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

20

[

0

–

65

535

]

This

parameter

specifies

the

number

of

seconds

to

wait

after

a

failed

archive

attempt

before

trying

to

archive

the

log

file

again.

Subsequent

retries

will

only

take

affect

if

the

value

of

the

numarchretry

database

configuration

parameter

is

at

least

1.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

blk_log_dsk_ful

-

Block

on

log

disk

full

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

No

[

Yes;

No

]

This

configuration

parameter

can

be

set

to

prevent

disk

full

errors

from

being

generated

when

DB2

cannot

create

a

new

log

file

in

the

active

log

path.

Instead,

DB2

will

attempt

to

create

the

log

file

every

five

minutes

until

it

succeeds.

After

Chapter

13.

Configuring

DB2

399

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|

|

|

|

|

each

attempt,

DB2

writes

a

message

to

the

Administration

Notification

log.

The

only

way

that

you

can

confirm

that

your

application

is

hanging

because

of

a

log

disk

full

condition

is

to

monitor

the

Administration

Notification

log.

Until

the

log

file

is

successfully

created,

any

user

application

that

attempts

to

update

table

data

will

not

be

able

to

commit

transactions.

Read-only

queries

might

not

be

directly

affected;

however,

if

a

query

needs

to

access

data

that

is

locked

by

an

update

request,

or

a

data

page

that

is

fixed

in

the

buffer

pool

by

the

updating

application,

read-only

queries

will

also

appear

to

hang.

Setting

blk_log_dsk_ful

to

yes

causes

applications

to

hang

when

DB2

encounters

a

log

disk

full

error,

thus

allowing

you

to

resolve

the

error

and

allowing

the

transaction

to

complete.

You

can

resolve

a

disk

full

situation

by

moving

old

log

files

to

another

file

system

or

by

enlarging

the

file

system,

so

that

hanging

applications

can

complete.

If

blk_log_dsk_ful

is

set

to

no,

then

a

transaction

that

receives

a

log

disk

full

error

will

fail

and

will

be

rolled

back.

In

some

situations,

the

database

will

come

down

if

a

transaction

causes

a

log

disk

full

error.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

failarchpath

-

Failover

log

archive

path

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

Null

[

]

This

parameter

specifies

a

path

to

which

DB2

will

try

to

archive

log

files

if

the

log

files

cannot

be

archived

to

either

the

primary

or

the

secondary

(if

set)

archive

destinations

because

of

a

media

problem

affecting

those

destinations.

This

specified

path

must

reference

a

disk.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logarchmeth1

-

Primary

log

archive

method

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

400

Administration

Guide:

Performance

|

||

|

|

|

|

|
|

||

||

|
|
|
|

|

|

|

|

|

||

|

|

|

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

Off

[

]

This

parameter

specifies

the

media

type

of

the

primary

destination

for

archived

logs.

Related

concepts:

v

Appendix

E,

“Cross-node

recovery

with

the

db2adutl

command

and

the

logarchopt1

and

vendoropt

database

configuration

parameters,”

on

page

589

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logarchmeth2

-

Secondary

log

archive

method

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

Off

[

]

This

parameter

specifies

the

media

type

of

the

secondary

destination

for

archived

logs.

If

this

path

is

specified,

log

files

will

be

archived

to

both

this

destination

and

the

destination

specified

by

the

logarchmeth1

database

configuration

parameter.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logarchopt1

-

Primary

log

archive

options

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Chapter

13.

Configuring

DB2

401

|

|
|

||

||

|
|

|

|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

Default

[Range]

Null

[

]

This

parameter

specifies

the

options

field

for

the

primary

destination

for

archived

logs

(if

required).

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logarchopt2

-

Secondary

log

archive

options

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

Null

[

]

This

parameter

specifies

the

options

field

for

the

secondary

destination

for

archived

logs

(if

required).

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logindexbuild

-

Log

index

pages

created

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

Off

[

On;

Off

]

This

parameter

specifies

whether

index

creation,

recreation,

or

reorganization

operations

are

to

be

logged

so

that

indexes

can

be

reconstructed

during

DB2

rollforward

operations

or

high

availability

disaster

recovery

(HADR)

log

replay

procedures.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

402

Administration

Guide:

Performance

||

|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|
|

|

|

|

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

logretain

-

Log

retain

enable

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

No

[

Recovery;

No

]

The

values

are

as

follows:

v

No,

to

indicate

that

logs

are

not

retained.

v

Recovery,

to

indicate

that

the

logs

are

retained,

and

can

be

used

for

forward

recovery.

If

logretain

is

set

to

Recovery

or

userexit

is

set

to

Yes,

the

active

log

files

will

be

retained

and

become

online

archive

log

files

for

use

in

roll-forward

recovery.

This

is

called

log

retention

logging.

After

logretain

is

set

to

Recovery

or

userexit

is

set

to

Yes

(or

both),

you

must

make

a

full

backup

of

the

database.

This

state

is

indicated

by

the

backup_pending

flag

parameter.

If

logretain

is

set

to

No

and

userexit

is

set

to

No,

roll-forward

recovery

is

not

available

for

the

database

because

logs

are

not

retained.

In

this

situation,

the

database

manager

deletes

all

log

files

in

the

logpath

directory

(including

online

archive

log

files),

allocates

new

active

log

files,

and

reverts

to

circular

logging.

Related

reference:

v

“log_retain_status

-

Log

retain

status

indicator”

on

page

429

v

“userexit

-

User

exit

enable”

on

page

406

v

“backup_pending

-

Backup

pending

indicator”

on

page

429

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

mincommit

-

Number

of

commits

to

group

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

1

[

1

–

25

]

Unit

of

Measure

Counter

This

parameter

allows

you

to

delay

the

writing

of

log

records

to

disk

until

a

minimum

number

of

commits

have

been

performed.

This

delay

can

help

reduce

the

database

manager

overhead

associated

with

writing

log

records.

As

a

result,

this

will

improve

performance

when

you

have

multiple

applications

running

against

a

database

and

many

commits

are

requested

by

the

applications

within

a

very

short

time

frame.

This

grouping

of

commits

will

only

occur

when

the

value

of

this

parameter

is

greater

than

one

and

when

the

number

of

applications

connected

to

the

database

is

greater

than

or

equal

to

the

value

of

this

parameter.

When

commit

grouping

is

Chapter

13.

Configuring

DB2

403

|

being

performed,

application

commit

requests

could

be

held

until

either

one

second

has

elapsed

or

the

number

of

commit

requests

equals

the

value

of

this

parameter.

This

parameter

should

be

incremented

by

small

amounts

only;

for

example

one

(1).

You

should

also

use

multi-user

tests

to

verify

that

increasing

the

value

of

this

parameter

provides

the

expected

results.

Changes

to

the

value

specified

for

this

parameter

take

effect

immediately;

you

do

not

have

to

wait

until

all

applications

disconnect

from

the

database.

Recommendation:

Increase

this

parameter

from

its

default

value

if

multiple

read/write

applications

typically

request

concurrent

database

commits.

This

will

result

in

more

efficient

logging

file

I/O

as

it

will

occur

less

frequently

and

write

more

log

records

each

time

it

does

occur.

You

could

also

sample

the

number

of

transactions

per

second

and

adjust

this

parameter

to

accommodate

the

peak

number

of

transactions

per

second

(or

some

large

percentage

of

it).

Accommodating

peak

activity

would

minimize

the

overhead

of

writing

log

records

during

transaction

intensive

periods.

If

you

increase

mincommit,

you

might

also

need

to

increase

the

logbufsz

parameter

to

avoid

having

a

full

log

buffer

force

a

write

during

these

transaction

intensive

periods.

In

this

case,

the

logbufsz

should

be

equal

to:

mincommit

*

(log

space

used,

on

average,

by

a

transaction)

You

can

use

the

database

system

monitor

to

help

you

tune

this

parameter

in

the

following

ways:

v

Calculating

the

peak

number

of

transactions

per

second:

Taking

monitor

samples

throughout

a

typical

day,

you

can

determine

your

transaction

intensive

periods.

You

can

calculate

the

total

transactions

by

adding

the

following

monitor

elements:

–

commit_sql_stmts

(commit

statements

attempted)

–

rollback_sql_stmts

(rollback

statements

attempted)

Using

this

information

and

the

available

timestamps,

you

can

calculate

the

number

of

transactions

per

second.

v

Calculating

the

log

space

used

per

transaction:

Using

sampling

techniques

over

a

period

of

time

and

a

number

of

transactions,

you

can

calculate

an

average

of

the

log

space

used

with

the

following

monitor

element:

–

log_space_used

(unit

of

work

log

space

used)

Related

reference:

v

“uow_log_space_used

-

Unit

of

Work

Log

Space

Used

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“commit_sql_stmts

-

Commit

Statements

Attempted

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“rollback_sql_stmts

-

Rollback

Statements

Attempted

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

404

Administration

Guide:

Performance

|
|
|

numarchretry

-

Number

of

retries

on

error

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

5

[

0

–

65

535

]

This

parameter

specifies

the

number

of

times

that

DB2

is

to

try

archiving

a

log

file

to

the

primary

or

the

secondary

archive

directory

before

trying

to

archive

log

files

to

the

failover

directory.

This

parameter

is

only

used

if

the

failarchpath

database

configuration

parameter

is

set.

If

numarchretry

is

not

set,

DB2

will

continuously

retry

archiving

to

the

primary

or

the

secondary

log

path.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

softmax

-

Recovery

range

and

soft

checkpoint

interval

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

100

[

1

–

100

*

logprimary

]

Unit

of

Measure

Percentage

of

the

size

of

one

primary

log

file

This

parameter

is

used

to:

v

Influence

the

number

of

logs

that

need

to

be

recovered

following

a

crash

(such

as

a

power

failure).

For

example,

if

the

default

value

is

used,

the

database

manager

will

try

to

keep

the

number

of

logs

that

need

to

be

recovered

to

1.

If

you

specify

300

as

the

value

of

this

parameter,

the

database

manager

will

try

to

keep

the

number

of

logs

that

need

to

be

recovered

to

3.

To

influence

the

number

of

logs

required

for

crash

recovery,

the

database

manager

uses

this

parameter

to

trigger

the

page

cleaners

to

ensure

that

pages

older

than

the

specified

recovery

window

are

already

written

to

disk.

v

Determine

the

frequency

of

soft

checkpoints.

At

the

time

of

a

database

failure

resulting

from

an

event

such

as

a

power

failure,

there

might

have

been

changes

to

the

database

which:

v

Have

not

been

committed,

but

updated

the

data

in

the

buffer

pool

v

Have

been

committed,

but

have

not

been

written

from

the

buffer

pool

to

the

disk

v

Have

been

committed

and

written

from

the

buffer

pool

to

the

disk.

When

a

database

is

restarted,

the

log

files

will

be

used

to

perform

a

crash

recovery

of

the

database

which

ensures

that

the

database

is

left

in

a

consistent

state

(that

is,

Chapter

13.

Configuring

DB2

405

|

||

|

|

|

|

|
|

||

||

|
|
|
|
|

|

|

|

|

all

committed

transactions

are

applied

to

the

database

and

all

uncommitted

transactions

are

not

applied

to

the

database).

To

determine

which

records

from

the

log

file

need

to

be

applied

to

the

database,

the

database

manager

uses

a

log

control

file.

This

log

control

file

is

periodically

written

to

disk,

and,

depending

on

the

frequency

of

this

event,

the

database

manager

might

be

applying

log

records

of

committed

transactions

or

applying

log

records

that

describe

changes

that

have

already

been

written

from

the

buffer

pool

to

disk.

These

log

records

have

no

impact

on

the

database,

but

applying

them

introduces

some

overhead

into

the

database

restart

process.

The

log

control

file

is

always

written

to

disk

when

a

log

file

is

full,

and

during

soft

checkpoints.

You

can

use

this

configuration

parameter

to

trigger

additional

soft

checkpoints.

The

timing

of

soft

checkpoints

is

based

on

the

difference

between

the

“current

state”

and

the

“recorded

state”,

given

as

a

percentage

of

the

logfilsiz.

The

“recorded

state”

is

determined

by

the

oldest

valid

log

record

indicated

in

the

log

control

file

on

disk,

while

the

“current

state”

is

determined

by

the

log

control

information

in

memory.

(The

oldest

valid

log

record

is

the

first

log

record

that

the

recovery

process

would

read.)

The

soft

checkpoint

will

be

taken

if

the

value

calculated

by

the

following

formula

is

greater

than

or

equal

to

the

value

of

this

parameter:

(

(space

between

recorded

and

current

states)

/

logfilsiz

)

*

100

Recommendation:

You

might

want

to

increase

or

reduce

the

value

of

this

parameter,

depending

on

whether

your

acceptable

recovery

window

is

greater

than

or

less

than

one

log

file.

Lowering

the

value

of

this

parameter

will

cause

the

database

manager

both

to

trigger

the

page

cleaners

more

often

and

to

take

more

frequent

soft

checkpoints.

These

actions

can

reduce

both

the

number

of

log

records

that

need

to

be

processed

and

the

number

of

redundant

log

records

that

are

processed

during

crash

recovery.

Note

however,

that

more

page

cleaner

triggers

and

more

frequent

soft

checkpoints

increase

the

overhead

associated

with

database

logging,

which

can

impact

the

performance

of

the

database

manager.

Also,

more

frequent

soft

checkpoints

might

not

reduce

the

time

required

to

restart

a

database,

if

you

have:

v

Very

long

transactions

with

few

commit

points.

v

A

very

large

buffer

pool

and

the

pages

containing

the

committed

transactions

are

not

written

back

to

disk

very

frequently.

(Note

that

the

use

of

asynchronous

page

cleaners

can

help

avoid

this

situation.)

In

both

of

these

cases,

the

log

control

information

kept

in

memory

does

not

change

frequently

and

there

is

no

advantage

in

writing

the

log

control

information

to

disk,

unless

it

has

changed.

Related

reference:

v

“logfilsiz

-

Size

of

log

files”

on

page

390

v

“logprimary

-

Number

of

primary

log

files”

on

page

391

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

userexit

-

User

exit

enable

Configuration

Type

Database

406

Administration

Guide:

Performance

Parameter

Type

Configurable

Default

[Range]

No

[

Yes;

No

]

If

this

parameter

is

enabled,

log

retention

logging

is

performed

regardless

of

how

the

logretain

parameter

is

set.

This

parameter

also

indicates

that

a

user

exit

program

should

be

used

to

archive

and

retrieve

the

log

files.

Log

files

are

archived

when

the

database

manager

closes

the

log

file.

They

are

retrieved

when

the

ROLLFORWARD

utility

needs

to

use

them

to

restore

a

database.

After

logretain,

or

userexit,

or

both

of

these

parameters

are

enabled,

you

must

make

a

full

backup

of

the

database.

This

state

is

indicated

by

the

backup_pending

flag

parameter.

If

both

of

these

parameters

are

de-selected,

roll-forward

recovery

becomes

unavailable

for

the

database

because

logs

will

no

longer

be

retained.

In

this

case,

the

database

manager

deletes

all

log

files

in

the

logpath

directory

(including

online

archive

log

files),

allocates

new

active

log

files,

and

reverts

to

circular

logging.

Related

reference:

v

“User

exit

for

database

recovery”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

v

“logretain

-

Log

retain

enable”

on

page

403

v

“user_exit_status

-

User

exit

status

indicator”

on

page

430

v

“backup_pending

-

Backup

pending

indicator”

on

page

429

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“ROLLFORWARD

DATABASE

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

vendoropt

-

Vendor

options

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

Null

[

]

This

parameter

specifies

additional

parameters

that

DB2

might

need

to

use

to

communicate

with

storage

systems

during

backup,

restore,

or

load

copy

operations.

Related

concepts:

v

Appendix

E,

“Cross-node

recovery

with

the

db2adutl

command

and

the

logarchopt1

and

vendoropt

database

configuration

parameters,”

on

page

589

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

407

|

||

|

|

|

|

|
|

||

||

|
|
|

|

|
|

|

|

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Recovery

The

following

parameters

affect

various

aspects

of

database

recovery:

v

“autorestart

-

Auto

restart

enable”

v

“dft_loadrec_ses

-

Default

number

of

load

recovery

sessions”

on

page

409

v

“indexrec

-

Index

re-creation

time”

on

page

413

v

“num_db_backups

-

Number

of

database

backups”

on

page

415

v

“rec_his_retentn

-

Recovery

history

retention

period”

on

page

415

v

“trackmod

-

Track

modified

pages

enable”

on

page

416

See

also

“Distributed

unit

of

work

recovery”

on

page

418.

The

following

parameters

are

used

when

working

with

Tivoli

Storage

Manager

(TSM):

v

“tsm_mgmtclass

-

Tivoli

Storage

Manager

management

class”

on

page

416

v

“tsm_nodename

-

Tivoli

Storage

Manager

node

name”

on

page

417

v

“tsm_owner

-

Tivoli

Storage

Manager

owner

name”

on

page

417

v

“tsm_password

-

Tivoli

Storage

Manager

password”

on

page

418

The

following

parameters

pertain

to

high

availability

disaster

recovery

(HADR):

v

“hadr_db_role

-

HADR

database

role”

on

page

409

v

“hadr_local_host

-

HADR

local

host

name”

on

page

410

v

“hadr_local_svc

-

HADR

local

service

name”

on

page

410

v

“hadr_remote_host

-

HADR

remote

host

name”

on

page

411

v

“hadr_remote_inst

-

HADR

instance

name

of

the

remote

server”

on

page

411

v

“hadr_remote_svc

-

HADR

remote

service

name”

on

page

412

v

“hadr_syncmode

-

HADR

synchronization

mode

for

log

write

in

peer

state”

on

page

412

v

“hadr_timeout

-

HADR

timeout

value”

on

page

413

autorestart

-

Auto

restart

enable

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

On

[

On;

Off

]

When

this

parameter

is

set

on,

the

database

manager

automatically

calls

the

restart

database

utility,

if

needed,

when

an

application

connects

to

a

database.

Crash

recovery

is

the

operation

performed

by

the

restart

database

utility.

It

is

performed

if

the

database

terminated

abnormally

while

applications

were

connected

to

it.

An

abnormal

termination

of

the

database

could

be

caused

by

a

power

failure

or

a

system

software

failure.

It

applies

any

committed

transactions

that

were

in

the

database

buffer

pool

but

were

not

written

to

disk

at

the

time

of

the

failure.

It

also

backs

out

any

uncommitted

transactions

that

might

have

been

written

to

disk.

If

autorestart

is

not

enabled,

then

an

application

that

attempts

to

connect

to

a

database

which

needs

to

have

crash

recovery

performed

(needs

to

be

restarted)

408

Administration

Guide:

Performance

|

|

|

|

|

|

|

|

|

|
|

|

will

receive

a

SQL1015N

error.

In

this

case,

the

application

can

call

the

restart

database

utility,

or

you

can

restart

the

database

by

selecting

the

restart

operation

of

the

recovery

tool.

Related

concepts:

v

“Crash

recovery”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESTART

DATABASE

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dft_loadrec_ses

-

Default

number

of

load

recovery

sessions

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

1

[

1

–

30

000

]

Unit

of

Measure

Counter

This

parameter

specifies

the

default

number

of

sessions

that

will

be

used

during

the

recovery

of

a

table

load.

The

value

should

be

set

to

an

optimal

number

of

I/O

sessions

to

be

used

to

retrieve

a

load

copy.

The

retrieval

of

a

load

copy

is

an

operation

similar

to

restore.

You

can

override

this

parameter

through

entries

in

the

copy

location

file

specified

by

the

environment

variable

DB2LOADREC.

The

default

number

of

buffers

used

for

load

retrieval

is

two

more

than

the

value

of

this

parameter.

You

can

also

override

the

number

of

buffers

in

the

copy

location

file.

This

parameter

is

applicable

only

if

roll

forward

recovery

is

enabled.

Related

concepts:

v

“Load

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“Miscellaneous

variables”

on

page

518

hadr_db_role

-

HADR

database

role

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Chapter

13.

Configuring

DB2

409

|

||

|

|

|

|

|
|

Parameter

Type

Informational

This

parameter

indicates

the

current

role

of

a

database,

whether

the

database

is

online

or

offline.

Valid

values

are:

STANDARD,

PRIMARY,

or

STANDBY.

Note:

Although

the

GET

SNAPSHOT

FOR

DATABASE

command

returns

high

availability

disaster

recovery

(HADR)

status,

it

does

so

only

when

the

database

is

online.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

hadr_local_host

-

HADR

local

host

name

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

specifies

the

local

host

for

high

availability

disaster

recovery

(HADR)

TCP

communication.

Either

a

host

name

or

an

IP

address

can

be

used.

If

a

host

name

is

specified

and

it

maps

to

multiple

IP

addresses,

an

error

is

returned,

and

HADR

will

not

start

up.

If

the

host

name

maps

to

multiple

IP

addresses

(even

if

you

specify

the

same

host

name

on

primary

and

standby),

primary

and

standby

can

end

up

mapping

this

host

name

to

different

IP

addresses,

because

some

DNS

servers

return

IP

address

lists

in

non-deterministic

order.

A

host

name

is

in

the

form:

myserver.ibm.com.

An

IP

address

is

in

the

form:

″12.34.56.78″.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

hadr_local_svc

-

HADR

local

service

name

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

410

Administration

Guide:

Performance

||

|
|

|
|
|

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|
|
|
|
|

|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

This

parameter

specifies

the

TCP

service

name

or

port

number

for

which

the

local

high

availability

disaster

recovery

(HADR)

process

accepts

connections.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

hadr_remote_host

-

HADR

remote

host

name

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

specifies

the

TCP/IP

host

name

or

IP

address

of

the

remote

high

availability

disaster

recovery

(HADR)

node.

Similar

to

hadr_local_host,

this

parameter

must

map

to

only

one

IP

address.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

hadr_remote_inst

-

HADR

instance

name

of

the

remote

server

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

specifies

the

instance

name

of

the

remote

server.

Administration

tools,

such

as

the

DB2

Control

Center,

use

this

parameter

to

contact

the

remote

server.

High

availability

disaster

recovery

(HADR)

also

checks

whether

a

remote

database

requesting

a

connection

belongs

to

the

declared

remote

instance.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

411

|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|

|

|

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|
|

|

|

|

|

hadr_remote_svc

-

HADR

remote

service

name

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

specifies

the

TCP

service

name

or

port

number

that

will

be

used

by

the

remote

high

availability

disaster

recovery

(HADR)

node.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

hadr_syncmode

-

HADR

synchronization

mode

for

log

write

in

peer

state

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

NEARSYNC

[

ASYNC;

SYNC

]

This

parameter

specifies

the

synchronization

mode,

which

determines

how

primary

log

writes

are

synchronized

with

the

standby

when

the

systems

are

in

peer

state.

Valid

values

are:

SYNC

This

mode

provides

the

greatest

protection

against

transaction

loss,

but

at

a

higher

cost

of

transaction

response

time.

NEARSYNC

This

mode

provides

somewhat

less

protection

against

transaction

loss,

in

exchange

for

a

shorter

transaction

response

time

than

that

of

SYNC

mode.

ASYNC

This

mode

has

the

highest

probability

of

transaction

loss

in

the

event

of

primary

failure,

in

exchange

for

the

shortest

transaction

response

time

among

the

three

modes.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

412

Administration

Guide:

Performance

|

||

|

|

|

|

|
|

||

||

|
|

|

|

|

|

|
|

||

|

|

|

|

|
|

||

||

|
|
|

||
|
|

||
|
|

||
|
|
|

|

|

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

hadr_timeout

-

HADR

timeout

value

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

120

[

1

–

4

294

967

295

]

This

parameter

specifies

the

time

(in

seconds)

that

the

high

availability

disaster

recovery

(HADR)

process

waits

before

considering

a

communication

attempt

to

have

failed.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

indexrec

-

Index

re-creation

time

Configuration

Type

Database

and

Database

Manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

UNIX

Database

Manager

restart

[

restart;

access

]

Windows

Database

Manager

restart

[

restart;

access

]

Database

Use

system

setting

[

system;

restart;

access

]

This

parameter

indicates

when

the

database

manager

will

attempt

to

rebuild

invalid

indexes.

There

are

three

possible

settings

for

this

parameter:

SYSTEM

use

system

setting

which

will

cause

invalid

indexes

to

be

rebuilt

at

the

time

specified

in

the

database

manager

configuration

file.

(Note:

This

setting

is

only

valid

for

database

configurations.)

ACCESS

during

index

access

which

will

cause

invalid

indexes

to

be

rebuilt

when

the

index

is

first

accessed.

Chapter

13.

Configuring

DB2

413

|

|

|

||

|

|

|

|

|
|

||

||

|
|
|

|

|

|

|

|

RESTART

during

database

restart

which

will

cause

invalid

indexes

to

be

rebuilt

when

a

RESTART

DATABASE

command

is

either

explicitly

or

implicitly

issued.

Note

that

a

RESTART

DATABASE

command

is

implicitly

issued

if

the

autorestart

parameter

is

enabled.

Indexes

can

become

invalid

when

fatal

disk

problems

occur.

If

this

happens

to

the

data

itself,

the

data

could

be

lost.

However,

if

this

happens

to

an

index,

the

index

can

be

recovered

by

re-creating

it.

If

an

index

is

rebuilt

while

users

are

connected

to

the

database,

two

problems

could

occur:

v

An

unexpected

degradation

in

response

time

might

occur

as

the

index

file

is

re-created.

Users

accessing

the

table

and

using

this

particular

index

would

wait

while

the

index

was

being

rebuilt.

v

Unexpected

locks

might

be

held

after

index

re-creation,

especially

if

the

user

transaction

that

caused

the

index

to

be

re-created

never

performed

a

COMMIT

or

ROLLBACK.

Recommendation:

The

best

choice

for

this

option

on

a

high-user

server

and

if

restart

time

is

not

a

concern,

would

be

to

have

the

index

rebuilt

at

DATABASE

RESTART

time

as

part

of

the

process

of

bringing

the

database

back

online

after

a

crash.

Setting

this

parameter

to

“ACCESS”

will

result

in

a

degradation

of

the

performance

of

the

database

manager

while

the

index

is

being

re-created.

Any

user

accessing

that

specific

index

or

table

would

have

to

wait

until

the

index

is

recreated.

If

this

parameter

is

set

to

“RESTART”,

the

time

taken

to

restart

the

database

will

be

longer

due

to

index

re-creation,

but

normal

processing

would

not

be

impacted

once

the

database

has

been

brought

back

online.

Note:

At

database

recovery

time,

all

SQL

procedure

executables

on

the

file

system

that

belong

to

the

database

being

recovered

are

removed.

If

indexrec

is

set

to

RESTART,

all

SQL

procedure

executables

are

extracted

from

the

database

catalog

and

put

back

on

the

file

system

at

the

next

connection

to

the

database.

If

indexrec

is

not

set

to

RESTART,

an

SQL

executable

is

extracted

to

the

file

system

only

on

first

execution

of

that

SQL

procedure.

Related

tasks:

v

“Backing

up

and

restoring

SQL

procedures

created

prior

to

DB2

8.2”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“autorestart

-

Auto

restart

enable”

on

page

408

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESTART

DATABASE

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

414

Administration

Guide:

Performance

|
|
|
|
|
|

num_db_backups

-

Number

of

database

backups

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Transaction

boundary

Default

[Range]

12

[

1

—

32

768]

This

parameter

specifies

the

number

of

database

backups

to

retain

for

a

database.

After

the

specified

number

of

backups

is

reached,

old

backups

are

marked

as

expired

in

the

recovery

history

file.

Recovery

history

file

entries

for

the

table

space

backups

and

load

copy

backups

that

are

related

to

the

expired

database

backup

are

also

marked

as

expired.

When

a

backup

is

marked

as

expired,

the

physical

backups

can

be

removed

from

where

they

are

stored

(for

example,

disk,

tape,

TSM).

The

next

database

backup

will

prune

the

expired

entries

from

the

recovery

history

file.

When

a

database

backup

is

marked

as

expired

in

the

history

file,

any

corresponding

file

backups

linked

through

a

DB2

Data

Links

Manager

will

be

removed

from

its

archive

server.

The

rec_his_retentn

configuration

parameter

should

be

set

to

a

value

compatible

with

the

value

of

num_db_backups.

For

example,

if

num_db_backup

is

set

to

a

large

value,

the

value

for

rec_his_retentn

should

be

large

enough

to

support

that

number

of

backups.

Related

reference:

v

“rec_his_retentn

-

Recovery

history

retention

period”

on

page

415

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

rec_his_retentn

-

Recovery

history

retention

period

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

366

[

-1;

0

—

30

000

]

Unit

of

Measure

Days

This

parameter

is

used

to

specify

the

number

of

days

that

historical

information

on

backups

should

be

retained.

If

the

recovery

history

file

is

not

needed

to

keep

track

of

backups,

restores,

and

loads,

this

parameter

can

be

set

to

a

small

number.

If

value

of

this

parameter

is

-1,

the

recovery

history

file

can

only

be

pruned

explicitly

using

the

available

commands

or

APIs.

If

the

value

is

not

-1,

the

recovery

history

file

is

pruned

after

every

full

database

backup.

The

the

value

of

this

parameter

will

override

the

value

of

the

num_db_backups

parameter,

but

rec_his_retentn

and

num_db_backups

must

work

together.

If

the

value

for

num_db_backups

is

large,

the

value

for

rec_his_retentn

should

be

large

enough

to

support

that

number

of

backups.

Chapter

13.

Configuring

DB2

415

No

matter

how

small

the

retention

period,

the

most

recent

full

database

backup

plus

its

restore

set

will

always

be

kept,

unless

you

use

the

PRUNE

utility

with

the

FORCE

option.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“PRUNE

HISTORY/LOGFILE

Command”

in

the

Command

Reference

v

“num_db_backups

-

Number

of

database

backups”

on

page

415

trackmod

-

Track

modified

pages

enable

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

No

[

Yes,

No

]

When

this

parameter

is

set

to

″Yes″,

the

database

manager

tracks

database

modifications

so

that

the

backup

utility

can

detect

which

subsets

of

the

database

pages

must

be

examined

by

an

incremental

backup

and

potentially

included

in

the

backup

image.

After

setting

this

parameter

to

″Yes″,

you

must

take

a

full

database

backup

in

order

to

have

a

baseline

against

which

incremental

backups

can

be

taken.

Also,

if

this

parameter

is

enabled

and

if

a

table

space

is

created,

then

a

backup

must

be

taken

which

contains

that

table

space.

This

backup

could

be

either

a

database

backup

or

a

table

space

backup.

Following

the

backup,

incremental

backups

will

be

permitted

to

contain

this

table

space.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

tsm_mgmtclass

-

Tivoli

Storage

Manager

management

class

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

Null

[any

string]

The

Tivoli

Storage

Manager

management

class

determines

how

the

TSM

server

should

manage

the

backup

versions

of

the

objects

being

backed

up.

The

default

is

that

there

is

no

DB2-specified

management

class.

When

performing

any

TSM

backup,

before

using

the

management

class

specified

by

the

database

configuration

parameter,

TSM

first

attempts

to

bind

the

backup

object

to

the

management

class

specified

in

the

INCLUDE-EXCLUDE

list

found

in

the

TSM

client

options

file.

If

a

match

is

not

found,

the

default

TSM

management

class

specified

on

the

TSM

server

will

be

used.

TSM

will

then

rebind

the

backup

object

to

the

management

class

specified

by

the

database

configuration

parameter.

Thus,

the

default

management

class,

as

well

as

the

management

class

specified

by

the

database

configuration

parameter,

must

contain

a

backup

copy

group,

or

the

backup

operation

will

fail.

416

Administration

Guide:

Performance

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“Tivoli

Storage

Manager”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

tsm_nodename

-

Tivoli

Storage

Manager

node

name

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Statement

boundary

Default

[Range]

Null

[any

string]

This

parameter

is

used

to

override

the

default

setting

for

the

node

name

associated

with

the

Tivoli

Storage

Manager

(TSM)

product.

The

node

name

is

needed

to

allow

you

to

restore

a

database

that

was

backed

up

to

TSM

from

another

node.

The

default

is

that

you

can

only

restore

a

database

from

TSM

on

the

same

node

from

which

you

did

the

backup.

It

is

possible

for

the

tsm_nodename

to

be

overridden

during

a

backup

done

through

DB2

(for

example,

with

the

BACKUP

DATABASE

command).

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

tsm_owner

-

Tivoli

Storage

Manager

owner

name

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Statement

boundary

Default

[Range]

Null

[any

string]

This

parameter

is

used

to

override

the

default

setting

for

the

owner

associated

with

the

Tivoli

Storage

Manager

(TSM)

product.

The

owner

name

is

needed

to

allow

you

to

restore

a

database

that

was

backed

up

to

TSM

from

another

node.

It

is

possible

for

the

tsm_owner

to

be

overridden

during

a

backup

done

through

DB2

(for

example,

with

the

BACKUP

DATABASE

command).

Note:

The

owner

name

is

case

sensitive.

The

default

is

that

you

can

only

restore

a

database

from

TSM

on

the

same

node

from

which

you

did

the

backup.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

417

tsm_password

-

Tivoli

Storage

Manager

password

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Statement

boundary

Default

[Range]

Null

[any

string]

This

parameter

is

used

to

override

the

default

setting

for

the

password

associated

with

the

Tivoli

Storage

Manager

(TSM)

product.

The

password

is

needed

to

allow

you

to

restore

a

database

that

was

backed

up

to

TSM

from

another

node.

Note:

If

the

tsm_nodename

is

overridden

during

a

backup

done

with

DB2

(for

example,

with

the

BACKUP

DATABASE

command),

the

tsm_password

might

also

have

to

be

set.

The

default

is

that

you

can

only

restore

a

database

from

TSM

on

the

same

node

from

which

you

did

the

backup.

It

is

possible

for

the

tsm_nodename

to

be

overridden

during

a

backup

done

with

DB2.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Distributed

unit

of

work

recovery

The

following

parameters

affect

the

recovery

of

distributed

unit

of

work

(DUOW)

transactions:

v

“resync_interval

-

Transaction

resync

interval”

v

“spm_log_file_sz

-

Sync

point

manager

log

file

size”

on

page

419

v

“spm_log_path

-

Sync

point

manager

log

file

path”

on

page

420

v

“spm_max_resync

-

Sync

point

manager

resync

agent

limit”

on

page

420

v

“spm_name

-

Sync

point

manager

name”

on

page

421

v

“tm_database

-

Transaction

manager

database

name”

on

page

421

resync_interval

-

Transaction

resync

interval

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

180

[

1

–

60

000

]

Unit

of

Measure

Seconds

This

parameter

specifies

the

time

interval

in

seconds

for

which

a

transaction

manager

(TM),

resource

manager

(RM)

or

sync

point

manager

(SPM)

should

retry

the

recovery

of

any

outstanding

indoubt

transactions

found

in

the

TM,

the

RM,

or

418

Administration

Guide:

Performance

the

SPM.

This

parameter

is

applicable

when

you

have

transactions

running

in

a

distributed

unit

of

work

(DUOW)

environment.

This

parameter

also

applies

to

recovery

of

federated

database

systems.

Recommendation:

If,

in

your

environment,

indoubt

transactions

will

not

interfere

with

other

transactions

against

your

database,

you

might

wish

to

increase

the

value

of

this

parameter.

If

you

are

using

a

DB2

Connect

gateway

to

access

DRDA2

application

servers,

you

should

consider

the

effect

indoubt

transactions

might

have

at

the

application

servers

even

though

there

will

be

no

interference

with

local

data

access.

If

there

are

no

indoubt

transactions,

the

performance

impact

will

be

minimal.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

spm_log_file_sz

-

Sync

point

manager

log

file

size

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

256

[

4

—

1

000

]

Unit

of

Measure

Pages

(4

KB)

This

parameter

identifies

the

sync

point

manager

(SPM)

log

file

size

in

4

KB

pages.

The

log

file

is

contained

in

the

spmlog

sub-directory

under

sqllib

and

is

created

the

first

time

SPM

is

started.

Recommendation:

The

sync

point

manager

log

file

size

should

be

large

enough

to

maintain

performance,

but

small

enough

to

prevent

wasted

space.

The

size

required

depends

on

the

number

of

transactions

using

protected

conversations,

and

how

often

COMMIT

or

ROLLBACK

is

issued.

To

change

the

size

of

the

SPM

log

file:

1.

Determine

that

there

are

no

indoubt

transactions

by

using

the

LIST

DRDA

INDOUBT

TRANSACTIONS

command.

2.

If

there

are

none,

stop

the

database

manager.

3.

Update

the

database

manager

configuration

with

a

new

SPM

log

file

size.

4.

Go

to

the

$HOME/sqllib

directory

and

issue

rm

-fr

spmlog

to

delete

the

current

SPM

log.

(Note:

This

shows

the

AIX

command.

Other

systems

might

require

a

different

remove

or

delete

command.)

5.

Start

the

database

manager.

A

new

SPM

log

of

the

specified

size

is

created

during

the

startup

of

the

database

manager.

Chapter

13.

Configuring

DB2

419

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

spm_log_path

-

Sync

point

manager

log

file

path

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

sqllib/spmlog

[any

valid

path

or

device]

This

parameter

specifies

the

directory

where

the

sync

point

manager

(SPM)

logs

are

written.

By

default,

the

logs

are

written

to

the

sqllib/spmlog

directory,

which,

in

a

high-volume

transaction

environment,

can

cause

an

I/O

bottleneck.

Use

this

parameter

to

have

the

SPM

log

files

placed

on

a

faster

disk

than

the

current

sqllib/spmlog

directory.

This

allows

for

better

concurrency

among

the

SPM

agents.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

spm_max_resync

-

Sync

point

manager

resync

agent

limit

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

20

[10

—

256

]

This

parameter

identifies

the

number

of

agents

that

can

simultaneously

perform

resync

operations.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

420

Administration

Guide:

Performance

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

spm_name

-

Sync

point

manager

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Derived

from

the

TCP/IP

hostname

This

parameter

identifies

the

name

of

the

sync

point

manager

(SPM)

instance

to

the

database

manager.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

tm_database

-

Transaction

manager

database

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

1ST_CONN

[any

valid

database

name]

This

parameter

identifies

the

name

of

the

transaction

manager

(TM)

database

for

each

DB2

instance.

A

TM

database

can

be:

v

A

local

DB2

Universal

Database

database

v

A

remote

DB2

Universal

Database

database

that

does

not

reside

on

a

host

or

AS/400

system

v

A

DB2

for

OS/390

Version

5

database

if

accessed

via

TCP/IP

and

the

sync

point

manager

(SPM)

is

not

used.

The

TM

database

is

a

database

that

is

used

as

a

logger

and

coordinator,

and

is

used

to

perform

recovery

for

indoubt

transactions.

Chapter

13.

Configuring

DB2

421

You

can

set

this

parameter

to

1ST_CONN,

which

will

set

the

TM

database

to

be

the

first

database

to

which

a

user

connects.

Recommendation:

For

simplified

administration

and

operation,

you

might

wish

to

create

a

few

databases

over

a

number

of

instances

and

use

these

databases

exclusively

as

TM

databases.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Database

management

A

number

of

parameters

provide

information

about

your

database

or

influence

the

management

of

your

database.

These

are

grouped

as

follows:

v

“Query

Enabler”

v

“Attributes”

on

page

423

v

“DB2

Data

Links

Manager”

on

page

425

v

“Status”

on

page

428

v

“Compiler

settings”

on

page

431

v

“Automated

maintenance”

on

page

437

Query

Enabler

The

following

parameter

provides

information

for

the

control

of

Query

Enabler:

v

“dyn_query_mgmt

-

Dynamic

SQL

query

management”

dyn_query_mgmt

-

Dynamic

SQL

query

management

Configuration

Type

Database

Parameter

Type

Configurable

Online

Default

[Range]

0

(DISABLE)

[

1(ENABLE),

0

(DISABLE)

]

This

parameter

is

relevant

where

DB2

Query

Patroller

is

installed.

If

this

parameter

is

set

to

“ENABLE”,

Query

Patroller

captures

information

about

the

query,

such

as

the

submitter

ID

and

the

estimated

cost

of

execution,

as

calculated

by

the

optimizer.

These

values

are

used

to

determine

whether

the

query

should

be

managed

by

Query

Patroller,

based

on

user-

and

system-level

thresholds.

If

this

parameter

is

set

to

“DISABLE”,

Query

Patroller

does

not

capture

any

information

about

submitted

queries,

and

no

query

management

takes

place.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

422

Administration

Guide:

Performance

|

Attributes

The

following

parameters

provide

general

information

about

the

database:

v

“alt_collate

-

Alternate

collating

sequence”

v

“codepage

-

Code

page

for

the

database”

v

“codeset

-

Codeset

for

the

database”

on

page

424

v

“collate_info

-

Collating

information”

on

page

424

v

“country

-

Database

territory

code”

on

page

424

v

“database_level

-

Database

release

level”

on

page

424

v

“release

-

Configuration

file

release

level”

on

page

425

v

“territory

-

Database

territory”

on

page

425

With

the

exception

of

alt_collate,

these

parameters

are

provided

for

informational

purposes

only.

alt_collate

-

Alternate

collating

sequence

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

IDENTITY_16BIT

]

This

parameter

specifies

the

collating

sequence

that

is

to

be

used

for

Unicode

tables

in

a

non-Unicode

database.

Until

this

parameter

is

set,

Unicode

tables

and

routines

cannot

be

created

in

a

non-Unicode

database.

Once

set,

this

parameter

cannot

be

changed

or

reset.

This

parameter

cannot

be

set

for

Unicode

databases.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

codepage

-

Code

page

for

the

database

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

shows

the

code

page

that

was

used

to

create

the

database.

The

codepage

parameter

is

derived

based

on

the

codeset

parameter.

Related

reference:

v

“codeset

-

Codeset

for

the

database”

on

page

424

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

423

codeset

-

Codeset

for

the

database

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

shows

the

codeset

that

was

used

to

create

the

database.

Codeset

is

used

by

the

database

manager

to

determine

codepage

parameter

values.

Related

reference:

v

“codepage

-

Code

page

for

the

database”

on

page

423

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

collate_info

-

Collating

information

This

parameter

can

only

be

displayed

using

the

db2CfgGet

API.

It

cannot

be

displayed

through

the

command

line

processor

or

the

Control

Center.

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

provides

260

bytes

of

database

collating

information.

The

first

256

bytes

specify

the

database

collating

sequence,

where

byte

“n”

contains

the

sort

weight

of

the

code

point

whose

underlying

decimal

representation

is

“n”

in

the

code

page

of

the

database.

The

last

4

bytes

contain

internal

information

about

the

type

of

the

collating

sequence.

You

can

treat

it

as

an

integer

applicable

to

the

platform

of

the

database.

There

are

three

values:

v

0

–

The

sequence

contains

non-unique

weights

v

1

–

The

sequence

contains

all

unique

weights

v

2

–

The

sequence

is

the

identity

sequence,

for

which

strings

are

compared

byte

for

byte.

If

you

use

this

internal

type

information,

you

need

to

consider

byte

reversal

when

retrieving

information

for

a

database

on

a

different

platform.

You

can

specify

the

collating

sequence

at

database

creation

time.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

country

-

Database

territory

code

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

shows

the

territory

code

used

to

create

the

database.

Related

reference:

v

“territory

-

Database

territory”

on

page

425

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

database_level

-

Database

release

level

Configuration

Type

Database

424

Administration

Guide:

Performance

Parameter

Type

Informational

This

parameter

indicates

the

release

level

of

the

database

manager

which

can

use

the

database.

In

the

case

of

an

incomplete

or

failed

migration,

this

parameter

will

reflect

the

release

level

of

the

unmigrated

database

and

might

differ

from

the

release

parameter

(the

release

level

of

the

database

configuration

file).

Otherwise

the

value

of

database_level

will

be

identical

to

value

of

the

release

parameter.

Related

reference:

v

“release

-

Configuration

file

release

level”

on

page

425

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

release

-

Configuration

file

release

level

Configuration

Type

Database

manager,

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Informational

This

parameter

specifies

the

release

level

of

the

configuration

file.

Related

reference:

v

“database_level

-

Database

release

level”

on

page

424

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

territory

-

Database

territory

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

shows

the

territory

used

to

create

the

database.

territory

is

used

by

the

database

manager

to

determine

the

territory

code

(territory)

parameter

values.

Related

reference:

v

“country

-

Database

territory

code”

on

page

424

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

DB2

Data

Links

Manager

The

following

parameters

relate

to

DB2

Data

Links

Manager:

v

“datalinks

-

Enable

Data

Links

support”

on

page

426

v

“dl_expint

-

Data

Links

access

token

expiry

interval”

on

page

426

v

“dl_num_copies

-

Data

Links

number

of

copies”

on

page

426

v

“dl_time_drop

-

Data

Links

time

after

drop”

on

page

427

v

“dl_token

-

Data

Links

token

algorithm”

on

page

427

v

“dl_upper

-

Data

Links

token

in

uppercase”

on

page

428

v

“dl_wt_iexpint

-

Data

Links

write

token

initial

expiry

interval”

on

page

428

Chapter

13.

Configuring

DB2

425

datalinks

-

Enable

Data

Links

support

Configuration

Type

Database

manager

Parameter

Type

Configurable

Default

[Range]

NO

[

YES;

NO

]

This

parameter

specifies

whether

Data

Links

support

is

enabled.

A

value

of

“YES”

specifies

that

Data

Links

support

is

enabled

for

Data

Links

Manager

linking

files

stored

in

native

filesystems

(for

example,

JFS

on

AIX).

A

value

of

“NO”

specifies

that

Data

Links

support

is

not

enabled.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

dl_expint

-

Data

Links

access

token

expiry

interval

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Transaction

boundary

Default

[Range]

60

[

1

—

31

536

000

]

Unit

of

Measure

Seconds

This

parameter

specifies

the

interval

of

time

(in

seconds)

for

which

the

generated

file

access

control

token

is

valid.

The

number

of

seconds

the

token

is

valid

begins

from

the

time

it

is

generated.

The

Data

Links

Filesystem

Filter

checks

the

validity

of

the

token

against

this

expiry

time.

This

parameter

applies

to

the

DATALINK

columns

that

specify

“READ

PERMISSION

DB”.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dl_num_copies

-

Data

Links

number

of

copies

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

0

[

0

–

15

]

This

parameter

specifies

the

number

of

additional

copies

of

a

file

to

be

made

in

the

archive

server

(such

as

a

TSM

server)

when

a

file

is

linked

to

the

database.

The

default

value

for

this

parameter

is

zero

(0).

426

Administration

Guide:

Performance

This

parameter

applies

to

the

DATALINK

columns

that

specify

“Recovery=Yes”.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dl_time_drop

-

Data

Links

time

after

drop

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

1

[

0

—

365

]

Unit

of

Measure

Days

This

parameter

specifies

the

interval

of

time

(in

days)

files

would

be

retained

on

an

archive

server

(such

as

a

TSM

server)

after

a

DROP

DATABASE

is

issued.

The

default

value

for

this

parameter

is

one

(1)

day.

A

value

of

zero

(0)

means

that

the

files

are

deleted

immediately

from

the

archive

server

when

the

DROP

command

is

issued.

(The

actual

file

is

not

deleted

unless

the

ON

UNLINK

DELETE

parameter

was

specified

for

the

DATALINK

column.)

This

parameter

applies

to

the

DATALINK

columns

that

specify

“Recovery=Yes”.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dl_token

-

Data

Links

token

algorithm

Configuration

Type

Database

Parameter

Type

Configurable

online

Propagation

Class

Transaction

boundary

Default

[Range]

MAC0

[

MAC0;

MAC1

]

This

parameter

specifies

the

algorithm

used

in

the

generation

of

DATALINK

file

access

control

tokens.

The

value

of

MAC1

(message

authentication

code)

generates

a

more

secure

message

authentication

code

than

MAC0,

but

also

has

more

performance

overhead.

This

parameter

applies

to

the

DATALINK

columns

that

specify

“READ

PERMISSION

DB”.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

427

dl_upper

-

Data

Links

token

in

uppercase

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Transaction

boundary

Default

[Range]

NO

[

YES;

NO

]

The

parameter

indicates

whether

the

file

access

control

tokens

use

uppercase

letters.

A

value

of

“YES”

specifies

that

all

letters

in

an

access

control

token

are

uppercase.

A

value

of

“NO”

specifies

that

the

token

can

contain

both

uppercase

and

lowercase

letters.

This

parameter

applies

to

the

DATALINK

columns

that

specify

“READ

PERMISSION

DB”.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dl_wt_iexpint

-

Data

Links

write

token

initial

expiry

interval

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Transaction

boundary

Default

[Range]

60

[

1

–

31

536

000

]

Unit

of

Measure

Seconds

This

parameter

specifies

the

initial

expiry

interval

of

a

write

token

generated

from

a

DATALINK

column.

The

initial

expiry

interval

is

the

period

between

the

time

a

token

is

generated

and

the

first

time

it

is

used

to

open

the

file.

This

parameter

only

applies

to

a

DATALINK

column

defined

with

WRITE

PERMISSION

ADMIN.

Recommendation:

The

value

should

be

large

enough

to

cover

the

time

from

when

a

write

token

is

retrieved

to

when

it

is

used

to

open

the

file.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Status

The

following

parameters

provide

information

about

the

state

of

the

database:

v

“backup_pending

-

Backup

pending

indicator”

on

page

429

v

“database_consistent

-

Database

is

consistent”

on

page

429

v

“log_retain_status

-

Log

retain

status

indicator”

on

page

429

v

“multipage_alloc

-

Multipage

file

allocation

enabled”

on

page

429

v

“restore_pending

-

Restore

pending”

on

page

430

428

Administration

Guide:

Performance

v

“rollfwd_pending

-

Roll

forward

pending

indicator”

on

page

430

v

“user_exit_status

-

User

exit

status

indicator”

on

page

430

backup_pending

-

Backup

pending

indicator

Configuration

Type

Database

Parameter

Type

Informational

If

set

on,

this

parameter

indicates

that

you

must

do

a

full

backup

of

the

database

before

accessing

it.

This

parameter

is

only

on

if

the

database

configuration

is

changed

so

that

the

database

moves

from

being

nonrecoverable

to

recoverable

(that

is,

initially

both

the

logretain

and

userexit

parameters

were

set

to

NO,

then

either

one

or

both

of

these

parameters

is

set

to

YES,

and

the

update

to

the

database

configuration

is

accepted).

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

database_consistent

-

Database

is

consistent

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

indicates

whether

the

database

is

in

a

consistent

state.

YES

indicates

that

all

transactions

have

been

committed

or

rolled

back

so

that

the

data

is

consistent.

If

the

system

“crashes”

while

the

database

is

consistent,

you

do

not

need

to

take

any

special

action

to

make

the

database

usable.

NO

indicates

that

a

transaction

is

pending

or

some

other

task

is

pending

on

the

database

and

the

data

is

not

consistent

at

this

point.

If

the

system

“crashes”

while

the

database

is

not

consistent,

you

will

need

to

restart

the

database

using

the

RESTART

DATABASE

command

to

make

the

database

usable.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

log_retain_status

-

Log

retain

status

indicator

Configuration

Type

Database

Parameter

Type

Informational

If

set,

this

parameter

indicates

that

log

files

are

being

retained

for

use

in

roll-forward

recovery.

This

parameter

is

set

when

the

logretain

parameter

setting

is

equal

to

Recovery.

Related

reference:

v

“logretain

-

Log

retain

enable”

on

page

403

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

multipage_alloc

-

Multipage

file

allocation

enabled

Configuration

Type

Database

Parameter

Type

Informational

Chapter

13.

Configuring

DB2

429

Multipage

file

allocation

is

used

to

improve

insert

performance.

It

applies

to

SMS

table

spaces

only.

If

enabled,

all

SMS

table

spaces

are

affected:

there

is

no

selection

possible

for

individual

SMS

table

spaces.

The

default

for

the

parameter

is

Yes:

multipage

file

allocation

is

enabled.

Following

database

creation,

this

parameter

cannot

be

set

to

No.

Multipage

file

allocation

cannot

be

disabled

once

it

has

been

enabled.

If

multipage

file

allocation

is

not

desired,

the

DB2_NO_MPFA_FOR_NEW_DB

DB2

registry

variable

must

be

set

appropriately

before

the

database

is

created.

The

db2empfa

tool

can

be

used

to

enable

multipage

file

allocation

for

a

database

that

currently

has

it

disabled.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“Performance

variables”

on

page

506

restore_pending

-

Restore

pending

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

states

whether

a

RESTORE

PENDING

status

exists

in

the

database.

Related

reference:

v

“userexit

-

User

exit

enable”

on

page

406

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

rollfwd_pending

-

Roll

forward

pending

indicator

Configuration

Type

Database

Parameter

Type

Informational

This

parameter

can

indicate

one

of

the

following

states:

v

DATABASE,

meaning

that

a

roll-forward

recovery

procedure

is

required

for

this

database

v

TABLESPACE,

meaning

that

one

or

more

table

spaces

need

to

be

rolled

forward

v

NO,

meaning

that

the

database

is

usable

and

no

roll-forward

recovery

is

required.

The

recovery

(using

ROLLFORWARD

DATABASE)

must

complete

before

you

can

access

the

database

or

table

space.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

user_exit_status

-

User

exit

status

indicator

Configuration

Type

Database

Parameter

Type

Informational

If

set

to

Yes,

this

indicates

that

the

database

manager

is

enabled

for

roll-forward

recovery

and

that

the

user

exit

program

will

be

used

to

archive

and

retrieve

log

files

when

called

by

the

database

manager.

Related

reference:

430

Administration

Guide:

Performance

|

|
|
|
|
|

v

“userexit

-

User

exit

enable”

on

page

406

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Compiler

settings

The

following

parameters

provide

information

to

influence

the

compiler:

v

“dft_degree

-

Default

degree”

v

“dft_mttb_types

-

Default

maintained

table

types

for

optimization”

v

“dft_queryopt

-

Default

query

optimization

class”

on

page

432

v

“dft_refresh_age

-

Default

refresh

age”

on

page

433

v

“dft_sqlmathwarn

-

Continue

upon

arithmetic

exceptions”

on

page

433

v

“num_freqvalues

-

Number

of

frequent

values

retained”

on

page

434

v

“num_quantiles

-

Number

of

quantiles

for

columns”

on

page

435

dft_degree

-

Default

degree

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

1

[

-1,

1

–

32

767

]

This

parameter

specifies

the

default

value

for

the

CURRENT

DEGREE

special

register

and

the

DEGREE

bind

option.

The

default

value

is

1.

A

value

of

1

means

no

intra-partition

parallelism.

A

value

of

-1

means

the

optimizer

determines

the

degree

of

intra-partition

parallelism

based

on

the

number

of

processors

and

the

type

of

query.

The

degree

of

intra-partition

parallelism

for

an

SQL

statement

is

specified

at

statement

compilation

time

using

the

CURRENT

DEGREE

special

register

or

the

DEGREE

bind

option.

The

maximum

runtime

degree

of

intra-partition

parallelism

for

an

active

application

is

specified

using

the

SET

RUNTIME

DEGREE

command.

The

Maximum

Query

Degree

of

Parallelism

(max_querydegree)

configuration

parameter

specifies

the

maximum

query

degree

of

intra-partition

parallelism

for

all

SQL

queries.

The

actual

runtime

degree

used

is

the

lowest

of:

v

max_querydegree

configuration

parameter

v

application

runtime

degree

v

SQL

statement

compilation

degree

Related

reference:

v

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dft_mttb_types

-

Default

maintained

table

types

for

optimization

Configuration

Type

Database

Chapter

13.

Configuring

DB2

431

Parameter

Type

Configurable

Default

[Range]

SYSTEM

[

ALL,

NONE,

FEDERATED_TOOL,

SYSTEM,

USER,

or

a

list

of

values

]

This

parameter

specifies

the

default

value

for

the

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

special

register.

The

value

of

this

register

determines

what

types

of

refresh

deferred

materialized

query

tables

will

be

used

during

query

optimization.

You

can

specify

a

list

of

values

separated

by

commas;

for

example,

‘USER,FEDERATED_TOOL’.

ALL

or

NONE

cannot

be

listed

with

other

values,

and

you

cannot

specify

the

same

value

more

than

once.

Related

reference:

v

“CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

special

register”

in

the

SQL

Reference,

Volume

1

dft_queryopt

-

Default

query

optimization

class

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

5

[

0

—

9

]

Unit

of

Measure

Query

Optimization

Class

(see

below)

The

query

optimization

class

is

used

to

direct

the

optimizer

to

use

different

degrees

of

optimization

when

compiling

SQL

queries.

This

parameter

provides

additional

flexibility

by

setting

the

default

query

optimization

class

used

when

neither

the

SET

CURRENT

QUERY

OPTIMIZATION

statement

nor

the

QUERYOPT

option

on

the

bind

command

are

used.

The

query

optimization

classes

currently

defined

are:

v

0

-

minimal

query

optimization.

v

1

-

roughly

comparable

to

DB2

Version

1.

v

2

-

slight

optimization.

v

3

-

moderate

query

optimization.

v

5

-

significant

query

optimization

with

heuristics

to

limit

the

effort

expended

on

selecting

an

access

plan.

This

is

the

default.

v

7

-

significant

query

optimization.

v

9

-

maximal

query

optimization

Related

reference:

v

“SET

CURRENT

QUERY

OPTIMIZATION

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“LIST

DRDA

INDOUBT

TRANSACTIONS

Command”

in

the

Command

Reference

432

Administration

Guide:

Performance

dft_refresh_age

-

Default

refresh

age

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

0

[

0,

99999999999999

(ANY)]

This

parameter

has

the

default

value

used

for

the

REFRESH

AGE

if

the

CURRENT

REFRESH

AGE

special

register

is

not

specified.

This

parameter

specifies

a

time

stamp

duration

value

with

a

data

type

of

DECIMAL(20,6).

This

time

duration

represents

the

maximum

duration

since

a

REFRESH

TABLE

statement

has

been

processed

on

a

specific

REFRESH

DEFERRED

materialized

query

table

during

which

that

summary

table

can

be

used

to

optimize

the

processing

of

a

query.

If

the

CURRENT

REFRESH

AGE

has

a

value

of

99999999999999

(ANY),

and

the

QUERY

OPTIMIZATION

class

has

a

value

of

two,

or

five

or

more,

REFRESH

DEFERRED

materialized

query

tables

are

considered

to

optimize

the

processing

of

a

dynamic

SQL

query.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

dft_sqlmathwarn

-

Continue

upon

arithmetic

exceptions

Configuration

Type

Database

Parameter

Type

Configurable

Default

[Range]

No

[No,

Yes]

This

parameter

sets

the

default

value

that

determines

the

handling

of

arithmetic

errors

and

retrieval

conversion

errors

as

errors

or

warnings

during

SQL

statement

compilation.

For

static

SQL

statements,

the

value

of

this

parameter

is

associated

with

the

package

at

bind

time.

For

dynamic

SQL

DML

statements,

the

value

of

this

parameter

is

used

when

the

statement

is

prepared.

Attention:

If

you

change

the

dft_sqlmathwarn

value

for

a

database,

the

behavior

of

check

constraints,

triggers,

and

views

that

include

arithmetic

expressions

might

change.

This

might,

in

turn,

have

an

impact

on

the

data

integrity

of

the

database.

You

should

only

change

the

setting

of

dft_sqlmathwarn

for

a

database

after

carefully

evaluating

how

the

new

arithmetic

exception

handling

behavior

might

impact

check

constraints,

triggers,

and

views.

Once

changed,

subsequent

changes

require

the

same

careful

evaluation.

As

an

example,

consider

the

following

check

constraint,

which

includes

a

division

arithmetic

operation:

A/B

>

0

When

dft_sqlmathwarn

is

“No”

and

an

INSERT

with

B=0

is

attempted,

the

division

by

zero

is

processed

as

an

arithmetic

error.

The

insert

operation

fails

because

DB2

cannot

check

the

constraint.

If

dft_sqlmathwarn

is

changed

to

“Yes”,

the

division

by

zero

is

processed

as

an

arithmetic

warning

with

a

NULL

result.

The

NULL

result

causes

the

“>”

predicate

to

evaluate

to

UNKNOWN

and

the

insert

operation

succeeds.

If

dft_sqlmathwarn

is

changed

back

to

“No”,

an

attempt

to

insert

the

same

row

will

fail,

because

the

division

by

zero

error

prevents

DB2

from

evaluating

the

constraint.

The

row

inserted

with

B=0

when

dft_sqlmathwarn

was

“Yes”

remains

in

Chapter

13.

Configuring

DB2

433

the

table

and

can

be

selected.

Updates

to

the

row

that

cause

the

constraint

to

be

evaluated

will

fail,

while

updates

to

the

row

that

do

not

require

constraint

re-evaluation

will

succeed.

Before

changing

dft_sqlmathwarn

from

“No”

to

“Yes”,

you

should

consider

rewriting

the

constraint

to

explicitly

handle

nulls

from

arithmetic

expressions.

For

example:

(

A/B

>

0

)

AND

(

CASE

WHEN

A

IS

NULL

THEN

1

WHEN

B

IS

NULL

THEN

1

WHEN

A/B

IS

NULL

THEN

0

ELSE

1

END

=

1

)

can

be

used

if

both

A

and

B

are

nullable.

And,

if

A

or

B

is

not-nullable,

the

corresponding

IS

NULL

WHEN-clause

can

be

removed.

Before

changing

dft_sqlmathwarn

from

“Yes”

to

“No”,

you

should

first

check

for

data

that

might

become

inconsistent

by

using,

for

example,

predicates

such

as

the

following:

WHERE

A

IS

NOT

NULL

AND

B

IS

NOT

NULL

AND

A/B

IS

NULL

When

inconsistent

rows

are

isolated,

you

should

take

appropriate

action

to

correct

the

inconsistency

before

changing

dft_sqlmathwarn.

You

can

also

manually

re-check

constraints

with

arithmetic

expressions

after

the

change.

To

do

this,

first

place

the

affected

tables

in

a

check

pending

state

(with

the

OFF

clause

of

the

SET

CONSTRAINTS

statement),

then

request

that

the

tables

be

checked

(with

the

IMMEDIATE

CHECKED

clause

of

the

SET

CONSTRAINTS

statement).

Inconsistent

data

will

be

indicated

by

an

arithmetic

error,

which

prevents

the

constraint

from

being

evaluated.

Recommendation:

Use

the

default

setting

of

no,

unless

you

specifically

require

queries

to

be

processed

that

include

arithmetic

exceptions.

