
IBM
®

DB2

Universal

Database
™

Application

Development

Guide:

Programming

Client

Applications

Version

8.2

SC09-4826-01

���

IBM
®

DB2

Universal

Database
™

Application

Development

Guide:

Programming

Client

Applications

Version

8.2

SC09-4826-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1997

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

this

book

.

.

.

.

.

.

.

.

.

. xiii

Part

1.

Introduction

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Overview

of

Supported

Programming

Interfaces

.

.

.

.

.

.

.

. 3

DB2

Universal

Database

tools

for

developing

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

IBM

DB2

Development

Add-In

overview

.

.

.

.

. 4

Supported

Programming

Interfaces

.

.

.

.

.

.

. 5

DB2

Supported

Programming

Interfaces

.

.

.

. 5

DB2

Application

Programming

Interfaces

.

.

.

. 7

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

.

. 7

DB2

Call

Level

Interface

.

.

.

.

.

.

.

.

. 9

DB2

CLI

versus

Embedded

Dynamic

SQL

.

.

. 10

Java

Database

Connectivity

(JDBC)

.

.

.

.

. 11

Embedded

SQL

for

Java

(SQLJ)

.

.

.

.

.

.

. 12

ActiveX

Data

Objects

and

Remote

Data

Objects

12

Perl

DBI

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

ODBC

End-User

Tools

.

.

.

.

.

.

.

.

.

. 14

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

. 14

Web

Applications

.

.

.

.

.

.

.

.

.

.

.

. 14

Tools

for

Building

Web

Applications

.

.

.

.

. 14

WebSphere

Studio

.

.

.

.

.

.

.

.

.

.

. 15

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

. 16

MQSeries

Enablement

.

.

.

.

.

.

.

.

.

. 16

Net.Data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Programming

Features

.

.

.

.

.

.

.

.

.

.

. 17

DB2

Programming

Features

.

.

.

.

.

.

.

. 17

DB2

Stored

Procedures

.

.

.

.

.

.

.

.

. 18

DB2

User-Defined

Functions

and

Methods

.

.

. 19

Development

Center

.

.

.

.

.

.

.

.

.

. 19

User-Defined

Types

(UDTs)

and

Large

Objects

(LOBs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

OLE

Automation

Routines

.

.

.

.

.

.

.

. 21

OLE

DB

Table

Functions

.

.

.

.

.

.

.

.

. 22

DB2

Triggers

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Chapter

2.

Coding

a

DB2

Application

25

Prerequisites

for

Programming

.

.

.

.

.

.

.

. 25

DB2

Application

Coding

Overview

.

.

.

.

.

. 26

Programming

a

Standalone

Application

.

.

.

. 26

Creating

the

Declaration

Section

of

a

Standalone

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Declaring

Variables

That

Interact

with

the

Database

Manager

.

.

.

.

.

.

.

.

.

.

. 27

Declaring

Variables

That

Represent

SQL

Objects

28

Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator

.

.

.

.

.

.

.

.

.

. 29

Relating

Host

Variables

to

an

SQL

Statement

.

. 30

Declaring

the

SQLCA

for

Error

Handling

.

.

. 31

Error

Handling

Using

the

WHENEVER

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Adding

Non-Executable

Statements

to

an

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Connecting

an

Application

to

a

Database

.

.

. 33

Coding

Transactions

.

.

.

.

.

.

.

.

.

. 34

Ending

a

Transaction

with

the

COMMIT

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Ending

a

Transaction

with

the

ROLLBACK

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Ending

an

Application

Program

.

.

.

.

.

. 37

Implicit

Ending

of

a

Transaction

in

a

Standalone

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Application

Pseudocode

Framework

.

.

.

.

. 38

Facilities

for

Prototyping

SQL

Statements

.

.

. 39

Administrative

APIs

in

Embedded

SQL

or

DB2

CLI

Programs

.

.

.

.

.

.

.

.

.

.

.

. 40

Controlling

Data

Values

and

Relationships

.

.

.

. 40

Data

Value

Control

.

.

.

.

.

.

.

.

.

.

. 40

Data

Value

Control

Using

Data

Types

.

.

.

. 41

Data

Value

Control

Using

Unique

Constraints

.

. 41

Data

Value

Control

Using

Table

Check

Constraints

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Data

Value

Control

Using

Referential

Integrity

Constraints

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Data

Value

Control

Using

Views

with

Check

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Data

Value

Control

Using

Application

Logic

and

Program

Variable

Types

.

.

.

.

.

.

.

.

. 42

Data

Relationship

Control

.

.

.

.

.

.

.

. 42

Data

Relationship

Control

Using

Referential

Integrity

Constraints

.

.

.

.

.

.

.

.

.

. 43

Data

Relationship

Control

Using

Triggers

.

.

. 43

Data

Relationship

Control

Using

Before

Triggers

44

Data

Relationship

Control

Using

After

Triggers

44

Data

Relationship

Control

Using

Application

Logic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Application

Logic

at

the

Server

.

.

.

.

.

.

. 45

Authorization

Considerations

for

SQL

and

APIs

.

. 46

Authorization

Considerations

for

Embedded

SQL

46

Authorization

Considerations

for

Dynamic

SQL

47

Authorization

Considerations

for

Static

SQL

.

. 48

Authorization

Considerations

for

APIs

.

.

.

. 48

Testing

the

Application

.

.

.

.

.

.

.

.

.

. 48

Setting

up

the

Test

Environment

for

an

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Debugging

and

Optimizing

an

Application

.

.

. 52

Part

2.

Embedded

SQL

.

.

.

.

.

.

. 53

Chapter

3.

Embedded

SQL

Overview

55

Embedding

SQL

Statements

in

a

Host

Language

.

. 55

Source

File

Creation

and

Preparation

.

.

.

.

.

. 57

Packages,

binding,

and

embedded

SQL

.

.

.

.

. 59

Package

Creation

for

Embedded

SQL

.

.

.

.

. 59

Precompilation

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

.

. 61

©

Copyright

IBM

Corp.

1997

-

2004

iii

||

||

Source

File

Requirements

for

Embedded

SQL

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

. 63

Package

Creation

Using

the

BIND

Command

.

. 64

Package

Versioning

.

.

.

.

.

.

.

.

.

.

. 65

Effect

of

Special

Registers

on

Bound

Dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

CURRENT

PACKAGE

PATH

special

register

for

package

schemas

.

.

.

.

.

.

.

.

.

.

. 66

Resolution

of

Unqualified

Table

Names

.

.

.

. 69

Additional

Considerations

when

Binding

.

.

. 70

Advantages

of

Deferred

Binding

.

.

.

.

.

. 71

Bind

File

Contents

.

.

.

.

.

.

.

.

.

.

. 71

Application,

Bind

File,

and

Package

Relationships

71

Precompiler-Generated

Timestamps

.

.

.

.

. 72

Package

Rebinding

.

.

.

.

.

.

.

.

.

.

. 73

Chapter

4.

Writing

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Characteristics

and

Reasons

for

Using

Static

SQL

.

. 75

Advantages

of

Static

SQL

.

.

.

.

.

.

.

.

.

. 76

Example

Static

SQL

Program

.

.

.

.

.

.

.

. 76

Data

Retrieval

in

Static

SQL

Programs

.

.

.

.

. 78

Effects

of

REOPT

on

static

SQL

.

.

.

.

.

.

.

. 78

Host

Variables

in

Static

SQL

Programs

.

.

.

.

. 79

Host

Variables

in

Static

SQL

.

.

.

.

.

.

.

. 79

Declaring

Host

Variables

in

Static

SQL

Programs

80

Referencing

Host

Variables

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Indicator

Variables

in

Static

SQL

Programs

.

.

.

. 82

Including

Indicator

Variables

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Data

Types

for

Indicator

Variables

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Example

of

an

Indicator

Variable

in

a

Static

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Selecting

Multiple

Rows

Using

a

Cursor

.

.

.

.

. 87

Selecting

Multiple

Rows

Using

a

Cursor

.

.

.

. 87

Declaring

and

Using

Cursors

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Cursor

Types

and

Unit

of

Work

Considerations

89

Example

of

a

Cursor

in

a

Static

SQL

Program

.

. 90

Manipulating

Retrieved

Data

.

.

.

.

.

.

.

. 92

Updating

and

Deleting

Retrieved

Data

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

. 92

Cursor

Types

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Example

of

a

Fetch

in

a

Static

SQL

Program

.

. 93

Scrolling

Through

and

Manipulating

Retrieved

Data

94

Scrolling

Through

Previously

Retrieved

Data

.

. 94

Keeping

a

Copy

of

the

Data

.

.

.

.

.

.

.

. 95

Retrieving

Data

a

Second

Time

.

.

.

.

.

.

. 95

Row

Order

Differences

Between

the

First

and

Second

Result

Table

.

.

.

.

.

.

.

.

.

. 96

Positioning

a

Cursor

at

the

End

of

a

Table

.

.

. 97

Updating

Previously

Retrieved

Data

.

.

.

.

. 97

Example

of

an

Insert,

Update,

and

Delete

in

a

Static

SQL

Program

.

.

.

.

.

.

.

.

.

.

. 98

Diagnostic

Information

.

.

.

.

.

.

.

.

.

. 99

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields

.

.

.

.

.

.

.

.

. 100

Token

Truncation

in

the

SQLCA

Structure

.

.

. 101

Exception,

Signal,

and

Interrupt

Handler

Considerations

.

.

.

.

.

.

.

.

.

.

.

. 101

Exit

List

Routine

Considerations

.

.

.

.

.

. 102

Error

Message

Retrieval

in

an

Application

.

.

. 102

Chapter

5.

Writing

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Characteristics

and

Reasons

for

Using

Dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Reasons

for

Using

Dynamic

SQL

.

.

.

.

.

. 103

Dynamic

SQL

Support

Statements

.

.

.

.

. 103

Dynamic

SQL

Versus

Static

SQL

.

.

.

.

.

. 104

Cursors

in

Dynamic

SQL

Programs

.

.

.

.

.

. 106

Declaring

and

Using

Cursors

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Example

of

a

Cursor

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Effects

of

REOPT

on

dynamic

SQL

.

.

.

.

.

. 109

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 109

The

SQLDA

in

Dynamic

SQL

Programs

.

.

.

.

. 111

Host

Variables

and

the

SQLDA

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Declaring

the

SQLDA

Structure

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 112

Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure

.

.

.

.

.

. 113

Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program

.

.

.

.

. 115

Describing

a

SELECT

Statement

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 115

Acquiring

Storage

to

Hold

a

Row

.

.

.

.

. 116

Processing

the

Cursor

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Allocating

an

SQLDA

Structure

for

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 117

Transferring

Data

in

a

Dynamic

SQL

Program

Using

an

SQLDA

Structure

.

.

.

.

.

.

.

. 121

Processing

Interactive

SQL

Statements

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

. 122

Determination

of

Statement

Type

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

. 122

Processing

Variable-List

SELECT

Statements

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

. 123

Saving

SQL

Requests

from

End

Users

.

.

.

.

. 123

Parameter

Markers

in

Dynamic

SQL

Programs

.

. 124

Providing

Variable

Input

to

Dynamic

SQL

Using

Parameter

Markers

.

.

.

.

.

.

.

.

.

. 124

Example

of

Parameter

Markers

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 125

DB2

Call

Level

Interface

(CLI)

Compared

to

Dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 126

DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

. 126

Advantages

of

DB2

CLI

over

embedded

SQL

127

When

to

use

DB2

CLI

or

embedded

SQL

.

.

. 129

iv

Programming

Client

Applications

|
||

||

|

|

Chapter

6.

Programming

in

C

and

C++

131

Programming

Considerations

for

C/C++

.

.

.

. 131

Trigraph

Sequences

for

C

and

C++

.

.

.

.

.

. 131

Input

and

Output

Files

for

C

and

C++

.

.

.

.

. 132

Include

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Include

Files

for

C

and

C++

.

.

.

.

.

.

. 132

Include

Files

in

C

and

C++

.

.

.

.

.

.

.

. 134

Embedded

SQL

Statements

in

C

and

C++

.

.

.

. 135

Host

Variables

in

C

and

C++

.

.

.

.

.

.

.

. 137

Host

Variables

in

C

and

C++

.

.

.

.

.

.

. 137

Host

Variable

Names

in

C

and

C++

.

.

.

.

. 137

Host

Variable

Declarations

in

C

and

C++

.

.

. 138

Syntax

for

Numeric

Host

Variables

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

in

C

and

C++

.

.

.

.

.

.

. 140

Syntax

for

Variable-Length

Character

Host

Variables

in

C

or

C++

.

.

.

.

.

.

.

.

. 141

Indicator

Variables

in

C

and

C++

.

.

.

.

.

. 142

Graphic

Host

Variables

in

C

and

C++

.

.

.

. 143

Syntax

for

Graphic

Declaration

of

Single-Graphic

and

Null-Terminated

Graphic

Forms

in

C

and

C++

.

.

.

.

.

.

.

.

.

. 143

Syntax

for

Graphic

Declaration

of

VARGRAPHIC

Structured

Form

in

C

or

C++

.

. 145

Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

C

or

C++

.

.

.

.

.

.

.

.

. 147

Syntax

for

File

Reference

Host

Variable

Declarations

in

C

or

C++

.

.

.

.

.

.

.

. 148

Host

Variable

Initialization

in

C

and

C++

.

.

. 149

C

Macro

Expansion

.

.

.

.

.

.

.

.

.

. 149

Host

Structure

Support

in

C

and

C++

.

.

.

. 150

Indicator

Tables

in

C

and

C++

.

.

.

.

.

.

. 152

Null-Terminated

Strings

in

C

and

C++

.

.

.

. 153

Host

Variables

Used

as

Pointer

Data

Types

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Class

Data

Members

Used

as

Host

Variables

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Qualification

and

Member

Operators

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Multi-Byte

Character

Encoding

in

C

and

C++

156

wchar_t

and

sqldbchar

Data

Types

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

WCHARTYPE

Precompiler

Option

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

in

C

and

C++

.

.

.

.

. 160

SQL

Declare

Section

with

Host

Variables

for

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Data

Type

Considerations

for

C

and

C++

.

.

.

. 162

Supported

SQL

Data

Types

in

C

and

C++

.

.

. 162

FOR

BIT

DATA

in

C

and

C++

.

.

.

.

.

.

. 166

C

and

C++

Data

Types

for

Procedures,

Functions,

and

Methods

.

.

.

.

.

.

.

.

. 166

SQLSTATE

and

SQLCODE

Variables

in

C

and

C++

168

Chapter

7.

Multiple-Thread

Database

Access

for

C

and

C++

Applications

.

. 169

Purpose

of

Multiple-Thread

Database

Access

.

.

. 169

Recommendations

for

Using

Multiple

Threads

.

. 170

Code

Page

and

Country/Region

Code

Considerations

for

Multithreaded

UNIX

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Troubleshooting

Multithreaded

Applications

.

.

. 171

Potential

Problems

with

Multiple

Threads

.

.

. 171

Deadlock

Prevention

for

Multiple

Contexts

.

. 172

Chapter

8.

Programming

in

COBOL

175

Programming

Considerations

for

COBOL

.

.

.

. 175

Language

Restrictions

in

COBOL

.

.

.

.

.

.

. 175

Multiple-Thread

Database

Access

in

COBOL

.

.

. 175

Input

and

Output

Files

for

COBOL

.

.

.

.

.

. 175

Include

Files

for

COBOL

.

.

.

.

.

.

.

.

. 176

Embedded

SQL

Statements

in

COBOL

.

.

.

.

. 178

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

. 180

Host

Variables

in

COBOL

.

.

.

.

.

.

.

. 180

Host

Variable

Names

in

COBOL

.

.

.

.

.

. 180

Host

Variable

Declarations

in

COBOL

.

.

.

. 181

Syntax

for

Numeric

Host

Variables

in

COBOL

181

Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

. 182

Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Indicator

Variables

in

COBOL

.

.

.

.

.

.

. 184

Syntax

for

LOB

Host

Variables

in

COBOL

.

.

. 184

Syntax

for

LOB

Locator

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Syntax

for

File

Reference

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Host

Structure

Support

in

COBOL

.

.

.

.

. 186

Indicator

Tables

in

COBOL

.

.

.

.

.

.

.

. 188

REDEFINES

in

COBOL

Group

Data

Items

.

.

. 189

SQL

Declare

Section

with

Host

Variables

for

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Data

Type

Considerations

for

COBOL

.

.

.

.

. 190

Supported

SQL

Data

Types

in

COBOL

.

.

.

. 190

BINARY/COMP-4

COBOL

Data

Types

.

.

.

. 192

FOR

BIT

DATA

in

COBOL

.

.

.

.

.

.

.

. 193

SQLSTATE

and

SQLCODE

Variables

in

COBOL

193

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

for

COBOL

.

.

.

.

.

.

.

.

. 193

Object

Oriented

COBOL

.

.

.

.

.

.

.

.

.

. 194

Chapter

9.

Programming

in

FORTRAN

195

Programming

Considerations

for

FORTRAN

.

.

. 195

Language

Restrictions

in

FORTRAN

.

.

.

.

.

. 195

Call

by

Reference

in

FORTRAN

.

.

.

.

.

. 195

Debug

and

Comment

Lines

in

FORTRAN

.

.

. 196

Precompilation

Considerations

for

FORTRAN

196

Multiple-Thread

Database

Access

in

FORTRAN

196

Input

and

Output

Files

for

FORTRAN

.

.

.

.

. 196

Include

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Include

Files

for

FORTRAN

.

.

.

.

.

.

. 196

Include

Files

in

FORTRAN

Applications

.

.

. 198

Embedded

SQL

Statements

in

FORTRAN

.

.

.

. 199

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

. 200

Host

Variables

in

FORTRAN

.

.

.

.

.

.

. 200

Host

Variable

Names

in

FORTRAN

.

.

.

.

. 201

Contents

v

Host

Variable

Declarations

in

FORTRAN

.

.

. 201

Syntax

for

Numeric

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Syntax

for

Character

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Indicator

Variables

in

FORTRAN

.

.

.

.

.

. 203

Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

. 205

Syntax

for

File

Reference

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 205

SQL

Declare

Section

with

Host

Variables

for

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 206

Supported

SQL

Data

Types

in

FORTRAN

.

.

.

. 206

Considerations

for

Multi-Byte

Character

Sets

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

for

FORTRAN

.

.

.

.

.

.

.

. 208

SQLSTATE

and

SQLCODE

Variables

in

FORTRAN

208

Part

3.

ADO.NET,

OLE

DB,

and

ODBC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Chapter

10.

DB2

.NET

Data

Provider

211

DB2

.NET

Data

Provider

overview

.

.

.

.

.

. 211

DB2

.NET

Data

Provider

system

requirements

.

. 211

Programming

applications

to

use

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Connecting

to

a

database

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

. 212

Executing

SQL

statements

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

. 212

Reading

result

sets

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

. 213

Calling

stored

procedures

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

. 214

Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

. 215

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Purpose

of

the

IBM

OLE

DB

Provider

for

DB2

.

. 219

Application

Types

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

.

.

.

.

.

.

.

.

.

.

.

. 220

OLE

DB

Services

.

.

.

.

.

.

.

.

.

.

.

. 220

Thread

Model

Supported

by

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Large

Object

Manipulation

with

the

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Schema

Rowsets

Supported

by

the

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

OLE

DB

Services

Automatically

Enabled

by

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

. 222

Data

Services

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Supported

Cursor

Modes

for

the

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Data

Type

Mappings

between

DB2

and

OLE

DB

223

Data

Conversion

for

Setting

Data

from

OLE

DB

Types

to

DB2

Types

.

.

.

.

.

.

.

.

.

. 224

Data

Conversion

for

Setting

Data

from

DB2

Types

to

OLE

DB

Types

.

.

.

.

.

.

.

.

. 226

IBM

OLE

DB

Provider

Restrictions

.

.

.

.

.

. 227

IBM

OLE

DB

Provider

Support

for

OLE

DB

Components

and

Interfaces

.

.

.

.

.

.

.

.

. 227

IBM

OLE

DB

Provider

support

for

OLE

DB

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Connections

to

Data

Sources

Using

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

ADO

Applications

.

.

.

.

.

.

.

.

.

.

.

. 233

ADO

Connection

String

Keywords

.

.

.

.

. 233

Connections

to

Data

Sources

with

Visual

Basic

ADO

Applications

.

.

.

.

.

.

.

.

.

.

. 234

Updatable

Scrollable

Cursors

in

ADO

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Limitations

for

ADO

Applications

.

.

.

.

. 234

IBM

OLE

DB

Provider

Support

for

ADO

Methods

and

Properties

.

.

.

.

.

.

.

.

. 234

C

and

C++

Applications

.

.

.

.

.

.

.

.

.

. 238

Compilation

and

Linking

of

C/C++

Applications

and

the

IBM

OLE

DB

Provider

.

. 238

Connections

to

Data

Sources

in

C/C++

Applications

using

the

IBM

OLE

DB

Provider

. 238

MTS

and

COM+

Distributed

Transactions

.

.

.

. 239

MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider

.

.

. 239

Enablement

of

MTS

Support

in

DB2

Universal

Database

for

C/C++

Applications

.

.

.

.

. 239

Chapter

12.

OLE

DB

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

.

. 241

OLE

DB

.NET

Data

Provider

.

.

.

.

.

.

.

. 241

OLE

DB

.NET

Data

Provider

restrictions

.

.

.

. 242

Connection

pooling

in

OLE

DB

.NET

Data

Provider

applications

.

.

.

.

.

.

.

.

.

.

. 245

Time

columns

in

OLE

DB

.NET

Data

Provider

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

ADORecordset

objects

in

OLE

DB

.NET

Data

Provider

applications

.

.

.

.

.

.

.

.

.

.

. 246

Chapter

13.

ODBC

.NET

Data

Provider

249

ODBC

.NET

Data

Provider

.

.

.

.

.

.

.

.

. 249

ODBC

.NET

Data

Provider

restrictions

.

.

.

.

. 249

Part

4.

Java

.

.

.

.

.

.

.

.

.

.

. 257

Chapter

14.

Introduction

to

Java

application

support

.

.

.

.

.

.

.

.

. 259

Chapter

15.

JDBC

application

programming

.

.

.

.

.

.

.

.

.

.

. 263

Basic

JDBC

application

programming

concepts

.

. 263

Basic

steps

in

writing

a

JDBC

application

.

.

. 263

Java

packages

for

JDBC

support

.

.

.

.

.

. 266

Variables

in

JDBC

applications

.

.

.

.

.

. 266

How

JDBC

applications

connect

to

a

data

source

267

vi

Programming

Client

Applications

||
||

|
||
|
||
|
||
|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver

.

.

.

.

.

.

.

.

.

. 268

Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Connecting

to

a

data

source

using

the

DataSource

interface

.

.

.

.

.

.

.

.

.

. 272

Setting

the

isolation

level

for

a

JDBC

transaction

274

JDBC

connection

objects

.

.

.

.

.

.

.

.

. 275

Committing

or

rolling

back

JDBC

transactions

275

Closing

a

connection

to

a

JDBC

data

source

.

. 276

JDBC

interfaces

for

executing

SQL

.

.

.

.

. 276

Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects

.

.

.

.

.

.

. 277

Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables

.

.

.

.

.

.

. 277

Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables

.

.

.

. 279

Using

the

PreparedStatement.executeQuery

method

to

retrieve

data

from

DB2

.

.

.

.

. 280

Using

CallableStatement

methods

to

call

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 282

Handling

an

SQLException

under

the

DB2

JDBC

Type

2

Driver

.

.

.

.

.

.

.

.

.

. 286

Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 287

Handling

an

SQLWarning

under

the

DB2

JDBC

Type

2

Driver

.

.

.

.

.

.

.

.

.

.

.

. 288

Advanced

JDBC

application

programming

concepts

289

LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 289

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

JDBC

applications

.

.

.

.

. 290

ROWIDs

in

JDBC

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Distinct

types

in

JDBC

applications

.

.

.

.

. 293

Savepoints

in

JDBC

applications

.

.

.

.

.

. 294

Retrieving

identity

column

values

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application

.

.

.

.

.

. 297

Using

ResultSetMetaData

to

learn

about

a

ResultSet

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

Using

DatabaseMetaData

to

learn

about

a

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Using

ParameterMetaData

to

learn

about

parameters

in

a

PreparedStatement

.

.

.

.

. 303

Making

batch

updates

in

JDBC

applications

.

. 304

Retrieving

information

from

a

BatchUpdateException

.

.

.

.

.

.

.

.

. 306

Characteristics

of

a

JDBC

ResultSet

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

. 308

Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications

. 309

Creating

and

deploying

DataSource

objects

.

. 311

DB2

Universal

JDBC

Driver

client

reroute

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Providing

extended

client

information

to

the

DB2

server

with

the

DB2

Universal

JDBC

Driver

314

Chapter

16.

SQLJ

application

programming

.

.

.

.

.

.

.

.

.

.

. 317

Basic

SQLJ

application

programming

concepts

.

. 317

Basic

steps

in

writing

an

SQLJ

application

.

.

. 317

Java

packages

for

SQLJ

support

.

.

.

.

.

. 320

Variables

in

SQLJ

applications

.

.

.

.

.

.

. 320

Comments

in

an

SQLJ

application

.

.

.

.

. 322

Connecting

to

a

data

source

using

SQLJ

.

.

. 322

Setting

the

isolation

level

for

an

SQLJ

transaction

.

.

.

.

.

.

.

.

.

.

.

.

. 327

Committing

or

rolling

back

SQLJ

transactions

328

Savepoints

in

SQLJ

applications

.

.

.

.

.

. 328

Closing

the

connection

to

a

data

source

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

. 329

SQL

statements

in

an

SQLJ

application

.

.

.

. 330

Creating

and

modifying

DB2

objects

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 331

How

an

SQLJ

application

retrieves

data

from

DB2

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 331

Using

a

named

iterator

in

an

SQLJ

application

332

Using

a

positioned

iterator

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 334

Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application

.

.

.

.

. 336

Multiple

open

iterators

for

the

same

SQL

statement

in

an

SQLJ

application

.

.

.

.

.

. 341

Multiple

open

instances

of

an

iterator

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

. 342

Calling

stored

procedures

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Handling

SQL

errors

in

an

SQLJ

application

.

. 343

Handling

SQL

warnings

in

an

SQLJ

application

344

Advanced

SQLJ

application

programming

concepts

345

Using

SQLJ

and

JDBC

in

the

same

application

345

LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 348

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

SQLJ

applications

.

.

.

.

. 348

ROWIDs

in

SQLJ

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Distinct

types

in

SQLJ

applications

.

.

.

.

. 352

Controlling

the

execution

of

SQL

statements

in

SQLJ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application

.

.

.

.

.

. 354

Making

batch

updates

in

SQLJ

applications

.

. 355

Iterators

as

passed

variables

for

positioned

UPDATE

or

DELETE

operations

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Using

scrollable

iterators

in

an

SQLJ

application

361

Chapter

17.

JDBC

and

SQLJ

reference

365

Java,

JDBC,

and

SQL

data

types

.

.

.

.

.

.

. 365

Properties

for

the

DB2

Universal

JDBC

Driver

.

. 370

Comparison

of

driver

support

for

JDBC

APIs

.

.

. 376

SQLJ

statement

reference

.

.

.

.

.

.

.

.

. 395

SQLJ

clause

.

.

.

.

.

.

.

.

.

.

.

.

. 395

Contents

vii

||

|
||

||
|
||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

SQLJ

host-expression

.

.

.

.

.

.

.

.

.

. 396

SQLJ

implements-clause

.

.

.

.

.

.

.

.

. 396

SQLJ

with-clause

.

.

.

.

.

.

.

.

.

.

. 397

SQLJ

connection-declaration-clause

.

.

.

.

. 399

SQLJ

iterator-declaration-clause

.

.

.

.

.

. 400

SQLJ

executable-clause

.

.

.

.

.

.

.

.

. 401

SQLJ

context-clause

.

.

.

.

.

.

.

.

.

. 402

SQLJ

statement-clause

.

.

.

.

.

.

.

.

. 403

SQLJ

SET-TRANSACTION-clause

.

.

.

.

. 404

SQLJ

assignment-clause

.

.

.

.

.

.

.

.

. 405

SQLJ

iterator-conversion-clause

.

.

.

.

.

. 406

Selected

sqlj.runtime

classes

and

interfaces

.

.

. 407

DB2

Universal

JDBC

Driver

reference

information

414

Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC

.

.

.

.

.

.

.

.

.

. 414

JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

.

.

. 426

SQLJ

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

.

.

. 432

Error

codes

issued

by

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

Chapter

18.

Installing

the

JDBC

drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

Installing

the

DB2

Universal

JDBC

Driver

.

.

.

. 437

Chapter

19.

JDBC

and

SQLJ

security

443

Security

under

the

DB2

JDBC

Type

2

Driver

.

.

. 443

Security

under

the

DB2

Universal

JDBC

Driver

.

. 444

User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

. 445

User

ID-only

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver

.

. 447

Kerberos

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

.

.

.

.

.

.

.

.

.

. 453

Diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

. 453

JDBC

and

SQLJ

problem

diagnosis

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 453

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

. 455

Diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

JDBC

Type

2

Driver

.

.

.

.

.

.

.

.

. 460

CLI/ODBC/JDBC

trace

facility

.

.

.

.

.

. 460

CLI

and

JDBC

trace

files

.

.

.

.

.

.

.

.

. 466

Chapter

21.

Java

2

Platform

Enterprise

Edition

.

.

.

.

.

.

.

.

. 475

Java

2

Platform

Enterprise

Edition

(J2EE)

Overview

475

Java

2

Platform

Enterprise

Edition

.

.

.

.

.

. 475

Java

2

Platform

Enterprise

Edition

Containers

.

. 476

Java

2

Platform

Enterprise

Edition

Server

.

.

.

. 477

Java

2

Enterprise

Edition

Database

Requirements

477

Java

Naming

and

Directory

Interface

(JNDI)

.

.

. 477

Java

Transaction

Management

.

.

.

.

.

.

.

. 477

Example

of

a

distributed

transaction

that

uses

JTA

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

Enterprise

Java

Beans

.

.

.

.

.

.

.

.

.

.

. 483

Part

5.

Other

Programming

Interfaces

.

.

.

.

.

.

.

.

.

.

.

. 487

Chapter

22.

Programming

in

Perl

.

.

. 489

Programming

Considerations

for

Perl

.

.

.

.

. 489

Perl

Restrictions

.

.

.

.

.

.

.

.

.

.

.

. 489

Multiple-Thread

Database

Access

in

Perl

.

.

.

. 489

Database

Connections

in

Perl

.

.

.

.

.

.

.

. 489

Fetching

Results

in

Perl

.

.

.

.

.

.

.

.

.

. 490

Parameter

Markers

in

Perl

.

.

.

.

.

.

.

.

. 490

SQLSTATE

and

SQLCODE

Variables

in

Perl

.

.

. 491

Example

of

a

Perl

Program

.

.

.

.

.

.

.

.

. 491

Chapter

23.

Programming

in

REXX

493

Programming

Considerations

for

REXX

.

.

.

. 493

Language

Restrictions

for

REXX

.

.

.

.

.

.

. 493

Language

Restrictions

for

REXX

.

.

.

.

.

. 494

Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

Multiple-Thread

Database

Access

in

REXX

.

. 495

Japanese

or

Traditional

Chinese

EUC

Considerations

for

REXX

.

.

.

.

.

.

.

. 495

Embedded

SQL

in

REXX

Applications

.

.

.

.

. 495

Host

Variables

in

REXX

.

.

.

.

.

.

.

.

.

. 497

Host

Variables

in

REXX

.

.

.

.

.

.

.

.

. 497

Host

Variable

Names

in

REXX

.

.

.

.

.

.

. 497

Host

Variable

References

in

REXX

.

.

.

.

. 497

Indicator

Variables

in

REXX

.

.

.

.

.

.

. 498

Predefined

REXX

Variables

.

.

.

.

.

.

.

. 498

LOB

Host

Variables

in

REXX

.

.

.

.

.

.

. 500

Syntax

for

LOB

Locator

Declarations

in

REXX

500

Syntax

for

LOB

File

Reference

Declarations

in

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

LOB

Host

Variable

Clearing

in

REXX

.

.

.

. 502

Cursors

in

REXX

.

.

.

.

.

.

.

.

.

.

. 502

Supported

SQL

Data

Types

in

REXX

.

.

.

.

.

. 502

Execution

Requirements

for

REXX

.

.

.

.

.

. 504

Building

and

Running

REXX

Applications

.

.

. 504

Bind

Files

for

REXX

.

.

.

.

.

.

.

.

.

. 505

API

Syntax

for

REXX

.

.

.

.

.

.

.

.

.

.

. 505

Calling

Stored

Procedures

from

REXX

.

.

.

.

. 507

Stored

Procedures

in

REXX

.

.

.

.

.

.

.

. 507

Stored

Procedure

Calls

in

REXX

.

.

.

.

.

. 507

Client

Considerations

for

Calling

Stored

Procedures

in

REXX

.

.

.

.

.

.

.

.

.

. 508

Server

Considerations

for

Calling

Stored

Procedures

in

REXX

.

.

.

.

.

.

.

.

.

. 508

Retrieval

of

Precision

and

SCALE

Values

from

SQLDA

Decimal

Fields

.

.

.

.

.

.

.

.

. 508

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

. 511

viii

Programming

Client

Applications

||

|

|

|

WebSphere

MQ

Functional

Overview

.

.

.

.

. 511

WebSphere

MQ

Messaging

.

.

.

.

.

.

.

.

. 513

Sending

Messages

with

WebSphere

MQ

Functions

515

Retrieving

Messages

with

WebSphere

MQ

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

WebSphere

MQ

Application-to-application

Connectivity

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Request/Reply

Communications

with

WebSphere

MQ

Functions

.

.

.

.

.

.

.

.

.

.

.

.

. 520

Publish/Subscribe

with

WebSphere

MQ

Functions

522

Chapter

25.

WebSphere

.

.

.

.

.

.

. 527

Connections

to

Enterprise

Data

.

.

.

.

.

.

. 527

WebSphere

Connection

Pooling

and

Data

Sources

527

Benefits

of

WebSphere

Connection

Pooling

.

.

. 528

Statement

Caching

in

WebSphere

.

.

.

.

.

.

. 529

Part

6.

Security

Plug-ins

.

.

.

.

. 531

Chapter

26.

Security

plug-ins

.

.

.

. 533

Security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

. 533

Security

plug-in

library

locations

.

.

.

.

.

.

. 536

Security

plug-in

naming

conventions

.

.

.

.

. 537

Security

plug-in

support

for

two-part

user

IDs

.

. 539

32-bit

and

64-bit

considerations

for

security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 541

Security

plug-in

problem

determination

.

.

.

. 541

Deploying

a

group

retrieval

plug-in

.

.

.

.

.

. 543

Deploying

a

user

ID/password

plug-in

.

.

.

.

. 543

Deploying

a

GSS-API

plug-in

.

.

.

.

.

.

.

. 545

Deploying

a

Kerberos

plug-in

.

.

.

.

.

.

.

. 547

Chapter

27.

Developing

security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

. 549

How

DB2

loads

security

plug-ins

.

.

.

.

.

.

. 549

Restrictions

on

security

plug-in

libraries

.

.

.

. 550

Return

codes

for

security

plug-ins

.

.

.

.

.

. 552

Error

messages

for

security

plug-ins

.

.

.

.

.

. 554

Calling

sequences

for

the

security

plug-in

APIs

.

. 555

Chapter

28.

Security

plug-in

APIs

.

.

. 559

Security

plug-in

APIs

.

.

.

.

.

.

.

.

.

.

. 559

Group

plug-in

APIs

.

.

.

.

.

.

.

.

.

.

. 560

APIs

for

group

retrieval

plug-ins

.

.

.

.

.

. 560

db2secGroupPluginInit

-

Initialize

group

plug-in

562

db2secPluginTerm

-

Clean

up

group

plug-in

resources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

db2secGetGroupsForUser

-

Get

list

of

groups

for

user

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 564

db2secDoesGroupExist

-

Check

if

group

exists

567

db2secFreeGroupListMemory

-

Free

group

list

memory

.

.

.

.

.

.

.

.

.

.

.

.

.

. 568

db2secFreeErrormsg

-

Free

error

message

memory

.

.

.

.

.

.

.

.

.

.

.

.

.

. 569

User

authentication

plug-in

APIs

.

.

.

.

.

.

. 569

APIs

for

user

ID/password

authentication

plug-in

.

.

.

.

.

.

.

.

.

.

.

.

.

. 569

db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in

.

.

.

.

.

.

.

.

. 576

db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

.

.

.

.

.

. 577

db2secRemapUserid

-

Remap

user

ID

and

password

.

.

.

.

.

.

.

.

.

.

.

.

.

. 577

db2secGetDefaultLoginContext

-

Get

default

login

context

.

.

.

.

.

.

.

.

.

.

.

. 579

db2secGenerateInitialCred

-

Generate

initial

credentials

.

.

.

.

.

.

.

.

.

.

.

.

. 580

db2secValidatePassword

-

Validate

password

582

db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

.

. 584

db2secFreeToken

-

Free

memory

held

by

token

585

db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

.

.

.

.

.

.

. 586

db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

.

.

.

.

.

.

.

.

. 587

db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

.

.

.

.

.

. 588

db2secGetAuthIDs

-

Get

authentication

IDs

.

. 589

db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

.

.

.

.

.

.

.

.

. 591

GSS-API

plug-in

APIs

.

.

.

.

.

.

.

.

.

. 591

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

.

.

.

.

.

.

.

.

. 591

Restrictions

for

GSS-API

authentication

plug-ins

593

Security

plug-in

API

versioning

.

.

.

.

.

.

. 593

Part

7.

General

DB2

Application

Concepts

.

.

.

.

.

.

.

.

.

.

.

. 595

Chapter

29.

National

Language

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 597

Collating

Sequence

Overview

.

.

.

.

.

.

.

. 597

Collating

sequences

.

.

.

.

.

.

.

.

.

. 597

Character

comparisons

based

on

collating

sequences

.

.

.

.

.

.

.

.

.

.

.

.

. 599

Case

Independent

Comparisons

Using

the

TRANSLATE

Function

.

.

.

.

.

.

.

.

. 600

Differences

Between

EBCDIC

and

ASCII

Collating

Sequence

Sort

Orders

.

.

.

.

.

. 601

Collating

sequence

specified

when

database

is

created

.

.

.

.

.

.

.

.

.

.

.

.

.

. 602

Sample

Collating

Sequences

.

.

.

.

.

.

. 604

Code

Pages

and

Locales

.

.

.

.

.

.

.

.

.

. 604

Derivation

of

code

page

values

.

.

.

.

.

. 604

Derivation

of

Locales

in

Application

Programs

605

How

DB2

Derives

Locales

.

.

.

.

.

.

.

. 605

Application

Considerations

.

.

.

.

.

.

.

.

. 605

National

Language

Support

and

Application

Development

Considerations

.

.

.

.

.

.

. 606

National

Language

Support

and

SQL

Statements

607

Remote

routines

.

.

.

.

.

.

.

.

.

.

. 608

Package

Name

Considerations

in

Mixed

Code

Page

Environments

.

.

.

.

.

.

.

.

.

. 608

Active

Code

Page

for

Precompilation

and

Binding

.

.

.

.

.

.

.

.

.

.

.

.

.

. 609

Active

Code

Page

for

Application

Execution

.

. 609

Character

conversion

between

different

code

pages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 609

When

code

page

conversion

occurs

.

.

.

.

. 609

Contents

ix

||
||
||
|
||
|
||
|
||
||

||
||
||
||
|
||
||
||
||
||
||

||
||
||
||
||

||

||
||
|
||
|
||
||
|
||
|
||

|
||
|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Character

Substitutions

During

Code

Page

Conversions

.

.

.

.

.

.

.

.

.

.

.

.

. 610

Supported

Code

Page

Conversions

.

.

.

.

. 610

Code

Page

Conversion

Expansion

Factor

.

.

. 611

DBCS

Character

Sets

.

.

.

.

.

.

.

.

.

.

. 612

Extended

UNIX

Code

(EUC)

Character

Sets

.

.

. 613

CLI,

ODBC,

JDBC,

and

SQLJ

Programs

in

a

DBCS

Environment

.

.

.

.

.

.

.

.

.

.

.

.

. 614

Considerations

for

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Sets

.

.

.

.

.

. 614

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations

.

.

.

.

.

. 614

Mixed

EUC

and

Double-Byte

Client

and

Database

Considerations

.

.

.

.

.

.

.

. 616

Character

Conversion

Considerations

for

Traditional

Chinese

Users

.

.

.

.

.

.

.

. 616

Graphic

Data

in

Japanese

or

Traditional

Chinese

EUC

Applications

.

.

.

.

.

.

.

.

.

.

. 617

Application

Development

in

Unequal

Code

Page

Situations

.

.

.

.

.

.

.

.

.

.

.

. 618

Client-Based

Parameter

Validation

in

a

Mixed

Code

Set

Environment

.

.

.

.

.

.

.

.

. 621

DESCRIBE

Statement

in

Mixed

Code

Set

Environments

.

.

.

.

.

.

.

.

.

.

.

. 622

Fixed-Length

and

Variable-Length

Data

in

Mixed

Code

Set

Environments

.

.

.

.

.

. 623

Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments

.

.

.

.

.

. 623

Applications

Connected

to

Unicode

Databases

625

Chapter

30.

Managing

Transactions

627

Remote

Unit

of

Work

.

.

.

.

.

.

.

.

.

.

. 627

Multisite

Update

Considerations

.

.

.

.

.

.

. 627

Multisite

Update

.

.

.

.

.

.

.

.

.

.

. 627

When

to

Use

Multisite

Update

.

.

.

.

.

. 628

SQL

Statements

in

Multisite

Update

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 628

Precompilation

of

Multisite

Update

Applications

630

Configuration

Parameter

Considerations

for

Multisite

Update

Applications

.

.

.

.

.

.

. 631

Accessing

Host,

AS/400,

or

iSeries

Servers

.

.

. 633

Concurrent

Transactions

.

.

.

.

.

.

.

.

.

. 633

Concurrent

Transactions

.

.

.

.

.

.

.

.

. 633

Potential

Problems

with

Concurrent

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

. 634

Deadlock

Prevention

for

Concurrent

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

. 635

Savepoints

and

Transactions

.

.

.

.

.

.

.

. 635

Transaction

management

with

savepoints

.

.

. 636

Application

Savepoints

Compared

to

Compound

SQL

Blocks

.

.

.

.

.

.

.

.

. 637

SQL

Statements

for

creating

and

controlling

savepoints

.

.

.

.

.

.

.

.

.

.

.

.

. 639

Restrictions

on

Savepoint

Usage

.

.

.

.

.

. 640

Savepoints

and

Data

Definition

Language

(DDL)

640

Nesting

savepoints

.

.

.

.

.

.

.

.

.

. 641

Savepoints

and

Buffered

Inserts

.

.

.

.

.

. 642

Savepoints

and

Cursor

Blocking

.

.

.

.

.

. 642

Savepoints

and

XA-Compliant

Transaction

Managers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 643

X/Open

XA

Interface

Programming

Considerations

643

Application

Linkage

and

the

X/Open

XA

Interface

646

MTS

and

COM+

Transaction

Management

.

.

. 646

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager

.

.

.

.

.

.

.

.

.

. 646

Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)

.

.

.

.

.

.

. 648

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout

.

.

.

.

.

.

.

.

.

. 648

ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

.

.

. 649

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

.

.

.

.

.

.

. 653

FOR

READ

ONLY

Cursors

in

a

Partitioned

Database

Environment

.

.

.

.

.

.

.

.

.

. 653

Directed

DSS

and

Local

Bypass

.

.

.

.

.

.

. 653

Directed

DSS

and

Local

Bypass

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

. 653

Directed

DSS

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 653

Local

Bypass

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 654

Buffered

Inserts

.

.

.

.

.

.

.

.

.

.

.

. 655

Buffered

Inserts

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 655

Considerations

for

Using

Buffered

Inserts

.

.

. 657

Restrictions

on

Using

Buffered

Inserts

.

.

.

. 659

Example

of

Extracting

a

Large

Volume

of

Data

in

a

Partitioned

Database

Environment

.

.

.

.

.

. 660

Creating

a

Simulated

Partitioned

Database

Environment

.

.

.

.

.

.

.

.

.

.

.

.

. 664

Troubleshooting

.

.

.

.

.

.

.

.

.

.

.

. 665

Error-Handling

Considerations

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

. 665

Severe

Errors

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 665

Merged

Multiple

SQLCA

Structures

.

.

.

.

. 666

Partition

That

Returns

the

Error

.

.

.

.

.

. 666

Looping

or

Suspended

Applications

.

.

.

.

. 667

Chapter

32.

Common

DB2

Application

Techniques

.

.

.

.

.

.

.

.

.

.

.

. 669

Running

applications

from

the

Windows

Local

System

Account

.

.

.

.

.

.

.

.

.

.

.

. 669

Generated

Columns

.

.

.

.

.

.

.

.

.

.

. 669

Identity

Columns

.

.

.

.

.

.

.

.

.

.

.

. 670

Retrieval

of

result

sets

from

an

SQL

data

change

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 671

Intermediate

result

tables

.

.

.

.

.

.

.

. 672

Target

tables

and

views

.

.

.

.

.

.

.

.

. 672

Result

set

sorting

based

on

INPUT

SEQUENCE

673

Retrieval

of

result

sets

from

SQL

data

change

statements

using

cursors

.

.

.

.

.

.

.

.

. 674

Include

columns

.

.

.

.

.

.

.

.

.

.

.

. 675

Include

columns

in

INSERT

operations

.

.

.

. 675

x

Programming

Client

Applications

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Include

columns

in

UPDATE

and

DELETE

operations

.

.

.

.

.

.

.

.

.

.

.

.

. 675

Searched

UPDATE,

INSERT,

DELETE,

and

MERGE

operations

against

fullselects

.

.

.

.

.

.

.

. 676

Sequential

Values

and

Sequence

Objects

.

.

.

. 676

Generation

of

Sequential

Values

.

.

.

.

.

. 676

Management

of

Sequence

Behavior

.

.

.

.

. 678

Application

Performance

and

Sequence

Objects

679

Sequence

Objects

Compared

to

Identity

Columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 679

Declared

Temporary

Tables

and

Application

Performance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 680

Transmission

of

Large

Volumes

of

Data

Across

a

Network

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 682

Part

8.

Appendixes

.

.

.

.

.

.

.

. 683

Appendix

A.

Supported

SQL

Statements

.

.

.

.

.

.

.

.

.

.

.

. 685

Appendix

B.

Security

plug-in

deployment

limitations

.

.

.

.

.

.

. 689

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

.

.

.

.

.

.

. 691

Applications

in

Host

or

iSeries

Environments

.

.

. 691

Data

Definition

Language

in

Host

and

iSeries

Environments

.

.

.

.

.

.

.

.

.

.

.

.

. 692

Data

Manipulation

Language

in

Host

and

iSeries

Environments

.

.

.

.

.

.

.

.

.

.

.

.

. 692

Data

Control

Language

in

Host

and

iSeries

Environments

.

.

.

.

.

.

.

.

.

.

.

.

. 693

Database

Connection

Management

with

DB2

Connect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 693

Processing

of

Interrupt

Requests

.

.

.

.

.

.

. 694

Package

Attributes,

PREP,

and

BIND

.

.

.

.

. 694

Package

Attribute

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

. 694

CNULREQD

BIND

Option

for

C

Null-Terminated

Strings

.

.

.

.

.

.

.

.

. 695

Standalone

SQLCODE

and

SQLSTATE

Variables

695

Isolation

Levels

Supported

by

DB2

Connect

.

. 696

User-Defined

Sort

Orders

.

.

.

.

.

.

.

.

. 696

Referential

Integrity

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

.

. 697

Locking

and

Application

Portability

.

.

.

.

.

. 697

SQLCODE

and

SQLSTATE

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

.

. 697

System

Catalog

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

.

.

.

.

.

. 698

Numeric

Conversion

Overflows

on

Retrieval

Assignments

.

.

.

.

.

.

.

.

.

.

.

.

.

. 698

Stored

Procedures

in

Host

or

iSeries

Environments

698

DB2

Connect

Support

for

Compound

SQL

.

.

. 699

Multisite

Update

with

DB2

Connect

.

.

.

.

.

. 700

Host

and

iSeries

Server

SQL

Statements

Supported

by

DB2

Connect

.

.

.

.

.

.

.

.

.

.

.

. 701

Host

and

iSeries

Server

SQL

Statements

Rejected

by

DB2

Connect

.

.

.

.

.

.

.

.

.

.

.

. 701

Appendix

D.

Simulation

of

EBCDIC

Binary

Collation

.

.

.

.

.

.

.

.

.

. 703

Appendix

E.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 707

DB2

documentation

and

help

.

.

.

.

.

.

.

. 707

DB2

documentation

updates

.

.

.

.

.

.

. 707

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 708

DB2

Information

Center

installation

scenarios

.

. 709

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 712

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 714

Invoking

the

DB2

Information

Center

.

.

.

.

. 716

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 717

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 718

DB2

PDF

and

printed

documentation

.

.

.

.

. 719

Core

DB2

information

.

.

.

.

.

.

.

.

. 719

Administration

information

.

.

.

.

.

.

. 719

Application

development

information

.

.

.

. 720

Business

intelligence

information

.

.

.

.

.

. 721

DB2

Connect

information

.

.

.

.

.

.

.

. 721

Getting

started

information

.

.

.

.

.

.

.

. 722

Tutorial

information

.

.

.

.

.

.

.

.

.

. 722

Optional

component

information

.

.

.

.

.

. 722

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 723

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 724

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 724

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 725

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 726

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 727

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 727

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 727

DB2

troubleshooting

information

.

.

.

.

.

.

. 728

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 729

Keyboard

input

and

navigation

.

.

.

.

.

. 729

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 729

Compatibility

with

assistive

technologies

.

.

. 730

Accessible

documentation

.

.

.

.

.

.

.

. 730

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 730

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 732

Appendix

F.

Notices

.

.

.

.

.

.

.

. 733

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 735

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 737

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 755

Product

information

.

.

.

.

.

.

.

.

.

.

. 755

Contents

xi

|
||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

xii

Programming

Client

Applications

About

this

book

The

Application

Development

Guide

is

a

three-volume

book

that

describes

what

you

need

to

know

about

coding,

debugging,

building,

and

running

DB2

applications:

v

Application

Development

Guide:

Programming

Client

Applications

contains

what

you

need

to

know

to

code

standalone

DB2

applications

that

run

on

DB2

clients.

It

includes

information

on:

–

Programming

interfaces

that

are

supported

by

DB2.

High-level

descriptions

are

provided

for

DB2

Developer’s

Edition,

supported

programming

interfaces,

facilities

for

creating

Web

applications,

and

DB2-provided

programming

features,

such

as

routines

and

triggers.

–

The

general

structure

that

a

DB2

application

should

follow.

Recommendations

are

provided

on

how

to

maintain

data

values

and

relationships

in

the

database,

authorization

considerations

are

described,

and

information

is

provided

on

how

to

test

and

debug

your

application.

–

Embedded

SQL,

both

dynamic

and

static.

The

general

considerations

for

embedded

SQL

are

described,

as

well

as

the

specific

issues

that

apply

to

the

usage

of

static

and

dynamic

SQL

in

DB2

applications.

–

Supported

host

and

interpreted

languages,

such

as

C/C++,

COBOL,

Perl,

and

REXX,

and

how

to

use

embedded

SQL

in

applications

that

are

written

in

these

languages.

–

The

DB2

.NET

Data

Provider,

and

the

OLE

DB

.NET

and

ODBC

.NET

data

providers.

–

Java

(both

JDBC

and

SQLJ)

and

considerations

for

building

Java

applications

for

use

on

WebSphere

Application

Servers.

–

The

IBM

OLE

DB

Provider

for

DB2

Servers.

General

information

is

provided

about

IBM

OLE

DB

Provider

support

for

OLE

DB

services,

components,

and

properties.

Specific

information

is

also

provided

about

Visual

Basic

and

Visual

C++

applications

that

use

the

OLE

DB

interface

for

ActiveX

Data

Objects

(ADO).

–

National

language

support

issues.

General

topics,

such

as

collating

sequences,

the

derivation

of

code

pages

and

locales,

and

character

conversions

are

described.

More

specific

issues

such

as

DBCS

code

pages,

EUC

character

sets,

and

issues

that

apply

in

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

environments

are

also

described.

–

Transaction

management.

Issues

that

apply

to

applications

that

perform

multisite

updates,

and

to

applications

that

perform

concurrent

transactions,

are

described.

–

Applications

in

partitioned

database

environments.

Directed

DSS,

local

bypass,

buffered

inserts,

and

troubleshooting

applications

in

partitioned

database

environments

are

described.

–

Commonly

used

application

techniques.

Information

is

provided

on

how

to

use

generated

and

identity

columns,

declared

temporary

tables,

and

how

to

use

savepoints

to

manage

transactions.

–

The

SQL

statements

that

are

supported

for

use

in

embedded

SQL

applications.

–

Applications

that

access

host

and

iSeries

environments.

The

issues

that

pertain

to

embedded

SQL

applications

that

access

host

and

iSeries

envirionments

are

described.

©

Copyright

IBM

Corp.

1997

-

2004

xiii

|
|

–

The

simulation

of

EBCDIC

binary

collation.
v

Application

Development

Guide:

Programming

Server

Applications

contains

what

you

need

to

know

about

programming

using

server-side

objects,

including

routines,

large

objects,

user-defined

types,

and

triggers.

It

includes

information

on:

–

Routines

(stored

procedures,

user-defined

functions,

and

methods),

including:

-

Routine

performance,

security,

library

management

considerations,

and

restrictions.

-

Creating

routines,

including

external

routines,

and

the

CREATE

statement.

-

Procedure

parameter

modes

and

parameter

handling.

-

Procedure

result

sets.

-

SQL

procedures

including

debugging

and

condition

handling.

-

User-defined

scalar

and

table

functions.

-

User-defined

scalar

and

table

function

calls

(FIRST

call,

FINAL

call,...)

and

scratchpads.

-

Methods.

-

Authorizations

and

binding

of

external

routines.

-

Language-specific

considerations

for

C,

Java,

.NET

common

language

runtime,

and

OLE

automation

routines.

-

Invoking

routines.

-

Function

selection.

-

Passing

distinct

types

and

LOBs

to

functions.

-

Code

pages

and

routines.
–

Large

objects,

including

LOB

usage

and

locators,

reference

variables,

and

CLOB

data.

–

User-defined

distinct

types,

including

strong

typing,

defining

and

dropping

UDTs,

creating

tables

with

structured

types,

using

distinct

types

and

typed

tables

for

specific

applications,

manipulating

distinct

types

and

casting

between

them,

and

performing

comparisons

and

assignments

with

distinct

types,

including

UNION

operations

on

distinctly

typed

columns.

–

User-defined

structured

types,

including

storing

instances

and

instantiation,

structured

type

hierarchies,

defining

structured

type

behavior,

the

dynamic

dispatch

of

methods,

the

comparison,

casting,

and

constructor

functions,

and

mutator

and

observer

methods

for

structured

types.

–

Typed

tables,

including

creating,

dropping,

substituting,

storing

objects,

defining

system-generated

object

identifiers,

and

constraints

on

object

identifier

columns.

–

Reference

types,

including

relationships

between

objects

in

typed

tables,

semantic

relationships

with

references,

and

referential

integrity

versus

scoped

references.

–

Typed

tables

and

typed

views,

including

structured

types

as

column

types,

transform

functions

and

transform

groups,

host

language

program

mappings,

and

structured

type

host

variables.

–

Triggers,

including

INSERT,

UPDATE,

and

DELETE

triggers,

interactions

with

referential

constraints,

creation

guidelines,

granularity,

activation

time,

transition

variables

and

tables,

triggered

actions,

multiple

triggers,

and

synergy

between

triggers,

constraints,

and

routines.
v

Application

Development

Guide:

Building

and

Running

Applications

contains

what

you

need

to

know

to

build

and

run

DB2

applications

on

the

operating

systems

supported

by

DB2:

–

AIX

xiv

Programming

Client

Applications

|
|

–

HP-UX

–

Linux

–

Solaris

–

Windows

It

includes

information

on:

–

DB2

supported

servers

and

software

to

build

applications,

including

supported

compilers

and

interpreters.

–

The

DB2

sample

program

files,

makefiles,

build

files,

and

error-checking

utility

files.

–

How

to

set

up

your

application

development

environment,

including

specific

instructions

for

Java

and

WebSphere

MQ

functions.

–

How

to

set

up

the

sample

database

–

How

to

migrate

your

applications

from

previous

versions

of

DB2.

–

How

to

build

and

run

Java

applets,

applications,

and

routines.

–

How

to

build

and

run

SQL

procedures.

–

How

to

build

and

run

C/C++

applications

and

routines.

–

How

to

build

and

run

IBM

and

Micro

Focus

COBOL

applications

and

routines.

–

How

to

build

and

run

REXX

applications

on

AIX

and

Windows.

–

How

to

build

and

run

C#

and

Visual

Basic

.NET

appllcations

and

CLR

.NET

routines

on

Windows.

–

How

to

build

and

run

applications

with

ActiveX

Data

Objects

(ADO)

using

Visual

Basic

and

Visual

C++

on

Windows.

–

How

to

build

and

run

applications

with

remote

data

objects

using

Visual

C++

on

Windows.

About

this

book

xv

|
|

xvi

Programming

Client

Applications

Part

1.

Introduction

©

Copyright

IBM

Corp.

1997

-

2004

1

2

Programming

Client

Applications

Chapter

1.

Overview

of

Supported

Programming

Interfaces

DB2

Universal

Database

tools

for

developing

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

IBM

DB2

Development

Add-In

overview

.

.

.

.

. 4

Supported

Programming

Interfaces

.

.

.

.

.

.

. 5

DB2

Supported

Programming

Interfaces

.

.

.

. 5

DB2

Application

Programming

Interfaces

.

.

.

. 7

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

.

. 7

DB2

Call

Level

Interface

.

.

.

.

.

.

.

.

. 9

DB2

CLI

versus

Embedded

Dynamic

SQL

.

.

. 10

Java

Database

Connectivity

(JDBC)

.

.

.

.

. 11

Embedded

SQL

for

Java

(SQLJ)

.

.

.

.

.

.

. 12

ActiveX

Data

Objects

and

Remote

Data

Objects

12

Perl

DBI

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

ODBC

End-User

Tools

.

.

.

.

.

.

.

.

.

. 14

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

. 14

Web

Applications

.

.

.

.

.

.

.

.

.

.

.

. 14

Tools

for

Building

Web

Applications

.

.

.

.

. 14

WebSphere

Studio

.

.

.

.

.

.

.

.

.

.

. 15

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

. 16

MQSeries

Enablement

.

.

.

.

.

.

.

.

.

. 16

Net.Data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Programming

Features

.

.

.

.

.

.

.

.

.

.

. 17

DB2

Programming

Features

.

.

.

.

.

.

.

. 17

DB2

Stored

Procedures

.

.

.

.

.

.

.

.

. 18

DB2

User-Defined

Functions

and

Methods

.

.

. 19

Development

Center

.

.

.

.

.

.

.

.

.

. 19

User-Defined

Types

(UDTs)

and

Large

Objects

(LOBs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

OLE

Automation

Routines

.

.

.

.

.

.

.

. 21

OLE

DB

Table

Functions

.

.

.

.

.

.

.

.

. 22

DB2

Triggers

.

.

.

.

.

.

.

.

.

.

.

.

. 22

DB2

Universal

Database

tools

for

developing

applications

You

can

use

a

variety

of

different

tools

when

developing

your

applications.

DB2®

Universal

Database

supplies

the

following

tools

to

help

you

write

and

test

the

SQL

statements

in

your

applications,

and

to

help

you

monitor

their

performance.

Note:

Not

all

tools

are

available

on

every

platform.

Control

Center

A

graphical

interface

that

displays

database

objects

(such

as

databases,

tables,

and

packages)

and

their

relationship

to

each

other.

Use

the

Control

Center

to

perform

administrative

tasks

such

as

configuring

the

system,

managing

directories,

backing

up

and

recovering

the

system,

scheduling

jobs,

and

managing

media.

DB2

also

provides

the

following

facilities:

Command

Editor

Is

used

to

enter

DB2

commands

and

SQL

statements

in

an

interactive

window,

and

to

see

the

execution

result

in

a

result

window.

You

can

scroll

through

the

results

and

save

the

output

to

a

file.

Task

Center

Is

used

to

create

scripts,

which

you

can

store

and

invoke

at

a

later

time.

These

scripts

can

contain

DB2

commands,

SQL

statements,

or

operating

system

commands.

You

can

schedule

scripts

to

run

unattended.

You

can

run

these

jobs

once

or

you

can

set

them

up

to

run

on

a

repeating

schedule.

A

repeating

schedule

is

particularly

useful

for

tasks

like

backups.

The

Task

Center

can

also

be

used

to

monitor

your

system

for

early

warnings

of

potential

problems,

or

to

automate

actions

to

correct

problems.

Journal

Is

used

to

view

the

following

types

of

information:

all

available

information

about

jobs

that

are

pending

execution,

executing,

or

that

have

completed

execution;

the

recovery

history

log;

the

alerts

log;

and

the

messages

log.

You

can

also

use

the

Journal

to

review

the

results

of

jobs

that

run

unattended.

©

Copyright

IBM

Corp.

1997

-

2004

3

||

||

|
|
|
|

|
|
|
|
|
|
|
|

Tools

Setting

Is

used

to

change

the

settings

for

the

Task

Center.

Event

Monitor

Collects

performance

information

on

database

activities

over

a

period

of

time.

Its

collected

information

provides

a

good

summary

of

the

activity

for

a

particular

database

event:

for

example,

a

database

connection

or

an

SQL

statement.

Visual

Explain

An

installable

option

for

the

Control

Center,

Visual

Explain

is

a

graphical

interface

that

enables

you

to

analyze

and

tune

SQL

statements,

including

viewing

access

plans

chosen

by

the

optimizer

for

SQL

statements.

IBM

DB2

Development

Add-In

overview

The

IBM®

DB2®

Development

Add-In

is

a

collection

of

features

that

integrates

seamlessly

into

your

Microsoft®

Visual

Studio

.NET

development

environment

for

working

with

DB2

servers

and

developing

DB2

routines.

With

the

add-in,

you

can:

v

Launch

various

DB2

development

and

administration

tools

v

Create

and

manage

DB2

projects

in

the

Solution

Explorer

v

Access

and

manage

DB2

data

connections

in

the

IBM

Explorer

v

Create

and

modify

DB2

scripts,

including

scripts

to

create

stored

procedures

and

user-defined

functions

(UDFs)

DB2

Tools

toolbar:

The

DB2

Tools

toolbar

enables

you

to

launch

the

various

DB2

development

and

administration

tools.

With

the

DB2

Tools

toolbar,

you

can

launch

the

following

DB2

tools:

v

Development

Center

v

Control

Center

v

Replication

Center

v

Command

Editor

v

Task

Center

v

Health

Center

v

Journal

DB2

Project

type:

The

IBM

DB2

Development

Add-In

introduces

a

new

IBM

Projects

folder,

which

includes

a

DB2

Database

Project

type

for

developing

DB2

database

server

scripts.

With

a

DB2

Project,

you

can:

v

Add

new

or

existing

SQL

stored

procedure

scripts

v

Add

new

or

existing

SQL

UDF

scripts

v

Add

new

or

existing

scripts

based

on

generic

templates

v

Specify

build

configuration

options

including

script

build

order

v

Check

your

script

files

into

Microsoft

Visual

Source

Safe

source

control

management

system

Data

Connections

folder

in

the

IBM

Explorer:

4

Programming

Client

Applications

|

|
|
|

|

|

|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|
|

|

The

IBM

DB2

Development

Add-In

extends

the

Visual

Studio

.NET

environment

by

adding

a

new

tool

called

IBM

Explorer,

a

dockable

window

that

is

similar

to

the

Visual

Studio

.NET

Server

Explorer.

The

IBM

Explorer

provides

Visual

Studio

.NET

users

with

access

to

IBM

database

connections

using

the

Data

Connections

folder.

The

Data

Connections

folder

in

the

IBM

Explorer

is

specifically

designed

for

DB2

managed

provider

connections.

From

the

Data

Connections

folder

in

the

IBM

Explorer,

you

can:

v

Work

with

multiple

named

DB2

connections

supporting

connect

of

demand

technology

v

Specify

database

catalog

filters

and

local

caching

for

higher

performance

and

scalability

v

View

properties

of

server

objects

including

tables,

views,

stored

procedures,

and

functions

v

Retrieve

data

from

tables

and

views

v

Execute

test

runs

for

stored

procedures

and

UDFs

v

View

source

code

for

stored

procedures

and

functions

v

Generate

ADO

.NET

code

using

drag

and

drop

DB2

SQL

Editor:

The

IBM

DB2

Development

Add-In

also

provides

you

with

a

DB2

SQL

Editor.

With

the

editor,

you

can

change

and

view

the

code

in

your

DB2

routines

and

scripts.

The

DB2

SQL

Editor

includes

the

following

features:

v

Colorized

text

for

increased

readability

of

the

SQL.

v

Integration

with

the

Microsoft

Visual

Studio

.NET

IntelliSense

feature,

which

allows

for

intelligent

auto-completion

while

typing

DB2

scripts.

Supported

Programming

Interfaces

The

sections

that

follow

provide

an

overview

of

the

supported

programming

interfaces.

DB2

Supported

Programming

Interfaces

You

can

use

several

different

programming

interfaces

to

manage

or

access

DB2®

databases.

You

can:

v

Use

DB2

APIs

to

perform

administrative

functions

such

as

backing

up

and

restoring

databases.

v

Embed

static

and

dynamic

SQL

statements

in

your

applications.

v

Code

DB2

Call

Level

Interface

(DB2

CLI)

function

calls

in

your

applications

to

invoke

dynamic

SQL

statements.

v

Develop

Java™

applications

and

applets

that

call

the

Java

Database

Connectivity

application

programming

interface

(JDBC

API).

v

Develop

Microsoft®

Visual

Basic

and

Visual

C++

applications

that

conform

to

Data

Access

Object

(DAO)

and

Remote

Data

Object

(RDO)

specifications,

and

ActiveX

Data

Object

(ADO)

applications

that

use

the

OLE

DB

Bridge.

v

Develop

ADO.NET

applications

using

DB2

.NET

Data

Provider,

OLE

DB

.NET

Data

Provider

or

ODBC

.NET

Data

Provider.

v

Develop

applications

using

IBM®

or

third-party

tools

such

as

Net.Data®,

Excel,

Perl,

and

Open

Database

Connectivity

(ODBC)

end-user

tools

such

as

Lotus®

Approach,

and

its

programming

language,

LotusScript.

Chapter

1.

Overview

of

Supported

Programming

Interfaces

5

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|

|

|

|
|
|

|

|
|

|
|

The

way

your

application

accesses

DB2

databases

will

depend

on

the

type

of

application

you

want

to

develop.

For

example,

if

you

want

a

data

entry

application,

you

might

choose

to

embed

static

SQL

statements

in

your

application.

If

you

want

an

application

that

performs

queries

over

the

World

Wide

Web,

you

might

choose

Net.Data,

Perl,

or

Java.

Apart

from

how

the

application

accesses

data,

you

also

need

to

consider

the

following:

v

Controlling

data

values

using:

–

Data

types

(built-in

or

user-defined)

–

Table

check

constraints

–

Referential

integrity

constraints

–

Views

using

the

CHECK

OPTION

–

Application

logic

and

variable

types
v

Controlling

the

relationship

between

data

values

using:

–

Referential

integrity

constraints

–

Triggers

–

Application

logic
v

Executing

programs

at

the

server

using:

–

Stored

procedures

–

User-defined

functions

–

Triggers

You

will

notice

that

this

list

mentions

some

capabilities

more

than

once,

such

as

triggers.

This

reflects

the

flexibility

of

these

capabilities

to

address

more

than

one

design

criteria.

Your

first

and

most

fundamental

decision

is

whether

or

not

to

move

the

logic

to

enforce

application

related

rules

about

the

data

into

the

database.

The

key

advantage

in

transferring

logic

focused

on

the

data

from

the

application

into

the

database

is

that

your

application

becomes

more

independent

of

the

data.

The

logic

surrounding

your

data

is

centralized

in

one

place,

the

database.

This

means

that

you

can

change

data

or

data

logic

once

and

affect

all

applications

immediately.

This

latter

advantage

is

very

powerful,

but

you

must

also

consider

that

any

data

logic

put

into

the

database

affects

all

users

of

the

data

equally.

You

must

consider

whether

the

rules

and

constraints

that

you

wish

to

impose

on

the

data

apply

to

all

users

of

the

data

or

just

the

users

of

your

application.

Your

application

requirements

may

also

affect

whether

to

enforce

rules

at

the

database

or

the

application.

For

example,

you

may

need

to

process

validation

errors

on

data

entry

in

a

specific

order.

In

general,

you

should

do

these

types

of

data

validation

in

the

application

code.

You

should

also

consider

the

computing

environment

where

the

application

is

used.

You

need

to

consider

the

difference

between

performing

logic

on

the

client

machines

against

running

the

logic

on

the

usually

more

powerful

database

server

machines

using

either

stored

procedures,

UDFs,

or

a

combination

of

both.

6

Programming

Client

Applications

In

some

cases,

the

correct

answer

is

to

include

the

enforcement

in

both

the

application

(perhaps

due

to

application

specific

requirements)

and

in

the

database

(perhaps

due

to

other

interactive

uses

outside

the

application).

Related

concepts:

v

“DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL”

on

page

126

v

“Embedded

SQL”

on

page

7

v

“DB2

Call

Level

Interface”

on

page

9

v

“DB2

Application

Programming

Interfaces”

on

page

7

v

“ActiveX

Data

Objects

and

Remote

Data

Objects”

on

page

12

v

“Perl

DBI”

on

page

13

v

“ODBC

End-User

Tools”

on

page

14

v

“Tools

for

Building

Web

Applications”

on

page

14

v

“Java

Database

Connectivity

(JDBC)”

on

page

11

DB2

Application

Programming

Interfaces

Your

applications

may

need

to

perform

some

database

administration

tasks,

such

as

creating,

activating,

backing

up,

or

restoring

a

database.

DB2®

provides

numerous

APIs

so

you

can

perform

these

tasks

from

your

applications,

including

embedded

SQL

and

DB2

CLI

applications.

This

enables

you

to

program

the

same

administrative

functions

into

your

applications

that

you

can

perform

using

the

DB2

server

administration

tools

available

in

the

Control

Center.

Additionally,

you

might

need

to

perform

specific

tasks

that

can

only

be

performed

using

the

DB2

APIs.

For

example,

you

might

want

to

retrieve

the

text

of

an

error

message

so

your

application

can

display

it

to

the

end

user.

To

retrieve

the

message,

you

must

use

the

Get

Error

Message

API.

Related

concepts:

v

“Authorization

Considerations

for

APIs”

on

page

48

v

“Administrative

APIs

in

Embedded

SQL

or

DB2

CLI

Programs”

on

page

40

Embedded

SQL

Structured

Query

Language

(SQL)

is

the

database

interface

language

used

to

access

and

manipulate

data

in

DB2®

databases.

You

can

embed

SQL

statements

in

your

applications,

enabling

them

to

perform

any

task

supported

by

SQL,

such

as

retrieving

or

storing

data.

Using

DB2,

you

can

code

your

embedded

SQL

applications

in

the

C/C++,

COBOL,

FORTRAN,

Java™

(SQLJ),

and

REXX

programming

languages.

Note:

The

REXX

and

Fortran

programming

languages

have

not

been

enhanced

since

Version

5

of

DB2

Universal

Database.

An

application

in

which

you

embed

SQL

statements

is

called

a

host

program.

The

programming

language

you

use

to

create

a

host

program

is

called

a

host

language.

The

program

and

language

are

defined

this

way

because

they

host

or

accommodate

SQL

statements.

For

static

SQL

statements,

you

know

before

compile

time

the

SQL

statement

type

and

the

table

and

column

names.

The

only

unknowns

are

specific

data

values

the

statement

is

searching

for

or

updating.

You

can

represent

those

values

in

host

Chapter

1.

Overview

of

Supported

Programming

Interfaces

7

language

variables.

You

precompile,

bind

and

then

compile

static

SQL

statements

before

you

run

your

application.

Static

SQL

is

best

run

on

databases

whose

statistics

do

not

change

a

great

deal.

Otherwise,

the

statements

will

soon

get

out

of

date.

In

contrast,

dynamic

SQL

statements

are

those

that

your

application

builds

and

executes

at

run

time.

An

interactive

application

that

prompts

the

end

user

for

key

parts

of

an

SQL

statement,

such

as

the

names

of

the

tables

and

columns

to

be

searched,

is

a

good

example

of

dynamic

SQL.

The

application

builds

the

SQL

statement

while

it’s

running,

and

then

submits

the

statement

for

processing.

You

can

write

applications

that

have

static

SQL

statements,

dynamic

SQL

statements,

or

a

mix

of

both.

Generally,

static

SQL

statements

are

well-suited

for

high-performance

applications

with

predefined

transactions.

A

reservation

system

is

a

good

example

of

such

an

application.

Generally,

dynamic

SQL

statements

are

well-suited

for

applications

that

run

against

a

rapidly

changing

database

where

transactions

need

to

be

specified

at

run

time.

An

interactive

query

interface

is

a

good

example

of

such

an

application.

When

you

embed

SQL

statements

in

your

application,

you

must

precompile

and

bind

your

application

to

a

database

with

the

following

steps:

1.

Create

source

files

that

contain

programs

with

embedded

SQL

statements.

2.

Connect

to

a

database,

then

precompile

each

source

file.

The

precompiler

converts

the

SQL

statements

in

each

source

file

into

DB2

run-time

API

calls

to

the

database

manager.

The

precompiler

also

produces

an

access

package

in

the

database

and,

optionally,

a

bind

file,

if

you

specify

that

you

want

one

created.

The

access

package

contains

access

plans

selected

by

the

DB2

optimizer

for

the

static

SQL

statements

in

your

application.

The

access

plans

contain

the

information

required

by

the

database

manager

to

execute

the

static

SQL

statements

in

the

most

efficient

manner

as

determined

by

the

optimizer.

For

dynamic

SQL

statements,

the

optimizer

creates

access

plans

when

you

run

your

application.

The

bind

file

contains

the

SQL

statements

and

other

data

required

to

create

an

access

package.

You

can

use

the

bind

file

to

re-bind

your

application

later

without

having

to

precompile

it

first.

The

re-binding

creates

access

plans

that

are

optimized

for

current

database

conditions.

You

need

to

re-bind

your

application

if

it

will

access

a

different

database

from

the

one

against

which

it

was

precompiled.

You

should

re-bind

your

application

if

the

database

statistics

have

changed

since

the

last

binding.

3.

Compile

the

modified

source

files

(and

other

files

without

SQL

statements)

using

the

host

language

compiler.

4.

Link

the

object

files

with

the

DB2

and

host

language

libraries

to

produce

an

executable

program.

5.

Bind

the

bind

file

to

create

the

access

package

if

this

was

not

already

done

at

precompile

time,

or

if

a

different

database

is

going

to

be

accessed.

6.

Run

the

application.

The

application

accesses

the

database

using

the

access

plan

in

the

package.

Related

concepts:

8

Programming

Client

Applications

v

“Embedded

SQL

in

REXX

Applications”

on

page

495

v

“Embedded

SQL

Statements

in

C

and

C++”

on

page

135

v

“Embedded

SQL

Statements

in

COBOL”

on

page

178

v

“Embedded

SQL

Statements

in

FORTRAN”

on

page

199

v

“Embedded

SQL

for

Java

(SQLJ)”

on

page

12

Related

tasks:

v

“Embedding

SQL

Statements

in

a

Host

Language”

on

page

55

DB2

Call

Level

Interface

DB2®

CLI

is

a

programming

interface

that

your

C

and

C++

applications

can

use

to

access

DB2

databases.

DB2

CLI

is

based

on

the

Microsoft®

Open

Database

Connectivity

(ODBC)

specification,

and

the

ISO

CLI

standard.

Since

DB2

CLI

is

based

on

industry

standards,

application

programmers

who

are

already

familiar

with

these

database

interfaces

may

benefit

from

a

shorter

learning

curve.

When

you

use

DB2

CLI,

your

application

passes

dynamic

SQL

statements

as

function

arguments

to

the

database

manager

for

processing.

As

such,

DB2

CLI

is

an

alternative

to

embedded

dynamic

SQL.

It

is

also

possible

to

run

the

SQL

statements

as

static

SQL

in

a

CLI,

ODBC

or

JDBC

application.

The

CLI/ODBC/JDBC

Static

Profiling

feature

enables

end

users

of

an

application

to

replace

the

use

of

dynamic

SQL

with

static

SQL

in

many

cases.

You

can

build

an

ODBC

application

without

using

an

ODBC

driver

manager,

and

simply

use

DB2’s

ODBC

driver

on

any

platform

by

linking

your

application

with

libdb2

on

UNIX®,

and

db2cli.lib

on

Windows®

operating

systems.

The

DB2

CLI

sample

programs

demonstrate

this.

They

are

located

in

sqllib/samples/cli

on

UNIX

and

sqllib\samples\cli

on

Windows

operating

systems.

You

do

not

need

to

precompile

or

bind

DB2

CLI

applications

because

they

use

common

access

packages

provided

with

DB2.

You

simply

compile

and

link

your

application.

However,

before

your

DB2

CLI

or

ODBC

applications

can

access

DB2

databases,

the

DB2

CLI

bind

files

that

come

with

the

DB2

AD

Client

must

be

bound

to

each

DB2

database

that

will

be

accessed.

This

occurs

automatically

with

the

execution

of

the

first

statement,

but

we

recommend

that

the

database

administrator

bind

the

bind

files

from

one

client

on

each

platform

that

will

access

a

DB2

database.

For

example,

suppose

you

have

AIX®,

Solaris

Operating

Environment,

and

Windows

98

clients

that

each

access

two

DB2

databases.

The

administrator

should

bind

the

bind

files

from

one

AIX

client

on

each

database

that

will

be

accessed.

Next,

the

administrator

should

bind

the

bind

files

from

one

Solaris

Operating

Environment

client

on

each

database

that

will

be

accessed.

Finally,

the

administrator

should

do

the

same

on

one

Windows

98

client.

Related

concepts:

v

“Administrative

APIs

in

Embedded

SQL

or

DB2

CLI

Programs”

on

page

40

v

“DB2

CLI

versus

Embedded

Dynamic

SQL”

on

page

10

Related

tasks:

Chapter

1.

Overview

of

Supported

Programming

Interfaces

9

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

in

the

CLI

Guide

and

Reference,

Volume

1

DB2

CLI

versus

Embedded

Dynamic

SQL

You

can

develop

dynamic

applications

using

either

embedded

dynamic

SQL

statements

or

DB2®

CLI.

In

both

cases,

SQL

statements

are

prepared

and

processed

at

run

time.

Each

method

has

unique

advantages.

The

advantages

of

DB2

CLI

are

as

follows:

Portability

DB2

CLI

applications

use

a

standard

set

of

functions

to

pass

SQL

statements

to

the

database.

All

you

need

to

do

is

compile

and

link

DB2

CLI

applications

before

you

can

run

them.

In

contrast,

you

must

precompile

embedded

SQL

applications,

compile

them,

and

then

bind

them

to

the

database

before

you

can

run

them.

This

process

effectively

ties

your

application

to

a

particular

database.

No

binding

You

do

not

need

to

bind

individual

DB2

CLI

applications

to

each

database

they

access.

You

only

need

to

bind

the

bind

files

that

are

shipped

with

DB2

CLI

once

for

all

your

DB2

CLI

applications.

This

can

significantly

reduce

the

amount

of

time

you

spend

managing

your

applications.

Extended

fetching

and

input

DB2

CLI

functions

enable

you

to

retrieve

multiple

rows

in

the

database

into

an

array

with

a

single

call.

They

also

let

you

execute

an

SQL

statement

many

times

using

an

array

of

input

variables.

Consistent

interface

to

catalog

Database

systems

contain

catalog

tables

that

have

information

about

the

database

and

its

users.

The

form

of

these

catalogs

can

vary

among

systems.

DB2

CLI

provides

a

consistent

interface

to

query

catalog

information

about

components

such

as

tables,

columns,

foreign

and

primary

keys,

and

user

privileges.

This

shields

your

application

from

catalog

changes

across

releases

of

database

servers,

and

from

differences

among

database

servers.

You

don’t

have

to

write

catalog

queries

that

are

specific

to

a

particular

server

or

product

version.

Extended

data

conversion

DB2

CLI

automatically

converts

data

between

SQL

and

C

data

types.

For

example,

fetching

any

SQL

data

type

into

a

C

char

data

type

converts

it

into

a

character-string

representation.

This

makes

DB2

CLI

well-suited

for

interactive

query

applications.

No

global

data

areas

DB2

CLI

eliminates

the

need

for

application

controlled,

often

complex

global

data

areas,

such

as

SQLDA

and

SQLCA,

typically

associated

with

embedded

SQL

applications.

Instead,

DB2

CLI

automatically

allocates

and

controls

the

necessary

data

structures,

and

provides

a

handle

for

your

application

to

reference

them.

Retrieve

result

sets

from

stored

procedures

DB2

CLI

applications

can

retrieve

multiple

rows

and

result

sets

generated

from

a

stored

procedure

residing

on

a

DB2

Universal

Database™

server,

a

DB2

for

MVS™/ESA

server

(Version

5

or

later),

or

an

OS/400®

server

(Version

5

or

later).

Support

for

multiple

result

sets

retrieval

on

OS/400

requires

that

PTF

(Program

10

Programming

Client

Applications

Temporary

Fix)

SI01761

be

applied

to

the

server.

Contact

your

OS/400

system

administrator

to

ensure

that

this

PTF

has

been

applied.

Scrollable

cursors

DB2

CLI

supports

server-side

scrollable

cursors

that

can

be

used

in

conjunction

with

array

output.

This

is

useful

in

GUI

applications

that

display

database

information

in

scroll

boxes

that

make

use

of

the

Page

Up,

Page

Down,

Home

and

End

keys.

You

can

declare

a

cursor

as

scrollable

and

then

move

forwards

or

backwards

through

the

result

set

by

one

or

more

rows.

You

can

also

fetch

rows

by

specifying

an

offset

from

the

current

row,

the

beginning

or

end

of

a

result

set,

or

a

specific

row

you

bookmarked

previously.

The

advantages

of

embedded

dynamic

SQL

are

as

follows:

Granular

Security

All

DB2

CLI

users

share

the

same

privileges.

Embedded

SQL

offers

the

advantage

of

more

granular

security

through

granting

execute

privileges

to

particular

users

for

a

package.

More

Supported

Languages

Embedded

SQL

supports

more

than

just

C

and

C++.

This

might

be

an

advantage

if

you

prefer

to

code

your

applications

in

another

language.

More

Consistent

with

Static

SQL

Dynamic

SQL

is

generally

more

consistent

with

static

SQL.

If

you

already

know

how

to

program

static

SQL,

moving

to

dynamic

SQL

might

not

be

as

difficult

as

moving

to

DB2

CLI.

Related

concepts:

v

“DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL”

on

page

126

v

“Advantages

of

DB2

CLI

over

embedded

SQL”

on

page

127

v

“When

to

use

DB2

CLI

or

embedded

SQL”

on

page

129

Java

Database

Connectivity

(JDBC)

DB2®’s

Java™

support

includes

JDBC,

a

vendor-neutral

dynamic

SQL

interface

that

provides

data

access

to

your

application

through

standardized

Java

methods.

JDBC

is

similar

to

DB2

CLI

in

that

you

do

not

have

to

precompile

or

bind

a

JDBC

program.

As

a

vendor-neutral

standard,

JDBC

applications

offer

increased

portability.

An

application

written

using

JDBC

uses

only

dynamic

SQL.

JDBC

can

be

especially

useful

for

accessing

DB2

databases

across

the

Internet.

Using

the

Java

programming

language,

you

can

develop

JDBC

applets

and

applications

that

access

and

manipulate

data

in

remote

DB2

databases

using

a

network

connection.

You

can

also

create

JDBC

stored

procedures

that

reside

on

the

server,

access

the

database

server,

and

return

information

to

a

remote

client

application

that

calls

the

stored

procedure.

The

JDBC

API,

which

is

similar

to

the

CLI/ODBC

API,

provides

a

standard

way

to

access

databases

from

Java

code.

Your

Java

code

passes

SQL

statements

as

method

arguments

to

the

DB2

JDBC

driver.

The

driver

handles

the

JDBC

API

calls

from

your

client

Java

code.

Chapter

1.

Overview

of

Supported

Programming

Interfaces

11

Java’s

portability

enables

you

to

deliver

DB2

access

to

clients

on

multiple

platforms,

requiring

only

a

Java-enabled

web

browser,

or

a

Java

runtime

environment.

JDBC

Type

2

Java

applications

based

on

the

JDBC

type

2

driver

rely

on

the

DB2

client

to

connect

to

DB2.

You

start

your

application

from

the

desktop

or

command

line,

like

any

other

application.

The

DB2

JDBC

driver

handles

the

JDBC

API

calls

from

your

application,

and

uses

the

client

connection

to

communicate

the

requests

to

the

server

and

to

receive

the

results.

You

cannot

create

Java

applets

using

the

JDBC

type

2

driver.

Note:

The

JDBC

type

2

driver

is

recommended

for

WebSphere®

Application

Servers.

JDBC

Type

3

If

you

use

the

JDBC

type

3

driver,

you

can

only

create

Java

applets.

Java

applets

do

not

require

the

DB2

client

to

be

installed

on

the

client

machine.

Typically,

you

would

embed

the

applet

in

a

HyperText

Markup

Language

(HTML)

web

page.

To

run

an

applet

based

on

the

JDBC

type

3

driver,

you

need

only

a

Java-enabled

web

browser

or

applet

viewer

on

the

client

machine.

When

you

load

your

HTML

page,

the

browser

downloads

the

Java

applet

to

your

machine,

which

then

downloads

the

Java

class

files

and

DB2’s

JDBC

driver.

When

your

applet

calls

the

JDBC

API

to

connect

to

DB2,

the

JDBC

driver

establishes

a

separate

network

connection

with

the

DB2

database

through

the

JDBC

applet

server

residing

on

the

Web

server.

Note:

The

JDBC

type

3

driver

is

deprecated

for

Version

8.

JDBC

Type

4

You

can

use

the

JDBC

type

4

driver,

which

is

new

for

Version

8,

to

create

both

Java

applications

and

applets.

To

run

an

application

or

an

applet

that

is

based

on

the

type

4

driver,

you

only

require

the

db2jcc.jar

file.

No

DB2

client

is

required.

For

more

information

on

DB2

JDBC

support,

visit

the

Web

page

at:

http://www.ibm.com/software/data/db2/udb/ad/v8/java

Embedded

SQL

for

Java

(SQLJ)

DB2®

Java™

embedded

SQL

(SQLJ)

support

is

provided

by

the

DB2

AD

Client.

With

DB2

SQLJ

support,

in

addition

to

DB2

JDBC

support,

you

can

build

and

run

SQLJ

applets,

applications,

and

stored

procedures.

These

contain

static

SQL

and

use

embedded

SQL

statements

that

are

bound

to

a

DB2

database.

For

more

information

on

DB2

SQLJ

support,

visit

the

Web

page

at:

http://www.ibm.com/software/data/db2/udb/ad/v8/java

ActiveX

Data

Objects

and

Remote

Data

Objects

You

can

write

Microsoft®

Visual

Basic

and

Microsoft

Visual

C++

database

applications

that

conform

to

the

Data

Access

Object

(DAO)

and

Remote

Data

12

Programming

Client

Applications

http://www.ibm.com/software/data/db2/udb/ad/v8/java/
http://www.ibm.com/software/data/db2/udb/ad/v8/java/

Object

(RDO)

specifications.

DB2®

also

supports

ActiveX

Data

Object

(ADO)

applications

that

use

the

Microsoft

OLE

DB

to

ODBC

Bridge.

ActiveX

Data

Objects

(ADO)

allow

you

to

write

an

application

to

access

and

manipulate

data

in

a

database

server

through

an

OLE

DB

provider.

The

primary

benefits

of

ADO

are

high

speed

development

time,

ease

of

use,

and

a

small

disk

footprint.

Remote

Data

Objects

(RDO)

provide

an

information

model

for

accessing

remote

data

sources

through

ODBC.

RDO

offers

a

set

of

objects

that

make

it

easy

to

connect

to

a

database,

execute

queries

and

stored

procedures,

manipulate

results,

and

commit

changes

to

the

server.

It

is

specifically

designed

to

access

remote

ODBC

relational

data

sources,

and

makes

it

easier

to

use

ODBC

without

complex

application

code.

For

full

samples

of

DB2

applications

that

use

the

ADO

and

RDO

specifications,

see

the

following

directories:

v

For

Visual

Basic

ActiveX

Data

Object

samples,

refer

to

sqllib\samples\VB\ADO

v

For

Visual

Basic

Remote

Data

Object

samples,

refer

to

sqllib\samples\VB\RDO

v

For

Visual

Basic

Microsoft

Transaction

Server

samples,

refer

to

sqllib\samples\VB\MTS

v

For

Visual

C++

ActiveX

Data

Object

samples,

refer

to

sqllib\samples\VC\ADO

Related

tasks:

v

“Building

ADO

applications

with

Visual

Basic”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

RDO

applications

with

Visual

Basic”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

ADO

applications

with

Visual

C++”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“Visual

Basic

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Visual

C++

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Perl

DBI

DB2®

supports

the

Perl

Database

Interface

(DBI)

specification

for

data

access

through

the

DBD::DB2

driver.

The

DB2

Universal

Database™

Perl

DBI

website

is

located

at:

http://www.ibm.com/software/data/db2/perl/

and

contains

the

latest

DBD::DB2

driver,

and

related

information.

Perl

is

an

interpreted

language

and

the

Perl

DBI

Module

uses

dynamic

SQL.

This

makes

Perl

an

ideal

language

for

quickly

creating

and

revising

prototypes

of

DB2

applications.

The

Perl

DBI

Module

uses

an

interface

that

is

quite

similar

to

the

CLI

and

JDBC

interfaces.

This

makes

it

easy

to

port

Perl

prototypes

to

CLI

and

JDBC.

Related

concepts:

v

“Programming

Considerations

for

Perl”

on

page

489

Chapter

1.

Overview

of

Supported

Programming

Interfaces

13

http://www.ibm.com/software/data/db2/perl/

ODBC

End-User

Tools

You

can

use

ODBC

end-user

tools

such

as

Lotus®

Approach,

Microsoft®

Access,

and

Microsoft

Visual

Basic

to

create

applications.

ODBC

tools

provide

a

simpler

alternative

to

developing

applications

than

using

a

high-level

programming

language.

Lotus

Approach

provides

two

ways

to

access

DB2®

data.

You

can

use

the

graphical

interface

to

perform

queries,

develop

reports,

and

analyze

data.

Or

you

can

develop

applications

using

LotusScript,

a

full-featured,

object-oriented

programming

language

that

comes

with

a

wide

array

of

objects,

events,

methods,

and

properties,

along

with

a

built-in

program

editor.

DB2

.NET

Data

Provider

The

DB2®

.NET

Data

Provider

extends

DB2

support

for

the

ADO.NET

interface.

The

DB2

.NET

Data

Provider

delivers

high-performing,

secure

access

to

DB2

data.

The

DB2

.NET

Data

Provider

allows

your

.NET

applications

to

access

the

following

database

management

systems:

v

DB2

Universal

Database™

Version

8

for

Windows®,

UNIX®,

and

Linux-based

computers

v

DB2

Universal

Database

Version

6

(or

later)

for

OS/390®

and

z/OS™,

through

DB2

Connect™

v

DB2

Universal

Database

Version

5,

Release

1

(or

later)

for

AS/400®

and

iSeries™,

through

DB2

Connect

v

DB2

Universal

Database

Version

7.3

(or

later)

for

VSE

&

VM,

through

DB2

Connect

To

develop

and

run

applications

that

use

DB2

.NET

Data

Provider

you

need

the

.NET

Framework,

Version

1.0

or

1.1.

In

addition

to

the

DB2

.NET

Data

Provider,

there

is

also

a

collection

of

add-ins

to

the

Microsoft®

Visual

Studio

.NET

IDE.

These

add-ins

simplify

the

creation

of

DB2

applications

that

use

the

ADO.NET

interface.

You

can

also

use

these

add-ins

to

develop

server-side

objects,

such

as

SQL

stored

procedures

and

user-defined

functions.

Sample

applications

in

VB.NET

and

C#.NET

demonstrating

the

DB2

.NET

Data

Provider

are

available

at:

http://www.ibm.com/software/data/db2/udb/ad/v8/samples.html

Web

Applications

The

sections

that

follow

describe

the

products

and

functions

that

are

available

for

building

Web

applications.

Tools

for

Building

Web

Applications

DB2®

Universal

Database

supports

all

the

key

Internet

standards,

making

it

an

ideal

database

for

use

on

the

Web.

It

has

in-memory

speed

to

facilitate

Internet

searches

and

complex

text

matching

combined

with

the

scalability

and

availability

14

Programming

Client

Applications

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

http://www.ibm.com/software/data/db2/udb/ad/v8/samples.html

characteristics

of

a

relational

database.

Because

DB2

Universal

Database

supports

WebSphere®,

Java™

and

XML

Extender,

it

makes

it

easy

for

you

to

deploy

your

e-business

applications.

DB2

Universal

Developer’s

Edition

has

several

tools

that

provide

Web

enablement

support.

WebSphere

Studio

Application

Developer,

Version

4,

is

an

integrated

development

environment

(IDE)

that

enables

you

to

build,

test,

and

deploy

Java

applications

to

a

WebSphere

Application

Server

and

DB2

Universal

Database.

WebSphere

Studio

is

a

suite

of

tools

that

brings

all

aspects

of

Web

site

development

into

a

common

interface.

WebSphere

Application

Server

Advanced

Edition

(single-server)

provides

a

robust

deployment

environment

for

e-business

applications.

Its

components

let

you

build

and

deploy

personalized,

dynamic

Web

content

quickly

and

easily.

Related

concepts:

v

“WebSphere

Studio”

on

page

15

v

“XML

Extender”

on

page

16

WebSphere

Studio

WebSphere®

Studio

is

a

suite

of

tools

that

brings

all

aspects

of

Web

site

development

into

a

common

interface.

The

WebSphere

Studio

makes

it

easier

than

ever

to

cooperatively

create,

assemble,

publish,

and

maintain

dynamic

interactive

Web

applications.

The

Studio

is

composed

of

the

Workbench,

the

Page

Designer,

the

Remote

Debugger,

and

wizards,

and

it

comes

with

trial

copies

of

companion

Web

development

products,

such

as

Macromedia

Flash,

Fireworks,

Freehand,

and

Director.

WebSphere

Studio

enables

you

to

do

everything

you

need

to

create

interactive

Web

sites

that

support

your

advanced

business

functions.

WebSphere

Application

Server

Standard

Edition

(provided

with

DB2®

Universal

Developer’s

Edition)

is

a

component

of

WebSphere

Studio.

It

combines

the

portability

of

server-side

business

applications

with

the

performance

and

manageability

of

Java™

technologies

to

offer

a

comprehensive

platform

for

designing

Java-based

Web

applications.

It

enables

powerful

interactions

with

enterprise

databases

and

transaction

systems.

You

can

run

the

DB2

server

on

the

same

machine

as

WebSphere

Application

Server

or

on

a

different

Web

server.

WebSphere

Application

Server

Advanced

Edition

(not

provided

with

DB2

Universal

Developer’s

Edition)

provides

additional

support

for

Enterprise

JavaBean

applications.

DB2

Universal

Database™

is

provided

with

the

WebSphere

Application

Server

Advanced

Edition,

to

be

used

as

the

administrative

server

repository.

It

introduces

server

capabilities

for

applications

built

to

the

EJB

Specification

from

Sun

Microsystems,

which

provides

support

for

integrating

Web

applications

to

non-Web

business

systems.

Related

concepts:

v

“Enterprise

Java

Beans”

on

page

483

Related

reference:

v

“Java

WebSphere

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Chapter

1.

Overview

of

Supported

Programming

Interfaces

15

XML

Extender

Extensible

Markup

Language

(XML)

is

the

accepted

standard

technique

for

data

exchange

between

applications.

An

XML

document

is

a

tagged

document

which

is

human-legible.

The

text

consists

of

character

data

and

markup

tags.

The

markup

tags

are

definable

by

the

author

of

the

document.

A

Document

Type

Definition

(DTD)

is

used

to

declare

the

markup

definitions

and

constraints.

DB2®

XML

Extender

(provided

with

DB2

Universal

Developer’s

Edition,

as

well

as

with

Personal

Developer’s

Edition

on

Windows®)

gives

a

mechanism

for

programs

to

manipulate

XML

data

using

SQL

extensions.

The

DB2

XML

Extender

introduces

three

new

data

types:

XMLVARCHAR,

XMLCLOB,

and

XMLFILE.

The

extender

provides

UDFs

to

store,

extract

and

update

XML

documents

located

within

single

or

multiple

columns

and

tables.

Searching

can

be

performed

on

the

entire

XML

document

or

based

on

structural

components

using

the

location

path,

which

uses

a

subset

of

the

Extensible

Stylesheet

Language

Transformation

(XSLT)

and

XPath

for

XML

Path

Language.

To

facilitate

storing

XML

documents

as

a

set

of

columns,

the

DB2

XML

Extender

provides

an

administration

tool

to

aid

the

designer

with

XML-to-relational

database

mapping.

The

Document

Access

Definition

(DAD)

is

used

to

maintain

the

structural

and

mapping

data

for

the

XML

documents.

The

DAD

is

defined

and

stored

as

an

XML

document,

which

makes

it

simple

to

manipulate

and

understand.

New

stored

procedures

are

available

to

compose

or

decompose

the

document.

For

more

information

on

DB2

XML

Extender,

visit:

http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

MQSeries

Enablement

A

set

of

MQSeries®

functions

are

provided

with

DB2®

Universal

Database

to

allow

DB2

applications

to

interact

with

asynchronous

messaging

operations.

This

means

that

MQSeries

support

is

available

to

applications

written

in

any

programming

language

supported

by

DB2.

In

a

basic

configuration,

an

MQSeries

server

is

located

on

the

database

server

machine

along

with

DB2

Universal

Database™.

The

MQSeries

functions

are

available

from

a

DB2

server

and

provide

access

to

other

MQSeries

applications.

Multiple

DB2

clients

can

concurrently

access

the

MQSeries

functions

through

the

database.

The

MQSeries

operations

allow

DB2

applications

to

asynchronously

communicate

with

other

MQSeries

applications.

For

instance,

the

new

functions

provide

a

simple

way

for

a

DB2

application

to

publish

database

events

to

remote

MQSeries

applications,

initiate

a

workflow

through

the

optional

MQSeries

Workflow

product,

or

communicate

with

an

existing

application

package

with

the

optional

MQSeries

Integrator

product.

Net.Data

Net.Data®

enables

Internet

and

intranet

access

to

DB2®

data

through

your

web

applications.

It

exploits

Web

server

interfaces

(APIs),

providing

higher

performance

than

common

gateway

interface

(CGI)

applications.

Net.Data

supports

client-side

processing

as

well

as

server-side

processing

with

languages

such

as

Java™,

REXX,

Perl

and

C++.

Net.Data

provides

conditional

logic

and

a

rich

macro

language.

It

16

Programming

Client

Applications

http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

also

provides

XML

support

which

allows

you

to

generate

XML

tags

as

output

from

your

Net.Data

macro,

instead

of

manually

entering

the

tags.

You

can

also

specify

an

XML

style

sheet

(XSL)

to

be

used

to

format

and

display

the

generated

output.

Net.Data

is

only

available

as

a

Web-based

download.

For

more

information,

refer

to

the

following

Web

site:

http://www-4.ibm.com/software/data/net.data/support/index.html

Note:

Net.Data

support

stabilized

in

DB2

Version

7.2,

and

no

enhancements

for

Net.Data

support

are

planned

for

the

future.

Related

concepts:

v

“Tools

for

Building

Web

Applications”

on

page

14

v

“XML

Extender”

on

page

16

Programming

Features

The

sections

that

follow

describe

the

programming

features

that

are

available

with

DB2.

DB2

Programming

Features

DB2®

comes

with

a

variety

of

features

that

run

on

the

server

which

you

can

use

to

supplement

or

extend

your

applications.

When

you

use

DB2

features,

you

do

not

have

to

write

your

own

code

to

perform

the

same

tasks.

DB2

also

lets

you

store

some

parts

of

your

code

at

the

server

instead

of

keeping

all

of

it

in

your

client

application.

This

can

have

performance

and

maintenance

benefits.

There

are

features

to

protect

data

and

to

define

relationships

between

data.

As

well,

there

are

object-relational

features

to

create

flexible,

advanced

applications.

You

can

use

some

features

in

more

than

one

way.

For

example,

constraints

enable

you

to

protect

data

and

to

define

relationships

between

data

values.

Here

are

some

key

DB2

features:

v

Constraints

v

User-defined

types

(UDTs)

and

large

objects

(LOBs)

v

User-defined

functions

(UDFs)

v

Triggers

v

Stored

procedures

To

decide

whether

or

not

to

use

DB2

features,

consider

the

following

points:

Application

independence

You

can

make

your

application

independent

of

the

data

it

processes.

Using

DB2

features

that

run

at

the

database

enables

you

to

maintain

and

change

the

logic

surrounding

the

data

without

affecting

your

application.

If

you

need

to

make

a

change

to

that

logic,

you

only

need

to

change

it

in

one

place;

at

the

server,

and

not

in

each

application

that

accesses

the

data.

Performance

You

can

make

your

application

perform

more

quickly

by

storing

and

running

parts

of

your

application

on

the

server.

This

shifts

some

processing

to

generally

more

powerful

server

machines,

and

can

reduce

network

traffic

between

your

client

application

and

the

server.

Chapter

1.

Overview

of

Supported

Programming

Interfaces

17

http://www.ibm.com/software/data/net.data/support/index.html

Application

requirements

Your

application

might

have

unique

logic

that

other

applications

do

not.

For

example,

if

your

application

processes

data

entry

errors

in

a

particular

order

that

would

be

inappropriate

for

other

applications,

you

might

want

to

write

your

own

code

to

handle

this

situation.

In

some

cases,

you

might

decide

to

use

DB2

features

that

run

on

the

server

because

they

can

be

used

by

several

applications.

In

other

cases,

you

might

decide

to

keep

logic

in

your

application

because

it

is

used

by

your

application

only.

Related

concepts:

v

“DB2

Stored

Procedures”

on

page

18

v

“DB2

User-Defined

Functions

and

Methods”

on

page

19

v

“User-Defined

Types

(UDTs)

and

Large

Objects

(LOBs)”

on

page

20

v

“DB2

Triggers”

on

page

22

DB2

Stored

Procedures

Typically,

applications

access

the

database

across

the

network.

This

can

result

in

poor

performance

if

a

lot

of

data

is

being

returned.

A

stored

procedure

runs

on

the

database

server.

A

client

application

can

call

the

stored

procedure

which

then

performs

the

database

accessing

without

returning

unnecessary

data

across

the

network.

Only

the

results

the

client

application

needs

are

returned

by

the

stored

procedure.

You

gain

several

benefits

using

stored

procedures:

Reduced

network

traffic

Grouping

SQL

statements

together

can

save

on

network

traffic.

A

typical

application

requires

two

trips

across

the

network

for

each

SQL

statement.

Grouping

SQL

statements

results

in

two

trips

across

the

network

for

each

group

of

statements,

resulting

in

better

performance

for

applications.

Access

to

features

that

exist

only

on

the

server

Stored

procedures

can

have

access

to

commands

that

run

only

on

the

server,

such

as

LIST

DATABASE

DIRECTORY

and

LIST

NODE

DIRECTORY;

they

might

have

the

advantages

of

increased

memory

and

disk

space

on

server

machines;

and

they

can

access

any

additional

software

installed

on

the

server.

Enforcement

of

business

rules

You

can

use

stored

procedures

to

define

business

rules

that

are

common

to

several

applications.

This

is

another

way

to

define

business

rules,

in

addition

to

using

constraints

and

triggers.

When

an

application

calls

the

stored

procedure,

it

will

process

data

in

a

consistent

way

according

to

the

rules

defined

in

the

stored

procedure.

If

you

need

to

change

the

rules,

you

only

need

to

make

the

change

once

in

the

stored

procedure,

not

in

every

application

that

calls

the

stored

procedure.

Related

concepts:

v

“Development

Center”

on

page

19

18

Programming

Client

Applications

DB2

User-Defined

Functions

and

Methods

The

built-in

capabilities

supplied

through

SQL

may

not

satisfy

all

of

your

application

needs.

To

allow

you

to

extend

those

capabilities,

DB2®

supports

user-defined

functions

(UDFs)

and

methods.

You

can

write

your

own

code

in

Visual

Basic,

C/C++,

Java™,

or

SQL

to

perform

operations

within

any

SQL

statement

that

returns

a

single

scalar

value

or

a

table.

UDFs

and

methods

give

you

significant

flexibility.

They

return

a

single

scalar

value

as

part

of

an

expression.

Additionally,

functions

can

return

whole

tables

from

non-database

sources

such

as

spreadsheets.

UDFs

and

methods

provide

a

way

to

standardize

your

applications.

By

implementing

a

common

set

of

routines,

many

applications

can

process

data

in

the

same

way,

thus

ensuring

consistent

results.

User-defined

functions

and

methods

also

support

object-oriented

programming

in

your

applications.

They

provide

for

abstraction,

allowing

you

to

define

the

common

interfaces

that

can

be

used

to

perform

operations

on

data

objects.

And

they

provide

for

encapsulation,

allowing

you

to

control

access

to

the

underlying

data

of

an

object,

protecting

it

from

direct

manipulation

and

possible

corruption.

Development

Center

DB2®

Development

Center

provides

an

easy-to-use

development

environment

for

creating,

installing,

and

testing

stored

procedures.

It

allows

you

to

focus

on

creating

your

stored

procedure

logic

rather

than

the

details

of

registering,

building,

and

installing

stored

procedures

on

a

DB2

server.

Additionally,

with

Development

Center,

you

can

develop

stored

procedures

on

one

operating

system

and

build

them

on

other

server

operating

systems.

Development

Center

is

a

graphical

application

that

supports

rapid

development.

Using

Development

Center,

you

can

perform

the

following

tasks:

v

Create

new

stored

procedures.

v

Build

stored

procedures

on

local

and

remote

DB2

servers.

v

Modify

and

rebuild

existing

stored

procedures.

v

Test

and

debug

the

execution

of

installed

stored

procedures.

You

can

launch

Development

Center

as

a

separate

application

from

the

DB2

Universal

Database™

program

group,

or

you

can

launch

Development

Center

from

any

of

the

following

development

applications:

v

Microsoft®

Visual

Studio

v

Microsoft

Visual

Basic

v

IBM®

VisualAge®

for

Java™

You

can

also

launch

Development

Center

from

the

Control

Center

for

DB2

for

OS/390®.

You

can

start

Development

Center

as

a

separate

process

from

the

Control

Center

Tools

menu,

toolbar,

or

Stored

Procedures

folder.

In

addition,

from

the

Development

Center

Project

window,

you

can

export

one

or

more

selected

SQL

stored

procedures

built

to

a

DB2

for

OS/390

server

to

a

specified

file

capable

of

running

within

the

command

line

processor

(CLP).

Development

Center

manages

your

work

by

using

projects.

Each

Development

Center

project

saves

your

connections

to

specific

databases,

such

as

DB2

for

Chapter

1.

Overview

of

Supported

Programming

Interfaces

19

OS/390

servers.

In

addition,

you

can

create

filters

to

display

subsets

of

the

stored

procedures

on

each

database.

When

opening

a

new

or

existing

Development

Center

project,

you

can

filter

stored

procedures

so

that

you

view

stored

procedures

based

on

their

name,

schema,

language,

or

collection

ID

(for

OS/390

only).

Connection

information

is

saved

in

a

Development

Center

project;

therefore,

when

you

open

an

existing

project,

you

are

automatically

prompted

to

enter

your

user

ID

and

password

for

the

database.

Using

the

Inserting

SQL

Stored

Procedure

wizard,

you

can

build

SQL

stored

procedures

on

a

DB2

for

OS/390

server.

For

an

SQL

stored

procedure

built

to

a

DB2

for

OS/390

server,

you

can

set

specific

compile,

pre-link,

link,

bind,

runtime,

WLM

environment,

and

external

security

options.

Additionally,

you

can

obtain

SQL

costing

information

about

the

SQL

stored

procedure,

including

information

about

CPU

time

and

other

DB2

costing

information

for

the

thread

on

which

the

SQL

stored

procedure

is

running.

In

particular,

you

can

obtain

costing

information

about

latch/lock

contention

wait

time,

the

number

of

getpages,

the

number

of

read

I/Os,

and

the

number

of

write

I/Os.

To

obtain

costing

information,

Development

Center

connects

to

a

DB2

for

OS/390

server,

executes

the

SQL

statement,

and

calls

a

stored

procedure

(DSNWSPM)

to

find

out

how

much

CPU

time

the

SQL

stored

procedure

used.

Related

concepts:

v

“DB2

Stored

Procedures”

on

page

18

v

“OLE

Automation

Routines”

on

page

21

User-Defined

Types

(UDTs)

and

Large

Objects

(LOBs)

Every

data

element

in

the

database

is

stored

in

a

column

of

a

table,

and

each

column

is

defined

to

have

a

data

type.

The

data

type

places

limits

on

the

types

of

values

you

can

put

into

the

column

and

the

operations

you

can

perform

on

them.

For

example,

a

column

of

integers

can

only

contain

numbers

within

a

fixed

range.

DB2®

includes

a

set

of

built-in

data

types

with

defined

characteristics

and

behaviors:

character

strings,

numerics,

datetime

values,

large

objects,

Nulls,

graphic

strings,

binary

strings,

and

datalinks.

Sometimes,

however,

the

built-in

data

types

might

not

serve

the

needs

of

your

applications.

DB2

provides

user-defined

types

(UDTs)

which

enable

you

to

define

the

distinct

data

types

you

need

for

your

applications.

UDTs

are

based

on

the

built-in

data

types.

When

you

define

a

UDT,

you

also

define

the

operations

that

are

valid

for

the

UDT.

For

example,

you

might

define

a

MONEY

data

type

that

is

based

on

the

DECIMAL

data

type.

However,

for

the

MONEY

data

type,

you

might

allow

only

addition

and

subtraction

operations,

but

not

multiplication

and

division

operations.

Large

Objects

(LOBs)

enable

you

to

store

and

manipulate

large,

complex

data

objects

in

the

database:

objects

such

as

audio,

video,

images,

and

large

documents.

The

combination

of

UDTs

and

LOBs

gives

you

considerable

power.

You

are

no

longer

restricted

to

using

the

built-in

data

types

provided

by

DB2

to

model

your

business

data,

and

to

capture

the

semantics

of

that

data.

You

can

use

UDTs

to

define

large,

complex

data

structures

for

advanced

applications.

20

Programming

Client

Applications

In

addition

to

extending

built-in

data

types,

UDTs

provide

several

other

benefits:

Support

for

object-oriented

programming

in

your

applications

You

can

group

similar

objects

into

related

data

types.

These

types

have

a

name,

an

internal

representation,

and

a

specific

behavior.

By

using

UDTs,

you

can

tell

DB2

the

name

of

your

new

type

and

how

it

is

represented

internally.

A

LOB

is

one

of

the

possible

internal

representations

for

your

new

type,

and

is

the

most

suitable

representation

for

large,

complex

data

structures.

Data

integrity

through

strong

typing

and

encapsulation

Strong

typing

guarantees

that

only

functions

and

operations

defined

on

the

distinct

type

can

be

applied

to

the

type.

Encapsulation

ensures

that

the

behavior

of

UDTs

is

restricted

by

the

functions

and

operators

that

can

be

applied

to

them.

In

DB2,

behavior

for

UDTs

can

be

provided

in

the

form

of

user-defined

functions

(UDFs),

which

can

be

written

to

accommodate

a

broad

range

of

user

requirements.

Performance

through

integration

into

the

database

manager

Because

UDTs

are

represented

internally,

the

same

way

as

built-in

data

types,

they

share

the

same

efficient

code

as

built-in

data

types

to

implement

built-in

functions,

comparison

operators,

indexes,

and

other

functions.

The

exception

to

this

is

UDTs

that

utilize

LOBs,

which

cannot

be

used

with

comparison

operators

and

indexes.

Related

concepts:

v

“Large

object

usage”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“User-Defined

Types”

in

the

Application

Development

Guide:

Programming

Server

Applications

OLE

Automation

Routines

OLE

(Object

Linking

and

Embedding)

automation

is

part

of

the

OLE

2.0

architecture

from

Microsoft®

Corporation.

With

OLE

automation,

your

applications,

regardless

of

the

language

in

which

they

are

written,

can

expose

their

properties

and

methods

in

OLE

automation

objects.

Other

applications,

such

as

Lotus®

Notes

or

Microsoft

Exchange,

can

then

integrate

these

objects

by

taking

advantage

of

these

properties

and

methods

through

OLE

automation.

DB2®

for

Windows®

operating

systems

provides

access

to

OLE

automation

objects

using

UDFs,

methods,

and

stored

procedures.

To

access

OLE

automation

objects

and

invoke

their

methods,

you

must

register

the

methods

of

the

objects

as

routines

(UDFs,

methods,

or

stored

procedures)

in

the

database.

DB2

applications

can

then

use

the

methods

by

invoking

the

routines.

For

example,

you

can

develop

an

application

that

queries

data

in

a

spreadsheet

created

using

a

product

such

as

Microsoft

Excel.

To

do

this,

you

would

develop

an

OLE

automation

table

function

that

retrieves

data

from

the

worksheet,

and

returns

it

to

DB2.

DB2

can

then

process

the

data,

perform

online

analytical

processing

(OLAP),

and

return

the

query

result

to

your

application.

Related

concepts:

v

“DB2

Stored

Procedures”

on

page

18

v

“Development

Center”

on

page

19

Chapter

1.

Overview

of

Supported

Programming

Interfaces

21

OLE

DB

Table

Functions

Microsoft®

OLE

DB

is

a

set

of

OLE/COM

interfaces

that

provide

applications

with

uniform

access

to

data

stored

in

diverse

information

sources.

DB2®

Universal

Database

simplifies

the

creation

of

OLE

DB

applications

by

enabling

you

to

define

table

functions

that

access

an

OLE

DB

data

source.

You

can

perform

operations

including

GROUP

BY,

JOIN,

and

UNION,

on

data

sources

that

expose

their

data

through

OLE

DB

interfaces.

For

example,

you

can

define

an

OLE

DB

table

function

to

return

a

table

from

a

Microsoft

Access

database

or

a

Microsoft

Exchange

address

book,

then

create

a

report

that

seamlessly

combines

data

from

this

OLE

DB

table

function

with

data

in

your

DB2

database.

Using

OLE

DB

table

functions

reduces

your

application

development

effort

by

providing

built-in

access

to

any

OLE

DB

provider.

For

C,

Java™,

and

OLE

automation

table

functions,

the

developer

needs

to

implement

the

table

function,

whereas

in

the

case

of

OLE

DB

table

functions,

a

generic

built-in

OLE

DB

consumer

interfaces

with

any

OLE

DB

provider

to

retrieve

data.

You

only

need

to

register

a

table

function

of

language

type

OLEDB,

and

refer

to

the

OLE

DB

provider

and

the

relevant

rowset

as

a

data

source.

You

do

not

have

to

do

any

UDF

programming

to

take

advantage

of

OLE

DB

table

functions.

Related

concepts:

v

“Purpose

of

the

IBM

OLE

DB

Provider

for

DB2”

on

page

219

v

“OLE

DB

Services

Automatically

Enabled

by

IBM

OLE

DB

Provider”

on

page

222

Related

reference:

v

“IBM

OLE

DB

Provider

Support

for

OLE

DB

Components

and

Interfaces”

on

page

227

v

“IBM

OLE

DB

Provider

support

for

OLE

DB

properties”

on

page

230

DB2

Triggers

A

trigger

defines

a

set

of

actions

executed

executed

in

response

to

the

event

of

an

INSERT,

UPDATE

or

DELETE

operation

on

a

specified

table.

When

such

an

SQL

operation

is

executed,

the

trigger

is

said

to

be

activated.

The

trigger

can

be

activated

before

the

SQL

operation

or

after

it.

You

define

a

trigger

using

the

SQL

statement

CREATE

TRIGGER.

You

can

use

triggers

that

run

before

an

update

or

insert

in

several

ways:

v

To

check

or

modify

values

before

they

are

actually

updated

or

inserted

in

the

database.

This

is

useful

if

you

need

to

transform

data

from

the

way

the

user

sees

it

to

some

internal

database

format.

v

To

run

other

non-database

operations

coded

in

user-defined

functions.

Similarly,

you

can

use

triggers

that

run

after

an

update

or

insert

in

several

ways:

v

To

update

data

in

other

tables.

This

capability

is

useful

for

maintaining

relationships

between

data

or

in

keeping

audit

trail

information.

v

To

check

against

other

data

in

the

table

or

in

other

tables.

This

capability

is

useful

to

ensure

data

integrity

when

referential

integrity

constraints

aren’t

appropriate,

or

when

table

check

constraints

limit

checking

to

the

current

table

only.

22

Programming

Client

Applications

v

To

run

non-database

operations

coded

in

user-defined

functions.

This

capability

is

useful

when

issuing

alerts

or

to

update

information

outside

the

database.

You

gain

several

benefits

using

triggers:

Faster

application

development

Triggers

are

stored

in

the

database,

and

are

available

to

all

applications,

which

relieves

you

of

the

need

to

code

equivalent

functions

for

each

application.

Global

enforcement

of

business

rules

Triggers

are

defined

once,

and

are

used

by

all

applications

that

use

the

data

governed

by

the

triggers.

Easier

maintenance

Any

changes

need

to

be

made

only

once

in

the

database

instead

of

in

every

application

that

uses

a

trigger.

Related

concepts:

v

“Triggers

in

application

development”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Trigger

creation

guidelines”

in

the

Application

Development

Guide:

Programming

Server

Applications

Chapter

1.

Overview

of

Supported

Programming

Interfaces

23

24

Programming

Client

Applications

Chapter

2.

Coding

a

DB2

Application

Prerequisites

for

Programming

.

.

.

.

.

.

.

. 25

DB2

Application

Coding

Overview

.

.

.

.

.

. 26

Programming

a

Standalone

Application

.

.

.

. 26

Creating

the

Declaration

Section

of

a

Standalone

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Declaring

Variables

That

Interact

with

the

Database

Manager

.

.

.

.

.

.

.

.

.

.

. 27

Declaring

Variables

That

Represent

SQL

Objects

28

Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator

.

.

.

.

.

.

.

.

.

. 29

Relating

Host

Variables

to

an

SQL

Statement

.

. 30

Declaring

the

SQLCA

for

Error

Handling

.

.

. 31

Error

Handling

Using

the

WHENEVER

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Adding

Non-Executable

Statements

to

an

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Connecting

an

Application

to

a

Database

.

.

. 33

Coding

Transactions

.

.

.

.

.

.

.

.

.

. 34

Ending

a

Transaction

with

the

COMMIT

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Ending

a

Transaction

with

the

ROLLBACK

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Ending

an

Application

Program

.

.

.

.

.

. 37

Implicit

Ending

of

a

Transaction

in

a

Standalone

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Application

Pseudocode

Framework

.

.

.

.

. 38

Facilities

for

Prototyping

SQL

Statements

.

.

. 39

Administrative

APIs

in

Embedded

SQL

or

DB2

CLI

Programs

.

.

.

.

.

.

.

.

.

.

.

. 40

Controlling

Data

Values

and

Relationships

.

.

.

. 40

Data

Value

Control

.

.

.

.

.

.

.

.

.

.

. 40

Data

Value

Control

Using

Data

Types

.

.

.

. 41

Data

Value

Control

Using

Unique

Constraints

.

. 41

Data

Value

Control

Using

Table

Check

Constraints

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Data

Value

Control

Using

Referential

Integrity

Constraints

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Data

Value

Control

Using

Views

with

Check

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Data

Value

Control

Using

Application

Logic

and

Program

Variable

Types

.

.

.

.

.

.

.

.

. 42

Data

Relationship

Control

.

.

.

.

.

.

.

. 42

Data

Relationship

Control

Using

Referential

Integrity

Constraints

.

.

.

.

.

.

.

.

.

. 43

Data

Relationship

Control

Using

Triggers

.

.

. 43

Data

Relationship

Control

Using

Before

Triggers

44

Data

Relationship

Control

Using

After

Triggers

44

Data

Relationship

Control

Using

Application

Logic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Application

Logic

at

the

Server

.

.

.

.

.

.

. 45

Authorization

Considerations

for

SQL

and

APIs

.

. 46

Authorization

Considerations

for

Embedded

SQL

46

Authorization

Considerations

for

Dynamic

SQL

47

Authorization

Considerations

for

Static

SQL

.

. 48

Authorization

Considerations

for

APIs

.

.

.

. 48

Testing

the

Application

.

.

.

.

.

.

.

.

.

. 48

Setting

up

the

Test

Environment

for

an

Application

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Setting

up

a

Testing

Environment

.

.

.

.

. 49

Creating

Test

Tables

and

Views

.

.

.

.

.

. 49

Generating

Test

Data

.

.

.

.

.

.

.

.

. 50

Debugging

and

Optimizing

an

Application

.

.

. 52

Prerequisites

for

Programming

Before

developing

an

application,

you

require

the

appropriate

operating

environment.

The

following

must

also

be

properly

installed

and

configured:

v

A

supported

compiler

or

interpreter

for

developing

your

applications.

v

DB2

Universal

Database,

either

locally

or

remotely.

v

DB2

Application

Development

Client.

You

can

develop

applications

at

a

server

or

on

any

client

that

has

the

DB2

Application

Development

Client

installed.

You

can

run

applications

with

either

the

server,

the

DB2

Run-Time

Client,

or

the

DB2

Administrative

Client.

You

can

also

develop

Java™

JDBC

programs

on

one

of

these

clients,

provided

that

you

install

the

″Java

Enablement″

component

when

you

install

the

client.

That

means

you

can

execute

any

DB2

application

on

these

clients.

However,

unless

you

also

install

the

DB2

Application

Development

Client

with

these

clients,

you

can

only

develop

JDBC

applications

on

them.

DB2®

supports

the

C,

C++,

Java

(SQLJ),

COBOL,

and

FORTRAN

programming

languages

through

its

precompilers.

In

addition,

DB2

provides

support

for

the

Perl,

Java

(JDBC),

and

REXX

dynamically

interpreted

languages

©

Copyright

IBM

Corp.

1997

-

2004

25

Note:

FORTRAN

and

REXX

support

stabilized

in

DB2

Version

5,

and

no

enhancements

for

FORTRAN

or

REXX

support

are

planned

for

the

future.

DB2

provides

a

sample

database,

which

you

require

to

run

the

supplied

sample

programs.

Related

tasks:

v

“Setting

up

the

application

development

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Setting

up

the

sample

database”

in

the

Application

Development

Guide:

Building

and

Running

Applications

DB2

Application

Coding

Overview

The

sections

that

follow

provide

an

overview

of

coding

a

DB2

application.

Programming

a

Standalone

Application

A

standalone

application

is

an

application

that

does

not

call

database

objects,

such

as

stored

procedures,

when

it

executes.

When

you

write

the

application,

you

must

ensure

that

certain

SQL

statements

appear

at

the

beginning

and

end

of

the

program

to

handle

the

transition

from

the

host

language

to

the

embedded

SQL

statements.

Procedure:

To

program

a

standalone

application,

you

must

ensure

that

you:

1.

Create

the

declaration

section.

2.

Connect

to

the

database.

3.

Write

one

or

more

transactions.

4.

End

each

transaction

using

either

of

the

following

methods:

v

Commit

the

changes

made

by

the

application

to

the

database.

v

Roll

back

the

changes

made

by

the

application

to

the

database.
5.

End

the

program.

Related

concepts:

v

“Prerequisites

for

Programming”

on

page

25

v

“Application

Pseudocode

Framework”

on

page

38

v

“Facilities

for

Prototyping

SQL

Statements”

on

page

39

v

“Sample

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

tasks:

v

“Creating

the

Declaration

Section

of

a

Standalone

Application”

on

page

27

v

“Connecting

an

Application

to

a

Database”

on

page

33

v

“Coding

Transactions”

on

page

34

v

“Ending

a

Transaction

with

the

COMMIT

Statement”

on

page

35

v

“Ending

a

Transaction

with

the

ROLLBACK

Statement”

on

page

36

v

“Ending

an

Application

Program”

on

page

37

v

“Setting

up

a

Testing

Environment”

on

page

49

26

Programming

Client

Applications

Creating

the

Declaration

Section

of

a

Standalone

Application

The

beginning

of

every

program

must

contain

a

declaration

section,

which

contains:

v

Declarations

of

all

variables

and

data

structures

that

the

database

manager

uses

to

interact

with

the

host

program

v

SQL

statements

that

provide

for

error

handling

by

setting

up

the

SQL

Communications

Area

(SQLCA)

Note

that

DB2

applications

written

in

Java

throw

an

SQLException,

which

you

handle

in

a

catch

block,

rather

than

using

the

SQLCA.

A

program

may

contain

multiple

SQL

declare

sections.

Procedure:

To

create

the

declaration

section:

1.

Use

the

SQL

statement

BEGIN

DECLARE

SECTION

to

open

the

section.

2.

Code

your

declarations

3.

Use

the

SQL

statement

END

DECLARE

SECTION

to

end

the

section.

Related

tasks:

v

“Declaring

Variables

That

Interact

with

the

Database

Manager”

on

page

27

v

“Declaring

Variables

That

Represent

SQL

Objects”

on

page

28

v

“Relating

Host

Variables

to

an

SQL

Statement”

on

page

30

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Declaring

the

SQLCA

for

Error

Handling”

on

page

31

Declaring

Variables

That

Interact

with

the

Database

Manager

All

variables

that

interact

with

the

database

manager

must

be

declared

in

the

SQL

declare

section.

Host

program

variables

declared

in

an

SQL

declare

section

are

called

host

variables.

You

can

use

host

variables

in

host-variable

references

in

SQL

statements.

The

host-variable

tag

is

used

in

syntax

diagrams

in

SQL

statements.

Procedure:

To

declare

a

variable,

code

it

in

the

SQL

declare

section.

An

example

of

a

host

variable

in

C/C++

is

as

follows:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

dept=38,

age=26;

double

salary;

char

CH;

char

name1[9],

NAME2[9];

/*

C

comment

*/

short

nul_ind;

EXEC

SQL

END

DECLARE

SECTION;

The

attributes

of

each

host

variable

depend

on

how

the

variable

is

used

in

the

SQL

statement.

For

example,

variables

that

receive

data

from

or

store

data

in

DB2

tables

must

have

data

type

and

length

attributes

compatible

with

the

column

being

accessed.

To

determine

the

data

type

for

each

variable,

you

must

be

familiar

with

DB2

data

types.

Chapter

2.

Coding

a

DB2

Application

27

Related

reference:

v

“Supported

SQL

Data

Types

in

C

and

C++”

on

page

162

v

“Supported

SQL

Data

Types

in

COBOL”

on

page

190

v

“Supported

SQL

Data

Types

in

FORTRAN”

on

page

206

v

“Supported

SQL

Data

Types

in

REXX”

on

page

502

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Declaring

Variables

That

Represent

SQL

Objects

Declare

the

variables

that

represent

SQL

objects

in

the

SQL

declare

section

of

your

application

program.

Procedure:

Code

the

variable

in

the

appropriate

format

for

the

language

in

which

you

are

writing

your

application

program.

When

you

code

the

variable,

remember

that

the

names

of

tables,

aliases,

views,

and

correlations

have

a

maximum

length

of

128

bytes.

Column

names

have

a

maximum

length

of

30

bytes.

Schema

names

have

a

maximum

length

of

30

bytes.

Future

releases

of

DB2

may

increase

the

lengths

of

column

names

and

other

identifiers

of

SQL

objects

up

to

128

bytes.

If

you

declare

variables

that

represent

SQL

objects

with

less

than

128-byte

lengths,

future

increases

in

SQL

object

identifier

lengths

may

affect

the

stability

of

your

applications.

For

example,

if

you

declare

the

variable

char[9]schema_name

in

a

C++

application

to

hold

a

schema

name,

your

application

functions

properly

for

the

allowed

schema

names

in

DB2

Version

6,

which

have

a

maximum

length

of

8

bytes.

char[9]

schema_name;

/*

holds

null-delimited

schema

name

of

up

to

8

bytes;

works

for

DB2

Version

6,

but

may

truncate

schema

names

in

future

releases

*/

However,

if

you

migrate

the

database

to

a

version

of

DB2

that

accepts

schema

names

with

a

maximum

length

of

30

bytes,

your

application

cannot

differentiate

between

the

schema

names

LONGSCHEMA1

and

LONGSCHEMA2.

The

database

manager

truncates

the

schema

names

to

their

8-byte

limit

of

LONGSCHE,

and

any

statement

in

your

application

that

depends

on

differentiating

the

schema

names

fails.

To

increase

the

longevity

of

your

application,

declare

the

schema

name

variable

with

a

128-byte

length

as

follows:

char[129]

schema_name;

/*

holds

null-delimited

schema

name

of

up

to

128

bytes

good

for

DB2

Version

7

and

beyond

*/

To

improve

the

future

operation

of

your

application,

consider

declaring

all

of

the

variables

in

your

applications

that

represent

SQL

object

names

with

lengths

of

128

bytes.

You

must

weigh

the

advantage

of

improved

compatibility

against

the

increased

system

resources

that

longer

variables

require.

For

C/C++

applications,

you

can

simplify

the

coding

of

declarations

and

increase

the

clarity

of

your

code

by

using

C

macro

expansion

to

declare

the

lengths

of

SQL

object

identifiers.

Because

the

include

file

sql.h

declares

SQL_MAX_IDENT

to

be

128,

you

can

easily

declare

SQL

object

identifiers

with

the

SQL_MAX_IDENT

macro.

For

example:

#include

<sql.h>

char[SQL_MAX_IDENT+1]

schema_name;

char[SQL_MAX_IDENT+1]

table_name;

char[SQL_MAX_IDENT+1]

employee_column;

char[SQL_MAX_IDENT+1]

manager_column;

28

Programming

Client

Applications

Related

concepts:

v

“Host

Variables

in

C

and

C++”

on

page

137

v

“Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

in

C

and

C++”

on

page

140

v

“C

Macro

Expansion”

on

page

149

v

“Host

Variables

in

COBOL”

on

page

180

v

“Host

Variables

in

FORTRAN”

on

page

200

v

“Host

Variables

in

REXX”

on

page

497

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

C

and

C++”

on

page

139

v

“Syntax

for

Variable-Length

Character

Host

Variables

in

C

or

C++”

on

page

141

v

“Syntax

for

Graphic

Declaration

of

Single-Graphic

and

Null-Terminated

Graphic

Forms

in

C

and

C++”

on

page

143

v

“Syntax

for

Graphic

Declaration

of

VARGRAPHIC

Structured

Form

in

C

or

C++”

on

page

145

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++”

on

page

146

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

C

or

C++”

on

page

147

v

“Syntax

for

File

Reference

Host

Variable

Declarations

in

C

or

C++”

on

page

148

v

“Syntax

for

Numeric

Host

Variables

in

COBOL”

on

page

181

v

“Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL”

on

page

182

v

“Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL”

on

page

183

v

“Syntax

for

LOB

Host

Variables

in

COBOL”

on

page

184

v

“Syntax

for

LOB

Locator

Host

Variables

in

COBOL”

on

page

185

v

“Syntax

for

File

Reference

Host

Variables

in

COBOL”

on

page

186

v

“Syntax

for

Numeric

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Character

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN”

on

page

204

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN”

on

page

205

v

“Syntax

for

File

Reference

Host

Variables

in

FORTRAN”

on

page

205

v

“Syntax

for

LOB

Locator

Declarations

in

REXX”

on

page

500

v

“Syntax

for

LOB

File

Reference

Declarations

in

REXX”

on

page

501

Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator

You

can

use

the

Declaration

Generator

to

generate

declarations

for

a

given

table

in

a

database.

It

creates

embedded

SQL

declaration

source

files

which

you

can

easily

insert

into

your

applications.

db2dclgn

supports

the

C/C++,

Java,

COBOL,

and

FORTRAN

languages.

Procedure:

To

generate

declaration

files,

enter

the

db2dclgn

command

in

the

following

format:

db2dclgn

-d

database-name

-t

table-name

[options]

Chapter

2.

Coding

a

DB2

Application

29

For

example,

to

generate

the

declarations

for

the

STAFF

table

in

the

SAMPLE

database

in

C

in

the

output

file

staff.h,

issue

the

following

command:

db2dclgn

-d

sample

-t

staff

-l

C

The

resulting

staff.h

file

contains:

struct

{

short

id;

struct

{

short

length;

char

data[9];

}

name;

short

dept;

char

job[6];

short

years;

double

salary;

double

comm;

}

staff;

Related

reference:

v

“db2dclgn

-

Declaration

Generator

Command”

in

the

Command

Reference

Relating

Host

Variables

to

an

SQL

Statement

You

use

host

variables

to

receive

data

from

the

database

manager

or

to

transfer

data

to

it

from

the

host

program.

Host

variables

that

receive

data

from

the

database

manager

are

output

host

variables,

while

those

that

transfer

data

to

it

from

the

host

program

are

input

host

variables.

Consider

the

following

SELECT

INTO

statement:

SELECT

HIREDATE,

EDLEVEL

INTO

:hdate,

:lvl

FROM

EMPLOYEE

WHERE

EMPNO

=

:idno

The

statement

contains

two

output

host

variables,

hdate

and

lvl,

and

one

input

host

variable,

idno.

The

database

manager

uses

the

data

stored

in

the

host

variable

idno

to

determine

the

EMPNO

of

the

row

that

is

retrieved

from

the

EMPLOYEE

table.

If

the

database

manager

finds

a

row

that

meets

the

search

criteria,

hdate

and

lvl

receive

the

data

stored

in

the

columns

HIREDATE

and

EDLEVEL,

respectively.

This

statement

illustrates

an

interaction

between

the

host

program

and

the

database

manager

using

columns

of

the

EMPLOYEE

table.

Procedure:

To

define

the

host

variable

for

use

with

a

column:

1.

Find

out

the

SQL

data

type

for

that

column.

Do

this

by

querying

the

system

catalog,

which

is

a

set

of

views

containing

information

about

all

tables

created

in

the

database.

2.

Code

the

appropriate

declarations

based

on

the

host

language.

Each

column

of

a

table

is

assigned

a

data

type

in

the

CREATE

TABLE

definition.

You

must

relate

this

data

type

to

the

host

language

data

type.

For

example,

the

INTEGER

data

type

is

a

32-bit

signed

integer.

This

is

equivalent

to

the

following

data

description

entries

in

each

of

the

host

languages,

respectively:

30

Programming

Client

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|

C/C++:

sqlint32

variable_name;

Java:

int

variable_name;

COBOL:

01

variable-name

PICTURE

S9(9)

COMPUTATIONAL-5.

FORTRAN:

INTEGER*4

variable_name

You

can

also

use

the

Declaration

Generator

utility

(db2dclgn)

to

generate

the

appropriate

declarations

for

a

given

table

in

a

database.

Related

concepts:

v

“Catalog

views”

in

the

SQL

Reference,

Volume

1

Related

tasks:

v

“Declaring

Variables

That

Interact

with

the

Database

Manager”

on

page

27

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Creating

the

Declaration

Section

of

a

Standalone

Application”

on

page

27

Related

reference:

v

“Supported

SQL

Data

Types

in

C

and

C++”

on

page

162

v

“Supported

SQL

Data

Types

in

COBOL”

on

page

190

v

“Supported

SQL

Data

Types

in

FORTRAN”

on

page

206

v

“Supported

SQL

Data

Types

in

REXX”

on

page

502

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Declaring

the

SQLCA

for

Error

Handling

You

can

declare

the

SQLCA

in

your

application

program

so

that

the

database

manager

can

return

information

to

your

application.

When

you

preprocess

your

program,

the

database

manager

inserts

host

language

variable

declarations

in

place

of

the

INCLUDE

SQLCA

statement.

The

system

communicates

with

your

program

using

the

variables

for

warning

flags,

error

codes,

and

diagnostic

information.

After

executing

each

SQL

statement,

the

system

returns

a

return

code

in

both

SQLCODE

and

SQLSTATE.

SQLCODE

is

an

integer

value

that

summarizes

the

execution

of

the

statement,

and

SQLSTATE

is

a

character

field

that

provides

common

error

codes

across

IBM’s

relational

database

products.

SQLSTATE

also

conforms

to

the

ISO/ANS

SQL92

and

FIPS

127-2

standard.

Note:

FIPS

127-2

refers

to

Federal

Information

Processing

Standards

Publication

127-2

for

Database

Language

SQL.

ISO/ANS

SQL92

refers

to

American

National

Standard

Database

Language

SQL

X3.135-1992

and

International

Standard

ISO/IEC

9075:1992,

Database

Language

SQL.

Note

that

if

SQLCODE

is

less

than

0,

it

means

an

error

has

occurred

and

the

statement

has

not

been

processed.

If

the

SQLCODE

is

greater

than

0,

it

means

a

warning

has

been

issued,

but

the

statement

is

still

processed.

For

a

DB2

application

written

in

C

or

C++,

if

the

application

is

made

up

of

multiple

source

files,

only

one

of

the

files

should

include

the

EXEC

SQL

INCLUDE

Chapter

2.

Coding

a

DB2

Application

31

|
|
|
|

SQLCA

statement

to

avoid

multiple

definitions

of

the

SQLCA.

The

remaining

source

files

should

use

the

following

lines:

#include

"sqlca.h"

extern

struct

sqlca

sqlca;

Procedure:

To

declare

the

SQLCA,

code

the

INCLUDE

SQLCA

statement

in

your

program

as

follows:

v

For

C

or

C++

applications

use:

EXEC

SQL

INCLUDE

SQLCA;

v

For

Java

applications,

you

do

not

explicitly

use

the

SQLCA.

Instead,

use

the

SQLException

instance

methods

to

get

the

SQLSTATE

and

SQLCODE

values.

v

For

COBOL

applications

use:

EXEC

SQL

INCLUDE

SQLCA

END-EXEC.

v

For

FORTRAN

applications

use:

EXEC

SQL

INCLUDE

SQLCA

If

your

application

must

be

compliant

with

the

ISO/ANS

SQL92

or

FIPS

127-2

standard,

do

not

use

the

above

statements

or

the

INCLUDE

SQLCA

statement.

Related

concepts:

v

“Error

Handling

Using

the

WHENEVER

Statement”

on

page

32

v

“SQLSTATE

and

SQLCODE

Variables

in

C

and

C++”

on

page

168

v

“SQLSTATE

and

SQLCODE

Variables

in

COBOL”

on

page

193

v

“SQLSTATE

and

SQLCODE

Variables

in

FORTRAN”

on

page

208

v

“SQLSTATE

and

SQLCODE

Variables

in

Perl”

on

page

491

Related

tasks:

v

“Creating

the

Declaration

Section

of

a

Standalone

Application”

on

page

27

Error

Handling

Using

the

WHENEVER

Statement

The

WHENEVER

statement

causes

the

precompiler

to

generate

source

code

that

directs

the

application

to

go

to

a

specified

label

if

either

an

error,

a

warning,

or

no

rows

are

found

during

execution.

The

WHENEVER

statement

affects

all

subsequent

executable

SQL

statements

until

another

WHENEVER

statement

alters

the

situation.

The

WHENEVER

statement

has

three

basic

forms:

EXEC

SQL

WHENEVER

SQLERROR

action

EXEC

SQL

WHENEVER

SQLWARNING

action

EXEC

SQL

WHENEVER

NOT

FOUND

action

In

the

above

statements:

SQLERROR

Identifies

any

condition

where

SQLCODE

<

0.

SQLWARNING

Identifies

any

condition

where

SQLWARN(0)

=

W

or

SQLCODE

>

0

but

is

not

equal

to

100.

32

Programming

Client

Applications

NOT

FOUND

Identifies

any

condition

where

SQLCODE

=

100.

In

each

case,

the

action

can

be

either

of

the

following:

CONTINUE

Indicates

to

continue

with

the

next

instruction

in

the

application.

GO

TO

label

Indicates

to

go

to

the

statement

immediately

following

the

label

specified

after

GO

TO.

(GO

TO

can

be

two

words,

or

one

word,

GOTO.)

If

the

WHENEVER

statement

is

not

used,

the

default

action

is

to

continue

processing

if

an

error,

warning,

or

exception

condition

occurs

during

execution.

The

WHENEVER

statement

must

appear

before

the

SQL

statements

you

want

to

affect.

Otherwise,

the

precompiler

does

not

know

that

additional

error-handling

code

should

be

generated

for

the

executable

SQL

statements.

You

can

have

any

combination

of

the

three

basic

forms

active

at

any

time.

The

order

in

which

you

declare

the

three

forms

is

not

significant.

To

avoid

an

infinite

looping

situation,

ensure

that

you

undo

the

WHENEVER

handling

before

any

SQL

statements

are

executed

inside

the

handler.

You

can

do

this

using

the

WHENEVER

SQLERROR

CONTINUE

statement.

Related

reference:

v

“WHENEVER

statement”

in

the

SQL

Reference,

Volume

2

Adding

Non-Executable

Statements

to

an

Application

If

you

need

to

include

non-executable

SQL

statements

in

an

application

program,

you

typically

put

them

in

the

declaration

section

of

the

application.

Examples

of

non-executable

statements

are

the

INCLUDE,

INCLUDE

SQLDA,

and

DECLARE

CURSOR

statements.

Procedure:

If

you

want

to

use

the

non-executable

statement

INCLUDE

in

your

application,

code

it

as

follows:

INCLUDE

text-file-name

Related

tasks:

v

“Creating

the

Declaration

Section

of

a

Standalone

Application”

on

page

27

Connecting

an

Application

to

a

Database

Your

program

must

establish

a

connection

to

the

target

database

before

it

can

run

any

executable

SQL

statements.

This

connection

identifies

both

the

authorization

ID

of

the

user

who

is

running

the

program,

and

the

name

of

the

database

server

on

which

the

program

is

run.

Generally,

your

application

process

can

only

connect

to

one

database

server

at

a

time.

This

server

is

called

the

current

server.

However,

your

application

can

connect

to

multiple

database

servers

within

a

multisite

update

environment.

In

this

case,

only

one

server

can

be

the

current

server.

Restrictions:

Chapter

2.

Coding

a

DB2

Application

33

The

following

restrictions

apply:

v

A

connection

lasts

until

a

CONNECT

RESET,

CONNECT

TO,

or

DISCONNECT

statement

is

issued.

v

In

a

multisite

update

environment,

a

connection

also

lasts

until

a

DB2

RELEASE

then

DB2

COMMIT

is

issued.

A

CONNECT

TO

statement

does

not

terminate

a

connection

when

using

multisite

update.

Procedure:

Your

program

can

establish

a

connection

to

a

database

server

either:

v

Explicitly,

using

the

CONNECT

statement

v

Implicitly,

connecting

to

the

default

database

server

v

For

Java

applications,

through

a

Connection

instance

See

the

CONNECT

statement

description

for

a

discussion

of

connection

states

and

how

to

use

the

CONNECT

statement.

Upon

initialization,

the

application

requester

establishes

a

default

database

server.

If

implicit

connects

are

enabled,

application

processes

started

after

initialization

connect

implicitly

to

the

default

database

server.

It

is

good

practice

to

use

the

CONNECT

statement

as

the

first

SQL

statement

executed

by

an

application

program.

An

explicit

CONNECT

avoids

accidentally

executing

SQL

statements

against

the

default

database.

Related

concepts:

v

“Multisite

Update”

on

page

627

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

Coding

Transactions

A

transaction

is

a

sequence

of

SQL

statements

(possibly

with

intervening

host

language

code)

that

the

database

manager

treats

as

a

whole.

An

alternative

term

that

is

often

used

for

transaction

is

unit

of

work.

Prerequisites:

A

connection

must

be

established

with

the

database

against

which

the

transaction

will

execute.

Procedure:

To

code

a

transaction:

1.

Start

the

transaction

with

an

executable

SQL

statement.

After

the

connection

to

the

database

is

established,

your

program

can

issue

one

or

more:

v

Data

manipulation

statements

(for

example,

the

SELECT

statement)

v

Data

definition

statements

(for

example,

the

CREATE

statement)

v

Data

control

statements

(for

example,

the

GRANT

statement)

An

executable

SQL

statement

always

occurs

within

a

transaction.

If

a

program

contains

an

executable

SQL

statement

after

a

transaction

ends,

it

automatically

starts

a

new

transaction.

34

Programming

Client

Applications

Note:

The

following

six

statements

do

not

start

a

transaction

because

they

are

not

executable

statements:

v

BEGIN

DECLARE

SECTION

v

INCLUDE

SQLCA

v

END

DECLARE

SECTION

v

INCLUDE

SQLDA

v

DECLARE

CURSOR

v

WHENEVER
2.

End

the

transaction

in

either

of

the

following

ways:

v

COMMIT

the

transaction

v

ROLLBACK

the

transaction

Related

tasks:

v

“Ending

a

Transaction

with

the

COMMIT

Statement”

on

page

35

v

“Ending

a

Transaction

with

the

ROLLBACK

Statement”

on

page

36

Ending

a

Transaction

with

the

COMMIT

Statement

The

COMMIT

statement

ends

the

current

transaction

and

makes

the

database

changes

performed

during

the

transaction

visible

to

other

processes.

Procedure:

Commit

changes

as

soon

as

application

requirements

permit.

In

particular,

write

your

programs

so

that

uncommitted

changes

are

not

held

while

waiting

for

input

from

a

terminal,

as

this

can

result

in

database

resources

being

held

for

a

long

time.

Holding

these

resources

prevents

other

applications

that

need

these

resources

from

running.

Your

application

programs

should

explicitly

end

any

transactions

before

terminating.

If

you

do

not

end

transactions

explicitly,

DB2

automatically

commits

all

the

changes

made

during

the

program’s

pending

transaction

when

the

program

ends

successfully,

except

on

Windows

operating

systems.

On

Windows

operating

systems,

if

you

do

not

explicitly

commit

the

transaction,

the

database

manager

always

rolls

back

the

changes.

DB2

rolls

back

the

changes

under

the

following

conditions:

v

A

log

full

condition

v

Any

other

system

condition

that

causes

database

manager

processing

to

end

The

COMMIT

statement

has

no

effect

on

the

contents

of

host

variables.

Related

concepts:

v

“Implicit

Ending

of

a

Transaction

in

a

Standalone

Application”

on

page

37

v

“Return

Codes”

on

page

99

v

“Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields”

on

page

100

Related

tasks:

Chapter

2.

Coding

a

DB2

Application

35

v

“Ending

an

Application

Program”

on

page

37

Related

reference:

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

Ending

a

Transaction

with

the

ROLLBACK

Statement

To

ensure

the

consistency

of

data

at

the

transaction

level,

the

database

manager

ensures

that

either

all

operations

within

a

transaction

are

completed,

or

none

are

completed.

Suppose,

for

example,

that

the

program

is

supposed

to

deduct

money

from

one

account

and

add

it

to

another.

If

you

place

both

of

these

updates

in

a

single

transaction,

and

a

system

failure

occurs

while

they

are

in

progress,

when

you

restart

the

system

the

database

manager

automatically

performs

crash

recovery

to

restore

the

data

to

the

state

it

was

in

before

the

transaction

began.

If

a

program

error

occurs,

the

database

manager

restores

all

changes

made

by

the

statement

in

error.

The

database

manager

will

not

undo

work

performed

in

the

transaction

prior

to

execution

of

the

statement

in

error,

unless

you

specifically

roll

it

back.

Procedure:

To

prevent

the

changes

that

were

effected

by

the

transaction

from

being

committed

to

the

database,

issue

the

ROLLBACK

statement

to

end

the

transaction.

The

ROLLBACK

statement

returns

the

database

to

the

state

it

was

in

before

the

transaction

ran.

Note:

On

Windows

operating

systems,

if

you

do

not

explicitly

commit

the

transaction,

the

database

manager

always

rolls

back

the

changes.

If

you

use

a

ROLLBACK

statement

in

a

routine

that

was

entered

because

of

an

error

or

warning

and

you

use

the

SQL

WHENEVER

statement,

then

you

should

specify

WHENEVER

SQLERROR

CONTINUE

and

WHENEVER

SQLWARNING

CONTINUE

before

the

ROLLBACK.

This

avoids

a

program

loop

if

the

ROLLBACK

fails

with

an

error

or

warning.

In

the

event

of

a

severe

error,

you

will

receive

a

message

indicating

that

you

cannot

issue

a

ROLLBACK

statement.

Do

not

issue

a

ROLLBACK

statement

if

a

severe

error

occurs

such

as

the

loss

of

communications

between

the

client

and

server

applications,

or

if

the

database

gets

corrupted.

After

a

severe

error,

the

only

statement

you

can

issue

is

a

CONNECT

statement.

The

ROLLBACK

statement

has

no

effect

on

the

contents

of

host

variables.

You

can

code

one

or

more

transactions

within

a

single

application

program,

and

it

is

possible

to

access

more

than

one

database

from

within

a

single

transaction.

A

transaction

that

accesses

more

than

one

database

is

called

a

multisite

update.

Related

concepts:

v

“Implicit

Ending

of

a

Transaction

in

a

Standalone

Application”

on

page

37

v

“Remote

Unit

of

Work”

on

page

627

v

“Multisite

Update”

on

page

627

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

36

Programming

Client

Applications

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

v

“WHENEVER

statement”

in

the

SQL

Reference,

Volume

2

Ending

an

Application

Program

End

an

application

program

to

clean

up

resources

that

the

program

was

using.

Procedure:

To

properly

end

your

program:

1.

End

the

current

transaction

(if

one

is

in

progress)

by

explicitly

issuing

either

a

COMMIT

statement

or

a

ROLLBACK

statement.

2.

Release

your

connection

to

the

database

server

by

using

the

CONNECT

RESET

statement.

3.

Clean

up

resources

used

by

the

program.

For

example,

free

any

temporary

storage

or

data

structures

that

are

used.

Note:

If

the

current

transaction

is

still

active

when

the

program

terminates,

DB2

implicitly

ends

the

transaction.

Because

DB2’s

behavior

when

it

implicitly

ends

a

transaction

is

platform

specific,

you

should

explicitly

end

all

transactions

by

issuing

a

COMMIT

or

a

ROLLBACK

statement

before

the

program

terminates.

Related

concepts:

v

“Implicit

Ending

of

a

Transaction

in

a

Standalone

Application”

on

page

37

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

Implicit

Ending

of

a

Transaction

in

a

Standalone

Application

If

your

program

terminates

without

ending

the

current

transaction,

DB2®

implicitly

ends

the

current

transaction.

DB2

implicitly

terminates

the

current

transaction

by

issuing

either

a

COMMIT

or

a

ROLLBACK

statement

when

the

application

ends.

Whether

DB2

issues

a

COMMIT

or

ROLLBACK

depends

on

factors

such

as:

v

Whether

the

application

terminated

normally

On

most

supported

operating

systems,

DB2

implicitly

commits

a

transaction

if

the

termination

is

normal,

or

implicitly

rolls

back

the

transaction

if

it

is

abnormal.

Note

that

what

your

program

considers

to

be

an

abnormal

termination

may

not

be

considered

abnormal

by

the

database

manager.

For

example,

you

may

code

exit(-16)

when

your

application

encounters

an

unexpected

error

and

terminate

your

application

abruptly.

The

database

manager

considers

this

to

be

a

normal

termination

and

commits

the

transaction.

The

database

manager

considers

items

such

as

an

exception

or

a

segmentation

violation

as

abnormal

terminations.

v

The

platform

on

which

the

DB2

server

runs

On

Windows®

32-bit

operating

systems,

DB2

always

rolls

back

the

transaction

regardless

of

whether

your

application

terminates

normally

or

abnormally.

If

you

want

the

transaction

to

be

committed,

you

must

issue

the

COMMIT

statement

explicitly.

Chapter

2.

Coding

a

DB2

Application

37

v

Whether

the

application

uses

the

DB2

context

APIs

for

multiple-thread

database

access

If

your

application

uses

these,

DB2

implicitly

rolls

back

the

transaction

whether

your

application

terminates

normally

or

abnormally.

Unless

you

explicitly

commit

the

transaction

using

the

COMMIT

statement,

DB2

rolls

back

the

transaction.

Related

concepts:

v

“Purpose

of

Multiple-Thread

Database

Access”

on

page

169

Related

tasks:

v

“Ending

an

Application

Program”

on

page

37

Related

reference:

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

Application

Pseudocode

Framework

The

following

example

summarizes

the

general

framework

for

a

DB2

application

program

in

pseudocode

format.

You

must,

of

course,

tailor

this

framework

to

suit

your

own

program.

Start

Program

EXEC

SQL

BEGIN

DECLARE

SECTION

|

DECLARE

USERID

FIXED

CHARACTER

(8)

|

DECLARE

PW

FIXED

CHARACTER

(8)

|

|

Application

(other

host

variable

declarations)

|

Setup

|

EXEC

SQL

END

DECLARE

SECTION

|

EXEC

SQL

INCLUDE

SQLCA

|

EXEC

SQL

WHENEVER

SQLERROR

GOTO

ERRCHK

|

(program

logic)

EXEC

SQL

CONNECT

TO

database

A

USER

:userid

USING

:pw

|

EXEC

SQL

SELECT

...

|

EXEC

SQL

INSERT

...

|

First

Unit

(more

SQL

statements)

|

of

Work

EXEC

SQL

COMMIT

|

(more

program

logic)

EXEC

SQL

CONNECT

TO

database

B

USER

:userid

USING

:pw

|

EXEC

SQL

SELECT

...

|

EXEC

SQL

DELETE

...

|

Second

Unit

(more

SQL

statements)

|

of

Work

EXEC

SQL

COMMIT

|

(more

program

logic)

EXEC

SQL

CONNECT

TO

database

A

|

EXEC

SQL

SELECT

...

|

EXEC

SQL

DELETE

...

|

Third

Unit

(more

SQL

statements)

|

of

Work

EXEC

SQL

COMMIT

|

(more

program

logic)

EXEC

SQL

CONNECT

RESET

|

ERRCHK

|

38

Programming

Client

Applications

|

Application

(check

error

information

in

SQLCA)

|

Cleanup

|

End

Program

Related

tasks:

v

“Programming

a

Standalone

Application”

on

page

26

Facilities

for

Prototyping

SQL

Statements

As

you

design

and

code

your

application,

you

can

take

advantage

of

certain

database

manager

features

and

utilities

to

prototype

portions

of

your

SQL

code,

and

to

improve

performance.

For

example,

you

can

do

the

following:

v

Use

the

Control

Center

or

the

command

line

processor

(CLP)

to

test

many

SQL

statements

before

you

attempt

to

compile

and

link

a

complete

program.

This

allows

you

to

define

and

manipulate

information

stored

in

a

database

table,

index,

or

view.

You

can

add,

delete,

or

update

information

as

well

as

generate

reports

from

the

contents

of

tables.

Note

that

you

have

to

minimally

change

the

syntax

for

some

SQL

statements

in

order

to

use

host

variables

in

your

embedded

SQL

program.

Host

variables

are

used

to

store

data

that

is

output

to

your

screen.

In

addition,

some

embedded

SQL

statements

(such

as

BEGIN

DECLARE

SECTION)

are

not

supported

by

the

Command

Center

or

CLP

as

they

are

not

relevant

to

that

environment.

You

can

also

redirect

the

input

and

output

of

command

line

processor

requests.

For

example,

you

could

create

one

or

more

files

containing

SQL

statements

you

need

as

input

into

a

command

line

processor

request,

to

save

retyping

the

statement.

v

Use

the

Explain

facility

to

get

an

idea

of

the

estimated

costs

of

the

DELETE,

INSERT,

UPDATE,

or

SELECT

statements

you

plan

to

use

in

your

program.

The

Explain

facility

places

the

information

about

the

structure

and

the

estimated

costs

of

the

subject

statement

into

user

supplied

tables.

You

can

view

this

information

using

Visual

Explain

or

the

db2exfmt

utility.

v

Use

the

system

catalog

views

to

easily

retrieve

information

about

existing

databases.

The

database

manager

creates

and

maintains

the

system

catalog

tables

on

which

the

views

are

based

during

normal

operation

as

databases

are

created,

altered,

and

updated.

These

views

contain

data

about

each

database,

including

authorities

granted,

column

names,

data

types,

indexes,

package

dependencies,

referential

constraints,

table

names,

views,

and

so

on.

Data

in

the

system

catalog

views

is

available

through

normal

SQL

query

facilities.

You

can

update

some

system

catalog

views

containing

statistical

information

used

by

the

SQL

optimizer.

You

may

change

some

columns

in

these

views

to

influence

the

optimizer

or

to

investigate

the

performance

of

hypothetical

databases.

You

can

use

this

method

to

simulate

a

production

system

on

your

development

or

test

system

and

analyze

how

queries

perform.

Related

concepts:

v

“Catalog

views”

in

the

SQL

Reference,

Volume

1

v

“Catalog

statistics

tables”

in

the

Administration

Guide:

Performance

v

“Catalog

statistics

for

modeling

and

what-if

planning”

in

the

Administration

Guide:

Performance

v

“General

rules

for

updating

catalog

statistics

manually”

in

the

Administration

Guide:

Performance

v

“SQL

explain

facility”

in

the

Administration

Guide:

Performance

Chapter

2.

Coding

a

DB2

Application

39

v

“DB2

Universal

Database

tools

for

developing

applications”

on

page

3

Related

reference:

v

Appendix

A,

“Supported

SQL

Statements,”

on

page

685

Administrative

APIs

in

Embedded

SQL

or

DB2

CLI

Programs

Your

application

can

use

APIs

to

access

database

manager

facilities

that

are

not

available

using

SQL

statements.

You

can

use

the

DB2®

APIs

to:

v

Manipulate

the

database

manager

environment,

which

includes

cataloging

and

uncataloging

databases

and

nodes,

and

scanning

database

and

node

directories.

You

can

also

use

APIs

to

create,

delete,

and

migrate

databases.

v

Provide

facilities

to

import

and

export

data,

and

administer,

backup,

and

restore

the

database.

v

Modify

the

database

manager

and

database

configuration

parameter

values.

v

Provide

operations

specific

to

the

client/server

environment.

v

Provide

the

run-time

interface

for

precompiled

SQL

statements.

These

APIs

are

not

usually

called

directly

by

the

programmer.

Instead,

they

are

inserted

into

the

modified

source

file

by

the

precompiler

after

processing.

The

database

manager

includes

APIs

for

language

vendors

who

want

to

write

their

own

precompiler,

and

other

APIs

useful

for

developing

applications.

Related

concepts:

v

“Authorization

Considerations

for

APIs”

on

page

48

Controlling

Data

Values

and

Relationships

The

sections

that

follow

describe

how

to

control

data

values

and

data

relationships.

Data

Value

Control

One

traditional

area

of

application

logic

is

validating

and

protecting

data

integrity

by

controlling

the

values

allowed

in

the

database.

Applications

have

logic

that

specifically

checks

data

values

as

they

are

entered

for

validity.

(For

example,

checking

that

the

department

number

is

a

valid

number

and

that

it

refers

to

an

existing

department.)

There

are

several

different

ways

of

providing

these

same

capabilities

in

DB2®,

but

from

within

the

database.

Related

concepts:

v

“Data

Value

Control

Using

Data

Types”

on

page

41

v

“Data

Value

Control

Using

Unique

Constraints”

on

page

41

v

“Data

Value

Control

Using

Table

Check

Constraints”

on

page

41

v

“Data

Value

Control

Using

Referential

Integrity

Constraints”

on

page

41

v

“Data

Value

Control

Using

Views

with

Check

Option”

on

page

42

v

“Data

Value

Control

Using

Application

Logic

and

Program

Variable

Types”

on

page

42

40

Programming

Client

Applications

Data

Value

Control

Using

Data

Types

The

database

stores

every

data

element

in

a

column

of

a

table,

and

defines

each

column

with

a

data

type.

This

data

type

places

certain

limits

on

the

types

of

values

for

the

column.

For

example,

an

integer

must

be

a

number

within

a

fixed

range.

The

use

of

the

column

in

SQL

statements

must

conform

to

certain

behaviors;

for

instance,

the

database

does

not

compare

an

integer

to

a

character

string.

DB2®

includes

a

set

of

built-in

data

types

with

defined

characteristics

and

behaviors.

DB2

also

supports

defining

your

own

data

types,

called

user-defined

distinct

types,

that

are

based

on

the

built-in

types

but

do

not

automatically

support

all

the

behaviors

of

the

built-in

type.

You

can

also

use

data

types,

like

binary

large

object

(BLOB),

to

store

data

that

may

consist

of

a

set

of

related

values,

such

as

a

data

structure.

Related

concepts:

v

“User-defined

distinct

types”

in

the

Application

Development

Guide:

Programming

Server

Applications

Data

Value

Control

Using

Unique

Constraints

Unique

constraints

prevent

occurrences

of

duplicate

values

in

one

or

more

columns

within

a

table.

Unique

and

primary

keys

are

the

supported

unique

constraints.

For

example,

you

can

define

a

unique

constraint

on

the

DEPTNO

column

in

the

DEPARTMENT

table

to

ensure

that

the

same

department

number

is

not

given

to

two

departments.

Use

unique

constraints

if

you

need

to

enforce

a

uniqueness

rule

for

all

applications

that

use

the

data

in

a

table.

Related

tasks:

v

“Defining

a

unique

constraint”

in

the

Administration

Guide:

Implementation

v

“Adding

a

unique

constraint”

in

the

Administration

Guide:

Implementation

Data

Value

Control

Using

Table

Check

Constraints

You

can

use

a

table

check

constraint

to

define

restrictions,

beyond

those

of

the

data

type,

on

the

values

that

are

allowed

for

a

column

in

the

table.

Table

check

constraints

take

the

form

of

range

checks

or

checks

against

other

values

in

the

same

row

of

the

same

table.

If

the

rule

applies

for

all

applications

that

use

the

data,

use

a

table

check

constraint

to

enforce

your

restriction

on

the

data

allowed

in

the

table.

Table

check

constraints

make

the

restriction

generally

applicable

and

easier

to

maintain.

Related

tasks:

v

“Defining

a

table

check

constraint”

in

the

Administration

Guide:

Implementation

v

“Adding

a

table

check

constraint”

in

the

Administration

Guide:

Implementation

Data

Value

Control

Using

Referential

Integrity

Constraints

Use

referential

integrity

(RI)

constraints

if

you

must

maintain

value-based

relationships

for

all

applications

that

use

the

data.

For

example,

you

can

use

an

RI

constraint

to

ensure

that

the

value

of

a

DEPTNO

column

in

an

EMPLOYEE

table

matches

a

value

in

the

DEPARTMENT

table.

This

constraint

prevents

inserts,

Chapter

2.

Coding

a

DB2

Application

41

updates

or

deletes

that

would

otherwise

result

in

missing

DEPARTMENT

information.

By

centralizing

your

rules

in

the

database,

RI

constraints

make

the

rules

generally

applicable

and

easier

to

maintain.

Related

concepts:

v

“Constraints”

in

the

SQL

Reference,

Volume

1

v

“Data

Relationship

Control

Using

Referential

Integrity

Constraints”

on

page

43

v

“Referential

Integrity

Differences

among

IBM

Relational

Database

Systems”

on

page

697

Data

Value

Control

Using

Views

with

Check

Option

If

your

application

cannot

define

the

desired

rules

as

table

check

constraints,

or

the

rules

do

not

apply

to

all

uses

of

the

data,

there

is

another

alternative

to

placing

the

rules

in

the

application

logic.

You

can

consider

creating

a

view

of

the

table

with

the

conditions

on

the

data

as

part

of

the

WHERE

clause

and

the

WITH

CHECK

OPTION

clause

specified.

This

view

definition

restricts

the

retrieval

of

data

to

the

set

that

is

valid

for

your

application.

Additionally,

if

you

can

update

the

view,

the

WITH

CHECK

OPTION

clause

restricts

updates,

inserts,

and

deletes

to

the

rows

applicable

to

your

application.

Related

reference:

v

“CREATE

VIEW

statement”

in

the

SQL

Reference,

Volume

2

Data

Value

Control

Using

Application

Logic

and

Program

Variable

Types

When

you

write

your

application

logic

in

a

programming

language,

you

also

declare

variables

to

provide

some

of

the

same

restrictions

on

data

that

are

described

in

other

topics

about

data

value

control.

In

addition,

you

can

choose

to

write

code

to

enforce

rules

in

the

application

instead

of

the

database.

Place

the

logic

in

the

application

server

when:

v

The

rules

are

not

generally

applicable,

except

in

the

case

of

views

that

use

the

WITH

CHECK

OPTION

v

You

do

not

have

control

over

the

definitions

of

the

data

in

the

database

v

You

believe

the

rule

can

be

more

effectively

handled

in

the

application

logic

For

example,

processing

errors

on

input

data

in

the

order

that

they

are

entered

may

be

required,

but

cannot

be

guaranteed

from

the

order

of

operations

within

the

database.

Related

concepts:

v

“Data

Value

Control

Using

Views

with

Check

Option”

on

page

42

Data

Relationship

Control

A

major

area

of

focus

in

application

logic

is

in

the

area

of

managing

the

relationships

between

different

logical

entities

in

your

system.

For

example,

if

you

add

a

new

department,

then

you

need

to

create

a

new

account

code.

DB2®

provides

two

methods

of

managing

the

relationships

between

different

objects

in

your

database:

referential

integrity

constraints

and

triggers.

Related

concepts:

42

Programming

Client

Applications

v

“Data

Relationship

Control

Using

Referential

Integrity

Constraints”

on

page

43

v

“Data

Relationship

Control

Using

Triggers”

on

page

43

v

“Data

Relationship

Control

Using

Before

Triggers”

on

page

44

v

“Data

Relationship

Control

Using

After

Triggers”

on

page

44

v

“Data

Relationship

Control

Using

Application

Logic”

on

page

44

Data

Relationship

Control

Using

Referential

Integrity

Constraints

Referential

integrity

(RI)

constraints,

considered

from

the

perspective

of

data

relationship

control,

allow

you

to

control

the

relationships

between

data

in

more

than

one

table.

Use

the

CREATE

TABLE

or

ALTER

TABLE

statements

to

define

the

behavior

of

operations

that

affect

the

related

primary

key,

such

as

DELETE

and

UPDATE.

RI

constraints

enforce

your

rules

on

the

data

across

one

or

more

tables.

If

the

rules

apply

for

all

applications

that

use

the

data,

then

RI

constraints

centralize

the

rules

in

the

database.

This

makes

the

rules

generally

applicable

and

easier

to

maintain.

Related

concepts:

v

“Constraints”

in

the

SQL

Reference,

Volume

1

Related

tasks:

v

“Defining

referential

constraints”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“ALTER

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Data

Relationship

Control

Using

Triggers

You

can

use

triggers

before

or

after

an

update

to

support

logic

that

can

also

be

performed

in

an

application.

If

the

rules

or

operations

supported

by

the

triggers

apply

for

all

applications

that

use

the

data,

then

triggers

centralize

the

rules

or

operations

in

the

database,

making

it

generally

applicable

and

easier

to

maintain.

Related

concepts:

v

“Data

Relationship

Control

Using

Before

Triggers”

on

page

44

v

“Data

Relationship

Control

Using

After

Triggers”

on

page

44

v

“DB2

Triggers”

on

page

22

Related

tasks:

v

“Creating

a

trigger”

in

the

Administration

Guide:

Implementation

v

“Creating

triggers”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Chapter

2.

Coding

a

DB2

Application

43

Data

Relationship

Control

Using

Before

Triggers

By

using

triggers

that

run

before

an

update

or

insert,

values

that

are

being

updated

or

inserted

can

be

modified

before

the

database

is

actually

modified.

These

can

be

used

to

transform

input

from

the

application

(user

view

of

the

data)

to

an

internal

database

format

where

desired.

These

before

triggers

can

also

be

used

to

cause

other

non-database

operations

to

be

activated

through

user-defined

functions.

Related

concepts:

v

“Data

Relationship

Control

Using

After

Triggers”

on

page

44

v

“DB2

Triggers”

on

page

22

Related

tasks:

v

“Creating

a

trigger”

in

the

Administration

Guide:

Implementation

v

“Creating

triggers”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Data

Relationship

Control

Using

After

Triggers

Triggers

that

run

after

an

update,

insert,

or

delete

can

be

used

in

several

ways:

v

Triggers

can

update,

insert,

or

delete

data

in

the

same

or

other

tables.

This

is

useful

to

maintain

relationships

between

data

or

to

keep

audit

trail

information.

v

Triggers

can

check

data

against

values

of

data

in

the

rest

of

the

table

or

in

other

tables.

This

is

useful

when

you

cannot

use

RI

constraints

or

check

constraints

because

of

references

to

data

from

other

rows

from

this

or

other

tables.

v

Triggers

can

use

user-defined

functions

to

activate

non-database

operations.

This

is

useful,

for

example,

for

issuing

alerts

or

updating

information

outside

the

database.

Related

concepts:

v

“Data

Relationship

Control

Using

Before

Triggers”

on

page

44

v

“DB2

Triggers”

on

page

22

Related

tasks:

v

“Creating

a

trigger”

in

the

Administration

Guide:

Implementation

v

“Creating

triggers”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Data

Relationship

Control

Using

Application

Logic

You

may

decide

to

write

code

to

enforce

rules

or

perform

related

operations

in

the

application

instead

of

the

database.

You

must

do

this

for

cases

where

you

cannot

generally

apply

the

rules

to

the

database.

You

may

also

choose

to

place

the

logic

in

44

Programming

Client

Applications

the

application

when

you

do

not

have

control

over

the

definitions

of

the

data

in

the

database

or

you

believe

the

application

logic

can

handle

the

rules

or

operations

more

efficiently.

Related

concepts:

v

“Application

Logic

at

the

Server”

on

page

45

Application

Logic

at

the

Server

A

final

aspect

of

application

design

for

which

DB2®

offers

additional

capability

is

running

some

of

your

application

logic

at

the

database

server.

Usually

you

will

choose

this

design

to

improve

performance,

but

you

may

also

run

application

logic

at

the

server

to

support

common

functions.

You

can

use

the

following:

v

Stored

procedures

A

stored

procedure

is

a

routine

for

your

application

that

is

called

from

the

client

application

logic,

but

runs

on

the

database

server.

The

most

common

reason

to

use

a

stored

procedure

is

for

database-intensive

processing

that

produces

only

small

amounts

of

result

data.

This

can

save

a

large

amount

of

communications

across

the

network

during

the

execution

of

the

stored

procedure.

You

may

also

consider

using

a

stored

procedure

for

a

set

of

operations

that

are

common

to

multiple

applications.

In

this

way,

all

the

applications

use

the

same

logic

to

perform

the

operation.

v

User-defined

functions

You

can

write

a

user-defined

function

(UDF)

for

use

in

performing

operations

within

an

SQL

statement

to

return:

–

A

single

scalar

value

(scalar

function)

–

A

table

from

a

non-DB2

data

source,

for

example,

an

ASCII

file

or

a

Web

page

(table

function)

UDFs

are

useful

for

tasks

like

transforming

data

values,

performing

calculations

on

one

or

more

data

values,

or

extracting

parts

of

a

value

(such

as

extracting

parts

of

a

large

object).

v

Triggers

Triggers

can

be

used

to

invoke

user-defined

functions.

This

is

useful

when

you

always

want

a

certain

non-SQL

operation

performed

when

specific

statements

occur,

or

data

values

are

changed.

Examples

include

such

operations

as

issuing

an

electronic

mail

message

under

specific

circumstances

or

writing

alert

type

information

to

a

file.

Related

concepts:

v

“Data

Relationship

Control

Using

Before

Triggers”

on

page

44

v

“Data

Relationship

Control

Using

After

Triggers”

on

page

44

v

“Guidelines

for

stored

procedures”

in

the

Administration

Guide:

Performance

v

“Trigger

interactions

with

referential

constraints”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“DB2

Stored

Procedures”

on

page

18

v

“DB2

User-Defined

Functions

and

Methods”

on

page

19

v

“DB2

Triggers”

on

page

22

Related

tasks:

Chapter

2.

Coding

a

DB2

Application

45

v

“Creating

a

trigger”

in

the

Administration

Guide:

Implementation

v

“Creating

triggers”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

Authorization

Considerations

for

SQL

and

APIs

The

sections

that

follow

describe

the

general

authorization

considerations

for

embedded

SQL,

and

the

authorization

considerations

for

static

and

dynamic

SQL,

and

for

APIs.

Authorization

Considerations

for

Embedded

SQL

An

authorization

allows

a

user

or

group

to

perform

a

general

task

such

as

connecting

to

a

database,

creating

tables,

or

administering

a

system.

A

privilege

gives

a

user

or

group

the

right

to

access

one

specific

database

object

in

a

specified

way.

DB2®

uses

a

set

of

privileges

to

provide

protection

for

the

information

that

you

store

in

it.

Most

SQL

statements

require

some

type

of

privilege

on

the

database

objects

which

the

statement

utilizes.

Most

API

calls

usually

do

not

require

any

privilege

on

the

database

objects

which

the

call

utilizes,

however,

many

APIs

require

that

you

possess

the

necessary

authority

in

order

to

invoke

them.

The

DB2

APIs

enable

you

to

perform

the

DB2

administrative

functions

from

within

your

application

program.

For

example,

to

recreate

a

package

stored

in

the

database

without

the

need

for

a

bind

file,

you

can

use

the

sqlarbnd

(or

REBIND)

API.

When

you

design

your

application,

consider

the

privileges

your

users

will

need

to

run

the

application.

The

privileges

required

by

your

users

depend

on:

v

Whether

your

application

uses

dynamic

SQL,

including

JDBC

and

DB2

CLI,

or

static

SQL.

For

information

about

the

privileges

required

to

issue

a

statement,

see

the

description

of

that

statement.

v

Which

APIs

the

application

uses.

For

information

about

the

privileges

and

authorities

required

for

an

API

call,

see

the

description

of

that

API.

Consider

two

users,

PAYROLL

and

BUDGET,

who

need

to

perform

queries

against

the

STAFF

table.

PAYROLL

is

responsible

for

paying

the

employees

of

the

company,

so

it

needs

to

issue

a

variety

of

SELECT

statements

when

issuing

paychecks.

PAYROLL

needs

to

be

able

to

access

each

employee’s

salary.

BUDGET

is

responsible

for

determining

how

much

money

is

needed

to

pay

the

salaries.

BUDGET

should

not,

however,

be

able

to

see

any

particular

employee’s

salary.

Because

PAYROLL

issues

many

different

SELECT

statements,

the

application

you

design

for

PAYROLL

could

probably

make

good

use

of

dynamic

SQL.

The

dynamic

SQL

would

require

that

PAYROLL

have

SELECT

privilege

on

the

STAFF

table.

This

requirement

is

not

a

problem

because

PAYROLL

requires

full

access

to

the

table.

BUDGET,

on

the

other

hand,

should

not

have

access

to

each

employee’s

salary.

This

means

that

you

should

not

grant

SELECT

privilege

on

the

STAFF

table

to

BUDGET.

Because

BUDGET

does

need

access

to

the

total

of

all

the

salaries

in

the

STAFF

table,

you

could

build

a

static

SQL

application

to

execute

a

SELECT

SUM(SALARY)

FROM

STAFF,

bind

the

application

and

grant

the

EXECUTE

46

Programming

Client

Applications

privilege

on

your

application’s

package

to

BUDGET.

This

enables

BUDGET

to

obtain

the

required

information,

without

exposing

the

information

that

BUDGET

should

not

see.

Related

concepts:

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

47

v

“Authorization

Considerations

for

Static

SQL”

on

page

48

v

“Authorization

Considerations

for

APIs”

on

page

48

v

“Authorization”

in

the

Administration

Guide:

Planning

Authorization

Considerations

for

Dynamic

SQL

To

use

dynamic

SQL

in

a

package

bound

with

DYNAMICRULES

RUN

(default),

the

person

who

runs

a

dynamic

SQL

application

must

have

the

privileges

necessary

to

issue

each

SQL

request

performed,

as

well

as

the

EXECUTE

privilege

on

the

package.

The

privileges

may

be

granted

to

the

user’s

authorization

ID,

to

any

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

If

you

bind

the

application

with

the

DYNAMICRULES

BIND

option,

DB2

associates

your

authorization

ID

with

the

application

packages.

This

allows

any

user

who

runs

the

application

to

inherit

the

privileges

associated

with

your

authorization

ID.

If

the

program

contains

no

static

SQL,

the

person

binding

the

application

(for

embedded

dynamic

SQL

applications)

only

needs

the

BINDADD

authority

on

the

database.

Again,

this

privilege

can

be

granted

to

the

user’s

authorization

ID,

to

a

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

When

a

package

exhibits

bind

or

define

behavior,

the

user

that

runs

the

application

needs

only

the

EXECUTE

privilege

on

the

package

to

run

it.

At

run-time,

the

binder

of

a

package

that

exhibits

bind

behavior

must

have

the

privileges

necessary

to

execute

all

the

dynamic

statements

generated

by

the

package,

because

all

authorization

checking

for

dynamic

statements

is

done

using

the

ID

of

the

binder

and

not

the

executors.

Similarly,

the

definer

of

a

routine

whose

package

exhibits

define

behavior

must

have

all

the

privileges

necessary

to

execute

all

the

dynamic

statements

generated

by

the

define

behavior

package.

If

you

have

SYSADM

or

DBADM

authority

and

create

a

bind

behavior

package,

consider

using

the

OWNER

BIND

option

to

designate

a

different

authorization

ID.

The

OWNER

BIND

option

prevents

a

package

from

automatically

inheriting

SYSADM

or

DBADM

privileges

within

dynamic

SQL

statements.

For

more

information

on

the

DYNAMICRULES

and

OWNER

bind

options,

refer

to

the

BIND

command.

For

more

information

on

package

behaviors,

see

the

description

of

DYNAMICRULES

effects

on

dynamic

SQL

statements.

Related

concepts:

v

“Authorization

Considerations

for

Embedded

SQL”

on

page

46

v

“Authorization

Considerations

for

Static

SQL”

on

page

48

v

“Authorization

Considerations

for

APIs”

on

page

48

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

Chapter

2.

Coding

a

DB2

Application

47

Authorization

Considerations

for

Static

SQL

To

use

static

SQL,

the

user

running

the

application

only

needs

the

EXECUTE

privilege

on

the

package.

No

privileges

are

required

for

each

of

the

statements

that

make

up

the

package.

The

EXECUTE

privilege

may

be

granted

to

the

user’s

authorization

ID,

to

any

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

Unless

you

specify

the

VALIDATE

RUN

option

when

binding

the

application,

the

authorization

ID

you

use

to

bind

the

application

must

have

the

privileges

necessary

to

perform

all

the

statements

in

the

application.

If

VALIDATE

RUN

was

specified

at

BIND

time,

all

authorization

failures

for

any

static

SQL

within

this

package

will

not

cause

the

BIND

to

fail

and

those

statements

will

be

revalidated

at

run

time.

The

person

binding

the

application

must

always

have

BINDADD

authority.

The

privileges

needed

to

execute

the

statements

must

be

granted

to

the

user’s

authorization

ID

or

to

PUBLIC.

Group

privileges

are

not

used

when

binding

static

SQL

statements.

As

with

dynamic

SQL,

the

BINDADD

privilege

can

be

granted

to

the

user

authorization

ID,

to

a

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

These

properties

of

static

SQL

give

you

very

precise

control

over

access

to

information

in

DB2®.

Related

concepts:

v

“Authorization

Considerations

for

Embedded

SQL”

on

page

46

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

47

v

“Authorization

Considerations

for

APIs”

on

page

48

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

Authorization

Considerations

for

APIs

Most

of

the

APIs

provided

by

DB2®

do

not

require

the

use

of

privileges,

however,

many

do

require

some

kind

of

authority

to

invoke.

For

the

APIs

that

do

require

a

privilege,

the

privilege

must

be

granted

to

the

user

running

the

application.

The

privilege

may

be

granted

to

the

user’s

authorization

ID,

to

any

group

of

which

the

user

is

a

member,

or

to

PUBLIC.

For

information

on

the

required

privilege

and

authority

to

issue

each

API

call,

see

the

description

of

the

API.

Some

APIs

can

be

accessed

via

a

stored

procedure

interface.

For

information

whether

a

specific

API

can

be

accessed

via

a

stored

procedure,

see

the

description

of

that

API.

Related

concepts:

v

“Authorization

Considerations

for

Embedded

SQL”

on

page

46

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

47

v

“Authorization

Considerations

for

Static

SQL”

on

page

48

Testing

the

Application

The

sections

that

follow

describe

how

to

set

up

a

test

environment,

and

how

to

debug

and

optimize

the

application.

48

Programming

Client

Applications

Setting

up

the

Test

Environment

for

an

Application

The

sections

that

follow

describe

how

to

set

up

the

test

environment

for

your

application.

Setting

up

a

Testing

Environment

To

validate

your

application,

you

should

set

up

a

test

environment.

For

example,

you

need

a

database

to

test

your

application’s

SQL

code.

Procedure:

To

set

up

the

test

environment,

do

the

following:

1.

Create

a

test

database.

To

create

a

test

database,

write

a

small

server

application

that

calls

the

CREATE

DATABASE

API,

or

use

the

command

line

processor.

2.

Create

test

tables

and

views.

If

your

application

updates,

inserts,

or

deletes

data

from

tables

and

views,

use

test

data

to

verify

its

execution.

If

the

application

only

retrieves

data

from

tables

and

views,

consider

using

production-level

data

when

testing

it.

3.

Generate

test

data

for

the

tables.

The

input

data

used

to

test

an

application

should

be

valid

data

that

represents

all

possible

input

conditions.

If

the

application

verifies

that

input

data

is

valid,

include

both

valid

and

invalid

data

to

verify

that

the

valid

data

is

processed

and

the

invalid

data

is

flagged.

4.

Debug

and

optimize

the

application.

Related

tasks:

v

“Creating

Test

Tables

and

Views”

on

page

49

v

“Generating

Test

Data”

on

page

50

v

“Debugging

and

Optimizing

an

Application”

on

page

52

Related

reference:

v

“sqlecrea

-

Create

Database”

in

the

Administrative

API

Reference

v

“CREATE

DATABASE

Command”

in

the

Command

Reference

Creating

Test

Tables

and

Views

To

design

the

test

tables

and

views

needed,

first

analyze

the

data

needs

of

the

application.

To

create

a

table,

you

need

the

CREATETAB

authority

and

the

CREATEIN

privilege

on

the

schema.

See

the

CREATE

TABLE

statement

for

alternative

authorities.

Procedure:

To

create

test

tables:

1.

List

the

data

the

application

accesses

and

describe

how

each

data

item

is

accessed.

For

example,

suppose

the

application

being

developed

accesses

the

TEST.TEMPL,

TEST.TDEPT,

and

TEST.TPROJ

tables.

You

could

record

the

type

of

accesses

as

shown

in

the

following

table

Chapter

2.

Coding

a

DB2

Application

49

Table

1.

Description

of

the

Application

Data

Table

or

View

Name

Insert

Rows

Delete

Rows

Column

Name

Data

Type

Update

Access

TEST.TEMPL

No

No

EMPNO

LASTNAME

WORKDEPT

PHONENO

JOBCODE

CHAR(6)

VARCHAR(15)

CHAR(3)

CHAR(4)

DECIMAL(3)

Yes

Yes

Yes

TEST.TDEPT

No

No

DEPTNO

MGRNO

CHAR(3)

CHAR(6)

TEST.TPROJ

Yes

Yes

PROJNO

DEPTNO

RESPEMP

PRSTAFF

PRSTDATE

PRENDATE

CHAR(6)

CHAR(3)

CHAR(6)

DECIMAL(5,2)

DECIMAL(6)

DECIMAL(6)

Yes

Yes

Yes

Yes

Yes

2.

When

the

description

of

the

application

data

access

is

complete,

construct

the

test

tables

and

views

that

are

needed

to

test

the

application:

v

Create

a

test

table

when

the

application

modifies

data

in

a

table

or

a

view.

Create

the

following

test

tables

using

the

CREATE

TABLE

SQL

statement:

–

TEMPL

–

TPROJ
v

Create

a

test

view

when

the

application

does

not

modify

data

in

the

production

database.

In

this

example,

create

a

test

view

of

the

TDEPT

table

using

the

CREATE

VIEW

SQL

statement.
3.

Generate

test

data

for

the

tables.

If

the

database

schema

is

being

developed

along

with

the

application,

the

definitions

of

the

test

tables

might

be

refined

repeatedly

during

the

development

process.

Usually,

the

primary

application

cannot

both

create

the

tables

and

access

them

because

the

database

manager

cannot

bind

statements

that

refer

to

tables

and

views

that

do

not

exist.

To

make

the

process

of

creating

and

changing

tables

less

time-consuming,

consider

developing

a

separate

application

to

create

the

tables.

You

can

also

create

test

tables

interactively

using

the

command

line

processor

(CLP).

After

you

complete

the

procedure,

you

need

to

create

the

related

topics

for

this

task.

Related

tasks:

v

“Generating

Test

Data”

on

page

50

Related

reference:

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Generating

Test

Data

After

creating

the

test

tables,

you

can

populate

them

with

test

data

to

verify

the

data

handling

behavior

of

the

application.

Procedure:

50

Programming

Client

Applications

Use

any

of

the

following

methods

to

insert

data

into

a

table:

v

INSERT...VALUES

(an

SQL

statement)

puts

one

or

more

rows

into

a

table

each

time

the

command

is

issued.

v

INSERT...SELECT

obtains

data

from

an

existing

table

(based

on

a

SELECT

clause)

and

puts

it

into

the

table

identified

with

the

INSERT

statement.

v

The

IMPORT

or

LOAD

utility

inserts

large

amounts

of

new

or

existing

data

from

a

defined

source.

v

The

RESTORE

utility

can

be

used

to

duplicate

the

contents

of

an

existing

database

into

an

identical

test

database

by

using

a

BACKUP

copy

of

the

original

database.

v

The

DB2MOVE

utility

to

move

large

numbers

of

tables

between

DB2

databases

located

on

workstations.

The

following

SQL

statements

demonstrate

a

technique

you

can

use

to

populate

your

tables

with

randomly

generated

test

data.

Suppose

the

table

EMP

contains

four

columns,

ENO

(employee

number),

LASTNAME

(last

name),

HIREDATE

(date

of

hire)

and

SALARY

(employee’s

salary)

as

in

the

following

CREATE

TABLE

statement:

CREATE

TABLE

EMP

(ENO

INTEGER,

LASTNAME

VARCHAR(30),

HIREDATE

DATE,

SALARY

INTEGER);

Suppose

you

want

to

populate

this

table

with

employee

numbers

from

1

to

a

number,

say

100,

with

random

data

for

the

rest

of

the

columns.

You

can

do

this

using

the

following

SQL

statement:

INSERT

INTO

EMP

--

generate

100

records

WITH

DT(ENO)

AS

(VALUES(1)

UNION

ALL

SELECT

ENO+1

FROM

DT

WHERE

ENO

<

100

)

�1�

--

Now,

use

the

generated

records

in

DT

to

create

other

columns

--

of

the

employee

record.

SELECT

ENO,

�2�

TRANSLATE(CHAR(INTEGER(RAND()*1000000)),

�3�

CASE

MOD(ENO,4)

WHEN

0

THEN

’aeiou’

||

’bcdfg’

WHEN

1

THEN

’aeiou’

||

’hjklm’

WHEN

2

THEN

’aeiou’

||

’npqrs’

ELSE

’aeiou’

||

’twxyz’

END,

’1234567890’)

AS

LASTNAME,

CURRENT

DATE

-

(RAND()*10957)

DAYS

AS

HIREDATE,

�4�

INTEGER(10000+RAND()*200000)

AS

SALARY

�5�

FROM

DT;

SELECT

*

FROM

EMP;

The

following

is

an

explanation

of

the

above

statement:

1.

The

first

part

of

the

INSERT

statement

generates

100

records

for

the

first

100

employees

using

a

recursive

subquery

to

generate

the

employee

numbers.

Each

record

contains

the

employee

number.

To

change

the

number

of

employees,

use

a

number

other

than

100.

2.

The

SELECT

statement

generates

the

LASTNAME

column.

It

begins

by

generating

a

random

integer

up

to

6

digits

long

using

the

RAND

function.

It

then

converts

the

integer

to

its

numeric

character

format

using

the

CHAR

function.

3.

To

convert

the

numeric

characters

to

alphabet

characters,

the

statement

uses

the

TRANSLATE

function

to

convert

the

ten

numeric

characters

(0

through

9)

to

alphabet

characters.

Since

there

are

more

than

10

alphabet

characters,

the

Chapter

2.

Coding

a

DB2

Application

51

statement

selects

from

five

different

translations.

This

results

in

names

having

enough

random

vowels

to

be

pronounceable

and

so

the

vowels

are

included

in

each

translation.

4.

The

statement

generates

a

random

HIREDATE

value.

The

value

of

HIREDATE

ranges

back

from

the

current

date

to

30

years

ago.

HIREDATE

is

calculated

by

subtracting

a

random

number

of

days

between

0

and

10

957

from

the

current

date.

(10

957

is

the

number

of

days

in

30

years.)

5.

Finally,

the

statement

randomly

generates

the

SALARY.

The

minimum

salary

is

10

000,

to

which

a

random

number

from

0

to

200

000

is

added.

You

may

also

want

to

consider

prototyping

any

user-defined

functions

(UDF)

you

are

developing

against

the

test

data.

Related

concepts:

v

“Import

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“Load

Overview”

in

the

Data

Movement

Utilities

Guide

and

Reference

v

“DB2

User-Defined

Functions

and

Methods”

on

page

19

Related

tasks:

v

“Debugging

and

Optimizing

an

Application”

on

page

52

Related

reference:

v

“INSERT

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“RESTORE

DATABASE

Command”

in

the

Command

Reference

Debugging

and

Optimizing

an

Application

You

can

debug

and

optimize

your

application

while

you

develop

it.

Procedure:

To

debug

and

optimize

your

application:

v

Prototype

your

SQL

statements.

You

can

use

the

command

line

processor,

the

Explain

facility,

analyze

the

system

catalog

views

for

information

about

the

tables

and

databases

that

your

program

is

manipulating,

and

update

certain

system

catalog

statistics

to

simulate

production

conditions.

v

Use

the

flagger

facility

to

check

the

syntax

of

SQL

statements

in

applications

being

developed

for

DB2

Universal

Database

for

z/OS

and

OS/390,

or

for

conformance

to

the

SQL92

Entry

Level

standard.

This

facility

is

invoked

during

precompilation.

v

Make

full

use

of

the

error-handling

APIs.

For

example,

you

can

use

error-handling

APIs

to

print

all

messages

during

the

testing

phase.

v

Use

the

database

system

monitor

to

capture

certain

optimizing

information

for

analysis.

Related

concepts:

v

“Catalog

statistics

for

modeling

and

what-if

planning”

in

the

Administration

Guide:

Performance

v

“Facilities

for

Prototyping

SQL

Statements”

on

page

39

v

“The

database

system

monitor

information”

in

the

Administration

Guide:

Performance

v

“Source

File

Requirements

for

Embedded

SQL

Applications”

on

page

62

52

Programming

Client

Applications

Part

2.

Embedded

SQL

©

Copyright

IBM

Corp.

1997

-

2004

53

54

Programming

Client

Applications

Chapter

3.

Embedded

SQL

Overview

Embedding

SQL

Statements

in

a

Host

Language

.

. 55

Source

File

Creation

and

Preparation

.

.

.

.

.

. 57

Packages,

binding,

and

embedded

SQL

.

.

.

.

. 59

Package

Creation

for

Embedded

SQL

.

.

.

.

. 59

Precompilation

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

.

.

.

.

. 61

Source

File

Requirements

for

Embedded

SQL

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL

.

.

.

.

.

.

.

. 63

Package

Creation

Using

the

BIND

Command

.

. 64

Package

Versioning

.

.

.

.

.

.

.

.

.

.

. 65

Effect

of

Special

Registers

on

Bound

Dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

CURRENT

PACKAGE

PATH

special

register

for

package

schemas

.

.

.

.

.

.

.

.

.

.

. 66

Resolution

of

Unqualified

Table

Names

.

.

.

. 69

Additional

Considerations

when

Binding

.

.

. 70

Advantages

of

Deferred

Binding

.

.

.

.

.

. 71

Bind

File

Contents

.

.

.

.

.

.

.

.

.

.

. 71

Application,

Bind

File,

and

Package

Relationships

71

Precompiler-Generated

Timestamps

.

.

.

.

. 72

Package

Rebinding

.

.

.

.

.

.

.

.

.

.

. 73

Embedding

SQL

Statements

in

a

Host

Language

You

can

write

applications

with

SQL

statements

embedded

within

a

host

language.

The

SQL

statements

provide

the

database

interface,

while

the

host

language

provides

the

remaining

support

needed

for

the

application

to

execute.

Procedure:

Use

the

examples

in

the

following

table

as

a

guide

on

how

to

embed

SQL

statements

in

a

host

language

application.

In

the

example,

the

application

checks

the

SQLCODE

field

of

the

SQLCA

structure

to

determine

whether

the

update

was

successful.

Table

2.

Embedding

SQL

Statements

in

a

Host

Language

Language

Sample

Source

Code

C/C++

EXEC

SQL

UPDATE

staff

SET

job

=

’Clerk’

WHERE

job

=

’Mgr’;

if

(

SQLCODE

<

0

)

printf(

"Update

Error:

SQLCODE

=

%ld

\n",

SQLCODE

);

Java

(SQLJ)

try

{

#sql

{

UPDATE

staff

SET

job

=

’Clerk’

WHERE

job

=

’Mgr’

};

}

catch

(SQLException

e)

{

println(

"Update

Error:

SQLCODE

=

"

+

e.getErrorCode()

);

}

COBOL

EXEC

SQL

UPDATE

staff

SET

job

=

’Clerk’

WHERE

job

=

’Mgr’

END_EXEC.

IF

SQLCODE

LESS

THAN

0

DISPLAY

’UPDATE

ERROR:

SQLCODE

=

’,

SQLCODE.

FORTRAN

EXEC

SQL

UPDATE

staff

SET

job

=

’Clerk’

WHERE

job

=

’Mgr’

if

(

sqlcode

.lt.

0

)

THEN

write(*,*)

’Update

error:

sqlcode

=

’,

sqlcode

SQL

statements

placed

in

an

application

are

not

specific

to

the

host

language.

The

database

manager

provides

a

way

to

convert

the

SQL

syntax

for

processing

by

the

host

language:

©

Copyright

IBM

Corp.

1997

-

2004

55

|

|

|

v

For

the

C,

C++,

COBOL,

or

FORTRAN

languages,

this

conversion

is

handled

by

the

DB2

precompiler.

The

DB2

precompiler

is

invoked

using

the

PREP

command.

The

precompiler

converts

embedded

SQL

statements

directly

into

DB2

run-time

services

API

calls.

v

For

the

Java

language,

the

SQLJ

translator

converts

SQLJ

clauses

into

JDBC

statements.

The

SQLJ

translator

is

invoked

with

the

sqlj

command.

When

the

precompiler

processes

a

source

file,

it

specifically

looks

for

SQL

statements

and

avoids

the

non-SQL

host

language.

It

can

find

SQL

statements

because

they

are

surrounded

by

special

delimiters.

The

examples

in

the

following

table

show

how

to

use

delimiters

and

comments

to

create

valid

embedded

SQL

statements

in

the

supported

compiled

host

languages.

Table

3.

Embedding

SQL

Statements

in

a

Host

Language

Language

Sample

Source

Code

C/C++

/*

Only

C

or

C++

comments

allowed

here

*/

EXEC

SQL

--

SQL

comments

or

/*

C

comments

or

*/

//

C++

comments

allowed

here

DECLARE

C1

CURSOR

FOR

sname;

/*

Only

C

or

C++

comments

allowed

here

*/

SQLJ

/*

Only

Java

comments

allowed

here

*/

#sql

c1

=

{

--

SQL

comments

or

/*

Java

comments

or

*/

//

Java

comments

allowed

here

SELECT

name

FROM

employee

};

/*

Only

Java

comments

allowed

here

*/

COBOL

*

See

COBOL

documentation

for

comment

rules

*

Only

COBOL

comments

are

allowed

here

EXEC

SQL

--

SQL

comments

or

*

full-line

COBOL

comments

are

allowed

here

DECLARE

C1

CURSOR

FOR

sname

END-EXEC.

*

Only

COBOL

comments

are

allowed

here

FORTRAN

C

Only

FORTRAN

comments

are

allowed

here

EXEC

SQL

+

--

SQL

comments,

and

C

full-line

FORTRAN

comment

are

allowed

here

+

DECLARE

C1

CURSOR

FOR

sname

I=7

!

End

of

line

FORTRAN

comments

allowed

here

C

Only

FORTRAN

comments

are

allowed

here

Related

concepts:

v

“Embedded

SQL

in

REXX

Applications”

on

page

495

v

“Embedded

SQL

Statements

in

C

and

C++”

on

page

135

v

“Embedded

SQL

Statements

in

COBOL”

on

page

178

v

“Embedded

SQL

Statements

in

FORTRAN”

on

page

199

56

Programming

Client

Applications

Source

File

Creation

and

Preparation

You

can

create

the

source

code

in

a

standard

ASCII

file,

called

a

source

file,

using

a

text

editor.

The

source

file

must

have

the

proper

extension

for

the

host

language

in

which

you

write

your

code.

Note:

Not

all

platforms

support

all

host

languages.

For

this

discussion,

assume

that

you

have

already

written

the

source

code.

If

you

have

written

your

application

using

a

compiled

host

language,

you

must

follow

additional

steps

to

build

your

application.

Along

with

compiling

and

linking

your

program,

you

must

precompile

and

bind

it.

Simply

stated,

precompiling

converts

embedded

SQL

statements

into

DB2

run-time

API

calls

that

a

host

compiler

can

process,

and

creates

a

bind

file.

The

bind

file

contains

information

on

the

SQL

statements

in

the

application

program.

The

BIND

command

creates

a

package

in

the

database.

Optionally,

the

precompiler

can

perform

the

bind

step

at

precompile

time.

Binding

is

the

process

of

creating

a

package

from

a

bind

file

and

storing

it

in

a

database.

If

your

application

accesses

more

than

one

database,

you

must

create

a

package

for

each

database.

The

following

figure

shows

the

order

of

these

steps,

along

with

the

various

modules

of

a

typical

compiled

DB2

application.

Chapter

3.

Embedded

SQL

Overview

57

Related

concepts:

v

“Precompilation

of

Source

Files

Containing

Embedded

SQL”

on

page

61

v

“Source

File

Requirements

for

Embedded

SQL

Applications”

on

page

62

v

“Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL”

on

page

63

v

“Embedded

SQL”

on

page

7

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

Source Files

With SQL

Statements

Modified

Source Files

Object

Files

Source Files

Without SQL

Statements

Libraries

Precompiler

(db2 PREP)

PACKAGE

Create a

Package

Host Language Compiler

Host Language Linker

Executable

Program

Database Manager Package (Package)

Bind

File

Binder

(db2 BIND)

BINDFILE

Create a

Bind File

1

2

3

4

6

5

Figure

1.

Preparing

Programs

Written

in

Compiled

Host

Languages

58

Programming

Client

Applications

Packages,

binding,

and

embedded

SQL

The

sections

that

follow

describe

how

to

create

packages

for

embedded

SQL

applications,

as

well

as

other

topics,

such

as

deferred

binding

and

the

relationships

between

the

application,

the

bind

file,

and

the

package.

Package

Creation

for

Embedded

SQL

To

run

applications

written

in

compiled

host

languages,

you

must

create

the

packages

needed

by

the

database

manager

at

execution

time.

This

involves

the

following

steps

as

shown

in

the

following

figure:

Chapter

3.

Embedded

SQL

Overview

59

v

Precompiling

(step

2),

to

convert

embedded

SQL

source

statements

into

a

form

the

database

manager

can

use,

v

Compiling

and

linking

(steps

3

and

4),

to

create

the

required

object

modules,

and,

v

Binding

(step

5),

to

create

the

package

to

be

used

by

the

database

manager

when

the

program

is

run.

Related

concepts:

v

“Precompilation

of

Source

Files

Containing

Embedded

SQL”

on

page

61

v

“Source

File

Requirements

for

Embedded

SQL

Applications”

on

page

62

Source Files

With SQL

Statements

Modified

Source Files

Object

Files

Source Files

Without SQL

Statements

Libraries

Precompiler

(db2 PREP)

PACKAGE

Create a

Package

Host Language Compiler

Host Language Linker

Executable

Program

Database Manager Package (Package)

Bind

File

Binder

(db2 BIND)

BINDFILE

Create a

Bind File

1

2

3

4

6

5

Figure

2.

Preparing

Programs

Written

in

Compiled

Host

Languages

60

Programming

Client

Applications

v

“Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL”

on

page

63

v

“Package

Creation

Using

the

BIND

Command”

on

page

64

v

“Package

Versioning”

on

page

65

v

“Effect

of

Special

Registers

on

Bound

Dynamic

SQL”

on

page

66

v

“Resolution

of

Unqualified

Table

Names”

on

page

69

v

“Additional

Considerations

when

Binding”

on

page

70

v

“Advantages

of

Deferred

Binding”

on

page

71

v

“Application,

Bind

File,

and

Package

Relationships”

on

page

71

v

“Precompiler-Generated

Timestamps”

on

page

72

v

“Package

Rebinding”

on

page

73

Related

reference:

v

“db2bfd

-

Bind

File

Description

Tool

Command”

in

the

Command

Reference

Precompilation

of

Source

Files

Containing

Embedded

SQL

After

you

create

the

source

files,

you

must

precompile

each

host

language

file

containing

SQL

statements

with

the

PREP

command

for

host-language

source

files.

The

precompiler

converts

SQL

statements

contained

in

the

source

file

to

comments,

and

generates

the

DB2

run-time

API

calls

for

those

statements.

Before

precompiling

an

application

you

must

connect

to

a

server,

either

implicitly

or

explicitly.

Although

you

precompile

application

programs

at

the

client

workstation

and

the

precompiler

generates

modified

source

and

messages

on

the

client,

the

precompiler

uses

the

server

connection

to

perform

some

of

the

validation.

The

precompiler

also

creates

the

information

the

database

manager

needs

to

process

the

SQL

statements

against

a

database.

This

information

is

stored

in

a

package,

in

a

bind

file,

or

in

both,

depending

on

the

precompiler

options

selected.

A

typical

example

of

using

the

precompiler

follows.

To

precompile

a

C

embedded

SQL

source

file

called

filename.sqc,

you

can

issue

the

following

command

to

create

a

C

source

file

with

the

default

name

filename.c

and

a

bind

file

with

the

default

name

filename.bnd:

DB2®

PREP

filename.sqc

BINDFILE

The

precompiler

generates

up

to

four

types

of

output:

Modified

Source

This

file

is

the

new

version

of

the

original

source

file

after

the

precompiler

converts

the

SQL

statements

into

DB2

run-time

API

calls.

It

is

given

the

appropriate

host

language

extension.

Package

If

you

use

the

PACKAGE

option

(the

default),

or

do

not

specify

any

of

the

BINDFILE,

SYNTAX,

or

SQLFLAG

options,

the

package

is

stored

in

the

connected

database.

The

package

contains

all

the

information

required

to

execute

the

static

SQL

statements

of

a

particular

source

file

against

this

database

only.

Unless

you

specify

a

different

name

with

the

PACKAGE

USING

option,

the

precompiler

forms

the

package

name

from

the

first

8

characters

of

the

source

file

name.

Chapter

3.

Embedded

SQL

Overview

61

If

you

use

the

PACKAGE

option

without

SQLERROR

CONTINUE,

the

database

used

during

the

precompile

process

must

contain

all

of

the

database

objects

referenced

by

the

static

SQL

statements

in

the

source

file.

For

example,

you

cannot

precompile

a

SELECT

statement

unless

the

table

it

references

exists

in

the

database.

With

the

VERSION

option

the

bindfile,

(if

the

BINDFILE

option

is

used),

and

the

package

(either

if

bound

at

PREP

time

or

if

a

bound

separately)

will

be

designated

with

a

particular

version

identifier.

Many

versions

of

packages

with

the

same

name

and

creator

can

exit

at

once.

Bind

File

If

you

use

the

BINDFILE

option,

the

precompiler

creates

a

bind

file

(with

extension

.bnd)

that

contains

the

data

required

to

create

a

package.

This

file

can

be

used

later

with

the

BIND

command

to

bind

the

application

to

one

or

more

databases.

If

you

specify

BINDFILE

and

do

not

specify

the

PACKAGE

option,

binding

is

deferred

until

you

invoke

the

BIND

command.

Note

that

for

the

command

line

processor

(CLP),

the

default

for

PREP

does

not

specify

the

BINDFILE

option.

Thus,

if

you

are

using

the

CLP

and

want

the

binding

to

be

deferred,

you

need

to

specify

the

BINDFILE

option.

Specifying

SQLERROR

CONTINUE

creates

a

package,

even

if

errors

occur

when

binding

SQL

statements.

Those

statements

that

fail

to

bind

for

authorization

or

existence

reasons

can

be

incrementally

bound

at

execution

time

if

VALIDATE

RUN

is

also

specified.

Any

attempt

to

execute

them

at

run

time

generates

an

error.

Message

File

If

you

use

the

MESSAGES

option,

the

precompiler

redirects

messages

to

the

indicated

file.

These

messages

include

warnings

and

error

messages

that

describe

problems

encountered

during

precompilation.

If

the

source

file

does

not

precompile

successfully,

use

the

warning

and

error

messages

to

determine

the

problem,

correct

the

source

file,

and

then

attempt

to

precompile

the

source

file

again.

If

you

do

not

use

the

MESSAGES

option,

precompilation

messages

are

written

to

the

standard

output.

Related

concepts:

v

“Package

Versioning”

on

page

65

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

Source

File

Requirements

for

Embedded

SQL

Applications

You

must

always

precompile

a

source

file

against

a

specific

database,

even

if

eventually

you

do

not

use

the

database

with

the

application.

In

practice,

you

can

use

a

test

database

for

development,

and

after

you

fully

test

the

application,

you

can

bind

its

bind

file

to

one

or

more

production

databases.

This

practice

is

known

as

deferred

binding.

If

your

application

uses

a

code

page

that

is

not

the

same

as

your

database

code

page,

you

need

to

consider

which

code

page

to

use

when

precompiling.

62

Programming

Client

Applications

If

your

application

uses

user-defined

functions

(UDFs)

or

user-defined

distinct

types

(UDTs),

you

may

need

to

use

the

FUNCPATH

option

when

you

precompile

your

application.

This

option

specifies

the

function

path

that

is

used

to

resolve

UDFs

and

UDTs

for

applications

containing

static

SQL.

If

FUNCPATH

is

not

specified,

the

default

function

path

is

SYSIBM,

SYSFUN,

USER,

where

USER

refers

to

the

current

user

ID.

To

precompile

an

application

program

that

accesses

more

than

one

server,

you

can

do

one

of

the

following:

v

Split

the

SQL

statements

for

each

database

into

separate

source

files.

Do

not

mix

SQL

statements

for

different

databases

in

the

same

file.

Each

source

file

can

be

precompiled

against

the

appropriate

database.

This

is

the

recommended

method.

v

Code

your

application

using

dynamic

SQL

statements

only,

and

bind

against

each

database

your

program

will

access.

v

If

all

the

databases

look

the

same,

that

is,

they

have

the

same

definition,

you

can

group

the

SQL

statements

together

into

one

source

file.

The

same

procedures

apply

if

your

application

will

access

a

host,

AS/400®

or

iSeries

application

server

through

DB2

Connect.

Precompile

it

against

the

server

to

which

it

will

be

connecting,

using

the

PREP

options

available

for

that

server.

If

you

are

precompiling

an

application

that

will

run

on

DB2

Universal

Database

for

z/OS

and

OS/390,

consider

using

the

flagger

facility

to

check

the

syntax

of

the

SQL

statements.

The

flagger

indicates

SQL

syntax

that

is

supported

by

DB2

Universal

Database,

but

not

supported

by

DB2

Universal

Database

for

z/OS

and

OS/390.

You

can

also

use

the

flagger

to

check

that

your

SQL

syntax

conforms

to

the

SQL92

Entry

Level

syntax.

You

can

use

the

SQLFLAG

option

on

the

PREP

command

to

invoke

it

and

to

specify

the

version

of

DB2

Universal

Database

for

z/OS

and

OS/390

SQL

syntax

to

be

used

for

comparison.

The

flagger

facility

will

not

enforce

any

changes

in

SQL

use;

it

only

issues

informational

and

warning

messages

regarding

syntax

incompatibilities,

and

does

not

terminate

preprocessing

abnormally.

Related

concepts:

v

“Advantages

of

Deferred

Binding”

on

page

71

v

“Character

conversion

between

different

code

pages”

on

page

609

v

“When

code

page

conversion

occurs”

on

page

609

v

“Character

Substitutions

During

Code

Page

Conversions”

on

page

610

v

“Supported

Code

Page

Conversions”

on

page

610

v

“Code

Page

Conversion

Expansion

Factor”

on

page

611

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

Compilation

and

Linkage

of

Source

Files

Containing

Embedded

SQL

Compile

the

modified

source

files

and

any

additional

source

files

that

do

not

contain

SQL

statements

using

the

appropriate

host

language

compiler.

The

language

compiler

converts

each

modified

source

file

into

an

object

module.

Chapter

3.

Embedded

SQL

Overview

63

Refer

to

the

programming

documentation

for

your

operating

platform

for

any

exceptions

to

the

default

compiler

options.

Refer

to

your

compiler’s

documentation

for

a

complete

description

of

available

compiler

options.

The

host

language

linker

creates

an

executable

application.

For

example:

v

On

Windows®

operating

systems,

the

application

can

be

an

executable

file

or

a

dynamic

link

library

(DLL).

v

On

UNIX®-based

systems,

the

application

can

be

an

executable

load

module

or

a

shared

library.

Note:

Although

applications

can

be

DLLs

on

Windows

operating

systems,

the

DLLs

are

loaded

directly

by

the

application

and

not

by

the

DB2®

database

manager.

On

Windows

operating

systems,

the

database

manager

can

load

DLLs.

Stored

procedures

are

normally

built

as

DLLs

or

shared

libraries.

To

create

the

executable

file,

link

the

following:

v

User

object

modules,

generated

by

the

language

compiler

from

the

modified

source

files

and

other

files

not

containing

SQL

statements.

v

Host

language

library

APIs,

supplied

with

the

language

compiler.

v

The

database

manager

library

containing

the

database

manager

APIs

for

your

operating

environment.

Refer

to

the

appropriate

programming

documentation

for

your

operating

platform

for

the

specific

name

of

the

database

manager

library

you

need

for

your

database

manager

APIs.

Related

concepts:

v

“DB2

Stored

Procedures”

on

page

18

Related

tasks:

v

“Building

and

Running

REXX

Applications”

on

page

504

v

“Building

JDBC

applets”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

JDBC

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

applets”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

SQLJ

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

C++

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

IBM

COBOL

applications

on

AIX”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

UNIX

Micro

Focus

COBOL

applications”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Package

Creation

Using

the

BIND

Command

Binding

is

the

process

that

creates

the

package

the

database

manager

needs

to

access

the

database

when

the

application

is

executed.

Binding

can

be

done

implicitly

by

specifying

the

PACKAGE

option

during

precompilation,

or

explicitly

by

using

the

BIND

command

against

the

bind

file

created

during

precompilation.

64

Programming

Client

Applications

A

typical

example

of

using

the

BIND

command

follows.

To

bind

a

bind

file

named

filename.bnd

to

the

database,

you

can

issue

the

following

command:

DB2®

BIND

filename.bnd

One

package

is

created

for

each

separately

precompiled

source

code

module.

If

an

application

has

five

source

files,

of

which

three

require

precompilation,

three

packages

or

bind

files

are

created.

By

default,

each

package

is

given

a

name

that

is

the

same

as

the

name

of

the

source

module

from

which

the

.bnd

file

originated,

but

truncated

to

8

characters.

To

explicitly

specify

a

different

package

name,

you

must

use

the

PACKAGE

USING

option

on

the

PREP

command.

The

version

of

a

package

is

given

by

the

VERSION

precompile

option

and

defaults

to

the

empty

string.

If

the

name

and

schema

of

this

newly

created

package

is

the

same

as

a

package

that

currently

exists

in

the

target

database,

but

the

version

identifier

differs,

a

new

package

is

created

and

the

previous

package

still

remains.

However

if

a

package

exists

that

matches

the

name,

schema

and

the

version

of

the

package

being

bound,

then

that

package

is

dropped

and

replaced

with

the

new

package

being

bound

(specifying

ACTION

ADD

on

the

bind

would

prevent

that

and

an

error

(SQL0719)

would

be

returned

instead).

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

Package

Versioning

If

you

need

to

create

multiple

versions

of

an

application,

you

can

use

the

VERSION

option

of

the

PRECOMPILE

command.

This

option

allows

multiple

versions

of

the

same

package

name

(that

is,

the

package

name

and

creator

name)

to

coexist.

For

example,

assume

you

have

an

application

called

foo,

which

is

compiled

from

foo.sqc.

You

would

precompile

and

bind

the

package

foo

to

the

database

and

deliver

the

application

to

the

users.

The

users

could

then

run

the

application.

To

make

subsequent

changes

to

the

application,

you

would

update

foo.sqc,

then

repeat

the

process

of

recompiling,

binding,

and

sending

the

application

to

the

users.

If

the

VERSION

option

was

not

specified

for

either

the

first

or

second

precompilation

of

foo.sqc,

the

first

package

is

replaced

by

the

second

package.

Any

user

who

attempts

to

run

the

old

version

of

the

application

will

receive

the

SQLCODE

-818,

indicating

a

mismatched

timestamp

error.

To

avoid

the

mismatched

timestamp

error

and

in

order

to

allow

both

versions

of

the

application

to

run

at

the

same

time,

use

package

versioning.

As

an

example,

when

you

build

the

first

version

of

foo,

precompile

it

using

the

VERSION

option,

as

follows:

DB2®

PREP

FOO.SQC

VERSION

V1.1

This

first

version

of

the

program

may

now

be

run.

When

you

build

the

new

version

of

foo,

precompile

it

with

the

command:

DB2

PREP

FOO.SQC

VERSION

V1.2

At

this

point

this

new

version

of

the

application

will

also

run,

even

if

there

still

are

instances

of

the

first

application

still

executing.

Because

the

package

version

for

the

first

package

is

V1.1

and

the

package

version

for

the

second

is

V1.2,

no

naming

confict

exists:

both

packages

will

exist

in

the

database

and

both

versions

of

the

application

can

be

used.

Chapter

3.

Embedded

SQL

Overview

65

You

can

use

the

ACTION

option

of

the

PRECOMPILE

or

BIND

commands

in

conjunction

with

the

VERSION

option

of

the

PRECOMPILE

command.

You

use

the

ACTION

option

to

control

the

way

in

which

different

versions

of

packages

can

be

added

or

replaced.

Package

privileges

do

not

have

granularity

at

the

version

level.

That

is,

a

GRANT

or

a

REVOKE

of

a

package

privilege

applies

to

all

versions

of

a

package

that

share

the

name

and

creator.

So,

if

package

privileges

on

package

foo

were

granted

to

a

user

or

a

group

after

version

V1.1

was

created,

when

version

V1.2

is

distributed

the

user

or

group

has

the

same

privileges

on

version

V1.2.

This

behavior

is

usually

required

because

typically

the

same

users

and

groups

have

the

same

privileges

on

all

versions

of

a

package.

If

you

do

not

want

the

same

package

privileges

to

apply

to

all

versions

of

an

application,

you

should

not

use

the

PRECOMPILE

VERSION

option

to

accomplish

package

versioning.

Instead,

you

should

use

different

package

names

(either

by

renaming

the

updated

source

file,

or

by

using

the

PACKAGE

USING

option

to

explicitly

rename

the

package).

Related

concepts:

v

“Precompiler-Generated

Timestamps”

on

page

72

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

Effect

of

Special

Registers

on

Bound

Dynamic

SQL

For

dynamically

prepared

statements,

the

values

of

a

number

of

special

registers

determine

the

statement

compilation

environment:

v

The

CURRENT

QUERY

OPTIMIZATION

special

register

determines

which

optimization

class

is

used.

v

The

CURRENT

PATH

special

register

determines

the

function

path

used

for

UDF

and

UDT

resolution.

v

The

CURRENT

EXPLAIN

SNAPSHOT

register

determines

whether

explain

snapshot

information

is

captured.

v

The

CURRENT

EXPLAIN

MODE

register

determines

whether

explain

table

information

is

captured

for

any

eligible

dynamic

SQL

statement.

The

default

values

for

these

special

registers

are

the

same

defaults

used

for

the

related

bind

options.

Related

reference:

v

“CURRENT

EXPLAIN

MODE

special

register”

in

the

SQL

Reference,

Volume

1

v

“CURRENT

EXPLAIN

SNAPSHOT

special

register”

in

the

SQL

Reference,

Volume

1

v

“CURRENT

PATH

special

register”

in

the

SQL

Reference,

Volume

1

v

“CURRENT

QUERY

OPTIMIZATION

special

register”

in

the

SQL

Reference,

Volume

1

CURRENT

PACKAGE

PATH

special

register

for

package

schemas

Package

schemas

provide

a

method

for

logically

grouping

packages.

Different

approaches

exist

for

grouping

packages

into

schemas.

Some

implementations

use

one

schema

per

environment

(for

example,

a

production

and

a

test

schema).

Other

66

Programming

Client

Applications

|

|

|
|
|

implementations

use

one

schema

per

business

area

(for

example,

stocktrd

and

onlinebnk

schemas),

or

one

schema

per

application

(for

example,

stocktrdAddUser

and

onlinebnkAddUser).

You

can

also

group

packages

for

general

administration

purposes,

or

to

provide

variations

in

the

packages

(for

example,

maintaining

backup

variations

of

applications,

or

testing

new

variations

of

applications).

When

multiple

schemas

are

used

for

packages,

the

database

manager

must

determine

in

which

schema

to

look

for

a

package.

To

accomplish

this

task,

the

database

manager

uses

the

value

of

the

CURRENT

PACKAGESET

special

register.

You

can

set

this

special

register

to

a

single

schema

name

to

indicate

that

any

package

to

be

invoked

belongs

to

that

schema.

If

an

application

uses

packages

in

different

schemas,

a

SET

CURRENT

PACKAGESET

statement

might

have

to

be

issued

before

each

package

is

invoked

if

the

schema

for

the

package

is

different

from

that

of

the

previous

package.

Note:

Only

DB2®

Universal

Database

for

OS/390®

and

z/OS™

has

a

CURRENT

PACKAGESET

special

register,

which

allows

you

to

explicitly

set

the

value

(a

single

schema

name)

with

the

corresponding

SET

CURRENT

PACKAGESET

statement.

Although

DB2

Universal

Database™

for

Linux,

UNIX®,

and

Windows®

has

a

SET

CURRENT

PACKAGESET

statement,

it

does

not

have

a

CURRENT

PACKAGESET

special

register.

This

means

that

CURRENT

PACKAGESET

cannot

be

referenced

in

other

contexts

(such

as

in

a

SELECT

statement)

with

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows.

DB2

Universal

Database

for

AS/00

does

not

provide

support

for

CURRENT

PACKAGESET.

DB2

has

more

flexibility

when

it

can

consider

a

list

of

schemas

during

package

resolution.

The

list

of

schemas

is

similar

to

the

SQL

path

that

is

provided

by

the

CURRENT

PATH

special

register.

The

schema

list

is

used

for

user-defined

functions,

procedures,

methods,

and

distinct

types.

Note:

The

SQL

path

is

a

list

of

schema

names

that

DB2

should

consider

when

trying

to

determine

the

schema

for

an

unqualified

function,

procedure,

method,

or

distinct

type

name.

If

you

need

to

associate

multiple

variations

of

a

package

(that

is,

multiple

sets

of

BIND

options

for

a

package)

with

a

single

compiled

program,

consider

isolating

the

path

of

schemas

that

are

used

for

SQL

objects

from

the

path

of

schemas

that

are

used

for

packages.

The

CURRENT

PACKAGE

PATH

special

register

allows

you

to

specify

a

list

of

package

schemas.

Other

DB2

family

products

provide

similar

capability

with

special

registers

such

as

CURRENT

PATH

and

CURRENT

PACKAGESET,

which

are

pushed

and

popped

for

nested

procedures

and

user-defined

functions

without

corrupting

the

runtime

environment

of

the

invoking

application.

The

CURRENT

PACKAGE

PATH

special

register

provides

this

capability

for

package

schema

resolution.

Many

installations

use

more

than

one

schema

for

packages.

If

you

do

not

specify

a

list

of

package

schemas,

you

must

issue

the

SET

CURRENT

PACKAGESET

statement

(which

can

contain

at

most

one

schema

name)

each

time

you

require

a

package

from

a

different

schema.

If,

however,

you

issue

a

SET

CURRENT

PACKAGE

PATH

statement

at

the

beginning

of

the

application

to

specify

a

list

of

schema

names,

you

do

not

need

to

issue

a

SET

CURRENT

PACKAGESET

statement

each

time

a

package

in

a

different

schema

is

needed.

This

capability

is

especially

useful

if

you

are

building

an

SQLJ

application,

because

the

application

Chapter

3.

Embedded

SQL

Overview

67

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

can

search

a

list

of

package

schemas

without

having

to

issue

a

SET

CURRENT

PACKAGESET

statement

each

time

it

switches

between

SQLJ

and

JDBC.

For

example,

assume

that

the

following

packages

exist,

and,

using

the

following

list,

that

you

want

to

invoke

the

first

one

that

exists

on

the

server:

SCHEMA1.PKG1,

SCHEMA2.PKG2,

SCHEMA3.PKG3,

SCHEMA.PKG,

and

SCHEMA5.PKG5.

Assuming

the

current

support

for

a

SET

CURRENT

PACKAGESET

statement

in

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

(that

is,

accepting

a

single

schema

name),

a

SET

CURRENT

PACKAGESET

statement

would

have

to

be

issued

before

trying

to

invoke

each

package

to

specify

the

specific

schema.

For

this

example,

five

SET

CURRENT

PACKAGESET

statements

would

need

to

be

issued.

However,

using

the

CURRENT

PACKAGE

PATH

special

register,

a

single

SET

statement

is

sufficient.

For

example:

SET

CURRENT

PACKAGE

PATH

=

SCHEMA1,

SCHEMA2,

SCHEMA3,

SCHEMA,

SCHEMA5;

Note:

In

DB2

Universal

Database

for

Linux,

UNIX,

Windows,

you

can

set

the

CURRENT

PACKAGE

PATH

special

register

in

the

db2cli.ini

file,

by

using

the

SQLSetConnectAttr

API,

in

the

SQLE-CLIENT-INFO

structure,

and

by

including

the

SET

CURRENT

PACKAGE

PATH

statement

in

embedded

SQL

programs.

Only

DB2

Universal

Database

for

OS/390

and

z/OS,

Version

8

or

later,

supports

the

SET

CURRENT

PACKAGE

PATH

statement.

If

you

issue

this

statement

against

a

DB2

Universal

Database

for

Linux,

UNIX,

Windows

server

or

against

DB2

Universal

Database

for

AS/00,

-30005

is

returned.

You

can

use

multiple

schemas

to

maintain

several

variations

of

a

package.

These

variations

can

be

a

very

useful

in

helping

to

control

changes

made

in

production

environments.

You

can

also

use

different

variations

of

a

package

to

keep

a

backup

version

of

a

package,

or

a

test

version

of

a

package

(for

example,

to

evaluate

the

impact

of

a

new

index).

A

previous

version

of

a

package

is

used

in

the

same

way

as

a

backup

application

(load

module

or

executable),

specifically,

to

provide

the

ability

to

revert

to

a

previous

version.

For

example,

assume

the

PROD

schema

includes

the

current

packages

used

by

the

production

applications,

and

the

BACKUP

schema

stores

a

backup

copy

of

those

packages.

A

new

version

of

the

application

(and

thus

the

packages)

are

promoted

to

production

by

binding

them

using

the

PROD

schema.

The

backup

copies

of

the

packages

are

created

by

binding

the

current

version

of

the

applications

using

the

backup

schema

(BACKUP).

Then,

at

runtime,

you

can

use

the

SET

CURRENT

PACKAGE

PATH

statement

to

specify

the

order

in

which

the

schemas

should

be

checked

for

the

packages.

Assume

that

a

backup

copy

of

the

application

MYAPPL

has

been

bound

using

the

BACKUP

schema,

and

the

version

of

the

application

currently

in

production

has

been

bound

to

the

PROD

schema

creating

a

package

PROD.MYAPPL.

To

specify

that

the

variation

of

the

package

in

the

PROD

schema

should

be

used

if

it

is

available

(otherwise

the

variation

in

the

BACKUP

schema

is

used),

issue

the

following

SET

statement

for

the

special

register:

SET

CURRENT

PACKAGE

PATH

=

PROD,

BACKUP;

If

you

need

to

revert

to

the

previous

version

of

the

package,

the

production

version

of

the

application

can

be

dropped

with

the

DROP

PACKAGE

statement,

which

causes

the

old

version

of

the

application

(load

module

or

executable)

that

was

bound

using

the

BACKUP

schema

to

be

invoked

instead

(application

path

techniques

could

be

used

here,

specific

to

each

operating

system

platform).

Note:

This

example

assumes

that

the

only

difference

between

the

versions

of

the

package

are

in

the

BIND

options

that

were

used

to

create

the

packages

(that

is,

there

are

no

differences

in

the

executable

code).

68

Programming

Client

Applications

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

The

application

does

not

use

the

SET

CURRENT

PACKAGESET

statement

to

select

the

schema

it

wants.

Instead,

it

allows

DB2

to

pick

up

the

package

by

checking

for

it

in

the

schemas

listed

in

the

CURRENT

PACKAGE

PATH

special

register.

Note:

The

DB2

Universal

Database

for

OS/390

and

z/OS

precompile

process

stores

a

consistency

token

in

the

DBRM

(which

can

be

set

using

the

LEVEL

option),

and

during

package

resolution

a

check

is

made

to

ensure

that

the

consistency

token

in

the

program

matches

the

package.

Similarly,

the

DB2

Universal

Database

for

Linux,

UNIX,

Windows

bind

process

stores

a

timestamp

in

the

bind

file.

DB2

Universal

Database

for

Linux,

UNIX,

Windows

also

supports

a

LEVEL

option.

Another

reason

for

creating

several

versions

of

a

package

in

different

schemas

could

be

to

cause

different

BIND

options

to

be

in

affect.

For

example,

you

can

use

different

qualifiers

for

unqualified

name

references

in

the

package.

Applications

are

often

written

with

unqualified

table

names.

This

supports

multiple

tables

that

have

identical

table

names

and

structures,

but

different

qualifiers

to

distinguish

different

instances.

For

example,

a

test

system

and

a

production

system

might

have

the

same

objects

created

in

each,

but

they

might

have

different

qualifiers

(for

example,

PROD

and

TEST).

Another

example

is

an

application

that

horizontally

partitions

data

into

different

tables

across

different

DB2

systems,

each

with

a

different

qualifier

(for

example,

EAST,

WEST,

NORTH,

SOUTH;

COMPANYA,

COMPANYB;

Y1999,

Y2000,

Y2001.).

With

DB2

Universal

Database

for

OS/390

and

z/OS,

you

specify

the

table

qualifier

using

the

QUALIFIER

option

of

the

BIND

command.

When

you

use

the

QUALIFIER

option,

users

do

not

have

to

maintain

multiple

programs,

each

of

which

specifies

the

fully

qualified

names

that

are

required

to

access

unqualified

tables.

Instead,

the

correct

package

can

be

accessed

at

runtime

by

issuing

the

SET

CURRENT

PACKAGESET

statement

from

the

application,

and

specifying

a

single

schema

name.

However,

if

you

use

SET

CURRENT

PACKAGESET,

multiple

applications

will

still

need

to

be

kept

and

modified:

each

one

with

its

own

SET

CURRENT

PACKAGESET

statement

to

access

the

required

package.

If

you

issue

a

SET

CURRENT

PACKAGE

PATH

statement

instead,

all

of

the

schemas

could

be

listed.

At

execution

time,

DB2

could

choose

the

correct

package.

Note:

DB2

Universal

Database

for

Linux,

UNIX,

Windows

also

supports

a

QUALIFIER

bind

option.

However,

the

QUALIFIER

bind

option

only

affects

static

SQL

or

packages

that

use

the

DYNAMICRULES

option

of

the

BIND

command.

Resolution

of

Unqualified

Table

Names

You

can

handle

unqualified

table

names

in

your

application

by

using

one

of

the

following

methods:

v

For

each

user,

bind

the

package

with

different

COLLECTION

parameters

from

different

authorization

identifiers

by

using

the

following

commands:

CONNECT

TO

db_name

USER

user_name

BIND

file_name

COLLECTION

schema_name

In

the

above

example,

db_name

is

the

name

of

the

database,

user_name

is

the

name

of

the

user,

and

file_name

is

the

name

of

the

application

that

will

be

bound.

Note

that

user_name

and

schema_name

are

usually

the

same

value.

Then

use

the

SET

CURRENT

PACKAGESET

statement

to

specify

which

package

to

use,

and

therefore,

which

qualifiers

will

be

used.

The

default

qualifier

is

the

authorization

identifier

that

is

used

when

binding

the

package.

Chapter

3.

Embedded

SQL

Overview

69

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

v

Create

views

for

each

user

with

the

same

name

as

the

table

so

the

unqualified

table

names

resolve

correctly.

v

Create

an

alias

for

each

user

to

point

to

the

desired

table.

Related

reference:

v

“SET

CURRENT

PACKAGESET

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

Additional

Considerations

when

Binding

If

your

application

code

page

uses

a

different

code

page

from

your

database

code

page,

you

may

need

to

consider

which

code

page

to

use

when

binding.

If

your

application

issues

calls

to

any

of

the

database

manager

utility

APIs,

such

as

IMPORT

or

EXPORT,

you

must

bind

the

supplied

utility

bind

files

to

the

database.

You

can

use

bind

options

to

control

certain

operations

that

occur

during

binding,

as

in

the

following

examples:

v

The

QUERYOPT

bind

option

takes

advantage

of

a

specific

optimization

class

when

binding.

v

The

EXPLSNAP

bind

option

stores

Explain

Snapshot

information

for

eligible

SQL

statements

in

the

Explain

tables.

v

The

FUNCPATH

bind

option

properly

resolves

user-defined

distinct

types

and

user-defined

functions

in

static

SQL.

If

the

bind

process

starts

but

never

returns,

it

may

be

that

other

applications

connected

to

the

database

hold

locks

that

you

require.

In

this

case,

ensure

that

no

applications

are

connected

to

the

database.

If

they

are,

disconnect

all

applications

on

the

server

and

the

bind

process

will

continue.

If

your

application

will

access

a

server

using

DB2

Connect,

you

can

use

the

BIND

options

available

for

that

server.

Bind

files

are

not

backward

compatible

with

previous

versions

of

DB2

Universal

Database.

In

mixed-level

environments,

DB2®

can

only

use

the

functions

available

to

the

lowest

level

of

the

database

environment.

For

example,

if

a

V8

client

connects

to

a

V7.2

server,

the

client

will

only

be

able

to

use

V7.2

functions.

As

bind

files

express

the

functionality

of

the

database,

they

are

subject

to

the

mixed-level

restriction.

If

you

need

to

rebind

higher-level

bind

files

on

lower-level

systems,

you

can:

v

Use

a

lower-level

DB2

Application

Development

Client

to

connect

to

the

higher-level

server

and

create

bind

files

which

can

be

shipped

and

bound

to

the

lower-level

DB2

Universal

Database

environment.

v

Use

a

higher-level

DB2

client

in

the

lower-level

production

environment

to

bind

the

higher-level

bind

files

that

were

created

in

the

test

environment.

The

higher-level

client

passes

only

the

options

that

apply

to

the

lower-level

server.

Related

concepts:

v

“Binding

utilities

to

the

database”

in

the

Administration

Guide:

Implementation

v

“Character

conversion

between

different

code

pages”

on

page

609

v

“Character

Substitutions

During

Code

Page

Conversions”

on

page

610

v

“Code

Page

Conversion

Expansion

Factor”

on

page

611

70

Programming

Client

Applications

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

Advantages

of

Deferred

Binding

Precompiling

with

binding

enabled

allows

an

application

to

access

only

the

database

used

during

the

precompile

process.

Precompiling

with

binding

deferred,

however,

allows

an

application

to

access

many

databases,

because

you

can

bind

the

BIND

file

against

each

one.

This

method

of

application

development

is

inherently

more

flexible

in

that

applications

are

precompiled

only

once,

but

the

application

can

be

bound

to

a

database

at

any

time.

Using

the

BIND

API

during

execution

allows

an

application

to

bind

itself,

perhaps

as

part

of

an

installation

procedure

or

before

an

associated

module

is

executed.

For

example,

an

application

can

perform

several

tasks,

only

one

of

which

requires

the

use

of

SQL

statements.

You

can

design

the

application

to

bind

itself

to

a

database

only

when

the

application

calls

the

task

requiring

SQL

statements,

and

only

if

an

associated

package

does

not

already

exist.

Another

advantage

of

the

deferred

binding

method

is

that

it

lets

you

create

packages

without

providing

source

code

to

end

users.

You

can

ship

the

associated

bind

files

with

the

application.

Related

reference:

v

“sqlabndx

-

Bind”

in

the

Administrative

API

Reference

Bind

File

Contents

With

the

DB2®

Bind

File

Description

(db2bfd)

utility,

you

can

easily

display

the

contents

of

a

bind

file

to

examine

and

verify

the

SQL

statements

within

it,

as

well

as

display

the

precompile

options

used

to

create

the

bind

file.

This

may

be

useful

in

problem

determination

related

to

your

application’s

bind

file.

Related

reference:

v

“db2bfd

-

Bind

File

Description

Tool

Command”

in

the

Command

Reference

Application,

Bind

File,

and

Package

Relationships

A

package

is

an

object

stored

in

the

database

that

includes

information

needed

to

execute

specific

SQL

statements

in

a

single

source

file.

A

database

application

uses

one

package

for

every

precompiled

source

file

used

to

build

the

application.

Each

package

is

a

separate

entity,

and

has

no

relationship

to

any

other

packages

used

by

the

same

or

other

applications.

Packages

are

created

by

running

the

precompiler

against

a

source

file

with

binding

enabled,

or

by

running

the

binder

at

a

later

time

with

one

or

more

bind

files.

Database

applications

use

packages

for

some

of

the

same

reasons

that

applications

are

compiled:

improved

performance

and

compactness.

By

precompiling

an

SQL

statement,

the

statement

is

compiled

into

the

package

when

the

application

is

built,

instead

of

at

run

time.

Each

statement

is

parsed,

and

a

more

efficiently

interpreted

operand

string

is

stored

in

the

package.

At

run

time,

the

code

generated

by

the

precompiler

calls

run-time

services

database

manager

APIs

with

any

variable

information

required

for

input

or

output

data,

and

the

information

stored

in

the

package

is

executed.

Chapter

3.

Embedded

SQL

Overview

71

The

advantages

of

precompilation

apply

only

to

static

SQL

statements.

SQL

statements

that

are

executed

dynamically

(using

PREPARE

and

EXECUTE

or

EXECUTE

IMMEDIATE)

are

not

precompiled;

therefore,

they

must

go

through

the

entire

set

of

processing

steps

at

run

time.

Note:

Do

not

assume

that

a

static

version

of

an

SQL

statement

automatically

executes

faster

than

the

same

statement

processed

dynamically.

In

some

cases,

static

SQL

is

faster

because

of

the

overhead

required

to

prepare

the

dynamic

statement.

In

other

cases,

the

same

statement

prepared

dynamically

executes

faster,

because

the

optimizer

can

make

use

of

current

database

statistics,

rather

than

the

database

statistics

available

at

an

earlier

bind

time.

Note

that

if

your

transaction

takes

less

than

a

couple

of

seconds

to

complete,

static

SQL

will

generally

be

faster.

To

choose

which

method

to

use,

you

should

prototype

both

forms

of

binding.

Related

concepts:

v

“Dynamic

SQL

Versus

Static

SQL”

on

page

104

Precompiler-Generated

Timestamps

When

generating

a

package

or

a

bind

file,

the

precompiler

generates

a

timestamp.

The

timestamp

is

stored

in

the

bind

file

or

package

and

in

the

modified

source

file.

The

timestamp

is

also

known

as

the

consistency

token.

When

an

application

is

precompiled

with

binding

enabled,

the

package

and

modified

source

file

are

generated

with

timestamps

that

match.

If

multiple

versions

of

a

package

exist

(by

using

the

PRECOMPILE

VERSION

option),

each

version

will

have

with

it

an

associated

timestamp.

When

the

application

is

run,

the

package

name,

creator

and

timestamp

are

sent

to

the

database

manager,

which

checks

for

a

package

whose

name,

creator

and

timestamp

match

that

sent

by

the

application.

If

such

a

match

does

not

exist,

one

of

the

two

following

SQL

error

codes

is

returned

to

the

application:

v

SQL0818N

(timestamp

conflict).

This

error

is

returned

if

a

single

package

is

found

that

matches

the

name

and

creator

(but

not

the

consistency

token),

and

the

package

has

a

version

of

″″

(an

empty

string)

v

SQL0805N

(package

not

found).

This

error

is

returned

in

all

other

situations.

Remember

that

when

you

bind

an

application

to

a

database,

the

first

eight

characters

of

the

application

name

are

used

as

the

package

name

unless

you

override

the

default

by

using

the

PACKAGE

USING

option

on

the

PREP

command.

As

well

the

version

ID

will

be

″″

(an

empty

string)

unless

it

is

specified

by

the

VERSION

option

of

the

PREP

command.

This

means

that

if

you

precompile

and

bind

two

programs

using

the

same

name

without

changing

the

version

ID,

the

second

package

will

replace

the

package

of

the

first.

When

you

run

the

first

program,

you

will

get

a

timestamp

or

a

package

not

found

error

because

the

timestamp

for

the

modified

source

file

no

longer

matches

that

of

the

package

in

the

database.

The

package

not

found

error

can

also

result

from

the

use

of

the

ACTION

REPLACE

REPLVER

precompile

or

bind

option

as

in

the

following

example:

1.

Precompile

and

bind

the

package

SCHEMA1.PKG

specifying

VERSION

VER1.

Then

generate

the

associated

application

A1.

2.

Precompile

and

bind

the

package

SCHEMA1.PKG,

specifying

VERSION

VER2

ACTION

REPLACE

REPLVER

VER1.

Then

generate

the

associated

application

A2.

72

Programming

Client

Applications

The

second

precompile

and

bind

generates

a

package

SCHEMA1.PKG

that

has

a

VERSION

of

VER2,

and

the

specification

of

ACTION

REPLACE

REPLVER

VER1

removes

the

SCHEMA1.PKG

package

that

had

a

VERSION

of

VER1.

An

attempt

to

run

the

first

application

will

result

in

a

package

mismatch

and

will

fail.

A

similar

symptom

will

occur

in

the

following

example:

1.

Precompile

and

bind

teh

package

SCHEMA1.PKG,

specifying

VERSION

VER1.

Then

generate

the

associated

application

A1

2.

Precompile

and

bind

the

package

SCHEMA1.PKG,

specifying

VERSION

VER2.

Then

generate

the

associated

application

A2

At

this

point

it

is

possible

to

run

both

applications

A1

and

A2,

which

will

execute

from

packages

SCHEMA1.PKG

versions

VER1

and

VER2

respectively.

If,

for

example,

the

first

package

is

dropped

(using

the

DROP

PACKAGE

SCHEMA1.PKG

VERSION

VER1

SQL

statement),

an

attempt

to

run

the

application

A1

will

fail

with

a

package

not

found

error.

When

a

source

file

is

precompiled

but

a

respective

package

is

not

created,

a

bind

file

and

modified

source

file

are

generated

with

matching

timestamps.

To

run

the

application,

the

bind

file

is

bound

in

a

separate

BIND

step

to

create

a

package

and

the

modified

source

file

is

compiled

and

linked.

For

an

application

that

requires

multiple

source

modules,

the

binding

process

must

be

done

for

each

bind

file.

In

this

deferred

binding

scenario,

the

application

and

package

timestamps

match

because

the

bind

file

contains

the

same

timestamp

as

the

one

that

was

stored

in

the

modified

source

file

during

precompilation.

Related

concepts:

v

“Package

Creation

Using

the

BIND

Command”

on

page

64

Package

Rebinding

Rebinding

is

the

process

of

recreating

a

package

for

an

application

program

that

was

previously

bound.

You

must

rebind

packages

if

they

have

been

marked

invalid

or

inoperative.

In

some

situations,

however,

you

may

want

to

rebind

packages

that

are

valid.

For

example,

you

may

want

to

take

advantage

of

a

newly

created

index,

or

make

use

of

updated

statistics

after

executing

the

RUNSTATS

command.

Packages

can

be

dependent

on

certain

types

of

database

objects

such

as

tables,

views,

aliases,

indexes,

triggers,

referential

constraints

and

table

check

constraints.

If

a

package

is

dependent

on

a

database

object

(such

as

a

table,

view,

trigger,

and

so

on),

and

that

object

is

dropped,

the

package

is

placed

into

an

invalid

state.

If

the

object

that

is

dropped

is

a

UDF,

the

package

is

placed

into

an

inoperative

state.

Invalid

packages

are

implicitly

(or

automatically)

rebound

by

the

database

manager

when

they

are

executed.

Inoperative

packages

must

be

explicitly

rebound

by

executing

either

the

BIND

command

or

the

REBIND

command.

Note

that

implicit

rebinding

can

cause

unexpected

errors

if

the

implicit

rebind

fails.

That

is,

the

implicit

rebind

error

is

returned

on

the

statement

being

executed,

which

may

not

be

the

statement

that

is

actually

in

error.

If

an

attempt

is

made

to

execute

an

inoperative

package,

an

error

occurs.

You

may

decide

to

explicitly

rebind

invalid

packages

rather

than

have

the

system

automatically

rebind

them.

This

enables

you

to

control

when

the

rebinding

occurs.

Chapter

3.

Embedded

SQL

Overview

73

The

choice

of

which

command

to

use

to

explicitly

rebind

a

package

depends

on

the

circumstances.

You

must

use

the

BIND

command

to

rebind

a

package

for

a

program

which

has

been

modified

to

include

more,

fewer,

or

changed

SQL

statements.

You

must

also

use

the

BIND

command

if

you

need

to

change

any

bind

options

from

the

values

with

which

the

package

was

originally

bound.

In

all

other

cases,

use

either

the

BIND

or

REBIND

command.

You

should

use

REBIND

whenever

your

situation

does

not

specifically

require

the

use

of

BIND,

as

the

performance

of

REBIND

is

significantly

better

than

that

of

BIND.

When

multiple

versions

of

the

same

package

name

coexist

in

the

catalog,

only

one

version

at

a

time

can

be

rebound.

Related

concepts:

v

“Statement

dependencies

when

changing

objects”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“REBIND

Command”

in

the

Command

Reference

74

Programming

Client

Applications

Chapter

4.

Writing

Static

SQL

Programs

Characteristics

and

Reasons

for

Using

Static

SQL

.

. 75

Advantages

of

Static

SQL

.

.

.

.

.

.

.

.

.

. 76

Example

Static

SQL

Program

.

.

.

.

.

.

.

. 76

Data

Retrieval

in

Static

SQL

Programs

.

.

.

.

. 78

Effects

of

REOPT

on

static

SQL

.

.

.

.

.

.

.

. 78

Host

Variables

in

Static

SQL

Programs

.

.

.

.

. 79

Host

Variables

in

Static

SQL

.

.

.

.

.

.

.

. 79

Declaring

Host

Variables

in

Static

SQL

Programs

80

Referencing

Host

Variables

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Indicator

Variables

in

Static

SQL

Programs

.

.

.

. 82

Including

Indicator

Variables

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Data

Types

for

Indicator

Variables

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Example

of

an

Indicator

Variable

in

a

Static

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Selecting

Multiple

Rows

Using

a

Cursor

.

.

.

.

. 87

Selecting

Multiple

Rows

Using

a

Cursor

.

.

.

. 87

Declaring

and

Using

Cursors

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Cursor

Types

and

Unit

of

Work

Considerations

89

Example

of

a

Cursor

in

a

Static

SQL

Program

.

. 90

Manipulating

Retrieved

Data

.

.

.

.

.

.

.

. 92

Updating

and

Deleting

Retrieved

Data

in

Static

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

. 92

Cursor

Types

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Example

of

a

Fetch

in

a

Static

SQL

Program

.