Then

specify

the

value

of

yes.

This

situation

can

occur

if

you

are

processing

SQL

statements

that,

on

other

database

managers,

provide

results

regardless

of

the

arithmetic

exceptions

that

occur.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

num_freqvalues

-

Number

of

frequent

values

retained

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

10

[

0

—

32

767

]

Unit

of

Measure

Counter

This

parameter

allows

you

to

specify

the

number

of

“most

frequent

values”

that

will

be

collected

when

the

WITH

DISTRIBUTION

option

is

specified

on

the

RUNSTATS

command.

Increasing

the

value

of

this

parameter

increases

the

amount

of

statistics

heap

(stat_heap_sz)

used

when

collecting

statistics.

434

Administration

Guide:

Performance

The

“most

frequent

value”

statistics

help

the

optimizer

understand

the

distribution

of

data

values

within

a

column.

A

higher

value

results

in

more

information

being

available

to

the

SQL

optimizer

but

requires

additional

catalog

space.

When

0

is

specified,

no

frequent-value

statistics

are

retained,

even

if

you

request

that

distribution

statistics

be

collected.

You

can

also

specify

the

number

of

frequent

values

retained

as

part

of

the

RUNSTATS

command

at

the

table

or

the

column

level.

If

none

is

specified,

the

num_freqvalues

configuration

parameter

value

is

used.

Updating

this

parameter

can

help

the

optimizer

obtain

better

selectivity

estimates

for

some

predicates

(=,

<,

>,

IS

NULL,

IS

NOT

NULL)

over

data

that

is

non-uniformly

distributed.

More

accurate

selectivity

calculations

might

result

in

the

choice

of

more

efficient

access

plans.

After

changing

the

value

of

this

parameter,

you

need

to:

v

Run

the

RUNSTATS

command

after

all

users

have

disconnected

from

the

database

and

you

have

reconnected

to

the

database

v

Rebind

any

packages

containing

static

SQL.

The

RUNSTATS

command

allows

for

the

specification

of

the

number

of

frequent

values

retained,

by

using

the

NUM_REQVALUES

option.

Changing

the

number

of

frequent

values

retained

through

the

RUNSTATS

command

is

easier

than

making

the

change

using

the

num_freqvalues

database

configuration

parameter.

When

using

RUNSTATS,

you

have

the

ability

to

limit

the

number

of

frequent

values

collected

at

both

the

table

level

and

the

column

level.

This

allows

you

to

optimize

on

space

occupied

in

the

catalogs

by

reducing

the

distribution

statistics

for

columns

where

they

could

not

be

exploited

and

yet

still

using

the

information

for

critical

columns.

Recommendation:

In

order

to

update

this

parameter

you

should

determine

the

degree

of

non-uniformity

in

the

most

important

columns

(in

the

most

important

tables)

that

typically

have

selection

predicates.

This

can

be

done

using

an

SQL

SELECT

statement

that

provides

an

ordered

ranking

of

the

number

of

occurrences

of

each

value

in

a

column.

You

should

not

consider

uniformly

distributed,

unique,

long,

or

LOB

columns.

A

reasonable

practical

value

for

this

parameter

lies

in

the

range

of

10

to

100.

Note

that

the

process

of

collecting

frequent

value

statistics

requires

significant

CPU

and

memory

(stat_heap_sz)

resources.

Related

reference:

v

“num_quantiles

-

Number

of

quantiles

for

columns”

on

page

435

v

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

num_quantiles

-

Number

of

quantiles

for

columns

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Chapter

13.

Configuring

DB2

435

Default

[Range]

20

[

0

–

32

767

]

Unit

of

Measure

Counter

This

parameter

controls

the

number

of

quantiles

that

will

be

collected

when

the

WITH

DISTRIBUTION

option

is

specified

on

the

RUNSTATS

command.

Increasing

the

value

of

this

parameter

increases

the

amount

of

statistics

heap

(stat_heap_sz)

used

when

collecting

statistics.

The

“quantile”

statistics

help

the

optimizer

understand

the

distribution

of

data

values

within

a

column.

A

higher

value

results

in

more

information

being

available

to

the

SQL

optimizer

but

requires

additional

catalog

space.

When

0

or

1

is

specified,

no

quantile

statistics

are

retained,

even

if

you

request

that

distribution

statistics

be

collected.

You

can

also

specify

the

number

of

quantiles

collected

as

part

of

the

RUNSTATS

command

at

the

table

or

the

column

level.

If

none

is

specified,

the

num_quantiles

configuration

parameter

value

is

used.

Updating

this

parameter

can

help

obtain

better

selectivity

estimates

for

range

predicates

over

data

that

is

non-uniformly

distributed.

Among

other

optimizer

decisions,

this

information

has

a

strong

influence

on

whether

an

index

scan

or

a

table

scan

will

be

chosen.

(It

is

more

efficient

to

use

a

table

scan

to

access

a

range

of

values

that

occur

frequently

and

it

is

more

efficient

to

use

an

index

scan

for

a

range

of

values

that

occur

infrequently.)

After

changing

the

value

of

this

parameter,

you

need

to:

v

Run

the

RUNSTATS

command

after

all

users

have

disconnected

from

the

database

and

you

have

reconnected

to

the

database

v

Rebind

any

packages

containing

static

SQL.

The

RUNSTATS

command

allows

for

the

specification

of

the

number

of

quantiles

that

will

be

collected,

by

using

the

NUM_QUANTILES

option.

Changing

the

number

of

quantiles

that

will

be

collected

through

the

RUNSTATS

command

is

easier

than

making

the

change

using

the

num_quantiles

database

configuration

parameter.

When

using

RUNSTATS,

you

have

the

ability

to

limit

the

number

of

quantiles

collected

at

both

the

table

level

and

the

column

level.

This

allows

you

to

optimize

on

space

occupied

in

the

catalogs

by

reducing

the

distribution

statistics

for

columns

where

they

could

not

be

exploited

and

yet

still

using

the

information

for

critical

columns.

Recommendation:

This

default

value

for

this

parameter

guarantees

a

maximum

estimation

error

of

approximately

2.5%

for

any

single-sided

range

predicate

(>,

>=,

<,

or

<=),

and

a

maximum

error

of

5%

for

any

BETWEEN

predicate.

A

simple

way

to

approximate

the

number

of

quantiles

is:

v

Determine

the

maximum

error

that

is

tolerable

in

estimating

the

number

of

rows

of

any

range

query,

as

a

percentage,

P

v

The

number

of

quantiles

should

be

approximately

100/P

if

most

of

your

predicates

are

BETWEEN

predicates,

and

50/P

if

most

of

your

predicates

are

other

types

of

range

predicates

(<,

<=,

>,

or

>=).

436

Administration

Guide:

Performance

For

example,

25

quantiles

should

result

in

a

maximum

estimate

error

of

4%

for

BETWEEN

predicates

and

of

2%

for

″>″

predicates.

A

reasonable

practical

value

for

this

parameter

lies

in

the

range

of

10

to

50.

Related

reference:

v

“num_freqvalues

-

Number

of

frequent

values

retained”

on

page

434

v

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Automated

maintenance

The

following

parameter

allows

you

to

control

the

automatic

maintenance

activities

of

several

DB2

utilities:

v

“autonomic_switches

-

Automatic

maintenance

switches”

autonomic_switches

-

Automatic

maintenance

switches

Configuration

Type

Database

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

All

switches

turned

off

This

parameter

allows

you

to

set

a

number

of

switches

that

are

each

internally

represented

by

a

bit

of

the

parameter.

You

can

update

each

of

these

switches

independently

by

setting

the

following

parameters:

auto_maint

This

parameter

is

the

parent

of

all

the

other

automatic

maintenance

database

configuration

parameters

(auto_db_backup,

auto_tbl_maint,

auto_runstats,

auto_stats_prof,

auto_prof_upd,

and

auto_reorg).

When

this

parameter

is

disabled,

all

of

its

children

parameters

are

also

disabled,

but

their

settings,

as

recorded

in

the

database

configuration

file,

do

not

change.

When

this

parent

parameter

is

enabled,

recorded

values

for

its

children

parameters

take

effect.

In

this

way,

automatic

maintenance

can

be

enabled

or

disabled

globally.

auto_db_backup

This

automated

maintenance

parameter

enables

or

disables

automatic

backup

operations

for

a

database.

A

backup

policy

(a

defined

set

of

rules

or

guidelines)

can

be

used

to

specify

the

automated

behavior.

The

objective

of

the

backup

policy

is

to

ensure

that

the

database

is

being

backed

up

regularly.

The

backup

policy

for

a

database

is

created

automatically

when

the

DB2

Health

Chapter

13.

Configuring

DB2

437

|

|
|

|

|

||

|

|

|

|

|
|

||

||

||

|
|
|

||
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

Monitor

first

runs.

To

be

enabled,

this

parameter

must

be

set

to

On,

and

its

parent

parameter

must

also

be

enabled.

auto_tbl_maint

This

parameter

is

the

parent

of

all

table

maintenance

parameters

(auto_runstats,

auto_stats_prof,

auto_prof_upd,

and

auto_reorg).

When

this

parameter

is

disabled,

all

of

its

children

parameters

are

also

disabled,

but

their

settings,

as

recorded

in

the

database

configuration

file,

do

not

change.

When

this

parent

parameter

is

enabled,

recorded

values

for

its

children

parameters

take

effect.

In

this

way,

table

maintenance

can

be

enabled

or

disabled

globally.

auto_runstats

This

automated

table

maintenance

parameter

enables

or

disables

automatic

table

runstats

operations

for

a

database.

A

runstats

policy

(a

defined

set

of

rules

or

guidelines)

can

be

used

to

specify

the

automated

behavior.

Statistics

collected

by

the

runstats

utility

are

used

by

the

optimizer

to

determine

the

most

efficient

plan

for

accessing

the

physical

data.

To

be

enabled,

this

parameter

must

be

set

to

On,

and

its

parent

parameters

must

also

be

enabled.

auto_stats_prof

When

enabled,

this

automated

table

maintenance

parameter

turns

on

statistical

profile

generation,

designed

to

improve

applications

whose

workloads

include

complex

queries,

many

predicates,

joins,

and

grouping

operations

over

several

tables.

To

be

enabled,

this

parameter

must

be

set

to

On,

and

its

parent

parameters

must

also

be

enabled.

auto_prof_upd

When

enabled,

this

automated

table

maintenance

parameter

(a

child

of

auto_stats_prof)

specifies

that

the

runstats

profile

is

to

be

updated

with

recommendations.

When

this

parameter

is

disabled,

recommendations

are

stored

in

the

opt_feedback_ranking

table,

which

you

can

inspect

when

manually

updating

the

runstats

profile.

To

be

enabled,

this

parameter

must

be

set

to

On,

and

its

parent

parameters

must

also

be

enabled.

auto_reorg

This

automated

table

maintenance

parameter

enables

or

disables

automatic

table

and

index

reorganization

for

a

database.

A

reorganization

policy

(a

defined

set

of

rules

or

guidelines)

can

be

used

to

specify

the

automated

behavior.

To

be

enabled,

this

parameter

must

be

set

to

On,

and

its

parent

parameters

must

also

be

enabled.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

438

Administration

Guide:

Performance

|
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

|

|

|

|

Communications

The

following

groups

of

parameters

provide

information

about

using

DB2

in

a

client/server

environment:

v

“Communication

protocol

setup”

v

“DB2

Discovery”

on

page

441

Communication

protocol

setup

You

can

use

the

following

parameters

to

configure

your

database

clients

and

database

servers:

v

“nname

-

NetBIOS

workstation

name”

v

“svcename

-

TCP/IP

service

name”

v

“tpname

-

APPC

transaction

program

name”

on

page

440

nname

-

NetBIOS

workstation

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

allows

you

to

assign

a

unique

name

to

the

database

instance

on

a

workstation

in

the

NetBIOS

LAN

environment.

This

nname

is

the

basis

for

the

actual

NetBIOS

names

that

will

be

registered

with

NetBIOS

for

a

workstation.

Since

the

NetBIOS

protocol

establishes

connections

using

these

NetBIOS

names,

the

nname

parameter

must

be

set

for

both

the

client

and

server.

Client

applications

must

know

the

nname

of

the

server

that

contains

the

database

to

be

accessed.

The

server’s

nname

must

be

cataloged

in

the

client’s

node

directory

as

the

“server-nname”

parameter

using

the

CATALOG

NETBIOS

NODE

command.

If

nname

at

the

server

node

changes

to

a

new

name,

all

clients

accessing

databases

on

that

server

must

catalog

this

new

name

for

the

server.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“CATALOG

NETBIOS

NODE

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

svcename

-

TCP/IP

service

name

Configuration

Type

Database

manager

Chapter

13.

Configuring

DB2

439

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

contains

the

name

of

the

TCP/IP

port

which

a

database

server

will

use

to

await

communications

from

remote

client

nodes.

This

name

must

be

the

first

of

two

consecutive

ports

reserved

for

use

by

the

database

manager;

the

second

port

is

used

to

handle

interrupt

requests

from

down-level

clients.

In

order

to

accept

connection

requests

from

a

database

client

using

TCP/IP,

the

database

server

must

be

listening

on

a

port

designated

to

that

server.

The

system

administrator

for

the

database

server

must

reserve

a

port

(number

n)

and

define

its

associated

TCP/IP

service

name

in

the

services

file

at

the

server.

If

the

database

server

needs

to

support

requests

from

down-level

clients,

a

second

port

(number

n+1,

for

interrupt

requests)

needs

to

be

defined

in

the

services

file

at

the

server.

The

database

server

port

(number

n)

and

its

TCP/IP

service

name

need

to

be

defined

in

the

services

file

on

the

database

client.

Down-level

clients

also

require

the

interrupt

port

(number

n+1)

to

be

defined

in

the

client’s

services

file.

On

UNIX-based

systems,

the

services

file

is

located

in:

/etc/services

The

svcename

parameter

should

be

set

to

the

service

name

associated

with

the

main

connection

port

so

that

when

the

database

server

is

started,

it

can

determine

on

which

port

to

listen

for

incoming

connection

requests.

If

you

are

supporting

or

using

a

down-level

client,

the

service

name

for

the

interrupt

port

is

not

saved

in

the

configuration

file.

The

interrupt

port

number

can

be

derived

based

on

the

main

connection

port

number

(interrupt

port

number

=

main

connection

port

+

1).

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

tpname

-

APPC

transaction

program

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

440

Administration

Guide:

Performance

This

parameter

defines

the

name

of

the

remote

transaction

program

that

the

database

client

must

use

when

it

issues

an

allocate

request

to

the

database

server

when

using

the

APPC

communication

protocol.

This

parameter

must

be

set

in

the

configuration

file

at

the

database

server.

This

parameter

must

be

the

same

as

the

transaction

program

name

that

is

configured

in

the

SNA

transaction

program

definition.

Recommendation:

The

only

accepted

characters

for

use

in

this

name

are:

v

Alphabetics

(A

through

Z;

or

a

through

z)

v

Numerics

(0

through

9)

v

Dollar

sign

($),

number

sign

(#),

at

sign

(@),

and

period

(.)

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

DB2

Discovery

You

can

use

the

following

parameters

to

establish

DB2

Discovery:

v

“discover

-

Discovery

mode”

v

“discover_db

-

Discover

database”

on

page

442

v

“discover_inst

-

Discover

server

instance”

on

page

442

discover

-

Discovery

mode

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

SEARCH

[DISABLE,

KNOWN,

SEARCH]

From

a

client

perspective,

one

of

the

following

will

occur:

v

If

discover

=

SEARCH,

the

client

can

issue

search

discovery

requests

to

find

DB2

server

systems

on

the

network.

Search

discovery

provides

a

superset

of

the

functionality

provided

by

KNOWN

discovery.

If

discover

=

SEARCH,

both

search

and

known

discovery

requests

can

be

issued

by

the

client.

v

If

discover

=

KNOWN,

only

known

discovery

requests

can

be

issued

from

the

client.

By

specifying

some

connection

information

for

the

administration

server

on

a

particular

system,

all

the

instance

and

database

information

on

the

DB2

system

is

returned

to

the

client.

v

If

discover

=

DISABLE,

discovery

is

disabled

at

the

client.

The

default

discovery

mode

is

SEARCH.

Chapter

13.

Configuring

DB2

441

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“Communications

variables”

on

page

496

discover_db

-

Discover

database

Configuration

Type

Database

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Enable

[Disable,

Enable]

This

parameter

is

used

to

prevent

information

about

a

database

from

being

returned

to

a

client

when

a

discovery

request

is

received

at

the

server.

The

default

for

this

parameter

is

that

discovery

is

enabled

for

this

database.

By

changing

this

parameter

value

to

“Disable”,

it

is

possible

to

hide

databases

with

sensitive

data

from

the

discovery

process.

This

can

be

done

in

addition

to

other

database

security

controls

on

the

database.

Related

reference:

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

discover_inst

-

Discover

server

instance

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

ENABLE

[ENABLE,

DISABLE]

This

parameter

specifies

whether

this

instance

can

be

detected

by

DB2

discovery.

The

default,

enable,

specifies

that

the

instance

can

be

detected,

while

disable

prevents

the

instance

from

being

discovered.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

442

Administration

Guide:

Performance

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Partitioned

database

environment

The

following

groups

of

parameters

provide

information

about

parallel

operations

and

partitioned

database

environments:

v

“Communications”

v

“Parallel

processing”

on

page

449

Communications

The

following

parameters

provide

information

about

communications

in

the

partitioned

database

environment:

v

“conn_elapse

-

Connection

elapse

time”

v

“fcm_num_anchors

-

Number

of

FCM

message

anchors”

on

page

444

v

“fcm_num_buffers

-

Number

of

FCM

buffers”

on

page

444

v

“fcm_num_connect

-

Number

of

FCM

connection

entries”

on

page

446

v

“fcm_num_rqb

-

Number

of

FCM

request

blocks”

on

page

446

v

“max_connretries

-

Node

connection

retries”

on

page

447

v

“max_time_diff

-

Maximum

time

difference

among

nodes”

on

page

448

v

“start_stop_time

-

Start

and

stop

timeout”

on

page

448

conn_elapse

-

Connection

elapse

time

Configuration

Type

Database

manager

Applies

To

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

10

[0–100]

Unit

of

Measure

Seconds

This

parameter

specifies

the

number

of

seconds

within

which

a

TCP/IP

connection

is

to

be

established

between

two

database

partition

servers.

If

the

attempt

completes

within

the

time

specified

by

this

parameter,

communications

are

established.

If

it

fails,

another

attempt

is

made

to

establish

communications.

If

the

connection

is

attempted

the

number

of

times

specified

by

the

max_connretries

parameter

and

always

times

out,

an

error

is

issued.

Related

reference:

v

“max_connretries

-

Node

connection

retries”

on

page

447

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

443

fcm_num_anchors

-

Number

of

FCM

message

anchors

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

v

Satellite

database

server

with

local

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

-1

[-1,

128

—

fcm_num_rqb]

On

non-partitioned

database

systems,

the

intra_parallel

parameter

must

be

active

before

fcm_num_anchors

can

be

used.

This

parameter

specifies

the

number

of

FCM

message

anchors.

Agents

use

the

message

anchors

to

send

messages

among

themselves.

The

default

value

(-1)

specifies

75

percent

of

the

value

specified

for

fcm_num_rqb.

Related

concepts:

v

“Fast

communications

manager

(FCM)

communications”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“fcm_num_buffers

-

Number

of

FCM

buffers”

on

page

444

v

“fcm_num_connect

-

Number

of

FCM

connection

entries”

on

page

446

v

“fcm_num_rqb

-

Number

of

FCM

request

blocks”

on

page

446

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

fcm_num_buffers

-

Number

of

FCM

buffers

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

32-bit

platforms

512,

1

024,

or

4

096

[128

—

65

300]

444

Administration

Guide:

Performance

64-bit

platforms

512,

1

024,

or

4

096

[128

—

524

288]
v

Database

server

with

local

and

remote

clients:

the

default

is

1

024

v

Database

server

with

local

clients:

the

default

is

512

v

Partitioned

database

server

with

local

and

remote

clients:

the

default

is

4

096

On

single-partition

database

systems,

this

parameter

is

not

used

if

the

intra_parallel

parameter

is

not

active.

This

parameter

specifies

the

number

of

4

KB

buffers

that

are

used

for

internal

communications

(messages)

both

among

and

within

database

servers.

If

you

have

multiple

logical

nodes

on

the

same

machine,

you

might

find

it

necessary

to

increase

the

value

of

this

parameter.

You

might

also

find

it

necessary

to

increase

the

value

of

this

parameter

if

you

run

out

of

message

buffers

because

of

the

number

of

users

on

the

system,

the

number

of

database

partition

servers

on

the

system,

or

the

complexity

of

the

applications.

If

you

are

using

multiple

logical

nodes,

on

non-AIX

systems,

one

pool

of

fcm_num_buffers

buffers

is

shared

by

all

the

multiple

logical

nodes

on

the

same

machine,

while

on

AIX:

v

If

there

is

enough

room

in

the

general

memory

that

is

used

by

the

database

manager,

the

FCM

buffer

heap

will

be

allocated

from

there.

In

this

situation,

each

database

partition

server

will

have

fcm_num_buffers

buffers

of

its

own;

the

database

partition

servers

will

not

share

a

pool

of

FCM

buffers

(this

was

new

in

DB2

Version

5).

v

If

there

is

not

enough

room

in

the

general

memory

that

is

used

by

the

database

manager,

the

FCM

buffer

heap

will

be

allocated

from

a

separate

memory

area

(AIX

shared

memory

set),

that

is

shared

by

all

the

multiple

logical

nodes

on

the

same

machine.

One

pool

of

fcm_num_buffers

will

be

shared

by

all

the

multiple

logical

nodes

on

the

same

machine.

This

is

the

default

configuration

for

all

non-AIX

platforms.

Re-examine

the

value

you

are

using;

consider

how

many

FCM

buffers

in

total

will

be

allocated

on

the

machine

(or

machines)

where

the

multiple

logical

nodes

reside.

Related

concepts:

v

“Fast

communications

manager

(FCM)

communications”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“fcm_num_connect

-

Number

of

FCM

connection

entries”

on

page

446

v

“fcm_num_anchors

-

Number

of

FCM

message

anchors”

on

page

444

v

“fcm_num_rqb

-

Number

of

FCM

request

blocks”

on

page

446

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

445

fcm_num_connect

-

Number

of

FCM

connection

entries

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

v

Satellite

database

server

with

local

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

-1

[-1,

128

—

fcm_num_rqb]

On

non-partitioned

database

systems,

the

intra_parallel

parameter

must

be

active

before

fcm_num_connect

can

be

used.

This

parameter

specifies

the

number

of

FCM

connection

entries.

Agents

use

connection

entries

to

pass

data

among

themselves.

The

default

value

(-1)

specifies

75

percent

of

the

value

specified

for

fcm_num_rqb.

Related

concepts:

v

“Fast

communications

manager

(FCM)

communications”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“fcm_num_buffers

-

Number

of

FCM

buffers”

on

page

444

v

“fcm_num_anchors

-

Number

of

FCM

message

anchors”

on

page

444

v

“fcm_num_rqb

-

Number

of

FCM

request

blocks”

on

page

446

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

fcm_num_rqb

-

Number

of

FCM

request

blocks

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

v

Satellite

database

server

with

local

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

446

Administration

Guide:

Performance

UNIX

32-bit

platforms

256,

512,

2

048

[

128

—

120

000

]

UNIX

64-bit

platforms

256,

512,

2

048

[

128

—

524

288

]

Windows

NT

32-bit

10

000

[

250

—

2

097

152

]

Windows

NT

64-bit

256,

512,

2

048

[

128

—

524

288

]
v

For

database

server

with

local

and

remote

clients,

the

default

is

512.

v

For

database

server

with

local

clients,

the

default

is

256.

v

For

partitioned

database

server

with

local

and

remote

clients,

the

default

is

2

048.

On

non-partitioned

database

systems,

the

intra_parallel

parameter

must

be

active

before

fcm_num_rqb

can

be

used.

This

parameter

specifies

the

number

of

FCM

request

blocks.

Request

blocks

are

the

media

through

which

information

is

passed

between

the

FCM

daemon

and

an

agent,

or

between

agents.

The

requirement

for

request

blocks

will

vary

according

to

the

number

of

users

on

the

system,

the

number

of

database

partition

servers

in

the

system,

and

the

complexity

of

queries.

Start

with

the

default

value,

and

use

results

from

the

database

system

monitor

when

fine

tuning

this

parameter.

Related

concepts:

v

“Fast

communications

manager

(FCM)

communications”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“fcm_num_buffers

-

Number

of

FCM

buffers”

on

page

444

v

“fcm_num_connect

-

Number

of

FCM

connection

entries”

on

page

446

v

“fcm_num_anchors

-

Number

of

FCM

message

anchors”

on

page

444

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

max_connretries

-

Node

connection

retries

Configuration

Type

Database

manager

Applies

To

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

5

[0–100]

Chapter

13.

Configuring

DB2

447

If

the

attempt

to

establish

communication

between

two

database

partition

servers

fails

(for

example,

the

value

specified

by

the

conn_elapse

parameter

is

reached),

max_connretries

specifies

the

number

of

connection

retries

that

can

be

made

to

a

database

partition

server.

If

the

value

specified

for

this

parameter

is

exceeded,

an

error

is

returned.

Related

reference:

v

“conn_elapse

-

Connection

elapse

time”

on

page

443

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

max_time_diff

-

Maximum

time

difference

among

nodes

Configuration

Type

Database

manager

Applies

To

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

60

[1–1

440]

Unit

of

Measure

Minutes

Each

database

partition

server

has

its

own

system

clock.

This

parameter

specifies

the

maximum

time

difference,

in

minutes,

that

is

permitted

among

the

database

partition

servers

listed

in

the

node

configuration

file.

If

two

or

more

database

partition

servers

are

associated

with

a

transaction,

and

their

clocks

are

not

synchronized

to

within

the

time

specified

by

this

parameter,

the

transaction

is

rejected

and

an

SQLCODE

is

returned.

(The

transaction

is

rejected

only

if

data

modification

is

associated

with

it.)

DB2

uses

Coordinated

Universal

Time

(UTC),

so

different

time

zones

are

not

a

consideration

when

you

set

this

parameter.

The

Coordinated

Universal

Time

is

the

same

as

Greenwich

Mean

Time.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

start_stop_time

-

Start

and

stop

timeout

Configuration

Type

Database

manager

Applies

To

Database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

10

[1

—

1

440]

448

Administration

Guide:

Performance

Unit

of

Measure

Minutes

This

parameter

specifies

the

time,

in

minutes,

within

which

all

database

partition

servers

must

respond

to

a

DB2START

or

a

DB2STOP

command.

It

is

also

used

as

the

timeout

value

during

an

ADD

DBPARTITIONNUM

operation.

Database

partition

servers

that

do

not

respond

to

a

DB2START

command

within

the

specified

time

send

a

message

to

the

db2start

error

log

in

the

log

subdirectory

of

the

sqllib

subdirectory

of

the

home

directory

for

the

instance.

You

should

issue

a

DB2STOP

on

these

nodes

before

restarting

them.

Database

partition

servers

that

do

not

respond

to

a

DB2STOP

command

within

the

specified

time

send

a

message

to

the

db2stop

error

log

in

the

log

subdirectory

of

the

sqllib

subdirectory

of

the

home

directory

for

the

instance.

You

can

either

issue

DB2STOP

for

each

database

partition

server

that

does

not

respond,

or

for

all

of

them.

(Those

that

are

already

stopped

will

return

stating

that

they

are

stopped.)

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“ADD

DBPARTITIONNUM

Command”

in

the

Command

Reference

Parallel

processing

The

following

parameters

provide

information

about

parallel

processing:

v

“intra_parallel

-

Enable

intra-partition

parallelism”

v

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

intra_parallel

-

Enable

intra-partition

parallelism

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

NO

(0)

[SYSTEM

(-1),

NO

(0),

YES

(1)]

A

value

of

-1

causes

the

parameter

value

to

be

set

to

“YES”

or

“NO”

based

on

the

hardware

on

which

the

database

manager

is

running.

This

parameter

specifies

whether

the

database

manager

can

use

intra-partition

parallelism.

Some

of

the

operations

that

can

take

advantage

of

parallel

performance

improvements

when

this

parameter

is

″YES″

include

database

queries

and

index

creation.

Chapter

13.

Configuring

DB2

449

Note:

If

you

change

this

parameter

value,

packages

might

be

rebound

to

the

database,

and

some

performance

degradation

might

occur.

Related

reference:

v

“max_querydegree

-

Maximum

query

degree

of

parallelism”

on

page

450

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

max_querydegree

-

Maximum

query

degree

of

parallelism

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Statement

boundary

Default

[Range]

-1

(ANY)

[ANY,

1

—

32

767]

(ANY

means

system

determined)

This

parameter

specifies

the

maximum

degree

of

intra-partition

parallelism

that

is

used

for

any

SQL

statement

executing

on

this

instance

of

the

database

manager.

An

SQL

statement

will

not

use

more

than

this

number

of

parallel

operations

within

a

partition

when

the

statement

is

executed.

The

intra_parallel

configuration

parameter

must

be

set

to

“YES”

to

enable

the

database

partition

to

use

intra-partition

parallelism.

The

default

value

for

this

configuration

parameter

is

-1.

This

value

means

that

the

system

uses

the

degree

of

parallelism

determined

by

the

optimizer;

otherwise,

the

user-specified

value

is

used.

Note:

The

degree

of

parallelism

for

an

SQL

statement

can

be

specified

at

statement

compilation

time

using

the

CURRENT

DEGREE

special

register

or

the

DEGREE

bind

option.

The

maximum

query

degree

of

parallelism

for

an

active

application

can

be

modified

using

the

SET

RUNTIME

DEGREE

command.

The

actual

runtime

degree

used

is

the

lower

of:

v

max_querydegree

configuration

parameter

v

Application

runtime

degree

v

SQL

statement

compilation

degree

An

exception

regarding

the

determination

of

the

actual

query

degree

of

parallelism

occurs

when

creating

an

index.

In

this

case,

if

intra_parallel

is

“YES”

and

the

table

is

large

enough

to

benefit

from

the

use

of

multiple

processors,

then

creating

an

450

Administration

Guide:

Performance

index

uses

the

number

of

online

processors

(to

a

maximum

of

6)

plus

one.

There

is

no

effect

from

the

other

parameter,

bind

option,

or

special

register

mentioned

above.

Related

reference:

v

“intra_parallel

-

Enable

intra-partition

parallelism”

on

page

449

v

“dft_degree

-

Default

degree”

on

page

431

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Instance

management

A

number

of

parameters

can

help

you

manage

your

database

manager

instances.

These

are

grouped

into

the

following

categories:

v

“Diagnostic”

v

“Database

system

monitor

parameters”

on

page

455

v

“System

management”

on

page

456

v

“Instance

administration”

on

page

464

Diagnostic

The

following

parameters

allow

you

to

control

diagnostic

information

available

from

the

database

manager:

v

“diaglevel

-

Diagnostic

error

capture

level”

v

“diagpath

-

Diagnostic

data

directory

path”

on

page

452

v

“health_mon

-

Health

monitoring”

on

page

453

v

“notifylevel

-

Notify

level”

on

page

453

diaglevel

-

Diagnostic

error

capture

level

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

3

[

0

—

4

]

This

parameter

specifies

the

type

of

diagnostic

errors

that

will

be

recorded

in

the

db2diag.log

file.

Valid

values

are:

0

–

No

diagnostic

data

captured

1

–

Severe

errors

only

2

–

All

errors

Chapter

13.

Configuring

DB2

451

3

–

All

errors

and

warnings

4

–

All

errors,

warnings

and

informational

messages

The

diagpath

configuration

parameter

is

used

to

specify

the

directory

that

will

contain

the

error

file,

event

log

file

(on

Windows

NT

only),

alert

log

file,

and

any

dump

files

that

might

be

generated,

based

on

the

value

of

the

diaglevel

parameter.

Recommendation:

You

might

wish

to

increase

the

value

of

this

parameter

to

gather

additional

problem

determination

data

to

help

resolve

a

problem.

Related

reference:

v

“diagpath

-

Diagnostic

data

directory

path”

on

page

452

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

diagpath

-

Diagnostic

data

directory

path

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

path

name

]

This

parameter

allows

you

to

specify

the

fully

qualified

path

for

DB2

diagnostic

information.

This

directory

could

possibly

contain

dump

files,

trap

files,

an

error

log,

a

notification

file,

and

an

alert

log

file,

depending

on

your

platform.

If

this

parameter

is

null,

the

diagnostic

information

will

be

written

to

files

in

one

of

the

following

directories

or

folders:

v

For

supported

Windows

environments:

–

If

the

DB2INSTPROF

environment

variable

or

keyword

is

not

set,

information

will

be

written

to

x:\SQLLIB\DB2INSTANCE,

where

x:\SQLLIB

is

the

drive

reference

and

directory

specified

in

the

DB2PATH

registry

variable

or

environment

variable,

and

DB2INSTANCE

is

the

name

of

the

instance

owner.

Note:

The

directory

does

not

have

to

be

named

SQLLIB.

–

If

the

DB2INSTPROF

environment

variable

or

keyword

is

set,

information

will

be

written

to

x:\DB2INSTPROF\DB2INSTANCE,

where

DB2INSTPROF

is

the

name

of

the

instance

profile

directory

and

DB2INSTANCE

is

the

name

of

the

instance

owner.
v

For

UNIX-based

environments:

INSTHOME/sqllib/db2dump,

where

INSTHOME

is

the

home

directory

of

the

instance

owner.

452

Administration

Guide:

Performance

Recommendation:

Use

the

default

or

have

a

centralized

location

for

the

diagpath

of

multiple

instances.

In

a

partitioned

database

environment,

the

path

you

specify

must

reside

on

a

shared

file

system.

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level”

on

page

451

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

health_mon

-

Health

monitoring

Configuration

Type

Database

manager

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Off

[

On;

Off

]

Related

Parameters

This

parameter

allows

you

to

specify

whether

you

want

to

monitor

an

instance,

its

associated

databases,

and

database

objects

according

to

various

health

indicators.

If

health_mon

is

turned

on,

an

agent

will

collect

information

about

the

health

of

the

objects

you

have

selected.

If

an

object

is

considered

to

be

in

an

unhealthy

position,

based

on

thresholds

that

you

have

set,

notifications

can

be

sent,

and

actions

can

be

taken

automatically.

If

health_mon

is

turned

off

(the

default),

the

health

of

objects

will

not

be

monitored.

You

can

use

the

Health

Center

or

the

CLP

to

select

the

instance

and

database

objects

that

you

want

to

monitor.

You

can

also

specify

where

notifications

should

be

sent,

and

what

actions

should

be

taken,

based

on

the

data

collected

by

the

health

monitor.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

notifylevel

-

Notify

level

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

Chapter

13.

Configuring

DB2

453

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

3

[

0

—

4

]

This

parameter

specifies

the

type

of

administration

notification

messages

that

are

written

to

the

administration

notification

log.

On

UNIX

platforms,

the

administration

notification

log

is

a

text

file

called

instance.nfy.

On

Windows,

all

administration

notification

messages

are

written

to

the

Event

Log.

The

errors

can

be

written

by

DB2,

the

Health

Monitor,

the

Capture

and

Apply

programs,

and

user

applications.

Valid

values

for

this

parameter

are:

0

—

No

administration

notification

messages

captured.

(This

setting

is

not

recommended.)

1

—

Fatal

or

unrecoverable

errors.

Only

fatal

and

unrecoverable

errors

are

logged.

To

recover

from

some

of

these

conditions,

you

might

need

assistance

from

DB2

service.

2

—

Immediate

action

required.

Conditions

are

logged

that

require

immediate

attention

from

the

system

administrator

or

the

database

administrator.

If

the

condition

is

not

resolved,

it

could

lead

to

a

fatal

error.

Notification

of

very

significant,

non-error

activities

(for

example,

recovery)

might

also

be

logged

at

this

level.

This

level

will

capture

Health

Monitor

alarms.

3

—

Important

information,

no

immediate

action

required.

Conditions

are

logged

that

are

non-threatening

and

do

not

require

immediate

action

but

might

indicate

a

non-optimal

system.

This

level

will

capture

Health

Monitor

alarms,

Health

Monitor

warnings,

and

Health

Monitor

attentions.

4

—

Informational

messages.

The

administration

notification

log

includes

messages

having

values

up

to

and

including

the

value

of

notifylevel.

For

example,

setting

notifylevel

to

3

will

cause

the

administration

notification

log

to

include

messages

applicable

to

levels

1,

2,

and

3.

For

a

user

application

to

be

able

to

write

to

the

notification

file

or

Windows

Event

Log,

it

must

call

the

db2AdminMsgWrite

API.

Recommendation:

You

might

wish

to

increase

the

value

of

this

parameter

to

gather

additional

problem

determination

data

to

help

resolve

a

problem.

Note

that

you

must

set

notifylevel

to

a

value

of

2

or

higher

for

the

Health

Monitor

to

send

any

notifications

to

the

contacts

defined

in

its

configuration.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

454

Administration

Guide:

Performance

Database

system

monitor

parameters

The

following

parameter

allows

you

to

control

various

aspects

of

the

database

system

monitor:

v

“dft_monswitches

-

Default

database

system

monitor

switches”

dft_monswitches

-

Default

database

system

monitor

switches

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

All

switches

turned

off,

except

dft_mon_timestamp,

which

is

turned

on

by

default

This

parameter

is

unique

in

that

it

allows

you

to

set

a

number

of

switches

which

are

each

internally

represented

by

a

bit

of

the

parameter.

You

can

update

each

of

these

switches

independently

by

setting

the

following

parameters:

dft_mon_uow

Default

value

of

the

snapshot

monitor’s

unit

of

work

(UOW)

switch

dft_mon_stmt

Default

value

of

the

snapshot

monitor’s

statement

switch

dft_mon_table

Default

value

of

the

snapshot

monitor’s

table

switch

dft_mon_bufpool

Default

value

of

the

snapshot

monitor’s

buffer

pool

switch

dft_mon_lock

Default

value

of

the

snapshot

monitor’s

lock

switch

dft_mon_sort

Default

value

of

the

snapshot

monitor’s

sort

switch

dft_mon_timestamp

Default

value

of

the

snapshot

monitor’s

timestamp

switch

Recommendation:

Any

switch

(except

dft_mon_timestamp)

that

is

turned

ON

instructs

the

database

manager

to

collect

monitor

data

related

to

that

switch.

Collecting

additional

monitor

data

increases

database

manager

overhead

which

can

impact

system

performance.

Turning

the

dft_mon_timestamp

switch

OFF

becomes

important

as

CPU

utilization

approaches

100%.

When

this

occurs,

the

CPU

time

required

for

issuing

timestamps

increases

dramatically.

Furthermore,

if

the

timestamp

switch

is

turned

OFF,

the

overall

cost

of

other

data

under

monitor

switch

control

is

greatly

reduced.

All

monitoring

applications

inherit

these

default

switch

settings

when

the

application

issues

its

first

monitoring

request

(for

example,

setting

a

switch,

activating

the

event

monitor,

taking

a

snapshot).

You

should

turn

on

a

switch

in

the

configuration

file

only

if

you

want

to

collect

data

starting

from

the

moment

the

database

manager

is

started.

(Otherwise,

each

monitoring

application

can

set

its

own

switches

and

the

data

it

collects

becomes

relative

to

the

time

its

switches

are

set.)

Chapter

13.

Configuring

DB2

455

Related

reference:

v

“GET

MONITOR

SWITCHES

Command”

in

the

Command

Reference

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

System

management

The

following

parameters

relate

to

system

management:

v

“comm_bandwidth

-

Communications

bandwidth”

v

“cpuspeed

-

CPU

speed”

on

page

457

v

“dft_account_str

-

Default

charge-back

account”

on

page

458

v

“federated

-

Federated

database

system

support”

on

page

458

v

“jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path”

on

page

459

v

“nodetype

-

Machine

node

type”

on

page

459

v

“numdb

-

Maximum

number

of

concurrently

active

databases

including

host

and

iSeries

databases”

on

page

460

v

“tp_mon_name

-

Transaction

processor

monitor

name”

on

page

461

v

“util_impact_lim

-

Instance

impact

policy”

on

page

463

comm_bandwidth

-

Communications

bandwidth

Configuration

Type

Database

manager

Applies

to

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Statement

boundary

Default

[Range]

-1

[

.1

–

100

000

]

A

value

of

-1

causes

the

parameter

value

to

be

reset

to

the

default.

The

default

value

is

calculated

based

on

whether

a

high

speed

switch

is

being

used.

Unit

of

Measure

Megabytes

per

second

The

value

calculated

for

the

communications

bandwidth,

in

megabytes

per

second,

is

used

by

the

SQL

optimizer

to

estimate

the

cost

of

performing

certain

operations

between

the

database

partition

servers

of

a

partitioned

database

system.

The

optimizer

does

not

model

the

cost

of

communications

between

a

client

and

a

server,

so

this

parameter

should

reflect

only

the

nominal

bandwidth

between

the

database

partition

servers,

if

any.

You

can

explicitly

set

this

value

to

model

a

production

environment

on

your

test

system

or

to

assess

the

impact

of

upgrading

hardware.

Recommendation:

You

should

only

adjust

this

parameter

if

you

want

to

model

a

different

environment.

456

Administration

Guide:

Performance

The

communications

bandwidth

is

used

by

the

optimizer

in

determining

access

paths.

You

should

consider

rebinding

applications

(using

the

REBIND

PACKAGE

command)

after

changing

this

parameter.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

cpuspeed

-

CPU

speed

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

online

Propagation

Class

Statement

boundary

Default

[Range]

-1

[

1-10

—

1

]

A

value

of

-1

will

cause

the

parameter

value

to

be

reset

based

on

the

running

of

the

measurement

program.

Unit

of

Measure

Seconds

The

CPU

speed,

in

milliseconds

per

instruction,

is

used

by

the

SQL

optimizer

to

estimate

the

cost

of

performing

certain

operations.

The

value

of

this

parameter

is

set

automatically

when

you

install

the

database

manager

based

on

the

output

from

a

program

designed

to

measure

CPU

speed.

This

program

is

executed,

if

benchmark

results

are

not

available

for

any

of

the

following

reasons:

v

The

platform

does

not

have

support

for

the

db2spec.dat

file

v

The

db2spec.dat

file

is

not

found

v

The

data

for

the

IBM

RISC

System/6000

model

530H

is

not

found

in

the

file

v

The

data

for

your

machine

is

not

found

in

the

file.

You

can

explicitly

set

this

value

to

model

a

production

environment

on

your

test

system

or

to

assess

the

impact

of

upgrading

hardware.

By

setting

it

to

-1,

cpuspeed

will

be

re-computed.

Recommendation:

You

should

only

adjust

this

parameter

if

you

want

to

model

a

different

environment.

The

CPU

speed

is

used

by

the

optimizer

in

determining

access

paths.

You

should

consider

rebinding

applications

(using

the

REBIND

PACKAGE

command)

after

changing

this

parameter.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

457

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

dft_account_str

-

Default

charge-back

account

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

string

]

With

each

application

connect

request,

an

accounting

identifier

consisting

of

a

DB2

Connect-generated

prefix

and

the

user

supplied

suffix

is

sent

from

the

application

requester

to

a

DRDA

application

server.

This

accounting

information

provides

a

mechanism

for

system

administrators

to

associate

resource

usage

with

each

user

access.

Note:

This

parameter

is

only

applicable

to

DB2

Connect.

The

suffix

is

supplied

by

the

application

program

calling

the

sqlesact()

API

or

the

user

setting

the

environment

variable

DB2ACCOUNT.

If

a

suffix

is

not

supplied

by

either

the

API

or

environment

variable,

DB2

Connect

uses

the

value

of

this

parameter

as

the

default

suffix

value.

This

parameter

is

particularly

useful

for

down-level

database

clients

(anything

prior

to

version

2)

that

do

not

have

the

capability

to

forward

an

accounting

string

to

DB2

Connect.

Recommendation:

Set

this

accounting

string

using

the

following:

v

Alphabetics

(A

through

Z)

v

Numerics

(0

through

9)

v

Underscore

(_).

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

federated

-

Federated

database

system

support

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

458

Administration

Guide:

Performance

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

No

[Yes;

No]

This

parameter

enables

or

disables

support

for

applications

submitting

distributed

requests

for

data

managed

by

data

sources

(such

as

the

DB2

Family

and

Oracle).

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[Valid

path]

This

parameter

specifies

the

directory

under

which

the

Software

Developer’s

Kit

(SDK)

for

Java,

to

be

used

for

running

Java

stored

procedures

and

user-defined

functions,

is

installed.

The

CLASSPATH

and

other

environment

variables

used

by

the

Java

interpreter

are

computed

from

the

value

of

this

parameter.

Because

there

is

no

default

value

for

this

parameter,

you

should

specify

a

value

when

you

install

the

SDK

for

Java.

Related

reference:

v

“java_heap_sz

-

Maximum

Java

interpreter

heap

size”

on

page

365

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

nodetype

-

Machine

node

type

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

Chapter

13.

Configuring

DB2

459

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Informational

This

parameter

provides

information

about

the

DB2

products

which

you

have

installed

on

your

machine

and,

as

a

result,

information

about

the

type

of

database

manager

configuration.

The

following

are

the

possible

values

returned

by

this

parameter

and

the

products

associated

with

that

node

type:

v

Database

server

with

local

and

remote

clients

–

a

DB2

server

product,

supporting

local

and

remote

database

clients,

and

capable

of

accessing

other

remote

database

servers.

v

Client

–

a

database

client

capable

of

accessing

remote

database

servers.

v

Database

server

with

local

clients

–

a

DB2

relational

database

management

system,

supporting

local

database

clients

and

capable

of

accessing

other,

remote

database

servers.

v

Partitioned

database

server

with

local

and

remote

clients

–

a

DB2

server

product,

supporting

local

and

remote

database

clients,

and

capable

of

accessing

other

remote

database

servers,

and

capable

of

partition

parallelism.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

numdb

-

Maximum

number

of

concurrently

active

databases

including

host

and

iSeries

databases

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

UNIX

8

[

1

—

256

]

Windows

Database

server

with

local

and

remote

clients

8

[

1

—

256

]

Windows

Database

server

with

local

clients

3

[

1

—

256

]

Unit

of

Measure

Counter

This

parameter

specifies

the

number

of

local

databases

that

can

be

concurrently

active

(that

is,

have

applications

connected

to

them),

or

the

maximum

number

of

different

database

aliases

that

can

be

cataloged

on

a

DB2

Connect

server.

Each

database

takes

up

storage,

and

an

active

database

uses

a

new

shared

memory

segment.

Recommendation:

It

is

generally

best

to

set

this

value

to

the

actual

number

of

databases

that

are

already

defined

to

the

database

manager,

and

to

add

about

10%

to

this

value

to

allow

for

growth.

460

Administration

Guide:

Performance

Changing

the

numdb

parameter

can

impact

the

total

amount

of

memory

allocated.

As

a

result,

frequent

updates

to

this

parameter

are

not

recommended.

When

updating

this

parameter,

you

should

consider

the

other

configuration

parameters

that

can

allocate

memory

for

a

database

or

an

application

connected

to

that

database.

Related

reference:

v

“app_ctl_heap_sz

-

Application

control

heap

size”

on

page

346

v

“sortheap

-

Sort

heap

size”

on

page

355

v

“aslheapsz

-

Application

support

layer

heap

size”

on

page

358

v

“applheapsz

-

Application

heap

size”

on

page

350

v

“locklist

-

Maximum

storage

for

lock

list”

on

page

340

v

“dbheap

-

Database

heap”

on

page

339

v

“stmtheap

-

Statement

heap

size”

on

page

357

v

“mon_heap_sz

-

Database

system

monitor

heap

size”

on

page

366

v

“stat_heap_sz

-

Statistics

heap

size”

on

page

356

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“database_memory

-

Database

shared

memory

size”

on

page

338

tp_mon_name

-

Transaction

processor

monitor

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

No

default

Valid

Values

v

CICS

v

MQ

v

ENCINA

v

CB

v

SF

v

TUXEDO

v

TOPEND

v

blank

or

some

other

value

(for

UNIX

and

Windows;

no

other

possible

values

for

Solaris

or

SINIX)

Chapter

13.

Configuring

DB2

461

This

parameter

identifies

the

name

of

the

transaction

processing

(TP)

monitor

product

being

used.

v

If

applications

are

run

in

a

WebSphere

Enterprise

Edition

CICS

environment,

this

parameter

should

be

set

to

“CICS”

v

If

applications

are

run

in

a

WebSphere

Enterprise

Edition

Encina

environment,

this

parameter

should

be

set

to

“ENCINA”

v

If

applications

are

run

in

a

WebSphere

Enterprise

Edition

Component

Broker

environment,

this

parameter

should

be

set

to

“CB”

v

If

applications

are

run

in

an

IBM

MQSeries

environment,

this

parameter

should

be

set

to

“MQ”

v

If

applications

are

run

in

a

BEA

Tuxedo

environment,

this

parameter

should

be

set

to

“TUXEDO”

v

If

applications

are

run

in

an

IBM

San

Francisco

environment,

this

parameter

should

be

set

to

“SF”.

IBM

WebSphere

EJB

and

Microsoft

Transaction

Server

users

do

not

need

to

configure

any

value

for

this

parameter.

If

none

of

the

above

products

are

being

used,

this

parameter

should

not

be

configured

but

left

blank.

In

previous

versions

of

DB2

Universal

Database

on

Windows

NT,

this

parameter

contained

the

path

and

name

of

the

DLL

which

contained

the

XA

Transaction

Manager’s

functions

ax_reg

and

ax_unreg.

This

format

is

still

supported.

If

the

value

of

this

parameter

does

not

match

any

of

the

above

TP

Monitor

names,

it

will

be

assumed

that

the

value

is

a

library

name

which

contains

the

ax_reg

and

ax_unreg

functions.

This

is

true

for

UNIX

and

Windows

NT

environments.

TXSeries

CICS

and

Encina

Users:

In

previous

versions

of

this

product

on

Windows

NT

it

was

required

to

configure

this

parameter

as

“libEncServer:C”

or

“libEncServer:E”.

While

this

is

still

supported,

it

is

no

longer

required.

Configuring

the

parameter

as

“CICS”

or

“ENCINA”

is

sufficient.

MQSeries

Users:

In

previous

versions

of

this

product

on

Windows

NT

it

was

required

to

configure

this

parameter

as

“mqmax”.

While

this

is

still

supported,

it

is

no

longer

required.

Configuring

the

parameter

as

“MQ”

is

sufficient.

Component

Broker

Users:

In

previous

versions

of

this

product

on

Windows

NT

it

was

required

to

configure

this

parameter

as

“somtrx1i”.

While

this

is

still

supported,

it

is

no

longer

required.

Configuring

the

parameter

as

“CB”

is

sufficient.

San

Francisco

Users:

In

previous

versions

of

this

product

on

Windows

NT

it

was

required

to

configure

this

parameter

as

“ibmsfDB2”.

While

this

is

still

supported,

it

is

no

longer

required.

Configuring

the

parameter

as

“SF”

is

sufficient.

The

maximum

length

of

the

string

that

can

be

specified

for

this

parameter

is

19

characters.

It

is

also

possible

to

configure

this

information

in

DB2

Universal

Database’s

XA

OPEN

string.

If

multiple

Transaction

Processing

Monitors

are

using

a

single

DB2

instance,

then

it

will

be

required

to

use

this

capability.

Related

reference:

462

Administration

Guide:

Performance

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“xa_open

string

formats”

in

the

Administration

Guide:

Planning

util_impact_lim

-

Instance

impact

policy

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

clients

v

Database

server

with

local

and

remote

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Default

[Range]

100

[

1

-

100

]

Unit

of

Measure

Percentage

of

allowable

impact

on

workload

This

parameter

allows

the

database

administrator

(DBA)

to

limit

the

performance

degradation

of

a

throttled

utility

on

the

workload.

The

DBA

can

then

run

online

utilities

during

critical

production

periods,

and

be

guaranteed

that

the

performance

impact

on

production

work

will

be

within

acceptable

limits.

For

example,

a

DBA

specifying

a

util_impact_lim

(impact

policy)

value

of

10

can

expect

that

a

throttled

backup

invocation

will

not

impact

the

workload

by

more

than

10

percent.

If

util_impact_lim

is

100

(the

default

value),

no

utility

invocations

will

be

throttled.

In

this

case,

the

utilities

can

have

an

arbitrary

(and

undesirable)

impact

on

the

workload.

If

util_impact_lim

is

set

to

a

value

that

is

less

than

100,

it

is

possible

to

invoke

utilities

in

throttled

mode.

To

run

in

throttled

mode,

a

utility

must

also

be

invoked

with

a

non-zero

priority.

Recommendation:

Most

users

will

benefit

from

setting

util_impact_lim

to

a

low

value

(for

example,

between

1

and

10).

A

throttled

utility

will

usually

take

longer

to

complete

than

an

unthrottled

utility.

If

you

find

that

a

utility

is

running

for

an

excessively

long

time,

increase

the

value

of

util_impact_lim,

or

disable

throttling

altogether

by

setting

util_impact_lim

to

100.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

463

Instance

administration

The

following

parameters

relate

to

security

and

administration

of

your

database

manager

instance:

v

“authentication

-

Authentication

type”

v

“catalog_noauth

-

Cataloging

allowed

without

authority”

on

page

465

v

“clnt_krb_plugin

-

Client

Kerberos

plug-in”

on

page

466

v

“clnt_pw_plugin

-

Client

userid-password

plug-in”

on

page

466

v

“dftdbpath

-

Default

database

path”

on

page

467

v

“fed_noauth

-

Bypass

federated

authentication”

on

page

468

v

“group_plugin

-

Group

plug-in”

on

page

468

v

“local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization”

on

page

469

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server”

on

page

469

v

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server”

on

page

470

v

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server”

on

page

471

v

“srv_plugin_mode

-

Server

plug-in

mode”

on

page

471

v

“sysadm_group

-

System

administration

authority

group

name”

on

page

472

v

“sysctrl_group

-

System

control

authority

group

name”

on

page

473

v

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

473

v

“sysmon_group

-

System

monitor

authority

group

name”

on

page

474

v

“trust_allclnts

-

Trust

all

clients”

on

page

475

v

“trust_clntauth

-

Trusted

clients

authentication”

on

page

476

v

“use_sna_auth

-

Use

SNA

authentication”

on

page

477

authentication

-

Authentication

type

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

SERVER

[

CLIENT;

SERVER;

SERVER_ENCRYPT;

KERBEROS;

KRB_SERVER_ENCRYPT;

GSSPLUGIN;

GSS_SERVER_ENCRYPT

]

This

parameter

specifies

and

determines

how

and

where

authentication

of

a

user

takes

place.

If

authentication

is

SERVER,

the

user

ID

and

password

are

sent

from

the

client

to

the

server

so

that

authentication

can

take

place

on

the

server.

The

value

SERVER_ENCRYPT

provides

the

same

behavior

as

SERVER,

except

that

any

passwords

sent

over

the

network

are

encrypted.

464

Administration

Guide:

Performance

|

|

|

|
|

|
|

|
|

|
|

|

|

|
|
|

Note:

For

a

Common

Criteria

compliant

configuration,

SERVER

is

the

only

supported

value.

A

value

of

CLIENT

indicates

that

all

authentication

takes

place

at

the

client.

No

authentication

needs

to

be

performed

at

the

server.

A

value

of

KERBEROS

means

that

authentication

is

performed

at

a

Kerberos

server

using

the

Kerberos

security

protocol

for

authentication.

With

an

authentication

type

of

KRB_SERVER_ENCRYPT

at

the

server

and

clients

that

support

the

Kerberos

security

system,

the

effective

system

authentication

type

is

KERBEROS.

If

the

clients

do

not

support

the

Kerberos

security

system,

the

system

authentication

type

is

effectively

equivalent

to

SERVER_ENCRYPT.

A

value

of

GSSPLUGIN

means

that

authentication

is

performed

using

an

external

GSSAPI-based

security

mechanism.

With

an

authentication

type

of

GSS_SERVER_ENCRYPT

at

the

server

and

clients

that

support

the

GSSPLUGIN

security

mechanism,

the

effective

system

authentication

type

is

GSSPLUGIN

(that

is,

if

the

clients

support

one

of

the

server’s

plug-ins).

If

the

clients

do

not

support

the

GSSPLUGIN

security

mechanism,

the

system

authentication

type

is

effectively

equivalent

to

SERVER_ENCRYPT.

Recommendation:

Typically,

the

default

value

(SERVER)

is

adequate.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

catalog_noauth

-

Cataloging

allowed

without

authority

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Database

server

with

local

and

remote

clients

NO

[

NO

(0)

—

YES

(1)

]

Client;

Database

server

with

local

clients

YES

[

NO

(0)

—

YES

(1)

]

This

parameter

specifies

whether

users

are

able

to

catalog

and

uncatalog

databases

and

nodes,

or

DCS

and

ODBC

directories,

without

SYSADM

authority.

The

default

value

(0)

for

this

parameter

indicates

that

SYSADM

authority

is

required.

When

this

parameter

is

set

to

1

(yes),

SYSADM

authority

is

not

required.

Chapter

13.

Configuring

DB2

465

|
|
|
|
|
|
|

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

clnt_krb_plugin

-

Client

Kerberos

plug-in

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

or

IBMkrb5

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

default

Kerberos

plug-in

library

to

be

used

for

client-side

authentication

and

local

authorization.

By

default,

the

value

is

null

on

UNIX-based

systems,

and

IBMkrb5

on

Windows

operating

systems.

This

plug-in

is

used

when

the

client

is

authenticated

using

KERBEROS

authentication.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

clnt_pw_plugin

-

Client

userid-password

plug-in

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

userid-password

plug-in

library

to

be

used

for

client-side

authentication

and

local

authorization.

By

default,

the

value

is

null

and

the

DB2-supplied

userid-password

plug-in

library

is

used.

The

plug-in

is

used

when

the

client

is

authenticated

using

CLIENT,

SERVER,

or

SERVER_ENCRYPT

authentication.

466

Administration

Guide:

Performance

|

||

|

|

|

|

|
|

||

||

|
|
|
|

|

|
|

|
|

|
|

|

||

|

|

|

|

|
|

||

||

|
|
|
|
|

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

dftdbpath

-

Default

database

path

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

UNIX

Home

directory

of

instance

owner

[

any

existing

path

]

Windows

Drive

on

which

DB2

is

installed

[

any

existing

path

]

This

parameter

contains

the

default

file

path

used

to

create

databases

under

the

database

manager.

If

no

path

is

specified

when

a

database

is

created,

the

database

is

created

under

the

path

specified

by

the

dftdbpath

parameter.

In

a

partitioned

database

environment,

you

should

ensure

that

the

path

on

which

the

database

is

being

created

is

not

an

NFS-mounted

path

(on

UNIX-based

platforms),

or

a

network

drive

(in

a

Windows

environment).

The

specified

path

must

physically

exist

on

each

database

partition

server.

To

avoid

confusion,

it

is

best

to

specify

a

path

that

is

locally

mounted

on

each

database

partition

server.

The

maximum

length

of

the

path

is

205

characters.

The

system

appends

the

node

name

to

the

end

of

the

path.

Given

that

databases

can

grow

to

a

large

size

and

that

many

users

could

be

creating

databases

(depending

on

your

environment

and

intentions),

it

is

often

convenient

to

be

able

to

have

all

databases

created

and

stored

in

a

specified

location.

It

is

also

good

to

be

able

to

isolate

databases

from

other

applications

and

data

both

for

integrity

reasons

and

for

ease

of

backup

and

recovery.

For

UNIX-based

environments,

the

length

of

the

dftdbpath

name

cannot

exceed

215

characters

and

must

be

a

valid,

absolute,

path

name.

For

Windows,

the

dftdbpath

can

be

a

drive

letter,

optionally

followed

by

a

colon.

Recommendation:

If

possible,

put

high

volume

databases

on

a

different

disk

than

other

frequently

accessed

data,

such

as

the

operating

system

files

and

the

database

logs.

Related

reference:

Chapter

13.

Configuring

DB2

467

|

|
|

|
|

|
|

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

fed_noauth

-

Bypass

federated

authentication

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

No

[Yes;

No]

When

fed_noauth

is

set

to

yes,

authentication

is

set

to

server

or

server_encrypt,

and

federated

is

set

to

yes,

then

authentication

at

the

instance

is

bypassed.

It

is

assumed

that

authentication

will

happen

at

the

data

source.

Exercise

caution

when

fed_noauth

is

set

to

yes.

Authentication

is

done

at

neither

the

client

nor

at

DB2.

Any

user

who

knows

the

SYSADM

authentication

name

can

assume

SYSADM

authority

for

the

federated

server.

Related

reference:

v

“authentication

-

Authentication

type”

on

page

464

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“federated

-

Federated

database

system

support”

on

page

458

group_plugin

-

Group

plug-in

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

468

Administration

Guide:

Performance

|

||

|

|

|

|

|
|

||

||

This

parameter

specifies

the

name

of

the

group

plug-in

library.

By

default,

this

value

is

null,

and

DB2

uses

the

operating

system

group

lookup.

The

plug-in

will

be

used

for

all

group

lookups.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

default

GSS

API

plug-in

library

to

be

used

for

instance

level

local

authorization

when

the

value

of

the

authentication

database

manager

configuration

parameter

is

set

to

GSSPLUGIN

or

GSS_SERVER_ENCRYPT.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

CLIENT;

SERVER;

SERVER_ENCRYPT;

KERBEROS;

KRB_SERVER_ENCRYPT;

GSSPLUGIN;

GSS_SERVER_ENCRYPT

]

Chapter

13.

Configuring

DB2

469

|
|
|

|

|
|

|
|

|
|

|
|

||

|

|

|

|

|
|

||

||

|
|
|
|

|

|
|

|
|

|
|

|
|

||

|

|

|

|
|

||

||
|
|

This

parameter

specifies

how

and

where

user

authentication

is

to

take

place

when

handling

incoming

connections

at

the

server;

it

is

used

to

override

the

current

authentication

type.

If

a

value

is

not

specified,

DB2

uses

the

value

of

the

authentication

database

manager

configuration

parameter.

For

a

description

of

each

authentication

type,

see

“authentication

-

Authentication

type”

on

page

464

.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

GSS

API

plug-in

libraries

that

are

supported

by

the

database

server.

By

default,

the

value

is

null.

If

the

authentication

type

is

GSSPLUGIN

and

this

parameter

is

NULL,

an

error

is

returned.

If

the

authentication

type

is

KERBEROS

and

this

parameter

is

NULL,

the

DB2-supplied

kerberos

module

or

library

is

used.

This

parameter

is

not

used

if

another

authentication

type

is

used.

When

the

authentication

type

is

KERBEROS

and

the

value

of

this

parameter

is

not

NULL,

the

list

must

contain

exactly

one

Kerberos

plug-in,

and

that

plug-in

is

used

for

authentication

(all

other

GSS

plug-ins

in

the

list

are

ignored).

If

there

is

more

than

one

Kerberos

plug-in,

an

error

is

returned.

Each

GSS

API

plug-in

name

must

be

separated

by

a

comma

(,)

with

no

space

either

before

or

after

the

comma.

Plug-in

names

should

be

listed

in

the

order

of

preference.

This

parameter

handles

incoming

connections

at

the

server

when

the

srvcon_auth

parameter

is

specified

as

KERBEROS,

KRB_SERVER_ENCRYPT,

GSSPLUGIN

or

GSS_SERVER_ENCRYPT,

or

when

srvcon_auth

is

not

specified,

and

authentication

is

specified

as

KERBEROS,

KRB_SERVER_ENCRYPT,

GSSPLUGIN

or

GSS_SERVER_ENCRYPT.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

470

Administration

Guide:

Performance

|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

||

|

|

|

|
|

||

||

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

string

]

This

parameter

specifies

the

name

of

the

default

userid-password

plug-in

library

to

be

used

for

server-side

authentication.

By

default,

the

value

is

null

and

the

DB2-supplied

userid-password

plug-in

library

is

used.

The

parameter

handles

incoming

connections

at

the

server

when

the

srvcon_auth

parameter

is

specified

as

SERVER

or

SERVER_ENCRYPT,

or

when

srvcon_auth

is

not

specified,

and

authentication

is

specified

as

CLIENT,

SERVER,

or

SERVER_ENCRYPT.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

srv_plugin_mode

-

Server

plug-in

mode

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

UNFENCED

This

parameter

specifies

whether

plug-ins

are

to

run

in

fenced

mode

or

unfenced

mode.

Unfenced

mode

is

the

only

supported

mode.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

471

|
|

|
|

||

|

|

|

|
|

||

||

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

||

|

|

|

|
|

||

||

|
|

|

|
|

|
|

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

sysadm_group

-

System

administration

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

System

administration

(SYSADM)

authority

is

the

highest

level

of

authority

within

the

database

manager

and

controls

all

database

objects.

This

parameter

defines

the

group

name

with

SYSADM

authority

for

the

database

manager

instance.

SYSADM

authority

is

determined

by

the

security

facilities

used

in

a

specific

operating

environment.

v

In

the

Windows

98

operating

system

the

SYSADM

group

must

be

NULL.

This

parameter

must

be

“NULL”

for

Windows

98

clients

when

system

security

is

used

because

the

Windows

98

operating

system

does

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSADM

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

v

For

the

Windows

NT

and

Windows

2000

operating

system,

this

parameter

can

be

set

to

any

local

group

that

has

a

name

of

8

characters

or

fewer,

and

is

defined

in

the

Windows

NT

and

Windows

2000

security

database.

If

“NULL”

is

specified

for

this

parameter,

all

members

of

the

Administrators

group

have

SYSADM

authority.

v

For

UNIX-based

systems,

if

“NULL”

is

specified

as

the

value

of

this

parameter,

the

SYSADM

group

defaults

to

the

primary

group

of

the

instance

owner.

If

the

value

is

not

“NULL”,

the

SYSADM

group

can

be

any

valid

UNIX

group

name.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSADM_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“sysctrl_group

-

System

control

authority

group

name”

on

page

473

v

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

473

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

472

Administration

Guide:

Performance

|
|

sysctrl_group

-

System

control

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

defines

the

group

name

with

system

control

(SYSCTRL)

authority.

SYSCTRL

has

privileges

allowing

operations

affecting

system

resources,

but

does

not

allow

direct

access

to

data.

Attention:

This

parameter

must

be

NULL

for

Windows

98

clients

when

system

security

is

used

(that

is,

authentication

is

CLIENT,

SERVER,

DCS,

or

any

other

valid

authentication).

This

is

because

the

Windows

98

operating

systems

do

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSCTRL

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSCTRL_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“sysadm_group

-

System

administration

authority

group

name”

on

page

472

v

“sysmaint_group

-

System

maintenance

authority

group

name”

on

page

473

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

sysmaint_group

-

System

maintenance

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

Chapter

13.

Configuring

DB2

473

This

parameter

defines

the

group

name

with

system

maintenance

(SYSMAINT)

authority.

SYSMAINT

has

privileges

to

perform

maintenance

operations

on

all

databases

associated

with

an

instance

without

having

direct

access

to

data.

Attention:

This

parameter

must

be

NULL

for

Windows

98

clients

when

system

security

is

used

(that

is,

authentication

is

CLIENT,

SERVER,

DCS,

or

any

other

valid

authentication).

This

is

because

the

Windows

98

operating

systems

do

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSMAINT

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSMAINT_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“sysadm_group

-

System

administration

authority

group

name”

on

page

472

v

“sysctrl_group

-

System

control

authority

group

name”

on

page

473

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

sysmon_group

-

System

monitor

authority

group

name

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Client

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

Null

This

parameter

defines

the

group

name

with

system

monitor

(SYSMON)

authority.

Users

having

SYSMON

authority

at

the

instance

level

have

the

ability

to

take

database

system

monitor

snapshots

of

a

database

manager

instance

or

its

databases.

SYSMON

authority

includes

the

ability

to

use

the

following

commands:

v

GET

DATABASE

MANAGER

MONITOR

SWITCHES

v

GET

MONITOR

SWITCHES

v

GET

SNAPSHOT

v

LIST

ACTIVE

DATABASES

v

LIST

APPLICATIONS

v

LIST

DCS

APPLICATIONS

v

RESET

MONITOR

v

UPDATE

MONITOR

SWITCHES

474

Administration

Guide:

Performance

|

||

|

|

|

|

|
|

||

||

|
|
|
|

|

|

|

|

|

|

|

|

Users

with

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

automatically

have

the

ability

to

take

database

system

monitor

snapshots

and

to

use

these

commands.

Attention:

This

parameter

must

be

NULL

for

Windows

98

clients

when

system

security

is

used

(that

is,

authentication

is

CLIENT,

SERVER,

DCS,

or

any

other

valid

authentication).

This

is

because

the

Windows

98

operating

systems

do

not

store

group

information,

thereby

providing

no

way

of

determining

if

a

user

is

a

member

of

a

designated

SYSMON

group.

When

a

group

name

is

specified,

no

user

can

be

a

member

of

it.

To

restore

the

parameter

to

its

default

(NULL)

value,

use

UPDATE

DBM

CFG

USING

SYSMON_GROUP

NULL.

You

must

specify

the

keyword

“NULL”

in

uppercase.

You

can

also

use

the

Configure

Instance

notebook

in

the

DB2

Control

Center.

Related

reference:

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

trust_allclnts

-

Trust

all

clients

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

YES

[NO,

YES,

DRDAONLY]

This

parameter

is

only

active

when

the

authentication

parameter

is

set

to

CLIENT.

This

parameter

and

trust_clntauth

are

used

to

determine

where

users

are

validated

to

the

database

environment.

By

accepting

the

default

of

“YES”

for

this

parameter,

all

clients

are

treated

as

trusted

clients.

This

means

that

the

server

assumes

that

a

level

of

security

is

available

at

the

client

and

the

possibility

that

users

can

be

validated

at

the

client.

This

parameter

can

only

be

changed

to

“NO”

if

the

authentication

parameter

is

set

to

CLIENT.

If

this

parameter

is

set

to

“NO”,

the

untrusted

clients

must

provide

a

userid

and

password

combination

when

they

connect

to

the

server.

Untrusted

clients

are

operating

system

platforms

that

do

not

have

a

security

subsystem

for

authenticating

users.

Setting

this

parameter

to

“DRDAONLY”

protects

against

all

clients

except

clients

from

DB2

for

OS/390

and

z/OS,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

these

clients

can

be

trusted

to

perform

client-side

authentication.

All

other

clients

must

provide

a

user

ID

and

password

to

be

authenticated

by

the

server.

Chapter

13.

Configuring

DB2

475

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

When

trust_allclnts

is

set

to

“DRDAONLY”,

the

trust_clntauth

parameter

is

used

to

determine

where

the

clients

are

authenticated.

If

trust_clntauth

is

set

to

“CLIENT”,

authentication

occurs

at

the

client.

If

trust_clntauth

is

set

to

“SERVER”,

authentication

occurs

at

the

client

if

no

password

is

provided,

and

at

the

server

if

a

password

is

provided.

Related

reference:

v

“authentication

-

Authentication

type”

on

page

464

v

“trust_clntauth

-

Trusted

clients

authentication”

on

page

476

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

trust_clntauth

-

Trusted

clients

authentication

Configuration

Type

Database

manager

Applies

to

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

Default

[Range]

CLIENT

[CLIENT,

SERVER]

This

parameter

specifies

whether

a

trusted

client

is

authenticated

at

the

server

or

the

client

when

the

client

provides

a

userid

and

password

combination

for

a

connection.

This

parameter

(and

trust_allclnts)

is

only

active

if

the

authentication

parameter

is

set

to

CLIENT.

If

a

user

ID

and

password

are

not

provided,

the

client

is

assumed

to

have

validated

the

user,

and

no

further

validation

is

performed

at

the

server.

If

this

parameter

is

set

to

CLIENT

(the

default),

the

trusted

client

can

connect

without

providing

a

user

ID

and

password

combination,

and

the

assumption

is

that

the

operating

system

has

already

authenticated

the

user.

If

it

is

set

to

SERVER,

the

user

ID

and

password

will

be

validated

at

the

server.

The

numeric

value

for

CLIENT

is

0.

The

numeric

value

for

SERVER

is

1.

Related

reference:

v

“authentication

-

Authentication

type”

on

page

464

v

“trust_allclnts

-

Trust

all

clients”

on

page

475

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

476

Administration

Guide:

Performance

use_sna_auth

-

Use

SNA

authentication

Configuration

Type

Database

manager

Applies

To

v

Database

server

with

local

and

remote

clients

v

Database

server

with

local

clients

v

Partitioned

database

server

with

local

and

remote

clients

Parameter

Type

Configurable

online

Propagation

Class

Immediate

Default

[Range]

No

[Yes;

No]

When

use_sna_auth

is

set

to

yes

and

authentication

is

set

to

server,

inbound

connections

to

the

server

that

use

the

SNA

protocol

with

security

type

SAME

or

PROGRAM

are

only

authenticated

at

the

SNA

layer,

and

not

by

DB2.

Related

reference:

v

“authentication

-

Authentication

type”

on

page

464

v

“GET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

DB2

Administration

Server

The

following

parameters

relate

to

the

DB2

administration

server:

v

“authentication

-

Authentication

type

DAS”

on

page

478

v

“contact_host

-

Location

of

contact

list”

on

page

478

v

“das_codepage

-

DAS

code

page”

on

page

479

v

“das_territory

-

DAS

territory”

on

page

479

v

“dasadm_group

-

DAS

administration

authority

group

name”

on

page

479

v

“db2system

-

Name

of

the

DB2

server

system”

on

page

480

v

“discover

-

DAS

discovery

mode”

on

page

481

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

v

“jdk_64_path

-

64-Bit

Software

Developer’s

Kit

for

Java

installation

path

DAS”

on

page

482

v

“jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path

DAS”

on

page

482

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

v

“smtp_server

-

SMTP

server”

on

page

484

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

Chapter

13.

Configuring

DB2

477

authentication

-

Authentication

type

DAS

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

SERVER_ENCRYPT

[

SERVER_ENCRYPT;

KERBEROS_ENCRYPT

]

This

parameter

determines

how

and

where

authentication

of

a

user

takes

place.

If

authentication

is

SERVER_ENCRYPT,

then

the

user

ID

and

password

are

sent

from

the

client

to

the

server

so

authentication

can

take

place

on

the

server.

Passwords

sent

over

the

network

are

encrypted.

A

value

of

KERBEROS_ENCRYPT

means

that

authentication

is

performed

at

a

Kerberos

server

using

the

Kerberos

security

protocol

for

authentication.

Note:

The

KERBEROS_ENCRYPT

authentication

type

is

only

supported

on

servers

running

Windows

2000.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

contact_host

-

Location

of

contact

list

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

Version

8

DB2

administration

server

TCP/IP

hostname

]

This

parameter

specifies

the

location

where

the

contact

information

used

for

notification

by

the

Scheduler

and

the

Health

Monitor

is

stored.

The

location

is

defined

to

be

a

DB2

administration

server’s

TCP/IP

hostname.

Allowing

contact_host

to

be

located

on

a

remote

DAS

provides

support

for

sharing

a

contact

list

across

multiple

DB2

administration

servers.

If

contact_host

is

not

specified,

the

DAS

assumes

the

contact

information

is

local.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

478

Administration

Guide:

Performance

das_codepage

-

DAS

code

page

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

DB2

code

page

]

This

parameter

indicates

the

code

page

used

by

the

DB2

administration

server.

If

the

parameter

is

null,

then

the

default

code

page

of

the

system

is

used.

This

parameter

should

be

compatible

with

the

locale

of

the

local

DB2

instances.

Otherwise,

the

DB2

administration

server

cannot

communicate

with

the

DB2

instances.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“das_territory

-

DAS

territory”

on

page

479

das_territory

-

DAS

territory

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

DB2

territory

]

This

parameter

shows

the

territory

used

by

the

DB2

administration

server.

If

the

parameter

is

null,

then

the

default

territory

of

the

system

is

used.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“das_codepage

-

DAS

code

page”

on

page

479

dasadm_group

-

DAS

administration

authority

group

name

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

group

name

]

Chapter

13.

Configuring

DB2

479

DAS

Administration

(DASADM)

authority

is

the

highest

level

of

authority

within

the

DAS.

This

parameter

defines

the

group

name

with

DASADM

authority

for

the

DAS.

DASADM

authority

is

determined

by

the

security

facilities

used

in

a

specific

operating

environment.

v

For

the

Windows

NT

and

Windows

2000

operating

systems,

this

parameter

can

be

set

to

any

local

group

that

has

a

name

of

8

characters

or

fewer,

and

is

defined

in

the

Windows

NT

and

Windows

2000

security

database.

If

“NULL”

is

specified

for

this

parameter,

all

members

of

the

Administrators

group

have

DASADM

authority.

v

For

UNIX-based

systems,

if

“NULL”

is

specified

as

the

value

of

this

parameter,

the

DASADM

group

defaults

to

the

primary

group

of

the

instance

owner.

If

the

value

is

not

“NULL”,

the

DASADM

group

can

be

any

valid

UNIX

group

name.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

db2system

-

Name

of

the

DB2

server

system

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Default

[Range]

TCP/IP

host

name

[

any

valid

system

name

]

This

parameter

specifies

the

name

that

is

used

by

your

users

and

database

administrators

to

identify

the

DB2

server

system.

If

possible,

this

name

should

be

unique

within

your

network.

This

name

is

displayed

in

the

system

level

of

the

Control

Center’s

object

tree

to

aid

administrators

in

the

identification

of

server

systems

that

can

be

administered

from

the

Control

Center.

When

using

the

’Search

the

Network’

function

of

the

Configuration

Assistant,

DB2

discovery

returns

this

name

and

it

is

displayed

at

the

system

level

in

the

resulting

object

tree.

This

name

aids

users

in

identifying

the

system

that

contains

the

database

they

wish

to

access.

A

value

for

db2system

is

set

at

installation

time

as

follows:

v

On

Windows,

the

setup

program

sets

it

equal

to

the

computer

name

specified

for

the

Windows

system.

v

On

UNIX

systems,

it

is

set

equal

to

the

UNIX

system’s

TCP/IP

hostname.

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

480

Administration

Guide:

Performance

v

“discover

-

DAS

discovery

mode”

on

page

481

discover

-

DAS

discovery

mode

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

SEARCH

[

DISABLE;

KNOWN;

SEARCH

]

From

an

administration

server

perspective,

this

configuration

parameter

determines

the

type

of

discovery

mode

that

is

started

when

the

DB2

Administration

Server

starts.

v

If

discover

=

SEARCH,

the

administration

server

handles

SEARCH

discovery

requests

from

clients.

SEARCH

provides

a

superset

of

the

functionality

provided

by

KNOWN

discovery.

When

discover

=

SEARCH,

the

administration

server

will

handle

both

SEARCH

and

KNOWN

discovery

requests

from

clients.

v

If

discover

=

KNOWN,

the

administration

server

handles

only

KNOWN

discovery

requests

from

clients.

v

If

discover

=

DISABLE,

then

the

administration

server

will

not

handle

any

type

of

discovery

request.

The

information

for

this

server

system

is

essentially

hidden

from

clients.

The

default

discovery

mode

is

SEARCH.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“db2system

-

Name

of

the

DB2

server

system”

on

page

480

exec_exp_task

-

Execute

expired

tasks

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

No

[

Yes;

No

]

This

parameter

specifies

whether

or

not

the

Scheduler

will

execute

tasks

that

have

been

scheduled

in

the

past,

but

have

not

yet

been

executed.

The

Scheduler

only

detects

expired

tasks

when

it

starts

up.

For

example,

if

you

have

a

job

scheduled

to

run

every

Saturday,

and

the

Scheduler

is

turned

off

on

Friday

and

then

restarted

on

Monday,

the

job

scheduled

for

Saturday

is

now

a

job

that

is

scheduled

in

the

past.

If

exec_exp_task

is

set

to

Yes,

your

Saturday

job

will

run

when

the

Scheduler

is

restarted.

Chapter

13.

Configuring

DB2

481

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

v

“smtp_server

-

SMTP

server”

on

page

484

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

jdk_64_path

-

64-Bit

Software

Developer’s

Kit

for

Java

installation

path

DAS

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

path

]

This

parameter

specifies

the

directory

under

which

the

64-Bit

Software

Developer’s

Kit

(SDK)

for

Java,

to

be

used

for

running

DB2

administration

server

functions,

is

installed.

Note:

This

is

different

from

the

jdk_path

configuration

parameter,

which

specifies

a

32-bit

SDK

for

Java.

Environment

variables

used

by

the

Java

interpreter

are

computed

from

the

value

of

this

parameter.

This

parameter

is

only

used

on

those

platforms

that

support

both

32-

and

64-bit

instances.

Those

platforms

are

also

known

as

64-bit

hybrid

platforms,

and

include

AIX,

HP-UX,

and

the

Solaris

Operating

Environment.

On

all

other

platforms,

only

jdk_path

is

used.

Because

there

is

no

default

value

for

this

parameter,

you

should

specify

a

value

when

you

install

the

SDK

for

Java.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

jdk_path

-

Software

Developer’s

Kit

for

Java

installation

path

DAS

Configuration

Type

DB2

Administration

Server

482

Administration

Guide:

Performance

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Default

Java

install

path

[

any

valid

path

]

This

parameter

specifies

the

directory

under

which

the

Software

Developer’s

Kit

(SDK)

for

Java,

to

be

used

for

running

DB2

administration

server

functions,

is

installed.

Environment

variables

used

by

the

Java

interpreter

are

computed

from

the

value

of

this

parameter.

On

Windows

operating

systems,

Java

files

(if

needed)

are

placed

under

the

sqllib

directory

(in

java\jdk)

during

DB2

installation.

The

jdk_path

configuration

parameter

is

then

set

to

sqllib\java\jdk.

Java

is

never

actually

installed

by

DB2

on

Windows

platforms;

the

files

are

merely

placed

under

the

sqllib

directory,

and

this

is

done

regardless

of

whether

or

not

Java

is

already

installed.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

sched_enable

-

Scheduler

mode

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

Off

[

On;

Off

]

This

parameter

indicates

whether

or

not

the

Scheduler

is

started

by

the

administration

server.

The

Scheduler

allows

tools

such

as

the

Task

Center

to

schedule

and

execute

tasks

at

the

administration

server.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

v

“smtp_server

-

SMTP

server”

on

page

484

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

Chapter

13.

Configuring

DB2

483

sched_userid

-

Scheduler

user

ID

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Informational

Default

[Range]

Null

[

any

valid

user

ID

]

This

parameter

specifies

the

user

ID

used

by

the

Scheduler

to

connect

to

the

tools

catalog

database.

This

parameter

is

only

relevant

if

the

tools

catalog

database

is

remote

to

the

DB2

administration

server.

The

userid

and

password

used

by

the

Scheduler

to

connect

to

the

remote

tools

catalog

database

are

specified

using

the

db2admin

command.

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

v

“smtp_server

-

SMTP

server”

on

page

484

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

smtp_server

-

SMTP

server

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Online

Propagation

Class

Immediate

Default

[Range]

Null

[

any

valid

SMTP

server

TCP/IP

hostname

]

This

parameter

is

used

by

the

Scheduler

and

the

Health

Monitor.

When

the

Scheduler

is

on,

this

parameter

identifies

the

SMTP

server

that

the

Scheduler

will

use

to

send

e-mail

and

pager

notifications.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

484

Administration

Guide:

Performance

toolscat_db

-

Tools

catalog

database

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

database

alias

]

This

parameter

indicates

the

tools

catalog

database

used

by

the

Scheduler.

This

database

must

be

in

the

database

directory

of

the

instance

specified

by

toolscat_inst.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

v

“smtp_server

-

SMTP

server”

on

page

484

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

toolscat_inst

-

Tools

catalog

database

instance

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

instance

]

This

parameter

indicates

the

instance

name

that

is

used

by

the

Scheduler,

along

with

toolscat_db

and

toolscat_schema,

to

identify

the

tools

catalog

database.

The

tools

catalog

database

contains

task

information

created

by

the

Task

Center

and

the

Control

Center.

The

tools

catalog

database

must

be

listed

in

the

database

directory

of

the

instance

specified

by

this

configuration

parameter.

The

database

can

be

local

or

remote.

If

the

tools

catalog

database

is

local,

the

instance

must

be

configured

for

TCP/IP.

If

the

database

is

remote,

the

node

cataloged

in

the

database

directory

must

be

a

TCP/IP

node.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

tasks:

v

“Tools

catalog

database

and

DAS

scheduler

setup

and

configuration”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

Chapter

13.

Configuring

DB2

485

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“toolscat_schema

-

Tools

catalog

database

schema”

on

page

486

v

“smtp_server

-

SMTP

server”

on

page

484

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

toolscat_schema

-

Tools

catalog

database

schema

Configuration

Type

DB2

Administration

Server

Applies

to

DB2

Administration

Server

Parameter

Type

Configurable

Default

[Range]

Null

[

any

valid

schema

]

This

parameter

indicates

the

schema

of

the

tools

catalog

database

used

by

the

Scheduler.

The

schema

is

used

to

uniquely

identify

a

set

of

tools

catalog

tables

and

views

within

the

database.

This

parameter

can

only

be

updated

from

a

Version

8

command

line

processor

(CLP).

Related

reference:

v

“GET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“RESET

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

ADMIN

CONFIGURATION

Command”

in

the

Command

Reference

v

“sched_enable

-

Scheduler

mode”

on

page

483

v

“toolscat_inst

-

Tools

catalog

database

instance”

on

page

485

v

“toolscat_db

-

Tools

catalog

database”

on

page

485

v

“smtp_server

-

SMTP

server”

on

page

484

v

“exec_exp_task

-

Execute

expired

tasks”

on

page

481

v

“sched_userid

-

Scheduler

user

ID”

on

page

484

486

Administration

Guide:

Performance

Part

4.

Appendixes

©

Copyright

IBM

Corp.

1993

-

2004

487

488

Administration

Guide:

Performance

Appendix

A.

DB2

Registry

and

Environment

Variables

This

chapter

describes

how

to

use

the

registry

and

enviroment

variables

and

provides

lists

of

the

variables

in

each

cateory

with

an

explanation

of

their

syntax

and

usage.

DB2

registry

and

environment

variables

This

section

lists

DB2®

registry

variables

and

environment

variables

that

you

may

need

to

know

about

to

get

up

and

running.

Each

variable

has

a

brief

description.

Some

variables

might

not

apply

in

your

environment.

To

view

a

list

of

all

supported

registry

variables,

execute

the

following

command:

db2set

-lr

To

change

the

value

for

a

variable

in

the

current

or

default

instance,

execute

the

following

command:

db2set

registry_variable_name=new_value

Whether

the

DB2

environment

variables

DB2INSTANCE,

DB2NODE,

DB2PATH,

and

DB2INSTPROF

are

stored

in

the

DB2

profile

registries

depends

on

your

operating

system.

To

update

these

environment

variables,

use

the

set

command.

These

changes

are

in

effect

until

the

next

time

the

system

is

rebooted.

On

UNIX®

platforms,

you

can

use

the

export

command

instead

of

the

set

command.

You

must

set

the

values

for

the

changed

registry

variables

before

you

execute

the

DB2START

command.

Note:

If

a

registry

variable

requires

Boolean

values

as

arguments,

the

values

YES,

1,

and

ON

are

all

equivalent

and

the

the

values

NO,

0,

and

OFF

are

also

equivalent.

For

any

variable,

you

can

specify

any

of

the

appropriate

equivalent

values.

Related

concepts:

v

“Environment

variables

and

the

profile

registry”

in

the

Administration

Guide:

Implementation

Related

tasks:

v

“Setting

DB2

registry

variables

at

the

user

level

in

the

LDAP

environment”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“General

registry

variables”

on

page

490

v

“System

environment

variables”

on

page

492

v

“Communications

variables”

on

page

496

v

“Command-line

variables”

on

page

499

v

“MPP

configuration

variables”

on

page

500

v

“SQL

compiler

variables”

on

page

502

v

“Performance

variables”

on

page

506

©

Copyright

IBM

Corp.

1993

-

2004

489

v

“Data

links

variables”

on

page

516

v

“Miscellaneous

variables”

on

page

518

Registry

and

environment

variables

by

category

The

following

sections

list

the

registry

and

environment

variables

according

to

the

aspect

of

database

manager

or

database

behavior

that

they

control.

General

registry

variables

Table

46.

General

Registry

Variables

Variable

Name

Operating

System

Values

Description

DB2ACCOUNT

All

Default=null

The

accounting

string

that

is

sent

to

the

remote

host.

Refer

to

the

DB2

Connect

User’s

Guide

for

details.

DB2BIDI

All

Default=NO

Values:

YES

or

NO

This

variable

enables

bidirectional

support

and

the

DB2CODEPAGE

variable

is

used

to

declare

the

code

page

to

be

used.

Refer

to

the

National

Language

Support

appendix

for

additional

information

on

bidirectional

support.

DB2CODEPAGE

All

Default:

derived

from

the

language

ID,

as

specified

by

the

operating

system.

Specifies

the

code

page

of

the

data

presented

to

DB2

for

database

client

application.

The

user

should

not

set

DB2CODEPAGE

unless

explicitly

stated

in

DB2

documents,

or

asked

to

do

so

by

DB2

service.

Setting

DB2CODEPAGE

to

a

value

not

supported

by

the

operating

system

can

produce

unexpected

results.

Normally,

you

do

not

need

to

set

DB2CODEPAGE

because

DB2

automatically

derives

the

code

page

information

from

the

operating

system.

DB2_COLLECT_TS_REC_INFO

All

Default=OFF

Values:

YES

or

NO

This

variable

specifies

whether

DB2

will

process

all

log

files

when

rolling

forward

a

table

space,

regardless

of

whether

the

log

files

contain

log

records

that

affect

the

table

space.

To

skip

the

log

files

known

not

to

contain

any

log

records

affecting

the

table

space,

set

this

variable

to

″ON″.

DB2_COLLECT_TS_REC_INFO

must

be

set

before

the

log

files

are

created

and

used

so

that

the

information

required

for

skipping

log

files

is

collected.

DB2CONSOLECP

Windows

Default=

null

Values:

all

valid

code

page

values

Specifies

the

codepage

for

displaying

DB2

message

text.

When

specified,

this

value

overrides

the

operating

system

codepage

setting.

DB2COUNTRY

Windows

Default=null

Values:

all

valid

numeric

country,

territory,

or

region

codes

Specifies

the

country,

territory,

or

region

code

of

the

client

application.

When

specified,

this

value

overrides

the

operating

system

setting.

DB2DBDFT

All

Default=null

Specifies

the

database

alias

name

of

the

database

to

be

used

for

implicit

connects.

If

an

application

has

no

database

connection

but

SQL

statements

are

issued,

an

implicit

connect

will

be

made

if

the

DB2DBDFT

environment

variable

has

been

defined

with

a

default

database.

490

Administration

Guide:

Performance

Table

46.

General

Registry

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2DBMSADDR

Windows

32-bit

operating

systems

Default=

0x20000000

for

Windows

NT

Value:

0x20000000

to

0xB0000000

in

increments

of

0x10000

Specifies

the

default

database

manager

shared

memory

address

in

hexadecimal

format.

If

db2start

fails

due

to

a

shared

memory

address

collision,

this

registry

variable

can

be

modified

to

force

the

database

manager

instance

to

allocate

its

shared

memory

at

a

different

address.

DB2DISCOVERYTIME

Windows

operating

systems

Default=40

seconds,

Minimum=20

seconds

Specifies

the

amount

of

time

that

SEARCH

discovery

will

search

for

DB2

systems.

DB2_FORCE_APP_ON_MAX_LOG

All

Default:

TRUE

Values:

TRUE,

FALSE

Specifies

what

happens

when

the

MAX_LOG

configuration

parameter

value

is

exceeded.

If

set

to

TRUE,

the

application

is

forced

off

the

database

and

the

unit

of

work

is

rolled

back.

If

FALSE,

the

current

statement

fails.

The

application

can

still

commit

the

work

completed

by

previous

statements

in

the

unit

of

work,

or

it

can

roll

back

the

work

completed

to

undo

the

unit

of

work.

DB2GRAPHICUNICODESERVER

All

Default=OFF

Values:

ON

or

OFF

This

registry

variable

is

used

to

accommodate

existing

applications

written

to

insert

graphic

data

into

a

Unicode

database.

Its

use

is

only

needed

for

applications

that

specifically

send

sqldbchar

(graphic)

data

in

Unicode

instead

of

the

code

page

of

the

client.

(sqldbchar

is

a

supported

SQL

data

type

in

C

and

C++

that

can

hold

a

single

double-byte

character.)

When

set

to

“ON”,

you

are

telling

the

database

that

graphic

data

is

coming

in

Unicode,

and

the

application

expects

to

receive

graphic

data

in

Unicode.

DB2INCLUDE

All

Default=current

directory

Specifies

a

path

to

be

used

during

the

processing

of

the

SQL

INCLUDE

text-file

statement

during

DB2

PREP

processing.

It

provides

a

list

of

directories

where

the

INCLUDE

file

might

be

found.

Refer

to

the

Application

Development

Guide

for

descriptions

of

how

DB2INCLUDE

is

used

in

the

different

precompiled

languages.

DB2INSTDEF

Windows

operating

systems

Default=DB2

Sets

the

value

to

be

used

if

DB2INSTANCE

is

not

defined.

DB2INSTOWNER

Windows

NT

Default=null

The

registry

variable

created

in

the

DB2

profile

registry

when

the

instance

is

first

created.

This

variable

is

set

to

the

name

of

the

instance-owning

machine.

DB2_LIC_STAT_SIZE

All

Default=null

Range:

0

to

32

767

The

registry

variable

determines

the

maximum

size

(in

MBs)

of

the

file

containing

the

license

statistics

for

the

system.

A

value

of

zero

turns

the

license

statistic

gathering

off.

If

the

variable

is

not

recognized

or

not

defined,

the

variable

defaults

to

unlimited.

The

statistics

are

displayed

using

the

License

Center.

DB2LOCALE

All

Default:

NO

Values:

YES

or

NO

Specifies

whether

the

default

″C″

locale

of

a

process

is

restored

to

the

default

″C″

locale

after

calling

DB2

and

whether

to

restore

the

process

locale

back

to

the

original

’C’

after

calling

a

DB2

function.

If

the

original

locale

was

not

’C’,

then

this

registry

variable

is

ignored.

Appendix

A.

DB2

Registry

and

Environment

Variables

491

Table

46.

General

Registry

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2NBDISCOVERRCVBUFS

All

Default=16

buffers,

Minimum=16

buffers

This

variable

is

used

for

NetBIOS

search

discovery.

The

variable

specifies

the

number

of

concurrent

discovery

responses

that

can

be

received

by

a

client.

If

the

client

receives

more

concurrent

responses

than

are

specified

by

this

variable,

then

the

excess

responses

are

discarded

by

the

NetBIOS

layer.

The

default

is

sixteen

(16)

NetBIOS

receive

buffers.

If

a

number

less

than

the

default

value

is

chosen,

then

the

default

is

used.

DB2_OBJECT_TABLE_ENTRIES

All

Default=0

Values:

0–50000

Specifies

the

expected

number

of

objects

in

a

table

space.

If

you

know

that

a

large

number

of

objects

(for

example,

1000

or

more)

will

be

created

in

a

DMS

table

space,

you

should

set

this

registry

variable

to

the

approximate

number

before

creating

the

table

space.

This

will

reserve

contiguous

storage

for

object

metadata

during

table

space

creation.

Reserving

contiguous

storage

reduces

the

chance

that

an

online

backup

will

block

operations

which

update

entries

in

the

metadata

(for

example,

CREATE

INDEX,

IMPORT

REPLACE).

It

will

also

make

resizing

the

table

space

easier

because

the

metadata

will

be

stored

at

the

start

of

the

table

space.

If

the

initial

size

of

the

table

space

is

not

large

enough

to

reserve

the

contiguous

storage,

the

table

space

creation

will

continue

without

the

additional

space

reserved.

DB2OPTIONS

All

Default=null

Sets

command

line

processor

options.

DB2TERRITORY

All

Default:

derived

from

the

language

ID,

as

specified

by

the

operating

system.

Specifies

the

region,

or

territory

code

of

the

client

application,

which

influences

date

and

time

formats.

DB2_VIEW_REOPT_VALUES

All

Default=NO

Values:

YES,

NO

This

variable

enables

all

users

to

store

the

cached

values

of

a

reoptimized

SQL

statement

in

the

EXPLAIN_PREDICATE

table

when

the

statement

is

explained.

When

this

variable

is

set

to

NO,

only

DBADM

is

allowed

to

save

these

values

in

the

EXPLAIN_PREDICATE

table.

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

System

environment

variables

Table

47.

System

Environment

Variables

Variable

Name

Operating

System

Values

Description

DB2CONNECT_IN_APP_PROCESS

All

Default=YES

Values:

YES

or

NO

When

you

set

this

variable

to

NO,

local

DB2

Connect

clients

on

a

DB2

Connect

Enterprise

Edition

machine

are

forced

to

run

within

an

agent.

Some

advantages

of

running

within

an

agent

are

that

local

clients

can

be

monitored

and

that

they

can

use

SYSPLEX

support.

DB2DOMAINLIST

Windows

NT

server

only

Default=null

Values:

A

list

of

Windows

NT

domain

names

separated

by

commas

(“,”).

492

Administration

Guide:

Performance

|

|
|
|
|
|
|

|
|

|

|
|
|

Table

47.

System

Environment

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Defines

one

or

more

Windows

NT

domains.

The

list

defines

the

domains

which

the

requesting

userID

will

be

authenticated

against.

Only

users

belonging

to

these

domains

will

have

their

connection

or

attachment

requests

accepted.

This

variable

is

effective

only

when

CLIENT

authentication

is

set

in

the

Database

Manager

configuration

and

is

needed

if

a

single

signon

from

a

Windows

NT

desktop

is

required

in

a

Windows

NT

domain

environment.

This

registry

variable

should

only

be

used

under

a

pure

Windows

NT

domain

environment

with

DB2

servers

and

clients

running

DB2

Universal

Database

Version

7.1

(or

later).

DB2ENVLIST

UNIX

Default:

null

Lists

specific

variable

names

for

either

stored

procedures

or

user-defined

functions.

By

default,

the

db2start

command

filters

out

all

user

environment

variables

except

those

prefixed

with

DB2

or

db2.

If

specific

environment

variables

must

be

passed

to

either

stored

procedures

or

user-defined

functions,

you

can

list

the

variable

names

in

the

DB2ENVLIST

environment

variable.

Separate

each

variable

name

by

one

or

more

spaces.

DB2INSTANCE

All

Default=DB2INSTDEF

on

Windows

32-bit

operating

systems.

The

environment

variable

used

to

specify

the

instance

that

is

active

by

default.

On

UNIX,

users

must

specify

a

value

for

DB2INSTANCE.

DB2INSTPROF

Windows

operating

systems

Default:

null

The

environment

variable

used

to

specify

the

location

of

the

instance

directory

on

Windows

operating

systems,

if

different

than

DB2PATH.

DB2LIBPATH

UNIX

Default:

null

DB2

constructs

its

own

shared

library

path.

If

you

wish

to

add

a

PATH

into

the

engine’s

library

path

(for

example,

on

AIX,

a

user-defined

function

requires

a

specific

entry

in

LIBPATH)

then

you

must

set

DB2LIBPATH.

The

actual

valueof

DB2LIBPATH

is

appended

to

the

end

of

the

DB2-constructed

shared

library

path.

DB2NODE

All

Default:

null

Values:

1

to

999

Used

to

specify

the

target

logical

node

of

a

DB2

Enterprise

Server

Edition

database

partition

server

that

you

want

to

attach

to

or

connect

to.

If

this

variable

is

not

set,

the

target

logical

node

defaults

to

the

logical

node

which

is

defined

with

port

0

on

the

machine.

Appendix

A.

DB2

Registry

and

Environment

Variables

493

Table

47.

System

Environment

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2_PARALLEL_IO

All

Default:

null

Values:

v

*[:number-of-disks]

-

meaning

every

table

space

will

have

parallel

I/O

enabled.

A

value

or

symbol

can

be

provided

after

a

colon

to

define

the

default

number

of

disks

per

container

for

all

tablespaces.

A

default

of

6

(the

value

for

a

RAID-5

device)

will

be

used

if

the

number

of

disks

is

not

specified.

v

TablespaceID[:number-of-disks],...

-

a

comma-separated

list

of

defined

table

spaces.

To

define

the

number

of

disks

per

container

for

that

table

space,

specify

a

value

following

a

colon

after

each

table

space

ID.

This

value

can

be

a

numeric

value

or

one

of

the

symbols

described

in

the

table

below.

v

A

combination

of

the

above

two

value

types,

with

each

value

separated

by

a

comma

This

registry

variable

is

used

to

change

the

way

DB2

calculates

the

I/O

parallelism

of

a

tablespace.

When

I/O

parallelism

is

enabled

(either

implicitly,

by

the

use

of

multiple

containers,

or

explicitly,

by

setting

DB2_PARALLEL_IO),

it

is

achieved

by

issuing

the

correct

number

of

prefetch

requests.

Each

prefetch

request

is

an

request

for

an

extent

of

pages.

If

this

registry

variable

is

not

set,

the

degree

of

parallelism

of

any

table

space

will

be

the

number

of

containers

of

the

table

space.

For

example,

if

DB2_PARALLEL_IO

is

set

to

null

and

a

table

space

has

four

containers,

then

there

will

be

four

extent-sized

prefetch

requests

issued.

If

this

registry

variable

is

set,

then

the

degree

of

parallelism

of

the

table

space

will

be

the

ratio

between

the

prefetch

size

and

the

extent

size

of

this

table

space.

For

example,

if

DB2_PARALLEL_IO

is

set

for

a

table

space

that

has

a

prefetch

size

of

160

and

an

extent

size

of

32

pages,

then

there

will

be

five

extent-sized

prefetch

requests

issued.

A

wildcard

″*″

character

can

be

used

to

tell

DB2

to

calculate

the

I/O

parallelism

for

all

table

spaces

this

way.

In

I/O

subsystems

that

support

stripping

of

physical

spindles

beneath

each

DB2

container

(for

example,

with

a

RAID

device),

the

number

of

disks

underneath

each

DB2

container

should

be

taken

into

account

when

choosing

a

prefetch

size

for

the

table

space.

The

prefetch

size

should

be

calculated

based

on

the

following

equation:

Prefetch

size

=

(number

of

containers)

*

(number

of

disks

per

container)

*

extent

size

DB2

automatically

calculates

the

prefetch

size

of

a

table

space

using

the

above

equation

if

the

prefetch

size

of

the

table

space

is

AUTOMATIC.

The

DB2_PARALLEL_IO

registry

variable

can

be

used

to

tell

DB2

the

number

of

disks

per

container.

For

example,

if

DB2_PARALLEL_IO=″1:4″

and

table

space

1

has

three

containers,

the

extent

size

32,

and

prefetch

size

AUTOMATIC,

then

the

prefetch

size

will

be

calculated

as

3

*

4

*

32

=

384

pages.

The

I/O

parallelism

of

this

table

space

will

be

384

/

32

which

is

12.

If

the

prefetch

size

of

a

table

space

is

not

AUTOMATIC

this

information

about

the

number

of

disks

per

container

will

not

be

used.

Any

table

space

that

is

specified

under

DB2_PARALLEL_IO

will

by

default

be

assumed

to

be

using

six

as

the

number

of

disks

per

container,

unless

otherwise

specified

in

the

registry

variable.

For

example,

if

DB2_PARALLEL_IO=*,1:3,

then

all

table

spaces

will

use

six

as

the

number

of

disks

per

container,

except

for

table

space

1,

which

will

use

three.

494

Administration

Guide:

Performance

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

Table

47.

System

Environment

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2PATH

Windows

operating

systems

Default:

(varies

by

operating

system)

The

environment

variable

used

to

specify

the

directory

where

the

product

is

installed

on

Windows

32-bit

operating

systems.

DB2PROCESSORS

Windows

operating

systems

Default:

null

Values:

0–n-1

(where

n=

the

number

of

processors)

Sets

the

process

affinity

mask

for

a

particular

db2syscs

process.

In

environments

running

multiple

logical

nodes,

this

variable

is

used

to

associate

a

logical

node

to

a

processor

or

set

of

processors.

When

specified,

DB2

issues

the

SetProcessAffinityMask()

api.

If

unspecified,

the

db2syscs

process

is

associated

with

all

processors

on

the

machine.

DB2_USE_PAGE_CONTAINER_TAG

All

Default:

null

Values:

ON,

null

By

default,

DB2

stores

a

container

tag

in

the

first

extent

of

each

DMS

container,

whether

it

is

a

file

or

a

device.

The

container

tag

is

the

metadata

for

the

container.

Before

DB2

Version

8.1,

the

container

tag

was

stored

in

a

single

page,

and

it

thus

required

less

space

in

the

container.

To

continue

to

store

the

container

tag

in

a

single

page,

set

DB2_USE_PAGE_CONTAINER_TAG

to

ON.

However,

if

you

set

this

registry

variable

to

ON

when

you

use

RAID

devices

for

containers,

I/O

performance

might

degrade.

Because

for

RAID

devices

you

create

table

spaces

with

an

extent

size

equal

to

or

a

multiple

of

the

RAID

stripe

size,

setting

the

DB2_USE_PAGE_CONTAINER_TAG

to

ON

causes

the

extents

not

to

line

up

with

the

RAID

stripes.

As

a

result,

an

I/O

request

might

need

to

access

more

physical

disks

than

would

be

optimal.

Users

are

strongly

advised

against

enabling

this

registry

variable.

To

activate

changes

to

this

registry

variable,

issue

a

DB2STOP

command

and

then

enter

a

DB2START

command.

DB2_CLPHISTSIZE

All

Default:

20

Note:

This

registry

variable

is

not

set

to

the

default

value

during

installation.

Instead,

the

code

that

makes

use

of

this

variable

uses

a

default

value

of

20

if

the

registry

variable

is

not

set

or

if

it

is

set

to

a

value

outside

of

the

valid

range.Values:

1–500

inclusive

This

variable

determines

the

number

of

commands

stored

in

the

command

history

during

CLP

interactive

sessions.

Because

the

command

history

is

held

in

memory,

a

very

high

value

for

this

variable

might

result

in

a

performance

impact

depending

on

the

number

and

length

of

commands

run

in

a

session.

DB2_CLP_EDITOR

All

Default:

Windows

platforms:

’Notepad’

UNIX:

’vi’

Note:

This

registry

variable

is

not

set

to

the

default

value

during

installation.Instead,

the

code

that

makes

use

of

this

variable

uses

a

default

value

if

the

registry

variable

is

not

set.Values:

Any

valid

editor

that

is

located

in

the

operating

system

path

This

variable

determines

the

editor

to

be

used

when

executing

the

EDIT

command.

From

a

CLP

interactive

session,

the

EDIT

command

launches

an

editor

pre-loaded

with

a

user-specified

command

which

can

then

be

edited

and

run.

Appendix

A.

DB2

Registry

and

Environment

Variables

495

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

Communications

variables

Table

48.

Communications

Variables

Variable

Name

Operating

System

Values

Description

DB2CHECKCLIENTINTERVAL

All,

server

only

Default=50

Values:

A

numeric

value

greater

than

zero.

Specifies

the

frequency

of

APPC

and

TCP/IP

client

connection

verifications.

Permits

early

detection

of

client

termination,

rather

than

waiting

until

after

the

completion

of

the

query.

If

this

variable

is

set

to

0,

then

no

verification

is

performed.

Lower

values

represent

more

frequent

checks.

As

a

guide,

for

low

frequency,

use

100;

for

medium

frequency,

use

50;

for

high

frequency

use

10.

Checking

more

frequently

for

client

status

while

executing

a

database

request

lengthens

the

time

taken

to

complete

queries.

If

the

DB2

workload

is

heavy

(that

is,

it

involves

many

internal

requests),

then

setting

DB2CHECKCLIENTINTERVAL

to

a

low

value

has

a

greater

impact

on

performance

than

in

a

situation

where

the

workload

is

light

and

DB2

is

waiting

most

of

the

time.

In

DB2

UDB,

Version

8.1.4,

the

default

value

for

DB2CHECKCLIENTINTERVAL

is

50.

Prior

to

version

8.1.4,

the

default

value

was

0.

DB2COMM

All,

server

only

Default=null

Values:

any

combination

of

APPC,

IPXSPX,

NETBIOS,

NPIPE,

TCPIP

Specifies

the

communication

managers

that

are

started

when

the

database

manager

is

started.

If

this

is

not

set,

no

DB2

communications

managers

are

started

at

the

server.

DB2_FORCE_NLS_CACHE

AIX,

HP_UX,

the

Solaris

Operating

Environment

Default=FALSE

Values:

TRUE

or

FALSE

Used

to

eliminate

the

chance

of

lock

contention

in

multi-threaded

applications.

When

this

registry

variable

is

“TRUE”,

the

code

page

and

territory

code

information

is

saved

the

first

time

a

thread

accesses

it.

From

that

point,

the

cached

information

is

used

for

any

other

thread

that

requests

this

information.

This

eliminates

lock

contention

and

results

in

a

performance

benefit

in

certain

situations.

This

setting

should

not

be

used

if

the

application

changes

locale

settings

between

connections.

It

is

probably

not

needed

in

such

a

situation

because

multi-threaded

applications

typically

do

not

change

their

locale

settings

because

it

is

not

“thread-safe”

to

do

so.

DB2JD_PORT_NUMBER

All

Default=6789

Values:

1-65535

This

can

be

set

to

override

the

default

port

number

of

the

db2jd.

If

this

registry

variable

is

set,

the

db2jd

will

attempt

to

use

it

as

the

listening

port

of

the

db2jd

when

a

db2jstrt

is

issued

with

no

parameters.

If

this

registry

variable

is

not

set,

and

no

port

parameter

is

provided,

the

db2jd

will

start

on

the

default

port

of

6789.

DB2NBADAPTERS

Windows

Default=0

Range:

0-15,

Multiple

values

should

be

separated

by

commas

Used

to

specify

which

local

adapters

to

use

for

DB2

NetBIOS

LAN

communications.

Each

local

adapter

is

specified

using

its

logical

adapter

number.

DB2NBCHECKUPTIME

Windows

server

only

Default=1

minute

Values:

1-720

496

Administration

Guide:

Performance

|

|
|
|

|
|
|
|
|

|
|

Table

48.

Communications

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Specifies

the

time

interval

between

each

invocation

of

the

NetBIOS

protocol

checkup

procedure.

Checkup

time

is

specified

in

minutes.

Lower

values

ensure

that

the

NetBIOS

protocol

checkup

runs

more

often,

freeing

up

memory

and

other

system

resources

left

when

unexpected

agent/session

termination

occurs.

DB2NBINTRLISTENS

Windows

server

only

Default=1

Values:

1-10

Multiple

values

should

be

separated

by

commas

Specifies

the

number

of

NetBIOS

listen

send

commands

(NCBs)

that

are

asynchronously

issued

in

readiness

for

remote

client

interrupts.

This

flexibility

is

provided

for

″interrupt

active″

environments

to

ensure

that

interrupt

calls

from

remote

clients

can

establish

connections

when

servers

are

busy

servicing

other

remote

interrupts.

Setting

DB2NBINTRLISTENS

to

a

lower

value

conserves

NetBIOS

sessions

and

NCBs

at

the

server.

However,

in

an

environment

where

client

interrupts

are

common,

you

may

need

to

set

DB2NBINTRLISTENS

to

a

higher

value

in

order

to

be

responsive

to

interrupting

clients.

Note:

Values

specified

are

position

sensitive;

they

relate

to

the

corresponding

value

positions

for

DB2NBADAPTERS.

DB2NBRECVBUFFSIZE

Windows

server

only

Default=4096

bytes

Range:

4096-65536

Specifies

the

size

of

the

DB2

NetBIOS

protocol

receive

buffers.

These

buffers

are

assigned

to

the

NetBIOS

receive

NCBs.

Lower

values

conserve

server

memory,

while

higher

values

may

be

required

when

client

data

transfers

are

larger.

DB2NBBRECVNCBS

Windows

server

only

Default=10

Range:

1-99

Specifies

the

number

of

NetBIOS

″receive_any″

commands

(NCBs)

that

the

server

issues

and

maintains

during

operation.

This

value

is

adjusted

depending

on

the

number

of

remote

clients

to

which

your

server

is

connected.

Lower

values

conserve

server

resources.

Note:

Each

adapter

in

use

can

have

its

own

unique

receive

NCB

value

specified

by

DB2NBBRECVNCBS.

The

values

specified

are

position

sensitive;

they

relate

to

the

corresponding

value

positions

for

DB2NBADAPTERS.

DB2NBRESOURCES

Windows

server

only

Default=null

Specifies

the

number

of

NetBIOS

resources

to

allocate

for

DB2

use

in

a

multi-context

environment.

This

variable

is

restricted

to

multi-context

client

operation.

DB2NBSENDNCBS

Windows

server

only

Default=6

Range:

1-720

Specifies

the

number

of

send

NetBIOS

commands

(NCBs)

that

the

server

reserves

for

use.

This

value

can

be

adjusted

depending

on

the

number

of

remote

clients

your

server

is

connected

to.

Setting

DB2NBSENDNCBS

to

a

lower

value

will

conserve

server

resources.

However,

you

might

need

to

set

it

to

a

higher

value

to

prevent

the

server

from

waiting

to

send

to

a

remote

client

when

all

other

send

commands

are

in

use.

DB2NBSESSIONS

Windows

server

only

Default=null

Range:

5-254

Specifies

the

number

of

sessions

that

DB2

should

request

to

be

reserved

for

DB2

use.

The

value

of

DB2NBSESSIONS

can

be

set

to

request

a

specific

session

for

each

adapter

specified

using

DB2NBADAPTERS.

Note:

Values

specified

are

position

sensitive;

they

relate

to

the

corresponding

value

positions

for

DB2NBADAPTERS.

Appendix

A.

DB2

Registry

and

Environment

Variables

497

Table

48.

Communications

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2NBXTRANCBS

Windows

server

only

Default=5

per

adapter

Range:

5-254

Specifies

the

number

of

″extra″

NetBIOS

commands

(NCBs)

the

server

will

need

to

reserve

when

the

db2start

command

is

issued.

The

value

of

DB2NBXTRANCBS

can

be

set

to

request

a

specific

session

for

each

adapter

specified

using

DB2NBADAPTERS.

DB2RETRY

Windows

Default=0

Range:

0-20

000

The

number

of

times

DB2

attempts

to

restart

the

APPC

listener.

If

the

SNA

subsystem

at

the

server/gateway

is

down,

this

profile

variable,

in

conjunction

with

DB2RETRYTIME,

can

be

used

to

automatically

restart

the

APPC

listener

without

disrupting

client

communications

using

other

protocols.

In

such

a

scenario,

it

is

no

longer

necessary

to

stop

and

restart

DB2

to

reinstate

the

APPC

client

communications.

DB2RETRYTIME

Windows

Default=1

minute

Range:

0-7

200

minutes

In

increments

of

one

minute,

the

number

of

minutes

that

DB2

allows

between

performing

successive

retries

to

start

the

APPC

listener.

If

the

SNA

subsystem

at

the

server/gateway

is

down,

this

profile

variable,

in

conjunction

with

DB2RETRY,

can

be

used

to

automatically

restart

the

APPC

listener

without

disrupting

client

communications

using

other

protocols.

In

such

a

scenario,

it

is

no

longer

necessary

to

stop

and

restart

DB2

to

reinstate

the

APPC

client

communications.

DB2SERVICETPINSTANCE

Windows,

AIX,

and

the

Solaris

Operating

Environment

Default=null

Used

to

solve

the

problem

caused

by:

v

More

than

one

instance

running

on

the

same

machine

v

A

Version

6

or

Version

7

instance

running

on

the

same

machine

attempting

to

register

the

same

TP

names.

When

the

db2start

command

is

invoked,

the

instance

specified

will

start

the

APPC

listeners

for

the

following

TP

names:

v

DB2DRDA

v

x’07’6DB

DB2SORCVBUF

All

Default=65536

Specifies

the

value

of

TCP/IP

receive

buffers

on

Windows

operating

systems.

DB2SOSNDBUF

All

Default=65536

Specifies

the

value

of

TCP/IP

send

buffers

on

Windows

NT

operating

systems.

DB2SYSPLEX_SERVER

Windows

NT,

and

UNIX

Default=null

Specifies

whether

SYSPLEX

exploitation

when

connected

to

DB2

for

OS/390

or

z/OS

is

enabled.

If

this

registry

variable

is

not

set

(which

is

the

default),

or

is

set

to

a

non-zero

value,

exploitation

is

enabled.

If

this

registry

variable

is

set

to

zero

(0),

exploitation

is

disabled.

When

set

to

zero,

SYSPLEX

exploitation

is

disabled

for

the

gateway

regardless

of

how

the

DCS

database

catalog

entry

has

been

specified.

For

more

information,

see

the

command-line

processor

CATALOG

DCS

DATABASE

command.

DB2TCPCONNMGRS

All

Default=1

on

serial

machines;

square

root

of

the

number

of

processors

rounded

up

to

a

maximum

of

eight

connection

managers

on

symmetric

multiprocessor

machines.

Values:

1

to

8

498

Administration

Guide:

Performance

|||

|||

Table

48.

Communications

Variables

(continued)

Variable

Name

Operating

System

Values

Description

The

default

number

of

connection

managers

is

created

if

the

registry

variable

is

not

set.

If

the

registry

variable

is

set,

the

value

assigned

here

overrides

the

default

value.

The

number

of

TCP/IP

connection

managers

specifed

up

to

a

maximum

of

8

is

created.

If

less

than

one

is

specified

then

DB2TCPCONNMGRS

is

set

to

a

value

of

one

and

a

warning

is

logged

that

the

value

is

out

of

range.

If

greater

than

eight

is

specified

then

DB2TCPCONNMGRS

is

set

to

a

value

of

eight

and

a

warning

is

logged

that

the

value

is

out

of

range.

Values

between

one

and

eight

are

used

as

given.

When

there

is

greater

than

one

connection

manager

created,

connection

throughput

should

improve

when

multiple

client

connections

are

received

simultaneously.

There

may

be

additional

TCP/IP

connection

manager

processes

(on

UNIX)

or

threads

(on

Windows

operating

systems)

if

the

user

is

running

on

a

SMP

machine,

or

has

modified

the

DB2TCPCONNMGRS

registry

variable.

Additional

processes

or

threads

require

additional

storage.

Note:

Having

the

number

of

connection

managers

set

to

one

causes

a

drop

in

performance

on

remote

connections

in

systems

with

a

lot

of

users,

frequent

connects

and

disconnects,

or

both.

DB2_VI_ENABLE

Windows

NT

Default=OFF

Values:

ON

or

OFF

Specifies

whether

to

use

the

Virtual

Interface

(VI)

Architecture

communication

protocol

or

not.

If

this

registry

variable

is

“ON”,

then

FCM

will

use

VI

for

inter-node

communication.

If

this

registry

variable

is

“OFF”,

then

FCM

will

use

TCP/IP

for

inter-node

communication.

Note:

The

value

of

this

registry

variable

must

be

the

same

across

all

the

database

partitions

in

the

instance.

DB2_VI_VIPL

Windows

NT

Default=

vipl.dll

Specifies

the

name

of

the

Virtual

Interface

Provider

Library

(VIPL)

that

will

be

used

by

DB2.

In

order

to

load

the

library

successfully,

the

library

name

used

in

this

registry

variable

must

be

in

the

PATH

user

environment

variable.

The

currently

supported

implementations

all

use

the

same

library

name.

DB2_VI_DEVICE

Windows

NT

Default=null

Values:

nic0

or

VINIC

Specifies

the

symbolic

name

of

the

device

or

Virtual

Interface

Provider

Instance

associated

with

the

Network

Interface

Card

(NIC).

Independent

hardware

vendors

(IHVs)

each

produce

their

own

NIC.

Only

one

NIC

is

allowed

per

Windows

NT

machine;

multiple

logical

nodes

on

the

same

physical

machine

will

share

the

same

NIC.

The

symbolic

device

name

“VINIC”

must

be

in

upper

case

and

can

only

be

used

with

Synfinity

Interconnect.

All

other

currently

supported

implementations

use

“nic0”

as

the

symbolic

device

name.

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

Command-line

variables

Table

49.

Command

Line

Variables

Variable

Name

Operating

System

Values

Description

DB2BQTIME

All

Default=1

second

Maximum

value:

1

second

Specifies

the

amount

of

time

the

command-line

processor

front

end

sleeps

before

it

checks

whether

the

back-end

process

is

active

and

establishes

a

connection

to

it.

DB2BQTRY

All

Default=60

retries

Minimum

value:

0

retries

Specifies

the

number

of

times

the

command-line

processor

front-end

process

tries

to

determine

whether

the

back-end

process

is

already

active.

It

works

in

conjunction

with

DB2BQTIME.

Appendix

A.

DB2

Registry

and

Environment

Variables

499

Table

49.

Command

Line

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2_CLPPROMPT

All

Default=None

If

it

is

not

defined,

“db2

=>

”

will

be

used

as

the

default

CLP

interactive

prompt.

Possible

values:

Any

text

string

of

length

less

than

100

that

contains

zero

or

more

of

the

following

tokens

%i,

%d,

%ia,

%da,

or

%n.

Users

need

not

set

this

variable

unless

they

explicitly

wish

to

change

the

default

CLP

interactive

prompt

(db2

=>).

This

registry

variable

allows

a

user

to

define

the

prompt

to

be

used

in

the

Command

Line

Processor

(CLP)

interactive

mode.

The

variable

can

be

set

to

any

text

string

of

length

less

than

100

characters

containing

zero

or

more

of

the

optional

tokens

%i,

%d,

%ia,

%da,

or

%n.

When

running

in

CLP

interactive

mode,

the

prompt

to

be

used

is

constructed

by

taking

the

text-string

specified

in

the

DB2_CLPPROMPT

registry

variable

and

replacing

all

occurences

of

the

tokens

%i,

%d,

%ia,

%da,

or

%n

by

the

local

alias

of

the

current

attached

instance,

the

local

alias

of

the

current

database

connection,

the

authorization

ID

of

the

current

attached

instance,

the

authorization

ID

of

the

current

database

connection,

and

newline

(that

is,

a

carriage-return)

respectively.

Notes:

1.

If

the

DB2_CLPPROMPT

registry

variable

is

changed

within

CLP

interactive

mode,

the

new

value

for

DB2_CLPPROMPT

will

not

take

effect

until

the

CLP

interactive

mode

has

been

closed

and

reopened.

2.

If

no

instance

attachment

exists,

%ia

is

replaced

by

the

empty

string

and

%i

is

replaced

by

the

value

of

the

DB2INSTANCE

registry

variable.

On

Windows

platforms

only,

if

the

DB2INSTANCE

variable

is

not

set,

%i

is

replaced

by

the

value

of

the

DB2INSTDEF

registry

variable.

If

neither

of

these

variables

are

set,

%i

is

replaced

by

the

empty

string.

3.

If

no

database

connection

exists,

%da

is

replaced

by

the

empty

string

and

%d

is

replaced

by

the

value

of

the

DB2DBDFT

registry

variable.

If

the

DB2DBDFT

variable

is

not

set,

%d

is

replaced

by

the

empty

string.

4.

The

interactive

input

prompt

will

always

present

the

values

for

the

authorization

IDs,

database

names,

and

instance

names

in

upper

case.

DB2IQTIME

All

Default=5

seconds

Minimum

value:

1

second

Specifies

the

amount

of

time

the

command

line

processor

back

end

process

waits

on

the

input

queue

for

the

front

end

process

to

pass

commands.

DB2RQTIME

All

Default=5

seconds

Minimum

value:

1

second

Specifies

the

amount

of

time

the

command

line

processor

back

end

process

waits

for

a

request

from

the

front

end

process.

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

MPP

configuration

variables

Table

50.

MPP

Configuration

Variables

Variable

Name

Operating

System

Values

DB2ATLD_PWFILE

DB2

UDB

ESE

on

AIX,

the

Solaris

Operating

Environment,

and

Windows

NT

Default=null

Value:

a

file

path

expression

500

Administration

Guide:

Performance

Table

50.

MPP

Configuration

Variables

(continued)

Variable

Name

Operating

System

Values

Specifies

a

path

to

a

file

that

contains

a

password

used

during

AutoLoader

authentication.

If

not

set,

AutoLoader

either

extracts

the

password

from

its

configuration

file

or

prompts

you

interactively.