. 93

Scrolling

Through

and

Manipulating

Retrieved

Data

94

Scrolling

Through

Previously

Retrieved

Data

.

. 94

Keeping

a

Copy

of

the

Data

.

.

.

.

.

.

.

. 95

Retrieving

Data

a

Second

Time

.

.

.

.

.

.

. 95

Row

Order

Differences

Between

the

First

and

Second

Result

Table

.

.

.

.

.

.

.

.

.

. 96

Positioning

a

Cursor

at

the

End

of

a

Table

.

.

. 97

Updating

Previously

Retrieved

Data

.

.

.

.

. 97

Example

of

an

Insert,

Update,

and

Delete

in

a

Static

SQL

Program

.

.

.

.

.

.

.

.

.

.

. 98

Diagnostic

Information

.

.

.

.

.

.

.

.

.

. 99

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields

.

.

.

.

.

.

.

.

. 100

Token

Truncation

in

the

SQLCA

Structure

.

.

. 101

Exception,

Signal,

and

Interrupt

Handler

Considerations

.

.

.

.

.

.

.

.

.

.

.

. 101

Exit

List

Routine

Considerations

.

.

.

.

.

. 102

Error

Message

Retrieval

in

an

Application

.

.

. 102

Characteristics

and

Reasons

for

Using

Static

SQL

When

the

syntax

of

embedded

SQL

statements

is

fully

known

at

precompile

time,

the

statements

are

referred

to

as

static

SQL.

This

is

in

contrast

to

dynamic

SQL

statements

whose

syntax

is

not

known

until

run

time.

Note:

Static

SQL

is

not

supported

in

interpreted

languages,

such

as

REXX.

The

structure

of

an

SQL

statement

must

be

completely

specified

for

a

statement

to

be

considered

static.

For

example,

the

names

for

the

columns

and

tables

referenced

in

a

statement

must

be

fully

known

at

precompile

time.

The

only

information

that

can

be

specified

at

run

time

are

values

for

any

host

variables

referenced

by

the

statement.

However,

host

variable

information,

such

as

data

types,

must

still

be

precompiled.

When

a

static

SQL

statement

is

prepared,

an

executable

form

of

the

statement

is

created

and

stored

in

the

package

in

the

database.

The

executable

form

can

be

constructed

either

at

precompile

time,

or

at

a

later

bind

time.

In

either

case,

preparation

occurs

before

run

time.

The

authorization

of

the

person

binding

the

application

is

used,

and

optimization

is

based

upon

database

statistics

and

configuration

parameters

that

may

not

be

current

when

the

application

runs.

©

Copyright

IBM

Corp.

1997

-

2004

75

||

Advantages

of

Static

SQL

Programming

using

static

SQL

requires

less

effort

than

using

embedded

dynamic

SQL.

Static

SQL

statements

are

simply

embedded

into

the

host

language

source

file,

and

the

precompiler

handles

the

necessary

conversion

to

database

manager

run-time

services

API

calls

that

the

host

language

compiler

can

process.

Because

the

authorization

of

the

person

binding

the

application

is

used,

the

end

user

does

not

require

direct

privileges

to

execute

the

statements

in

the

package.

For

example,

an

application

could

allow

a

user

to

update

parts

of

a

table

without

granting

an

update

privilege

on

the

entire

table.

This

can

be

achieved

by

restricting

the

static

SQL

statements

to

allow

updates

only

to

certain

columns

or

to

a

range

of

values.

Static

SQL

statements

are

persistent,

meaning

that

the

statements

last

for

as

long

as

the

package

exists.

Dynamic

SQL

statements

are

cached

until

they

are

either

invalidated,

freed

for

space

management

reasons,

or

the

database

is

shut

down.

If

required,

the

dynamic

SQL

statements

are

recompiled

implicitly

by

the

DB2®

SQL

compiler

whenever

a

cached

statement

becomes

invalid.

The

key

advantage

of

static

SQL,

with

respect

to

persistence,

is

that

the

static

statements

exist

after

a

particular

database

is

shut

down,

whereas

dynamic

SQL

statements

cease

to

exist

when

this

occurs.

In

addition,

static

SQL

does

not

have

to

be

compiled

by

the

DB2

SQL

compiler

at

run

time,

while

dynamic

SQL

must

be

explicitly

compiled

at

run

time

(for

example,

by

using

the

PREPARE

statement).

Because

DB2

caches

dynamic

SQL

statements,

the

statements

do

not

need

to

be

compiled

often

by

DB2,

but

they

must

be

compiled

at

least

once

when

you

execute

the

application.

There

can

be

performance

advantages

to

static

SQL.

For

simple,

short-running

SQL

programs,

a

static

SQL

statement

executes

faster

than

the

same

statement

processed

dynamically

because

the

overhead

of

preparing

an

executable

form

of

the

statement

is

done

at

precompile

time

instead

of

at

run

time.

Note:

The

performance

of

static

SQL

depends

on

the

statistics

of

the

database

the

last

time

the

application

was

bound.

However,

if

these

statistics

change,

the

performance

of

equivalent

dynamic

SQL

can

be

very

different.

If,

for

example,

an

index

is

added

to

a

database

at

a

later

time,

an

application

using

static

SQL

cannot

take

advantage

of

the

index

unless

it

is

rebound

to

the

database.

In

addition,

if

you

are

using

host

variables

in

a

static

SQL

statement,

the

optimizer

will

not

be

able

to

take

advantage

of

any

distribution

statistics

for

the

table.

Related

reference:

v

“EXECUTE

statement”

in

the

SQL

Reference,

Volume

2

Example

Static

SQL

Program

This

sample

program

shows

examples

of

static

SQL

statements

and

database

manager

API

calls

in

the

C/C++,

Java™,

and

COBOL

languages.

76

Programming

Client

Applications

The

sample

in

C/C++

and

Java

queries

the

org

table

in

the

sample

database

to

find

the

department

name

and

department

number

of

the

department

that

is

located

in

New

York,

then

places

the

department

name

and

department

number

into

host

variables.

The

sample

in

COBOL

queries

the

employee

table

in

the

sample

database

for

the

first

name

of

the

employee

whose

last

name

is

Johnson,

then

place

the

first

name

into

a

host

variable.

Note:

The

REXX

language

does

not

support

static

SQL,

so

a

sample

is

not

provided.

v

C/C++

(tbread)

SELECT

deptnumb,

deptname

INTO

:deptnumb,

:deptname

FROM

org

WHERE

location

=

’New

York’

This

query

is

in

the

TbRowSubselect()

function

of

the

sample.

For

more

information,

see

the

related

samples

below.

v

Java

(TbRead.sqlj)

#sql

cur2

=

{SELECT

deptnumb,

deptname

FROM

org

WHERE

location

=

’New

York’};

//

fetch

the

cursor

#sql

{FETCH

:cur2

INTO

:deptnumb,

:deptname};

This

query

is

in

the

rowSubselect()

function

of

the

TbRead.sqlj

sample.

For

more

information,

see

the

related

samples

below.

v

COBOL

(static.sqb)

The

sample

static

contains

examples

of

static

SQL

statements

and

database

manager

API

calls

in

the

COBOL

language.

The

SELECT

INTO

statement

selects

one

row

of

data

from

tables

in

a

database,

and

the

values

in

this

row

are

assigned

to

host

variables

specified

in

the

statement.

For

example,

the

following

statement

delivers

the

first

name

of

the

employee

with

the

last

name

JOHNSON

into

the

host

variable

firstname:

SELECT

FIRSTNME

INTO

:firstname

FROM

EMPLOYEE

WHERE

LASTNAME

=

’JOHNSON’

Related

concepts:

v

“Data

Retrieval

in

Static

SQL

Programs”

on

page

78

v

“Error

Message

Retrieval

in

an

Application”

on

page

102

Related

tasks:

v

“Declaring

Host

Variables

in

Static

SQL

Programs”

on

page

80

v

“Selecting

Multiple

Rows

Using

a

Cursor”

on

page

87

v

“Setting

up

the

sample

database”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“SELECT

INTO

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

Chapter

4.

Writing

Static

SQL

Programs

77

v

“tbinfo.out

--

HOW

TO

GET

INFORMATION

AT

THE

TABLE

LEVEL

(C)”

v

“tbread.out

--

HOW

TO

READ

TABLES

(C)”

v

“tbread.sqc

--

How

to

read

tables

(C)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

v

“tbinfo.sqC

--

How

to

get

information

at

the

table

level

(C++)”

v

“tbread.out

--

HOW

TO

READ

TABLES

(C++)”

v

“tbread.sqC

--

How

to

read

tables

(C++)”

v

“static.sqb

--

Get

table

data

using

static

SQL

statement

(IBM

COBOL)”

v

“static.sqb

--

Get

table

data

using

static

SQL

statement

(MF

COBOL)”

v

“TbRead.out

--

HOW

TO

READ

TABLE

DATA.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

v

“TbRead.sqlj

--

How

to

read

table

data

(SQLj)”

Data

Retrieval

in

Static

SQL

Programs

One

of

the

most

common

tasks

of

an

SQL

application

program

is

to

retrieve

data.

This

task

is

done

using

the

select-statement,

which

is

a

form

of

query

that

searches

for

rows

of

tables

in

the

database

that

meet

specified

search

conditions.

If

such

rows

exist,

the

data

is

retrieved

and

put

into

specified

variables

in

the

host

program,

where

it

can

be

used

for

whatever

it

was

designed

to

do.

After

you

have

written

a

select-statement,

you

code

the

SQL

statements

that

define

how

information

will

be

passed

to

your

application.

You

can

think

of

the

result

of

a

select-statement

as

being

a

table

having

rows

and

columns,

much

like

a

table

in

the

database.

If

only

one

row

is

returned,

you

can

deliver

the

results

directly

into

host

variables

specified

by

the

SELECT

INTO

statement.

If

more

than

one

row

is

returned,

you

must

use

a

cursor

to

fetch

them

one

at

a

time.

A

cursor

is

a

named

control

structure

used

by

an

application

program

to

point

to

a

specific

row

within

an

ordered

set

of

rows.

Related

concepts:

v

“Host

Variables

in

Static

SQL”

on

page

79

v

“Example

of

a

Cursor

in

a

Static

SQL

Program”

on

page

90

Related

tasks:

v

“Declaring

Host

Variables

in

Static

SQL

Programs”

on

page

80

v

“Referencing

Host

Variables

in

Static

SQL

Programs”

on

page

81

v

“Including

Indicator

Variables

in

Static

SQL

Programs”

on

page

82

v

“Selecting

Multiple

Rows

Using

a

Cursor”

on

page

87

v

“Declaring

and

Using

Cursors

in

Static

SQL

Programs”

on

page

88

Effects

of

REOPT

on

static

SQL

The

bind

option

REOPT

can

make

static

SQL

statements

containing

host

variables

or

special

registers

behave

like

incremental-bind

statements.

This

means

that

these

statements

get

compiled

at

the

time

of

EXECUTE

or

OPEN

instead

of

at

bind

time.

During

this

compilation,

the

access

plan

is

chosen,

based

on

the

real

values

of

these

variables.

78

Programming

Client

Applications

|

|
|
|
|
|

With

REOPT

ONCE,

the

access

plan

is

cached

after

the

first

OPEN

or

EXECUTE

request

and

is

used

for

subsequent

execution

of

this

statement.

With

REOPT

ALWAYS,

the

access

plan

is

regenerated

for

every

OPEN

and

EXECUTE

request,

and

the

current

set

of

host

variable,

parameter

marker,

and

special

register

values

is

used

to

create

this

plan.

Host

Variables

in

Static

SQL

Programs

The

sections

that

follow

describe

how

to

use

host

variables

in

static

SQL

programs.

Host

Variables

in

Static

SQL

Host

variables

are

variables

referenced

by

embedded

SQL

statements.

They

transmit

data

between

the

database

manager

and

an

application

program.

When

you

use

a

host

variable

in

an

SQL

statement,

you

must

prefix

its

name

with

a

colon,

(:).

When

you

use

a

host

variable

in

a

host

language

statement,

omit

the

colon.

Host

variables

are

declared

in

compiled

host

languages,

and

are

delimited

by

BEGIN

DECLARE

SECTION

and

END

DECLARE

SECTION

statements.

These

statements

enable

the

precompiler

to

find

the

declarations.

Note:

Java™

JDBC

and

SQLJ

programs

do

not

use

declare

sections.

Host

variables

in

Java

follow

the

normal

Java

variable

declaration

syntax.

Host

variables

are

declared

using

a

subset

of

the

host

language.

The

following

rules

apply

to

host

variable

declaration

sections:

v

All

host

variables

must

be

declared

in

the

source

file

before

they

are

referenced,

except

for

host

variables

referring

to

SQLDA

structures.

v

Multiple

declare

sections

may

be

used

in

one

source

file.

v

The

precompiler

is

unaware

of

host

language

variable

scoping

rules.

With

respect

to

SQL

statements,

all

host

variables

have

a

global

scope

regardless

of

where

they

are

actually

declared

in

a

single

source

file.

Therefore,

host

variable

names

must

be

unique

within

a

source

file.

This

does

not

mean

that

the

DB2®

precompiler

changes

the

scope

of

host

variables

to

global

so

that

they

can

be

accessed

outside

the

scope

in

which

they

are

defined.

Consider

the

following

example:

foo1(){

.

.

.

BEGIN

SQL

DECLARE

SECTION;

int

x;

END

SQL

DECLARE

SECTION;

x=10;

.

.

.

}

foo2(){

.

.

.

y=x;

Chapter

4.

Writing

Static

SQL

Programs

79

|
|
|
|
|

.

.

.

}

Depending

on

the

language,

the

above

example

will

either

fail

to

compile

because

variable

x

is

not

declared

in

function

foo2(),

or

the

value

of

x

would

not

be

set

to

10

in

foo2().

To

avoid

this

problem,

you

must

either

declare

x

as

a

global

variable,

or

pass

x

as

a

parameter

to

function

foo2()

as

follows:

foo1(){

.

.

.

BEGIN

SQL

DECLARE

SECTION;

int

x;

END

SQL

DECLARE

SECTION;

x=10;

foo2(x);

.

.

.

}

foo2(int

x){

.

.

.

y=x;

.

.

.

}

Related

concepts:

v

“Host

Variables

in

C

and

C++”

on

page

137

v

“Host

Variables

in

COBOL”

on

page

180

v

“Host

Variables

in

FORTRAN”

on

page

200

v

“Host

Variables

in

REXX”

on

page

497

Related

tasks:

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Declaring

Host

Variables

in

Static

SQL

Programs”

on

page

80

v

“Referencing

Host

Variables

in

Static

SQL

Programs”

on

page

81

Declaring

Host

Variables

in

Static

SQL

Programs

Declare

host

variables

for

your

program

so

that

they

can

be

used

to

transmit

data

between

the

database

manager

and

the

application.

Procedure:

Declare

the

host

variables

using

the

syntax

for

the

host

language

that

you

are

using.

The

following

table

provides

examples.

80

Programming

Client

Applications

Table

4.

Host

Variable

Declarations

by

Host

Language

Language

Example

Source

Code

C/C++

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

dept=38,

age=26;

double

salary;

char

CH;

char

name1[9],

NAME2[9];

/*

C

comment

*/

short

nul_ind;

EXEC

SQL

END

DECLARE

SECTION;

Java

//

Note

that

Java

host

variable

declarations

follow

//

normal

Java

variable

declaration

rules,

and

have

//

no

equivalent

of

a

DECLARE

SECTION

short

dept=38,

age=26;

double

salary;

char

CH;

String

name1[9],

NAME2[9];

/*

Java

comment

*/

short

nul_ind;

COBOL

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

01

age

PIC

S9(4)

COMP-5

VALUE

26.

01

DEPT

PIC

S9(9)

COMP-5

VALUE

38.

01

salary

PIC

S9(6)V9(3)

COMP-3.

01

CH

PIC

X(1).

01

name1

PIC

X(8).

01

NAME2

PIC

X(8).

*

COBOL

comment

01

nul-ind

PIC

S9(4)

COMP-5.

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

FORTRAN

EXEC

SQL

BEGIN

DECLARE

SECTION

integer*2

age

/26/

integer*4

dept

/38/

real*8

salary

character

ch

character*8

name1,NAME2

C

FORTRAN

comment

integer*2

nul_ind

EXEC

SQL

END

DECLARE

SECTION

Related

tasks:

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Referencing

Host

Variables

in

Static

SQL

Programs”

on

page

81

Referencing

Host

Variables

in

Static

SQL

Programs

After

declaring

the

host

variable,

you

can

reference

it

in

the

application

program.

When

you

use

a

host

variable

in

an

SQL

statement,

prefix

its

name

with

a

colon

(:).

If

you

use

a

host

variable

in

a

host

language

statement,

omit

the

colon.

Procedure:

Reference

the

host

variables

using

the

syntax

for

the

host

language

that

you

are

using.

The

following

table

provides

examples.

Chapter

4.

Writing

Static

SQL

Programs

81

Table

5.

Host

Variable

Refrerences

by

Host

Language

Language

Example

Source

Code

C/C++

EXEC

SQL

FETCH

C1

INTO

:cm;

printf(

"Commission

=

%f\n",

cm

);

JAVA

(SQLJ)

#SQL

{

FETCH

:c1

INTO

:cm

};

System.out.println("Commission

=

"

+

cm);

COBOL

EXEC

SQL

FETCH

C1

INTO

:cm

END-EXEC

DISPLAY

’Commission

=

’

cm

FORTRAN

EXEC

SQL

FETCH

C1

INTO

:cm

WRITE(*,*)

’Commission

=

’,

cm

Related

tasks:

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Declaring

Host

Variables

in

Static

SQL

Programs”

on

page

80

Indicator

Variables

in

Static

SQL

Programs

The

sections

that

follow

describe

how

to

use

indicator

variables

in

static

SQL

programs.

Including

Indicator

Variables

in

Static

SQL

Programs

Applications

written

in

languages

other

than

Java

must

prepare

for

receiving

null

values

by

associating

an

indicator

variable

with

any

host

variable

that

can

receive

a

null.

Java

applications

compare

the

value

of

the

host

variable

with

Java

null

to

determine

whether

the

received

value

is

null.

An

indicator

variable

is

shared

by

both

the

database

manager

and

the

host

application;

therefore,

the

indicator

variable

must

be

declared

in

the

application

as

a

host

variable.

This

host

variable

corresponds

to

the

SQL

data

type

SMALLINT.

An

indicator

variable

is

placed

in

an

SQL

statement

immediately

after

the

host

variable,

and

is

prefixed

with

a

colon.

A

space

can

separate

the

indicator

variable

from

the

host

variable,

but

is

not

required.

However,

do

not

put

a

comma

between

the

host

variable

and

the

indicator

variable.

You

can

also

specify

an

indicator

variable

by

using

the

optional

INDICATOR

keyword,

which

you

place

between

the

host

variable

and

its

indicator.

Procedure:

Use

the

INDICATOR

keyword

to

write

indicator

variables.

The

following

table

provides

examples

for

the

supported

host

languages:

Table

6.

Indicator

Variables

by

Host

Language

Language

Example

Source

Code

C/C++

EXEC

SQL

FETCH

C1

INTO

:cm

INDICATOR

:cmind;

if

(

cmind

<

0

)

printf(

"Commission

is

NULL\n"

);

JAVA

(SQLJ)

#SQL

{

FETCH

:c1

INTO

:cm

};

if

(

cm

==

null

)

System.out.println(

"Commission

is

NULL\n"

);

82

Programming

Client

Applications

Table

6.

Indicator

Variables

by

Host

Language

(continued)

Language

Example

Source

Code

COBOL

EXEC

SQL

FETCH

C1

INTO

:cm

INDICATOR

:cmind

END-EXEC

IF

cmind

LESS

THAN

0

DISPLAY

’Commission

is

NULL’

FORTRAN

EXEC

SQL

FETCH

C1

INTO

:cm

INDICATOR

:cmind

IF

(

cmind

.LT.

0

)

THEN

WRITE(*,*)

’Commission

is

NULL’

ENDIF

In

the

preceding

examples,

cmind

is

examined

for

a

negative

value.

If

the

value

is

not

negative,

the

application

can

use

the

returned

value

of

cm.

If

the

value

is

negative,

the

fetched

value

is

NULL

and

cm

should

not

be

used.

The

database

manager

does

not

change

the

value

of

the

host

variable

in

this

case.

Note:

If

the

database

configuration

parameter

dft_sqlmathwarn

is

set

to

’YES’,

the

value

of

cmind

may

be

-2.

This

value

indicates

a

NULL

that

was

either

caused

by

evaluating

an

expression

with

an

arithmetic

error,

or

by

an

overflow

while

attempting

to

convert

the

numeric

result

value

to

the

host

variable.

If

the

data

type

can

handle

NULLs,

the

application

must

provide

a

NULL

indicator.

Otherwise,

an

error

may

occur.

If

a

NULL

indicator

is

not

used,

an

SQLCODE

-305

(SQLSTATE

22002)

is

returned.

If

the

SQLCA

structure

indicates

a

truncation

warning,

the

indicator

variables

can

be

examined

for

truncation.

If

an

indicator

variable

has

a

positive

value,

a

truncation

occurred.

v

If

the

seconds

portion

of

a

TIME

data

type

is

truncated,

the

indicator

value

contains

the

seconds

portion

of

the

truncated

data.

v

For

all

other

string

data

types,

except

large

objects

(LOB),

the

indicator

value

represents

the

actual

length

of

the

data

returned.

User-defined

distinct

types

(UDT)

are

handled

in

the

same

way

as

their

base

type.

When

processing

INSERT

or

UPDATE

statements,

the

database

manager

checks

the

indicator

variable

if

one

exists.

If

the

indicator

variable

is

negative,

the

database

manager

sets

the

target

column

value

to

NULL

if

NULLs

are

allowed.

If

the

indicator

variable

is

zero

or

positive,

the

database

manager

uses

the

value

of

the

associated

host

variable.

The

SQLWARN1

field

in

the

SQLCA

structure

may

contain

an

X

or

W

if

the

value

of

a

string

column

is

truncated

when

it

is

assigned

to

a

host

variable.

The

field

contains

an

N

if

a

null

terminator

is

truncated.

A

value

of

X

is

returned

by

the

database

manager

only

if

all

of

the

following

conditions

are

met:

v

A

mixed

code

page

connection

exists

where

conversion

of

character

string

data

from

the

database

code

page

to

the

application

code

page

involves

a

change

in

the

length

of

the

data.

v

A

cursor

is

blocked.

v

An

indicator

variable

is

provided

by

your

application.

Chapter

4.

Writing

Static

SQL

Programs

83

The

value

returned

in

the

indicator

variable

will

be

the

length

of

the

resultant

character

string

in

the

application’s

code

page.

In

all

other

cases

involving

data

truncation

(as

opposed

to

NULL

terminator

truncation),

the

database

manager

returns

a

W.

In

this

case,

the

database

manager

returns

a

value

in

the

indicator

variable

to

the

application

that

is

the

length

of

the

resultant

character

string

in

the

code

page

of

the

select

list

item

(either

the

application

code

page,

the

database

code

page,

or

nothing).

Related

tasks:

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Declaring

Host

Variables

in

Static

SQL

Programs”

on

page

80

v

“Referencing

Host

Variables

in

Static

SQL

Programs”

on

page

81

Related

reference:

v

“Data

Types

for

Indicator

Variables

in

Static

SQL

Programs”

on

page

84

Data

Types

for

Indicator

Variables

in

Static

SQL

Programs

Each

column

of

every

DB2

table

is

given

an

SQL

data

type

when

the

column

is

created.

For

information

about

how

these

types

are

assigned

to

columns,

see

the

CREATE

TABLE

statement.

The

database

manager

supports

the

following

column

data

types:

SMALLINT

16-bit

signed

integer.

INTEGER

32-bit

signed

integer.

INT

can

be

used

as

a

synonym

for

this

type.

BIGINT

64-bit

signed

integer.

DOUBLE

Double-precision

floating

point.

DOUBLE

PRECISION

and

FLOAT(n)

(where

n

is

greater

than

24)

are

synonyms

for

this

type.

REAL

Single-precision

floating

point.

FLOAT(n)

(where

n

is

less

than

24)

is

a

synonym

for

this

type.

DECIMAL

Packed

decimal.

DEC,

NUMERIC,

and

NUM

are

synonyms

for

this

type.

CHAR

Fixed-length

character

string

of

length

1

byte

to

254

bytes.

CHARACTER

can

be

used

as

a

synonym

for

this

type.

VARCHAR

Variable-length

character

string

of

length

1

byte

to

32

672

bytes.

CHARACTER

VARYING

and

CHAR

VARYING

are

synonyms

for

this

type.

LONG

VARCHAR

Long

variable-length

character

string

of

length

1

byte

to

32

700

bytes.

CLOB

Large

object

variable-length

character

string

of

length

1

byte

to

2

gigabytes.

BLOB

Large

object

variable-length

binary

string

of

length

1

byte

to

2

gigabytes.

DATE

Character

string

of

length

10

representing

a

date.

84

Programming

Client

Applications

TIME

Character

string

of

length

8

representing

a

time.

TIMESTAMP

Character

string

of

length

26

representing

a

timestamp.

The

following

data

types

are

supported

only

in

double-byte

character

set

(DBCS)

and

Extended

UNIX

Code

(EUC)

character

set

environments:

GRAPHIC

Fixed-length

graphic

string

of

length

1

to

127

double-byte

characters.

VARGRAPHIC

Variable-length

graphic

string

of

length

1

to

16

336

double-byte

characters.

LONG

VARGRAPHIC

Long

variable-length

graphic

string

of

length

1

to

16

350

double-byte

characters.

DBCLOB

Large

object

variable-length

graphic

string

of

length

1

to

1

073

741

823

double-byte

characters.

Notes:

1.

Every

supported

data

type

can

have

the

NOT

NULL

attribute.

This

is

treated

as

another

type.

2.

The

above

set

of

data

types

can

be

extended

by

defining

user-defined

distinct

types

(UDT).

UDTs

are

separate

data

types

that

use

the

representation

of

one

of

the

built-in

SQL

types.

Supported

host

languages

have

data

types

that

correspond

to

the

majority

of

the

database

manager

data

types.

Only

these

host

language

data

types

can

be

used

in

host

variable

declarations.

When

the

precompiler

finds

a

host

variable

declaration,

it

determines

the

appropriate

SQL

data

type

value.

The

database

manager

uses

this

value

to

convert

the

data

exchanged

between

itself

and

the

application.

As

the

application

programmer,

it

is

important

for

you

to

understand

how

the

database

manager

handles

comparisons

and

assignments

between

different

data

types.

Simply

put,

data

types

must

be

compatible

with

each

other

during

assignment

and

comparison

operations,

whether

the

database

manager

is

working

with

two

SQL

column

data

types,

two

host-language

data

types,

or

one

of

each.

The

general

rule

for

data

type

compatibility

is

that

all

supported

host-language

numeric

data

types

are

comparable

and

assignable

with

all

database

manager

numeric

data

types,

and

all

host-language

character

types

are

compatible

with

all

database

manager

character

types;

numeric

types

are

incompatible

with

character

types.

However,

there

are

also

some

exceptions

to

this

general

rule,

depending

on

host

language

idiosyncrasies

and

limitations

imposed

when

working

with

large

objects.

Within

SQL

statements,

DB2

provides

conversions

between

compatible

data

types.

For

example,

in

the

following

SELECT

statement,

SALARY

and

BONUS

are

DECIMAL

columns;

however,

each

employee’s

total

compensation

is

returned

as

DOUBLE

data:

SELECT

EMPNO,

DOUBLE(SALARY+BONUS)

FROM

EMPLOYEE

Note

that

the

execution

of

the

above

statement

includes

conversion

between

DECIMAL

and

DOUBLE

data

types.

Chapter

4.

Writing

Static

SQL

Programs

85

To

make

the

query

results

more

readable

on

your

screen,

you

could

use

the

following

SELECT

statement:

SELECT

EMPNO,

DIGIT(SALARY+BONUS)

FROM

EMPLOYEE

To

convert

data

within

your

application,

contact

your

compiler

vendor

for

additional

routines,

classes,

built-in

types,

or

APIs

that

support

this

conversion.

If

your

application

code

page

is

not

the

same

as

your

database

code

page,

character

data

types

may

also

be

subject

to

character

conversion.

Related

concepts:

v

“Data

conversion

considerations”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Character

conversion

between

different

code

pages”

on

page

609

Related

reference:

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

SQL

Data

Types

in

C

and

C++”

on

page

162

v

“Supported

SQL

Data

Types

in

COBOL”

on

page

190

v

“Supported

SQL

Data

Types

in

FORTRAN”

on

page

206

v

“Supported

SQL

Data

Types

in

REXX”

on

page

502

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Example

of

an

Indicator

Variable

in

a

Static

SQL

Program

Following

are

examples

of

how

to

use

indicator

variables

C/C++

programs

that

use

have

static

SQL:

v

Example

1

The

following

example

show

the

implementation

of

indicator

variables

on

data

columns

that

are

nullable.

In

this

example,

the

column

FIRSTNAME

is

not

nullable,

but

the

column

WORKDEPT

can

contain

a

null

value.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

wd[3];

short

wd_ind;

char

firstname[13];

EXEC

SQL

END

DECLARE

SECTION;

/*

connect

to

sample

database

*/

EXEC

SQL

SELECT

FIRSTNME,

WORKDEPT

INTO

:firstname,

:wd:wdind

FROM

EMPLOYEE

WHERE

LASTNAME

=

’JOHNSON’;

Because

the

column

WORKDEPT

can

have

a

null

value,

an

indicator

variable

must

be

declared

as

a

host

variable

before

being

used.

v

Example

2

(dtlob)

The

sample

dtlob

has

a

function

called

BlobFileUse().

The

function

BlobFileUse()

contains

a

query

that

reads

BLOB

data

in

a

file

using

a

SELECT

INTO

statement:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_FILE

blobFilePhoto;

char

photoFormat[10];

char

empno[7];

short

lobind;

86

Programming

Client

Applications

EXEC

SQL

END

DECLARE

SECTION;

/*

Connect

to

the

sample

database

*/

SELECT

picture

INTO

:blobFilePhoto:lobind

FROM

emp_photo

WHERE

photo_format

=

:photoFormat

AND

empno

=

’000130’

Because

the

column

BLOBFILEPHOTO

can

have

a

null

value,

an

indicator

variable

LOBIND

must

be

declared

as

a

host

variable

before

being

used.

The

sample

dtlob

shows

how

to

work

with

LOBs.

See

the

samples

for

more

information

about

using

LOBs.

Related

concepts:

v

“Example

Static

SQL

Program”

on

page

76

Related

tasks:

v

“Including

Indicator

Variables

in

Static

SQL

Programs”

on

page

82

Related

reference:

v

“Data

Types

for

Indicator

Variables

in

Static

SQL

Programs”

on

page

84

Related

samples:

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C)”

v

“dtlob.sqc

--

How

to

use

the

LOB

data

type

(C)”

v

“dtlob.out

--

HOW

TO

USE

THE

LOB

DATA

TYPE

(C++)”

v

“dtlob.sqC

--

How

to

use

the

LOB

data

type

(C++)”

Selecting

Multiple

Rows

Using

a

Cursor

The

sections

that

follow

describe

how

to

select

rows

using

a

cursor.

The

sample

programs

that

show

how

to

declare

a

cursor,

open

the

cursor,

fetch

rows

from

the

table,

and

close

the

cursor

are

also

briefly

described.

Selecting

Multiple

Rows

Using

a

Cursor

To

allow

an

application

to

retrieve

a

set

of

rows,

SQL

uses

a

mechanism

called

a

cursor.

To

help

understand

the

concept

of

a

cursor,

assume

that

the

database

manager

builds

a

result

table

to

hold

all

the

rows

retrieved

by

executing

a

SELECT

statement.

A

cursor

makes

rows

from

the

result

table

available

to

an

application

by

identifying

or

pointing

to

a

current

row

of

this

table.

When

a

cursor

is

used,

an

application

can

retrieve

each

row

sequentially

from

the

result

table

until

an

end

of

data

condition,

that

is,

the

NOT

FOUND

condition,

SQLCODE

+100

(SQLSTATE

02000)

is

reached.

The

set

of

rows

obtained

as

a

result

of

executing

the

SELECT

statement

can

consist

of

zero,

one,

or

more

rows,

depending

on

the

number

of

rows

that

satisfy

the

search

condition.

Procedure:

The

steps

involved

in

processing

a

cursor

are

as

follows:

1.

Specify

the

cursor

using

a

DECLARE

CURSOR

statement.

2.

Perform

the

query

and

build

the

result

table

using

the

OPEN

statement.

Chapter

4.

Writing

Static

SQL

Programs

87

3.

Retrieve

rows

one

at

a

time

using

the

FETCH

statement.

4.

Process

rows

with

the

DELETE

or

UPDATE

statements

(if

required).

5.

Terminate

the

cursor

using

the

CLOSE

statement.

An

application

can

use

several

cursors

concurrently.

Each

cursor

requires

its

own

set

of

DECLARE

CURSOR,

OPEN,

CLOSE,

and

FETCH

statements.

Related

concepts:

v

“Example

of

a

Cursor

in

a

Static

SQL

Program”

on

page

90

Declaring

and

Using

Cursors

in

Static

SQL

Programs

Use

the

DECLARE

CURSOR

statement

to

define

and

name

the

cursor,

and

to

identify

the

set

of

rows

to

be

retrieved

using

a

SELECT

statement.

The

application

assigns

a

name

for

the

cursor.

This

name

is

referred

to

in

subsequent

OPEN,

FETCH,

and

CLOSE

statements.

The

query

is

any

valid

select

statement.

Restrictions:

The

placement

of

the

DECLARE

statement

is

arbitrary,

but

it

must

be

placed

above

the

first

use

of

the

cursor.

Procedure:

Use

the

DECLARE

statement

to

define

the

cursor.

The

following

table

provides

examples

for

the

supported

host

languages:

Table

7.

Cursor

Declarations

by

Host

Language

Language

Example

Source

Code

C/C++

EXEC

SQL

DECLARE

C1

CURSOR

FOR

SELECT

PNAME,

DEPT

FROM

STAFF

WHERE

JOB=:host_var;

JAVA

(SQLJ)

#sql

iterator

cursor1(host_var

data

type);

#sql

cursor1

=

{

SELECT

PNAME,

DEPT

FROM

STAFF

WHERE

JOB=:host_var

};

COBOL

EXEC

SQL

DECLARE

C1

CURSOR

FOR

SELECT

NAME,

DEPT

FROM

STAFF

WHERE

JOB=:host-var

END-EXEC.

FORTRAN

EXEC

SQL

DECLARE

C1

CURSOR

FOR

+

SELECT

NAME,

DEPT

FROM

STAFF

+

WHERE

JOB=:host_var

Related

concepts:

v

“Cursor

Types

and

Unit

of

Work

Considerations”

on

page

89

Related

tasks:

v

“Selecting

Multiple

Rows

Using

a

Cursor”

on

page

87

Related

reference:

v

“Cursor

Types”

on

page

92

88

Programming

Client

Applications

Cursor

Types

and

Unit

of

Work

Considerations

The

actions

of

a

COMMIT

or

ROLLBACK

operation

vary

for

cursors,

depending

on

how

the

cursors

are

declared:

Read-only

cursors

If

a

cursor

is

determined

to

be

read

only

and

uses

a

repeatable

read

isolation

level,

repeatable

read

locks

are

still

gathered

and

maintained

on

system

tables

needed

by

the

unit

of

work.

Therefore,

it

is

important

for

applications

to

periodically

issue

COMMIT

statements,

even

for

read

only

cursors.

WITH

HOLD

option

If

an

application

completes

a

unit

of

work

by

issuing

a

COMMIT

statement,

all

open

cursors,

except

those

declared

using

the

WITH

HOLD

option,

are

automatically

closed

by

the

database

manager.

A

cursor

that

is

declared

WITH

HOLD

maintains

the

resources

it

accesses

across

multiple

units

of

work.

The

exact

effect

of

declaring

a

cursor

WITH

HOLD

depends

on

how

the

unit

of

work

ends:

v

If

the

unit

of

work

ends

with

a

COMMIT

statement,

open

cursors

defined

WITH

HOLD

remain

OPEN.

The

cursor

is

positioned

before

the

next

logical

row

of

the

result

table.

In

addition,

prepared

statements

referencing

OPEN

cursors

defined

WITH

HOLD

are

retained.

Only

FETCH

and

CLOSE

requests

associated

with

a

particular

cursor

are

valid

immediately

following

the

COMMIT.

UPDATE

WHERE

CURRENT

OF

and

DELETE

WHERE

CURRENT

OF

statements

are

valid

only

for

rows

fetched

within

the

same

unit

of

work.

Note:

If

a

package

is

rebound

during

a

unit

of

work,

all

held

cursors

are

closed.

v

If

the

unit

of

work

ends

with

a

ROLLBACK

statement,

all

open

cursors

are

closed,

all

locks

acquired

during

the

unit

of

work

are

released,

and

all

prepared

statements

that

are

dependent

on

work

done

in

that

unit

are

dropped.

For

example,

suppose

that

the

TEMPL

table

contains

1

000

entries.

You

want

to

update

the

salary

column

for

all

employees,

and

you

expect

to

issue

a

COMMIT

statement

every

time

you

update

100

rows.

1.

Declare

the

cursor

using

the

WITH

HOLD

option:

EXEC

SQL

DECLARE

EMPLUPDT

CURSOR

WITH

HOLD

FOR

SELECT

EMPNO,

LASTNAME,

PHONENO,

JOBCODE,

SALARY

FROM

TEMPL

FOR

UPDATE

OF

SALARY

2.

Open

the

cursor

and

fetch

data

from

the

result

table

one

row

at

a

time:

EXEC

SQL

OPEN

EMPLUPDT

.

.

.

EXEC

SQL

FETCH

EMPLUPDT

INTO

:upd_emp,

:upd_lname,

:upd_tele,

:upd_jobcd,

:upd_wage,

3.

When

you

want

to

update

or

delete

a

row,

use

an

UPDATE

or

DELETE

statement

using

the

WHERE

CURRENT

OF

option.

For

example,

to

update

the

current

row,

your

program

can

issue:

EXEC

SQL

UPDATE

TEMPL

SET

SALARY

=

:newsalary

WHERE

CURRENT

OF

EMPLUPDT

Chapter

4.

Writing

Static

SQL

Programs

89

4.

After

a

COMMIT

is

issued,

you

must

issue

a

FETCH

before

you

can

update

another

row.

You

should

include

code

in

your

application

to

detect

and

handle

an

SQLCODE

-501

(SQLSTATE

24501),

which

can

be

returned

on

a

FETCH

or

CLOSE

statement

if

your

application

either:

v

Uses

cursors

declared

WITH

HOLD

v

Executes

more

than

one

unit

of

work

and

leaves

a

WITH

HOLD

cursor

open

across

the

unit

of

work

boundary

(COMMIT

WORK).

If

an

application

invalidates

its

package

by

dropping

a

table

on

which

it

is

dependent,

the

package

gets

rebound

dynamically.

If

this

is

the

case,

an

SQLCODE

-501

(SQLSTATE

24501)

is

returned

for

a

FETCH

or

CLOSE

statement

because

the

database

manager

closes

the

cursor.

The

way

to

handle

an

SQLCODE

-501

(SQLSTATE

24501)

in

this

situation

depends

on

whether

you

want

to

fetch

rows

from

the

cursor:

v

If

you

want

to

fetch

rows

from

the

cursor,

open

the

cursor,

then

run

the

FETCH

statement.

Note,

however,

that

the

OPEN

statement

repositions

the

cursor

to

the

start.

The

previous

position

held

at

the

COMMIT

WORK

statement

is

lost.

v

If

you

do

not

want

to

fetch

rows

from

the

cursor,

do

not

issue

any

more

SQL

requests

against

the

cursor.

WITH

RELEASE

option

When

an

application

closes

a

cursor

using

the

WITH

RELEASE

option,

DB2®

attempts

to

release

all

READ

locks

that

the

cursor

still

holds.

The

cursor

will

only

continue

to

hold

WRITE

locks.

If

the

application

closes

the

cursor

without

using

the

RELEASE

option,

the

READ

and

WRITE

locks

will

be

released

when

the

unit

of

work

completes.

Related

tasks:

v

“Selecting

Multiple

Rows

Using

a

Cursor”

on

page

87

v

“Declaring

and

Using

Cursors

in

Static

SQL

Programs”

on

page

88

Example

of

a

Cursor

in

a

Static

SQL

Program

The

samples

tut_read.sqc

in

C,

tut_read.sqC/sqx

in

C++,

TutRead.sqlj

in

SQLJ,

and

cursor.sqb

in

COBOL

show

how

to

declare

a

cursor,

open

the

cursor,

fetch

rows

from

the

table,

and

close

the

cursor.

Because

REXX

does

not

support

static

SQL,

a

sample

is

not

provided.

v

C/C++

The

sample

tut_read

shows

a

basic

select

from

a

table

using

a

cursor.

For

example:

/*

declare

cursor

*/

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

deptnumb,

deptname

FROM

org

WHERE

deptnumb

<

40;

/*

open

cursor

*/

EXEC

SQL

OPEN

c1;

/*

fetch

cursor

*/

EXEC

SQL

FETCH

c1

INTO

:deptnumb,

:deptname;

while

(sqlca.sqlcode

!=

100)

{

printf("

%8d

%-14s\n",

deptnumb,

deptname);

90

Programming

Client

Applications

EXEC

SQL

FETCH

c1

INTO

:deptnumb,

:deptname;

}

/*

close

cursor

*/

EXEC

SQL

CLOSE

c1;

v

Java™

The

sample

TutRead

shows

how

to

read

table

data

with

a

simple

select

using

a

cursor.

For

example:

//

cursor

definition

#sql

iterator

TutRead_Cursor(int,

String);

//

declare

cursor

TutRead_Cursor

cur2;

#sql

cur2

=

{SELECT

deptnumb,

deptname

FROM

org

WHERE

deptnumb

<

40};

//

fetch

cursor

#sql

{FETCH

:cur2

INTO

:deptnumb,

:deptname};

//

retrieve

and

display

the

result

from

the

SELECT

statement

while

(!cur2.endFetch())

{

System.out.println(deptnumb

+

",

"

+

deptname);

#sql

{FETCH

:cur2

INTO

:deptnumb,

:deptname};

}

//

close

cursor

cur2.close();

v

COBOL

The

sample

cursor

shows

an

example

on

how

to

retrieve

table

data

using

a

cursor

with

Static

SQL

statement.

For

example:

*

Declare

a

cursor

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

name,

dept

FROM

staff

WHERE

job=’Mgr’

END-EXEC.

*

Open

the

cursor

EXEC

SQL

OPEN

c1

END-EXEC.

*

Fetch

rows

from

the

’staff’

table

perform

Fetch-Loop

thru

End-Fetch-Loop

until

SQLCODE

not

equal

0.

*

Close

the

cursor

EXEC

SQL

CLOSE

c1

END-EXEC.

move

"CLOSE

CURSOR"

to

errloc.

Related

concepts:

v

“Cursor

Types

and

Unit

of

Work

Considerations”

on

page

89

v

“Error

Message

Retrieval

in

an

Application”

on

page

102

Related

tasks:

v

“Selecting

Multiple

Rows

Using

a

Cursor”

on

page

87

v

“Declaring

and

Using

Cursors

in

Static

SQL

Programs”

on

page

88

Related

reference:

v

“Cursor

Types”

on

page

92

Related

samples:

v

“cursor.sqb

--

How

to

update

table

data

with

cursor

statically

(IBM

COBOL)”

v

“tut_read.out

--

HOW

TO

READ

TABLES

(C)”

Chapter

4.

Writing

Static

SQL

Programs

91

v

“tut_read.sqc

--

How

to

read

tables

(C)”

v

“tut_read.out

--

HOW

TO

READ

TABLES

(C++)”

v

“tut_read.sqC

--

How

to

read

tables

(C++)”

v

“TutRead.out

--

HOW

TO

READ

TABLE

DATA.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(SQLJ)”

v

“TutRead.sqlj

--

Read

data

in

a

table

(SQLj)”

Manipulating

Retrieved

Data

The

sections

that

follow

describe

how

to

update

and

delete

retrieved

data.

The

sample

programs

that

show

how

to

manipulate

data

are

also

briefly

described.

Updating

and

Deleting

Retrieved

Data

in

Static

SQL

Programs

It

is

possible

to

update

and

delete

the

row

referenced

by

a

cursor.

For

a

row

to

be

updatable,

the

query

corresponding

to

the

cursor

must

not

be

read-only.

Procedure:

To

update

with

a

cursor,

use

the

WHERE

CURRENT

OF

clause

in

an

UPDATE

statement.

Use

the

FOR

UPDATE

clause

to

tell

the

system

that

you

want

to

update

some

columns

of

the

result

table.

You

can

specify

a

column

in

the

FOR

UPDATE

without

it

being

in

the

fullselect;

therefore,

you

can

update

columns

that

are

not

explicitly

retrieved

by

the

cursor.

If

the

FOR

UPDATE

clause

is

specified

without

column

names,

all

columns

of

the

table

or

view

identified

in

the

first

FROM

clause

of

the

outer

fullselect

are

considered

to

be

updatable.

Do

not

name

more

columns

than

you

need

in

the

FOR

UPDATE

clause.

In

some

cases,

naming

extra

columns

in

the

FOR

UPDATE

clause

can

cause

DB2

to

be

less

efficient

in

accessing

the

data.

Deletion

with

a

cursor

is

done

using

the

WHERE

CURRENT

OF

clause

in

a

DELETE

statement.

In

general,

the

FOR

UPDATE

clause

is

not

required

for

deletion

of

the

current

row

of

a

cursor.

The

only

exception

occurs

when

using

dynamic

SQL

for

either

the

SELECT

statement

or

the

DELETE

statement

in

an

application

that

has

been

precompiled

with

LANGLEVEL

set

to

SAA1

and

bound

with

BLOCKING

ALL.

In

this

case,

a

FOR

UPDATE

clause

is

necessary

in

the

SELECT

statement.

The

DELETE

statement

causes

the

row

being

referenced

by

the

cursor

to

be

deleted.

The

deletion

leaves

the

cursor

positioned

before

the

next

row,

and

a

FETCH

statement

must

be

issued

before

additional

WHERE

CURRENT

OF

operations

may

be

performed

against

the

cursor.

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

v

“SQL

queries”

in

the

SQL

Reference,

Volume

1

Cursor

Types

Cursors

fall

into

three

categories:

Read

only

The

rows

in

the

cursor

can

only

be

read,

not

updated.

Read-only

cursors

are

used

when

an

application

will

only

read

data,

not

modify

it.

A

cursor

is

considered

read

only

if

it

is

based

on

a

read-only

select-statement.

See

92

Programming

Client

Applications

the

description

of

how

to

update

and

retrieve

data

for

the

rules

for

select-statements

that

define

non-updatable

result

tables.

There

can

be

performance

advantages

for

read-only

cursors.

Updatable

The

rows

in

the

cursor

can

be

updated.

Updatable

cursors

are

used

when

an

application

modifies

data

as

the

rows

in

the

cursor

are

fetched.

The

specified

query

can

only

refer

to

one

table

or

view.

The

query

must

also

include

the

FOR

UPDATE

clause,

naming

each

column

that

will

be

updated

(unless

the

LANGLEVEL

MIA

precompile

option

is

used).

Ambiguous

The

cursor

cannot

be

determined

to

be

updatable

or

read

only

from

its

definition

or

context.

This

situation

can

happen

when

a

dynamic

SQL

statement

is

encountered

that

could

be

used

to

change

a

cursor

that

would

otherwise

be

considered

read-only.

An

ambiguous

cursor

is

treated

as

read

only

if

the

BLOCKING

ALL

option

is

specified

when

precompiling

or

binding.

Otherwise,

the

cursor

is

considered

updatable.

Note:

Cursors

processed

dynamically

are

always

ambiguous.

Related

concepts:

v

“Supported

Cursor

Modes

for

the

IBM

OLE

DB

Provider”

on

page

223

Related

tasks:

v

“Updating

and

Deleting

Retrieved

Data

in

Static

SQL

Programs”

on

page

92

Example

of

a

Fetch

in

a

Static

SQL

Program

The

following

sample

selects

from

a

table

using

a

cursor,

opens

the

cursor,

and

fetches

rows

from

the

table.

For

each

row

fetched,

the

program

decides,

based

on

simple

criteria,

whether

the

row

should

be

deleted

or

updated.

The

REXX

language

does

not

support

static

SQL,

so

a

sample

is

not

provided.

v

C/C++

(tut_mod.sqc/tut_mod.sqC)

The

following

example

is

from

the

sample

tut_mod.

This

example

selects

from

a

table

using

a

cursor,

opens

the

cursor,

fetches,

updates,

or

delete

rows

from

the

table,

then

closes

the

cursor.

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

*

FROM

staff

WHERE

id

>=

310;

EXEC

SQL

OPEN

c1;

EXEC

SQL

FETCH

c1

INTO

:id,

:name,

:dept,

:job:jobInd,

:years:yearsInd,

:salary,

:comm:commInd;

The

sample

tbmod

is

a

longer

version

of

the

tut_mod

sample,

and

shows

almost

all

possible

cases

of

table

data

modification.

v

Java™

(TutMod.sqlj)

The

following

example

is

from

the

sample

TutMod.

This

example

selects

from

a

table

using

a

cursor,

opens

the

cursor,

fetches,

updates,

or

delete

rows

from

the

table,

then

closes

the

cursor.

#sql

cur

=

{SELECT

*

FROM

staff

WHERE

id

>=

310};

#sql

{FETCH

:cur

INTO

:id,

:name,

:dept,

:job,

:years,

:salary,

:comm};

The

sample

TbMod

is

a

longer

version

of

TutMod

sample,

and

shows

almost

all

possible

cases

of

table

data

modification.

Chapter

4.

Writing

Static

SQL

Programs

93

v

COBOL

(openftch.sqb)

The

following

example

is

from

the

sample

openftch.

This

example

selects

from

a

table

using

a

cursor,

opens

the

cursor,

and

fetches

rows

from

the

table.

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

name,

dept

FROM

staff

WHERE

job=’Mgr’

FOR

UPDATE

OF

job

END-EXEC.

EXEC

SQL

OPEN

c1

END-EXEC

*

call

the

FETCH

and

UPDATE/DELETE

loop.

perform

Fetch-Loop

thru

End-Fetch-Loop

until

SQLCODE

not

equal

0.

EXEC

SQL

CLOSE

c1

END-EXEC.

Related

concepts:

v

“Error

Message

Retrieval

in

an

Application”

on

page

102

Related

samples:

v

“openftch.sqb

--

How

to

modify

table

data

using

cursor

statically

(IBM

COBOL)”

v

“tbmod.sqc

--

How

to

modify

table

data

(C)”

v

“tut_mod.out

--

HOW

TO

MODIFY

TABLE

DATA

(C)”

v

“tut_mod.sqc

--

How

to

modify

table

data

(C)”

v

“tbmod.sqC

--

How

to

modify

table

data

(C++)”

v

“tut_mod.out

--

HOW

TO

MODIFY

TABLE

DATA

(C++)”

v

“tut_mod.sqC

--

How

to

modify

table

data

(C++)”

v

“TbMod.sqlj

--

How

to

modify

table

data

(SQLj)”

v

“TutMod.out

--

HOW

TO

MODIFY

TABLE

DATA.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(SQLJ)”

v

“TutMod.sqlj

--

Modify

data

in

a

table

(SQLj)”

Scrolling

Through

and

Manipulating

Retrieved

Data

The

sections

that

follow

describe

how

to

scroll

through

retrieved

data.

The

sample

programs

that

show

how

to

manipulate

data

are

also

briefly

described.

Scrolling

Through

Previously

Retrieved

Data

When

an

application

retrieves

data

from

the

database,

the

FETCH

statement

allows

it

to

scroll

forward

through

the

data,

however,

the

database

manager

has

no

embedded

SQL

statement

that

allows

it

scroll

backwards

through

the

data,

(equivalent

to

a

backward

FETCH).

DB2

CLI

and

Java,

however,

do

support

a

backward

FETCH

through

read-only

scrollable

cursors.

Procedure:

For

embedded

SQL

applications,

you

can

use

the

following

techniques

to

scroll

through

data

that

has

been

retrieved:

v

Keep

a

copy

of

the

data

that

has

been

fetched

and

scroll

through

it

by

some

programming

technique.

v

Use

SQL

to

retrieve

the

data

again,

typically

by

a

second

SELECT

statement.

94

Programming

Client

Applications

Related

tasks:

v

“Keeping

a

Copy

of

the

Data”

on

page

95

v

“Retrieving

Data

a

Second

Time”

on

page

95

Related

reference:

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Cursor

positioning

rules

for

SQLFetchScroll()

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

Keeping

a

Copy

of

the

Data

In

some

situations,

it

may

be

useful

to

maintain

a

copy

of

data

that

is

fetched

by

the

application.

Procedure:

To

keep

a

copy

of

the

data,

your

application

can

do

the

following:

v

Save

the

fetched

data

in

virtual

storage.

v

Write

the

data

to

a

temporary

file

(if

the

data

does

not

fit

in

virtual

storage).

One

effect

of

this

approach

is

that

a

user,

scrolling

backward,

always

sees

exactly

the

same

data

that

was

fetched,

even

if

the

data

in

the

database

was

changed

in

the

interim

by

a

transaction.

v

Using

an

isolation

level

of

repeatable

read,

the

data

you

retrieve

from

a

transaction

can

be

retrieved

again

by

closing

and

opening

a

cursor.

Other

applications

are

prevented

from

updating

the

data

in

your

result

set.

Isolation

levels

and

locking

can

affect

how

users

update

data.

Related

concepts:

v

“Row

Order

Differences

Between

the

First

and

Second

Result

Table”

on

page

96

Related

tasks:

v

“Retrieving

Data

a

Second

Time”

on

page

95

Retrieving

Data

a

Second

Time

The

technique

that

you

use

to

retrieve

data

a

second

time

depends

on

the

order

in

which

you

want

to

see

the

data

again.

Procedure:

You

can

retrieve

data

a

second

time

by

using

any

of

the

following

methods:

v

Retrieve

data

from

the

beginning

To

retrieve

the

data

again

from

the

beginning

of

the

result

table,

close

the

active

cursor

and

reopen

it.

This

action

positions

the

cursor

at

the

beginning

of

the

result

table.

But,

unless

the

application

holds

locks

on

the

table,

others

may

have

changed

it,

so

what

had

been

the

first

row

of

the

result

table

may

no

longer

be.

v

Retrieve

data

from

the

middle

To

retrieve

data

a

second

time

from

somewhere

in

the

middle

of

the

result

table,

execute

a

second

SELECT

statement

and

declare

a

second

cursor

on

the

statement.

For

example,

suppose

the

first

SELECT

statement

was:

Chapter

4.

Writing

Static

SQL

Programs

95

SELECT

*

FROM

DEPARTMENT

WHERE

LOCATION

=

'CALIFORNIA'

ORDER

BY

DEPTNO

Now,

suppose

that

you

want

to

return

to

the

rows

that

start

with

DEPTNO

=

'M95'

and

fetch

sequentially

from

that

point.

Code

the

following:

SELECT

*

FROM

DEPARTMENT

WHERE

LOCATION

=

'CALIFORNIA'

AND

DEPTNO

>=

'M95'

ORDER

BY

DEPTNO

This

statement

positions

the

cursor

where

you

want

it.

v

Retrieve

data

in

reverse

order

Ascending

ordering

of

rows

is

the

default.

If

there

is

only

one

row

for

each

value

of

DEPTNO,

then

the

following

statement

specifies

a

unique

ascending

ordering

of

rows:

SELECT

*

FROM

DEPARTMENT

WHERE

LOCATION

=

'CALIFORNIA'

ORDER

BY

DEPTNO

To

retrieve

the

same

rows

in

reverse

order,

specify

that

the

order

is

descending,

as

in

the

following

statement:

SELECT

*

FROM

DEPARTMENT

WHERE

LOCATION

=

'CALIFORNIA'

ORDER

BY

DEPTNO

DESC

A

cursor

on

the

second

statement

retrieves

rows

in

exactly

the

opposite

order

from

a

cursor

on

the

first

statement.

Order

of

retrieval

is

guaranteed

only

if

the

first

statement

specifies

a

unique

ordering

sequence.

For

retrieving

rows

in

reverse

order,

it

can

be

useful

to

have

two

indexes

on

the

DEPTNO

column,

one

in

ascending

order,

and

the

other

in

descending

order.

Related

concepts:

v

“Row

Order

Differences

Between

the

First

and

Second

Result

Table”

on

page

96

Row

Order

Differences

Between

the

First

and

Second

Result

Table

The

rows

of

the

second

result

table

may

not

be

displayed

in

the

same

order

as

in

the

first.

The

database

manager

does

not

consider

the

order

of

rows

as

significant

unless

the

SELECT

statement

uses

ORDER

BY.

Thus,

if

there

are

several

rows

with

the

same

DEPTNO

value,

the

second

SELECT

statement

may

retrieve

them

in

a

different

order

from

the

first.

The

only

guarantee

is

that

they

will

all

be

in

order

by

department

number,

as

demanded

by

the

clause

ORDER

BY

DEPTNO.

The

difference

in

ordering

could

occur

even

if

you

were

to

execute

the

same

SQL

statement,

with

the

same

host

variables,

a

second

time.

For

example,

the

statistics

in

the

catalog

could

be

updated

between

executions,

or

indexes

could

be

created

or

dropped.

You

could

then

execute

the

SELECT

statement

again.

The

ordering

is

more

likely

to

change

if

the

second

SELECT

has

a

predicate

that

the

first

did

not

have;

the

database

manager

could

choose

to

use

an

index

on

the

new

predicate.

For

example,

it

could

choose

an

index

on

LOCATION

for

the

first

statement

in

our

example,

and

an

index

on

DEPTNO

for

the

second.

Because

rows

are

fetched

in

order

by

the

index

key,

the

second

order

need

not

be

the

same

as

the

first.

96

Programming

Client

Applications

Again,

executing

two

similar

SELECT

statements

can

produce

a

different

ordering

of

rows,

even

if

no

statistics

change

and

no

indexes

are

created

or

dropped.

In

the

example,

if

there

are

many

different

values

of

LOCATION,

the

database

manager

could

choose

an

index

on

LOCATION

for

both

statements.

Yet

changing

the

value

of

DEPTNO

in

the

second

statement

to

the

following,

could

cause

the

database

manager

to

choose

an

index

on

DEPTNO:

SELECT

*

FROM

DEPARTMENT

WHERE

LOCATION

=

'CALIFORNIA'

AND

DEPTNO

>=

'Z98'

ORDER

BY

DEPTNO

Because

of

the

subtle

relationships

between

the

form

of

an

SQL

statement

and

the

values

in

this

statement,

never

assume

that

two

different

SQL

statements

will

return

rows

in

the

same

order

unless

the

order

is

uniquely

determined

by

an

ORDER

BY

clause.

Related

tasks:

v

“Retrieving

Data

a

Second

Time”

on

page

95

Positioning

a

Cursor

at

the

End

of

a

Table

If

you

need

to

position

the

cursor

at

the

end

of

a

table,

you

can

use

an

SQL

statement

to

position

it.

Procedure:

Use

either

of

the

following

examples

as

a

method

for

positioning

a

cursor:

v

The

database

manager

does

not

guarantee

an

order

to

data

stored

in

a

table;

therefore,

the

end

of

a

table

is

not

defined.

However,

order

is

defined

on

the

result

of

an

SQL

statement:

SELECT

*

FROM

DEPARTMENT

ORDER

BY

DEPTNO

DESC

v

The

following

statement

positions

the

cursor

at

the

row

with

the

highest

DEPTNO

value:

SELECT

*

FROM

DEPARTMENT

WHERE

DEPTNO

=

(SELECT

MAX(DEPTNO)

FROM

DEPARTMENT)

Note,

however,

that

if

several

rows

have

the

same

value,

the

cursor

is

positioned

on

the

first

of

them.

Updating

Previously

Retrieved

Data

To

scroll

backward

and

update

data

that

was

retrieved

previously,

you

can

use

a

combination

of

the

techniques

that

are

used

to

scroll

through

previously

retrieved

data

and

to

update

retrieved

data.

Procedure:

To

update

previously

retrieved

data,

you

can

do

one

of

two

things:

v

If

you

have

a

second

cursor

on

the

data

to

be

updated

and

the

SELECT

statement

uses

none

of

the

restricted

elements,

you

can

use

a

cursor-controlled

UPDATE

statement.

Name

the

second

cursor

in

the

WHERE

CURRENT

OF

clause.

Chapter

4.

Writing

Static

SQL

Programs

97

v

In

other

cases,

use

UPDATE

with

a

WHERE

clause

that

names

all

the

values

in

the

row

or

specifies

the

primary

key

of

the

table.

You

can

execute

one

statement

many

times

with

different

values

of

the

variables.

Related

tasks:

v

“Updating

and

Deleting

Retrieved

Data

in

Static

SQL

Programs”

on

page

92

v

“Scrolling

Through

Previously

Retrieved

Data”

on

page

94

Example

of

an

Insert,

Update,

and

Delete

in

a

Static

SQL

Program

The

following

examples

show

how

to

insert,

update,

and

delete

data

using

static

SQL.

v

C/C++

(tut_mod.sqc/tut_mod.sqC)

The

following

three

examples

are

from

the

tut_mod

sample.

See

this

sample

for

a

complete

program

that

shows

how

to

modify

table

data

in

C

or

C++.

The

following

example

shows

how

to

insert

table

data:

EXEC

SQL

INSERT

INTO

staff(id,

name,

dept,

job,

salary)

VALUES(380,

’Pearce’,

38,

’Clerk’,

13217.50),

(390,

’Hachey’,

38,

’Mgr’,

21270.00),

(400,

’Wagland’,

38,

’Clerk’,

14575.00);

The

following

example

shows

how

to

update

table

data:

EXEC

SQL

UPDATE

staff

SET

salary

=

salary

+

10000

WHERE

id

>=

310

AND

dept

=

84;

The

following

example

shows

how

to

delete

from

a

table:

EXEC

SQL

DELETE

FROM

staff

WHERE

id

>=

310

AND

salary

>

20000;

v

Java™

(TutMod.sqlj)

The

following

three

examples

are

from

in

the

TutMod

sample.

See

this

sample

for

a

complete

program

that

shows

how

to

modify

table

data

in

SQLJ.

The

following

example

shows

how

to

insert

table

data:

#sql

{INSERT

INTO

staff(id,

name,

dept,

job,

salary)

VALUES(380,

’Pearce’,

38,

’Clerk’,

13217.50),

(390,

’Hachey’,

38,

’Mgr’,

21270.00),

(400,

’Wagland’,

38,

’Clerk’,

14575.00)};

The

following

example

shows

how

to

update

table

data:

#sql

{UPDATE

staff

SET

salary

=

salary

+

1000

WHERE

id

>=

310

AND

dept

=

84};

The

following

example

shows

how

to

delete

from

a

table:

#sql

{DELETE

FROM

staff

WHERE

id

>=

310

AND

salary

>

20000};

v

COBOL

(updat.sqb)

The

following

three

examples

are

from

the

updat

sample.

See

this

sample

for

a

complete

program

that

shows

how

to

modify

table

data

in

COBOL.

The

following

example

shows

how

to

insert

table

data:

EXEC

SQL

INSERT

INTO

staff

VALUES

(999,

’Testing’,

99,

:job-update,

0,

0,

0)

END-EXEC.

The

following

example

shows

how

to

update

table

data:

98

Programming

Client

Applications

EXEC

SQL

UPDATE

staff

SET

job=:job-update

WHERE

job=’Mgr’

END-EXEC.

The

following

example

shows

how

to

delete

from

a

table:

EXEC

SQL

DELETE

FROM

staff

WHERE

job=:job-update

END-EXEC.

Related

concepts:

v

“Error

Message

Retrieval

in

an

Application”

on

page

102

Related

samples:

v

“tbinfo.out

--

HOW

TO

GET

INFORMATION

AT

THE

TABLE

LEVEL

(C++)”

v

“tbmod.out

--

HOW

TO

MODIFY

TABLE

DATA

(C++)”

v

“tbmod.sqC

--

How

to

modify

table

data

(C++)”

v

“tut_mod.out

--

HOW

TO

MODIFY

TABLE

DATA

(C++)”

v

“tut_mod.sqC

--

How

to

modify

table

data

(C++)”

v

“tbmod.out

--

HOW

TO

MODIFY

TABLE

DATA

(C)”

v

“tbmod.sqc

--

How

to

modify

table

data

(C)”

v

“tut_mod.out

--

HOW

TO

MODIFY

TABLE

DATA

(C)”

v

“tut_mod.sqc

--

How

to

modify

table

data

(C)”

v

“TbMod.out

--

HOW

TO

MODIFY

TABLE

DATA.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(SQLJ)”

v

“TbMod.sqlj

--

How

to

modify

table

data

(SQLj)”

v

“TutMod.out

--

HOW

TO

MODIFY

TABLE

DATA.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(SQLJ)”

v

“TutMod.sqlj

--

Modify

data

in

a

table

(SQLj)”

Diagnostic

Information

The

sections

that

follow

describe

the

diagnostic

information

that

is

available

for

a

static

SQL

program,

such

as

return

codes

and

how

an

application

should

retrieve

error

messages.

Return

Codes

Most

database

manager

APIs

pass

back

a

zero

return

code

when

successful.

In

general,

a

non-zero

return

code

indicates

that

the

secondary

error

handling

mechanism,

the

SQLCA

structure,

may

be

corrupt.

In

this

case,

the

called

API

is

not

executed.

A

possible

cause

for

a

corrupt

SQLCA

structure

is

passing

an

invalid

address

for

the

structure.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Chapter

4.

Writing

Static

SQL

Programs

99

Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields

Error

information

is

returned

in

the

SQLCODE

and

SQLSTATE

fields

of

the

SQLCA

structure,

which

is

updated

after

every

executable

SQL

statement

and

most

database

manager

API

calls.

A

source

file

containing

executable

SQL

statements

can

provide

at

least

one

SQLCA

structure

with

the

name

sqlca.

The

SQLCA

structure

is

defined

in

the

SQLCA

include

file.

Source

files

without

embedded

SQL

statements,

but

calling

database

manager

APIs,

can

also

provide

one

or

more

SQLCA

structures,

but

their

names

are

arbitrary.

If

your

application

is

compliant

with

the

FIPS

127-2

standard,

you

can

declare

the

SQLSTATE

and

SQLCODE

as

host

variables

for

C,

C++,

COBOL,

and

FORTRAN

applications,

instead

of

using

the

SQLCA

structure.

An

SQLCODE

value

of

0

means

successful

execution

(with

possible

SQLWARN

warning

conditions).

A

positive

value

means

that

the

statement

was

successfully

executed

but

with

a

warning,

as

with

truncation

of

a

host

variable.

A

negative

value

means

that

an

error

condition

occurred.

An

additional

field,

SQLSTATE,

contains

a

standardized

error

code

consistent

across

other

IBM®

database

products

and

across

SQL92–conformant

database

managers.

Practically

speaking,

you

should

use

SQLSTATE

values

when

you

are

concerned

about

portability

since

SQLSTATE

values

are

common

across

many

database

managers.

The

SQLWARN

field

contains

an

array

of

warning

indicators,

even

if

SQLCODE

is

zero.

The

first

element

of

the

SQLWARN

array,

SQLWARN0,

contains

a

blank

if

all

other

elements

are

blank.

SQLWARN0

contains

a

W

if

at

least

one

other

element

contains

a

warning

character.

Note:

If

you

want

to

develop

applications

that

access

various

IBM

RDBMS

servers

you

should:

v

Where

possible,

have

your

applications

check

the

SQLSTATE

rather

than

the

SQLCODE.

v

If

your

applications

will

use

DB2

Connect,

consider

using

the

mapping

facility

provided

by

DB2

Connect

to

map

SQLCODE

conversions

between

unlike

databases.

Related

concepts:

v

“Return

Codes”

on

page

99

v

“SQLSTATE

and

SQLCODE

Variables

in

C

and

C++”

on

page

168

v

“SQLSTATE

and

SQLCODE

Variables

in

COBOL”

on

page

193

v

“SQLSTATE

and

SQLCODE

Variables

in

FORTRAN”

on

page

208

v

“SQLSTATE

and

SQLCODE

Variables

in

Perl”

on

page

491

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

100

Programming

Client

Applications

Token

Truncation

in

the

SQLCA

Structure

Since

tokens

may

be

truncated

in

the

SQLCA

structure,

you

should

not

use

the

token

information

for

diagnostic

purposes.

While

you

can

define

table

and

column

names

with

lengths

of

up

to

128

bytes,

the

SQLCA

tokens

will

be

truncated

to

17

bytes

plus

a

truncation

terminator

(>).

Application

logic

should

not

depend

on

actual

values

of

the

sqlerrmc

field.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Exception,

Signal,

and

Interrupt

Handler

Considerations

An

exception,

signal,

or

interrupt

handler

is

a

routine

that

gets

control

when

an

exception,

signal,

or

interrupt

occurs.

The

type

of

handler

applicable

is

determined

by

your

operating

environment,

as

shown

in

the

following:

Windows®

operating

systems

Pressing

Ctrl-C

or

Ctrl-Break

generates

an

interrupt.

UNIX®-based

systems

Usually,

pressing

Ctrl-C

generates

the

SIGINT

interrupt

signal.

Note

that

keyboards

can

easily

be

redefined

so

SIGINT

may

be

generated

by

a

different

key

sequence

on

your

machine.

Do

not

put

SQL

statements

(other

than

COMMIT

or

ROLLBACK)

in

exception,

signal,

and

interrupt

handlers.

With

these

kinds

of

error

conditions,

you

normally

want

to

do

a

ROLLBACK

to

avoid

the

risk

of

inconsistent

data.

Note

that

you

should

exercise

caution

when

coding

a

COMMIT

and

ROLLBACK

in

exception/signal/interrupt

handlers.

If

you

call

either

of

these

statements

by

themselves,

the

COMMIT

or

ROLLBACK

is

not

executed

until

the

current

SQL

statement

is

complete,

if

one

is

running.

This

is

not

the

behavior

desired

from

a

Ctrl-C

handler.

The

solution

is

to

call

the

INTERRUPT

API

(sqleintr/sqlgintr)

before

issuing

a

ROLLBACK.

This

API

interrupts

the

current

SQL

query

(if

the

application

is

executing

one)

and

lets

the

ROLLBACK

begin

immediately.

If

you

are

going

to

perform

a

COMMIT

rather

than

a

ROLLBACK,

you

do

not

want

to

interrupt

the

current

command.

When

using

APPC

to

access

a

remote

database

server

(DB2

for

AIX

or

host

database

system

using

DB2

Connect),

the

application

may

receive

a

SIGUSR1

signal.

This

signal

is

generated

by

SNA

Services/6000

when

an

unrecoverable

error

occurs

and

the

SNA

connection

is

stopped.

You

may

want

to

install

a

signal

handler

in

your

application

to

handle

SIGUSR1.

Refer

to

your

platform

documentation

for

specific

details

on

the

various

handler

considerations.

Related

concepts:

v

“Processing

of

Interrupt

Requests”

on

page

694

Chapter

4.

Writing

Static

SQL

Programs

101

Exit

List

Routine

Considerations

Do

not

use

SQL

or

DB2

API

calls

in

exit

list

routines.

Note

that

you

cannot

disconnect

from

a

database

in

an

exit

routine.

Error

Message

Retrieval

in

an

Application

Depending

on

the

language

in

which

your

application

is

written,

you

use

a

different

method

to

retrieve

error

information:

v

C,

C++,

and

COBOL

applications

can

use

the

GET

ERROR

MESSAGE

API

to

obtain

the

corresponding

information

related

to

the

SQLCA

passed

in.

v

JDBC

and

SQLJ

applications

throw

an

SQLException

when

an

error

occurs

during

SQL

processing.

Your

applications

can

catch

and

display

an

SQLException

with

the

following

code:

try

{

Statement

stmt

=

connection.createStatement();

int

rowsDeleted

=

stmt.executeUpdate(

"DELETE

FROM

employee

WHERE

empno

=

’000010’");

System.out.println(

rowsDeleted

+

"

rows

were

deleted");

}

catch

(SQLException

sqle)

{

System.out.println(sqle);

}

v

REXX

applications

use

the

CHECKERR

procedure.

Related

concepts:

v

“SQLSTATE

and

SQLCODE

Variables

in

C

and

C++”

on

page

168

v

“SQLSTATE

and

SQLCODE

Variables

in

COBOL”

on

page

193

v

“SQLSTATE

and

SQLCODE

Variables

in

FORTRAN”

on

page

208

v

“SQLSTATE

and

SQLCODE

Variables

in

Perl”

on

page

491

Related

reference:

v

“sqlaintp

-

Get

Error

Message”

in

the

Administrative

API

Reference

102

Programming

Client

Applications

Chapter

5.

Writing

Dynamic

SQL

Programs

Characteristics

and

Reasons

for

Using

Dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Reasons

for

Using

Dynamic

SQL

.

.

.

.

.

. 103

Dynamic

SQL

Support

Statements

.

.

.

.

. 103

Dynamic

SQL

Versus

Static

SQL

.

.

.

.

.

. 104

Cursors

in

Dynamic

SQL

Programs

.

.

.

.

.

. 106

Declaring

and

Using

Cursors

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Example

of

a

Cursor

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Effects

of

REOPT

on

dynamic

SQL

.

.

.

.

.

. 109

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 109

The

SQLDA

in

Dynamic

SQL

Programs

.

.

.

.

. 111

Host

Variables

and

the

SQLDA

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Declaring

the

SQLDA

Structure

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 112

Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure

.

.

.

.

.

. 113

Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program

.

.

.

.

. 115

Describing

a

SELECT

Statement

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 115

Acquiring

Storage

to

Hold

a

Row

.

.

.

.

. 116

Processing

the

Cursor

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Allocating

an

SQLDA

Structure

for

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 117

Transferring

Data

in

a

Dynamic

SQL

Program

Using

an

SQLDA

Structure

.

.

.

.

.

.

.

. 121

Processing

Interactive

SQL

Statements

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

. 122

Determination

of

Statement

Type

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

.

.

.

. 122

Processing

Variable-List

SELECT

Statements

in

Dynamic

SQL

Programs

.

.

.

.

.

.

.

.

. 123

Saving

SQL

Requests

from

End

Users

.

.

.

.

. 123

Parameter

Markers

in

Dynamic

SQL

Programs

.

. 124

Providing

Variable

Input

to

Dynamic

SQL

Using

Parameter

Markers

.

.

.

.

.

.

.

.

.

. 124

Example

of

Parameter

Markers

in

a

Dynamic

SQL

Program

.

.

.

.

.

.

.

.

.

.

.

. 125

DB2

Call

Level

Interface

(CLI)

Compared

to

Dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 126

DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

. 126

Advantages

of

DB2

CLI

over

embedded

SQL

127

When

to

use

DB2

CLI

or

embedded

SQL

.

.

. 129

Characteristics

and

Reasons

for

Using

Dynamic

SQL

The

sections

that

follow

describe

the

reasons

for

using

dynamic

SQL

as

compared

to

static

SQL.

Reasons

for

Using

Dynamic

SQL

You

may

want

to

use

dynamic

SQL

when:

v

You

need

all

or

part

of

the

SQL

statement

to

be

generated

during

application

execution.

v

The

objects

referenced

by

the

SQL

statement

do

not

exist

at

precompile

time.

v

You

want

the

statement

to

always

use

the

most

optimal

access

path,

based

on

current

database

statistics.

v

You

want

to

modify

the

compilation

environment

of

the

statement,

that

is,

experiment

with

the

special

registers.

Related

concepts:

v

“Dynamic

SQL

Support

Statements”

on

page

103

v

“Dynamic

SQL

Versus

Static

SQL”

on

page

104

Dynamic

SQL

Support

Statements

The

dynamic

SQL

support

statements

accept

a

character-string

host

variable

and

a

statement

name

as

arguments.

The

host

variable

contains

the

SQL

statement

to

be

processed

dynamically

in

text

form.

The

statement

text

is

not

processed

when

an

©

Copyright

IBM

Corp.

1997

-

2004

103

||

application

is

precompiled.

In

fact,

the

statement

text

does

not

have

to

exist

at

the

time

the

application

is

precompiled.

Instead,

the

SQL

statement

is

treated

as

a

host

variable

for

precompilation

purposes

and

the

variable

is

referenced

during

application

execution.

These

SQL

statements

are

referred

to

as

dynamic

SQL.

Dynamic

SQL

support

statements

are

required

to

transform

the

host

variable

containing

SQL

text

into

an

executable

form

and

operate

on

it

by

referencing

the

statement

name.

These

statements

are:

EXECUTE

IMMEDIATE

Prepares

and

executes

a

statement

that

does

not

use

any

host

variables.

All

EXECUTE

IMMEDIATE

statements

in

an

application

are

cached

in

the

same

place

at

run

time,

so

only

the

last

statement

is

known.

Use

this

statement

as

an

alternative

to

the

PREPARE

and

EXECUTE

statements.

PREPARE

Turns

the

character

string

form

of

the

SQL

statement

into

an

executable

form

of

the

statement,

assigns

a

statement

name,

and

optionally

places

information

about

the

statement

in

an

SQLDA

structure.

EXECUTE

Executes

a

previously

prepared

SQL

statement.

The

statement

can

be

executed

repeatedly

within

a

connection.

DESCRIBE

Places

information

about

a

prepared

statement

into

an

SQLDA.

An

application

can

execute

most

supported

SQL

statements

dynamically.

Note:

The

content

of

dynamic

SQL

statements

follows

the

same

syntax

as

static

SQL

statements,

with

the

following

exceptions:

v

Comments

are

not

allowed.

v

The

statement

cannot

begin

with

EXEC

SQL.

v

The

statement

cannot

end

with

the

statement

terminator.

An

exception

to

this

is

the

CREATE

TRIGGER

statement

which

can

contain

a

semicolon

(;).

Related

reference:

v

Appendix

A,

“Supported

SQL

Statements,”

on

page

685

Dynamic

SQL

Versus

Static

SQL

The

question

of

whether

to

use

static

or

dynamic

SQL

for

performance

is

usually

of

great

interest

to

programmers.

The

answer

depends

on

your

situation.

Use

the

following

table

when

deciding

whether

to

use

static

or

dynamic

SQL.

Considerations

such

as

security

dictate

static

SQL,

while

environmental

considerations

(for

example,

using

DB2

CLI

or

the

CLP)

dictate

dynamic

SQL.

When

making

your

decision,

consider

the

following

recommendations

on

whether

to

choose

static

or

dynamic

SQL

in

a

particular

situation.

In

the

following

table,

'Either'

means

that

there

is

no

advantage

to

either

static

or

dynamic

SQL.

Note:

These

are

general

recommendations

only.

Your

specific

application,

its

intended

usage,

and

working

environment

dictate

the

actual

choice.

When

in

doubt,

prototyping

your

statements

as

static

SQL,

then

as

dynamic

SQL,

then

comparing

the

differences

is

the

best

approach.

104

Programming

Client

Applications

Table

8.

Comparing

Static

and

Dynamic

SQL

Consideration

Likely

Best

Choice

Time

to

run

the

SQL

statement:

v

Less

than

2

seconds

v

2

to

10

seconds

v

More

than

10

seconds

v

Static

v

Either

v

Dynamic

Data

Uniformity

v

Uniform

data

distribution

v

Slight

non-uniformity

v

Highly

non-uniform

distribution

v

Static

v

Either

v

Dynamic

Range

(<,>,BETWEEN,LIKE)

Predicates

v

Very

Infrequent

v

Occasional

v

Frequent

v

Static

v

Either

v

Dynamic

Repetitious

Execution

v

Runs

many

times

(10

or

more

times)

v

Runs

a

few

times

(less

than

10

times)

v

Runs

once

v

Either

v

Either

v

Static

Nature

of

Query

v

Random

v

Permanent

v

Dynamic

v

Either

Run

Time

Environment

(DML/DDL)

v

Transaction

Processing

(DML

Only)

v

Mixed

(DML

and

DDL

-

DDL

affects

packages)

v

Mixed

(DML

and

DDL

-

DDL

does

not

affect

packages)

v

Either

v

Dynamic

v

Either

Frequency

of

RUNSTATS

v

Very

infrequently

v

Regularly

v

Frequently

v

Static

v

Either

v

Dynamic

In

general,

an

application

using

dynamic

SQL

has

a

higher

start-up

(or

initial)

cost

per

SQL

statement

due

to

the

need

to

compile

the

SQL

statements

before

using

them.

Once

compiled,

the

execution

time

for

dynamic

SQL

compared

to

static

SQL

should

be

equivalent

and,

in

some

cases,

faster

due

to

better

access

plans

being

chosen

by

the

optimizer.

Each

time

a

dynamic

statement

is

executed,

the

initial

compilation

cost

becomes

less

of

a

factor.

If

multiple

users

are

running

the

same

dynamic

application

with

the

same

statements,

only

the

first

application

to

issue

the

statement

realizes

the

cost

of

statement

compilation.

In

a

mixed

DML

and

DDL

environment,

the

compilation

cost

for

a

dynamic

SQL

statement

may

vary

as

the

statement

may

be

implicitly

recompiled

by

the

system

while

the

application

is

running.

In

a

mixed

environment,

the

choice

between

static

and

dynamic

SQL

must

also

factor

in

the

frequency

in

which

packages

are

invalidated.

If

the

DDL

does

invalidate

packages,

dynamic

SQL

may

be

more

efficient

as

only

those

queries

executed

are

recompiled

when

they

are

next

used.

Others

are

not

recompiled.

For

static

SQL,

the

entire

package

is

rebound

once

it

has

been

invalidated.

Now

suppose

your

particular

application

contains

a

mixture

of

the

above

characteristics,

and

some

of

these

characteristics

suggest

that

you

use

static

while

others

suggest

dynamic.

In

this

case,

there

is

no

obvious

decision,

and

you

should

Chapter

5.

Writing

Dynamic

SQL

Programs

105

probably

use

the

method

you

have

the

most

experience

with,

and

with

which

you

feel

most

comfortable.

Note

that

the

considerations

in

the

above

table

are

listed

roughly

in

order

of

importance.

Note:

Static

and

dynamic

SQL

each

come

in

two

types

that

make

a

difference

to

the

DB2

optimizer.

These

types

are:

1.

Static

SQL

containing

no

host

variables

This

is

an

unlikely

situation

which

you

may

see

only

for:

v

Initialization

code

v

Novice

training

examples

This

is

actually

the

best

combination

from

a

performance

perspective

in

that

there

is

no

run-time

performance

overhead,

and

the

DB2

optimizer’s

capabilities

can

be

fully

realized.

2.

Static

SQL

containing

host

variables

This

is

the

traditional

legacy

style

of

DB2®

applications.

It

avoids

the

run

time

overhead

of

a

PREPARE

and

catalog

locks

acquired

during

statement

compilation.

Unfortunately,

the

full

power

of

the

optimizer

cannot

be

utilized

because

the

optimizer

does

not

know

the

entire

SQL

statement.

A

particular

problem

exists

with

highly

non-uniform

data

distributions.

3.

Dynamic

SQL

containing

no

parameter

markers

This

is

the

typical

style

for

random

query

interfaces

(such

as

the

CLP),

and

is

the

optimizer’s

preferred

flavor

of

SQL.

For

complex

queries,

the

overhead

of

the

PREPARE

statement

is

usually

offset

by

the

improved

execution

time.

4.

Dynamic

SQL

containing

parameter

markers

This

is

the

most

common

type

of

SQL

for

CLI

applications.

The

key

benefit

is

that

the

presence

of

parameter

markers

allows

the

cost

of

the

PREPARE

to

be

amortized

over

the

repeated

executions

of

the

statement,

typically

a

select

or

insert.

This

amortization

is

true

for

all

repetitive

dynamic

SQL

applications.

Unfortunately,

just

like

static

SQL

with

host

variables,

parts

of

the

DB2

optimizer

will

not

work

because

complete

information

is

unavailable.

The

recommendation

is

to

use

static

SQL

with

host

variables

or

dynamic

SQL

without

parameter

markers

as

the

most

efficient

options.

Related

concepts:

v

“Example

of

Parameter

Markers

in

a

Dynamic

SQL

Program”

on

page

125

Related

tasks:

v

“Providing

Variable

Input

to

Dynamic

SQL

Using

Parameter

Markers”

on

page

124

Cursors

in

Dynamic

SQL

Programs

The

sections

that

follow

describe

how

to

declare

and

use

cursors

in

dynamic

SQL,

and

briefly

describe

the

sample

programs

that

use

cursors.

Declaring

and

Using

Cursors

in

Dynamic

SQL

Programs

Processing

a

cursor

dynamically

is

nearly

identical

to

processing

it

using

static

SQL.

When

a

cursor

is

declared,

it

is

associated

with

a

query.

106

Programming

Client

Applications

In

static

SQL,

the

query

is

a

SELECT

statement

in

text

form,

while

in

dynamic

SQL,

the

query

is

associated

with

a

statement

name

assigned

in

a

PREPARE

statement.

Any

referenced

host

variables

are

represented

by

parameter

markers.

The

main

difference

between

a

static

and

a

dynamic

cursor

is

that

a

static

cursor

is

prepared

at

precompile

time,

and

a

dynamic

cursor

is

prepared

at

run

time.

Additionally,

host

variables

referenced

in

the

query

are

represented

by

parameter

markers,

which

are

replaced

by

run-time

host

variables

when

the

cursor

is

opened.

Procedure:

Use

the

examples

shown

in

the

following

table

when

coding

cursors

for

a

dynamic

SQL

program:

Table

9.

Declare

Statement

Associated

with

a

Dynamic

SELECT

Language

Example

Source

Code

C/C++

strcpy(

prep_string,

"SELECT

tabname

FROM

syscat.tables"

"WHERE

tabschema

=

?"

);

EXEC

SQL

PREPARE

s1

FROM

:prep_string;

EXEC

SQL

DECLARE

c1

CURSOR

FOR

s1;

EXEC

SQL

OPEN

c1

USING

:host_var;

Java

(JDBC)

PreparedStatement

prep_string

=

("SELECT

tabname

FROM

syscat.tables

WHERE

tabschema

=

?"

);

prep_string.setCursor("c1");

prep_string.setString(1,

host_var);

ResultSet

rs

=

prep_string.executeQuery();

COBOL

MOVE

"SELECT

TABNAME

FROM

SYSCAT.TABLES

WHERE

TABSCHEMA

=

?"

TO

PREP-STRING.

EXEC

SQL

PREPARE

S1

FROM

:PREP-STRING

END-EXEC.

EXEC

SQL

DECLARE

C1

CURSOR

FOR

S1

END-EXEC.

EXEC

SQL

OPEN

C1

USING

:host-var

END-EXEC.

FORTRAN

prep_string

=

’SELECT

tabname

FROM

syscat.tables

WHERE

tabschema

=

?’

EXEC

SQL

PREPARE

s1

FROM

:prep_string

EXEC

SQL

DECLARE

c1

CURSOR

FOR

s1

EXEC

SQL

OPEN

c1

USING

:host_var

Related

concepts:

v

“Example

of

a

Cursor

in

a

Dynamic

SQL

Program”

on

page

107

v

“Cursors

in

REXX”

on

page

502

Related

tasks:

v

“Selecting

Multiple

Rows

Using

a

Cursor”

on

page

87

Example

of

a

Cursor

in

a

Dynamic

SQL

Program

A

dynamic

SQL

statement

can

be

prepared

for

execution

with

the

PREPARE

statement

and

executed

with

the

EXECUTE

statement

or

the

DECLARE

CURSOR

statement.

PREPARE

with

EXECUTE

The

following

example

shows

how

a

dynamic

SQL

statement

can

be

prepared

for

execution

with

the

PREPARE

statement

and

executed

with

the

EXECUTE

statement:

v

C/C++

(dbuse.sqc/dbuse.sqC):

Chapter

5.

Writing

Dynamic

SQL

Programs

107

The

following

example

is

from

the

sample

dbuse:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hostVarStmt[50];

EXEC

SQL

END

DECLARE

SECTION;

strcpy(hostVarStmt,

"DELETE

FROM

org

WHERE

deptnumb

=

15");

EXEC

SQL

PREPARE

Stmt

FROM

:hostVarStmt;

EXEC

SQL

EXECUTE

Stmt;

PREPARE

with

DECLARE

CURSOR

The

following

examples

show

how

a

dynamic

SQL

statement

can

be

prepared

for

execution

with

the

PREPARE

statement,

and

executed

with

the

DECLARE

CURSOR

statement:

v

C

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

st[80];

char

parm_var[19};

EXEC

SQL

END

DECLARE

SECTION;

strcpy(

st,

"SELECT

tabname

FROM

syscat.tables"

);

strcat(

st,

"

WHERE

tabname

<>

?

ORDER

BY

1"

);

EXEC

SQL

PREPARE

s1

FROM

:st;

EXEC

SQL

DECLARE

c1

CURSOR

FOR

s1;

strcpy(

parm_var,

"STAFF"

);

EXEC

SQL

OPEN

c1

USING

:parm_var;

v

Java™

PreparedStatement

pstmt1

=

con.prepareStatement(

"SELECT

tabname

FROM

syscat.tables

"

+

"WHERE

tabname

<>

?

ORDER

BY

1");

//

set

cursor

name

for

the

positioned

update

statement

pstmt1.setCursorName("c1");

pstmt1.setString(1,

"STAFF");

ResultSet

rs

=

pstmt1.executeQuery();

v

COBOL

(dynamic.sqb)

The

following

example

is

from

the

dynamic.sqb

sample:

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

01

st

pic

x(80).

01

parm-var

pic

x(18).

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

move

"SELECT

TABNAME

FROM

SYSCAT.TABLES

ORDER

BY

1

WHERE

TABNAME

<>

?"

to

st.

EXEC

SQL

PREPARE

s1

FROM

:st

END-EXEC.

EXEC

SQL

DECLARE

c1

CURSOR

FOR

s1

END-EXEC.

move

"STAFF"

to

parm-var.

EXEC

SQL

OPEN

c1

USING

:parm-var

END-EXEC.

EXECUTE

IMMEDIATE

You

can

can

also

prepare

and

execute

a

dynamic

SQL

satement

with

the

EXECUTE

IMMEDIATE

statement

(except

for

SELECT

statements

that

return

more

than

one

row).

v

C/C++

(dbuse.sqc/dbuse.sqC)

The

following

example

is

from

the

function

DynamicStmtEXECUTE_IMMEDIATE()

in

the

sample

dbuse:

108

Programming

Client

Applications

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

stmt1[50];

EXEC

SQL

END

DECLARE

SECTION;

strcpy(stmt1,

"CREATE

TABLE

table1(col1

INTEGER)");

EXEC

SQL

EXECUTE

IMMEDIATE

:stmt1;

Related

concepts:

v

“Error

Message

Retrieval

in

an

Application”

on

page

102

Related

samples:

v

“dbuse.out

--

HOW

TO

USE

A

DATABASE

(C)”

v

“dbuse.sqc

--

How

to

use

a

database

(C)”

v

“dbuse.out

--

HOW

TO

USE

A

DATABASE

(C++)”

v

“dbuse.sqC

--

How

to

use

a

database

(C++)”

Effects

of

REOPT

on

dynamic

SQL

When

you

specify

the

option

REOPT

ALWAYS,

DB2®

postpones

preparing

any

statement

containing

host

variables,

parameter

markers,

or

special

registers

until

it

encounters

an

OPEN

or

EXECUTE

statement;

that

is,

when

the

values

for

these

variables

become

known.

At

this

time,

the

access

plan

is

generated

using

these

values.

Subsequent

OPEN

or

EXECUTE

requests

for

the

same

statement

will

recompile

the

statement,

reoptimize

the

query

plan

using

the

current

set

of

values

for

the

variables,

and

execute

the

newly

generated

query

plan.

The

option

REOPT

ONCE

has

a

similar

effect,

with

the

exception

that

the

plan

is

only

optimized

once

using

the

values

of

the

host

variables,

parameter

markers

and

special

registers.

This

plan

is

cached

and

will

be

used

by

subsequent

requests.

Effect

of

DYNAMICRULES

bind

option

on

dynamic

SQL

The

PRECOMPILE

and

BIND

option

DYNAMICRULES

determines

what

values

apply

at

run-time

for

the

following

dynamic

SQL

attributes:

v

The

authorization

ID

that

is

used

during

authorization

checking.

v

The

qualifier

that

is

used

for

qualification

of

unqualified

objects.

v

Whether

the

package

can

be

used

to

dynamically

prepare

the

following

statements:

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY

and

SET

EVENT

MONITOR

STATE

statements.

In

addition

to

the

DYNAMICRULES

value,

the

run-time

environment

of

a

package

controls

how

dynamic

SQL

statements

behave

at

run-time.

The

two

possible

run-time

environments

are:

v

The

package

runs

as

part

of

a

stand-alone

program

v

The

package

runs

within

a

routine

context

The

combination

of

the

DYNAMICRULES

value

and

the

run-time

environment

determine

the

values

for

the

dynamic

SQL

attributes.

That

set

of

attribute

values

is

called

the

dynamic

SQL

statement

behavior.

The

four

behaviors

are:

Run

behavior

DB2®

uses

the

authorization

ID

of

the

user

(the

ID

that

initially

connected

to

DB2)

executing

the

package

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

the

Chapter

5.

Writing

Dynamic

SQL

Programs

109

|

|
|
|
|
|
|
|

|
|
|

initial

value

used

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Bind

behavior

At

run-time,

DB2

uses

all

the

rules

that

apply

to

static

SQL

for

authorization

and

qualification.

That

is,

take

the

authorization

ID

of

the

package

owner

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

the

package

default

qualifier

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements.

Define

behavior

Define

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

DEFINEBIND

or

DYNAMICRULES

DEFINERUN.

DB2

uses

the

authorization

ID

of

the

routine

definer

(not

the

routine’s

package

binder)

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

statements

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

Invoke

behavior

Invoke

behavior

applies

only

if

the

dynamic

SQL

statement

is

in

a

package

that

is

run

within

a

routine

context,

and

the

package

was

bound

with

DYNAMICRULES

INVOKEBIND

or

DYNAMICRULES

INVOKERUN.

DB2

uses

the

current

statement

authorization

ID

in

effect

when

the

routine

is

invoked

as

the

value

to

be

used

for

authorization

checking

of

dynamic

SQL

and

for

implicit

qualification

of

unqualified

object

references

within

dynamic

SQL

statements

within

that

routine.

This

is

summarized

by

the

following

table:

Invoking

Environment

ID

Used

Any

static

SQL

Implicit

or

explicit

value

of

the

OWNER

of

the

package

the

SQL

invoking

the

routine

came

from.

Used

in

definition

of

view

or

trigger

Definer

of

the

view

or

trigger.

Dynamic

SQL

from

a

run

behavior

package

ID

used

to

make

the

initial

connection

to

DB2.

Dynamic

SQL

from

a

define

behavior

package

Definer

of

the

routine

that

uses

the

package

that

the

SQL

invoking

the

routine

came

from.

Dynamic

SQL

from

an

invoke

behavior

package

Current®

authorization

ID

invoking

the

routine.

The

following

table

shows

the

combination

of

the

DYNAMICRULES

value

and

the

run-time

environment

that

yields

each

dynamic

SQL

behavior.

Table

10.

How

DYNAMICRULES

and

the

Run-Time

Environment

Determine

Dynamic

SQL

Statement

Behavior

DYNAMICRULES

Value

Behavior

of

Dynamic

SQL

Statements

in

a

Standalone

Program

Environment

Behavior

of

Dynamic

SQL

Statements

in

a

Routine

Environment

BIND

Bind

behavior

Bind

behavior

RUN

Run

behavior

Run

behavior

DEFINEBIND

Bind

behavior

Define

behavior

110

Programming

Client

Applications

Table

10.

How

DYNAMICRULES

and

the

Run-Time

Environment

Determine

Dynamic

SQL

Statement

Behavior

(continued)

DYNAMICRULES

Value

Behavior

of

Dynamic

SQL

Statements

in

a

Standalone

Program

Environment

Behavior

of

Dynamic

SQL

Statements

in

a

Routine

Environment

DEFINERUN

Run

behavior

Define

behavior

INVOKEBIND

Bind

behavior

Invoke

behavior

INVOKERUN

Run

behavior

Invoke

behavior

The

following

table

shows

the

dynamic

SQL

attribute

values

for

each

type

of

dynamic

SQL

behavior.

Table

11.

Definitions

of

Dynamic

SQL

Statement

Behaviors

Dynamic

SQL

Attribute

Setting

for

Dynamic

SQL

Attributes:

Bind

Behavior

Setting

for

Dynamic

SQL

Attributes:

Run

Behavior

Setting

for

Dynamic

SQL

Attributes:

Define

Behavior

Setting

for

Dynamic

SQL

Attributes:

Invoke

Behavior

Authorization

ID

The

implicit

or

explicit

value

of

the

OWNER

BIND

option

ID

of

User

Executing

Package

Routine

definer

(not

the

routine’s

package

owner)

Current

statement

authorization

ID

when

routine

is

invoked.

Default

qualifier

for

unqualified

objects

The

implicit

or

explicit

value

of

the

QUALIFIER

BIND

option

CURRENT

SCHEMA

Special

Register

Routine

definer

(not

the

routine’s

package

owner)

Current

statement

authorization

ID

when

routine

is

invoked.

Can

execute

GRANT,

REVOKE,

ALTER,

CREATE,

DROP,

COMMENT

ON,

RENAME,

SET

INTEGRITY

and

SET

EVENT

MONITOR

STATE

No

Yes

No

No

Related

concepts:

v

“Authorization

Considerations

for

Dynamic

SQL”

on

page

47

v

“Authorizations

and

binding

of

routines

that

contain

SQL”

in

the

Application

Development

Guide:

Programming

Server

Applications

The

SQLDA

in

Dynamic

SQL

Programs

The

sections

that

follow

describe

the

different

considerations

that

apply

when

you

declare

the

SQLDA

for

a

dynamic

SQL

program.

Host

Variables

and

the

SQLDA

in

Dynamic

SQL

Programs

With

static

SQL,

host

variables

used

in

embedded

SQL

statements

are

known

at

application

compile

time.

With

dynamic

SQL,

the

embedded

SQL

statements

and

consequently

the

host

variables

are

not

known

until

application

run

time.

Thus,

for

dynamic

SQL

applications,

you

need

to

deal

with

the

list

of

host

variables

that

are

used

in

your

application.

You

can

use

the

DESCRIBE

statement

to

obtain

host

Chapter

5.

Writing

Dynamic

SQL

Programs

111

variable

information

for

any

SELECT

statement

that

has

been

prepared

(using

PREPARE),

and

store

that

information

into

the

SQL

descriptor

area

(SQLDA).

Note:

Java™

applications

do

not

use

the

SQLDA

structure,

and

therefore

do

not

use

the

PREPARE

or

DESCRIBE

statements.

In

JDBC

applications,

you

can

use

a

PreparedStatement

object

and

the

executeQuery()

method

to

generate

a

ResultSet

object,

which

is

the

equivalent

of

a

host-language

cursor.

In

SQLJ

applications,

you

can

also

declare

an

SQLJ

iterator

object

with

a

CursorByPos

or

CursorByName

cursor

to

return

data

from

FETCH

statements.

When

the

DESCRIBE

statement

gets

executed

in

your

application,

the

database

manager

defines

your

host

variables

in

an

SQLDA.

Once

the

host

variables

are

defined

in

the

SQLDA,

you

can

use

the

FETCH

statement

to

assign

values

to

the

host

variables,

using

a

cursor.

Related

concepts:

v

“Example

of

a

Cursor

in

a

Dynamic

SQL

Program”

on

page

107

Related

reference:

v

“DESCRIBE

statement”

in

the

SQL

Reference,

Volume

2

v

“FETCH

statement”

in

the

SQL

Reference,

Volume

2

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLDA”

in

the

Administrative

API

Reference

Declaring

the

SQLDA

Structure

in

a

Dynamic

SQL

Program

An

SQLDA

contains

a

variable

number

of

occurrences

of

SQLVAR

entries,

each

of

which

contains

a

set

of

fields

that

describe

one

column

in

a

row

of

data,

as

shown

in

the

following

figure.

There

are

two

types

of

SQLVAR

entries:

base

SQLVAR

entries,

and

secondary

SQLVAR

entries.

Procedure:

HEADER

sqldaid CHAR

sqln SMALLINT

sqltype SMALLINT

sqldata POINTER

sqlname VARCHAR (30)

sqldabc INTEGER

sqld SMALLINT

sqllen SMALLINT

sqlind POINTER

Other SQLVAR Entries

SQLVAR
(1 per field)

Figure

3.

The

SQL

Descriptor

Area

(SQLDA)

112

Programming

Client

Applications

Because

the

number

of

SQLVAR

entries

required

depends

on

the

number

of

columns

in

the

result

table,

an

application

must

be

able

to

allocate

an

appropriate

number

of

SQLVAR

elements

when

needed.

Use

one

of

the

following

methods:

v

Provide

the

largest

SQLDA

(that

is,

the

one

with

the

greatest

number

of

SQLVAR

entries)

that

is

needed.

The

maximum

number

of

columns

that

can

be

returned

in

a

result

table

is

255.

If

any

of

the

columns

being

returned

is

either

a

LOB

type

or

a

distinct

type,

the

value

in

SQLN

is

doubled,

and

the

number

of

SQLVAR

entries

needed

to

hold

the

information

is

doubled

to

510.

However,

as

most

SELECT

statements

do

not

even

retrieve

255

columns,

most

of

the

allocated

space

is

unused.

v

Provide

a

smaller

SQLDA

with

fewer

SQLVAR

entries.

In

this

case,

if

there

are

more

columns

in

the

result

than

SQLVAR

entries

allowed

for

in

the

SQLDA,

no

descriptions

are

returned.

Instead,

the

database

manager

returns

the

number

of

select

list

items

detected

in

the

SELECT

statement.

The

application

allocates

an

SQLDA

with

the

required

number

of

SQLVAR

entries,

then

uses

the

DESCRIBE

statement

to

acquire

the

column

descriptions.

For

both

methods,

the

question

arises

as

to

how

many

initial

SQLVAR

entries

you

should

allocate.

Each

SQLVAR

element

uses

up

44

bytes

of

storage

(not

counting

storage

allocated

for

the

SQLDATA

and

SQLIND

fields).

If

memory

is

plentiful,

the

first

method

of

providing

an

SQLDA

of

maximum

size

is

easier

to

implement.

The

second

method

of

allocating

a

smaller

SQLDA

is

only

applicable

to

programming

languages

such

as

C

and

C++

that

support

the

dynamic

allocation

of

memory.

For

languages

such

as

COBOL

and

FORTRAN

that

do

not

support

the

dynamic

allocation

of

memory,

you

have

to

use

the

first

method.

Related

tasks:

v

“Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure”

on

page

113

v

“Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program”

on

page

115

v

“Allocating

an

SQLDA

Structure

for

a

Dynamic

SQL

Program”

on

page

117

Related

reference:

v

“SQLDA”

in

the

Administrative

API

Reference

Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure

Use

the

information

provided

here

as

an

example

of

how

to

allocate

the

minimum

SQLDA

structure

for

a

statement.

Restrictions:

You

can

only

allocate

a

smaller

SQLDA

structure

with

programming

languages,

such

as

C

and

C++,

that

support

the

dynamic

allocation

of

memory.

Procedure:

Suppose

an

application

declares

an

SQLDA

structure

named

minsqlda

that

contains

no

SQLVAR

entries.

The

SQLN

field

of

the

SQLDA

describes

the

number

of

SQLVAR

entries

that

are

allocated.

In

this

case,

SQLN

must

be

set

to

0.

Next,

to

prepare

a

statement

from

the

character

string

dstring

and

to

enter

its

description

Chapter

5.

Writing

Dynamic

SQL

Programs

113

into

minsqlda,

issue

the

following

SQL

statement

(assuming

C

syntax,

and

assuming

that

minsqlda

is

declared

as

a

pointer

to

an

SQLDA

structure):

EXEC

SQL

PREPARE

STMT

INTO

:*minsqlda

FROM

:dstring;

Suppose

that

the

statement

contained

in

dstring

is

a

SELECT

statement

that

returns

20

columns

in

each

row.

After

the

PREPARE

statement

(or

a

DESCRIBE

statement),

the

SQLD

field

of

the

SQLDA

contains

the

number

of

columns

of

the

result

table

for

the

prepared

SELECT

statement.

The

SQLVAR

entries

in

the

SQLDA

are

set

in

the

following

cases:

v

SQLN

>=

SQLD

and

no

column

is

either

a

LOB

or

a

distinct

type.

The

first

SQLD

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

v

SQLN

>=

2*SQLD

and

at

least

one

column

is

a

LOB

or

a

distinct

type.

2*

SQLD

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

2.

v

SQLD

<=

SQLN

<

2*SQLD

and

at

least

one

column

is

a

distinct

type,

but

there

are

no

LOB

columns.

The

first

SQLD

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

If

the

SQLWARN

bind

option

is

YES,

a

warning

SQLCODE

+237

(SQLSTATE

01594)

is

issued.

The

SQLVAR

entries

in

the

SQLDA

are

not

set

(requiring

allocation

of

additional

space

and

another

DESCRIBE)

in

the

following

cases:

v

SQLN

<

SQLD

and

no

column

is

either

a

LOB

or

distinct

type.

No

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

If

the

SQLWARN

bind

option

is

YES,

a

warning

SQLCODE

+236

(SQLSTATE

01005)

is

issued.

Allocate

SQLD

SQLVAR

entries

for

a

successful

DESCRIBE.

v

SQLN

<

SQLD

and

at

least

one

column

is

a

distinct

type,

but

there

are

no

LOB

columns.

No

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

If

the

SQLWARN

bind

option

is

YES,

a

warning

SQLCODE

+239

(SQLSTATE

01005)

is

issued.

Allocate

2*SQLD

SQLVAR

entries

for

a

successful

DESCRIBE,

including

the

names

of

the

distinct

types.

v

SQLN

<

2*SQLD

and

at

least

one

column

is

a

LOB.

No

SQLVAR

entries

are

set

and

SQLDOUBLED

is

set

to

blank.

A

warning

SQLCODE

+238

(SQLSTATE

01005)

is

issued

(regardless

of

the

setting

of

the

SQLWARN

bind

option).

Allocate

2*SQLD

SQLVAR

entries

for

a

successful

DESCRIBE.

The

SQLWARN

option

of

the

BIND

command

is

used

to

control

whether

the

DESCRIBE

(or

PREPARE...INTO)

will

return

the

following

warnings:

v

SQLCODE

+236

(SQLSTATE

01005)

v

SQLCODE

+237

(SQLSTATE

01594)

v

SQLCODE

+239

(SQLSTATE

01005).

It

is

recommended

that

your

application

code

always

consider

that

these

SQLCODE

values

could

be

returned.

The

warning

SQLCODE

+238

(SQLSTATE

01005)

is

always

returned

when

there

are

LOB

columns

in

the

select

list

and

there

are

insufficient

SQLVAR

entries

in

the

SQLDA.

This

is

the

only

way

the

application

can

know

that

the

number

of

SQLVAR

entries

must

be

doubled

because

of

a

LOB

column

in

the

result

set.

114

Programming

Client

Applications

Related

tasks:

v

“Declaring

the

SQLDA

Structure

in

a

Dynamic

SQL

Program”

on

page

112

v

“Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program”

on

page

115

v

“Allocating

an

SQLDA

Structure

for

a

Dynamic

SQL

Program”

on

page

117

Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program

After

you

determine

the

number

of

columns

in

the

result

table,

allocate

storage

for

a

second,

full-size

SQLDA.

Procedure:

Assume

that

the

result

table

contains

20

columns

(none

of

which

are

LOB

columns).

In

this

situation,

you

must

allocate

a

second

SQLDA

structure,

fulsqlda

with

at

least

20

SQLVAR

elements

(or

40

elements

if

the

result

table

contains

any

LOBs

or

distinct

types).

For

the

rest

of

this

example,

assume

that

no

LOBs

or

distinct

types

are

in

the

result

table.

When

you

calculate

the

storage

requirements

for

SQLDA

structures,

include

the

following:

v

A

fixed-length

header,

16

bytes

in

length,

containing

fields

such

as

SQLN

and

SQLD

v

A

variable-length

array

of

SQLVAR

entries,

of

which

each

element

is

44

bytes

in

length

on

32-bit

platforms,

and

56

bytes

in

length

on

64-bit

platforms.

The

number

of

SQLVAR

entries

needed

for

fulsqlda

is

specified

in

the

SQLD

field

of

minsqlda.

Assume

this

value

is

20.

Therefore,

the

storage

allocation

required

for

fulsqlda

is:

16

+

(20

*

sizeof(struct

sqlvar))

Note:

On

64-bit

platforms,

sizeof(struct

sqlvar)

and

sizeof(struct

sqlvar2)

returns

56.

On

32-bit

platforms,

sizeof(struct

sqlvar)

and

sizeof(struct

sqlvar2)

returns

44.

This

value

represents

the

size

of

the

header

plus

20

times

the

size

of

each

SQLVAR

entry,

giving

a

total

of

896

bytes.

You

can

use

the

SQLDASIZE

macro

to

avoid

doing

your

own

calculations

and

to

avoid

any

version-specific

dependencies.

Related

tasks:

v

“Declaring

the

SQLDA

Structure

in

a

Dynamic

SQL

Program”

on

page

112

v

“Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure”

on

page

113

v

“Allocating

an

SQLDA

Structure

for

a

Dynamic

SQL

Program”

on

page

117

Describing

a

SELECT

Statement

in

a

Dynamic

SQL

Program

After

you

allocate

sufficient

space

for

the

second

SQLDA

(in

this

example,

called

fulsqlda),

you

must

code

the

application

to

describe

the

SELECT

statement.

Chapter

5.

Writing

Dynamic

SQL

Programs

115

Procedure:

Code

your

application

to

perform

the

following

steps:

1.

Store

the

value

20

in

the

SQLN

field

of

fulsqlda

(the

assumption

in

this

example

is

that

the

result

table

contains

20

columns,

and

none

of

these

columns

are

LOB

columns).

2.

Obtain

information

about

the

SELECT

statement

using

the

second

SQLDA

structure,

fulsqlda.

Two

methods

are

available:

v

Use

another

PREPARE

statement,

specifying

fulsqlda

instead

of

minsqlda.

v

Use

the

DESCRIBE

statement

specifying

fulsqlda.

Using

the

DESCRIBE

statement

is

preferred

because

the

costs

of

preparing

the

statement

a

second

time

are

avoided.

The

DESCRIBE

statement

simply

reuses

information

previously

obtained

during

the

prepare

operation

to

fill

in

the

new

SQLDA

structure.

The

following

statement

can

be

issued:

EXEC

SQL

DESCRIBE

STMT

INTO

:fulsqlda

After

this

statement

is

executed,

each

SQLVAR

element

contains

a

description

of

one

column

of

the

result

table.

Related

tasks:

v

“Acquiring

Storage

to

Hold

a

Row”

on

page

116

Acquiring

Storage

to

Hold

a

Row

Before

the

application

can

fetch

a

row

of

the

result

table

using

an

SQLDA

structure,

the

application

must

first

allocate

storage

for

the

row.

Procedure:

Code

your

application

to

do

the

following:

1.

Analyze

each

SQLVAR

description

to

determine

how

much

space

is

required

for

the

value

of

that

column.

Note

that

for

LOB

values,

when

the

SELECT

is

described,

the

data

type

given

in

the

SQLVAR

is

SQL_TYP_xLOB.

This

data

type

corresponds

to

a

plain

LOB

host

variable,

that

is,

the

whole

LOB

will

be

stored

in

memory

at

one

time.

This

will

work

for

small

LOBs

(up

to

a

few

MB),

but

you

cannot

use

this

data

type

for

large

LOBs

(say

1

GB).

It

will

be

necessary

for

your

application

to

change

its

column

definition

in

the

SQLVAR

to

be

either

SQL_TYP_xLOB_LOCATOR

or

SQL_TYPE_xLOB_FILE.

(Note

that

changing

the

SQLTYPE

field

of

the

SQLVAR

also

necessitates

changing

the

SQLLEN

field.)

After

changing

the

column

definition

in

the

SQLVAR,

your

application

can

then

allocate

the

correct

amount

of

storage

for

the

new

type.

2.

Allocate

storage

for

the

value

of

that

column.

3.

Store

the

address

of

the

allocated

storage

in

the

SQLDATA

field

of

the

SQLDA

structure.

These

steps

are

accomplished

by

analyzing

the

description

of

each

column

and

replacing

the

content

of

each

SQLDATA

field

with

the

address

of

a

storage

area

large

enough

to

hold

any

values

from

that

column.

The

length

attribute

is

determined

from

the

SQLLEN

field

of

each

SQLVAR

entry

for

data

items

that

are

116

Programming

Client

Applications

not

of

a

LOB

type.

For

items

with

a

type

of

BLOB,

CLOB,

or

DBCLOB,

the

length

attribute

is

determined

from

the

SQLLONGLEN

field

of

the

secondary

SQLVAR

entry.

In

addition,

if

the

specified

column

allows

nulls,

the

application

must

replace

the

content

of

the

SQLIND

field

with

the

address

of

an

indicator

variable

for

the

column.

Related

concepts:

v

“Large

object

usage”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

tasks:

v

“Processing

the

Cursor

in

a

Dynamic

SQL

Program”

on

page

117

Processing

the

Cursor

in

a

Dynamic

SQL

Program

After

the

SQLDA

structure

is

properly

allocated,

the

cursor

associated

with

the

SELECT

statement

can

be

opened

and

rows

can

be

fetched.

Procedure:

To

process

the

cursor

that

is

associated

with

a

SELECT

statement,

first

open

the

cursor,

then

fetch

rows

by

specifying

the

USING

DESCRIPTOR

clause

of

the

FETCH

statement.

For

example,

a

C

application

could

have

the

following:

EXEC

SQL

OPEN

pcurs

EMB_SQL_CHECK(

"OPEN"

)

;

EXEC

SQL

FETCH

pcurs

USING

DESCRIPTOR

:*sqldaPointer

EMB_SQL_CHECK(

"FETCH"

)

;

For

a

successful

FETCH,

you

could

write

the

application

to

obtain

the

data

from

the

SQLDA

and

display

the

column

headings.

For

example:

display_col_titles(

sqldaPointer

)

;

After

the

data

is

displayed,

you

should

close

the

cursor

and

release

any

dynamically

allocated

memory.

For

example:

EXEC

SQL

CLOSE

pcurs

;

EMB_SQL_CHECK(

"CLOSE

CURSOR"

)

;

Allocating

an

SQLDA

Structure

for

a

Dynamic

SQL

Program

Allocate

an

SQLDA

structure

for

your

application

so

that

you

can

use

it

to

pass

data

to

and

from

your

application.

Procedure:

To

create

an

SQLDA

structure

with

C,

either

embed

the

INCLUDE

SQLDA

statement

in

the

host

language

or

include

the

SQLDA

include

file

to

get

the

structure

definition.

Then,

because

the

size

of

an

SQLDA

is

not

fixed,

the

application

must

declare

a

pointer

to

an

SQLDA

structure

and

allocate

storage

for

it.

The

actual

size

of

the

SQLDA

structure

depends

on

the

number

of

distinct

data

items

being

passed

using

the

SQLDA.

Chapter

5.

Writing

Dynamic

SQL

Programs

117

In

the

C/C++

programming

language,

a

macro

is

provided

to

facilitate

SQLDA

allocation.

With

the

exception

of

the

HP-UX

platform,

this

macro

has

the

following

format:

#define

SQLDASIZE(n)

(offsetof(struct

sqlda,

sqlvar)

\

+

(n)

×

sizeof(struct

sqlvar))

On

the

HP-UX

platform,

the

macro

has

the

following

format:

#define

SQLDASIZE(n)

(sizeof(struct

sqlda)

\

+

(n−1)

×

sizeof(struct

sqlvar))

The

effect

of

this

macro

is

to

calculate

the

required

storage

for

an

SQLDA

with

n

SQLVAR

elements.

To

create

an

SQLDA

structure

with

COBOL,

you

can

either

embed

an

INCLUDE

SQLDA

statement

or

use

the

COPY

statement.

Use

the

COPY

statement

when

you

want

to

control

the

maximum

number

of

SQLVAR

entries

and

hence

the

amount

of

storage

that

the

SQLDA

uses.

For

example,

to

change

the

default

number

of

SQLVAR

entries

from

1489

to

1,

use

the

following

COPY

statement:

COPY

"sqlda.cbl"

replacing

--1489--

by

--1--.

The

FORTRAN

language

does

not

directly

support

self-defining

data

structures

or

dynamic

allocation.

No

SQLDA

include

file

is

provided

for

FORTRAN,

because

it

is

not

possible

to

support

the

SQLDA

as

a

data

structure

in

FORTRAN.

The

precompiler

will

ignore

the

INCLUDE

SQLDA

statement

in

a

FORTRAN

program.

However,

you

can

create

something

similar

to

a

static

SQLDA

structure

in

a

FORTRAN

program,

and

use

this

structure

wherever

an

SQLDA

can

be

used.

The

file

sqldact.f

contains

constants

that

help

in

declaring

an

SQLDA

structure

in

FORTRAN.

Execute

calls

to

SQLGADDR

to

assign

pointer

values

to

the

SQLDA

elements

that

require

them.

The

following

table

shows

the

declaration

and

use

of

an

SQLDA

structure

with

one

SQLVAR

element.

Language

Example

Source

Code

C/C++

#include

<sqlda.h>

struct

sqlda

*outda

=

(struct

sqlda

*)malloc(SQLDASIZE(1));

/*

DECLARE

LOCAL

VARIABLES

FOR

HOLDING

ACTUAL

DATA

*/

double

sal;

double

sal

=

0;

short

salind;

short

salind

=

0;

/*

INITIALIZE

ONE

ELEMENT

OF

SQLDA

*/

memcpy(

outda->sqldaid,"SQLDA

",sizeof(outda->sqldaid));

outda->sqln

=

outda->sqld

=

1;

outda->sqlvar[0].sqltype

=

SQL_TYP_NFLOAT;

outda->sqlvar[0].sqllen

=

sizeof(

double

);.

outda->sqlvar[0].sqldata

=

(unsigned

char

*)&sal;

outda->sqlvar[0].sqlind

=

(short

*)&salind;

118

Programming

Client

Applications

Language

Example

Source

Code

COBOL

WORKING-STORAGE

SECTION.

77

SALARY

PIC

S99999V99

COMP-3.

77

SAL-IND

PIC

S9(4)

COMP-5.

EXEC

SQL

INCLUDE

SQLDA

END-EXEC

*

Or

code

a

useful

way

to

save

unused

SQLVAR

entries.

*

COPY

"sqlda.cbl"

REPLACING

--1489--

BY

--1--.

01

decimal-sqllen

pic

s9(4)

comp-5.

01

decimal-parts

redefines

decimal-sqllen.

05

precision

pic

x.

05

scale

pic

x.

*

Initialize

one

element

of

output

SQLDA

MOVE

1

TO

SQLN

MOVE

1

TO

SQLD

MOVE

SQL-TYP-NDECIMAL

TO

SQLTYPE(1)

*

Length

=

7

digits

precision

and

2

digits

scale

MOVE

x"07"

TO

PRECISION.

MOVE

x"02"

TO

SCALE.

MOVE

DECIMAL-SQLLEN

TO

O-SQLLEN(1).

SET

SQLDATA(1)

TO

ADDRESS

OF

SALARY

SET

SQLIND(1)

TO

ADDRESS

OF

SAL-IND

Chapter

5.

Writing

Dynamic

SQL

Programs

119

Language

Example

Source

Code

FORTRAN

include

’sqldact.f’

integer*2

sqlvar1

parameter

(

sqlvar1

=

sqlda_header_sz

+

0*sqlvar_struct_sz

)

C

Declare

an

Output

SQLDA

--

1

Variable

character

out_sqlda(sqlda_header_sz

+

1*sqlvar_struct_sz)

character*8

out_sqldaid

!

Header

integer*4

out_sqldabc

integer*2

out_sqln

integer*2

out_sqld

integer*2

out_sqltype1

!

First

Variable

integer*2

out_sqllen1

integer*4

out_sqldata1

integer*4

out_sqlind1

integer*2

out_sqlnamel1

character*30

out_sqlnamec1

equivalence(

out_sqlda(sqlda_sqldaid_ofs),

out_sqldaid

)

equivalence(

out_sqlda(sqlda_sqldabc_ofs),

out_sqldabc

)

equivalence(

out_sqlda(sqlda_sqln_ofs),

out_sqln

)

equivalence(

out_sqlda(sqlda_sqld_ofs),

out_sqld

)

equivalence(

out_sqlda(sqlvar1+sqlvar_type_ofs),

out_sqltype1

)

equivalence(

out_sqlda(sqlvar1+sqlvar_len_ofs),

out_sqllen1

)

equivalence(

out_sqlda(sqlvar1+sqlvar_data_ofs),

out_sqldata1

)

equivalence(

out_sqlda(sqlvar1+sqlvar_ind_ofs),

out_sqlind1

)

equivalence(

out_sqlda(sqlvar1+sqlvar_name_length_ofs),

+

out_sqlnamel1

)

equivalence(

out_sqlda(sqlvar1+sqlvar_name_data_ofs),

+

out_sqlnamec1

)

C

Declare

Local

Variables

for

Holding

Returned

Data.

real*8

salary

integer*2

sal_ind

C

Initialize

the

Output

SQLDA

(Header)

out_sqldaid

=

’OUT_SQLDA’

out_sqldabc

=

sqlda_header_sz

+

1*sqlvar_struct_sz

out_sqln

=

1

out_sqld

=

1

C

Initialize

VAR1

out_sqltype1

=

SQL_TYP_NFLOAT

out_sqllen1

=

8

rc

=

sqlgaddr(

%ref(salary),

%ref(out_sqldata1)

)

rc

=

sqlgaddr(

%ref(sal_ind),

%ref(out_sqlind1)

)

In

languages

not

supporting

dynamic

memory

allocation,

an

SQLDA

with

the

desired

number

of

SQLVAR

elements

must

be

explicitly

declared

in

the

host

language.

Be

sure

to

declare

enough

SQLVAR

elements

as

determined

by

the

needs

of

the

application.

Related

tasks:

v

“Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure”

on

page

113

v

“Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program”

on

page

115

v

“Transferring

Data

in

a

Dynamic

SQL

Program

Using

an

SQLDA

Structure”

on

page

121

120

Programming

Client

Applications

Transferring

Data

in

a

Dynamic

SQL

Program

Using

an

SQLDA

Structure

Greater

flexibility

is

available

when

transferring

data

using

an

SQLDA

than

is

available

using

lists

of

host

variables.

For

example,

You

can

use

an

SQLDA

to

transfer

data

that

has

no

native

host

language

equivalent,

such

as

DECIMAL

data

in

the

C

language.

Procedure:

Use

the

following

table

as

a

cross-reference

listing

that

shows

how

the

numeric

values

and

symbolic

names

are

related.

Table

12.

DB2

SQLDA

SQL

Types.

Numeric

Values

and

Corresponding

Symbolic

Names

SQL

Column

Type

SQLTYPE

numeric

value

SQLTYPE

symbolic

name1

DATE

384/385

SQL_TYP_DATE

/

SQL_TYP_NDATE

TIME

388/389

SQL_TYP_TIME

/

SQL_TYP_NTIME

TIMESTAMP

392/393

SQL_TYP_STAMP

/

SQL_TYP_NSTAMP

n/a2

400/401

SQL_TYP_CGSTR

/

SQL_TYP_NCGSTR

BLOB

404/405

SQL_TYP_BLOB

/

SQL_TYP_NBLOB

CLOB

408/409

SQL_TYP_CLOB

/

SQL_TYP_NCLOB

DBCLOB

412/413

SQL_TYP_DBCLOB

/

SQL_TYP_NDBCLOB

VARCHAR

448/449

SQL_TYP_VARCHAR

/

SQL_TYP_NVARCHAR

CHAR

452/453

SQL_TYP_CHAR

/

SQL_TYP_NCHAR

LONG

VARCHAR

456/457

SQL_TYP_LONG

/

SQL_TYP_NLONG

n/a3

460/461

SQL_TYP_CSTR

/

SQL_TYP_NCSTR

VARGRAPHIC

464/465

SQL_TYP_VARGRAPH

/

SQL_TYP_NVARGRAPH

GRAPHIC

468/469

SQL_TYP_GRAPHIC

/

SQL_TYP_NGRAPHIC

LONG

VARGRAPHIC

472/473

SQL_TYP_LONGRAPH

/

SQL_TYP_NLONGRAPH

FLOAT

480/481

SQL_TYP_FLOAT

/

SQL_TYP_NFLOAT

REAL4

480/481

SQL_TYP_FLOAT

/

SQL_TYP_NFLOAT

DECIMAL5

484/485

SQL_TYP_DECIMAL

/

SQL_TYP_DECIMAL

INTEGER

496/497

SQL_TYP_INTEGER

/

SQL_TYP_NINTEGER

SMALLINT

500/501

SQL_TYP_SMALL

/

SQL_TYP_NSMALL

n/a

804/805

SQL_TYP_BLOB_FILE

/

SQL_TYPE_NBLOB_FILE

n/a

808/809

SQL_TYP_CLOB_FILE

/

SQL_TYPE_NCLOB_FILE

n/a

812/813

SQL_TYP_DBCLOB_FILE

/

SQL_TYPE_NDBCLOB_FILE

n/a

960/961

SQL_TYP_BLOB_LOCATOR

/

SQL_TYP_NBLOB_LOCATOR

n/a

964/965

SQL_TYP_CLOB_LOCATOR

/

SQL_TYP_NCLOB_LOCATOR

n/a

968/969

SQL_TYP_DBCLOB_LOCATOR

/

SQL_TYP_NDBCLOB_LOCATOR

Chapter

5.

Writing

Dynamic

SQL

Programs

121

Table

12.

DB2

SQLDA

SQL

Types

(continued).

Numeric

Values

and

Corresponding

Symbolic

Names

SQL

Column

Type

SQLTYPE

numeric

value

SQLTYPE

symbolic

name1

Note:

These

defined

types

can

be

found

in

the

sql.h

include

file

located

in

the

include

sub-directory

of

the

sqllib

directory.

(For

example,

sqllib/include/sql.h

for

the

C

programming

language.)

1.

For

the

COBOL

programming

language,

the

SQLTYPE

name

does

not

use

underscore

(_)

but

uses

a

hyphen

(-)

instead.

2.

This

is

a

null-terminated

graphic

string.

3.

This

is

a

null-terminated

character

string.

4.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

5.

Precision

is

in

the

first

byte.

Scale

is

in

the

second

byte.

Related

tasks:

v

“Describing

a

SELECT

Statement

in

a

Dynamic

SQL

Program”

on

page

115

v

“Acquiring

Storage

to

Hold

a

Row”

on

page

116

v

“Processing

the

Cursor

in

a

Dynamic

SQL

Program”

on

page

117

Processing

Interactive

SQL

Statements

in

Dynamic

SQL

Programs

An

application

using

dynamic

SQL

can

be

written

to

process

arbitrary

SQL

statements.

For

example,

if

an

application

accepts

SQL

statements

from

a

user,

the

application

must

be

able

to

execute

the

statements

without

any

prior

knowledge

of

the

statements.

Procedure:

Use

the

PREPARE

and

DESCRIBE

statements

with

an

SQLDA

structure

so

that

the

application

can

determine

the

type

of

SQL

statement

being

executed,

and

act

accordingly.

Related

concepts:

v

“Determination

of

Statement

Type

in

Dynamic

SQL

Programs”

on

page

122

Determination

of

Statement

Type

in

Dynamic

SQL

Programs

When

an

SQL

statement

is

prepared,

information

concerning

the

type

of

statement

can

be

determined

by

examining

the

SQLDA

structure.

This

information

is

placed

in

the

SQLDA

structure

either

at

statement

preparation

time

with

the

INTO

clause,

or

by

issuing

a

DESCRIBE

statement

against

a

previously

prepared

statement.

In

either

case,

the

database

manager

places

a

value

in

the

SQLD

field

of

the

SQLDA

structure,

indicating

the

number

of

columns

in

the

result

table

generated

by

the

SQL

statement.

If

the

SQLD

field

contains

a

zero

(0),

the

statement

is

not

a

SELECT

statement.

Since

the

statement

is

already

prepared,

it

can

immediately

be

executed

using

the

EXECUTE

statement.

If

the

statement

contains

parameter

markers,

the

USING

clause

must

be

specified.

The

USING

clause

can

specify

either

a

list

of

host

variables

or

an

SQLDA

structure.

If

the

SQLD

field

is

greater

than

zero,

the

statement

is

a

SELECT

statement

and

must

be

processed

as

described

in

the

following

sections.

122

Programming

Client

Applications

Related

reference:

v

“EXECUTE

statement”

in

the

SQL

Reference,

Volume

2

Processing

Variable-List

SELECT

Statements

in

Dynamic

SQL

Programs

A

varying-list

SELECT

statement

is

one

in

which

the

number

and

types

of

columns

that

are

to

be

returned

are

not

known

at

precompilation

time.

In

this

case,

the

application

does

not

know

in

advance

the

exact

host

variables

that

need

to

be

declared

to

hold

a

row

of

the

result

table.

Procedure:

To

process

a

variable-list

SELECT

statement,

code

your

application

to

do

the

following:

1.

Declare

an

SQLDA.

An

SQLDA

structure

must

be

used

to

process

varying-list

SELECT

statements.

2.

PREPARE

the

statement

using

the

INTO

clause.

The

application

then

determines

whether

the

SQLDA

structure

declared

has

enough

SQLVAR

elements.

If

it

does

not,

the

application

allocates

another

SQLDA

structure

with

the

required

number

of

SQLVAR

elements,

and

issues

an

additional

DESCRIBE

statement

using

the

new

SQLDA.

3.

Allocate

the

SQLVAR

elements.

Allocate

storage

for

the

host

variables

and

indicators

needed

for

each

SQLVAR.

This

step

involves

placing

the

allocated

addresses

for

the

data

and

indicator

variables

in

each

SQLVAR

element.

4.

Process

the

SELECT

statement.

A

cursor

is

associated

with

the

prepared

statement,

opened,

and

rows

are

fetched

using

the

properly

allocated

SQLDA

structure.

Related

tasks:

v

“Declaring

the

SQLDA

Structure

in

a

Dynamic

SQL

Program”

on

page

112

v

“Preparing

a

Statement

in

Dynamic

SQL

Using

the

Minimum

SQLDA

Structure”

on

page

113

v

“Allocating

an

SQLDA

with

Sufficient

SQLVAR

Entries

for

a

Dynamic

SQL

Program”

on

page

115

v

“Describing

a

SELECT

Statement

in

a

Dynamic

SQL

Program”

on

page

115

v

“Acquiring

Storage

to

Hold

a

Row”

on

page

116

v

“Processing

the

Cursor

in

a

Dynamic

SQL

Program”

on

page

117

Saving

SQL

Requests

from

End

Users

If

the

users

of

your

application

can

issue

SQL

requests

from

the

application,

you

may

want

to

save

these

requests.

Procedure:

If

your

application

allows

users

to

save

arbitrary

SQL

statements,

you

can

save

them

in

a

table

with

a

column

having

a

data

type

of

VARCHAR,

LONG

VARCHAR,

CLOB,

VARGRAPHIC,

LONG

VARGRAPHIC

or

DBCLOB.

Note

that

Chapter

5.

Writing

Dynamic

SQL

Programs

123

the

VARGRAPHIC,

LONG

VARGRAPHIC,

and

DBCLOB

data

types

are

only

available

in

double-byte

character

set

(DBCS)

and

Extended

UNIX

Code

(EUC)

environments.

You

must

save

the

source

SQL

statements,

not

the

prepared

versions.

This

means

that

you

must

retrieve

and

then

prepare

each

statement

before

executing

the

version

stored

in

the

table.

In

essence,

your

application

prepares

an

SQL

statement

from

a

character

string

and

executes

this

statement

dynamically.

Parameter

Markers

in

Dynamic

SQL

Programs

The

sections

that

follow

describe

how

use

parameter

markers

to

provide

variable

input

to

a

dynamic

SQL

program,

and

briefly

describe

the

sample

programs

that

use

parameter

markers.

Providing

Variable

Input

to

Dynamic

SQL

Using

Parameter

Markers

A

dynamic

SQL

statement

cannot

contain

host

variables,

because

host

variable

information

(data

type

and

length)

is

available

only

during

application

precompilation.

At

execution

time,

the

host

variable

information

is

not

available.

In

dynamic

SQL,

parameter

markers

are

used

instead

of

host

variables.

Parameter

markers

are

indicated

by

a

question

mark

(?),

and

indicate

where

a

host

variable

is

to

be

substituted

inside

an

SQL

statement.

Procedure:

Assume

that

your

application

uses

dynamic

SQL,

and

that

you

want

to

be

able

to

perform

a

DELETE.

A

character

string

containing

a

parameter

marker

might

look

like

the

following:

DELETE

FROM

TEMPL

WHERE

EMPNO

=

?

When

this

statement

is

executed,

a

host

variable

or

SQLDA

structure

is

specified

by

the

USING

clause

of

the

EXECUTE

statement.

The

contents

of

the

host

variable

are

used

when

the

statement

executes.

The

parameter

marker

takes

on

an

assumed

data

type

and

length

that

is

dependent

on

the

context

of

its

use

inside

the

SQL

statement.

If

the

data

type

of

a

parameter

marker

is

not

obvious

from

the

context

of

the

statement

in

which

it

is

used,

use

a

CAST

to

specify

the

type.

Such

a

parameter

marker

is

considered

a

typed

parameter

marker.

Typed

parameter

markers

will

be

treated

like

a

host

variable

of

the

given

type.

For

example,

the

statement

SELECT

?

FROM

SYSCAT.TABLES

is

not

valid

because

DB2

does

not

know

the

type

of

the

result

column.

However,

the

statement

SELECT

CAST(?

AS

INTEGER)

FROM

SYSCAT.TABLES

is

valid

because

the

cast

indicates

that

the

parameter

marker

represents

an

INTEGER,

so

DB2

knows

the

type

of

the

result

column.

If

the

SQL

statement

contains

more

than

one

parameter

marker,

the

USING

clause

of

the

EXECUTE

statement

must

either

specify

a

list

of

host

variables

(one

for

each

parameter

marker),

or

it

must

identify

an

SQLDA

that

has

an

SQLVAR

entry

for

each

parameter

marker.

(Note

that

for

LOBs,

there

are

two

SQLVAR

entries

per

parameter

marker.)

The

host

variable

list

or

SQLVAR

entries

are

matched

according

to

the

order

of

the

parameter

markers

in

the

statement,

and

they

must

have

compatible

data

types.

124

Programming

Client

Applications

Note:

Using

a

parameter

marker

with

dynamic

SQL

is

like

using

host

variables

with

static

SQL.

In

either

case,

the

optimizer

does

not

use

distribution

statistics,

and

possibly

may

not

choose

the

best

access

plan.

The

rules

that

apply

to

parameter

markers

are

described

with

the

PREPARE

statement.

Related

reference:

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

Example

of

Parameter

Markers

in

a

Dynamic

SQL

Program

The

following

examples

show

how

to

use

parameter

markers

in

a

dynamic

SQL

program:

v

C/C++

(dbuse.sqc/dbuse.sqC)

The

function

DynamicStmtWithMarkersEXECUTEusingHostVars()

in

the

C-language

sample

dbuse.sqc

shows

how

to

perform

a

delete

using

a

parameter

marker

with

a

host

variable:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hostVarStmt1[50];

short

hostVarDeptnumb;

EXEC

SQL

END

DECLARE

SECTION;

/*

prepare

the

statement

with

a

parameter

marker

*/

strcpy(hostVarStmt1,

"DELETE

FROM

org

WHERE

deptnumb

=

?");

EXEC

SQL

PREPARE

Stmt1

FROM

:hostVarStmt1;

/*

execute

the

statement

for

hostVarDeptnumb

=

15

*/

hostVarDeptnumb

=

15;

EXEC

SQL

EXECUTE

Stmt1

USING

:hostVarDeptnumb;

v

JDBC

(DbUse.java)

The

function

execPreparedStatementWithParam()

in

the

JDBC

sample

DbUse.java

shows

how

to

perform

a

delete

using

parameter

markers:

//

prepare

the

statement

with

parameter

markers

PreparedStatement

prepStmt

=

con.prepareStatement(

"

DELETE

FROM

org

WHERE

deptnumb

<=

?

AND

division

=

?

");

//

execute

the

statement

prepStmt.setInt(1,

70);

prepStmt.setString(2,

"Eastern");

prepStmt.execute();

//

close

the

statement

prepStmt.close();

v

COBOL

(varinp.sqb)

The

following

example

is

from

the

COBOL

sample

varinp.sqb,

and

shows

how

to

use

a

parameter

marker

in

search

and

update

conditions:

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

01

pname

pic

x(10).

01

dept

pic

s9(4)

comp-5.

01

st

pic

x(127).

01

parm-var

pic

x(5).

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

move

"SELECT

name,

dept

FROM

staff

-

"

WHERE

job

=

?

FOR

UPDATE

OF

job"

to

st.

EXEC

SQL

PREPARE

s1

FROM

:st

END-EXEC.

Chapter

5.

Writing

Dynamic

SQL

Programs

125

EXEC

SQL

DECLARE

c1

CURSOR

FOR

s1

END-EXEC.

move

"Mgr"

to

parm-var.

EXEC

SQL

OPEN

c1

USING

:parm-var

END-EXEC

move

"Clerk"

to

parm-var.

move

"UPDATE

staff

SET

job

=

?

WHERE

CURRENT

OF

c1"

to

st.

EXEC

SQL

PREPARE

s2

from

:st

END-EXEC.

*

call

the

FETCH

and

UPDATE

loop.

perform

Fetch-Loop

thru

End-Fetch-Loop

until

SQLCODE

not

equal

0.

EXEC

SQL

CLOSE

c1

END-EXEC.

Related

concepts:

v

“Error

Message

Retrieval

in

an

Application”

on

page

102

Related

samples:

v

“dbuse.out

--

HOW

TO

USE

A

DATABASE

(C)”

v

“dbuse.sqc

--

How

to

use

a

database

(C)”

v

“dbuse.out

--

HOW

TO

USE

A

DATABASE

(C++)”

v

“dbuse.sqC

--

How

to

use

a

database

(C++)”

v

“DbUse.java

--

How

to

use

a

database

(JDBC)”

v

“DbUse.out

--

HOW

TO

USE

A

DATABASE.

Connect

to

’sample’

database

using

JDBC

type

2

driver

(JDBC)”

DB2

Call

Level

Interface

(CLI)

Compared

to

Dynamic

SQL

The

sections

that

follow

describe

the

differences

between

DB2

CLI

and

dynamic

SQL,

the

advantages

that

DB2

CLI

has

over

dynamic

SQL,

and

when

you

should

use

DB2

CLI

or

dynamic

SQL.

DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL

An

application

that

uses

an

embedded

SQL

interface

requires

a

precompiler

to

convert

the

SQL

statements

into

code,

which

is

then

compiled,

bound

to

the

database,

and

executed.

In

contrast,

a

DB2

CLI

application

does

not

have

to

be

precompiled

or

bound,

but

instead

uses

a

standard

set

of

functions

to

execute

SQL

statements

and

related

services

at

run

time.

This

difference

is

important

because,

traditionally,

precompilers

have

been

specific

to

each

database

product,

which

effectively

ties

your

applications

to

that

product.

DB2

CLI

enables

you

to

write

portable

applications

that

are

independent

of

any

particular

database

product.

This

independence

means

DB2

CLI

applications

do

not

have

to

be

recompiled

or

rebound

to

access

different

DB2®

databases,

including

host

system

databases.

They

just

connect

to

the

appropriate

database

at

run

time.

The

following

are

differences

and

similarities

between

DB2

CLI

and

embedded

SQL:

v

DB2

CLI

does

not

require

the

explicit

declaration

of

cursors.

DB2

CLI

has

a

supply

of

cursors

that

get

used

as

needed.

The

application

can

then

use

the

generated

cursor

in

the

normal

cursor

fetch

model

for

multiple

row

SELECT

statements

and

positioned

UPDATE

and

DELETE

statements.

126

Programming

Client

Applications

v

The

OPEN

statement

is

not

used

in

DB2

CLI.

Instead,

the

execution

of

a

SELECT

automatically

causes

a

cursor

to

be

opened.

v

Unlike

embedded

SQL,

DB2

CLI

allows

the

use

of

parameter

markers

on

the

equivalent

of

the

EXECUTE

IMMEDIATE

statement

(the

SQLExecDirect()

function).

v

A

COMMIT

or

ROLLBACK

in

DB2

CLI

is

typically

issued

via

the

SQLEndTran()

function

call

rather

than

by

executing

it

as

an

SQL

statement,

however,

doing

do

is

permitted.

v

DB2

CLI

manages

statement

related

information

on

behalf

of

the

application,

and

provides

an

abstract

object

to

represent

the

information

called

a

statement

handle.

This

handle

eliminates

the

need

for

the

application

to

use

product

specific

data

structures.

v

Similar

to

the

statement

handle,

the

environment

handle

and

connection

handle

provide

a

means

to

refer

to

global

variables

and

connection

specific

information.

The

descriptor

handle

describes

either

the

parameters

of

an

SQL

statement

or

the

columns

of

a

result

set.

v

DB2

CLI

applications

can

dynamically

describe

parameters

in

an

SQL

statement

the

same

way

that

CLI

and

embedded

SQL

applications

describe

result

sets.

This

enables

CLI

applications

to

dynamically

process

SQL

statements

that

contain

parameter

markers

without

knowing

the

data

type

of

those

parameter

markers

in

advance.

When

the

SQL

statement

is

prepared,

describe

information

is

returned

detailing

the

data

types

of

the

parameters.

v

DB2

CLI

uses

the

SQLSTATE

values

defined

by

the

X/Open

SQL

CAE

specification.

Although

the

format

and

most

of

the

values

are

consistent

with

values

used

by

the

IBM®

relational

database

products,

there

are

differences.

(There

are

also

differences

between

ODBC

SQLSTATES

and

the

X/Open

defined

SQLSTATES).

Despite

these

differences,

there

is

an

important

common

concept

between

embedded

SQL

and

DB2

CLI:

DB2

CLI

can

execute

any

SQL

statement

that

can

be

prepared

dynamically

in

embedded

SQL.

Note:

DB2

CLI

can

also

accept

some

SQL

statements

that

cannot

be

prepared

dynamically,

such

as

compound

SQL

statements.

Each

DBMS

may

have

additional

statements

that

you

can

dynamically

prepare.

In

this

case,

DB2

CLI

passes

the

statements

directly

to

the

DBMS.

There

is

one

exception:

the

COMMIT

and

ROLLBACK

statements

can

be

dynamically

prepared

by

some

DBMSs

but

will

be

intercepted

by

DB2

CLI

and

treated

as

an

appropriate

SQLEndTran()

request.

However,

it

is

recommended

you

use

the

SQLEndTran()

function

to

specify

either

the

COMMIT

or

ROLLBACK

statement.

Related

reference:

v

Appendix

A,

“Supported

SQL

Statements,”

on

page

685

Advantages

of

DB2

CLI

over

embedded

SQL

The

DB2

CLI

interface

has

several

key

advantages

over

embedded

SQL.

v

It

is

ideally

suited

for

a

client-server

environment,

in

which

the

target

database

is

not

known

when

the

application

is

built.

It

provides

a

consistent

interface

for

executing

SQL

statements,

regardless

of

which

database

server

the

application

is

connected

to.

Chapter

5.

Writing

Dynamic

SQL

Programs

127

v

It

increases

the

portability

of

applications

by

removing

the

dependence

on

precompilers.

Applications

are

distributed

not

as

embedded

SQL

source

code

which

must

be

preprocessed

for

each

database

product,

but

as

compiled

applications

or

run

time

libraries.

v

Individual

DB2

CLI

applications

do

not

need

to

be

bound

to

each

database,

only

bind

files

shipped

with

DB2

CLI

need

to

be

bound

once

for

all

DB2

CLI

applications.

This

can

significantly

reduce

the

amount

of

management

required

for

the

application

once

it

is

in

general

use.

v

DB2

CLI

applications

can

connect

to

multiple

databases,

including

multiple

connections

to

the

same

database,

all

from

the

same

application.

Each

connection

has

its

own

commit

scope.

This

is

much

simpler

using

CLI

than

using

embedded

SQL

where

the

application

must

make

use

of

multi-threading

to

achieve

the

same

result.

v

DB2

CLI

eliminates

the

need

for

application

controlled,

often

complex

data

areas,

such

as

the

SQLDA

and

SQLCA,

typically

associated

with

embedded

SQL

applications.

Instead,

DB2

CLI

allocates

and

controls

the

necessary

data

structures,

and

provides

a

handle

for

the

application

to

reference

them.

v

DB2

CLI

enables

the

development

of

multi-threaded

thread-safe

applications

where

each

thread

can

have

its

own

connection

and

a

separate

commit

scope

from

the

rest.

DB2

CLI

achieves

this

by

eliminating

the

data

areas

described

above,

and

associating

all

such

data

structures

that

are

accessible

to

the

application

with

a

specific

handle.

Unlike

embedded

SQL,

a

multi-threaded

CLI

application

does

not

need

to

call

any

of

the

context

management

DB2®

APIs;

this

is

handled

by

the

DB2

CLI

driver

automatically.

v

DB2

CLI

provides

enhanced

parameter

input

and

fetching

capability,

allowing

arrays

of

data

to

be

specified

on

input,

retrieving

multiple

rows

of

a

result

set

directly

into

an

array,

and

executing

statements

that

generate

multiple

result

sets.

v

DB2

CLI

provides

a

consistent

interface

to

query

catalog

(Tables,

Columns,

Foreign

Keys,

Primary

Keys,

etc.)

information

contained

in

the

various

DBMS

catalog

tables.

The

result

sets

returned

are

consistent

across

DBMSs.

This

shields

the

application

from

catalog

changes

across

releases

of

database

servers,

as

well

as

catalog

differences

amongst

different

database

servers;

thereby

saving

applications

from

writing

version

specific

and

server

specific

catalog

queries.

v

Extended

data

conversion

is

also

provided

by

DB2

CLI,

requiring

less

application

code

when

converting

information

between

various

SQL

and

C

data

types.

v

DB2

CLI

incorporates

both

the

ODBC

and

X/Open

CLI

functions,

both

of

which

are

accepted

industry

specifications.

DB2

CLI

is

also

aligned

with

the

ISO

CLI

standard.

Knowledge

that

application

developers

invest

in

these

specifications

can

be

applied

directly

to

DB2

CLI

development,

and

vice

versa.

This

interface

is

intuitive

to

grasp

for

those

programmers

who

are

familiar

with

function

libraries

but

know

little

about

product

specific

methods

of

embedding

SQL

statements

into

a

host

language.

v

DB2

CLI

provides

the

ability

to

retrieve

multiple

rows

and

result

sets

generated

from

a

stored

procedure

residing

on

a

DB2

Universal

Database

(or

DB2

Universal

Database

for

z/OS

and

OS/390

version

5

or

later)

server.

However,

note

that

this

capability

exists

for

Version

5

DB2

Universal

Database

clients

using

embedded

SQL

if

the

stored

procedure

resides

on

a

server

accessible

from

a

DataJoiner®

Version

2

server.

v

DB2

CLI

offers

more

extensive

support

for

scrollable

cursors.

With

scrollable

cursors,

you

can

scroll

through

a

cursor

as

follows:

–

Forward

by

one

or

more

rows

128

Programming

Client

Applications

–

Backward

by

one

or

more

rows

–

From

the

first

row

by

one

or

more

rows

–

From

the

last

row

by

one

or

more

rows.

Scrollable

cursors

can

be

used

in

conjunction

with

array

output.

You

can

declare

an

updatable

cursor

as

scrollable

then

move

forward

or

backward

through

the

result

set

by

one

or

more

rows.

You

can

also

fetch

rows

by

specifying

an

offset

from:

–

The

current

row

–

The

beginning

or

end

of

the

result

set

–

A

specific

row

you

have

previously

set

with

a

bookmark.

When

to

use

DB2

CLI

or

embedded

SQL

Which

interface

you

choose

depends

on

your

application.

DB2

CLI

is

ideally

suited

for

query-based

graphical

user

interface

(GUI)

applications

that

require

portability.

The

advantages

listed

above,

may

make

using

DB2

CLI

seem

like

the

obvious

choice

for

any

application.

There

is

however,

one

factor

that

must

be

considered,

the

comparison

between

static

and

dynamic

SQL.

It

is

much

easier

to

use

static

SQL

in

embedded

applications.

Static

SQL

has

several

advantages:

v

Performance

Dynamic

SQL

is

prepared

at

run

time,

static

SQL

is

prepared

at

precompile

time.

As

well

as

requiring

more

processing,

the

preparation

step

may

incur

additional

network-traffic

at

run

time.

The

additional

network

traffic

can

be

avoided

if

the

DB2

CLI

application

makes

use

of

deferred

prepare

(which

is

the

default

behavior).

It

is

important

to

note

that

static

SQL

will

not

always

have

better

performance

than

dynamic

SQL.

Dynamic

SQL

is

prepared

at

runtime

and

uses

the

database

statistics

available

at

that

time,

whereas

static

SQL

makes

use

of

database

statistics

available

at

BIND

time.

Dynamic

SQL

can

make

use

of

changes

to

the

database,

such

as

new

indexes,

to

choose

the

optimal

access

plan,

resulting

in

potentially

better

performance

than

the

same

SQL

executed

as

static

SQL.

In

addition,

precompilation

of

dynamic

SQL

statements

can

be

avoided

if

they

are

cached.

v

Encapsulation

and

Security

In

static

SQL,

the

authorizations

to

access

objects

(such

as

a

table,

view)

are

associated

with

a

package

and

are

validated

at

package

binding

time.

This

means

that

database

administrators

need

only

to

grant

execute

on

a

particular

package

to

a

set

of

users

(thus

encapsulating

their

privileges

in

the

package)

without

having

to

grant

them

explicit

access

to

each

database

object.

In

dynamic

SQL,

the

authorizations

are

validated

at

run

time

on

a

per

statement

basis;

therefore,

users

must

be

granted

explicit

access

to

each

database

object.

This

permits

these

users

access

to

parts

of

the

object

that

they

do

not

have

a

need

to

access.

v

Embedded

SQL

is

supported

in

languages

other

than

C

or

C++.

v

For

fixed

query

selects,

embedded

SQL

is

simpler.

If

an

application

requires

the

advantages

of

both

interfaces,

it

is

possible

to

make

use

of

static

SQL

within

a

DB2

CLI

application

by

creating

a

stored

procedure

that

contains

the

static

SQL.

The

stored

procedure

is

called

from

within

a

DB2

CLI

Chapter

5.

Writing

Dynamic

SQL

Programs

129

application

and

is

executed

on

the

server.

Once

the

stored

procedure

is

created,

any

DB2

CLI

or

ODBC

application

can

call

it.

It

is

also

possible

to

write

a

mixed

application

that

uses

both

DB2

CLI

and

embedded

SQL,

taking

advantage

of

their

respective

benefits.

In

this

case,

DB2

CLI

is

used

to

provide

the

base

application,

with

key

modules

written

using

static

SQL

for

performance

or

security

reasons.

This

complicates

the

application

design,

and

should

only

be

used

if

stored

procedures

do

not

meet

the

applications

requirements.

Ultimately,

the

decision

on

when

to

use

each

interface,

will

be

based

on

individual

preferences

and

previous

experience

rather

than

on

any

one

factor.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

on

page

460

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Issuing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

in

the

CLI

Guide

and

Reference,

Volume

1

130

Programming

Client

Applications

Chapter

6.

Programming

in

C

and

C++

Programming

Considerations

for

C/C++

.

.

.

. 131

Trigraph

Sequences

for

C

and

C++

.

.

.

.

.

. 131

Input

and

Output

Files

for

C

and

C++

.

.

.

.

. 132

Include

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Include

Files

for

C

and

C++

.

.

.

.

.

.

. 132

Include

Files

in

C

and

C++

.

.

.

.

.

.

.

. 134

Embedded

SQL

Statements

in

C

and

C++

.

.

.

. 135

Host

Variables

in

C

and

C++

.

.

.

.

.

.

.

. 137

Host

Variables

in

C

and

C++

.

.

.

.

.

.

. 137

Host

Variable

Names

in

C

and

C++

.

.

.

.

. 137

Host

Variable

Declarations

in

C

and

C++

.

.

. 138

Syntax

for

Numeric

Host

Variables

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

in

C

and

C++

.

.

.

.

.

.

. 140

Syntax

for

Variable-Length

Character

Host

Variables

in

C

or

C++

.

.

.

.

.

.

.

.

. 141

Indicator

Variables

in

C

and

C++

.

.

.

.

.

. 142

Graphic

Host

Variables

in

C

and

C++

.

.

.

. 143

Syntax

for

Graphic

Declaration

of

Single-Graphic

and

Null-Terminated

Graphic

Forms

in

C

and

C++

.

.

.

.

.

.

.

.

.

. 143

Syntax

for

Graphic

Declaration

of

VARGRAPHIC

Structured

Form

in

C

or

C++

.

. 145

Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

C

or

C++

.

.

.

.

.

.

.

.

. 147

Syntax

for

File

Reference

Host

Variable

Declarations

in

C

or

C++

.

.

.

.

.

.

.

. 148

Host

Variable

Initialization

in

C

and

C++

.

.

. 149

C

Macro

Expansion

.

.

.

.

.

.

.

.

.

. 149

Host

Structure

Support

in

C

and

C++

.

.

.

. 150

Indicator

Tables

in

C

and

C++

.

.

.

.

.

.

. 152

Null-Terminated

Strings

in

C

and

C++

.

.

.

. 153

Host

Variables

Used

as

Pointer

Data

Types

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Class

Data

Members

Used

as

Host

Variables

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Qualification

and

Member

Operators

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Multi-Byte

Character

Encoding

in

C

and

C++

156

wchar_t

and

sqldbchar

Data

Types

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

WCHARTYPE

Precompiler

Option

in

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

in

C

and

C++

.

.

.

.

. 160

SQL

Declare

Section

with

Host

Variables

for

C

and

C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Data

Type

Considerations

for

C

and

C++

.

.

.

. 162

Supported

SQL

Data

Types

in

C

and

C++

.

.

. 162

FOR

BIT

DATA

in

C

and

C++

.

.

.

.

.

.

. 166

C

and

C++

Data

Types

for

Procedures,

Functions,

and

Methods

.

.

.

.

.

.

.

.

. 166

SQLSTATE

and

SQLCODE

Variables

in

C

and

C++

168

Programming

Considerations

for

C/C++

Special

host

language

programming

considerations

are

discussed

in

the

following

topics.

Included

is

information

on

language

restrictions,

host-language-specific

include

files,

embedding

SQL

statements,

host

variables,

and

supported

data

types

for

host

variables.

Related

reference:

v

“C

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Trigraph

Sequences

for

C

and

C++

Some

characters

from

the

C

or

C++

character

set

are

not

available

on

all

keyboards.

These

characters

can

be

entered

into

a

C

or

C++

source

program

using

a

sequence

of

three

characters

called

a

trigraph.

Trigraphs

are

not

recognized

in

SQL

statements.

The

precompiler

recognizes

the

following

trigraphs

within

host

variable

declarations:

Trigraph

Definition

??(

Left

bracket

'['

??)

Right

bracket

']'

©

Copyright

IBM

Corp.

1997

-

2004

131

??<

Left

brace

'{'

??>

Right

brace

'}'

The

remaining

trigraphs

listed

below

may

occur

elsewhere

in

a

C

or

C++

source

program:

Trigraph

Definition

??=

Hash

mark

'#'

??/

Back

slash

'\'

??’

Caret

'^'

??!

Vertical

Bar

'|'

??–

Tilde

'~'

Input

and

Output

Files

for

C

and

C++

By

default,

the

input

file

can

have

the

following

extensions:

.sqc

For

C

files

on

all

supported

platforms

.sqC

For

C++

files

on

UNIX®

platforms

.sqx

For

C++

files

on

Windows®

operating

systems

By

default,

the

corresponding

precompiler

output

files

have

the

following

extensions:

.c

For

C

files

on

all

supported

platforms

.C

For

C++

files

on

UNIX

platforms

.cxx

For

C++

files

on

Windows

operating

systems

You

can

use

the

OUTPUT

precompile

option

to

override

the

name

and

path

of

the

output

modified

source

file.

If

you

use

the

TARGET

C

or

TARGET

CPLUSPLUS

precompile

option,

the

input

file

does

not

need

a

particular

extension.

Include

Files

The

following

sections

describe

include

files

for

C

and

C++.

Include

Files

for

C

and

C++

The

host-language-specific

include

files

(header

files)

for

C

and

C++

have

the

file

extension

.h.

The

include

files

that

are

intended

to

be

used

in

your

applications

are

described

below.

SQL

(sql.h)

This

file

includes

language-specific

prototypes

for

the

binder,

precompiler,

and

error

message

retrieval

APIs.

It

also

defines

system

constants.

SQLADEF

(sqladef.h)

This

file

contains

function

prototypes

used

by

precompiled

C

and

C++

applications.

SQLAPREP

(sqlaprep.h)

This

file

contains

definitions

required

to

write

your

own

precompiler.

132

Programming

Client

Applications

SQLCA

(sqlca.h)

This

file

defines

the

SQL

Communication

Area

(SQLCA)

structure.

The

SQLCA

contains

variables

that

are

used

by

the

database

manager

to

provide

an

application

with

error

information

about

the

execution

of

SQL

statements

and

API

calls.

SQLCLI

(sqlcli.h)

This

file

contains

the

function

prototypes

and

constants

needed

to

write

a

Call

Level

Interface

(DB2

CLI)

application.

The

functions

in

this

file

are

common

to

both

X/Open

Call

Level

Interface

and

ODBC

Core

Level.

SQLCLI1

(sqlcli1.h)

This

file

contains

the

function

prototypes

and

constants

needed

to

write

a

Call

Level

Interface

(DB2

CLI)

that

makes

use

of

the

more

advanced

features

in

DB2

CLI.

Many

of

the

functions

in

this

file

are

common

to

both

X/Open

Call

Level

Interface

and

ODBC

Level

1.

In

addition,

this

file

also

includes

X/Open-only

functions

and

DB2-specific

functions.

This

file

includes

both

sqlcli.h

and

sqlext.h

(which

contains

ODBC

Level2

API

definitions).

SQLCODES

(sqlcodes.h)

This

file

defines

constants

for

the

SQLCODE

field

of

the

SQLCA

structure.

SQLDA

(sqlda.h)

This

file

defines

the

SQL

Descriptor

Area

(SQLDA)

structure.

The

SQLDA

is

used

to

pass

data

between

an

application

and

the

database

manager.

SQLENV

(sqlenv.h)

This

file

defines

language-specific

calls

for

the

database

environment

APIs,

and

the

structures,

constants,

and

return

codes

for

those

interfaces.

SQLEXT

(sqlext.h)

This

file

contains

the

function

prototypes

and

constants

of

those

ODBC

Level

1

and

Level

2

APIs

that

are

not

part

of

the

X/Open

Call

Level

Interface

specification

and

is

therefore

used

with

the

permission

of

Microsoft

Corporation.

SQLE819A

(sqle819a.h)

If

the

code

page

of

the

database

is

819

(ISO

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE819B

(sqle819b.h)

If

the

code

page

of

the

database

is

819

(ISO

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE850A

(sqle850a.h)

If

the

code

page

of

the

database

is

850

(ASCII

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE850B

(sqle850b.h)

If

the

code

page

of

the

database

is

850

(ASCII

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

Chapter

6.

Programming

in

C

and

C++

133

SQLE932A

(sqle932a.h)

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

5035

(EBCDIC

Japanese)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE932B

(sqle932b.h)

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

5026

(EBCDIC

Japanese)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLJACB

(sqljacb.h)

This

file

defines

constants,

structures,

and

control

blocks

for

the

DB2

Connect

interface.

SQLMON

(sqlmon.h)

This

file

defines

language-specific

calls

for

the

database

system

monitor

APIs,

and

the

structures,

constants,

and

return

codes

for

those

interfaces.

SQLSTATE

(sqlstate.h)

This

file

defines

constants

for

the

SQLSTATE

field

of

the

SQLCA

structure.

SQLSYSTM

(sqlsystm.h)

This

file

contains

the

platform-specific

definitions

used

by

the

database

manager

APIs

and

data

structures.

SQLUDF

(sqludf.h)

This

file

defines

constants

and

interface

structures

for

writing

user-defined

functions

(UDFs).

SQLUTIL

(sqlutil.h)

This

file

defines

the

language-specific

calls

for

the

utility

APIs,

and

the

structures,

constants,

and

codes

required

for

those

interfaces.

SQLUV

(sqluv.h)

This

file

defines

structures,

constants,

and

prototypes

for

the

asynchronous

Read

Log

API,

and

APIs

used

by

the

table

load

and

unload

vendors.

SQLUVEND

(sqluvend.h)

This

file

defines

structures,

constants,

and

prototypes

for

the

APIs

to

be

used

by

the

storage

management

vendors.

SQLXA

(sqlxa.h)

This

file

contains

function

prototypes

and

constants

used

by

applications

that

use

the

X/Open

XA

Interface.

Related

concepts:

v

“Include

Files

in

C

and

C++”

on

page

134

Include

Files

in

C

and

C++

There

are

two

methods

for

including

files:

the

EXEC

SQL

INCLUDE

statement

and

the

#include

macro.

The

precompiler

will

ignore

the

#include,

and

only

process

files

included

with

the

EXEC

SQL

INCLUDE

statement.

To

locate

files

included

using

EXEC

SQL

INCLUDE,

the

DB2®

C

precompiler

searches

the

current

directory

first,

then

the

directories

specified

by

the

DB2INCLUDE

environment

variable.

Consider

the

following

examples:

v

EXEC

SQL

INCLUDE

payroll;

134

Programming

Client

Applications

If

the

file

specified

in

the

INCLUDE

statement

is

not

enclosed

in

quotation

marks,

as

above,

the

C

precompiler

searches

for

payroll.sqc,

then

payroll.h,

in

each

directory

in

which

it

looks.

On

UNIX®

operating

systems,

the

C++

precompiler

searches

for

payroll.sqC,

then

payroll.sqx,

then

payroll.hpp,

then

payroll.h

in

each

directory

in

which

it

looks.

On

Windows®-32

bit

operating

systems,

the

C++

precompiler

searches

for

payroll.sqx,

then

payroll.hpp,

then

payroll.h

in

each

directory

in

which

it

looks.

v

EXEC

SQL

INCLUDE

’pay/payroll.h’;

If

the

file

name

is

enclosed

in

quotation

marks,

as

above,

no

extension

is

added

to

the

name.

If

the

file

name

in

quotation

marks

does

not

contain

an

absolute

path,

then

the

contents

of

DB2INCLUDE

are

used

to

search

for

the

file,

prepended

to

whatever

path

is

specified

in

the

INCLUDE

file

name.

For

example,

on

UNIX-based

systems,

if

DB2INCLUDE

is

set

to

‘/disk2:myfiles/c’,

the

C/C++

precompiler

searches

for

‘./pay/payroll.h’,

then

‘/disk2/pay/payroll.h’,

and

finally

‘./myfiles/c/pay/payroll.h’.

The

path

where

the

file

is

actually

found

is

displayed

in

the

precompiler

messages.

On

Windows-based

operating

systems,

substitute

back

slashes

(\)

for

the

forward

slashes

in

the

above

example.

Note:

The

setting

of

DB2INCLUDE

is

cached

by

the

command

line

processor.

To

change

the

setting

of

DB2INCLUDE

after

any

CLP

commands

have

been

issued,

enter

the

TERMINATE

command,

then

reconnect

to

the

database

and

precompile

as

usual.

To

help

relate

compiler

errors

back

to

the

original

source

the

precompiler

generates

ANSI

#line

macros

in

the

output

file.

This

allows

the

compiler

to

report

errors

using

the

file

name

and

line

number

of

the

source

or

included

source

file,

rather

than

the

precompiler

output.

However,

if

you

specify

the

PREPROCESSOR

option,

all

the

#line

macros

generated

by

the

precompiler

reference

the

preprocessed

file

from

the

external

C

preprocessor.

Some

debuggers

and

other

tools

that

relate

source

code

to

object

code

do

not

always

work

well

with

the

#line

macro.

If

the

tool

you

want

to

use

behaves

unexpectedly,

use

the

NOLINEMACRO

option

(used

with

DB2

PREP)

when

precompiling.

This

option

prevents

the

#line

macros

from

being

generated.

Related

concepts:

v

“C

Macro

Expansion”

on

page

149

Related

reference:

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“Include

Files

for

C

and

C++”

on

page

132

Embedded

SQL

Statements

in

C

and

C++

Embedded

SQL

statements

consist

of

the

following

three

elements:

Element

Correct

Syntax

Statement

initializer

EXEC

SQL

Statement

string

Any

valid

SQL

statement

Statement

terminator

semicolon

(;)

Chapter

6.

Programming

in

C

and

C++

135

For

example:

EXEC

SQL

SELECT

col

INTO

:hostvar

FROM

table;

The

following

rules

apply

to

embedded

SQL

statements:

v

You

can

begin

the

SQL

statement

string

on

the

same

line

as

the

keyword

pair

or

a

separate

line.

The

statement

string

can

be

several

lines

long.

Do

not

split

the

EXEC

SQL

keyword

pair

between

lines.

v

You

must

use

the

SQL

statement

terminator.

If

you

do

not

use

it,

the

precompiler

will

continue

to

the

next

terminator

in

the

application.

This

may

cause

indeterminate

errors.

C/C++

comments

can

be

placed

before

the

statement

initializer

or

after

the

statement

terminator.

v

Multiple

SQL

statements

and

C/C++

statements

may

be

placed

on

the

same

line.

For

example:

EXEC

SQL

OPEN

c1;

if

(SQLCODE

>=

0)

EXEC

SQL

FETCH

c1

INTO

:hv;

v

The

SQL

precompiler

leaves

carriage

returns,

line

feeds,

and

TABs

in

a

quoted

string

as

is.

v

SQL

comments

are

allowed

on

any

line

that

is

part

of

an

embedded

SQL

statement.

These

comments

are

not

allowed

in

dynamically

executed

statements.

The

format

for

an

SQL

comment

is

a

double

dash

(--)

followed

by

a

string

of

zero

or

more

characters,

and

terminated

by

a

line

end.

Do

not

place

SQL

comments

after

the

SQL

statement

terminator.

Comments

after

the

terminator

cause

compilation

errors

because

they

appear

to

be

part

of

the

C/C++

language.

You

can

use

comments

in

a

static

statement

string

wherever

blanks

are

allowed.

Use

the

C/C++

comment

delimiters

/*

*/,

or

the

SQL

comment

symbol

(--).

//-style

C++

comments

are

not

permitted

within

static

SQL

statements,

but

they

may

be

used

elsewhere

in

your

program.

The

precompiler

removes

comments

before

processing

the

SQL

statement.

You

cannot

use

the

C

and

C++

comment

delimiters

/*

*/

or

//

in

a

dynamic

SQL

statement.

However,

you

can

use

them

elsewhere

in

your

program.

v

You

can

continue

SQL

string

literals

and

delimited

identifiers

over

line

breaks

in

C

and

C++

applications.

To

do

this,

use

a

back

slash

(\)

at

the

end

of

the

line

where

the

break

is

desired.

For

example:

EXEC

SQL

SELECT

"NA\

ME"

INTO

:n

FROM

staff

WHERE

name=’Sa\

nders’;

Any

new

line

characters

(such

as

carriage

return

and

line

feed)

are

not

included

in

the

string

or

delimited

identifier.

v

Substitution

of

white

space

characters,

such

as

end-of-line

and

TAB

characters,

occurs

as

follows:

–

When

they

occur

outside

quotation

marks

(but

inside

SQL

statements),

end-of-lines

and

TABs

are

substituted

by

a

single

space.

–

When

they

occur

inside

quotation

marks,

the

end-of-line

characters

disappear,

provided

the

string

is

continued

properly

for

a

C

program.

TABs

are

not

modified.

Note

that

the

actual

characters

used

for

end-of-line

and

TAB

vary

from

platform

to

platform.

For

example,

UNIX®-based

systems

use

a

line

feed.

Related

reference:

v

Appendix

A,

“Supported

SQL

Statements,”

on

page

685

136

Programming

Client

Applications

Host

Variables

in

C

and

C++

The

sections

that

follow

describe

how

to

declare

and

use

host

variables

in

C

and

C++

programs.

Host

Variables

in

C

and

C++

Host

variables

are

C

or

C++

language

variables

that

are

referenced

within

SQL

statements.

They

allow

an

application

to

pass

input

data

to

and

receive

output

data

from

the

database

manager.

After

the

application

is

precompiled,

host

variables

are

used

by

the

compiler

as

any

other

C/C++

variable.

Follow

the

rules

described

in

the

following

sections

when

naming,

declaring,

and

using

host

variables.

In

applications

that

manually

construct

the

SQLDA,

long

variables

cannot

be

used

when

sqlvar::sqltype==SQL_TYP_INTEGER.

Instead,

sqlint32

types

must

be

used.

This

problem

is

identical

to

using

long

variables

in

host

variable

declarations,

except

that

with

a

manually

constructed

SQLDA,

the

precompiler

will

not

uncover

this

error

and

run

time

errors

will

occur.

Any

long

and

unsigned

long

casts

that

are

used

to

access

sqlvar::sqldata

information

must

be

changed

to

sqlint32

and

sqluint32.

Val

members

for

the

sqloptions

and

sqla_option

structures

are

declared

as

sqluintptr.

Therefore,

assignment

of

pointer

members

into

sqla_option::val

or

sqloptions::val

members

should

use

sqluintptr

casts

rather

than

unsigned

long

casts.

This

change

will

not

cause

run-time

problems

in

64-bit

UNIX®

platforms,

but

should

be

made

in

preparation

for

64-bit

Windows®

NT

applications,

where

the

long

type

is

only

32-bit.

Related

concepts:

v

“Host

Variable

Names

in

C

and

C++”

on

page

137

v

“Host

Variable

Declarations

in

C

and

C++”

on

page

138

v

“Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

in

C

and

C++”

on

page

140

v

“Indicator

Variables

in

C

and

C++”

on

page

142

v

“Graphic

Host

Variables

in

C

and

C++”

on

page

143

v

“Host

Variable

Initialization

in

C

and

C++”

on

page

149

v

“Host

Structure

Support

in

C

and

C++”

on

page

150

v

“SQL

Declare

Section

with

Host

Variables

for

C

and

C++”

on

page

161

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

C

and

C++”

on

page

139

v

“Syntax

for

Variable-Length

Character

Host

Variables

in

C

or

C++”

on

page

141

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++”

on

page

146

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

C

or

C++”

on

page

147

v

“Syntax

for

File

Reference

Host

Variable

Declarations

in

C

or

C++”

on

page

148

Host

Variable

Names

in

C

and

C++

The

SQL

precompiler

identifies

host

variables

by

their

declared

name.

The

following

rules

apply:

Chapter

6.

Programming

in

C

and

C++

137

v

Specify

variable

names

up

to

255

characters

in

length.

v

Begin

host

variable

names

with

prefixes

other

than

SQL,

sql,

DB2®,

and

db2,

which

are

reserved

for

system

use.

For

example:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

varsql;

/*

allowed

*/

char

sqlvar;

/*

not

allowed

*/

char

SQL_VAR;

/*

not

allowed

*/

EXEC

SQL

END

DECLARE

SECTION;

v

The

precompiler

considers

host

variable

names

as

global

to

a

module.

This

does

not

mean,

however,

that

host

variables

have

to

be

declared

as

global

variables;

it

is

perfectly

acceptable

to

declare

host

variables

as

local

variables

within

functions.

For

example,

the

following

code

will

work

correctly:

void

f1(int

i)

{

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

host_var_1;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

COL1

INTO

:host_var_1

from

TBL1;

}

void

f2(int

i)

{

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

host_var_2;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

TBL1

VALUES

(:host_var_2);

}

It

is

also

possible

to

have

several

local

host

variables

with

the

same

name,

as

long

as

they

all

have

the

same

type

and

size.

To

do

this,

declare

the

first

occurrence

of

the

host

variable

to

the

precompiler

between

BEGIN

DECLARE

SECTION

and

END

DECLARE

SECTION

statements,

and

leave

subsequent

declarations

of

the

variable

out

of

declare

sections.

The

following

code

shows

an

example

of

this:

void

f3(int

i)

{

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

host_var_3[25];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

COL2

INTO

:host_var_3

FROM

TBL2;

}

void

f4(int

i)

{

char

host_var_3[25];

EXEC

SQL

INSERT

INTO

TBL2

VALUES

(:host_var_3);

}

Because

f3

and

f4

are

in

the

same

module,

and

host_var_3

has

the

same

type

and

length

in

both

functions,

a

single

declaration

to

the

precompiler

is

sufficient

to

use

it

in

both

places.

Related

concepts:

v

“Host

Variable

Declarations

in

C

and

C++”

on

page

138

Host

Variable

Declarations

in

C

and

C++

An

SQL

declare

section

must

be

used

to

identify

host

variable

declarations.

This

alerts

the

precompiler

to

any

host

variables

that

can

be

referenced

in

subsequent

SQL

statements.

The

C/C++

precompiler

only

recognizes

a

subset

of

valid

C

or

C++

declarations

as

valid

host

variable

declarations.

These

declarations

define

either

numeric

or

138

Programming

Client

Applications

character

variables.

Typedefs

for

host

variable

types

are

not

allowed.

Host

variables

can

be

grouped

into

a

single

host

structure.

You

can

declare

C++

class

data

members

as

host

variables.

A

numeric

host

variable

can

be

used

as

an

input

or

output

variable

for

any

numeric

SQL

input

or

output

value.

A

character

host

variable

can

be

used

as

an

input

or

output

variable

for

any

character,

date,

time,

or

timestamp

SQL

input

or

output

value.

The

application

must

ensure

that

output

variables

are

long

enough

to

contain

the

values

that

they

receive.

Related

concepts:

v

“Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

in

C

and

C++”

on

page

140

v

“Graphic

Host

Variables

in

C

and

C++”

on

page

143

v

“Host

Structure

Support

in

C

and

C++”

on

page

150

v

“Class

Data

Members

Used

as

Host

Variables

in

C

and

C++”

on

page

155

Related

tasks:

v

“Declaring

Host

Variables

with

the

db2dclgn

Declaration

Generator”

on

page

29

v

“Declaring

structured

type

host

variables”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

C

and

C++”

on

page

139

v

“Syntax

for

Variable-Length

Character

Host

Variables

in

C

or

C++”

on

page

141

Syntax

for

Numeric

Host

Variables

in

C

and

C++

Following

is

the

syntax

for

declaring

numeric

host

variables

in

C

or

C++.

Syntax

for

Numeric

Host

Variables

in

C

or

C++

��

auto

extern

static

register

const

volatile

(1)

float

(2)

double

(3)

short

int

INTEGER

(SQLTYPE

496)

BIGINT

(SQLTYPE

492)

�

�

�

�

,

varname

=

value

*

&

const

volatile

;

��

Chapter

6.

Programming

in

C

and

C++

139

INTEGER

(SQLTYPE

496)

sqlint32

(4)

long

int

BIGINT

(SQLTYPE

492)

sqlint64

__int64

long

long

int

(5)

long

int

Notes:

1 REAL

(SQLTYPE

480),

length

4

2 DOUBLE

(SQLTYPE

480),

length

8

3 SMALLINT

(SQLTYPE

500)

4 For

maximum

application

portability,

use

sqlint32

and

sqlint64

for

INTEGER

and

BIGINT

host

variables,

respectively.

By

default,

the

use

of

long

host

variables

results

in

the

precompiler

error

SQL0402

on

platforms

where

long

is

a

64

bit

quantity,

such

as

64

BIT

UNIX.

Use

the

PREP

option

LONGERROR

NO

to

force

DB2

to

accept

long

variables

as

acceptable

host

variable

types

and

treat

them

as

BIGINT

variables.

5 For

maximum

application

portability,

use

sqlint32

and

sqlint64

for

INTEGER

and

BIGINT

host

variables,

respectively.

To

use

the

BIGINT

data

type,

your

platform

must

support

64

bit

integer

values.

By

default,

the

use

of

long

host

variables

results

in

the

precompiler

error

SQL0402

on

platforms

where

long

is

a

64

bit

quantity,

such

as

64

BIT

UNIX.

Use

the

PREP

option

LONGERROR

NO

to

force

DB2

to

accept

long

variables

as

acceptable

host

variable

types

and

treat

them

as

BIGINT

variables.

Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

in

C

and

C++

Following

is

the

syntax

for

declaring

fixed

and

null-terminated

character

host

variables

in

C

or

C++.

Syntax

for

Fixed

and

Null-Terminated

Character

Host

Variables

��

auto

extern

static

register

const

volatile

char

unsigned

�

140

Programming

Client

Applications

�

�

,

CHAR

C

String

=

value

;

��

CHAR

�

(1)

varname

*

&

const

volatile

C

String

�

(2)

varname

[length]

(

varname

)

*

&

const

volatile

Notes:

1 CHAR

(SQLTYPE

452),

length

1

2 Null-terminated

C

string

(SQLTYPE

460);

length

can

be

any

valid

constant

expression

Syntax

for

Variable-Length

Character

Host

Variables

in

C

or

C++

Following

is

the

syntax

for

declaring

variable-length

character

host

variables

in

C

or

C++.

Syntax

for

Variable-Length

Character

Host

Variables

in

C

��

auto

extern

static

register

const

volatile

struct

tag

�

�

(1)

{

short

var1

;

char

var2

[length]

;

}

int

unsigned

�

Chapter

6.

Programming

in

C

and

C++

141

�

�

�

,

varname

Values

*

&

const

volatile

;

��

Values

=

{

value-1

,

value-2

}

Notes:

1 In

form

2,

length

can

be

any

valid

constant

expression.

Its

value

after

evaluation

determines

if

the

host

variable

is

VARCHAR

(SQLTYPE

448)

or

LONG

VARCHAR

(SQLTYPE

456).

Variable-Length

Character

Host

Variable

Considerations:

1.

Although

the

database

manager

converts

character

data

to

either

form

1

or

form

2

whenever

possible,

form

1

corresponds

to

column

types

CHAR

or

VARCHAR,

while

form

2

corresponds

to

column

types

VARCHAR

and

LONG

VARCHAR.

2.

If

form

1

is

used

with

a

length

specifier

[n],

the

value

for

the

length

specifier

after

evaluation

must

be

no

greater

than

32

672,

and

the

string

contained

by

the

variable

should

be

null-terminated.

3.

If

form

2

is

used,

the

value

for

the

length

specifier

after

evaluation

must

be

no

greater

than

32

700.

4.

In

form

2,

var1

and

var2

must

be

simple

variable

references

(no

operators),

and

cannot

be

used

as

host

variables

(varname

is

the

host

variable).

5.

varname

can

be

a

simple

variable

name,

or

it

can

include

operators

such

as

*varname.

See

the

description

of

pointer

data

types

in

C

and

C++

for

more

information.

6.

The

precompiler

determines

the

SQLTYPE

and

SQLLEN

of

all

host

variables.

If

a

host

variable

appears

in

an

SQL

statement

with

an

indicator

variable,

the

SQLTYPE

is

assigned

to

be

the

base

SQLTYPE

plus

one

for

the

duration

of

that

statement.

7.

The

precompiler

permits

some

declarations

which

are

not

syntactically

valid

in

C

or

C++.

Refer

to

your

compiler

documentation

if

in

doubt

about

a

particular

declaration

syntax.

Related

concepts:

v

“Host

Variables

Used

as

Pointer

Data

Types

in

C

and

C++”

on

page

154

Indicator

Variables

in

C

and

C++

Indicator

variables

should

be

declared

as

a

short

data

type.

Related

concepts:

v

“Indicator

Tables

in

C

and

C++”

on

page

152

142

Programming

Client

Applications

Graphic

Host

Variables

in

C

and

C++

To

handle

graphic

data

in

C

or

C++

applications,

use

host

variables

based

on

either

the

wchar_t

C/C++

data

type

or

the

sqldbchar

data

type

provided

by

DB2®.

You

can

assign

these

types

of

host

variables

to

columns

of

a

table

that

are

GRAPHIC,

VARGRAPHIC,

or

DBCLOB.

For

example,

you

can

update

or

select

DBCS

data

from

GRAPHIC

or

VARGRAPHIC

columns

of

a

table.

There

are

three

valid

forms

for

a

graphic

host

variable:

v

Single-graphic

form

Single-graphic

host

variables

have

an

SQLTYPE

of

468/469

that

is

equivalent

to

the

GRAPHIC(1)

SQL

data

type.

v

Null-terminated

graphic

form

Null-terminated

refers

to

the

situation

where

all

the

bytes

of

the

last

character

of

the

graphic

string

contain

binary

zeros

('\0's).

They

have

an

SQLTYPE

of

400®/401.

v

VARGRAPHIC

structured

form

VARGRAPHIC

structured

host

variables

have

an

SQLTYPE

of

464/465

if

their

length

is

between

1

and

16

336

bytes.

They

have

an

SQLTYPE

of

472/473

if

their

length

is

between

2

000

and

16

350

bytes.

Related

concepts:

v

“Host

Variable

Names

in

C

and

C++”

on

page

137

v

“Host

Variable

Declarations

in

C

and

C++”

on

page

138

v

“Host

Variable

Initialization

in

C

and

C++”

on

page

149

v

“Host

Structure

Support

in

C

and

C++”

on

page

150

v

“Indicator

Tables

in

C

and

C++”

on

page

152

v

“Multi-Byte

Character

Encoding

in

C

and

C++”

on

page

156

v

“wchar_t

and

sqldbchar

Data

Types

in

C

and

C++”

on

page

157

v

“WCHARTYPE

Precompiler

Option

in

C

and

C++”

on

page

158

Related

reference:

v

“Syntax

for

Graphic

Declaration

of

Single-Graphic

and

Null-Terminated

Graphic

Forms

in

C

and

C++”

on

page

143

v

“Syntax

for

Graphic

Declaration

of

VARGRAPHIC

Structured

Form

in

C

or

C++”

on

page

145

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++”

on

page

146

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

C

or

C++”

on

page

147

v

“Syntax

for

File

Reference

Host

Variable

Declarations

in

C

or

C++”

on

page

148

Syntax

for

Graphic

Declaration

of

Single-Graphic

and

Null-Terminated

Graphic

Forms

in

C

and

C++

Following

is

the

syntax

for

declaring

a

graphic

host

variable

using

the

single-graphic

form

and

the

null-terminated

graphic

form.

Syntax

for

Graphic

Declaration

of

Single-Graphic

Form

and

Chapter

6.

Programming

in

C

and

C++

143

��

auto

extern

static

register

const

volatile

(1)

sqldbchar

wchar_t

�

�

�

,

CHAR

C

String

=

value

;

��

CHAR

�

(2)

varname

*

&

const

volatile

C

String

�

(3)

varname

[length]

(

varname

)

*

&

const

volatile

Notes:

1 To

determine

which

of

the

two

graphic

types

should

be

used,

see

the

description

of

the

wchar_t

and

sqldbchar

data

types

in

C

and

C++.

2 GRAPHIC

(SQLTYPE

468),

length

1

3 Null-terminated

graphic

string

(SQLTYPE

400)

Graphic

Host

Variable

Considerations:

1.

The

single-graphic

form

declares

a

fixed-length

graphic

string

host

variable

of

length

1

with

SQLTYPE

of

468

or

469.

2.

value

is

an

initializer.

A

wide-character

string

literal

(L-literal)

should

be

used

if

the

WCHARTYPE

CONVERT

precompiler

option

is

used.

3.

length

can

be

any

valid

constant

expression,

and

its

value

after

evaluation

must

be

greater

than

or

equal

to

1,

and

not

greater

than

the

maximum

length

of

VARGRAPHIC,

which

is

16

336.

4.

Null-terminated

graphic

strings

are

handled

differently,

depending

on

the

value

of

the

standards

level

precompile

option

setting.

Related

concepts:

v

“Null-Terminated

Strings

in

C

and

C++”

on

page

153

144

Programming

Client

Applications

v

“wchar_t

and

sqldbchar

Data

Types

in

C

and

C++”

on

page

157

Syntax

for

Graphic

Declaration

of

VARGRAPHIC

Structured

Form

in

C

or

C++

Following

is

the

syntax

for

declaring

a

graphic

host

variable

using

the

VARGRAPHIC

structured

form.

Syntax

for

Graphic

Declaration

of

VARGRAPHIC

Structured

��

auto

extern

static

register

const

volatile

struct

tag

�

�

(1)

(2)

{

short

var-1

;

sqldbchar

var-2

[length

]

;

}

int

wchar_t

�

�

�

�

,

Variable

;

*

&

const

volatile

��

Variable:

variable-name

=

{

value-1

,

value-2

}

Notes:

1 To

determine

which

of

the

two

graphic

types

should

be

used,

see

the

description

of

the

wchar_t

and

sqldbchar

data

types

in

C

and

C++.

2 length

can

be

any

valid

constant

expression.

Its

value

after

evaluation

determines

if

the

host

variable

is

VARGRAPHIC

(SQLTYPE

464)

or

LONG

VARGRAPHIC

(SQLTYPE

472).

The

value

of

length

must

be

greater

than

or

equal

to

1,

and

not

greater

than

the

maximum

length

of

LONG

VARGRAPHIC

which

is

16

350.

Graphic

Declaration

(VARGRAPHIC

Structured

Form)

Considerations:

1.

var-1

and

var-2

must

be

simple

variable

references

(no

operators)

and

cannot

be

used

as

host

variables.

2.

value-1

and

value-2

are

initializers

for

var-1

and

var-2.

value-1

must

be

an

integer

and

value-2

should

be

a

wide-character

string

literal

(L-literal)

if

the

WCHARTYPE

CONVERT

precompiler

option

is

used.

3.

The

struct

tag

can

be

used

to

define

other

data

areas,

but

itself

cannot

be

used

as

a

host

variable.

Related

concepts:

v

“wchar_t

and

sqldbchar

Data

Types

in

C

and

C++”

on

page

157

Chapter

6.

Programming

in

C

and

C++

145

Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++

Following

is

the

syntax

for

declaring

large

object

(LOB)

host

variables

in

C

or

C++.

Syntax

for

Large

Object

(LOB)

Host

Variables

in

C

or

C++

��

auto

extern

static

register

const

volatile

SQL

TYPE

IS

BLOB

CLOB

DBCLOB

(1)

(length

)

�

�

�

�

,

variable-name

LOB

Data

*

&

const

volatile

;

��

LOB

Data

={init-len,″init-data″}

=SQL_BLOB_INIT(″init-data″)

=SQL_CLOB_INIT(″init-data″)

=SQL_DBCLOB_INIT(″init-data″)

Notes:

1 length

can

be

any

valid

constant

expression,

in

which

the

constant

K,

M,

or

G

can

be

used.

The

value

of

length

after

evaluation

for

BLOB

and

CLOB

must

be

1

<=

length

<=

2

147

483

647.

The

value

of

length

after

evaluation

for

DBCLOB

must

be

1

<=

length

<=

1

073

741

823.

LOB

Host

Variable

Considerations:

1.

The

SQL

TYPE

IS

clause

is

needed

to

distinguish

the

three

LOB-types

from

each

other

so

that

type

checking

and

function

resolution

can

be

carried

out

for

LOB-type

host

variables

that

are

passed

to

functions.

2.

SQL

TYPE

IS,

BLOB,

CLOB,

DBCLOB,

K,

M,

G

may

be

in

mixed

case.

3.

The

maximum

length

allowed

for

the

initialization

string

″init-data″

is

32

702

bytes,

including

string

delimiters

(the

same

as

the

existing

limit

on

C/C++

strings

within

the

precompiler).

4.

The

initialization

length,

init-len,

must

be

a

numeric

constant

(i.e.

it

cannot

include

K,

M,

or

G).

5.

A

length

for

the

LOB

must

be

specified;

that

is,

the

following

declaration

is

not

permitted:

SQL

TYPE

IS

BLOB

my_blob;

6.

If

the

LOB

is

not

initialized

within

the

declaration,

no

initialization

will

be

done

within

the

precompiler-generated

code.

7.

If

a

DBCLOB

is

initialized,

it

is

the

user’s

responsibility

to

prefix

the

string

with

an

’L’

(indicating

a

wide-character

string).

146

Programming

Client

Applications

Note:

Wide-character

literals,

for

example,

L"Hello",

should

only

be

used

in

a

precompiled

program

if

the

WCHARTYPE

CONVERT

precompile

option

is

selected.

8.

The

precompiler

generates

a

structure

tag

which

can

be

used

to

cast

to

the

host

variable’s

type.

BLOB

Example:

Declaration:

static

Sql

Type

is

Blob(2M)

my_blob=SQL_BLOB_INIT("mydata");

Results

in

the

generation

of

the

following

structure:

static

struct

my_blob_t

{

sqluint32

length;

char

data[2097152];

}

my_blob=SQL_BLOB_INIT("mydata");

CLOB

Example:

Declaration:

volatile

sql

type

is

clob(125m)

*var1,

var2

=

{10,

"data5data5"};

Results

in

the

generation

of

the

following

structure:

volatile

struct

var1_t

{

sqluint32

length;

char

data[131072000];

}

*

var1,

var2

=

{10,

"data5data5"};

DBCLOB

Example:

Declaration:

SQL

TYPE

IS

DBCLOB(30000)

my_dbclob1;

Precompiled

with

the

WCHARTYPE

NOCONVERT

option,

results

in

the

generation

of

the

following

structure:

struct

my_dbclob1_t

{

sqluint32

length;

sqldbchar

data[30000];

}

my_dbclob1;

Declaration:

SQL

TYPE

IS

DBCLOB(30000)

my_dbclob2

=

SQL_DBCLOB_INIT(L"mydbdata");

Precompiled

with

the

WCHARTYPE

CONVERT

option,

results

in

the

generation

of

the

following

structure:

struct

my_dbclob2_t

{

sqluint32

length;

wchar_t

data[30000];

}

my_dbclob2

=

SQL_DBCLOB_INIT(L"mydbdata");

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

C

or

C++

Following

is

the

syntax

for

declaring

large

object

(LOB)

locator

host

variables

in

C

or

C++.

Chapter

6.

Programming

in

C

and

C++

147

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

��

auto

extern

static

register

const

volatile

SQL

TYPE

IS

BLOB_LOCATOR

CLOB_LOCATOR

DBCLOB_LOCATOR

�

�

�

,

Variable

;

��

Variable

�

*

variable-name

&

const

=

init-value

volatile

LOB

Locator

Host

Variable

Considerations:

1.

SQL

TYPE

IS,

BLOB_LOCATOR,

CLOB_LOCATOR,

DBCLOB_LOCATOR

may

be

in

mixed

case.

2.

init-value

permits

the

initialization

of

pointer

and

reference

locator

variables.

Other

types

of

initialization

will

have

no

meaning.

CLOB

Locator

Example

(other

LOB

locator

type

declarations

are

similar):

Declaration:

SQL

TYPE

IS

CLOB_LOCATOR

my_locator;

Results

in

the

generation

of

the

following

declaration:

sqluint32

my_locator;

Syntax

for

File

Reference

Host

Variable

Declarations

in

C

or

C++

Following

is

the

syntax

for

declaring

file

reference

host

variables

in

C

or

C++.

Syntax

for

File

Reference

Host

Variables

in

C

or

C++

��

auto

extern

static

register

const

volatile

SQL

TYPE

IS

BLOB_FILE

CLOB_FILE

DBCLOB_FILE

�

148

Programming

Client

Applications

�

�

,

Variable

;

��

Variable

�

*

variable-name

&

const

=

init-value

volatile

Note:

SQL

TYPE

IS,

BLOB_FILE,

CLOB_FILE,

DBCLOB_FILE

may

be

in

mixed

case.

CLOB

File

Reference

Example

(other

LOB

file

reference

type

declarations

are

similar):

Declaration:

static

volatile

SQL

TYPE

IS

BLOB_FILE

my_file;

Results

in

the

generation

of

the

following

structure:

static

volatile

struct

{

sqluint32

name_length;

sqluint32

data_length;

sqluint32

file_options;

char

name[255];

}

my_file;

Host

Variable

Initialization

in

C

and

C++

In

C++

declare

sections,

you

cannot

initialize

host

variables

using

parentheses.

The

following

example

shows

the

correct

and

incorrect

methods

of

initialization

in

a

declare

section:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

my_short_2

=

5;

/*

correct

*/

short

my_short_1(5);

/*

incorrect

*/

EXEC

SQL

END

DECLARE

SECTION;

C

Macro

Expansion

The

C/C++

precompiler

cannot

directly

process

any

C

macro

used

in

a

declaration

within

a

declare

section.

Instead,

you

must

first

preprocess

the

source

file

with

an

external

C

preprocessor.

To

do

this,

specify

the

exact

command

for

invoking

a

C

preprocessor

to

the

precompiler

through

the

PREPROCESSOR

option.

When

you

specify

the

PREPROCESSOR

option,

the

precompiler

first

processes

all

the

SQL

INCLUDE

statements

by

incorporating

the

contents

of

all

the

files

referred

to

in

the

SQL

INCLUDE

statement

into

the

source

file.

The

precompiler

then

invokes

the

external

C

preprocessor

using

the

command

you

specify

with

the

modified

source

file

as

input.

The

preprocessed

file,

which

the

precompiler

always

expects

to

have

an

extension

of

.i,

is

used

as

the

new

source

file

for

the

rest

of

the

precompiling

process.

Chapter

6.

Programming

in

C

and

C++

149

Any

#line

macro

generated

by

the

precompiler

no

longer

references

the

original

source

file,

but

instead

references

the

preprocessed

file.

To

relate

any

compiler

errors

back

to

the

original

source

file,

retain

comments

in

the

preprocessed

file.

This

helps

you

to

locate

various

sections

of

the

original

source

files,

including

the

header

files.

The

option

to

retain

comments

is

commonly

available

in

C

preprocessors,

and

you

can

include

the

option

in

the

command

you

specify

through

the

PREPROCESSOR

option.

You

should

not

have

the

C

preprocessor

output

any

#line

macros

itself,

as

they

may

be

incorrectly

mixed

with

ones

generated

by

the

precompiler.

Notes

on

Using

Macro

Expansion:

1.

The

command

you

specify

through

the

PREPROCESSOR

option

should

include

all

the

desired

options,

but

not

the

name

of

the

input

file.

For

example,

for

IBM®

C

on

AIX®

you

can

use

the

option:

xlC

-P

-DMYMACRO=1

2.

The

precompiler

expects

the

command

to

generate

a

preprocessed

file

with

a

.i

extension.

However,

you

cannot

use

redirection

to

generate

the

preprocessed

file.

For

example,

you

cannot

use

the

following

option

to

generate

a

preprocessed

file:

xlC

-E

>

x.i

3.

Any

errors

the

external

C

preprocessor

encounters

are

reported

in

a

file

with

a

name

corresponding

to

the

original

source

file,

but

with

a

.err

extension.

For

example,

you

can

use

macro

expansion

in

your

source

code

as

follows:

#define

SIZE

3

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

a[SIZE+1];

char

b[(SIZE+1)*3];

struct

{

short

length;

char

data[SIZE*6];

}

m;

SQL

TYPE

IS

BLOB(SIZE+1)

x;

SQL

TYPE

IS

CLOB((SIZE+2)*3)

y;

SQL

TYPE

IS

DBCLOB(SIZE*2K)

z;

EXEC

SQL

END

DECLARE

SECTION;

The

previous

declarations

resolve

to

the

following

after

you

use

the

PREPROCESSOR

option:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

a[4];

char

b[12];

struct

{

short

length;

char

data[18];

}

m;

SQL

TYPE

IS

BLOB(4)

x;

SQL

TYPE

IS

CLOB(15)

y;

SQL

TYPE

IS

DBCLOB(6144)

z;

EXEC

SQL

END

DECLARE

SECTION;

Host

Structure

Support

in

C

and

C++

With

host

structure

support,

the

C/C++

precompiler

allows

host

variables

to

be

grouped

into

a

single

host

structure.

This

feature

provides

a

shorthand

for

150

Programming

Client

Applications

referencing

that

same

set

of

host

variables

in

an

SQL

statement.

For

example,

the

following

host

structure

can

be

used

to

access

some

of

the

columns

in

the

STAFF

table

of

the

SAMPLE

database:

struct

tag

{

short

id;

struct

{

short

length;

char

data[10];

}

name;

struct

{

short

years;

double

salary;

}

info;

}

staff_record;

The

fields

of

a

host

structure

can

be

any

of

the

valid

host

variable

types.

Valid

types

include

all

numeric,

character,

and

large

object

types.

Nested

host

structures

are

also

supported

up

to

25

levels.

In

the

example

above,

the

field

info

is

a

sub-structure,

whereas

the

field

name

is

not,

as

it

represents

a

VARCHAR

field.

The

same

principle

applies

to

LONG

VARCHAR,

VARGRAPHIC

and

LONG

VARGRAPHIC.

Pointer

to

host

structure

is

also

supported.

There

are

two

ways

to

reference

the

host

variables

grouped

in

a

host

structure

in

an

SQL

statement:

v

The

host

structure

name

can

be

referenced

in

an

SQL

statement.

EXEC

SQL

SELECT

id,

name,

years,

salary

INTO

:staff_record

FROM

staff

WHERE

id

=

10;

The

precompiler

converts

the

reference

to

staff_record

into

a

list,

separated

by

commas,

of

all

the

fields

declared

within

the

host

structure.

Each

field

is

qualified

with

the

host

structure

names

of

all

levels

to

prevent

naming

conflicts

with

other

host

variables

or

fields.

This

is

equivalent

to

the

following

method.

v

Fully

qualified

host

variable

names

can

be

referenced

in

an

SQL

statement.

EXEC

SQL

SELECT

id,

name,

years,

salary

INTO

:staff_record.id,

:staff_record.name,

:staff_record.info.years,

:staff_record.info.salary

FROM

staff

WHERE

id

=

10;

References

to

field

names

must

be

fully

qualified,

even

if

there

are

no

other

host

variables

with

the

same

name.

Qualified

sub-structures

can

also

be

referenced.

In

the

example

above,

:staff_record.info

can

be

used

to

replace

:staff_record.info.years,

:staff_record.info.salary.

Because

a

reference

to

a

host

structure

(first

example)

is

equivalent

to

a

comma-separated

list

of

its

fields,

there

are

instances

where

this

type

of

reference

may

lead

to

an

error.

For

example:

EXEC

SQL

DELETE

FROM

:staff_record;

Here,

the

DELETE

statement

expects

a

single

character-based

host

variable.

By

giving

a

host

structure

instead,

the

statement

results

in

a

precompile-time

error:

SQL0087N

Host

variable

"staff_record"

is

a

structure

used

where

structure

references

are

not

permitted.

Chapter

6.

Programming

in

C

and

C++

151

Other

uses

of

host

structures,

which

may

cause

an

SQL0087N

error

to

occur,

include

PREPARE,

EXECUTE

IMMEDIATE,

CALL,

indicator

variables

and

SQLDA

references.

Host

structures

with

exactly

one

field

are

permitted

in

such

situations,

as

are

references

to

individual

fields

(second

example).

Related

concepts:

v

“Indicator

Tables

in

C

and

C++”

on

page

152

Indicator

Tables

in

C

and

C++

An

indicator

table

is

a

collection

of

indicator

variables

to

be

used

with

a

host

structure.

It

must

be

declared

as

an

array

of

short

integers.

For

example:

short

ind_tab[10];

The

example

above

declares

an

indicator

table

with

10

elements.

The

following

shows

the

way

it

can

be

used

in

an

SQL

statement:

EXEC

SQL

SELECT

id,

name,

years,

salary

INTO

:staff_record

INDICATOR

:ind_tab

FROM

staff

WHERE

id

=

10;

The

following

lists

each

host

structure

field

with

its

corresponding

indicator

variable

in

the

table:

staff_record.id

ind_tab[0]

staff_record.name

ind_tab[1]

staff_record.info.years

ind_tab[2]

staff_record.info.salary

ind_tab[3]

Note:

An

indicator

table

element,

for

example

ind_tab[1],

cannot

be

referenced

individually

in

an

SQL

statement.

The

keyword

INDICATOR

is

optional.

The

number

of

structure

fields

and

indicators

do

not

have

to

match;

any

extra

indicators

are

unused,

as

are

extra

fields

that

do

not

have

indicators

assigned

to

them.

A

scalar

indicator

variable

can

also

be

used

in

the

place

of

an

indicator

table

to

provide

an

indicator

for

the

first

field

of

the

host

structure.

This

is

equivalent

to

having

an

indicator

table

with

only

one

element.

For

example:

short

scalar_ind;

EXEC

SQL

SELECT

id,

name,

years,

salary

INTO

:staff_record

INDICATOR

:scalar_ind

FROM

staff

WHERE

id

=

10;

If

an

indicator

table

is

specified

along

with

a

host

variable

instead

of

a

host

structure,

only

the

first

element

of

the

indicator

table,

for

example

ind_tab[0],

will

be

used:

EXEC

SQL

SELECT

id

INTO

:staff_record.id

INDICATOR

:ind_tab

FROM

staff

WHERE

id

=

10;

If

an

array

of

short

integers

is

declared

within

a

host

structure:

152

Programming

Client

Applications

struct

tag

{

short

i[2];

}

test_record;

The

array

will

be

expanded

into

its

elements

when

test_record

is

referenced

in

an

SQL

statement

making

:test_record

equivalent

to

:test_record.i[0],

:test_record.i[1].

Related

concepts:

v

“Host

Structure

Support

in

C

and

C++”

on

page

150

Null-Terminated

Strings

in

C

and

C++

C/C++

null-terminated

strings

have

their

own

SQLTYPE

(460/461

for

character

and

468/469

for

graphic).

C/C++

null-terminated

strings

are

handled

differently,

depending

on

the

value

of

the

LANGLEVEL

precompiler

option.

If

a

host

variable

of

one

of

these

SQLTYPE

values

and

declared

length

n

is

specified

within

an

SQL

statement,

and

the

number

of

bytes

(for

character

types)

or

double-byte

characters

(for

graphic

types)

of

data

is

k,

then:

v

If

the

LANGLEVEL

option

on

the

PREP

command

is

SAA1

(the

default):

For

Output:

If...

Then...

k

>

n

n

characters

are

moved

to

the

target

host

variable,

SQLWARN1

is

set

to

'W',

and

SQLCODE

0

(SQLSTATE

01004).

No

null-terminator

is

placed

in

the

string.

If

an

indicator

variable

was

specified

with

the

host

variable,

the

value

of

the

indicator

variable

is

set

to

k.

k

=

n

k

characters

are

moved

to

the

target

host

variable,

SQLWARN1

is

set

to

'N',

and

SQLCODE

0

(SQLSTATE

01004).

No

null-terminator

is

placed

in

the

string.

If

an

indicator

variable

was

specified

with

the

host

variable,

the

value

of

the

indicator

variable

is

set

to

0.

k

<

n

k

characters

are

moved

to

the

target

host

variable

and

a

null

character

is

placed

in

character

k

+

1.

If

an

indicator

variable

was

specified

with

the

host

variable,

the

value

of

the

indicator

variable

is

set

to

0.

For

Input:

When

the

database

manager

encounters

an

input

host

variable

of

one

of

these

SQLTYPE

values

that

does

not

end

with

a

null-terminator,

it

will

assume

that

character

n+1

will

contain

the

null-terminator

character.
v

If

the

LANGLEVEL

option

on

the

PREP

command

is

MIA:

For

Output:

If...

Then...

Chapter

6.

Programming

in

C

and

C++

153

k

>=

n

n

-

1

characters

are

moved

to

the

target

host

variable,

SQLWARN1

is

set

to

'W',

and

SQLCODE

0

(SQLSTATE

01501).

The

nth

character

is

set

to

the

null-terminator.

If

an

indicator

variable

was

specified

with

the

host

variable,

the

value

of

the

indicator

variable

is

set

to

k.

k

+

1

=

n

k

characters

are

moved

to

the

target

host

variable,

and

the

null-terminator

is

placed

in

character

n.

If

an

indicator

variable

was

specified

with

the

host

variable,

the

value

of

the

indicator

variable

is

set

to

0.

k

+

1

<

n

k

characters

are

moved

to

the

target

host

variable,

n

-

k

-1

blanks

are

appended

on

the

right

starting

at

character

k

+

1,

then

the

null-terminator

is

placed

in

character

n.

If

an

indicator

variable

was

specified

with

the

host

variable,

the

value

of

the

indicator

variable

is

set

to

0.

For

Input:

When

the

database

manager

encounters

an

input

host

variable

of

one

of

these

SQLTYPE

values

that

does

not

end

with

a

null

character,

SQLCODE

-302

(SQLSTATE

22501)

is

returned.

When

specified

in

any

other

SQL

context,

a

host

variable

of

SQLTYPE

460

with

length

n

is

treated

as

a

VARCHAR

data

type

with

length

n,

as

defined

above.

When

specified

in

any

other

SQL

context,

a

host

variable

of

SQLTYPE

468

with

length

n

is

treated

as

a

VARGRAPHIC

data

type

with

length

n,

as

defined

above.

Host

Variables

Used

as

Pointer

Data

Types

in

C

and

C++

Host

variables

may

be

declared

as

pointers

to

specific

data

types

with

the

following

restrictions:

v

If

a

host

variable

is

declared

as

a

pointer,

no

other

host

variable

may

be

declared

with

that

same

name

within

the

same

source

file.

The

following

example

is

not

allowed:

char

mystring[20];

char

(*mystring)[20];

v

Use

parentheses

when

declaring

a

pointer

to

a

null-terminated

character

array.

In

all

other

cases,

parentheses

are

not

allowed.

For

example:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

(*arr)[10];

/*

correct

*/

char

*(arr);

/*

incorrect

*/

char

*arr[10];

/*

incorrect

*/

EXEC

SQL

END

DECLARE

SECTION;

The

first

declaration

is

a

pointer

to

a

10-byte

character

array.

This

is

a

valid

host

variable.

The

second

is

an

invalid

declaration.

The

parentheses

are

not

allowed

in

a

pointer

to

a

character.

The

third

declaration

is

an

array

of

pointers.

This

is

not

a

supported

data

type.

The

host

variable

declaration:

char

*ptr

is

accepted,

but

it

does

not

mean

null-terminated

character

string

of

undetermined

length.

Instead,

it

means

a

pointer

to

a

fixed-length,

single-character

host

variable.

154

Programming

Client

Applications

This

may

not

be

what

is

intended.

To

define

a

pointer

host

variable

that

can

indicate

different

character

strings,

use

the

first

declaration

form

above.

v

When

pointer

host

variables

are

used

in

SQL

statements,

they

should

be

prefixed

by

the

same

number

of

asterisks

as

they

were

declared

with,

as

in

the

following

example:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

(*mychar)[20];

/*

Pointer

to

character

array

of

20

bytes

*/

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

column

INTO

:*mychar

FROM

table;

/*

Correct

*/

v

Only

the

asterisk

may

be

used

as

an

operator

over

a

host

variable

name.

v

The

maximum

length

of

a

host

variable

name

is

not

affected

by

the

number

of

asterisks

specified,

because

asterisks

are

not

considered

part

of

the

name.

v

Whenever

using

a

pointer

variable

in

an

SQL

statement,

you

should

leave

the

optimization

level

precompile

option

(OPTLEVEL)

at

the

default

setting

of

0

(no

optimization).

This

means

that

no

SQLDA

optimization

will

be

done

by

the

database

manager.

Class

Data

Members

Used

as

Host

Variables

in

C

and

C++

You

can

declare

class

data

members

as

host

variables

(but

not

classes

or

objects

themselves).

The

following

example

illustrates

the

method

to

use:

class

STAFF

{

private:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

staff_name[20];

short

int

staff_id;

double

staff_salary;

EXEC

SQL

END

DECLARE

SECTION;

short

staff_in_db;

.

.

};

Data

members

are

only

directly

accessible

in

SQL

statements

through

the

implicit

this

pointer

provided

by

the

C++

compiler

in

class

member

functions.

You

cannot

explicitly

qualify

an

object

instance

(such

as

SELECT

name

INTO

:my_obj.staff_name

...)

in

an

SQL

statement.

If

you

directly

refer

to

class

data

members

in

SQL

statements,

the

database

manager

resolves

the

reference

using

the

this

pointer.

For

this

reason,

you

should

leave

the

optimization

level

precompile

option

(OPTLEVEL)

at

the

default

setting

of

0

(no

optimization).

This

means

that

no

SQLDA

optimization

will

be

done

by

the

database

manager.

(This

is

true

whenever

pointer

host

variables

are

involved

in

SQL

statements.)

The

following

example

shows

how

you

might

directly

use

class

data

members

which

you

have

declared

as

host

variables

in

an

SQL

statement.

class

STAFF

{

...

public:

...

short

int

hire(

void

)

Chapter

6.

Programming

in

C

and

C++

155

{

EXEC

SQL

INSERT

INTO

staff

(

name,id,salary

)

VALUES

(

:staff_name,

:staff_id,

:staff_salary

);

staff_in_db

=

(sqlca.sqlcode

==

0);

return

sqlca.sqlcode;

}

};

In

this

example,

class

data

members

staff_name,

staff_id,

and

staff_salary

are

used

directly

in

the

INSERT

statement.

Because

they

have

been

declared

as

host

variables

(see

the

first

example

in

this

section),

they

are

implicitly

qualified

to

the

current

object

with

the

this

pointer.

In

SQL

statements,

you

can

also

refer

to

data

members

that

are

not

accessible

through

the

this

pointer.

You

do

this

by

referring

to

them

indirectly

using

pointer

or

reference

host

variables.

The

following

example

shows

a

new

method,

asWellPaidAs

that

takes

a

second

object,

otherGuy.

This

method

references

its

members

indirectly

through

a

local

pointer

or

reference

host

variable,

as

you

cannot

reference

its

members

directly

within

the

SQL

statement.

short

int

STAFF::asWellPaidAs(

STAFF

otherGuy

)

{

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

&otherID

=

otherGuy.staff_id

double

otherSalary;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

SALARY

INTO

:otherSalary

FROM

STAFF

WHERE

id

=

:otherID;

if(

sqlca.sqlcode

==

0

)

return

staff_salary

>=

otherSalary;

else

return

0;

}

Qualification

and

Member

Operators

in

C

and

C++

You

cannot

use

the

C++

scope

resolution

operator

'::',

nor

the

C/C++

member

operators

'.'

or

'->'

in

embedded

SQL

statements.

You

can

easily

accomplish

the

same

thing

through

use

of

local

pointer

or

reference

variables,

which

are

set

outside

the

SQL

statement,

to

point

to

the

desired

scoped

variable,

then

used

inside

the

SQL

statement

to

refer

to

it.

The

following

example

shows

the

correct

method

to

use:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

(&

localName)[20]

=

::name;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

name

INTO

:localName

FROM

STAFF

WHERE

name

=

’Sanders’;

Multi-Byte

Character

Encoding

in

C

and

C++

Some

character

encoding

schemes,

particularly

those

from

east

Asian

countries,

require

multiple

bytes

to

represent

a

character.

This

external

representation

of

data

is

called

the

multi-byte

character

code

representation

of

a

character,

and

includes

double-byte

characters

(characters

represented

by

two

bytes).

Graphic

data

in

DB2®

consists

of

double-byte

characters.

To

manipulate

character

strings

with

double-byte

characters,

it

may

be

convenient

for

an

application

to

use

an

internal

representation

of

data.

This

internal

representation

is

called

the

wide-character

code

representation

of

the

double-byte

156

Programming

Client

Applications

characters,

and

is

the

format

customarily

used

in

the

wchar_t

C/C++

data

type.

Subroutines

that

conform

to

ANSI

C

and

X/OPEN

Portability

Guide

4

(XPG4)

are

available

to

process

wide-character

data,

and

to

convert

data

in

wide-character

format

to

and

from

multibyte

format.

Note

that

although

an

application

can

process

character

data

in

either

multibyte

format

or

wide-character

format,

interaction

with

the

database

manager

is

done

with

DBCS

(multibyte)

character

codes

only.

That

is,

data

is

stored

in

and

retrieved

from

GRAPHIC

columns

in

DBCS

format.

The

WCHARTYPE

precompiler

option

is

provided

to

allow

application

data

in

wide-character

format

to

be

converted

to/from

multibyte

format

when

it

is

exchanged

with

the

database

engine.

Related

concepts:

v

“Graphic

Host

Variables

in

C

and

C++”

on

page

143

v

“wchar_t

and

sqldbchar

Data

Types

in

C

and

C++”

on

page

157

wchar_t

and

sqldbchar

Data

Types

in

C

and

C++

While

the

size

and

encoding

of

DB2®

graphic

data

is

constant

from

one

platform

to

another

for

a

particular

code

page,

the

size

and

internal

format

of

the

ANSI

C

or

C++

wchar_t

data

type

depends

on

which

compiler

you

use

and

which

platform

you

are

on.

The

sqldbchar

data

type,

however,

is

defined

by

DB2

to

be

two

bytes

in

size,

and

is

intended

to

be

a

portable

way

of

manipulating

DBCS

and

UCS-2

data

in

the

same

format

in

which

it

is

stored

in

the

database.

You

can

define

all

DB2

C

graphic

host

variable

types

using

either

wchar_t

or

sqldbchar.

You

must

use

wchar_t

if

you

build

your

application

using

the

WCHARTYPE

CONVERT

precompile

option.

Note:

When

specifying

the

WCHARTYPE

CONVERT

option

on

a

Windows®

platform,

you

should

note

that

wchar_t

on

Windows

platforms

is

Unicode.

Therefore,

if

your

C/C++

compiler’s

wchar_t

is

not

Unicode,

the

wcstombs()

function

call

may

fail

with

SQLCODE

-1421

(SQLSTATE=22504).

If

this

happens,

you

can

specify

the

WCHARTYPE

NOCONVERT

option,

and

explicitly

call

the

wcstombs()

and

mbstowcs()

functions

from

within

your

program.

If

you

build

your

application

with

the

WCHARTYPE

NOCONVERT

precompile

option,

you

should

use

sqldbchar

for

maximum

portability

between

different

DB2

client

and

server

platforms.

You

may

use

wchar_t

with

WCHARTYPE

NOCONVERT,

but

only

on

platforms

where

wchar_t

is

defined

as

two

bytes

in

length.

If

you

incorrectly

use

either

wchar_t

or

sqldbchar

in

host

variable

declarations,

you

will

receive

an

SQLCODE

15

(no

SQLSTATE)

at

precompile

time.

Related

concepts:

v

“WCHARTYPE

Precompiler

Option

in

C

and

C++”

on

page

158

v

“Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations”

on

page

614

Chapter

6.

Programming

in

C

and

C++

157

WCHARTYPE

Precompiler

Option

in

C

and

C++

Using

the

WCHARTYPE

precompiler

option,

you

can

specify

which

graphic

character

format

you

want

to

use

in

your

C/C++

application.

This

option

provides

you

with

the

flexibility

to

choose

between

having

your

graphic

data

in

multibyte

format

or

in

wide-character

format.

There

are

two

possible

values

for

the

WCHARTYPE

option:

CONVERT

If

you

select

the

WCHARTYPE

CONVERT

option,

character

codes

are

converted

between

the

graphic

host

variable

and

the

database

manager.

For

graphic

input

host

variables,

the

character

code

conversion

from

wide-character

format

to

multibyte

DBCS

character

format

is

performed

before

the

data

is

sent

to

the

database

manager,

using

the

ANSI

C

function

wcstombs().

For

graphic

output

host

variables,

the

character

code

conversion

from

multibyte

DBCS

character

format

to

wide-character

format

is

performed

before

the

data

received

from

the

database

manager

is

stored

in

the

host

variable,

using

the

ANSI

C

function

mbstowcs().

The

advantage

to

using

WCHARTYPE

CONVERT

is

that

it

allows

your

application

to

fully

exploit

the

ANSI

C

mechanisms

for

dealing

with

wide-character

strings

(L-literals,

’wc’

string

functions,

and

so

on)

without

having

to

explicitly

convert

the

data

to

multibyte

format

before

communicating

with

the

database

manager.

The

disadvantage

is

that

the

implicit

conversions

may

have

an

impact

on

the

performance

of

your

application

at

run

time,

and

may

increase

memory

requirements.

If

you

select

WCHARTYPE

CONVERT,

declare

all

graphic

host

variables

using

wchar_t

instead

of

sqldbchar.

If

you

want

WCHARTYPE

CONVERT

behavior,

but

your

application

does

not

need

to

be

precompiled

(for

example,

a

CLI

application),

then

define

the

C

preprocessor

macro

SQL_WCHART_CONVERT

at

compile

time.

This

ensures

that

certain

definitions

in

the

DB2

header

files

use

the

data

type

wchar_t

instead

of

sqldbchar.

Note:

The

WCHARTYPE

CONVERT

precompile

option

is

not

currently

supported

in

programs

running

on

the

DB2®

Windows®

3.1

client.

For

those

programs,

use

the

default

(WCHARTYPE

NOCONVERT).

NOCONVERT

(default)

If

you

choose

the

WCHARTYPE

NOCONVERT

option,

or

do

not

specify

any

WCHARTYPE

option,

no

implicit

character

code

conversion

occurs

between

the

application

and

the

database

manager.

Data

in

a

graphic

host

variable

is

sent

to

and

received

from

the

database

manager

as

unaltered

DBCS

characters.

This

has

the

advantage

of

improved

performance,

but

the

disadvantage

that

your

application

must

either

refrain

from

using

wide-character

data

in

wchar_t

host

variables,

or

must

explicitly

call

the

wcstombs()

and

mbstowcs()

functions

to

convert

the

data

to

and

from

multibyte

format

when

interfacing

with

the

database

manager.

If

you

select

WCHARTYPE

NOCONVERT,

declare

all

graphic

host

variables

using

the

sqldbchar

type

for

maximum

portability

to

other

DB2

client/server

platforms.

Other

guidelines

you

need

to

observe

are:

v

Because

wchar_t

or

sqldbchar

support

is

used

to

handle

DBCS

data,

its

use

requires

DBCS

or

EUC

capable

hardware

and

software.

This

support

is

only

158

Programming

Client

Applications

available

in

the

DBCS

environment

of

DB2

Universal

Database,

or

for

dealing

with

GRAPHIC

data

in

any

application

(including

single-byte

applications)

connected

to

a

UCS-2

database.

v

Non-DBCS

characters,

and

wide-characters

that

can

be

converted

to

non-DBCS

characters,

should

not

be

used

in

graphic

strings.

Non-DBCS

characters

refers

to

single-byte

characters,

and

non-double

byte

characters.

Graphic

strings

are

not

validated

to

ensure

that

their

values

contain

only

double-byte

character

code

points.

Graphic

host

variables

must

contain

only

DBCS

data,

or,

if

WCHARTYPE

CONVERT

is

in

effect,

wide-character

data

that

converts

to

DBCS

data.

You

should

store

mixed

double-byte

and

single-byte

data

in

character

host

variables.

Note

that

mixed

data

host

variables

are

unaffected

by

the

setting

of

the

WCHARTYPE

option.

v

In

applications

where

the

WCHARTYPE

NOCONVERT

precompile

option

is

used,

L-literals

should

not

be

used

in

conjunction

with

graphic

host

variables,

because

L-literals

are

in

wide-character

format.

An

L-literal

is

a

C

wide-character

string

literal

prefixed

by

the

letter

L

which

has

the

data

type

"array

of

wchar_t".

For

example,

L"dbcs-string"

is

an

L-literal.

v

In

applications

where

the

WCHARTYPE

CONVERT

precompile

option

is

used,

L-literals

can

be

used

to

initialize

wchar_t

host

variables,

but

cannot

be

used

in

SQL

statements.

Instead

of

using

L-literals,

SQL

statements

should

use

graphic

string

constants,

which

are

independent

of

the

WCHARTYPE

setting.

v

The

setting

of

the

WCHARTYPE

option

affects

graphic

data

passed

to

and

from

the

database

manager

using

the

SQLDA

structure

as

well

as

host

variables.

If

WCHARTYPE

CONVERT

is

in

effect,

graphic

data

received

from

the

application

through

an

SQLDA

will

be

presumed

to

be

in

wide-character

format,

and

will

be

converted

to

DBCS

format

via

an

implicit

call

to

wcstombs().

Similarly,

graphic

output

data

received

by

an

application

will

have

been

converted

to

wide-character

format

before

being

placed

in

application

storage.

v

Not-fenced

stored

procedures

must

be

precompiled

with

the

WCHARTYPE

NOCONVERT

option.

Ordinary

fenced

stored

procedures

may

be

precompiled

with

either

the

CONVERT

or

NOCONVERT

options,

which

will

affect

the

format

of

graphic

data

manipulated

by

SQL

statements

contained

in

the

stored

procedure.

In

either

case,

however,

any

graphic

data

passed

into

the

stored

procedure

through

the

SQLDA

will

be

in

DBCS

format.

Likewise,

data

passed

out

of

the

stored

procedure

through

the

SQLDA

must

be

in

DBCS

format.

v

If

an

application

calls

a

stored

procedure

through

the

Database

Application

Remote

Interface

(DARI)

interface

(the

sqleproc()

API),

any

graphic

data

in

the

input

SQLDA

must

be

in

DBCS

format,

or

in

UCS-2

if

connected

to

a

UCS-2

database,

regardless

of

the

state

of

the

calling

application’s

WCHARTYPE

setting.

Likewise,

any

graphic

data

in

the

output

SQLDA

will

be

returned

in

DBCS

format,

or

in

UCS-2

if

connected

to

a

UCS-2

database,

regardless

of

the

WCHARTYPE

setting.

v

If

an

application

calls

a

stored

procedure

through

the

SQL

CALL

statement,

graphic

data

conversion

will

occur

on

the

SQLDA,

depending

on

the

calling

application’s

WCHARTYPE

setting.

v

Graphic

data

passed

to

user-defined

functions

(UDFs)

will

always

be

in

DBCS

format.

Likewise,

any

graphic

data

returned

from

a

UDF

will

be

assumed

to

be

in

DBCS

format

for

DBCS

databases,

and

UCS-2

format

for

EUC

and

UCS-2

databases.

v

Data

stored

in

DBCLOB

files

through

the

use

of

DBCLOB

file

reference

variables

is

stored

in

either

DBCS

format,

or,

in

the

case

of

UCS-2

databases,

in

UCS-2

format.

Likewise,

input

data

from

DBCLOB

files

is

retrieved

either

in

DBCS

format,

or,

in

the

case

of

UCS-2

databases,

in

UCS-2

format.

Chapter

6.

Programming

in

C

and

C++

159

Note:

If

you

precompile

C

applications

using

the

WCHARTYPE

CONVERT

option,

DB2

validates

the

applications’

graphic

data

on

both

input

and

output

as

the

data

is

passed

through

the

conversion

functions.

If

you

do

not

use

the

CONVERT

option,

no

conversion

of

graphic

data,

and

hence

no

validation

occurs.

In

a

mixed

CONVERT/NOCONVERT

environment,

this

may

cause

problems

if

invalid

graphic

data

is

inserted

by

a

NOCONVERT

application

and

then

fetched

by

a

CONVERT

application.

This

data

fails

the

conversion

with

an

SQLCODE

-1421

(SQLSTATE

22504)

on

a

FETCH

in

the

CONVERT

application.

Related

reference:

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

in

C

and

C++

If

your

application

code

page

is

Japanese

or

Traditional

Chinese

EUC,

or

if

your

application

connects

to

a

UCS-2

database,

you

can

access

GRAPHIC

columns

at

a

database

server

by

using

either

the

CONVERT

or

the

NOCONVERT

option

and

wchar_t

or

sqldbchar

graphic

host

variables,

or

input/output

SQLDAs.

In

this

section,

DBCS

format

refers

to

the

UCS-2

encoding

scheme

for

EUC

data.

Consider

the

following

cases:

v

CONVERT

option

used

The

DB2®

client

converts

graphic

data

from

the

wide

character

format

to

your

application

code

page,

then

to

UCS-2

before

sending

the

input

SQLDA

to

the

database

server.

Any

graphic

data

is

sent

to

the

database

server

tagged

with

the

UCS-2

code

page

identifier.

Mixed

character

data

is

tagged

with

the

application

code

page

identifier.

When

graphic

data

is

retrieved

from

a

database

by

a

client,

it

is

tagged

with

the

UCS-2

code

page

identifier.

The

DB2

client

converts

the

data

from

UCS-2

to

the

client

application

code

page,

then

to

the

wide

character

format.

If

an

input

SQLDA

is

used

instead

of

a

host

variable,

you

are

required

to

ensure

that

graphic

data

is

encoded

using

the

wide

character

format.

This

data

will

be

converted

to

UCS-2,

then

sent

to

the

database

server.

These

conversions

will

impact

performance.

v

NOCONVERT

option

used

The

graphic

data

is

assumed

by

DB2

to

be

encoded

using

UCS-2

and

is

tagged

with

the

UCS-2

code

page,

and

no

conversions

are

done.

DB2

assumes

that

the

graphic

host

variable

is

being

used

simply

as

a

bucket.

When

the

NOCONVERT

option

is

chosen,

graphic

data

retrieved

from

the

database

server

is

passed

to

the

application

encoded

using

UCS-2.

Any

conversions

from

the

application

code

page

to

UCS-2

and

from

UCS-2

to

the

application

code

page

are

your

responsibility.

Data

tagged

as

UCS-2

is

sent

to

the

database

server

without

any

conversions

or

alterations.

To

minimize

conversions

you

can

either

use

the

NOCONVERT

option

and

handle

the

conversions

in

your

application,

or

not

use

GRAPHIC

columns.

For

the

client

environments

where

wchar_t

encoding

is

in

two-byte

Unicode,

for

example

Windows®

NT

or

AIX®

version

4.3

and

higher,

you

can

use

the

NOCONVERT

option

and

work

directly

with

UCS-2.

In

such

cases,

your

application

should

handle

the

difference

between

big-endian

and

little-endian

architectures.

With

the

NOCONVERT

option,

DB2

Universal

Database

uses

sqldbchar,

which

is

always

two-byte

big-endian.

160

Programming

Client

Applications

Do

not

assign

IBM®-eucJP/IBM-eucTW

CS0

(7-bit

ASCII)

and

IBM-eucJP

CS2

(Katakana)

data

to

graphic

host

variables

either

after

conversion

to

UCS-2

(if

NOCONVERT

is

specified)

or

by

conversion

to

the

wide

character

format

(if

CONVERT

is

specified).

The

reason

is

that

characters

in

both

of

these

EUC

code

sets

become

single-byte

when

converted

from

UCS-2

to

PC

DBCS.

In

general,

although

eucJP

and

eucTW

store

GRAPHIC

data

as

UCS-2,

the

GRAPHIC

data

in

these

databases

is

still

non-ASCII

eucJP

or

eucTW

data.

Specifically,

any

space

padded

to

such

GRAPHIC

data

is

DBCS

space

(also

known

as

ideographic

space

in

UCS-2,

U+3000).

For

a

UCS-2

database,

however,

GRAPHIC

data

can

contain

any

UCS-2

character,

and

space

padding

is

done

with

UCS-2

space,

U+0020.

Keep

this

difference

in

mind

when

you

code

applications

to

retrieve

UCS-2

data

from

a

UCS-2

database

versus

UCS-2

data

from

eucJP

and

eucTW

databases.

Related

concepts:

v

“Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations”

on

page

614

SQL

Declare

Section

with

Host

Variables

for

C

and

C++

The

following

is

a

sample

SQL

declare

section

with

host

variables

declared

for

supported

SQL

data

types:

EXEC

SQL

BEGIN

DECLARE

SECTION;

...

short

age

=

26;

/*

SQL

type

500

*/

short

year;

/*

SQL

type

500

*/

sqlint32

salary;

/*

SQL

type

496

*/

sqlint32

deptno;

/*

SQL

type

496

*/

float

bonus;

/*

SQL

type

480

*/

double

wage;

/*

SQL

type

480

*/

char

mi;

/*

SQL

type

452

*/

char

name[6];

/*

SQL

type

460

*/

struct

{

short

len;

char

data[24];

}

address;

/*

SQL

type

448

*/

struct

{

short

len;

char

data[32695];

}

voice;

/*

SQL

type

456

*/

sql

type

is

clob(1m)

chapter;

/*

SQL

type

408

*/

sql

type

is

clob_locator

chapter_locator;

/*

SQL

type

964

*/

sql

type

is

clob_file

chapter_file_ref;

/*

SQL

type

920

*/

sql

type

is

blob(1m)

video;

/*

SQL

type

404

*/

sql

type

is

blob_locator

video_locator;

/*

SQL

type

960

*/

sql

type

is

blob_file

video_file_ref;

/*

SQL

type

916

*/

sql

type

is

dbclob(1m)

tokyo_phone_dir;

/*

SQL

type

412

*/

sql

type

is

dbclob_locator

tokyo_phone_dir_lctr;

/*

SQL

type

968

*/

sql

type

is

dbclob_file

tokyo_phone_dir_flref;

/*

SQL

type

924

*/

Chapter

6.

Programming

in

C

and

C++

161

struct

{

short

len;

sqldbchar

data[100];

}

vargraphic1;

/*

SQL

type

464

*/

/*

Precompiled

with

WCHARTYPE

NOCONVERT

option

*/

struct

{

short

len;

wchar_t

data[100];

}

vargraphic2;

/*

SQL

type

464

*/

/*

Precompiled

with

WCHARTYPE

CONVERT

option

*/

struct

{

short

len;

sqldbchar

data[10000];

}

long_vargraphic1;

/*

SQL

type

472

*/

/*

Precompiled

with

WCHARTYPE

NOCONVERT

option

*/

struct

{

short

len;

wchar_t

data[10000];

}

long_vargraphic2;

/*

SQL

type

472

*/

/*

Precompiled

with

WCHARTYPE

CONVERT

option

*/

sqldbchar

graphic1[100];

/*

SQL

type

468

*/

/*

Precompiled

with

WCHARTYPE

NOCONVERT

option

*/

wchar_t

graphic2[100];

/*

SQL

type

468

*/

/*

Precompiled

with

WCHARTYPE

CONVERT

option

*/

char

date[11];

/*

SQL

type

384

*/

char

time[9];

/*

SQL

type

388

*/

char

timestamp[27];

/*

SQL

type

392

*/

short

wage_ind;

/*

Null

indicator

*/

...

EXEC

SQL

END

DECLARE

SECTION;

Data

Type

Considerations

for

C

and

C++

The

sections

that

follow

describe

how

SQL

data

types

map

to

C

and

C++

data

types.

Supported

SQL

Data

Types

in

C

and

C++

Certain

predefined

C

and

C++

data

types

correspond

to

the

database

manager

column

types.

Only

these

C/C++

data

types

can

be

declared

as

host

variables.

The

following

table

shows

the

C/C++

equivalent

of

each

column

type.

When

the

precompiler

finds

a

host

variable

declaration,

it

determines

the

appropriate

SQL

type

value.

The

database

manager

uses

this

value

to

convert

the

data

exchanged

between

the

application

and

itself.

Note:

There

is

no

host

variable

support

for

the

DATALINK

data

type

in

any

of

the

DB2

host

languages.

162

Programming

Client

Applications

Table

13.

SQL

Data

Types

Mapped

to

C/C++

Declarations

SQL

Column

Type1

C/C++

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

short

short

int

sqlint16

16-bit

signed

integer

INTEGER

(496

or

497)

long

long

int

sqlint322

32-bit

signed

integer

BIGINT

(492

or

493)

long

long

long

__int64

sqlint643

64-bit

signed

integer

REAL4

(480

or

481)

float

Single-precision

floating

point

DOUBLE5

(480

or

481)

double

Double-precision

floating

point

DECIMAL(p,s)

(484

or

485)

No

exact

equivalent;

use

double

Packed

decimal

(Consider

using

the

CHAR

and

DECIMAL

functions

to

manipulate

packed

decimal

fields

as

character

data.)

CHAR(1)

(452

or

453)

char

Single

character

CHAR(n)

(452

or

453)

No

exact

equivalent;

use

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=254

Fixed-length

character

string

VARCHAR(n)

(448

or

449)

struct

tag

{

short

int;

char[n]

}

1<=n<=32

672

Non

null-terminated

varying

character

string

with

2-byte

string

length

indicator

Alternatively,

use

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=32

672

Null-terminated

variable-length

character

string

Note:

Assigned

an

SQL

type

of

460/461.

LONG

VARCHAR

(456

or

457)

struct

tag

{

short

int;

char[n]

}

32

673<=n<=32

700

Non

null-terminated

varying

character

string

with

2-byte

string

length

indicator

CLOB(n)

(408

or

409)

sql

type

is

clob(n)

1<=n<=2

147

483

647

Non

null-terminated

varying

character

string

with

4-byte

string

length

indicator

CLOB

locator

variable6

(964

or

965)

sql

type

is

clob_locator

Identifies

CLOB

entities

residing

on

the

server

CLOB

file

reference

variable6

(920

or

921)

sql

type

is

clob_file

Descriptor

for

file

containing

CLOB

data

Chapter

6.

Programming

in

C

and

C++

163

Table

13.

SQL

Data

Types

Mapped

to

C/C++

Declarations

(continued)

SQL

Column

Type1

C/C++

Data

Type

SQL

Column

Type

Description

BLOB(n)

(404

or

405)

sql

type

is

blob(n)

1<=n<=2

147

483

647

Non

null-terminated

varying

binary

string

with

4-byte

string

length

indicator

BLOB

locator

variable6

(960

or

961)

sql

type

is

blob_locator

Identifies

BLOB

entities

on

the

server

BLOB

file

reference

variable6

(916

or

917)

sql

type

is

blob_file

Descriptor

for

the

file

containing

BLOB

data

DATE

(384

or

385)

Null-terminated

character

form

Allow

at

least

11

characters

to

accommodate

the

null-terminator.

VARCHAR

structured

form

Allow

at

least

10

characters.

TIME

(388

or

389)

Null-terminated

character

form

Allow

at

least

9

characters

to

accommodate

the

null-terminator.

VARCHAR

structured

form

Allow

at

least

8

characters.

TIMESTAMP

(392

or

393)

Null-terminated

character

form

Allow

at

least

27

characters

to

accommodate

the

null-terminator.

VARCHAR

structured

form

Allow

at

least

26

characters.

Note:

The

following

data

types

are

only

available

in

the

DBCS

or

EUC

environment

when

precompiled

with

the

WCHARTYPE

NOCONVERT

option.

GRAPHIC(1)

(468

or

469)

sqldbchar

Single

double-byte

character

GRAPHIC(n)

(468

or

469)

No

exact

equivalent;

use

sqldbchar[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=127

Fixed-length

double-byte

character

string

VARGRAPHIC(n)

(464

or

465)

struct

tag

{

short

int;

sqldbchar[n]

}

1<=n<=16

336

Non

null-terminated

varying

double-byte

character

string

with

2-byte

string

length

indicator

Alternatively

use

sqldbchar[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=16

336

Null-terminated

variable-length

double-byte

character

string

Note:

Assigned

an

SQL

type

of

400/401.

LONG

VARGRAPHIC

(472

or

473)

struct

tag

{

short

int;

sqldbchar[n]

}

16

337<=n<=16

350

Non

null-terminated

varying

double-byte

character

string

with

2-byte

string

length

indicator

Note:

The

following

data

types

are

only

available

in

the

DBCS

or

EUC

environment

when

precompiled

with

the

WCHARTYPE

CONVERT

option.

GRAPHIC(1)

(468

or

469)

wchar_t

v

Single

wide

character

(for

C-type)

v

Single

double-byte

character

(for

column

type)

164

Programming

Client

Applications

Table

13.

SQL

Data

Types

Mapped

to

C/C++

Declarations

(continued)

SQL

Column

Type1

C/C++

Data

Type

SQL

Column

Type

Description

GRAPHIC(n)

(468

or

469)

No

exact

equivalent;

use

wchar_t

[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=127

Fixed-length

double-byte

character

string

VARGRAPHIC(n)

(464

or

465)

struct

tag

{

short

int;

wchar_t

[n]

}

1<=n<=16

336

Non

null-terminated

varying

double-byte

character

string

with

2-byte

string

length

indicator

Alternately

use

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=16

336

Null-terminated

variable-length

double-byte

character

string

Note:

Assigned

an

SQL

type

of

400/401.

LONG

VARGRAPHIC

(472

or

473)

struct

tag

{

short

int;

wchar_t

[n]

}

16

337<=n<=16

350

Non

null-terminated

varying

double-byte

character

string

with

2-byte

string

length

indicator

Note:

The

following

data

types

are

only

available

in

the

DBCS

or

EUC

environment.

DBCLOB(n)

(412

or

413)

sql

type

is

dbclob(n)

1<=n<=1

073

741

823

Non

null-terminated

varying

double-byte

character

string

with

4-byte

string

length

indicator

DBCLOB

locator

variable6

(968

or

969)

sql

type

is

dbclob_locator

Identifies

DBCLOB

entities

residing

on

the

server

DBCLOB

file

reference

variable6

(924

or

925)

sql

type

is

dbclob_file

Descriptor

for

file

containing

DBCLOB

data

Notes:

1.

The

first

number

under

SQL

Column

Type

indicates

that

an

indicator

variable

is

not

provided,

and

the

second

number

indicates

that

an

indicator

variable

is

provided.

An

indicator

variable

is

needed

to

indicate

NULL

values,

or

to

hold

the

length

of

a

truncated

string.

These

are

the

values

that

would

appear

in

the

SQLTYPE

field

of

the

SQLDA

for

these

data

types.

2.

For

platform

compatibility,

use

sqlint32.

On

64-bit

UNIX

platforms,

″long″

is

a

64

bit

integer.

On

64-bit

Windows

operating

systems

and

32-bit

UNIX

platforms

″long″

is

a

32

bit

integer.

3.

For

platform

compatibility,

use

sqlint64.

The

DB2

Universal

Database

sqlsystm.h

header

file

will

type

define

sqlint64

as

″__int64″

on

the

Windows

NT

platform

when

using

the

Microsoft

compiler,

″long

long″

on

32-bit

UNIX

platforms,

and

″long″

on

64

bit

UNIX

platforms.

4.

FLOAT(n)

where

0

<

n

<

25

is

a

synonym

for

REAL.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

5.

The

following

SQL

types

are

synonyms

for

DOUBLE:

v

FLOAT

v

FLOAT(n)

where

24

<

n

<

54

is

v

DOUBLE

PRECISION

6.

This

is

not

a

column

type

but

a

host

variable

type.

The

following

are

additional

rules

for

supported

C/C++

data

types:

Chapter

6.

Programming

in

C

and

C++

165

v

The

data

type

char

can

be

declared

as

char

or

unsigned

char.

v

The

database

manager

processes

null-terminated

variable-length

character

string

data

type

char[n]

(data

type

460),

as

VARCHAR(m).

–

If

LANGLEVEL

is

SAA1,

the

host

variable

length

m

equals

the

character

string

length

n

in

char[n]

or

the

number

of

bytes

preceding

the

first

null-terminator

(\0),

whichever

is

smaller.

–

If

LANGLEVEL

is

MIA,

the

host

variable

length

m

equals

the

number

of

bytes

preceding

the

first

null-terminator

(\0).
v

The

database

manager

processes

null-terminated,

variable-length

graphic

string

data

type,

wchar_t[n]

or

sqldbchar[n]

(data

type

400),

as

VARGRAPHIC(m).

–

If

LANGLEVEL

is

SAA1,

the

host

variable

length

m

equals

the

character

string

length

n

in

wchar_t[n]

or

sqldbchar[n],

or

the

number

of

characters

preceding

the

first

graphic

null-terminator,

whichever

is

smaller.

–

If

LANGLEVEL

is

MIA,

the

host

variable

length

m

equals

the

number

of

characters

preceding

the

first

graphic

null-terminator.
v

Unsigned

numeric

data

types

are

not

supported.

v

The

C/C++

data

type

int

is

not

allowed

because

its

internal

representation

is

machine

dependent.

Related

concepts:

v

“SQL

Declare

Section

with

Host

Variables

for

C

and

C++”

on

page

161

FOR

BIT

DATA

in

C

and

C++

The

standard

C

or

C++

string

type

460

should

not

be

used

for

columns

designated

FOR

BIT

DATA.

The

database

manager

truncates

this

data

type

when

a

null

character

is

encountered.

Use

either

the

VARCHAR

(SQL

type

448)

or

CLOB

(SQL

type

408)

structures.

Related

concepts:

v

“SQL

Declare

Section

with

Host

Variables

for

C

and

C++”

on

page

161

Related

reference:

v

“Supported

SQL

Data

Types

in

C

and

C++”

on

page

162

C

and

C++

Data

Types

for

Procedures,

Functions,

and

Methods

The

following

table

lists

the

supported

mappings

between

SQL

data

types

and

C

data

types

for

procedures,

UDFs,

and

methods.

Table

14.

SQL

Data

Types

Mapped

to

C/C++

Declarations

SQL

Column

Type

C/C++

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

short

16-bit

signed

integer

INTEGER

(496

or

497)

sqlint32

32-bit

signed

integer

BIGINT

(492

or

493)

sqlint64

64-bit

signed

integer

REAL

(480

or

481)

float

Single-precision

floating

point

166

Programming

Client

Applications

Table

14.

SQL

Data

Types

Mapped

to

C/C++

Declarations

(continued)

SQL

Column

Type

C/C++

Data

Type

SQL

Column

Type

Description

DOUBLE

(480

or

481)

double

Double-precision

floating

point

DECIMAL(p,s)

(484

or

485)

Not

supported.

To

pass

a

decimal

value,

define

the

parameter

to

be

of

a

data

type

castable

from

DECIMAL

(for

example

CHAR

or

DOUBLE)

and

explicitly

cast

the

argument

to

this

type.

CHAR(n)

(452

or

453)

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=254

Fixed-length,

null-terminated

character

string

CHAR(n)

FOR

BIT

DATA

(452

or

453)

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=254

Fixed-length

character

string

VARCHAR(n)

(448

or

449)

(460

or

461)

char[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=32

672

Null-terminated

varying

length

string

VARCHAR(n)

FOR

BIT

DATA

(448

or

449)

struct

{

sqluint16

length;

char[n]

}

1<=n<=32

672

Not

null-terminated

varying

length

character

string

LONG

VARCHAR

(456

or

457)

struct

{

sqluint16

length;

char[n]

}

32

673<=n<=32

700

Not

null-terminated

varying

length

character

string

CLOB(n)

(408

or

409)

struct

{

sqluint32

length;

char

data[n];

}

1<=n<=2

147

483

647

Not

null-terminated

varying

length

character

string

with

4-byte

string

length

indicator

BLOB(n)

(404

or

405)

struct

{

sqluint32

length;

char

data[n];

}

1<=n<=2

147

483

647

Not

null-terminated

varying

binary

string

with

4-byte

string

length

indicator

DATE

(384

or

385)

char[11]

Null-terminated

character

form

TIME

(388

or

389)

char[9]

Null-terminated

character

form

TIMESTAMP

(392

or

393)

char[27]

Null-terminated

character

form

Note:

The

following

data

types

are

only

available

in

the

DBCS

or

EUC

environment

when

precompiled

with

the

WCHARTYPE

NOCONVERT

option.

GRAPHIC(n)

(468

or

469)

sqldbchar[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=127

Fixed-length,

null-terminated

double-byte

character

string

VARGRAPHIC(n)

(400

or

401)

sqldbchar[n+1]

where

n

is

large

enough

to

hold

the

data

1<=n<=16

336

Not

null-terminated,

variable-length

double-byte

character

string

Chapter

6.

Programming

in

C

and

C++

167

Table

14.

SQL

Data

Types

Mapped

to

C/C++

Declarations

(continued)

SQL

Column

Type

C/C++

Data

Type

SQL

Column

Type

Description

LONG

VARGRAPHIC

(472

or

473)

struct

{

sqluint16

length;

sqldbchar[n]

}

16

337<=n<=16

350

Not

null-terminated,

variable-length

double-byte

character

string

DBCLOB(n)

(412

or

413)

struct

{

sqluint32

length;

sqldbchar

data[n];

}

1<=n<=1

073

741

823

Not

null-terminated

varying

length

character

string

with

4-byte

string

length

indicator

SQLSTATE

and

SQLCODE

Variables

in

C

and

C++

When

using

the

LANGLEVEL

precompile

option

with

a

value

of

SQL92E,

the

following

two

declarations

may

be

included

as

host

variables:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

SQLSTATE[6]

sqlint32

SQLCODE;

...

EXEC

SQL

END

DECLARE

SECTION;

If

neither

of

these

is

specified,

the

SQLCODE

declaration

is

assumed

during

the

precompile

step.

Note

that

when

using

this

option,

the

INCLUDE

SQLCA

statement

should

not

be

specified.

In

an

application

that

is

made

up

of

multiple

source

files,

the

SQLCODE

and

SQLSTATE

variables

may

be

defined

in

the

first

source

file

as

above.

Subsequent

source

files

should

modify

the

definitions

as

follows:

extern

sqlint32

SQLCODE;

extern

char

SQLSTATE[6];

Related

concepts:

v

“Return

Codes”

on

page

99

v

“Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields”

on

page

100

168

Programming

Client

Applications

Chapter

7.