Using

this

variable

addresses

password

security

concerns

and

allows

the

separation

of

AutoLoader

configuration

information

from

authentication

information.

This

registry

variable

is

no

longer

needed,

but

is

retained

for

backward

compatibility.

DB2CHGPWD_EEE

DB2

UDB

ESE

on

AIX

and

Windows

NT

Default=null

Values:

YES

or

NO

Specifies

whether

you

allow

other

users

to

change

passwords

on

AIX

or

Windows

NT

ESE

systems.

You

must

ensure

that

the

passwords

for

all

partitions

or

nodes

are

maintained

centrally

using

either

a

Windows

NT

domain

controller

on

Windows

NT,

or

NIS

on

AIX.

If

not

maintained

centrally,

passwords

may

not

be

consistent

across

all

partitions

or

nodes.

This

could

result

in

a

password

being

changed

only

at

the

database

partition

to

which

the

user

connects

to

make

the

change.

In

order

to

modify

this

global

registry

variable,

you

must

be

at

the

root

directory

and

on

the

DAS

instance.

This

variable

is

required

only

if

you

use

the

old

db2atld

utility

instead

of

the

new

LOAD

utility.

DB2_FORCE_FCM_BP

AIX

Default=No

Values:

Yes

or

No

This

registry

variable

is

applicable

to

DB2

UDB

ESE

for

AIX

with

multiple

logical

partitions.

When

DB2START

is

issued,

DB2

allocates

the

FCM

buffers

either

from

the

database

global

memory

or

from

a

separate

shared

memory

segment,

if

there

is

not

enough

global

memory

available.

These

buffers

are

used

by

all

FCM

daemons

for

that

instance

on

the

same

physical

machine.

The

kind

of

memory

allocated

is

largely

dependent

on

the

number

of

FCM

buffers

to

be

created,

as

specified

by

the

fcm_num_buffers

database

manager

configuration

parameter.

If

the

DB2_FORCE_FCM_BP

variable

is

set

to

Yes,

the

FCM

buffers

are

always

created

in

a

separate

memory

segment

so

that

communication

between

FCM

daemons

of

different

logical

partitions

on

the

same

physical

node

occurs

through

shared

memory.

Otherwise,

FCM

daemons

on

the

same

node

communicate

through

UNIX

Sockets.

Communicating

through

shared

memory

in

is

faster,

but

there

is

one

fewer

shared

memory

segment

available

for

other

uses,

particularly

for

database

buffer

pools.

Enabling

the

DB2_FORCE_FCM_BP

registry

variable

thus

reduces

the

maximum

size

of

database

buffer

pools.

DB2_NUM_FAILOVER_NODES

All

Default:

2

Values:

0

to

the

number

of

logical

nodes

Specifies

the

number

of

nodes

that

can

be

used

as

failover

nodes

in

a

high

availability

environment.

With

high

availability,

if

a

node

fails,

then

the

node

can

be

restarted

as

a

second

logical

node

on

a

different

host.

The

number

used

with

this

variable

determines

how

much

memory

is

reserved

for

FCM

resources

for

failover

nodes.

For

example,

host

A

has

two

logical

nodes:

1

and

2;

and

host

B

has

two

logical

nodes:

3

and

4.

Assume

DB2_NUM_FAILOVER_NODES

is

set

to

2.

During

DB2START,

both

host

A

and

host

B

will

reserve

enough

memory

for

FCM

so

that

up

to

four

logical

nodes

could

be

managed.

Then

if

one

host

fails,

the

logical

nodes

for

the

failing

host

could

be

restarted

on

the

other

host.

DB2_PARTITIONEDLOAD__DEFAULT

All

supported

ESE

platforms

Default:

YES;

Range

of

values:

YES/NO

The

DB2_PARTITIONEDLOAD_DEFAULT

registry

variable

lets

users

change

the

default

behavior

of

the

Load

utility

in

an

ESE

environment

when

no

ESE-specific

Load

options

are

specified.

The

default

value

is

YES,

which

specifies

that

in

an

ESE

environment

if

you

do

not

specify

ESE-specific

Load

options,

loading

is

attempted

on

all

partitions

on

which

the

target

table

is

defined.

When

the

value

is

NO,

loading

is

attempted

only

on

the

partition

to

which

the

Load

utility

is

currently

connected.

DB2PORTRANGE

Windows

NT

Values:

nnnn:nnnn

This

value

is

set

to

the

TCP/IP

port

range

used

by

FCM

so

that

any

additional

partitions

created

on

another

machine

will

also

have

the

same

port

range.

Appendix

A.

DB2

Registry

and

Environment

Variables

501

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

SQL

compiler

variables

Table

51.

SQL

Compiler

Variables

Variable

Name

Operating

System

Values

Description

DB2_ANTIJOIN

All

Default=NO

in

a

ESE

environment

Default=YES

in

a

non-ESE

environment

Values:

YES,

NO

or

EXTEND

For

DB2

Universal

Database

ESE

environments:

when

″YES″

is

specified,

the

optimizer

searches

for

opportunities

to

transform

“NOT

EXISTS”

subqueries

into

anti-joins

which

can

be

processed

more

efficiently

by

DB2.

For

non-ESE

environments:

when

″NO″

is

specified,

the

optimizer

limits

the

opportunities

to

transform

“NOT

EXISTS”

subqueries

into

anti-joins.

In

both

ESE

and

NON-ESE

environments,

when

EXTEND

is

specified,

the

optimizer

searches

for

opportunities

to

transform

both

″NOT

IN″

and

″NOT

EXISTS″

subqueries

into

anti-joins.

DB2_CORRELATED_PREDICATES

All

Default=Yes

Values:

Yes

or

No

The

default

for

this

variable

is

″Yes″.

When

there

are

unique

indexes

on

correlated

columns

in

a

join,

and

this

registry

variable

is

″Yes″,

the

optimizer

attempts

to

detect

and

compensate

for

correlation

of

join

predicates.

When

this

registry

variable

is

″Yes″,

the

optimizer

uses

the

KEYCARD

information

of

unique

index

statistics

to

detect

cases

of

correlation,

and

dynamically

adjusts

the

combined

selectivities

of

the

correlated

predicates,

thus

obtaining

a

more

accurate

estimate

of

the

join

size

and

cost.

Adjustment

is

also

done

for

correlation

of

simple

equality

predicates

like

WHERE

C1=5

AND

C2=10

if

there

is

an

index

on

C1

and

C2.

The

index

need

not

be

unique

but

the

equality

predicate

columns

must

cover

all

the

columns

in

the

index.

DB2_HASH_JOIN

All

Default=YES

Values:

YES

or

NO

Specifies

hash

join

as

a

possible

join

method

when

compiling

an

access

plan.

DB2_INLIST_TO_NLJN

All

Default=NO

Values:

YES

or

NO

502

Administration

Guide:

Performance

Table

51.

SQL

Compiler

Variables

(continued)

Variable

Name

Operating

System

Values

Description

In

some

situations,

the

SQL

compiler

can

rewrite

an

IN

list

predicate

to

a

join.

For

example,

the

following

query:

SELECT

*

FROM

EMPLOYEE

WHERE

DEPTNO

IN

(’D11’,

’D21’,

’E21’)

could

be

written

as:

SELECT

*

FROM

EMPLOYEE,

(VALUES

’D11’,

’D21’,

’E21)

AS

V(DNO)

WHERE

DEPTNO

=

V.DNO

This

revision

might

provide

better

performance

if

there

is

an

index

on

DEPTNO.

The

list

of

values

would

be

accessed

first

and

joined

to

EMPLOYEE

with

a

nested

loop

join

using

the

index

to

apply

the

join

predicate.

Sometimes

the

optimizer

does

not

have

accurate

information

to

determine

the

best

join

method

for

the

rewritten

version

of

the

query.

This

can

occur

if

the

IN

list

contains

parameter

markers

or

host

variables

which

prevent

the

optimizer

from

using

catalog

statistics

to

determine

the

selectivity.

This

registry

variable

causes

the

optimizer

to

favor

nested

loop

joins

to

join

the

list

of

values,

using

the

table

that

contributes

the

IN

list

as

the

inner

table

in

the

join.

DB2_LIKE_VARCHAR

All

Default=Y,Y

Controls

the

use

of

sub-element

statistics.

These

are

statistics

about

the

content

of

data

in

columns

when

the

data

has

a

structure

in

the

form

of

a

series

of

sub-fields

or

sub-elements

delimited

by

blanks.

Collection

of

sub-element

statistics

is

optional

and

controlled

by

options

in

the

RUNSTATS

command

or

API.

This

registry

variable

affects

how

the

optimizer

deals

with

a

predicate

of

the

form:

COLUMN

LIKE

’%xxxxxx%’

where

the

xxxxxx

is

any

string

of

characters.

The

syntax

showing

how

this

registry

variable

is

used

is:

db2set

DB2_LIKE_VARCHAR=[Y|N|S|num1]

[,Y|N|S|num2]

where

v

The

term

preceding

the

comma,

or

the

only

term

to

the

right

of

the

predicate,

means

the

following

but

only

if

the

second

term

is

specified

as

N

or

the

column

does

not

have

positive

sub-element

statistics:

–

S

–

The

optimizer

estimates

the

length

of

each

element

in

a

series

of

elements

concatenated

together

to

form

a

column

based

on

the

length

of

the

string

enclosed

in

the

%

characters.

–

Y

–

The

default.

Use

a

default

value

of

1.9

for

the

algorithm

parameter.

Use

a

variable-length

sub-element

algorithm

with

the

algorithm

parameter.

–

N

–

Use

a

fixed-length

sub-element

algorithm.

–

num1

–

Use

the

value

of

num1

as

the

algorithm

parameter

with

the

variable

length

sub-element

algorithm.

v

The

term

following

the

comma

means

the

following,

but

only

for

columns

that

do

have

positive

sub-element

statistics:

–

N

–

Do

not

use

sub-element

statistics.

The

first

term

takes

effect

–

Y

–

The

default.

Use

a

variable-length

sub-element

algorithm

that

uses

sub-element

statistics

together

with

the

1.9

default

value

for

the

algorithm

parameter

in

the

case

of

columns

with

positive

sub-element

statistics.

–

num2

–

Use

a

variable-length

sub-element

algorithm

that

uses

sub-element

statistics

together

with

the

value

of

num2

as

the

algorithm

parameter

in

the

case

of

columns

with

positive

sub-element

statistics.

DB2_MINIMIZE_LISTPREFETCH

All

Default=NO

Values:

YES

or

NO

Appendix

A.

DB2

Registry

and

Environment

Variables

503

Table

51.

SQL

Compiler

Variables

(continued)

Variable

Name

Operating

System

Values

Description

List

prefetch

is

a

special

table

access

method

that

involves

retrieving

the

qualifying

RIDs

from

the

index,

sorting

them

by

page

number

and

then

prefetching

the

data

pages.

Sometimes

the

optimizer

does

not

have

accurate

information

to

determine

if

list

prefetch

is

a

good

access

method.

This

might

occur

when

predicate

selectivities

contain

parameter

markers

or

host

variables

that

prevent

the

optimizer

from

using

catalog

statistics

to

determine

the

selectivity.

This

registry

variable

prevents

the

optimizer

from

considering

list

prefetch

in

such

situations.

DB2_SELECTIVITY

ALL

Default=No

Values:

Yes

or

No

This

registry

variable

controls

where

the

SELECTIVITY

clause

can

be

used

in

search

conditions

in

SQL

statements.

When

this

registry

variable

is

set

to

″Yes″,

the

SELECTIVITY

clause

can

be

specified

for

the

following

predicates:

v

A

basic

predicate

in

which

at

least

one

expression

contains

host

variables

v

A

LIKE

predicate

in

which

the

MATCH

expression,

predicate

expression,

or

escape

expression

contains

host

variables

DB2_NEW_CORR_SQ_FF

All

Default=OFF

Values:

ON

or

OFF

Affects

the

selectivity

value

computed

by

the

SQL

optimizer

for

certain

subquery

predicates

when

it

is

set

to

“ON”.

It

can

be

used

to

improve

the

accuracy

of

the

selectivity

value

of

equality

subquery

predicates

that

use

the

MIN

or

MAX

aggregate

function

in

the

SELECT

list

of

the

subquery.

For

example:

SELECT

*

FROM

T

WHERE

T.COL

=

(SELECT

MIN(T.COL)

FROM

T

WHERE

...)

DB2_PRED_FACTORIZE

All

Default=NO

Value:

YES

or

NO

Specifies

whether

the

optimizer

searches

for

opportunities

to

extract

additional

predicates

from

disjuncts.

In

some

circumstances,

the

additional

predicates

can

alter

the

estimated

cardinality

of

the

intermediate

and

final

result

sets.

With

the

following

query:

SELECT

n1.empno,

n1.lastname

FROM

employee

n1,

employee

n2

WHERE

((n1.lastname=’SMITH’

AND

n2.lastname=’JONES’)

OR

(n1.lastname=’JONES’

AND

n2.lastname=’SMITH’))

the

optimizer

can

generate

the

following

additional

predicates:

SELECT

n1.empno,

n1.lastname

FROM

employee

n1,

employee

n2

WHERE

n1.lastname

IN

(’SMITH’,

’JONES’)

AND

n2.lastname

IN

(’SMITH’,

’JONES’)

AND

((n1.lastname=’SMITH’

AND

n2.lastname=’JONES’)

OR

(n1.lastname=’JONES’

AND

n2.lastname=’SMITH’))

504

Administration

Guide:

Performance

Table

51.

SQL

Compiler

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2_REDUCED_OPTIMIZATION

All

Default=NO

Values:

NO,

YES,

Any

integer,

DISABLE

This

registry

variable

lets

you

request

either

reduced

optimization

features

or

rigid

use

of

optimization

features

at

the

specified

optimization

level.

If

you

reduce

the

number

of

optimization

techniques

used,

you

also

reduce

time

and

resource

use

during

optimization.

Note:

Although

optimization

time

and

resource

use

might

be

reduced,

the

risk

of

producing

a

less

than

optimal

data

access

plan

is

increased.

Use

this

registry

variable

only

when

advised

by

IBM

or

one

of

its

partners.

v

If

set

to

NO

The

optimizer

does

not

change

its

optimization

techniques.

v

If

set

to

YES

If

the

optimization

level

is

5

(the

default)

or

lower,

the

optimizer

disables

some

optimization

techniques

that

might

consume

significant

prepare

time

and

resources

but

do

not

usually

produce

a

better

access

plan.

If

the

optimization

level

is

exactly

5,

the

optimizer

scales

back

or

disables

some

additional

techniques,

which

might

further

reduce

optimization

time

and

resource

use,

but

also

further

increase

the

risk

of

a

less

than

optimal

access

plan.

For

optimization

levels

lower

than

5,

some

of

these

techniques

might

not

be

in

effect

in

any

case.

If

they

are,

however,

they

remain

in

effect.

v

If

set

to

any

integer

The

effect

is

the

same

as

YES,

with

the

following

additional

behavior

for

dynamically

prepared

queries

optimized

at

level

5.

If

the

total

number

of

joins

in

any

query

block

exceeds

the

setting,

then

the

optimizer

switches

to

greedy

join

enumeration

instead

of

disabling

additional

optimization

techniques

as

described

above

for

level

5

optimization

levels.

which

implies

that

the

query

will

be

optimized

at

a

level

similar

to

optimization

level

2.

v

If

set

to

DISABLE

The

behavior

of

the

optimizer

when

unconstrained

by

this

DB2_REDUCED_OPTIMIZATION

variable

is

sometimes

to

dynamically

reduce

the

optimization

for

dynamic

queries

at

optimization

level

5.

This

setting

disables

this

behavior

and

requires

the

optimizer

to

perform

full

level

5

optimization.

Note

that

the

dynamic

optimization

reduction

at

optimization

level

5

takes

precedence

over

the

behavior

described

for

optimization

level

of

exactly

5

when

DB2_REDUCED_OPTIMIZATION

is

set

to

YES

as

well

as

the

behavior

described

for

the

integer

setting.

DB2_SQLROUTINE_PREPOPTS

All

Default=empty

string

Values:

v

BLOCKING

{UNAMBIG

|

ALL

|

NO}

v

DATETIME

{DEF

|

USA

|

EUR

|

ISO

|

JIS

|

LOC}

v

DEGREE

{1

|

degree-of-parallelism

|

ANY}

v

DYNAMICRULES

{BIND

|

RUN}

v

EXPLAIN

{NO

|

YES

|

ALL}

v

EXPLSNAP

{NO

|

YES

|

ALL}

v

FEDERATED

{NO

|

YES}

v

INSERT

{DEF

|

BUF}

v

ISOLATION

{CS

|

RR

|

UR

|

RS

|

NC}

v

QUERYOPT

optimization-level

v

VALIDATE

{RUN

|

BIND}

The

DB2_SQLROUTINE_PREPOPTS

registry

variable

can

be

used

to

customize

the

precompile

and

bind

options

for

SQL

procedures.

Related

concepts:

v

“Optimization

class

guidelines”

on

page

72

Appendix

A.

DB2

Registry

and

Environment

Variables

505

|||

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

v

“Strategies

for

selecting

optimal

joins”

on

page

160

v

“DB2

registry

and

environment

variables”

on

page

489

Related

reference:

v

“Optimization

classes”

on

page

73

Performance

variables

Table

52.

Performance

Variables

Variable

Name

Operating

System

Values

Description

DB2AFFINITIES

AIX

5

or

higher,

all

Linux

except

zSeries

(32–bit)

Default=Not

set

Values:

valid

path

to

configuration

file

Defines

a

resource

policy

which

can

be

used

to

limit

what

operating

system

resources

are

used

by

DB2.

For

example,

on

AIX

or

Linux,

this

registry

variable

can

be

used

to

limit

the

set

of

processors

that

DB2

uses.

On

AIX

NUMA

enabled

machines,

a

policy

can

be

defined

which

specifies

what

resource

sets

DB2

will

use.

When

resource

set

binding

is

used,

each

individual

DB2

process

will

be

bound

to

a

particular

resource

set.

This

can

be

beneficial

in

some

performance

tuning

scenarios.

The

registry

variable

can

be

set

to

indicate

the

path

to

a

configuration

file

which

defines

a

policy

for

binding

DB2

processes

to

operating

system

resources.

The

resource

policy

allows

you

to

specify

a

set

of

operating

system

resources

to

restrict

DB2.

Each

DB2

process

is

bound

to

a

single

resource

of

the

set.

Resource

assignment

occurs

in

a

circular

round

robin

fashion.

Sample

configuration

files:

Example

1:

Bind

all

DB2

processes

to

either

CPU

1

or

3.

<RESOURCE_POLICY>

<METHOD>CPU</METHOD>

<RESOURCE>1</RESOURCE>

<RESOURCE>3</RESOURCE>

</RESOURCE_POLICY>

Example

2:

Bind

DB2

processes

to

one

of

the

following

resource

sets:

sys/node.03.00000,

sys/node.03.00001,

sys/node.03.00002,

sys/node.03.00003

<RESOURCE_POLICY>

<METHOD>RSET</METHOD>

<RESOURCE>sys/node.03.00000</RESOURCE>

<RESOURCE>sys/node.03.00001</RESOURCE>

<RESOURCE>sys/node.03.00002</RESOURCE>

<RESOURCE>sys/node.03.00003</RESOURCE>

</RESOURCE_POLICY>

Note:

Use

of

the

RSET

method

requires

CAP_NUMA_ATTACH

capability

and

is

not

supported

on

Linux.

DB2_ALLOCATION_SIZE

All

Default=8

MB

Range:

32

KB–256

MB

Specifies

the

size

of

memory

allocations

for

buffer

pools.

The

potential

advantage

of

setting

a

higher

value

for

this

registry

variable

is

that

it

will

require

fewer

allocations

to

reach

a

desired

amount

of

memory

that

is

allocated

to

a

buffer

pool.

The

potential

cost

of

setting

a

higher

value

for

this

registry

variable

is

that

memory

can

be

wasted

if

the

buffer

pool

is

altered

by

a

non-multiple

of

the

allocation

size.

For

example,

if

the

value

for

DB2_ALLOCATION_SIZE

is

8

MB

and

a

buffer

pool

is

reduced

by

4

MB,

this

4

MB

will

be

wasted

because

an

entire

8

MB

segment

cannot

be

freed.

506

Administration

Guide:

Performance

|

|
|

|
|
|

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2_APM_PERFORMANCE

All

Default=OFF

Values:

ON

,

OFF

Set

this

variable

to

ON

to

enable

performance-related

changes

in

the

access

plan

manager

(APM)

that

affect

the

behavior

of

the

SQL

cache

(package

cache).

These

settings

are

not

usually

recommended

for

production

systems.

They

introduce

some

limitations,

such

as

the

possibility

of

out-of-package

cache

errors

or

increased

memory

use

or

both.

Setting

DB2_APM_PERFORMANCE

to

ON

also

enables

the

’No

Package

Lock’

mode.

This

mode

allows

the

Global

SQL

Cache

to

operate

without

the

use

of

package

locks,

which

are

internal

system

locks

that

protect

cached

package

entries

from

being

removed.

The

’No

Package

Lock’

mode

might

result

in

somewhat

improved

performance,

but

certain

database

operations

are

not

allowed.

These

prohibited

operations

might

include:

operations

that

invalidate

packages,

operations

that

inoperate

packages,

and

PRECOMPILE,

BIND,

and

REBIND.

DB2ASSUMEUPDATE

All

Default=OFF

Values:

ON,

OFF

When

enabled,

allows

DB2

to

assume

that

all

fixed

length

columns

provided

in

an

UPDATE

statement

are

in

fact

being

changed.

This

eliminates

the

need

for

DB2

to

compare

the

existing

column

values

to

the

new

values

provided

to

determine

if

the

column

is

actually

changing.

Using

this

registry

variable

when

columns

are

provided

for

update

(for

example,

in

a

SET

clause)

but

are

not

actually

being

modified

can

result

in

additional

logging

and

index

maintenance.

This

registry

variable

is

checked

at

the

time

of

an

update.

DB2_AVOID_PREFETCH

All

Default=OFF,

Values:

ON

or

OFF

Specifies

whether

prefetch

should

be

used

during

crash

recovery.

If

DB2_AVOID_PREFETCH=ON,

prefetch

is

not

used.

DB2_AWE

Windows

2000

Default=null

Values:

<entry>[;<entry>...]

where

<entry>=<buffer

pool

ID>,<number

of

physical

pages>,

<number

of

address

windows>

Allows

DB2

UDB

on

32-bit

Windows

2000

platforms

to

allocate

buffer

pools

that

use

up

to

64

GB

of

memory.

Windows

2000

must

be

configured

correctly

to

support

Address

Windowing

Extensions

(AWE)

buffer

pools.

This

includes

associating

the

“lock

pages

in

memory”-right

with

the

user,

allocating

the

physical

pages

and

the

address

window

pages,

and

setting

this

registry

variable.

In

setting

this

variable

you

need

to

know

the

buffer

pool

ID

of

the

buffer

pool

that

is

to

be

used

for

AWE

support.

The

ID

of

the

buffer

pool

can

be

seen

in

the

BUFFERPOOLID

column

of

the

SYSCAT.BUFFERPOOLS

system

catalog

view.

Note:

v

If

AWE

support

is

enabled,

extended

storage

cannot

be

used

for

any

of

the

buffer

pools

in

the

database.

v

Buffer

pools

referenced

with

this

registry

variable

must

already

exist

in

SYSCAT.SYSBUFFERPOOLS.

v

Buffer

pools

that

are

enabled

for

AWE

will

take

precedence

over

buffer

pools

enabled

for

block-based

I/O.

If

a

buffer

pool

is

configured

for

both

AWE

and

block-based

I/O,

AWE

will

take

precedence

over

block-based

I/O.

DB2_BINSORT

All

Default=YES

Values:

YES

or

NO

Appendix

A.

DB2

Registry

and

Environment

Variables

507

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Enables

a

new

sort

algorithm

that

reduces

the

CPU

time

and

elapsed

time

of

sorts.

This

new

algorithm

extends

the

extremely

efficient

integer

sorting

technique

of

DB2

UDB

to

all

sort

data

types

such

as

BIGINT,

CHAR,

VARCHAR,

FLOAT,

and

DECIMAL,

as

well

as

combinations

of

these

data

types.

To

enable

this

new

algorithm,

use

the

following

command:

db2set

DB2_BINSORT

=

yes

DB2BPVARS

As

specified

for

each

parameter

Default=path

Two

sets

of

parameters

are

available

to

tune

buffer

pools.

One

set

of

parameters,

available

only

on

Windows,

specify

that

buffer

pools

should

use

scatter

read

for

specific

types

of

containers.

The

other

set

of

parameters,

available

on

all

platforms,

affect

prefetching

behavior.

Parameters

are

specified

in

an

ASCII

file,

one

parameter

on

each

line,

in

the

form

parameter=value.

For

example,

a

file

named

bpvars.vars

might

contain

the

following

lines:

NO_NT_SCATTER

=

1

NUMPREFETCHQUEUES

=

2

Assuming

that

bpvars.vars

is

stored

in

F:\vars\,

to

set

these

variables

you

execute

the

following

command:

db2set

DB2BPVARS=F:\vars\bpvars.vars

Scatter-read

parameters

The

scatter-read

parameters

are

recommended

for

systems

with

a

large

amount

of

sequential

prefetching

against

the

respective

type

of

containers

and

for

which

you

have

already

set

DB2NTNOCACHE

to

ON.

These

parameters,

available

only

on

Windows

platforms,

are

NT_SCATTER_DMSFILE,

NT_SCATTER_DMSDEVICE,

and

NT_SCATTER_SMS.

Specify

the

NO_NT_SCATTER

parameter

to

explicitly

disallow

scatter

read

for

any

container.

Specific

parameters

are

used

to

turn

scatter

read

on

for

all

containers

of

the

indicated

type.

For

each

of

these

parameters,

the

default

is

zero

(or

OFF);

and

the

possible

values

include:

zero

(or

OFF)

and

1

(or

ON).

Note:

You

can

turn

on

scatter

read

only

if

DB2NTNOCACHE

is

set

to

ON

to

turn

Windows

file

caching

off.

If

DB2NTNOCACHE

is

set

to

OFF

or

not

set,

a

warning

message

is

written

to

the

administration

notification

log

if

you

attempt

to

turn

on

scatter

read

for

any

container,

and

scatter

read

remains

disabled.

Prefetch-adjustment

parameters

The

prefetch-adjustment

parameters

are

NUMPREFETCHQUEUES

and

PREFETCHQUEUESIZE.

These

parameters

are

available

on

all

platforms

and

can

be

used

to

improve

buffer-pool

data

prefetching.

For

example,

consider

sequential

prefetching

in

which

the

desired

PREFETCHSIZE

is

divided

into

PREFETCHSIZE/EXTENTSIZE

prefetch

requests.

In

this

case,

requests

are

placed

on

prefetch

queues

from

which

I/O

servers

are

dispatched

to

perform

asynchronous

I/O.

By

default,

DB2

maintains

one

queue

of

size

max(

100

,

2*NUM_IOSERVERS

)

for

each

database

partition.

In

some

environments,

performance

improves

with

either

more

queues

or

queues

of

a

different

size

or

both.

The

number

of

prefetch

queues

should

be

at

most

one

half

of

the

number

of

I/O

servers.

When

you

set

these

parameters,

consider

other

parameters

such

as

PREFETCHSIZE,

EXTENTSIZE,

NUM_IOSERVERS,

and

buffer-pool

size,

as

well

as

workload

characteristics

such

as

the

number

of

current

users.

If

you

think

the

default

values

are

too

small

for

your

environment,

first

increase

the

values

only

slightly.

For

example,

you

might

set

NUMPREFETCHQUEUES=4

and

PREFETCHQUEUESIZE=200.

Make

changes

to

these

parameters

in

a

controlled

manner

so

that

you

can

monitor

and

evaluate

the

effects

of

the

change.

For

NUMPREFETCHQUEUES,

the

default

is

1,

and

the

range

of

values

is

1

to

NUM_IOSERVERS.

If

you

set

NUMPREFETCHQUEUES

to

less

than

1,

it

is

adjusted

to

1.

If

you

set

it

greater

than

NUM_IOSERVERS,

it

is

adjusted

to

NUM_IOSERVERS.

For

PREFETCHQUEUESIZE,

the

default

value

is

max(100,2*NUM_IOSERVERS).

The

range

of

values

is

1

to

32767.

If

you

set

PREFETCHQUEUESIZE

to

less

than

1,

it

is

adjusted

to

the

default.

If

set

greater

than

32767,

it

is

adjusted

to

32767.

508

Administration

Guide:

Performance

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2CHKPTR

All

Default=OFF,

Values:

ON

or

OFF

Specifies

whether

or

not

pointer

checking

for

input

is

required.

DB2CHKSQLDA

All

Default=OFF,

Values:

ON

or

OFF

Specifies

whether

or

not

SQLDA

checking

for

input

is

required.

DB2_ENABLE_BUFPD

All

Default=YES

Values:

ON

or

OFF

Specifies

whether

or

not

DB2

uses

intermediate

buffering

to

improve

query

performance.

The

buffering

may

not

improve

query

performance

in

all

environments.

Testing

should

be

done

to

determine

individual

query

performance

improvements.

DB2_EVALUNCOMMITTED

All

Default=OFF

Values:

ON,

OFF

When

enabled,

will

allow,

where

possible,

table

or

index

access

scans

to

defer

or

avoid

row

locking

until

a

data

record

is

known

to

satisfy

predicate

evaluation.

With

this

variable

enabled,

predicate

evaluation

may

occur

on

uncommitted

data.

It

is

applicable

only

to

statements

using

either

Cursor

Stability

or

Read

Stability

isolation

levels.

For

index

scans,

the

index

must

be

a

type-2

index.

Furthermore,

deleted

rows

are

skipped

unconditionally

on

table

scan

access

while

deleted

keys

are

not

skipped

for

type-2

index

scans

unless

the

registry

variable

DB2_SKIPDELETED

is

also

set.

The

activation

of

this

the

DB2_EVALUNCOMMITTED

registry

variable

is

effective

on

db2start

while

the

decision

as

to

whether

deferred

locking

is

applicable,

is

made

at

statement

compile

or

bind

time.

DB2_EXTENDED_OPTIMIZATION

All

Default=OFF

Values:

ON

or

OFF

Specifies

whether

or

not

the

query

optimizer

uses

optimization

extensions

to

improve

query

performance.

The

extensions

may

not

improve

query

performance

in

all

environments.

Testing

should

be

done

to

determine

individual

query

performance

improvements.

DB2_KEEPTABLELOCK

All

Default=OFF

Values:

ON,

OFF

When

enabled,

allows

DB2

to

avoid

releasing

the

table

lock

when

an

Uncommitted

Read

or

Cursor

Stability

isolation

level

is

closed.

The

table

lock

which

is

kept

will

be

released

at

the

end

of

the

transaction,

just

as

it

would

be

released

for

Read

Stability

and

Repeatable

Read

scans.

This

registry

variable

is

checked

at

statement

compile

or

bind

time.

DB2_LGPAGE_BP

AIX

5.x

64-bit

only

Linux

Default=OFF

Values:

ON

or

OFF

Appendix

A.

DB2

Registry

and

Environment

Variables

509

|

|

|

|

||

|

|

|

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

The

DB2_LGPAGE_BP

registry

variable

is

used

to

enable

large

page

support

when

running

on

AIX

5.x

or

any

Linux

architecture

with

the

appropriate

kernel

support.

It

is

supported

only

for

DB2

UDB

for

AIX,

64-bit

Edition,

and

DB2

UDB

for

Linux.

Large

page

usage

is

primarily

intended

to

provide

performance

improvements

to

high

performance

computing

applications.

Memory

access

intensive

applications

that

use

large

amounts

of

virtual

memory

may

obtain

performance

improvements

by

using

large

pages.

To

enable

DB2

to

use

large

page,

you

must

first

configure

the

operating

system

to

use

large

pages.

On

64-bit

DC2

for

AIX,

enabling

this

variable

will

reduce

the

size

of

the

shared

memory

segment

backing

database

memory

to

the

minimum

requirement

(the

default

is

to

create

a

64GB

segment

-

see

the

database_memory

configuration

parameter

for

more

details).

This

is

to

avoid

pinning

more

shared

memory

in

RAM

than

is

likely

to

be

used.

With

this

variable

set,

the

ability

to

dynamically

increase

the

overall

database

shared

memory

configuration,

for

example,

to

increase

the

size

of

buffer

pools,

will

be

limited.

On

Linux,

there

is

an

additional

requirement

for

the

availablility

of

the

libcap.so

library.

This

library

must

be

installed

for

this

option

to

work.

If

this

option

is

turned

on,

and

the

library

is

not

on

the

system,

DB2

will

disable

the

large

Kernel

pages

and

continue

to

function

as

it

would

previously.

On

Linux,

to

verify

that

Large

Kernel

Pages

are

available,

issue

the

following

command:

cat

/proc/meminfo

If

it

is

available,

the

following

three

lines

should

appear

(with

different

numbers

depending

on

the

amount

of

memory

configured

on

your

machine)

HugePages_Total:

200

HugePages_Free:

200

Hugepagesize:

16384

kB

If

you

do

not

see

these

lines,

or

if

the

HugePages_Total

is

0,

configuration

of

the

operating

system

or

kernel

is

required.

DB2MAXFSCRSEARCH

All

Default=5

Values:

-1,

1

to

33

554

Specifies

the

number

of

free-space

control

records

to

search

when

adding

a

record

to

a

table.

The

default

is

to

search

five

free-space

control

records.

Modifying

this

value

allows

you

to

balance

insert

speed

with

space

reuse.

Use

large

values

to

optimize

for

space

reuse.

Use

small

values

to

optimize

for

insert

speed.

Setting

the

value

to

-1

forces

the

database

manager

to

search

all

free-space

control

records.

DB2_MAX_NON_TABLE_LOCKS

All

Default=YES

Values:

See

below.

Defines

the

maximum

number

of

NON

table

locks

a

transaction

can

have,

before

it

will

release

all

of

these

locks.

NON

table

locks

are

table

locks

that

are

kept

in

the

hash

table

and

the

transaction

chain

even

when

the

transaction

has

finished

using

them.

Because

transactions

often

access

the

same

table

more

than

once,

retaining

locks

and

changing

their

state

to

NON

can

improve

performance

because

locks

do

not

have

to

be

recreated.

For

best

results,

the

recommended

value

for

this

variable

is

the

maximum

number

of

tables

expected

to

be

accessed

by

any

connections.

If

no

user-defined

value

is

specified,

the

default

value

is

as

follows:

If

the

locklist

size

is

greater

than

or

equal

to

SQLP_THRESHOLD_VAL_OF_LRG_LOCKLIST_SZ_FOR_MAX_NON_LOCKS

(currently

8000),

the

default

value

will

be

SQLP_DEFAULT_MAX_NON_TABLE_LOCKS_LARGE

(currently

150).

Otherwise

the

default

value

will

be

SQLP_DEFAULT_MAX_NON_TABLE_LOCKS_SMALL

(currently

0).

DB2MEMDISCLAIM

AIX

Default=YES

Values:

YES

or

NO

510

Administration

Guide:

Performance

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|
|

|
|
|

|
|

|||

|

|
|
|
|

|
|
|
|
|

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

On

AIX,

memory

used

by

DB2

processes

may

have

some

associated

paging

space.

This

paging

space

may

remain

reserved

even

when

the

associated

memory

has

been

freed.

Whether

or

not

this

is

so

depends

on

the

AIX

system’s

(tunable)

virtual

memory

management

allocation

policy.

The

DB2MEMDISCLAIM

registry

variable

controls

whether

DB2

agents

explicitly

request

that

AIX

disassociate

the

reserved

paging

space

from

the

freed

memory.

A

DB2MEMDISCLAIM

setting

of

YES

results

in

smaller

paging

space

requirements,

and

possibly

less

disk

activity

from

paging.

A

DB2MEMDISCLAIM

setting

of

NO

will

result

in

larger

paging

space

requirements,

and

possibly

more

disk

activity

from

paging.

In

some

situations,

such

as

if

paging

space

is

plentiful

and

real

memory

is

so

plentiful

that

paging

never

occurs,

a

setting

of

NO

provides

a

minor

performance

improvement.

DB2MEMMAXFREE

All

Default=

8

388

608

bytes

Values:

0

to

2³²-1

bytes

Specifies

the

maximum

number

of

bytes

of

unused

private

memory

that

is

retained

by

DB2

processes

before

unused

memory

is

returned

to

the

operating

system.

DB2_MMAP_READ

AIX

Default=ON

,

Values:

ON

or

OFF

Used

in

conjunction

with

DB2_MMAP_WRITE

to

allow

DB2

to

use

mmap

as

an

alternate

method

of

I/O.

In

most

environments,

mmap

should

be

used

to

avoid

operating

system

locks

when

multiple

processes

are

writing

to

different

sections

of

the

same

file.

When

these

variables

are

set

to

ON,

data

that

is

read

to

and

written

from

the

DB2

buffer

pools

bypasses

the

AIX

memory

cache.

If

you

have

a

relatively

small

DB2

buffer

pool,

and

you

cannot

or

choose

not

to

increase

the

size

of

this

buffer

pool,

you

should

consider

taking

advantage

of

AIX

memory

caching

by

setting

DB2_MMAP_READ

and

DB2_MMAP_WRITE

to

OFF.

DB2_MMAP_WRITE

AIX

Default=ON

Values:

ON

or

OFF

Used

in

conjunction

with

DB2_MMAP_READ

to

allow

DB2

to

use

mmap

as

an

alternate

method

of

I/O.

In

most

environments,

mmap

should

be

used

to

avoid

operating

system

locks

when

multiple

processes

are

writing

to

different

sections

of

the

same

file.

When

these

variables

are

set

to

ON,

data

that

is

read

to

and

written

from

the

DB2

buffer

pools

bypasses

the

AIX

memory

cache.

If

you

have

a

relatively

small

DB2

buffer

pool,

and

you

cannot

or

choose

not

to

increase

the

size

of

this

buffer

pool,

you

should

consider

taking

advantage

of

AIX

memory

caching

by

setting

DB2_MMAP_READ

and

DB2_MMAP_WRITE

to

OFF.

DB2_NO_FORK_CHECK

UNIX

Default=OFF

Values:

ON,

OFF

When

enabled,

the

DB2

runtime

client

will

minimize

checks

to

determine

if

the

current

process

is

a

result

of

a

fork

call.

This

can

improve

performance

of

DB2

applications

that

do

not

use

the

fork()

api.

DB2_NO_MPFA_FOR_NEW_DB

All

Default=

not

set

Values:

YES

Databases

created

by

the

CREATE

DATABASE

command

or

the

equivalent

API

have

multipage

file

allocation

(MPFA)

enabled.

Once

MPFA

is

enabled

for

a

database,

it

cannot

be

disabled.

To

create

a

database

with

MPFA

disabled,

set

this

registry

variable

to

YES

and

restart

the

instance

before

creating

the

database.

When

this

registry

variable

is

set,

any

created

database

will

have

MPFA

disabled.

To

enable

MPFA

for

a

database

that

has

MPFA

disabled,

use

the

db2empfa

command.

DB2NTMEMSIZE

Windows

NT

Default=(varies

by

memory

segment)

Appendix

A.

DB2

Registry

and

Environment

Variables

511

|

|
|

|

|
|
|
|

|

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Windows

NT

requires

that

all

shared

memory

segments

be

reserved

at

DLL

initialization

time

in

order

to

guarantee

matching

addresses

across

processes.

DB2NTMEMSIZE

permits

the

user

to

override

the

DB2

defaults

on

Windows

NT

if

necessary.

In

most

situations,

the

default

values

should

be

sufficient.

The

memory

segments,

default

sizes,

and

override

options

are:

1)

Database

Kernel:

default

size

is

16777216

(16

MB);

override

option

is

DBMS:<number

of

bytes>.

2)

Parallel

FCM

Buffers:

default

size

is

22020096

(21

MB);

override

option

is

FCM:<number

of

bytes>.

3)

Database

Admin

GUI:

default

size

is

33554432

(32

MB);

override

option

is

DBAT:<number

of

bytes>.

4)

Fenced

Stored

Procedures:

default

size

is

16777216

(16

MB);

override

option

is

APLD:<number

of

bytes>.

More

than

one

segment

may

be

overridden

by

separating

the

override

options

with

a

semi-colon

(;).

For

example,

to

limit

the

database

kernel

to

approximately

256K,

and

the

FCM

buffers

to

approximately

64

MB,

use:

db2set

DB2NTMEMSIZE=DBMS:256000;FCM:64000000

DB2NTNOCACHE

Windows

NT

Default=OFF

Value:

ON

or

OFF

Specifies

whether

DB2

opens

database

files

with

a

NOCACHE

option.

If

DB2NTNOCACHE=ON,

file

system

caching

is

eliminated.

If

DB2NTNOCACHE=OFF,

the

operating

system

caches

DB2

files.

This

applies

to

all

data

except

for

files

that

contain

long

fields

or

LOBs.

Eliminating

system

caching

allows

more

memory

to

be

available

to

the

database

so

that

the

buffer

pool

or

sortheap

can

be

increased.

In

Windows

NT,

files

are

cached

when

they

are

opened,

which

is

the

default

behavior.

1

MB

is

reserved

from

a

system

pool

for

every

1

GB

in

the

file.

Use

this

registry

variable

to

override

the

undocumented

192

MB

limit

for

the

cache.

When

the

cache

limit

is

reached,

an

out-of-resource

error

is

given.

DB2NTPRICLASS

Windows

NT

Default=null

Value:

R,

H,

(any

other

value)

Sets

the

priority

class

for

the

DB2

instance

(program

DB2SYSCS.EXE).

There

are

three

priority

classes:

v

NORMAL_PRIORITY_CLASS

(the

default

priority

class)

v

REALTIME_PRIORITY_CLASS

(set

by

using

“R”)

v

HIGH_PRIORITY_CLASS

(set

by

using

“H”)

This

variable

is

used

in

conjunction

with

individual

thread

priorities

(set

using

DB2PRIORITIES)

to

determine

the

absolute

priority

of

DB2

threads

relative

to

other

threads

in

the

system.

Note:

Care

should

be

taken

when

using

this

variable.

Misuse

could

adversely

affect

overall

system

performance.

For

more

information,

please

refer

to

the

SetPriorityClass()

API

in

the

Win32

documentation.

DB2NTWORKSET

Windows

NT

Default=1,1

Used

to

modify

the

minimum

and

maximum

working-set

size

available

to

DB2.

By

default,

when

Windows

NT

is

not

in

a

paging

situation,

the

working

set

of

a

process

can

grow

as

large

as

needed.

However,

when

paging

occurs,

the

maximum

working

set

that

a

process

can

have

is

approximately

1

MB.

DB2NTWORKSET

allows

you

to

override

this

default

behavior.

Specify

DB2NTWORKSET

for

DB2

using

the

syntax

DB2NTWORKSET=min,max,

where

min

and

max

are

expressed

in

megabytes.

DB2_OVERRIDE_BPF

All

Default=not

set

Values:

a

positive

numeric

number

of

pages

OR

<entry>[;<entry>...]

where

<entry>=<buffer

pool

ID>,<number

of

pages>

512

Administration

Guide:

Performance

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Specifies

the

size

of

the

buffer

pool,

in

pages,

to

be

created

at

database

activation

or

first

connection

time.

It

is

useful

when

failures

occur

during

database

activation

or

first

connection

resulting

from

memory

constraints.

Should

even

a

minimal

buffer

pool

of

16

pages

not

be

brought

up

by

the

database

manager,

then

the

user

can

try

again

after

specifying

a

smaller

number

of

pages

using

this

environment

variable.

The

memory

constraint

could

arise

either

in

the

rare

case

of

a

real

memory

shortage

or,

because

of

the

attempt

by

the

database

manager

to

allocate

large,

in

the

case

of

inaccurately

configured

buffer

pools.

This

value,

if

set,

overrides

the

current

buffer

pool

size.

You

can

also

use

<entry>[;<entry>...]

where

<entry>=<buffer

pool

ID>,<number

of

pages>

to

temporarily

change

the

size

of

all

or

a

subset

of

the

buffer

pools

so

that

they

can

start

up.

DB2_PINNED_BP

AIX,

HP-UX

Default=NO

Values:

YES

or

NO

This

variable

is

used

to

specify

the

database

global

memory

(including

buffer

pools)

associated

with

the

database

in

the

main

memory

on

some

AIX

operating

systems.

Keeping

this

database

global

memory

in

the

system

main

memory

allows

database

performance

to

be

more

consistent.

For

example,

if

the

buffer

pool

is

swapped

out

of

the

system

main

memory,

database

performance

deteriorates.

The

reduction

of

disk

I/O

by

having

the

buffer

pools

in

system

memory

improves

database

performance.

If

other

applications

require

more

of

the

main

memory,

allow

the

database

global

memory

to

be

swapped

out

of

main

memory,

depending

on

the

system

main

memory

requirements.

On

64-bit

DB2

for

AIX,

enabling

this

variable

will

reduce

the

size

of

the

shared

memory

segment

backing

database

memory

to

the

minimum

requirement

(the

default

is

to

create

a

64GB

segment

-

see

the

database_memory

configuration

parameter

for

more

details).

This

is

to

avoid

pinning

more

shared

memory

in

RAM

than

is

likely

to

be

used.

With

this

variable

set,

the

ability

to

dynamically

increase

the

overall

database

shared

memory

configuration,

for

example,

to

increase

the

size

of

buffer

pools,

will

be

limited.

For

HP-UX

in

a

64-bit

environment,

in

addition

to

modifying

this

registry

variable,

the

DB2

instance

group

must

be

given

the

MLOCK

privilege.

To

do

this,

a

user

with

root

access

rights

performs

the

following

actions:

1.

Adds

the

DB2

instance

group

to

the

/etc/privgroup

file.

For

example,

if

the

DB2

instance

group

belongs

to

db2iadm1

group

then

the

following

line

must

be

added

to

the

/etc/privgroup

file:

db2iadm1

MLOCK

2.

Issues

the

following

command:

setprivgrp

-f

/etc/privgroup

DB2PRIORITIES

All

Values

setting

is

platform

dependent.

Controls

the

priorities

of

DB2

processes

and

threads.

DB2_SCATTERED_IO

Linux

Default=OFF

Values:

ON,

OFF

This

variable

turns

on

scattered

I/O

which

uses

readv()

to

read

from

disk.

If

you

are

running

on

a

system

that

contains

the

vectored

raw

I/O

performance

improvement

Linux

kernel

patch,

then

you

should

turn

this

variable

on

to

increase

performance.

This

kernel

patch

is

currently

in

UnitedLinux

1.0

SP2

or

higher

for

IA-32

and

will

be

in

all

upcoming

Linux

2.6

kernels.

DB2_SKIPDELETED

All

Default=OFF

Values:

ON,

OFF

Appendix

A.

DB2

Registry

and

Environment

Variables

513

|
|
|
|

|
|

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

When

enabled,

allows

statements

using

either

Cursor

Stability

or

Read

Stability

isolation

levels

to

unconditionally

skip

deleted

keys

during

index

access

and

deleted

rows

during

table

access.

With

DB2_EVALUNCOMMITTED

enabled,

deleted

rows

are

automatically

skipped,

but

uncommitted

pseudo-deleted

keys

in

type-2

indexes

are

not

unless

DB2_SKIPDELETED

is

also

enabled.

This

registry

variable

does

not

impact

the

behavior

of

cursors

on

the

DB2

catalog

tables.

The

activation

of

this

registry

variable

is

effective

on

db2start

.

DB2_SMS_TRUNC_TMPTABLE_THRESH

Windows

-1,

0-n,

where

n=the

number

of

extents

per

container

that

are

to

be

maintained

Specifies

a

minimum

file

size

threshold

at

which

the

file

representing

a

temporary

table

will

be

maintained

in

SMS

table

spaces.

Setting

this

variable

to

a

value

greater

than

0

can

reduce

some

of

the

system

overhead

involved

in

dropping

and

recreating

the

file

each

time

a

temporary

table

is

used.

By

default,

when

a

temporary

table

is

no

longer

needed,

the

file

for

that

table

is

truncated

to

1

extent

per

container.

If

the

file

is

already

one

extent

or

smaller

in

size,

it

is

left

as

is.

When

the

value

of

this

variable

is

higher

than

1,

a

larger

file

is

maintained.

If

this

variable

is

set

to

-1,

then

the

file

is

not

be

truncated

at

all

and

the

file

will

be

allowed

to

grow

indefinitely,

restricted

only

by

system

resources.

If

this

variable

is

set

to

0,

then

no

special

threshold

handling

is

done.

Instead,

once

a

temporary

table

is

no

longer

needed,

that

file

is

truncated

to

0.

DB2_SORT_AFTER_TQ

All

Default=NO

Values:

YES

or

NO

Specifies

how

the

optimizer

works

with

directed

table

queues

in

a

partitioned

database

when

the

receiving

end

requires

the

data

to

be

sorted

and

the

number

of

receiving

nodes

is

equal

to

the

number

of

sending

nodes.

When

DB2_SORT_AFTER_TQ=

NO,

the

optimizer

tends

to

sort

at

the

sending

end

and

merge

the

rows

at

the

receiving

end.

When

DB2_SORT_AFTER_TQ=

YES,

the

optimizer

tends

to

transmit

the

rows

unsorted,

not

merge

at

the

receiving

end,

and

sort

the

rows

at

the

receiving

end

after

receiving

all

the

rows.

DB2_SELUDI_COMM_BUFFER

All

Default=OFF

Values=ON,

OFF

Applies

to

the

processing

of

blocking

cursors

over

SELECT

from

UPDATE/INSERT/DELETE

(UDI)

queries.

When

enabled,

this

registry

variable

prevents

the

result

of

a

query

from

being

stored

in

a

temporary

table.

Instead,

during

the

OPEN

processing

of

a

blocking

cursor

for

a

SELECT

from

UDI

query,

DB2

attempts

to

buffer

the

entire

result

of

the

query

directly

into

the

communications

buffer

memory

area.

Note:

If

the

communications

buffer

space

is

not

large

enough

to

hold

the

entire

result

of

query,

SQLCODE

-906

is

issued

and

the

transaction

is

rolled

back.

See

the

aslheapsz

and

rqrioblk

database

manager

configuration

parameters

for

information

on

adjusting

the

size

of

the

communication

buffer

memory

area

for

local

and

remote

applications

respectively.

This

registry

variable

is

not

supported

in

partitioned

database

environments

or

when

intra-partition

parallelism

is

enabled.

DB2_TRUSTED_BINDIN

All

Default=OFF

Values=OFF,

ON,

CHECK

514

Administration

Guide:

Performance

|

|
|
|
|
|
|
|
|

|
|

Table

52.

Performance

Variables

(continued)

Variable

Name

Operating

System

Values

Description

When

DB2_TRUSTED_BINDIN

is

enabled,

it

speeds

up

the

execution

of

SQL

statements

containing

host

variables

within

an

embedded

unfenced

stored

procedure.

When

this

variable

is

enabled,

there

is

no

conversion

from

the

external

SQLDA

format

to

an

internal

DB2

format

during

the

binding

of

SQL

statements

contained

within

an

embedded

unfenced

stored

procedure.

This

will

speed

up

the

processing

of

the

embedded

SQL

statements.

The

following

datatypes

are

not

supported

in

embedded

unfenced

stored

procedures

when

this

variable

is

enabled:

v

SQL_TYP_DATE

v

SQL_TYP_TIME

v

SQL_TYP_STAMP

v

SQL_TYP_DATALINK

v

SQL_TYP_CGSTR

v

SQL_TYP_BLOB

v

SQL_TYP_CLOB

v

SQL_TYP_DBCLOB

v

SQL_TYP_CSTR

v

SQL_TYP_LSTR

v

SQL_TYP_BLOB_LOCATOR

v

SQL_TYP_CLOB_LOCATOR

v

SQL_TYP_DCLOB_LOCATOR

v

SQL_TYP_BLOB_FILE

v

SQL_TYP_CLOB_FILE

v

SQL_TYP_DCLOB_FILE

v

SQL_TYP_BLOB_FILE_OBSOLETE

v

SQL_TYP_CLOB_FILE_OBSOLETE

v

SQL_TYP_DCLOB_FILE_OBSOLETE

If

these

datatypes

are

encountered,

an

SQLCODE

−804,

SQLSTATE

07002

will

be

returned.

Note:

The

data

type

and

length

of

the

input

host

variable

has

to

match

exactly

the

internal

data

type

and

length

of

the

corresponding

element.

For

host

variables,

this

requirement

will

always

be

met.

However,

for

parameter

markers,

care

must

be

taken

to

ensure

that

matching

data

types

are

used.

The

CHECK

option

can

be

used

to

ensure

that

the

data

types

and

lengths

match

for

all

input

host

variables,

but

this

option

negates

most

of

the

performance

improvements.

DB2_USE_ALTERNATE_PAGE_CLEANING

All

Default=not

set

Values:

ON,

OFF

Specifies

whether

DB2

uses

the

alternate

method

of

page

cleaning

algorithms

instead

of

the

default

method

of

page

cleaning.

When

this

variable

is

set

to

″ON,″

DB2

uses

a

proactive

method

of

page

cleaning,

writing

changed

pages

to

disk,

keeping

ahead

of

LSN_GAP

and

proactively

finding

victims.

Doing

this

allows

the

page

cleaners

to

better

utilize

available

disk

I/O

bandwidth.

When

this

variable

is

set

to

″ON,″

the

chngpgs_thresh

database

configuration

parameter

is

no

longer

relevant

because

it

does

not

control

page

cleaner

activity.

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

Appendix

A.

DB2

Registry

and

Environment

Variables

515

Data

links

variables

Table

53.

Data

Links

Variables

Variable

Name

Operating

System

Values

Description

DLFM_BACKUP_DIR_NAME

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

null

Values:

any

valid

path

Specifies

the

path

of

the

directory

to

which

archived

files

are

backed

up

when

the

DLFM_BACKUP_TARGET

is

set

to

LOCAL.

DLFM_BACKUP_TARGET

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

null

Values:

LOCAL,

TSM,

XBSA

Specifies

the

backup

medium

to

use.

If

this

variable

is

set

to

LOCAL,

the

DLFM_BACKUP_DIR_NAME

variable

must

be

set.

If

this

variable

is

set

to

XBSA,

you

must

set

the

DLFM_BACKUP_TARGET_LIBRARY

variable.

If

you

change

the

setting

of

this

registry

variable

from

one

target

to

another,

the

archived

files

are

not

moved.

Only

new

backups

are

placed

in

the

new

location.

Previously

archived

files

are

not

moved.

DLFM_BACKUP_TARGET_LIBRARY

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

null

Values:

any

valid

path

to

the

DLL

or

shared

library

name

Specifies

the

fully

qualified

path

to

the

XBSA-compliant

archive

server

DLL

or

shared

library.

This

library

is

loaded

using

the

libdfmxbsa.a

library.

This

variable

must

be

set

if

the

DLFM_BACKUP_TARGET

is

set

to

XBSA.

It

does

not

apply

if

the

DLFM_BACKUP_TARGET

variable

is

set

to

another

value.

DLFM_GC_MODE

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

PASSIVE

Values:

SLEEP,

PASSIVE,

or

ACTIVE

Specifies

the

control

of

garbage

file

collection

on

the

Data

Links

server.

When

set

to

SLEEP,

no

garbage

collection

occurs.

When

set

to

PASSIVE,

garbage

collection

runs

only

if

no

other

transactions

are

running.

When

set

to

ACTIVE,

garbage

collection

runs

even

if

other

transactions

are

running.

DLFM_INSTALL_PATH

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default

On

AIX

and

the

Solaris

Operating

Environment:

/home/<instance>/sqllib/bin

where

<instance>

is

the

Data

Links

Manager

instance

ID

On

Windows:

%DB2PATH%\bin

(if

%DB2PATH%

is

set)

or

c:\sqllib\bin

(if

%DB2PATH%

is

not

set)

Range:

any

valid

path

Specifies

the

path

where

the

Data

Links

executables

are

installed.

516

Administration

Guide:

Performance

Table

53.

Data

Links

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DLFM_PORT

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

50100

Values:

any

valid

port

number

Specifies

the

port

number

used

to

communicate

with

the

Data

Links

server

running

the

DB2

Data

Links

Manager.

DLFM_TSM_MGMTCLASS

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

the

default

TSM

management

class

Values:

any

valid

TSM

management

class

Specifies

which

TSM

management

class

to

use

to

archive

and

retrieve

linked

files.

If

no

value

is

set

for

this

variable,

the

default

TSM

management

class

is

used.

DLFM_START_ASNCOPYD

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

NO

Values:

YES,

NO

Specifies

whether

the

Data

Links

Manager

Replication

Daemon

(DLFM_ASNCOPYD)

is

started

whenever

DLFM

is

started.

The

Data

Links

Manager

Replication

Daemon

must

be

started

when

using

DB2

Replication

to

copy

DATALINK

files

to

or

from

a

Data

Links

Manager

server.

When

this

variable

is

set

to

YES,

the

DLFM_ASNCOPYD_PORT

variable

must

be

set.

DLFM_ASNCOPYD_PORT

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

null

Values:

any

valid

port

number

Specifies

the

TCP/IP

port

number

on

which

the

Data

Links

Manager

Replication

Daemon

(DLFM_ASNCOPYD)

will

listen

for

file

replication

requests.

This

variable

must

be

specified

when

the

DLFM_START_ASNCOPYD

variable

is

set

to

YES.

DLFM_NUM_ARCHIVE_SUBSYSTEMS

AIX,

Windows

NT,

Windows

2000,

Solaris

Operating

Environment

Default:

2

Values:

any

number

greater

than

or

equal

to

1

Specifies

the

number

of

DLFM

Copy

Daemon

processes

to

run

under

a

given

DLFM

server.

The

larger

the

number

of

copy

processes,

the

greater

the

throughput

on

backing

up

linked

files.

However,

this

value

should

correspond

to

the

number

of

I/O

channels

available

for

copying

linked

files

to

the

designated

archive

area.

If

the

value

is

too

large,

the

amount

of

system

resources

consumed

can

reduce

the

benefits

of

I/O

parallelism.

DLFM_AUTOSTART

AIX,

Solaris

Operating

Environment

Default:

NO

Values:

YES,

NO

Specifies

whether

the

DLFM

server

is

automatically

started

whenever

the

operating

system

reboots.

This

variable

is

checked

by

the

dlfsmount

script,

invoked

from

the

/etc/inittab

file

during

boot

processing.

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

Appendix

A.

DB2

Registry

and

Environment

Variables

517

Miscellaneous

variables

Table

54.

Miscellaneous

Variables

Variable

Name

Operating

System

Values

Description

DB2ADMINSERVER

Windows

and

UNIX

Default=null

Specifies

the

DB2

Administration

Server.

DB2CLIINIPATH

All

Default=null

Used

to

override

the

default

path

of

the

DB2

CLI/ODBC

configuration

file

(db2cli.ini)

and

specify

a

different

location

on

the

client.

The

value

specified

must

be

a

valid

path

on

the

client

system.

DB2_COMMIT_ON_EXIT

UNIX

Default=OFF

Values:

OFF/NO/0

or

ON/YES/1

On

UNIX

platforms,

prior

to

version

8,

DB2

committed

any

remaining

in-flight

transactions

on

successful

application

exit.

In

version

8,

the

behavior

was

changed

so

that

in-flight

transactions

were

rolled

back

on

exit.

This

registry

variable

allows

users

with

applications

which

depend

on

the

earlier

behavior

to

continue

to

enable

it

in

Version

8.

Note

that

this

registry

variable

will

be

deprecated

in

version

10,

and

the

commit-on-exit

behavior

will

no

longer

be

supported.

Users

should

determine

whether

any

of

their

applications

developed

prior

to

version

8

continue

to

depend

on

this

functionality,

and

add

the

appropriate

explicit

COMMIT

statements

to

the

application

as

required.

If

the

registry

variable

is

turned

on,

care

should

be

taken

not

to

implement

new

applications

which

fail

to

explicitly

COMMIT

before

exit.

Most

users

should

leave

this

registry

variable

at

the

default

setting.

DB2DEFPREP

All

Default=NO

Values:

ALL,

YES,

or

NO

Simulates

the

runtime

behavior

of

the

DEFERRED_PREPARE

precompile

option

for

applications

that

were

precompiled

before

this

option

was

available.

For

example,

if

a

DB2

v2.1.1

or

earlier

application

were

run

in

a

DB2

v2.1.2

or

later

environment,

DB2DEFPREP

could

be

used

to

indicate

the

desired

’deferred

prepare’

behavior.

DB2_DJ_COMM

All

Default=null

Values

include:

libdb2drda.a,

libdb2net8.a,

libdb2informix.a

db2drda.dll,

db2net8.dll,

db2informix.a,

and

so

on.

Specifies

the

wrapper

libraries

that

are

loaded

when

the

database

manager

is

started.

Specifying

this

variable

reduces

the

run-time

cost

of

loading

frequently

used

wrappers.

Other

values

for

other

operating

systems

are

supported

(the

.dll

extension

is

for

the

Windows

NT

operating

system;

the

.a

extension

is

for

the

AIX

operating

system).

Library

names

vary

by

protocol

and

operating

system.

This

variable

is

ignored

unless

the

database

manager

parameter

FEDERATED

is

set

to

YES.

DB2_DJ_INI

All

Default:

v

UNIX:

db2_instance_directory/cfg/db2dj.ini

v

Windows:

db2_install_directory\cfg\db2dj.ini

518

Administration

Guide:

Performance

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

Table

54.

Miscellaneous

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Specifies

the

absolute

path

name

of

the

federation

configuration

file,

for

example:

db2set

DB2_DJ_INI=$HOME/sqllib/cfg/my_db2dj.ini

This

file

contains

the

settings

for

data

source

environment

variables.

These

environment

variables

are

used

by

the

Informix

wrapper

and

by

the

wrappers

provided

by

DB2

Information

Integrator.

Here

is

a

sample

federation

configuration

file:

INFORMIXDIR=/informix/client_sdk

INFORMIXSERVER=inf93

ORACLE_HOME=/usr/oracle9i

SYBASE=/sybase/V12

SYBASE_OCS=OCS-12_5

The

following

restrictions

apply

to

the

db2dj.ini

file:

v

Entries

must

follow

the

format

evname=value

where

evname

is

the

name

of

the

environment

variable

and

value

is

its

value.

v

The

environment

variable

name

has

a

maximum

length

of

255

bytes.

v

The

environment

variable

value

has

a

maximum

length

of

765

bytes.