Multiple-Thread

Database

Access

for

C

and

C++

Applications

Purpose

of

Multiple-Thread

Database

Access

.

.

. 169

Recommendations

for

Using

Multiple

Threads

.

. 170

Code

Page

and

Country/Region

Code

Considerations

for

Multithreaded

UNIX

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Troubleshooting

Multithreaded

Applications

.

.

. 171

Potential

Problems

with

Multiple

Threads

.

.

. 171

Deadlock

Prevention

for

Multiple

Contexts

.

. 172

Purpose

of

Multiple-Thread

Database

Access

One

feature

of

some

operating

systems

is

the

ability

to

run

several

threads

of

execution

within

a

single

process.

The

multiple

threads

allow

an

application

to

handle

asynchronous

events,

and

makes

it

easier

to

create

event-driven

applications,

without

resorting

to

polling

schemes.

The

information

that

follows

describes

how

the

database

manager

works

with

multiple

threads,

and

lists

some

design

guidelines

that

you

should

keep

in

mind.

If

you

are

not

familiar

with

terms

relating

to

the

development

of

multithreaded

applications

(such

as

critical

section

and

semaphore),

consult

the

programming

documentation

for

your

operating

system.

A

DB2

application

can

execute

SQL

statements

from

multiple

threads

using

contexts.

A

context

is

the

environment

from

which

an

application

runs

all

SQL

statements

and

API

calls.

All

connections,

units

of

work,

and

other

database

resources

are

associated

with

a

specific

context.

Each

context

is

associated

with

one

or

more

threads

within

an

application.

For

each

executable

SQL

statement

in

a

context,

the

first

run-time

services

call

always

tries

to

obtain

a

latch.

If

it

is

successful,

it

continues

processing.

If

not

(because

an

SQL

statement

in

another

thread

of

the

same

context

already

has

the

latch),

the

call

is

blocked

on

a

signaling

semaphore

until

that

semaphore

is

posted,

at

which

point

the

call

gets

the

latch

and

continues

processing.

The

latch

is

held

until

the

SQL

statement

has

completed

processing,

at

which

time

it

is

released

by

the

last

run-time

services

call

that

was

generated

for

that

particular

SQL

statement.

The

net

result

is

that

each

SQL

statement

within

a

context

is

executed

as

an

atomic

unit,

even

though

other

threads

may

also

be

trying

to

execute

SQL

statements

at

the

same

time.

This

action

ensures

that

internal

data

structures

are

not

altered

by

different

threads

at

the

same

time.

APIs

also

use

the

latch

used

by

run-time

services;

therefore,

APIs

have

the

same

restrictions

as

run-time

services

routines

within

each

context.

For

DB2®

Version

8,

all

Version

8

applications

are

multithreaded

by

default,

and

are

capable

of

using

multiple

contexts.

(The

behavior

of

pre-Version

8

applications

remains

unchanged.)

If

you

want,

you

can

use

the

following

DB2

APIs

to

use

multiple

contexts.

Specifically,

your

application

can

create

a

context

for

a

thread,

attach

to

or

detach

from

a

separate

context

for

each

thread,

and

pass

contexts

between

threads.

If

your

application

does

not

call

any

of

these

APIs,

DB2

will

automatically

manage

the

multiple

contexts

for

your

application:

v

sqleBeginCtx()

v

sqleEndCtx()

v

sqleAttachToCtx()

©

Copyright

IBM

Corp.

1997

-

2004

169

|
|
|
|
|
|
|
|
|
|

v

sqleDetachFromCtx()

v

sqleGetCurrentCtx()

v

sqleInterruptCtx()

Contexts

may

be

exchanged

between

threads

in

a

process,

but

not

exchanged

between

processes.

One

use

of

multiple

contexts

is

to

provide

support

for

concurrent

transactions.

Related

concepts:

v

“Concurrent

Transactions”

on

page

633

Related

reference:

v

“sqleAttachToCtx

-

Attach

to

Context”

in

the

Administrative

API

Reference

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

in

the

Administrative

API

Reference

v

“sqleDetachFromCtx

-

Detach

From

Context”

in

the

Administrative

API

Reference

v

“sqleEndCtx

-

Detach

and

Destroy

Application

Context”

in

the

Administrative

API

Reference

v

“sqleGetCurrentCtx

-

Get

Current

Context”

in

the

Administrative

API

Reference

v

“sqleInterruptCtx

-

Interrupt

Context”

in

the

Administrative

API

Reference

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

Recommendations

for

Using

Multiple

Threads

Follow

these

guidelines

when

accessing

a

database

from

multiple

thread

applications:

v

Serialize

alteration

of

data

structures.

Applications

must

ensure

that

user-defined

data

structures

used

by

SQL

statements

and

database

manager

routines

are

not

altered

by

one

thread

while

an

SQL

statement

or

database

manager

routine

is

being

processed

in

another

thread.

For

example,

do

not

allow

a

thread

to

reallocate

an

SQLDA

while

it

was

being

used

by

an

SQL

statement

in

another

thread.

v

Consider

using

separate

data

structures.

It

may

be

easier

to

give

each

thread

its

own

user-defined

data

structures

to

avoid

having

to

serialize

their

usage.

This

guideline

is

especially

true

for

the

SQLCA,

which

is

used

not

only

by

every

executable

SQL

statement,

but

also

by

all

of

the

database

manager

routines.

There

are

three

alternatives

for

avoiding

this

problem

with

the

SQLCA:

–

Use

EXEC

SQL

INCLUDE

SQLCA,

but

add

struct

sqlca

sqlca

at

the

beginning

of

any

routine

that

is

used

by

any

thread

other

than

the

first

thread.

–

Place

EXEC

SQL

INCLUDE

SQLCA

inside

each

routine

that

contains

SQL,

instead

of

in

the

global

scope.

–

Replace

EXEC

SQL

INCLUDE

SQLCA

with

#include

"sqlca.h",

then

add

"struct

sqlca

sqlca"

at

the

beginning

of

any

routine

that

uses

SQL.

Note:

It

is

recommended

that

you

do

not

use

the

default

stack

size,

but

instead

increase

the

stack

size

to

at

least

256

000.

DB2®

requires

a

minimum

stack

170

Programming

Client

Applications

|
|
|

|
|

size

of

256

000

when

calling

a

DB2

function.

You

must

ensure

therefore,

that

you

allocate

a

total

stack

size

that

is

large

enough

for

both

your

application

and

the

minimum

requirements

for

a

DB2

function

call.

Code

Page

and

Country/Region

Code

Considerations

for

Multithreaded

UNIX

Applications

On

AIX®,

the

Solaris

Operating

Environment,

HP-UX,

and

Silicon

Graphics

IRIX,

changes

have

been

made

to

the

functions

that

are

used

for

run-time

querying

of

the

code

page

and

country/region

code

to

be

used

for

a

database

connection.

These

functions

are

now

thread

safe,

but

can

create

some

lock

contention

(and

resulting

performance

degradation)

in

a

multithreaded

application

that

uses

a

large

number

of

concurrent

database

connections.

You

can

use

the

DB2®_FORCE_NLS_CACHE

environment

variable

to

eliminate

the

chance

of

lock

contention

in

multithreaded

applications.

When

DB2_FORCE_NLS_CACHE

is

set

to

TRUE,

the

code

page

and

country/region

code

information

is

saved

the

first

time

a

thread

accesses

it.

From

that

point

on,

the

cached

information

will

be

used

for

any

other

thread

that

requests

this

information.

By

saving

this

information,

lock

contention

is

eliminated,

and

in

certain

situations

a

performance

benefit

will

be

realized.

You

should

not

set

DB2_FORCE_NLS_CACHE

to

TRUE

if

the

application

changes

locale

settings

between

connections.

If

this

situation

occurs,

the

original

locale

information

will

be

returned

even

after

the

locale

settings

have

been

changed.

In

general,

multithreaded

applications

will

not

change

locale

settings,

which,

ensures

that

the

application

remains

thread

safe.

Related

concepts:

v

“DB2

registry

and

environment

variables”

in

the

Administration

Guide:

Performance

Troubleshooting

Multithreaded

Applications

The

sections

that

follow

describe

problems

that

can

occur

with

multithreaded

application,

and

how

to

avoid

them.

Potential

Problems

with

Multiple

Threads

An

application

that

uses

multiple

threads

is,

understandably,

more

complex

than

a

single-threaded

application.

This

extra

complexity

can

potentially

lead

to

some

unexpected

problems.

When

writing

a

multithreaded

application,

exercise

caution

with

the

following:

v

Database

dependencies

between

two

or

more

contexts.

Each

context

in

an

application

has

its

own

set

of

database

resources,

including

locks

on

database

objects.

This

characteristic

makes

it

possible

for

two

contexts,

if

they

are

accessing

the

same

database

object,

to

deadlock.

The

database

manager

will

detect

the

deadlock.

One

of

the

contexts

will

receive

SQLCODE

-911

and

its

unit

of

work

will

be

rolled

back.

v

Application

dependencies

between

two

or

more

contexts.

Be

careful

with

any

programming

techniques

that

establish

inter-context

dependencies.

Latches,

semaphores,

and

critical

sections

are

examples

of

programming

techniques

that

can

establish

such

dependencies.

If

an

application

Chapter

7.

Multiple-Thread

Database

Access

for

C

and

C++

Applications

171

|
|
|

has

two

contexts

that

have

both

application

and

database

dependencies

between

the

contexts,

it

is

possible

for

the

application

to

become

deadlocked.

If

some

of

the

dependencies

are

outside

of

the

database

manager,

the

deadlock

is

not

detected,

thus

the

application

gets

suspended

or

hung.

Related

concepts:

v

“Deadlock

Prevention

for

Multiple

Contexts”

on

page

172

Deadlock

Prevention

for

Multiple

Contexts

Because

the

database

manager

cannot

detect

deadlocks

between

threads,

design

and

code

your

application

in

a

way

that

will

prevent

(or

at

least

avoid)

deadlocks.

As

an

example

of

a

deadlock

that

the

database

manager

would

not

detect,

consider

an

application

that

has

two

contexts,

both

of

which

access

a

common

data

structure.

To

avoid

problems

where

both

contexts

change

the

data

structure

simultaneously,

the

data

structure

is

protected

by

a

semaphore.

The

contexts

look

like

this:

context

1

SELECT

*

FROM

TAB1

FOR

UPDATE....

UPDATE

TAB1

SET....

get

semaphore

access

data

structure

release

semaphore

COMMIT

context

2

get

semaphore

access

data

structure

SELECT

*

FROM

TAB1...

release

semaphore

COMMIT

Suppose

the

first

context

successfully

executes

the

SELECT

and

the

UPDATE

statements,

while

the

second

context

gets

the

semaphore

and

accesses

the

data

structure.

The

first

context

now

tries

to

get

the

semaphore,

but

it

cannot

because

the

second

context

is

holding

the

semaphore.

The

second

context

now

attempts

to

read

a

row

from

table

TAB1,

but

it

stops

on

a

database

lock

held

by

the

first

context.

The

application

is

now

in

a

state

where

context

1

cannot

finish

before

context

2

is

done

and

context

2

is

waiting

for

context

1

to

finish.

The

application

is

deadlocked,

but

because

the

database

manager

does

not

know

about

the

semaphore

dependency

neither

context

will

be

rolled

back.

The

unresolved

dependency

leaves

the

application

suspended.

You

can

avoid

the

deadlock

that

would

occur

for

the

previous

example

in

several

ways.

v

Release

all

locks

held

before

obtaining

the

semaphore.

Change

the

code

for

context

1

to

perform

a

commit

before

it

gets

the

semaphore.

v

Do

not

code

SQL

statements

inside

a

section

protected

by

semaphores.

Change

the

code

for

context

2

to

release

the

semaphore

before

doing

the

SELECT.

v

Code

all

SQL

statements

within

semaphores.

Change

the

code

for

context

1

to

obtain

the

semaphore

before

running

the

SELECT

statement.

While

this

technique

will

work,

it

is

not

highly

recommended

because

the

semaphores

will

serialize

access

to

the

database

manager,

which

potentially

negates

the

benefits

of

using

multiple

threads.

172

Programming

Client

Applications

v

Set

the

locktimeout

database

configuration

parameter

to

a

value

other

than

-1.

While

a

value

other

than

-1

will

not

prevent

the

deadlock,

it

will

allow

execution

to

resume.

Context

2

is

eventually

rolled

back

because

it

is

unable

to

obtain

the

requested

lock.

When

handling

the

roll

back

error,

context

2

should

release

the

semaphore.

Once

the

semaphore

has

been

released,

context

1

can

continue

and

context

2

is

free

to

retry

its

work.

The

techniques

for

avoiding

deadlocks

are

described

in

terms

of

the

example,

but

you

can

apply

them

to

all

multithreaded

applications.

In

general,

treat

the

database

manager

as

you

would

treat

any

protected

resource

and

you

should

not

run

into

problems

with

multithreaded

applications.

Related

concepts:

v

“Potential

Problems

with

Multiple

Threads”

on

page

171

Chapter

7.

Multiple-Thread

Database

Access

for

C

and

C++

Applications

173

174

Programming

Client

Applications

Chapter

8.

Programming

in

COBOL

Programming

Considerations

for

COBOL

.

.

.

. 175

Language

Restrictions

in

COBOL

.

.

.

.

.

.

. 175

Multiple-Thread

Database

Access

in

COBOL

.

.

. 175

Input

and

Output

Files

for

COBOL

.

.

.

.

.

. 175

Include

Files

for

COBOL

.

.

.

.

.

.

.

.

. 176

Embedded

SQL

Statements

in

COBOL

.

.

.

.

. 178

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

. 180

Host

Variables

in

COBOL

.

.

.

.

.

.

.

. 180

Host

Variable

Names

in

COBOL

.

.

.

.

.

. 180

Host

Variable

Declarations

in

COBOL

.

.

.

. 181

Syntax

for

Numeric

Host

Variables

in

COBOL

181

Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

. 182

Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Indicator

Variables

in

COBOL

.

.

.

.

.

.

. 184

Syntax

for

LOB

Host

Variables

in

COBOL

.

.

. 184

Syntax

for

LOB

Locator

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Syntax

for

File

Reference

Host

Variables

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Host

Structure

Support

in

COBOL

.

.

.

.

. 186

Indicator

Tables

in

COBOL

.

.

.

.

.

.

.

. 188

REDEFINES

in

COBOL

Group

Data

Items

.

.

. 189

SQL

Declare

Section

with

Host

Variables

for

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Data

Type

Considerations

for

COBOL

.

.

.

.

. 190

Supported

SQL

Data

Types

in

COBOL

.

.

.

. 190

BINARY/COMP-4

COBOL

Data

Types

.

.

.

. 192

FOR

BIT

DATA

in

COBOL

.

.

.

.

.

.

.

. 193

SQLSTATE

and

SQLCODE

Variables

in

COBOL

193

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

for

COBOL

.

.

.

.

.

.

.

.

. 193

Object

Oriented

COBOL

.

.

.

.

.

.

.

.

.

. 194

Programming

Considerations

for

COBOL

Special

host-language

programming

considerations

are

discussed

in

the

following

sections.

Included

is

information

on

language

restrictions,

host

language

specific

include

files,

embedding

SQL

statements,

host

variables,

and

supported

data

types

for

host

variables.

See

the

Micro

Focus

COBOL

documentation

for

information

about

embedding

SQL

statements,

language

restrictions,

and

supported

data

types

for

host

variables.

Related

reference:

v

“COBOL

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Language

Restrictions

in

COBOL

All

API

pointers

are

4

bytes

long.

All

integer

variables

used

as

value

parameters

in

API

calls

must

be

declared

with

a

USAGE

COMP-5

clause.

Multiple-Thread

Database

Access

in

COBOL

COBOL

does

not

support

multiple-thread

database

access.

Input

and

Output

Files

for

COBOL

By

default,

the

input

file

has

an

extension

of

.sqb,

but

if

you

use

the

TARGET

precompile

option

(TARGET

ANSI_COBOL,

TARGET

IBMCOB,

TARGET

MFCOB

or

TARGET

MFCOB16),

the

input

file

can

have

any

extension

you

prefer.

By

default,

the

output

file

has

an

extension

of

.cbl,

but

you

can

use

the

OUTPUT

precompile

option

to

specify

a

new

name

and

path

for

the

output

modified

source

file.

©

Copyright

IBM

Corp.

1997

-

2004

175

Include

Files

for

COBOL

The

host-language-specific

include

files

for

COBOL

have

the

file

extension

.cbl.

If

you

use

the

″System/390

host

data

type

support″

feature

of

IBM

COBOL

compiler,

the

DB2

include

files

for

your

applications

are

in

the

following

directory:

$HOME/sqllib/include/cobol_i

If

you

build

the

DB2

sample

programs

with

the

supplied

script

files,

you

must

change

the

include

file

path

specified

in

the

script

files

to

the

cobol_i

directory

and

not

the

cobol_a

directory.

If

you

do

not

use

the

″System/390

host

data

type

support″

feature

of

the

IBM

COBOL

compiler,

or

you

use

an

earlier

version

of

this

compiler,

the

DB2

include

files

for

your

applications

are

in

the

following

directory:

$HOME/sqllib/include/cobol_a

The

include

files

that

are

intended

to

be

used

in

your

applications

are

described

below.

SQL

(sql.cbl)

This

file

includes

language-specific

prototypes

for

the

binder,

precompiler,

and

error

message

retrieval

APIs.

It

also

defines

system

constants.

SQLAPREP

(sqlaprep.cbl)

This

file

contains

definitions

required

to

write

your

own

precompiler.

SQLCA

(sqlca.cbl)

This

file

defines

the

SQL

Communication

Area

(SQLCA)

structure.

The

SQLCA

contains

variables

that

are

used

by

the

database

manager

to

provide

an

application

with

error

information

about

the

execution

of

SQL

statements

and

API

calls.

SQLCA_92

(sqlca_92.cbl)

This

file

contains

a

FIPS

SQL92

Entry

Level

compliant

version

of

the

SQL

Communications

Area

(SQLCA)

structure.

This

file

should

be

included

in

place

of

the

sqlca.cbl

file

when

writing

DB2

applications

that

conform

to

the

FIPS

SQL92

Entry

Level

standard.

The

sqlca_92.cbl

file

is

automatically

included

by

the

DB2

precompiler

when

the

LANGLEVEL

precompiler

option

is

set

to

SQL92E.

SQLCODES

(sqlcodes.cbl)

This

file

defines

constants

for

the

SQLCODE

field

of

the

SQLCA

structure.

SQLDA

(sqlda.cbl)

This

file

defines

the

SQL

Descriptor

Area

(SQLDA)

structure.

The

SQLDA

is

used

to

pass

data

between

an

application

and

the

database

manager.

SQLEAU

(sqleau.cbl)

This

file

contains

constant

and

structure

definitions

required

for

the

DB2

security

audit

APIs.

If

you

use

these

APIs,

you

need

to

include

this

file

in

your

program.

This

file

also

contains

constant

and

keyword

value

definitions

for

fields

in

the

audit

trail

record.

These

definitions

can

be

used

by

external

or

vendor

audit

trail

extract

programs.

176

Programming

Client

Applications

SQLENV

(sqlenv.cbl)

This

file

defines

language-specific

calls

for

the

database

environment

APIs,

and

the

structures,

constants,

and

return

codes

for

those

interfaces.

SQLETSD

(sqletsd.cbl)

This

file

defines

the

Table

Space

Descriptor

structure,

SQLETSDESC,

which

is

passed

to

the

Create

Database

API,

sqlgcrea.

SQLE819A

(sqle819a.cbl)

If

the

code

page

of

the

database

is

819

(ISO

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE819B

(sqle819b.cbl)

If

the

code

page

of

the

database

is

819

(ISO

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE850A

(sqle850a.cbl)

If

the

code

page

of

the

database

is

850

(ASCII

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE850B

(sqle850b.cbl)

If

the

code

page

of

the

database

is

850

(ASCII

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE932A

(sqle932a.cbl)

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

5035

(EBCDIC

Japanese)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE932B

(sqle932b.cbl)

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

5026

(EBCDIC

Japanese)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQL1252A

(sql1252a.cbl)

If

the

code

page

of

the

database

is

1252

(Windows

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQL1252B

(sql1252b.cbl)

If

the

code

page

of

the

database

is

1252

(Windows

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

Chapter

8.

Programming

in

COBOL

177

SQLMON

(sqlmon.cbl)

This

file

defines

language-specific

calls

for

the

database

system

monitor

APIs,

and

the

structures,

constants,

and

return

codes

for

those

interfaces.

SQLMONCT

(sqlmonct.cbl)

This

file

contains

constant

definitions

and

local

data

structure

definitions

required

to

call

the

Database

System

Monitor

APIs.

SQLSTATE

(sqlstate.cbl)

This

file

defines

constants

for

the

SQLSTATE

field

of

the

SQLCA

structure.

SQLUTBCQ

(sqlutbcq.cbl)

This

file

defines

the

Table

Space

Container

Query

data

structure,

SQLB-TBSCONTQRY-DATA,

which

is

used

with

the

table

space

container

query

APIs,

sqlgstsc,

sqlgftcq,

and

sqlgtcq.

SQLUTBSQ

(sqlutbsq.cbl)

This

file

defines

the

Table

Space

Query

data

structure,

SQLB-TBSQRY-DATA,

which

is

used

with

the

table

space

query

APIs,

sqlgstsq,

sqlgftsq,

and

sqlgtsq.

SQLUTIL

(sqlutil.cbl)

This

file

defines

the

language-specific

calls

for

the

utility

APIs,

and

the

structures,

constants,

and

codes

required

for

those

interfaces.

Embedded

SQL

Statements

in

COBOL

Embedded

SQL

statements

consist

of

the

following

three

elements:

Element

Correct

COBOL

Syntax

Keyword

pair

EXEC

SQL

Statement

string

Any

valid

SQL

statement

Statement

terminator

END-EXEC.

For

example:

EXEC

SQL

SELECT

col

INTO

:hostvar

FROM

table

END-EXEC.

The

following

rules

apply

to

embedded

SQL

statements:

v

Executable

SQL

statements

must

be

placed

in

the

PROCEDURE

DIVISION.

The

SQL

statements

can

be

preceded

by

a

paragraph

name,

just

as

a

COBOL

statement.

v

SQL

statements

can

begin

in

either

Area

A

(columns

8

through

11)

or

Area

B

(columns

12

through

72).

v

Start

each

SQL

statement

with

EXEC

SQL

and

end

it

with

END-EXEC.

The

SQL

precompiler

includes

each

SQL

statement

as

a

comment

in

the

modified

source

file.

v

You

must

use

the

SQL

statement

terminator.

If

you

do

not

use

it,

the

precompiler

will

continue

to

the

next

terminator

in

the

application.

This

may

cause

indeterminate

errors.

v

SQL

comments

are

allowed

on

any

line

that

is

part

of

an

embedded

SQL

statement.

These

comments

are

not

allowed

in

dynamically

executed

statements.

The

format

for

an

SQL

comment

is

a

double

dash

(--),

followed

by

a

string

of

zero

or

more

characters

and

terminated

by

a

line

end.

Do

not

place

SQL

178

Programming

Client

Applications

comments

after

the

SQL

statement

terminator

as

they

will

cause

compilation

errors

because

they

would

appear

to

be

part

of

the

COBOL

language.

v

COBOL

comments

are

allowed

almost

anywhere

within

an

embedded

SQL

statement.

The

exceptions

are:

–

Comments

are

not

allowed

between

EXEC

and

SQL.

–

Comments

are

not

allowed

in

dynamically

executed

statements.
v

SQL

statements

follow

the

same

line

continuation

rules

as

the

COBOL

language.

However,

do

not

split

the

EXEC

SQL

keyword

pair

between

lines.

v

Do

not

use

the

COBOL

COPY

statement

to

include

files

containing

SQL

statements.

SQL

statements

are

precompiled

before

the

module

is

compiled.

The

precompiler

will

ignore

the

COBOL

COPY

statement.

Instead,

use

the

SQL

INCLUDE

statement

to

include

these

files.

To

locate

the

INCLUDE

file,

the

DB2®

COBOL

precompiler

searches

the

current

directory

first,

then

the

directories

specified

by

the

DB2INCLUDE

environment

variable.

Consider

the

following

examples:

–

EXEC

SQL

INCLUDE

payroll

END-EXEC.

If

the

file

specified

in

the

INCLUDE

statement

is

not

enclosed

in

quotation

marks,

as

above,

the

precompiler

searches

for

payroll.sqb,

then

payroll.cpy,

then

payroll.cbl,

in

each

directory

in

which

it

looks.

–

EXEC

SQL

INCLUDE

’pay/payroll.cbl’

END-EXEC.

If

the

file

name

is

enclosed

in

quotation

marks,

as

above,

no

extension

is

added

to

the

name.

If

the

file

name

in

quotation

marks

does

not

contain

an

absolute

path,

the

contents

of

DB2INCLUDE

are

used

to

search

for

the

file,

prepended

to

whatever

path

is

specified

in

the

INCLUDE

file

name.

For

example,

with

DB2

for

AIX,

if

DB2INCLUDE

is

set

to

‘/disk2:myfiles/cobol’,

the

precompiler

searches

for

‘./pay/payroll.cbl’,

then

‘/disk2/pay/payroll.cbl’,

and

finally

‘./myfiles/cobol/pay/payroll.cbl’.

The

path

where

the

file

is

actually

found

is

displayed

in

the

precompiler

messages.

On

Windows®

platforms,

substitute

back

slashes

(\)

for

the

forward

slashes

in

the

above

example.

Note:

The

setting

of

DB2INCLUDE

is

cached

by

the

DB2

command

line

processor.

To

change

the

setting

of

DB2INCLUDE

after

any

CLP

commands

have

been

issued,

enter

the

TERMINATE

command,

then

reconnect

to

the

database

and

precompile

as

usual.

v

To

continue

a

string

constant

to

the

next

line,

column

7

of

the

continuing

line

must

contain

a

'-'

and

column

12

or

beyond

must

contain

a

string

delimiter.

v

SQL

arithmetic

operators

must

be

delimited

by

blanks.

v

Full-line

COBOL

comments

can

occur

anywhere

in

the

program,

including

within

SQL

statements.

v

Use

host

variables

exactly

as

declared

when

referencing

host

variables

in

an

SQL

statement.

v

Substitution

of

white

space

characters,

such

as

end-of-line

and

TAB

characters,

occurs

as

follows:

–

When

they

occur

outside

quotation

marks

(but

inside

SQL

statements),

end-of-lines

and

TABs

are

substituted

by

a

single

space.

–

When

they

occur

inside

quotation

marks,

the

end-of-line

characters

disappear,

provided

the

string

is

continued

properly

for

a

COBOL

program.

TABs

are

not

modified.

Note

that

the

actual

characters

used

for

end-of-line

and

TAB

vary

from

platform

to

platform.

For

example,

Windows-based

platforms

use

Carriage

Return/Line

Feed

for

end-of-line,

whereas

UNIX®-based

systems

use

just

a

Line

Feed.

Chapter

8.

Programming

in

COBOL

179

Related

reference:

v

Appendix

A,

“Supported

SQL

Statements,”

on

page

685

Host

Variables

in

COBOL

The

sections

that

follow

describe

how

to

declare

and

use

host

variables

in

COBOL

programs.

Host

Variables

in

COBOL

Host

variables

are

COBOL

language

variables

that

are

referenced

within

SQL

statements.

They

allow

an

application

to

pass

input

data

to

the

database

manager

and

receive

output

data

from

the

database

manager.

After

the

application

is

precompiled,

host

variables

are

used

by

the

compiler

as

any

other

COBOL

variable.

Related

concepts:

v

“Host

Variable

Names

in

COBOL”

on

page

180

v

“Host

Variable

Declarations

in

COBOL”

on

page

181

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

COBOL”

on

page

181

v

“Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL”

on

page

182

v

“Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL”

on

page

183

v

“Syntax

for

LOB

Host

Variables

in

COBOL”

on

page

184

v

“Syntax

for

LOB

Locator

Host

Variables

in

COBOL”

on

page

185

v

“Syntax

for

File

Reference

Host

Variables

in

COBOL”

on

page

186

Host

Variable

Names

in

COBOL

The

SQL

precompiler

identifies

host

variables

by

their

declared

name.

The

following

rules

apply:

v

Specify

variable

names

up

to

255

characters

in

length.

v

Begin

host

variable

names

with

prefixes

other

than

SQL,

sql,

DB2®,

or

db2,

which

are

reserved

for

system

use.

v

FILLER

items

using

the

declaration

syntaxes

described

below

are

permitted

in

group

host

variable

declarations,

and

will

be

ignored

by

the

precompiler.

However,

if

you

use

FILLER

more

than

once

within

an

SQL

DECLARE

section,

the

precompiler

fails.

You

may

not

include

FILLER

items

in

VARCHAR,

LONG

VARCHAR,

VARGRAPHIC

or

LONG

VARGRAPHIC

declarations.

v

You

can

use

hyphens

in

host

variable

names.

SQL

interprets

a

hyphen

enclosed

by

spaces

as

a

subtraction

operator.

Use

hyphens

without

spaces

in

host

variable

names.

v

The

REDEFINES

clause

is

permitted

in

host

variable

declarations.

v

Level-88

declarations

are

permitted

in

the

host

variable

declare

section,

but

are

ignored.

Related

concepts:

v

“Host

Variable

Declarations

in

COBOL”

on

page

181

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

COBOL”

on

page

181

180

Programming

Client

Applications

v

“Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL”

on

page

182

v

“Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL”

on

page

183

v

“Syntax

for

LOB

Host

Variables

in

COBOL”

on

page

184

v

“Syntax

for

LOB

Locator

Host

Variables

in

COBOL”

on

page

185

v

“Syntax

for

File

Reference

Host

Variables

in

COBOL”

on

page

186

Host

Variable

Declarations

in

COBOL

An

SQL

declare

section

must

be

used

to

identify

host

variable

declarations.

This

section

alerts

the

precompiler

to

any

host

variables

that

can

be

referenced

in

subsequent

SQL

statements.

The

COBOL

precompiler

only

recognizes

a

subset

of

valid

COBOL

declarations.

Related

tasks:

v

“Declaring

structured

type

host

variables”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

COBOL”

on

page

181

v

“Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL”

on

page

182

v

“Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL”

on

page

183

v

“Syntax

for

LOB

Host

Variables

in

COBOL”

on

page

184

v

“Syntax

for

LOB

Locator

Host

Variables

in

COBOL”

on

page

185

v

“Syntax

for

File

Reference

Host

Variables

in

COBOL”

on

page

186

Syntax

for

Numeric

Host

Variables

in

COBOL

Following

is

the

syntax

for

numeric

host

variables.

Syntax

for

Numeric

Host

Variables

in

COBOL

��

01

77

variable-name

PICTURE

PIC

IS

picture-string

�

�

(1)

COMP-3

IS

COMPUTATIONAL-3

USAGE

COMP-5

COMPUTATIONAL-5

.

IS

VALUE

value

��

Notes:

1 An

alternative

for

COMP-3

is

PACKED-DECIMAL.

Floating

Point

Chapter

8.

Programming

in

COBOL

181

��

01

77

variable-name

IS

USAGE

(1)

COMPUTATIONAL-1

COMP-1

(2)

COMPUTATIONAL-2

COMP-2

�

�

IS

VALUE

value

.

��

Notes:

1 REAL

(SQLTYPE

480),

Length

4

2 DOUBLE

(SQLTYPE

480),

Length

8

Numeric

Host

Variable

Considerations:

1.

Picture-string

must

have

one

of

the

following

forms:

v

S9(m)V9(n)

v

S9(m)V

v

S9(m)
2.

Nines

may

be

expanded

(for

example.,

″S999″

instead

of

S9(3)″)

3.

m

and

n

must

be

positive

integers.

Syntax

for

Fixed-Length

Character

Host

Variables

in

COBOL

Following

is

the

syntax

for

character

host

variables.

Syntax

for

Character

Host

Variables

in

COBOL:

��

01

77

variable-name

PICTURE

PIC

IS

picture-string

�

�

IS

VALUE

value

.

��

Variable

Length

��

01

variable-name

.

��

��

49

identifier-1

PICTURE

PIC

IS

S9(4)

�

�

COMP-5

IS

COMPUTATIONAL-5

USAGE

IS

VALUE

value

.

��

182

Programming

Client

Applications

��

49

identifier-2

PICTURE

PIC

IS

picture-string

�

�

IS

VALUE

value

.

��

Character

Host

Variable

Consideration:

1.

Picture-string

must

have

the

form

X(m).

Alternatively,

X's

may

be

expanded

(for

example,

″XXX″

instead

of

″X(3)″).

2.

m

is

from

1

to

254

for

fixed-length

strings.

3.

m

is

from

1

to

32

700

for

variable-length

strings.

4.

If

m

is

greater

than

32

672,

the

host

variable

will

be

treated

as

a

LONG

VARCHAR

string,

and

its

use

may

be

restricted.

5.

Use

X

and

9

as

the

picture

characters

in

any

PICTURE

clause.

Other

characters

are

not

allowed.

6.

Variable-length

strings

consist

of

a

length

item

and

a

value

item.

You

can

use

acceptable

COBOL

names

for

the

length

item

and

the

string

item.

However,

refer

to

the

variable-length

string

by

the

collective

name

in

SQL

statements.

7.

In

a

CONNECT

statement,

such

as

shown

below,

COBOL

character

string

host

variables

dbname

and

userid

will

have

any

trailing

blanks

removed

before

processing:

EXEC

SQL

CONNECT

TO

:dbname

USER

:userid

USING

:p-word

END-EXEC.

However,

because

blanks

can

be

significant

in

passwords,

the

p-word

host

variable

should

be

declared

as

a

VARCHAR

data

item,

so

that

your

application

can

explicitly

indicate

the

significant

password

length

for

the

CONNECT

statement

as

follows:

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

01

dbname

PIC

X(8).

01

userid

PIC

X(8).

01

p-word.

49

L

PIC

S9(4)

COMP-5.

49

D

PIC

X(18).

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

PROCEDURE

DIVISION.

MOVE

"sample"

TO

dbname.

MOVE

"userid"

TO

userid.

MOVE

"password"

TO

D

OF

p-word.

MOVE

8

TO

L

of

p-word.

EXEC

SQL

CONNECT

TO

:dbname

USER

:userid

USING

:p-word

END-EXEC.

Syntax

for

Fixed-Length

Graphic

Host

Variables

in

COBOL

Following

is

the

syntax

for

graphic

host

variables.

Syntax

for

Graphic

Host

Variables

in

COBOL:

��

01

77

variable-name

PICTURE

PIC

IS

picture-string

USAGE

�

Chapter

8.

Programming

in

COBOL

183

�

IS

DISPLAY-1

IS

VALUE

value

.

��

Variable

Length

��

01

variable-name

.

��

��

49

identifier-1

PICTURE

PIC

IS

S9(4)

�

�

COMP-5

IS

COMPUTATIONAL-5

USAGE

IS

VALUE

value

.

��

��

49

identifier-2

PICTURE

PIC

IS

picture-string

USAGE

�

�

IS

DISPLAY-1

IS

VALUE

value

.

��

Graphic

Host

Variable

Considerations:

1.

Picture-string

must

have

the

form

G(m).

Alternatively,

G's

may

be

expanded

(for

example,

″GGG″

instead

of

″G(3)″).

2.

m

is

from

1

to

127

for

fixed-length

strings.

3.

m

is

from

1

to

16

350

for

variable-length

strings.

4.

If

m

is

greater

than

16

336,

the

host

variable

will

be

treated

as

a

LONG

VARGRAPHIC

string,

and

its

use

may

be

restricted.

Indicator

Variables

in

COBOL

Indicator

variables

should

be

declared

as

a

PIC

S9(4)

COMP-5

data

type.

Related

concepts:

v

“Indicator

Tables

in

COBOL”

on

page

188

Syntax

for

LOB

Host

Variables

in

COBOL

Following

is

the

syntax

for

declaring

large

object

(LOB)

host

variables

in

COBOL.

Syntax

for

LOB

Host

Variables

in

COBOL

��

01

variable-name

USAGE

IS

SQL

TYPE

IS

BLOB

CLOB

DBCLOB

�

184

Programming

Client

Applications

�

(

length

)

.

K

M

G

��

LOB

Host

Variable

Considerations:

1.

For

BLOB

and

CLOB

1

<=

lob-length

<=

2

147

483

647.

2.

For

DBCLOB

1

<=

lob-length

<=

1

073

741

823.

3.

SQL

TYPE

IS,

BLOB,

CLOB,

DBCLOB,

K,

M,

G

can

be

in

either

uppercase,

lowercase,

or

mixed.

4.

Initialization

within

the

LOB

declaration

is

not

permitted.

5.

The

host

variable

name

prefixes

LENGTH

and

DATA

in

the

precompiler

generated

code.

BLOB

Example:

Declaring:

01

MY-BLOB

USAGE

IS

SQL

TYPE

IS

BLOB(2M).

Results

in

the

generation

of

the

following

structure:

01

MY-BLOB.

49

MY-BLOB-LENGTH

PIC

S9(9)

COMP-5.

49

MY-BLOB-DATA

PIC

X(2097152).

CLOB

Example:

Declaring:

01

MY-CLOB

USAGE

IS

SQL

TYPE

IS

CLOB(125M).

Results

in

the

generation

of

the

following

structure:

01

MY-CLOB.

49

MY-CLOB-LENGTH

PIC

S9(9)

COMP-5.

49

MY-CLOB-DATA

PIC

X(131072000).

DBCLOB

Example:

Declaring:

01

MY-DBCLOB

USAGE

IS

SQL

TYPE

IS

DBCLOB(30000).

Results

in

the

generation

of

the

following

structure:

01

MY-DBCLOB.

49

MY-DBCLOB-LENGTH

PIC

S9(9)

COMP-5.

49

MY-DBCLOB-DATA

PIC

G(30000)

DISPLAY-1.

Syntax

for

LOB

Locator

Host

Variables

in

COBOL

Following

is

the

syntax

for

declaring

large

object

(LOB)

locator

host

variables

in

COBOL.

Chapter

8.

Programming

in

COBOL

185

Syntax

for

LOB

Locator

Host

Variables

in

COBOL

��

01

variable-name

USAGE

IS

SQL

TYPE

IS

BLOB-LOCATOR

CLOB-LOCATOR

DBCLOB-LOCATOR

.

��

LOB

Locator

Host

Variable

Considerations:

1.

SQL

TYPE

IS,

BLOB-LOCATOR,

CLOB-LOCATOR,

DBCLOB-LOCATOR

can

be

either

uppercase,

lowercase,

or

mixed.

2.

Initialization

of

locators

is

not

permitted.

BLOB

Locator

Example

(other

LOB

locator

types

are

similar):

Declaring:

01

MY-LOCATOR

USAGE

SQL

TYPE

IS

BLOB-LOCATOR.

Results

in

the

generation

of

the

following

declaration:

01

MY-LOCATOR

PIC

S9(9)

COMP-5.

Syntax

for

File

Reference

Host

Variables

in

COBOL

Following

is

the

syntax

for

declaring

file

reference

host

variables

in

COBOL.

Syntax

for

File

Reference

Host

Variables

in

COBOL

��

01

variable-name

USAGE

IS

SQL

TYPE

IS

BLOB-FILE

CLOB-FILE

DBCLOB-FILE

.

��

v

SQL

TYPE

IS,

BLOB-FILE,

CLOB-FILE,

DBCLOB-FILE

can

be

either

uppercase,

lowercase,

or

mixed.

BLOB

File

Reference

Example

(other

LOB

types

are

similar):

Declaring:

01

MY-FILE

USAGE

IS

SQL

TYPE

IS

BLOB-FILE.

Results

in

the

generation

of

the

following

declaration:

01

MY-FILE.

49

MY-FILE-NAME-LENGTH

PIC

S9(9)

COMP-5.

49

MY-FILE-DATA-LENGTH

PIC

S9(9)

COMP-5.

49

MY-FILE-FILE-OPTIONS

PIC

S9(9)

COMP-5.

49

MY-FILE-NAME

PIC

X(255).

Host

Structure

Support

in

COBOL

The

COBOL

precompiler

supports

declarations

of

group

data

items

in

the

host

variable

declare

section.

Among

other

things,

this

provides

a

shorthand

for

referring

to

a

set

of

elementary

data

items

in

an

SQL

statement.

For

example,

the

following

group

data

item

can

be

used

to

access

some

of

the

columns

in

the

STAFF

table

of

the

SAMPLE

database:

01

staff-record.

05

staff-id

pic

s9(4)

comp-5.

05

staff-name.

49

l

pic

s9(4)

comp-5.

186

Programming

Client

Applications

49

d

pic

x(9).

05

staff-info.

10

staff-dept

pic

s9(4)

comp-5.

10

staff-job

pic

x(5).

Group

data

items

in

the

declare

section

can

have

any

of

the

valid

host

variable

types

described

above

as

subordinate

data

items.

This

includes

all

numeric

and

character

types,

as

well

as

all

large

object

types.

You

can

nest

group

data

items

up

to

10

levels.

Note

that

you

must

declare

VARCHAR

character

types

with

the

subordinate

items

at

level

49,

as

in

the

above

example.

If

they

are

not

at

level

49,

the

VARCHAR

is

treated

as

a

group

data

item

with

two

subordinates,

and

is

subject

to

the

rules

of

declaring

and

using

group

data

items.

In

the

example

above,

staff-info

is

a

group

data

item,

whereas

staff-name

is

a

VARCHAR.

The

same

principle

applies

to

LONG

VARCHAR,

VARGRAPHIC,

and

LONG

VARGRAPHIC.

You

may

declare

group

data

items

at

any

level

between

02

and

49.

You

can

use

group

data

items

and

their

subordinates

in

four

ways:

Method

1.

The

entire

group

may

be

referenced

as

a

single

host

variable

in

an

SQL

statement:

EXEC

SQL

SELECT

id,

name,

dept,

job

INTO

:staff-record

FROM

staff

WHERE

id

=

10

END-EXEC.

The

precompiler

converts

the

reference

to

staff-record

into

a

list,

separated

by

commas,

of

all

the

subordinate

items

declared

within

staff-record.

Each

elementary

item

is

qualified

with

the

group

names

of

all

levels

to

prevent

naming

conflicts

with

other

items.This

is

equivalent

to

the

following

method.

Method

2.

The

second

way

of

using

group

data

items:

EXEC

SQL

SELECT

id,

name,

dept,

job

INTO

:staff-record.staff-id,

:staff-record.staff-name,

:staff-record.staff-info.staff-dept,

:staff-record.staff-info.staff-job

FROM

staff

WHERE

id

=

10

END-EXEC.

Note:

The

reference

to

staff-id

is

qualified

with

its

group

name

using

the

prefix

staff-record.,

and

not

staff-id

of

staff-record

as

in

pure

COBOL.

Assuming

there

are

no

other

host

variables

with

the

same

names

as

the

subordinates

of

staff-record,

the

above

statement

can

also

be

coded

as

in

method

3,

eliminating

the

explicit

group

qualification.

Method

3.

Here,

subordinate

items

are

referenced

in

a

typical

COBOL

fashion,

without

being

qualified

to

their

particular

group

item:

EXEC

SQL

SELECT

id,

name,

dept,

job

INTO

:staff-id,

Chapter

8.

Programming

in

COBOL

187

:staff-name,

:staff-dept,

:staff-job

FROM

staff

WHERE

id

=

10

END-EXEC.

As

in

pure

COBOL,

this

method

is

acceptable

to

the

precompiler

as

long

as

a

given

subordinate

item

can

be

uniquely

identified.

If,

for

example,

staff-job

occurs

in

more

than

one

group,

the

precompiler

issues

an

error

indicating

an

ambiguous

reference:

SQL0088N

Host

variable

"staff-job"

is

ambiguous.

Method

4.

To

resolve

the

ambiguous

reference,

you

can

use

partial

qualification

of

the

subordinate

item,

for

example:

EXEC

SQL

SELECT

id,

name,

dept,

job

INTO

:staff-id,

:staff-name,

:staff-info.staff-dept,

:staff-info.staff-job

FROM

staff

WHERE

id

=

10

END-EXEC.

Because

a

reference

to

a

group

item

alone,

as

in

method

1,

is

equivalent

to

a

comma-separated

list

of

its

subordinates,

there

are

instances

where

this

type

of

reference

leads

to

an

error.

For

example:

EXEC

SQL

CONNECT

TO

:staff-record

END-EXEC.

Here,

the

CONNECT

statement

expects

a

single

character-based

host

variable.

By

giving

the

staff-record

group

data

item

instead,

the

host

variable

results

in

the

following

precompile-time

error:

SQL0087N

Host

variable

"staff-record"

is

a

structure

used

where

structure

references

are

not

permitted.

Other

uses

of

group

items

that

cause

an

SQL0087N

to

occur

include

PREPARE,

EXECUTE

IMMEDIATE,

CALL,

indicator

variables,

and

SQLDA

references.

Groups

with

only

one

subordinate

are

permitted

in

such

situations,

as

are

references

to

individual

subordinates,

as

in

methods

2,

3,

and

4

above.

Indicator

Tables

in

COBOL

The

COBOL

precompiler

supports

the

declaration

of

tables

of

indicator

variables,

which

are

convenient

to

use

with

group

data

items.

They

are

declared

as

follows:

01

<indicator-table-name>.

05

<indicator-name>

pic

s9(4)

comp-5

occurs

<table-size>

times.

For

example:

01

staff-indicator-table.

05

staff-indicator

pic

s9(4)

comp-5

occurs

7

times.

This

indicator

table

can

be

used

effectively

with

the

first

format

of

group

item

reference

above:

EXEC

SQL

SELECT

id,

name,

dept,

job

INTO

:staff-record

:staff-indicator

FROM

staff

WHERE

id

=

10

END-EXEC.

188

Programming

Client

Applications

Here,

the

precompiler

detects

that

staff-indicator

was

declared

as

an

indicator

table,

and

expands

it

into

individual

indicator

references

when

it

processes

the

SQL

statement.

staff-indicator(1)

is

associated

with

staff-id

of

staff-record,

staff-indicator(2)

is

associated

with

staff-name

of

staff-record,

and

so

on.

Note:

If

there

are

k

more

indicator

entries

in

the

indicator

table

than

there

are

subordinates

in

the

data

item

(for

example,

if

staff-indicator

has

10

entries,

making

k=6),

the

k

extra

entries

at

the

end

of

the

indicator

table

are

ignored.

Likewise,

if

there

are

k

fewer

indicator

entries

than

subordinates,

the

last

k

subordinates

in

the

group

item

do

not

have

indicators

associated

with

them.

Note

that

you

can

refer

to

individual

elements

in

an

indicator

table

in

an

SQL

statement.

Related

concepts:

v

“Indicator

Variables

in

COBOL”

on

page

184

REDEFINES

in

COBOL

Group

Data

Items

You

can

use

the

REDEFINES

clause

when

declaring

host

variables.

If

you

declare

a

member

of

a

group

data

item

with

the

REDEFINES

clause,

and

that

group

data

item

is

referred

to

as

a

whole

in

an

SQL

statement,

any

subordinate

items

containing

the

REDEFINES

clause

are

not

expanded.

For

example:

01

foo.

10

a

pic

s9(4)

comp-5.

10

a1

redefines

a

pic

x(2).

10

b

pic

x(10).

Referring

to

foo

in

an

SQL

statement

as

follows:

...

INTO

:foo

...

The

above

statement

is

equivalent

to:

...

INTO

:foo.a,

:foo.b

...

That

is,

the

subordinate

item

a1

that

is

declared

with

the

REDEFINES

clause,

is

not

automatically

expanded

out

in

such

situations.

If

a1

is

unambiguous,

you

can

explicitly

refer

to

a

subordinate

with

a

REDEFINES

clause

in

an

SQL

statement,

as

follows:

...

INTO

:foo.a1

...

or

...

INTO

:a1

...

SQL

Declare

Section

with

Host

Variables

for

COBOL

The

following

is

a

sample

SQL

declare

section

with

a

host

variable

declared

for

each

supported

SQL

data

type.

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

*

01

age

PIC

S9(4)

COMP-5.

01

divis

PIC

S9(9)

COMP-5.

01

salary

PIC

S9(6)V9(3)

COMP-3.

01

bonus

USAGE

IS

COMP-1.

01

wage

USAGE

IS

COMP-2.

01

nm

PIC

X(5).

01

varchar.

49

leng

PIC

S9(4)

COMP-5.

Chapter

8.

Programming

in

COBOL

189

49

strg

PIC

X(14).

01

longvchar.

49

len

PIC

S9(4)

COMP-5.

49

str

PIC

X(6027).

01

MY-CLOB

USAGE

IS

SQL

TYPE

IS

CLOB(1M).

01

MY-CLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

CLOB-LOCATOR.

01

MY-CLOB-FILE

USAGE

IS

SQL

TYPE

IS

CLOB-FILE.

01

MY-BLOB

USAGE

IS

SQL

TYPE

IS

BLOB(1M).

01

MY-BLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

BLOB-LOCATOR.

01

MY-BLOB-FILE

USAGE

IS

SQL

TYPE

IS

BLOB-FILE.

01

MY-DBCLOB

USAGE

IS

SQL

TYPE

IS

DBCLOB(1M).

01

MY-DBCLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

DBCLOB-LOCATOR.

01

MY-DBCLOB-FILE

USAGE

IS

SQL

TYPE

IS

DBCLOB-FILE.

01

MY-PICTURE

PIC

G(16000)

USAGE

IS

DISPLAY-1.

01

dt

PIC

X(10).

01

tm

PIC

X(8).

01

tmstmp

PIC

X(26).

01

wage-ind

PIC

S9(4)

COMP-5.

*

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

Related

reference:

v

“Supported

SQL

Data

Types

in

COBOL”

on

page

190

Data

Type

Considerations

for

COBOL

The

sections

that

follow

describe

how

SQL

data

types

map

to

COBOL

data

types.

Supported

SQL

Data

Types

in

COBOL

Certain

predefined

COBOL

data

types

correspond

to

column

types.

Only

these

COBOL

data

types

can

be

declared

as

host

variables.

The

following

table

shows

the

COBOL

equivalent

of

each

column

type.

When

the

precompiler

finds

a

host

variable

declaration,

it

determines

the

appropriate

SQL

type

value.

The

database

manager

uses

this

value

to

convert

the

data

exchanged

between

the

application

and

itself.

Not

every

possible

data

description

for

host

variables

is

recognized.

COBOL

data

items

must

be

consistent

with

the

ones

described

in

the

following

table.

If

you

use

other

data

items,

an

error

can

result.

Note:

There

is

no

host

variable

support

for

the

DATALINK

data

type

in

any

of

the

DB2

host

languages.

Table

15.

SQL

Data

Types

Mapped

to

COBOL

Declarations

SQL

Column

Type1

COBOL

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

01

name

PIC

S9(4)

COMP-5.

16-bit

signed

integer

INTEGER

(496

or

497)

01

name

PIC

S9(9)

COMP-5.

32-bit

signed

integer

BIGINT

(492

or

493)

01

name

PIC

S9(18)

COMP-5.

64-bit

signed

integer

DECIMAL(p,s)

(484

or

485)

01

name

PIC

S9(m)V9(n)

COMP-3.

Packed

decimal

REAL2

(480

or

481)

01

name

USAGE

IS

COMP-1.

Single-precision

floating

point

190

Programming

Client

Applications

Table

15.

SQL

Data

Types

Mapped

to

COBOL

Declarations

(continued)

SQL

Column

Type1

COBOL

Data

Type

SQL

Column

Type

Description

DOUBLE3

(480

or

481)

01

name

USAGE

IS

COMP-2.

Double-precision

floating

point

CHAR(n)

(452

or

453)

01

name

PIC

X(n).

Fixed-length

character

string

VARCHAR(n)

(448

or

449)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

name

PIC

X(n).

1<=n<=32

672

Variable-length

character

string

LONG

VARCHAR

(456

or

457)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

data

PIC

X(n).

32

673<=n<=32

700

Long

variable-length

character

string

CLOB(n)

(408

or

409)

01

MY-CLOB

USAGE

IS

SQL

TYPE

IS

CLOB(n).

1<=n<=2

147

483

647

Large

object

variable-length

character

string

CLOB

locator

variable4

(964

or

965)

01

MY-CLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

CLOB-LOCATOR.

Identifies

CLOB

entities

residing

on

the

server

CLOB

file

reference

variable4

(920

or

921)

01

MY-CLOB-FILE

USAGE

IS

SQL

TYPE

IS

CLOB-FILE.

Descriptor

for

file

containing

CLOB

data

BLOB(n)

(404

or

405)

01

MY-BLOB

USAGE

IS

SQL

TYPE

IS

BLOB(n).

1<=n<=2

147

483

647

Large

object

variable-length

binary

string

BLOB

locator

variable4

(960

or

961)

01

MY-BLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

BLOB-LOCATOR.

Identifies

BLOB

entities

residing

on

the

server

BLOB

file

reference

variable4

(916

or

917)

01

MY-CLOB-FILE

USAGE

IS

SQL

TYPE

IS

CLOB-FILE.

Descriptor

for

file

containing

CLOB

data

DATE

(384

or

385)

01

identifier

PIC

X(10).

10-byte

character

string

TIME

(388

or

389)

01

identifier

PIC

X(8).

8-byte

character

string

TIMESTAMP

(392

or

393)

01

identifier

PIC

X(26).

26-byte

character

string

Note:

The

following

data

types

are

only

available

in

the

DBCS

environment.

GRAPHIC(n)

(468

or

469)

01

name

PIC

G(n)

DISPLAY-1.

Fixed-length

double-byte

character

string

VARGRAPHIC(n)

(464

or

465)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

name

PIC

G(n)

DISPLAY-1.

1<=n<=16

336

Variable

length

double-byte

character

string

with

2-byte

string

length

indicator

LONG

VARGRAPHIC

(472

or

473)

01

name.

49

length

PIC

S9(4)

COMP-5.

49

name

PIC

G(n)

DISPLAY-1.

16

337<=n<=16

350

Variable

length

double-byte

character

string

with

2-byte

string

length

indicator

DBCLOB(n)

(412

or

413)

01

MY-DBCLOB

USAGE

IS

SQL

TYPE

IS

DBCLOB(n).

1<=n<=1

073

741

823

Large

object

variable-length

double-byte

character

string

with

4-byte

string

length

indicator

DBCLOB

locator

variable4

(968

or

969)

01

MY-DBCLOB-LOCATOR

USAGE

IS

SQL

TYPE

IS

DBCLOB-LOCATOR.

Identifies

DBCLOB

entities

residing

on

the

server

Chapter

8.

Programming

in

COBOL

191

Table

15.

SQL

Data

Types

Mapped

to

COBOL

Declarations

(continued)

SQL

Column

Type1

COBOL

Data

Type

SQL

Column

Type

Description

DBCLOB

file

reference

variable4

(924

or

925)

01

MY-DBCLOB-FILE

USAGE

IS

SQL

TYPE

IS

DBCLOB-FILE.

Descriptor

for

file

containing

DBCLOB

data

Notes:

1.

The

first

number

under

SQL

Column

Type

indicates

that

an

indicator

variable

is

not

provided,

and

the

second

number

indicates

that

an

indicator

variable

is

provided.

An

indicator

variable

is

needed

to

indicate

NULL

values,

or

to

hold

the

length

of

a

truncated

string.

These

are

the

values

that

would

appear

in

the

SQLTYPE

field

of

the

SQLDA

for

these

data

types.

2.

FLOAT(n)

where

0

<

n

<

25

is

a

synonym

for

REAL.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

3.

The

following

SQL

types

are

synonyms

for

DOUBLE:

v

FLOAT

v

FLOAT(n)

where

24

<

n

<

54

is

v

DOUBLE

PRECISION

4.

This

is

not

a

column

type

but

a

host

variable

type.

The

following

are

additional

rules

for

supported

COBOL

data

types:

v

PIC

S9

and

COMP-3/COMP-5

are

required

where

shown.

v

You

can

use

level

number

77

instead

of

01

for

all

column

types

except

VARCHAR,

LONG

VARCHAR,

VARGRAPHIC,

LONG

VARGRAPHIC

and

all

LOB

variable

types.

v

Use

the

following

rules

when

declaring

host

variables

for

DECIMAL(p,s)

column

types.

See

the

following

sample:

01

identifier

PIC

S9(m)V9(n)

COMP-3

–

Use

V

to

denote

the

decimal

point.

–

Values

for

n

and

m

must

be

greater

than

or

equal

to

1.

–

The

value

for

n

+

m

cannot

exceed

31.

–

The

value

for

s

equals

the

value

for

n.

–

The

value

for

p

equals

the

value

for

n

+

m.

–

The

repetition

factors

(n)

and

(m)

are

optional.

The

following

examples

are

all

valid:

01

identifier

PIC

S9(3)V

COMP-3

01

identifier

PIC

SV9(3)

COMP-3

01

identifier

PIC

S9V

COMP-3

01

identifier

PIC

SV9

COMP-3

–

PACKED-DECIMAL

can

be

used

instead

of

COMP-3.
v

Arrays

are

not

supported

by

the

COBOL

precompiler.

Related

concepts:

v

“SQL

Declare

Section

with

Host

Variables

for

COBOL”

on

page

189

BINARY/COMP-4

COBOL

Data

Types

The

DB2®

COBOL

precompiler

supports

the

use

of

BINARY,

COMP,

and

COMP-4

data

types

wherever

integer

host

variables

and

indicators

are

permitted,

as

long

as

the

target

COBOL

compiler

views

(or

can

be

made

to

view)

the

BINARY,

COMP,

or

COMP-4

data

types

as

equivalent

to

the

COMP-5

data

type.

In

this

book,

such

host

variables

and

indicators

are

shown

with

the

type

COMP-5.

Target

compilers

supported

by

DB2

that

treat

COMP,

COMP-4,

BINARY

COMP

and

COMP-5

as

equivalent

are:

v

IBM®

COBOL

Set

for

AIX®

v

Micro

Focus

COBOL

for

AIX

192

Programming

Client

Applications

FOR

BIT

DATA

in

COBOL

Certain

database

columns

can

be

declared

FOR

BIT

DATA.

These

columns,

which

generally

contain

characters,

are

used

to

hold

binary

information.

The

CHAR(n),

VARCHAR,

LONG

VARCHAR,

and

BLOB

data

types

are

the

COBOL

host

variable

types

that

can

contain

binary

data.

Use

these

data

types

when

working

with

columns

with

the

FOR

BIT

DATA

attribute.

Related

reference:

v

“Supported

SQL

Data

Types

in

COBOL”

on

page

190

SQLSTATE

and

SQLCODE

Variables

in

COBOL

When

using

the

LANGLEVEL

precompile

option

with

a

value

of

SQL92E,

the

following

two

declarations

may

be

included

as

host

variables:

EXEC

SQL

BEGIN

DECLARE

SECTION

END-EXEC.

01

SQLSTATE

PICTURE

X(5).

01

SQLCODE

PICTURE

S9(9)

USAGE

COMP.

.

.

.

EXEC

SQL

END

DECLARE

SECTION

END-EXEC.

If

neither

of

these

is

specified,

the

SQLCODE

declaration

is

assumed

during

the

precompile

step.

The

01

can

also

be

77

and

the

PICTURE

can

be

PIC.

Note

that

when

using

this

option,

the

INCLUDE

SQLCA

statement

should

not

be

specified.

For

applications

made

up

of

multiple

source

files,

the

SQLCODE

and

SQLSTATE

declarations

may

be

included

in

each

source

file

as

shown

above.

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

for

COBOL

Any

graphic

data

sent

from

your

application

running

under

an

eucJp

or

eucTW

code

set,

or

connected

to

a

UCS-2

database,

is

tagged

with

the

UCS-2

code

page

identifier.

Your

application

must

convert

a

graphic-character

string

to

UCS-2

before

sending

it

to

a

the

database

server.

Likewise,

graphic

data

retrieved

from

a

UCS-2

database

by

any

application,

or

from

any

database

by

an

application

running

under

an

EUC

eucJP

or

eucTW

code

page,

is

encoded

using

UCS-2.

This

requires

your

application

to

convert

from

UCS-2

to

your

application

code

page

internally,

unless

the

user

is

to

be

presented

with

UCS-2

data.

Your

application

is

responsible

for

converting

to

and

from

UCS-2

because

this

conversion

must

be

conducted

before

the

data

is

copied

to,

and

after

it

is

copied

from,

the

SQLDA.

DB2

Universal

Database

does

not

supply

any

conversion

routines

that

are

accessible

to

your

application.

Instead,

you

must

use

the

system

calls

available

from

your

operating

system.

In

the

case

of

a

UCS-2

database,

you

may

also

consider

using

the

VARCHAR

and

VARGRAPHIC

scalar

functions.

Related

concepts:

v

“Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations”

on

page

614

Related

reference:

Chapter

8.

Programming

in

COBOL

193

v

“VARCHAR

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“VARGRAPHIC

scalar

function”

in

the

SQL

Reference,

Volume

1

Object

Oriented

COBOL

If

you

are

using

object

oriented

COBOL,

you

must

observe

the

following:

v

SQL

statements

can

only

appear

in

the

first

program

or

class

in

a

compile

unit.

This

restriction

exists

because

the

precompiler

inserts

temporary

working

data

into

the

first

Working-Storage

section

it

sees.

v

In

an

object

oriented

COBOL

program,

every

class

containing

SQL

statements

must

have

a

class-level

Working-Storage

Section,

even

if

it

is

empty.

This

section

is

used

to

store

data

definitions

generated

by

the

precompiler.

194

Programming

Client

Applications

Chapter

9.

Programming

in

FORTRAN

Programming

Considerations

for

FORTRAN

.

.

. 195

Language

Restrictions

in

FORTRAN

.

.

.

.

.

. 195

Call

by

Reference

in

FORTRAN

.

.

.

.

.

. 195

Debug

and

Comment

Lines

in

FORTRAN

.

.

. 196

Precompilation

Considerations

for

FORTRAN

196

Multiple-Thread

Database

Access

in

FORTRAN

196

Input

and

Output

Files

for

FORTRAN

.

.

.

.

. 196

Include

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

Include

Files

for

FORTRAN

.

.

.

.

.

.

. 196

Include

Files

in

FORTRAN

Applications

.

.

. 198

Embedded

SQL

Statements

in

FORTRAN

.

.

.

. 199

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

. 200

Host

Variables

in

FORTRAN

.

.

.

.

.

.

. 200

Host

Variable

Names

in

FORTRAN

.

.

.

.

. 201

Host

Variable

Declarations

in

FORTRAN

.

.

. 201

Syntax

for

Numeric

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Syntax

for

Character

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Indicator

Variables

in

FORTRAN

.

.

.

.

.

. 203

Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

. 205

Syntax

for

File

Reference

Host

Variables

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 205

SQL

Declare

Section

with

Host

Variables

for

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

. 206

Supported

SQL

Data

Types

in

FORTRAN

.

.

.

. 206

Considerations

for

Multi-Byte

Character

Sets

in

FORTRAN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

for

FORTRAN

.

.

.

.

.

.

.

. 208

SQLSTATE

and

SQLCODE

Variables

in

FORTRAN

208

Programming

Considerations

for

FORTRAN

Special

host-language

programming

considerations

are

discussed

in

the

following

sections.

Included

is

information

on

language

restrictions,

host-language-specific

include

files,

embedding

SQL

statements,

host

variables,

and

supported

data

types

for

host

variables.

Note:

FORTRAN

support

stabilized

in

DB2

Version

5,

and

no

enhancements

for

FORTRAN

support

are

planned

for

the

future.

For

example,

the

FORTRAN

precompiler

cannot

handle

SQL

object

identifiers,

such

as

table

names,

that

are

longer

than

18

bytes.

To

use

features

introduced

to

DB2

after

Version

5,

such

as

table

names

from

19

to

128

bytes

long,

you

must

write

your

applications

in

a

language

other

than

FORTRAN.

Language

Restrictions

in

FORTRAN

The

sections

that

follow

describe

the

language

restrictions

for

FORTRAN.

Call

by

Reference

in

FORTRAN

Some

API

parameters

require

addresses

rather

than

values

in

the

call

variables.

The

database

manager

provides

the

GET

ADDRESS,

DEREFERENCE

ADDRESS,

and

COPY

MEMORY

APIs,

which

simplify

your

ability

to

provide

these

parameters.

Related

reference:

v

“sqlgdref

-

Dereference

Address”

in

the

Administrative

API

Reference

v

“sqlgaddr

-

Get

Address”

in

the

Administrative

API

Reference

v

“sqlgmcpy

-

Copy

Memory”

in

the

Administrative

API

Reference

©

Copyright

IBM

Corp.

1997

-

2004

195

Debug

and

Comment

Lines

in

FORTRAN

Some

FORTRAN

compilers

treat

lines

with

a

'D'

or

'd'

in

column

1

as

conditional

lines.

These

lines

can

either

be

compiled

for

debugging

or

treated

as

comments.

The

precompiler

will

always

treat

lines

with

a

'D'

or

'd'

in

column

1

as

comments.

Precompilation

Considerations

for

FORTRAN

The

following

items

affect

the

precompiling

process:

v

The

precompiler

allows

only

digits,

blanks,

and

tab

characters

within

columns

1-5

on

continuation

lines.

v

Hollerith

constants

are

not

supported

in

.sqf

source

files.

Multiple-Thread

Database

Access

in

FORTRAN

FORTRAN

does

not

support

multiple-thread

database

access.

Input

and

Output

Files

for

FORTRAN

By

default,

the

input

file

has

an

extension

of

.sqf,

but

if

you

use

the

TARGET

precompile

option

the

input

file

can

have

any

extension

you

prefer.

By

default,

the

output

file

has

an

extension

of

.f

on

UNIX®-based

platforms,

and

.for

on

Windows®-based

platforms;

however,

you

can

use

the

OUTPUT

precompile

option

to

specify

a

new

name

and

path

for

the

output

modified

source

file.

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

Include

Files

The

sections

that

follow

describe

include

files

for

FORTRAN.

Include

Files

for

FORTRAN

The

host-language-specific

include

files

for

FORTRAN

have

the

file

extension

.f

on

UNIX-based

platforms,

and

.for

on

Windows-based

platforms.

You

can

use

the

following

FORTRAN

include

files

in

your

applications.

SQL

(sql.f)

This

file

includes

language-specific

prototypes

for

the

binder,

precompiler,

and

error

message

retrieval

APIs.

It

also

defines

system

constants.

SQLAPREP

(sqlaprep.f)

This

file

contains

definitions

required

to

write

your

own

precompiler.

SQLCA

(sqlca_cn.f,

sqlca_cs.f)

This

file

defines

the

SQL

Communication

Area

(SQLCA)

structure.

The

SQLCA

contains

variables

that

are

used

by

the

database

manager

to

provide

an

application

with

error

information

about

the

execution

of

SQL

statements

and

API

calls.

196

Programming

Client

Applications

Two

SQLCA

files

are

provided

for

FORTRAN

applications.

The

default,

sqlca_cs.f,

defines

the

SQLCA

structure

in

an

IBM

SQL

compatible

format.

The

sqlca_cn.f

file,

precompiled

with

the

SQLCA

NONE

option,

defines

the

SQLCA

structure

for

better

performance.

SQLCA_92

(sqlca_92.f)

This

file

contains

a

FIPS

SQL92

Entry

Level

compliant

version

of

the

SQL

Communications

Area

(SQLCA)

structure.

This

file

should

be

included

in

place

of

either

the

sqlca_cn.f

or

the

sqlca_cs.f

files

when

writing

DB2

applications

that

conform

to

the

FIPS

SQL92

Entry

Level

standard.

The

sqlca_92.f

file

is

automatically

included

by

the

DB2

precompiler

when

the

LANGLEVEL

precompiler

option

is

set

to

SQL92E.

SQLCODES

(sqlcodes.f)

This

file

defines

constants

for

the

SQLCODE

field

of

the

SQLCA

structure.

SQLDA

(sqldact.f)

This

file

defines

the

SQL

Descriptor

Area

(SQLDA)

structure.

The

SQLDA

is

used

to

pass

data

between

an

application

and

the

database

manager.

SQLEAU

(sqleau.f)

This

file

contains

constant

and

structure

definitions

required

for

the

DB2

security

audit

APIs.

If

you

use

these

APIs,

you

need

to

include

this

file

in

your

program.

This

file

also

contains

constant

and

keyword

value

definitions

for

fields

in

the

audit

trail

record.

These

definitions

can

be

used

by

external

or

vendor

audit

trail

extract

programs.

SQLENV

(sqlenv.f)

This

file

defines

language-specific

calls

for

the

database

environment

APIs,

and

the

structures,

constants,

and

return

codes

for

those

interfaces.

SQLE819A

(sqle819a.f)

If

the

code

page

of

the

database

is

819

(ISO

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE819B

(sqle819b.f)

If

the

code

page

of

the

database

is

819

(ISO

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE850A

(sqle850a.f)

If

the

code

page

of

the

database

is

850

(ASCII

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE850B

(sqle850b.f)

If

the

code

page

of

the

database

is

850

(ASCII

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

Chapter

9.

Programming

in

FORTRAN

197

SQLE932A

(sqle932a.f)

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

5035

(EBCDIC

Japanese)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLE932B

(sqle932b.f)

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

5026

(EBCDIC

Japanese)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQL1252A

(sql1252a.f)

If

the

code

page

of

the

database

is

1252

(Windows

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

500

(EBCDIC

International)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQL1252B

(sql1252b.f)

If

the

code

page

of

the

database

is

1252

(Windows

Latin-1),

this

sequence

sorts

character

strings

that

are

not

FOR

BIT

DATA

according

to

the

host

CCSID

037

(EBCDIC

US

English)

binary

collation.

This

file

is

used

by

the

CREATE

DATABASE

API.

SQLMON

(sqlmon.f)

This

file

defines

language-specific

calls

for

the

database

system

monitor

APIs,

and

the

structures,

constants,

and

return

codes

for

those

interfaces.

SQLSTATE

(sqlstate.f)

This

file

defines

constants

for

the

SQLSTATE

field

of

the

SQLCA

structure.

SQLUTIL

(sqlutil.f)

This

file

defines

the

language-specific

calls

for

the

utility

APIs,

and

the

structures,

constants,

and

codes

required

for

those

interfaces.

Related

concepts:

v

“Include

Files

in

FORTRAN

Applications”

on

page

198

Include

Files

in

FORTRAN

Applications

There

are

two

methods

for

including

files:

the

EXEC

SQL

INCLUDE

statement

and

the

FORTRAN

INCLUDE

statement.

The

precompiler

will

ignore

FORTRAN

INCLUDE

statements,

and

only

process

files

included

with

the

EXEC

SQL

statement.

To

locate

the

INCLUDE

file,

the

DB2®

FORTRAN

precompiler

searches

the

current

directory

first,

then

the

directories

specified

by

the

DB2INCLUDE

environment

variable.

Consider

the

following

examples:

v

EXEC

SQL

INCLUDE

payroll

If

the

file

specified

in

the

INCLUDE

statement

is

not

enclosed

in

quotation

marks,

as

above,

the

precompiler

searches

for

payroll.sqf,

then

payroll.f

(payroll.for

on

Windows®-

based

platforms)

in

each

directory

in

which

it

looks.

v

EXEC

SQL

INCLUDE

’pay/payroll.f’

198

Programming

Client

Applications

If

the

file

name

is

enclosed

in

quotation

marks,

as

above,

no

extension

is

added

to

the

name.

(For

Windows-based

platforms,

the

file

would

be

specified

as

’pay\payroll.for’.)

If

the

file

name

in

quotation

marks

does

not

contain

an

absolute

path,

then

the

contents

of

DB2INCLUDE

are

used

to

search

for

the

file,

prepended

to

whatever

path

is

specified

in

the

INCLUDE

file

name.

For

example,

with

DB2

for

UNIX®-based

platforms,

if

DB2INCLUDE

is

set

to

‘/disk2:myfiles/fortran’,

the

precompiler

searches

for

‘./pay/payroll.f’,

then

‘/disk2/pay/payroll.f’,

and

finally

‘./myfiles/cobol/pay/payroll.f’.

The

path

where

the

file

is

actually

found

is

displayed

in

the

precompiler

messages.

On

Windows-based

platforms,

substitute

back

slashes

(\)

for

the

forward

slashes,

and

substitute

‘for’

for

the

‘f’

extension

in

the

above

example.

Note:

The

setting

of

DB2INCLUDE

is

cached

by

the

DB2

command

line

processor.

To

change

the

setting

of

DB2INCLUDE

after

any

CLP

commands

have

been

issued,

enter

the

TERMINATE

command,

then

reconnect

to

the

database

and

precompile

as

usual.

Related

concepts:

v

“DB2

registry

and

environment

variables”

in

the

Administration

Guide:

Performance

Related

reference:

v

“Include

Files

for

FORTRAN”

on

page

196

Embedded

SQL

Statements

in

FORTRAN

Embedded

SQL

statements

consist

of

the

following

three

elements:

Element

Correct

FORTRAN

Syntax

Keyword

EXEC

SQL

Statement

string

Any

valid

SQL

statement

with

blanks

as

delimiters

Statement

terminator

End

of

source

line.

The

end

of

the

source

line

serves

as

the

statement

terminator.

If

the

line

is

continued,

the

statement

terminator

is

the

end

of

the

last

continued

line.

For

example:

EXEC

SQL

SELECT

COL

INTO

:hostvar

FROM

TABLE

The

following

rules

apply

to

embedded

SQL

statements:

v

Code

SQL

statements

between

columns

7

and

72

only.

v

Use

full-line

FORTRAN

comments,

or

SQL

comments,

but

do

not

use

the

FORTRAN

end-of-line

comment

'!'

character

in

SQL

statements.

This

comment

character

may

be

used

elsewhere,

including

host

variable

declarations.

v

Use

blanks

as

delimiters

when

coding

embedded

SQL

statements,

even

though

FORTRAN

statements

do

not

require

blanks

as

delimiters.

v

Use

only

one

SQL

statement

for

each

FORTRAN

source

line.

Normal

FORTRAN

continuation

rules

apply

for

statements

that

require

more

than

one

source

line.

Do

not

split

the

EXEC

SQL

keyword

pair

between

lines.

v

SQL

comments

are

allowed

on

any

line

that

is

part

of

an

embedded

SQL

statement.

These

comments

are

not

allowed

in

dynamically

executed

statements.

Chapter

9.

Programming

in

FORTRAN

199

The

format

for

an

SQL

comment

is

a

double

dash

(--),

followed

by

a

string

of

zero

or

more

characters

and

terminated

by

a

line

end.

v

FORTRAN

comments

are

allowed

almost

anywhere

within

an

embedded

SQL

statement.

The

exceptions

are:

–

Comments

are

not

allowed

between

EXEC

and

SQL.

–

Comments

are

not

allowed

in

dynamically

executed

statements.

–

The

extension

of

using

!

to

code

a

FORTRAN

comment

at

the

end

of

a

line

is

not

supported

within

an

embedded

SQL

statement.
v

Use

exponential

notation

when

specifying

a

real

constant

in

SQL

statements.

The

database

manager

interprets

a

string

of

digits

with

a

decimal

point

in

an

SQL

statement

as

a

decimal

constant,

not

a

real

constant.

v

Statement

numbers

are

invalid

on

SQL

statements

that

precede

the

first

executable

FORTRAN

statement.

If

an

SQL

statement

has

a

statement

number

associated

with

it,

the

precompiler

generates

a

labeled

CONTINUE

statement

that

directly

precedes

the

SQL

statement.

v

Use

host

variables

exactly

as

declared

when

referencing

host

variables

within

an

SQL

statement.

v

Substitution

of

white

space

characters,

such

as

end-of-line

and

TAB

characters,

occurs

as

follows:

–

When

they

occur

outside

quotation

marks

(but

inside

SQL

statements),

end-of-lines

and

TABs

are

substituted

by

a

single

space.

–

When

they

occur

inside

quotation

marks,

the

end-of-line

characters

disappear,

provided

the

string

is

continued

properly

for

a

FORTRAN

program.

TABs

are

not

modified.

Note

that

the

actual

characters

used

for

end-of-line

and

TAB

vary

from

platform

to

platform.

For

example,

Windows®-based

platforms

use

the

Carriage

Return/Line

Feed

for

end-of-line,

whereas

UNIX®-based

platforms

use

just

a

Line

Feed.

Related

reference:

v

Appendix

A,

“Supported

SQL

Statements,”

on

page

685

Host

Variables

in

FORTRAN

The

sections

that

follow

describe

how

to

declare

and

use

host

variables

in

FORTRAN

programs.

Host

Variables

in

FORTRAN

Host

variables

are

FORTRAN

language

variables

that

are

referenced

within

SQL

statements.

They

allow

an

application

to

pass

input

data

to

the

database

manager

and

receive

output

data

from

it.

After

the

application

is

precompiled,

host

variables

are

used

by

the

compiler

as

any

other

FORTRAN

variable.

Related

concepts:

v

“Host

Variable

Names

in

FORTRAN”

on

page

201

v

“Host

Variable

Declarations

in

FORTRAN”

on

page

201

v

“Indicator

Variables

in

FORTRAN”

on

page

203

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Character

Host

Variables

in

FORTRAN”

on

page

202

200

Programming

Client

Applications

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN”

on

page

204

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN”

on

page

205

v

“Syntax

for

File

Reference

Host

Variables

in

FORTRAN”

on

page

205

Host

Variable

Names

in

FORTRAN

The

SQL

precompiler

identifies

host

variables

by

their

declared

name.

The

following

suggestions

apply:

v

Specify

variable

names

up

to

255

characters

in

length.

v

Begin

host

variable

names

with

prefixes

other

than

SQL,

sql,

DB2®,

or

db2,

which

are

reserved

for

system

use.

Related

concepts:

v

“Host

Variable

Declarations

in

FORTRAN”

on

page

201

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Character

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN”

on

page

204

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN”

on

page

205

v

“Syntax

for

File

Reference

Host

Variables

in

FORTRAN”

on

page

205

Host

Variable

Declarations

in

FORTRAN

An

SQL

declare

section

must

be

used

to

identify

host

variable

declarations.

This

alerts

the

precompiler

to

any

host

variables

that

can

be

referenced

in

subsequent

SQL

statements.

The

FORTRAN

precompiler

only

recognizes

a

subset

of

valid

FORTRAN

declarations

as

valid

host

variable

declarations.

These

declarations

define

either

numeric

or

character

variables.

A

numeric

host

variable

can

be

used

as

an

input

or

output

variable

for

any

numeric

SQL

input

or

output

value.

A

character

host

variable

can

be

used

as

an

input

or

output

variable

for

any

character,

date,

time

or

timestamp

SQL

input

or

output

value.

The

programmer

must

ensure

that

output

variables

are

long

enough

to

contain

the

values

that

they

will

receive.

Related

tasks:

v

“Declaring

structured

type

host

variables”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

reference:

v

“Syntax

for

Numeric

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Character

Host

Variables

in

FORTRAN”

on

page

202

v

“Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN”

on

page

204

v

“Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN”

on

page

205

v

“Syntax

for

File

Reference

Host

Variables

in

FORTRAN”

on

page

205

Chapter

9.

Programming

in

FORTRAN

201

Syntax

for

Numeric

Host

Variables

in

FORTRAN

Following

is

the

syntax

for

numeric

host

variables

in

FORTRAN.

Syntax

for

Numeric

Host

Variables

in

FORTRAN

��

INTEGER*2

INTEGER*4

REAL*4

REAL

*8

DOUBLE

PRECISION

�

,

varname

/

initial-value

/

��

Numeric

Host

Variable

Considerations:

1.

REAL*8

and

DOUBLE

PRECISION

are

equivalent.

2.

Use

an

E

rather

than

a

D

as

the

exponent

indicator

for

REAL*8

constants.

Syntax

for

Character

Host

Variables

in

FORTRAN

Following

is

the

syntax

for

fixed-length

character

host

variables.

Syntax

for

Character

Host

Variables

in

FORTRAN:

Fixed

��

�

,

CHARACTER

varname

*n

/

initial-value

/

��

Following

is

the

syntax

for

variable-length

character

host

variables.

Variable

Length

��

�

,

SQL

TYPE

IS

VARCHAR

(length)

varname

��

Character

Host

Variable

Considerations:

1.

*n

has

a

maximum

value

of

254.

2.

When

length

is

between

1

and

32

672

inclusive,

the

host

variable

has

type

VARCHAR(SQLTYPE

448).

3.

When

length

is

between

32

673

and

32

700

inclusive,

the

host

variable

has

type

LONG

VARCHAR(SQLTYPE

456).

4.

Initialization

of

VARCHAR

and

LONG

VARCHAR

host

variables

is

not

permitted

within

the

declaration.

VARCHAR

Example:

Declaring:

sql

type

is

varchar(1000)

my_varchar

Results

in

the

generation

of

the

following

structure:

202

Programming

Client

Applications

character

my_varchar(1000+2)

integer*2

my_varchar_length

character

my_varchar_data(1000)

equivalence(

my_varchar(1),

+

my_varchar_length

)

equivalence(

my_varchar(3),

+

my_varchar_data

)

The

application

may

manipulate

both

my_varchar_length

and

my_varchar_data;

for

example,

to

set

or

examine

the

contents

of

the

host

variable.

The

base

name

(in

this

case,

my_varchar),

is

used

in

SQL

statements

to

refer

to

the

VARCHAR

as

a

whole.

LONG

VARCHAR

Example:

Declaring:

sql

type

is

varchar(10000)

my_lvarchar

Results

in

the

generation

of

the

following

structure:

character

my_lvarchar(10000+2)

integer*2

my_lvarchar_length

character

my_lvarchar_data(10000)

equivalence(

my_lvarchar(1),

+

my_lvarchar_length

)

equivalence(

my_lvarchar(3),

+

my_lvarchar_data

)

The

application

may

manipulate

both

my_lvarchar_length

and

my_lvarchar_data;

for

example,

to

set

or

examine

the

contents

of

the

host

variable.

The

base

name

(in

this

case,

my_lvarchar),

is

used

in

SQL

statements

to

refer

to

the

LONG

VARCHAR

as

a

whole.

Note:

In

a

CONNECT

statement,

such

as

in

the

following

example,

the

FORTRAN

character

string

host

variables

dbname

and

userid

will

have

any

trailing

blanks

removed

before

processing.

EXEC

SQL

CONNECT

TO

:dbname

USER

:userid

USING

:passwd

However,

because

blanks

can

be

significant

in

passwords,

you

should

declare

host

variables

for

passwords

as

VARCHAR,

and

have

the

length

field

set

to

reflect

the

actual

password

length:

EXEC

SQL

BEGIN

DECLARE

SECTION

character*8

dbname,

userid

sql

type

is

varchar(18)

passwd

EXEC

SQL

END

DECLARE

SECTION

character*18

passwd_string

equivalence(passwd_data,passwd_string)

dbname

=

’sample’

userid

=

’userid’

passwd_length=

8

passwd_string

=

’password’

EXEC

SQL

CONNECT

TO

:dbname

USER

:userid

USING

:passwd

Indicator

Variables

in

FORTRAN

Indicator

variables

should

be

declared

as

an

INTEGER*2

data

type.

Chapter

9.

Programming

in

FORTRAN

203

Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN

Following

is

the

syntax

for

declaring

large

object

(LOB)

host

variables

in

FORTRAN.

Syntax

for

Large

Object

(LOB)

Host

Variables

in

FORTRAN

��

�

,

SQL

TYPE

IS

BLOB

(length

)

variable-name

CLOB

K

M

G

��

LOB

Host

Variable

Considerations:

1.

GRAPHIC

types

are

not

supported

in

FORTRAN.

2.

SQL

TYPE

IS,

BLOB,

CLOB,

K,

M,

G

can

be

in

either

uppercase,

lowercase,

or

mixed.

3.

For

BLOB

and

CLOB

1

<=

lob-length

<=

2

147

483

647.

4.

The

initialization

of

a

LOB

within

a

LOB

declaration

is

not

permitted.

5.

The

host

variable

name

prefixes

’length’

and

’data’

in

the

precompiler

generated

code.

BLOB

Example:

Declaring:

sql

type

is

blob(2m)

my_blob

Results

in

the

generation

of

the

following

structure:

character

my_blob(2097152+4)

integer*4

my_blob_length

character

my_blob_data(2097152)

equivalence(

my_blob(1),

+

my_blob_length

)

equivalence(

my_blob(5),

+

my_blob_data

)

CLOB

Example:

Declaring:

sql

type

is

clob(125m)

my_clob

Results

in

the

generation

of

the

following

structure:

character

my_clob(131072000+4)

integer*4

my_clob_length

character

my_clob_data(131072000)

equivalence(

my_clob(1),

+

my_clob_length

)

equivalence(

my_clob(5),

+

my_clob_data

)

204

Programming

Client

Applications

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

in

FORTRAN

Following

is

the

syntax

for

declaring

large

object

(LOB)

locator

host

variables

in

FORTRAN.

Syntax

for

Large

Object

(LOB)

Locator

Host

Variables

��

�

,

SQL

TYPE

IS

BLOB_LOCATOR

variable-name

CLOB_LOCATOR

��

LOB

Locator

Host

Variable

Considerations:

1.

GRAPHIC

types

are

not

supported

in

FORTRAN.

2.

SQL

TYPE

IS,

BLOB_LOCATOR,

CLOB_LOCATOR

can

be

either

uppercase,

lowercase,

or

mixed.

3.

Initialization

of

locators

is

not

permitted.

CLOB

Locator

Example

(BLOB

locator

is

similar):

Declaring:

SQL

TYPE

IS

CLOB_LOCATOR

my_locator

Results

in

the

generation

of

the

following

declaration:

integer*4

my_locator

Syntax

for

File

Reference

Host

Variables

in

FORTRAN

Following

is

the

syntax

for

declaring

file

reference

host

variables

in

FORTRAN.

Syntax

for

File

Reference

Host

Variables

in

FORTRAN

��

�

,

SQL

TYPE

IS

BLOB_FILE

variable-name

CLOB_FILE

��

File

Reference

Host

Variable

Considerations:

1.

Graphic

types

are

not

supported

in

FORTRAN.

2.

SQL

TYPE

IS,

BLOB_FILE,

CLOB_FILE

can

be

either

uppercase,

lowercase,

or

mixed.

Example

of

a

BLOB

file

reference

variable

(CLOB

file

reference

variable

is

similar):

SQL

TYPE

IS

BLOB_FILE

my_file

Results

in

the

generation

of

the

following

declaration:

character

my_file(267)

integer*4

my_file_name_length

integer*4

my_file_data_length

integer*4

my_file_file_options

character*255

my_file_name

equivalence(

my_file(1),

Chapter

9.

Programming

in

FORTRAN

205

+

my_file_name_length

)

equivalence(

my_file(5),

+

my_file_data_length

)

equivalence(

my_file(9),

+

my_file_file_options

)

equivalence(

my_file(13),

+

my_file_name

)

SQL

Declare

Section

with

Host

Variables

for

FORTRAN

The

following

is

a

sample

SQL

declare

section

with

a

host

variable

declared

for

each

supported

data

type:

EXEC

SQL

BEGIN

DECLARE

SECTION

INTEGER*2

AGE

/26/

INTEGER*4

DEPT

REAL*4

BONUS

REAL*8

SALARY

CHARACTER

MI

CHARACTER*112

ADDRESS

SQL

TYPE

IS

VARCHAR

(512)

DESCRIPTION

SQL

TYPE

IS

VARCHAR

(32000)

COMMENTS

SQL

TYPE

IS

CLOB

(1M)

CHAPTER

SQL

TYPE

IS

CLOB_LOCATOR

CHAPLOC

SQL

TYPE

IS

CLOB_FILE

CHAPFL

SQL

TYPE

IS

BLOB

(1M)

VIDEO

SQL

TYPE

IS

BLOB_LOCATOR

VIDLOC

SQL

TYPE

IS

BLOB_FILE

VIDFL

CHARACTER*10

DATE

CHARACTER*8

TIME

CHARACTER*26

TIMESTAMP

INTEGER*2

WAGE_IND

EXEC

SQL

END

DECLARE

SECTION

Related

reference:

v

“Supported

SQL

Data

Types

in

FORTRAN”

on

page

206

Supported

SQL

Data

Types

in

FORTRAN

Certain

predefined

FORTRAN

data

types

correspond

to

database

manager

column

types.

Only

these

FORTRAN

data

types

can

be

declared

as

host

variables.

The

following

table

shows

the

FORTRAN

equivalent

of

each

column

type.

When

the

precompiler

finds

a

host

variable

declaration,

it

determines

the

appropriate

SQL

type

value.

The

database

manager

uses

this

value

to

convert

the

data

exchanged

between

the

application

and

itself.

Note:

There

is

no

host

variable

support

for

the

DATALINK

data

type

in

any

of

the

DB2

host

languages.

Table

16.

SQL

Data

Types

Mapped

to

FORTRAN

Declarations

SQL

Column

Type1

FORTRAN

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

INTEGER*2

16-bit,

signed

integer

INTEGER

(496

or

497)

INTEGER*4

32-bit,

signed

integer

REAL2

(480

or

481)

REAL*4

Single

precision

floating

point

DOUBLE3

(480

or

481)

REAL*8

Double

precision

floating

point

206

Programming

Client

Applications

Table

16.

SQL

Data

Types

Mapped

to

FORTRAN

Declarations

(continued)

SQL

Column

Type1

FORTRAN

Data

Type

SQL

Column

Type

Description

DECIMAL(p,s)

(484

or

485)

No

exact

equivalent;

use

REAL*8

Packed

decimal

CHAR(n)

(452

or

453)

CHARACTER*n

Fixed-length

character

string

of

length

n

where

n

is

from

1

to

254

VARCHAR(n)

(448

or

449)

SQL

TYPE

IS

VARCHAR(n)

where

n

is

from

1

to

32

672

Variable-length

character

string

LONG

VARCHAR

(456

or

457)

SQL

TYPE

IS

VARCHAR(n)

where

n

is

from

32

673

to

32

700

Long

variable-length

character

string

CLOB(n)

(408

or

409)

SQL

TYPE

IS

CLOB

(n)

where

n

is

from

1

to

2

147

483

647

Large

object

variable-length

character

string

CLOB

locator

variable4

(964

or

965)

SQL

TYPE

IS

CLOB_LOCATOR

Identifies

CLOB

entities

residing

on

the

server

CLOB

file

reference

variable4

(920

or

921)

SQL

TYPE

IS

CLOB_FILE

Descriptor

for

file

containing

CLOB

data

BLOB(n)

(404

or

405)

SQL

TYPE

IS

BLOB(n)

where

n

is

from

1

to

2

147

483

647

Large

object

variable-length

binary

string

BLOB

locator

variable4

(960

or

961)

SQL

TYPE

IS

BLOB_LOCATOR

Identifies

BLOB

entities

on

the

server

BLOB

file

reference

variable4

(916

or

917)

SQL

TYPE

IS

BLOB_FILE

Descriptor

for

the

file

containing

BLOB

data

DATE

(384

or

385)

CHARACTER*10

10-byte

character

string

TIME

(388

or

389)

CHARACTER*8

8-byte

character

string

TIMESTAMP

(392

or

393)

CHARACTER*26

26-byte

character

string

Notes:

1.

The

first

number

under

SQL

Column

Type

indicates

that

an

indicator

variable

is

not

provided,

and

the

second

number

indicates

that

an

indicator

variable

is

provided.

An

indicator

variable

is

needed

to

indicate

NULL

values,

or

to

hold

the

length

of

a

truncated

string.

These

are

the

values

that

would

appear

in

the

SQLTYPE

field

of

the

SQLDA

for

these

data

types.

2.

FLOAT(n)

where

0

<

n

<

25

is

a

synonym

for

REAL.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

3.

The

following

SQL

types

are

synonyms

for

DOUBLE:

v

FLOAT

v

FLOAT(n)

where

24

<

n

<

54

is

v

DOUBLE

PRECISION

4.

This

is

not

a

column

type

but

a

host

variable

type.

The

following

is

an

additional

rule

for

supported

FORTRAN

data

types:

v

You

may

define

dynamic

SQL

statements

longer

than

254

characters

by

using

VARCHAR,

LONG

VARCHAR,

OR

CLOB

host

variables.

Related

concepts:

v

“SQL

Declare

Section

with

Host

Variables

for

FORTRAN”

on

page

206

Considerations

for

Multi-Byte

Character

Sets

in

FORTRAN

There

are

no

graphic

(multi-byte)

host

variable

data

types

supported

in

FORTRAN.

Only

mixed-character

host

variables

are

supported

through

the

character

data

type.

It

is

possible

to

create

a

user

SQLDA

that

contains

graphic

data.

Chapter

9.

Programming

in

FORTRAN

207

Japanese

or

Traditional

Chinese

EUC,

and

UCS-2

Considerations

for

FORTRAN

Any

graphic

data

sent

from

your

application

running

under

an

eucJp

or

eucTW

code

set,

or

connected

to

a

UCS-2

database,

is

tagged

with

the

UCS-2

code

page

identifier.

Your

application

must

convert

a

graphic-character

string

to

UCS-2

before

sending

it

to

a

the

database

server.

Likewise,

graphic

data

retrieved

from

a

UCS-2

database

by

any

application,

or

from

any

database

by

an

application

running

under

an

EUC

eucJP

or

eucTW

code

page,

is

encoded

using

UCS-2.

This

requires

your

application

to

convert

from

UCS-2

to

your

application

code

page

internally,

unless

the

user

is

to

be

presented

with

UCS-2

data.

Your

application

is

responsible

for

converting

to

and

from

UCS-2

because

this

conversion

must

be

conducted

before

the

data

is

copied

to,

and

after

it

is

copied

from,

the

SQLDA.

DB2

Universal

Database

does

not

supply

any

conversion

routines

that

are

accessible

to

your

application.

Instead,

you

must

use

the

system

calls

available

from

your

operating

system.

In

the

case

of

a

UCS-2

database,

you

may

also

consider

using

the

VARCHAR

and

VARGRAPHIC

scalar

functions.

Related

concepts:

v

“Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations”

on

page

614

Related

reference:

v

“VARCHAR

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“VARGRAPHIC

scalar

function”

in

the

SQL

Reference,

Volume

1

SQLSTATE

and

SQLCODE

Variables

in

FORTRAN

When

using

the

LANGLEVEL

precompile

option

with

a

value

of

SQL92E,

the

following

two

declarations

may

be

included

as

host

variables:

EXEC

SQL

BEGIN

DECLARE

SECTION;

CHARACTER*5

SQLSTATE

INTEGER

SQLCOD

.

.

.

EXEC

SQL

END

DECLARE

SECTION

If

neither

of

these

is

specified,

the

SQLCOD

declaration

is

assumed

during

the

precompile

step.

The

variable

named

SQLSTATE

may

also

be

SQLSTA.

Note

that

when

using

this

option,

the

INCLUDE

SQLCA

statement

should

not

be

specified.

For

applications

that

contain

multiple

source

files,

the

declarations

of

SQLCOD

and

SQLSTATE

may

be

included

in

each

source

file,

as

shown

above.

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

208

Programming

Client

Applications

Part

3.

ADO.NET,

OLE

DB,

and

ODBC

©

Copyright

IBM

Corp.

1997

-

2004

209

210

Programming

Client

Applications

Chapter

10.

DB2

.NET

Data

Provider

DB2

.NET

Data

Provider

overview

.

.

.

.

.

. 211

DB2

.NET

Data

Provider

system

requirements

.

. 211

Programming

applications

to

use

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Connecting

to

a

database

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

. 212

Executing

SQL

statements

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

. 212

Reading

result

sets

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

. 213

Calling

stored

procedures

from

an

application

using

the

DB2

.NET

Data

Provider

.

.

.

.

. 214

Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider

.

.

.

.

.

.

.

.

.

.

.

. 215

DB2

.NET

Data

Provider

overview

The

DB2®

.NET

Data

Provider

is

an

extension

of

the

ADO.NET

interface

that

allows

.NET

applications

to

access

a

DB2

database

through

a

secure

connection,

execute

commands,

and

retrieve

result

sets.

Reference

documentation

is

included

with

the

DB2

.NET

Data

Provider,

presenting

detailed

information

about

all

the

DB2

.NET

Data

Provider

objects

and

their

members.

During

the

DB2

installation

process,

this

documentation

is

registered

with

Microsoft®

Visual

Studio

.NET.

To

view

the

DB2

.NET

Data

Provider

documentation

from

Microsoft

Visual

Studio

.NET,

select

the

Help

menu

option,

and

Contents.

Once

the

help

viewer

opens,

filter

by

IBM®

DB2

.NET

Data

Provider

Help.

DB2

.NET

Data

Provider

system

requirements

The

DB2®

.NET

Data

Provider

allows

your

.NET

applications

to

access

the

following

database

management

systems:

v

DB2

Universal

Database™

Version

8

for

Windows®,

UNIX®,

and

Linux-based

computers

v

DB2

Universal

Database

Version

6

(or

later)

for

OS/390®

and

z/OS™,

through

DB2

Connect™

v

DB2

Universal

Database

Version

5,

Release

1

(or

later)

for

AS/400®

and

iSeries™,

through

DB2

Connect

v

DB2

Universal

Database

Version

7.3

(or

later)

for

VSE

&

VM,

through

DB2

Connect

Before

using

the

DB2

Install

program

to

install

the

DB2

.NET

Data

Provider,

you

must

already

have

the

.NET

Framework

(Version

1.0

or

Version

1.1)

installed

on

the

computer.

If

the

.NET

Framework

is

not

installed,

the

DB2

Install

program

will

not

install

the

DB2

.NET

Data

Provider.

For

DB2

Universal

Database

for

AS/400

and

iSeries,

the

following

fix

is

required

on

the

server:

APAR

ii13348.

Only

the

.NET

Framework

Version

1.1

and

Visual

Studio

.NET

2003

are

supported

for

use

with

DB2

for

VSE

&

VM,

and

DB2

for

iSeries

servers.

The

.NET

Framework

Version

1.0

and

Visual

Studio

.NET

2002

are

not

supported

for

use

with

these

servers.

©

Copyright

IBM

Corp.

1997

-

2004

211

||
||

|
||
|
||

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

Programming

applications

to

use

the

DB2

.NET

Data

Provider

The

following

sections

describe

the

main

steps

in

programming

a

.NET

application

to

access

or

manipulate

data

in

a

DB2

database.

Examples

in

C#

and

Visual

Basic

.NET

are

provided

to

illustrate

each

step.

Connecting

to

a

database

from

an

application

using

the

DB2

.NET

Data

Provider

When

using

the

DB2

.NET

Data

Provider,

a

database

connection

is

established

through

the

DB2Connection

class.

First,

you

must

create

a

string

that

stores

the

connection

parameters.

Examples

of

possible

connection

strings

are:

v

String

connectString

=

"Database=SAMPLE";

//

When

used,

attempts

to

connect

to

the

SAMPLE

database.

v

String

connectString

=

"Server=srv:50000;Database=SAMPLE;UID=db2adm;PWD=ab1cd";

//

When

used,

attempts

to

connect

to

the

SAMPLE

database

on

the

server

//

’srv’

through

port

50000

using

’db2adm’

and

’ab1cd’

as

the

user

id

and

//

password

respectively.

To

create

the

database

connection,

pass

the

connectString

to

the

DB2Connection

constructor.

Then

use

the

DB2Connection

object’s

Open

method

to

formally

connect

to

the

database

identified

in

connectString.

Connecting

to

a

database

in

C#:

String

connectString

=

"Database=SAMPLE";

DB2Connection

conn

=

new

DB2Connection(connectString);

conn.Open();

return

conn;

Connecting

to

a

database

in

Visual

Basic

.NET:

Dim

connectString

As

String

=

"Database=SAMPLE"

Dim

conn

As

DB2Connection

=

new

DB2Connection(connectString)

conn.Open()

Return

conn

Executing

SQL

statements

from

an

application

using

the

DB2

.NET

Data

Provider

When

using

the

DB2

.NET

Data

Provider,

the

execution

of

SQL

statements

is

done

through

a

DB2Command

class

using

its

methods

ExecuteReader()

and

ExecuteNonQuery(),

and

its

properties

CommandText,

CommandType

and

Transaction.

For

SQL

statements

that

produce

output,

the

ExecuteReader()

method

should

be

used

and

its

results

can

be

retrieved

from

a

DB2DataReader

object.

For

all

other

SQL

statements,

the

method

ExecuteNonQuery()

should

be

used.

The

Transaction

property

of

the

DB2Command

object

should

be

initialized

to

a

DB2Transaction.

A

DB2Transaction

object

is

responsible

for

rolling

back

and

committing

database

transactions.

Executing

an

UPDATE

statement

in

C#:

//

assume

a

DB2Connection

conn

DB2Command

cmd

=

conn.CreateCommand();

DB2Transaction

trans

=

conn.BeginTransaction();

cmd.Transaction

=

trans;

cmd.CommandText

=

"UPDATE

staff

"

+

"

SET

salary

=

(SELECT

MIN(salary)

"

+

212

Programming

Client

Applications

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

"

FROM

staff

"

+

"

WHERE

id

>=

310)

"

+

"

WHERE

id

=

310";

cmd.ExecuteNonQuery();

Executing

an

UPDATE

statement

in

Visual

Basic

.NET:

’

assume

a

DB2Connection

conn

DB2Command

cmd

=

conn.CreateCommand();

DB2Transaction

trans

=

conn.BeginTransaction();

cmd.Transaction

=

trans;

cmd.CommandText

=

"UPDATE

staff

"

+

"

SET

salary

=

(SELECT

MIN(salary)

"

+

"

FROM

staff

"

+

"

WHERE

id

>=

310)

"

+

"

WHERE

id

=

310";

cmd.ExecuteNonQuery();

Executing

a

SELECT

statement

in

C#:

//

assume

a

DB2Connection

conn

DB2Command

cmd

=

conn.CreateCommand();

DB2Transaction

trans

=

conn.BeginTransaction();

cmd.Transaction

=

trans;

cmd.CommandText

=

"SELECT

deptnumb,

location

"

+

"

FROM

org

"

+

"

WHERE

deptnumb

<

25";

DB2DataReader

reader

=

cmd.ExecuteReader();

Executing

a

SELECT

statement

in

Visual

Basic

.NET:

’

assume

a

DB2Connection

conn

Dim

cmd

As

DB2Command

=

conn.CreateCommand()

Dim

trans

As

DB2Transaction

=

conn.BeginTransaction()

cmd.Transaction

=

trans

cmd.CommandText

=

"UPDATE

staff

"

+

"

SET

salary

=

(SELECT

MIN(salary)

"

+

"

FROM

staff

"

+

"

WHERE

id

>=

310)

"

+

"

WHERE

id

=

310"

cmd.ExecuteNonQuery()

Once

your

application

has

performed

a

database

transaction,

you

must

either

roll

it

back

or

commit

it.

This

is

done

through

the

Commit()

and

Rollback()

methods

of

a

DB2Transaction

object.

Rolling

back

or

committing

a

transaction

in

C#:

//

assume

a

DB2Transaction

object

conn

trans.Rollback();

...

trans.Commit();

Rolling

back

or

committing

a

transaction

in

C#:

’

assume

a

DB2Transaction

object

conn

trans.Rollback()

...

trans.Commit()

Reading

result

sets

from

an

application

using

the

DB2

.NET

Data

Provider

When

using

the

DB2

.NET

Data

Provider,

the

reading

of

result

sets

is

done

through

a

DB2DataReader

object.

The

DB2DataReader

method,

Read()

is

used

to

advance

to

the

next

row

of

result

set.

The

methods

GetString(),

GetInt32(),

GetDecimal(),

Chapter

10.

DB2

.NET

Data

Provider

213

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

|

|

|
|
|

and

other

methods

for

all

the

available

data

types

are

used

to

extract

data

from

the

individual

columns

of

output.

DB2DataReader’s

Close()

method

is

used

to

close

the

DB2DataReader,

which

should

always

be

done

when

finished

reading

output.

Reading

a

result

set

in

C#:

//

assume

a

DB2DataReader

reader

Int16

deptnum

=

0;

String

location="";

//

Output

the

results

of

the

query

while(reader.Read())

{

deptnum

=

reader.GetInt16(0);

location

=

reader.GetString(1);

Console.WriteLine("

"

+

deptnum

+

"

"

+

location);

}

reader.Close();

Reading

a

result

set

in

Visual

Basic

.NET:

’

assume

a

DB2DataReader

reader

Dim

deptnum

As

Int16

=

0

Dim

location

As

String

""

’

Output

the

results

of

the

query

Do

While

(reader.Read())

deptnum

=

reader.GetInt16(0)

location

=

reader.GetString(1)

Console.WriteLine("

"

&

deptnum

&

"

"

&

location)

Loop

reader.Close();

Calling

stored

procedures

from

an

application

using

the

DB2

.NET

Data

Provider

When

using

the

DB2

.NET

Data

Provider,

you

can

call

stored

procedures

by

using

a

DB2Command

object.

The

default

value

of

the

CommandType

property

is

CommandType.Text.

This

is

the

appropriate

value

for

SQL

statements

and

can

also

be

used

to

call

stored

procedures.

However,

calling

stored

procedures

is

easier

when

you

set

CommandType

to

CommandType.StoredProcedure.

In

this

case,

you

only

need

to

specify

the

stored

procedure

name

and

any

parameters.

The

following

examples

demonstrates

how

to

invoke

a

stored

procedure

called

INOUT_PARAM,

with

the

CommandType

property

set

to

either

CommandType.StoredProcedure

or

CommandType.Text.

Calling

a

stored

procedure

by

setting

the

CommandType

property

of

the

DB2Command

to

CommandType.StoredProcedure

in

C#:

//

assume

a

DB2Connection

comm

DB2Transaction

trans

=

conn.BeginTransaction();

DB2Command

cmd

=

conn.CreateCommand();

String

procName

=

"INOUT_PARAM";

cmd.Transaction

=

trans;

cmd.CommandType

=

CommandType.StoredProcedure;

cmd.CommandText

=

procName;

//

Register

input-output

and

output

parameters

for

the

DB2Command

...

//

Call

the

stored

procedure

Console.WriteLine("

Call

stored

procedure

named

"

+

procName);

cmd.ExecuteNonQuery();

214

Programming

Client

Applications

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Calling

a

stored

procedure

by

setting

the

CommandType

property

of

the

DB2Command

to

CommandType.Text

in

C#:

//

assume

a

DB2Connection

comm

DB2Transaction

trans

=

conn.BeginTransaction();

DB2Command

cmd

=

conn.CreateCommand();

String

procName

=

"INOUT_PARAM";

String

procCall

=

"CALL

INOUT_PARAM

(?,

?,

?)";

cmd.Transaction

=

trans;

cmd.CommandType

=

CommandType.Text;

cmd.CommandText

=

procCall;

//

Register

input-output

and

output

parameters

for

the

DB2Command

...

//

Call

the

stored

procedure

Console.WriteLine("

Call

stored

procedure

named

"

+

procName);

cmd.ExecuteNonQuery();

Calling

a

stored

procedure

by

setting

the

CommandType

property

of

the

DB2Command

to

CommandType.StoredProcedure

in

Visual

Basic

.NET:

’

assume

a

DB2DataReader

reader

Dim

trans

As

DB2Transaction

=

conn.BeginTransaction()

Dim

cmd

As

DB2Command

=

conn.CreateCommand()

Dim

procName

As

String

=

"INOUT_PARAM"

cmd.Transaction

=

trans

cmd.CommandType

=

CommandType.StoredProcedure

cmd.CommandText

=

procName

’

Register

input-output

and

output

parameters

for

the

DB2Command

...

’

Call

the

stored

procedure

Console.WriteLine("

Call

stored

procedure

named

"

&

procName)

cmd.ExecuteNonQuery()

Calling

a

stored

procedure

by

setting

the

CommandType

property

of

the

DB2Command

to

CommandType.Text

in

Visual

Basic

.NET:

’

assume

a

DB2DataReader

reader

Dim

trans

As

DB2Transaction

=

conn.BeginTransaction()

Dim

cmd

As

DB2Command

=

conn.CreateCommand()

Dim

procName

As

String

=

"INOUT_PARAM"

Dim

procCall

As

String

=

"CALL

INOUT_PARAM

(?,

?,

?)"

cmd.Transaction

=

trans

cmd.CommandType

=

CommandType.Text

cmd.CommandText

=

procCall

’

Register

input-output

and

output

parameters

for

the

DB2Command

...

’

Call

the

stored

procedure

Console.WriteLine("

Call

stored

procedure

named

"

&

procName)

cmd.ExecuteNonQuery()

Supported

SQL

data

types

for

the

DB2

.NET

Data

Provider

The

following

table

lists

the

mappings

between

the

DB2Type

data

types

in

the

DB2

.NET

Data

Provider,

the

DB2

data

type,

and

the

corresponding

.NET

Framework

data

type:

Chapter

10.

DB2

.NET

Data

Provider

215

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table

17.

Mapping

DB2

Data

Types

to

.NET

data

types

DB2Type

Enum

DB2

Data

Type

.NET

Data

Type

SmallInt

SMALLINT

Int16

Integer

INTEGER

Int32

BigInt

BIGINT

Int64

Real

REAL

Single

Double

DOUBLE

PRECISION

Double

Float

FLOAT

Double

Decimal

DECIMAL

Decimal

Numeric

DECIMAL

Decimal

Date

DATE

DateTime

Time

TIME

TimeSpan

Timestamp

TIMESTAMP

DateTime

Char

CHAR

String

VarChar

VARCHAR

String

LongVarChar(1)

LONG

VARCHAR

String

Binary

CHAR

FOR

BIT

DATA

Byte[]

VarBinary

VARCHAR

FOR

BIT

DATA

Byte[]

LongVarBinary(1)

LONG

VARCHAR

FOR

BIT

DATA

Byte[]

Graphic

GRAPHIC

String

VarGraphic

VARGRAPHIC

String

LongVarGraphic(1)

LONG

GRAPHIC

String

Clob

CLOB

String

Blob

BLOB

Byte[]

DbClob

DBCLOB(N)

String

Notes:

1.

These

data

types

are

not

supported

in

DB2

.NET

common

language

runtime

routines.

They

are

only

supported

in

client

applications.

Note:

The

dbinfo

structure

is

passed

into

CLR

functions

and

procedures

as

a

parameter.

The

scratchpad

and

call

type

for

CLR

UDFs

are

also

passed

into

CLR

routines

as

parameters.

For

information

about

the

appropriate

CLR

data

types

for

these

parameters,

see

the

related

topic:

v

Parameters

in

CLR

routines

Related

concepts:

v

“Parameter

styles

for

external

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Common

language

runtime

(CLR)

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Parameters

in

CLR

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

tasks:

216

Programming

Client

Applications

v

“Passing

structured

type

parameters

to

external

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Creating

CLR

routines”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Examples

of

CLR

user-defined

functions

in

C#”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Examples

of

CLR

procedures

in

C#”

in

the

Application

Development

Guide:

Programming

Server

Applications

Related

samples:

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.cs”

v

“SpServer.cs

--

C#

external

code

implementation

of

procedures

created

in

spcat.db2”

v

“SpCreate.db2

--

Creates

the

external

procedures

implemented

in

spserver.vb”

v

“SpServer.vb

--

VB.NET

implementation

of

procedures

created

in

SpCat.db2”

Chapter

10.

DB2

.NET

Data

Provider

217

218

Programming

Client

Applications

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

Purpose

of

the

IBM

OLE

DB

Provider

for

DB2

.

. 219

Application

Types

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

.

.

.

.

.

.

.

.

.

.

.

. 220

OLE

DB

Services

.

.

.

.

.

.

.

.

.

.

.

. 220

Thread

Model

Supported

by

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Large

Object

Manipulation

with

the

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Schema

Rowsets

Supported

by

the

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

OLE

DB

Services

Automatically

Enabled

by

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

. 222

Data

Services

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Supported

Cursor

Modes

for

the

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Data

Type

Mappings

between

DB2

and

OLE

DB

223

Data

Conversion

for

Setting

Data

from

OLE

DB

Types

to

DB2

Types

.

.

.

.

.

.

.

.

.

. 224

Data

Conversion

for

Setting

Data

from

DB2

Types

to

OLE

DB

Types

.

.

.

.

.

.

.

.

. 226

IBM

OLE

DB

Provider

Restrictions

.

.

.

.

.

. 227

IBM

OLE

DB

Provider

Support

for

OLE

DB

Components

and

Interfaces

.

.

.

.

.

.

.

.

. 227

IBM

OLE

DB

Provider

support

for

OLE

DB

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Connections

to

Data

Sources

Using

IBM

OLE

DB

Provider

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

ADO

Applications

.

.

.

.

.

.

.

.

.

.

.

. 233

ADO

Connection

String

Keywords

.

.

.

.

. 233

Connections

to

Data

Sources

with

Visual

Basic

ADO

Applications

.

.

.

.

.

.

.

.

.

.

. 234

Updatable

Scrollable

Cursors

in

ADO

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Limitations

for

ADO

Applications

.

.

.

.

. 234

IBM

OLE

DB

Provider

Support

for

ADO

Methods

and

Properties

.

.

.

.

.

.

.

.

. 234

C

and

C++

Applications

.

.

.

.

.

.

.

.

.

. 238

Compilation

and

Linking

of

C/C++

Applications

and

the

IBM

OLE

DB

Provider

.

. 238

Connections

to

Data

Sources

in

C/C++

Applications

using

the

IBM

OLE

DB

Provider

. 238

MTS

and

COM+

Distributed

Transactions

.

.

.

. 239

MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider

.

.

. 239

Enablement

of

MTS

Support

in

DB2

Universal

Database

for

C/C++

Applications

.

.

.

.

. 239

Purpose

of

the

IBM

OLE

DB

Provider

for

DB2

Microsoft®

OLE

DB

is

a

set

of

OLE/COM

interfaces

that

provides

applications

with

uniform

access

to

data

stored

in

diverse

information

sources.

The

OLE

DB

architecture

defines

OLE

DB

consumers

and

OLE

DB

providers.

An

OLE

DB

consumer

is

any

system

or

application

that

uses

OLE

DB

interfaces;

an

OLE

DB

provider

is

a

component

that

exposes

OLE

DB

interfaces.

The

IBM®

OLE

DB

Provider

for

DB2®

allows

DB2

to

act

as

a

resource

manager

for

the

OLE

DB

provider.

This

support

gives

OLE

DB-based

applications

the

ability

to

extract

or

query

DB2

data

using

the

OLE

interface.

The

IBM

OLE

DB

Provider

for

DB2,

whose

provider

name

is

IBMDADB2,

enables

OLE

DB

consumers

to

access

data

on

a

DB2

Universal

Database™

server.

If

DB2

Connect™

is

installed,

these

OLE

DB

consumers

can

also

access

data

on

a

host

DBMS

such

as

DB2

for

MVS™,

DB2

for

VM/VSE,

or

SQL/400.

The

IBM

OLE

DB

Provider

for

DB2

offers

the

following

features:

v

Support

level

0

of

the

OLE

DB

provider

specification,

including

some

additional

level

1

interfaces.

v

A

free

threaded

provider

implementation,

which

enables

the

application

to

create

components

in

one

thread

and

use

those

components

in

any

other

thread.

v

An

Error

Lookup

Service

that

returns

DB2

error

messages.

Note

that

the

IBM

OLE

DB

Provider

resides

on

the

client

and

is

different

from

the

OLE

DB

table

functions,

which

are

also

supported

by

DB2

UDB.

Subsequent

sections

of

this

document

describe

the

specific

implementation

of

the

IBM

OLE

DB

Provider

for

DB2.

For

more

information

on

the

Microsoft

OLE

DB

2.0

©

Copyright

IBM

Corp.

1997

-

2004

219

specification,

refer

to

the

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

available

from

Microsoft

Press.

Version

Compliance:

The

IBM

OLE

DB

Provider

for

DB2

complies

with

Version

2.7

of

the

Microsoft

OLE

DB

specification.

System

Requirements:

Refer

to

the

announcement

letter

for

the

IBM

OLE

DB

Provider

for

DB2

Servers

to

see

the

supported

Windows®

operating

systems.

To

install

the

IBM

OLE

DB

Provider

for

DB2,

you

must

first

be

running

on

one

of

the

supported

operating

systems

listed

above.

You

also

need

to

install

the

DB2

Application

Development

Client,

as

well

as

the

Microsoft

Data

Access

Components

(MDAC)

Version

2.7

or

higher,

which

was

available

at

the

time

of

writing

from

the

following

site:

http://www.microsoft.com/data.

Related

reference:

v

“IBM

OLE

DB

Provider

Support

for

OLE

DB

Components

and

Interfaces”

on

page

227

Application

Types

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

With

the

IBM®

OLE

DB

Provider

for

DB2®,

you

can

create

the

following

types

of

applications:

v

ADO

applications,

including:

–

Microsoft®

Visual

Studio

C++

applications

–

Microsoft

Visual

Basic

applications
v

ADO.NET

applications

using

the

OLE

DB

.NET

Data

Provider

v

C/C++

applications

which

access

IBMDADB2

directly

using

the

OLE

DB

interfaces,

including

ATL

applications

whose

Data

Access

Consumer

Objects

were

generated

by

the

ATL

COM

AppWizard.

OLE

DB

Services

The

sections

that

follow

describe

OLE

DB

services.

Thread

Model

Supported

by

IBM

OLE

DB

Provider

The

IBM®

OLE

DB

Provider

for

DB2®

supports

the

Free

Threaded

model,

which

allows

applications

to

create

components

in

one

thread

and

use

those

components

in

any

other

thread.

Large

Object

Manipulation

with

the

IBM

OLE

DB

Provider

To

get

and

set

data

as

storage

objects

(DBTYPE_IUNKNOWN)

with

IBMDADB2,

use

the

ISequentialStream

interface

as

follows:

v

To

bind

a

storage

object

to

a

parameter,

the

DBOBJECT

in

the

DBBINDING

structure

can

only

contain

the

value

STGM_READ

for

the

dwFlag

field.

IBMDADB2

will

execute

the

Read

method

of

the

ISequentialStream

interface

of

the

bound

object.

220

Programming

Client

Applications

|
|

|

v

To

get

data

from

a

storage

object,

your

application

must

perform

a

Read

method

on

the

ISequentialStream

interface

of

the

storage

object.

v

When

getting

data,

the

value

of

the

length

part

is

the

length

of

the

real

data,

not

the

length

of

the

IUnknown

pointer.

Schema

Rowsets

Supported

by

the

IBM

OLE

DB

Provider

The

following

table

shows

the

schema

rowsets

that

are

supported

by

IDBSchemaRowset.

Note

that

unsupported

columns

will

be

set

to

null

in

the

rowsets.

Table

18.

Schema

Rowsets

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

Supported

GUIDs

Supported

Restrictions

Supported

Columns

Notes

DBSCHEMA

_COLUMN_PRIVILEGES

COLUMN_NAME

TABLE_NAME

TABLE_SCHEMA

COLUMN_NAME

GRANTEE

GRANTOR

IS_GRANTABLE

PRIVILEGE_TYPE

TABLE_NAME

TABLE_SCHEMA

DB_SCHEMA_COLUMNS

COLUMN_NAME

TABLE_NAME

TABLE_SCHEMA

CHARACTER_MAXIMUM_LENGTH

CHARACTER_OCTET_LENGTH

COLUMN_DEFAULT

COLUMN_FLAGS

COLUMN_HASDEFAULT

COLUMN_NAME

DATA_TYPE

DESCRIPTION

IS_NULLABLE

NUMERIC_PRECISION

NUMERIC_SCALE

ORDINAL_POSITION

TABLE_NAME

TABLE_SCHEMA

DBSCHEMA_FOREIGN_KEYS

FK_TABLE_NAME

FK_TABLE_SCHEMA

PK_TABLE_NAME

PK_TABLE_SCHEMA

DEFERRABILITY

DELETE_RULE

FK_COLUMN_NAME

FK_NAME

FK_TABLE_NAME

FK_TABLE_SCHEMA

ORDINAL

PK_COLUMN_NAME

PK_NAME

PK_TABLE_NAME

PK_TABLE_SCHEMA

UPDATE_RULE

Must

specify

at

least

one

of

the

following

restrictions:

PK_TABLE_NAME

or

FK_TABLE_NAME

No

“%”

wildcard

allowed.

DBSCHEMA_INDEXES

TABLE_NAME

TABLE_SCHEMA

CARDINALITY

CLUSTERED

COLLATION

COLUMN_NAME

INDEX_NAME

INDEX_SCHEMA

ORDINAL_POSITION

PAGES

TABLE_NAME

TABLE_SCHEMA

TYPE

UNIQUE

No

sort

order

supported.

Sort

order,

if

specified,

will

be

ignored.

DBSCHEMA_PRIMARY_KEYS

TABLE_NAME

TABLE_SCHEMA

COLUMN_NAME

ORDINAL

PK_NAME

TABLE_NAME

TABLE_SCHEMA

Must

specify

at

least

the

following

restrictions:

TABLE_NAME

No

“%”

wildcard

allowed.

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

221

Table

18.

Schema

Rowsets

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

Supported

GUIDs

Supported

Restrictions

Supported

Columns

Notes

DBSCHEMA

_PROCEDURE_PARAMETERS

PARAMETER_NAME

PROCEDURE_NAME

PROCEDURE_SCHEMA

CHARACTER_MAXIMUM_LENGTH

CHARACTER_OCTET_LENGTH

DATA_TYPE

DESCRIPTION

IS_NULLABLE

NUMERIC_PRECISION

NUMERIC_SCALE

ORDINAL_POSITION

PARAMETER_DEFAULT

PARAMETER_HASDEFAULT

PARAMETER_NAME

PARAMETER_TYPE

PROCEDURE_NAME

PROCEDURE_SCHEMA

TYPE_NAME

DBSCHEMA_PROCEDURES

PROCEDURE_NAME

PROCEDURE_SCHEMA

DESCRIPTION

PROCEDURE_NAME

PROCEDURE_SCHEMA

PROCEDURE_TYPE

DBSCHEMA_PROVIDER_TYPES

DATA_TYPE

BEST_MATCH

AUTO_UNIQUE_VALUE

BEST_MATCH

CASE_SENSITIVE

CREATE_PARAMS

COLUMN_SIZE

DATA_TYPE

FIXED_PREC_SCALE

IS_FIXEDLENGTH

IS_LONG

IS_NULLABLE

LITERAL_PREFIX

LITERAL_SUFFIX

LOCAL_TYPE_NAME

MINIMUM_SCALE

MAXIMUM_SCALE

SEARCHABLE

TYPE_NAME

UNSIGNED_ATTRIBUTE

DBSCHEMA_STATISTICS

TABLE_NAME

TABLE_SCHEMA

CARDINALITY

TABLE_NAME

TABLE_SCHEMA

No

sort

order

supported.

Sort

order,

if

specified,

will

be

ignored.

DBSCHEMA

_TABLE_PRIVILEGES

TABLE_NAME

TABLE_SCHEMA

GRANTEE

GRANTOR

IS_GRANTABLE

PRIVILEGE_TYPE

TABLE_NAME

TABLE_SCHEMA

DBSCHEMA_TABLES

TABLE_NAME

TABLE_SCHEMA

TABLE_TYPE

DESCRIPTION

TABLE_NAME

TABLE_SCHEMA

TABLE_TYPE

OLE

DB

Services

Automatically

Enabled

by

IBM

OLE

DB

Provider

By

default,

the

IBM®

OLE

DB

Provider

for

DB2®

automatically

enables

all

the

OLE

DB

services

by

adding

a

registry

entry

OLEDB_SERVICES

under

the

class

ID

(CLSID)

of

the

provider

with

the

DWORD

value

of

0xFFFFFFFF.

The

meaning

of

this

value

is

as

follows:

Table

19.

OLE

DB

Services

Enabled

Services

DWORD

Value

All

services

(default)

0xFFFFFFFF

All

except

pooling

and

AutoEnlistment

0xFFFFFFFC

222

Programming

Client

Applications

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table

19.

OLE

DB

Services

(continued)

Enabled

Services

DWORD

Value

All

except

client

cursor

0xFFFFFFFB

All

except

pooling,

enlistment

and

cursor

0xFFFFFFF8

No

services

0x000000000

Data

Services

The

sections

that

follow

describe

data

services

considerations.

Supported

Cursor

Modes

for

the

IBM

OLE

DB

Provider

The

IBM®

OLE

DB

Provider

for

DB2®

natively

supports

read-only,

forward-only,

read-only

scrollable,

and

updatable

scrollable

cursors.

Data

Type

Mappings

between

DB2

and

OLE

DB

The

IBM

OLE

DB

Provider

supports

data

type

mappings

between

DB2

data

types

and

OLE

DB

data

types.

The

following

table

provides

a

complete

list

of

supported

mappings

and

available

names

for

indicating

the

data

types

of

columns

and

parameters.

Table

20.

Data

Type

Mappings

between

DB2

Data

Types

and

OLE

DB

Data

Types

DB2

Data

Types

OLE

DB

Data

Types

Indicators

OLE

DB

Standard

Type

Names

DB2

Specific

Names

SMALLINT

DBTYPE_I2

“DBTYPE_I2”

“SMALLINT”

INTEGER

DBTYPE_I4

“DBTYPE_I4”

“INTEGER”

or

“INT”

BIGINT

DBTYPE_I8

“DBTYPE_I8”

“BIGINT”

REAL

DBTYPE_R4

“DBTYPE_R4”

“REAL”

FLOAT

DBTYPE_R8

“DBTYPE_R8”

“FLOAT”

DOUBLE

DBTYPE_R8

“DBTYPE_R8″

“DOUBLE”

or

“DOUBLE

PRECISION”

DECIMAL

DBTYPE_NUMERIC

“DBTYPE_NUMERIC”

“DEC”

or

“DECIMAL”

NUMERIC

DBTYPE_NUMERIC

“DBTYPE_NUMERIC”

“NUM”

or

“NUMERIC”

DATE

DBTYPE_DBDATE

“DBTYPE_DBDATE”

“DATE”

TIME

DBTYPE_DBTIME

“DBTYPE_DBTIME”

“TIME”

TIMESTAMP

DBTYPE_DBTIMESTAMP

“DBTYPE_DBTIMESTAMP”

“TIMESTAMP”

CHAR

DBTYPE_STR

“DBTYPE_CHAR”

“CHAR”

or

“CHARACTER”

VARCHAR

DBTYPE_STR

“DBTYPE_VARCHAR”

“VARCHAR”

LONG

VARCHAR

DBTYPE_STR

“DBTYPE_LONGVARCHAR”

“LONG

VARCHAR”

CLOB

DBTYPE_STR

and

DBCOLUMNFLAGS_ISLONG

or

DBPARAMFLAGS_ISLONG

“DBTYPE_CHAR”

“DBTYPE_VARCHAR”

“DBTYPE_LONGVARCHAR”

and

DBCOLUMNFLAGS_ISLONG

or

DBPARAMFLAGS_ISLONG

“CLOB”

GRAPHIC

DBTYPE_WSTR

“DBTYPE_WCHAR”

“GRAPHIC”

VARGRAPHIC

DBTYPE_WSTR

“DBTYPE_WVARCHAR”

“VARGRAPHIC”

LONG

VARGRAPHIC

DBTYPE_WSTR

“DBTYPE_WLONGVARCHAR”

“LONG

VARGRAPHIC”

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

223

|
|

Table

20.

Data

Type

Mappings

between

DB2

Data

Types

and

OLE

DB

Data

Types

(continued)

DB2

Data

Types

OLE

DB

Data

Types

Indicators

OLE

DB

Standard

Type

Names

DB2

Specific

Names

DBCLOB

DBTYPE_WSTR

and

DBCOLUMNFLAGS_ISLONG

or

DBPARAMFLAGS_ISLONG

“DBTYPE_WCHAR”

“DBTYPE_WVARCHAR”

“DBTYPE_WLONGVARCHAR”

and

DBCOLUMNFLAGS_ISLONG

or

DBPARAMFLAGS_ISLONG

“DBCLOB”

CHAR(n)

FOR

BIT

DATA

DBTYPE_BYTES

“DBTYPE_BINARY”

VARCHAR(n)

FOR

BIT

DATA

DBTYPE_BYTES

“DBTYPE_VARBINARY”

LONG

VARCHAR

FOR

BIT

DATA

DBTYPE_BYTES

“DBTYPE_LONGVARBINARY”

BLOB

DBTYPE_BYTES

and

DBCOLUMNFLAGS_ISLONG

or

DBPARAMFLAGS_ISLONG

“DBTYPE_BINARY”

“DBTYPE_VARBINARY”

“DBTYPE_LONGVARBINARY”

and

DBCOLUMNFLAGS_ISLONG

or

DBPARAMFLAGS_ISLONG

“BLOB”

DATA

LINK

DBTYPE_STR

“DBTYPE_CHAR”

“DATA

LINK”

Data

Conversion

for

Setting

Data

from

OLE

DB

Types

to

DB2

Types

The

IBM

OLE

DB

Provider

supports

data

conversions

for

setting

data

from

OLE

DB

types

to

DB2

types.

Note

that

truncation

of

the

data

may

occur

in

some

cases,

depending

on

the

types

and

the

value

of

the

data.

Table

21.

Data

Conversions

from

OLE

DB

Types

to

DB2

Types

OLE

DB

Type

Indicator

DB2

Data

Types

S

M

A

L

L

I

N

T

I

N

T

E

G

E

R

B

I

G

I

N

T

R

E

A

L

F

L

O

A

T

D

O

U

B

L

E

D

E

C

I

M

A

L

N

U

M

E

R

I

C

D

A

T

E

T

I

M

E

T

I

M

E

S

T

A

M

P

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

C

L

O

B

G

R

A

P

H

I

C

V

A

R

G

R

A

P

H

I

C

L

O

N

G

V

A

R

G

R

A

P

H

I

C

D

B

C

L

O

B

For

Bit

Data

B

L

O

B

D

A

T

A

L

I

N

K

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

DBTYPE_EMPTY

DBTYPE_NULL

DBTYPE_RESERVED

DBTYPE_I1

X

X

X

X

X

X

X

X

DBTYPE_I2

X

X

X

X

X

X

X

X

DBTYPE_I4

X

X

X

X

X

X

X

X

DBTYPE_I8

X

X

X

X

X

X

X

X

DBTYPE_UI1

X

X

X

X

X

X

X

X

DBTYPE_UI2

X

X

X

X

X

X

X

X

DBTYPE_UI4

X

X

X

X

X

X

X

X

224

Programming

Client

Applications

Table

21.

Data

Conversions

from

OLE

DB

Types

to

DB2

Types

(continued)

OLE

DB

Type

Indicator

DB2

Data

Types

S

M

A

L

L

I

N

T

I

N

T

E

G

E

R

B

I

G

I

N

T

R

E

A

L

F

L

O

A

T

D

O

U

B

L

E

D

E

C

I

M

A

L

N

U

M

E

R

I

C

D

A

T

E

T

I

M

E

T

I

M

E

S

T

A

M

P

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

C

L

O

B

G

R

A

P

H

I

C

V

A

R

G

R

A

P

H

I

C

L

O

N

G

V

A

R

G

R

A

P

H

I

C

D

B

C

L

O

B

For

Bit

Data

B

L

O

B

D

A

T

A

L

I

N

K

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

DBTYPE_UI8

X

X

X

X

X

X

X

X

DBTYPE_R4

X

X

X

X

X

X

X

X

DBTYPE_R8

X

X

X

X

X

X

X

X

DBTYPE_CY

DBTYPE_DECIMAL

X

X

X

X

X

X

X

X

DBTYPE_NUMERIC

X

X

X

X

X

X

X

X

DBTYPE_DATE

DBTYPE_BOOL

X

X

X

X

X

X

X

X

DBTYPE_BYTES

X

X

X

X

X

X

X

X

X

DBTYPE_BSTR

–

to

be

determined

DBTYPE_STR

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_WSTR

X

X

X

DBTYPE_VARIANT

–

to

be

determined

DBTYPE_IDISPATCH

DBTYPE_IUNKNOWN

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_GUID

DBTYPE_ERROR

DBTYPE_BYREF

DBTYPE_ARRAY

DBTYPE_VECTOR

DBTYPE_UDT

DBTYPE_DBDATE

X

X

X

X

DBTYPE_DBTIME

X

X

X

X

DBTYPE_DBTIMESTAMP

X

X

X

X

X

DBTYPE_FILETIME

DBTYPE_PROP_VARIANT

DBTYPE_HCHAPTER

DBTYPE_VARNUMERIC

Related

reference:

v

“Data

Conversion

for

Setting

Data

from

DB2

Types

to

OLE

DB

Types”

on

page

226

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

225

Data

Conversion

for

Setting

Data

from

DB2

Types

to

OLE

DB

Types

For

getting

data,

the

IBM

OLE

DB

Provider

allows

data

conversions

from

DB2

types

to

OLE

DB

types.

Note

that

truncation

of

the

data

may

occur

in

some

cases,

depending

on

the

types

and

the

value

of

the

data.

Table

22.

Data

Conversions

from

DB2

Types

to

OLE

DB

Types

OLE

DB

Type

Indicator

DB2

Data

Types

S

M

A

L

L

I

N

T

I

N

T

E

G

E

R

B

I

G

I

N

T

R

E

A

L

F

L

O

A

T

D

O

U

B

L

E

D

E

C

I

M

A

L

N

U

M

E

R

I

C

D

A

T

E

T

I

M

E

T

I

M

E

S

T

A

M

P

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

C

L

O

B

G

R

A

P

H

I

C

V

A

R

G

R

A

P

H

I

C

L

O

N

G

V

A

R

G

R

A

P

H

I

C

D

B

C

L

O

B

For

Bit

Data

B

L

O

B

D

A

T

A

L

I

N

K

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

DBTYPE_EMPTY

DBTYPE_NULL

DBTYPE_RESERVED

DBTYPE_I1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_I2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_I4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_I8

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_UI1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_UI2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_UI4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_UI8

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_R4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_R8

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_CY

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_DECIMAL

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_NUMERIC

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_DATE

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_BOOL

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_BYTES

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_BSTR

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_STR

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_WSTR

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_VARIANT

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_IDISPATCH

DBTYPE_IUNKNOWN

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_GUID

X

X

X

X

X

X

X

X

X

X

DBTYPE_ERROR

DBTYPE_BYREF

226

Programming

Client

Applications

Table

22.

Data

Conversions

from

DB2

Types

to

OLE

DB

Types

(continued)

OLE

DB

Type

Indicator

DB2

Data

Types

S

M

A

L

L

I

N

T

I

N

T

E

G

E

R

B

I

G

I

N

T

R

E

A

L

F

L

O

A

T

D

O

U

B

L

E

D

E

C

I

M

A

L

N

U

M

E

R

I

C

D

A

T

E

T

I

M

E

T

I

M

E

S

T

A

M

P

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

C

L

O

B

G

R

A

P

H

I

C

V

A

R

G

R

A

P

H

I

C

L

O

N

G

V

A

R

G

R

A

P

H

I

C

D

B

C

L

O

B

For

Bit

Data

B

L

O

B

D

A

T

A

L

I

N

K

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

DBTYPE_ARRAY

DBTYPE_VECTOR

DBTYPE_UDT

DBTYPE_DBDATE

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_DBTIME

X

X

X

X

X

X

X

X

X

X

DBTYPE_DBTIMESTAMP

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_FILETIME

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_PROP_VARIANT

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

DBTYPE_HCHAPTER

DBTYPE_VARNUMERIC

Note:

When

the

application

performs

the

ISequentialStream::Read

to

get

the

data

from

the

storage

object,

the

format

of

the

data

returned

depends

on

the

column

data

type:

v

For

non

character

and

binary

data

types,

the

data

of

the

column

is

exposed

as

a

sequence

of

bytes

which

represent

those

values

in

the

operating

system.

v

For

character

data

type,

the

data

is

first

converted

to

DBTYPE_STR.

v

For

DBCLOB,

the

data

is

first

converted

to

DBTYPE_WCHAR.

Related

reference:

v

“Data

Conversion

for

Setting

Data

from

OLE

DB

Types

to

DB2

Types”

on

page

224

IBM

OLE

DB

Provider

Restrictions

Following

are

the

restrictions

for

the

IBM®

OLE

DB

Provider:

v

IBMDADB2

supports

auto

commit

and

user-controlled

transaction

scope

with

the

ITransactionLocal

interface.

Auto

commit

transaction

scope

is

the

default

scope.

Nested

transactions

are

not

supported.

v

RestartPosition

is

not

supported

when

the

command

text

contains

parameters.

v

IBMDADB2

does

not

quote

table

names

passed

through

the

DBID

parameters,

which

are

parameters

used

by

the

IOpenRowset

interface.

Instead,

the

OLE

DB

consumer

must

add

quotes

to

the

table

names

when

quotes

are

required.

IBM

OLE

DB

Provider

Support

for

OLE

DB

Components

and

Interfaces

The

following

table

lists

the

OLE

DB

components

and

interfaces

that

are

supported

by

the

IBM

OLE

DB

Provider

and

the

Microsoft

OLE

DB

Provider

for

ODBC.

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

227

|

|
|
|

|

|
|
|

Table

23.

Comparison

of

OLE

DB

Components

and

Interfaces

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

and

the

Microsoft

OLE

DB

Provider

for

ODBC

Interface

DB2

ODBC

Provider

BLOB

ISequentialStream

Yes

Yes

Command

IAccessor

Yes

Yes

ICommand

Yes

Yes

ICommandPersist

No

No

ICommandPrepare

Yes

Yes

ICommandProperties

Yes

Yes

ICommandText

Yes

Yes

ICommandWithParameters

Yes

Yes

IColumnsInfo

Yes

Yes

IColumnsRowset

Yes

Yes

IConvertType

Yes

Yes

ISupportErrorInfo

Yes

Yes

DataSource

IConnectionPoint

No

Yes

IDBAsynchNotify

(consumer)

No

No

IDBAsynchStatus

No

No

IDBConnectionPointContainer

No

Yes

IDBCreateSession

Yes

Yes

IDBDataSourceAdmin

No

No

IDBInfo

Yes

Yes

IDBInitialize

Yes

Yes

IDBProperties

Yes

Yes

IPersist

Yes

No

IPersistFile

Yes

Yes

ISupportErrorInfo

Yes

Yes

Enumerator

IDBInitialize

Yes

Yes

IDBProperties

Yes

Yes

IParseDisplayName

Yes

No

ISourcesRowset

Yes

Yes

ISupportErrorInfo

Yes

Yes

Error

Lookup

Service

IErrorLookUp

Yes

Yes

Error

Object

IErrorInfo

Yes

No

IErrorRecords

Yes

No

ISQLErrorInfo

(custom)

Yes

No

228

Programming

Client

Applications

||||

||||

||||

Table

23.

Comparison

of

OLE

DB

Components

and

Interfaces

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

and

the

Microsoft

OLE

DB

Provider

for

ODBC

(continued)

Interface

DB2

ODBC

Provider

Multiple

Results

IMultipleResults

Yes

Yes

ISupportErrorInfo

Yes

Yes

RowSet

IAccessor

Yes

Yes

IColumnsRowset

Yes

Yes

IColumnsInfo

Yes

Yes

IConvertType

Yes

Yes

IChapteredRowset

No

No

IConnectionPointContainer

Yes

Yes

IDBAsynchStatus

No

No

IParentRowset

No

No

IRowset

Yes

Yes

IRowsetChange

Yes

Yes

IRowsetChapterMember

No

No

IRowsetFind

No

No

IRowsetIdentity

Yes

Yes

IRowsetIndex

No

No

IRowsetInfo

Yes

Yes

IRowsetLocate

Yes

Yes

IRowsetNotify

(consumer)

Yes

No

IRowsetRefresh

Cursor

Service

Component

Yes

IRowsetResynch

Cursor

Service

Component

Yes

IRowsetScroll

Yes1

Yes

IRowsetUpdate

Cursor

Service

Component

Yes

IRowsetView

No

No

ISupportErrorInfo

Yes

Yes

Notes:

1.

The

values

to

be

returned

are

approximations.

Deleted

rows

will

not

be

skipped.

Session

IAlterIndex

No

No

IAlterTable

No

No

IDBCreateCommand

Yes

Yes

IDBSchemaRowset

Yes

Yes

IGetDataSource

Yes

Yes

IIndexDefinition

No

No

IOpenRowset

Yes

Yes

ISessionProperties

Yes

Yes

ISupportErrorInfo

Yes

Yes

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

229

||||

||||

||||

||||

||||

|

|

Table

23.

Comparison

of

OLE

DB

Components

and

Interfaces

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

and

the

Microsoft

OLE

DB

Provider

for

ODBC

(continued)

Interface

DB2

ODBC

Provider

ITableDefinition

No

No

ITableDefinitionWithConstraints

No

No

ITransaction

Yes

Yes

ITransactionJoin

Yes

Yes

ITransactionLocal

Yes

Yes

ITransactionObject

No

No

ITransactionOptions

No

Yes

View

Objects

IViewChapter

No

No

IViewFilter

No

No

IViewRowset

No

No

IViewSort

No

No

IBM

OLE

DB

Provider

support

for

OLE

DB

properties

The

following

table

shows

the

OLE

DB

properties

that

are

supported

by

the

IBM

OLE

DB

Provider:

Table

24.

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

Property

Group

Property

Set

Properties

Default

Value

R/W

Data

Source

DBPROPSET_DATASOURCE

DBPROP_MULTIPLECONNECTIONS

VARIANT_FALSE

R

DBPROP_RESETDATASOURCE

DBPROPVAL_RD_RESETALL

R/W

Data

Source

Information

DBPROPSET

_DATASOURCEINFO

DBPROP_ACTIVESESSIONS

0

R

DBPROP_ASYNCTXNABORT

VARIANT_FALSE

R

DBPROP_ASYNCTXNCOMMIT

VARIANT_FALSE

R

DBPROP_BYREFACCESSORS

VARIANT_FALSE

R

DBPROP_COLUMNDEFINITION

DBPROPVAL_CD_NOTNULL

R

DBPROP_CONCATNULLBEHAVIOR

DBPROPVAL_CB_NULL

R

DBPROP_CONNECTIONSTATUS

DBPROPVAL_CS_INITIALIZED

R

DBPROP_DATASOURCENAME

N/A

R

DBPROP_DATASOURCEREADONLY

VARIANT_FALSE

R

DBPROP_DBMSNAME

N/A

R

DBPROP_DBMSVER

N/A

R

DBPROP_DSOTHREADMODEL

DBPROPVAL_RT_FREETHREAD

R

DBPROP_GROUPBY

DBPROPVAL_GB_CONTAINS_SELECT

R

DBPROP_IDENTIFIERCASE

DBPROPVAL_IC_UPPER

R

DBPROP_MAXINDEXSIZE

0

R

DBPROP_MAXROWSIZE

0

R

DBPROP_MAXROWSIZEINCLUDESBLOB

VARIANT_TRUE

R

DBPROP_MAXTABLEINSELECT

0

R

DBPROP_MULTIPLEPARAMSETS

VARIANT_FALSE

R

DBPROP_MULTIPLERESULTS

DBPROPVAL_MR_SUPPORTED

R

DBPROP_MULTIPLESTORAGEOBJECTS

VARIANT_TRUE

R

DBPROP_MULTITABLEUPDATE

VARIANT_FALSE

R

DBPROP_NULLCOLLATION

DBPROPVAL_NC_LOW

R

DBPROP_OLEOBJECTS

DBPROPVAL_OO_BLOB

R

DBPROP_ORDERBYCOLUMNSINSELECT

VARIANT_FALSE

R

DBPROP

_OUTPUTPARAMETERAVAILABILITY

DBPROPVAL_OA_ATEXECUTE

R

230

Programming

Client

Applications

|||||
|
|
|
|
|||

Table

24.

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

Property

Group

Property

Set

Properties

Default

Value

R/W

DBPROP_PERSISTENTIDTYPE

DBPROPVAL_PT_NAME

R

DBPROP_PREPAREABORTBEHAVIOR

DBPROPVAL_CB_DELETE

R

DBPROP_PROCEDURETERM

“STORED

PROCEDURE”

R

DBPROP_PROVIDERFRIENDLYNAME

“IBM

OLE

DB

Provider

for

DB2”

R

DBPROP_PROVIDERNAME

“IBMDADB2.DLL”

R

DBPROP_PROVIDEROLEDBVER

“02.7”

R

DBPROP_PROVIDERVER

N/A

R

DBPROP_QUOTEIDENTIFIERCASE

DBPROPVAL_IC_SENSITIVE

R

DBPROP

_ROWSETCONVERSIONSONCOMMAND

VARIANT_TRUE

R

DBPROP_SCHEMATERM

“SCHEMA”

R

DBPROP_SCHEMAUSAGE

DBPROPVAL_SU_DML_STATEMENTS

|

DBPROPVAL_SU_TABLE_DEFINITION

|

DBPROPVAL_SU_INDEX_DEFINITION

|

DBPROPVAL_SU_PRIVILEGE_DEFINITION

R

DBPROP_SQLSUPPORT

DBPROPVAL_SQL_ODBC_EXTENDED

|

DBPROPVAL_SQL_ESCAPECLAUSES

|

DBPROPVAL_SQL_ANSI92_ENTRY

R

DBPROP_SERVERNAME

N/A

R

DBPROP_STRUCTUREDSTORAGE

DBPROPVAL_SS_ISEQUENTIALSTREAM

R

DBPROP_SUBQUERIES

DBPROPVAL_SQ_CORRELATEDSUBQUERIES

|

DBPROPVAL_SQ_COMPARISON

|

DBPROPVAL_SQ_EXISTS

|

DBPROPVAL_SQ_IN

|

DBPROPVAL_SQ_QUANTIFIED

|

R

DBPROP_SUPPORTEDTXNDDL

DBPROPVAL_TC_ALL

R

DBPROP_SUPPORTEDTXNISOLEVELS

DBPROPVAL_TI_CURSORSTABILITY

|

DBPROPVAL_TI_READCOMMITTED

|

DBPROPVAL_TI_READUNCOMMITTED

|

DBPROPVAL_TI_SERIALIZABLE

|

R

DBPROP_SUPPORTEDTXNISORETAIN

DBPROPVAL_TR_COMMIT_DC

|

DBPROPVAL_TR_ABORT_NO

|

R

DBPROP_TABLETERM

“TABLE”

R

DBPROP_USERNAME

N/A

R

Initialization

DBPROPSET_DBINIT

DBPROP_AUTH_PASSWORD

N/A

R/W

DBPROP_AUTH_PERSIST

_SENSITIVE_AUTHINFO

VARIANT_FALSE

R/W

DBPROP_AUTH_USERID

N/A

R/W

DBPROP_INIT_DATASOURCE

N/A

R/W

DBPROP_INIT_HWND

N/A

R/W

DBPROP_INIT_MODE

DB_MODE_READWRITE

R/W

DBPROP_INIT_OLEDBSERVICES

0xFFFFFFFF

R/W

DBPROP_INIT_PROMPT

DBPROMPT_NOPROMPT

R/W

DBPROP_INIT_PROVIDERSTRING

N/A

R/W

Rowset

DBPROPSET_ROWSET

DBPROP_ABORTPRESERVE

VARIANT_FALSE

R

DBPROP_ACCESSORDER

DBPROPVAL_AO_RANDOM

R

DBPROP_BLOCKINGSTORAGEOBJECTS

VARIANT_FALSE

R

DBPROP_BOOKMARKS

VARIANT_FALSE

R/W

DBPROP_BOOKMARKSKIPPED

VARIANT_FALSE

R

DBPROP_BOOKMARKTYPE

DBPROPVAL_BMK_NUMERIC

R

DBPROP_CACHEDEFERRED

VARIANT_FALSE

R/W

DBPROP_CANFETCHBACKWARDS

VARIANT_FALSE

R/W

DBPROP_CANHOLDROWS

VARIANT_FALSE

R

DBPROP_CANSCROLLBACKWARDS

VARIANT_FALSE

R/W

DBPROP_CHANGEINSERTEDROWS

VARIANT_FALSE

R

DBPROP_COMMITPRESERVE

VARIANT_TRUE

R/W

DBPROP_COMMANDTIMEOUT

0

R/W

DBPROP_DEFERRED

VARIANT_FALSE

R

DBPROP_IAccessor

VARIANT_TRUE

R

DBPROP_IColumnsInfo

VARIANT_TRUE

R

DBPROP_IColumnsRowset

VARIANT_TRUE

R/W

DBPROP_IConvertType

VARIANT_TRUE

R

DBPROP_IMultipleResults

VARIANT_FALSE

R/W

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

231

|||||
|||||

|||
|
||

|||||

|||||
|||||

|||||

|||||

Table

24.

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

Property

Group

Property

Set

Properties

Default

Value

R/W

DBPROP_IRowset

VARIANT_TRUE

R

DBPROP_IRowChange

VARIANT_FALSE

R/W

DBPROP_IRowsetFind

VARIANT_FALSE

R

DBPROP_IRowsetIdentity

VARIANT_TRUE

R

DBPROP_IRowsetInfo

VARIANT_TRUE

R

DBPROP_IRowsetLocate

VARIANT_FALSE

R/W

DBPROP_IRowsetScroll

VARIANT_FALSE

R/W

DBPROP_IRowsetUpdate

VARIANT_FALSE

R

DBPROP_ISequentialStream

VARIANT_TRUE

R

DBPROP_ISupportErrorInfo

VARIANT_TRUE

R

DBPROP_LITERALBOOKMARKS

VARIANT_FALSE

R

DBPROP_LITERALIDENTITY

VARIANT_TRUE

R

DBPROP_LOCKMODE

DBPROPVAL_LM_SINGLEROW

R/W

DBPROP_MAXOPENROWS

32767

R

DBPROP_MAXROWS

0

R/W

DBPROP_NOTIFICATIONGRANULARITY

DBPROPVAL_NT_SINGLEROW

R/W

DBPROP_NOTIFICATION

PHASES

DBPROPVAL_NP_OKTODO

DBPROPBAL_NP_ABOUTTODO

DBPROPVAL_NP_SYNCHAFTER

DBPROPVAL_NP_FAILEDTODO

DBPROPVAL_NP_DIDEVENT

R

DBPROP_NOTIFYROWSETRELEASE

DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP

_NOTIFYROWSETFETCHPOSITIONCHANGE

DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_NOTIFYCOLUMNSET

DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_NOTIFYROWDELETE

DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_NOTIFYROWINSERT

DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_ORDEREDBOOKMARKS

VARIANT_FALSE

R

DBPROP_OTHERINSERT

VARIANT_FALSE

R

DBPROP_OTHERUPDATEDELETE

VARIANT_FALSE

R/W

DBPROP_OWNINSERT

VARIANT_FALSE

R

DBPROP_OWNUPDATEDELETE

VARIANT_FALSE

R

DBPROP_QUICKRESTART

VARIANT_FALSE

R/W

DBPROP_REMOVEDELETED

VARIANT_FALSE

R/W

DBPROP_ROWTHREADMODEL

DBPROPVAL_RT_FREETHREAD

R

DBPROP_SERVERCURSOR

VARIANT_TRUE

R

DBPROP_SERVERDATAONINSERT

VARIANT_FALSE

R

DBPROP_UNIQUEROWS

VARIANT_FALSE

R/W

DBPROP_UPDATABILITY

0

R/W

Rowset

DBPROPSET_DB2ROWSET

DBPROP_ISLONGMINLENGTH

32000

R/W

Session

DBPROPSET_SESSION

DBPROP_SESS_AUTOCOMMITISOLEVELS

DBPROPVAL_TI_CURSORSTABILITY

R/W

Connections

to

Data

Sources

Using

IBM

OLE

DB

Provider

The

following

examples

show

how

to

connect

to

a

DB2®

data

source

using

the

IBM®

OLE

DB

Provider

for

DB2:

Example

1:

Visual

Basic

application

using

ADO:

Dim

db

As

ADODB.Connection

Set

db

=

New

ADODB.Connection

db.Provider

=

“IBMDADB2”

db.CursorLocation

=

adUseClient

...

Example

2:

C/C++

application

using

IDBPromptInitialize

and

Data

Links:

232

Programming

Client

Applications

|||||

|||||
|||||

|||||

|||||

|||||
||||
|
|
|
|

|

||||
|
|

|||
|
|
|
|

||||
|
|

||||
|
|

||||
|
|

|||||

//

Create

DataLinks

hr

=

CoCreateInstance

(

CLSID_DataLinks,

NULL,

CLSCTX_INPROC_SERVER,

IID_IDBPromptInitialize,

(void**)&pIDBPromptInitialize);

//

Invoke

the

DataLinks

UI

to

select

the

provider

and

data

source

hr

=

pIDBPromptInitialize–>PromptDataSource

(

NULL,

GetDesktopWindow(),

DBPROMPTOPTIONS_PROPERTYSHEET,

0,

NULL,

NULL,

IID_IDBInitialize,

(IUnknown**)&pIDBInitialize);

Example

3:

C/C++

application

using

IDataInitialize

and

Service

Component:

hr

=

CoCreateInstance

(

CLSID_MSDAINITIALIZE,

NULL,

CLSCTX_INPROC_SERVER,

IID_IDataInitialize,

(void**)&pIDataInitialize);

hr

=

pIDataInitialize–>CreateDBInstance(

CLSID_IBMDADB2,

//

ClassID

of

IBMDADB2

NULL,

CLSCTX_INPROC_SERVER,

NULL,

IID_IDBInitialize,

(IUnknown**)&pIDBInitialize);

ADO

Applications

The

sections

that

follow

describe

considerations

for

ADO

applications.

ADO

Connection

String

Keywords

To

specify

ADO

(ActiveX

Data

Objects)

connection

string

keywords,

specify

the

keyword

using

the

keyword=value

format

in

the

provider

(connection)

string.

Delimit

multiple

keywords

with

a

semicolon

(;).

The

following

table

describes

the

keywords

supported

by

the

IBM®

OLE

DB

Provider

for

DB2®:

Table

25.

Keywords

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

Keyword

Value

Meaning

DSN

Name

of

the

database

alias

The

DB2

database

alias

in

the

database

directory.

UID

User

ID

The

user

ID

used

to

connect

to

the

DB2

server.

PWD

Password

of

UID

Password

for

the

user

ID

used

to

connect

to

the

DB2

server.

Other

DB2

CLI

configuration

keywords

also

affect

the

behavior

of

the

IBM

OLE

DB

Provider.

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

233

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Connections

to

Data

Sources

with

Visual

Basic

ADO

Applications

To

connect

to

a

DB2®

data

source

using

the

IBM®

OLE

DB

Provider

for

DB2,

specify

the

IBMDADB2

provider

name.

Related

concepts:

v

“Connections

to

Data

Sources

Using

IBM

OLE

DB

Provider”

on

page

232

Related

tasks:

v

“Building

ADO

applications

with

Visual

Basic”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Updatable

Scrollable

Cursors

in

ADO

Applications

The

IBM®

OLE

DB

Provider

for

DB2®

natively

supports

read-only,

forward-only,

read-only

scrollable,

and

updatable

scrollable

cursors.

An

ADO

application

that

wants

to

access

updatable

scrollable

cursors

can

set

the

cursor

location

to

either

adUseClient

or

adUseServer.

Setting

the

cursor

location

to

adUseServer

causes

the

cursor

to

materialize

on

the

server.

Limitations

for

ADO

Applications

Following

are

the

limitations

for

ADO

applications:

v

ADO

applications

calling

stored

procedures

must

have

their

parameters

created

and

explicitly

bound.

The

Parameters.Refresh

method

for

automatically

generating

parameters

is

not

supported

for

DB2

Server

for

VSE

&

VM.

v

There

is

no

support

for

default

parameter

values.

v

When

inserting

a

new

row

using

a

server-side

scrollable

cursor,

use

the

AddNew()

method

with

the

Fieldlist

and

Values

arguments.

This

is

more

efficient

than

calling

AddNew()

with

no

arguments

following

Update()

calls

for

each

column.

Each

AddNew()

and

Update()

call

is

a

separate

request

to

the

server

and

therefore,

is

less

efficient

than

a

single

call

to

AddNew().

v

Newly

inserted

rows

are

not

updatable

with

a

server-side

scrollable

cursor.

v

Tables

with

long

data,

LOB,

or

Datalink

columns

are

not

updatable

when

using

a

server-side

scrollable

cursor.

IBM

OLE

DB

Provider

Support

for

ADO

Methods

and

Properties

The

IBM

OLE

DB

Provider

supports

the

following

ADO

methods

and

properties:

Table

26.

ADO

Methods

and

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

ADO

Method/Property

OLE

DB

Interface/Property

IBM

OLE

DB

Support

Command

Methods

Cancel

ICommand

Yes

CreateParameter

Yes

234

Programming

Client

Applications

|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

Table

26.

ADO

Methods

and

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

ADO

Method/Property

OLE

DB

Interface/Property

IBM

OLE

DB

Support

Execute

Yes

Command

Properties

ActiveConnection

(ADO

specific)

Command

Text

ICommandText

Yes

Command

Timeout

ICommandProperties::SetProperties

DBPROP_COMMANDTIMEOUT

Yes

CommandType

(ADO

specific)

Prepared

ICommandPrepare

Yes

State

(ADO

specific)

Command

Collection

Parameters

ICommandWithParameter

DBSCHEMA

_PROCEDURE_PARAMETERS

Yes

Properties

ICommandProperties

IDBProperties

Yes

Connection

Methods

BeginTrans

CommitTrans

RollbackTrans

ITransactionLocal

Yes

(but

not

nested)

Yes

(but

not

nested)

Yes

(but

not

nested)

Execute

ICommand

IOpenRowset

Yes

Open

IDBCreateSession

IDBInitialize

Yes

OpenSchema

adSchemaColumnPrivileges

adSchemaColumns

adSchemaForeignKeys

adSchemaIndexes

adSchemaPrimaryKeys

adSchemaProcedureParam

adSchemaProcedures

adSchemaProviderType

adSchemaStatistics

adSchemaTablePrivileges

adSchemaTables

IDBSchemaRowset

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Cancel

Yes

Connection

Properties

Attributes

adXactCommitRetaining

adXactRollbackRetaining

ITransactionLocal

Yes

Yes

CommandTimeout

ICommandProperties

DBPROP_COMMAND_TIMEOUT

Yes

ConnectionString

(ADO

specific)

ConnectionTimeout

IDBProperties

DBPROP_INIT_TIMEOUT

No

CursorLocation:

adUseClient

adUseNone

adUseServer

(Use

OLE

DB

Cursor

Service)

(Not

Used)

Yes

No

Yes

DefaultDataBase

IDBProperties

DBPROP_CURRENTCATALOG

No

IsolationLevel

ITransactionLocal

DBPROP_SESS

_AUTOCOMMITISOLEVELS

Yes

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

235

||
|
|
|

|
|
|

|
|
|
|

Table

26.

ADO

Methods

and

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

ADO

Method/Property

OLE

DB

Interface/Property

IBM

OLE

DB

Support

Mode

adModeRead

adModeReadWrite

adModeShareDenyNone

adModeShareDenyRead

adModeShareDenyWrite

adModeShareExclusive

adModeUnknown

adModeWrite

IDBProperties

DBPROP_INIT_MODE

No

Yes

No

No

No

No

No

No

Provider

ISourceRowset::GetSourceRowset

Yes

State

(ADO

specific)

Version

(ADO

specific)

Connection

Collection

Errors

IErrorRecords

Yes

Properties

IDBProperties

Yes

Error

Properties

Description

NativeError

Number

Source

SQLState

IErrorRecords

Yes

Yes

Yes

Yes

Yes

HelpContext

HelpFile

No

No

Field

Methods

AppendChunk

GetChunk

ISequentialStream

Yes

Yes

Field

Properties

Actual

Size

IAccessor

IRowset

Yes

Attributes

DataFormat

DefinedSize

Name

NumericScale

Precision

Type

IColumnInfo

Yes

Yes

Yes

Yes

Yes

Yes

OriginalValue

IRowsetUpdate

Yes

(Cursor

Service)

UnderlyingValue

IRowsetRefresh

IRowsetResynch

Yes

(Cursor

Service)

Yes

(Cursor

Service)

Value

IAccessor

IRowset

Yes

Field

Collection

Properties

IDBProperties

IRowsetInfo

Yes

Parameter

Methods

AppendChunk

ISequentialStream

Yes

Attributes

Direction

Name

NumericScale

Precision

Scale

Size

Type

ICommandWithParameter

DBSCHEMA

_PROCEDURE_PARAMETERS

Yes

No

Yes

Yes

Yes

Yes

Yes

Value

IAccessor

ICommand

Yes

Parameter

Collection

Properties

Yes

236

Programming

Client

Applications

||
|
|
|
|

||
|
|
|
|

Table

26.

ADO

Methods

and

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

ADO

Method/Property

OLE

DB

Interface/Property

IBM

OLE

DB

Support

RecordSet

Methods

AddNew

IRowsetChange

Yes

Cancel

Yes

CancelBatch

IRowsetUpdate::Undo

Yes

(Cursor

Service)

CancelUpdate

Yes

(Cursor

Service)

Clone

IRowsetLocate

Yes

Close

IAccessor

IRowset

Yes

CompareBookmarks

No

Delete

IRowsetChange

Yes

GetRows

IAccessor

IRowset

Yes

Move

IRowset

IRowsetLocate

Yes

MoveFirst

IRowset

IRowsetLocate

Yes

MoveNext

IRowset

IRowsetLocate

Yes

MoveLast

IRowsetLocate

Yes

MovePrevious

IRowsetLocate

Yes

NextRecordSet

IMultipleResults

Yes

Open

ICommand

IOpenRowset

Yes

Requery

ICommand

IOpenRowset

Yes

Resync

IRowsetRefresh

Yes

(Cursor

Service)

Supports

IRowsetInfo

Yes

Update

UpdateBatch

IRowsetChange

IRowsetUpdate

Yes

Yes

(Cursor

Service)

RecordSet

Properties

AbsolutePage

IRowsetLocate

IRowsetScroll

Yes

Yes1

AbsolutePosition

IRowsetLocate

IRowsetScroll

Yes

Yes1

ActiveConnection

IDBCreateSession

IDBInitialize

Yes

BOF

(ADO

specific)

Bookmark

IAccessor

IRowsetLocate

Yes

CacheSize

cRows

in

IRowsetLocate

IRowset

Yes

CursorType

adOpenDynamic

adOpenForwardOnly

adOpenKeySet

adOpenStatic

ICommandProperties

No

Yes

Yes

Yes

EditMode

IRowsetUpdate

Yes

(Cursor

Service)

EOF

(ADO

specific)

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

237

|
|
|||

||||

||||

|||
|
|

|||
|
|

|||
|
|

|||
|
|

||||

||||

||
|
|
|
|
|

|
|
||
|
|
|

|||
|
|
|

|||
|
|

||
|
|
|
|

||
|
|
|
|

Table

26.

ADO

Methods

and

Properties

Supported

by

the

IBM

OLE

DB

Provider

for

DB2

(continued)

ADO

Method/Property

OLE

DB

Interface/Property

IBM

OLE

DB

Support

Filter

IRowsetLocate

IRowsetView

IRowsetUpdate

IViewChapter

IViewFilter

No

LockType

ICommandProperties

Yes

MarshallOption

No

MaxRecords

ICommandProperties

IOpenRowset

Yes

PageCount

IRowsetScroll

Yes1

PageSize

(ADO

specific)

Sort

(ADO

specific)

Source

(ADO

specific)

State

(ADO

specific)

Status

IRowsetUpdate

Yes

(Cursor

Service)

Notes:

1.

The

values

to

be

returned

are

approximations.

Deleted

rows

will

not

be

skipped.

RecordSet

Collection

Fields

IColumnInfo

Yes

Properties

IDBProperties

IRowsetInfo::GetProperties

Yes

C

and

C++

Applications

The

sections

that

follow

describe

considerations

for

C

and

C++

applications.

Compilation

and

Linking

of

C/C++

Applications

and

the

IBM

OLE

DB

Provider

C/C++

applications

that

use

the

constant

CLSID_IBMDADB2

must

include

the

ibmdadb2.h

file,

which

can

be

found

in

the

SQLLIB\include

directory.

These

applications

must

define

the

DBINITCONSTANTS

before

the

include

statement.

The

following

example

shows

the

correct

sequence

of

statements:

#define

DBINITCONSTANTS

#include

"ibmdadb2.h"

Connections

to

Data

Sources

in

C/C++

Applications

using

the

IBM

OLE

DB

Provider

To

connect

to

a

DB2®

data

source

using

the

IBM®

OLE

DB

Provider

for

DB2

in

a

C/C++

application,

you

can

use

one

of

the

two

OLE

DB

core

interfaces,

IDBPromptInitialize

or

IDataInitialize,

or

you

can

call

the

COM

API

CoCreateInstance.

The

IDataInitialize

interface

is

exposed

by

the

OLE

DB

Service

Component,

and

the

IDBPromptInitialize

is

exposed

by

the

Data

Links

Component.

Related

concepts:

v

“Connections

to

Data

Sources

Using

IBM

OLE

DB

Provider”

on

page

232

238

Programming

Client

Applications

||||

||||

|
|

|
|
|
|
|
|

Related

tasks:

v

“Building

ADO

applications

with

Visual

C++”

in

the

Application

Development

Guide:

Building

and

Running

Applications

MTS

and

COM+

Distributed

Transactions

The

sections

that

follow

describe

considerations

for

MTS

and

COM+

distributed

transactions.

MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider

OLE

DB

applications

running

in

either

a

Microsoft®

Transaction

Server

(MTS)

environment

on

Windows®

NT

or

a

Component

Services

(COM+)

environment

on

Windows

2000

can

use

the

ITransactionJoin

interface

to

participate

in

distributed

transactions

with

multiple

DB2®

Universal

Database,

host,

and

iSeries

database

servers

as

well

as

other

resource

managers

that

comply

with

the

MTS/COM+

specifications.

Prerequisites:

To

use

the

MTS

or

COM+

distributed

transaction

support

offered

by

the

IBM®

OLE

DB

Provider

for

DB2,

ensure

that

your

server

meets

the

following

prerequisites.

Note:

These

requirements

are

only

for

the

Windows

machine

where

the

DB2

client

is

installed.

v

Windows

NT®

with

MTS

at

Version

2.0

with

Microsoft

Hotfix

0772

or

later

MTS

Version

2.0

for

Windows

NT

is

available

as

part

of

the

Windows

NT

4.0

Option

Pack.

You

can

download

the

Option

Pack

from:

http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/

v

Windows

2000

with

Service

Pack

3

or

later

Related

concepts:

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

646

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

648

Enablement

of

MTS

Support

in

DB2

Universal

Database

for

C/C++

Applications

To

run

a

C

or

C++

application

in

MTS

or

COM+

transactional

mode,

you

can

create

the

IBMDADB2

data

source

instance

using

the

DataLink

interface.

You

could

also

use

CoCreateInstance,

get

a

session

object,

and

use

JoinTransaction.

See

the

description

of

how

to

connect

a

C

or

C++

application

to

a

data

source

for

more

information.

To

run

an

ADO

application

in

MTS

or

COM+

transactional

mode,

see

the

description

of

how

to

connect

a

C

or

C++

application

to

a

data

source.

To

use

a

component

in

an

MTS

or

COM+

package

in

transactional

mode,

set

the

Transactions

property

of

the

component

to

one

of

the

following

values:

v

“Required”

Chapter

11.

IBM

OLE

DB

Provider

for

DB2

239

|

v

“Required

New”

v

“Supported”

For

information

about

these

values,

see

the

MTS

documentation.

Related

concepts:

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

646

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

648

240

Programming

Client

Applications

Chapter

12.

OLE

DB

.NET

Data

Provider

OLE

DB

.NET

Data

Provider

.

.

.

.

.

.

.

. 241

OLE

DB

.NET

Data

Provider

restrictions

.

.

.

. 242

Connection

pooling

in

OLE

DB

.NET

Data

Provider

applications

.

.

.

.

.

.

.

.

.

.

. 245

Time

columns

in

OLE

DB

.NET

Data

Provider

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

ADORecordset

objects

in

OLE

DB

.NET

Data

Provider

applications

.

.

.

.

.

.

.

.

.

.

. 246

OLE

DB

.NET

Data

Provider

The

OLE

DB

.NET

Data

Provider

uses

the

IBM®

DB2®

OLE

DB

Driver,

which

is

referred

to

in

a

ConnectionString

object

as

IBMDADB2.

The

connection

string

keywords

supported

by

the

OLE

DB

.NET

Data

Provider

are

the

same

as

those

supported

by

the

IBM

OLE

DB

Provider

for

DB2.

Also,

the

OLE

DB

.NET

Data

Provider

has

the

same

restrictions

as

the

IBM

DB2

OLE

DB

Provider.

There

are

additional

restrictions

for

the

OLE

DB

.NET

Data

Provider,

which

are

identified

in

the

topic:

OLE

DB

.NET

Data

Provider

restrictions.

In

order

to

use

the

OLE

DB

.NET

Data

Provider,

you

must

have

the

.NET

Framework

Version

1.1

installed.

For

DB2

Universal

Database™

for

AS/400®

and

iSeries™,

the

following

fix

is

required

on

the

server:

APAR

ii13348.

The

following

are

all

the

supported

connection

keywords

for

the

OLE

DB

.NET

Data

Provider:

Table

27.

ConnectionString

keywords

for

the

OLE

DB

.NET

Data

Provider

Keyword

Value

Meaning

PROVIDER

IBMDADB2

Specifies

the

IBM

OLE

DB

Provider

for

DB2

(required)

DSN

or

Data

Source

database

alias

The

DB2

database

alias

as

cataloged

in

the

database

directory

UID

user

ID

The

user

ID

used

to

connect

to

the

DB2

server

PWD

password

The

password

for

the

user

ID

used

to

connect

to

the

DB2

server

The

following

is

an

example

of

creating

an

OleDbConnection

to

connect

to

the

SAMPLE

database:

[Visual

Basic

.NET]

Dim

con

As

New

OleDbConnection("Provider=IBMDADB2;"

+

"Data

Source=sample;UID=userid;PWD=password;")

con.Open()

[C#]

OleDbConnection

con

=

new

OleDbConnection("Provider=IBMDADB2;"

+

"Data

Source=sample;UID=userid;PWD=password;"

);

con.Open()

©

Copyright

IBM

Corp.

1997

-

2004

241

||
||
|
||

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|

|
|

|
|

||

|||

|||
|

|||
|
|

|||
|

|||
|
|
|

|
|

|
|
|
|
|
|
|
|
|

OLE

DB

.NET

Data

Provider

restrictions

The

following

table

identifies

usage

restrictions

for

the

IBM

OLE

DB

.NET

Data

Provider:

Table

28.

IBM

OLE

DB

.NET

Data

Provider

restrictions

Class

or

feature

Restriction

description

DB2

servers

affected

ASCII

character

streams

You

cannot

use

ASCII

character

streams

with

OleDbParameters

when

using

DbType.AnsiString

or

DbType.AnsiStringFixedLength.

The

OLE

DB

.NET

Data

Provider

will

throw

the

following

exception:

"Specified

cast

is

not

valid"

Workaround:

Use

DbType.Binary

instead

of

using

DbType.AnsiString

or

DbType.AnsiStringFixedLength.

All

ADORecord

ADORecord

is

not

supported.

All

ADORecordSet

and

Timestamp

As

documented

in

MSDN,

the

ADORecordSet

variant

time

resolves

to

one

second.

Consequently,

all

fractional

seconds

are

lost

when

a

DB2

Timestamp

column

is

stored

into

a

ADORecordSet.

Similarly,

after

filling

a

DataSet

from

a

ADORecordSet,

the

Timestamp

columns

in

the

DataSet

will

not

have

any

fractional

seconds.

Workaround:

This

workaround

only

works

for

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows,

Version

8.1,

FixPak

4

or

later.

In

order

to

avoid

the

loss

of

fraction

of

seconds,

you

can

set

the

following

CLI

keyword:

MAPTIMESTAMPDESCRIBE

=

2

This

keyword

will

describe

the

Timestamp

as

a

WCHAR(26).

To

set

the

keyword,

execute

the

following

command

from

a

DB2

Command

Window:

db2

update

cli

cfg

for

section

common

using

MAPTIMESTAMPDESCRIBE

2

All

Chapters

Chapters

are

not

supported.

All

Key

information

The

OLE

DB

.NET

Data

Provider

cannot

retrieve

key

information

when

opening

an

IDataReader

at

the

same

time.

DB2

for

VM/VSE

Key

information

from

stored

procedures

The

OLE

DB

.NET

Data

Provider

can

retrieve

key

information

about

a

result

set

returned

by

a

stored

procedure

only

from

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows.

This

is

because

the

DB2

servers

for

platforms

other

than

Linux,

UNIX,

and

Windows

do

not

return

extended

describe

information

for

the

result

sets

opened

in

the

stored

procedure.

In

order

to

retrieve

key

information

of

a

result

set

returned

by

a

stored

procedure

on

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows,

you

need

to

set

the

following

registry

variable

on

the

DB2

server:

db2set

DB2_APM_PERFORMANCE=8

Setting

this

server-side

DB2

registry

variable

will

keep

the

result

set

meta-data

available

on

the

server

for

a

longer

period

of

time,

thus

allowing

OLE

DB

to

successfully

retrieve

the

key

information.

However,

depending

on

the

server

workload,

the

meta-data

might

not

be

available

long

enough

before

the

OLE

DB

Provider

queries

for

the

information.

As

such,

there

is

no

guarantee

that

the

key

information

will

always

be

available

for

result

sets

returned

from

a

store

procedure.

In

order

to

retrieve

any

key

information

about

a

CALL

statement,

the

application

must

execute

the

CALL

statement.

Calling

OleDbDataAdapter.FillSchema()

or

OleDbCommand.ExecuteReader(CommandBehavior.SchemaOnly

|

CommandBehavior.KeyInfo),

will

not

actually

execute

the

stored

procedure

call.

Therefore,

you

will

not

retrieve

any

key

information

for

the

result

set

that

is

to

be

returned

by

the

stored

procedure.

All

242

Programming

Client

Applications

|
|

|
|

||

|||

||
|

|
|

|

|
|

|

|||

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|

|||

||
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

Table

28.

IBM

OLE

DB

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

Key

information

from

batched

SQL

statements

When

using

batched

SQL

statements

that

return

multiple

results,

the

FillSchema()

method

attempts

to

retrieve

schema

information

only

for

the

first

SQL

statement

in

the

batched

SQL

statement

list.

If

this

statement

does

not

return

a

result

set

then

no

table

is

created.

For

example:

[C#]

cmd.CommandText

=

"INSERT

INTO

ORG(C1)

VALUES(1000);

SELECT

C1

FROM

ORG;";

da

=

new

OleDbDataAdapter(cmd);

da.FillSchema(ds,

SchemaType.Source);

No

table

will

be

created

in

the

data

set

because

the

first

statement

in

the

batch

SQL

statement

is

an

″INSERT″

statement,

which

does

not

return

a

result

set.

All

OleDbCommandBuilder

The

UPDATE,

DELETE

and

INSERT

statements

automatically

generated

by

the

OleDbCommandBuilder

are

incorrect

if

the

SELECT

statement

contains

any

columns

of

the

following

data

types:

v

CLOB

v

BLOB

v

DBCLOB

v

LONG

VARCHAR

v

LONG

VARCHAR

FOR

BIT

DATA

v

LONG

VARGRAPHIC

If

you

are

connecting

to

a

DB2

server

other

than

DB2

Universal

Database

for

Linux,

Unix

and

Windows,

then

columns

of

the

following

data

types

also

cause

this

problem:

v

VARCHAR1

v

VARCHAR

FOR

BIT

DATA1

v

VARGRAPHIC1

v

REAL

v

FLOAT

or

DOUBLE

v

TIMESTAMP

Notes:

1.

Columns

of

these

data

types

are

applicable

if

they

are

defined

to

be

VARCHAR

values

greater

than

254

bytes,

VARCHAR

values

FOR

BIT

DATA

greater

than

254

bytes,

or

VARGRAPHICs

greater

than

127

bytes.

This

condition

is

only

valid

if

you

are

connecting

to

a

DB2

server

other

than

DB2

Universal

Database

for

Linux,

Unix

and

Windows.

The

OleDbCommandBuilder

generates

SQL

statements

that

use

all

of

the

selected

columns

in

an

equality

comparison

in

the

WHERE

clause,

but

the

data

types

listed

previously

cannot

be

used

in

an

equality

comparison.

Note:

Note

that

this

restriction

will

affect

the

IDbDataAdapter.Update()

method

that

relies

on

the

OleDbCommandBuilder

to

automatically

generate

the

UPDATE,

DELETE,

and

INSERT

statements.

The

UPDATE

operation

will

fail

if

the

generated

statement

contains

any

one

of

the

data

types

listed

previously.

Workaround:

You

will

need

to

explicitly

remove

all

columns

that

are

of

the

data

types

listed

previously

from

the

WHERE

clause

of

the

generated

SQL

statement.

It

is

recommended

that

you

code

your

own

UPDATE,

DELETE

and

INSERT

statements.

All

OleDbCommandBuilder.

DeriveParameters

Case-sensitivity

is

important

when

using

DeriveParameters().

The

stored

procedure

name

specified

in

the

OleDbCommand.CommandText

needs

to

be

in

the

same

case

as

how

it

is

stored

in

the

DB2

system

catalog

tables.

To

see

how

stored

procedure

names

are

stored,

call

OpenSchema(

OleDbSchemaGuid.Procedures

)

without

supplying

the

procedure

name

restriction.

This

will

return

all

the

stored

procedure

names.

By

default,

DB2

stores

stored

procedure

names

in

uppercase,

so

most

often,

you

need

to

specify

the

stored

procedure

name

in

uppercase.

All

Chapter

12.

OLE

DB

.NET

Data

Provider

243

|

|||

|
|
|
|
|
|
|
|
|
|

|
|

|

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|

|

Table

28.

IBM

OLE

DB

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

OleDbCommandBuilder.

DeriveParameters

The

OleDbCommandBuilder.DeriveParameters()

method

does

not

include

the

ReturnValue

parameter

in

the

generated

OleDbParameterCollection.

SqlClient

and

the

DB2

.NET

Data

Provider

by

default

adds

the

parameter

with

ParameterDirection.ReturnValue

to

the

generated

ParameterCollection.

All

OleDbCommandBuilder.

DeriveParameters

The

OleDbCommandBuilder.DeriveParameters()

method

will

fail

for

overloaded

stored

procedures.

If

you

have

multiple

stored

procedures

of

the

name

″MYPROC″

with

each

of

them

taking

a

different

number

of

parameters

or

different

type

of

parameter,

the

OleDbCommandBuilder.DeriveParameters()

will

retrieve

all

the

parameters

for

all

the

overloaded

stored

procedures.

All

OleDbCommandBuilder.

DeriveParameters

If

the

application

does

not

qualify

a

stored

procedure

with

a

schema,

DeriveParameters()

will

return

all

the

parameters

for

that

procedure

name.

Therefore,

if

multiple

schemas

exist

for

the

same

procedure

name,

DeriveParameters()

will

return

all

the

parameters

for

all

the

procedures

with

the

same

name.

All

OleDbConnection.

ChangeDatabase

The

OleDbConnection.ChangeDatabase()

method

is

not

supported.

All

OleDbConnection.

ConnectionString

Use

of

nonprintable

characters

such

as

’\b’,

’\a’

or

’\O’

in

the

connection

string

will

cause

an

exception

to

be

thrown.

The

following

keywords

have

restrictions:

Data

Source

The

data

source

is

the

name

of

the

database,

not

the

server.

You

can

specify

the

SERVER

keyword,

but

it

is

ignored

by

the

IBMDADB2

provider.

Initial

Catalog

and

Connect

Timeout

These

keywords

are

not

supported.

In

general,

the

OLE

DB

.NET

Data

Provider

will

ignore

all

unrecognized

and

unsupported

keywords.

However,

specifying

these

keywords

will

cause

the

following

exception:

Multiple-step

OLE

DB

operation

generated

errors.

Check

each

OLE

DB

status

value,

if

available.

No

work

was

done.

ConnectionTimeout

ConnectionTimeout

is

read

only.

All

OleDbConnection.

GetOleDbSchemaTable

Restriction

values

are

case-sensitive,

and

need

to

match

the

case

of

the

database

objects

stored

in

the

system

catalog

tables,

which

defaults

to

uppercase.

For

instance,

if

you

have

created

a

table

in

the

following

manner:

CREATE

TABLE

abc(c1

SMALLINT)

DB2

will

store

the

table

name

in

uppercase

(″ABC″)

in

the

system

catalog.

Therefore,

you

will

need

to

use

″ABC″

as

the

restriction

value.

For

instance:

schemaTable

=

con.GetOleDbSchemaTable(OleDbSchemaGuid.Tables,

new

object[]

{

null,

null,

"ABC",

"TABLE"

});

Workaround:

If

you

need

case-sensitivity

or

spaces

in

your

data

definitions,

you

must

put

quotation

marks

around

them.

For

example:

cmd.CommandText

=

"create

table

\"Case

Sensitive\"(c1

int)";

cmd.ExecuteNonQuery();

tablename

=

"\"Case

Sensitive\"";

schemaTable

=

con.GetOleDbSchemaTable(OleDbSchemaGuid.Tables,

new

object[]

{

null,

null,

tablename,

"TABLE"

});

All

OleDbDataAdapter

and

DataColumnMapping

The

source

column

name

is

case-sensitive.

It

needs

to

match

the

case

as

stored

in

the

DB2

catalogs,

which

by

default

is

uppercase.

For

example:

colMap

=

new

DataColumnMapping("EMPNO",

"Employee

ID");

All

244

Programming

Client

Applications

|

|||

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
||

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|

|

Table

28.

IBM

OLE

DB

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

OleDbDataReader.

GetSchemaTable

The

OLE

DB

.NET

Data

Provider

is

not

able

to

retrieve

extended

describe

information

from

servers

that

do

not

return

extended

describe

information.

if

you

are

connecting

to

a

server

that

does

not

support

extended

describe

(the

affected

servers),

the

following

columns

in

the

metadata

table

returned

from

IDataReader.GetSchemaTable()

are

invalid:

v

IsReadOnly

v

IsUnique

v

IsAutoIncrement

v

BaseSchemaName

v

BaseCatalogName

DB2

for

OS/390,

version

7

or

lower

DB2

for

OS/400

DB2

for

VM/VSE

Stored

procedures:

no

column

names

for

result

sets

The

DB2

for

OS/390

version

6.1

server

does

not

return

column

names

for

result

sets

returned

from

a

stored

procedure.

The

OLE

DB

.NET

Data

Provider

maps

these

unnamed

columns

to

their

ordinal

position

(for

example,

″1″,

″2″

″3″).

This

is

contrary

to

the

mapping

documented

in

MSDN:

"Column1",

"Column2",

"Column3".

DB2

for

OS/390

version

6.1

Connection

pooling

in

OLE

DB

.NET

Data

Provider

applications

The

OLE

DB

.NET

Data

Provider

automatically

pools

connections

using

OLE

DB

session

pooling.

Connection

string

arguments

can

be

used

to

enable

or

disable

OLE

DB

services

including

pooling.

For

example,

the

following

connection

string

will

disable

OLE

DB

session

pooling

and

automatic

transaction

enlistment.

Provider=IBMDADB2;OLE

DB

Services=-4;Data

Source=SAMPLE;

The

following

table

describes

the

ADO

connection

string

attributes

you

can

use

to

set

the

OLE

DB

services:

Table

29.

Setting

OLE

DB

services

by

using

ADO

connection

string

attributes

Services

enabled

Value

in

connection

string

All

services

(the

default)

″OLE

DB

Services

=

-1;″

All

services

except

pooling

″OLE

DB

Services

=

-2;″

All

services

except

pooling

and

auto-enlistment

″OLE

DB

Services

=

-4;″

All

services

except

client

cursor

″OLE

DB

Services

=

-5;″

All

services

except

client

cursor

and

pooling

″OLE

DB

Services

=

-6;″

No

services

″OLE

DB

Services

=

0;″

For

more

information

about

OLE

DB

session

pooling

or

resource

pooling,

as

well

as

how

to

disable

pooling

by

overriding

OLE

DB

provider

service

defaults,

see

the

OLE

DB

Programmer’s

Reference

in

the

MSDN

library

located

at

http://msdn.microsoft.com/library.

Time

columns

in

OLE

DB

.NET

Data

Provider

applications

The

following

sections

describe

how

to

implement

time

columns

in

OLE

DB

.NET

Data

Provider

applications.

Inserting

using

parameter

markers:

You

want

to

insert

a

time

value

into

a

Time

column:

command.CommandText

=

"insert

into

mytable(c1)

values(

?

)";

Chapter

12.

OLE

DB

.NET

Data

Provider

245

|

|||

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

|

|
|

||

||

||

||

|
|
|

||

||

||
|

|
|
|
|

|

|
|

|

|

|

where

column

c1

is

a

Time

column.

Here

are

two

methods

to

bind

a

time

value

to

the

parameter

marker:

Using

OleDbParameter.OleDbType

=

OleDbType.DBTime

Because

OleDbType.DBTime

maps

to

a

TimeSpan

object,

you

must

supply

a

TimeSpan

object

as

the

parameter

value.

The

parameter

value

cannot

be

a

String

or

a

DateTime

object,

it

must

be

a

TimeSpan

object.

For

example:

p1.OleDbType

=

OleDbType.DBTime;

p1.Value

=

TimeSpan.Parse("0.11:20:30");

rowsAffected

=

cmd.ExecuteNonQuery();

The

format

of

the

TimeSpan

is

represented

as

a

string

in

the

format

″[-]d.hh:mm:ss.ff″

as

documented

in

the

MSDN

documentation.

Using

OleDbParameter.OleDbType

=

OleDbType.DateTime

This

will

force

the

OLE

DB

.NET

Data

Provider

to

convert

the

parameter

value

to

a

DateTime

object,

instead

of

a

TimeSpan

object,

consequently

the

parameter

value

can

be

any

valid

string/object

that

can

be

converted

into

a

DateTime

object.

This

means

values

such

as

″11:20:30″

will

work.

The

value

can

also

be

a

DateTime

object.

The

value

cannot

be

a

TimeSpan

object

since

a

TimeSpan

object

cannot

be

converted

to

a

DateTime

object

--

TimeSpan

doesn’t

implement

IConvertible.

For

example:

p1.OleDbType

=

OleDbType.DBTimeStamp;

p1.Value

=

"11:20:30";

rowsAffected

=

cmd.ExecuteNonQuery();

Retrieval:

To

retrieve

a

time

column

you

need

to

use

the

IDataRecord.GetValue()

method

or

the

OleDbDataReader.GetTimeSpan()

method.

For

example:

TimeSpan

ts1

=

((OleDbDataReader)reader).GetTimeSpan(

0

);

TimeSpan

ts2

=

(TimeSpan)

reader.GetValue(

0

);

ADORecordset

objects

in

OLE

DB

.NET

Data

Provider

applications

Following

are

considerations

regarding

the

use

of

ADORecordset

objects.

v

The

ADO

type

adDBTime

class

is

mapped

to

the

.NET

Framework

DateTime

class.

OleDbType.DBTime

corresponds

to

a

TimeSpan

object.

v

You

cannot

assign

a

TimeSpan

object

to

an

ADORecordset

object’s

Time

field.

This

is

because

the

ADORecordset

object’s

Time

field

expects

a

DateTime

object.

When

you

assign

a

TimeSpan

object

to

an

ADORecordsetobject,

you

will

get

the

following

message:

Method’s

type

signature

is

not

Interop

compatible.

You

can

only

populate

the

Time

field

with

a

DateTime

object,

or

a

String

that

can

be

parsed

into

a

DateTime

object.

v

When

you

fill

a

DataSet

with

a

ADORecordset

using

the

OleDbDataAdapter,

the

Time

field

in

the

ADORecordset

is

converted

to

a

TimeSpan

column

in

the

DataSet.

246

Programming

Client

Applications

|
|

|

|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|

|

|
|

|
|

|

|
|

|
|
|
|

|

|
|

|
|

v

Recordsets

do

not

store

primary

keys

or

constraints.

Therefore,

no

key

information

is

added

when

filling

out

a

DataSet

from

a

Recordset

using

the

MissingSchemaAction.AddWithKey.

Chapter

12.

OLE

DB

.NET

Data

Provider

247

|
|
|

248

Programming

Client

Applications

Chapter

13.

ODBC

.NET

Data

Provider

ODBC

.NET

Data

Provider

.

.

.

.

.

.

.

.

. 249

ODBC

.NET

Data

Provider

restrictions

.

.

.

.

. 249

ODBC

.NET

Data

Provider

The

ODBC

.NET

Data

Provider

makes

ODBC

calls

to

a

DB2®

data

source

using

the

DB2

CLI

Driver.

Therefore,

the

connection

string

keywords

supported

by

the

ODBC

.NET

Data

Provider

are

the

same

as

those

supported

by

the

DB2

CLI

driver.

Also,

the

ODBC

.NET

Data

Provider

has

the

same

restrictions

as

the

DB2

CLI

driver.

There

are

additional

restrictions

for

the

ODBC

.NET

Data

Provider,

which

are

identified

in

the

topic:

ODBC

.NET

Data

Provider

restrictions.

In

order

to

use

the

ODBC

.NET

Data

Provider,

you

must

have

the

.NET

Framework

Version

1.1

installed.

For

DB2

Universal

Database

for

AS/400®

and

iSeries™,

the

following

fix

is

required

on

the

server:

APAR

II13348.

The

following

are

the

supported

connection

keywords

for

the

ODBC

.NET

Data

Provider:

Table

30.

ConnectionString

keywords

for

the

ODBC

.NET

Data

Provider

Keyword

Value

Meaning

DSN

database

alias

The

DB2

database

alias

as

cataloged

in

the

database

directory

UID

user

ID

The

user

ID

used

to

connect

to

the

DB2

server

PWD

password

The

password

for

the

user

ID

used

to

connect

to

the

DB2

server

The

following

is

an

example

of

creating

an

OdbcConnection

to

connect

to

the

SAMPLE

database:

[Visual

Basic

.NET]

Dim

con

As

New

OdbcConnection("DSN=sample;UID=userid;PWD=password;")

con.Open()

[C#]

OdbcConnection

con

=

new

OdbcConnection("DSN=sample;UID=userid;PWD=password;");

con.Open()

ODBC

.NET

Data

Provider

restrictions

The

following

table

identifies

usage

restrictions

for

the

IBM

ODBC

.NET

Data

Provider:

©

Copyright

IBM

Corp.

1997

-

2004

249

||

|

|

|

|
|
|
|
|
|

|
|
|

|
|

||

|||

|||
|
|

|||
|

|||
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

Table

31.

IBM

ODBC

.NET

Data

Provider

restrictions

Class

or

feature

Restriction

description

DB2

servers

affected

ASCII

character

streams

You

cannot

use

ASCII

character

streams

with

OdbcParameters

when

using

DbType.AnsiString

or

DbType.AnsiStringFixedLength.

The

ODBC

.NET

Data

Provider

will

throw

the

following

exception:

"Specified

cast

is

not

valid"

Workaround:

Use

DbType.Binary

instead

of

using

DbType.AnsiString

or

DbType.AnsiStringFixedLength.

All

Command.Prepare

Before

executing

a

command

(Command.ExecuteNonQuery

or

Command.ExecuteReader),

you

must

explicitly

run

OdbcCommand.Prepare()

if

the

CommandText

has

changed

since

the

last

prepare.

If

you

do

not

call

OdbcCommand.Prepare()

again,

the

ODBC

.NET

Data

Provider

will

execute

the

previously

prepared

CommandText.

For

Example:

[C#]

command.CommandText="select

CLOB(’ABC’)

from

table1";

command.Prepare();

command.ExecuteReader();

command.CommandText="select

CLOB(’XYZ’)

from

table2";

command.ExecuteReader();

//

This

ends

up

re-executing

the

first

statement

All

CommandBehavior.

SequentialAccess

When

using

IDataReader.GetChars()

to

read

from

a

reader

created

with

CommandBehavior.SequentialAccess,

you

must

allocate

a

buffer

that

is

large

enough

to

hold

the

entire

column.

Otherwise,

you

will

hit

the

following

exception:

Requested

range

extends

past

the

end

of

the

array.

at

System.Runtime.InteropServices.Marshal.Copy(Int32

source,

Char[]

destination,

Int32

startIndex,

Int32

length)

at

System.Data.Odbc.OdbcDataReader.GetChars(Int32

i,

Int64

dataIndex,

Char[]

buffer,

Int32

bufferIndex,

Int32

length)

at

OleRestrict.TestGetCharsAndBufferSize(IDbConnection

con)

The

following

example

demonstrates

how

to

allocate

an

adequate

buffer:

CREATE

TABLE

myTable(c0

int,

c1

CLOB(10K))

SELECT

c1

FROM

myTable;

[C#]

cmd.CommandText

=

"SELECT

c1

from

myTable";

IDataReader

reader

=

cmd.ExecuteReader(CommandBehavior.SequentialAccess);

Int32

iChunkSize

=

10;

Int32

iBufferSize

=

10;

Int32

iFieldOffset

=

0;

Char[]

buffer

=

new

Char[

iBufferSize

];

reader.Read();

reader.GetChars(0,

iFieldOffset,

buffer,

0,

iChunkSize);

The

call

to

GetChars()

will

throw

the

following

exception:

"Requested

range

extends

past

the

end

of

the

array"

To

ensure

that

GetChars()

does

not

throw

the

above

exception,

you

must

set

the

BufferSize

to

the

size

of

the

column,

as

follows:

Int32

iBufferSize

=

10000;

Note

that

the

value

of

10,000

for

iBufferSize

corresponds

to

the

value

of

10K

allocated

to

the

CLOB

column

c1.

All

250

Programming

Client

Applications

||

|||

||
|

|
|

|

|
|

|

||
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|

Table

31.

IBM

ODBC

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

CommandBehavior.

SequentialAccess

The

ODBC

.NET

Data

Provider

throws

the

following

exception

when

there

is

no

more

data

to

read

when

using

OdbcDataReader.GetChars():

NO_DATA

-

no

error

information

available

at

System.Data.Odbc.OdbcConnection.HandleError(HandleRef

hrHandle,

SQL_HANDLE

hType,

RETCODE

retcode)

at

System.Data.Odbc.OdbcDataReader.GetData(Int32

i,

SQL_C

sqlctype,

Int32

cb)

at

System.Data.Odbc.OdbcDataReader.GetChars(Int32

i,

Int64

dataIndex,

Char[]

buffer,

Int32

bufferIndex,

Int32

length)

All

CommandBehavior.

SequentialAccess

You

may

not

be

able

to

use

large

chunksizes,

such

as

a

value

of

5000,

when

using

OdbcDataReader.GetChars().

When

you

attempt

to

use

a

large

chunk

size,

the

ODBC

.NET

Data

Provider

will

throw

the

following

exception:

Object

reference

not

set

to

an

instance

of

an

object.

at

System.Runtime.InteropServices.Marshal.Copy(Int32

source,

Char[]

destination,

Int32

startIndex,

Int32

length)

at

System.Data.Odbc.OdbcDataReader.GetChars(Int32

i,

Int64

dataIndex,

Char[]

buffer,

Int32

bufferIndex,

Int32

length)

at

OleRestrict.TestGetCharsAndBufferSize(IDbConnection

con)

All

Connection

pooling

The

ODBC

.NET

Data

Provider

does

not

control

connection

pooling.

Connection

pooling

is

handled

by

the

ODBC

Driver

Manager.

For

more

information

on

connection

pooling,

see

the

ODBC

Programmer’s

Reference

in

the

MSDN

library

located

at

http://msdn.microsoft.com/library.

All

DataColumnMapping

The

case

of

the

source

column

name

needs

to

match

the

case

used

in

the

system

catalog

tables,

which

is

upper-case

by

default.

All

Decimal

columns

Parameter

markers

are

not

supported

for

Decimal

columns.

You

generally

use

OdbcType.Decimal

for

an

OdbcParameter

if

the

target

SQLType

is

a

Decimal

column;

however,

when

the

ODBC

.NET

Data

Provider

sees

the

OdbcType.Decimal,

it

binds

the

parameter

using

C-type

of

SQL_C_WCHAR

and

SQLType

of

SQL_VARCHAR,

which

is

invalid.

For

example:

[C#]

cmd.CommandText

=

"SELECT

dec_col

FROM

MYTABLE

WHERE

dec_col

>

?

";

OdbcParameter

p1

=

cmd.CreateParameter();

p1.DbType

=

DbType.Decimal;

p1.Value

=

10.0;

cmd.Parameters.Add(p1);

IDataReader

rdr

=

cmd.ExecuteReader();

You

will

get

an

exception:

ERROR

[07006]

[IBM][CLI

Driver][SQLDS/VM]

SQL0301N

The

value

of

input

host

variable

or

parameter

number

""

cannot

be

used

because

of

its

data

type.

SQLSTATE=07006

Workaround:

Instead

of

using

OdbcParameter

values,

use

literals

exclusively.

DB2

for

VM/VSE

Chapter

13.

ODBC

.NET

Data

Provider

251

|

|||

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|

|

||
|
|

||

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

Table

31.

IBM

ODBC

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

Key

information

The

schema

name

used

to

qualify

the

table

name

(for

example,

MYSCHEMA.MYTABLE)

must

match

the

connection

user

ID.

The

ODBC

.NET

Data

Provider

is

unable

to

retrieve

any

key

information

in

which

the

specified

schema

is

different

from

the

connection

user

id.

For

example:

CREATE

TABLE

USERID2.TABLE1(c1

INT

NOT

NULL

PRIMARY

KEY);

[C#]

//

Connect

as

user

bob

odbcCon

=

new

OdbcConnection("DSN=sample;UID=bob;PWD=mypassword");

OdbcCommand

cmd

=

odbcCon.CreateCommand();

//

Select

from

table

with

schema

USERID2

cmd.CommandText="SELECT

*

FROM

USERID2.TABLE1";

//

Fails

-

No

key

info

retrieved

da.FillSchema(ds,

SchemaType.Source);

//

Fails

-

SchemaTable

has

no

primary

key

cmd.ExecuteReader(CommandBehavior.KeyInfo)

//

Throws

exception

because

no

primary

key

cbuilder.GetUpdateCommand();

All

Key

information

The

ODBC

.NET

Data

Provider

cannot

retrieve

key

information

when

opening

a

IDataReader

at

the

same

time.

When

the

ODBC

.NET

Data

Provider

opens

a

IDataReader,

a

cursor

on

the

server

is

opened.

If

key

information

is

requested,

it

will

then

call

SQLPrimaryKeys()

or

SQLStatistic()

to

get

the

key

information,

but

these

schema

functions

will

open

another

cursor.

Since

DB2

for

VM/VSE

does

not

support

cursor

withhold,

the

first

cursor

is

then

closed.

Consequently,

IDataReader.Read()

calls

to

the

IDataReader

will

result

in

the

following

exception:

System.Data.Odbc.OdbcException:

ERROR

[HY010]

[IBM][CLI

Driver]

CLI0125E

Function

sequence

error.

SQLSTATE=HY010

Workaround:

You

will

need

to

retrieve

key

information

first

then

retrieve

the

data.

For

example:

[C#]

OdbcCommand

cmd

=

odbcCon.CreateCommand();

OdbcDataAdapter

da

=

new

OdbcDataAdapter(cmd);

cmd.CommandText

=

"SELECT

*

FROM

MYTABLE";

//

Use

FillSchema

to

retrieve

just

the

schema

information

da.FillSchema(ds,

SchemaType.Source);

//

Use

FillSchema

to

retrieve

just

the

schema

information

da.Fill(ds);

DB2

for

VM/VSE

Key

information

You

must

refer

to

database

objects

in

your

SQL

statements

using

the

same

case

that

the

database

objects

are

stored

in

the

system

catalog

tables.

By

default

database

objects

are

stored

in

uppercase

in

the

system

catalog

tables,

so

most

often,

you

need

to

use

uppercase.

The

ODBC

.NET

Data

Provider

scans

SQL

statements

to

retrieve

database

object

names

and

passes

them

to

schema

functions

such

as

SQLPrimaryKeys

and

SQLStatistics,

which

issue

queries

for

these

objects

in

the

system

catalog

tables.

The

database

object

references

must

match

exactly

how

they

are

stored

in

the

system

catalog

tables,

otherwise,

an

empty

result

set

is

returned.

DB2

for

OS/390

DB2

for

OS/400

DB2

for

VM/VSE

Key

information

for

batched

non-select

SQL

statements

The

ODBC

.NET

Data

Provider

is

unable

to

retrieve

any

key

information

for

a

batch

statement

that

does

not

start

with

″SELECT″.

DB2

for

OS/390

DB2

for

OS/400

DB2

for

VM/VSE

252

Programming

Client

Applications

|

|||

||
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

Table

31.

IBM

ODBC

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

LOB

columns

The

ODBC

.NET

Data

Provider

does

not

support

LOB

datatypes.

Consequently,

whenever

the

DB2

server

returns

a

SQL_CLOB

(-99),

SQL_BLOB

(-98)

or

SQL_DBCLOB

(-350)

the

ODBC

.NET

Data

Provider

will

throw

the

following

exception:

"Unknown

SQL

type

-

-98"

(for

Blob

column)

"Unknown

SQL

type

-

-99"

(for

Clob

column)

"Unknown

SQL

type

-

-350"

(for

DbClob

column)

Any

methods

that

directly

or

indirectly

access

LOB

columns

will

fail.

Workaround:

Set

the

CLI/ODBC

LongDataCompat

keyword

to

1.

Doing

so

will

force

the

DB2

CLI

driver

to

make

the

following

data

type

mappings

to

data

types

the

ODBC

.NET

Data

Provider

will

understand:

v

SQL_CLOB

to

SQL_LONGVARCHAR

v

SQL_BLOB

to

SQL_LONGVARBINARY

v

SQL_DBCLOB

to

SQL_WLONGVARCHAR

To

set

the

LongDataCompat

keyword,

run

the

following

DB2

command

from

a

DB2

command

window

on

the

client

machine:

db2

update

cli

cfg

for

section

common

using

longdatacompat

1

You

can

also

set

this

keyword

in

your

application,

using

the

connection

string

as

follows:

[C#]

OdbcConnection

con

=

new

OdbcConnection("DSN=SAMPLE;UID=uid;PWD=mypwd;LONGDATACOMPAT=1;");

For

a

list

of

all

the

CLI/ODBC

keywords,

see

the

following

topic:

UID

CLI/ODBC

configuration

keyword

in

the

DB2

Universal

Database

CLI

Guide

and

Reference.

All

OdbcCommand.Cancel

Executing

statements

after

running

OdbcCommand.Cancel

can

lead

to

the

following

exception:

"ERROR

[24000]

[Microsoft][ODBC

Driver

Manager]

Invalid

cursor

state"

All

OdbcCommandBuilder

Case-sensitivity

is

important

when

using

the

OdbcCommandBuilder

to

automatically

generate

UPDATE,

DELETE,

and

INSERT

statements.

By

default,

DB2

stores

schema

information

(such

as

table

names,

and

column

names)

in

the

system

catalog

tables

in

upper

case,

unless

they

have

been

explicitly

created

with

case-sensitivity

(by

adding

quotes

around

database

objects

during

create-time).

As

such,

your

SQL

statements

must

match

the

case

that

is

stored

in

the

catalogs

(which

by

default

is

uppercase).

For

example,

if

you

created

a

table

using

the

following

statement:

"db2

create

table

mytable

(c1

int)

"

then

DB2

will

store

the

table

name

″mytable″

in

the

system

catalog

tables

as

″MYTABLE″.

The

following

code

example

demonstrates

proper

use

the

OdbcCommandBuilderclass:

[C#]

OdbcCommand

cmd

=

odbcCon.CreateCommand();

cmd.CommandText

=

"SELECT

*

FROM

MYTABLE";

OdbcDataAdapter

da

=

new

OdbcDataAdapter(cmd);

OdbcCommandBuilder

cb

=

new

OdbcCommandBuilder(da);

OdbcCommand

updateCmd

=

cb.GetUpdateCommand();

In

this

example,

if

you

do

not

refer

to

the

table

name

in

upper-case

characters,

then

you

will

get

the

following

exception:

"Dynamic

SQL

generation

for

the

UpdateCommand

is

not

supported

against

a

SelectCommand

that

does

not

return

any

key

column

information."

All

Chapter

13.

ODBC

.NET

Data

Provider

253

|

|||

||
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

||
|
|

|

||
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

Table

31.

IBM

ODBC

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

OdbcCommandBuilder

The

commands

generated

by

the

OdbcCommandBuilder

are

incorrect

when

the

SELECT

statement

contains

the

following

column

data

types:

REAL

FLOAT

or

DOUBLE

TIMESTAMP

These

data

types

cannot

be

used

in

the

WHERE

clause

for

SELECT

statements.

DB2

for

OS/390

DB2

for

OS/400

DB2

for

VM/VSE

OdbcCommandBuilder.

DeriveParameters

The

DeriveParameters()

method

is

mapped

to

SQLProcedureColumns

and

it

uses

the

CommandText

property

for

the

name

of

the

stored

procedure.

Since

CommandText

does

not

contain

the

name

of

the

stored

procedure

(using

full

ODBC

call

syntax),

SQLProcedureColumns

is

called

with

the

procedure

name

identified

according

to

the

ODBC

call

syntax.

For

example:

"{

CALL

myProc(?)

}"

This

which

will

result

in

an

empty

result

set,

where

no

columns

are

found

for

the

procedure).

All

OdbcCommandBuilder.

DeriveParameters

To

use

DeriveParameters(),

specify

the

stored

procedure

name

in

the

CommandText

(for

example,

cmd.CommandText

=

"MYPROC").

The

procedure

name

must

match

the

case

stored

in

the

system

catalog

tables.

DeriveParameters()

will

return

all

the

parameters

for

that

procedure

name

it

finds

in

the

system

catalog

tables.

Remember

to

change

the

CommandText

back

to

the

full

ODBC

call

syntax

before

executing

the

statement.

All

OdbcCommandBuilder.

DeriveParameters

The

ReturnValue

parameter

is

not

returned

for

the

ODBC

.NET

Data

Provider.

All

OdbcCommandBuilder.

DeriveParameters

DeriveParameters()

does

not

support

fully

qualified

stored

procedure

names.

For

example,

calling

DeriveParameters()

for

CommandText

=

"MYSCHEMA.MYPROC"

will

fail.

Here,

no

parameters

are

returned.

All

OdbcCommandBuilder.

DeriveParameters

DeriveParameters()

will

not

work

for

overloaded

stored

procedures.

The

SQLProcedureColumns

will

return

all

the

parameters

for

all

versions

of

the

stored

procedure.

All

OdbcConnection.

ChangeDatabase

The

OdbcConnection.ChangeDatabase()

method

is

not

supported.

All

OdbcConnection.

ConnectionString

v

The

Server

keyword

is

ignored.

v

The

Connect

Timeout

keyword

is

ignored.

DB2

CLI

does

not

support

connection

timeouts,

so

setting

this

property

will

not

affect

the

driver.

v

Connection

pooling

keywords

are

ignored.

Specifically,

this

affects

the

following

keywords:

Pooling,

Min

Pool

Size,

Max

Pool

Size,

Connection

Lifetime

and

Connection

Reset.

All

OdbcDataReader.

GetSchemaTable

The

ODBC

.NET

Data

Provider

is

not

able

to

retrieve

extended

describe

information

from

servers

that

do

not

return

extended

describe

information.

Therefore,

if

you

are

connecting

to

a

server

that

does

not

support

extended

describe

(the

affected

servers),

the

following

columns

in

the

metadata

table

returned

from

IDataReader.GetSchemaTable()

are

invalid:

v

IsReadOnly

v

IsUnique

v

IsAutoIncrement

v

BaseSchemaName

v

BaseCatalogName

DB2

for

OS/390,

version

7

or

lower

DB2

for

OS/400

DB2

for

VM/VSE

254

Programming

Client

Applications

|

|||

||
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
||

|
|
|
|
|

|

|
|
|
|
|

|

|
|
||

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Table

31.

IBM

ODBC

.NET

Data

Provider

restrictions

(continued)

Class

or

feature

Restriction

description

DB2

servers

affected

Stored

procedures

To

call

a

stored

procedure,

you

need

to

specify

the

full

ODBC

call

syntax.

For

example,

to

call

the

stored

procedure,

MYPROC,

that

takes

a

VARCHAR(10)

as

a

parameter:

[C#]

OdbcCommand

cmd

=

odbcCon.CreateCommand();

cmd.CommandType

=

CommandType.Text;

cmd.CommandText

=

"{

CALL

MYPROC(?)

}"

OdbcParameter

p1

=

cmd.CreateParameter();

p1.Value

=

"Joe";

p1.OdbcType

=

OdbcType.NVarChar;

cmd.Parameters.Add(p1);

cmd.ExecuteNonQuery();

Note:

Note

that

you

must

use

the

full

ODBC

call

syntax

even

if

you

are

using

CommandType.StoredProcedure.

This

is

documented

in

MSDN,

under

the

OdbcCommand.CommandText

Property.

All

Stored

procedures:

no

column

names

for

result

sets

The

DB2

for

OS/390

version

6.1

server

does

not

return

column

names

for

result

sets

returned

from

a

stored

procedure.

The

ODBC

.NET

Data

Provider

maps

these

unnamed

columns

to

their

ordinal

position

(for

example,

″1″,

″2″

″3″).

This

is

contrary

to

the

mapping

documented

in

MSDN:

"Column1",

"Column2",

"Column3".

DB2

for

OS/390

version

6.1

Unique

index

promotion

to

primary

key

The

ODBC

.NET

Data

Provider

promotes

nullable

unique

indexes

to

primary

keys.

This

is

contrary

to

the

MSDN

documentation,

which

states

that

nullable

unique

indexes

should

not

be

promoted

to

primary

keys.

All

Chapter

13.

ODBC

.NET

Data

Provider

255

|

|||

||

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

256

Programming

Client

Applications

Part

4.

Java

©

Copyright

IBM

Corp.

1997

-

2004

257

258

Programming

Client

Applications

Chapter

14.

Introduction

to

Java

application

support

DB2®

Universal

Database

provides

driver

support

for

client

applications

and

applets

that

are

written

in

Java™

using

JDBC,

and

for

embedded

SQL

for

Java

(SQLJ).

JDBC

is

an

application

programming

interface

(API)

that

Java

applications

use

to

access

relational

databases.

DB2

Universal

Database™

support

for

JDBC

lets

you

write

Java

applications

that

access

local

DB2

data

or

remote

relational

data

on

a

server

that

supports

DRDA®.

SQLJ

provides

support

for

embedded

static

SQL

in

Java

applications.

SQLJ

was

initially

developed

by

IBM®,

Oracle®,

and

Tandem

to

complement

the

dynamic

SQL

JDBC

model

with

a

static

SQL

model.

In

general,

Java

applications

use

JDBC

for

dynamic

SQL

and

SQLJ

for

static

SQL.

However,

because

SQLJ

can

inter-operate

with

JDBC,

an

application

program

can

use

JDBC

and

SQLJ

within

the

same

unit

of

work.

This

topic

discusses

the

Java

application

development

environment

provided

by

DB2

Universal

Database.

According

to

the

JDBC

specification,

there

are

four

types

of

JDBC

driver

architectures:

Type

1

Drivers

that

implement

the

JDBC

API

as

a

mapping

to

another

data

access

API,

such

as

Open

Database

Connectivity

(ODBC).

Drivers

of

this

type

are

generally

dependent

on

a

native

library,

which

limits

their

portability.

The

JDBC-ODBC

Bridge

driver

is

an

example

of

a

type

1

driver.

Type

2

Drivers

that

are

written

partly

in

the

Java

programming

language

and

partly

in

native

code.

The

drivers

use

a

native

client

library

specific

to

the

data

source

to

which

they

connect.

Because

of

the

native

code,

their

portability

is

limited.

Type

3

Drivers

that

use

a

pure

Java

client

and

communicate

with

a

server

using

a

database-independent

protocol.

The

server

then

communicates

the

client’s

requests

to

the

data

source.

Type

4

Drivers

that

are

pure

Java

and

implement

the

network

protocol

for

a

specific

data

source.

The

client

connects

directly

to

the

data

source.

DB2

Version

8

supports

a

type

2

driver

and

a

driver

that

combines

type

2

and

type

4

JDBC

implementations.

DB2

Version

8

also

supports

a

type

3

driver,

although

this

driver

is

deprecated.

The

JDBC

drivers

in

previous

releases

of

DB2

UDB

for

Linux,

UNIX®

and

Windows®

were

built

on

DB2

CLI

(Call

Level

Interface).

The

DB2

Version

8

type

2

and

type

3

drivers

continue

to

use

the

DB2

CLI

interface

to

communicate

with

DB2

UDB

servers.

DB2

Version

8

adds

a

new

DB2

Universal

JDBC

Driver

that

is

written

completely

in

Java.

The

drivers

that

are

supported

in

DB2

Version

8

are:

©

Copyright

IBM

Corp.

1997

-

2004

259

|

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

(DB2

JDBC

type

2

driver)

(deprecated

as

of

DB2

V8.2):

The

DB2

JDBC

type

2

driver

lets

Java

applications

make

calls

to

DB2

through

JDBC.

Calls

to

the

DB2

JDBC

type

2

driver

are

translated

to

Java

native

methods.

The

Java

applications

that

use

this

driver

must

run

on

a

DB2

client,

through

which

JDBC

requests

flow

to

the

DB2

server.

DB2

Connect™

Version

8

must

be

installed

before

the

DB2

JDBC

application

driver

can

be

used

to

access

DB2

UDB

for

iSeries™

data

sources

or

data

sources

in

the

DB2

for

OS/390

or

z/OS

environments.

The

DB2

JDBC

type

2

driver

supports

these

JDBC

and

SQLJ

functions:

v

Most

of

the

methods

that

are

described

in

the

JDBC

1.2

specification,

and

some

of

the

methods

that

are

described

in

the

JDBC

2.0

specification.

See

Comparison

of

driver

support

for

JDBC

APIs.

v

SQLJ

statements

that

perform

equivalent

functions

to

all

JDBC

methods

v

Connection

pooling

v

Distributed

transactions

v

Java

user-defined

functions

and

stored

procedures

The

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

will

not

be

supported

in

future

releases

of

DB2.

You

should

therefore

consider

moving

to

the

DB2

Universal

JDBC

Driver.

DB2

JDBC

Type

3

Driver

for

Linux,

UNIX

and

Windows

(deprecated

as

of

DB2

V8.1):

The

DB2

JDBC

type

3

driver,

also

known

as

the

applet

or

net

driver,

consists

of

a

JDBC

client

and

a

JDBC

server.

The

DB2

JDBC

applet

driver

can

be

loaded

by

a

Web

browser

along

with

the

applet,

or

the

applet

driver

can

be

used

in

standalone

Java

applications.

When

the

applet

requests

a

connection

to

a

DB2

database

server,

the

applet

driver

opens

a

TCP/IP

socket

to

the

DB2

JDBC

applet

server

on

the

machine

where

the

Web

server

is

running.

After

a

connection

is

set

up,

the

applet

driver

sends

each

of

the

subsequent

database

access

requests

from

the

applet

to

the

JDBC

server

through

the

TCP/IP

connection.

The

JDBC

server

then

makes

corresponding

DB2

calls

to

perform

the

task.

On

completion,

the

JDBC

server

sends

the

results

back

to

the

JDBC

client

through

the

connection.

The

JDBC

server

process

is

db2jd.

The

DB2

JDBC

Type

3

Driver

for

Linux,

UNIX

and

Windows

will

not

be

supported

in

future

releases

of

DB2.

You

should

therefore

consider

moving

to

the

DB2

Universal

JDBC

Driver.

DB2

Universal

JDBC

driver

(type

2

and

type

4):

The

DB2

Universal

JDBC

Driver

is

a

single

driver

that

includes

JDBC

type

2

and

JDBC

type

4

behavior,

as

well

as

SQLJ

support.

When

an

application

loads

the

DB2

Universal

JDBC

Driver,

a

single

driver

instance

is

loaded

for

type

2

and

type

4

implementations.

The

application

can

make

type

2

and

type

4

connections

using

this

single

driver

instance.

The

type

2

and

type

4

connections

can

be

made

concurrently.

DB2

Universal

JDBC

Driver

type

2

driver

behavior

is

referred

to

as

DB2

Universal

JDBC

Driver

type

2

connectivity.

DB2

Universal

JDBC

Driver

type

4

driver

behavior

is

referred

to

as

DB2

Universal

JDBC

Driver

type

4

connectivity.

260

Programming

Client

Applications

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

The

DB2

Universal

JDBC

Driver

is

an

entirely

new

driver,

rather

than

a

follow-on

to

any

other

DB2

JDBC

drivers.

Therefore,

you

can

expect

some

differences

in

behavior

between

this

driver

and

other

drivers.

The

DB2

Universal

JDBC

Driver

supports

these

JDBC

and

SQLJ

functions:

v

Most

of

the

methods

that

are

described

in

the

JDBC

1.2

and

JDBC

2.0

specifications,

and

some

of

the

methods

that

are

described

in

the

JDBC

3.0

specifications.

See

Comparison

of

driver

support

for

JDBC

APIs.

v

SQLJ

statements

that

perform

equivalent

functions

to

all

JDBC

methods.

v

Connections

that

are

enabled

for

connection

pooling.

WebSphere

Application

Server

or

another

application

server

does

the

connection

pooling.

v

Implementation

of

Java

user-defined

functions

and

stored

procedures

(Universal

Type

2

Connectivity

only).

v

Global

transactions

that

run

under

WebSphere®

Application

Server

Version

5.0

and

above.

v

Support

for

distributed

transaction

management.

This

support

implements

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

Java

Transaction

Service

(JTS)

and

Java

Transaction

API

(JTA)

specifications,

which

conform

to

the

X/Open

standard

for

global

transactions

(Distributed

Transaction

Processing:

The

XA

Specification,

available

from

www.opengroup.org)

.

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“SQLJ

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

432

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Chapter

14.

Introduction

to

Java

application

support

261

262

Programming

Client

Applications

Chapter

15.

JDBC

application

programming

The

sections

that

follow

contain

information

about

writing

JDBC

applications.

Basic

JDBC

application

programming

concepts

The

topics

that

follow

contain

basic

information

about

writing

JDBC

applications.

Basic

steps

in

writing

a

JDBC

application

Writing

a

JDBC

application

has

much

in

common

with

writing

an

SQL

application

in

any

other

language:

In

general,

you

need

to

do

the

following

things:

v

Access

the

Java™

packages

that

contain

JDBC

methods.

v

Declare

variables

for

sending

data

to

or

retrieving

data

from

DB2®

tables.

v

Connect

to

a

data

source.

v

Execute

SQL

statements.

v

Handle

SQL

errors

and

warnings.

v

Disconnect

from

the

data

source.

Although

the

tasks

that

you

need

to

perform

are

similar

to

those

in

other

languages,

the

way

that

you

execute

those

tasks

is

somewhat

different.

Figure

4

on

page

264

is

a

simple

program

that

demonstrates

each

task.

This

program

runs

on

the

DB2

Universal

JDBC

Driver.

©

Copyright

IBM

Corp.

1997

-

2004

263

import

java.sql.*;

�1�

public

class

EzJava

{

public

static

void

main(String[]

args)

{

String

urlPrefix

=

"jdbc:db2:";

String

url;

String

empNo;

�2�

Connection

con;

Statement

stmt;

ResultSet

rs;

System.out.println

("****

Enter

class

EzJava");

//

Check

the

that

first

argument

has

the

correct

form

for

the

portion

//

of

the

URL

that

follows

jdbc:db2:,

as

described

//

in

the

Connecting

to

a

data

source

using

the

DriverManager

//

interface

with

the

DB2

Universal

JDBC

Driver

topic.

//

For

example,

for

Universal

Driver

type

2

connectivity,

//

args[0]

might

be

MVS1DB2M.

For

Universal

//

Driver

type

4

connectivity,

args[0]

might

//

be

//stlmvs1:10110/MVS1DB2M.

if

(args.length==0)

{

System.err.println

("Invalid

value.

First

argument

appended

to

"+

"jdbc:db2:

must

specify

a

valid

URL.");

System.exit(1);

}

url

=

urlPrefix

+

args[0];

try

{

//

Load

the

DB2

Universal

JDBC

Driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�3a�

System.out.println("****

Loaded

the

JDBC

driver");

//

Create

the

connection

using

the

DB2

Universal

JDBC

Driver

con

=

DriverManager.getConnection

(url);

�3b�

//

Commit

changes

manually

con.setAutoCommit(false);

System.out.println("****

Created

a

JDBC

connection

to

the

data

source");

//

Create

the

Statement

stmt

=

con.createStatement();

�4a�

System.out.println("****

Created

JDBC

Statement

object");

//

Execute

a

query

and

generate

a

ResultSet

instance

rs

=

stmt.executeQuery("SELECT

EMPNO

FROM

EMPLOYEE");

�4b�

System.out.println("****

Creaed

JDBC

ResultSet

object");

//

Print

all

of

the

employee

numbers

to

standard

output

device

while

(rs.next())

{

empNo

=

rs.getString(1);

System.out.println("Employee

number

=

"

+

empNo);

}

System.out.println("****

Fetched

all

rows

from

JDBC

ResultSet");

Figure

4.

Simple

JDBC

application

(Part

1

of

2)

264

Programming

Client

Applications

Notes

to

Figure

4

on

page

264:

�1�

This

statement

imports

the

java.sql

package,

which

contains

the

JDBC

core

API.

For

information

on

other

Java

packages

that

you

might

need

to

access,

see

Access

Java

packages

for

JDBC

support.

�2�

String

variable

empNo

performs

the

function

of

a

host

variable.

That

is,

it

is

used

to

hold

data

retrieved

from

an

SQL

query.

See

Declare

variables

in

JDBC

applications

for

more

information.

�3a�and

�3b�

These

two

sets

of

statements

demonstrate

how

to

connect

to

a

data

source

using

one

of

two

available

interfaces.

See

Connect

to

a

data

source

using

JDBC

for

more

details.

�4a�

and

�4b�

These

two

sets

of

statements

demonstrate

how

to

perform

a

SELECT

in

JDBC.

For

information

on

how

to

perform

other

SQL

operations,

see

Execute

SQL

in

a

JDBC

application.

�5�

This

try/catch

block

demonstrates

the

use

of

the

SQLException

class

for

SQL

error

handling.

For

more

information

on

handling

SQL

errors,

see

Handle

an

SQLException

under

the

DB2

Universal

JDBC

Driver.

For

information

on

handling

SQL

warnings,

see

Handle

SQL

warnings

in

a

JDBC

application.

�6�

This

statement

disconnects

the

application

from

the

data

source.

See

Close

the

connection

to

the

data

source.

Related

concepts:

v

“Java

packages

for

JDBC

support”

on

page

266

//

Close

the

ResultSet

rs.close();

System.out.println("****

Closed

JDBC

ResultSet");

//

Close

the

Statement

stmt.close();

System.out.println("****

Closed

JDBC

Statement");

//

Connection

must

be

on

a

unit-of-work

boundary

to

allow

close

con.commit();

System.out.println

(

"****

Transaction

committed"

);

//

Close

the

connection

con.close();

�6�

System.out.println("****

Disconnected

from

data

source");

System.out.println("****

JDBC

Exit

from

class

EzJava

-

no

errors");

}

catch

(ClassNotFoundException

e)

{

System.err.println("Could

not

load

JDBC

driver");

System.out.println("Exception:

"

+

e);

e.printStackTrace();

}

catch(SQLException

ex)

�5�

{

System.err.println("SQLException

information");

while(ex!=null)

{

System.err.println

("Error

msg:

"

+

ex.getMessage());

System.err.println

("SQLSTATE:

"

+

ex.getSQLState());

System.err.println

("Error

code:

"

+

ex.getErrorCode());

ex.printStackTrace();

ex

=

ex.getNextException();

//

For

drivers

that

support

chained

exceptions

}

}

}

//

End

main

}

//

End

EzJava

Figure

4.

Simple

JDBC

application

(Part

2

of

2)

Chapter

15.

JDBC

application

programming

265

v

“Variables

in

JDBC

applications”

on

page

266

v

“JDBC

interfaces

for

executing

SQL”

on

page

276

v

“How

JDBC

applications

connect

to

a

data

source”

on

page

267

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

v

“Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver”

on

page

287

Java

packages

for

JDBC

support

Before

you

can

invoke

JDBC

methods,

you

need

to

be

able

to

access

all

or

parts

of

various

Java™

packages

that

contain

those

methods.

You

can

do

that

either

by

importing

the

packages

or

specific

classes,

or

by

using

the

fully-qualified

class

names.

You

might

need

the

following

packages

or

classes

for

your

JDBC

program:

java.sql

Contains

the

core

JDBC

API.

javax.naming

Contains

classes

and

interfaces

for

Java

Naming

and

Directory

Interface

(JNDI),

which

is

often

used

for

implementing

a

DataSource.

javax.sql

Contains

JDBC

2.0

standard

extensions.

javax.transaction

Contains

JDBC

support

for

distributed

transactions

for

the

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver).

com.ibm.db2.jcc

Contains

the

DB2-specific

implementation

of

JDBC

for

the

DB2

Universal

JDBC

driver.

COM.ibm.db2.jdbc

Contains

the

DB2-specific

implementation

of

the

JDBC

for

the

DB2

JDBC

Type

2

Driver.

Variables

in

JDBC

applications

As

in

any

other

Java™

application,

when

you

write

JDBC

applications,

you

declare

variables.

In

Java

applications,

those

variables

are

known

as

Java

identifiers.

Some

of

those

identifiers

have

the

same

function

as

host

variables

in

other

languages:

they

hold

data

that

you

pass

to

or

retrieve

from

DB2®

tables.

Identifier

empNo

in

the

sample

program

in

Basic

steps

in

writing

a

JDBC

application

is

an

example

of

a

Java

String

identifier

that

holds

data

that

you

retrieve

from

a

CHAR

column

of

a

DB2

table.

Your

choice

of

Java

data

types

can

affect

performance

because

DB2

picks

better

access

paths

when

the

data

types

of

your

Java

variables

map

closely

to

the

DB2

data

types.

Java,

JDBC,

and

SQL

data

types

shows

the

recommended

mappings

of

Java

data

types

and

JDBC

data

types

to

SQL

data

types.

Related

concepts:

v

“Basic

steps

in

writing

a

JDBC

application”

on

page

263

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

266

Programming

Client

Applications

How

JDBC

applications

connect

to

a

data

source

Before

you

can

execute

SQL

statements

in

any

SQL

program,

you

must

connect

to

a

database

server.

In

JDBC,

a

database

server

is

known

as

a

data

source.

Figure

5

shows

how

a

Java™

application

connects

to

a

data

source

for

a

type

2

driver

or

DB2

Universal

JDBC

Driver

type

2

connectivity.

Figure

6

on

page

268

shows

how

a

Java

application

connects

to

a

data

source

for

DB2

Universal

JDBC

Driver

type

4

connectivity.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver

Database
server

Figure

5.

Java

application

flow

for

a

type

2

driver

or

DB2

Universal

JDBC

Driver

type

2

connectivity

Chapter

15.

JDBC

application

programming

267

The

way

that

you

connect

to

a

data

source

depends

on

the

version

of

JDBC

that

you

use.

Connecting

using

the

DriverManager

interface

is

available

for

all

levels

of

JDBC.

Connecting

using

the

DataSource

interface

is

available

with

JDBC

2.0

and

above.

Related

concepts:

v

“How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver”

on

page

268

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver

A

JDBC

application

can

establish

a

connection

to

a

data

source

using

the

JDBC

DriverManager

interface,

which

is

part

of

the

java.sql

package.

The

Java™

application

first

loads

the

JDBC

driver

by

invoking

the

Class.forName

method.

After

the

application

loads

the

driver,

it

connects

to

a

database

server

by

invoking

the

DriverManager.getConnection

method.

For

the

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver),

you

load

the

driver

by

invoking

the

Class.forName

method

with

the

following

argument:

COM.ibm.db2.jdbc.app.DB2Driver

The

following

code

demonstrates

loading

the

DB2

JDBC

Type

2

Driver:

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure

6.

Java

application

flow

for

DB2

Universal

JDBC

Driver

type

4

connectivity

268

Programming

Client

Applications

try

{

//

Load

the

DB2

JDBC

Type

2

Driver

with

DriverManager

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

The

catch

block

is

used

to

print

an

error

if

the

driver

is

not

found.

After

you

load

the

driver,

you

connect

to

the

data

source

by

invoking

the

DriverManager.getConnection

method.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection(String

url);

getConnection(String

url,

user,

password);

getConnection(String

url,

java.util.Properties

info);

The

url

argument

represents

a

data

source.

For

the

DB2

JDBC

Type

2

Driver,

specify

a

URL

of

the

following

form:

Syntax

for

a

URL

for

the

DB2

JDBC

Type

2

Driver:

��

jdbc:db2:database

��

The

parts

of

the

URL

have

the

following

meanings:

jdbc:db2:

jdbc:db2:

indicates

that

the

connection

is

to

a

DB2

UDB

server.

database

A

database

alias.

The

alias

refers

to

the

DB2

database

catalog

entry

on

the

DB2

client.

The

info

argument

is

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

Specifying

the

info

argument

is

an

alternative

to

specifying

property=value

strings

in

the

URL.

Specifying

a

user

ID

and

password

for

a

connection:

There

are

several

ways

to

specify

a

user

ID

and

password

for

a

connection:

v

Use

the

form

of

the

getConnection

method

that

specifies

user

and

password.

v

Use

the

form

of

the

getConnection

method

that

specifies

info,

after

setting

the

user

and

password

properties

in

a

java.util.Properties

object.

Example:

Setting

the

user

ID

and

password

in

user

and

password

parameters:

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

data

source

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

user,

password);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

a

java.util.Properties

object:

Properties

properties

=

new

Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

connection

properties.put("password",

"db2adm");

//

Set

password

for

connection

String

url

=

"jdbc:db2:toronto";

Chapter

15.

JDBC

application

programming

269

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

Related

concepts:

v

“Security

under

the

DB2

JDBC

Type

2

Driver”

on

page

443

Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

A

JDBC

application

can

establish

a

connection

to

a

data

source

using

the

JDBC

DriverManager

interface,

which

is

part

of

the

java.sql

package.

The

Java™

application

first

loads

the

JDBC

driver

by

invoking

the

Class.forName

method.

After

the

application

loads

the

driver,

it

connects

to

a

database

server

by

invoking

the

DriverManager.getConnection

method.

For

the

DB2

Universal

JDBC

Driver,

you

load

the

driver

by

invoking

the

Class.forName

method

with

the

following

argument:

com.ibm.db2.jcc.DB2Driver

For

compatibility

with

previous

JDBC

drivers,

you

can

use

the

following

argument

instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The

following

code

demonstrates

loading

the

DB2

Universal

JDBC

Driver:

try

{

//

Load

the

DB2®

Universal

JDBC

Driver

with

DriverManager

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

The

catch

block

is

used

to

print

an

error

if

the

driver

is

not

found.

After

you

load

the

driver,

you

connect

to

the

data

source

by

invoking

the

DriverManager.getConnection

method.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection(String

url);

getConnection(String

url,

user,

password);

getConnection(String

url,

java.util.Properties

info);

The

url

argument

represents

a

data

source,

and

indicates

what

type

of

JDBC

connectivity

you

are

using.

For

DB2

Universal

JDBC

Driver

type

4

connectivity,

specify

a

URL

of

the

following

form:

Syntax

for

a

URL

for

Universal

Type

4

Connectivity:

270

Programming

Client

Applications

��

jdbc:db2:

//server

jdbc:db2j:net:

:port

/database

�

:

property

=

value

;

��

For

DB2

Universal

JDBC

Driver

type

2

connectivity,

specify

a

URL

of

one

of

the

following

forms:

Syntax

for

a

URL

for

Universal

Type

2

Connectivity:

��

�

�

jdbc:db2:database

jdbc:db2os390:database

jdbc:db2os390sqlj:database

jdbc:default:connection

:

property

=

value

;

jdbc:db2os390:

jdbc:db2os390sqlj:

property

=

value

;

��

The

parts

of

the

URL

have

the

following

meanings:

jdbc:db2:

or

jdbc:db2j:net:

The

meanings

of

the

initial

portion

of

the

URL

are:

jdbc:db2:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

jdbc:db2j:net:

Indicates

that

the

connection

is

to

a

remote

IBM®

Cloudscape™

server.

server

The

domain

name

or

IP

address

of

the

database

server.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

This

name

depends

on

whether

Universal

Type

4

Connectivity

or

Universal

Type

2

Connectivity

is

used.

For

Universal

Type

4

Connectivity:

v

If

the

connection

is

to

a

DB2

for

z/OS

server,

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

v

If

the

connection

is

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

database

is

the

database

name

that

is

defined

during

installation.

v

If

the

connection

is

to

an

IBM

Cloudscape

server,

the

database

is

the

fully-qualified

name

of

the

file

that

contains

the

database.

This

name

must

be

enclosed

in

double

quotation

marks

(").

For

example:

"c:/databases/testdb"

Chapter

15.

JDBC

application

programming

271

For

Universal

Type

2

Connectivity:

v

database

is

the

database

name

that

is

defined

during

installation,

if

the

value

of

the

serverName

connection

property

is

null.

If

the

value

of

serverName

property

is

not

null,

database

is

a

database

alias.

property=value;

A

property

for

the

JDBC

connection.

For

the

definitions

of

these

properties,

see

Properties

for

the

DB2

Universal

JDBC

Driver.

The

info

argument

is

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

Specifying

the

info

argument

is

an

alternative

to

specifying

property=value

strings

in

the

URL.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

the

properties

that

you

can

specify.

Specifying

a

user

ID

and

password

for

a

connection:

There

are

several

ways

to

specify

a

user

ID

and

password

for

a

connection:

v

Use

the

form

of

the

getConnection

method

that

specifies

url

with

property=value;

clauses,

and

include

the

user

and

password

properties

in

the

URL.

v

Use

the

form

of

the

getConnection

method

that

specifies

user

and

password.

v

Use

the

form

of

the

getConnection

method

that

specifies

info,

after

setting

the

user

and

password

properties

in

a

java.util.Properties

object.

Example:

Setting

the

user

ID

and

password

in

a

URL:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose:"

+

"user=db2adm;password=db2adm;";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

user

and

password

parameters:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

//

Set

URL

for

data

source

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

user,

password);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

a

java.util.Properties

object:

Properties

properties

=

new

Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

connection

properties.put("password",

"db2adm");

//

Set

password

for

connection

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

Related

concepts:

v

“Security

under

the

DB2

Universal

JDBC

Driver”

on

page

444

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Connecting

to

a

data

source

using

the

DataSource

interface

Using

DriverManager

to

connect

to

a

data

source

reduces

portability

because

the

application

must

identify

a

specific

JDBC

driver

class

name

and

driver

URL.

The

272

Programming

Client

Applications

driver

class

name

and

driver

URL

are

specific

to

a

JDBC

vendor,

driver

implementation,

and

data

source.

If

your

applications

need

to

be

portable

among

data

sources,

you

should

use

the

DataSource

interface.

When

you

connect

to

a

data

source

using

the

DataSource

interface,

you

use

a

DataSource

object.

It

is

possible

to

create

and

use

the

DataSource

object

in

the

same

application,

as

you

do

with

the

DriverManager

interface.

Figure

7

shows

an

example

for

the

DB2

Universal

JDBC

Driver:

import

java.sql.*;

//

JDBC

base

import

javax.sql.*;

//

JDBC

2.0

standard

extension

APIs

import

com.ibm.db2.jcc.*;

//

DB2®

Universal

JDBC

Driver

�1�

//

interfaces

DB2SimpleDataSource

db2ds=new

DB2SimpleDataSource();

�2�

db2ds.setDatabaseName("db2loc1");

�3�

//

Assign

the

location

name

db2ds.setDescription("Our

Sample

Database");

//

Description

for

documentation

db2ds.setUser("john");

//

Assign

the

user

ID

db2ds.setPassword("db2");

//

Assign

the

password

Connection

con=db2ds.getConnection();

�4�

//

Create

a

Connection

object

�1�

Import

the

package

that

contains

the

implementation

of

the

DataSource

interface.

�2�

Creates

a

DB2DataSource

object.

DB2DataSource

is

one

of

the

DB2

implementations

of

the

DataSource

interface.

See

Create

and

deploy

DataSource

objects

for

information

on

DB2’s

DataSource

implementations.

�3�

The

setDatabaseName,

setDescription,

setUser,

and

setPassword

methods

assign

attributes

to

the

DB2DataSource

object.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

information

about

the

attributes

that

you

can

set

for

a

DB2DataSource

object

under

the

DB2

Universal

JDBC

Driver.

�4�

Establishes

a

connection

to

the

data

source

that

DB2DataSource

object

db2ds

represents.

However,

a

more

flexible

way

to

use

a

DataSource

object

is

for

your

system

administrator

to

create

and

manage

it

separately,

using

WebSphere®

or

some

other

tool.

The

program

that

creates

and

manages

a

DataSource

object

also

uses

the

Java™

Naming

and

Directory

Interface

(JNDI)

to

assign

a

logical

name

to

the

DataSource

object.

The

JDBC

application

that

uses

the

DataSource

object

can

then

refer

to

the

object

by

its

logical

name,

and

does

not

need

any

information

about

the

underlying

data

source.

In

addition,

your

system

administrator

can

modify

the

data

source

attributes,

and

you

do

not

need

to

change

your

application

program.

To

learn

more

about

using

WebSphere

to

deploy

DataSource

objects,

go

to

this

URL

on

the

Web:

http://www.ibm.com/software/webservers/appserv/

To

learn

about

deploying

DataSource

objects

yourself,

see

Create

and

deploy

DataSource

objects.

You

can

use

the

DataSource

interface

and

the

DriverManager

interface

in

the

same

application,

but

for

maximum

portability,

it

is

recommended

that

you

use

only

the

DataSource

interface

to

obtain

connections.

Figure

7.

Creating

and

using

a

DataSource

object

in

the

same

application

Chapter

15.

JDBC

application

programming

273

The

remainder

of

this

topic

explains

how

to

create

a

connection

using

a

DataSource

object,

given

that

the

system

administrator

has

already

created

the

object

and

assigned

a

logical

name

to

it.

To

obtain

a

connection

using

a

DataSource

object,

you

need

to

follow

these

steps:

1.

From

your

system

administrator,

obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

2.

Create

a

Context

object

to

use

in

the

next

step.

The

Context

interface

is

part

of

the

Java

Naming

and

Directory

Interface

(JNDI),

not

JDBC.

3.

In

your

application

program,

use

JNDI

to

get

the

DataSource

object

that

is

associated

with

the

logical

data

source

name.

4.

Use

the

DataSource.getConnection

method

to

obtain

the

connection.

You

can

use

one

of

the

following

forms

of

the

getConnection

method:

getConnection();

getConnection(String

user,

String

password);

Use

the

second

form

if

you

need

to

specify

a

user

ID

and

password

for

the

connection

that

are

different

from

the

ones

that

were

specified

when

the

DataSource

was

deployed.

Figure

8

shows

an

example

of

the

code

that

you

need

in

your

application

program

to

obtain

a

connection

using

a

DataSource

object,

given

that

the

logical

name

of

the

data

source

that

you

need

to

connect

to

is

jdbc/sampledb.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

import

java.sql.*;

import

javax.naming.*;

import

javax.sql.*;

...

Context

ctx=new

InitialContext();

�2�

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

�3�

Connection

con=ds.getConnection();

�4�

Related

tasks:

v

“Creating

and

deploying

DataSource

objects”

on

page

311

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Setting

the

isolation

level

for

a

JDBC

transaction

To

set

the

isolation

level

for

a

unit

of

work

within

a

JDBC

program,

use

the

Connection.setTransactionIsolation(int

level)

method.

Table

32

shows

the

values

of

level

that

you

can

specify

in

the

Connection.setTransactionIsolation

method

and

their

DB2®

equivalents.

Table

32.

Equivalent

JDBC

and

DB2

isolation

levels

JDBC

value

DB2

isolation

level

TRANSACTION_SERIALIZABLE

Repeatable

read

TRANSACTION_REPEATABLE_READ

Read

stability

TRANSACTION_READ_COMMITTED

Cursor

stability

Figure

8.

Obtaining

a

connection

using

a

DataSource

object

274

Programming

Client

Applications

|

|
|
|
|

||

||

||

||

||

Table

32.

Equivalent

JDBC

and

DB2

isolation

levels

(continued)

JDBC

value

DB2

isolation

level

TRANSACTION_READ_UNCOMMITTED

Uncommitted

read

You

can

change

the

isolation

level

only

at

the

beginning

of

a

transaction.

Related

concepts:

v

“JDBC

connection

objects”

on

page

275

JDBC

connection

objects

When

you

connect

to

a

data

source

by

either

connection

method,

you

create

a

Connection

object,

which

represents

the

connection

to

the

data

source.

You

use

this

Connection

object

to

do

the

following

things:

v

Create

Statement,

PreparedStatement,

and

CallableStatement

objects

for

executing

SQL

statements.

These

are

discussed

in

Execute

SQL

in

a

JDBC

application.

v

Gather

information

about

the

data

source

to

which

you

are

connected.

This

process

is

discussed

in

Use

DatabaseMetaData

to

learn

about

a

data

source.

v

Commit

or

roll

back

transactions.

You

can

commit

transactions

manually

or

automatically.

These

operations

are

discussed

in

Commit

or

roll

back

a

JDBC

transaction.

v

Close

the

connection

to

the

data

source.

This

operation

is

discussed

in

Close

a

connection

to

a

JDBC

data

source.

Related

concepts:

v

“JDBC

interfaces

for

executing

SQL”

on

page

276

Related

tasks:

v

“Closing

a

connection

to

a

JDBC

data

source”

on

page

276

v

“Committing

or

rolling

back

JDBC

transactions”

on

page

275

v

“Using

DatabaseMetaData

to

learn

about

a

data

source”

on

page

301

Committing

or

rolling

back

JDBC

transactions

In

JDBC,

to

commit

or

roll

back

transactions

explicitly,

use

the

commit

or

rollback

methods.

For

example:

Connection

con;

...

con.commit();

If

autocommit

mode

is

on,

DB2®

performs

a

commit

operation

after

every

SQL

statement

completes.

To

determine

whether

autocommit

mode

is

on,

invoke

the

Connection.getAutoCommit

method.

To

set

autocommit

mode

on,

invoke

the

Connection.setAutoCommit(true)

method.

To

set

autocommit

mode

off,

invoke

the

Connection.setAutoCommit(false)

method.

Related

concepts:

v

“Savepoints

in

JDBC

applications”

on

page

294

Related

tasks:

Chapter

15.

JDBC

application

programming

275

|

||

||
|

|

|

|

v

“Making

batch

updates

in

JDBC

applications”

on

page

304

v

“Closing

a

connection

to

a

JDBC

data

source”

on

page

276

Closing

a

connection

to

a

JDBC

data

source

When

you

have

finished

with

a

connection

to

a

data

source,

it

is

essential

that

you

close

the

connection

to

the

data

source.

Doing

this

releases

the

Connection

object’s

DB2®

and

JDBC

resources

immediately.

To

close

the

connection

to

the

data

source,

use

the

close

method.

For

example:

Connection

con;

...

con.close();

If

autocommit

mode

is

not

on,

the

connection

needs

to

be

on

a

unit-of-work

boundary

before

you

close

the

connection.

Related

concepts:

v

“How

JDBC

applications

connect

to

a

data

source”

on

page

267

JDBC

interfaces

for

executing

SQL

You

execute

SQL

statements

in

a

traditional

SQL

program

to

insert,

update,

and

delete

data

in

tables,

retrieve

data

from

the

tables,

or

call

stored

procedures.

To

perform

the

same

functions

in

a

JDBC

program,

you

invoke

methods

that

are

defined

in

the

following

interfaces:

v

The

Statement

interface

supports

all

SQL

statement

execution.

The

following

interfaces

inherit

methods

from

the

Statement

interface:

–

The

PreparedStatement

interface

supports

any

SQL

statement

containing

input

parameter

markers.

Parameter

markers

represent

input

variables.

The

PreparedStatement

interface

can

also

be

used

for

SQL

statements

with

no

parameter

markers.

With

the

DB2

Universal

JDBC

Driver,

the

PreparedStatement

interface

can

be

used

to

call

stored

procedures

that

have

input

parameters

and

no

output

parameters,

and

that

return

no

result

sets.

–

The

CallableStatement

interface

supports

the

invocation

of

a

stored

procedure.

The

CallableStatement

interface

can

be

used

to

call

stored

procedures

with

input

parameters,

output

parameters,

or

input

and

output

parameters,

or

no

parameters.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

the

Statement

interface

to

call

stored

procedures,

but

those

stored

procedures

must

have

no

parameters.
v

The

ResultSet

interface

provides

access

to

the

results

that

a

query

generates.

The

ResultSet

interface

has

the

same

purpose

as

the

cursor

that

is

used

in

SQL

applications

in

other

languages.

For

a

complete

list

of

DB2®

support

for

JDBC

interfaces,

see

Comparison

of

driver

support

for

JDBC

APIs.