This

variable

is

ignored

unless

the

database

manager

parameter

FEDERATED

is

set

to

YES.

DB2DMNBCKCTLR

Windows

NT

Default=null

Values:

?

or

a

domain

name

If

you

know

the

name

of

the

domain

for

which

the

DB2

server

is

the

backup

domain

controller,

set

DB2DMNBCKCTLR=DOMAIN_NAME.

The

DOMAIN_NAME

must

be

in

upper

case.

To

have

DB2

determine

the

domain

for

which

the

local

machine

is

a

backup

domain

controller,

set

DB2DMNBCKCTLR=?.

If

the

DB2DMNBCKCTLR

profile

variable

is

not

set

or

is

set

to

blank,

DB2

performs

authentication

at

the

primary

domain

controller.

Note:

DB2

does

not

use

an

existing

backup

domain

controller

by

default

because

a

backup

domain

controller

can

get

out

of

synchronization

with

the

primary

domain

controller,

causing

a

security

exposure.

Getting

out

of

synchronization

can

occur

when

the

primary

domain

controller’s

security

database

is

updated

but

the

changes

are

not

propagated

to

a

backup

domain

controller.

This

could

occur

if

there

are

network

latencies

or

if

the

computer

browser

service

is

not

operational.

DB2_DOCHOST

All

Default:

http://publib.boulder.ibm.com

/infocenter/db2help/

http://hostname

where

hostname=

valid

host

name

or

IP

address

Specifies

the

host

name

on

which

the

DB2

Information

Center

is

installed.

This

variable

can

be

automatically

set

during

the

installation

of

the

DB2

Information

Center

if

the

automatic

configuration

option

is

selected

in

the

DB2

Setup

wizard.

DB2_DOCPORT

All

Default:

NULL

Values:

any

valid

port

number

Specifies

the

port

number

through

which

the

DB2

help

system

serves

the

DB2

documentation.

This

variable

can

be

automatically

set

during

the

installation

of

the

DB2

Information

Center

if

the

automatic

configuration

option

is

selected

in

the

DB2

Setup

wizard.

DB2_EXTSECURITY

Windows

platforms

Default=ON

Values:

ON

or

OFF

Prevents

unauthorized

access

to

DB2

by

locking

DB2

system

files.

To

avoid

potential

problems,

this

registry

varible

should

not

be

turned

off.

Appendix

A.

DB2

Registry

and

Environment

Variables

519

|
|
|
|

|

|
|
|
|
|

|

|
|

|

|

|

|||

|

|
|

Table

54.

Miscellaneous

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2_ENABLE_LDAP

All

Default=NO

Values:

YES

or

NO

Specifies

whether

or

not

the

Lightweight

Directory

Access

Protocol

(LDAP)

is

used.

LDAP

is

an

access

method

to

directory

services.

DB2_FALLBACK

Windows

NT

Default=OFF

Values:

ON

or

OFF

This

variable

allows

you

to

force

all

database

connections

off

during

the

fallback

processing.

It

is

used

in

conjunction

with

the

failover

support

in

the

Windows

NT

environment

with

Microsoft

Cluster

Server

(MSCS).

If

DB2_FALLBACK

is

not

set

or

is

set

to

OFF,

and

a

database

connection

exists

during

the

fall

back,

the

DB2

resource

cannot

be

brought

offline.

This

will

mean

the

fallback

processing

will

fail.

DB2_FMP_COMM_HEAPSZ

Windows,

all

UNIX

except

AIX

20mb

or

enough

space

to

run

10

fenced

routines

(whichever

is

larger)

This

variable

specifies,

in

4

KB

pages,

the

size

of

the

pool

used

for

fenced

routine

invocations,

such

as

stored

procedure

or

user-defined

function

calls.

The

space

used

by

each

fenced

routine

is

twice

the

value

of

the

aslheapsz

configuration

parameter.

If

you

are

running

a

large

number

of

fenced

routines

on

your

system,

you

may

need

to

increase

the

value

of

this

variable.

If

you

are

running

a

very

small

number

of

fenced

routines,

you

can

reduce

it.

Setting

this

value

to

0

means

that

no

set

is

created,

and

as

a

result

no

fenced

routines

can

be

invoked.

It

also

means

that

the

health

monitor

and

the

automatic

database

maintenance

functionality

(such

as

automatic

backups,

statistics

collection,

and

REORG)

will

be

disabled

since

this

functionality

relies

on

the

fenced

routine

infrastructure.

DB2_GRP_LOOKUP

Windows

NT

Default=null

Values:

LOCAL,

DOMAIN

This

variable

is

used

to

tell

DB2

where

to

validate

user

accounts

and

perform

group

member

lookup.

Set

the

variable

to

LOCAL

to

force

DB2

to

always

enumerate

groups

and

validate

user

accounts

on

the

DB2

server.

Set

the

variable

to

DOMAIN

to

force

DB2

to

always

enumerate

groups

and

validate

user

accounts

on

the

Windows

NT

domain

to

which

the

user

account

belongs.

DB2_HADR_BUF_SIZE

All

Default=2*LOGBUFSZ

This

variable

specifies

the

standby

log

receiving

buffer

size

in

unit

of

log

pages.

If

not

set,

DB2

will

use

two

times

the

primary

LOGBUFSZ

configuration

parameter

value

for

the

standby

receiving

buffer

size.

This

variable

should

be

set

in

the

standby

instance.

It

is

ignored

by

the

primary

database.

If

HADR

synchronization

mode

(the

HADR_SYNCMODE

database

configuration

parameter)

is

set

to

ASYNC,

during

peer

state,

a

slow

standby

may

cause

the

send

operation

on

the

primary

to

stall

and

therefore

block

transaction

processing

on

the

primary.

A

larger

than

default

log-receiving

buffer

can

be

configured

on

a

standby

database

to

allow

it

to

hold

more

unprocessed

log

data.

This

may

allow

for

brief

periods

where

the

primary

generates

log

data

faster

than

the

standby

can

consume

it,

without

blocking

transaction

processing

at

the

primary.

DB2LDAP_BASEDN

All

Default=null

Values:

Any

valid

base

domain

name.

Specifies

the

base

domain

name

for

the

LDAP

directory.

DB2LDAPCACHE

All

Default=YES

Values:

YES

or

NO

520

Administration

Guide:

Performance

|
|
|

|

|
|
|

|
|
|
|
|

Table

54.

Miscellaneous

Variables

(continued)

Variable

Name

Operating

System

Values

Description

Specifies

that

the

LDAP

cache

is

to

be

enabled.

This

cache

is

used

to

catalog

the

database,

node,

and

DCS

directories

on

the

local

machine.

To

ensure

that

you

have

the

latest

entries

in

the

cache,

do

the

following:

REFRESH

LDAP

DB

DIR

REFRESH

LDAP

NODE

DIR

These

commands

update

and

remove

incorrect

entries

from

the

database

directory

and

the

node

directory.

DB2LDAP_CLIENT_PROVIDER

Windows

Default=null

(Microsoft,

if

available,

is

used;

otherwise

IBM

is

used.)

Values:

IBM

or

Microsoft

When

running

in

a

Windows

environment,

DB2

supports

using

either

Microsoft

LDAP

clients

or

IBM

LDAP

clients

to

access

the

LDAP

directory.

This

registry

variable

is

used

to

explicitly

select

the

LDAP

client

to

be

used

by

DB2.

Note:

To

display

the

current

value

of

this

registry

variable,

use

the

db2set

command:

db2set

DB2LDAP_CLIENT_PROVIDER

DB2LDAPHOST

All

Default=null

Values:

Any

valid

hostname.

Specifies

the

hostname

of

the

location

for

the

LDAP

directory.

DB2LDAP_KEEP_CONNECTION

All

Default=

YES

Values:

YES,

NO

Specifies

whether

DB2

caches

its

internal

LDAP

connection

handles.

When

this

variable

is

set

to

NO,

DB2

will

not

cache

its

LDAP

connection

handles

to

the

directory

server.

This

will

likely

result

in

a

negative

performance

impact,

but

it

might

be

desirable

to

set

DB2LDAP_KEEP_CONNECTION

to

NO

if

the

number

of

simultaneously

active

LDAP

client

connections

to

the

directory

server

needs

to

be

minimized.

To

maximize

performance,

this

variable

is

set

to

YES

by

default.

The

DB2LDAP_KEEP_CONNECTION

registry

variable

is

only

implemented

as

a

global

level

profile

registry

variable

in

LDAP,

so

you

must

set

it

by

specifying

the

-gl

option

with

the

db2set

command

as

follows:

db2set

-gl

DB2LDAP_KEEP_CONNECTION=NO

DB2LDAP_SEARCH_SCOPE

All

Default=

DOMAIN

Values:

LOCAL,

DOMAIN,

GLOBAL

Specifies

the

search

scope

for

information

found

in

partitions

or

domains

in

the

Lightweight

Directory

Access

Protocol

(LDAP).

“LOCAL”

disables

searching

in

the

LDAP

directory.

“DOMAIN”

only

searches

in

LDAP

for

the

current

directory

partition.

“GLOBAL”

searches

in

LDAP

in

all

directory

partitions

until

the

object

is

found.

DB2_LOAD_COPY_NO_OVERRIDE

All

Default:

NONRECOVERABLE

Values:

COPY

YES,

NONRECOVERABLE

This

variable

will

convert

any

LOAD

COPY

NO

to

either

LOAD

COPY

YES

or

NONRECOVERABLE,

depending

on

the

value

of

the

variable.

This

variable

is

applicable

to

HADR

primary

databases

as

well

as

to

standard

(non-HADR)

databases;

it

is

ignored

on

an

HADR

standby

database.

On

an

HADR

primary

database,

if

this

variable

is

not

set,

LOAD

COPY

NO

is

converted

to

LOAD

NONRECOVERABLE.

The

value

of

this

variable

either

specifies

a

nonrecoverable

load

or

the

copy

destination,

using

the

same

syntax

as

a

COPY

YES

clause.

DB2LOADREC

All

Default=null

Used

to

override

the

location

of

the

load

copy

during

roll

forward.

If

the

user

has

changed

the

physical

location

of

the

load

copy,

DB2LOADREC

must

be

set

before

issuing

the

roll

forward.

Appendix

A.

DB2

Registry

and

Environment

Variables

521

|

|
|
|
|
|

Table

54.

Miscellaneous

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2LOCK_TO_RB

All

Default=null

Values:

STATEMENT

Specifies

whether

lock

timeouts

cause

the

entire

transaction

to

be

rolled

back,

or

only

the

current

statement.

If

DB2LOCK_TO_RB

is

set

to

STATEMENT,

locked

timeouts

cause

only

the

current

statement

to

be

rolled

back.

Any

other

setting

results

in

transaction

rollback.

DB2_NEWLOGPATH2

UNIX

Default=0

Values:

0

or

1

This

parameter

allows

you

to

specify

whether

a

secondary

path

should

be

used

to

implement

dual

logging.

The

secondary

path

name

is

generated

by

appending

a

“2”

to

the

current

value

of

the

logpath

database

configuration

parameter.

DB2NOEXITLIST

All

Default=OFF

Values:

ON

or

OFF

If

defined,

this

variable

indicates

to

DB2

not

to

install

an

exit

list

handler

in

applications

and

not

to

perform

a

COMMIT.

Normally,

DB2

installs

a

process

exit

list

handler

in

applications

and

the

exit

list

handler

performs

a

COMMIT

operation

if

the

application

ends

normally.

For

applications

that

dynamically

load

the

DB2

library

and

unload

it

before

the

application

terminates,

the

invocation

of

the

exit

list

handler

fails

because

the

handler

routine

is

no

longer

loaded

in

the

application.

If

your

application

operates

in

this

way,

you

should

set

the

DB2NOEXITLIST

variable

and

ensure

your

application

explicitly

invokes

all

required

COMMITs.

DB2OLDEVMON

All

Values:

event

monitor

names

separated

by

a

commaevmon1,

evmon2,

...

Specifies

the

names

of

event

monitors

that

write

data

in

the

pre-Version

6

format.

In

DB2

Version

6,

the

self-describing

data

stream

became

the

standard

form

of

system

monitor

output

to

files

and

pipes.

Pre-Version

6,

system

monitor

data

was

returned

in

fixed

data

structures.

DB2REMOTEPREG

Windows

NT

Default=null

Values:

Any

valid

Windows

NT

machine

name

Specifies

the

remote

machine

name

that

contains

the

Win32

registry

list

of

DB2

instance

profiles

and

DB2

instances.

The

value

for

DB2REMOTEPREG

should

only

be

set

once

after

DB2

is

installed,

and

should

not

be

modified.

Use

this

variable

with

extreme

caution.

DB2ROUTINE_DEBUG

AIX

and

Windows

NT

Default=OFF

Values:

ON,

OFF

Specifies

whether

to

enable

the

debug

capability

for

Java

stored

procedures.

If

you

are

not

debugging

Java

stored

procedures,

use

the

default,

OFF.

There

is

a

performance

impact

to

enable

debugging.

DB2SATELLITEID

All

Default=null

Values:

a

valid

satellite

ID

declared

in

the

Satellite

Control

Database

Specifies

the

satellite

ID

that

is

passed

to

the

satellite

control

server

when

a

satellite

synchronizes.

If

a

value

is

not

specified

for

this

variable,

the

logon

ID

is

used

as

the

satellite

ID.

DB2SORT

All,

server

only

Default=null

Specifies

the

location

of

a

library

to

be

loaded

at

runtime

by

the

LOAD

utility.

The

library

contains

the

entry

point

for

functions

used

in

sorting

indexing

data.

Use

DB2SORT

to

exploit

vendor-supplied

sorting

products

for

use

with

the

LOAD

utility

in

generating

table

indexes.

The

path

supplied

must

be

relative

to

the

database

server.

522

Administration

Guide:

Performance

Table

54.

Miscellaneous

Variables

(continued)

Variable

Name

Operating

System

Values

Description

DB2SYSTEM

Windows

and

UNIX

Default=null

Specifies

the

name

that

is

used

by

your

users

and

database

administrators

to

identify

the

DB2

server

system.

If

possible,

this

name

should

be

unique

within

your

network.

This

name

is

displayed

in

the

system

level

of

the

Control

Center’s

object

tree

to

aid

administrators

in

the

identification

of

server

systems

that

can

be

administered

from

the

Control

Center.

When

using

the

’Search

the

Network’

function

of

the

Client

Configuration

Assistant,

DB2

discovery

returns

this

name

and

it

is

displayed

at

the

system

level

in

the

resulting

object

tree.

This

name

aids

users

in

identifying

the

system

that

contains

the

database

they

wish

to

access.

A

value

for

DB2SYSTEM

is

set

at

installation

time

as

follows:

v

On

Windows

NT

the

setup

program

sets

it

equal

to

the

computer

name

specified

for

the

Windows

system.

v

On

UNIX

systems,

it

is

set

equal

to

the

UNIX

system’s

TCP/IP

hostname.

DB2_VENDOR_INI

AIX,

HP-UX,

the

Solaris

Operating

Environment,

and

Windows

Default=null

Values:

Any

valid

path

and

file.

Points

to

a

file

containing

all

vendor-specific

environment

settings.

The

value

is

read

when

the

database

manager

starts.

DB2_XBSA_LIBRARY

AIX,

HP-UX,

the

Solaris

Operating

Environment,,

and

Windows

Default=null

Values:

Any

valid

path

and

file.

Points

to

the

vendor-supplied

XBSA

library.

On

AIX,

the

setting

must

include

the

shared

object

if

it

is

not

named

shr.o.

HP-UX,

the

Solaris

Operating

Environment,

and

Windows

NT

do

not

require

the

shared

object

name.

For

example,

to

use

Legato’s

NetWorker

Business

Suite

Module

for

DB2,

the

registry

variable

must

be

set

as

follows:

db2set

DB2_XSBA_LIBRARY="/usr/lib/libxdb2.a(bsashr10.o)"

The

XBSA

interface

can

be

invoked

through

the

BACKUP

DATABASE

or

the

RESTORE

DATABASE

commands.

For

example:

db2

backup

db

sample

use

XBSA

db2

restore

db

sample

use

XBSA

Related

concepts:

v

“DB2

registry

and

environment

variables”

on

page

489

Appendix

A.

DB2

Registry

and

Environment

Variables

523

524

Administration

Guide:

Performance

Appendix

B.

Explain

tables

Explain

tables

The

Explain

tables

capture

access

plans

when

the

Explain

facility

is

activated.

The

Explain

tables

must

be

created

before

Explain

can

be

invoked.

You

can

create

them

using

the

documented

table

definitions,

or

you

can

create

them

by

invoking

the

sample

command

line

processor

(CLP)

script

provided

in

the

EXPLAIN.DDL

file

located

in

the

'misc'

subdirectory

of

the

'sqllib'

directory.

To

invoke

the

script,

connect

to

the

database

where

the

Explain

tables

are

required,

then

issue

the

command:

db2

-tf

EXPLAIN.DDL

The

population

of

the

Explain

tables

by

the

Explain

facility

will

not

activate

triggers

or

referential

or

check

constraints.

For

example,

if

an

insert

trigger

were

defined

on

the

EXPLAIN_INSTANCE

table,

and

an

eligible

statement

were

explained,

the

trigger

would

not

be

activated.

Related

reference:

v

“EXPLAIN_ARGUMENT

table”

on

page

526

v

“EXPLAIN_OBJECT

table”

on

page

532

v

“EXPLAIN_OPERATOR

table”

on

page

535

v

“EXPLAIN_PREDICATE

table”

on

page

537

v

“EXPLAIN_STREAM

table”

on

page

541

v

“ADVISE_INDEX

table”

on

page

543

v

“ADVISE_WORKLOAD

table”

on

page

550

v

“EXPLAIN_INSTANCE

table”

on

page

530

v

“EXPLAIN_STATEMENT

table”

on

page

539

v

“ADVISE_INSTANCE

table”

on

page

546

v

“ADVISE_MQT

table”

on

page

547

v

“ADVISE_PARTITION

table”

on

page

548

v

“ADVISE_TABLE

table”

on

page

549

©

Copyright

IBM

Corp.

1993

-

2004

525

EXPLAIN_ARGUMENT

table

The

EXPLAIN_ARGUMENT

table

represents

the

unique

characteristics

for

each

individual

operator,

if

there

are

any.

Table

55.

EXPLAIN_ARGUMENT

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

FK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

FK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

FK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

FK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

FK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

FK

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

FK

Statement

number

within

package

to

which

this

explain

information

is

related.

SECTNO

INTEGER

No

FK

Section

number

within

package

to

which

this

explain

information

is

related.

OPERATOR_ID

INTEGER

No

No

Unique

ID

for

this

operator

within

this

query.

ARGUMENT_TYPE

CHAR(8)

No

No

The

type

of

argument

for

this

operator.

ARGUMENT_VALUE

VARCHAR(1024)

Yes

No

The

value

of

the

argument

for

this

operator.

NULL

if

the

value

is

in

LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_VALUE

CLOB(2M)

Yes

No

The

value

of

the

argument

for

this

operator,

when

the

text

will

not

fit

in

ARGUMENT_VALUE.

NULL

if

the

value

is

in

ARGUMENT_VALUE.

Table

56.

ARGUMENT_TYPE

and

ARGUMENT_VALUE

column

values

ARGUMENT_TYPE

Value

Possible

ARGUMENT_VALUE

Values

Description

AGGMODE

COMPLETE

PARTIAL

INTERMEDIATE

FINAL

Partial

aggregation

indicators.

BITFLTR

TRUE

FALSE

Hash

Join

will

use

a

bit

filter

to

enhance

performance.

BLD_LEVEL

DB2

Build

Identifier

Internal

identification

string

for

source

code

version.

BLKLOCK

EXCLUSIVE

INTENT

EXCLUSIVE

INTENT

SHARE

NONE

SHARE

UPDATE

Block

level

lock

intent.

CSERQY

TRUE

FALSE

Remote

query

is

a

common

subexpression.

CSETEMP

TRUE

FALSE

Temporary

Table

over

Common

Subexpression

Flag.

DIRECT

TRUE

Direct

fetch

indicator.

DSTSEVER

Server

name

Destination

(ship

from)

server.

DUPLWARN

TRUE

FALSE

Duplicates

Warning

flag.

EXPLAIN_ARGUMENT

table

526

Administration

Guide:

Performance

Table

56.

ARGUMENT_TYPE

and

ARGUMENT_VALUE

column

values

(continued)

ARGUMENT_TYPE

Value

Possible

ARGUMENT_VALUE

Values

Description

EARLYOUT

LEFT

RIGHT

NONE

Early

out

indicator.

ENVVAR

Each

row

of

this

type

will

contain:

v

Environment

variable

name

v

Environment

variable

value

Environment

variable

affecting

the

optimizer

FETCHMAX

IGNORE

INTEGER

Override

value

for

MAXPAGES

argument

on

FETCH

operator.

GREEDY

TRUE

Indicates

optimizer

used

greedy

algorithm

to

plan

access.

GROUPBYC

TRUE

FALSE

Whether

Group

By

columns

were

provided.

GROUPBYN

Integer

Number

of

comparison

columns.

GROUPBYR

Each

row

of

this

type

will

contain:

v

Ordinal

value

of

column

in

group

by

clause

(followed

by

a

colon

and

a

space)

v

Name

of

Column

Group

By

requirement.

INNERCOL

Each

row

of

this

type

will

contain:

v

Ordinal

value

of

column

in

order

(followed

by

a

colon

and

a

space)

v

Name

of

Column

v

Order

Value

(A)

Ascending

(D)

Descending

Inner

order

columns.

ISCANMAX

IGNORE

INTEGER

Override

value

for

MAXPAGES

argument

on

ISCAN

operator.

JN_INPUT

INNER

OUTER

Indicates

if

operator

is

the

operator

feeding

the

inner

or

outer

of

a

join.

LISTENER

TRUE

FALSE

Listener

Table

Queue

indicator.

MAXPAGES

ALL

NONE

INTEGER

Maximum

pages

expected

for

Prefetch.

MAXRIDS

NONE

INTEGER

Maximum

Row

Identifiers

to

be

included

in

each

list

prefetch

request.

NUMROWS

INTEGER

Number

of

rows

expected

to

be

sorted.

ONEFETCH

TRUE

FALSE

One

Fetch

indicator.

OUTERCOL

Each

row

of

this

type

will

contain:

v

Ordinal

value

of

column

in

order

(followed

by

a

colon

and

a

space)

v

Name

of

Column

v

Order

Value

(A)

Ascending

(D)

Descending

Outer

order

columns.

EXPLAIN_ARGUMENT

table

Appendix

B.

Explain

tables

527

Table

56.

ARGUMENT_TYPE

and

ARGUMENT_VALUE

column

values

(continued)

ARGUMENT_TYPE

Value

Possible

ARGUMENT_VALUE

Values

Description

OUTERJN

LEFT

RIGHT

FULL

LEFT

(ANTI)

RIGHT

(ANTI)

Outer

join

indicator.

PARTCOLS

Name

of

Column

Partitioning

columns

for

operator.

PREFETCH

LIST

NONE

SEQUENTIAL

Type

of

Prefetch

Eligible.

RMTQTEXT

Query

text

Remote

Query

Text

RNG_PROD

Function

name

Range

producing

function

for

extended

index

access.

ROWLOCK

EXCLUSIVE

NONE

REUSE

SHARE

SHORT

(INSTANT)

SHARE

UPDATE

Row

Lock

Intent.

ROWWIDTH

INTEGER

Width

of

row

to

be

sorted.

RSUFFIX

Query

text

Remote

SQL

suffix.

SCANDIR

FORWARD

REVERSE

Scan

Direction.

SCANGRAN

INTEGER

Intra-partition

parallelism,

granularity

of

the

intra-partition

parallel

scan,

expressed

in

SCANUNITs.

SCANTYPE

LOCAL

PARALLEL

intra-partition

parallelism,

Index

or

Table

scan.

SCANUNIT

ROW

PAGE

Intra-partition

parallelism,

scan

granularity

unit.

SHARED

TRUE

Intra-partition

parallelism,

shared

TEMP

indicator.

SLOWMAT

TRUE

FALSE

Slow

Materialization

flag.

SNGLPROD

TRUE

FALSE

Intra-partition

parallelism

sort

or

temp

produced

by

a

single

agent.

SORTKEY

Each

row

of

this

type

will

contain:

v

Ordinal

value

of

column

in

key

(followed

by

a

colon

and

a

space)

v

Name

of

Column

v

Order

Value

(A)

Ascending

(D)

Descending

Sort

key

columns.

SORTTYPE

PARTITIONED

SHARED

ROUND

ROBIN

REPLICATED

Intra-partition

parallelism,

sort

type.

SRCSEVER

Server

name

Source

(ship

to)

server.

STREAM

TRUE

FALSE

Remote

source

is

streaming.

EXPLAIN_ARGUMENT

table

528

Administration

Guide:

Performance

Table

56.

ARGUMENT_TYPE

and

ARGUMENT_VALUE

column

values

(continued)

ARGUMENT_TYPE

Value

Possible

ARGUMENT_VALUE

Values

Description

TABLOCK

EXCLUSIVE

INTENT

EXCLUSIVE

INTENT

NONE

INTENT

SHARE

REUSE

SHARE

SHARE

INTENT

EXCLUSIVE

SUPER

EXCLUSIVE

UPDATE

Table

Lock

Intent.

TEMPSIZE

INTEGER

Temporary

table

page

size.

TQDEGREE

INTEGER

intra-partition

parallelism,

number

of

subagents

accessing

Table

Queue.

TQMERGE

TRUE

FALSE

Merging

(sorted)

Table

Queue

indicator.

TQREAD

READ

AHEAD

STEPPING

SUBQUERY

STEPPING

Table

Queue

reading

property.

TQSEND

BROADCAST

DIRECTED

SCATTER

SUBQUERY

DIRECTED

Table

Queue

send

property.

TQTYPE

LOCAL

Intra-partition

parallelism,

Table

Queue.

TRUNCSRT

TRUE

Truncated

sort

(limits

number

of

rows

produced).

UNIQUE

TRUE

FALSE

Uniqueness

indicator.

UNIQKEY

Each

row

of

this

type

will

contain:

v

Ordinal

value

of

column

in

key

(followed

by

a

colon

and

a

space)

v

Name

of

Column

Unique

key

columns.

VOLATILE

TRUE

Volatile

table

EXPLAIN_ARGUMENT

table

Appendix

B.

Explain

tables

529

EXPLAIN_INSTANCE

table

The

EXPLAIN_INSTANCE

table

is

the

main

control

table

for

all

Explain

information.

Each

row

of

data

in

the

Explain

tables

is

explicitly

linked

to

one

unique

row

in

this

table.

The

EXPLAIN_INSTANCE

table

gives

basic

information

about

the

source

of

the

SQL

statements

being

explained

as

well

as

information

about

the

environment

in

which

the

explanation

took

place.

Table

57.

EXPLAIN_INSTANCE

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

PK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

PK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

PK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

PK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

PK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_OPTION

CHAR(1)

No

No

Indicates

what

Explain

Information

was

requested

for

this

request.

Possible

values

are:

P

PLAN

SELECTION

SNAPSHOT_TAKEN

CHAR(1)

No

No

Indicates

whether

an

Explain

Snapshot

was

taken

for

this

request.

Possible

values

are:

Y

Yes,

an

Explain

Snapshot(s)

was

taken

and

stored

in

the

EXPLAIN_STATEMENT

table.

Regular

Explain

information

was

also

captured.

N

No

Explain

Snapshot

was

taken.

Regular

Explain

information

was

captured.

O

Only

an

Explain

Snapshot

was

taken.

Regular

Explain

information

was

not

captured.

DB2_VERSION

CHAR(7)

No

No

Product

release

number

for

DB2

Universal

Database

which

processed

this

explain

request.

Format

is

vv.rr.m,

where:

vv

Version

Number

rr

Release

Number

m

Maintenance

Release

Number

SQL_TYPE

CHAR(1)

No

No

Indicates

whether

the

Explain

Instance

was

for

static

or

dynamic

SQL.

Possible

values

are:

S

Static

SQL

D

Dynamic

SQL

QUERYOPT

INTEGER

No

No

Indicates

the

query

optimization

class

used

by

the

SQL

Compiler

at

the

time

of

the

Explain

invocation.

The

value

indicates

what

level

of

query

optimization

was

performed

by

the

SQL

Compiler

for

the

SQL

statements

being

explained.

BLOCK

CHAR(1)

No

No

Indicates

what

type

of

cursor

blocking

was

used

when

compiling

the

SQL

statements.

For

more

information,

see

the

BLOCK

column

in

SYSCAT.PACKAGES.

Possible

values

are:

N

No

Blocking

U

Block

Unambiguous

Cursors

B

Block

All

Cursors

EXPLAIN_INSTANCE

table

530

Administration

Guide:

Performance

Table

57.

EXPLAIN_INSTANCE

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

ISOLATION

CHAR(2)

No

No

Indicates

what

type

of

isolation

was

used

when

compiling

the

SQL

statements.

For

more

information,

see

the

ISOLATION

column

in

SYSCAT.PACKAGES.

Possible

values

are:

RR

Repeatable

Read

RS

Read

Stability

CS

Cursor

Stability

UR

Uncommitted

Read

BUFFPAGE

INTEGER

No

No

Contains

the

value

of

the

BUFFPAGE

database

configuration

setting

at

the

time

of

the

Explain

invocation.

AVG_APPLS

INTEGER

No

No

Contains

the

value

of

the

AVG_APPLS

configuration

parameter

at

the

time

of

the

Explain

invocation.

SORTHEAP

INTEGER

No

No

Contains

the

value

of

the

SORTHEAP

database

configuration

setting

at

the

time

of

the

Explain

invocation.

LOCKLIST

INTEGER

No

No

Contains

the

value

of

the

LOCKLIST

database

configuration

setting

at

the

time

of

the

Explain

invocation.

MAXLOCKS

SMALLINT

No

No

Contains

the

value

of

the

MAXLOCKS

database

configuration

setting

at

the

time

of

the

Explain

invocation.

LOCKS_AVAIL

INTEGER

No

No

Contains

the

number

of

locks

assumed

to

be

available

by

the

optimizer

for

each

user.

(Derived

from

LOCKLIST

and

MAXLOCKS.)

CPU_SPEED

DOUBLE

No

No

Contains

the

value

of

the

CPUSPEED

database

manager

configuration

setting

at

the

time

of

the

Explain

invocation.

REMARKS

VARCHAR(254)

Yes

No

User-provided

comment.

DBHEAP

INTEGER

No

No

Contains

the

value

of

the

DBHEAP

database

configuration

setting

at

the

time

of

Explain

invocation.

COMM_SPEED

DOUBLE

No

No

Contains

the

value

of

the

COMM_BANDWIDTH

database

configuration

setting

at

the

time

of

Explain

invocation.

PARALLELISM

CHAR(2)

No

No

Possible

values

are:

v

N

=

No

parallelism

v

P

=

Intra-partition

parallelism

v

IP

=

Inter-partition

parallelism

v

BP

=

Intra-partition

parallelism

and

inter-partition

parallelism

DATAJOINER

CHAR(1)

No

No

Possible

values

are:

v

N

=

Non-federated

systems

plan

v

Y

=

Federated

systems

plan

EXPLAIN_INSTANCE

table

Appendix

B.

Explain

tables

531

EXPLAIN_OBJECT

table

The

EXPLAIN_OBJECT

table

identifies

those

data

objects

required

by

the

access

plan

generated

to

satisfy

the

SQL

statement.

Table

58.

EXPLAIN_OBJECT

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

FK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

FK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

FK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

FK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

FK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

FK

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

FK

Statement

number

within

package

to

which

this

explain

information

is

related.

SECTNO

INTEGER

No

FK

Section

number

within

package

to

which

this

explain

information

is

related.

OBJECT_SCHEMA

VARCHAR(128)

No

No

Schema

to

which

this

object

belongs.

OBJECT_NAME

VARCHAR(128)

No

No

Name

of

the

object.

OBJECT_TYPE

CHAR(2)

No

No

Descriptive

label

for

the

type

of

object.

CREATE_TIME

TIMESTAMP

Yes

No

Time

of

Object’s

creation;

null

if

a

table

function.

STATISTICS_TIME

TIMESTAMP

Yes

No

Last

time

of

update

to

statistics

for

this

object;

null

if

statistics

do

not

exist

for

this

object.

COLUMN_COUNT

SMALLINT

No

No

Number

of

columns

in

this

object.

ROW_COUNT

INTEGER

No

No

Estimated

number

of

rows

in

this

object.

WIDTH

INTEGER

No

No

The

average

width

of

the

object

in

bytes.

Set

to

-1

for

an

index.

PAGES

INTEGER

No

No

Estimated

number

of

pages

that

the

object

occupies

in

the

buffer

pool.

Set

to

-1

for

a

table

function.

DISTINCT

CHAR(1)

No

No

Indicates

whether

the

rows

in

the

object

are

distinct

(that

is,

whether

there

are

duplicates).

Possible

values

are:

Y

Yes

N

No

TABLESPACE_NAME

VARCHAR(128)

Yes

No

Name

of

the

table

space

in

which

this

object

is

stored;

set

to

null

if

no

table

space

is

involved.

OVERHEAD

DOUBLE

No

No

Total

estimated

overhead,

in

milliseconds,

for

a

single

random

I/O

to

the

specified

table

space.

Includes

controller

overhead,

disk

seek,

and

latency

times.

Set

to

-1

if

no

table

space

is

involved.

TRANSFER_RATE

DOUBLE

No

No

Estimated

time

to

read

a

data

page,

in

milliseconds,

from

the

specified

table

space.

Set

to

-1

if

no

table

space

is

involved.

PREFETCHSIZE

INTEGER

No

No

Number

of

data

pages

to

be

read

when

prefetch

is

performed.

Set

to

-1

for

a

table

function.

EXTENTSIZE

INTEGER

No

No

Size

of

extent,

in

data

pages.

This

many

pages

are

written

to

one

container

in

the

table

space

before

switching

to

the

next

container.

Set

to

-1

for

a

table

function.

EXPLAIN_OBJECT

table

532

Administration

Guide:

Performance

Table

58.

EXPLAIN_OBJECT

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

CLUSTER

DOUBLE

No

No

Degree

of

data

clustering

with

the

index.

If

>=

1,

this

is

the

CLUSTERRATIO.

If

>=

0

and

<

1,

this

is

the

CLUSTERFACTOR.

Set

to

-1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

NLEAF

INTEGER

No

No

Number

of

leaf

pages

this

index

object’s

values

occupy.

Set

to

-1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

NLEVELS

INTEGER

No

No

Number

of

index

levels

in

this

index

object’s

tree.

Set

to

-1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

FULLKEYCARD

BIGINT

No

No

Number

of

distinct

full

key

values

contained

in

this

index

object.

Set

to

-1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

OVERFLOW

INTEGER

No

No

Total

number

of

overflow

records

in

the

table.

Set

to

-1

for

an

index,

table

function,

or

if

this

statistic

is

not

available.

FIRSTKEYCARD

BIGINT

No

No

Number

of

distinct

first

key

values.

Set

to

−1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

FIRST2KEYCARD

BIGINT

No

No

Number

of

distinct

first

key

values

using

the

first

{2,3,4}

columns

of

the

index.

Set

to

−1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

FIRST3KEYCARD

BIGINT

No

No

FIRST4KEYCARD

BIGINT

No

No

SEQUENTIAL_PAGES

INTEGER

No

No

Number

of

leaf

pages

located

on

disk

in

index

key

order

with

few

or

no

large

gaps

between

them.

Set

to

−1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

DENSITY

INTEGER

No

No

Ratio

of

SEQUENTIAL_PAGES

to

number

of

pages

in

the

range

of

pages

occupied

by

the

index,

expressed

as

a

percentage

(integer

between

0

and

100).

Set

to

−1

for

a

table,

table

function,

or

if

this

statistic

is

not

available.

STATS_SRC

CHAR(1)

No

No

Indicates

the

source

for

the

statistics.

Set

to

1

if

from

single

node.

AVERAGE_SEQUENCE_

GAP

DOUBLE

No

No

Gap

between

sequences.

AVERAGE_SEQUENCE_

FETCH_GAP

DOUBLE

No

No

Gap

between

sequences

when

fetching

using

the

index.

AVERAGE_SEQUENCE_

PAGES

DOUBLE

No

No

Average

number

of

index

pages

accessible

in

sequence.

AVERAGE_SEQUENCE_

FETCH_PAGES

DOUBLE

No

No

Average

number

of

table

pages

accessible

in

sequence

when

fetching

using

the

index.

AVERAGE_RANDOM_

PAGES

DOUBLE

No

No

Average

number

of

random

index

pages

between

sequential

page

accesses.

AVERAGE_RANDOM_

FETCH_PAGES

DOUBLE

No

No

Average

number

of

random

table

pages

between

sequential

page

accesses

when

fetching

using

the

index.

NUMRIDS

BIGINT

No

No

Total

number

of

row

identifiers

in

the

index.

NUMRIDS_DELETED

BIGINT

No

No

Total

number

of

psuedo-deleted

row

identifiers

in

the

index.

NUM_EMPTY_LEAFS

BIGINT

No

No

Total

number

of

empty

leaf

pages

in

the

index.

ACTIVE_BLOCKS

BIGINT

No

No

Total

number

of

active

multidimensional

clustering

(MDC)

blocks

in

the

table.

Table

59.

Possible

OBJECT_TYPE

Values

Value

Description

IX

Index

EXPLAIN_OBJECT

table

Appendix

B.

Explain

tables

533

Table

59.

Possible

OBJECT_TYPE

Values

(continued)

Value

Description

TA

Table

TF

Table

Function

EXPLAIN_OBJECT

table

534

Administration

Guide:

Performance

EXPLAIN_OPERATOR

table

The

EXPLAIN_OPERATOR

table

contains

all

the

operators

needed

to

satisfy

the

SQL

statement

by

the

SQL

compiler.

Table

60.

EXPLAIN_OPERATOR

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

FK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

FK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

FK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

FK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

FK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

FK

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

FK

Statement

number

within

package

to

which

this

explain

information

is

related.

SECTNO

INTEGER

No

FK

Section

number

within

package

to

which

this

explain

information

is

related.

OPERATOR_ID

INTEGER

No

No

Unique

ID

for

this

operator

within

this

query.

OPERATOR_TYPE

CHAR(6)

No

No

Descriptive

label

for

the

type

of

operator.

TOTAL_COST

DOUBLE

No

No

Estimated

cumulative

total

cost

(in

timerons)

of

executing

the

chosen

access

plan

up

to

and

including

this

operator.

IO_COST

DOUBLE

No

No

Estimated

cumulative

I/O

cost

(in

data

page

I/Os)

of

executing

the

chosen

access

plan

up

to

and

including

this

operator.

CPU_COST

DOUBLE

No

No

Estimated

cumulative

CPU

cost

(in

instructions)

of

executing

the

chosen

access

plan

up

to

and

including

this

operator.

FIRST_ROW_COST

DOUBLE

No

No

Estimated

cumulative

cost

(in

timerons)

of

fetching

the

first

row

for

the

access

plan

up

to

and

including

this

operator.

This

value

includes

any

initial

overhead

required.

RE_TOTAL_COST

DOUBLE

No

No

Estimated

cumulative

cost

(in

timerons)

of

fetching

the

next

row

for

the

chosen

access

plan

up

to

and

including

this

operator.

RE_IO_COST

DOUBLE

No

No

Estimated

cumulative

I/O

cost

(in

data

page

I/Os)

of

fetching

the

next

row

for

the

chosen

access

plan

up

to

and

including

this

operator.

RE_CPU_COST

DOUBLE

No

No

Estimated

cumulative

CPU

cost

(in

instructions)

of

fetching

the

next

row

for

the

chosen

access

plan

up

to

and

including

this

operator.

COMM_COST

DOUBLE

No

No

Estimated

cumulative

communication

cost

(in

TCP/IP

frames)

of

executing

the

chosen

access

plan

up

to

and

including

this

operator.

FIRST_COMM_COST

DOUBLE

No

No

Estimated

cumulative

communications

cost

(in

TCP/IP

frames)

of

fetching

the

first

row

for

the

chosen

access

plan

up

to

and

including

this

operator.

This

value

includes

any

initial

overhead

required.

BUFFERS

DOUBLE

No

No

Estimated

buffer

requirements

for

this

operator

and

its

inputs.

REMOTE_TOTAL_COST

DOUBLE

No

No

Estimated

cumulative

total

cost

(in

timerons)

of

performing

operation(s)

on

remote

database(s).

EXPLAIN_OPERATOR

table

Appendix

B.

Explain

tables

535

Table

60.

EXPLAIN_OPERATOR

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

REMOTE_COMM_COST

DOUBLE

No

No

Estimated

cumulative

communication

cost

of

executing

the

chosen

remote

access

plan

up

to

and

including

this

operator.

Table

61.

OPERATOR_TYPE

values

Value

Description

DELETE

Delete

FETCH

Fetch

FILTER

Filter

rows

GENROW

Generate

Row

GRPBY

Group

By

HSJOIN

Hash

Join

INSERT

Insert

IXAND

Dynamic

Bitmap

Index

ANDing

IXSCAN

Index

Scan

MSJOIN

Merge

Scan

Join

NLJOIN

Nested

loop

Join

RETURN

Result

RIDSCN

Row

Identifier

(RID)

Scan

SHIP

Ship

query

to

remote

system

SORT

Sort

TBSCAN

Table

Scan

TEMP

Temporary

Table

Construction

TQ

Table

Queue

UNION

Union

UNIQUE

Duplicate

Elimination

UPDATE

Update

EXPLAIN_OPERATOR

table

536

Administration

Guide:

Performance

EXPLAIN_PREDICATE

table

The

EXPLAIN_PREDICATE

table

identifies

which

predicates

are

applied

by

a

specific

operator.

Table

62.

EXPLAIN_PREDICATE

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

FK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

FK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

FK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

FK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

FK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

FK

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

FK

Statement

number

within

package

to

which

this

explain

information

is

related.

SECTNO

INTEGER

No

FK

Section

number

within

package

to

which

this

explain

information

is

related.

OPERATOR_ID

INTEGER

No

No

Unique

ID

for

this

operator

within

this

query.

PREDICATE_ID

INTEGER

No

No

Unique

ID

for

this

predicate

for

the

specified

operator.

HOW_APPLIED

CHAR(5)

No

No

How

predicate

is

being

used

by

the

specified

operator.

WHEN_EVALUATED

CHAR(3)

No

No

Indicates

when

the

subquery

used

in

this

predicate

is

evaluated.

Possible

values

are:

blank

This

predicate

does

not

contain

a

subquery.

EAA

The

subquery

used

in

this

predicate

is

evaluated

at

application

(EAA).

That

is,

it

is

re-evaluated

for

every

row

processed

by

the

specified

operator,

as

the

predicate

is

being

applied.

EAO

The

subquery

used

in

this

predicate

is

evaluated

at

open

(EAO).

That

is,

it

is

re-evaluated

only

once

for

the

specified

operator,

and

its

results

are

re-used

in

the

application

of

the

predicate

for

each

row.

MUL

There

is

more

than

one

type

of

subquery

in

this

predicate.

RELOP_TYPE

CHAR(2)

No

No

The

type

of

relational

operator

used

in

this

predicate.

SUBQUERY

CHAR(1)

No

No

Whether

or

not

a

data

stream

from

a

subquery

is

required

for

this

predicate.

There

may

be

multiple

subquery

streams

required.

Possible

values

are:

N

No

subquery

stream

is

required

Y

One

or

more

subquery

streams

is

required

FILTER_FACTOR

DOUBLE

No

No

The

estimated

fraction

of

rows

that

will

be

qualified

by

this

predicate.

EXPLAIN_PREDICATE

table

Appendix

B.

Explain

tables

537

Table

62.

EXPLAIN_PREDICATE

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

PREDICATE_TEXT

CLOB(2M)

Yes

No

The

text

of

the

predicate

as

recreated

from

the

internal

representation

of

the

SQL

statement.

This

will

also

contain

the

value

of

the

host

variable,

special

register,

or

parameter

marker,

if

used

during

compilation

of

the

statement.

The

value

will

be

dumped

to

the

EXPLAIN_PREDICATE

table

only

if

the

statement

is

executed

by

a

user

who

has

DBADM

authority.

Note

that,

although

other

users

without

DBADM

authority

will

not

be

able

to

dump

the

value

to

this

table,

they

may

still

be

able

to

view

it

if

it

is

already

in

the

table.

Null

if

not

available.

Table

63.

Possible

HOW_APPLIED

Values

Value

Description

BSARG

Evaluated

as

a

sargable

predicate

once

for

every

block

JOIN

Used

to

join

tables

RESID

Evaluated

as

a

residual

predicate

SARG

Evaluated

as

a

sargable

predicate

for

index

or

data

page

START

Used

as

a

start

condition

STOP

Used

as

a

stop

condition

Table

64.

Possible

RELOP_TYPE

Values

Value

Description

blanks

Not

Applicable

EQ

Equals

GE

Greater

Than

or

Equal

GT

Greater

Than

IN

In

list

LE

Less

Than

or

Equal

LK

Like

LT

Less

Than

NE

Not

Equal

NL

Is

Null

NN

Is

Not

Null

EXPLAIN_PREDICATE

table

538

Administration

Guide:

Performance

|
|
|
|

|
|
|
|
|
|

EXPLAIN_STATEMENT

table

The

EXPLAIN_STATEMENT

table

contains

the

text

of

the

SQL

statement

as

it

exists

for

the

different

levels

of

Explain

information.

The

original

SQL

statement

as

entered

by

the

user

is

stored

in

this

table

along

with

the

version

used

(by

the

optimizer)

to

choose

an

access

plan

to

satisfy

the

SQL

statement.

The

latter

version

may

bear

little

resemblance

to

the

original

as

it

may

have

been

rewritten

and/or

enhanced

with

additional

predicates

as

determined

by

the

SQL

Compiler.

Table

65.

EXPLAIN_STATEMENT

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

PK,

FK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

PK,

FK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

PK,

FK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

PK,

FK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

FK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

PK

Level

of

Explain

information

for

which

this

row

is

relevant.

Valid

values

are:

O

Original

Text

(as

entered

by

user)

P

PLAN

SELECTION

STMTNO

INTEGER

No

PK

Statement

number

within

package

to

which

this

explain

information

is

related.

Set

to

1

for

dynamic

Explain

SQL

statements.

For

static

SQL

statements,

this

value

is

the

same

as

the

value

used

for

the

SYSCAT.STATEMENTS

catalog

view.

SECTNO

INTEGER

No

PK

Section

number

within

package

that

contains

this

SQL

statement.

For

dynamic

Explain

SQL

statements,

this

is

the

section

number

used

to

hold

the

section

for

this

statement

at

runtime.

For

static

SQL

statements,

this

value

is

the

same

as

the

value

used

for

the

SYSCAT.STATEMENTS

catalog

view.

QUERYNO

INTEGER

No

No

Numeric

identifier

for

explained

SQL

statement.

For

dynamic

SQL

statements

(excluding

the

EXPLAIN

SQL

statement)

issued

through

CLP

or

CLI,

the

default

value

is

a

sequentially

incremented

value.

Otherwise,

the

default

value

is

the

value

of

STMTNO

for

static

SQL

statements

and

1

for

dynamic

SQL

statements.

QUERYTAG

CHAR(20)

No

No

Identifier

tag

for

each

explained

SQL

statement.

For

dynamic

SQL

statements

issued

through

CLP

(excluding

the

EXPLAIN

SQL

statement),

the

default

value

is

'CLP'.

For

dynamic

SQL

statements

issued

through

CLI

(excluding

the

EXPLAIN

SQL

statement),

the

default

value

is

'CLI'.

Otherwise,

the

default

value

used

is

blanks.

STATEMENT_TYPE

CHAR(2)

No

No

Descriptive

label

for

type

of

query

being

explained.

Possible

values

are:

S

Select

D

Delete

DC

Delete

where

current

of

cursor

I

Insert

U

Update

UC

Update

where

current

of

cursor

EXPLAIN_STATEMENT

table

Appendix

B.

Explain

tables

539

Table

65.

EXPLAIN_STATEMENT

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

UPDATABLE

CHAR(1)

No

No

Indicates

if

this

statement

is

considered

updatable.

This

is

particularly

relevant

to

SELECT

statements

which

may

be

determined

to

be

potentially

updatable.

Possible

values

are:

’

’

Not

applicable

(blank)

N

No

Y

Yes

DELETABLE

CHAR(1)

No

No

Indicates

if

this

statement

is

considered

deletable.

This

is

particularly

relevant

to

SELECT

statements

which

may

be

determined

to

be

potentially

deletable.

Possible

values

are:

’

’

Not

applicable

(blank)

N

No

Y

Yes

TOTAL_COST

DOUBLE

No

No

Estimated

total

cost

(in

timerons)

of

executing

the

chosen

access

plan

for

this

statement;

set

to

0

(zero)

if

EXPLAIN_LEVEL

is

O

(original

text)

since

no

access

plan

has

been

chosen

at

this

time.

STATEMENT_TEXT

CLOB(2M)

No

No

Text

or

portion

of

the

text

of

the

SQL

statement

being

explained.

The

text

shown

for

the

Plan

Selection

level

of

Explain

has

been

reconstructed

from

the

internal

representation

and

is

SQL-like

in

nature;

that

is,

the

reconstructed

statement

is

not

guaranteed

to

follow

correct

SQL

syntax.

SNAPSHOT

BLOB(10M)

Yes

No

Snapshot

of

internal

representation

for

this

SQL

statement

at

the

Explain_Level

shown.

This

column

is

intended

for

use

with

DB2

Visual

Explain.

Column

is

set

to

null

if

EXPLAIN_LEVEL

is

0

(original

statement)

since

no

access

plan

has

been

chosen

at

the

time

that

this

specific

version

of

the

statement

is

captured.

QUERY_DEGREE

INTEGER

No

No

Indicates

the

degree

of

intra-partition

parallelism

at

the

time

of

Explain

invocation.

For

the

original

statement,

this

contains

the

directed

degree

of

intra-partition

parallelism.

For

the

PLAN

SELECTION,

this

contains

the

degree

of

intra-partition

parallelism

generated

for

the

plan

to

use.

REOPT

CHAR(1)

No

No

Indicates

whether

or

not

the

SQL

statement

gets

reoptimized

using

real

values

for

the

host

variables,

parameter

markers,

or

special

registers.

Possible

values

are:

N

Create

an

access

path

with

default

variable

estimates.

Y

Reoptimize

the

access

path

using

available

values

for

the

host

variables,

parameter

markers,

or

special

registers.

EXPLAIN_STATEMENT

table

540

Administration

Guide:

Performance

|||||
|
|

|

||
|

||
|
|

EXPLAIN_STREAM

table

The

EXPLAIN_STREAM

table

represents

the

input

and

output

data

streams

between

individual

operators

and

data

objects.

The

data

objects

themselves

are

represented

in

the

EXPLAIN_OBJECT

table.

The

operators

involved

in

a

data

stream

are

to

be

found

in

the

EXPLAIN_OPERATOR

table.

Table

66.

EXPLAIN_STREAM

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

FK

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

FK

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

FK

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

FK

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

FK

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

FK

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

FK

Statement

number

within

package

to

which

this

explain

information

is

related.

SECTNO

INTEGER

No

FK

Section

number

within

package

to

which

this

explain

information

is

related.

STREAM_ID

INTEGER

No

No

Unique

ID

for

this

data

stream

within

the

specified

operator.

SOURCE_TYPE

CHAR(1)

No

No

Indicates

the

source

of

this

data

stream:

O

Operator

D

Data

Object

SOURCE_ID

SMALLINT

No

No

Unique

ID

for

the

operator

within

this

query

that

is

the

source

of

this

data

stream.

Set

to

-1

if

SOURCE_TYPE

is

’D’.

TARGET_TYPE

CHAR(1)

No

No

Indicates

the

target

of

this

data

stream:

O

Operator

D

Data

Object

TARGET_ID

SMALLINT

No

No

Unique

ID

for

the

operator

within

this

query

that

is

the

target

of

this

data

stream.

Set

to

-1

if

TARGET_TYPE

is

’D’.

OBJECT_SCHEMA

VARCHAR(128)

Yes

No

Schema

to

which

the

affected

data

object

belongs.

Set

to

null

if

both

SOURCE_TYPE

and

TARGET_TYPE

are

’O’.

OBJECT_NAME

VARCHAR(128)

Yes

No

Name

of

the

object

that

is

the

subject

of

data

stream.

Set

to

null

if

both

SOURCE_TYPE

and

TARGET_TYPE

are

’O’.

STREAM_COUNT

DOUBLE

No

No

Estimated

cardinality

of

data

stream.

COLUMN_COUNT

SMALLINT

No

No

Number

of

columns

in

data

stream.

PREDICATE_ID

INTEGER

No

No

If

this

stream

is

part

of

a

subquery

for

a

predicate,

the

predicate

ID

will

be

reflected

here,

otherwise

the

column

is

set

to

-1.

EXPLAIN_STREAM

table

Appendix

B.

Explain

tables

541

Table

66.

EXPLAIN_STREAM

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

COLUMN_NAMES

CLOB(2M)

Yes

No

This

column

contains

the

names

and

ordering

information

of

the

columns

involved

in

this

stream.

These

names

will

be

in

the

format

of:

NAME1(A)+NAME2(D)+NAME3+NAME4

Where

(A)

indicates

a

column

in

ascending

order,

(D)

indicates

a

column

in

descending

order,

and

no

ordering

information

indicates

that

either

the

column

is

not

ordered

or

ordering

is

not

relevant.

PMID

SMALLINT

No

No

Partitioning

map

ID.

SINGLE_NODE

CHAR(5)

Yes

No

Indicates

if

this

data

stream

is

on

a

single

or

multiple

partitions:

MULT

On

multiple

partitions

COOR

On

coordinator

node

HASH

Directed

using

hashing

RID

Directed

using

the

row

ID

FUNC

Directed

using

a

function

(HASHEDVALUE()

or

DBPARTITIONNUM())

CORR

Directed

using

a

correlation

value

Numberic

Directed

to

predetermined

single

node

PARTITION_COLUMNS

CLOB(2M)

Yes

No

List

of

columns

this

data

stream

is

partitioned

on.

EXPLAIN_STREAM

table

542

Administration

Guide:

Performance

ADVISE_INDEX

table

The

ADVISE_INDEX

table

represents

the

recommended

indexes.

Table

67.

ADVISE_INDEX

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

No

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

No

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

No

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

No

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

No

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

No

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

No

Statement

number

within

package

to

which

this

explain

information

is

related.

SECTNO

INTEGER

No

No

Section

number

within

package

to

which

this

explain

information

is

related.

QUERYNO

INTEGER

No

No

Numeric

identifier

for

explained

SQL

statement.

For

dynamic

SQL

statements

(excluding

the

EXPLAIN

SQL

statement)

issued

through

CLP

or

CLI,

the

default

value

is

a

sequentially

incremented

value.

Otherwise,

the

default

value

is

the

value

of

STMTNO

for

static

SQL

statements

and

1

for

dynamic

SQL

statements.

QUERYTAG

CHAR(20)

No

No

Identifier

tag

for

each

explained

SQL

statement.

For

dynamic

SQL

statements

issued

through

CLP

(excluding

the

EXPLAIN

SQL

statement),

the

default

value

is

'CLP'.

For

dynamic

SQL

statements

issued

through

CLI

(excluding

the

EXPLAIN

SQL

statement),

the

default

value

is

'CLI'.

Otherwise,

the

default

value

used

is

blanks.

NAME

VARCHAR(128)

No

No

Name

of

the

index.

CREATOR

VARCHAR(128)

No

No

Qualifier

of

the

index

name.

TBNAME

VARCHAR(128)

No

No

Name

of

the

table

or

nickname

on

which

the

index

is

defined.

TBCREATOR

VARCHAR(128)

No

No

Qualifier

of

the

table

name.

COLNAMES

CLOB(2M)

No

No

List

of

column

names.

UNIQUERULE

CHAR(1)

No

No

Unique

rule:

D

=

Duplicates

allowed

P

=

Primary

index

U

=

Unique

entries

only

allowed

COLCOUNT

SMALLINT

No

No

Number

of

columns

in

the

key

plus

the

number

of

include

columns

if

any.

IID

SMALLINT

No

No

Internal

index

ID.

NLEAF

INTEGER

No

No

Number

of

leaf

pages;

−1

if

statistics

are

not

gathered.

NLEVELS

SMALLINT

No

No

Number

of

index

levels;

−1

if

statistics

are

not

gathered.

FIRSTKEYCARD

BIGINT

No

No

Number

of

distinct

first

key

values;

−1

if

statistics

are

not

gathered.

FULLKEYCARD

BIGINT

No

No

Number

of

distinct

full

key

values;

−1

if

statistics

are

not

gathered.

ADVISE_INDEX

table

Appendix

B.

Explain

tables

543

Table

67.

ADVISE_INDEX

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

CLUSTERRATIO

SMALLINT

No

No

Degree

of

data

clustering

with

the

index;

−1

if

statistics

are

not

gathered

or

if

detailed

index

statistics

are

gathered

(in

which

case,

CLUSTERFACTOR

will

be

used

instead).

CLUSTERFACTOR

DOUBLE

No

No

Finer

measurement

of

degree

of

clustering,

or

−1

if

detailed

index

statistics

have

not

been

gathered

or

if

the

index

is

defined

on

a

nickname.

USERDEFINED

SMALLINT

No

No

Defined

by

the

user.

SYSTEM_REQUIRED

SMALLINT

No

No

1

if

one

or

the

other

of

the

following

conditions

is

met:

–

This

index

is

required

for

a

primary

or

unique

key

constraint,

or

this

index

is

a

dimension

block

index

or

composite

block

index

for

a

multi-dimensional

clustering

(MDC)

table.

–

This

is

an

index

on

the

(OID)

column

of

a

typed

table.

2

if

both

of

the

following

conditions

are

met:

–

This

index

is

required

for

a

primary

or

unique

key

constraint,

or

this

index

is

a

dimension

block

index

or

composite

block

index

for

an

MDC

table.

–

This

is

an

index

on

the

(OID)

column

of

a

typed

table.

0

otherwise.

CREATE_TIME

TIMESTAMP

No

No

Time

when

the

index

was

created.

STATS_TIME

TIMESTAMP

Yes

No

Last

time

when

any

change

was

made

to

recorded

statistics

for

this

index.

Null

if

no

statistics

available.

PAGE_FETCH_PAIRS

VARCHAR(254)

No

No

A

list

of

pairs

of

integers,

represented

in

character

form.

Each

pair

represents

the

number

of

pages

in

a

hypothetical

buffer,

and

the

number

of

page

fetches

required

to

scan

the

table

with

this

index

using

that

hypothetical

buffer.

(Zero-length

string

if

no

data

available.)

REMARKS

VARCHAR(254)

Yes

No

User-supplied

comment,

or

null.

DEFINER

VARCHAR(128)

No

No

User

who

created

the

index.

CONVERTED

CHAR(1)

No

No

Reserved

for

future

use.

SEQUENTIAL_PAGES

INTEGER

No

No

Number

of

leaf

pages

located

on

disk

in

index

key

order

with

few

or

no

large

gaps

between

them.

(−1

if

no

statistics

are

available.)

DENSITY

INTEGER

No

No

Ratio

of

SEQUENTIAL_PAGES

to

number

of

pages

in

the

range

of

pages

occupied

by

the

index,

expressed

as

a

percent

(integer

between

0

and

100,

−1

if

no

statistics

are

available.)

FIRST2KEYCARD

BIGINT

No

No

Number

of

distinct

keys

using

the

first

two

columns

of

the

index

(−1

if

no

statistics

or

inapplicable)

FIRST3KEYCARD

BIGINT

No

No

Number

of

distinct

keys

using

the

first

three

columns

of

the

index

(−1

if

no

statistics

or

inapplicable)

FIRST4KEYCARD

BIGINT

No

No

Number

of

distinct

keys

using

the

first

four

columns

of

the

index

(−1

if

no

statistics

or

inapplicable)

PCTFREE

SMALLINT

No

No

Percentage

of

each

index

leaf

page

to

be

reserved

during

initial

building

of

the

index.

This

space

is

available

for

future

inserts

after

the

index

is

built.

ADVISE_INDEX

table

544

Administration

Guide:

Performance

Table

67.

ADVISE_INDEX

Table

(continued).

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

UNIQUE_COLCOUNT

SMALLINT

No

No

The

number

of

columns

required

for

a

unique

key.

Always

<=COLCOUNT.

<

COLCOUNT

only

if

there

a

include

columns.

−1

if

index

has

no

unique

key

(permits

duplicates)

MINPCTUSED

SMALLINT

No

No

If

not

zero,

then

online

index

defragmentation

is

enabled,

and

the

value

is

the

threshold

of

minimum

used

space

before

merging

pages.

REVERSE_SCANS

CHAR(1)

No

No

Y

=

Index

supports

reverse

scans

N

=

Index

does

not

support

reverse

scans

USE_INDEX

CHAR(1)

Yes

No

Y

=

index

recommended

or

evaluated

N

=

index

not

to

be

recommended

CREATION_TEXT

CLOB(2M)

No

No

The

SQL

statement

used

to

create

the

index.

PACKED_DESC

BLOB(1M)

Yes

No

Internal

description

of

the

table.

ADVISE_INDEX

table

Appendix

B.

Explain

tables

545

ADVISE_INSTANCE

table

The

ADVISE_INSTANCE

table

contains

information

about

db2advis

execution,

including

start

time.

Contains

one

row

for

each

execution

of

db2advis.

Other

ADVISE

tables

have

a

foreign

key

(RUN_ID)

that

links

to

the

START_TIME

column

of

the

ADVISE_INSTANCE

table

for

rows

created

during

the

same

Design

Advisor

run.

Table

68.

ADVISE_INSTANCE

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

START_TIME

TIMESTAMP

No

PK

Time

at

which

db2advis

execution

begins.

END_TIME

TIMESTAMP

No

No

Time

at

which

db2advis

execution

ends.

MODE

VARCHAR(4)

No

No

The

value

that

was

specified

with

the

-m

option

on

the

Design

Advisor;

for

example,

’MC’

to

specify

MQT

and

MDC.

WKLD_COMPRESSION

CHAR(4)

No

No

The

workload

compression

under

which

the

Design

Advisor

was

run.

STATUS

CHAR(9)

No

No

The

status

of

a

Design

Advisor

run.

Status

can

be

’STARTED’,

’COMPLETED’

(if

successful),

or

an

error

number

that

is

prefixed

by

’EI’

for

internal

errors

or

’EX’

for

external

errors,

in

which

case

the

error

number

represents

the

SQLCODE.

ADVISE_INSTANCE

table

546

Administration

Guide:

Performance

|

|
|
|
|
|

||
|

|||||

|||||

|||||

|||||
|
|

|||||
|

|||||
|
|
|
|
|
|

ADVISE_MQT

table

The

ADVISE_MQT

table

contains

information

about

materialized

query

tables

(MQT)

recommended

by

the

Design

Advisor.

Table

69.

ADVISE_MQT

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

No

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

No

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

No

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

No

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

No

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

No

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

No

Statement

number

within

package

to

which

this

Explain

information

is

related.

SECTNO

INTEGER

No

No

Statement

number

within

package

to

which

this

Explain

information

is

related.

NAME

VARCHAR(128)

No

No

MQT

name.

CREATOR

VARCHAR(128)

No

No

MQT

creator

name.

IID

SMALLINT

No

No

Internal

identifier.

CREATE_TIME

TIMESTAMP

No

No

Time

at

which

the

MQT

was

created.

STATS_TIME

TIMESTAMP

Yes

No

Time

at

which

statistics

were

taken.

NUMROWS

DOUBLE

No

No

The

number

of

estimated

rows

in

the

MQT.

NUMCOLS

SMALLINT

No

No

Number

of

columns

defined

in

the

MQT.

ROWSIZE

DOUBLE

No

No

Average

length

(in

bytes)

of

a

row

in

the

MQT.

BENEFIT

FLOAT

No

No

Reserved

for

future

use.

USE_MQT

CHAR(1)

Yes

No

Set

to

’Y’

when

the

MQT

is

recommended.

MQT_SOURCE

CHAR(1)

Yes

No

Indicates

where

the

MQT

candidate

was

generated.

Set

to

’I’

if

the

MQT

candidate

is

a

refresh-immediate

MQT,

or

’D’

if

it

can

only

be

created

as

a

full

refresh-deferred

MQT.

QUERY_TEXT

CLOB(2M)

No

No

Contains

the

query

that

defines

the

MQT.

CREATION_TEXT

CLOB(2M)

No

No

Contains

the

CREATE

TABLE

DDL

for

the

MQT.

SAMPLE_TEXT

CLOB(2M)

No

No

Contains

the

sampling

query

that

is

used

to

get

detailed

statistics

for

the

MQT.

Only

used

when

detailed

statistics

are

required

for

the

Design

Advisor.

The

resulting

sampled

statistics

will

be

shown

in

this

table.

If

null,

then

no

sampling

query

was

created

for

this

MQT.

COLSTATS

CLOB(2M)

No

No

Contains

the

column

statistics

for

the

MQT

(if

not

null).

These

statistics

are

in

XML

format

and

include

the

column

name,

column

cardinality

and,

optionally,

the

HIGH2KEY

and

LOW2KEY

values.

EXTRA_INFO

BLOB(2M)

No

No

Reserved

for

miscellaneous

output.

TBSPACE

VARCHAR(128)

No

No

The

table

space

that

is

recommended

for

the

MQT.

RUN_ID

TIMESTAMP

Yes

FK

A

value

corresponding

to

the

START_TIME

of

a

row

in

the

ADVISE_INSTANCE

table,

linking

it

to

the

same

Design

Advisor

run.

REFRESH_TYPE

CHAR(1)

No

No

Set

to

’I’

for

immediate

or

’D’

for

deferred.

EXISTS

CHAR(1)

No

No

Set

to

’Y’

if

the

MQT

exists

in

the

database

catalog.

ADVISE_MQT

table

Appendix

B.

Explain

tables

547

|

|
|

||
|

|||||

|||||

|||||

|||||
|
|

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|
|
|

|||||

|||||

|||||
|
|
|
|

|||||
|
|
|

|||||

|||||

|||||
|
|

|||||

|||||
|

ADVISE_PARTITION

table

The

ADVISE_PARTITION

table

contains

information

about

database

partitions

recommended

by

the

Design

Advisor,

and

can

only

be

populated

in

a

partitioned

database

environment.

Table

70.

ADVISE_PARTITION

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

EXPLAIN_REQUESTER

VARCHAR(128)

No

No

Authorization

ID

of

initiator

of

this

Explain

request.

EXPLAIN_TIME

TIMESTAMP

No

No

Time

of

initiation

for

Explain

request.

SOURCE_NAME

VARCHAR(128)

No

No

Name

of

the

package

running

when

the

dynamic

statement

was

explained

or

name

of

the

source

file

when

the

static

SQL

was

explained.

SOURCE_SCHEMA

VARCHAR(128)

No

No

Schema,

or

qualifier,

of

source

of

Explain

request.

SOURCE_VERSION

VARCHAR(64)

No

No

Version

of

the

source

of

the

Explain

request.

EXPLAIN_LEVEL

CHAR(1)

No

No

Level

of

Explain

information

for

which

this

row

is

relevant.

STMTNO

INTEGER

No

No

Statement

number

within

package

to

which

this

Explain

information

is

related.

SECTNO

INTEGER

No

No

Statement

number

within

package

to

which

this

Explain

information

is

related.

QUERYNO

INTEGER

No

No

Numeric

identifier

for

explained

SQL

statement.

For

dynamic

SQL

statements

(excluding

the

EXPLAIN

SQL

statement)

issued

through

CLP

or

CLI,

the

default

value

is

a

sequentially

incremented

value.

Otherwise,

the

default

value

is

the

value

of

STMTNO

for

static

SQL

statements

and

1

for

dynamic

SQL

statements.

QUERYTAG

CHAR(20)

No

No

Identifier

tag

for

each

explained

SQL

statement.

For

dynamic

SQL

statements

issued

through

CLP

(excluding

the

EXPLAIN

SQL

statement),

the

default

value

is

’CLP’.

For

dynamic

SQL

statements

issued

through

CLI

(excluding

the

EXPLAIN

SQL

statement),

the

default

value

is

’CLI’.

Otherwise,

the

default

value

used

is

blanks.

TBNAME

VARCHAR(128)

Yes

No

Specifies

the

table

name.

TBCREATOR

VARCHAR(128)

Yes

No

Specifies

the

table

creator

name.

PMID

SMALLINT

Yes

No

Specifies

the

partition

map

ID.

TBSPACE

VARCHAR(128)

Yes

No

Specifies

the

table

space

in

which

the

table

resides.

COLNAMES

CLOB(2M)

Yes

No

Specifies

partition

column

names,

separated

by

commas.

COLCOUNT

SMALLINT

Yes

No

Specifies

the

number

of

partitioning

columns.

REPLICATE

CHAR(1)

Yes

No

Specifies

whether

or

not

the

partition

is

replicated.

COST

DOUBLE

Yes

No

Specifies

the

cost

of

using

the

partition.

USEIT

CHAR(1)

Yes

No

Specifies

whether

or

not

the

partition

is

used

in

EVALUATE

PARTITION

mode.

A

partition

is

used

if

USEIT

is

set

to

’Y’

or

’y’.

RUN_ID

TIMESTAMP

Yes

FK

A

value

corresponding

to

the

START_TIME

of

a

row

in

the

ADVISE_INSTANCE

table,

linking

it

to

the

same

Design

Advisor

run.

ADVISE_PARTITION

table

548

Administration

Guide:

Performance

|
|

|
|
|

||
|

|||||

|||||

|||||

|||||
|
|

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|
|
|
|
|

|||||
|
|
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|
|

|||||
|
|
|
|

ADVISE_TABLE

table

The

ADVISE_TABLE

table

stores

the

data

definition

language

(DDL)

for

table

creation,

using

the

final

Design

Advisor

recommendations

for

materialized

query

tables

(MQTs),

multidimensional

clustered

tables

(MDCs),

and

partitioning.

Table

71.

ADVISE_TABLE

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

RUN_ID

TIMESTAMP

Yes

FK

A

value

corresponding

to

the

START_TIME

of

a

row

in

the

ADVISE_INSTANCE

table,

linking

it

to

the

same

Design

Advisor

run.

TABLE_NAME

VARCHAR(128)

No

No

Name

of

the

table.

TABLE_SCHEMA

VARCHAR(128)

No

No

Name

of

the

table

creator.

TABLESPACE

VARCHAR(128)

No

No

The

table

space

in

which

the

table

is

to

be

created.

SELECTION_FLAG

VARCHAR(4)

No

No

Indicates

the

recommendation

type.

Valid

values

are

’M’

for

MQT,

’P’

for

partitioning,

and

’C’

for

MDC.

This

field

can

include

any

subset

of

these

values.

For

example,

’MC’

indicates

that

the

table

is

recommended

as

an

MQT

and

an

MDC

table.

TABLE_EXISTS

CHAR(1)

No

No

Set

to

’Y’

if

the

table

exists

in

the

database

catalog.

USE_TABLE

CHAR(1)

No

No

Set

to

’Y’

if

the

table

has

recommendations

from

the

Design

Advisor.

GEN_COLUMNS

CLOB(2M)

No

No

Contains

a

generated

columns

string

if

this

row

includes

an

MDC

recommendation

that

requires

generated

columns

in

the

create

table

DDL.

ORGANIZE_BY

CLOB(2M)

No

No

For

MDC

recommendations,

contains

the

ORGANIZE

BY

clause

of

the

create

table

DDL.

CREATION_TEXT

CLOB(2M)

No

No

Contains

the

create

table

DDL.

ALTER_COMMAND

CLOB(2M)

No

No

Contains

an

ALTER

TABLE

statement

for

the

table.

ADVISE_TABLE

table

Appendix

B.

Explain

tables

549

|

|
|
|

||
|

|||||

|||||
|
|

|||||

|||||

|||||

|||||
|
|
|
|

|||||

|||||
|

|||||
|
|

|||||
|

|||||

|||||
|
|

ADVISE_WORKLOAD

table

The

ADVISE_WORKLOAD

table

represents

the

statement

that

makes

up

the

workload.

Table

72.

ADVISE_WORKLOAD

Table.

PK

means

that

the

column

is

part

of

a

primary

key;

FK

means

that

the

column

is

part

of

a

foreign

key.

Column

Name

Data

Type

Nullable?

Key?

Description

WORKLOAD_NAME

CHAR(128)

No

No

Name

of

the

collection

of

SQL

statements

(workload)

that

this

statments

belongs

to.

STATEMENT_NO

INTEGER

No

No

Statement

number

within

the

workload

to

which

this

explain

information

is

related.

STATEMENT_TEXT

CLOB(1M)

No

No

Content

of

the

SQL

statement.

STATEMENT_TAG

VARCHAR(256)

No

No

Identifier

tag

for

each

explained

SQL

statement.

FREQUENCY

INTEGER

No

No

The

number

of

times

this

statement

appears

within

the

workload.

IMPORTANCE

DOUBLE

No

No

Importance

of

the

statement.

WEIGHT

DOUBLE

No

No

Priority

of

the

statement.

COST_BEFORE

DOUBLE

Yes

No

The

cost

(in

timerons)

of

the

query

if

the

recommended

indexes

are

not

created.

COST_AFTER

DOUBLE

Yes

No

The

cost

(in

timerons)

of

the

query

if

the

recommended

indexes

are

created.

COMPILABLE

CHAR(17)

Yes

No

Indicates

any

query

compile

errors

that

occured

while

trying

to

prepare

the

statement.

If

this

column

is

NULL

or

does

not

start

with

SQLCA,

the

SQL

query

could

be

compiled

by

db2advis.

If

a

compile

error

is

found

by

db2advis

or

the

Design

Advisor,

the

COMPILABLE

column

value

consists

of

an

8-character

SQLCA.sqlcaid

field,

followed

by

a

colon

(:)

and

an

8-character

SQLCA.sqlstate

field,

which

is

the

return

code

for

the

SQL

statement.

ADVISE_WORKLOAD

table

550

Administration

Guide:

Performance

Appendix

C.

SQL

explain

tools

You

can

use

the

db2expln

and

dynexpln

tools

to

understand

the

access

plan

chosen

for

a

particular

SQL

statement.

You

can

also

use

the

integrated

Explain

Facility

in

the

Control

Center

in

conjunction

with

Visual

Explain

to

understand

the

access

plan

chosen

for

a

particular

SQL

statement.

Both

dynamic

and

static

SQL

statements

can

be

explained

using

the

Explain

Facility.

One

difference

from

the

Explain

tools

is

that

with

Visual

Explain

the

Explain

information

is

presented

in

a

graphical

format.

Otherwise

the

level

of

detail

provided

in

the

two

methods

is

equivalent.

To

fully

use

the

output

of

db2expln,

and

dynexpln

you

must

understand:

v

The

different

SQL

statements

supported

and

the

terminology

related

to

those

statements

(such

as

predicates

in

a

SELECT

statement)

v

The

purpose

of

a

package

(access

plan)

v

The

purpose

and

contents

of

the

system

catalog

tables

v

General

application

tuning

concepts

The

topics

in

this

section

provide

information

about

db2expln

and

dynexpln.

SQL

explain

tools

The

db2expln

tool

describes

the

access

plan

selected

for

SQL

statements.

It

can

be

used

to

obtain

a

quick

explanation

of

the

chosen

access

plan

when

explain

data

was

not

captured.

For

static

SQL,

db2expln

examines

the

packages

stored

in

the

system

catalog

tables.

For

dynamic

SQL,

db2expln

examines

the

sections

in

the

SQL

cache.

The

dynexpln

tool

can

also

be

used

to

describe

the

access

plan

selected

for

dynamic

statements.

It

creates

a

static

package

for

the

statements

and

then

uses

the

db2expln

tool

to

describe

them.

However,

because

the

dynamic

SQL

can

be

examined

by

db2expln

this

utility

is

retained

only

for

backward

compatibility.

The

explain

tools

(db2expln

and

dynexpln)

are

located

in

the

bin

subdirectory

of

your

instance

sqllib

directory.

If

db2expln

and

dynexpln

are

not

in

your

current

directory,

they

must

be

in

a

directory

that

appears

in

your

PATH

environment

variable.

The

db2expln

program

connects

and

uses

the

db2expln.bnd,

db2exsrv.bnd,

and

db2exdyn.bnd

files

to

bind

itself

to

a

database

the

first

time

the

database

is

accessed.

To

run

db2expln,

you

must

have

the

SELECT

privilege

on

the

system

catalog

views

as

well

as

the

EXECUTE

privilege

for

the

db2expln,

db2exsrv,

and

db2exdyn

packages.

To

run

dynexpln,

you

must

have

BINDADD

authority

for

the

database,

and

the

schema

you

are

using

to

connect

to

the

database

must

exist

or

you

must

have

the

IMPLICIT_SCHEMA

authority

for

the

database.

To

explain

dynamic

SQL

using

either

db2expln

or

dynexpln,

you

must

also

have

any

privileges

needed

for

the

SQL

statements

being

explained.

(Note

that

if

you

have

SYSADM

or

DBADM

authority,

you

will

automatically

have

all

these

authorization

levels.)

©

Copyright

IBM

Corp.

1993

-

2004

551

Related

concepts:

v

“SQL

explain

facility”

on

page

189

v

“Guidelines

for

capturing

explain

information”

on

page

198

v

“Guidelines

for

analyzing

explain

information”

on

page

200

db2expln

The

following

sections

describe

the

syntax

and

parameters

for

db2expln

and

provide

usage

notes.

db2expln

-

SQL

Explain

Command

syntax:

��

db2expln

connection-options

output-options

�

�

package-options

dynamic-options

explain-options

�

�

-help

��

connection-options:

-database

database-name

-user

user-id

password

output-options:

-output

output-file

-terminal

package-options:

-schema

schema-name

-package

package-name

�

�

-version

version-identifier

-escape

escape-character

�

�

-noupper

-section

section-number

dynamic-options:

-statement

sql-statement

-stmtfile

sql-statement-file

�

�

-terminator

termination-character

-noenv

552

Administration

Guide:

Performance

explain-options:

-graph

-opids

Command

parameters:

The

options

may

be

specified

in

any

order.

connection-options:

These

options

specify

the

database

to

connect

to

and

any

options

necessary

to

make

the

connection.

The

connection

options

are

required

except

when

the

-help

option

is

specified.

-database

database-name

The

name

of

the

database

that

contains

the

packages

to

be

explained.

For

backward

compatibility,

you

can

use

-d

instead

of

-database.

-user

user-id

password

The

authorization

ID

and

password

to

use

when

establishing

the

database

connection.

Both

user-id

and

password

must

be

valid

according

to

DB2®

naming

conventions

and

must

be

recognized

by

the

database.

For

backward

compatibility,

you

can

use

-u

instead

of

-user.

output-options:

These

options

specify

where

the

db2expln

output

should

be

directed.

Except

when

the

-help

option

is

specified,

you

must

specify

at

least

one

output

option.

If

you

specify

both

options,

output

is

sent

to

a

file

as

well

as

to

the

terminal.

-output

output-file

The

output

of

db2expln

is

written

to

the

file

that

you

specify.

For

backward

compatibility,

you

can

use

-o

instead

of

-output.

-terminal

The

db2expln

output

is

directed

to

the

terminal.

For

backward

compatibility,

you

can

use

-t

instead

of

-terminal.

package-options:

These

options

specify

one

or

more

packages

and

sections

to

be

explained.

Only

static

SQL

in

the

packages

and

sections

is

explained.

Note:

As

in

a

LIKE

predicate,

you

can

use

the

pattern

matching

characters,

which

are

percent

sign

(%)

and

underscore

(_),

to

specify

the

schema-name,

package-name,

and

version-identifier.

-schema

schema-name

The

schema

of

the

package

or

packages

to

be

explained.

For

backward

compatibility,

you

can

use

-c

instead

of

-schema.

-package

package-name

The

name

of

the

package

or

packages

to

be

explained.

For

backward

compatibility,

you

can

use

-p

instead

of

-package.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

553

-version

version-identifier

The

version

identifier

of

the

package

or

packages

to

be

explained.

The

default

version

is

the

empty

string.

-escape

escape-character

The

character,

escape-character

to

be

used

as

the

escape

character

for

pattern

matching

in

the

schema-name,

package-name,

and

version-identifier.

For

example,

the

db2expln

command

to

explain

the

package

TESTID.CALC%

is

as

follows:

db2expln

-schema

TESTID

-package

CALC%

....

However,

this

command

would

also

explain

any

other

plans

that

start

with

CALC.

To

explain

only

the

TESTID.CALC%

package,

you

must

use

an

escape

character.

If

you

specify

the

exclamation

point

(!)

as

the

escape

character,

you

can

change

the

command

to

read:

db2expln

-schema

TESTID

-escape

!

-package

CALC!%

...

.

Then

the

!

character

is

used

as

an

escape

character

and

thus

!%

is

interpreted

as

the

%

character

and

not

as

the

″match

anything″

pattern.

There

is

no

default

escape

character.

For

backward

compatibility,

you

can

use

-e

instead

of

-escape.

Note:

To

avoid

problems,

do

not

specify

the

operating

system

escape

character

as

the

db2expln

escape

character.

-noupper

Specifies

that

the

schema-name,

package-name,

and

version-identifier,

should

not

be

converted

to

upper

case

before

searching

for

matching

packages.

By

default,

these

variables

are

converted

to

upper

case

before

searching

for

packages.

This

option

indicates

that

these

values

should

be

used

exactly

as

typed.

For

backward

compatibility,

you

can

use

-l,

which

is

a

lowercase

L

and

not

the

number

1,

instead

of

-noupper.

-section

section-number

The

section

number

to

explain

within

the

selected

package

or

packages.

To

explain

all

the

sections

in

each

package,

use

the

number

zero

(0).

This

is

the

default

behavior.

If

you

do

not

specify

this

option,

or

if

schema-name,

package-name,

or

version-identifier

contain

a

pattern-matching

character,

all

sections

are

displayed.

To

find

section

numbers,

query

the

system

catalog

view

SYSCAT.STATEMENTS.

Refer

to

the

SQL

Reference

for

a

description

of

the

system

catalog

views.

For

backward

compatibility,

you

can

use

-s

instead

of

-section.

dynamic-options:

These

options

specify

one

or

more

dynamic

SQL

statements

to

be

explained.

-statement

sql-statement

An

SQL

statement

to

be

dynamically

prepared

and

explained.

To

explain

more

than

one

statement,

either

use

the

-stmtfile

option

to

provide

a

file

containing

the

SQL

statements

to

explain,

or

use

the

-terminator

option

to

define

a

termination

character

that

can

be

used

to

separate

statements

in

the

-statement

option.

db2expln

-

SQL

Explain

554

Administration

Guide:

Performance

For

compatibility

with

dynexpln,

you

can

use

-q

instead

of

-statement.

-stmtfile

sql-statement-file

A

file

that

contains

one

or

more

SQL

statements

to

be

dynamically

prepared

and

explained.

By

default,

each

line

of

the

file

is

assumed

to

be

a

distinct

SQL

statement.

If

statements

must

span

lines,

use

the

-terminator

option

to

specify

the

character

that

marks

the

end

of

an

SQL

statement.

For

compatibility

with

dynexpln,

you

can

use

-f

instead

of

-stmtfile.

-terminator

termination-character

The

character

that

indicates

the

end

of

dynamic

SQL

statements.

By

default,

the

-statement

option

provides

a

single

SQL

statement

and

each

line

of

the

file

in

the

-stmtfile

is

treated

as

a

separate

SQL

statement.

The

termination

character

that

you

specify

can

be

used

to

provide

multiple

SQL

statements

with

-statement

or

to

have

statements

span

lines

in

the

-stmtfile

file.

For

compatibility

with

dynexpln,

you

can

use

-z

instead

of

-terminator.

-noenv

Specifies

that

dynamic

statements

that

alter

the

compilation

environment

should

not

be

executed

after

they

have

been

explained.

By

default,

db2expln

will

execute

any

of

the

following

statements

after

they

have

been

explained:

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

SET

CURRENT

DEGREE

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

SET

CURRENT

QUERY

OPTIMIZATION

SET

CURRENT

REFRESH

AGE

SET

PATH

SET

SCHEMA

These

statements

make

it

possible

to

alter

the

plan

chosen

for

subsequent

dynamic

SQL

statements

processed

by

db2expln.

If

you

specify

-noenv,

then

these

statement

are

explained,

but

not

executed.

It

is

necessary

to

specify

either

-statement

or

-stmtfile

to

explain

dynamic

SQL.

Both

options

may

be

specified

in

a

single

invocation

of

db2expln.

explain-options:

These

options

determine

what

additional

information

is

provided

in

the

explained

plans.

-graph

Show

optimizer

plan

graphs.

Each

section

is

examined,

and

the

original

optimizer

plan

graph

is

constructed

as

presented

by

Visual

Explain.

Note

that

the

generated

graph

may

not

match

the

Visual

Explain

graph

exactly.

For

backward

compatibility,

you

can

specify

-g

instead

of

-graph.

-opids

Display

operator

ID

numbers

in

the

explained

plan.

The

operator

ID

numbers

allow

the

output

from

db2expln

to

be

matched

to

the

output

from

the

explain

facility.

Note

that

not

all

operators

have

an

ID

number

and

that

some

ID

numbers

that

appear

in

the

explain

facility

output

do

not

appear

in

the

db2expln

output.

For

backward

compatibility,

you

can

specify

-i

instead

of

-opids.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

555

-help

Shows

the

help

text

for

db2expln.

If

this

option

is

specified

no

packages

are

explained.

Most

of

the

command

line

is

processed

in

the

db2exsrv

stored

procedure.

To

get

help

on

all

the

available

options,

it

is

necessary

to

provide

connection-options

along

with

-help.

For

example,

use:

db2expln

-help

-database

SAMPLE

For

backward

compatibility,

you

can

specify

-h

or

-?.

Usage

notes:

Unless

you

specify

the

-help

option,

you

must

specify

either

package-options

or

dynamic-options.

You

can

explain

both

packages

and

dynamic

SQL

with

a

single

invocation

of

db2expln.

Some

of

the

option

flags

above

might

have

special

meaning

to

your

operating

system

and,

as

a

result,

might

not

be

interpreted

correctly

in

the

db2expln

command

line.

However,

you

might

be

able

to

enter

these

characters

by

preceding

them

with

an

operating

system

escape

character.

For

more

information,

see

your

operating

system

documentation.

Make

sure

that

you

do

not

inadvertently

specify

the

operating

system

escape

character

as

the

db2expln

escape

character.

Help

and

initial

status

messages,

produced

by

db2expln,

are

written

to

standard

output.

All

prompts

and

other

status

messages

produced

by

the

explain

tool

are

written

to

standard

error.

Explain

text

is

written

to

standard

output

or

to

a

file

depending

on

the

output

option

chosen.

Examples:

To

explain

multiple

plans

with

one

invocation

of

db2expln,

use

the

-package,

-schema,

and

-version

option

and

specify

string

constants

for

packages

and

creators

with

LIKE

patterns.

That

is,

the

underscore

(_)

may

be

used

to

represent

a

single

character,

and

the

percent

sign

(%)

may

be

used

to

represent

the

occurrence

of

zero

or

more

characters.

To

explain

all

sections

for

all

packages

in

a

database

named

SAMPLE,

with

the

results

being

written

to

the

file

my.exp

,

enter

db2expln

-database

SAMPLE

-schema

%

-package

%

-output

my.exp

As

another

example,

suppose

a

user

has

a

CLP

script

file

called

″statements.db2″

and

wants

to

explain

the

statements

in

the

file.

The

file

contains

the

following

statements:

SET

PATH=SYSIBM,

SYSFUN,

DEPT01,

DEPT93@

SELECT

EMPNO,

TITLE(JOBID)

FROM

EMPLOYEE@

To

explain

these

statements,

enter

the

following

command:

db2expln

-database

DEPTDATA

-stmtfile

statements.db2

-terminator

@

-terminal

Related

concepts:

v

“SQL

explain

tools”

on

page

551

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

db2expln

-

SQL

Explain

556

Administration

Guide:

Performance

Usage

notes

for

db2expln

The

following

are

common

messages

displayed

by

db2expln:

v

No

packages

found

for

database

package

pattern:

"<creator>".<package>

with

version

"<version>"

This

message

will

appear

in

the

output

if

no

packages

were

found

in

the

database

that

matched

the

specified

pattern.

v

Bind

messages

can

be

found

in

db2expln.msg

This

message

will

appear

in

the

output

if

the

bind

of

db2expln.bnd

was

not

successful.

Further

information

on

the

problems

encountered

will

be

found

in

the

file

db2expln.msg

in

the

current

directory.

v

Section

number

overridden

to

0

(all

sections)

for

potential

multiple

packages.

This

message

will

appear

in

the

output

if

multiple

packages

may

be

encountered

by

db2expln.

This

action

will

be

taken

if

one

of

the

pattern

matching

characters

is

used

in

the

package

or

creator

input

arguments.

v

Bind

messages

for

<bind

file>

can

be

found

in

<message

file>

This

message

will

appear

if

the

bind

of

the

given

bind

file

was

not

successful.

Further

information

on

the

problems

encountered

will

be

found

in

the

given

message

file

on

the

database

server.

v

No

static

sections

qualify

from

package.

This

message

will

appear

in

the

output

if

the

specified

package

only

contains

dynamic

SQL

statements

which

means

that

there

are

no

static

sections.

v

Package

"<creator>"."<package>",

"<version>",

is

not

valid.

Rebind

the

package

and

then

rerun

db2expln.

This

message

will

appear

in

the

output

if

the

package

specified

is

currently

not

valid.

As

directed,

reissue

the

BIND

or

REBIND

command

for

the

plan

to

re-create

a

valid

package

in

the

database,

and

then

rerun

db2expln.

SQL

Statements

Excluded:

The

following

statements

will

not

be

explained:

v

BEGIN/END

DECLARE

SECTION

v

BEGIN/END

COMPOUND

v

INCLUDE

v

WHENEVER

v

COMMIT

and

ROLLBACK

v

CONNECT

v

OPEN

cursor

v

FETCH

v

CLOSE

cursor

v

PREPARE

v

EXECUTE

v

EXECUTE

IMMEDIATE

v

DESCRIBE

v

Dynamic

DECLARE

CURSOR

v

SQL

control

statements

Each

sub-statement

within

a

compound

SQL

statement

may

have

its

own

section,

which

can

be

explained

by

db2expln.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

557

dynexpln

The

dynexpln

tool

is

still

available

for

backward

compatibility.

However,

you

can

use

the

dynamic-options

of

db2expln

to

perform

all

of

the

functions

of

dynexpln.

When

you

use

the

dynamic-options

of

db2expln,

the

statement

is

prepared

as

true

dynamic

SQL

and

the

generated

plan

is

explained

from

the

SQL

cache.

This

explain-output

method

provides

more

accurate

access

plans

than

dynexpln,

which

prepares

the

statement

as

static

SQL.

It

also

allows

the

use

of

features

available

only

in

dynamic

SQL,

such

as

parameter

markers.

Related

concepts:

v

“SQL

explain

tools”

on

page

551

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Explain

output

information

The

following

sections

describe

the

kind

of

information

that

db2expln

and

dynexpln

can

provide.

Description

of

db2expln

and

dynexpln

output

In

the

output,

the

explain

information

for

each

package

appears

in

the

following

two

parts:

v

Package

information

such

as

date

of

bind

and

relevant

bind

options

v

Section

information

such

as

the

section

number,

followed

by

the

SQL

statement

being

explained.

Below

the

section

information,

the

explain

output

of

the

access

plan

chosen

for

the

SQL

statement

appears.

The

steps

of

an

access

plan,

or

section,

are

presented

in

the

order

that

the

database

manager

executes

them.

Each

major

step

is

shown

as

a

left-justified

heading

with

information

about

that

step

indented

below

it.

Indentation

bars

appear

in

the

left

margin

of

the

explain

output

for

the

access

plan.

These

bars

also

mark

the

scope

of

the

operation.

Operations

at

a

lower

level

of

indentation,

farther

to

the

right,

in

the

same

operation

are

processed

before

returning

to

the

previous

level

of

indentation.

Remember

that

the

access

plan

chosen

was

based

on

an

augmented

version

of

the

original

SQL

statement

that

is

shown

in

the

output.

For

example,

the

original

statement

may

cause

triggers

and

constraints

to

be

activated.

In

addition,

the

query

rewrite

component

of

the

SQL

compiler

might

rewrite

the

SQL

statement

to

an

equivalent

but

more

efficient

format.

All

of

these

factors

are

included

in

the

information

that

the

optimizer

uses

when

it

determines

the

most

efficient

plan

to

satisfy

the

statement.

Thus,

the

access

plan

shown

in

the

explain

output

may

differ

substantially

from

the

access

plan

that

you

might

expect

for

the

original

SQL

statement.

The

SQL

Explain

facility,

which

includes

the

explain

tables,

SET

CURRENT

EXPLAIN

mode,

and

Visual

Explain,

shows

the

actual

SQL

statement

used

for

optimization

in

the

form

of

an

SQL-like

statement

which

is

created

by

reverse-translating

the

internal

representation

of

the

query.

When

you

compare

output

from

db2expln

or

dynexpln

to

the

output

of

the

Explain

facility,

the

operator

ID

option

(-opids)

can

be

very

useful.

Each

time

db2expln

or

dynexpln

starts

processing

a

new

operator

from

the

Explain

facility,

the

operator

ID

number

is

printed

to

the

left

of

the

explained

plan.

The

operator

IDs

can

be

used

to

match

up

the

steps

in

the

different

representations

of

the

access

plan.

Note

db2expln

-

SQL

Explain

558

Administration

Guide:

Performance

that

there

is

not

always

a

one-to-one

correspondence

between

the

operators

in

the

Explain

facility

output

and

the

operations

shown

by

db2expln

and

dynexpln.

Related

concepts:

v

“dynexpln”

on

page

558

v

“Table

access

information”

on

page

559

v

“Temporary

table

information”

on

page

564

v

“Join

information”

on

page

566

v

“Data

stream

information”

on

page

568

v

“Insert,

update,

and

delete

information”

on

page

568

v

“Block

and

row

identifier

preparation

information”

on

page

569

v

“Aggregation

information”

on

page

570

v

“Parallel

processing

information”

on

page

571

v

“Federated

query

information”

on

page

573

v

“Miscellaneous

information”

on

page

574

Related

reference:

v

“db2expln

-

SQL

Explain”

on

page

552

Table

access

information

This

statement

tells

the

name

and

type

of

table

being

accessed.

It

has

two

formats

that

are

used:

1.

Regular

tables

of

three

types:

v

Access

Table

Name:

Access

Table

Name

=

schema.name

ID

=

ts,n

where:

–

schema.name

is

the

fully-qualified

name

of

the

table

being

accessed

–

ID

is

the

corresponding

TABLESPACEID

and

TABLEID

from

the

SYSCAT.TABLES

catalog

for

the

table
v

Access

Hierarchy

Table

Name:

Access

Hierarchy

Table

Name

=

schema.name

ID

=

ts,n

where:

–

schema.name

is

the

fully-qualified

name

of

the

table

being

accessed

–

ID

is

the

corresponding

TABLESPACEID

and

TABLEID

from

the

SYSCAT.TABLES

catalog

for

the

table
v

Access

Materialized

Query

Table

Name:

Access

Materialized

Query

Table

Name

=

schema.name

ID

=

ts,n

where:

–

schema.name

is

the

fully-qualified

name

of

the

table

being

accessed

–

ID

is

the

corresponding

TABLESPACEID

and

TABLEID

from

the

SYSCAT.TABLES

catalog

for

the

table
2.

Temporary

tables

of

two

types:

v

Access

Temporary

Table

ID:

Access

Temp

Table

ID

=

tn

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

559

where:

–

ID

is

the

corresponding

identifier

assigned

by

db2expln

v

Access

Declared

Global

Temporary

Table

ID:

Access

Global

Temp

Table

ID

=

ts,tn

where:

–

ID

is

the

corresponding

TABLESPACEID

from

the

SYSCAT.TABLES

catalog

for

the

table

(ts);

and

the

corresponding

identifier

assigned

by

db2expln

(tn)

Following

the

table

access

statement,

additional

statements

will

be

provided

to

further

describe

the

access.

These

statements

will

be

indented

under

the

table

access

statement.

The

possible

statements

are:

v

Number

of

columns

v

Block

access

v

Parallel

scan

v

Scan

directive

v

Row

access

method

v

Lock

intents

v

Predicates

v

Miscellaneous

statements

Number

of

Columns

The

following

statement

indicates

the

number

of

columns

being

used

from

each

row

of

the

table:

#Columns

=

n

Block

Access

The

following

statement

indicates

that

the

table

has

one

or

more

dimension

block

indexes

defined

on

it:

Clustered

by

Dimension

for

Block

Index

Access

If

this

text

is

not

shown,

the

table

was

created

without

the

DIMENSION

clause.

Parallel

Scan

The

following

statement

indicates

that

the

database

manager

will

use

several

subagents

to

read

from

the

table

in

parallel:

Parallel

Scan

If

this

text

is

not

shown,

the

table

will

only

be

read

from

by

one

agent

(or

subagent).

Scan

Direction

The

following

statement

indicates

that

the

database

manager

will

read

rows

in

a

reverse

order:

Scan

Direction

=

Reverse

If

this

text

is

not

shown,

the

scan

direction

is

forward,

which

is

the

default.

db2expln

-

SQL

Explain

560

Administration

Guide:

Performance

Row

Access

Method

One

of

the

following

statements

will

be

displayed,

indicating

how

the

qualifying

rows

in

the

table

are

being

accessed:

v

The

Relation

Scan

statement

indicates

that

the

table

is

being

sequentially

scanned

to

find

the

qualifying

rows.

–

The

following

statement

indicates

that

no

prefetching

of

data

will

be

done:

Relation

Scan

|

Prefetch:

None

–

The

following

statement

indicates

that

the

optimizer

has

predetermined

the

number

of

pages

that

will

be

prefetched:

Relation

Scan

|

Prefetch:

n

Pages

–

The

following

statement

indicates

that

data

should

be

prefetched:

Relation

Scan

|

Prefetch:

Eligible

–

The

following

statement

indicates

that

the

qualifying

rows

are

being

identified

and

accessed

through

an

index:

Index

Scan:

Name

=

schema.name

ID

=

xx

|

Index

type

|

Index

Columns:

where:

-

schema.name

is

the

fully-qualified

name

of

the

index

being

scanned

-

ID

is

the

corresponding

IID

column

in

the

SYSCAT.INDEXES

catalog

view.

-

Index

type

is

one

of:

Regular

Index

(Not

Clustered)

Regular

Index

(Clustered)

Dimension

Block

Index

Composite

Dimension

Block

Index

This

will

be

followed

by

one

row

for

each

column

in

the

index.

Each

column

in

the

index

will

be

listed

in

one

of

the

following

forms:

n:

column_name

(Ascending)

n:

column_name

(Descending)

n:

column_name

(Include

Column)

The

following

statements

are

provided

to

clarify

the

type

of

index

scan:

-

The

range

delimiting

predicates

for

the

index

are

shown

by:

#Key

Columns

=

n

|

Start

Key:

xxxxx

|

Stop

Key:

xxxxx

Where

xxxxx

is

one

of:

v

Start

of

Index

v

End

of

Index

v

Inclusive

Value:

or

Exclusive

Value:

An

inclusive

key

value

will

be

included

in

the

index

scan.

An

exclusive

key

value

will

not

be

included

in

the

scan.

The

value

for

the

key

will

be

given

by

one

of

the

following

rows

for

each

part

of

the

key:

n:

’string’

n:

nnn

n:

yyyy-mm-dd

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

561

n:

hh:mm:ss

n:

yyyy-mm-dd

hh:mm:ss.uuuuuu

n:

NULL

n:

?

If

a

literal

string

is

shown,

only

the

first

20

characters

are

displayed.

If

the

string

is

longer

than

20

characters,

this

will

be

shown

by

...

at

the

end

of

the

string.

Some

keys

cannot

be

determined

until

the

section

is

executed.

This

is

shown

by

a

?

as

the

value.
-

Index-Only

Access

If

all

the

needed

columns

can

be

obtained

from

the

index

key,

this

statement

will

appear

and

no

table

data

will

be

accessed.

-

The

following

statement

indicates

that

no

prefetching

of

index

pages

will

be

done:

Index

Prefetch:

None

-

The

following

statement

indicates

that

index

pages

should

be

prefetched:

Index

Prefetch:

Eligible

-

The

following

statement

indicates

that

no

prefetching

of

data

pages

will

be

done:

Data

Prefetch:

None

-

The

following

statement

indicates

that

data

pages

should

be

prefetched:

Data

Prefetch:

Eligible

-

If

there

are

predicates

that

can

be

passed

to

the

Index

Manager

to

help

qualify

index

entries,

the

following

statement

is

used

to

show

the

number

of

predicates:

Sargable

Index

Predicate(s)

|

#Predicates

=

n

–

If

the

qualifying

rows

are

being

accessed

by

using

row

IDs

(RIDs)

that

were

prepared

earlier

in

the

access

plan,

it

will

be

indicated

with

the

statement:

Fetch

Direct

Using

Row

IDs

If

the

table

has

one

or

more

block

indexes

defined

for

it,

then

rows

may

be

accessed

by

either

block

or

row

IDs.

This

is

indicated

by:

Fetch

Direct

Using

Block

or

Row

IOs

Lock

Intents

For

each

table

access,

the

type

of

lock

that

will

be

acquired

at

the

table

and

row

levels

is

shown

with

the

following

statement:

Lock

Intents

|

Table:

xxxx

|

Row

:

xxxx

Possible

values

for

a

table

lock

are:

v

Exclusive

v

Intent

Exclusive

v

Intent

None

v

Intent

Share

v

Share

v

Share

Intent

Exclusive

v

Super

Exclusive

v

Update

db2expln

-

SQL

Explain

562

Administration

Guide:

Performance

Possible

values

for

a

row

lock

are:

v

Exclusive

v

Next

Key

Exclusive

(does

not

appear

in

db2expln

output)

v

None

v

Share

v

Next

Key

Share

v

Update

v

Next

Key

Weak

Exclusive

v

Weak

Exclusive

Predicates

There

are

two

statements

that

provide

information

about

the

predicates

used

in

an

access

plan:

1.

The

following

statement

indicates

the

number

of

predicates

that

will

be

evaluated

for

each

block

of

data

retrieved

from

a

blocked

index.

Block

Predicates(s)

|

#Predicates

=

n

2.

The

following

statement

indicates

the

number

of

predicates

that

will

be

evaluated

while

the

data

is

being

accessed.

The

count

of

predicates

does

not

include

push-down

operations

such

as

aggregation

or

sort.

Sargable

Predicate(s)

|

#Predicates

=

n

3.

The

following

statement

indicates

the

number

of

predicates

that

will

be

evaluated

once

the

data

has

been

returned:

Residual

Predicate(s)

|

#Predicates

=

n

The

number

of

predicates

shown

in

the

above

statements

may

not

reflect

the

number

of

predicates

provided

in

the

SQL

statement

because

predicates

can

be:

v

Applied

more

than

once

within

the

same

query

v

Transformed

and

extended

with

the

addition

of

implicit

predicates

during

the

query

optimization

process

v

Transformed

and

condensed

into

fewer

predicates

during

the

query

optimization

process.

Miscellaneous

Table

Statements

v

The

following

statement

indicates

that

only

one

row

will

be

accessed:

Single

Record

v

The

following

statement

appears

when

the

isolation

level

used

for

this

table

access

uses

a

different

isolation

level

than

the

statement:

Isolation

Level:

xxxx

A

different

isolation

level

may

be

used

for

a

number

of

reasons,

including:

–

A

package

was

bound

with

Repeatable

Read

and

affects

referential

integrity

constraints;

the

access

of

the

parent

table

to

check

referential

integrity

constraints

is

downgraded

to

an

isolation

level

of

Cursor

Stability

to

avoid

holding

unnecessary

locks

on

this

table.

–

A

package

bound

with

Uncommitted

Read

issues

a

DELETE

or

UPDATE

statement;

the

table

access

for

the

actual

delete

is

upgraded

to

Cursor

Stability.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

563

v

The

following

statement

indicates

that

some

or

all

of

the

rows

read

from

the

temporary

table

will

be

cached

outside

the

buffer

pool

if

sufficient

sortheap

memory

is

available:

Keep

Rows

In

Private

Memory

v

If

the

table

has

the

volatile

cardinality

attribute

set,

it

will

be

indicated

by:

Volatile

Cardinality

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Temporary

table

information

A

temporary

table

is

used

by

an

access

plan

to

store

data

during

its

execution

in

a

transient

or

temporary

work

table.

This

table

only

exists

while

the

access

plan

is

being

executed.

Generally,

temporary

tables

are

used

when

subqueries

need

to

be

evaluated

early

in

the

access

plan,

or

when

intermediate

results

will

not

fit

in

the

available

memory.

If

a

temporary

table

needs

to

be

created,

then

one

of

two

possible

statements

may

appear.

These

statements

indicate

that

a

temporary

table

is

to

be

created

and

rows

inserted

into

it.

The

ID

is

an

identifier

assigned

by

db2expln

for

convenience

when

referring

to

the

temporary

table.

This

ID

is

prefixed

with

the

letter

’t’

to

indicate

that

the

table

is

a

temporary

table.

v

The

following

statement

indicates

an

ordinary

temporary

table

will

be

created:

Insert

Into

Temp

Table

ID

=

tn

v

The

following

statement

indicates

an

ordinary

temporary

table

will

be

created

by

multiple

subagents

in

parallel:

Insert

Into

Shared

Temp

Table

ID

=

tn

v

The

following

statement

indicates

a

sorted

temporary

table

will

be

created:

Insert

Into

Sorted

Temp

Table

ID

=

tn

v

The

following

statement

indicates

a

sorted

temporary

table

will

be

created

by

multiple

subagents

in

parallel:

Insert

Into

Sorted

Shared

Temp

Table

ID

=

tn

v

The

following

statement

indicates

a

declared

global

temporary

table

will

be

created:

Insert

Into

Global

Temp

Table

ID

=

ts,tn

v

The

following

statement

indicates

a

declared

global

temporary

table

will

be

created

by

multiple

subagents

in

parallel:

Insert

Into

Shared

Global

Temp

Table

ID

=

ts,tn

v

The

following

statement

indicates

a

sorted

declared

global

temporary

table

will

be

created:

Insert

Into

Sorted

Global

Temp

Table

ID

=

ts,tn

v

The

following

statement

indicates

a

sorted

declared

global

temporary

table

will

be

created

by

multiple

subagents

in

parallel:

Insert

Into

Sorted

Shared

Global

Temp

Table

ID

=

ts,tn

Each

of

the

above

statements

will

be

followed

by:

#Columns

=

n

db2expln

-

SQL

Explain

564

Administration

Guide:

Performance

which

indicates

how

many

columns

are

in

each

row

being

inserted

into

the

temporary

table.

Sorted

Temporary

Tables

Sorted

temporary

tables

can

result

from

such

operations

as:

v

ORDER

BY

v

DISTINCT

v

GROUP

BY

v

Merge

Join

v

'=

ANY'

subquery

v

'<>

ALL'

subquery

v

INTERSECT

or

EXCEPT

v

UNION

(without

the

ALL

keyword)

A

number

of

additional

statements

may

follow

the

original

creation

statement

for

a

sorted

temporary

table:

v

The

following

statement

indicates

the

number

of

key

columns

used

in

the

sort:

#Sort

Key

Columns

=

n

For

each

column

in

the

sort

key,

one

of

the

following

lines

will

be

displayed:

Key

n:

column_name

(Ascending)

Key

n:

column_name

(Descending)

Key

n:

(Ascending)

Key

n:

(Descending)

v

The

following

statements

provide

estimates

of

the

number

of

rows

and

the

row

size

so

that

the

optimal

sort

heap

can

be

allocated

at

run

time.

Sortheap

Allocation

Parameters:

|

#Rows

=

n

|

Row

Width

=

n

v

If

only

the

first

rows

of

the

sorted

result

are

needed,

the

following

is

displayed:

Sort

Limited

To

Estimated

Row

Count

v

For

sorts

in

a

symmetric

multiprocessor

(SMP)

environment,

the

type

of

sort

to

be

performed

is

indicated

by

one

of

the

following

statements:

Use

Partitioned

Sort

Use

Shared

Sort

Use

Replicated

Sort

Use

Round-Robin

Sort

v

The

following

statements

indicate

whether

or

not

the

result

from

the

sort

will

be

left

in

the

sort

heap:

Piped

and

Not

Piped

If

a

piped

sort

is

indicated,

the

database

manager

will

keep

the

sorted

output

in

memory,

rather

than

placing

the

sorted

result

in

another

temporary

table.

v

The

following

statement

indicates

that

duplicate

values

will

be

removed

during

the

sort:

Duplicate

Elimination

v

If

aggregation

is

being

performed

in

the

sort,

it

will

be

indicated

by

one

of

the

following

statements:

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

565

Partial

Aggregation

Intermediate

Aggregation

Buffered

Partial

Aggregation

Buffered

Intermediate

Aggregation

Temporary

Table

Completion:

After

a

table

access

that

contains

a

push-down

operation

to

create

a

temporary

table

(that

is,

a

create

temporary

table

that

occurs

within

the

scope

of

a

table

access),

there

will

be

a

″completion″

statement,

which

handles

end-of-file

by

getting

the

temporary

table

ready

to

provide

rows

to

subsequent

temporary

table

access.

One

of

the

following

lines

will

be

displayed:

Temp

Table

Completion

ID

=

tn

Shared

Temp

Table

Completion

ID

=

tn

Sorted

Temp

Table

Completion

ID

=

tn

Sorted

Shared

Temp

Table

Completion

ID

=

tn

Table

Functions

Table

functions

are

user-defined

functions

(UDFs)

that

return

data

to

the

statement

in

the

form

of

a

table.

Table

functions

are

indicated

by:

Access

User

Defined

Table

Function

|

Name

=

schema.funcname

|

Specific

Name

=

specificname

|

SQL

Access

Level

=

accesslevel

|

Language

=

lang

|

Parameter

Style

=

parmstyle

|

Fenced

Not

Deterministic

|

Called

on

NULL

Input

Disallow

Parallel

|

Not

Federated

Not

Threadsafe

The

specific

name

uniquely

identifies

the

table

function

invoked.

The

remaining

rows

detail

the

atributes

of

the

function.

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Join

information

There

are

three

types

of

joins:

v

Hash

join

v

Merge

join

v

Nested

loop

join.

When

the

time

comes

in

the

execution

of

a

section

for

a

join

to

be

performed,

one

of

the

following

statements

is

displayed:

Hash

Join

Merge

Join

Nested

Loop

Join

It

is

possible

for

a

left

outer

join

to

be

performed.

A

left

outer

join

is

indicated

by

one

of

the

following

statements:

Left

Outer

Hash

Join

Left

Outer

Merge

Join

Left

Outer

Nested

Loop

Join

For

merge

and

nested

loop

joins,

the

outer

table

of

the

join

will

be

the

table

referenced

in

the

previous

access

statement

shown

in

the

output.

The

inner

table

of

the

join

will

be

the

table

referenced

in

the

access

statement

that

is

contained

within

db2expln

-

SQL

Explain

566

Administration

Guide:

Performance

the

scope

of

the

join

statement.

For

hash

joins,

the

access

statements

are

reversed

with

the

outer

table

contained

within

the

scope

of

the

join

and

the

inner

table

appearing

before

the

join.

For

a

hash

or

merge

join,

the

following

additional

statements

may

appear:

v

In

some

circumstances,

a

join

simply

needs

to

determine

if

any

row

in

the

inner

table

matches

the

current

row

in

the

outer.

This

is

indicated

with

the

statement:

Early

Out:

Single

Match

Per

Outer

Row

v

It

is

possible

to

apply

predicates

after

the

join

has

completed.

The

number

of

predicates

being

applied

will

be

indicated

as

follows:

Residual

Predicate(s)

|

#Predicates

=

n

For

a

hash

join,

the

following

additional

statements

may

appear:

v

The

hash

table

is

built

from

the

inner

table.

If

the

hash

table

build

was

pushed

down

into

a

predicate

on

the

inner

table

access,

it

is

indicated

by

the

following

statement

in

the

access

of

the

inner

table:

Process

Hash

Table

For

Join

v

While

accessing

the

outer

table,

a

probe

table

can

be

built

to

improve

the

performance

of

the

join.

The

probe

table

build

is

indicated

by

the

following

statement

in

the

access

of

the

outer

table:

Process

Probe

Table

For

Hash

Join

v

The

estimated

number

of

bytes

needed

to

build

the

hash

table

is

represented

by:

Estimated

Build

Size:

n

v

The

estimated

number

of

bytes

needed

for

the

probe

table

is

represented

by:

Estimated

Probe

Size:

n

For

a

nested

loop

join,

the

following

additional

statement

may

appear

immediately

after

the

join

statement:

Piped

Inner

This

statement

indicates

that

the

inner

table

of

the

join

is

the

result

of

another

series

of

operations.

This

is

also

referred

to

as

a

composite

inner.

If

a

join

involves

more

than

two

tables,

the

explain

steps

should

be

read

from

top

to

bottom.

For

example,

suppose

the

explain

output

has

the

following

flow:

Access

.....

W

Join

|

Access

.....

X

Join

|

Access

.....

Y

Join

|

Access

.....

Z

The

steps

of

execution

would

be:

1.

Take

a

row

that

qualifies

from

W.

2.

Join

row

from

W

with

(next)

row

from

X

and

call

the

result

P1

(for

partial

join

result

number

1).

3.

Join

P1

with

(next)

row

from

Y

to

create

P2

.

4.

Join

P2

with

(next)

row

from

Z

to

obtain

one

complete

result

row.

5.

If

there

are

more

rows

in

Z,

go

to

step

4.

6.

If

there

are

more

rows

in

Y,

go

to

step

3.

7.

If

there

are

more

rows

in

X,

go

to

step

2.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

567

8.

If

there

are

more

rows

in

W,

go

to

step

1.

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Data

stream

information

Within

an

access

plan,

there

is

often

a

need

to

control

the

creation

and

flow

of

data

from

one

series

of

operations

to

another.

The

data

stream

concept

allows

a

group

of

operations

within

an

access

plan

to

be

controlled

as

a

unit.

The

start

of

a

data

stream

is

indicated

by

the

following

statement:

Data

Stream

n

where

n

is

a

unique

identifier

assigned

by

db2expln

for

ease

of

reference.

The

end

of

a

data

stream

is

indicated

by:

End

of

Data

Stream

n

All

operations

between

these

statements

are

considered

part

of

the

same

data

stream.

A

data

stream

has

a

number

of

characteristics

and

one

or

more

statements

can

follow

the

initial

data

stream

statement

to

describe

these

characteristics:

v

If

the

operation

of

the

data

stream

depends

on

a

value

generated

earlier

in

the

access

plan,

the

data

stream

is

marked

with:

Correlated

v

Similar

to

a

sorted

temporary

table,

the

following

statements

indicate

whether

or

not

the

results

of

the

data

stream

will

be

kept

in

memory:

Piped

and

Not

Piped

As

was

the

case

with

temporary

tables,

a

piped

data

stream

may

be

written

to

disk,

if

insufficient

memory

exists

at

execution

time.

The

access

plan

will

provide

for

both

possibilities.

v

The

following

statement

indicates

that

only

a

single

record

is

required

from

this

data

stream:

Single

Record

When

a

data

stream

is

accessed,

the

following

statement

will

appear

in

the

output:

Access

Data

Stream

n

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Insert,

update,

and

delete

information

The

explain

text

for

these

SQL

statements

is

self-explanatory.

Possible

statement

text

for

these

SQL

operations

can

be:

db2expln

-

SQL

Explain

568

Administration

Guide:

Performance

Insert:

Table

Name

=

schema.name

ID

=

ts,n

Update:

Table

Name

=

schema.name

ID

=

ts,n

Delete:

Table

Name

=

schema.name

ID

=

ts,n

Insert:

Hierarchy

Table

Name

=

schema.name

ID

=

ts,n

Update:

Hierarchy

Table

Name

=

schema.name

ID

=

ts,n

Delete:

Hierarchy

Table

Name

=

schema.name

ID

=

ts,n

Insert:

Materialized

Query

Table

=

schema.name

ID

=

ts,n

Update:

Materialized

Query

Table

=

schema.name

ID

=

ts,n

Delete:

Materialized

Query

Table

=

schema.name

ID

=

ts,n

Insert:

Global

Temporary

Table

ID

=

ts,

tn

Update:

Global

Temporary

Table

ID

=

ts,

tn

Delete:

Global

Temporary

Table

ID

=

ts,

tn

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Block

and

row

identifier

preparation

information

For

some

access

plans,

it

is

more

efficient

if

the

qualifying

row

and

block

identifiers

(IDs)

are

sorted

and

duplicates

removed

(in

the

case

of

index

ORing)

or

that

a

technique

is

used

to

identify

IDs

appearing

in

all

indexes

being

accessed

(in

the

case

of

index

ANDing)

before

the

actual

table

access

is

performed.

There

are

three

main

uses

of

ID

preparation

as

indicated

by

the

explain

statements:

v

Either

of

the

following

statements

indicates

that

Index

ORing

is

used

to

prepare

the

list

of

qualifying

IDs:

Index

ORing

Preparation

Block

Index

ORing

Preparation

Index

ORing

refers

to

the

technique

of

making

more

than

one

index

access

and

combining

the

results

to

include

the

distinct

IDs

that

appear

in

any

of

the

indexes

accessed.

The

optimizer

will

consider

index

ORing

when

predicates

are

connected

by

OR

keywords

or

there

is

an

IN

predicate.

The

index

accesses

can

be

on

the

same

index

or

different

indexes.

v

Another

use

of

ID

preparation

is

to

prepare

the

input

data

to

be

used

during

list

prefetch,

as

indicated

by

either

of

the

following:

List

Prefetch

Preparation

Block

List

Prefetch

RID

Preparation

v

Index

ANDing

refers

to

the

technique

of

making

more

than

one

index

access

and

combining

the

results

to

include

IDs

that

appear

in

all

of

the

indexes

accessed.

Index

ANDing

processing

is

started

with

either

of

these

statements:

Index

ANDing

Block

Index

ANDing

If

the

optimizer

has

estimated

the

size

of

the

result

set,

the

estimate

is

shown

with

the

following

statement:

Optimizer

Estimate

of

Set

Size:

n

Index

ANDing

filter

operations

process

IDs

and

use

bit

filter

techniques

to

determine

the

IDs

which

appear

in

every

index

accessed.

The

following

statements

indicate

that

IDs

are

being

processed

for

index

ANDing:

Index

ANDing

Bitmap

Build

Using

Row

IDs

Index

ANDing

Bitmap

Probe

Using

Row

IDs

Index

ANDing

Bitmap

Build

and

Probe

Using

Row

IDs

Block

Index

ANDing

Bitmap

Build

Using

Block

IDs

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

569

Block

Index

ANDing

Bitmap

Build

and

Probe

Using

Block

IDs

Block

Index

ANDing

Bitmap

Build

and

Probe

Using

Row

IDs

Block

Index

ANDing

Bitmap

Probe

Using

Block

IDs

and

Build

Using

Row

IDs

Block

Index

ANDing

Bitmap

Probe

Using

Block

IDs

Block

Index

ANDing

Bitmap

Probe

Using

Row

IDs

If

the

optimizer

has

estimated

the

size

of

the

result

set

for

a

bitmap,

the

estimate

is

shown

with

the

following

statement:

Optimizer

Estimate

of

Set

Size:

n

For

any

type

of

ID

preparation,

if

list

prefetch

can

be

performed

it

will

be

indicated

with

the

statement:

Prefetch:

Enabled

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Aggregation

information

Aggregation

is

performed

on

those

rows

meeting

the

specified

criteria,

if

any,

provided

by

the

SQL

statement

predicates.

If

some

sort

of

aggregate

function

is

to

be

done,

one

of

the

following

statements

appears:

Aggregation

Predicate

Aggregation

Partial

Aggregation

Partial

Predicate

Aggregation

Intermediate

Aggregation

Intermediate

Predicate

Aggregation

Final

Aggregation

Final

Predicate

Aggregation

Predicate

aggregation

states

that

the

aggregation

operation

has

been

pushed-down

to

be

processed

as

a

predicate

when

the

data

is

actually

accessed.

Beneath

either

of

the

above

aggregation

statements

will

be

a

indication

of

the

type

of

aggregate

function

being

performed:

Group

By

Column

Function(s)

Single

Record

The

specific

column

function

can

be

derived

from

the

original

SQL

statement.

A

single

record

is

fetched

from

an

index

to

satisfy

a

MIN

or

MAX

operation.

If

predicate

aggregation

is

used,

then

subsequent

to

the

table

access

statement

in

which

the

aggregation

appeared,

there

will

be

an

aggregation

″completion″,

which

carries

out

any

needed

processing

on

completion

of

each

group

or

on

end-of-file.

One

of

the

following

lines

is

displayed:

Aggregation

Completion

Partial

Aggregation

Completion

Intermediate

Aggregation

Completion

Final

Aggregation

Completion

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

db2expln

-

SQL

Explain

570

Administration

Guide:

Performance

Parallel

processing

information

Executing

an

SQL

statement

in

parallel

(using

either

intra-partition

or

inter-partition

parallelism)

requires

some

special

operations.

The

operations

for

parallel

plans

are

described

below.

v

When

running

an

intra-partition

parallel

plan,

portions

of

the

plan

will

be

executed

simultaneously

using

several

subagents.

The

creation

of

the

subagents

is

indicated

by

the

statement:

Process

Using

n

Subagents

v

When

running

an

inter-partition

parallel

plan,

the

section

is

broken

into

several

subsections.

Each

subsection

is

sent

to

one

or

more

nodes

to

be

run.

An

important

subsection

is

the

coordinator

subsection.

The

coordinator

subsection

is

the

first

subsection

in

every

plan.

It

gets

control

first

and

is

responsible

for

distributing

the

other

subsections

and

returning

results

to

the

calling

application.

The

distribution

of

subsections

is

indicated

by

the

statement:

Distribute

Subsection

#n

The

nodes

that

receive

a

subsection

can

be

determined

in

one

of

eight

ways:

–

The

following

indicates

that

the

subsection

will

be

sent

to

a

node

within

the

database

partition

group

based

on

the

value

of

the

columns.

Directed

by

Hash

|

#Columns

=

n

|

Partition

Map

ID

=

n,

Nodegroup

=

ngname,

#Nodes

=

n

–

The

following

indicates

that

the

subsection

will

be

sent

to

a

predetermined

node.

(This

is

frequently

seen

when

the

statement

uses

the

NODENUMBER()

function.)

Directed

by

Node

Number

–

The

following

indicates

that

the

subsection

will

be

sent

to

the

node

corresponding

to

a

predetermined

partition

number

in

the

given

database

partition

group.

(This

is

frequently

seen

when

the

statement

uses

the

PARTITION()

function.)

Directed

by

Partition

Number

|

Partition

Map

ID

=

n,

Nodegroup

=

ngname,

#Nodes

=

n

–

The

following

indicates

that

the

subsection

will

be

sent

to

the

node

that

provided

the

current

row

for

the

application’s

cursor.

Directed

by

Position

–

The

following

indicates

that

only

one

node,

determined

when

the

statement

was

compiled,

will

receive

the

subsection.

Directed

to

Single

Node

|

Node

Number

=

n

–

Either

of

the

following

indicates

that

the

subsection

will

be

executed

on

the

coordinator

node.

Directed

to

Application

Coordinator

Node

Directed

to

Local

Coordinator

Node

–

The

following

indicates

that

the

subsection

will

be

sent

to

all

the

nodes

listed.

Broadcast

to

Node

List

|

Nodes

=

n1,

n2,

n3,

...

–

The

following

indicates

that

only

one

node,

determined

as

the

statement

is

executing,

will

receive

the

subsection.

Directed

to

Any

Node

v

Table

queues

are

used

to

move

data

between

subsections

in

a

partitioned

database

environment

or

between

subagents

in

a

symmetric

multiprocessor

(SMP)

environment.