Related

tasks:

v

“Using

the

PreparedStatement.executeQuery

method

to

retrieve

data

from

DB2”

on

page

280

v

“Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables”

on

page

279

276

Programming

Client

Applications

v

“Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables”

on

page

277

v

“Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects”

on

page

277

Related

reference:

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects

You

can

use

the

Statement.executeUpdate

method

to

do

the

following

things:

v

Execute

data

definition

statements,

such

as

CREATE,

ALTER,

DROP,

GRANT,

REVOKE

v

Execute

INSERT,

UPDATE

and

DELETE

statements

that

do

not

contain

parameter

markers

v

With

the

DB2

Universal

JDBC

Driver,

execute

the

CALL

statement

to

call

stored

procedures

that

have

no

parameters

and

that

return

no

result

sets.

To

execute

these

SQL

statements,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.createStatement

method

to

create

a

Statement

object.

2.

Invoke

the

Statement.executeUpdate

method

to

perform

the

SQL

operation.

3.

Invoke

the

Statement.close

method

to

close

the

Statement

object.

For

example,

suppose

that

you

want

to

execute

this

SQL

statement:

UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’

The

following

code

creates

Statement

object

stmt,

executes

the

UPDATE

statement,

and

returns

the

number

of

rows

that

were

updated

in

numUpd.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables

To

retrieve

data

from

a

table

using

a

SELECT

statement

with

no

parameter

markers,

you

can

use

the

Statement.executeQuery

method.

This

method

returns

a

Connection

con;

Statement

stmt;

int

numUpd;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

�1�

numUpd

=

stmt.executeUpdate(

"UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’");

�2�

//

Perform

the

update

stmt.close();

//

Close

Statement

object

�3�

Figure

9.

Using

Statement.executeUpdate

Chapter

15.

JDBC

application

programming

277

|
|

result

table

in

a

ResultSet

object.

After

you

obtain

the

result

table,

you

need

to

use

ResultSet

methods

to

move

through

the

result

table

and

obtain

the

individual

column

values

from

each

row.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

the

Statement.executeQuery

method

to

retrieve

a

result

set

from

a

stored

procedure

call,

if

that

stored

procedure

returns

only

one

result

set.

If

the

stored

procedure

returns

multiple

result

sets,

you

need

to

use

the

Statement.execute

method.

See

Retrieve

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application

for

more

information.

This

topic

discusses

the

simplest

kind

of

ResultSet,

which

is

a

read-only

ResultSet

in

which

you

can

only

move

forward,

one

row

at

a

time.

The

DB2

Universal

JDBC

Driver

also

supports

updatable

and

scrollable

ResultSets.

These

are

discussed

in

Specify

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications.

To

retrieve

rows

from

a

table

using

a

SELECT

statement

with

no

parameter

markers,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.createStatement

method

to

create

a

Statement

object.

2.

Invoke

the

Statement.executeQuery

method

to

obtain

the

result

table

from

the

SELECT

statement

in

a

ResultSet

object.

3.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

XXX

represents

a

data

type.

See

Comparison

of

driver

support

for

JDBC

APIs

for

a

list

of

supported

getXXX

and

setXXX

methods.

4.

Invoke

the

ResultSet.close

method

to

close

the

ResultSet

object.

5.

Invoke

the

Statement.close

method

to

close

the

Statement

object

when

you

have

finished

using

that

object.

For

example,

the

following

code

demonstrates

how

to

retrieve

all

rows

from

the

employee

table.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

tasks:

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

297

v

“Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications”

on

page

309

String

empNo;

Connection

con;

Statement

stmt;

ResultSet

rs;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

�1�

rs

=

stmt.executeQuery("SELECT

EMPNO

FROM

EMPLOYEE");

�2�

//

Get

the

result

table

from

the

query

while

(rs.next())

{

//

Position

the

cursor

�3�

empNo

=

rs.getString(1);

//

Retrieve

only

the

first

column

value

System.out.println("Employee

number

=

"

+

empNo);

//

Print

the

column

value

}

rs.close();

//

Close

the

ResultSet

�4�

stmt.close();

//

Close

the

Statement

�5�

Figure

10.

Using

Statement.executeQuery

278

Programming

Client

Applications

|
|
|
|
|

Related

reference:

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables

The

Statement.executeUpdate

method

works

if

you

update

DB2®

tables

with

constant

values.

However,

updates

often

need

to

involve

passing

values

in

variables

to

DB2

tables.

To

do

that,

you

use

the

PreparedStatement.executeUpdate

method.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

PreparedStatement.executeUpdate

to

call

stored

procedures

that

have

input

parameters

and

no

output

parameters,

and

that

return

no

result

sets.

When

you

execute

an

SQL

statement

many

times,

you

can

get

better

performance

by

creating

the

SQL

statement

as

a

PreparedStatement.

For

example,

the

following

UPDATE

statement

lets

you

update

the

employee

table

for

only

one

phone

number

and

one

employee

number:

UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’

Suppose

that

you

want

to

generalize

the

operation

to

update

the

employee

table

for

any

set

of

phone

numbers

and

employee

numbers.

You

need

to

replace

the

constant

phone

number

and

employee

number

with

variables:

UPDATE

EMPLOYEE

SET

PHONENO=?

WHERE

EMPNO=?

Variables

of

this

form

are

called

parameter

markers.

To

execute

an

SQL

statement

with

parameter

markers,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object.

2.

Invoke

the

PreparedStatement.setXXX

methods

to

pass

values

to

the

variables.

3.

Invoke

the

PreparedStatement.executeUpdate

method

to

update

the

table

with

the

variable

values.

4.

Invoke

the

PreparedStatement.close

method

to

close

the

PreparedStatement

object

when

you

have

finished

using

that

object.

The

following

code

performs

the

previous

steps

to

update

the

phone

number

to

’4657’

for

the

employee

with

employee

number

’000010’.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

con;

PreparedStatement

pstmt;

int

numUpd;

...

pstmt

=

con.prepareStatement(

"UPDATE

EMPLOYEE

SET

PHONENO=?

WHERE

EMPNO=?");

//

Create

a

PreparedStatement

object

�1�

pstmt.setString(1,"4657");

//

Assign

value

to

first

parameter

�2�

pstmt.setString(2,"000010");

//

Assign

value

to

second

parameter

numUpd

=

pstmt.executeUpdate();

//

Perform

the

update

�3�

pstmt.close();

//

Close

the

PreparedStatement

object

�4�

Figure

11.

Using

PreparedStatement.executeUpdate

for

an

SQL

statement

with

parameter

markers

Chapter

15.

JDBC

application

programming

279

You

can

also

use

the

PreparedStatement.executeUpdate

method

for

statements

that

have

no

parameter

markers.

The

steps

for

executing

a

PreparedStatement

object

with

no

parameter

markers

are

similar

to

executing

a

PreparedStatement

object

with

parameter

markers,

except

you

skip

step

2.

The

following

example

demonstrates

these

steps.

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Using

the

PreparedStatement.executeQuery

method

to

retrieve

data

from

DB2

To

retrieve

data

from

a

table

using

a

SELECT

statement

with

parameter

markers,

you

use

the

PreparedStatement.executeQuery

method.

This

method

returns

a

result

table

in

a

ResultSet

object.

After

you

obtain

the

result

table,

you

need

to

use

ResultSet

methods

to

move

through

the

result

table

and

obtain

the

individual

column

values

from

each

row.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

the

PreparedStatement.executeQuery

method

to

retrieve

a

result

set

from

a

stored

procedure

call,

if

that

stored

procedure

returns

only

one

result

set

and

has

only

input

parameters.

If

the

stored

procedure

returns

multiple

result

sets,

you

need

to

use

the

Statement.execute

method.

See

Retrieve

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application

for

more

information.

To

retrieve

rows

from

a

table

using

a

SELECT

statement

with

parameter

markers,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object.

2.

Invoke

PreparedStatement.setXXX

methods

to

pass

values

to

the

input

parameters.

3.

Invoke

the

PreparedStatement.executeQuery

method

to

obtain

the

result

table

from

the

SELECT

statement

in

a

ResultSet

object.

4.

In

a

loop,

position

the

cursor

using

the

ResultSet.next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

5.

Invoke

the

ResultSet.close

method

to

close

the

ResultSet

object.

6.

Invoke

the

PreparedStatement.close

method

to

close

the

PreparedStatement

object

when

you

have

finished

using

that

object.

Connection

con;

PreparedStatement

pstmt;

int

numUpd;

...

pstmt

=

con.prepareStatement(

"UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’");

//

Create

a

PreparedStatement

object

�1�

numUpd

=

pstmt.executeUpdate();

//

Perform

the

update

�3�

pstmt.close();

//

Close

the

PreparedStatement

object

�4�

Figure

12.

Using

PreparedStatement.executeUpdate

for

an

SQL

statement

without

parameter

markers

280

Programming

Client

Applications

|
|
|
|
|
|

For

example,

the

following

code

demonstrates

how

to

retrieve

rows

from

the

employee

table

for

a

specific

employee.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

You

can

also

use

the

PreparedStatement.executeQuery

method

for

statements

that

have

no

parameter

markers.

When

you

execute

a

query

many

times,

you

can

get

better

performance

by

creating

the

SQL

statement

as

a

PreparedStatement.

Related

tasks:

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

297

Related

reference:

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Using

CallableStatement

methods

to

call

stored

procedures

To

call

stored

procedures,

you

invoke

methods

in

the

CallableStatement

class.

The

basic

steps

are:

1.

Invoke

the

Connection.prepareCall

method

to

create

a

CallableStatement

object.

2.

Invoke

the

CallableStatement.setXXX

methods

to

pass

values

to

the

input

(IN)

parameters.

3.

Invoke

the

CallableStatement.registerOutParameter

method

to

indicate

which

parameters

are

output-only

(OUT)

parameters,

or

input

and

output

(INOUT)

parameters.

4.

Invoke

one

of

the

following

methods

to

call

the

stored

procedure:

CallableStatement.executeUpdate

Invoke

this

method

if

the

stored

procedure

does

not

return

result

sets.

CallableStatement.executeQuery

Invoke

this

method

if

the

stored

procedure

returns

one

result

set.

CallableStatement.execute

Invoke

this

method

if

the

stored

procedure

returns

multiple

result

sets.
5.

If

the

stored

procedure

returns

result

sets,

retrieve

the

result

sets.

See

Retrieve

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application.

String

empnum,

phonenum;

Connection

con;

PreparedStatement

pstmt;

ResultSet

rs;

...

pstmt

=

con.prepareStatement(

"SELECT

EMPNO,

PHONENO

FROM

EMPLOYEE

WHERE

EMPNO=?");

//

Create

a

PreparedStatement

object

�1�

pstmt.setString(1,"000010");

//

Assign

value

to

input

parameter

�2�

rs

=

pstmt.executeQuery();

//

Get

the

result

table

from

the

query

�3�

while

(rs.next())

{

//

Position

the

cursor

�4�

empnum

=

rs.getString(1);

//

Retrieve

the

first

column

value

phonenum

=

rs.getString(2);

//

Retrieve

the

first

column

value

System.out.println("Employee

number

=

"

+

empnum

+

"Phone

number

=

"

+

phonenum);

//

Print

the

column

values

}

rs.close();

//

Close

the

ResultSet

�5�

pstmt.close();

//

Close

the

PreparedStatement

�6�

Figure

13.

Using

PreparedStatement.executeQuery

Chapter

15.

JDBC

application

programming

281

6.

Invoke

the

CallableStatement.getXXX

methods

to

retrieve

values

from

the

OUT

parameters

or

INOUT

parameters.

7.

Invoke

the

CallableStatement.close

method

to

close

the

CallableStatement

object

when

you

have

finished

using

that

object.

The

following

code

illustrates

calling

a

stored

procedure

that

has

one

input

parameter,

four

output

parameters,

and

no

returned

ResultSets.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

tasks:

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

297

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver

As

in

all

Java™

programs,

error

handling

is

done

using

try/catch

blocks.

Methods

throw

exceptions

when

an

error

occurs,

and

the

code

in

the

catch

block

handles

those

exceptions.

JDBC

provides

the

SQLException

class

for

handling

errors.

All

JDBC

methods

throw

an

instance

of

SQLException

when

an

error

occurs

during

their

execution.

According

to

the

JDBC

specification,

an

SQLException

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

error,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

int

ifcaret;

int

ifcareas;

int

xsbytes;

String

errbuff;

Connection

con;

CallableStatement

cstmt;

ResultSet

rs;

...

cstmt

=

con.prepareCall("CALL

DSN8.DSN8ED2(?,?,?,?,?)");

�1�

//

Create

a

CallableStatement

object

cstmt.setString

(1,

"DISPLAY

THREAD(*)");

�2�

//

Set

input

parameter

(DB2

command)

cstmt.registerOutParameter

(2,

Types.INTEGER);

�3�

//

Register

output

parameters

cstmt.registerOutParameter

(3,

Types.INTEGER);

cstmt.registerOutParameter

(4,

Types.INTEGER);

cstmt.registerOutParameter

(5,

Types.VARCHAR);

cstmt.executeUpdate();

//

Call

the

stored

procedure

�4�

ifcaret

=

cstmt.getInt(2);

//

Get

the

output

parameter

values

�6�

ifcareas

=

cstmt.getInt(3);

xsbytes

=

cstmt.getInt(4);

errbuff

=

cstmt.getString(5);

cstmt.close();

�7�

Figure

14.

Using

CallableStatement

methods

for

a

stored

procedure

call

with

parameter

markers

282

Programming

Client

Applications

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLException,

or

null

The

DB2

Universal

JDBC

Driver

provides

a

com.ibm.db2.jcc.DB2Diagnosable

interface

that

extends

the

SQLException

class.

The

DB2Diagnosable

interface

gives

you

more

information

about

errors

that

occur

when

DB2®

is

accessed.

If

the

JDBC

driver

detects

an

error,

DB2Diagnosable

gives

you

the

same

information

as

the

standard

SQLException

class.

However,

if

DB2

detects

the

error,

DB2Diagnosable

adds

the

following

methods,

which

give

you

additional

information

about

the

error:

getSqlca

Returns

an

DB2Sqlca

object

with

the

following

information:

v

An

SQL

error

code

v

The

SQLERRMC

values

v

The

SQLERRP

value

v

The

SQLERRD

values

v

The

SQLWARN

values

v

The

SQLSTATE

getThrowable

Returns

a

java.lang.Throwable

object

that

caused

the

SQLException,

or

null,

if

no

such

object

exists.

printTrace

Prints

diagnostic

information.

The

basic

steps

for

handling

an

SQLException

in

a

JDBC

program

that

runs

under

the

DB2

Universal

JDBC

Driver

are:

1.

Give

the

program

access

to

the

com.ibm.db2.jcc.DB2Diagnosable

interface

and

the

com.ibm.db2.jcc.DB2Sqlca

class.

You

can

fully

qualify

all

references

to

them,

or

you

can

import

them:

import

com.ibm.db2.jcc.DB2Diagnosable;

import

com.ibm.db2.jcc.DB2Sqlca;

2.

Put

code

that

can

generate

an

SQLException

in

a

try

block.

3.

In

the

catch

block,

perform

the

following

steps

in

a

loop:

a.

Test

whether

you

have

retrieved

the

last

SQLException.

If

not,

continue

to

the

next

step.

b.

Check

whether

any

DB2-only

information

exists

by

testing

for

the

existence

of

a

DB2Diagnosable

object.

If

the

object

exists:

1)

Optional:

Invoke

the

DB2Diagnosable.printTrace

method

to

write

all

SQLException

information

to

a

java.io.PrintWriter

object.

2)

Invoke

the

DB2Diagnosable.getThrowable

method

to

determine

whether

an

underlying

java.lang.Throwable

caused

the

SQLException.

3)

Invoke

the

DB2Diagnosable.getSqlca

method

to

retrieve

the

DB2Sqlca

object.

4)

Invoke

the

DB2Sqlca.getSqlCode

method

to

retrieve

an

SQL

error

code

value.

5)

Invoke

the

DB2Sqlca.getSqlErrmc

method

to

retrieve

a

string

that

contains

all

SQLERRMC

values,

or

invoke

the

DB2Sqlca.getSqlErrmcTokens

method

to

retrieve

the

SQLERRMC

values

in

an

array.

6)

Invoke

the

DB2Sqlca.getSqlErrp

method

to

retrieve

the

SQLERRP

value.

Chapter

15.

JDBC

application

programming

283

7)

Invoke

the

DB2Sqlca.getSqlErrd

method

to

retrieve

the

SQLERRD

values

in

an

array.

8)

Invoke

the

DB2Sqlca.getSqlWarn

method

to

retrieve

the

SQLWARN

values

in

an

array.

9)

Invoke

the

DB2Sqlca.getSqlState

method

to

retrieve

the

SQLSTATE

value.

10)

Invoke

the

DB2Sqlca.getMessage

method

to

retrieve

error

message

text

from

the

database

server.
c.

Invoke

the

SQLException.getNextException

method

to

retrieve

the

next

SQLException.

The

following

code

demonstrates

how

to

obtain

information

from

the

DB2

version

of

an

SQLException

that

is

provided

with

the

DB2

Universal

JDBC

Driver.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

284

Programming

Client

Applications

import

java.sql.*;

//

Import

JDBC

API

package

import

com.ibm.db2.jcc.DB2Diagnosable;

//

Import

packages

for

DB2

�1�

import

com.ibm.db2.jcc.DB2Sqlca;

//

SQLException

support

java.io.PrintWriter

printWriter;

//

For

dumping

all

SQLException

//

information

...

try

{

�2�

//

Code

that

could

generate

SQLExceptions

...

}

catch(SQLException

sqle)

{

while(sqle

!=

null)

{

//

Check

whether

there

are

more

�3a�

//

SQLExceptions

to

process

//=====>

Optional

DB2-only

error

processing

if

(sqle

instanceof

DB2Diagnosable)

{

�3b�

//

Check

if

DB2-only

information

exists

com.ibm.db2.jcc.DB2Diagnosable

diagnosable

=

(com.ibm.db2.jcc.DB2Diagnosable)sqle;

diagnosable.printTrace

(printWriter,

"");

�3b1�

java.lang.Throwable

throwable

=

diagnosable.getThrowable();

�3b2�

if

(throwable

!=

null)

{

//

Extract

java.lang.Throwable

information

//

such

as

message

or

stack

trace.

...

}

DB2Sqlca

sqlca

=

diagnosable.getSqlca();

�3b3�

//

Get

DB2Sqlca

object

if

(sqlca

!=

null)

{

//

Check

that

DB2Sqlca

is

not

null

int

sqlCode

=

sqlca.getSqlCode();

//

Get

the

SQL

error

code

�3b4�

String

sqlErrmc

=

sqlca.getSqlErrmc();

�3b5�

//

Get

the

entire

SQLERRMC

String[]

sqlErrmcTokens

=

sqlca.getSqlErrmcTokens();

//

You

can

also

retrieve

the

//

individual

SQLERRMC

tokens

String

sqlErrp

=

sqlca.getSqlErrp();

�3b6�

//

Get

the

SQLERRP

int[]

sqlErrd

=

sqlca.getSqlErrd();

�3b7�

//

Get

SQLERRD

fields

char[]

sqlWarn

=

sqlca.getSqlWarn();

�3b8�

//

Get

SQLWARN

fields

String

sqlState

=

sqlca.getSqlState();

�3b9�

//

Get

SQLSTATE

String

errMessage

=

sqlca.getMessage();

�3b10�

//

Get

error

message

System.err.println

("Server

error

message:

"

+

errMessage);

System.err.println

("---------------

SQLCA

---------------");

System.err.println

("Error

code:

"

+

sqlCode);

System.err.println

("SQLERRMC:

"

+

sqlErrmc);

for

(int

i=0;

i<

sqlErrmcTokens.length;

i++)

{

System.err.println

("

token

"

+

i

+

":

"

+

sqlErrmcTokens[i]);

}

Figure

15.

Processing

an

SQLException

under

the

DB2

Universal

JDBC

Driver

(Part

1

of

2)

Chapter

15.

JDBC

application

programming

285

Related

reference:

v

“Error

codes

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

434

Handling

an

SQLException

under

the

DB2

JDBC

Type

2

Driver

As

in

all

Java™

programs,

error

handling

is

done

using

try/catch

blocks.

Methods

throw

exceptions

when

an

error

occurs,

and

the

code

in

the

catch

block

handles

those

exceptions.

JDBC

provides

the

SQLException

class

for

handling

errors.

All

JDBC

methods

throw

an

instance

of

SQLException

when

an

error

occurs

during

their

execution.

According

to

the

JDBC

specification,

an

SQLException

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

error,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLException,

or

null

The

basic

steps

for

handling

an

SQLException

in

a

JDBC

program

that

runs

under

the

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver)

are:

1.

Put

code

that

can

generate

an

SQLException

in

a

try

block.

2.

In

the

catch

block,

perform

the

following

steps

in

a

loop:

a.

Test

whether

you

have

retrieved

the

last

SQLException.

If

not,

continue

to

the

next

step.

b.

Retrieve

error

information

from

the

SQLException.

c.

Invoke

the

SQLException.getNextException

method

to

retrieve

the

next

SQLException.

System.err.println

(

"SQLERRP:

"

+

sqlErrp

);

System.err.println

(

"SQLERRD(1):

"

+

sqlErrd[0]

+

"\n"

+

"SQLERRD(2):

"

+

sqlErrd[1]

+

"\n"

+

"SQLERRD(3):

"

+

sqlErrd[2]

+

"\n"

+

"SQLERRD(4):

"

+

sqlErrd[3]

+

"\n"

+

"SQLERRD(5):

"

+

sqlErrd[4]

+

"\n"

+

"SQLERRD(6):

"

+

sqlErrd[5]

);

System.err.println

(

"SQLWARN1:

"

+

sqlWarn[0]

+

"\n"

+

"SQLWARN2:

"

+

sqlWarn[1]

+

"\n"

+

"SQLWARN3:

"

+

sqlWarn[2]

+

"\n"

+

"SQLWARN4:

"

+

sqlWarn[3]

+

"\n"

+

"SQLWARN5:

"

+

sqlWarn[4]

+

"\n"

+

"SQLWARN6:

"

+

sqlWarn[5]

+

"\n"

+

"SQLWARN7:

"

+

sqlWarn[6]

+

"\n"

+

"SQLWARN8:

"

+

sqlWarn[7]

+

"\n"

+

"SQLWARN9:

"

+

sqlWarn[8]

+

"\n"

+

"SQLWARNA:

"

+

sqlWarn[9]

);

System.err.println

("SQLSTATE:

"

+

sqlState);

//

portion

of

SQLException

}

sqle=sqle.getNextException();

//

Retrieve

next

SQLException

�3c�

}

}

Figure

15.

Processing

an

SQLException

under

the

DB2

Universal

JDBC

Driver

(Part

2

of

2)

286

Programming

Client

Applications

The

following

code

illustrates

a

catch

block

that

uses

the

DB2

version

of

SQLException

that

is

provided

with

the

DB2

JDBC

Type

2

Driver.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

tasks:

v

“Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver”

on

page

287

Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver

Unlike

SQL

errors,

SQL

warnings

do

not

cause

JDBC

methods

to

throw

exceptions.

Instead,

the

Connection,

Statement,

PreparedStatement,

CallableStatement,

and

ResultSet

classes

contain

getWarnings

methods,

which

you

need

to

invoke

after

you

execute

SQL

statements

to

determine

whether

any

SQL

warnings

were

generated.

Calling

getWarnings

retrieves

an

SQLWarning

object.

A

generic

SQLWarning

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

warning,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLWarning,

or

null

Under

the

DB2

Universal

JDBC

Driver,

like

an

SQLException

object,

an

SQLWarning

object

can

also

contain

DB2®-specific

information.

The

DB2-specific

information

for

an

SQLWarning

object

is

the

same

as

the

DB2-specific

information

for

an

SQLException

object.

The

basic

steps

for

retrieving

SQL

warning

information

are:

1.

Immediately

after

invoking

a

method

that

executes

an

SQL

statement,

invoke

the

getWarnings

method

to

retrieve

an

SQLWarning

object.

2.

Perform

the

following

steps

in

a

loop:

a.

Test

whether

the

SQLWarning

object

is

null.

If

not,

continue

to

the

next

step.

b.

Invoke

the

SQLWarning.getMessage

method

to

retrieve

the

warning

description.

c.

Invoke

the

SQLWarning.getSQLState

method

to

retrieve

the

SQLSTATE

value.

d.

Invoke

the

SQLWarning.getErrorCode

method

to

retrieve

the

error

code

value.

e.

If

you

want

DB2-specific

warning

information,

perform

the

same

steps

that

you

perform

to

get

DB2-specific

information

for

an

SQLException.

import

java.sql.*;

//

Import

JDBC

API

package

...

try

{

//

Code

that

could

generate

SQLExceptions

...

}

catch(SQLException

sqle)

{

while(sqle

!=

null)

{

//

Check

whether

there

are

more

�1�

System.out.println("Message:

"

+

sqle.getMessage());

�2�

System.out.println("SQLSTATE:

"

+

sqle.getSQLState());

System.out.println("SQL

error

code:

"

+

sqle.getErrorCode());

sqle=sqle.getNextException();

//

Retrieve

next

SQLException

�3�

}

}

Figure

16.

Processing

an

SQLException

under

the

DB2

Universal

JDBC

Driver

Chapter

15.

JDBC

application

programming

287

f.

Invoke

the

SQLWarning.getNextWarning

method

to

retrieve

the

next

SQLWarning.

The

following

code

illustrates

how

to

obtain

generic

SQLWarning

information.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

Handling

an

SQLWarning

under

the

DB2

JDBC

Type

2

Driver

Unlike

SQL

errors,

SQL

warnings

do

not

cause

JDBC

methods

to

throw

exceptions.

Instead,

the

Connection,

Statement,

PreparedStatement,

CallableStatement,

and

ResultSet

classes

contain

getWarnings

methods,

which

you

need

to

invoke

after

you

execute

SQL

statements

to

determine

whether

any

SQL

warnings

were

generated.

Calling

getWarnings

retrieves

an

SQLWarning

object.

The

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver)

generates

generic

SQLWarning

objects.

A

generic

SQLWarning

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

warning,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLWarning,

or

null

The

basic

steps

for

retrieving

SQL

warning

information

are:

1.

Immediately

after

invoking

a

method

that

executes

an

SQL

statement,

invoke

the

getWarnings

method

to

retrieve

an

SQLWarning

object.

2.

Perform

the

following

steps

in

a

loop:

a.

Test

whether

the

SQLWarning

object

is

null.

If

not,

continue

to

the

next

step.

b.

Invoke

the

SQLWarning.getMessage

method

to

retrieve

the

warning

description.

c.

Invoke

the

SQLWarning.getSQLState

method

to

retrieve

the

SQLSTATE

value.

d.

Invoke

the

SQLWarning.getErrorCode

method

to

retrieve

the

error

code

value.

Connection

con;

Statement

stmt;

ResultSet

rs;

SQLWarning

sqlwarn;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

rs

=

stmt.executeQuery("SELECT

*

FROM

EMPLOYEE");

//

Get

the

result

table

from

the

query

sqlwarn

=

stmt.getWarnings();

//

Get

any

warnings

generated

�1�

while

(sqlwarn

!=

null)

{

//

While

there

are

warnings,

get

and

�2a�

//

print

warning

information

System.out.println

("Warning

description:

"

+

sqlwarn.getMessage());

�2b�

System.out.println

("SQLSTATE:

"

+

sqlwarn.getSQLState());

�2c�

System.out.println

("Error

code:

"

+

sqlwarn.getErrorCode());

�2d�

sqlwarn=sqlwarn.getNextWarning();

//

Get

next

SQLWarning

�2f�

}

Figure

17.

Processing

an

SQLWarning

288

Programming

Client

Applications

e.

Invoke

the

SQLWarning.getNextWarning

method

to

retrieve

the

next

SQLWarning.

The

following

code

illustrates

how

to

obtain

generic

SQLWarning

information.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

JDBC

Type

2

Driver”

on

page

286

Advanced

JDBC

application

programming

concepts

The

topics

that

follow

contain

more

advanced

information

about

writing

JDBC

applications.

LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver

The

DB2

Universal

JDBC

Driver

includes

all

of

the

LOB

support

in

the

JDBC

2.0

specification.

This

driver

also

includes

support

for

LOBs

in

additional

methods

and

for

additional

data

types.

CLOB

data

is

always

sent

to

the

database

server

as

a

Unicode

stream.

The

database

server

converts

the

data

to

the

target

code

page.

LOB

locator

support:

The

DB2

Universal

JDBC

Driver

can

use

LOB

locators

to

retrieve

data

in

LOB

columns.

To

cause

JDBC

to

use

LOB

locators

to

retrieve

data

from

LOB

columns,

you

need

to

set

the

fullyMaterializeLobData

property

to

false.

Properties

are

discussed

in

Properties

for

the

DB2®

Universal

JDBC

Driver.

fullyMaterializeLobData

has

no

effect

on

stored

procedure

parameters

or

LOBs

that

are

fetched

using

scrollable

cursors.

When

you

fetch

data

from

a

DB2

UDB

server

in

the

OS/390®

or

z/OS™

environment

using

scrollable

cursors,

JDBC

always

uses

LOB

locators

to

retrieve

data

from

LOB

columns.

As

in

any

other

language,

a

LOB

locator

in

a

Java

application

is

associated

with

only

one

database.

You

cannot

use

a

single

LOB

locator

to

move

data

between

two

different

databases.

To

move

LOB

data

between

two

databases,

you

need

to

Connection

con;

Statement

stmt;

ResultSet

rs;

SQLWarning

sqlwarn;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

rs

=

stmt.executeQuery("SELECT

*

FROM

EMPLOYEE");

//

Get

the

result

table

from

the

query

sqlwarn

=

stmt.getWarnings();

//

Get

any

warnings

generated

�1�

while

(sqlwarn

!=

null)

{

//

While

there

are

warnings,

get

and

�2a�

//

print

warning

information

System.out.println

("Warning

description:

"

+

sqlwarn.getMessage());

�2b�

System.out.println

("SQLSTATE:

"

+

sqlwarn.getSQLState());

�2c�

System.out.println

("Error

code:

"

+

sqlwarn.getErrorCode());

�2d�

sqlwarn=sqlwarn.getNextWarning();

//

Get

next

SQLWarning

�2f�

}

Figure

18.

Processing

an

SQLWarning

Chapter

15.

JDBC

application

programming

289

materialize

the

LOB

data

when

you

retrieve

it

from

a

table

in

the

first

database

and

then

insert

that

data

into

the

table

in

the

second

database.

Additional

methods

supported

by

the

DB2

Universal

JDBC

Driver:

In

addition

to

the

methods

in

the

JDBC

specification,

the

DB2

Universal

JDBC

Driver

includes

LOB

support

in

the

following

methods:

v

You

can

specify

a

BLOB

column

as

an

argument

of

the

following

ResultSet

methods

to

retrieve

data

from

a

BLOB

column:

–

getBinaryStream

–

getBytes

v

You

can

specify

a

CLOB

column

as

an

argument

of

the

following

ResultSet

methods

to

retrieve

data

from

a

CLOB

column:

–

getAsciiStream

–

getCharacterStream

–

getString

–

getUnicodeStream

v

You

can

use

the

following

PreparedStatement

methods

to

set

the

values

for

parameters

that

correspond

to

BLOB

columns:

–

setBytes

–

setBinaryStream

v

You

can

use

the

following

PreparedStatement

methods

to

set

the

values

for

parameters

that

correspond

to

CLOB

columns:

–

setString

–

setAsciiStream

–

setUnicodeStream

–

setCharacterStream

v

You

can

retrieve

the

value

of

a

JDBC

CLOB

parameter

using

the

following

CallableStatement

method:

–

getString

Restriction

on

using

LOBs

with

the

DB2

Universal

JDBC

Driver:

If

you

are

using

Universal

Type

2

Connectivity,

you

cannot

call

a

stored

procedure

that

has

DBCLOB

OUT

or

INOUT

parameters.

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

JDBC

applications

When

the

deferPrepares

property

is

set

to

true,

and

the

DB2

Universal

JDBC

Driver

processes

a

PreparedStatement.setXXX

call,

the

driver

might

need

to

do

extra

processing

to

determine

data

types.

This

extra

processing

can

impact

performance.

When

the

JDBC

driver

cannot

immediately

determine

the

data

type

of

a

parameter

that

is

used

with

a

LOB

column,

you

need

to

choose

a

parameter

data

type

that

is

compatible

with

the

LOB

data

type.

Input

parameters

for

BLOB

columns:

290

Programming

Client

Applications

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|

|

For

input

parameters

for

BLOB

columns,

or

input/output

parameters

that

are

used

for

input

to

BLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Blob

input

variable,

which

is

an

exact

match

for

a

BLOB

column:

cstmt.setBlob(parmIndex,

blobData);

v

Use

a

CallableStatement.setObject

call

that

specifies

that

the

target

data

type

is

BLOB:

byte[]

byteData

=

{(byte)0x1a,

(byte)0x2b,

(byte)0x3c};

cstmt.setObject(parmInd,

byteData,

java.sql.Types.BLOB);

v

Use

an

input

parameter

of

type

of

java.io.ByteArrayInputStream

with

a

CallableStatement.setBinaryStream

call.

A

java.io.ByteArrayInputStream

object

is

compatible

with

a

BLOB

data

type.

For

this

call,

you

need

to

specify

the

exact

length

of

the

input

data:

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream(byteData);

int

numBytes

=

byteData.length;

cstmt.setBinaryStream(parmIndex,

byteStream,

numBytes);

Output

parameters

for

BLOB

columns:

For

output

parameters

for

BLOB

columns,

or

input/output

parameters

that

are

used

for

output

from

BLOB

columns,

you

can

use

the

following

technique:

v

Use

the

CallableStatement.registerOutParameter

call

to

specify

that

an

output

parameter

is

of

type

BLOB.

Then

you

can

retrieve

the

parameter

value

into

any

variable

that

has

a

data

type

that

is

compatible

with

a

BLOB

data

type.

For

example,

the

following

code

lets

you

retrieve

a

BLOB

value

into

a

byte[]

variable:

cstmt.registerOutParameter(parmIndex,

java.sql.Types.BLOB);

cstmt.execute();

byte[]

byteData

=

cstmt.getBytes(parmIndex);

Input

parameters

for

CLOB

columns:

For

input

parameters

for

CLOB

columns,

or

input/output

parameters

that

are

used

for

input

to

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Clob

input

variable,

which

is

an

exact

match

for

a

CLOB

column:

cstmt.setClob(parmIndex,

clobData);

v

Use

a

CallableStatement.setObject

call

that

specifies

that

the

target

data

type

is

CLOB:

String

charData

=

"CharacterString";

cstmt.setObject(parmInd,

charData,

java.sql.Types.CLOB);

v

Use

one

of

the

following

types

of

stream

input

parameters:

–

A

java.io.StringReader

input

parameter

with

a

cstmt.setCharacterStream

call:

java.io.StringReader

reader

=

new

java.io.StringReader(charData);

cstmt.setCharacterStream(parmIndex,

reader,

charData.length);

–

A

java.io.ByteArrayInputStream

parameter

with

a

cstmt.setAsciiStream

call,

for

ASCII

data:

byte[]

charDataBytes

=

charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream

(charDataBytes);

cstmt.setAsciiStream(parmIndex,

byteStream,

charDataBytes.length);

For

these

calls,

you

need

to

specify

the

exact

length

of

the

input

data.

v

Use

a

String

input

parameter

with

a

cstmt.setString

call:

cstmt.setString(charData);

Chapter

15.

JDBC

application

programming

291

|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|

|
|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|

|

|

|

If

the

length

of

the

data

is

greater

than

32KB,

the

JDBC

driver

assigns

the

CLOB

data

type

to

the

input

data.

v

Use

a

String

input

parameter

with

a

cstmt.setObject

call,

and

specify

the

target

data

type

as

VARCHAR

or

LONGVARCHAR:

cstmt.setObject(parmIndex,

charData,

java.sql.Types.VARCHAR);

If

the

length

of

the

data

is

greater

than

32KB,

the

JDBC

driver

assigns

the

CLOB

data

type

to

the

input

data.

Output

parameters

for

CLOB

columns:

For

output

parameters

for

CLOB

columns,

or

input/output

parameters

that

are

used

for

output

from

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

the

CallableStatement.registerOutParameter

call

to

specify

that

an

output

parameter

is

of

type

CLOB.

Then

you

can

retrieve

the

parameter

value

into

any

variable

that

has

a

data

type

that

is

compatible

with

a

CLOB

data

type.

For

example,

the

following

code

lets

you

retrieve

a

CLOB

value

into

a

String

variable:

cstmt.registerOutParameter(parmIndex,

java.sql.Types.CLOB);

cstmt.execute();

String

charData

=

cstmt.getString(parmIndex);

v

Use

the

CallableStatement.registerOutParameter

call

to

specify

that

an

output

parameter

is

of

type

VARCHAR

or

LONGVARCHAR:

cstmt.registerOutParameter(parmIndex,

java.sql.Types.VARCHAR);

cstmt.execute();

String

charData

=

cstmt.getString(parmIndex);

This

technique

should

be

used

only

if

you

know

that

the

length

of

the

retrieved

data

is

less

than

or

equal

to

32KB.

Otherwise,

the

data

is

truncated.

Related

concepts:

v

“LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

289

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

ROWIDs

in

JDBC

with

the

DB2

Universal

JDBC

Driver

DB2®

UDB

for

z/OS®

and

DB2

UDB

for

iSeries™

support

the

ROWID

data

type

for

a

column

in

a

DB2

table.

A

ROWID

is

a

value

that

uniquely

identifies

a

row

in

a

table.

You

can

use

the

following

ResultSet

methods

to

retrieve

data

from

a

ROWID

column:

v

getBytes

v

getObject

For

getObject,

the

DB2

Universal

JDBC

Driver

returns

an

instance

of

the

DB2-only

class

com.ibm.db2.jcc.DB2RowID.

You

can

use

the

following

PreparedStatement

methods

to

set

a

value

for

a

parameter

that

is

associated

with

a

ROWID

column:

v

setBytes

v

setObject

292

Programming

Client

Applications

|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|

|

|

For

setObject,

use

the

DB2-only

type

com.ibm.db2.jcc.Types.ROWID

or

an

instance

of

the

com.ibm.db2.jcc.DB2RowID

class

as

the

target

type

for

the

parameter.

Example:

Using

PreparedStatement.setObject

with

a

com.ibm.db2.jcc.DB2Types.ROWID

target

type:

To

set

parameter

1,

use

this

form

of

the

SetObject

method:

ps.setObject(1,

bytes[],

com.ibm.db2.jcc.DB2Types.ROWID);

Example:

Using

PreparedStatement.setObject

with

a

com.ibm.db2.jcc.DB2RowID

target

type:

Suppose

that

rwid

is

an

instance

of

com.ibm.db2.jcc.DB2RowID.

To

set

parameter

1,

use

this

form

of

the

SetObject

method:

ps.setObject

(1,

rwid);

To

call

a

stored

procedure

that

is

defined

with

a

ROWID

output

parameter,

register

that

parameter

to

be

of

the

com.ibm.db2.jcc.DB2Types.ROWID

type.

Example:

Using

CallableStatement.registerOutParameter

with

a

com.ibm.db2.jcc.DB2Types.ROWID

parameter

type:

To

register

parameter

1

of

a

CALL

statement

as

a

com.ibm.db2.jcc.DB2Types.ROWID

data

type,

use

this

form

of

the

registerOutParameter

method:

cs.registerOutParameter(1,

com.ibm.db2.jcc.DB2Types.ROWID)

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Distinct

types

in

JDBC

applications

A

distinct

type

is

a

user-defined

data

type

that

is

internally

represented

as

a

built-in

SQL

data

type.

You

create

a

distinct

type

by

executing

the

SQL

statement

CREATE

DISTINCT

TYPE.

In

a

JDBC

program,

you

can

create

a

distinct

type

using

the

executeUpdate

method

to

execute

the

CREATE

DISTINCT

TYPE

statement.

You

can

also

use

executeUpdate

to

create

a

table

that

includes

a

column

of

that

type.

When

you

retrieve

data

from

a

column

of

that

type,

or

update

a

column

of

that

type,

you

use

Java™

identifiers

with

data

types

that

correspond

to

the

built-in

types

on

which

the

distinct

types

are

based.

The

following

example

creates

a

distinct

type

that

is

based

on

an

INTEGER

type,

creates

a

table

with

a

column

of

that

type,

inserts

a

row

into

the

table,

and

retrieves

the

row

from

the

table:

Chapter

15.

JDBC

application

programming

293

Related

reference:

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

Savepoints

in

JDBC

applications

An

SQL

savepoint

represents

the

state

of

data

and

schemas

at

a

particular

point

in

time

within

a

unit

of

work.

SQL

statements

exist

to

set

a

savepoint,

release

a

savepoint,

and

restore

data

and

schemas

to

the

state

that

the

savepoint

represents.

The

DB2

Universal

JDBC

Driver

supports

the

following

methods

for

using

savepoints:

Connection.setSavepoint()

or

Connection.setSavepoint(String

name)

Sets

a

savepoint.

These

methods

return

a

Savepoint

object

that

is

used

in

later

releaseSavepoint

or

rollback

operations.

When

you

execute

either

of

these

methods,

DB2®

executes

the

form

of

the

SAVEPOINT

statement

that

includes

ON

ROLLBACK

RETAIN

CURSORS.

Connection.releaseSavepoint(Savepoint

savepoint)

Releases

the

specified

savepoint,

and

all

subsequently

established

savepoints.

Connection.rollback(Savepoint

savepoint)

Rolls

back

work

to

the

specified

savepoint.

DatabaseMetaData.supportsSavepoints()

Indicates

whether

a

data

source

supports

savepoints.

The

following

example

demonstrates

how

to

set

a

savepoint,

roll

back

to

the

savepoint,

and

release

the

savepoint.

Connection

con;

Statement

stmt;

ResultSet

rs;

String

empNumVar;

int

shoeSizeVar;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

stmt.executeUpdate(

"CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER");

//

Create

distinct

type

stmt.executeUpdate(

"CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)");

//

Create

table

with

distinct

type

stmt.executeUpdate("INSERT

INTO

EMP_SHOE

"

+

"VALUES

(’000010’,

6)");

//

Insert

a

row

rs=stmt.executeQuery("SELECT

EMPNO,

EMP_SHOE_SIZE

FROM

EMP_SHOE);

//

Create

ResultSet

for

query

while

(rs.next())

{

empNumVar

=

rs.getString(1);

//

Get

employee

number

shoeSizeVar

=

rs.getInt(2);

//

Get

shoe

size

(use

int

//

because

underlying

type

//

of

SHOESIZE

is

INTEGER)

System.out.println("Employee

number

=

"

+

empNumVar

+

"

Shoe

size

=

"

+

shoeSizeVar);

}

rs.close();

//

Close

ResultSet

stmt.close();

//

Close

Statement

Figure

19.

Creating

and

using

a

distinct

type

294

Programming

Client

Applications

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

Related

tasks:

v

“Committing

or

rolling

back

JDBC

transactions”

on

page

275

Related

reference:

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Retrieving

identity

column

values

in

JDBC

applications

An

identity

column

is

a

DB2®

table

column

that

provides

a

way

for

DB2

to

automatically

generate

a

numeric

value

for

each

row.

You

define

an

identity

column

in

a

CREATE

TABLE

or

ALTER

TABLE

statement

by

specifying

the

AS

IDENTITY

clause

when

you

define

a

column

that

has

an

exact

numeric

type

with

a

scale

of

0

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL

with

a

scale

of

zero,

or

a

distinct

type

based

on

one

of

these

types).

If

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

retrieve

identity

columns

from

a

DB2

table

using

JDBC

3.0

methods.

In

a

JDBC

program,

identity

columns

are

known

as

automatically

generated

keys.

To

enable

retrieval

of

automatically

generated

keys

from

a

table,

you

need

to

indicate

when

you

insert

rows

that

you

will

want

to

retrieve

automatically

generated

key

values.

You

do

that

by

setting

a

flag

in

a

Connection.prepareStatement,

Statement.executeUpdate,

or

Statement.execute

method

call.

The

statement

that

is

executed

must

be

an

INSERT

statement

or

an

INSERT

within

SELECT

statement.

Otherwise,

the

JDBC

driver

ignores

the

parameter

that

sets

the

flag.

To

retrieve

automatically

generated

keys

from

a

DB2

table,

you

need

to

perform

these

steps:

1.

Use

one

of

the

following

methods

to

indicate

that

you

want

to

return

automatically

generated

keys:

Connection

con;

Statement

stmt;

ResultSet

rs;

String

empNumVar;

int

shoeSizeVar;

...

con.setAutoCommit(false);

//

set

autocommit

OFF

stmt

=

con.createStatement();

//

Create

a

Statement

object

stmt.executeUpdate(

"CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER");

//

Create

distinct

type

con.commit();

//

Commit

the

create

stmt.executeUpdate(

"CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)");

//

Create

table

with

distinct

type

con.commit();

//

Commit

the

create

stmt.executeUpdate("INSERT

INTO

EMP_SHOE

"

+

"VALUES

(’000010’,

6)");

//

Insert

a

row

Savepoint

savept

=

con.setSavepoint();

//

Create

a

savepoint

...

stmt.executeUpdate("INSERT

INTO

EMP_SHOE

"

+

"VALUES

(’000020’,

10)");

//

Insert

another

row

conn.rollback(savept);

//

Roll

back

work

to

the

point

//

after

the

first

insert

...

con.releaseSavepoint(savept);

//

Release

the

savepoint

stmt.close();

//

Close

the

Statement

Figure

20.

Setting,

rolling

back

to,

and

releasing

a

savepoint

in

a

JDBC

application

Chapter

15.

JDBC

application

programming

295

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

v

If

you

plan

to

use

the

PreparedStatement.executeUpdate

method

to

insert

rows,

invoke

one

of

these

forms

of

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object:

Use

this

form

for

a

table

on

any

database

server

that

supports

identity

columns:

Connection.prepareStatement(sql-statement,

Statement.RETURN_GENERATED_KEYS);

Use

this

form

only

for

a

table

on

any

database

server

that

supports

identity

columns

and

INSERT

within

SELECT:

Connection.prepareStatement(sql-statement,

String

[]

columnNames);

v

If

you

use

the

Statement.executeUpdate

method

to

insert

rows,

invoke

one

of

these

form

of

the

Statement.executeUpdate

method:

Use

this

form

for

a

table

on

any

database

server

that

supports

identity

columns:

Statement.executeUpdate(sql-statement,

Statement.RETURN_GENERATED_KEYS);

Use

this

form

only

for

a

table

on

any

database

server

that

supports

identity

columns

and

INSERT

within

SELECT:

Statement.executeUpdate(sql-statement,

String

[]

columnNames);

v

If

you

use

the

Statement.execute

method

to

insert

rows,

invoke

one

of

these

forms

of

the

Statement.execute

method:

Use

this

form

for

a

table

on

any

database

server

that

supports

identity

columns:

Statement.execute(sql-statement,

Statement.RETURN_GENERATED_KEYS);

Use

this

form

only

for

a

table

on

any

database

server

that

supports

identity

columns

and

INSERT

within

SELECT:

Statement.execute(sql-statement,

String

[]

columnNames);

2.

Invoke

the

PreparedStatement.getGeneratedKeys

method

or

the

Statement.getGeneratedKeys

method

to

retrieve

a

ResultSet

object

that

contains

the

automatically

generated

key

values.

The

data

type

of

the

automatically

generated

keys

in

the

ResultSet

is

DECIMAL,

regardless

of

the

data

type

of

the

corresponding

column.

The

following

code

creates

a

table

with

an

identity

column,

inserts

rows

into

the

table,

and

retrieves

automatically

generated

key

values

for

the

identity

column.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

296

Programming

Client

Applications

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|

Related

concepts:

v

“Identity

Columns”

on

page

670

Related

tasks:

v

“Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables”

on

page

279

v

“Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects”

on

page

277

Related

reference:

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application

If

you

call

a

stored

procedure

that

returns

result

sets,

you

need

to

include

code

to

retrieve

the

result

sets.

The

steps

that

you

take

depend

on

whether

you

know

how

many

result

sets

are

returned,

and

whether

you

know

the

contents

of

those

result

sets.

Retrieving

a

known

number

of

result

sets:

To

retrieve

result

sets

when

you

know

the

number

of

result

sets

and

their

contents,

follow

these

steps:

1.

Invoke

the

Statement.execute

method

or

PreparedStatement.execute

method

to

call

the

stored

procedure.

Use

PreparedStatement.execute

if

the

stored

procedure

has

input

parameters.

2.

Invoke

the

getResultSet

method

to

obtain

the

first

result

set,

which

is

in

a

ResultSet

object.

Connection

con;

Statement

stmt;

ResultSet

rs;

java.math.BigDecimal

iDColVar;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

stmt.executeUpdate(

"CREATE

TABLE

EMP_PHONE

(EMPNO

CHAR(6),

PHONENO

CHAR(4),

"

+

"IDENTCOL

INTEGER

GENERATED

ALWAYS

AS

IDENTITY)");

//

Create

table

with

identity

column

stmt.executeUpdate("INSERT

INTO

EMP_PHONE

"

+

�1�

"VALUES

(’000010’,

"5555")",

//

Insert

a

row

Statement.RETURN_GENERATED_KEYS);

//

Indicate

you

want

automatically

//

generated

keys

rs

=

stmt.getGeneratedKeys();

//

Retrieve

the

automatically

�2�

//

generated

key

value

in

a

ResultSet.

//

Only

one

row

is

returned.

//

Create

ResultSet

for

query

while

(rs.next())

{

idColVar

=

rs.getBigDecimal(1);

//

Get

automatically

generated

key

//

value

System.out.println("automatically

generated

key

value

=

"

+

idColVar);

}

rs.close();

//

Close

ResultSet

stmt.close();

//

Close

Statement

Figure

21.

Retrieving

automatically

generated

keys

Chapter

15.

JDBC

application

programming

297

|

|

|

|
|

|
|

|

|

3.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

4.

If

there

are

n

result

sets,

repeat

the

following

steps

n-1

times:

a.

Invoke

the

getMoreResults

method

to

close

the

current

result

set

and

point

to

the

next

result

set.

b.

Invoke

the

getResultSet

method

to

obtain

the

next

result

set,

which

is

in

a

ResultSet

object.

c.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

The

following

code

illustrates

retrieving

two

result

sets.

The

first

result

set

contains

an

INTEGER

column,

and

the

second

result

set

contains

a

CHAR

column.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Retrieving

an

unknown

number

of

result

sets:

To

retrieve

result

sets

when

you

do

not

know

the

number

of

result

sets

or

their

contents,

you

need

to

retrieve

ResultSets,

until

no

more

ResultSets

are

returned.

For

each

ResultSet,

use

ResultSetMetaData

methods

to

determine

its

contents.

See

Use

ResultSetMetaData

to

learn

about

a

ResultSet

for

more

information

on

determining

the

contents

of

a

ResultSet.

After

you

call

a

stored

procedure,

follow

these

basic

steps

to

retrieve

the

contents

of

an

unknown

number

of

result

sets.

1.

Check

the

value

that

was

returned

from

the

execute

statement

that

called

the

stored

procedure.

If

the

returned

value

is

true,

there

is

at

least

one

result

set,

so

you

need

to

go

to

the

next

step.

2.

Repeat

the

following

steps

in

a

loop:

a.

Invoke

the

getResultSet

method

to

obtain

a

result

set,

which

is

in

a

ResultSet

object.

Invoking

this

method

closes

the

previous

result

set.

CallableStatement

cstmt;

ResultSet

rs;

int

i;

String

s;

...

cstmt.execute();

//

Call

the

stored

procedure

�1�

rs

=

cstmt.getResultSet();

//

Get

the

first

result

set

�2�

while

(rs.next())

{

//

Position

the

cursor

�3�

i

=

rs.getInt(1);

//

Retrieve

current

result

set

value

System.out.println("Value

from

first

result

set

=

"

+

i);

//

Print

the

value

}

cstmt.getMoreResults();

//

Point

to

the

second

result

set

�4a�

//

and

close

the

first

result

set

rs

=

cstmt.getResultSet();

//

Get

the

second

result

set

�4b�

while

(rs.next())

{

//

Position

the

cursor

�4c�

s

=

rs.getString(1);

//

Retrieve

current

result

set

value

System.out.println("Value

from

second

result

set

=

"

+

s);

//

Print

the

value

}

rs.close();

//

Close

the

result

set

cstmt.close();

//

Close

the

statement

Figure

22.

Retrieving

known

result

sets

from

a

stored

procedure

298

Programming

Client

Applications

b.

Process

the

ResultSet,

as

shown

in

Use

ResultSetMetaData

to

learn

about

a

ResultSet.

c.

Invoke

the

getMoreResults

method

to

determine

whether

there

is

another

result

set.

If

getMoreResults

returns

true,

go

to

step

2a

on

page

298

to

get

the

next

result

set.

The

following

code

illustrates

retrieving

result

sets

when

you

do

not

know

the

number

of

result

sets

or

their

contents.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Keeping

result

sets

open:

In

Figure

23,

invocation

of

getMoreResults()

closes

the

ResultSet

object

that

is

returned

by

the

previous

invocation

of

getResultSet.

However,

if

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

invoke

the

JDBC

3

form

of

getMoreResults,

which

has

a

parameter

that

determines

whether

the

current

ResultSet

or

previously-opened

ResultSets

are

closed.

This

form

of

getMoreResults

requires

JDK

1.4

or

later.

You

can

specify

one

of

these

constants:

Statement.KEEP_CURRENT_RESULT

Checks

for

the

next

ResultSet,

but

does

not

close

the

current

ResultSet.

Statement.CLOSE_CURRENT_RESULT

Checks

for

the

next

ResultSet,

and

closes

the

current

ResultSet.

Statement.CLOSE_ALL_RESULTS

Closes

all

ResultSets

that

were

previously

kept

open.

For

example,

the

code

in

Figure

24

on

page

300

keeps

all

ResultSets

open

until

the

final

ResultSet

has

been

retrieved,

and

then

closes

all

ResultSets.

CallableStatement

cstmt;

ResultSet

rs;

...

boolean

resultsAvailable

=

cstmt.execute();

//

Call

the

stored

procedure

while

(resultsAvailable)

{

//

Test

for

result

sets

�1�

ResultSet

rs

=

cstmt.getResultSet();

//

Get

a

result

set

�2a�

...

//

process

ResultSet

resultsAvailable

=

cstmt.getMoreResults();

//

Check

for

next

result

set

�2c�

//

(Also

closes

the

//

previous

result

set)

}

Figure

23.

Retrieving

unknown

result

sets

from

a

stored

procedure

Chapter

15.

JDBC

application

programming

299

Related

tasks:

v

“Using

ResultSetMetaData

to

learn

about

a

ResultSet”

on

page

300

Using

ResultSetMetaData

to

learn

about

a

ResultSet

Previous

discussions

of

retrieving

data

from

a

table

or

stored

procedure

result

set

assumed

that

you

know

the

number

of

columns

and

data

types

of

the

columns

in

the

table

or

result

set.

This

is

not

always

the

case,

especially

when

you

are

retrieving

data

from

a

remote

data

source.

When

you

write

programs

that

retrieve

unknown

ResultSets,

you

need

to

use

ResultSetMetaData

methods

to

determine

the

characteristics

of

the

ResultSets

before

you

can

retrieve

data

from

them.

ResultSetMetaData

methods

provide

the

following

types

of

information:

v

The

number

of

columns

in

a

ResultSet

v

The

qualifier

for

the

underlying

table

of

the

ResultSet

v

Information

about

a

column,

such

as

the

data

type,

length,

precision,

scale,

and

nullability

v

Whether

a

column

is

read-only

After

you

invoke

the

executeQuery

method

to

generate

a

ResultSet

for

a

query

on

a

table,

follow

these

basic

steps

to

determine

the

contents

of

the

ResultSet:

1.

Invoke

the

getMetaData

method

on

the

ResultSet

object

to

create

a

ResultSetMetaData

object.

2.

Invoke

the

getColumnCount

method

to

determine

how

many

columns

are

in

the

ResultSet.

3.

For

each

column

in

the

ResultSet,

execute

ResultSetMetaData

methods

to

determine

column

characteristics.

The

results

of

ResultSetMetaData.getColumnName

for

the

same

table

definition

might

differ,

depending

on

the

data

source.

However,

the

returned

information

correctly

reflects

the

column

name

information

that

is

stored

in

the

DB2®

catalog

for

that

data

source.

For

example,

the

following

code

demonstrates

how

to

determine

the

data

types

of

all

the

columns

in

the

employee

table.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

CallableStatement

cstmt;

ResultSet

rs;

...

boolean

resultsAvailable

=

cstmt.execute();

//

Call

the

stored

procedure

while

(resultsAvailable)

{

//

Test

for

result

sets

ResultSet

rs

=

cstmt.getResultSet();

//

Get

a

result

set

...

//

process

ResultSet

resultsAvailable

=

cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

//

Check

for

next

result

set

//

but

do

not

close

//

previous

result

set

}

resultsAvailable

=

cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

//

Close

the

result

sets

Figure

24.

Keeping

retrieved

stored

procedure

result

sets

open

300

Programming

Client

Applications

Related

tasks:

v

“Using

CallableStatement

methods

to

call

stored

procedures”

on

page

281

v

“Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables”

on

page

277

Using

DatabaseMetaData

to

learn

about

a

data

source

The

DatabaseMetaData

interface

contains

methods

that

retrieve

information

about

a

data

source.

These

methods

are

useful

when

you

write

generic

applications

that

can

access

various

data

sources.

In

these

types

of

applications,

you

need

to

test

whether

a

data

source

can

handle

various

database

operations

before

you

execute

them.

For

example,

you

need

to

determine

whether

the

driver

at

a

data

source

is

at

the

JDBC

2.0

level

before

you

invoke

JDBC

2.0

methods

against

that

driver.

DatabaseMetaData

methods

provide

the

following

types

of

information:

v

Features

that

the

data

source

supports,

such

as

the

ANSI

SQL

level

v

Specific

information

about

the

data

source,

such

as

the

driver

level

v

Limits,

such

as

the

maximum

number

of

columns

that

an

index

can

have

v

Whether

the

data

source

supports

data

definition

statements

(CREATE,

ALTER,

DROP,

GRANT,

REVOKE)

v

Lists

of

objects

at

the

data

source,

such

as

tables,

indexes,

or

procedures

v

Whether

the

data

source

supports

various

JDBC

2.0

functions,

such

as

batch

updates

or

scrollable

ResultSets

If

your

application

connects

to

a

DB2®

UDB

for

z/OS™

or

OS/390®

server,

a

number

of

stored

procedures

need

to

be

installed

on

that

server

before

you

can

invoke

some

DatabaseMetaData

methods

that

require

DB2

catalog

information.

The

stored

procedures

are:

v

SQLCOLPRIVILEGES

v

SQLCOLUMNS

v

SQLFOREIGNKEYS

String

s;

Connection

con;

Statement

stmt;

ResultSet

rs;

ResultSetMetaData

rsmtadta;

int

colCount

int

mtadtaint;

int

i;

String

colName;

String

colType;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

rs

=

stmt.executeQuery("SELECT

*

FROM

EMPLOYEE");

//

Get

the

ResultSet

from

the

query

rsmtadta

=

rs.getMetaData();

//

Create

a

ResultSetMetaData

object

�1�

colCount

=

rsmtadta.getColumnCount();

�2�

//

Find

number

of

columns

in

EMP

for

(i=1;

i<=

colCount;

i++)

{

�3�

colName

=

rsmtadta.getColumnName();

//

Get

column

name

colType

=

rsmtadta.getColumnTypeName();

//

Get

column

data

type

System.out.println("Column

=

"

+

colName

+

"

is

data

type

"

+

colType);

//

Print

the

column

value

}

Figure

25.

Using

ResultSetMetaData

methods

to

get

information

about

a

ResultSet

Chapter

15.

JDBC

application

programming

301

v

SQLGETTYPEINFO

v

SQLPRIMARYKEYS

v

SQLPROCEDURECOLS

v

SQLPROCEDURES

v

SQLSPECIALCOLUMNS

v

SQLSTATISTICS

v

SQLTABLEPRIVILEGES

v

SQLTABLES

v

SQLUDTS

For

DB2

UDB

for

OS/390

and

z/OS,

Version

7

or

DB2

UDB

for

OS/390,

Version

6,

the

stored

procedures

are

shipped

in

PTFs.

The

PTFs

are

orderable

through

normal

service

channels

using

the

following

PTF

numbers:

Table

33.

PTFs

for

DB2

Universal

Database

for

z/OS

and

OS/390

DB2

Universal

Database

for

z/OS

and

OS/390

Version

PTF

number

Version

6

UQ72081

and

UQ72082

Version

7

UQ72083

Ask

your

DB2

UDB

for

z/OS

system

administrator

whether

these

stored

procedures

are

installed.

To

invoke

DatabaseMetaData

methods,

you

need

to

perform

these

basic

steps:

1.

Create

a

DatabaseMetaData

object

by

invoking

the

getMetaData

method

on

the

connection.

2.

Invoke

DatabaseMetaData

methods

to

get

information

about

the

data

source.

3.

If

the

method

returns

a

ResultSet:

a.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

b.

Invoke

the

close

method

to

close

the

ResultSet

object.

For

example,

the

following

code

demonstrates

how

to

use

DatabaseMetaData

methods

to

determine

the

driver

version

and

get

a

list

of

the

stored

procedures

that

are

available

at

the

data

source.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

302

Programming

Client

Applications

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Using

ParameterMetaData

to

learn

about

parameters

in

a

PreparedStatement

The

DB2

Universal

JDBC

Driver

includes

support

for

the

ParameterMetaData

interface.

The

ParameterMetaData

interface

contains

methods

that

retrieve

information

about

the

parameter

markers

in

a

PreparedStatement

object.

ParameterMetaData

methods

provide

the

following

types

of

information:

v

The

data

types

of

parameters,

including

the

precision

and

scale

of

decimal

parameters.

v

The

parameters’

database-specific

type

names.

For

parameters

that

correspond

to

table

columns

that

are

defined

with

distinct

types,

these

names

are

the

distinct

type

names.

v

Whether

parameters

are

nullable.

v

Whether

parameters

are

input

or

output

parameters.

v

Whether

the

values

of

a

numeric

parameter

can

be

signed.

v

The

fully-qualified

Java™

class

name

that

PreparedStatement.setObject

uses

when

it

sets

a

parameter

value.

To

invoke

ParameterMetaData

methods,

you

need

to

perform

these

basic

steps:

1.

Invoke

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object.

2.

Invoke

the

PreparedStatement.getParameterMetaData

method

to

retrieve

a

ParameterMetaData

object.

3.

Invoke

ParameterMetaData.getParameterCount

to

determine

the

number

of

parameters

in

the

PreparedStatement.

4.

Invoke

ParameterMetaData

methods

on

individual

parameters.

Connection

con;

DatabaseMetaData

dbmtadta;

ResultSet

rs;

int

mtadtaint;

String

procSchema;

String

procName;

...

dbmtadta

=

con.getMetaData();

//

Create

the

DatabaseMetaData

object

�1�

mtadtaint

=

dmtadta.getDriverVersion();

�2�

//

Check

the

driver

version

System.out.println("Driver

version:

"

+

mtadtaint);

rs

=

dbmtadta.getProcedures(null,

null,

"%");

//

Get

information

for

all

procedures

while

(rs.next())

{

//

Position

the

cursor

�3a�

procSchema

=

rs.getString("PROCEDURE_SCHEM");

//

Get

procedure

schema

procName

=

rs.getString("PROCEDURE_NAME");

//

Get

procedure

name

System.out.println(procSchema

+

"."

+

procName);

//

Print

the

qualified

procedure

name

}

rs.close();

//

Close

the

ResultSet

�3b�

Figure

26.

Using

DatabaseMetaData

methods

to

get

information

about

a

data

source

Chapter

15.

JDBC

application

programming

303

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

For

example,

the

following

code

demonstrates

how

to

use

ParameterMetaData

methods

to

determine

the

number

and

data

types

of

parameters

in

an

SQL

UPDATE

statement.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

reference:

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

Making

batch

updates

in

JDBC

applications

The

JDBC

drivers

that

support

JDBC

2.0

and

above

support

batch

updates.

With

batch

updates,

instead

of

updating

rows

of

a

DB2®

table

one

at

a

time,

you

can

direct

JDBC

to

execute

a

group

of

updates

at

the

same

time.

Statements

that

can

be

included

in

the

same

batch

of

updates

are

known

as

batchable

statements.

If

a

statement

has

input

parameters

or

host

expressions,

you

can

include

that

statement

only

in

a

batch

that

has

other

instances

of

the

same

statement.

This

type

of

batch

is

known

as

a

homogeneous

batch.

If

a

statement

has

no

input

parameters,

you

can

include

that

statement

in

a

batch

only

if

the

other

statements

in

the

batch

have

no

input

parameters

or

host

expressions.

This

type

of

batch

is

known

as

a

heterogeneous

batch.

Two

statements

that

can

be

included

in

the

same

batch

are

known

as

batch

compatible.

Use

the

following

Statement

methods

for

creating,

executing,

and

removing

a

batch

of

SQL

updates:

v

addBatch

v

executeBatch

v

clearBatch

Use

the

following

PreparedStatement

and

CallableStatement

method

for

creating

a

batch

of

parameters

so

that

a

single

statement

can

be

executed

multiple

times

in

a

batch,

with

a

different

set

of

parameters

for

each

execution.

v

addBatch

Connection

con;

ParameterMetaData

pmtadta;

int

mtadtacnt;

int

sqlType;

...

pstmt

=

con.prepareStatement(

"UPDATE

EMPLOYEE

SET

PHONENO=?

WHERE

EMPNO=?");

//

Create

a

PreparedStatement

object

�1�

pmtadta

=

pstmt.getParameterMetaData();

�2�

//

Create

a

ParameterMetaData

object

mtadtacnt

=

pmtadta.getParameterCount();

�3�

//

Determine

the

number

of

parameters

System.out.println("Number

of

statement

parameters:

"

+

mtadtacnt);

for

(int

i

=

1;

i

<=

mtadtacnt;

i++)

{

sqlType

=

pmtadta.getParameterType(i);

�4�

//

Get

SQL

type

for

each

parameter

System.out.println("SQL

type

of

parameter

"

+

i

"

is

"

+

sqlType);

}

...

pstmt.close();

//

Close

the

PreparedStatement

Figure

27.

Using

ParameterMetaData

methods

to

get

information

about

a

PreparedStatement

304

Programming

Client

Applications

|
|
|
|
|

|

|

To

make

batch

updates

using

several

statements

with

no

input

parameters,

follow

these

basic

steps:

1.

Disable

AutoCommit

for

the

Connection

object.

2.

Invoke

the

createStatement

method

to

create

a

Statement

object.

3.

For

each

SQL

statement

that

you

want

to

execute

in

the

batch,

invoke

the

addBatch

method.

4.

Invoke

the

executeBatch

method

to

execute

the

batch

of

statements.

5.

Check

for

errors.

If

no

errors

occurred:

a.

Get

the

number

of

rows

that

were

affect

by

each

SQL

statement

from

the

array

that

the

executeBatch

invocation

returns.

This

number

does

not

include

rows

that

were

affected

by

triggers

or

by

referential

integrity

enforcement.

b.

Invoke

the

commit

method

to

commit

the

changes.

To

make

batch

updates

using

a

single

statement

with

several

sets

of

input

parameters,

follow

these

basic

steps:

1.

Disable

AutoCommit

for

the

Connection

object.

2.

Invoke

the

prepareStatement

method

to

create

a

PreparedStatement

object

for

the

SQL

statement

with

input

parameters.

3.

For

each

set

of

input

parameter

values:

a.

Execute

setXXX

methods

to

assign

values

to

the

input

parameters.

b.

Invoke

the

addBatch

method

to

add

the

set

of

input

parameters

to

the

batch.
4.

Invoke

the

executeBatch

method

to

execute

the

statements

with

all

sets

of

parameters.

5.

Check

for

errors.

If

no

errors

occurred:

a.

Get

the

number

of

rows

that

were

updated

by

each

execution

of

the

SQL

statement

from

the

array

that

the

executeBatch

invocation

returns.

b.

Invoke

the

commit

method

to

commit

the

changes.

Example

of

a

batch

update:

In

the

following

code

fragment,

two

sets

of

parameters

are

batched.

An

UPDATE

statement

that

takes

two

input

parameters

is

then

executed

twice,

once

with

each

set

of

parameters.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Chapter

15.

JDBC

application

programming

305

Related

tasks:

v

“Committing

or

rolling

back

JDBC

transactions”

on

page

275

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

Retrieving

information

from

a

BatchUpdateException

When

an

error

occurs

during

execution

of

a

statement

in

a

batch,

processing

continues.

However,

executeBatch

throws

a

BatchUpdateException.

A

BatchUpdateException

object

contains

the

following

items:

v

A

String

object

that

contains

a

description

of

the

error,

or

null.

v

A

String

object

that

contains

the

SQLSTATE

for

the

failing

SQL

statement,

or

null

v

An

integer

value

that

contains

the

error

code,

or

zero

v

An

integer

array

of

update

counts

for

SQL

statements

in

the

batch,

or

null

v

A

pointer

to

an

SQLException

object,

or

null

One

BatchUpdateException

is

thrown

for

the

entire

batch.

At

least

one

SQLException

object

is

chained

to

the

BatchUpdateException

object.

The

SQLException

objects

are

chained

in

the

same

order

as

the

corresponding

statements

were

added

to

the

batch.

To

help

you

match

SQLException

objects

to

statements

in

the

batch,

the

error

description

field

for

each

SQLException

object

begins

with

this

string:

Error

for

batch

element

#n:

n

is

the

number

of

the

statement

in

the

batch.

To

retrieve

information

from

the

BatchUpdateException,

follow

these

steps:

try

{

...

connection

con.setAutoCommit(false);

�1�

PreparedStatement

prepStmt

=

con.prepareStatement(

"UPDATE

DEPT

SET

MGRNO=?

WHERE

DEPTNO=?");

�2�

prepStmt.setString(1,mgrnum1);

�3a�

prepStmt.setString(2,deptnum1);

prepStmt.addBatch();

�3b�

prepStmt.setString(1,mgrnum2);

prepStmt.setString(2,deptnum2);

prepStmt.addBatch();

int

[]

numUpdates=prepStmt.executeBatch();

�4�

for

(int

i=0;

i

<

numUpdates.length;

i++)

{

�5a�

if

(numUpdates[i]

==

-2)

System.out.println("Execution

"

+

i

+

":

unknown

number

of

rows

updated");

else

System.out.println("Execution

"

+

i

+

"successful:

"

numUpdates[i]

+

"

rows

updated");

}

con.commit();

�5b�

}

catch(BatchUpdateException

b)

{

//

process

BatchUpdateException

}

Figure

28.

Performing

a

batch

update

306

Programming

Client

Applications

1.

Use

the

BatchUpdateException.getUpdateCounts

method

to

determine

the

number

of

rows

that

each

SQL

statement

updated.

getUpdateCounts

returns

-2

if

the

number

of

updated

rows

cannot

be

determined,

or

-3

if

an

error

occurred

during

an

update.

2.

Use

SQLException

methods

getMessage,

getSQLState,

and

getErrorCode

to

retrieve

the

description

of

the

error,

the

SQLSTATE,

and

the

error

code

for

the

first

error.

3.

Use

the

BatchUpdateException.getNextException

method

to

get

a

chained

SQLException.

4.

In

a

loop,

execute

the

getMessage,

getSQLState,

getErrorCode,

and

getNextException

method

calls

to

obtain

information

about

an

SQLException

and

get

the

next

SQLException.

Example

of

obtaining

information

from

a

BatchUpdateException:

The

following

code

fragment

demonstrates

how

to

obtain

the

fields

of

a

BatchUpdateException

and

the

chained

SQLException

objects.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

To

obtain

information

about

warnings,

use

the

Statement.getWarnings

method

on

the

object

on

which

you

ran

the

executeBatch

method.

You

can

then

retrieve

an

error

description,

SQLSTATE,

and

error

code

for

each

SQLWarning

object.

Restrictions

on

executing

statements

in

a

batch:

v

If

you

try

to

execute

a

SELECT

statement

in

a

batch,

a

BatchUpdateException

is

thrown.

v

A

CallableStatement

object

that

you

execute

in

a

batch

can

contain

output

parameters.

However,

you

cannot

retrieve

the

values

of

the

output

parameters.

If

you

try

to

do

so,

a

BatchUpdateException

is

thrown.

v

You

cannot

retrieve

ResultSet

objects

from

a

CallableStatement

object

that

you

execute

in

a

batch.

A

BatchUpdateException

is

not

thrown,

but

the

getResultSet

method

invocation

returns

a

null

value.

Related

tasks:

try

{

//

Batch

updates

}

catch(BatchUpdateException

buex)

{

System.err.println("Contents

of

BatchUpdateException:");

System.err.println("

Update

counts:

");

int

[]

updateCounts

=

buex.getUpdateCounts();

�1�

for

(int

i

=

0;

i

<

updateCounts.length;

i++)

{

System.err.println("

Statement

"

+

i

+

":"

+

updateCounts[i]);

}

System.err.println("

Message:

"

+

buex.getMessage());

�2�

System.err.println("

SQLSTATE:

"

+

buex.getSQLState());

System.err.println("

Error

code:

"

+

buex.getErrorCode());

SQLException

ex

=

buex.getNextException();

�3�

while

(ex

!=

null)

{

�4�

System.err.println("SQL

exception:");

System.err.println("

Message:

"

+

ex.getMessage());

System.err.println("

SQLSTATE:

"

+

ex.getSQLState());

System.err.println("

Error

code:

"

+

ex.getErrorCode());

ex

=

ex.getNextException();

}

}

Figure

29.

Retrieving

a

BatchUpdateException

fields

Chapter

15.

JDBC

application

programming

307

v

“Making

batch

updates

in

JDBC

applications”

on

page

304

Characteristics

of

a

JDBC

ResultSet

under

the

DB2

Universal

JDBC

Driver

In

addition

to

moving

forward,

one

row

at

a

time,

through

a

ResultSet,

you

might

want

to

do

the

following

things:

v

Move

backward

or

go

directly

to

a

specific

row

v

Update

or

delete

rows

of

a

ResultSet

v

Leave

the

ResultSet

open

after

a

COMMIT

The

following

terms

describe

characteristics

of

a

ResultSet:

scrollability

Whether

the

cursor

can

move

forward,

backward,

or

to

a

specific

row.

updatability

Whether

the

cursor

can

be

used

to

update

or

delete

rows.

This

characteristic

does

not

apply

to

a

ResultSet

that

is

returned

from

a

stored

procedure,

because

a

stored

procedure

ResultSet

cannot

be

updated.

holdability

Whether

the

cursor

stays

open

after

a

COMMIT.

A

scrollable

ResultSet

in

JDBC

is

equivalent

to

the

result

table

of

a

DB2®

cursor

that

is

declared

as

SCROLL.

A

scrollable

cursor

can

be

insensitive

or

sensitive.

Insensitive

means

that

changes

to

the

underlying

table

after

the

cursor

is

opened

are

not

visible

to

the

cursor.

Insensitive

cursors

are

read-only.

Sensitive

means

the

following

things:

v

Changes

that

the

cursor

makes

to

the

underlying

table

are

always

visible

to

the

cursor.

v

Changes

that

are

made

by

other

means

to

the

underlying

table

can

be

visible

to

the

cursor.

In

DB2,

if

the

rows

are

fetched

with

FETCH

INSENSITIVE,

changes

that

are

made

by

other

means

are

not

visible

to

the

cursor.

If

the

rows

are

fetched

with

FETCH

SENSITIVE,

changes

that

are

made

by

other

means

are

visible

to

the

cursor.

In

JDBC,

calling

the

refreshRow

method

before

calling

getXXX

methods

has

the

same

effect

as

FETCH

SENSITIVE.

A

JDBC

ResultSet

can

also

be

static

or

dynamic,

if

the

database

server

supports

both

attributes.

You

determine

whether

scrollable

cursors

in

a

program

are

static

or

dynamic

by

setting

the

cursorSensitivity

property.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

more

information

about

the

cursorSensitivity

property.

If

a

JDBC

ResultSet

is

static,

the

size

of

the

result

table

and

the

order

of

the

rows

in

the

result

table

do

not

change

after

the

cursor

is

opened.

This

means

that

you

cannot

insert

into

a

result

table,

and

if

you

delete

a

row

of

a

result

table,

a

delete

hole

occurs.You

can

test

whether

the

current

row

is

a

delete

hole

by

using

the

rowDeleted

method.

See

Comparison

of

driver

support

for

JDBC

APIs

for

a

complete

list

of

the

methods

that

are

supported

for

ResultSets.

Related

tasks:

v

“Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications”

on

page

309

308

Programming

Client

Applications

|
|
|
|

Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications

To

specify

scrollability,

updatability,

and

holdability

for

a

ResultSet,

you

need

to

follow

these

steps:

1.

If

the

SELECT

statement

that

defines

the

ResultSet

has

no

input

parameters,

invoke

the

createStatement

method

to

create

a

Statement

object.

Otherwise,

invoke

the

prepareStatement

method

to

create

a

PreparedStatement

object.

You

need

to

specify

forms

of

the

createStatement

or

prepareStatement

methods

that

include

the

resultSetType,

resultSetConcurrency,

or

resultSetHoldability

parameters.

The

form

of

the

createStatement

method

that

supports

scrollability

and

updatability

is:

createStatement(int

resultSetType,

int

resultSetConcurrency);

The

form

of

the

createStatement

method

that

supports

scrollability,

updatability,

and

holdability

is:

createStatement(int

resultSetType,

int

resultSetConcurrency,

int

resultSetHoldability);

The

form

of

the

prepareStatement

method

that

supports

scrollability

and

updatability

is:

prepareStatement(String

sql,

int

resultSetType,

int

resultSetConcurrency);

The

form

of

the

prepareStatement

method

that

supports

scrollability,

updatability,

and

holdability

is:

prepareStatement(String

sql,

int

resultSetType,

int

resultSetConcurrency,

int

resultSetHoldability);

See

Table

34

for

a

list

of

valid

values

for

resultSetType

and

resultSetConcurrency.

Table

34.

Valid

combinations

of

resultSetType

and

resultSetConcurrency

for

scrollable

ResultSets

resultSetType

value

resultSetConcurrency

value

TYPE_FORWARD_ONLY

CONCUR_READ_ONLY

TYPE_FORWARD_ONLY

CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE

CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE

CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE

CONCUR_UPDATABLE

resultSetHoldability

has

two

possible

values:

HOLD_CURSORS_OVER_COMMIT

and

CLOSE_CURSORS_AT_COMMIT.

Either

of

these

values

can

be

specified

with

any

valid

combination

of

resultSetConcurrency

and

resultSetHoldability.

The

value

that

you

set

overrides

the

default

holdability

for

the

connection.

Restriction:

If

the

ResultSet

is

scrollable,

and

the

ResultSet

is

used

to

select

columns

from

a

table

on

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

server,

the

SELECT

statement

that

defines

the

ResultSet

cannot

select

columns

with

the

following

data

types:

v

LONG

VARCHAR

v

LONG

VARGRAPHIC

v

DATALINK

v

BLOB

v

CLOB

Chapter

15.

JDBC

application

programming

309

|
|
|
|
|
|
|
|
|

v

A

distinct

type

that

is

based

on

any

of

the

previous

data

types

in

this

list

v

A

structured

type
2.

If

the

SELECT

statement

has

input

parameters,

invoke

setXXX

methods

to

pass

values

to

the

input

parameters.

3.

Invoke

the

executeQuery

method

to

obtain

the

result

table

from

the

SELECT

statement

in

a

ResultSet

object.

4.

For

each

row

that

you

want

to

access:

a.

Position

the

cursor

using

one

of

the

methods

list

in

Table

35.

Table

35.

ResultSet

methods

for

positioning

a

scrollable

cursor

Method

Positions

the

cursor

first()

On

the

first

row

of

the

ResultSet

last()

On

the

last

row

of

the

ResultSet

next()1

On

the

next

row

of

the

ResultSet

previous()2

On

the

previous

row

of

the

ResultSet

absolute(int

n)3

If

n>0,

on

row

n

of

the

ResultSet.

If

n<0,

and

m

is

the

number

of

rows

in

the

ResultSet,

on

row

m+n+1

of

the

ResultSet.

relative(int

n)4,5

If

n>0,

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

on

the

current

row.

afterLast()

After

the

last

row

in

the

ResultSet

beforeFirst()

Before

the

first

row

in

the

ResultSet

Notes:

1.

If

the

cursor

is

before

the

first

row

of

the

ResultSet,

this

method

positions

the

cursor

on

the

first

row.

2.

If

the

cursor

is

after

the

last

row

of

the

ResultSet,

this

method

positions

the

cursor

on

the

last

row.

3.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

set,

this

method

positions

the

cursor

after

the

last

row

if

n

is

positive,

or

before

the

first

row

if

n

is

negative.

4.

The

cursor

must

be

on

a

valid

row

of

the

ResultSet

before

you

can

use

this

method.

If

the

cursor

is

before

the

first

row

or

after

the

last

throw,

the

method

throws

an

SQLException.

5.

Suppose

that

m

is

the

number

of

rows

in

the

ResultSet

and

x

is

the

current

row

number

in

the

ResultSet.

If

n>0

and

x+n>m,

the

driver

positions

the

cursor

after

the

last

row.

If

n<0

and

x+n<1,

the

driver

positions

the

cursor

before

the

first

row.

b.

If

you

need

to

know

the

current

cursor

position,

use

the

getRow,

isFirst,

isLast,

isBeforeFirst,

or

isAfterLast

method

to

obtain

this

information.

c.

If

you

specified

a

resultSetType

value

of

TYPE_SCROLL_SENSITIVE

in

step

1

on

page

309,

and

you

need

to

see

the

latest

values

of

the

current

row,

invoke

the

refreshRow

method.

Recommendation:

Because

refreshing

the

rows

of

a

ResultSet

can

have

a

detrimental

effect

on

the

performance

of

your

applications,

you

should

invoke

refreshRow

only

when

you

need

to

see

the

latest

data.

d.

Perform

one

or

more

of

the

following

operations:

v

To

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object,

use

getXXX

methods.

v

To

update

the

current

row

from

the

underlying

table,

use

updateXXX

methods

to

assign

column

values

to

the

current

row

of

the

ResultSet.

310

Programming

Client

Applications

|
|

Then

use

updateRow

to

update

the

corresponding

row

of

the

underlying

table.

If

you

decide

that

you

do

not

want

to

update

the

underlying

table,

invoke

the

cancelRowUpdates

method

instead

of

the

updateRow

method.

The

resultSetConcurrency

value

for

the

ResultSet

must

be

CONCUR_UPDATABLE

for

you

to

use

these

methods.

v

To

delete

the

current

row

from

the

underlying

table,

use

the

deleteRow

method.

Invoking

deleteRow

causes

the

driver

to

replace

the

current

row

of

the

ResultSet

with

a

hole.

The

resultSetConcurrency

value

for

the

ResultSet

must

be

CONCUR_UPDATABLE

for

you

to

use

this

method.
5.

Invoke

the

close

method

to

close

the

ResultSet

object.

6.

Invoke

the

close

method

to

close

the

Statement

or

PreparedStatement

object.

For

example,

the

following

code

demonstrates

how

to

retrieve

all

rows

from

the

employee

table

in

reverse

order,

and

update

the

phone

number

for

employee

number

″000010″.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Creating

and

deploying

DataSource

objects

JDBC

versions

starting

with

version

2.0

provide

the

DataSource

interface

for

connecting

to

a

data

source.

Using

the

DataSource

interface

is

the

preferred

way

to

connect

to

a

data

source.

Using

the

DataSource

interface

involves

two

parts:

v

Creating

and

deploying

DataSource

objects.

This

is

usually

done

by

a

system

administrator,

using

a

tool

such

as

WebSphere®

Application

Server.

v

Using

the

DataSource

objects

to

create

a

connection.

This

is

done

in

the

application

program.

String

s;

Connection

con;

Statement

stmt;

ResultSet

rs;

...

stmt

=

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

�1�

//

Create

a

Statement

object

//

for

a

scrollable,

updatable

//

ResultSet

rs

=

stmt.executeQuery("SELECT

EMPNO

FROM

EMPLOYEE

FOR

UPDATE

OF

PHONENO");

//

Create

the

ResultSet

�3�

rs.afterLast();

//

Position

the

cursor

at

the

end

of

//

the

ResultSet

�4a�

while

(rs.previous())

{

//

Position

the

cursor

backward

s

=

rs.getString("EMPNO");

//

Retrieve

the

employee

number

�4d�

//

(column

1

in

the

result

//

table)

System.out.println("Employee

number

=

"

+

s);

//

Print

the

column

value

if

(s.compareTo("000010")

==

0)

{

//

Look

for

employee

000010

updateString("PHONENO","4657");

//

Update

their

phone

number

updateRow();

//

Update

the

row

}

}

rs.close();

//

Close

the

ResultSet

�5�

stmt.close();

//

Close

the

Statement

�6�

Figure

30.

Using

a

scrollable

cursor

Chapter

15.

JDBC

application

programming

311

This

topic

contains

information

that

you

need

if

you

create

and

deploy

the

DataSource

objects

yourself.

The

DB2

Universal

JDBC

Driver

provides

the

following

DataSource

implementations:

v

com.ibm.db2.jcc.DB2SimpleDataSource,

which

does

not

support

connection

pooling.

You

can

use

this

implementation

with

Universal

Type

2

Connectivity

or

Universal

Type

4

Connectivity.

The

DB2®

JDBC

Type

2

Driver

provides

the

following

DataSource

implementations:

v

COM.ibm.db2.jdbc.DB2DataSource,

which

has

built-in

support

for

connection

pooling.

With

this

implementation,

connection

pooling

is

handled

internally

and

is

transparent

to

the

application.

v

COM.ibm.db2.jdbc.DB2XADataSource,

which

does

not

have

built-in

support

for

distributed

transactions

and

connection

pooling.

With

this

implementation,

you

must

manage

the

distributed

transactions

and

connection

pooling

yourself,

either

by

writing

your

own

code

or

by

using

a

tool

such

as

WebSphere

Application

Server.

When

you

create

and

deploy

a

DataSource

object,

you

need

to

perform

these

tasks:

1.

Create

an

instance

of

the

appropriate

DataSource

implementation.

2.

Set

the

properties

of

the

DataSource

object.

3.

Register

the

object

with

the

Java™

Naming

and

Directory

Interface

(JNDI)

naming

service.

The

example

in

Figure

31

shows

how

to

perform

these

tasks.

�1�

Creates

an

instance

of

the

DB2SimpleDataSource

class.

�2�

This

statement

and

the

next

three

statements

set

values

for

properties

of

this

DB2SimpleDataSource

object.

�3�

Creates

a

context

for

use

by

JNDI.

�4�

Associates

DBSimple2DataSource

object

db2ds

with

the

logical

name

jdbc/sampledb.

An

application

that

uses

this

object

can

refer

to

it

by

the

name

jdbc/sampledb.

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

import

java.sql.*;

//

JDBC

base

import

javax.naming.*;

//

JNDI

Naming

Services

import

javax.sql.*;

//

JDBC

2.0

standard

extension

APIs

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

//

standard

extension

APIs

DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

�1�

db2ds.setDatabaseName("db2loc1");

�2�

db2ds.setDescription("Our

Sample

Database");

db2ds.setUser("john");

db2ds.setPassword("db2");

...
Context

ctx=new

InitialContext();

�3�

Ctx.bind("jdbc/sampledb",db2ds);

�4�

Figure

31.

Example

of

creating

and

deploying

a

DataSource

object

312

Programming

Client

Applications

DB2

Universal

JDBC

Driver

client

reroute

support

Failover

is

the

ability

of

a

server

to

take

over

operations

when

another

server

fails.

DB2

Universal

JDBC

Driver

client

reroute

support

provides

failover

support

in

a

DB2®

UDB

for

Linux,

UNIX®

and

Windows®

environment.

It

lets

a

DB2

UDB

for

Linux,

UNIX

and

Windows

client

recover

from

a

communication

failure

when

the

client

is

connected

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

database.

When

a

communication

failure

occurs,

DB2

Universal

JDBC

Driver

client

reroute

support

causes

the

underlying

connection

to

be

rerouted

to

an

alternate

location

where

a

failover

replica

of

the

database

resides.

When

a

connection

is

preserved

through

a

client

reroute,

an

exception

is

thrown

to

indicate

to

the

user

that

a

reroute

has

occurred,

and

the

transaction

is

rolled

back.

DB2

Universal

JDBC

Driver

client

reroute

support

is

available

only

for

connections

that

use

the

javax.sql.DataSource

interface.

Connectivity

information

for

the

alternate

location

is

provided

to

Java™

clients

by

the

activeServerListJNDIName

property

of

the

primary

JDBC

DataSource

instance.

activeServerListJNDIName

identifies

a

JNDI

reference

to

a

DB2ActiveServerList

instance

in

a

JNDI

repository

of

alternate

server

information.

DB2ActiveServerList

is

a

serializable

Java

bean

with

two

properties:

alternateServerName

and

alternatePortNumber.

getXXX

and

setXXX

methods

are

defined

for

each

property.

The

Java

bean

looks

like

this:

package

com.ibm.db2.jcc;

public

class

DB2ActiveServerList

implements

java.io.Serializable,

javax.naming.Referenceable

{

public

String[]

alternateServerName;

public

synchronized

void

setAlternateServerName(String[]

alternateServer);

public

String[]

getAlternateServerName();

public

int[]

alternatePortNumber;

public

synchronized

void

setAlternatePortNumber(int[]

alternatePortNumberList);

public

int[]

getAlternatePortNumber();

}

Alternates

are

propagated

from

the

server

to

the

client

dynamically

when

the

client

issues

a

CONNECT

or

CONNECT

RESET.

This

dynamically

propagated

alternate

server

information

is

stored

in

global

driver

memory,

and

is

also

updated

in

the

JNDI

store

of

DB2

active

servers.

The

DB2

Universal

JDBC

Driver

attempts

to

propagate

the

updated

information

to

the

alternate

JNDI

after

failover.

A

newly

established

failover

connection

is

configured

with

the

original

DataSource

properties,

except

for

the

server

name

and

port

number.

In

addition,

any

DB2

special

registers

that

were

modified

during

the

original

connection

are

reestablished

in

the

failover

connection.

When

a

communication

failure

occurs,

the

DB2

Universal

JDBC

Driver

first

attempts

recovery

to

the

original

server.

Reconnection

to

the

original

server

is

called

failback.

If

failback

fails,

the

driver

attempts

to

connect

to

the

alternate

location

(failover).

After

a

failover

or

failback

connection

is

reestablished,

the

driver

throws

a

java.sql.SQLException

to

the

application

with

SQLCODE

-4498,

to

indicate

to

the

application

that

a

failover

or

failback

occurred

and

the

transaction

failed.

The

application

can

then

retry

its

transaction.

Chapter

15.

JDBC

application

programming

313

Alternate

server

setup

method:

Use

JNDI

to

set

up

the

alternate

server.

This

involves

these

steps:

1.

Set

the

environment

for

an

initial

context.

You

can

do

this

by

creating

a

jndi.properties

file

and

add

its

name

to

the

CLASSPATH.

Example:

A

jndi.properties

file:

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory

java.naming.provider.url=file:/tmp

2.

Create

an

instance

of

DB2ActiveServerList,

and

bind

that

instance

to

the

JNDI

registry.

Example:

Code

that

creates

an

instance

of

DB2ActiveServerList

and

binds

that

instance

to

the

JNDI

registry:

//

Create

a

starting

context

for

naming

operations

InitialContext

registry

=

new

InitialContext();

//

Create

a

DB2ActiveServerList

object

DB2ActiveServerList

address

=

new

DB2ActiveServerList();

//

Set

the

port

number

and

server

name

for

the

alternate

server

int[]

a

=

{50000};

String[]

s

=

{"mvs3.sj.ibm.com"};

address.setActivePortNumber(a);

address.setActiveServerName(s);

//

Bind

the

DB2ActiveServerList

instance

to

the

JNDI

registry

registry.rebind("jdbc/alternate",

address);

3.

Assign

the

logical

name

of

the

DB2ActiveServerList,

object,

which

contains

the

alternate

server

location

information,

to

the

activeServerListJNDIName

property

of

the

original

DataSource.

Example:

Code

that

assigns

the

logical

name

of

the

DB2ActiveServerList

object

to

the

activeServerListJNDIName

property

of

the

a

DataSource

instance

named

datasource:

datasource.setActiveServerListJNDIName("jdbc/alternate");

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

v

“Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC”

on

page

414

Providing

extended

client

information

to

the

DB2

server

with

the

DB2

Universal

JDBC

Driver

The

DB2

Universal

JDBC

Driver

provides

DB2®-only

methods

that

you

can

use

to

provide

extra

information

about

the

client

to

the

server.

This

information

can

be

used

for

accounting

or

workload

management.

The

information

is

sent

to

the

DB2

server

when

the

application

performs

an

action

that

accesses

the

server,

such

as

executing

SQL.

The

methods

are

listed

in

Table

36.

Table

36.

Methods

that

provide

client

information

to

the

DB2

server

Method

Information

provided

setDB2ClientUser

User

name

for

a

connection

setDB2ClientWorkstation

Client

workstation

name

for

a

connection

setDB2ClientApplicationInformation

Name

of

the

application

that

is

working

with

a

connection

setDB2ClientAccountingInformation

Accounting

information

314

Programming

Client

Applications

|

|

|
|
|
|
|

|

||

||

||

||

||
|

||
|

To

set

the

extended

information:

1.

Create

a

Connection.

2.

Cast

the

java.sql.Connection

object

to

a

com.ibm.db2.jcc.DB2Connection.

3.

Call

any

of

the

methods

shown

in

Table

36

on

page

314.

4.

Execute

an

SQL

statement

to

cause

the

information

to

be

sent

to

the

DB2

server.

The

following

code

performs

the

previous

steps

to

pass

a

user

name

and

a

workstation

name

to

the

DB2

server.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

reference:

v

“Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC”

on

page

414

public

class

ClientInfoTest

{

public

static

void

main(String[]

args)

{

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

�1�

user,

password);

if

(conn

instanceof

DB2Connection)

{

DB2Connection

db2conn

=

(DB2Connection)

conn;

�2�

db2conn.setDB2ClientUser("Michael

L

Thompson");

�3�

db2conn.setDB2ClientWorkstation("sjwkstn1");

//

Execute

SQL

to

force

extended

client

information

to

be

sent

//

to

the

server

conn.prepareStatement("SELECT

*

FROM

SYSIBM.SYSDUMMY1"

+

"WHERE

0

=

1").executeQuery();

�4�

}

}

catch

(Throwable

e)

{

e.printStackTrace();

}

}

}

Figure

32.

Example

of

passing

extended

client

information

to

a

DB2

server

Chapter

15.

JDBC

application

programming

315

|
|
|
|
|

|
|
|
|

|

|

316

Programming

Client

Applications

Chapter

16.

SQLJ

application

programming

The

sections

that

follow

contain

information

about

writing

SQLJ

applications.

Basic

SQLJ

application

programming

concepts

The

topics

that

follow

contain

basic

information

about

writing

SQLJ

applications.

Basic

steps

in

writing

an

SQLJ

application

Writing

a

SQLJ

application

has

much

in

common

with

writing

an

SQL

application

in

any

other

language:

In

general,

you

need

to

do

the

following

things:

v

Import

the

Java™

packages

that

contain

SQLJ

and

JDBC

methods.

v

Declare

variables

for

sending

data

to

or

retrieving

data

from

DB2®

tables.

v

Connect

to

a

data

source.

v

Execute

SQL

statements.

v

Handle

SQL

errors

and

warnings.

v

Disconnect

from

the

data

source.

Although

the

tasks

that

you

need

to

perform

are

similar

to

those

in

other

languages,

the

way

that

you

execute

those

tasks,

and

the

order

in

which

you

execute

those

tasks,

is

somewhat

different.

Figure

33

on

page

318

is

a

simple

program

that

demonstrates

each

task.

©

Copyright

IBM

Corp.

1997

-

2004

317

import

sqlj.runtime.*;

�1�

import

java.sql.*;

#sql

context

EzSqljCtx;

�3a�

#sql

iterator

EzSqljNameIter

(String

LASTNAME);

�4a�

public

class

EzSqlj

{

public

static

void

main(String

args[])

throws

SQLException

{

EzSqljCtx

ctx

=

null;

String

URLprefix

=

"jdbc:db2:";

String

url;

url

=

new

String(URLprefix

+

args[0]);

//

Location

name

is

an

input

parameter

String

hvmgr="000010";

�2�

String

hvdeptno="A00";

try

{

�3b�

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(Exception

e)

{

throw

new

SQLException("Error

in

EzSqlj:

Could

not

load

the

driver");

}

try

{

System.out.println("About

to

connect

using

url:

"

+

url);

Connection

con0

=

DriverManager.getConnection(url);

�3c�

//

Create

a

JDBC

Connection

con0.setAutoCommit(false);

//

set

autocommit

OFF

ctx

=

new

EzSqljCtx(con0);

�3d�

try

{

EzSqljNameIter

iter;

int

count=0;

#sql

[ctx]

iter

=

{SELECT

LASTNAME

FROM

EMPLOYEE};

�4b�

//

Create

result

table

of

the

SELECT

while

(iter.next())

{

�4c�

System.out.println(iter.LASTNAME());

//

Retrieve

rows

from

result

table

count++;

}

System.out.println("Retrieved

"

+

count

+

"

rows

of

data");

}

Figure

33.

Simple

SQLJ

application

(Part

1

of

2)

318

Programming

Client

Applications

Notes

to

Figure

33

on

page

318:

�1�

These

statements

import

the

java.sql

package,

which

contains

the

JDBC

core

API,

and

the

sqlj.runtime

package,

which

contains

the

SQLJ

API.

For

information

on

other

packages

or

classes

that

you

might

need

to

access,

see

Access

Java

packages

for

SQLJ

support.

�2�

String

variables

hvmgr

and

hvdeptno

are

host

identifiers,

which

are

equivalent

to

DB2

host

variables.

See

Declare

variables

in

SQLJ

applications

for

more

information.

�3a�,

�3b�,

�3c�,

and

�3d�

These

statements

demonstrate

how

to

connect

to

a

data

source

using

one

of

the

three

available

techniques.

See

Connect

to

a

data

source

using

SQLJ

for

more

details.

catch(

SQLException

e

)

�5�

{

System.out.println

("****

SELECT

SQLException...");

while(e!=null)

{

System.out.println

("Error

msg:

"

+

e.getMessage());

System.out.println

("SQLSTATE:

"

+

e.getSQLState());

System.out.println

("Error

code:

"

+

e.getErrorCode());

e

=

e.getNextException();

//

Check

for

chained

exceptions

}

}

catch(

Exception

e

)

{

System.out.println("****

NON-SQL

exception

=

"

+

e);

e.printStackTrace();

}

try

{

#sql

[ctx]

�4d�

{UPDATE

DEPARTMENT

SET

MGRNO=:hvmgr

WHERE

DEPTNO=:hvdeptno};

//

Update

data

for

one

department

�6�

#sql

[ctx]

{COMMIT};

//

Commit

the

update

}

catch(

SQLException

e

)

{

System.out.println

("****

UPDATE

SQLException...");

System.out.println

("Error

msg:

"

+

e.getMessage()

+

".

SQLSTATE="

+

e.getSQLState()

+

"

Error

code="

+

e.getErrorCode());

e.printStackTrace();

}

catch(

Exception

e

)

{

System.out.println("****

NON-SQL

exception

=

"

+

e);

e.printStackTrace();

}

iter.close();

//

Close

the

iterator

ctx.close();

�7�

}

catch(SQLException

e)

{

System.out.println

("****

SQLException

...");

System.out.println

("Error

msg:

"

+

e.getMessage()

+

".

SQLSTATE="

+

e.getSQLState()

+

"

Error

code="

+

e.getErrorCode());

e.printStackTrace();

}

catch(Exception

e)

{

System.out.println

("****

NON-SQL

exception

=

"

+

e);

e.printStackTrace();

}

}

Figure

33.

Simple

SQLJ

application

(Part

2

of

2)

Chapter

16.

SQLJ

application

programming

319

�4a�

,

�4b�,

�4c�,

and

�4d�

These

statements

demonstrate

how

to

execute

SQL

statements

in

SQLJ.

Statement

4a

demonstrates

the

SQLJ

equivalent

of

declaring

an

SQL

cursor.

Statements

4b

and

4c

show

one

way

of

doing

the

SQLJ

equivalent

of

executing

SQL

FETCHes.

Statement

4d

shows

how

to

do

the

SQLJ

equivalent

of

performing

an

SQL

UPDATE.

For

more

information,

see

Execute

SQL

in

an

SQLJ

application.

�5�

This

try/catch

block

demonstrates

the

use

of

the

SQLException

class

for

SQL

error

handling.

For

more

information

on

handling

SQL

errors,

see

Handle

errors

in

an

SQLJ

application.

For

more

information

on

handling

SQL

warnings,

see

Handle

SQL

warnings

in

an

SQLJ

application.

�6�

This

is

an

example

of

a

comment.

For

rules

on

including

comments

in

SQLJ

programs,

see

Include

comments

in

an

SQLJ

application.

�7�

This

statement

closes

the

connection

to

the

data

source.

See

Close

the

connection

to

the

data

source

in

an

SQLJ

application.

Related

concepts:

v

“Java

packages

for

SQLJ

support”

on

page

320

v

“Variables

in

SQLJ

applications”

on

page

320

v

“SQL

statements

in

an

SQLJ

application”

on

page

330

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

Java

packages

for

SQLJ

support

Before

you

can

execute

SQLJ

statements

or

invoke

JDBC

methods

in

your

SQLJ

program,

you

need

to

be

able

to

access

all

or

parts

of

various

Java™

packages

that

contain

support

for

those

statements.

You

can

do

that

either

by

importing

the

packages

or

specific

classes,

or

by

using

fully-qualified

class

names.

You

might

need

the

following

packages

or

classes

for

your

SQLJ

program:

sqlj.runtime

Contains

the

SQLJ

run-time

API.

java.sql

Contains

the

core

JDBC

API.

com.ibm.db2.jcc

Contains

the

DB2®-specific

implementation

of

JDBC

and

SQLJ.

javax.naming

Contains

classes

and

interfaces

for

Java

Naming

and

Directory

Interface

(JNDI),

which

is

often

used

for

implementing

a

DataSource.

javax.sql

Contains

JDBC

2.0

standard

extensions.

Related

concepts:

v

“Basic

steps

in

writing

an

SQLJ

application”

on

page

317

Variables

in

SQLJ

applications

In

DB2®

programs

in

other

languages,

you

use

host

variables

to

pass

data

between

the

application

program

and

DB2.

In

SQLJ

programs,

you

use

host

expressions.

A

320

Programming

Client

Applications

host

expression

can

be

a

simple

Java™

identifier,

or

it

can

be

a

complex

expression.

Every

host

expression

must

start

with

a

colon

when

it

is

used

in

an

SQL

statement.

Host

expressions

are

case

sensitive.

For

the

DB2

Universal

JDBC

Driver,

a

Java

identifier

can

have

any

of

the

data

types

listed

in

the

Java

data

type

column

of

Java,

JDBC,

and

SQLJ

data

types.

Data

types

that

are

specified

in

an

iterator

can

be

any

of

the

types

in

the

Java

data

type

column

of

Java,

JDBC,

and

SQLJ

data

types.

A

complex

expression

is

an

array

element

or

Java

expression

that

evaluates

to

a

single

value.

A

complex

expression

in

an

SQLJ

clause

must

be

surrounded

by

parentheses.

The

following

examples

demonstrate

how

to

use

host

expressions.

Example:

Declaring

a

Java

identifier

and

using

it

in

a

SELECT

statement:

In

this

example,

the

statement

that

begins

with

#sql

has

the

same

function

as

a

SELECT

statement

in

other

languages.

This

statement

assigns

the

last

name

of

the

employee

with

employee

number

000010

to

Java

identifier

empname.

String

empname;

...

#sql

[ctxt]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

Example:

Declaring

a

Java

identifier

and

using

it

in

a

stored

procedure

call:

In

this

example,

the

statement

that

begins

with

#sql

has

the

same

function

as

an

SQL

CALL

statement

in

other

languages.

This

statement

uses

Java

identifier

empno

as

an

input

parameter

to

stored

procedure

A.

The

value

IN,

which

precedes

empno,

specifies

that

empno

is

an

input

parameter.

The

qualifier

that

indicates

how

the

parameter

is

used

(IN,

OUT,

or

INOUT)

must

match

the

corresponding

value

in

the

parameter

definition

that

you

specified

in

the

CREATE

PROCEDURE

statement

for

the

stored

procedure.

String

empno

=

"0000010";

...

#sql

[ctxt]

{CALL

A

(:IN

empno)};

Example:

Using

a

complex

expression

as

a

host

identifier:

This

example

uses

complex

expression

(((int)yearsEmployed++/5)*500)

as

a

host

expression.

#sql

[ctxt]

{UPDATE

EMPLOYEE

SET

BONUS=:(((int)yearsEmployed++/5)*500)

WHERE

EMPNO=:empID};

SQLJ

performs

the

following

actions

when

it

processes

a

complex

host

expression:

v

Evaluates

the

host

expression

from

left

to

right

before

assigning

its

value

to

DB2.

v

Evaluates

side

effects,

such

as

operations

with

postfix

operators,

according

to

normal

Java

rules.

All

host

expressions

are

fully

evaluated

before

any

of

their

values

are

passed

to

DB2.

v

Uses

Java

rules

for

rounding

and

truncation.

Therefore,

if

the

value

of

yearsEmployed

is

6

before

the

UPDATE

statement

is

executed,

the

value

that

is

assigned

to

column

BONUS

by

the

UPDATE

statement

is

((int)6/5)*500,

or

500.

After

500

is

assigned

to

BONUS,

the

value

of

yearsEmployed

is

incremented.

Chapter

16.

SQLJ

application

programming

321

|
|

Restrictions

on

variable

names:

Two

strings

have

special

meanings

in

SQLJ

programs.

Observe

the

following

restrictions

when

you

use

these

strings

in

your

SQLJ

programs:

v

The

string

__sJT_

is

a

reserved

prefix

for

variable

names

that

are

generated

by

SQLJ.

Do

not

begin

the

following

types

of

names

with

__sJT_:

–

Host

expression

names

–

Java

variable

names

that

are

declared

in

blocks

that

include

executable

SQL

statements

–

Names

of

parameters

for

methods

that

contain

executable

SQL

statements

–

Names

of

fields

in

classes

that

contain

executable

SQL

statements,

or

in

classes

with

subclasses

or

enclosed

classes

that

contain

executable

SQL

statements
v

The

string

_SJ

is

a

reserved

suffix

for

resource

files

and

classes

that

are

generated

by

SQLJ.

Avoid

using

the

string

_SJ

in

class

names

and

input

source

file

names.

Related

concepts:

v

“Basic

steps

in

writing

an

SQLJ

application”

on

page

317

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Comments

in

an

SQLJ

application

To

document

your

program,

you

need

to

include

comments.

To

do

that,

use

Java™

comments.

Java

comments

are

denoted

by

/*

*/

or

//.

You

can

include

Java

comments

outside

SQLJ

clauses,

wherever

the

Java

language

permits

them.

Within

an

SQLJ

clause,

you

can

use

Java

comments

only

within

host

expressions.

Related

concepts:

v

“Basic

steps

in

writing

a

JDBC

application”

on

page

263

Connecting

to

a

data

source

using

SQLJ

In

an

SQLJ

application,

as

in

any

other

DB2®

application,

you

must

be

connected

to

a

database

server

before

you

can

execute

SQL

statements.

In

SQLJ,

as

in

JDBC,

a

database

server

is

called

a

data

source.

You

can

use

one

of

five

techniques

to

connect

to

a

data

source:

v

Explicitly

create

a

connection

using

the

JDBC

DriverManager

interface.

There

are

two

techniques

for

doing

this.

v

Explicitly

create

a

connection

using

the

JDBC

DataSource

interface.

There

are

two

techniques

for

doing

this.

v

Implicitly

create

a

connection.

Connection

technique

1:

This

technique

uses

the

JDBC

DriverManager

as

the

underlying

means

for

creating

the

connection.

Use

it

with

any

level

of

the

JDBC

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

Doing

this

generates

a

connection

context

class.

The

simplest

form

of

the

connection

declaration

clause

is:

#sql

context

context-class-name;

322

Programming

Client

Applications

The

name

of

the

generated

connection

context

class

is

context-class-name.

2.

Load

a

JDBC

driver

by

invoking

the

Class.forName

method:

v

For

the

DB2

Universal

JDBC

Driver,

invoke

Class.forName

this

way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

v

For

the

DB2

JDBC

Type

2

Driver,

invoke

Class.forName

this

way:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

3.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1

on

page

322.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

one

of

the

following

forms:

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

boolean

autocommit);

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

String

user,

String

password,

boolean

autocommit);

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

Properties

info,

boolean

autocommit);

The

meanings

of

the

parameters

are:

url

A

string

that

specifies

the

location

name

that

is

associated

with

the

data

source.

That

argument

has

one

of

the

forms

that

are

specified

in

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

JDBC

Universal

Driver.

The

form

depends

on

which

JDBC

driver

you

are

using.

user

and

password

Specify

a

user

ID

and

password

for

connection

to

the

data

source,

if

the

data

source

to

which

you

are

connecting

requires

them.

info

Specifies

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

For

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver),

you

should

specify

only

the

user

and

password

properties.

For

the

DB2

Universal

JDBC

Driver,

you

can

specify

any

of

the

properties

listed

in

Properties

for

the

DB2

Universal

JDBC

Driver.

autocommit

Specifies

whether

you

want

the

database

manager

to

issue

a

COMMIT

after

every

statement.

Possible

values

are

true

or

false.

If

you

specify

false,

you

need

to

do

explicit

commit

operations.

The

following

code

uses

connection

technique

1

to

create

a

connection

to

location

NEWYORK.

The

connection

requires

a

user

ID

and

password,

and

does

not

require

autocommit.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Chapter

16.

SQLJ

application

programming

323

Connection

technique

2:

This

technique

uses

the

JDBC

DriverManager

interface

for

creating

the

connection.

Use

it

with

any

level

of

the

JDBC

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

This

is

the

same

as

step

1

on

page

322

in

connection

technique

1.

2.

Load

the

driver.

This

is

the

same

as

step

2

on

page

323

in

connection

technique

1.

3.

Invoke

the

JDBC

DriverManager.getConnection

method.

Doing

this

creates

a

JDBC

connection

object

for

the

connection

to

the

data

source.

You

can

use

any

of

the

forms

of

getConnection

that

are

specified

in

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

JDBC

Universal

Driver.

The

meanings

of

the

url,

user,

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

323

of

connection

technique

1.

4.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

the

following

form:

connection-context-class

connection-context-object=

new

connection-context-class(Connection

JDBC-connection-object);

The

JDBC-connection-object

parameter

is

the

Connection

object

that

you

created

in

step

3.

The

following

code

uses

connection

technique

2

to

create

a

connection

to

location

NEWYORK.

The

connection

requires

a

user

ID

and

password,

and

does

not

require

autocommit.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

�1�

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�2�

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Ctx

myConnCtx=

�3�

new

Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password,false);

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

34.

Using

connection

technique

1

to

connect

to

a

data

source

324

Programming

Client

Applications

Connection

technique

3:

This

technique

uses

the

JDBC

DataSource

interface

for

creating

the

connection.

1.

Execute

an

SQLJ

connection

declaration

clause.

This

is

the

same

as

step

1

on

page

322

in

connection

technique

1.

2.

If

your

system

administrator

created

a

DataSource

object

in

a

different

program:

a.

Obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

b.

Create

a

context

to

use

in

the

next

step.

c.

In

your

application

program,

use

the

Java™

Naming

and

Directory

Interface

(JNDI)

to

get

the

DataSource

object

that

is

associated

with

the

logical

data

source

name.

Otherwise,

create

a

DataSource

object

and

assign

properties

to

it,

as

shown

in

″Creating

and

using

a

data

source

in

the

same

application″

in

Connect

to

a

data

source

using

the

DataSource

interface.

3.

Invoke

the

JDBC

DataSource.getConnection

method.

Doing

this

creates

a

JDBC

connection

object

for

the

connection

to

the

data

source.

You

can

one

of

the

following

forms

of

getConnection:

getConnection();

getConnection(user,

password);

The

meanings

of

user

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

323

of

connection

technique

1.

4.

If

the

default

autocommit

mode

is

not

appropriate,

invoke

the

JDBC

Connection.setAutoCommit

method.

Doing

this

indicates

whether

you

want

the

database

manager

to

issue

a

COMMIT

after

every

statement.

The

form

of

this

method

is:

setAutoCommit(boolean

autocommit);

5.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

the

following

form:

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

�1�

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�2�

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

jdbccon=

�3�

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password);

//

Create

JDBC

connection

object

jdbccon

jdbccon.setAutoCommit(false);

//

Do

not

autocommit

�4�

Ctx

myConnCtx=new

Ctx(jdbccon);

�5�

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

35.

Using

connection

technique

2

to

connect

to

a

data

source

Chapter

16.

SQLJ

application

programming

325

connection-context-class

connection-context-object=

new

connection-context-class(Connection

JDBC-connection-object);

The

JDBC-connection-object

parameter

is

the

Connection

object

that

you

created

in

step

3

on

page

325.

The

following

code

uses

connection

technique

3

to

create

a

connection

to

a

location

with

logical

name

jdbc/sampledb.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

technique

4

(DB2

Universal

JDBC

Driver

only):

This

technique

uses

the

JDBC

DataSource

interface

for

creating

the

connection.

This

technique

requires

that

the

DataSource

is

registered

with

JNDI.

1.

From

your

system

administrator,

obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

2.

Execute

an

SQLJ

connection

declaration

clause.

For

this

type

of

connection,

the

connection

declaration

clause

needs

to

be

of

this

form:

#sql

public

static

context

context-class-name

with

(dataSource="logical-name");

The

connection

context

must

be

declared

as

public

and

static.

logical-name

is

the

data

source

name

that

you

obtained

in

step

1.

3.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

2.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

one

of

the

following

forms:

connection-context-class

connection-context-object=

new

connection-context-class();

connection-context-class

connection-context-object=

new

connection-context-class

(String

user,

String

password);

The

meanings

of

the

user

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

323

of

connection

technique

1.

import

java.sql.*;

import

javax.naming.*;

import

javax.sql.*;

...

#sql

context

CtxSqlj;

//

Create

connection

context

class

CtxSqlj

�1�

Context

ctx=new

InitialContext();

�2b�

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

�2c�

Connection

con=ds.getConnection();

�3�

String

empname;

//

Declare

a

host

variable

...

con.setAutoCommit(false);

//

Do

not

autocommit

�4�

CtxSqlj

myConnCtx=new

CtxSqlj(con);

�5�

//

Create

connection

context

object

myConnCtx

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

36.

Using

connection

technique

3

to

connect

to

a

data

source

326

Programming

Client

Applications

The

following

code

uses

connection

technique

4

to

create

a

connection

to

a

location

with

logical

name

jdbc/sampledb.

The

connection

requires

a

user

ID

and

password.

Connection

technique

5:

This

technique

uses

the

default

connection

to

connect

to

the

data

source.

You

use

the

default

connection

by

specifying

your

SQL

statements

without

a

connection

context

object.

When

you

use

this

technique,

you

do

not

need

to

load

a

JDBC

driver

unless

you

explicitly

use

JDBC

interfaces

in

your

program.

For

example:

#sql

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

default

connection

for

//

executing

an

SQL

statement

To

create

a

default

connection

context,

SQLJ

does

a

JNDI

lookup

for

jdbc/defaultDataSource.

If

nothing

is

registered,

a

null

context

exception

is

issued

when

SQLJ

attempts

to

access

the

context.

Related

concepts:

v

“How

JDBC

applications

connect

to

a

data

source”

on

page

267

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Setting

the

isolation

level

for

an

SQLJ

transaction

To

set

the

isolation

level

for

a

unit

of

work

within

an

SQLJ

program,

use

the

SET

TRANSACTION

ISOLATION

LEVEL

clause.

Table

37

shows

the

values

that

you

can

specify

in

the

SET

TRANSACTION

ISOLATION

LEVEL

clause

and

their

DB2®

equivalents.

Table

37.

Equivalent

SQLJ

and

DB2

isolation

levels

SET

TRANSACTION

value

DB2

isolation

level

SERIALIZABLE

Repeatable

read

REPEATABLE

READ

Read

stability

#sql

public

static

context

Ctx

with

(dataSource="jdbc/sampledb");

�2�

//

Create

connection

context

class

Ctx

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

Ctx

myConnCtx=new

Ctx(userid,

password);

�3�

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

jdbc/sampledb

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

37.

Using

connection

technique

4

to

connect

to

a

data

source

Chapter

16.

SQLJ

application

programming

327

Table

37.

Equivalent

SQLJ

and

DB2

isolation

levels

(continued)

SET

TRANSACTION

value

DB2

isolation

level

READ

COMMITTED

Cursor

stability

READ

UNCOMMITTED

Uncommitted

read

The

isolation

level

affects

the

underlying

JDBC

connection

as

well

as

the

SQLJ

connection.

You

can

change

the

isolation

level

only

at

the

beginning

of

a

transaction.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

Committing

or

rolling

back

SQLJ

transactions

If

you

disable

autocommit

for

an

SQLJ

connection,

you

need

to

perform

explicit

commit

or

rollback

operations.

You

do

this

using

execution

clauses

that

contain

the

SQL

COMMIT

or

ROLLBACK

statements:

#sql

[myConnCtx]

{COMMIT};

#sql

[myConnCtx]

{ROLLBACK};

Related

concepts:

v

“Savepoints

in

SQLJ

applications”

on

page

328

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

Savepoints

in

SQLJ

applications

An

SQL

savepoint

represents

the

state

of

data

and

schemas

at

a

particular

point

in

time

within

a

unit

of

work.

SQL

statements

exist

to

set

a

savepoint,

release

a

savepoint,

and

restore

data

and

schemas

to

the

state

that

the

savepoint

represents.

Under

the

DB2

Universal

JDBC

Driver,

you

can

include

any

form

of

the

SQL

SAVEPOINT

statement

in

your

SQLJ

program.

The

following

example

demonstrates

how

to

set

a

savepoint,

roll

back

to

the

savepoint,

and

release

the

savepoint.

328

Programming

Client

Applications

|

|
|
|

|
|

|
|
|

Related

tasks:

v

“Committing

or

rolling

back

SQLJ

transactions”

on

page

328

Related

reference:

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

v

“RELEASE

SAVEPOINT

statement”

in

the

SQL

Reference,

Volume

2

v

“SAVEPOINT

statement”

in

the

SQL

Reference,

Volume

2

Closing

the

connection

to

a

data

source

in

an

SQLJ

application

When

you

have

finished

with

a

connection

to

a

data

source,

you

need

to

close

the

connection

to

the

data

source.

Doing

so

releases

the

connection

context

object’s

DB2®

and

SQLJ

resources

immediately.

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

String

empNumVar;

int

shoeSizeVar;

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

jdbccon=

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password);

//

Create

JDBC

connection

object

jdbccon

jdbccon.setAutoCommit(false);

//

Do

not

autocommit

Ctx

ctxt=new

Ctx(jdbccon);

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[ctxt]

{CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER

WITH

COMPARISONS};

//

Create

a

distinct

type

#sql

[ctxt]

{COMMIT};

//

Commit

the

create

#sql

[ctxt]

{CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)};

//

Create

table

with

distinct

type

#sql

[ctxt]

{COMMIT};

//

Commit

the

create

#sql

[ctxt]

{INSERT

INTO

EMP_SHOE

VALUES

(’000010’,

6)};

//

Insert

a

row

#sql

[ctxt]

{SAVEPOINT

SVPT1

ON

ROLLBACK

RETAIN

CURSORS};

//

Create

a

savepoint

...

#sql

[ctxt]

{INSERT

INTO

EMP_SHOE

VALUES

(’000020’,

10)};

//

Insert

another

row

#sql

[ctxt]

{ROLLBACK

TO

SAVEPOINT

SVPT1};

//

Roll

back

work

to

the

point

//

after

the

first

insert

...

#sql

[ctxt]

{RELEASE

SAVEPOINT

SVPT1};

//

Release

the

savepoint

ctx.close();

//

Close

the

connection

context

Figure

38.

Setting,

rolling

back

to,

and

releasing

a

savepoint

in

an

SQLJ

application

Chapter

16.

SQLJ

application

programming

329

|

|

|

|

|

|

To

close

the

connection

to

the

data

source,

use

the

ConnectionContext.close()

method.

This

closes

the

connection

context,

as

well

as

the

connection

to

the

data

source.

For

example:

...

ctx

=

new

EzSqljctx(con0);

//

Create

a

connection

context

object

//

from

JDBC

connection

con0

...

//

Perform

various

SQL

operations

EzSqljctx.close();

//

Close

the

connection

context

and

//

connection

to

the

data

source

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

SQL

statements

in

an

SQLJ

application

You

execute

SQL

statements

in

a

traditional

SQL

program

to

create

tables,

insert,

update,

and

delete

data

in

tables,

retrieve

data

from

the

tables,

call

stored

procedures,

or

commit

or

roll

back

transactions.

In

an

SQLJ

program,

you

also

execute

these

statements,

within

SQLJ

executable

clauses.

An

executable

clause

can

have

one

of

the

following

general

forms:

#sql

[connection-context]

{sql-statement};

#sql

[connection-context,execution-context]

{sql-statement};

#sql

[execution-context]

{sql-statement};

In

an

executable

clause,

you

should

always

specify

an

explicit

connection

context,

with

one

exception:

you

do

not

specify

an

explicit

connection

context

for

a

FETCH

statement.

You

include

an

execution

context

only

for

specific

cases.

See

Control

the

execution

of

SQL

statements

in

SQLJ

for

information

about

when

you

need

an

execution

context.

Related

concepts:

v

“Comments

in

an

SQLJ

application”

on

page

322

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

345

v

“LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

348

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application”

on

page

354

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

331

Related

tasks:

v

“Making

batch

updates

in

SQLJ

applications”

on

page

355

v

“Calling

stored

procedures

in

an

SQLJ

application”

on

page

343

v

“Committing

or

rolling

back

SQLJ

transactions”

on

page

328

v

“Creating

and

modifying

DB2

objects

in

an

SQLJ

application”

on

page

331

v

“Handling

SQL

errors

in

an

SQLJ

application”

on

page

343

v

“Setting

the

isolation

level

for

an

SQLJ

transaction”

on

page

327

v

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

332

v

“Using

a

positioned

iterator

in

an

SQLJ

application”

on

page

334

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

v

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

361

v

“Handling

SQL

warnings

in

an

SQLJ

application”

on

page

344

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

353

330

Programming

Client

Applications

Related

reference:

v

“SQLJ

executable-clause”

on

page

401

Creating

and

modifying

DB2

objects

in

an

SQLJ

application

Use

SQLJ

executable

clauses

to

do

the

following

things:

v

Execute

data

definition

statements

(CREATE,

ALTER,

DROP,

GRANT,

REVOKE)

v

Execute

INSERT,

searched

UPDATE,

and

searched

DELETE

statements

For

example,

the

following

executable

statements

demonstrate

an

INSERT,

a

searched

UPDATE,

and

a

searched

DELETE:

#sql

[myConnCtx]

{INSERT

INTO

DEPARTMENT

VALUES

("X00","Operations

2","000030","E01",NULL)};

#sql

[myConnCtx]

{UPDATE

DEPARTMENT

SET

MGRNO="000090"

WHERE

MGRNO="000030"};

#sql

[myConnCtx]

{DELETE

FROM

DEPARTMENT

WHERE

DEPTNO="X00"};

For

information

on

positioned

UPDATEs

and

DELETEs,

see

Perform

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application.