Table

queues

are

described

as

follows:

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

571

–

The

following

statements

indicate

that

data

is

being

inserted

into

a

table

queue:

Insert

Into

Synchronous

Table

Queue

ID

=

qn

Insert

Into

Asynchronous

Table

Queue

ID

=

qn

Insert

Into

Synchronous

Local

Table

Queue

ID

=

qn

Insert

Into

Asynchronous

Local

Table

Queue

ID

=

qn

–

For

database

partition

table

queues,

the

destination

for

rows

inserted

into

the

table

queue

is

described

by

one

of

the

following:

All

rows

are

sent

to

the

coordinator

node:

Broadcast

to

Coordinator

Node

All

rows

are

sent

to

every

database

partition

where

the

given

subsection

is

running:

Broadcast

to

All

Nodes

of

Subsection

n

Each

row

is

sent

to

a

database

partition

based

on

the

values

in

the

row:

Hash

to

Specific

Node

Each

row

is

sent

to

a

database

partition

that

is

determined

while

the

statement

is

executing:

Send

to

Specific

Node

Each

row

is

sent

to

a

randomly

determined

node:

Send

to

Random

Node

–

In

some

situations,

a

database

partition

table

queue

will

have

to

temporarily

overflow

some

rows

to

a

temporary

table.

This

possibility

is

identified

by

the

statement:

Rows

Can

Overflow

to

Temporary

Table

–

After

a

table

access

that

contains

a

push-down

operation

to

insert

rows

into

a

table

queue,

there

will

be

a

″completion″

statement

which

handles

rows

that

could

not

be

immediately

sent.

One

of

the

following

lines

is

displayed:

Insert

Into

Synchronous

Table

Queue

Completion

ID

=

qn

Insert

Into

Asynchronous

Table

Queue

Completion

ID

=

qn

Insert

Into

Synchronous

Local

Table

Queue

Completion

ID

=

qn

Insert

Into

Asynchronous

Local

Table

Queue

Completion

ID

=

qn

–

The

following

statements

indicate

that

data

is

being

retrieved

from

a

table

queue:

Access

Table

Queue

ID

=

qn

Access

Local

Table

Queue

ID

=

qn

These

messages

are

always

followed

by

an

indication

of

the

number

of

columns

being

retrieved.

#Columns

=

n

–

If

the

table

queue

sorts

the

rows

at

the

receiving

end,

the

table

queue

access

will

also

have

one

of

the

following

messages:

Output

Sorted

Output

Sorted

and

Unique

These

messages

are

followed

by

an

indication

of

the

number

of

keys

used

for

the

sort

operation.

#Key

Columns

=

n

For

each

column

in

the

sort

key,

one

of

the

following

is

displayed:

db2expln

-

SQL

Explain

572

Administration

Guide:

Performance

Key

n:

(Ascending)

Key

n:

(Descending)

–

If

predicates

will

be

applied

to

rows

by

the

receiving

end

of

the

table

queue,

the

following

message

is

shown:

Residual

Predicate(s)

|

#Predicates

=

n

v

Some

subsections

in

a

partitioned

database

environment

explicitly

loop

back

to

the

start

of

the

subsection

with

the

statement:

Jump

Back

to

Start

of

Subsection

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Federated

query

information

Executing

an

SQL

statement

in

a

federated

database

requires

the

ability

to

perform

portions

of

the

statement

on

other

data

sources.

The

following

indicates

that

a

data

source

will

be

read:

Ship

Distributed

Subquery

#n

|

#Columns

=

n

It

is

possible

to

apply

predicates

to

the

data

returned

from

the

distributed

subquery.

The

number

of

predicates

being

applied

will

be

indicated

as

follows:

Residual

Predicate(s)

|

#Predicates

=

n

An

insert,

update,

or

delete

operation

that

occurs

at

a

data

source

will

be

indicated

by

the

appropriate

message:

Ship

Distributed

Insert

#n

Ship

Distributed

Update

#n

Ship

Distributed

Delete

#n

If

a

table

is

being

explicitly

locked

at

a

data

source,

this

will

be

indicated

with

the

statement:

Ship

Distributed

Lock

Table

#n

DDL

statements

against

a

data

source

are

split

into

two

parts.

The

part

invoked

at

the

data

source

is

indicated

by:

Ship

Distributed

DDL

Statement

#n

If

the

federated

server

is

a

partitioned

database,

then

part

of

the

DDL

statement

must

be

run

at

he

catalog

node.

This

is

indicated

by:

Distributed

DDL

Statement

#n

Completion

The

detail

for

each

distributed

substatement

is

provided

separately.

The

options

for

distributed

statements

are

described

below:

v

The

data

source

for

the

subquery

is

shown

by

one

of

the

following:

Server:

server_name

(type,

version)

Server:

server_name

(type)

Server:

server_name

v

If

the

data

source

is

relational,

the

SQL

for

the

substatement

is

displayed

as:

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

573

SQL

Statement:

statement

Non-relational

data

sources

are

indicated

with:

Non-Relational

Data

Source

v

The

nicknames

referenced

in

the

substatement

are

listed

as

follows:

Nicknames

Referenced:

schema.nickname

ID

=

n

If

the

data

source

is

relational,

the

base

table

for

the

nickname

is

shows

as:

Base

=

baseschema.basetable

If

the

data

source

is

non-relational,

the

source

file

for

the

nickname

is

shown

as:

Source

File

=

filename

v

If

values

are

passed

from

the

federated

server

to

the

data

source

before

executing

the

substatement,

the

number

of

values

will

be

shown

by:

#Input

Columns:

n

v

If

values

are

passed

from

the

data

source

to

the

federated

server

after

executing

the

substatement,

the

number

of

values

will

be

shown

by:

#Output

Columns:

n

Related

concepts:

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

on

page

182

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

Miscellaneous

information

v

Sections

for

data

definition

language

statements

will

be

indicated

in

the

output

with

the

following:

DDL

Statement

No

additional

explain

output

is

provided

for

DDL

statements.

v

Sections

for

SET

statements

for

the

updatable

special

registers

such

as

CURRENT

EXPLAIN

SNAPSHOT

will

be

indicated

in

the

output

with

the

following:

SET

Statement

No

additional

explain

output

is

provided

for

SET

statements.

v

If

the

SQL

statement

contains

the

DISTINCT

clause,

the

following

text

may

appear

in

the

output:

Distinct

Filter

#Columns

=

n

where

n

is

the

number

of

columns

involved

in

obtaining

distinct

rows.

To

retrieve

distinct

row

values,

the

rows

must

be

ordered

so

that

duplicates

can

be

skipped.

This

statement

will

not

appear

if

the

database

manager

does

not

have

to

explicitly

eliminate

duplicates,

as

in

the

following

cases:

–

A

unique

index

exists

and

all

the

columns

in

the

index

key

are

part

of

the

DISTINCT

operation

–

Duplicates

that

can

be

eliminated

during

sorting.
v

The

following

statement

will

appear

if

the

next

operation

is

dependent

on

a

specific

record

identifier:

Positioned

Operation

If

the

position

operation

is

against

a

federated

data

source,

then

the

statement

is:

db2expln

-

SQL

Explain

574

Administration

Guide:

Performance

Distributed

Positioned

Operation

This

statement

would

appear

for

any

SQL

statement

that

uses

the

WHERE

CURRENT

OF

syntax.

v

The

following

statement

will

appear

if

there

are

predicates

that

must

be

applied

to

the

result

but

that

could

not

be

applied

as

part

of

another

operation:

Residual

Predicate

Application

|

#Predicates

=

n

v

The

following

statement

will

appear

if

there

is

a

UNION

operator

in

the

SQL

statement:

UNION

v

The

following

statement

will

appear

if

there

is

an

operation

in

the

access

plan,

whose

sole

purpose

is

to

produce

row

values

for

use

by

subsequent

operations:

Table

Constructor

|

n-Row(s)

Table

constructors

can

be

used

for

transforming

values

in

a

set

into

a

series

of

rows

that

are

then

passed

to

subsequent

operations.

When

a

table

constructor

is

prompted

for

the

next

row,

the

following

statement

will

appear:

Access

Table

Constructor

v

The

following

statement

will

appear

if

there

is

an

operation

which

is

only

processed

under

certain

conditions:

Conditional

Evaluation

|

Condition

#n:

|

#Predicates

=

n

|

Action

#n:

Conditional

evaluation

is

used

to

implement

such

activities

as

the

SQL

CASE

statement

or

internal

mechanisms

such

as

referential

integrity

constraints

or

triggers.

If

no

action

is

shown,

then

only

data

manipulation

operations

are

processed

when

the

condition

is

true.

v

One

of

the

following

statements

will

appear

if

an

ALL,

ANY,

or

EXISTS

subquery

is

being

processed

in

the

access

plan:

–

ANY/ALL

Subquery

–

EXISTS

Subquery

–

EXISTS

SINGLE

Subquery

v

Prior

to

certain

UPDATE

and

DELETE

operations,

it

is

necessary

to

establish

the

position

of

a

specific

row

within

the

table.

This

is

indicated

by

the

following

statement:

Establish

Row

Position

v

The

following

statement

will

appear

if

there

are

rows

being

returned

to

the

application:

Return

Data

to

Application

|

#Columns

=

n

If

the

operation

was

pushed-down

into

a

table

access,

it

will

require

a

completion

phase.

This

phase

appears

as:

Return

Data

Completion

v

The

following

information

will

appear

if

a

stored

procedure

is

being

invoked:

Call

Stored

Procedure

|

Name

=

schema.funcname

|

Specific

Name

=

specificname

|

SQL

Access

Level

=

accesslevel

|

Language

=

lang

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

575

|

Parameter

Style

=

parmstyle

|

Expected

Result

Sets

=

n

|

Fenced

Not

Deterministic

|

Called

on

NULL

Input

Disallow

Parallel

|

Not

Federated

Not

Threadsafe

v

The

following

information

will

appear

if

one

or

more

LOB

locators

are

being

freed:

Free

LOB

Locators

Related

concepts:

v

“Description

of

db2expln

and

dynexpln

output”

on

page

558

v

“Examples

of

db2expln

and

dynexpln

output”

on

page

576

Examples

of

db2expln

and

dynexpln

Output

The

following

output

examples

show

the

explain

information

collected

for

specific

queries

in

specific

environments.

Examples

of

db2expln

and

dynexpln

output

Five

examples

shown

here

can

help

you

understand

the

layout

and

format

of

the

output

from

db2expln

and

dynexpln.

These

examples

were

run

against

the

SAMPLE

database

that

is

provided

with

DB2®.

A

brief

discussion

is

included

with

each

example.

Significant

differences

from

one

example

to

the

next

have

been

shown

in

bold.

Related

concepts:

v

“dynexpln”

on

page

558

v

“Example

one:

no

parallelism”

on

page

576

v

“Example

two:

single-partition

plan

with

intra-partition

parallelism”

on

page

578

v

“Example

three:

multipartition

plan

with

inter-partition

parallelism”

on

page

579

v

“Example

four:

multipartition

plan

with

inter-partition

and

intra-partition

parallelism”

on

page

582

v

“Example

five:

federated

database

plan”

on

page

584

Related

reference:

v

“db2expln

-

SQL

Explain”

on

page

552

Example

one:

no

parallelism

This

example

is

simply

requesting

a

list

of

all

employee

names,

their

jobs,

department

name

and

location,

and

the

project

names

on

which

they

are

working.

The

essence

of

this

access

plan

is

that

hash

joins

are

used

to

join

the

relevant

data

from

each

of

the

specified

tables.

Since

no

indexes

are

available,

the

access

plan

does

a

relation

scan

of

each

table

as

it

is

joined.

PACKAGE

Package

Name

=

"DOOLE"."EXAMPLE"

Version

=

""

Prep

Date

=

2002/01/04

Prep

Time

=

14:05:00

Bind

Timestamp

=

2002-01-04-14.05.00.415403

Isolation

Level

=

Cursor

Stability

db2expln

-

SQL

Explain

576

Administration

Guide:

Performance

Blocking

=

Block

Unambiguous

Cursors

Query

Optimization

Class

=

5

Partition

Parallel

=

No

Intra-Partition

Parallel

=

No

SQL

Path

=

"SYSIBM",

"SYSFUN",

"SYSPROC",

"DOOLE"

SECTION

Section

=

1

SQL

Statement:

DECLARE

EMPCUR

CURSOR

FOR

SELECT

e.lastname,

e.job,

d.deptname,

d.location,

p.projname

FROM

employee

AS

e,

department

AS

d,

project

AS

p

WHERE

e.workdept

=

d.deptno

AND

e.workdept

=

p.deptno

Estimated

Cost

=

120.518692

Estimated

Cardinality

=

221.535980

(

6)

Access

Table

Name

=

DOOLE.EMPLOYEE

ID

=

2,5

|

#Columns

=

3

|

Relation

Scan

|

|

Prefetch:

Eligible

|

Lock

Intents

|

|

Table:

Intent

Share

|

|

Row

:

Next

Key

Share

(

6)

|

Process

Build

Table

for

Hash

Join

(

2)

Hash

Join

|

Estimated

Build

Size:

7111

|

Estimated

Probe

Size:

9457

(

5)

|

Access

Table

Name

=

DOOLE.PROJECT

ID

=

2,7

|

|

#Columns

=

2

|

|

Relation

Scan

|

|

|

Prefetch:

Eligible

|

|

Lock

Intents

|

|

|

Table:

Intent

Share

|

|

|

Row

:

Next

Key

Share

(

5)

|

|

Process

Build

Table

for

Hash

Join

(

3)

|

Hash

Join

|

|

Estimated

Build

Size:

5737

|

|

Estimated

Probe

Size:

6421

(

4)

|

|

Access

Table

Name

=

DOOLE.DEPARTMENT

ID

=

2,4

|

|

|

#Columns

=

3

|

|

|

Relation

Scan

|

|

|

|

Prefetch:

Eligible

|

|

|

Lock

Intents

|

|

|

|

Table:

Intent

Share

|

|

|

|

Row

:

Next

Key

Share

(

4)

|

|

|

Process

Probe

Table

for

Hash

Join

(

1)

Return

Data

to

Application

|

#Columns

=

5

End

of

section

Optimizer

Plan:

RETURN

(

1)

|

HSJOIN

(

2)

/

\

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

577

HSJOIN

TBSCAN

(

3)

(

6)

/

\

|

TBSCAN

TBSCAN

Table:

(

4)

(

5)

DOOLE

|

|

EMPLOYEE

Table:

Table:

DOOLE

DOOLE

DEPARTMENT

PROJECT

The

first

part

of

the

plan

accesses

the

DEPARTMENT

and

PROJECT

tables

and

uses

a

hash

join

to

join

them.

The

result

of

this

join

is

joined

to

the

EMPLOYEE

table.

The

resulting

rows

are

returned

to

the

application.

Example

two:

single-partition

plan

with

intra-partition

parallelism

This

example

shows

the

same

SQL

statement

as

the

first

example,

but

this

query

has

been

compiled

for

a

four-way

SMP

machine.

PACKAGE

Package

Name

=

"DOOLE"."EXAMPLE"

Version

=

""

Prep

Date

=

2002/01/04

Prep

Time

=

14:12:38

Bind

Timestamp

=

2002-01-04-14.12.38.732627

Isolation

Level

=

Cursor

Stability

Blocking

=

Block

Unambiguous

Cursors

Query

Optimization

Class

=

5

Partition

Parallel

=

No

Intra-Partition

Parallel

=

Yes

(Bind

Degree

=

4)

SQL

Path

=

"SYSIBM",

"SYSFUN",

"SYSPROC",

"DOOLE"

SECTION

Section

=

1

SQL

Statement:

DECLARE

EMPCUR

CURSOR

FOR

SELECT

e.lastname,

e.job,

d.deptname,

d.location,

p.projname

FROM

employee

AS

e,

department

AS

d,

project

AS

p

WHERE

e.workdept

=

d.deptno

AND

e.workdept

=

p.deptno

Intra-Partition

Parallelism

Degree

=

4

Estimated

Cost

=

133.934692

Estimated

Cardinality

=

221.535980

(

2)

Process

Using

4

Subagents

(

7)

|

Access

Table

Name

=

DOOLE.EMPLOYEE

ID

=

2,5

|

|

#Columns

=

3

|

|

Parallel

Scan

|

|

Relation

Scan

|

|

|

Prefetch:

Eligible

|

|

Lock

Intents

|

|

|

Table:

Intent

Share

|

|

|

Row

:

Next

Key

Share

(

7)

|

|

Process

Build

Table

for

Hash

Join

(

3)

|

Hash

Join

db2expln

-

SQL

Explain

578

Administration

Guide:

Performance

|

|

Estimated

Build

Size:

7111

|

|

Estimated

Probe

Size:

9457

(

6)

|

|

Access

Table

Name

=

DOOLE.PROJECT

ID

=

2,7

|

|

|

#Columns

=

2

|

|

|

Parallel

Scan

|

|

|

Relation

Scan

|

|

|

|

Prefetch:

Eligible

|

|

|

Lock

Intents

|

|

|

|

Table:

Intent

Share

|

|

|

|

Row

:

Next

Key

Share

(

6)

|

|

|

Process

Build

Table

for

Hash

Join

(

4)

|

|

Hash

Join

|

|

|

Estimated

Build

Size:

5737

|

|

|

Estimated

Probe

Size:

6421

(

5)

|

|

|

Access

Table

Name

=

DOOLE.DEPARTMENT

ID

=

2,4

|

|

|

|

#Columns

=

3

|

|

|

|

Parallel

Scan

|

|

|

|

Relation

Scan

|

|

|

|

|

Prefetch:

Eligible

|

|

|

|

Lock

Intents

|

|

|

|

|

Table:

Intent

Share

|

|

|

|

|

Row

:

Next

Key

Share

(

5)

|

|

|

|

Process

Probe

Table

for

Hash

Join

(

2)

|

Insert

Into

Asynchronous

Local

Table

Queue

ID

=

q1

(

2)

Access

Local

Table

Queue

ID

=

q1

#Columns

=

5

(

1)

Return

Data

to

Application

|

#Columns

=

5

End

of

section

Optimizer

Plan:

RETURN

(

1)

|

LTQ

(

2)

|

HSJOIN

(

3)

/

\

HSJOIN

TBSCAN

(

4)

(

7)

/

\

|

TBSCAN

TBSCAN

Table:

(

5)

(

6)

DOOLE

|

|

EMPLOYEE

Table:

Table:

DOOLE

DOOLE

DEPARTMENT

PROJECT

This

plan

is

almost

identical

to

the

plan

in

the

first

example.

The

main

differences

are

the

creation

of

four

subagents

when

the

plan

first

starts

and

the

table

queue

at

the

end

of

the

plan

to

gather

the

results

of

each

of

subagent’s

work

before

returning

them

to

the

application.

Example

three:

multipartition

plan

with

inter-partition

parallelism

This

example

shows

the

same

SQL

statement

as

the

first

example,

but

this

query

has

been

compiled

on

a

partitioned

database

made

up

of

three

database

partitions.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

579

PACKAGE

Package

Name

=

"DOOLE"."EXAMPLE"

Version

=

""

Prep

Date

=

2002/01/04

Prep

Time

=

14:54:57

Bind

Timestamp

=

2002-01-04-14.54.57.033666

Isolation

Level

=

Cursor

Stability

Blocking

=

Block

Unambiguous

Cursors

Query

Optimization

Class

=

5

Partition

Parallel

=

Yes

Intra-Partition

Parallel

=

No

SQL

Path

=

"SYSIBM",

"SYSFUN",

"SYSPROC",

"DOOLE"

SECTION

Section

=

1

SQL

Statement:

DECLARE

EMPCUR

CURSOR

FOR

SELECT

e.lastname,

e.job,

d.deptname,

d.location,

p.projname

FROM

employee

AS

e,

department

AS

d,

project

AS

p

WHERE

e.workdept

=

d.deptno

AND

e.workdept

=

p.deptno

Estimated

Cost

=

118.483406

Estimated

Cardinality

=

474.720032

Coordinator

Subsection:

(-----)

Distribute

Subsection

#2

|

Broadcast

to

Node

List

|

|

Nodes

=

10,

33,

55

(-----)

Distribute

Subsection

#3

|

Broadcast

to

Node

List

|

|

Nodes

=

10,

33,

55

(-----)

Distribute

Subsection

#1

|

Broadcast

to

Node

List

|

|

Nodes

=

10,

33,

55

(

2)

Access

Table

Queue

ID

=

q1

#Columns

=

5

(

1)

Return

Data

to

Application

|

#Columns

=

5

Subsection

#1:

(

8)

Access

Table

Queue

ID

=

q2

#Columns

=

2

(

3)

Hash

Join

|

Estimated

Build

Size:

5737

|

Estimated

Probe

Size:

8015

(

6)

|

Access

Table

Queue

ID

=

q3

#Columns

=

3

(

4)

|

Hash

Join

|

|

Estimated

Build

Size:

5333

|

|

Estimated

Probe

Size:

6421

(

5)

|

|

Access

Table

Name

=

DOOLE.DEPARTMENT

ID

=

2,4

|

|

|

#Columns

=

3

|

|

|

Relation

Scan

|

|

|

|

Prefetch:

Eligible

|

|

|

Lock

Intents

|

|

|

|

Table:

Intent

Share

|

|

|

|

Row

:

Next

Key

Share

(

5)

|

|

|

Process

Probe

Table

for

Hash

Join

(

2)

Insert

Into

Asynchronous

Table

Queue

ID

=

q1

|

Broadcast

to

Coordinator

Node

|

Rows

Can

Overflow

to

Temporary

Table

db2expln

-

SQL

Explain

580

Administration

Guide:

Performance

Subsection

#2:

(

9)

Access

Table

Name

=

DOOLE.PROJECT

ID

=

2,7

|

#Columns

=

2

|

Relation

Scan

|

|

Prefetch:

Eligible

|

Lock

Intents

|

|

Table:

Intent

Share

|

|

Row

:

Next

Key

Share

(

9)

|

Insert

Into

Asynchronous

Table

Queue

ID

=

q2

|

|

Hash

to

Specific

Node

|

|

Rows

Can

Overflow

to

Temporary

Tables

(

8)

Insert

Into

Asynchronous

Table

Queue

Completion

ID

=

q2

Subsection

#3:

(

7)

Access

Table

Name

=

DOOLE.EMPLOYEE

ID

=

2,5

|

#Columns

=

3

|

Relation

Scan

|

|

Prefetch:

Eligible

|

Lock

Intents

|

|

Table:

Intent

Share

|

|

Row

:

Next

Key

Share

(

7)

|

Insert

Into

Asynchronous

Table

Queue

ID

=

q3

|

|

Hash

to

Specific

Node

|

|

Rows

Can

Overflow

to

Temporary

Tables

(

6)

Insert

Into

Asynchronous

Table

Queue

Completion

ID

=

q3

End

of

section

Optimizer

Plan:

RETURN

(

1)

|

BTQ

(

2)

|

HSJOIN

(

3)

/

\

HSJOIN

DTQ

(

4)

(

8)

/

\

|

TBSCAN

DTQ

TBSCAN

(

5)

(

6)

(

9)

|

|

|

Table:

TBSCAN

Table:

DOOLE

(

7)

DOOLE

DEPARTMENT

|

PROJECT

Table:

DOOLE

EMPLOYEE

This

plan

has

all

the

same

pieces

as

the

plan

in

the

first

example,

but

the

section

has

been

broken

into

four

subsections.

The

subsections

have

the

following

tasks:

v

Coordinator

Subsection.

This

subsection

coordinates

the

other

subsections.

In

this

plan,

it

causes

the

other

subsections

to

be

distributed

and

then

uses

a

table

queue

to

gather

the

results

to

be

returned

to

the

application.

v

Subsection

#1.

This

subsection

scans

table

queue

q2

and

uses

a

hash

join

to

join

it

with

the

data

from

table

queue

q3.

A

second

hash

join

then

adds

in

the

data

from

the

DEPARTMENT

table.

The

joined

rows

are

then

sent

to

the

coordinator

subsection

using

table

queue

q1.

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

581

v

Subsection

#2.

This

subsection

scans

the

PROJECT

table

and

hashes

to

a

specific

node

with

the

results.

These

results

are

read

by

Subsection

#1.

v

Subsection

#3.

This

subsection

scans

the

EMPLOYEE

table

and

hashes

to

a

specific

node

with

the

results.

These

results

are

read

by

Subsection

#1.

Example

four:

multipartition

plan

with

inter-partition

and

intra-partition

parallelism

This

example

shows

the

same

SQL

statement

as

the

first

example,

but

this

query

has

been

compiled

on

a

partitioned

database

made

up

of

three

database

partitions,

each

of

which

is

on

a

four-way

SMP

machine.

PACKAGE

Package

Name

=

"DOOLE"."EXAMPLE"

Version

=

""

Prep

Date

=

2002/01/04

Prep

Time

=

14:58:35

Bind

Timestamp

=

2002-01-04-14.58.35.169555

Isolation

Level

=

Cursor

Stability

Blocking

=

Block

Unambiguous

Cursors

Query

Optimization

Class

=

5

Partition

Parallel

=

Yes

Intra-Partition

Parallel

=

Yes

(Bind

Degree

=

4)

SQL

Path

=

"SYSIBM",

"SYSFUN",

"SYSPROC",

"DOOLE"

SECTION

Section

=

1

SQL

Statement:

DECLARE

EMPCUR

CURSOR

FOR

SELECT

e.lastname,

e.job,

d.deptname,

d.location,

p.projname

FROM

employee

AS

e,

department

AS

d,

project

AS

p

WHERE

e.workdept

=

d.deptno

AND

e.workdept

=

p.deptno

Intra-Partition

Parallelism

Degree

=

4

Estimated

Cost

=

145.198898

Estimated

Cardinality

=

474.720032

Coordinator

Subsection:

(-----)

Distribute

Subsection

#2

|

Broadcast

to

Node

List

|

|

Nodes

=

10,

33,

55

(-----)

Distribute

Subsection

#3

|

Broadcast

to

Node

List

|

|

Nodes

=

10,

33,

55

(-----)

Distribute

Subsection

#1

|

Broadcast

to

Node

List

|

|

Nodes

=

10,

33,

55

(

2)

Access

Table

Queue

ID

=

q1

#Columns

=

5

(

1)

Return

Data

to

Application

|

#Columns

=

5

Subsection

#1:

(

3)

Process

Using

4

Subagents

(

10)

|

Access

Table

Queue

ID

=

q3

#Columns

=

2

(

4)

|

Hash

Join

|

|

Estimated

Build

Size:

5737

db2expln

-

SQL

Explain

582

Administration

Guide:

Performance

|

|

Estimated

Probe

Size:

8015

(

7)

|

|

Access

Table

Queue

ID

=

q5

#Columns

=

3

(

5)

|

|

Hash

Join

|

|

|

Estimated

Build

Size:

5333

|

|

|

Estimated

Probe

Size:

6421

(

6)

|

|

|

Access

Table

Name

=

DOOLE.DEPARTMENT

ID

=

2,4

|

|

|

|

#Columns

=

3

|

|

|

|

Parallel

Scan

|

|

|

|

Relation

Scan

|

|

|

|

|

Prefetch:

Eligible

|

|

|

|

Lock

Intents

|

|

|

|

|

Table:

Intent

Share

|

|

|

|

|

Row

:

Next

Key

Share

(

6)

|

|

|

|

Process

Probe

Table

for

Hash

Join

(

3)

|

Insert

Into

Asynchronous

Local

Table

Queue

ID

=

q2

(

3)

Access

Local

Table

Queue

ID

=

q2

#Columns

=

5

(

2)

Insert

Into

Asynchronous

Table

Queue

ID

=

q1

|

Broadcast

to

Coordinator

Node

|

Rows

Can

Overflow

to

Temporary

Table

Subsection

#2:

(

11)

Process

Using

4

Subagents

(

12)

|

Access

Table

Name

=

DOOLE.PROJECT

ID

=

2,7

|

|

#Columns

=

2

|

|

Parallel

Scan

|

|

Relation

Scan

|

|

|

Prefetch:

Eligible

|

|

Lock

Intents

|

|

|

Table:

Intent

Share

|

|

|

Row

:

Next

Key

Share

(

11)

|

Insert

Into

Asynchronous

Local

Table

Queue

ID

=

q4

(

11)

Access

Local

Table

Queue

ID

=

q4

#Columns

=

2

(

10)

Insert

Into

Asynchronous

Table

Queue

ID

=

q3

|

Hash

to

Specific

Node

|

Rows

Can

Overflow

to

Temporary

Tables

Subsection

#3:

(

8)

Process

Using

4

Subagents

(

9)

|

Access

Table

Name

=

DOOLE.EMPLOYEE

ID

=

2,5

|

|

#Columns

=

3

|

|

Parallel

Scan

|

|

Relation

Scan

|

|

|

Prefetch:

Eligible

|

|

Lock

Intents

|

|

|

Table:

Intent

Share

|

|

|

Row

:

Next

Key

Share

(

8)

|

Insert

Into

Asynchronous

Local

Table

Queue

ID

=

q6

(

8)

Access

Local

Table

Queue

ID

=

q6

#Columns

=

3

(

7)

Insert

Into

Asynchronous

Table

Queue

ID

=

q5

|

Hash

to

Specific

Node

|

Rows

Can

Overflow

to

Temporary

Tables

End

of

section

Optimizer

Plan:

RETURN

(

1)

|

BTQ

(

2)

|

LTQ

(

3)

|

HSJOIN

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

583

(

4)

/

\

HSJOIN

DTQ

(

5)

(

10)

/

\

|

TBSCAN

DTQ

LTQ

(

6)

(

7)

(

11)

|

|

|

Table:

LTQ

TBSCAN

DOOLE

(

8)

(

12)

DEPARTMENT

|

|

TBSCAN

Table:

(

9)

DOOLE

|

PROJECT

Table:

DOOLE

EMPLOYEE

This

plan

is

similar

to

that

in

the

third

example,

except

that

multiple

subagents

execute

each

subsection.

Also,

at

the

end

of

each

subsection,

a

local

table

queue

gathers

the

results

from

all

of

the

subagents

before

the

qualifying

rows

are

inserted

into

the

second

table

queue

to

be

hashed

to

a

specific

node.

Example

five:

federated

database

plan

This

example

shows

the

same

SQL

statement

as

the

first

example,

but

this

query

has

been

compiled

on

a

federated

database

where

the

tables

DEPARTMENT

and

PROJECT

are

on

a

data

source

and

the

table

EMPLOYEE

is

on

the

federated

server.

PACKAGE

Package

Name

=

"DOOLE"."EXAMPLE"

Version

=

""

Prep

Date

=

2002/01/11

Prep

Time

=

13:52:48

Bind

Timestamp

=

2002-01-11-13.52.48.325413

Isolation

Level

=

Cursor

Stability

Blocking

=

Block

Unambiguous

Cursors

Query

Optimization

Class

=

5

Partition

Parallel

=

No

Intra-Partition

Parallel

=

No

SQL

Path

=

"SYSIBM",

"SYSFUN",

"SYSPROC",

"DOOLE"

SECTION

Section

=

1

SQL

Statement:

DECLARE

EMPCUR

CURSOR

FOR

SELECT

e.lastname,

e.job,

d.deptname,

d.location,

p.projname

FROM

employee

AS

e,

department

AS

d,

project

AS

p

WHERE

e.workdept

=

d.deptno

AND

e.workdept

=

p.deptno

Estimated

Cost

=

1804.625000

Estimated

Cardinality

=

112000.000000

(

7)

Ship

Distributed

Subquery

#2

|

#Columns

=

2

db2expln

-

SQL

Explain

584

Administration

Guide:

Performance

(

2)

Hash

Join

|

Estimated

Build

Size:

48444

|

Estimated

Probe

Size:

232571

(

6)

|

Access

Table

Name

=

DOOLE.EMPLOYEE

ID

=

2,5

|

|

#Columns

=

3

|

|

Relation

Scan

|

|

|

Prefetch:

Eligible

|

|

Lock

Intents

|

|

|

Table:

Intent

Share

|

|

|

Row

:

Next

Key

Share

(

6)

|

|

Process

Build

Table

for

Hash

Join

(

3)

|

Hash

Join

|

|

Estimated

Build

Size:

7111

|

|

Estimated

Probe

Size:

64606

(

4)

|

|

Ship

Distributed

Subquery

#1

|

|

|

#Columns

=

3

(

1)

Return

Data

to

Application

|

#Columns

=

5

Distributed

Substatement

#1:

(

4)

Server:

REMOTE

(DB2/UDB

8.1)

SQL

Statement:

SELECT

A0."DEPTNO",

A0."DEPTNAME",

A0."LOCATION"

FROM

"DOOLE"."DEPARTMENT"

A0

Nicknames

Referenced:

DOOLE.DEPARTMENT

ID

=

32768

Base

=

DOOLE.DEPARTMENT

#Output

Columns

=

3

Distributed

Substatement

#2:

(

7)

Server:

REMOTE

(DB2/UDB

8.1)

SQL

Statement:

SELECT

A0."DEPTNO",

A0."PROJNAME"

FROM

"DOOLE"."PROJECT"

A0

Nicknames

Referenced:

DOOLE.PROJECT

ID

=

32769

Base

=

DOOLE.PROJECT

#Output

Columns

=

2

End

of

section

Optimizer

Plan:

RETURN

(

1)

|

HSJOIN

(

2)

/

\

HSJOIN

SHIP

(

3)

(

7)

/

\

|

SHIP

TBSCAN

Nickname:

(

4)

(

6)

DOOLE

|

|

PROJECT

Nickname:

Table:

DOOLE

DOOLE

DEPARTMENT

EMPLOYEE

This

plan

has

all

the

same

pieces

as

the

plan

in

the

first

example,

except

that

the

data

for

two

of

the

tables

are

coming

from

data

sources.

The

two

tables

are

db2expln

-

SQL

Explain

Appendix

C.

explain

tool

585

accessed

through

distributed

subqueries

which,

in

this

case,

simply

select

all

the

rows

from

those

tables.

Once

the

data

is

returned

to

the

federated

server,

it

is

joined

to

the

data

from

the

local

table.

db2expln

-

SQL

Explain

586

Administration

Guide:

Performance

Appendix

D.

db2exfmt

-

Explain

Table

Format

You

use

the

db2exfmt

tool

to

format

the

contents

of

the

explain

tables.

This

tool

is

located

in

the

misc

subdirectory

of

the

instance

sqllib

directory.

To

use

the

tool,

you

require

read

access

to

the

explain

tables

being

formatted.

Command

syntax:

��

db2exfmt

-d

dbname

-e

schema

-f

O

�

-g

O

T

I

C

�

�

-l

-n

name

-s

schema

-o

outfile

-t

�

�

-u

userID

password

-w

timestamp

-#

sectnbr

-h

��

Command

parameters:

-d

dbname

Name

of

the

database

containing

packages.

-e

schema

Explain

table

schema.

-f

Formatting

flags.

In

this

release,

the

only

supported

value

is

O

(operator

summary).

-g

Graph

plan.

If

only

-g

is

specified,

a

graph,

followed

by

formatted

information

for

all

of

the

tables,

is

generated.

Otherwise,

any

combination

of

the

following

valid

values

can

be

specified:

O

Generate

a

graph

only.

Do

not

format

the

table

contents.

T

Include

total

cost

under

each

operator

in

the

graph.

I

Include

I/O

cost

under

each

operator

in

the

graph.

C

Include

the

expected

output

cardinality

(number

of

tuples)

of

each

operator

in

the

graph.

-l

Respect

case

when

processing

package

names.

-n

name

Name

of

the

source

of

the

explain

request

(SOURCE_NAME).

-s

schema

Schema

or

qualifier

of

the

source

of

the

explain

request

(SOURCE_SCHEMA).

-o

outfile

Output

file

name.

-t

Direct

the

output

to

the

terminal.

©

Copyright

IBM

Corp.

1993

-

2004

587

-u

userID

password

When

connecting

to

a

database,

use

the

provided

user

ID

and

password.

Both

the

user

ID

and

password

must

be

valid

according

to

naming

conventions

and

be

recognized

by

the

database.

-w

timestamp

Explain

time

stamp.

Specify

-1

to

obtain

the

latest

explain

request.

-#

sectnbr

Section

number

in

the

source.

To

request

all

sections,

specify

zero.

-h

Display

help

information.

When

this

option

is

specified,

all

other

options

are

ignored,

and

only

the

help

information

is

displayed.

Usage

notes:

You

will

be

prompted

for

any

parameter

values

that

are

not

supplied,

or

that

are

incompletely

specified,

except

in

the

case

of

the

-h

and

the

-l

options.

If

an

explain

table

schema

is

not

provided,

the

value

of

the

environment

variable

USER

is

used

as

the

default.

If

this

variable

is

not

found,

the

user

is

prompted

for

an

explain

table

schema.

Source

name,

source

schema,

and

explain

time

stamp

can

be

supplied

in

LIKE

predicate

form,

which

allows

the

percent

sign

(%)

and

the

underscore

(_)

to

be

used

as

pattern

matching

characters

to

select

multiple

sources

with

one

invocation.

For

the

latest

explained

statement,

the

explain

time

can

be

specified

as

-1.

If

-o

is

specified

without

a

file

name,

and

-t

is

not

specified,

the

user

is

prompted

for

a

file

name

(the

default

name

is

db2exfmt.out).

If

neither

-o

nor

-t

is

specified,

the

user

is

prompted

for

a

file

name

(the

default

option

is

terminal

output).

If

-o

and

-t

are

both

specified,

the

output

is

directed

to

the

terminal.

Related

concepts:

v

“Explain

tools”

on

page

190

v

“Guidelines

for

using

explain

information”

on

page

191

v

“Guidelines

for

capturing

explain

information”

on

page

198

db2exfmt

-

Explain

Table

Format

588

Administration

Guide:

Performance

Appendix

E.

Cross-node

recovery

with

the

db2adutl

command

and

the

logarchopt1

and

vendoropt

database

configuration

parameters

The

examples

that

follow

show

how

to

perform

cross-node

recovery

using

the

db2adutl

command,

and

the

logarchopt1

and

vendoropt

database

configuration

parameters.

For

the

following

examples,

computer

1

is

called

bar

and

is

running

AIX.

The

owner

of

this

machine

is

roecken.

The

database

on

bar

is

called

zample.

Computer

2

is

called

dps.

This

machine

is

also

running

AIX,

and

is

owned

by

regress9

PASSWORDACCESS

=

generate:

Computer

1:

1.

Set

up

the

database

for

log

archiving

to

TSM.

Update

the

database

configuration

parameter

logarchmeth1

for

the

zample

database:

bar:/home/roecken>

db2

update

db

cfg

for

zample

using

LOGARCHMETH1

tsm

The

following

information

is

returned:

DB20000I

The

UPDATE

DATABASE

CONFIGURATION

command

completed

successfully.

Note:

Before

updating

the

database

configuration,

you

may

have

to

take

an

offline

backup

of

the

database.

2.

Take

an

online

backup

of

the

database:

db2

backup

db

zample

online

use

tsm

The

following

information

is

returned:

Backup

successful.

The

timestamp

for

this

backup

image

is

:

20040216151025

3.

Connect

to

the

zample

database,

then

create

a

table

in

it.

4.

Load

data

into

the

new

table.

In

this

example,

the

table

is

called

a,

and

the

data

is

being

loaded

from

a

delimited

ASCII

file

called

mr.

The

COPY

YES

option

is

specified

to

make

a

copy

of

the

data

that

is

loaded,

and

the

USE

TSM

option

specifies

that

the

copy

of

the

data

is

stored

on

Tivoli

Storage

Manager.

Note:

You

can

only

specify

the

COPY

YES

option

if

the

database

is

enabled

for

rollforward

recovery;

that

is,

the

logretain

or

userexit

database

configuration

parameter

(or

both)

must

be

enabled

for

the

database.

bar:/home/roecken>

db2

load

from

mr

of

del

modified

by

noheader

replace

into

a

copy

yes

use

tsm

The

utility

returns

a

series

of

messages

to

indicate

its

progress:

SQL3109N

The

utility

is

beginning

to

load

data

from

file

"/home/roecken/mr".

SQL3500W

The

utility

is

beginning

the

"LOAD"

phase

at

time

"02/16/2004

15:12:13.392633".

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"0".

SQL3520W

Load

Consistency

Point

was

successful.

SQL3110N

The

utility

has

completed

processing.

"1"

rows

were

read

from

the

input

file.

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"1".

©

Copyright

IBM

Corp.

1993

-

2004

589

|

|

|

|

|
|
|

|
|
|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

SQL3520W

Load

Consistency

Point

was

successful.

SQL3515W

The

utility

has

finished

the

"LOAD"

phase

at

time

"02/16/2004

15:12:13.445718".

Number

of

rows

read

=

1

Number

of

rows

skipped

=

0

Number

of

rows

loaded

=

1

Number

of

rows

rejected

=

0

Number

of

rows

deleted

=

0

Number

of

rows

committed

=

1

There

should

now

be

one

backup

image,

one

load

copy

image

and

one

log

file

on

TSM.

A

query

on

the

zample

database

can

be

run

as

follows:

bar:/home/roecken>

db2adutl

query

db

zample

The

following

information

is

returned:

Retrieving

FULL

DATABASE

BACKUP

information.

1

Time:

20040216151025

Oldest

log:

S0000000.LOG

DB

Partition

Number:

0

Sessions:

1

Retrieving

INCREMENTAL

DATABASE

BACKUP

information.

No

INCREMENTAL

DATABASE

BACKUP

images

found

for

ZAMPLE

Retrieving

DELTA

DATABASE

BACKUP

information.

No

DELTA

DATABASE

BACKUP

images

found

for

ZAMPLE

Retrieving

TABLESPACE

BACKUP

information.

No

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

INCREMENTAL

TABLESPACE

BACKUP

information.

No

INCREMENTAL

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

DELTA

TABLESPACE

BACKUP

information.

No

DELTA

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

LOAD

COPY

information.

1

Time:

20040216151213

Retrieving

LOG

ARCHIVE

information.

Log

file:

S0000000.LOG,

Chain

Num:

0,

DB

Partition

Number:

0,

Taken

at:

2004-02-16-15.10.38

5.

To

enable

cross-node

recovery,

another

node

and

account

must

be

given

access

to

the

objects

on

the

bar

computer.

In

this

example,

access

is

given

to

the

node

dps

and

the

user

regress9.

bar:/home/roecken>

db2adutl

grant

user

regress9

on

nodename

dps

for

db

zample

The

following

information

is

returned:

Successfully

added

permissions

for

regress9

to

access

ZAMPLE

on

node

dps.

To

query

the

results

of

the

db2adutl

grant

operation,

issue

the

following

command:

bar:/home/roecken>

db2adutl

queryaccess

The

following

information

is

returned:

590

Administration

Guide:

Performance

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|

|

Node

Username

Database

Name

Type

--

DPS

regress9

ZAMPLE

A

--

Access

Types:

B

-

backup

images

L

-

logs

A

-

both

PASSWORDACCESS

=

generate

environment:

Computer

2:

Computer

2,

dps,

is

not

yet

set

up.

A

db2adutl

query

on

dps

for

the

zample

database

returns

the

following

results:

dps:/home/regress9>

db2adutl

query

db

zample

Database

directory

is

empty

Warning:

There

are

no

file

spaces

created

by

DB2

on

the

ADSM

server

Warning:

No

DB2

backup

images

found

in

ADSM

for

any

alias.

dps:/home/regress9>

db2adutl

query

db

zample

nodename

bar

owner

roecken

Database

directory

is

empty

Query

for

database

ZAMPLE

Retrieving

FULL

DATABASE

BACKUP

information.

1

Time:

20040216151025

Oldest

log:

S0000000.LOG

DB

Partition

Number:

0

Sessions:

1

Retrieving

INCREMENTAL

DATABASE

BACKUP

information.

No

INCREMENTAL

DATABASE

BACKUP

images

found

for

ZAMPLE

Retrieving

DELTA

DATABASE

BACKUP

information.

No

DELTA

DATABASE

BACKUP

images

found

for

ZAMPLE

Retrieving

TABLESPACE

BACKUP

information.

No

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

INCREMENTAL

TABLESPACE

BACKUP

information.

No

INCREMENTAL

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

DELTA

TABLESPACE

BACKUP

information.

No

DELTA

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

LOAD

COPY

information.

1

Time:

20040216151213

Retrieving

LOG

ARCHIVE

information.

Log

file:

S0000000.LOG,

Chain

Num:

0,

DB

Partition

Number:

0,

Taken

at:

2004-02-16-15.10.38

The

zample

database

does

not

yet

exist

on

the

dps

computer.

1.

Restore

the

zample

database

to

the

dps

computer:

dps:/home/regress9>

db2

restore

db

zample

use

tsm

options

"’-fromnode=bar

-fromowner=roecken’"

without

prompting

The

following

information

is

returned:

DB20000I

The

RESTORE

DATABASE

command

completed

successfully.

Appendix

E.

Cross-node

recovery

example

591

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

Note:

If

the

zample

database

already

existed

on

dps,

the

OPTIONS

parameter

would

be

omitted,

and

the

database

configuration

parameter

vendoropt

would

be

used.

This

configuration

parameter

overrides

the

OPTIONS

parameter

for

a

backup

or

restore

operation.

A

rollforward

operation

on

the

zample

database

will

fail

because

the

rollforward

utility

cannot

find

the

log

files.

A

rollforward

operation

such

as

the

following:

dps:/home/regress9>

db2

rollforward

db

zample

to

end

of

logs

and

stop

Returns

the

following

error:

SQL4970N

Roll-forward

recovery

on

database

"ZAMPLE"

cannot

reach

the

specified

stop

point

(end-of-log

or

point-in-time)

because

of

missing

log

file(s)

on

node(s)

"0".

2.

To

force

the

rollforward

utility

to

look

for

log

files

on

another

machine,

you

must

configure

the

proper

logarchopt

value,

in

this

situation

the

logarchopt1

database

configuration

parameter:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

logarchopt1

"’-fromnode=bar

-fromowner=roecken’"

3.

For

the

rollforward

utility

to

be

able

to

use

the

load

copy

images,

you

must

also

set

the

vendoropt

database

configuration

parameter:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

VENDOROPT

"’-fromnode=bar

-fromowner=roecken’"

4.

The

zample

database

can

now

be

rolled

forward::

dps:/home/regress9>

db2

rollforward

db

zample

to

end

of

logs

and

stop

The

following

information

is

returned:

Rollforward

Status

Input

database

alias

=

zample

Number

of

nodes

have

returned

status

=

1

Node

number

=

0

Rollforward

status

=

not

pending

Next

log

file

to

be

read

=

Log

files

processed

=

S0000000.LOG

-

S0000000.LOG

Last

committed

transaction

=

2004-02-16-20.10.38.000000

DB20000I

The

ROLLFORWARD

command

completed

successfully.

PASSWORDACCESS

=

prompt

environment:

In

a

PROMPT

environment,

extra

information

is

required,

specifically

the

TSM

nodename

and

password

of

the

machine

where

the

objects

were

created.

For

db2adutl,

update

the

dsm.sysfile

(on

Windows-based

platforms,

the

dsm.optfile)

and

add

NODENAME

bar

(because

bar

is

the

name

of

the

source

computer)

to

the

server

clause:

dps:/home/regress9>

db2adutl

query

db

zample

nodename

bar

owner

roecken

password

The

following

information

is

returned:

Query

for

database

ZAMPLE

Retrieving

FULL

DATABASE

BACKUP

information.

1

Time:

20040216151025

Oldest

log:

S0000000.LOG

DB

Partition

Number:

0

Sessions:

1

592

Administration

Guide:

Performance

|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|

Retrieving

INCREMENTAL

DATABASE

BACKUP

information.

No

INCREMENTAL

DATABASE

BACKUP

images

found

for

ZAMPLE

Retrieving

DELTA

DATABASE

BACKUP

information.

No

DELTA

DATABASE

BACKUP

images

found

for

ZAMPLE

Retrieving

TABLESPACE

BACKUP

information.

No

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

INCREMENTAL

TABLESPACE

BACKUP

information.

No

INCREMENTAL

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

DELTA

TABLESPACE

BACKUP

information.

No

DELTA

TABLESPACE

BACKUP

images

found

for

ZAMPLE

Retrieving

LOAD

COPY

information.

1

Time:

20040216151213

Retrieving

LOG

ARCHIVE

information.

Log

file:

S0000000.LOG,

Chain

Num:

0,

DB

Partition

Number:

0,

Taken

at:

2004-02-16-15.10.38

1.

If

the

database

does

not

exist,

create

an

empty

zample

database.

If

the

zample

database

already

exists,

this

step,

and

the

next

two

steps

that

update

the

database

configuration,

can

be

skipped.

dps:/home/regress9>

db2

create

db

zample

2.

Update

the

database

configuration

parameter

tsm_nodename

for

the

zample

database:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

tsm_nodename

bar

3.

Update

the

database

configuration

parameter

tsm_password

for

the

zample

database:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

tsm_password

4.

Restore

the

zample

database:

dps:/home/regress9>

db2

restore

db

zample

use

tsm

options

"’-fromnode=bar

-fromowner=roecken’"

without

prompting

The

restore

operation

completes

successfully,

but

a

warning

is

issued:

SQL2540W

Restore

is

successful,

however

a

warning

"2523"

was

encountered

during

Database

Restore

while

processing

in

No

Interrupt

mode.

Again,

at

this

point,

the

rollforward

utility

cannot

find

the

correct

log

files:

dps:/home/regress9>

db2

rollforward

db

zample

to

end

of

logs

and

stop

The

following

error

message

is

returned:

SQL1268N

Roll-forward

recovery

stopped

due

to

error

"-2112880618"

while

retrieving

log

file

"S0000000.LOG"

for

database

"ZAMPLE"

on

node

"0".

5.

Because

the

database

restore

operation

replaces

the

database

configuration

file,

the

TSM

database

configuration

values

must

be

set

to

the

correct

values.

First

the

tsm_nodename

configuration

parameter

must

be

reset:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

tsm_nodename

bar

6.

The

tsm_password

database

configuration

parameter

must

be

reset:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

tsm_password

Appendix

E.

Cross-node

recovery

example

593

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|

|

|
|
|

|
|
|

|

|

|

|
|

|
|
|

|

|

|

7.

The

logarchopt1

database

configuration

parameter

must

be

reset

so

the

rollforward

utility

can

find

the

correct

log

files:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

logarchopt1

"’-fromnode=bar

-fromowner=roecken’"

8.

The

vendoropt

database

configuration

parameter

must

also

be

reset

so

that

the

load

recovery

file

can

also

be

used:

dps:/home/regress9>

db2

update

db

cfg

for

zample

using

VENDOROPT

"’-fromnode=bar

-fromowner=roecken’"

9.

When

the

database

configuration

parameters

are

set,

the

database

can

be

rolled

forward:

dps:/home/regress9>

db2

rollforward

db

zample

to

end

of

logs

and

stop

A

ROLLFORWARD

QUERY

STATUS

command

on

the

zample

database

shows

the

following:

Rollforward

Status

Input

database

alias

=

zample

Number

of

nodes

have

returned

status

=

1

Node

number

=

0

Rollforward

status

=

not

pending

Next

log

file

to

be

read

=

Log

files

processed

=

S0000000.LOG

-

S0000000.LOG

Last

committed

transaction

=

2004-02-16-20.10.38.000000

DB20000I

The

ROLLFORWARD

command

completed

successfully.

Related

reference:

v

“db2adutl

-

Managing

DB2

objects

within

TSMCommand”

in

the

Command

Reference

v

“logarchopt1

-

Primary

log

archive

options”

on

page

401

v

“vendoropt

-

Vendor

options”

on

page

407

594

Administration

Guide:

Performance

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

Appendix

F.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

concepts:

v

“CLI

sample

programs”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Java

sample

programs”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“DB2

Information

Center”

on

page

596

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

613

©

Copyright

IBM

Corp.

1993

-

2004

595

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

605

v

“Invoking

message

help

from

the

command

line

processor”

on

page

614

v

“Invoking

command

help

from

the

command

line

processor”

on

page

615

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

615

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

607

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

596

Administration

Guide:

Performance

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

597

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

605

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

606

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

600

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

602

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

Appendix

F.

DB2

Universal

Database

technical

information

597

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

598

Administration

Guide:

Performance

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

596

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

605

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

600

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

602

v

“Setting

the

location

for

accessing

the

DB2

Information

Center:

Common

GUI

help”

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Appendix

F.

DB2

Universal

Database

technical

information

599

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|
|

|

|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

600

Administration

Guide:

Performance

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center”

on

page

596

v

“DB2

Information

Center

installation

scenarios”

on

page

597

Appendix

F.

DB2

Universal

Database

technical

information

601

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

Related

tasks:

v

“Installing

DB2

using

a

response

file

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

605

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

606

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

602

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

602

Administration

Guide:

Performance

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Appendix

F.

DB2

Universal

Database

technical

information

603

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

596

v

“DB2

Information

Center

installation

scenarios”

on

page

597

Related

tasks:

v

“Installing

a

DB2

product

using

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

605

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

606

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

600

Related

reference:

v

“db2rspgn

-

Response

File

Generator

Command

(Windows)”

in

the

Command

Reference

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

604

Administration

Guide:

Performance

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

596

v

“DB2

Information

Center

installation

scenarios”

on

page

597

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

606

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

613

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

605

v

“Invoking

command

help

from

the

command

line

processor”

on

page

615

v

“Setting

the

location

for

accessing

the

DB2

Information

Center:

Common

GUI

help”

Related

reference:

v

“HELP

Command”

in

the

Command

Reference

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

Appendix

F.

DB2

Universal

Database

technical

information

605

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

597

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

600

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

602

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

606

Administration

Guide:

Performance

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

596

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

products.

Table

73.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Appendix

F.

DB2

Universal

Database

technical

information

607

|

|

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order

Table

74.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

75.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

608

Administration

Guide:

Performance

Table

75.

Application

development

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

76.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

77.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Appendix

F.

DB2

Universal

Database

technical

information

609

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Table

78.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

79.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

80.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

610

Administration

Guide:

Performance

Table

80.

Optional

component

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

81.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

595

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

612

v

“Ordering

printed

DB2

books”

on

page

612

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

613

Appendix

F.

DB2

Universal

Database

technical

information

611

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

596

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

612

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

607

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

612

Administration

Guide:

Performance

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

612

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

607

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Appendix

F.

DB2

Universal

Database

technical

information

613

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Invoking

message

help

from

the

command

line

processor”

on

page

614

v

“Invoking

command

help

from

the

command

line

processor”

on

page

615

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

615

v

“Access

to

the

DB2

Information

Center:

Concepts

help”

v

“How

to

use

the

DB2

UDB

help:

Common

GUI

help”

v

“Setting

the

location

for

accessing

the

DB2

Information

Center:

Common

GUI

help”

v

“Setting

up

access

to

DB2

contextual

help

and

documentation:

Common

GUI

help”

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

614

Administration

Guide:

Performance

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

613

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Invoking

message

help

from

the

command

line

processor”

on

page

614

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

615

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

604

v

“Invoking

message

help

from

the

command

line

processor”

on

page

614

v

“Invoking

command

help

from

the

command

line

processor”

on

page

615

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Appendix

F.

DB2

Universal

Database

technical

information

615

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

616

Administration

Guide:

Performance

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

596

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

618.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

618.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Appendix

F.

DB2

Universal

Database

technical

information

617

|
|
|
|

|
|

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

618

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

v

“Changing

the

fonts

for

menus

and

text:

Common

GUI

help”

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

618

Administration

Guide:

Performance

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

Appendix

F.

DB2

Universal

Database

technical

information

619

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

concepts:

v

“Accessibility”

on

page

617

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

620

Administration

Guide:

Performance

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

Appendix

G.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1993

-

2004

621

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

622

Administration

Guide:

Performance

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Appendix

G.

Notices

623

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

624

Administration

Guide:

Performance

Index

A
access

plans
effect

on

locks

69

for

column

correlation

with

multiple

predicates

145

methods

148

using

indexes

23,

148

accessibility
dotted

decimal

syntax

diagrams

618

features

617

ADVISE_INDEX

table

543

ADVISE_INSTANCE

table

546

ADVISE_MQT

table

547

ADVISE_PARTITION

table

548

ADVISE_TABLE

table

549

ADVISE_WORKLOAD

table

550

advisors
Design

Advisor

201

agent

pool

size

configuration

parameter

385

agent

process
applheapsz

configuration

parameter

350

aslheapsz

configuration

parameter

358

maximum

number

of

agents

380

maximum

number

of

concurrent

agents

383

priority

of

agents

configuration

parameter

377

agent_stack_sz

configuration

parameter

349

agentpri

configuration

parameter

377

agents
client

connections

259

configuration

parameters

affecting

number

of

258

described

256

in

a

partitioned

database

261

managing

258

memory

use

216

worker

agent

types

256

alt_collate

configuration

parameter

423

ALTER

TABLESPACE

statement
example

91

app_ctl_heap_sz

346

APPC

transaction

program

name

configuration

parameter

440

APPEND

mode,

insert

process

for

26

appgroup_mem_sz

configuration

parameter

347

APPLHEAPSZ

configuration

parameter
usage

350

application

control

heap

size

configuration

parameter

346

application

global

memory,

configuring

parameters

for

216

application

process
effect

on

locks

68

application

program

39

application

support

layer

heap

size

configuration

parameter

358

applications
control

heap,

setting

346

maximum

number

of

coordinating

agents

at

node

379

shared

memory

use

216

archretrydelay

configuration

parameter

399

aslheapsz

configuration

parameter

358

audit_buf_sz

configuration

parameter

362

authentication
trust

all

clients

configuration

parameter

475

trusted

clients

authentication

configuration

parameter

476

Use

SNA

Authentication

configuration

parameter

477

authentication

configuration

parameter

464

authentication

DAS

configuration

parameter

478

authorities
defining

group

names
system

administration

authority

group

name

configuration

parameter

472

system

control

authority

group

name

configuration

parameter

473

system

maintenance

authority

group

name

configuration

parameter

473

auto

restart

enable

configuration

parameter

408

AUTO_PROF_UPD
using

102

AUTO_STATS_PROF
using

102

automatic

configuration

parameters

316

automatic

statistics

collection

105

automatic

summary

tables
description

176

autonomic_switches

configuration

parameter

437

avg_appls

configuration

parameter

378

B
backup

pending

indicator

configuration

parameter

429

backup_pending

configuration

parameter

429

backups
track

modified

pages

416

benchmarking
db2batch

tool

305

overview

303

preparation

for

304

sample

report

312

benchmarking

(continued)
SQL

statements

for

304

steps

summarized

311

testing

methods

303

testing

process

311

binding
changing

configuration

parameters

317

isolation

level

43

blk_log_dsk_ful

configuration

parameter

399

block

on

log

disk

full

(blk_log_dsk_ful)

configuration

parameter

399

block-based

buffer

pools

231

buffer

pools
block-based,

prefetching

performance

231

data-page

management

in

225

effect

on

query

optimization

136

how

used

220

large,

advantage

of

226

memory

allocation

at

startup

226

multiple
advantages

of

226

managing

226

pages

sizes

for

226

page

cleaners,

tuning

223

page

cleaning

methods

224

secondary

221

bypass

federated

authentication

configuration

parameter

468

C
capacity

methods

of

expanding

281

catalog

cache

size

configuration

parameter

336

catalog

node

39

catalog

statistics
catalog

table

descriptions

106

collecting
distribution

statistics

on

specific

columns

99

index

statistics

100

requirements

and

method

described

98

updating

97

detailed

index

data

collected

120

distribution

statistics
extended

example

of

use

116

frequency

112

quantile

112

when

to

collect

112

for

sub-elements

in

columns

121

for

user-defined

functions

123

how

used

95

index

cluster

ratio

153

information

collected

111

manual

adjustments

for

modeling

124

©

Copyright

IBM

Corp.

1993

-

2004

625

catalog

statistics

(continued)
manual

update

guidelines

127

manual

update

rules
column

statistics

128

distribution

129

index

statistics

131

table

and

nickname

130

modeling

production

databases

with

125

when

to

collect

95

catalog

tables
description

106

catalog_noauth

configuration

parameter

465

catalogcache_sz

configuration

parameter

336

change

the

database

log

path

configuration

parameter

396

character

conversion
effect

on

application

performance

86

chngpgs_thresh

configuration

parameter

370

client

I/O

block

size

configuration

parameter

360

client

support
client

I/O

block

size

configuration

parameter

360

TCP/IP

service

name

configuration

parameter

439

tpname

configuration

parameter

440

clint_krb_plugin

configuration

parameter

466

clnt_pw_plugin

configuration

parameter

466

clustering

indexes

18

code

pages
database

configuration

parameter

423

codepage

configuration

parameter

423

codeset

configuration

parameter

424

collate_info

configuration

parameter

424

columns
collecting

distribution

statistics

on

specific

99

subelements,

collecting

statistics

for

121

updating

statistics

manually,

rules

128

comm_bandwidth

configuration

parameter
description

456

effect

on

query

optimization

136

command

help
invoking

615

commands
db2adutl

cross-node

recovery

example

589

commit
number

of

commits

to

group

(mincommit)

403

communications
connection

elapse

time

443

compilers
rewrites

adding

implied

predicates

144

correlated

subqueries

143

merge

view

140

compound

SQL
how

used

85

concurrency
factors

affecting

locking

68

concurrency

control
for

federated

databases

39

general

issues

for

39

maximum

number

of

active

applications

381

configuration

file

release

level

configuration

parameter

425

configuration

files
description

315

location

315

configuration

parameters
affecting

number

of

agents

258

affecting

query

optimization

136

agent_stack_sz

349

agentpri

377

alt_collate

423

app_ctl_heap_sz

346

appgroup_mem_sz

347

applheapsz

350

archretrydelay

399

aslheapsz

358

audit_buf_sz

362

authentication

464

authentication

(DAS)

478

automatic

316

autonomic_switches

437

autorestart

408

avg_appls

378

backup_pending

429

blk_log_dsk_ful

399

catalog_noauth

465

catalogcache_sz

336

chngpgs_thresh

370

clnt_krb_plugin

466

clnt_pw_plugin

466

codepage

423

codeset

424

collate_info

424

comm_bandwidth

456

conn_elapse

443

contact_host

478

cpuspeed

457

das_codepage

479

das_territory

479

dasadm_group

479

database_consistent

429

database_level

424

database_memory

338

datalinks

426

db2system

480

dbheap

339

description

315

dft_account_str

458

dft_degree

431

dft_extent_sz

371

dft_loadrec_ses

409

dft_monswitches

455

dft_mttb_types

431

dft_prefetch_sz

372

dft_queryopt

432

dft_refresh_age

433

dft_sqlmathwarn

433

dftdbpath

467

configuration

parameters

(continued)
diaglevel

451

diagpath

452

dir_cache

363

discover

441

discover

(DAS)

481

discover_db

442

discover_inst

442

dl_expint

426

dl_num_copies

426

dl_time_drop

427

dl_token

427

dl_wt_iexpint

428

dlchktime

367

dyn_query_mgmt

422

estore_seg_sz

32,

373

exec_exp_task

481

failarchpath

400

fcm_num_anchors

444

fcm_num_buffers

444

fcm_num_connect

446

fcm_num_rqb

446

fed_noauth

468

federated

458

fenced_pool

386

group_plugin

468

groupheap_ratio

348

hadr_db_role

409

hadr_local_host

410

hadr_local_svc

410

hadr_remote_host

411

hadr_remote_inst

411

hadr_remote_svc

412

hadr_syncmode

412

hadr_timeout

413

health_mon

453

indexrec

413

instance_memory

364

intra_parallel

449

java_heap_sz

365

jdk_64_path

482

jdk_path

459

jdk_path

(DAS)

482

keepfenced

28,

388

local_gssplugin

469

locklist

340

locktimeout

368

log_retain_status

429

logarchmeth1

400

logarchmeth2

401

logarchopt1

401

cross-node

recovery

example

589

logarchopt2

402

logbufsz

342

logfilsiz

390

loghead

391

logindexbuild

402

logpath

391

logprimary

391

logretain

403

logsecond

393

max_connections

32,

379

max_connretries

447

max_coordagents

379

max_querydegree

450

max_time_diff

448

maxagents

32,

380

626

Administration

Guide:

Performance

configuration

parameters

(continued)
maxappls

381

maxcagents

383

maxfilop

383

maxlocks

369

maxtotfilop

384

min_dec_div_3

359

min_priv_mem

351

mincommit

403

mirrorlogpath

395

mon_heap_sz

366

multipage_alloc

429

newlogpath

396

nname

439

nodetype

459

notifylevel

453

num_db_backups

415

num_estore_segs

32,

373

num_freqvalues

434

num_initagents

385

num_initfenced

389

num_iocleaners

374

num_ioservers

375

num_poolagents

385

num_quantiles

435

numarchretry

405

numdb

32,

460

numsegs

376

overflowlogpath

398

pckcachesz

343

priv_mem_thresh

352

query_heap_sz

353

rec_his_retentn

415

release

425

restore_pending

430

resync_interval

418

rollfwd_pending

430

rqrioblk

360

sched_enable

483

sched_userid

484

seqdetect

376

sheapthres

354

sheapthres_shr

344

smtp_server

484

softmax

405

sortheap

355

spm_log_file_sz

419

spm_log_path

420

spm_max_resync

420

spm_name

421

srv_plugin_mode

471

srvcon_auth

469

srvcon_gssplugin_list

470

srvcon_pw_plugin

471

start_stop_time

448

stat_heap_sz

356

stmtheap

357

svcename

439

sysadm_group

472

sysctrl_group

473

sysmaint_group

473

sysmon_group

474

territory

425

tm_database

421

toolscat_db

485

toolscat_inst

485

toolscat_schema

486

configuration

parameters

(continued)
tp_mon_name

461

tpname

440

trackmod

416

trust_allclnts

475

trust_clntauth

476

tsm_mgmtclass

416

tsm_nodename

417

tsm_owner

417

tsm_password

418

use_sna_auth

477

user_exit_status

430

userexit

406

util_heap_sz

345

util_impact_lim

463

vendoropt

407

cross-node

recovery

example

589

configurations
changing

database

parameters

317

dynamic

320

parameter

summary,

database

323

parameter

summary,

database

manager

323

tuning
parameters

316

conn_elapse

configuration

parameter

443

connection

concentrators
client-connection

improvements

259

usage

examples

259

use

of

agents

in

partitioned

database

261

connection

elapse

time

configuration

parameter

443

connections
elapse

time

443

constraints
Explain

tables

525

contact_host

configuration

parameter

478

Control

Center
Event

Analyzer

262

Snapshot

Monitor

262

Coordinated

Universal

Time

448

coordinator

agent
connection-concentrator

use

259

description

28

cpuspeed

configuration

parameter
described

457

effect

on

query

optimization

136

cross-node

database

recovery

example

589

CURRENT

EXPLAIN

MODE

special

register
capturing

explain

data

198

CURRENT

EXPLAIN

SNAPSHOT

special

register
capturing

explain

information

198

D
DAS

configuration

parameters
authentication

478

contact_host

478

das_codepage

479

das_territory

479

dasadm_group

479

DAS

configuration

parameters

(continued)
db2system

480

exec_exp_task

481

jdk_64_path

482

jdk_path

482

sched_enable

483

sched_userid

484

smtp_server

484

toolscat_db

485

toolscat_inst

485

toolscat_schema

486

das_codepage

configuration

parameter

479

das_territory

configuration

parameter

479

dasadm_group

configuration

parameter

479

Data

Links

access

token

expiry

interval

configuration

parameter

426

Data

Links

number

of

copies

configuration

parameter

426

Data

Links

time

after

drop

configuration

parameter

427

Data

Links

token

algorithm

configuration

parameter

427

data

page

in

standard

tables

18

data

redistribution
determining

need

for

290

error

recovery

294

guidelines

for

289

instructions

for

291

log

space

requirements

for

293

process

description

289

data

sampling
using

TABLESAMPLE

82

Data

sampling
statistics

collection

101

data

sources
I/O

speed

and

performance

184

data-stream

information
displayed

by

db2expln

568

database

39

database

directories
structure

described

12

database

global

memory
configuration

parameters

216

database

heap

configuration

parameter

339

database

manager

39

configuration

parameter

summary

323

machine

node

type

configuration

parameter

459

shared

memory

use

213

start

timeout

448

stop

timeout

448

database

monitor
using

262

database

partition

servers
in

multiple-partition

processing

28

database

partitions
adding

282

database

shared

memory

size

configuration

parameter

338

Index

627

database

system

monitor
default

database

system

monitor

switches

configuration

parameter

455

database

territory

code

configuration

parameter

424

database_consistent

configuration

parameter

429

database_level

configuration

parameter

424

database_memory

configuration

parameter

338

database-managed

space

(DMS)
description

15

table-space

address

map

17

databases
autorestart

configuration

parameter

408

backup_pending

configuration

parameter

429

codepage

configuration

parameter

423

codeset

configuration

parameter

424

collating

information

424

configuration

parameter

summary

323

maximum

number

of

concurrently

active

databases

460

release

level

configuration

parameter

425

territory

code

configuration

parameter

424

territory

configuration

parameter

425

DATALINK

data

type
configuration

parameter

426

DB2

architecture

overview

9

DB2

books
printing

PDF

files

612

DB2

Information

Center

596

invoking

604

DB2

tutorials

615

DB2_ALLOCATION_SIZE

506

DB2_ANTIJOIN

502

DB2_APM_PERFORMANCE

506

DB2_AVOID_PREFETCH

506

DB2_AWE

506

DB2_BINSORT

506

DB2_CLPPROMPT

499

DB2_CORRELATED_PREDICATES

502

DB2_DJ_COMM

518

DB2_DOCHOST

518

DB2_DOCPORT

518

DB2_ENABLE_BUFPD

506

DB2_ENABLE_LDAP

518

DB2_EVALUNCOMMITTED

506

DB2_EXTENDED_OPTIMIZATION

506

DB2_FALLBACK

518

DB2_FMP_COMM_HEAPSZ

518

DB2_FORCE_FCM_BP

500

DB2_FORCE_NLS_CACHE

496

DB2_GRP_LOOKUP

518

DB2_HASH_JOIN

502

DB2_INDEX_TYPE2

490

DB2_INLIST_TO_NLJN

502

DB2_KEEPTABLELOCK

506

DB2_LGPAGE_BP

506

DB2_LIC_STAT_SIZE

490

DB2_LIKE_VARCHAR

502

DB2_MINIMIZE_LISTPREFETCH

502

DB2_MMAP_READ

506

DB2_MMAP_WRITE

506

DB2_NEW_CORR_SQ_FF

502

DB2_NEWLOGPATH2

518

DB2_NO_FORK_CHECK

506

DB2_NO_MPFA_FOR_NEW_DB

506

DB2_NUM_FAILOVER_NODES

500

DB2_OBJECT_TABLE_ENTRIES

506

DB2_OVERRIDE_BPF

506

DB2_PARALLEL_IO

492

DB2_PARTITIONEDLOAD__DEFAULT

500

DB2_PINNED_BP

506

DB2_PRED_FACTORIZE

502

DB2_REDUCED_OPTIMIZATION

502

DB2_SCATTERED_IO

506

DB2_SELECTIVITY

502

DB2_SMS_TRUNC_TMP_TABLE_THRESH

506

DB2_SORT_AFTER_TQ

506

DB2_TRUSTED_BINDIN

506

DB2_USE_ALTERNATE_PAGE_CLEANING

506

usage

224

DB2_USE_PAGE_CONTAINER

_TAG

492

DB2_USE_PAGE_CONTAINER_TAG

492

DB2_VENDOR_INI

518

DB2_VI_DEVICE

496

DB2_VI_ENABLE

496

DB2_VI_VIPL

496

DB2_VIEW_REOPT_VALUES

490

DB2_XBSA_LIBRARY

518

DB2ACCOUNT

490

DB2ADMINSERVER

518

db2adutl

command
cross-node

recovery

example

589

db2advis

7,

246

DB2AFFINITIES

506

DB2ASSUMEUPDATE

506

DB2ATLD_PWFILE

500

db2batch

benchmarking

tool
creating

tests

305

examples

307

DB2BIDI

490

DB2BPVARS

506

DB2BQTIME

499

DB2BQTRY

499

DB2CHECKCLIENTINTERVAL

496

DB2CHGPWD_ESE

500

DB2CHKPTR

506

DB2CHKSQLDA

506

DB2CLIINIPATH

518

DB2CODEPAGE

490

DB2COMM

496

DB2CONNECT_IN_APP_PROCESS

492

DB2DBDFT

490

DB2DBMSADDR

490

DB2DEFPREP

518

DB2DISCOVERYTIME

490

DB2DMNBCKCTLR

518

DB2DOMAINLIST

492

db2empfa

command

14

DB2ENVLIST

492

db2exfmt

tool

587

db2expln

tool
block

and

RID

preparation

information

569

db2expln

tool

(continued)
information

displayed
aggregation

570

data

stream

568

insert,

update,

delete

568

join

566

miscellaneous

574

parallel

processing

571

table

access

559

temporary

table

564

output

558

output

samples
description

576

for

federated

database

plan

584

multipartition

plan

with

full

parallelism

582

multipartition

plan

with

inter-partition

parallelism

579

no

parallelism

576

single-partition

plan

with

intra-partition

parallelism

578

syntax

and

parameters

552

usage

notes

557

DB2GRAPHICUNICODESERVER

490

DB2INCLUDE

490

DB2INSTANCE

492

DB2INSTDEF

490

DB2INSTOWNER

490

DB2INSTPROF

492

DB2IQTIME

499

DB2JD_PORT_NUMBER

496

DB2LDAP_BASEDN

518

DB2LDAP_CLIENT_PROVIDER

518

DB2LDAP_SEARCH_SCOPE

518

DB2LDAPCACHE

518

DB2LDAPHOST

518

DB2LIBPATH

492

DB2LOADREC

518

DB2LOCALE

490

DB2LOCK_TO_RB

518

DB2MAXFSCRSEARCH

506

DB2MEMDISCLAIM

506

DB2MEMMAXFREE

506

DB2NBADAPTERS

496

DB2NBCHECKUPTIME

496

DB2NBDISCOVERRCVBUFS

490

DB2NBINTRLISTENS

496

DB2NBRECVBUFFSIZE

496

DB2NBRECVNCBS

496

DB2NBRESOURCES

496

DB2NBSENDNCBS

496

DB2NBSESSIONS

496

DB2NBXTRANCBS

496

DB2NODE

492

exported

when

adding

server

283,

284,

285

DB2NOEXITLIST

518

DB2NTMEMSIZE

506

DB2NTNOCACHE

506

DB2NTPRICLASS

506

DB2NTWORKSET

506

DB2PATH

492

DB2PORTRANGE

500

DB2PRIORITIES

506

DB2REMOTEPREG

518

DB2RETRY

496

DB2RETRYTIME

496

628

Administration

Guide:

Performance

DB2ROUTINE_DEBUG

518

DB2RQTIME

499

DB2SERVICETPINSTANCE

496

DB2SORCVBUF

518

DB2SORT

518

DB2SOSNDBUF

496

DB2SYSPLEX_SERVER

496

DB2SYSTEM

518

db2system

configuration

parameter

480

DB2TCPCONNMGRS

496

DB2TERRITORY

490

DBHEAP

configuration

parameter

339

deadlocks
checking

for

367

described

11

detector

11

dlchktime

configuration

parameter

367

effects

on

performance

49

decimal

arithmetic
decimal

division

scale

to

3

configuration

parameter

359

decorrelation

of

a

query
compiler

rewrites

for

143

default

database

path

configuration

parameter

467

default

number

of

SMS

containers

configuration

parameter

376

defragmentation
index

254

Design

Advisor

7,

201,

246

defining

a

workload

204

for

migrating

to

partitioned

databases

205

limitations

and

restrictions

206

designing
Design

Advisor

201

dft_account_str

configuration

parameter

458

dft_degree

configuration

parameter

431

effect

on

query

optimization

136

dft_extent_sz

configuration

parameter

371

dft_loadrec_ses

configuration

parameter

409

dft_mon_bufpool

configuration

parameter

455

dft_mon_lock

configuration

parameter

455

dft_mon_sort

configuration

parameter

455

dft_mon_stmt

configuration

parameter

455

dft_mon_table

configuration

parameter

455

dft_mon_timestamp

configuration

parameter

455

dft_mon_uow

configuration

parameter

455

dft_monswitches

configuration

parameter

455

dft_mttb_types

configuration

parameter

431

dft_prefetch_sz

configuration

parameter

372

dft_queryopt

configuration

parameter

432

dft_refresh_age

configuration

parameter

433

dft_sqlmathwarn

configuration

parameter

433

dftdbpath

configuration

parameter

467

diaglevel

configuration

parameter

451

diagpath

configuration

parameter

452

dir_cache

configuration

parameter

363

directory

cache

support

configuration

parameter
described

363

disability

617

discover

(DAS)

configuration

parameter

481

discover

configuration

parameter

441

discover

server

instance

configuration

parameter

442

discover_db

configuration

parameter

442

discover_inst

configuration

parameter

442

discovery

mode

configuration

parameter

441

disks
storage

performance

factors

12

distribution

statistics
described

112

extended

example

of

use

116

manual

update

rules

129

optimizer

use

of

115

dl_expint

configuration

parameter

426

dl_num_copies

configuration

parameter

426

dl_time_drop

configuration

parameter

427

dl_token

configuration

parameter

427

dl_wt_iexpint

configuration

parameter

428

dlchktime

configuration

parameter

367

DLFM_ASNCOPYD_PORT

516

DLFM_BACKUP_DIR_NAME

516

DLFM_BACKUP_TARGET

516

DLFM_BACKUP_TARGET_LIBRARY

516

DLFM_GC_MODE

516

DLFM_INSTALL_PATH

516

DLFM_PORT

516

DLFM_START_ASNCOPYD

516

DLFM_TSM_MGMTCLASS

516

DMS

device
buffering

behavior

255

caching

behavior

255

documentation
displaying

604

dotted

decimal

syntax

diagrams

618

dyn_query_mgmt

configuration

parameter
for

Query

Patroller

422

dynamic

configuration

320

dynamic

SQL
setting

optimization

class

76

dynexpln

tool
output

described

558

syntax

and

parameters

558

E
enable

Data

Links

support

configuration

parameter

426

enable

intra-partition

parallelism

configuration

parameter

449

engine

dispatchable

unit

(EDU)
agents

256

description

32

environment

variables
overview

489

error

messages
when

adding

nodes

to

partitioned

databases

287

estore_seg_sz

configuration

parameter
description

373

memory

management

32

event

snapshots

262

exec_exp_task

configuration

parameter

481

execute

expired

tasks

configuration

parameter

481

Explain

facility
analyzing

information

from

200

capturing

information

with

198

description

189

information

displayed
data

objects

194

data

operators

195

instances

196

snapshots,

creating

198

using

collected

information

191

explain

instance

193

explain

tables
formatting

tool

for

data

in

587

organization

193

overview

525

explain

tools
db2exfmt

190

db2expln

190

dynexpln

190

overview

190

using

551

Visual

Explain

190

EXPLAIN_ARGUMENT

table

526

EXPLAIN_INSTANCE

table

530

EXPLAIN_OBJECT

table

532

EXPLAIN_OPERATOR

table

535

EXPLAIN_PREDICATE

table

537

EXPLAIN_STATEMENT

table

539

EXPLAIN_STREAM

table

541

extended

storage
description

32

extents
extent

map

pages

(EMP)for

DMS

table

spaces

15

for

SMS

table

spaces

14

F
failarchpath

configuration

parameter

400

fast

communications

manager

(FCM)
description

32

FCM

buffer

pool
illustration

of

215

memory

requirements

215

Index

629

fcm_num_anchors

configuration

parameter

444

fcm_num_buffers

configuration

parameter

444

fcm_num_connect

configuration

parameter

446

fcm_num_rqb

configuration

parameter

446

fed_noauth

configuration

parameter

468

federated

configuration

parameter

458

federated

databases
analyzing

where

queries

evaluated

182

compiler

phases

178

concurrency

control

for

39

db2expln

output

for

query

in

584

global

analysis

of

queries

on

186

global

optimization

in

184

pushdown

analysis

178

query

information

573

server

options

94

system

support

configuration

parameter

458

fenced_pool

configuration

parameter

386

first

active

log

file

configuration

parameter

391

FOR

FETCH

ONLY

clause
in

query

tuning

77

FOR

READ

ONLY

clause
in

query

tuning

77

free

space

control

record

(FSCR)
in

MDC

tables

21

in

standard

tables

18

G
governor

tool
configuration

file

example

275

configuration

file

rule

descriptions

269

configuring

268

daemon

described

267

described

265

log

files

created

by

276

queries

against

log

files

280

rule

elements

271

starting

and

stopping

266

group_plugin

configuration

parameter

468

groupheap_ratio

configuration

parameter

348

grouping

effect

on

access

plan

171

H
hadr_db_role

configuration

parameter

409

hadr_local_host

configuration

parameter

410

hadr_local_svc

configuration

parameter

410

hadr_remote_host

configuration

parameter

411

hadr_remote_inst

configuration

parameter

411

hadr_remote_svc

configuration

parameter

412

hadr_syncmode

configuration

parameter

412

hadr_timeout

configuration

parameter

413

hash

join
described

157

tuning

performance

of

157

health

monitoring

configuration

parameter

453

health_mon

configuration

parameter

453

help
displaying

604,

606

for

commands
invoking

615

for

messages
invoking

614

for

SQL

statements
invoking

615

HTML

documentation
updating

605

I
I/O

parallelism
managing

235

INCLUDE

clause
effect

on

space

required

for

indexes

18

index

re-creation

time

configuration

parameter

413

index

scans
accessing

data

through

148

previous

leaf

pointers

23

search

processes

23

usage

23

indexes
advantages

of

244

block

index-scan

lock

mode

65

cluster

ratio

153

clustering

18

collecting

catalog

statistics

on

100

data-access

methods

using

151

defragmentation,

online

254

detailed

statistics

data

collected

120

effect

of

type

on

next-key

locking

70

index

re-creation

time

configuration

parameter

413

managing

244,

251

managing

for

MDC

tables

21

managing

for

standard

tables

18

performance

tips

for

248

planning

246

reorganizing

252

rules

for

updating

statistics

manually

131

scans

23

structure

23

type-2

described

251

when

to

create

246

wizards

to

help

design

201

indexrec

configuration

parameter

413

Information

Center
installing

597,

600,

602

initial

number

of

agents

in

pool

configuration

parameter

385

initial

number

of

fenced

processes

configuration

parameter

389

inserting

data
process

for

26

when

table

clustered

on

index

26

installing
Information

Center

597,

600,

602

instance

memory

configuration

parameter

364

instance_memory

configuration

parameter

364

intra_parallel

configuration

parameter

449

intra-partition

parallelism
optimization

strategies

for

173

invoking
command

help

615

message

help

614

SQL

statement

help

615

IS

(intent

share)

mode

47

isolation

levels
effect

on

performance

40

locks

for

concurrency

control

46

specifying

43

statement-level

43

J
Java

Development

Kit

installation

path

(DAS)

configuration

parameter

482

Java

Development

Kit

installation

path

configuration

parameter

459

java_heap_sz

configuration

parameter

365

jdk_64_path

configuration

parameter

482

jdk_path

configuration

parameter

459

jdk_path

DAS

configuration

parameter

482

joins
broadcast

inner-table

165

broadcast

outer-table

165

collocated

165

db2expln

information

displayed

for

566

described

156

eliminating

redundancy

140

hash,

described

157

in

partitioned

databases

165

merge,

described

157

methods,

listed

157

nested-loop,

described

157

optimizer

strategies

for

optimal

160

shared

aggregation

140

subquery

transformation

by

optimizer

140

table-queue

strategy

in

partitioned

databases

164

types
directed

inner-table

165

directed

outer-table

165

K
keepfenced

configuration

parameter

388

630

Administration

Guide:

Performance

keyboard

shortcuts
support

for

617

L
large

object

(LOB)

data

types
caching

behavior

255

list

prefetching

232

LOB

(large

object)

data

types
caching

behavior

255

local_gssplugin

configuration

parameter

469

lock

compatibility
effects

on

performance

49

lock

conversion
effects

on

performance

49

lock

escalation

49

LOCK

TABLE

statement
minimizing

lock

escalations

55

lock

waits
effects

on

performance

49

locking
maximum

percent

of

lock

list

before

escalation

369

maximum

storage

for

lock

list

340

time

interval

for

checking

deadlock

configuration

parameter

367

tuning

for

53

locklist

configuration

parameter
description

340

effect

on

query

optimization

136

locks
block

index-scan

modes

65

deadlocks

11

deferral

56

effect

of

application

type

68

effect

of

data-access

plan

69

escalation
correcting

55

defined

46

preventing

55

exclusive

(X)

mode

47

intent

exclusive

(IX)

mode

47

intent

none

(IN)

mode

47

intent

share

(IS)

mode

47

lock

modes

for

table

and

RID

index

scans

for

MDC

tables

62

modes

and

access

paths

for

standard

tables

60

next-key

locking

70

performance

factors

49

share

(S)

mode

47

share

with

intent

exclusive

(SIX)

mode

47

superexclusive

(Z)

mode

47

type-compatibility

tables

59

types

47

update

(U)

mode

47

LOCKSIZE

clause

46

locktimeout

configuration

parameter

368

log

buffer

25

log

file

space
required

for

data

redistribution

293

log_retain_status

configuration

parameter

429

logarchmeth1

configuration

parameter

400

logarchmeth2

configuration

parameter

401

logarchopt1

configuration

parameter

401

cross-node

recovery

example

589

logarchopt2

configuration

parameter

402

LOGBUFSZ

configuration

parameter

342

logfilsiz

configuration

parameter

390

logging
circular,

defined

25

retain

log

records,

defined

25

loghead

configuration

parameter

391

logical

nodes;

see

database

partition

servers

28

logical

partitions
multiple

28

logindexbuild

configuration

parameter

402

logpath

configuration

parameter

391

logprimary

configuration

parameter

391

logretain

configuration

parameter

403

logs
block

on

log

disk

full

configuration

parameter

399

created

by

governor

tool

276

first

active

log

file

configuration

parameter

391

location

of

log

files

configuration

parameter

391

log

buffer

size

configuration

parameter

342

log

retain

enable

configuration

parameter

403

log

retain

status

indicator

configuration

parameter

429

mirror

log

path

configuration

parameter

395

newlogpath

configuration

parameter

396

number

of

primary

log

files

configuration

parameter

391

number

of

secondary

log

files

configuration

parameter

393

overflow

log

path

configuration

parameter

398

recovery

range

and

soft

checkpoint

interval

configuration

parameter

405

size

of

log

files

configuration

parameter

390

user

exit

enable

configuration

parameter

406

logsecond

configuration

parameter

393

long

fields
caching

behavior

255

M
map

pages
extent

15

space

15

materialized

query

tables

(MQT)
automatic

summary

tables

176

replicated,

in

partitioned

databases

162

max_connretries

447

max_coordagents

configuration

parameter

379

max_logicagents

configuration

parameter

379

max_querydegree

configuration

parameter

450

max_time_diff

configuration

parameter

448

maxagents

configuration

parameter

380

effect

on

memory

use

211

for

memory

management

32

maxappls

configuration

parameter

381

effect

on

memory

use

211

for

memory

management

32

maxcagents

configuration

parameter

383

maxcoordagents

configuration

parameter

211

maxfilop

configuration

parameter

383

maximum

database

files

open

per

application

configuration

parameter

383

maximum

Java

interpreter

heap

size

configuration

parameter

365

maximum

number

of

active

applications

configuration

parameter

381

maximum

number

of

agents

configuration

parameter

380

maximum

number

of

concurrent

agents

configuration

parameter

383

maximum

number

of

concurrently

active

databases

configuration

parameter

460

maximum

number

of

coordinating

agents

configuration

parameter

379

maximum

number

of

fenced

processes

configuration

parameter

386

maximum

percent

of

lock

list

before

escalation

configuration

parameter

369

maximum

query

degree

of

parallelism

configuration

parameter

450

effect

on

query

optimization

136

maximum

size

of

application

group

memory

set

configuration

parameter

347

maximum

storage

for

lock

list

configuration

parameter

340

maximum

time

difference

among

nodes

configuration

parameter

448

maxlocks

configuration

parameter

369

maxtotfilop

configuration

parameter

384

memory
applheapsz

configuration

parameter

350

aslheapsz

configuration

parameter

358

buffer-pool

allocation

at

startup

226

dbheap

configuration

parameter

339

global,

components

of

216

instance

memory

configuration

parameter

364

organization

of

use

211

package

cache

size

configuration

parameter

343

sort

heap

size

configuration

parameter

355

sort

heap

threshold

configuration

parameter

354

Index

631

memory

(continued)
statement

heap

size

configuration

parameter

357

tuning

parameters

that

affect

218

when

allocated

211

memory

model
database-manager

shared

memory

213

described

32

memory

requirements
FCM

buffer

pool

215

merge

join

157

message

help
invoking

614

methods
nested-loop

join

157

min_dec_div_3

configuration

parameter

359

min_priv_mem

configuration

parameter

351

mincommit

configuration

parameter

403

MINPCTUSED

clause
for

online

index

defragmentation

18

mirror

log

path

configuration

parameter

395

mirrorlogpath

configuration

parameter

395

modeling

application

performance
using

catalog

statistics

125

using

manually

adjusted

catalog

statistics

124

mon_heap_sz

configuration

parameter

366

monitor

switches
updating

262

monitoring
how

to

262

multidimensional

clustering

(MDC)
management

of

tables

and

indexes

21

optimization

strategies

for

175

multipage_alloc

configuration

parameter

429

effect

on

memory

14

setting

for

SMS

table

spaces

14

multisite

update

39

N
nested-loop

join

157

NetBIOS
workstation

name

configuration

parameter

439

newlogpath

configuration

parameter

396

next-key

locks
converting

index

to

minimize

252

index

type,

effects

70

type-2

indexes

251

nname

configuration

parameter

439

node

39

node

connection

retries

configuration

parameter

447

nodes
connection

elapse

time

443

coordinating

agents,

maximum

379

maximum

time

difference

among

448

nodetype

configuration

parameter

459

notifylevel

configuration

parameter

453

num_db_backups

configuration

parameter

415

num_estore_segs

configuration

parameter
description

373

for

memory

management

32

num_freqvalues

configuration

parameter

434

num_initfenced

configuration

parameter

389

num_iocleaners

configuration

parameter

374

num_ioservers

configuration

parameter

375

num_poolagents

configuration

parameter

385

num_quantiles

configuration

parameter

435

numarchretry

configuration

parameter

405

number

of

commits

to

group

configuration

parameter

403

number

of

database

backups

configuration

parameter

415

numdb

configuration

parameter

460

effect

on

memory

use

211

for

memory

management

32

numinitagents

configuration

parameter

385

numsegs

configuration

parameter

376

NW

(next

key

weak

exclusive)

mode

47

O
online

help,

accessing

613

operations
merged

or

moved

by

optimizer

139

optimization
intra-partition

parallelism

173

strategies

for

MDC

tables

175

optimization

classes
choosing

72

listed

and

described

73

setting

76

OPTIMIZE

FOR

clause
in

query

tuning

77

optimizer
access

plan
effect

of

sorting

and

grouping

171

for

column

correlation

145

index

access

methods

151

using

index

148

distribution

statistics,

use

of

115

joins
described

156

in

partitioned

database

165

strategies

for

optimal

160

query

rewriting

methods

139

ordering

DB2

books

612

overflow

records
in

standard

tables

18

performance

effect

240

overflowlogpath

configuration

parameter

398

overhead
row

blocking

to

reduce

80

P
page

cleaners
tuning

number

of

223

pages,

data

18

parallel

processing,

information

displayed

by

db2expln

output

571

parallelism
effect

of
dft_degree

configuration

parameter

88

intra_parallel

configuration

parameter

88

max_querydegree

configuration

parameter

88

enable

intra-partition

parallelism

configuration

parameter

449

I/O
managing

235

server

configuration

for

233

intra-partition
optimization

strategies

173

maximum

query

degree

of

parallelism

configuration

parameter

450

non-SMP

environments

88

setting

degree

of

88

partition

groups,

effect

on

query

optimization

91

partitioned

databases
data

redistribution,

error

recovery

294

decorrelation

of

a

query

143

errors

when

adding

nodes

287

join

methods

in

165

join

strategies

in

164

replicated

materialized

query

tables

in

162

partitions
adding

to

a

running

system

283

to

a

stopped

system

285

to

NT

system

284

dropping

288

pckcachesz

configuration

parameter

343

PCTFREE

clause
to

retain

space

for

clustering

18

performance
adjusting

optimization

class

76

db2batch

benchmarking

tool

305

developing

improvement

process

5

disk-storage

factors

12

elements

of

3

federated

database

systems

178

limits

to

tuning

6

query

optimization

using

the

REOPT

bind

option

147

tuning

3

quick-start

tips

7

user

input

for

6

point-in-time

monitoring

262

pool

size

for

agents,

controlling

385

precompiling
isolation

level

43

632

Administration

Guide:

Performance

predicates
applying

143

characteristics

154

implied
added

by

optimizer

144

translated

by

optimizer

139

prefetching
block-based

buffer

pools

231

description

229

I/O

server

configuration

for

233

intra-parallel

performance

229

list

sequential

232

parallel

I/O

234

sequential

230

printed

books,

ordering

612

printing
PDF

files

612

priv_mem_thresh

configuration

parameter

352

problem

determination
online

information

616

tutorials

616

process

model
for

SQL

compiler

133

for

updates

27

overview

28

protocols
NetBIOS

workstation

name

configuration

parameter

439

TCP/IP

service

name

configuration

parameter

439

pushdown

analysis
for

federated

database

queries

178

Q
quantile

distribution

statistics

112

queries
optimization

with

REOPT

bind

option

147

tuning
guidelines

81

restricting

select

statements

77

SELECT

statements

83

query

optimization
configuration

parameters

136

effect

of

partition

groups

91

query_heap_sz

configuration

parameter

353

R
rec_his_retentn

configuration

parameter

415

record

identifier

(RID),

in

standard

tables

18

recovery
auto

restart

enable

configuration

parameter

408

backup

pending

indicator

configuration

parameter

429

cross-node

example

589

default

number

of

load

recovery

sessions

configuration

parameter

409

recovery

(continued)
index

re-creation

time

configuration

parameter

413

log

retain

status

indicator

configuration

parameter

429

number

of

database

backups

configuration

parameter

415

restore

pending

configuration

parameter

430

roll

forward

pending

indicator

configuration

parameter

430

user

exit

status

indicator

configuration

parameter

430

recovery

history

retention

period

configuration

parameter

415

recovery

range

and

soft

checkpoint

interval

configuration

parameter

405

registry

variables
DB2_ALLOCATION_SIZE

506

DB2_ANTIJOIN

502

DB2_APM_PERFORMANCE

506

DB2_AVOID_PREFETCH

506

DB2_AWE

506

DB2_BINSORT

506

DB2_CLPPROMPT

499

DB2_CORRELATED_PREDICATES

502

DB2_DJ_COMM

518

DB2_DOCHOST

518

DB2_DOCPORT

518

DB2_ENABLE_BUFPD

506

DB2_ENABLE_LDAP

518

DB2_EXTENDED_OPTIMIZATION

506

DB2_FALLBACK

518

DB2_FMP_COMM_HEAPSZ

518

DB2_FORCE_FCM_BP

500

DB2_FORCE_NLS_CACHE

496

DB2_GRP_LOOKUP

518

DB2_HASH_JOIN

502

DB2_INDEX_TYPE2

490

DB2_INLIST_TO_NLJN

502

DB2_KEEPTABLELOCK

506

DB2_LGPAGE_BP

506

DB2_LIC_STAT_SIZE

490

DB2_LIKE_VARCHAR

502

DB2_MINIMIZE_LISTPREFETCH

502

DB2_MMAP_READ

506

DB2_MMAP_WRITE

506

DB2_NEW_CORR_SQ_FF

502

DB2_NEWLOGPATH2

518

DB2_NO_FORK_CHECK

506

DB2_NO_MPFA_FOR_NEW_DB

506

DB2_NUM_FAILOVER_NODES

500

DB2_OBJECT_TABLE_ENTRIES

506

DB2_OVERRIDE_BPF

506

DB2_PARALLEL_IO

492

DB2_PARTITIONEDLOAD__DEFAULT

500

DB2_PINNED_BP

506

DB2_PRED_FACTORIZE

502

DB2_REDUCED_

OPTIMIZATION

502

DB2_SCATTERED_IO

506

DB2_SELECTIVITY

502

DB2_SKIPDELETED

506

DB2_SMS_TRUNC_TMP_TABLE_THRESH

506

DB2_SORT_AFTER_TQ

506

DB2_TRUSTED_BINDIN

506

registry

variables

(continued)
DB2_USE_ALTERNATE_PAGE_CLEANING

506

DB2_USE_PAGE_CONTAINER_TAG

492

DB2_VENDOR_INI

518

DB2_VI_DEVICE

496

DB2_VI_ENABLE

496

DB2_VI_VIPL

496

DB2_VIEW_REOPT_VALUES

490

DB2_XBSA_LIBRARY

518

DB2ACCOUNT

490

DB2ADMINSERVER

518

DB2AFFINITIES

506

DB2ASSUMEUPDATE

506

DB2ATLD_PWFILE

500

DB2BIDI

490

DB2BPVARS

506

DB2BQTIME

499

DB2BQTRY

499

DB2CHECKCLIENTINTERVAL

496

DB2CHGPWD_ESE

500

DB2CHKPTR

506

DB2CHKSQLDA

506

DB2CODEPAGE

490

DB2COMM

496

DB2CONNECT_IN_APP_PROCESS

492

DB2DBDFT

490

DB2DBMSADDR

490

DB2DEFPREP

518

DB2DISCOVERYTIME

490

DB2DMNBCKCTLR

518

DB2DOMAINLIST

492

DB2ENVLIST

492

DB2GRAPHICUNICODESERVER

490

DB2INCLUDE

490

DB2INSTANCE

492

DB2INSTDEF

490

DB2INSTOWNER

490

DB2INSTPROF

492

DB2IQTIME

499

DB2JD_PORT_NUMBER

496

DB2LDAP_BASEDN

518

DB2LDAP_CLIENT_PROVIDER

518

DB2LDAP_SEARCH_SCOPE

518

DB2LDAPCACHE

518

DB2LDAPHOST

518

DB2LIBPATH

492

DB2LOADREC

518

DB2LOCALE

490

DB2LOCK_TO_RB

518

DB2MAXFSCRSEARCH

506

DB2MEMDISCLAIM

506

DB2MEMMAXFREE

506

DB2NBADAPTERS

496

DB2NBBRECVNCBS

496

DB2NBCHECKUPTIME

496

DB2NBDISCOVERRCVBUFS

490

DB2NBINTRLISTENS

496

DB2NBRECVBUFFSIZE

496

DB2NBRESOURCES

496

DB2NBSENDNCBS

496

DB2NBSESSIONS

496

DB2NBXTRANCBS

496

DB2NETREQ

496

DB2NODE

492

DB2NOEXITLIST

518

DB2NTMEMSIZE

506

DB2NTNOCACHE

506

Index

633

registry

variables

(continued)
DB2NTPRICLASS

506

DB2NTWORKSET

506

DB2OPTIONS

490

DB2PATH

492

DB2PORTRANCE

500

DB2PRIORITIES

506

DB2REMOTEPREG

518

DB2RETRY

496

DB2RETRYTIME

496

DB2ROUTINE_DEBUG

518

DB2RQTIME

499

DB2SERVICETPINSTANCE

496

DB2SLOGON

490

DB2SORCVBUF

518

DB2SORT

518

DB2SOSNDBUF

496

DB2SYSPLEX_SERVER

496

DB2SYSTEM

518

DB2TCPCONNMGRS

496

DB2TERRITORY

490

DB2TIMEOUT

490

DB2TRACEFLUSH

490

DB2TRACENAME

490

DB2TRACEON

490

DB2TRCSYSERR

490

DB2YIELD

490

DLFM_ASNCOPYD_PORT

516

DLFM_BACKUP_DIR_NAME

516

DLFM_BACKUP_TARGET_LIBRARY

516

DLFM_GC_MODE

516

DLFM_INSTALL_PATH

516

DLFM_PORT

516

DLFM_START_ASNCOPYD

516

DLFM_TSM_MGMTCLASS

516

overview

489

release

configuration

parameter

425

remote

data

services

node

name

configuration

parameter

439

REORG

INDEXES

command

252

REORG

TABLE

command
choosing

reorg

method

242

classic,

in

off-line

mode

242

in-place,

in

on-line

mode

242

REORGANIZE

TABLE

command
indexes

and

tables

252

reorganizing
tables

determining

when

to

240

restore_pending

configuration

parameter

430

resync_interval

configuration

parameter

418

REXX

language
isolation

level,

specifying

43

roll-forward

recovery
definition

25

rollforward

utility
roll

forward

pending

indicator

430

rollfwd_pending

configuration

parameter

430

row

blocking
specifying

80

rows
lock

types

47

rqrioblk

configuration

parameter

360

RUNSTATS
automatic

statistics

collection

104,

105

sampling

statistics

101

statistics

collected

95

using

98

S
SARGable

defined

154

sched_enable

configuration

parameter

483

sched_userid

configuration

parameter

484

SELECT

statement
eliminating

DISTINCT

clauses

143

prioritizing

output

for

77

seqdetect

configuration

parameter

376

sequential

prefetching
described

230

SET

CURRENT

QUERY

OPTIMIZATION

statement

76

shadow

paging,

long

objects

25

sheapthres

configuration

parameter

354

sheapthres_shr

configuration

parameter

344

SIX

(share

with

intent

exclusive)

mode

47

smtp_server

configuration

parameter

484

snapshots
point-in-time

monitoring

262

softmax

configuration

parameter

405

sortheap

configuration

parameter
description

355

effect

on

query

optimization

136

sorting
effect

on

access

plan

171

managing

236

sort

heap

size

configuration

parameter

355

sort

heap

threshold

configuration

parameter

354

sort

heap

threshold

for

shared

sorts

344

space

map

pages

(SMP),

DMS

table

spaces

15

spm_log_file_sz

configuration

parameter

419

spm_log_path

configuration

parameter

420

spm_max_resync

configuration

parameter

420

spm_name

configuration

parameter

421

SQL

compiler
process

description

133

SQL

Explain

189

SQL

statement

help
invoking

615

SQL

statements
benchmarking

304

statement

heap

size

configuration

parameter

357

SQLDBCON

configuration

file

315

srv_plugin_mode

configuration

parameter

471

srvcon_auth

configuration

parameter

469

srvcon_gssplugin_list

configuration

parameter

470

srvcon_pw_plugin

configuration

parameter

471

start

and

stop

timeout

configuration

parameter

448

start_stop_time

configuration

parameter

448

stat_heap_sz

configuration

parameter

356

statement

heap

size

configuration

parameter

357

statement-level

isolation,

specifying

43

static

SQL
setting

optimization

class

76

statistics
automatic

collection

104,

105

Statistics

collection
sampling

101

statistics

profile
generating

102

stmtheap

configuration

parameter

357

stmtheap

configuration

parameter,

effect

on

query

optimization

136

stored

procedures
how

used

87

subqueries
correlated

how

rewritten

143

summary

tables
See

materialized

query

tables.

176

svcename

configuration

parameter

439

sysadm_group

configuration

parameter

472

sysctrl_group

configuration

parameter

473

sysmaint_group

configuration

parameter

473

sysmon_group

configuration

parameter

474

system

managed

space

(SMS)
described

14

T
table

spaces
DMS

15

effect

on

query

optimization

91

lock

types

47

overhead

91

TRANSFERRATE,

setting

91

tables
access

information

displayed

by

db2expln

559

paths

60

lock

modes
for

RID

and

table

scans

of

MDC

tables

62

for

standard

tables

60

lock

types

47

multidimensional

clustering

21

queues,

for

join

strategies

in

partitioned

databases

164

634

Administration

Guide:

Performance

tables

(continued)
reorganization

classic,

in

off-line

mode

238

determining

need

for

240

in-place,

in

on-line

mode

238

reducing

need

for

238

reorganizing

242

standard
managing

18

TABLESAMPLE
uses

for

82

TCP/IP

service

name

configuration

parameter

439

temporary

tables
use

information,

db2expln

564

territory

configuration

parameter

425

threads
description

28

time
deadlock

configuration

parameter,

interval

for

checking

367

difference

among

nodes,

maximum

448

Tivoli

Storage

Manager

(TSM)
management

class

configuration

parameter

416

node

name

configuration

parameter

417

owner

name

configuration

parameter

417

password

configuration

parameter

418

tm_database

configuration

parameter

421

toolscat_db

configuration

parameter

485

toolscat_inst

configuration

parameter

485

toolscat_schema

configuration

parameter

486

tp_mon_name

configuration

parameter

461

tpname

configuration

parameter

440

track

modified

pages

enable

configuration

parameter

416

trackmod

configuration

parameter

416

transaction

processing

monitors
transaction

processing

monitor

name

configuration

parameter

461

triggers
Explain

tables

525

troubleshooting
online

information

616

tutorials

616

trust_allclnts

configuration

parameter

475

trust_clntauth

configuration

parameter

476

tsm_mgmtclass

configuration

parameter

416

tsm_nodename

configuration

parameter

417

tsm_owner

configuration

parameter

417

tsm_password

configuration

parameter

418

tuning
configuration

parameters

316

tutorials

615

tutorials

(continued)
troubleshooting

and

problem

determination

616

type

2

indexes
advantages

of

251

described

23

next-key

locking

in

70

U
Updating

HMTL

documentation

605

use_sna_auth

configuration

parameter

477

user

exit

enable

configuration

parameter

406

user

exit

status

indicator

configuration

parameter

430

user_exit_status

configuration

parameter

430

user-defined

functions

(UDFs)
entering

statistics

for

123

userexit

database

configuration

parameter

406

util_heap_sz

configuration

parameter

345

util_impact_lim

configuration

parameter
described

463

V
vendoropt

configuration

parameter

407

cross-node

recovery

example

589

views
merging

by

optimizer

140

predicate

pushdown

by

optimizer

143

W
W

(Weak

Exclusive)

lock

mode

47

WHERE

clause
predicate

terminology

definitions

154

Windows
adding

partitions

284

wizards
Design

Advisor

201

workload
for

the

Design

Advisor

204

workloads
Design

Adviser

201

X
X

(Exclusive)

mode

47

Index

635

636

Administration

Guide:

Performance

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1993

-

2004

637

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

638

Administration

Guide:

Performance

����

Printed

in

USA

SC09-4821-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

Ad
m

in
is

tr
at

io
n

G
ui

de
:

Pe
rf

or
m

an
ce

Ve
rs

io
n

8.
2

	Contents
	About this book
	Who should use this book
	How this book is structured
	A brief overview of the other Administration Guide volumes
	Administration Guide: Planning
	Administration Guide: Implementation

	Part 1. Introduction to performance
	Chapter 1. Introduction to performance
	Elements of performance
	Performance tuning guidelines
	The performance tuning process
	Developing a performance improvement process
	Performance information that users can provide
	Performance tuning limits

	Quick-start tips for performance tuning

	Chapter 2. Architecture and processes
	DB2 architecture and process overview
	Deadlocks between applications
	Disk storage overview
	Disk-storage performance factors
	Database directories and files

	Table space overview
	SMS table spaces
	DMS table spaces
	Illustration of the DMS table-space address map

	Tables and indexes
	Table and index management for standard tables
	Table and index management for MDC tables
	Index structure

	Processes
	Log processing
	Insert processing
	Update processing
	Client-server processing model
	Memory management

	Part 2. Tuning application performance
	Chapter 3. Application considerations
	Concurrency control and isolation levels
	Concurrency issues
	Performance impact of isolation levels
	Specifying the isolation level

	Concurrency control and locking
	Locks and concurrency control
	Lock attributes
	Locks and performance
	Guidelines for locking
	Correcting lock escalation problems
	Evaluate uncommitted data via lock deferral
	Applicability of evaluate uncommitted for different access plans
	Example
	Restrictions

	Lock type compatibility
	Lock modes and access paths for standard tables
	Lock modes for table and RID index scans of MDC tables
	Locking for block index scans for MDC tables

	Factors that affect locking
	Factors that affect locking
	Locks and types of application processing
	Locks and data-access methods
	Index types and next-key locking

	Optimization factors
	Optimization class guidelines
	Optimization classes
	Setting the optimization class

	Tuning applications
	Guidelines for restricting select statements
	Specifying row blocking to reduce overhead
	Query tuning guidelines
	Data sampling in SQL queries
	Efficient SELECT statements
	Compound SQL guidelines
	Character-conversion guidelines
	Guidelines for stored procedures
	Parallel processing for applications
	Improving performance by binding with REOPT

	Chapter 4. Environmental considerations
	Database partition group impact on query optimization
	Table space impact on query optimization
	Server options affecting federated databases

	Chapter 5. System catalog statistics
	Catalog statistics
	Collecting and analyzing catalog statistics
	Guidelines for collecting and updating statistics
	Collecting catalog statistics
	Collecting distribution statistics for specific columns
	Collecting index statistics
	Collecting statistics on a sample of the table data
	Collecting statistics using a statistics profile
	Automatic statistics profiling

	Automatic statistics collection
	Using automatic statistics collection

	Statistics collected
	Catalog statistics tables
	Statistical information that is collected
	Distribution statistics
	Optimizer use of distribution statistics
	Extended examples of distribution-statistics use
	Detailed index statistics
	Sub-element statistics

	Catalog statistics that users can update
	Statistics for user-defined functions
	Catalog statistics for modeling and what-if planning
	Statistics for modeling production databases
	General rules for updating catalog statistics manually
	Rules for updating column statistics manually
	Rules for updating distribution statistics manually
	Rules for updating table and nickname statistics manually
	Rules for updating index statistics manually

	Chapter 6. Understanding the SQL compiler
	The SQL compiler process
	Configuration parameters that affect query optimization
	Query rewriting
	Query rewriting methods and examples
	Compiler rewrite example: view merges
	Compiler rewrite example: DISTINCT elimination
	Compiler rewrite example: implied predicates
	Column correlation for multiple predicates

	Query optimization using the REOPT bind option
	Data access methods
	Data-access methods
	Data access through index scans
	Types of index access
	Index access and cluster ratios

	Predicate terminology
	Join methods and strategies
	Joins
	Join methods
	Strategies for selecting optimal joins
	Replicated materialized-query tables in partitioned databases
	Join strategies in partitioned databases
	Join methods in partitioned databases

	Effects of sorting and grouping
	Optimization strategies
	Optimization strategies for intra-partition parallelism
	Optimization strategies for MDC tables

	Materialized query tables
	Federated database query-compiler phases
	Federated database pushdown analysis
	Guidelines for analyzing where a federated query is evaluated
	Remote SQL generation and global optimization in federated databases
	Global analysis of federated database queries

	Chapter 7. SQL Explain facility
	SQL explain facility
	Tools for collecting and analyzing explain information
	Explain tools
	Guidelines for using explain information

	Explain information collected
	The explain tables and organization of explain information
	Explain information for data objects
	Explain information for data operators
	Explain information for instances
	Guidelines for capturing explain information

	Guidelines for analyzing explain information
	The Design Advisor
	Design Advisor output

	Defining a workload for the Design Advisor
	Using the Design Advisor to migrate from a single-partition to a multiple-partition database
	Design Advisor limitations and restrictions

	Part 3. Tuning and configuring your system
	Chapter 8. Operational performance
	Memory usage
	Organization of memory use
	Database manager shared memory
	The FCM buffer pool and memory requirements
	Global memory and parameters that control it
	Guidelines for tuning parameters that affect memory usage

	Buffer pools
	Buffer pool management
	Secondary buffer pools in extended memory on 32-bit platforms
	Buffer pool management of data pages
	Proactive page cleaning
	Illustration of buffer pool data-page management
	Management of multiple database buffer pools

	Prefetching concepts
	Prefetching data into the buffer pool
	Sequential prefetching
	Block-based buffer pools for improved sequential prefetching
	List prefetching

	I/O management
	I/O server configuration for prefetching and parallelism
	Illustration of prefetching with parallel I/O
	Parallel I/O management
	Guidelines for sort performance

	Table management
	Table reorganization
	Determining when to reorganize tables
	Choosing a table reorganization method

	Index management
	Advantages and disadvantages of indexes
	Index planning tips
	Index performance tips
	Index cleanup and maintenance
	Index reorganization
	Online index defragmentation

	DMS device considerations
	Agent management
	Database agents
	Database agent management
	Configuration parameters that affect the number of agents
	Connection-concentrator improvements for client connections
	Agents in a partitioned database

	The database system monitor information

	Chapter 9. Using the governor
	The Governor utility
	Governor startup and shutdown
	Starting and stopping the governor
	The Governor daemon

	Governor configuration
	Configuring the Governor
	The governor configuration file
	Governor rule elements
	Example of a Governor configuration file

	Governor log file use
	Governor log files
	Governor log file queries

	Chapter 10. Scaling your configuration
	Management of database server capacity
	Partitions in a partitioned database
	Adding a partition to a running database system
	Adding a partition to a stopped database system on Windows NT
	Adding a partition to a stopped database system on UNIX
	Node-addition error recovery
	Dropping a database partition

	Chapter 11. Redistributing Data Across Database Partitions
	Data redistribution
	Determining whether to redistribute data
	Redistributing data across partitions
	Log space requirements for data redistribution
	Redistribution error recovery
	Redistribute stored procedures and functions
	get_swrd_settings stored procedure
	set_swrd_settings stored procedure
	analyze_log_space stored procedure
	generate_Distfile stored procedure
	stepwise_redistribute_dbpg stored procedure
	db_partitions UDF
	Usage example

	Chapter 12. Benchmark testing
	Benchmark testing
	Benchmark preparation
	Benchmark test creation
	Examples of db2batch tests
	Benchmark test execution
	Benchmark test analysis example

	Chapter 13. Configuring DB2
	Configuration parameters
	Configuration parameter tuning
	Configuring DB2 with configuration parameters
	Configuring parameters dynamically
	Configuration parameters summary
	Database Manager Configuration Parameter Summary
	Database Configuration Parameter Summary
	DB2 Administration Server (DAS) Configuration Parameter Summary

	Parameter details by function
	Capacity management
	Database shared memory
	catalogcache_sz - Catalog cache size
	database_memory - Database shared memory size
	dbheap - Database heap
	locklist - Maximum storage for lock list
	logbufsz - Log buffer size
	pckcachesz - Package cache size
	sheapthres_shr - Sort heap threshold for shared sorts
	util_heap_sz - Utility heap size

	Application shared memory
	app_ctl_heap_sz - Application control heap size
	appgroup_mem_sz - Maximum size of application group memory set
	groupheap_ratio - Percent of memory for application group heap

	Agent private memory
	agent_stack_sz - Agent stack size
	applheapsz - Application heap size
	min_priv_mem - Minimum committed private memory
	priv_mem_thresh - Private memory threshold
	query_heap_sz - Query heap size
	sheapthres - Sort heap threshold
	sortheap - Sort heap size
	stat_heap_sz - Statistics heap size
	stmtheap - Statement heap size

	Agent/application communication memory
	aslheapsz - Application support layer heap size
	min_dec_div_3 - Decimal division scale to 3
	rqrioblk - Client I/O block size

	Database manager instance memory
	audit_buf_sz - Audit buffer size
	dir_cache - Directory cache support
	instance_memory - Instance memory
	java_heap_sz - Maximum Java interpreter heap size
	mon_heap_sz - Database system monitor heap size

	Locks
	dlchktime - Time interval for checking deadlock
	locktimeout - Lock timeout
	maxlocks - Maximum percent of lock list before escalation

	I/O and storage
	chngpgs_thresh - Changed pages threshold
	dft_extent_sz - Default extent size of table spaces
	dft_prefetch_sz - Default prefetch size
	estore_seg_sz - Extended storage memory segment size
	num_estore_segs - Number of extended storage memory segments
	num_iocleaners - Number of asynchronous page cleaners
	num_ioservers - Number of I/O servers
	numsegs - Default number of SMS containers
	seqdetect - Sequential detection flag

	Agents
	agentpri - Priority of agents
	avg_appls - Average number of active applications
	max_connections - Maximum number of client connections
	max_coordagents - Maximum number of coordinating agents
	maxagents - Maximum number of agents
	maxappls - Maximum number of active applications
	maxcagents - Maximum number of concurrent agents
	maxfilop - Maximum database files open per application
	maxtotfilop - Maximum total files open
	num_initagents - Initial number of agents in pool
	num_poolagents - Agent pool size

	Stored procedures and user-defined functions
	fenced_pool - Maximum number of fenced processes
	keepfenced - Keep fenced process
	num_initfenced - Initial number of fenced processes

	Logging and recovery
	Database log files
	logfilsiz - Size of log files
	loghead - First active log file
	logpath - Location of log files
	logprimary - Number of primary log files
	logsecond - Number of secondary log files
	max_log - Maximum log per transaction
	mirrorlogpath - Mirror log path
	newlogpath - Change the database log path
	num_log_span - Number log span
	overflowlogpath - Overflow log path

	Database log activity
	archretrydelay - Archive retry delay on error
	blk_log_dsk_ful - Block on log disk full
	failarchpath - Failover log archive path
	logarchmeth1 - Primary log archive method
	logarchmeth2 - Secondary log archive method
	logarchopt1 - Primary log archive options
	logarchopt2 - Secondary log archive options
	logindexbuild - Log index pages created
	logretain - Log retain enable
	mincommit - Number of commits to group
	numarchretry - Number of retries on error
	softmax - Recovery range and soft checkpoint interval
	userexit - User exit enable
	vendoropt - Vendor options

	Recovery
	autorestart - Auto restart enable
	dft_loadrec_ses - Default number of load recovery sessions
	hadr_db_role - HADR database role
	hadr_local_host - HADR local host name
	hadr_local_svc - HADR local service name
	hadr_remote_host - HADR remote host name
	hadr_remote_inst - HADR instance name of the remote server
	hadr_remote_svc - HADR remote service name
	hadr_syncmode - HADR synchronization mode for log write in peer state
	hadr_timeout - HADR timeout value
	indexrec - Index re-creation time
	num_db_backups - Number of database backups
	rec_his_retentn - Recovery history retention period
	trackmod - Track modified pages enable
	tsm_mgmtclass - Tivoli Storage Manager management class
	tsm_nodename - Tivoli Storage Manager node name
	tsm_owner - Tivoli Storage Manager owner name
	tsm_password - Tivoli Storage Manager password

	Distributed unit of work recovery
	resync_interval - Transaction resync interval
	spm_log_file_sz - Sync point manager log file size
	spm_log_path - Sync point manager log file path
	spm_max_resync - Sync point manager resync agent limit
	spm_name - Sync point manager name
	tm_database - Transaction manager database name

	Database management
	Query Enabler
	dyn_query_mgmt - Dynamic SQL query management

	Attributes
	alt_collate - Alternate collating sequence
	codepage - Code page for the database
	codeset - Codeset for the database
	collate_info - Collating information
	country - Database territory code
	database_level - Database release level
	release - Configuration file release level
	territory - Database territory

	DB2 Data Links Manager
	datalinks - Enable Data Links support
	dl_expint - Data Links access token expiry interval
	dl_num_copies - Data Links number of copies
	dl_time_drop - Data Links time after drop
	dl_token - Data Links token algorithm
	dl_upper - Data Links token in uppercase
	dl_wt_iexpint - Data Links write token initial expiry interval

	Status
	backup_pending - Backup pending indicator
	database_consistent - Database is consistent
	log_retain_status - Log retain status indicator
	multipage_alloc - Multipage file allocation enabled
	restore_pending - Restore pending
	rollfwd_pending - Roll forward pending indicator
	user_exit_status - User exit status indicator

	Compiler settings
	dft_degree - Default degree
	dft_mttb_types - Default maintained table types for optimization
	dft_queryopt - Default query optimization class
	dft_refresh_age - Default refresh age
	dft_sqlmathwarn - Continue upon arithmetic exceptions
	num_freqvalues - Number of frequent values retained
	num_quantiles - Number of quantiles for columns

	Automated maintenance
	autonomic_switches - Automatic maintenance switches

	Communications
	Communication protocol setup
	nname - NetBIOS workstation name
	svcename - TCP/IP service name
	tpname - APPC transaction program name

	DB2 Discovery
	discover - Discovery mode
	discover_db - Discover database
	discover_inst - Discover server instance

	Partitioned database environment
	Communications
	conn_elapse - Connection elapse time
	fcm_num_anchors - Number of FCM message anchors
	fcm_num_buffers - Number of FCM buffers
	fcm_num_connect - Number of FCM connection entries
	fcm_num_rqb - Number of FCM request blocks
	max_connretries - Node connection retries
	max_time_diff - Maximum time difference among nodes
	start_stop_time - Start and stop timeout

	Parallel processing
	intra_parallel - Enable intra-partition parallelism
	max_querydegree - Maximum query degree of parallelism

	Instance management
	Diagnostic
	diaglevel - Diagnostic error capture level
	diagpath - Diagnostic data directory path
	health_mon - Health monitoring
	notifylevel - Notify level

	Database system monitor parameters
	dft_monswitches - Default database system monitor switches

	System management
	comm_bandwidth - Communications bandwidth
	cpuspeed - CPU speed
	dft_account_str - Default charge-back account
	federated - Federated database system support
	jdk_path - Software Developer's Kit for Java installation path
	nodetype - Machine node type
	numdb - Maximum number of concurrently active databases including host and iSeries databases
	tp_mon_name - Transaction processor monitor name
	util_impact_lim - Instance impact policy

	Instance administration
	authentication - Authentication type
	catalog_noauth - Cataloging allowed without authority
	clnt_krb_plugin - Client Kerberos plug-in
	clnt_pw_plugin - Client userid-password plug-in
	dftdbpath - Default database path
	fed_noauth - Bypass federated authentication
	group_plugin - Group plug-in
	local_gssplugin - GSS API plug-in used for local instance level authorization
	srvcon_auth - Authentication type for incoming connections at the server
	srvcon_gssplugin_list - List of GSS API plug-ins for incoming connections at the server
	srvcon_pw_plugin - Userid-password plug-in for incoming connections at the server
	srv_plugin_mode - Server plug-in mode
	sysadm_group - System administration authority group name
	sysctrl_group - System control authority group name
	sysmaint_group - System maintenance authority group name
	sysmon_group - System monitor authority group name
	trust_allclnts - Trust all clients
	trust_clntauth - Trusted clients authentication
	use_sna_auth - Use SNA authentication

	DB2 Administration Server
	authentication - Authentication type DAS
	contact_host - Location of contact list
	das_codepage - DAS code page
	das_territory - DAS territory
	dasadm_group - DAS administration authority group name
	db2system - Name of the DB2 server system
	discover - DAS discovery mode
	exec_exp_task - Execute expired tasks
	jdk_64_path - 64-Bit Software Developer's Kit for Java installation path DAS
	jdk_path - Software Developer's Kit for Java installation path DAS
	sched_enable - Scheduler mode
	sched_userid - Scheduler user ID
	smtp_server - SMTP server
	toolscat_db - Tools catalog database
	toolscat_inst - Tools catalog database instance
	toolscat_schema - Tools catalog database schema

	Part 4. Appendixes
	Appendix A. DB2 Registry and Environment Variables
	DB2 registry and environment variables
	Registry and environment variables by category
	General registry variables
	System environment variables
	Communications variables
	Command-line variables
	MPP configuration variables
	SQL compiler variables
	Performance variables
	Data links variables
	Miscellaneous variables

	Appendix B. Explain tables
	Explain tables
	EXPLAIN_ARGUMENT table
	EXPLAIN_INSTANCE table
	EXPLAIN_OBJECT table
	EXPLAIN_OPERATOR table
	EXPLAIN_PREDICATE table
	EXPLAIN_STATEMENT table
	EXPLAIN_STREAM table
	ADVISE_INDEX table
	ADVISE_INSTANCE table
	ADVISE_MQT table
	ADVISE_PARTITION table
	ADVISE_TABLE table
	ADVISE_WORKLOAD table

	Appendix C. SQL explain tools
	SQL explain tools
	db2expln
	db2expln - SQL Explain
	Usage notes for db2expln

	dynexpln
	Explain output information
	Description of db2expln and dynexpln output
	Table access information
	Temporary table information
	Sorted Temporary Tables
	Table Functions

	Join information
	Data stream information
	Insert, update, and delete information
	Block and row identifier preparation information
	Aggregation information
	Parallel processing information
	Federated query information
	Miscellaneous information

	Examples of db2expln and dynexpln Output
	Examples of db2expln and dynexpln output
	Example one: no parallelism
	Example two: single-partition plan with intra-partition parallelism
	Example three: multipartition plan with inter-partition parallelism
	Example four: multipartition plan with inter-partition and intra-partition parallelism
	Example five: federated database plan

	Appendix D. db2exfmt - Explain Table Format
	Appendix E. Cross-node recovery with the db2adutl command and the logarchopt1 and vendoropt database configuration parameters
	Appendix F. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix G. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