Related

tasks:

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

How

an

SQLJ

application

retrieves

data

from

DB2

tables

Just

as

in

DB2®

applications

in

other

languages,

if

you

want

to

retrieve

a

single

row

from

a

DB2

table

in

an

SQLJ

application,

you

can

write

a

SELECT

INTO

statement

with

a

WHERE

clause

that

defines

a

result

table

that

contains

only

that

row:

#sql

[myConnCtx]

{SELECT

DEPTNO

INTO

:hvdeptno

FROM

DEPARTMENT

WHERE

DEPTNAME="OPERATIONS"};

However,

most

SELECT

statements

that

you

use

create

result

tables

that

contain

many

rows.

In

DB2

applications

in

other

languages,

you

use

a

cursor

to

select

the

individual

rows

from

the

result

table.

That

cursor

can

be

non-scrollable,

which

means

that

when

you

use

it

to

fetch

rows,

you

move

the

cursor

serially,

from

the

beginning

of

the

result

table

to

the

end.

Alternatively,

the

cursor

can

be

scrollable,

which

means

that

when

you

use

it

to

fetch

rows,

you

can

move

the

cursor

forward,

backward,

or

to

any

row

in

the

result

table.

The

SQLJ

equivalent

of

a

cursor

is

a

result

set

iterator.

Like

a

cursor,

a

result

set

iterator

can

be

non-scrollable

or

scrollable.

This

topic

discusses

how

to

use

non-scrollable

iterators.

For

information

on

using

scrollable

iterators,

see

Use

scrollable

iterators

in

an

SQLJ

application.

A

result

set

iterator

is

a

Java™

object

that

you

use

to

retrieve

rows

from

a

result

table.

Unlike

a

cursor,

a

result

set

iterator

can

be

passed

as

a

parameter

to

a

method.

The

basic

steps

in

using

a

result

set

iterator

are:

1.

Declare

the

iterator,

which

results

in

an

iterator

class

2.

Define

an

instance

of

the

iterator

class.

3.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

4.

Retrieve

rows.

Chapter

16.

SQLJ

application

programming

331

5.

Close

the

iterator.

There

are

two

types

of

iterators:

positioned

iterators

and

named

iterators.

Postitioned

iterators

extend

the

interface

sqlj.runtime.PositionedIterator.

Positioned

iterators

identify

the

columns

of

a

result

table

by

their

position

in

the

result

table.

Named

iterators

extend

the

interface

sqlj.runtime.NamedIterator.

Named

iterators

identify

the

columns

of

the

result

table

by

result

table

column

names.

Related

tasks:

v

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

332

v

“Using

a

positioned

iterator

in

an

SQLJ

application”

on

page

334

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

Related

reference:

v

“SQLJ

iterator-declaration-clause”

on

page

400

Using

a

named

iterator

in

an

SQLJ

application

The

steps

in

using

a

named

iterator

are:

1.

Declare

the

iterator.

You

declare

any

result

set

iterator

using

an

iterator

declaration

clause.

This

causes

an

iterator

class

to

be

created

that

has

the

same

name

as

the

iterator.

For

a

named

iterator,

the

iterator

declaration

clause

specifies

the

following

information:

v

The

name

of

the

iterator

v

A

list

of

column

names

and

Java™

data

types

v

Information

for

a

Java

class

declaration,

such

as

whether

the

iterator

is

public

or

static

v

A

set

of

attributes,

such

as

whether

the

iterator

is

holdable,

or

whether

its

columns

can

be

updated

When

you

declare

a

named

iterator

for

a

query,

you

specify

names

for

each

of

the

iterator

columns.

Those

names

must

match

the

names

of

columns

in

the

result

table

for

the

query.

An

iterator

column

name

and

a

result

table

column

name

that

differ

only

in

case

are

considered

to

be

matching

names.

The

named

iterator

class

that

results

from

the

iterator

declaration

clause

contains

accessor

methods.

There

is

one

accessor

method

for

each

column

of

the

iterator.

Each

accessor

method

name

is

the

same

as

the

corresponding

iterator

column

name.

You

use

the

accessor

methods

to

retrieve

data

from

columns

of

the

result

table.

You

need

to

specify

Java

data

types

in

the

iterators

that

closely

match

the

corresponding

DB2®

column

data

types.

See

Java,

JDBC,

and

SQL

data

types

for

a

list

of

the

best

mappings

between

Java

data

types

and

DB2

data

types.

You

can

declare

an

iterator

in

a

number

of

ways.

However,

because

a

Java

class

underlies

each

iterator,

you

need

to

ensure

that

when

you

declare

an

iterator,

the

underlying

class

obeys

Java

rules.

For

example,

iterators

that

contain

a

with-clause

must

be

declared

as

public.

Therefore,

if

an

iterator

needs

to

be

public,

it

can

be

declared

only

where

a

public

class

is

allowed.

The

following

list

describes

some

alternative

methods

of

declaring

an

iterator:

v

As

public,

in

a

source

file

by

itself

332

Programming

Client

Applications

This

method

lets

you

use

the

iterator

declaration

in

other

code

modules,

and

provides

an

iterator

that

works

for

all

SQLJ

applications.

In

addition,

there

are

no

concerns

about

having

other

top-level

classes

or

public

classes

in

the

same

source

file.

v

As

a

top-level

class

in

a

source

file

that

contains

other

top-level

class

definitions

Java

allows

only

one

public,

top-level

class

in

a

code

module.

Therefore,

if

you

need

to

declare

the

iterator

as

public,

such

as

when

the

iterator

includes

a

with-clause,

no

other

classes

in

the

code

module

can

be

declared

as

public.

v

As

a

nested

static

class

within

another

class

Using

this

alternative

lets

you

combine

the

iterator

declaration

with

other

class

declarations

in

the

same

source

file,

declare

the

iterator

and

other

classes

as

public,

and

make

the

iterator

class

visible

to

other

code

modules

or

packages.

However,

when

you

reference

the

iterator

from

outside

the

nesting

class,

you

must

fully-qualify

the

iterator

name

with

the

name

of

the

nesting

class.

v

As

an

inner

class

within

another

class

When

you

declare

an

iterator

in

this

way,

you

can

instantiate

it

only

within

an

instance

of

the

nesting

class.

However,

you

can

declare

the

iterator

and

other

classes

in

the

file

as

public.

You

cannot

cast

a

JDBC

ResultSet

to

an

iterator

if

the

iterator

is

declared

as

an

inner

class.

This

restriction

does

not

apply

to

an

iterator

that

is

declared

as

a

static

nested

class.

See

Use

SQLJ

and

JDBC

in

the

same

application

for

more

information

on

casting

a

ResultSet

to

a

iterator.
2.

Create

an

instance

of

the

iterator

class.

You

declare

an

object

of

the

named

iterator

class

to

retrieve

rows

from

a

result

table.

3.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

To

assign

the

result

table

of

a

SELECT

to

an

iterator,

you

use

an

SQLJ

assignment

clause.

The

format

of

the

assignment

clause

for

a

named

iterator

is:

#sql

context-clause

iterator-object={select-statement};

See

SQLJ

assignment-clause

and

SQLJ

context-clause

for

more

information.

4.

Retrieve

rows.

Do

this

by

invoking

accessor

methods

in

a

loop.

Accessor

methods

have

the

same

names

as

the

corresponding

columns

in

the

iterator,

and

have

no

parameters.

An

accessor

method

returns

the

value

from

the

corresponding

column

of

the

current

row

in

the

result

table.

Use

the

NamedIterator.next()

method

to

move

the

cursor

forward

through

the

result

table.

To

test

whether

you

have

retrieved

all

rows,

check

the

value

that

is

returned

when

you

invoke

the

next

method.

next

returns

a

boolean

with

a

value

of

false

if

there

is

no

next

row.

5.

Close

the

iterator.

Use

the

NamedIterator.close

method

to

do

this.

The

following

code

demonstrates

how

to

declare

and

use

a

named

iterator.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Chapter

16.

SQLJ

application

programming

333

Related

concepts:

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

345

Related

tasks:

v

“Using

a

positioned

iterator

in

an

SQLJ

application”

on

page

334

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

v

“SQLJ

assignment-clause”

on

page

405

v

“SQLJ

context-clause”

on

page

402

Using

a

positioned

iterator

in

an

SQLJ

application

The

steps

in

using

a

positioned

iterator

are:

1.

Declare

the

iterator.

You

declare

any

result

set

iterator

using

an

iterator

declaration

clause.

This

causes

an

iterator

class

to

be

created

that

has

the

same

name

and

attributes

as

the

iterator.

For

a

positioned

iterator,

the

iterator

declaration

clause

specifies

the

following

information:

v

The

name

of

the

iterator

v

A

list

of

Java™

data

types

v

Information

for

a

Java

class

declaration,

such

as

whether

the

iterator

is

public

or

static

v

A

set

of

attributes,

such

as

whether

the

iterator

is

holdable,

or

whether

its

columns

can

be

updated

The

data

type

declarations

represent

columns

in

the

result

table

and

are

referred

to

as

columns

of

the

result

set

iterator.

The

columns

of

the

result

set

iterator

correspond

to

the

columns

of

the

result

table,

in

left-to-right

order.

For

example,

if

an

iterator

declaration

clause

has

two

data

type

declarations,

the

first

data

type

declaration

corresponds

to

the

first

column

in

the

result

table,

and

the

second

data

type

declaration

corresponds

to

the

second

column

in

the

result

table.

#sql

iterator

ByName(String

LastName,

Date

HireDate);

�1�

//

Declare

named

iterator

ByName

{

ByName

nameiter;

//

Declare

object

of

ByName

class

�2�

#sql

[ctxt]

nameiter={SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE};

�3�

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

nameiter

while

(nameiter.next())

//

Move

the

iterator

through

the

result

�4�

//

table

and

test

whether

all

rows

retrieved

{

System.out.println(

nameiter.LastName()

+

"

was

hired

on

"

+

nameiter.HireDate());

//

Use

accessor

methods

LastName

and

//

HireDate

to

retrieve

column

values

}

nameiter.close();

//

Close

the

iterator

�5�

}

Figure

39.

Using

a

named

iterator

334

Programming

Client

Applications

You

need

to

specify

Java

data

types

in

the

iterators

that

closely

match

the

corresponding

DB2®

column

data

types.

SeeJava,

JDBC,

and

SQL

data

types

for

a

list

of

the

best

mappings

between

Java

data

types

and

DB2

data

types.

You

can

declare

an

iterator

in

a

number

of

ways.

However,

because

a

Java

class

underlies

each

iterator,

you

need

to

ensure

that

when

you

declare

an

iterator,

the

underlying

class

obeys

Java

rules.

For

example,

iterators

that

contain

a

with-clause

must

be

declared

as

public.

Therefore,

if

an

iterator

needs

to

be

public,

it

can

be

declared

only

where

a

public

class

is

allowed.

The

following

list

describes

some

alternative

methods

of

declaring

an

iterator:

v

As

public,

in

a

source

file

by

itself

This

is

the

most

versatile

method

of

declaring

an

iterator.

This

method

lets

you

use

the

iterator

declaration

in

other

code

modules,

and

provides

an

iterator

that

works

for

all

SQLJ

applications.

In

addition,

there

are

no

concerns

about

having

other

top-level

classes

or

public

classes

in

the

same

source

file.

v

As

a

top-level

class

in

a

source

file

that

contains

other

top-level

class

definitions

Java

allows

only

one

public,

top-level

class

in

a

code

module.

Therefore,

if

you

need

to

declare

the

iterator

as

public,

such

as

when

the

iterator

includes

a

with-clause,

no

other

classes

in

the

code

module

can

be

declared

as

public.

v

As

a

nested

static

class

within

another

class

Using

this

alternative

lets

you

combine

the

iterator

declaration

with

other

class

declarations

in

the

same

source

file,

declare

the

iterator

and

other

classes

as

public,

and

make

the

iterator

class

visible

from

other

code

modules

or

packages.

However,

when

you

reference

the

iterator

from

outside

the

nesting

class,

you

must

fully-qualify

the

iterator

name

with

the

name

of

the

nesting

class.

v

As

an

inner

class

within

another

class

When

you

declare

an

iterator

in

this

way,

you

can

instantiate

it

only

within

an

instance

of

the

nesting

class.

However,

you

can

declare

the

iterator

and

other

classes

in

the

file

as

public.

You

cannot

cast

a

JDBC

ResultSet

to

an

iterator

if

the

iterator

is

declared

as

an

inner

class.

This

restriction

does

not

apply

to

an

iterator

that

is

declared

as

a

static

nested

class.

See

Use

SQLJ

and

JDBC

in

the

same

application

for

more

information

on

casting

a

ResultSet

to

a

iterator.
2.

Create

an

instance

of

the

iterator

class.

You

declare

an

object

of

the

positioned

iterator

class

to

retrieve

rows

from

a

result

table.

3.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

To

assign

the

result

table

of

a

SELECT

to

an

iterator,

you

use

an

SQLJ

assignment

clause.

The

format

of

the

assignment

clause

for

a

positioned

iterator

is:

#sql

context-clause

iterator-object={select-statement};

4.

Retrieve

rows.

Do

this

by

executing

FETCH

statements

in

executable

clauses

in

a

loop.

The

FETCH

statements

looks

the

same

as

a

FETCH

statements

in

other

languages.

To

test

whether

you

have

retrieved

all

rows,

invoke

the

PositionedIterator.endFetch

method

after

each

FETCH.

endFetch

returns

a

boolean

with

the

value

true

if

the

FETCH

failed

because

there

are

no

rows

to

retrieve.

5.

Close

the

iterator.

Chapter

16.

SQLJ

application

programming

335

Use

the

PositionedIterator.close

method

to

do

this.

The

following

code

demonstrates

how

to

declare

and

use

a

positioned

iterator.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

concepts:

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

345

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

331

Related

tasks:

v

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

332

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application

As

in

DB2®

applications

in

other

languages,

performing

positioned

UPDATEs

and

DELETEs

is

an

extension

of

retrieving

rows

from

a

result

table.

The

basic

steps

are:

1.

Declare

the

iterator.

The

iterator

can

be

positioned

or

named.

For

positioned

UPDATE

or

DELETE

operations,

the

iterator

must

be

declared

as

updatable.

To

do

this,

the

declaration

must

include

the

following

clauses:

implements

sqlj.runtime.ForUpdate

This

clause

causes

the

generated

iterator

class

to

include

methods

for

using

updatable

iterators.

This

clause

is

required

for

programs

with

positioned

UPDATE

or

DELETE

operations.

with

(updateColumns=″column-list″)

This

clause

specifies

a

comma-separated

list

of

the

columns

of

the

result

table

that

the

iterator

will

update.

This

clause

is

optional.

#sql

iterator

ByPos(String,Date);

//

Declare

positioned

iterator

ByPos

�1�

{

ByPos

positer;

//

Declare

object

of

ByPos

class

�2�

String

name

=

null;

//

Declare

host

variables

Date

hrdate;

#sql

[ctxt]

positer

=

{SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE};

�3�

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

positer

#sql

{FETCH

:positer

INTO

:name,

:hrdate

};

�4�

//

Retrieve

the

first

row

while

(!positer.endFetch())

//

Check

whether

the

FETCH

returned

a

row

{

System.out.println(name

+

"

was

hired

in

"

+

hrdate);

#sql

{FETCH

:positer

INTO

:name,

:hrdate

};

//

Fetch

the

next

row

}

positer.close();

//

Close

the

iterator

�5�

}

Figure

40.

Using

a

positioned

iterator

336

Programming

Client

Applications

You

need

to

declare

the

iterator

as

public,

so

you

need

to

follow

the

for

declaring

and

using

public

iterators

in

the

same

file

or

different

files.

If

you

declare

the

iterator

in

a

file

by

itself,

any

SQLJ

source

file

that

has

addressability

to

the

iterator

and

imports

the

generated

class

can

retrieve

data

and

execute

positioned

UPDATE

or

DELETE

statements

using

the

iterator.

The

authorization

ID

under

which

a

positioned

UPDATE

or

DELETE

statement

executes

depends

on

whether

the

statement

executes

statically

or

dynamically.

If

the

statement

executes

statically,

the

authorization

ID

is

the

owner

of

the

DB2

plan

or

package

that

includes

the

statement.

If

the

statement

executes

dynamically

the

authorization

ID

is

determined

by

the

DYNAMICRULES

behavior

that

is

in

effect.

For

the

DB2

Universal

JDBC

Driver,

the

behavior

is

always

DYNAMICRULES

BIND.

2.

Disable

autocommit

mode

for

the

connection.

If

autocommit

mode

is

enabled,

a

COMMIT

operation

occurs

every

time

the

positioned

UPDATE

statement

executes,

which

causes

the

iterator

to

be

destroyed

unless

the

iterator

has

the

with

(holdability=true)

attribute.

Therefore,

you

need

to

turn

autocommit

off

to

prevent

COMMIT

operations

until

you

have

finished

using

the

iterator.

If

you

want

a

COMMIT

to

occur

after

every

update

operation,

an

alternative

way

to

keep

the

iterator

from

being

destroyed

after

each

COMMIT

operation

is

to

declare

the

iterator

with

(holdability=true).

3.

Create

an

instance

of

the

iterator

class.

This

is

the

same

step

as

for

a

non-updatable

iterator.

4.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

This

is

the

same

step

as

for

a

non-updatable

iterator.

The

SELECT

statement

must

not

include

a

FOR

UPDATE

clause.

5.

Retrieve

and

update

rows.

For

a

positioned

iterator,

do

this

by

performing

the

following

actions

in

a

loop:

a.

Execute

a

FETCH

statement

in

an

executable

clause

to

obtain

the

current

row.

b.

Test

whether

the

iterator

is

pointing

to

a

row

of

the

result

table

by

invoking

the

PositionedIterator.endFetch

method.

c.

If

the

iterator

is

pointing

to

a

row

of

the

result

table,

execute

an

SQL

UPDATE...

WHERE

CURRENT

OF

:iterator-object

statement

in

an

executable

clause

to

update

the

columns

in

the

current

row.

Execute

an

SQL

DELETE...

WHERE

CURRENT

OF

:iterator-object

statement

in

an

executable

clause

to

delete

the

current

row.

For

a

named

iterator,

do

this

by

performing

the

following

actions

in

a

loop:

a.

Invoke

the

next

method

to

move

the

iterator

forward.

b.

Test

whether

the

iterator

is

pointing

to

a

row

of

the

result

table

by

checking

whether

next

returns

true.

c.

Execute

an

SQL

UPDATE...

WHERE

CURRENT

OF

iterator-object

statement

in

an

executable

clause

to

update

the

columns

in

the

current

row.

Execute

an

SQL

DELETE...

WHERE

CURRENT

OF

iterator-object

statement

in

an

executable

clause

to

delete

the

current

row.
6.

Close

the

iterator.

Use

the

close

method

to

do

this.

The

following

code

shows

how

to

declare

a

positioned

iterator

and

use

it

for

positioned

UPDATEs.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously

described

steps.

Chapter

16.

SQLJ

application

programming

337

First,

in

one

file,

declare

positioned

iterator

UpdByPos,

specifying

that

you

want

to

use

the

iterator

to

update

column

SALARY:

Then,

in

another

file,

use

UpdByPos

for

a

positioned

UPDATE,

as

shown

in

the

following

code

fragment:

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

#sql

public

iterator

UpdByPos

implements

sqlj.runtime.ForUpdate

�1�

with(updateColumns="SALARY")

(String,

BigDecimal);

Figure

41.

Declaring

a

positioned

iterator

for

a

positioned

UPDATE

import

sqlj.runtime.*;

//

Import

files

for

SQLJ

and

JDBC

APIs

import

java.sql.*;

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

import

UpdByPos;

//

Import

the

generated

iterator

class

that

//

was

created

by

the

iterator

declaration

clause

//

for

UpdByName

in

another

file

#sql

context

HSCtx;

//

Create

a

connnection

context

class

HSCtx

public

static

void

main

(String

args[])

{

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

HSjdbccon=

DriverManager.getConnection("jdbc:db2:SANJOSE");

//

Create

a

JDBC

connection

object

HSjdbccon.setAutoCommit(false);

//

Set

autocommit

off

so

automatic

commits

�2�

//

do

not

destroy

the

cursor

between

updates

HSCtx

myConnCtx=new

HSCtx(HSjdbccon);

//

Create

a

connection

context

object

UpdByPos

upditer;

//

Declare

iterator

object

of

UpdByPos

class

�3�

String

enum;

//

Declares

host

variable

to

receive

EMPNO

BigDecimal

sal;

//

and

SALARY

column

values

#sql

[myConnCtx]

upditer

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

�4�

WHERE

WORKDEPT='D11'};

//

Assign

result

table

to

iterator

object

#sql

{FETCH

:upditer

INTO

:enum,:sal};

�5a�

//

Move

cursor

to

next

row

while

(!upditer.endFetch())

�5b�

//

Check

if

on

a

row

{

#sql

[myConnCtx]

{UPDATE

EMPLOYEE

SET

SALARY=SALARY*1.05

WHERE

CURRENT

OF

:upditer};

�5c�

//

Perform

positioned

update

System.out.println("Updating

row

for

"

+

enum);

#sql

{FETCH

:upditer

INTO

:enum,:sal};

//

Move

cursor

to

next

row

}

upditer.close();

//

Close

the

iterator

�6�

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

changes

myConnCtx.close();

//

Close

the

connection

context

}

Figure

42.

Performing

a

positioned

UPDATE

with

a

positioned

iterator

338

Programming

Client

Applications

The

following

code

shows

how

to

declare

a

named

iterator

and

use

it

for

positioned

UPDATEs.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously

described

steps.

First,

in

one

file,

declare

named

iterator

UpdByName,

specifying

that

you

want

to

use

the

iterator

to

update

column

SALARY:

Then,

in

another

file,

use

UpdByName

for

a

positioned

UPDATE,

as

shown

in

the

following

code

fragment:

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

#sql

public

iterator

UpdByName

implements

sqlj.runtime.ForUpdate

�1�

with(updateColumns="SALARY")

(String

EmpNo,

BigDecimal

Salary);

Figure

43.

Declaring

a

named

iterator

for

a

positioned

UPDATE

Chapter

16.

SQLJ

application

programming

339

Related

concepts:

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

331

v

“Iterators

as

passed

variables

for

positioned

UPDATE

or

DELETE

operations

in

an

SQLJ

application”

on

page

359

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

import

sqlj.runtime.*;

//

Import

files

for

SQLJ

and

JDBC

APIs

import

java.sql.*;

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

import

UpdByName;

//

Import

the

generated

iterator

class

that

//

was

created

by

the

iterator

declaration

clause

//

for

UpdByName

in

another

file

#sql

context

HSCtx;

//

Create

a

connnection

context

class

HSCtx

public

static

void

main

(String

args[])

{

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

HSjdbccon=

DriverManager.getConnection("jdbc:db2:SANJOSE");

//

Create

a

JDBC

connection

object

HSjdbccon.setAutoCommit(false);

//

Set

autocommit

off

so

automatic

commits

�2�

//

do

not

destroy

the

cursor

between

updates

HSCtx

myConnCtx=new

HSCtx(HSjdbccon);

//

Create

a

connection

context

object

UpdByName

upditer;

�3�

//

Declare

iterator

object

of

UpdByName

class

String

enum;

//

Declare

host

variable

to

receive

EmpNo

//

column

values

#sql

[myConnCtx]

upditer

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

�4�

WHERE

WORKDEPT='D11'};

//

Assign

result

table

to

iterator

object

while

(upditer.next())

�5a,

5b�

//

Move

cursor

to

next

row

and

//

check

ifon

a

row

{

enum

=

upditer.EmpNo();

//

Get

employee

number

from

current

row

#sql

[myConnCtx]

{UPDATE

EMPLOYEE

SET

SALARY=SALARY*1.05

WHERE

CURRENT

OF

:upditer};

�5c�

//

Perform

positioned

update

System.out.println("Updating

row

for

"

+

enum);

}

upditer.close();

//

Close

the

iterator

�6�

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

changes

myConnCtx.close();

//

Close

the

connection

context

}

Figure

44.

Performing

a

positioned

UPDATE

with

a

named

iterator

340

Programming

Client

Applications

Multiple

open

iterators

for

the

same

SQL

statement

in

an

SQLJ

application

If

you

are

using

the

DB2

Universal

JDBC

Driver,

and

your

application

connects

to

a

DB2

UDB

for

z/OS®

Version

8

server,

or

a

DB2

UDB

for

Linux,

UNIX®,

and

Windows®

server

at

the

FixPak

4

level

or

later,

you

can

have

multiple

concurrently

open

iterators

for

a

single

SQL

statement

in

an

SQLJ

application.

With

this

capability,

you

can

perform

one

operation

on

a

table

using

one

iterator

while

you

perform

a

different

operation

on

the

same

table

using

another

iterator.

When

you

use

concurrently

open

iterators

in

an

application,

you

should

close

iterators

when

you

no

longer

need

them

to

prevent

excessive

storage

consumption

in

the

Java™

heap.

The

following

examples

demonstrate

how

to

perform

the

same

operations

on

a

table

without

concurrently

open

iterators

on

a

single

SQL

statement

and

with

concurrently

open

iterators

on

a

single

SQL

statement.

These

examples

use

the

following

iterator

declaration:

import

java.math.*;

#sql

public

iterator

MultiIter(String

EmpNo,

BigDecimal

Salary);

Without

the

capability

for

multiple,

concurrently

open

iterators

for

a

single

SQL

statement,

if

you

want

to

select

employee

and

salary

values

for

a

specific

employee

number,

you

need

to

define

a

different

SQL

statement

for

each

employee

number,

as

shown

in

Figure

45.

Figure

46

on

page

342

demonstrates

how

you

can

perform

the

same

operations

when

you

have

the

capability

for

multiple,

concurrently

open

iterators

for

a

single

SQL

statement.

MultiIter

iter1

=

null;

//

Iterator

instance

for

retrieving

//

data

for

first

employee

String

EmpNo1

=

"000100";

//

Employee

number

for

first

employee

#sql

[ctx]

iter2

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

WHERE

EMPNO

=

:EmpNo1};

//

Assign

result

table

to

first

iterator

MultiIter

iter2

=

null;

//

Iterator

instance

for

retrieving

//

data

for

second

employee

String

EmpNo2

=

"000200";

//

Employee

number

for

second

employee

#sql

[ctx]

iter2

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

WHERE

EMPNO

=

:EmpNo2};

//

Assign

result

table

to

second

iterator

//

Process

with

iter1

//

Process

with

iter2

iter1.close();

//

Close

the

iterators

iter2.close();

Figure

45.

Example

of

concurrent

table

operations

using

iterators

with

different

SQL

statements

Chapter

16.

SQLJ

application

programming

341

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

Related

concepts:

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

331

Multiple

open

instances

of

an

iterator

in

an

SQLJ

application

Multiple

instances

of

an

iterator

can

be

open

concurrently

in

a

single

SQLJ

application.

One

application

for

this

ability

is

to

open

several

instances

of

an

iterator

that

uses

host

expressions.

Each

instance

can

use

a

different

set

of

host

expression

values.

The

following

example

shows

an

application

with

two

concurrently

open

instances

of

an

iterator.

As

with

any

other

iterator,

you

need

to

remember

to

close

this

iterator

after

the

last

time

you

use

it

to

prevent

excessive

storage

consumption.

Related

concepts:

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

331

...

MultiIter

iter1

=

openIter("000100");

//

Invoke

openIter

to

assign

the

result

table

//

(for

employee

100)

to

the

first

iterator

MultiIter

iter2

=

openIter("000200");

//

Invoke

openIter

to

assign

the

result

//

table

to

the

second

iterator

//

iter1

stays

open

when

iter2

is

opened

//

Process

with

iter1

//

Process

with

iter2

...

iter1.close();

//

Close

the

iterators

iter2.close();

...

public

MultiIter

openIter(String

EmpNo)

//

Method

to

assign

a

result

table

//

to

an

iterator

instance

{

MultiIter

iter;

#sql

[ctxt]

iter

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

WHERE

EMPNO

=

:EmpNo};

return

iter;

//

Method

returns

an

iterator

instance

}

Figure

46.

Example

of

concurrent

table

operations

using

iterators

with

the

same

SQL

statement

...

ResultSet

myFunc(String

empid)

//

Method

to

open

an

iterator

and

get

a

resultSet

{

MyIter

iter;

#sql

iter

=

{SELECT

*

FROM

EMPLOYEE

WHERE

EMPNO

=

:empid};

return

iter.getResultSet();

}

//

An

application

can

call

this

method

to

get

a

resultSet

for

each

//

employee

ID.

The

application

can

process

each

resultSet

separately.

...

ResultSet

rs1

=

myFunc("000100");

//

Get

employee

record

for

employee

ID

000100

...

ResultSet

rs2

=

myFunc("000200");

//

Get

employee

record

for

employee

ID

000200

Figure

47.

Example

of

opening

more

than

one

instance

of

an

iterator

in

a

single

application

342

Programming

Client

Applications

|

|

|

|
|
|
|

|
|
|

|
|

|

|

Calling

stored

procedures

in

an

SQLJ

application

To

call

a

stored

procedure,

you

use

an

executable

clause

that

contains

an

SQL

CALL

statement.

You

can

execute

the

CALL

statement

with

host

identifier

parameters.

The

basic

steps

in

calling

a

stored

procedure

are:

1.

Assign

values

to

input

(IN

or

INOUT)

parameters.

2.

Call

the

stored

procedure.

3.

Process

output

(OUT

or

INOUT)

parameters.

4.

If

the

stored

procedure

returns

multiple

result

sets,

retrieve

those

result

sets.

See

Retrieve

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application.

The

following

code

illustrates

calling

a

stored

procedure

that

has

three

input

parameters

and

three

output

parameters.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

concepts:

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application”

on

page

354

Handling

SQL

errors

in

an

SQLJ

application

SQLJ

clauses

use

the

JDBC

class

java.sql.SQLException

for

error

handling.

SQLJ

generates

an

SQLException

under

the

following

circumstances:

v

When

any

SQL

statement

returns

a

negative

SQL

error

code

v

When

a

SELECT

INTO

SQL

statement

returns

a

+100

SQL

error

code

You

can

use

the

getErrorCode

method

to

retrieve

SQL

error

codes

and

the

getSQLState

method

to

retrieve

SQLSTATEs.

To

handle

SQL

errors

in

your

SQLJ

application,

import

the

java.sql.SQLException

class,

and

use

the

Java™

error

handling

try/catch

blocks

to

modify

program

flow

when

an

SQL

error

occurs.

For

example:

String

FirstName="TOM";

//

Input

parameters

�1�

String

LastName="NARISINST";

String

Address="IBM";

int

CustNo;

//

Output

parameters

String

Mark;

String

MarkErrorText;

...

#sql

[myConnCtx]

{CALL

ADD_CUSTOMER(:IN

FirstName,

�2�

:IN

LastName,

:IN

Address,

:OUT

CustNo,

:OUT

Mark,

:OUT

MarkErrorText)};

//

Call

the

stored

procedure

System.out.println("Output

parameters

from

ADD_CUSTOMER

call:

");

System.out.println("Customer

number

for

"

+

LastName

+

":

"

+

CustNo);

�3�

System.out.println(Mark);

If

(MarkErrorText

!=

null)

System.out.println("

Error

messages:"

+

MarkErrorText);

Figure

48.

Calling

a

stored

procedure

in

an

SQLJ

application

Chapter

16.

SQLJ

application

programming

343

try

{

#sql

[ctxt]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

}

catch(SQLException

e)

{

System.out.println("Error

code

returned:

"

+

e.getErrorCode());

}

With

the

DB2

Universal

JDBC

Driver,

you

can

retrieve

the

SQLCA.

For

information

on

writing

code

to

retrieve

the

SQLCA

with

the

DB2

Universal

JDBC

Driver,

see

Handle

an

SQLException

under

the

DB2

Universal

JDBC

Driver.

For

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver),

use

the

standard

SQLException

to

retrieve

SQL

error

information.

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

Handling

SQL

warnings

in

an

SQLJ

application

Other

than

a

+100

SQL

error

code

on

a

SELECT

INTO

statement,

DB2®

warnings

do

not

throw

SQLExceptions.

To

handle

DB2

warnings,

you

need

to

give

the

program

access

to

the

java.sql.SQLWarning

class.

If

you

want

to

retrieve

DB2-specific

information

about

a

warning,

you

also

need

to

give

the

program

access

to

the

com.ibm.db2.jcc.DB2Diagnosable

interface

and

the

com.ibm.db2.jcc.DB2Sqlca

class.

To

check

for

a

DB2

warning,

invoke

the

getWarnings

method

after

you

execute

an

SQLJ

clause.

getWarnings

returns

the

first

SQLWarning

object

that

an

SQL

statement

generates.

Subsequent

SQLWarning

objects

are

chained

to

the

first

one.

To

retrieve

DB2-specific

information

from

the

SQLWarning

object

with

the

DB2

Universal

JDBC

Driver,

follow

the

instructions

in

Handle

an

SQLException

under

the

DB2

Universal

JDBC

Driver.

Before

you

can

execute

getWarnings

for

an

SQL

clause,

you

need

to

set

up

an

execution

context

for

that

SQL

clause.

See

Control

the

execution

of

SQL

statements

in

SQLJ

for

information

on

how

to

set

up

an

execution

context.

The

following

example

demonstrates

how

to

retrieve

an

SQLWarning

object

for

an

SQL

clause

with

execution

context

execCtx:

ExecutionContext

execCtx=myConnCtx.getExecutionContext();

//

Get

default

execution

context

from

//

connection

context

SQLWarning

sqlWarn;

...

#sql

[myConnCtx,execCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

if

((sqlWarn

=

execCtx.getWarnings())

!=

null)

System.out.println("SQLWarning

"

+

sqlWarn);

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

353

v

“Handling

SQL

errors

in

an

SQLJ

application”

on

page

343

344

Programming

Client

Applications

Advanced

SQLJ

application

programming

concepts

The

topics

that

follow

contain

more

advanced

information

about

writing

SQLJ

applications.

Using

SQLJ

and

JDBC

in

the

same

application

You

can

combine

SQLJ

clauses

and

JDBC

calls

in

a

single

program.

To

do

this

effectively,

you

need

to

be

able

to

do

the

following

things:

v

Use

a

JDBC

Connection

to

build

an

SQLJ

ConnectionContext,

or

obtain

a

JDBC

Connection

from

an

SQLJ

ConnectionContext.

v

Use

an

SQLJ

iterator

to

retrieve

data

from

a

JDBC

ResultSet

or

generate

a

JDBC

ResultSet

from

an

SQLJ

iterator.

Building

an

SQLJ

ConnectionContext

from

a

JDBC

Connection:

To

do

that:

1.

Execute

an

SQLJ

connection

declaration

clause

to

create

a

ConnectionContext

class.

2.

Load

the

driver

or

obtain

a

DataSource

instance.

3.

Invoke

the

JDBC

DriverManager.getConnection

or

DataSource.getConnection

method

to

obtain

a

JDBC

Connection.

4.

Invoke

the

ConnectionContext

constructor

with

the

Connection

as

its

argument

to

create

the

ConnectionContext

object.

Obtaining

a

JDBC

Connection

from

an

SQLJ

ConnectionContext:

To

do

this,

1.

Execute

an

SQLJ

connection

declaration

clause

to

create

a

ConnectionContext

class.

2.

Load

the

driver

or

obtain

a

DataSource

instance.

3.

Invoke

the

ConnectionContext

constructor

with

the

URL

of

the

driver

and

any

other

necessary

parameters

as

its

arguments

to

create

the

ConnectionContext

object.

4.

Invoke

the

JDBC

ConnectionContext.getConnection

method

to

create

the

JDBC

Connection

object.

See

Connect

to

a

data

source

using

SQLJ

for

more

information

on

SQLJ

connections.

Retrieving

JDBC

result

sets

using

SQLJ

iterators:

Use

the

iterator

conversion

statement

to

manipulate

a

JDBC

result

set

as

an

SQLJ

iterator.

The

general

form

of

an

iterator

conversion

statement

is:

#sql

iterator={CAST

:result-set};

Before

you

can

successfully

cast

a

result

set

to

an

iterator,

the

iterator

must

conform

to

the

following

rules:

v

The

iterator

must

be

declared

as

public.

v

If

the

iterator

is

a

positioned

iterator,

the

number

of

columns

in

the

result

set

must

match

the

number

of

columns

in

the

iterator.

In

addition,

the

data

type

of

each

column

in

the

result

set

must

match

the

data

type

of

the

corresponding

column

in

the

iterator.

v

If

the

iterator

is

a

named

iterator,

the

name

of

each

accessor

method

must

match

the

name

of

a

column

in

the

result

set.

In

addition,

the

data

type

of

the

object

that

an

accessor

method

returns

must

match

the

data

type

of

the

corresponding

column

in

the

result

set.

Chapter

16.

SQLJ

application

programming

345

The

code

in

Figure

49

builds

and

executes

a

query

using

a

JDBC

call,

executes

an

iterator

conversion

statement

to

convert

the

JDBC

result

set

to

an

SQLJ

iterator,

and

retrieves

rows

from

the

result

table

using

the

iterator.

Notes

to

Figure

49:

�1�

This

SQLJ

clause

creates

the

named

iterator

class

ByName,

which

has

accessor

methods

LastName()

and

HireDate()

that

return

the

data

from

result

table

columns

LASTNAME

and

HIREDATE.

�2�

This

statement

and

the

following

two

statements

build

and

prepare

a

query

for

dynamic

execution

using

JDBC.

�3�

This

JDBC

statement

executes

the

SELECT

statement

and

assigns

the

result

table

to

result

set

rs.

�4�

This

iterator

conversion

clause

converts

the

JDBC

ResultSet

rs

to

SQLJ

iterator

nameiter,

and

the

following

statements

use

nameiter

to

retrieve

values

from

the

result

table.

�5�

The

nameiter.close()

method

closes

the

SQLJ

iterator

and

JDBC

ResultSet

rs.

Generating

JDBC

ResultSets

from

SQLJ

iterators:

Use

the

getResultSet

method

to

generate

a

JDBC

ResultSet

from

an

SQLJ

iterator.

Every

SQLJ

iterator

has

a

getResultSet

method.

After

you

convert

an

iterator

to

a

result

set,

you

need

to

fetch

rows

using

only

the

result

set.

The

code

in

Figure

50

on

page

347

generates

a

positioned

iterator

for

a

query,

converts

the

iterator

to

a

result

set,

and

uses

JDBC

methods

to

fetch

rows

from

the

table.

#sql

public

iterator

ByName(String

LastName,

Date

HireDate);

�1�

public

void

HireDates(ConnectionContext

connCtx,

String

whereClause)

{

ByName

nameiter;

//

Declare

object

of

ByName

class

Connection

conn=connCtx.getConnection();

//

Create

JDBC

connection

Statement

stmt

=

conn.createStatement();

�2�

String

query

=

"SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE";

query+=whereClause;

//

Build

the

query

ResultSet

rs

=

stmt.executeQuery(query);

�3�

#sql

[connCtx]

nameiter

=

{CAST

:rs};

�4�

while

(nameiter.next())

{

System.out.println(

nameiter.LastName()

+

"

was

hired

on

"

+

nameiter.HireDate());

}

nameiter.close();

�5�

stmt.close();

}

Figure

49.

Converting

a

JDBC

result

set

to

an

SQLJ

iterator

346

Programming

Client

Applications

Notes

to

Figure

50:

�1�

This

SQLJ

clause

executes

the

SELECT

statement,

constructs

an

iterator

object

that

contains

the

result

table

for

the

SELECT

statement,

and

assigns

the

iterator

object

to

variable

iter.

�2�

The

getResultSet()

method

converts

iterator

iter

to

ResultSet

rs.

�3�

The

JDBC

getString()

and

getDate()

methods

retrieve

values

from

the

ResultSet.

The

next()

method

moves

the

cursor

to

the

next

row

in

the

ResultSet.

�4�

The

rs.close()

method

closes

the

SQLJ

iterator

as

well

as

the

ResultSet.

Rules

and

restrictions

for

using

JDBC

ResultSets

in

SQLJ

applications:

When

you

write

SQLJ

applications

that

include

JDBC

result

sets,

observe

the

following

rules

and

restrictions:

v

You

cannot

cast

a

ResultSet

to

an

SQLJ

iterator

if

the

ResultSet

and

the

iterator

have

different

holdability

attributes.

A

JDBC

ResultSet

or

an

SQLJ

iterator

can

remain

open

after

a

COMMIT

operation.

For

a

JDBC

ResultSet,

this

characteristic

is

controlled

by

the

DB2

Universal

JDBC

Driver

property

resultSetHoldability.

For

an

SQLJ

iterator,

this

characteristic

is

controlled

by

the

with

holdability

parameter

of

the

iterator

declaration.

Casting

a

ResultSet

that

has

holdability

to

an

SQLJ

iterator

that

does

not,

or

casting

a

ResultSet

that

does

not

have

holdability

to

an

SQLJ

iterator

that

does,

is

not

supported.

v

Close

a

generated

ResultSet

object

or

the

underlying

iterator

at

the

end

of

the

program.

Closing

the

iterator

object

from

which

a

ResultSet

object

is

generated

also

closes

the

ResultSet

object.

Closing

the

generated

ResultSet

object

also

closes

the

iterator

object.

In

general,

it

is

best

to

close

the

object

that

is

used

last.

v

For

the

DB2

Universal

JDBC

Driver,

which

supports

scrollable

iterators

and

scrollable

and

updatable

ResultSets,

the

following

restrictions

apply:

–

Scrollable

iterators

have

the

same

restrictions

as

their

underlying

JDBC

ResultSets.

For

example,

because

scrollable

ResultSets

do

not

support

INSERTs,

scrollable

iterators

do

not

support

INSERTs.

–

You

cannot

cast

a

JDBC

ResultSet

that

is

not

updatable

to

an

SQLJ

iterator

that

is

updatable.

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

#sql

iterator

EmpIter(String,

java.sql.Date);

{

...

EmpIter

iter=null;

#sql

[connCtx]

iter=

{SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE};

�1�

ResultSet

rs=iter.getResultSet();

�2�

while

(rs.next())

�3�

{

System.out.println(rs.getString(1)

+

"

was

hired

in

"

+

rs.getDate(2));

}

rs.close();

�4�

}

Figure

50.

Converting

an

SQLJ

iterator

to

a

JDBC

ResultSet

Chapter

16.

SQLJ

application

programming

347

LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver

With

the

DB2

Universal

JDBC

Driver,

you

can

retrieve

LOB

data

into

Clob

or

Blob

host

expressions

or

update

CLOB,

BLOB,

or

DBCLOB

columns

from

Clob

or

Blob

host

expressions.

You

can

also

declare

iterators

with

Clob

or

Blob

data

types

to

retrieve

data

from

CLOB,

BLOB,

or

DBCLOB

columns.

Retrieving

or

updating

LOB

data:

To

retrieve

data

from

a

BLOB

column,

declare

an

iterator

that

includes

a

data

type

of

Blob

or

byte[].

To

retrieve

data

from

a

CLOB

or

DBCLOB

column,

declare

an

iterator

in

which

the

corresponding

column

has

a

Clob

data

type.

To

update

data

in

a

BLOB

column,

use

a

host

expression

with

data

type

Blob.

To

update

data

in

a

CLOB

or

DBCLOB

column,

use

a

host

expression

with

data

type

Clob.

LOB

locator

support:

The

DB2

Universal

JDBC

Driver

can

use

LOB

locators

to

retrieve

data.

To

cause

JDBC

to

use

LOB

locators

to

retrieve

data

from

LOB

columns,

you

need

to

set

the

fullyMaterializeLobData

property

to

false.

Properties

are

discussed

in

Properties

for

the

DB2®

Universal

JDBC

Driver.

fullyMaterializeLobData

has

no

effect

on

stored

procedure

output

parameters

or

LOBs

that

are

fetched

using

scrollable

cursors.

You

cannot

call

a

stored

procedure

that

has

LOB

locator

parameters.

When

you

fetch

from

scrollable

cursors,

JDBC

always

uses

LOB

locators

to

retrieve

data

from

LOB

columns.

As

in

any

other

language,

a

LOB

locator

in

a

Java

application

is

associated

with

only

one

database.

You

cannot

use

a

single

LOB

locator

to

move

data

between

two

different

databases.

To

move

LOB

data

between

two

databases,

you

need

to

materialize

the

LOB

data

when

you

retrieve

it

from

a

table

in

the

first

database

and

then

insert

that

data

into

the

table

in

the

second

database.

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

SQLJ

applications

When

the

deferPrepares

property

is

set

to

true,

and

the

DB2

Universal

JDBC

Driver

processes

an

uncustomized

SQLJ

statement

that

includes

host

expressions,

the

driver

might

need

to

do

extra

processing

to

determine

data

types.

This

extra

processing

can

impact

performance.

When

the

JDBC

driver

cannot

immediately

determine

the

data

type

of

a

parameter

that

is

used

with

a

LOB

column,

you

need

to

choose

a

parameter

data

type

that

is

compatible

with

the

LOB

data

type.

When

the

JDBC

driver

cannot

determine

the

data

type

of

a

parameter

that

is

used

with

a

LOB

column,

you

need

to

choose

a

parameter

data

type

that

is

compatible

with

the

LOB

data

type.

Input

parameters

for

BLOB

columns:

348

Programming

Client

Applications

|

|

|
|
|
|

|
|
|

|
|
|

|

For

input

parameters

for

BLOB

columns,

you

can

use

either

of

the

following

techniques:

v

Use

a

java.sql.Blob

input

variable,

which

is

an

exact

match

for

a

BLOB

column:

java.sql.Blob

blobData;

#sql

{CALL

STORPROC(:IN

blobData)};

Before

you

can

use

a

java.sql.Blob

input

variable,

you

need

to

create

a

java.sql.Blob

object,

and

then

populate

that

object.

For

example,

if

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

use

the

DB2-only

method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob

to

create

a

java.sql.Blob

object

and

populate

the

object

with

byte[]

data:

byte[]

byteArray

=

{0,

1,

2,

3};

java.sql.Blob

blobData

=

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);

v

Use

an

input

parameter

of

type

of

sqlj.runtime.BinaryStream.

A

sqlj.runtime.BinaryStream

object

is

compatible

with

a

BLOB

data

type.

For

this

call,

you

need

to

specify

the

exact

length

of

the

input

data:

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream(byteData);

int

numBytes

=

byteData.length;

sqlj.runtime.BinaryStream

binStream

=

new

sqlj.runtime.BinaryStream(byteStream,

numBytes);

#sql

{CALL

STORPROC(:IN

binStream)};

You

cannot

use

this

technique

for

input/output

parameters.

Output

parameters

for

BLOB

columns:

For

output

or

input/output

parameters

for

BLOB

columns,

you

can

use

the

following

technique:

v

Declare

the

output

parameter

or

input/output

variable

with

a

java.sql.Blob

data

type:

java.sql.Blob

blobData

=

null;

#sql

CALL

STORPROC

(:OUT

blobData)};

java.sql.Blob

blobData

=

null;

#sql

CALL

STORPROC

(:INOUT

blobData)};

Input

parameters

for

CLOB

columns:

For

input

parameters

for

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Clob

input

variable,

which

is

an

exact

match

for

a

CLOB

column:

#sql

CALL

STORPROC(:IN

clobData)};

Before

you

can

use

a

java.sql.Clob

input

variable,

you

need

to

create

a

java.sql.Clob

object,

and

then

populate

that

object.

For

example,

if

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

use

the

DB2-only

method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob

to

create

a

java.sql.Clob

object

and

populate

the

object

with

String

data:

String

stringVal

=

"Some

Data";

java.sql.Clob

clobData

=

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

v

Use

one

of

the

following

types

of

stream

input

parameters:

–

A

sqlj.runtime.CharacterStream

input

parameter:

Chapter

16.

SQLJ

application

programming

349

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|

|
|
|

|

|

java.lang.String

charData;

java.io.StringReader

reader

=

new

java.io.StringReader(charData);

sqlj.runtime.CharacterStream

charStream

=

new

sqlj.runtime.CharacterStream

(reader,

charData.length);

#sql

{CALL

STORPROC(:IN

charStream)};

–

A

sqlj.runtime.UnicodeStream

parameter,

for

Unicode

UTF-16

data:

byte[]

charDataBytes

=

charData.getBytes("UnicodeBigUnmarked");

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream(charDataBytes);

sqlj.runtime.UnicodeStream

uniStream

=

new

sqlj.runtime.UnicodeStream(byteStream,

charDataBytes.length

);

#sql

{CALL

STORPROC(:IN

uniStream)};

–

A

sqlj.runtime.AsciiStream

parameter,

for

ASCII

data:

byte[]

charDataBytes

=

charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream

(charDataBytes);

sqlj.runtime.AsciiStream

asciiStream

=

new

sqlj.runtime.AsciiStream

(byteStream,

charDataBytes.length);

#sql

{CALL

STORPROC(:IN

asciiStream)};

For

these

calls,

you

need

to

specify

the

exact

length

of

the

input

data.

You

cannot

use

this

technique

for

input/output

parameters.

v

Use

a

java.lang.String

input

parameter:

java.lang.String

charData;

#sql

{CALL

STORPROC(:IN

charData)};

Output

parameters

for

CLOB

columns:

For

output

our

input/output

parameters

for

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Clob

output

variable,

which

is

an

exact

match

for

a

CLOB

column:

java.sql.Clob

clobData

=

null;

#sql

CALL

STORPROC(:OUT

clobData)};

v

Use

a

java.lang.String

output

variable:

java.lang.String

charData

=

null;

#sql

CALL

STORPROC(:OUT

charData)};

This

technique

should

be

used

only

if

you

know

that

the

length

of

the

retrieved

data

is

less

than

or

equal

to

32KB.

Otherwise,

the

data

is

truncated.

Output

parameters

for

DBCLOB

columns:

DBCLOB

output

or

input/output

parameters

for

stored

procedures

are

not

supported.

Related

concepts:

v

“LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

348

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

ROWIDs

in

SQLJ

with

the

DB2

Universal

JDBC

Driver

DB2®

UDB

for

z/OS®

and

DB2

UDB

for

iSeries™

support

the

ROWID

data

type

for

a

column

in

a

DB2

table.

A

ROWID

is

a

value

that

uniquely

identifies

a

row

in

a

table.

350

Programming

Client

Applications

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|

|
|

|

|

|

|

|

|
|
|

If

you

use

ROWIDs

in

SQLJ

programs,

you

need

to

customize

those

programs.

The

DB2

Universal

JDBC

Driver

provides

the

DB2-only

class

com.ibm.db2.jcc.DB2RowID

that

you

can

use

in

iterators

and

in

CALL

statement

parameters.

For

an

iterator,

you

can

also

use

the

byte[]

object

type

to

retrieve

ROWID

values.

Figure

51

shows

an

example

of

an

iterator

that

is

used

to

select

values

from

a

ROWID

column:

Figure

52

on

page

352

shows

an

example

of

calling

a

stored

procedure

that

takes

three

ROWID

parameters:

an

IN

parameter,

an

OUT

parameter,

and

an

INOUT

parameter.

#sql

iterator

PosIter(int,String,com.ibm.db2.jcc.DB2RowId);

//

Declare

positioned

iterator

//

for

retrieving

ITEM_ID

(INTEGER),

//

ITEM_FORMAT

(VARCHAR),

and

ITEM_ROWID

(ROWID)

//

values

from

table

ROWIDTAB

{

PosIter

positrowid;

//

Declare

object

of

PosIter

class

com.ibm.db2.jcc.DB2RowId

rowid

=

null;

int

id

=

0;

String

i_fmt

=

null;

//

Declare

host

expressions

#sql

[ctxt]

positrowid

=

{SELECT

ITEM_ID,

ITEM_FORMAT,

ITEM_ROWID

FROM

ROWIDTAB

WHERE

ITEM_ID=3};

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

positrowid

#sql

{FETCH

:positrowid

INTO

:id,

:i_fmt,

:rowid};

//

Retrieve

the

first

row

while

(!positrowid.endFetch())

//

Check

whether

the

FETCH

returned

a

row

{System.out.println("Item

ID

"

+

id

+

"

Item

format

"

+

i_fmt

+

"

Item

ROWID

");

printBytes(rowid.getBytes());

//

Use

the

DB2-only

method

getBytes

to

//

convert

the

value

to

bytes

for

printing

#sql

{FETCH

:positrowid

INTO

:id,

:i_fmt,

:rowid};

//

Retrieve

the

next

row

}

positrowid.close();

//

Close

the

iterator

}

Figure

51.

Example

of

using

an

iterator

to

retrieve

ROWID

values

Chapter

16.

SQLJ

application

programming

351

|

|
|
|
|

|
|
|

|
|
|
|

Related

reference:

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Distinct

types

in

SQLJ

applications

In

DB2®,

a

distinct

type

is

a

user-defined

data

type

that

is

internally

represented

as

a

built-in

SQL

data

type.

You

create

a

distinct

type

by

executing

the

SQL

statement

CREATE

DISTINCT

TYPE.

In

an

SQLJ

program,

you

can

create

a

distinct

type

using

the

CREATE

DISTINCT

TYPE

statement

in

an

executable

clause.

You

can

also

use

CREATE

TABLE

in

an

executable

clause

to

create

a

table

that

includes

a

column

of

that

type.

When

you

retrieve

data

from

a

column

of

that

type,

or

update

a

column

of

that

type,

you

use

Java™

identifiers

with

data

types

that

correspond

to

the

built-in

types

on

which

the

distinct

types

are

based.

The

following

example

creates

a

distinct

type

that

is

based

on

an

INTEGER

type,

creates

a

table

with

a

column

of

that

type,

inserts

a

row

into

the

table,

and

retrieves

the

row

from

the

table:

com.ibm.db2.jcc.DB2RowId

in_rowid

=

rowid;

com.ibm.db2.jcc.DB2RowId

out_rowid

=

null;

com.ibm.db2.jcc.DB2RowId

inout_rowid

=

rowid;

//

Declare

an

input,

output,

and

//

input/output

ROWID

parameter

...

#sql

[myConnCtx]

{CALL

SP_ROWID(:IN

in_rowid,

:OUT

out_rowid,

:INOUT

inout_rowid)};

//

Call

the

stored

procedure

System.out.println("Parameter

values

from

SP_ROWID

call:

");

System.out.println("Output

parameter

value

");

printBytes(out_rowid.getBytes());

//

Use

the

DB2-only

method

getBytes

to

//

convert

the

value

to

bytes

for

printing

System.out.println("Input/output

parameter

value

");

printBytes(inout_rowid.getBytes());

Figure

52.

Example

of

calling

a

stored

procedure

with

a

ROWID

parameter

352

Programming

Client

Applications

|

|

Related

reference:

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

Controlling

the

execution

of

SQL

statements

in

SQLJ

You

can

use

selected

methods

of

the

SQLJ

ExecutionContext

class

to

control

or

monitor

the

execution

of

SQL

statements.

Selected

sqlj.runtime

classes

and

interfaces

describes

those

methods.

To

use

ExecutionContext

methods,

follow

these

steps:

1.

Acquire

an

execution

context.

There

are

two

ways

to

acquire

an

execution

context:

v

Acquire

the

default

execution

context

from

the

connection

context.

For

example:

ExecutionContext

execCtx

=

connCtx.getExecutionContext();

v

Create

a

new

execution

context

by

invoking

the

contructor

for

ExecutionContext.

For

example:

ExecutionContext

execCtx=new

ExecutionContext();

2.

Associate

the

execution

context

with

an

SQL

statement.

To

do

that,

specify

an

execution

context

after

the

connection

context

in

the

execution

clause

that

contains

the

SQL

statement.

For

example:

#sql

[connCtx,

execCtx]

{DELETE

FROM

EMPLOYEE

WHERE

SALARY

>

10000};

3.

Invoke

ExecutionContext

methods.

Some

ExecutionContext

methods

are

applicable

before

the

associated

SQL

statement

is

executed,

and

some

are

applicable

only

after

their

associated

SQL

statement

is

executed.

For

example,

you

can

use

method

getUpdateCount

to

count

the

number

of

rows

that

are

deleted

by

a

DELETE

statement

after

you

execute

the

DELETE

statement:

#sql

[connCtx,

execCtx]

{DELETE

FROM

EMPLOYEE

WHERE

SALARY

>

10000};

System.out.println("Deleted

"

+

execCtx.getUpdateCount()

+

"

rows");

Related

reference:

v

“Selected

sqlj.runtime

classes

and

interfaces”

on

page

407

String

empNumVar;

int

shoeSizeVar;

...

#sql

[myConnCtx]

{CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER

WITH

COMPARISONS};

//

Create

distinct

type

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

create

#sql

[myConnCtx]

{CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)};

//

Create

table

using

distinct

type

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

create

#sql

[myConnCtx]

{INSERT

INTO

EMP_SHOE

VALUES(’000010’,6)};

//

Insert

a

row

in

the

table

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

INSERT

#sql

[myConnCtx]

{SELECT

EMPNO,

EMP_SHOE_SIZE

INTO

:empNumVar,

:shoeSizeVar

FROM

EMP_SHOE};

//

Retrieve

the

row

System.out.println("Employee

number:

"

+

empNumVar

+

"

Shoe

size:

"

+

shoeSizeVar);

Figure

53.

Defining

and

using

a

distinct

type

Chapter

16.

SQLJ

application

programming

353

Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application

Some

stored

procedures

return

one

or

more

result

sets

to

the

calling

program.

To

retrieve

the

rows

from

those

result

sets,

you

execute

these

steps:

1.

Acquire

an

execution

context

for

retrieving

the

result

set

from

the

stored

procedure.

2.

Associate

the

execution

context

with

the

CALL

statement

for

the

stored

procedure.

Do

not

use

this

execution

context

for

any

other

purpose

until

you

have

retrieved

and

processed

the

last

result

set.

3.

For

each

result

set:

a.

Use

the

ExecutionContext

method

getNextResultSet

to

retrieve

the

result

set.

b.

If

you

do

not

know

the

contents

of

the

result

set,

use

ResultSetMetaData

methods

to

retrieve

this

information.

c.

Use

an

SQLJ

result

set

iterator

or

JDBC

ResultSet

to

retrieve

the

rows

from

the

result

set.

Result

sets

are

returned

to

the

calling

program

in

the

same

order

that

their

cursors

are

opened

in

the

stored

procedure.

When

there

are

no

more

result

sets

to

retrieve,

getNextResultSet

returns

a

null

value.

getNextResultSet

has

two

forms:

getNextResultSet();

getNextResultSet(int

current);

When

you

invoke

the

first

form

of

getNextResultSet,

SQLJ

closes

the

currently-open

result

set

and

advances

to

the

next

result

set.

When

you

invoke

the

second

form

of

getNextResultSet,

the

value

of

current

indicates

what

SQLJ

does

with

the

currently-open

result

set

before

it

advances

to

the

next

result

set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

is

closed

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

stays

open

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies

that

all

open

ResultSet

objects

are

closed

when

the

next

ResultSet

object

is

returned.

The

second

form

of

getNextResultSet

requires

JDK

1.4

or

later.

The

following

code

calls

a

stored

procedure

that

returns

multiple

result

sets.

For

this

example,

it

is

assumed

that

the

caller

does

not

know

the

number

of

result

sets

to

be

returned

or

the

contents

of

those

result

sets.

It

is

also

assumed

that

autoCommit

is

false.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

354

Programming

Client

Applications

|
|

Making

batch

updates

in

SQLJ

applications

The

DB2

Universal

JDBC

Driver

supports

batch

updates

in

SQLJ.

With

batch

updates,

instead

of

updating

rows

of

a

DB2®

table

one

at

a

time,

you

can

direct

SQLJ

to

execute

a

group

of

updates

at

the

same

time.

You

can

include

the

following

types

of

statements

in

a

batch

update:

v

Searched

INSERT,

UPDATE,

or

DELETE

statements

v

CREATE,

ALTER,

DROP,

GRANT,

or

REVOKE

statements

v

CALL

statements

with

input

parameters

only

Unlike

JDBC,

SQLJ

allows

heterogeneous

batches

that

contain

statements

with

input

parameters

or

host

expressions.

You

can

therefore

combine

instances

of

the

same

statement,

different

statements,

statements

with

input

parameters

or

host

expressions,

and

statements

with

no

input

parameters

or

host

expressions

in

the

same

SQLJ

statement

batch.

The

basic

steps

for

creating,

executing,

and

deleting

a

batch

of

statements

are:

1.

Disable

AutoCommit

for

the

connection.

2.

Acquire

an

execution

context.

All

statements

that

execute

in

a

batch

must

use

this

execution

context.

3.

Invoke

the

ExecutionContext.setBatching(true)

method

to

create

a

batch.

Subsequent

batchable

statements

that

are

associated

with

the

execution

context

that

you

created

in

step

2

are

added

to

the

batch

for

later

execution.

If

you

want

to

batch

sets

of

statements

that

are

not

batch

compatible

in

parallel,

you

need

to

create

an

execution

context

for

each

set

of

batch

compatible

statements.

4.

Include

SQLJ

executable

clauses

for

SQL

statements

that

you

want

to

batch.

These

clauses

must

include

the

execution

context

that

you

created

in

step

2.

If

an

SQLJ

executable

clause

has

input

parameters

or

host

expressions,

you

can

include

the

statement

in

the

batch

multiple

times

with

different

values

for

the

input

parameters

or

host

expressions.

ExecutionContext

execCtx=myConnCtx.getExecutionContext();

�1�

#sql

[myConnCtx,

execCtx]

{CALL

MULTRSSP()};

�2�

//

MULTRSSP

returns

multiple

result

sets

ResultSet

rs;

while

((rs

=

execCtx.getNextResultSet())

!=

null)

�3a�

{

ResultSetMetaData

rsmeta=rs.getMetaData();

�3b�

int

numcols=rsmeta.getColumnCount();

while

(rs.next())

�3c�

{

for

(int

i=1;

i<=numcols;

i++)

{

String

colval=rs.getString(i);

System.out.println("Column

"

+

i

+

"value

is

"

+

colval);

}

}

}

Figure

54.

Retrieving

result

sets

from

a

stored

procedure

Chapter

16.

SQLJ

application

programming

355

To

determine

whether

a

statement

was

added

to

an

existing

batch,

was

the

first

statement

in

a

new

batch,

or

was

executed

inside

or

outside

a

batch,

invoke

the

ExecutionContext.getUpdateCount

method.

This

method

returns

one

of

the

following

values:

ExecutionContext.ADD_BATCH_COUNT

This

is

a

constant

that

is

returned

if

the

statement

was

added

to

an

existing

batch.

ExecutionContext.NEW_BATCH_COUNT

This

is

a

constant

that

is

returned

if

the

statement

was

the

first

statement

in

a

new

batch.

ExecutionContext.EXEC_BATCH_COUNT

This

is

a

constant

that

is

returned

if

the

statement

was

part

of

a

batch,

and

the

batch

was

executed.

Other

integer

This

value

is

the

number

of

rows

that

were

updated

by

the

statement.

This

value

is

returned

if

the

statement

was

executed

rather

than

added

to

a

batch.
5.

Execute

the

batch

explicitly

or

implicitly.

v

Invoke

the

ExecutionContext.executeBatch

method

to

execute

the

batch

explicitly.

executeBatch

returns

an

integer

array

that

contains

the

number

of

rows

that

were

updated

by

each

statement

in

the

batch.

The

order

of

the

elements

in

the

array

corresponds

to

the

order

in

which

you

added

statements

to

the

batch.

v

Alternatively,

a

batch

executes

implicitly

under

the

following

circumstances:

–

You

include

a

batchable

statement

in

your

program

that

is

not

compatible

with

statements

that

are

already

in

the

batch.

In

this

case,

SQLJ

executes

the

statements

that

are

already

in

the

batch

and

creates

a

new

batch

that

includes

the

incompatible

statement.

SQLJ

also

executes

the

statement

that

is

not

compatible

with

the

statements

in

the

batch.

–

You

include

a

statement

in

your

program

that

is

not

batchable.

In

this

case,

SQLJ

executes

the

statements

that

are

already

in

the

batch.

SQLJ

also

executes

the

statement

that

is

not

batchable.

–

After

you

invoke

the

ExecutionContext.setBatchLimit(n)

method,

you

add

a

statement

to

the

batch

that

brings

the

number

of

statements

in

the

batch

to

n

or

greater.

n

can

have

one

of

the

following

values:

ExecutionContext.UNLIMITED_BATCH

This

constant

indicates

that

implicit

execution

occurs

only

when

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

Setting

this

value

is

the

same

as

not

invoking

setBatchLimit.

ExecutionContext.AUTO_BATCH

This

constant

indicates

that

implicit

execution

occurs

when

the

number

of

statements

in

the

batch

reaches

a

number

that

is

set

by

SQLJ.

Positive

integer

When

this

number

of

statements

have

been

added

to

the

batch,

SQLJ

executes

the

batch

implicitly.

However,

the

batch

might

be

executed

before

this

many

statements

have

been

added

if

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

356

Programming

Client

Applications

To

determine

the

number

of

rows

that

were

updated

by

a

batch

that

was

executed

implicitly,

invoke

the

ExecutionContext.getBatchUpdateCounts

method.

getBatchUpdateCounts

returns

an

integer

array

that

contains

the

number

of

rows

that

were

updated

by

each

statement

in

the

batch.

The

order

of

the

elements

in

the

array

corresponds

to

the

order

in

which

you

added

statements

to

the

batch.

Each

array

element

can

be

one

of

the

following

values:

-2

This

value

indicates

that

the

SQL

statement

executed

successfully,

but

the

number

of

rows

that

were

updated

could

not

be

determined.

-3

This

value

indicates

that

the

SQL

statement

failed.

Other

integer

This

value

is

the

number

of

rows

that

were

updated

by

the

statement.
6.

Optionally,

when

all

statements

have

been

added

to

the

batch,

disable

batching.

Do

this

by

invoking

the

ExecutionContext.setBatching(false)

method.

When

you

disable

batching,

you

can

still

execute

the

batch

implicitly

or

explicitly,

but

no

more

statements

are

added

to

the

batch.

Disabling

batching

is

useful

when

a

batch

already

exists,

and

you

want

to

execute

a

batch

compatible

statement,

rather

than

adding

it

to

the

batch.

If

you

want

to

clear

a

batch

without

executing

it,

invoke

the

ExecutionContext.cancel

method.

7.

If

batch

execution

was

implicit,

perform

a

final,

explicit

executeBatch

to

ensure

that

all

statements

have

been

executed.

Example

of

a

batch

update:

In

the

following

code

fragment,

raises

are

given

to

all

managers

by

performing

UPDATEs

in

a

batch.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Chapter

16.

SQLJ

application

programming

357

When

an

error

occurs

during

execution

of

a

statement

in

a

batch,

the

remaining

statements

are

executed,

and

a

BatchUpdateException

is

thrown

after

all

the

statements

in

the

batch

have

executed.

See

Make

batch

updates

in

a

JDBC

application

for

information

on

how

to

process

a

BatchUpdateException.

To

obtain

information

about

warnings,

use

the

Statement.getWarnings

method

on

the

object

on

which

you

ran

the

executeBatch

method.

You

can

then

retrieve

an

error

description,

SQLSTATE,

and

error

code

for

each

SQLWarning

object.

When

a

batch

is

executed

implicitly

because

the

program

contains

a

statement

that

cannot

be

added

to

the

batch,

the

batch

is

executed

before

the

new

statement

is

processed.

If

an

error

occurs

during

execution

of

the

batch,

the

statement

that

caused

the

batch

to

execute

does

not

execute.

Recommendation:

Turn

autocommit

off

when

you

do

batch

updates

so

that

you

can

control

whether

to

commit

changes

to

already-executed

statements

when

an

error

occurs

during

batch

execution.

Related

tasks:

v

“Making

batch

updates

in

JDBC

applications”

on

page

304

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

353

#sql

iterator

GetMgr(String);

//

Declare

positioned

iterator

{

GetMgr

deptiter;

//

Declare

object

of

GetMgr

class

String

mgrnum

=

null;

//

Declare

host

variable

for

manager

number

int

raise

=

400®;

//

Declare

raise

amount

int

currentSalary;

//

Declare

current

salary

String

url,

username,

password;

//

Declare

url,

user

ID,

password

...

TestContext

c1

=

new

TestContext

(url,

username,

password,

false);

�1�

ExecutionContext

ec

=

new

ExecutionContext();

�2�

ec.setBatching(true);

�3�

#sql

[c1]

deptiter

=

{SELECT

MGRNO

FROM

DEPARTMENT};

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

deptiter

#sql

{FETCH

:deptiter

INTO

:mgrnum};

//

Retrieve

the

first

manager

number

while

(!deptiter.endFetch())

{

//

Check

whether

the

FETCH

returned

a

row

#sql

[c1]

{SELECT

SALARY

INTO

:currentSalary

FROM

EMPLOYEE

WHERE

EMPNO=:mgrnum};

#sql

[c1,

ec]

�4�

{UPDATE

EMPLOYEE

SET

SALARY=:(currentSalary+raise)

WHERE

EMPNO=:mgrnum};

#sql

{FETCH

:deptiter

INTO

:mgrnum

};

//

Fetch

the

next

row

}

ec.executeBatch();

�5�

ec.setBatching(false);

�6�

#sql

[c1]

{COMMIT};

deptiter.close();

//

Close

the

iterator

ec.close();

//

Close

the

execution

context

c1.close();

//

Close

the

connection

}

Figure

55.

Performing

a

batch

update

358

Programming

Client

Applications

Related

reference:

v

“Selected

sqlj.runtime

classes

and

interfaces”

on

page

407

Iterators

as

passed

variables

for

positioned

UPDATE

or

DELETE

operations

in

an

SQLJ

application

SQLJ

allows

iterators

to

be

passed

between

methods

as

variables.

An

iterator

that

is

used

for

a

positioned

UPDATE

or

DELETE

can

be

identified

only

at

runtime.

The

same

SQLJ

positioned

UPDATE

or

DELETE

statement

can

be

used

with

different

iterators

at

runtime.

If

you

specify

a

value

of

YES

for

-staticpositioned

when

you

customize

your

SQLJ

application

as

part

of

the

program

preparation

process,

the

SQLJ

customizer

prepares

positioned

UPDATE

or

DELETE

statements

to

execute

statically.

In

this

case,

the

customizer

must

determine

which

iterators

belong

with

which

positioned

UPDATE

or

DELETE

statements.

The

SQLJ

customizer

does

this

by

matching

iterator

data

types

to

data

types

in

the

UPDATE

or

DELETE

statements.

However,

if

there

is

not

a

unique

mapping

of

tables

in

UPDATE

or

DELETE

statements

to

iterator

classes,

the

SQLJ

customizer

cannot

determine

exactly

which

iterators

and

UPDATE

or

DELETE

statements

go

together.

The

SQLJ

customizer

must

arbitrarily

pair

iterators

with

UPDATE

or

DELETE

statements,

which

can

sometimes

result

in

SQL

errors.

The

following

code

fragments

illustrate

this

point.

In

this

example,

only

one

iterator

is

defined.

Two

instances

of

that

iterator

are

defined,

and

each

is

associated

with

a

different

SELECT

statement

that

retrieves

data

from

a

different

table.

Because

the

iterator

is

passed

to

method

doUpdate

as

a

variable,

it

is

impossible

to

know

until

run

time

which

of

the

iterator

instances

is

used

for

the

positioned

UPDATE.

The

DB2®

bind

process

uses

the

first

iterator

instance,

iter1,

when

it

binds

the

DB2

plan.

At

run

time,

if

iter1

is

passed

to

the

doUpdate

method,

as

shown

in

Figure

56,

the

UPDATE

succeeds

because

iter1

and

the

UPDATE

statement

both

use

TABLE1.

If

the

program

is

written

in

a

slightly

different

way,

as

shown

in

Figure

57

on

page

360,

the

DB2

bind

fails,

even

though

the

program

appears

to

be

valid.

#sql

iterator

GeneralIter

(

String

);

public

static

void

main

(

String

args[]

)

{

...

GeneralIter

iter1

=

null;

#sql

[ctxt]

iter1

=

{

SELECT

CHAR_COL1

FROM

TABLE1

};

GeneralIter

iter2

=

null;

#sql

[ctxt]

iter2

=

{

SELECT

CHAR_COL2

FROM

TABLE2

};

...

doUpdate

(

iter1

);

}

public

static

void

doUpdate

(

GeneralIter

iter

)

{

#sql

[ctxt]

{

UPDATE

TABLE1

...

WHERE

CURRENT

OF

:iter

};

}

Figure

56.

Static

positioned

UPDATE

that

succeeds

Chapter

16.

SQLJ

application

programming

359

In

this

case,

the

DB2

bind

process

associates

iter2

with

the

positioned

UPDATE

because

iter2

comes

first

in

the

program.

When

DB2

binds

the

plan

for

the

program,

the

bind

fails

with

SQLCODE

-509

because

iter2

uses

TABLE2

and

the

UPDATE

uses

TABLE1.

However,

if

this

program

is

allowed

to

bind

successfully,

and

you

pass

iter1

to

the

doUpdate

method,

the

program

runs

successfully.

You

can

avoid

a

bind

time

error

for

a

program

like

the

one

in

Figure

57

by

specifying

the

DB2

BIND

option

SQLERROR(CONTINUE).

However,

this

technique

has

the

drawback

that

it

causes

DB2

to

build

a

package,

regardless

of

the

SQL

errors

that

are

in

the

program.

A

better

technique

is

to

write

the

program

so

that

there

is

a

one-to-one

mapping

between

tables

in

positioned

UPDATE

or

DELETE

statements

and

iterator

classes.

Figure

58

on

page

361

shows

an

example

of

how

to

do

this.

#sql

iterator

GeneralIter

(

String

);

public

static

void

main

(

String

args[]

)

{

...

GeneralIter

iter2

=

null;

#sql

[ctxt]

iter2

=

{

SELECT

CHAR_COL2

FROM

TABLE2

};

GeneralIter

iter1

=

null;

#sql

[ctxt]

iter1

=

{

SELECT

CHAR_COL1

FROM

TABLE1

};

...

doUpdate

(

iter1

);

}

public

static

void

doUpdate

(

GeneralIter

iter

)

{

#sql

[ctxt]

{

UPDATE

TABLE1

...

WHERE

CURRENT

OF

:iter

};

}

Figure

57.

Static

positioned

UPDATE

that

fails

at

bind

time

360

Programming

Client

Applications

With

this

method

of

coding,

each

iterator

class

is

associated

with

only

one

table.

Therefore,

the

DB2

bind

process

can

always

associate

the

positioned

UPDATE

statement

with

a

valid

iterator.

Related

tasks:

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

Related

reference:

v

“db2sqljcustomize

-

DB2

SQLJ

Profile

Customizer

Command”

in

the

Command

Reference

Using

scrollable

iterators

in

an

SQLJ

application

In

addition

to

moving

forward,

one

row

at

a

time,

through

a

result

table,

you

might

want

to

move

backward

or

go

directly

to

a

specific

row.

The

DB2

Universal

JDBC

Driver

provides

this

capability.

An

iterator

in

which

you

can

move

forward,

backward,

or

to

a

specific

row

is

called

a

scrollable

iterator.

A

scrollable

iterator

in

SQLJ

is

equivalent

to

the

result

table

of

a

DB2®

cursor

that

is

declared

as

SCROLL.

Like

a

scrollable

cursor,

a

scrollable

iterator

can

be

insensitive

or

sensitive.

A

sensitive

scrollable

iterator

can

be

static

or

dynamic.

Insensitive

means

that

changes

to

the

underlying

table

after

the

iterator

is

opened

are

not

visible

to

the

iterator.

Insensitive

iterators

are

read-only.

Sensitive

means

that

changes

that

the

iterator

or

other

processes

make

to

the

underlying

table

are

visible

to

the

iterator.

#sql

iterator

Table2Iter(String);

#sql

iterator

Table1Iter(String);

public

static

void

main

(

String

args[]

)

{

...

Table2Iter

iter2

=

null;

#sql

[ctxt]

iter2

=

{

SELECT

CHAR_COL2

FROM

TABLE2

};

Table1Iter

iter1

=

null;

#sql

[ctxt]

iter1

=

{

SELECT

CHAR_COL1

FROM

TABLE1

};

...

doUpdate(iter1);

}

public

static

void

doUpdate

(

Table1Iter

iter

)

{

...

#sql

[ctxt]

{

UPDATE

TABLE1

...

WHERE

CURRENT

OF

:iter

};

...

}

public

static

void

doUpdate

(

Table2Iter

iter

)

{

...

#sql

[ctxt]

{

UPDATE

TABLE2

...

WHERE

CURRENT

OF

:iter

};

...

}

Figure

58.

Static

positioned

UPDATE

that

succeeds

regardless

of

iterator

order

Chapter

16.

SQLJ

application

programming

361

If

a

scrollable

iterator

is

static,

the

size

of

the

result

table

and

the

order

of

the

rows

in

the

result

table

do

not

change

after

the

iterator

is

opened.

This

means

that

you

cannot

insert

into

result

tables,

and

if

you

delete

a

row

of

a

result

table,

a

delete

hole

occurs.

If

you

update

a

row

of

the

result

table

so

that

the

row

no

longer

qualifies

for

the

result

table,

an

update

hole

occurs.

Fetching

from

a

hole

results

in

an

SQLException.

If

a

scrollable

iterator

is

dynamic,

the

size

of

the

result

table

and

the

order

of

the

rows

in

the

result

table

can

change

after

the

iterator

is

opened.

Rows

that

are

inserted

or

deleted

with

INSERT

and

DELETE

statements

that

are

executed

by

the

same

application

process

are

immediately

visible.

Rows

that

are

inserted

or

deleted

with

INSERT

and

DELETE

statements

that

are

executed

by

other

application

processes

are

visible

after

the

changes

are

committed.

To

create

and

use

a

scrollable

iterator,

you

need

to

follow

these

steps:

1.

Specify

an

iterator

declaration

clause

that

includes

the

following

clauses:

v

implements

sqlj.runtime.Scrollable

This

indicates

that

the

iterator

is

scrollable.

v

with

(sensitivity=INSENSITIVE|SENSITIVE)

or

with

(sensitivity=SENSITIVE,

dynamic=true|false)

sensitivity=INSENSITIVE|SENSITIVE

indicates

whether

update

or

delete

operations

on

the

underlying

table

can

be

visible

to

the

iterator.

The

default

sensitivity

is

INSENSITIVE.

dynamic=true|false

indicates

whether

the

size

of

the

result

table

or

the

order

of

the

rows

in

the

result

table

can

change

after

the

iterator

is

opened.

The

default

value

of

dynamic

is

false.

The

iterator

can

be

a

named

or

positioned

iterator.

For

example,

the

following

iterator

declaration

clause

declares

a

positioned,

sensitive,

dynamic,

scrollable

iterator:

#sql

public

iterator

ByPos

implements

sqlj.runtime.Scrollable

with

(sensitivity=SENSITIVE,

dynamic=true)

(String);

The

following

iterator

declaration

clause

declares

a

named,

insensitive,

scrollable

iterator:

#sql

public

iterator

ByName

implements

sqlj.runtime.Scrollable

with

(sensitivity=INSENSITIVE)

(String

EmpNo);

Restriction:

You

cannot

use

a

scrollable

iterator

to

select

columns

with

the

following

data

types

from

a

table

on

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

server:

v

LONG

VARCHAR

v

LONG

VARGRAPHIC

v

DATALINK

v

BLOB

v

CLOB

v

A

distinct

type

that

is

based

on

any

of

the

previous

data

types

in

this

list

v

A

structured

type
2.

Create

an

iterator

object,

which

is

an

instance

of

your

iterator

class.

3.

If

you

want

to

give

the

SQLJ

runtime

environment

a

hint

about

the

initial

fetch

direction,

use

the

setFetchDirection(int

direction)

method.

direction

can

be

FETCH_FORWARD

or

FETCH_REVERSE.

If

you

do

not

invoke

setFetchDirection,

the

fetch

direction

is

FETCH_FORWARD.

362

Programming

Client

Applications

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

4.

For

each

row

that

you

want

to

access:

v

For

a

named

iterator,

perform

the

following

steps:

a.

Position

the

cursor

using

one

of

the

methods

listed

in

Table

38.

Table

38.

sqlj.runtime.Scrollable

methods

for

positioning

a

scrollable

cursor

Method

Positions

the

cursor

first()

On

the

first

row

of

the

result

table

last()

On

the

last

row

of

the

result

table

previous()1

On

the

previous

row

of

the

result

table

next()

On

the

next

row

of

the

result

table

absolute(int

n)2

If

n>0,

on

row

n

of

the

result

table.

If

n<0,

and

m

is

the

number

of

rows

in

the

result

table,

on

row

m+n+1

of

the

result

table.

relative(int

n)3

If

n>0,

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

on

the

current

row.

afterLast()

After

the

last

row

in

the

result

table

beforeFirst()

Before

the

first

row

in

the

result

table

Notes:

1.

If

the

cursor

is

after

the

last

row

of

the

result

table,

this

method

positions

the

cursor

on

the

last

row.

2.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

table,

this

method

positions

the

cursor

after

the

last

row

if

n

is

positive,

or

before

the

first

row

if

n

is

negative.

3.

Suppose

that

m

is

the

number

of

rows

in

the

result

table

and

x

is

the

current

row

number

in

the

result

table.

If

n>0

and

x+n>m,

the

iterator

is

positioned

after

the

last

row.

If

n<0

and

x+n<1,

the

iterator

is

positioned

before

the

first

row.

b.

If

you

need

to

know

the

current

cursor

position,

use

the

getRow,

isFirst,

isLast,

isBeforeFirst,

or

isAfterLast

method

to

obtain

this

information.

If

you

need

to

know

the

current

fetch

direction,

invoke

the

getFetchDirection

method.

c.

Use

accessor

methods

to

retrieve

the

current

row

of

the

result

table.

d.

If

update

or

delete

operations

by

the

iterator

or

by

other

means

are

visible

in

the

result

table,

invoke

the

getWarnings

method

to

check

whether

the

current

row

is

a

hole.
v

For

a

positioned

iterator,

perform

the

following

steps:

a.

Use

a

FETCH

statement

with

a

fetch

orientation

clause

to

position

the

iterator

and

retrieve

the

current

row

of

the

result

table.

Table

39

lists

the

clauses

that

you

can

use

to

position

the

cursor.

Table

39.

FETCH

clauses

for

positioning

a

scrollable

cursor

Method

Positions

the

cursor

FIRST

On

the

first

row

of

the

result

table

LAST

On

the

last

row

of

the

result

table

PRIOR1

On

the

previous

row

of

the

result

table

NEXT

On

the

next

row

of

the

result

table

ABSOLUTE(n)2

If

n>0,

on

row

n

of

the

result

table.

If

n<0,

and

m

is

the

number

of

rows

in

the

result

table,

on

row

m+n+1

of

the

result

table.

Chapter

16.

SQLJ

application

programming

363

Table

39.

FETCH

clauses

for

positioning

a

scrollable

cursor

(continued)

Method

Positions

the

cursor

RELATIVE(n)3

If

n>0,

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

on

the

current

row.

AFTER4

After

the

last

row

in

the

result

table

BEFORE4

Before

the

first

row

in

the

result

table

Notes:

1.

If

the

cursor

is

after

the

last

row

of

the

result

table,

this

method

positions

the

cursor

on

the

last

row.

2.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

table,

this

method

positions

the

cursor

after

the

last

row

if

n

is

positive,

or

before

the

first

row

if

n

is

negative.

3.

Suppose

that

m

is

the

number

of

rows

in

the

result

table

and

x

is

the

current

row

number

in

the

result

table.

If

n>0

and

x+n>m,

the

iterator

is

positioned

after

the

last

row.

If

n<0

and

x+n<1,

the

iterator

is

positioned

before

the

first

row.

4.

Values

are

not

assigned

to

host

expressions.

b.

If

update

or

delete

operations

by

the

iterator

or

by

other

means

are

visible

in

the

result

table,

invoke

the

getWarnings

method

to

check

whether

the

current

row

is

a

hole.
5.

Invoke

the

close

method

to

close

the

iterator.

For

example,

the

following

code

demonstrates

how

to

use

a

named

iterator

to

retrieve

the

employee

number

and

last

name

from

all

rows

from

the

employee

table

in

reverse

order.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Related

concepts:

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

331

Related

tasks:

v

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

332

v

“Using

a

positioned

iterator

in

an

SQLJ

application”

on

page

334

#sql

iterator

ScrollIter

implements

sqlj.runtime.Scrollable

�1�

(String

EmpNo,

String

LastName);

{

ScrollIter

scrliter;

�2�

#sql

[ctxt]

scrliter={SELECT

EMPNO,

LASTNAME

FROM

EMPLOYEE};

scrliter.afterLast();

while

(scrliter.previous())

�4a�

{

System.out.println(scrliter.EmpNo()

+

"

"

�4c�

+

scrliter.LastName());

}

scrliter.close();

�5�

}

Figure

59.

Using

scrollable

iterators

364

Programming

Client

Applications

Chapter

17.

JDBC

and

SQLJ

reference

The

sections

that

follow

contain

reference

information

about

JDBC

methods

and

SQLJ

clauses.

Java,

JDBC,

and

SQL

data

types

The

following

tables

summarize

the

mappings

of

Java

data

types

to

JDBC

and

SQL

data

types

for

a

DB2

UDB

for

Linux,

UNIX

and

Windows

system.

Table

40

summarizes

the

mappings

of

Java

data

types

to

DB2

data

types

for

PreparedStatement.setXXX

or

ResultSet.updateXXX

methods

in

JDBC

programs,

and

for

input

host

expressions

in

SQLJ

programs.

When

more

than

one

Java

data

type

is

listed,

the

first

data

type

is

the

recommended

data

type.

Table

40.

Mappings

of

Java

data

types

to

DB2

data

types

for

updating

DB2

tables

Java

data

type

SQL

data

type

short,

boolean1,

byte1

SMALLINT

int,

java.lang.Integer

INTEGER

long,

java.lang.Long

DECIMAL(19,0)2

long,

java.lang.Long

BIGINT3

float,

java.lang.Float

REAL

double,

java.lang.Double

DOUBLE

java.math.BigDecimal

DECIMAL(p,s)4

java.lang.String

CHAR(n)5

java.lang.String

GRAPHIC(m)6

java.lang.String

VARCHAR(n)7

java.lang.String

VARGRAPHIC(m)8

java.lang.String

CLOB(n)9

byte[]

CHAR(n)

FOR

BIT

DATA5

byte[]

VARCHAR(n)

FOR

BIT

DATA7

byte[]

BLOB(n)9,10

byte[]

ROWID

java.sql.Blob

BLOB(n)10

java.sql.Clob

CLOB(n)10

java.sql.Clob

DBCLOB(m)11

java.sql.Date

DATE

java.sql.Time

TIME

java.sql.Timestamp

TIMESTAMP

java.io.ByteArrayInputStream

BLOB(n)10

java.io.StringReader

CLOB(n)10

java.io.ByteArrayInputStream

CLOB(n)10

com.ibm.db2.jcc.DB2RowID

ROWID

©

Copyright

IBM

Corp.

1997

-

2004

365

|

|
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table

40.

Mappings

of

Java

data

types

to

DB2

data

types

for

updating

DB2

tables

(continued)

Java

data

type

SQL

data

type

java.net.URL

DATALINK12

Notes:

1.

DB2

has

no

exact

equivalent

for

the

Java

boolean

or

byte

data

types,

but

the

best

fit

is

SMALLINT.

2.

DB2

UDB

in

the

OS/390

or

z/OS

environment

has

no

exact

equivalent

for

the

Java

long

or

java.lang.Long

data

types,

but

the

best

fit

is

DECIMAL(19,0).

3.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows.

4.

p

is

the

decimal

precision

and

s

is

the

scale

of

the

DB2

column.

You

should

design

financial

applications

so

that

java.math.BigDecimal

columns

map

to

DECIMAL

columns.

If

you

know

the

precision

and

scale

of

a

DECIMAL

column,

updating

data

in

the

DECIMAL

column

with

data

in

a

java.math.BigDecimal

variable

results

in

better

precision

and

performance

than

using

other

combinations

of

data

types.

5.

n<=254.

6.

m<=127.

7.

n<=32672.

8.

m<=16336.

9.

This

mapping

is

valid

only

if

DB2

can

determine

the

data

type

of

the

column.

10.

n<=2147483647.

11.

m<=1073741823.

12.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Table

41

summarizes

the

mappings

of

DB2

data

types

to

Java

data

types

for

ResultSet.getXXX

methods

in

JDBC

programs,

and

for

iterators

in

SQLJ

programs.

This

table

does

not

list

Java

numeric

wrapper

object

types,

which

are

retrieved

using

ResultSet.getObject.

Table

41.

Mappings

of

DB2

data

types

to

Java

data

types

for

retrieving

data

from

DB2

tables

SQL

data

type

Recommended

Java

data

type

or

Java

object

type

Other

supported

Java

data

types

SMALLINT

short

byte,

int,

long,

float,

double,

java.math.BigDecimal,

boolean,

java.lang.String

INTEGER

int

short,

byte,

long,

float,

double,

java.math.BigDecimal,

boolean,

java.lang.String

BIGINT1

long

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.lang.String

REAL

float

long,

int,

short,

byte,

double,

java.math.BigDecimal,

boolean,

java.lang.String

DOUBLE

double

long,

int,

short,

byte,

float,

java.math.BigDecimal,

boolean,

java.lang.String

CHAR(n)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

366

Programming

Client

Applications

|

||

||

|

|

|
|

|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|

||

|
|
||

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|
|
|

Table

41.

Mappings

of

DB2

data

types

to

Java

data

types

for

retrieving

data

from

DB2

tables

(continued)

SQL

data

type

Recommended

Java

data

type

or

Java

object

type

Other

supported

Java

data

types

VARCHAR(n)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

CHAR(n)

FOR

BIT

DATA

byte[]

java.lang.String,

java.io.InputStream,

java.io.Reader

VARCHAR(n)

FOR

BIT

DATA

byte[]

java.lang.String,

java.io.InputStream,

java.io.Reader

GRAPHIC(m)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

VARGRAPHIC(m)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

CLOB(n)

java.sql.Clob

java.lang.String

BLOB(n)

java.sql.Blob

byte[]3

DBCLOB(m)

No

exact

equivalent.

Use

java.sql.Clob.

ROWID

com.ibm.db2.jcc.DB2RowID

byte[]

DATE

java.sql.Date

java.sql.String,

java.sql.Timestamp

TIME

java.sql.Time

java.sql.String,

java.sql.Timestamp

TIMESTAMP

java.sql.Timestamp

java.sql.String,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp

DATALINK

java.net.URL4

Notes:

1.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows.

2.

You

should

design

financial

applications

so

that

DECIMAL

columns

map

to

java.math.BigDecimal

columns.

If

you

know

the

precision

and

scale

of

a

DECIMAL

column,

retrieving

data

from

that

column

into

a

java.math.BigDecimal

variable

results

in

better

precision

and

performance

than

using

other

combinations

of

data

types.

3.

This

mapping

is

valid

only

if

DB2

can

determine

the

data

type

of

the

column.

4.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Table

42

on

page

368

summarizes

mappings

of

Java

data

types

to

JDBC

data

types

and

DB2

data

types

for

user-defined

function

and

stored

procedure

parameters.

The

mappings

of

Java

data

types

to

JDBC

data

types

are

for

CallableStatement.registerOutParameter

methods

in

JDBC

programs.

The

mappings

of

Java

data

types

to

DB2

data

types

are

for

parameters

in

stored

procedure

or

user-defined

function

invocations.

If

more

than

one

Java

data

type

is

listed

in

Table

42

on

page

368,

the

first

data

type

is

the

recommended

data

type.

Chapter

17.

JDBC

and

SQLJ

reference

367

|

|
|
||

|||
|
|
|
|

|||
|

|||
|

|||
|
|
|
|

|||
|
|
|
|

|||

|||

||
|
|

|||

|||

|||

|||
|

|||

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

Table

42.

Mappings

of

Java,

JDBC,

and

SQL

data

types

for

calling

stored

procedures

and

user-defined

functions

Java

data

type

JDBC

data

type

SQL

data

type

boolean1

BIT

SMALLINT

byte1

TINYINT

SMALLINT

short,

java.lang.Integer

SMALLINT

SMALLINT

int,

java.lang.Integer

INTEGER

INTEGER

long

BIGINT

BIGINT2

float,

java.lang.Float

REAL

REAL

float,

java.lang.Float

FLOAT

REAL

double,

java.lang.Double

DOUBLE

DOUBLE

java.math.BigDecimal

NUMERIC

DECIMAL

java.math.BigDecimal

DECIMAL

DECIMAL

java.lang.String

CHAR

CHAR

java.lang.String

CHAR

GRAPHIC

java.lang.String

VARCHAR

VARCHAR

java.lang.String

VARCHAR

VARGRAPHIC

java.lang.String

LONGVARCHAR

VARCHAR

java.lang.String

VARCHAR

CLOB(n)

java.lang.String

LONGVARCHAR

CLOB(n)

java.lang.String

CLOB

CLOB(n)

byte[]

BINARY

CHAR

FOR

BIT

DATA

byte[]

VARBINARY

VARCHAR

FOR

BIT

DATA

byte[]

LONGVARBINARY

VARCHAR

FOR

BIT

DATA

byte[]

VARBINARY

BLOB(n)3

byte[]

LONGVARBINARY

BLOB(n)3

java.sql.Date

DATE

DATE

java.sql.Time

TIME

TIME

java.sql.Timestamp

TIMESTAMP

TIMESTAMP

java.sql.Blob

BLOB

BLOB

java.sql.Clob

CLOB

CLOB

java.sql.Clob

CLOB

DBCLOB

java.io.ByteArrayInputStream

None

BLOB(n)

java.io.StringReader

None

CLOB(n)

java.io.ByteArrayInputStream

None

CLOB(n)

com.ibm.db2.jcc.DB2RowID

com.ibm.db2.jcc.DB2Types.ROWID

ROWID

java.net.URL

DATALINK

DATALINK4

368

Programming

Client

Applications

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

42.

Mappings

of

Java,

JDBC,

and

SQL

data

types

for

calling

stored

procedures

and

user-defined

functions

(continued)

Java

data

type

JDBC

data

type

SQL

data

type

Notes:

1.

A

stored

procedure

or

user-defined

function

that

is

defined

with

a

SMALLINT

parameter

can

be

invoked

with

a

boolean

or

byte

parameter.

However,

this

is

not

recommended.

2.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows

servers.

For

Java

applications

that

connect

from

a

DB2

UDB

Version

8.1

client

to

a

DB2

UDB

Version

7

server,

when

the

CallableStatement.getObject

method

is

used

to

retrieve

a

BIGINT

value,

a

java.math.BigDecimal

object

is

returned.

3.

This

mapping

is

valid

only

if

DB2

can

determine

the

data

type

of

the

column.

4.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Table

43

summarizes

mappings

of

the

SQL

parameter

data

types

in

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

the

data

types

in

the

corresponding

Java

stored

procedure

or

user-defined

function

method.

For

DB2

UDB

for

Linux,

UNIX

and

Windows,

if

more

than

one

Java

data

type

is

listed

for

an

SQL

data

type,

only

the

first

Java

data

type

is

valid.

For

DB2

UDB

in

the

OS/390

or

z/OS

environment,

if

more

than

one

Java

data

type

is

listed,

and

you

use

a

data

type

other

than

the

first

data

type

as

a

method

parameter,

you

need

to

include

a

method

signature

in

the

EXTERNAL

clause

of

your

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

that

specifies

the

Java

data

types

of

the

method

parameters.

Table

43.

Mappings

of

SQL

data

types

in

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

data

types

in

the

corresponding

Java

stored

procedure

or

user-defined

function

program

SQL

data

type

in

CREATE

PROCEDURE

or

CREATE

FUNCTION

Data

type

in

Java

stored

procedure

or

user-defined

function

method

SMALLINT

short,

java.lang.Integer

INTEGER

int,

java.lang.Integer

BIGINT1

long

REAL

float,

java.lang.Float

DOUBLE

double,

java.lang.Double

DECIMAL

java.math.BigDecimal

CHAR

java.lang.String

GRAPHIC

java.lang.String

VARCHAR

java.lang.String

VARGRAPHIC

java.lang.String

CHAR

FOR

BIT

DATA

byte[]

VARCHAR

FOR

BIT

DATA

byte[]

DATE

java.sql.Date

TIME

java.sql.Time

TIMESTAMP

java.sql.Timestamp

BLOB

java.sql.Blob

CLOB

java.sql.Clob

DBCLOB

java.sql.Clob

Chapter

17.

JDBC

and

SQLJ

reference

369

|
|

|||

|

|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

||
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table

43.

Mappings

of

SQL

data

types

in

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

data

types

in

the

corresponding

Java

stored

procedure

or

user-defined

function

program

(continued)

SQL

data

type

in

CREATE

PROCEDURE

or

CREATE

FUNCTION

Data

type

in

Java

stored

procedure

or

user-defined

function

method

ROWID

com.ibm.db2.jcc.DB2Types.ROWID

DATALINK

java.net.URL2

Notes:

1.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows

servers.

2.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

Properties

for

the

DB2

Universal

JDBC

Driver

Properties

define

how

the

connection

to

a

particular

data

source

should

be

made.

Unless

otherwise

noted,

properties

can

be

set

for

a

DataSource

object

or

for

a

Connection

object.

Properties

can

be

set

in

one

of

the

following

ways:

v

Using

setXXX

methods

Properties

are

applicable

to

the

following

DB2-specific

implementations

that

inherit

from

com.ibm.db2.jcc.DB2BaseDataSource:

–

com.ibm.db2.jcc.DB2SimpleDataSource

–

com.ibm.db2.jcc.DB2DataSource

–

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

–

com.ibm.db2.jcc.DB2XADataSource

See

Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC

for

a

summary

of

the

property

names

and

data

types.

v

In

a

java.util.Properties

value

in

the

info

parameter

of

a

DriverManager.getConnection

call,

as

shown

in

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver.

v

In

a

java.lang.String

value

in

the

url

parameter

of

a

DriverManager.getConnection

call,

as

shown

in

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver.

The

properties

are:

activeServerListJNDIName

Identifies

a

JNDI

reference

to

a

DB2ActiveServerList

instance

in

a

JNDI

repository

of

alternate

server

information.

If

the

value

of

activeServerListJNDIName

is

not

null,

connections

can

failover

to

an

alternate

server

that

is

specified

in

the

DB2ActiveServerList

instance

that

is

referenced

by

the

value.

If

activeServerListJNDIName

is

null,

connections

do

not

failover

using

alternate

server

information

from

a

JNDI

repository.

clientAccountingInformation

Specifies

accounting

information

for

the

current

client

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

value,

but

a

Java

null

value

is

not

valid.

370

Programming

Client

Applications

|
|

|
|
|
|

||

||

|

|

|
|

|

|
|

|
|
|
|
|
|
|

clientApplicationInformation

Specifies

application

information

for

the

current

client

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

value,

but

a

Java

null

value

is

not

valid.

clientUser

Specifies

the

current

client

user

name

for

the

connection.

This

information

is

for

client

accounting

purposes.

Unlike

the

JDBC

connection

user

name,

this

value

can

change

during

a

connection.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

clientWorkstation

Specifies

the

workstation

name

for

the

current

client

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

value,

but

a

Java

null

value

is

not

valid.

cliSchema

Specifies

the

schema

of

the

DB2

shadow

catalog

tables

or

views

that

are

searched

when

an

application

invokes

a

DatabaseMetaData

method.

currentFunctionPath

Specifies

the

SQL

path

that

is

used

to

resolve

unqualified

data

type

names

and

function

names

in

SQL

statements

that

are

in

JDBC

programs.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

254

bytes.

The

value

is

a

comma-separated

list

of

schema

names.

Those

names

can

be

ordinary

or

delimited

identifiers.

currentLockTimeout

Directs

DB2

UDB

for

Linux,

UNIX

and

Windows

servers

to

wait

indefinitely

for

a

lock

or

to

wait

for

the

specified

number

of

seconds

for

a

lock

when

the

lock

cannot

be

obtained

immediately.

The

data

type

of

this

property

is

int.

A

value

of

zero

means

no

wait.

A

value

of

-1

means

to

wait

indefinitely.

A

positive

integer

indicates

the

number

of

seconds

to

wait

for

a

lock.

currentPackagePath

Specifies

a

comma-separated

list

of

collections

on

the

server.

The

DB2

server

searches

these

collections

for

the

DB2

packages

for

the

DB2

Universal

JDBC

Driver.

The

precedence

rules

for

the

currentPackagePath

and

currentPackageSet

properties

follow

the

precedence

rules

for

the

DB2

CURRENT

PACKAGESET

and

CURRENT

PACKAGE

PATH

special

registers.

currentPackageSet

Specifies

the

collection

ID

to

search

for

DB2

packages

for

the

DB2

Universal

JDBC

Driver.

The

data

type

of

this

property

is

String.

The

default

is

NULLID.

If

currentPackageSet

is

set,

its

value

overrides

the

value

of

jdbcCollection.

Multiple

instances

of

the

DB2

Universal

JDBC

Driver

can

be

installed

at

a

database

server

by

running

the

DB2binder

utility

multiple

times.

The

DB2binder

utility

includes

a

-collection

option

that

lets

the

installer

specify

the

collection

ID

for

each

DB2

Universal

JDBC

Driver

instance.

To

choose

an

instance

of

the

DB2

Universal

JDBC

Driver

for

a

connection,

you

specify

a

currentPackageSet

value

that

matches

the

collection

ID

for

one

of

the

DB2

Universal

JDBC

Driver

instances.

Chapter

17.

JDBC

and

SQLJ

reference

371

|
|
|
|
|
|

|
|
|
|
|
|

The

precedence

rules

for

the

currentPackagePath

and

currentPackageSet

properties

follow

the

precedence

rules

for

the

DB2

CURRENT

PACKAGESET

and

CURRENT

PACKAGE

PATH

special

registers.

currentSchema

Specifies

the

default

schema

name

that

is

used

to

qualify

unqualified

database

objects

in

dynamically

prepared

SQL

statements.

This

value

of

this

property

sets

the

value

in

the

CURRENT

SCHEMA

special

register

on

a

server

other

than

a

DB2

UDB

for

z/OS

server.

Do

not

set

this

property

for

a

DB2

UDB

for

z/OS

server.

currentSQLID

Specifies:

v

The

authorization

ID

that

is

used

for

authorization

checking

on

dynamically

prepared

CREATE,

GRANT,

and

REVOKE

SQL

statements.

v

The

owner

of

a

table

space,

database,

storage

group,

or

synonym

that

is

created

by

a

dynamically

issued

CREATE

statement.

v

The

implicit

qualifier

of

all

table,

view,

alias,

and

index

names

specified

in

dynamic

SQL

statements.

currentSQLID

sets

the

value

in

the

CURRENT

SQLID

special

register

on

a

DB2

UDB

for

z/OS

server.

If

the

currentSQLID

property

is

not

set,

the

default

schema

name

is

the

value

in

the

CURRENT

SQLID

special

register.

cursorSensitivity

Specifies

whether

the

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE

value

for

a

JDBC

ResultSet

maps

to

the

SENSITIVE

DYNAMIC

attribute

or

the

SENSITIVE

STATIC

attribute

for

the

underlying

DB2

cursor.

Possible

values

are

TYPE_SCROLL_SENSITIVE_STATIC

and

TYPE_SCROLL_SENSITIVE_DYNAMIC.

The

default

is

TYPE_SCROLL_SENSITIVE_STATIC.

This

property

is

ignored

for

database

servers

that

do

not

support

sensitive

dynamic

scrollable

cursors.

databaseName

Specifies

the

name

for

the

database

server.

This

name

is

used

as

the

database

portion

of

the

connection

URL.

The

name

depends

on

whether

Universal

Type

4

Connectivity

or

Universal

Type

2

Connectivity

is

used.

For

Universal

Type

4

Connectivity:

v

If

the

connection

is

to

a

DB2

for

z/OS

server,

the

databaseName

value

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

v

If

the

connection

is

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

databaseName

value

is

the

database

name

that

is

defined

during

installation.

v

If

the

connection

is

to

an

IBM

Cloudscape

server,

the

databaseName

value

is

the

fully-qualified

name

of

the

file

that

contains

the

database.

This

name

must

be

enclosed

in

double

quotation

marks

(").

For

example:

"c:/databases/testdb"

If

this

property

is

not

set,

connections

are

made

to

the

local

site.

For

Universal

Type

2

Connectivity:

372

Programming

Client

Applications

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|

|
|

|
|
|

|

|

|

v

The

databaseName

value

is

the

database

name

that

is

defined

during

installation,

if

the

value

of

the

serverName

connection

property

is

null.

If

the

value

of

serverName

property

is

not

null,

the

databaseName

value

is

a

database

alias.

deferPrepares

Specifies

whether

to

defer

prepare

operations

until

run

time.

The

data

type

of

this

property

is

boolean.

The

default

is

true

for

Universal

Type

4

Connectivity.

The

property

is

not

applicable

to

Universal

Type

2

Connectivity.

Deferring

prepare

operations

can

reduce

network

delays.

However,

if

you

defer

prepare

operations,

you

need

to

ensure

that

input

data

types

match

DB2

table

column

types.

description

A

description

of

the

data

source.

The

data

type

of

this

property

is

String.

driverType

For

the

DataSource

interface,

determines

which

driver

to

use

for

connections.

The

data

type

of

this

property

is

int.

Valid

values

are

2

or

4.

2

is

the

default.

fullyMaterializeLobData

Indicates

whether

the

driver

retrieves

LOB

locators

for

FETCH

operations.

The

data

type

of

this

property

is

boolean.

If

the

value

is

true,

LOB

data

is

fully

materialized

within

the

JDBC

driver

when

a

row

is

fetched.

If

this

value

is

false,

LOB

data

is

streamed.

The

driver

uses

locators

internally

to

retrieve

LOB

data

in

chunks

on

an

as-needed

basis

It

is

highly

recommended

that

you

set

this

value

to

false

when

you

retrieve

LOBs

that

contain

large

amounts

of

data.

The

default

is

true.

This

property

has

no

effect

on

stored

procedure

parameters

or

LOBs

that

are

fetched

using

scrollable

cursors.

LOB

stored

procedure

parameters

are

always

fully

materialized.

LOB

locators

are

always

used

for

data

that

is

fetched

using

scrollable

cursors.

gssCredential

For

a

data

source

that

uses

Kerberos

security,

specifies

a

delegated

credential

that

is

passed

from

another

principal.

The

data

type

of

this

property

is

org.ietf.jgss.GSSCredential.

Delegated

credentials

are

used

in

multi-tier

environments,

such

as

when

a

client

connects

to

WebSphere

Application

Server,

which,

in

turn,

connects

to

DB2.

You

obtain

a

value

for

this

property

from

the

client,

by

invoking

the

GSSContext.getDelegCred

method.

GSSContext

is

part

of

the

IBM

Java

Generic

Security

Service

(GSS)

API.

If

you

set

this

property,

you

also

need

to

set

the

Mechanism

and

KerberosServerPrincipal

properties.

This

property

is

applicable

only

to

Universal

Type

4

Connectivity.

For

more

information

on

using

Kerberos

security

with

the

DB2

Universal

JDBC

Driver,

see

Using

Kerberos

security

under

the

DB2

Universal

JDBC

Driver.

jdbcCollection

Specifies

the

collection

ID

for

the

packages

that

are

used

by

an

instance

of

the

DB2

Universal

JDBC

Driver

at

run

time.

The

data

type

of

jdbcCollection

is

String.

The

default

is

NULLID.

This

property

is

used

with

the

DB2Binder

-collection

option.

The

DB2Binder

utility

must

have

previously

bound

DB2

Universal

JDBC

Driver

packages

at

the

server

using

a

-collection

value

that

matches

the

jdbcCollection

value.

The

jdbcCollection

setting

does

not

determine

the

collection

that

is

used

for

SQLJ

applications,

For

SQLJ,

the

collection

is

determined

by

the

-collection

option

of

the

SQLJ

customizer.

Chapter

17.

JDBC

and

SQLJ

reference

373

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

jdbcCollection

does

not

apply

to

Universal

Type

2

Connectivity

on

DB2

UDB

for

z/OS.

kerberosServerPrincipal

For

a

data

source

that

uses

Kerberos

security,

specifies

the

name

that

is

used

for

the

data

source

when

it

is

registered

with

the

Kerberos

Key

Distribution

Center

(KDC).

The

data

type

of

this

property

is

String.

This

property

is

applicable

only

to

Universal

Type

4

Connectivity.

loginTimeout

The

maximum

time

in

seconds

to

wait

for

a

connection

to

a

data

source,

or

for

SQL

requests

to

that

data

source.

After

the

number

of

seconds

that

are

specified

by

loginTimeout

have

elapsed,

the

driver

closes

the

connection

to

the

data

source.

The

data

type

of

this

property

is

int.

The

default

is

0.

A

value

of

0

means

that

the

timeout

value

is

the

default

system

timeout

value.

This

property

is

not

supported

for

Universal

Type

2

Connectivity

on

DB2

UDB

in

the

z/OS

or

OS/390

environment.

logWriter

The

character

output

stream

to

which

all

logging

and

trace

messages

for

the

DataSource

object

are

printed.

The

data

type

of

this

property

is

java.io.PrinterWriter.

The

default

value

is

null,

which

means

that

no

logging

or

tracing

for

the

DataSource

is

output.

password

The

password

to

use

for

establishing

connections.

The

data

type

of

this

property

is

String.

When

you

use

the

DataSource

interface

to

establish

a

connection,

you

can

override

this

property

value

by

invoking

this

form

of

the

DataSource.getConnection

method:

getConnection(user,

password);

portNumber

The

port

number

where

the

DRDA®

server

is

listening

for

requests.

The

data

type

of

this

property

is

int.

readOnly

Specifies

whether

the

connection

is

read-only.

The

data

type

of

this

property

is

boolean.

The

default

is

false.

resultSetHoldability

Specifies

whether

cursors

remain

open

after

a

commit

operation.

The

data

type

of

this

property

is

int.

Valid

values

are

com.ibm.db2.jcc.DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT

or

com.ibm.db2.jcc.DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT.

These

values

are

the

same

as

the

ResultSet.HOLD_CURSORS_OVER_COMMIT

and

ResultSet.CLOSE_CURSORS_AT_COMMIT

constants

that

are

defined

in

JDBC

3.0.

retrieveMessagesFromServerOnGetMessage

Specifies

whether

JDBC

SQLException.getMessage

calls

cause

the

DB2

Universal

JDBC

Driver

to

invoke

a

DB2

UDB

for

OS/390

or

z/OS

stored

procedure

that

retrieves

the

message

text

for

the

error.

The

data

type

of

this

property

is

boolean.

The

default

is

false,

which

means

that

the

full

message

text

is

not

returned

to

the

client.

An

alternative

to

setting

this

property

to

true

is

to

use

the

DB2-only

DB2Sqlca.getMessage

method

in

applications.

Both

techniques

result

in

a

stored

procedure

call,

which

starts

a

unit

of

work.

securityMechanism

Specifies

the

DRDA

security

mechanism.

The

data

type

of

this

property

in

int.

Possible

values

are:

374

Programming

Client

Applications

|
|

|

CLEAR_TEXT_PASSWORD_SECURITY

User

ID

and

password

USER_ONLY_SECURITY

User

ID

only

ENCRYPTED_PASSWORD_SECURITY

User

ID,

encrypted

password

ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted

user

ID

and

password

KERBEROS_SECURITY

Kerberos

If

this

property

is

specified,

the

specified

security

mechanism

is

the

only

mechanism

that

is

used.

If

the

security

mechanism

is

not

supported

by

the

connection,

an

exception

is

thrown.

If

no

value

is

specified

for

this

property,

the

requester

attempts

to

connect

using

the

most

secure

mechanism

that

is

possible.

If

a

connection

cannot

be

established

because

the

server

does

not

support

that

security

mechanism,

the

server

returns

a

list

of

alternate

choices

to

the

requester.

The

requester

tries

each

of

those

security

mechanisms

until

a

connection

can

be

established

with

one

of

them.

If

there

are

no

alternative

choices,

or

if

all

alternative

choices

fail,

an

exception

is

thrown.

serverName

The

host

name

or

the

TCP/IP

address

of

the

data

source.

The

data

type

of

this

property

is

String.

traceFile

Specifies

the

name

of

a

file

into

which

the

DB2

Universal

JDBC

Driver

writes

trace

information.

The

data

type

of

this

property

is

String.

The

traceFile

property

is

an

alternative

to

the

logWriter

property

for

directing

the

output

trace

stream

to

a

file.

traceFileAppend

Specifies

whether

to

append

to

or

overwrite

the

file

that

is

specified

by

the

traceFile

property.

The

data

type

of

this

property

is

boolean.

The

default

is

false,

which

means

that

the

file

that

is

specified

by

the

traceFile

property

is

overwritten.

traceLevel

Specifies

what

to

trace.

The

data

type

of

this

property

is

int.

You

can

specify

one

or

more

of

the

following

traces

with

the

traceLevel

property:

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS

(Universal

Type

2

Connectivity

for

DB2

UDB

for

Linux,

UNIX

and

Windows

only)

Chapter

17.

JDBC

and

SQLJ

reference

375

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL

To

specify

more

than

one

trace,

use

one

of

these

techniques:

v

Use

bitwise

OR

(|)

operators

with

two

or

more

trace

values.

For

example,

to

trace

DRDA

flows

and

connection

calls,

specify

this

value

for

traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v

Use

a

bitwise

complement

(

~)

operator

with

a

trace

value

to

specify

all

except

a

certain

trace.

For

example,

to

trace

everything

except

DRDA

flows,

specify

this

value

for

traceLevel:

~TRACE_DRDA_FLOWS

user

The

user

ID

to

use

for

establishing

connections.

The

data

type

of

this

property

is

String.

When

you

use

the

DataSource

interface

to

establish

a

connection,

you

can

override

this

property

value

by

invoking

this

form

of

the

DataSource.getConnection

method:

getConnection(user,

password);

Related

concepts:

v

“Security

under

the

DB2

Universal

JDBC

Driver”

on

page

444

v

“LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

289

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

v

“Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC”

on

page

414

Comparison

of

driver

support

for

JDBC

APIs

The

following

tables

list

the

JDBC

interfaces

and

indicate

which

drivers

supports

them.

The

drivers

and

their

supported

platforms

are:

Table

44.

JDBC

drivers

for

DB2

UDB

JDBC

driver

name

Associated

DB2

UDB

DB2

Universal

JDBC

Driver

DB2

UDB

for

Linux,

UNIX

and

Windows

or

DB2

UDB

for

z/OS

JDBC/SQLJ

2.0

Driver

for

OS/390

DB2

UDB

for

z/OS

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

(deprecated)

DB2

UDB

for

Linux,

UNIX

and

Windows

Table

45.

DB2

JDBC

support

for

Array

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getArray

No

No

No

getBaseType

No

No

No

376

Programming

Client

Applications

|

|
|

||

||

||
|

||

|
|
|

|

||

|
|
|
|
|

|
|
|

||||

||||

Table

45.

DB2

JDBC

support

for

Array

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getBaseTypeName

No

No

No

getResultSet

No

No

No

Table

46.

DB2

JDBC

support

for

BatchUpdateException

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.lang.Exception

Yes

Yes

Yes

getUpdateCounts

Yes

Yes

Yes

Table

47.

DB2

JDBC

support

for

Blob

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getBinaryStream

Yes

Yes

Yes

getBytes

Yes

Yes

Yes

length

Yes

Yes

Yes

position

Yes

Yes

Yes

setBinaryStream1

Yes

No

No

setBytes1

Yes

No

No

truncate1

Yes

No

No

Notes:

1.

This

is

a

JDBC

3.0

method.

Table

48.

DB2

JDBC

support

for

CallableStatement

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.sql.Statement

Yes

Yes

Yes

Methods

inherited

from

java.sql.PreparedStatement

Yes

Yes

Yes

getArray

No

No

No

getBigDecimal

Yes

Yes

Yes

getBlob

Yes

Yes

Yes

getBoolean

Yes

Yes

Yes

getByte

Yes

Yes

Yes

getBytes

Yes

Yes

Yes

getClob

Yes

Yes

Yes

getDate

Yes

Yes

Yes

getDouble

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

377

|

|
|
|
|
|

|
|
|

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

|

|
|

||

|
|
|
|
|

|
|
|

|
|
|||

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

48.

DB2

JDBC

support

for

CallableStatement

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getFloat

Yes

Yes

Yes

getInt

Yes

Yes

Yes

getLong

Yes

Yes

Yes

getObject

Yes1

Yes1

Yes1

getRef

No

No

No

getShort

Yes

Yes

Yes

getString

Yes

Yes

Yes

getTime

Yes

Yes

Yes

getTimestamp

Yes

Yes

Yes

registerOutParameter2

Yes

Yes

Yes

wasNull

Yes

Yes

Yes

Notes:

1.

The

following

form

of

the

getObject

method

is

not

supported:

getObject(int

parameterIndex,

java.util.Map

map)

2.

The

following

form

of

the

registerOutParameter

method

is

not

supported:

registerOutParameter(int

parameterIndex,

int

jdbcType,

String

typeName)

Table

49.

DB2

JDBC

support

for

Clob

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getAsciiStream

Yes

Yes

Yes

getCharacterStream

Yes

Yes

Yes

getSubString

Yes

Yes

Yes

length

Yes

Yes

Yes

position

Yes

Yes

Yes

setAsciiStream1

Yes

No

No

setCharacterStream1

Yes

No

No

setString1

Yes

No

No

truncate1

Yes

No

No

Notes:

1.

This

is

a

JDBC

3.0

method.

Table

50.

DB2

JDBC

support

for

Connection

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

clearWarnings

Yes

Yes

Yes

close

Yes

Yes

Yes

378

Programming

Client

Applications

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|

|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

Table

50.

DB2

JDBC

support

for

Connection

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

commit

Yes

Yes

Yes

createStatement

Yes1

Yes

2

Yes

getAutoCommit

Yes

Yes

Yes

getCatalog

Yes

Yes

Yes

getMetaData

Yes

Yes

Yes

getTransactionIsolation

Yes

Yes

Yes

getTypeMap

No

No

No

getWarnings

Yes

Yes

Yes

isClosed

Yes

Yes

Yes

isReadOnly

Yes

Yes

Yes

nativeSQL

Yes

Yes

Yes

prepareCall

Yes

Yes3

Yes

prepareStatement

Yes4

Yes

Yes

releaseSavepoint

Yes5

No

No

rollback

Yes

Yes6

Yes6

setAutoCommit

Yes

Yes

Yes

setCatalog

Yes

Yes

Yes

setReadOnly

Yes7

Yes7

Yes

setSavepoint

Yes5

No

No

setTransactionIsolation

Yes

Yes

Yes

setTypeMap

No

No

No

Notes:

1.

In

addition

to

the

JDBC

2.0

forms

of

createStatement

statement,

the

following

JDBC

3.0

form

of

createStatement

is

supported:

createStatement(int

resultSetType,

int

resultSetConcurrency,

int

resultSetHoldability)

2.

For

the

following

form

of

createStatement,

a

resultSetType

value

of

TYPE_FORWARD_ONLY

and

a

resultSetConcurrency

value

of

CONCUR_READ_ONLY

are

supported:

createStatement(int

resultSetType,

int

resultSetConcurrency)

3.

The

following

form

of

prepareCall

is

not

supported:

prepareCall(String

sql,

int

resultSetType,

int

resultSetConcurrency)

4.

In

addition

to

the

other

forms

of

prepareStatement,

the

DB2

Universal

JDBC

Driver

supports

the

following

JDBC

3.0

form:

prepareStatement(String

sql,

int

autoGeneratedKeys)

5.

This

is

a

JDBC

3.0

method.

6.

The

JDBC

3.0

rollback(Savepoint

savepoint)

method

is

not

supported.

7.

The

driver

does

not

use

the

setting.

For

the

DB2

Universal

JDBC

Driver,

a

connection

can

be

set

as

read-only

through

the

readOnly

property

for

a

Connection

or

DataSource

object.

Chapter

17.

JDBC

and

SQLJ

reference

379

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|
|

|
|
|

|
|

|

|

|

|
|

|

|

|

|
|
|

Table

51.

DB2

JDBC

support

for

ConnectionEvent

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.util.EventObject

Yes

Yes

Yes

getSQLException

Yes

Yes

Yes

Table

52.

DB2

JDBC

support

for

ConnectionEventListener

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

connectionClosed

Yes

Yes

Yes

connectionErrorOccurred

Yes

Yes

Yes

Table

53.

DB2

JDBC

support

for

ConnectionPoolDataSource

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getLoginTimeout

Yes

Yes

Yes

getLogWriter

Yes

Yes

Yes

getPooledConnection

Yes

Yes

Yes

setLoginTimeout

Yes1

Yes

Yes

setLogWriter

Yes

Yes

Yes

Note:

1.

This

method

is

not

supported

for

Universal

Type

2

Connectivity

on

DB2

UDB

in

the

OS/390

or

z/OS

environment.

Table

54.

DB2

JDBC

support

for

DatabaseMetaData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

allProceduresAreCallable

Yes

Yes

Yes

allTablesAreSelectable

Yes

Yes

Yes

dataDefinitionCausesTransactionCommit

Yes

Yes

Yes

dataDefinitionIgnoredInTransactions

Yes

Yes

Yes

deletesAreDetected

Yes

Yes

Yes

doesMaxRowSizeIncludeBlobs

Yes

Yes

Yes

getAttributes

Yes

No

No

getBestRowIdentifier

Yes

Yes

Yes

getCatalogs

Yes

Yes

Yes

getCatalogSeparator

Yes

Yes

Yes

getCatalogTerm

Yes

Yes

Yes

getColumnPrivileges

Yes

Yes

Yes

380

Programming

Client

Applications

||

|
|
|
|
|

|
|
|

|
|
|||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|
|
|

||

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

54.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getColumns

Yes1

Yes

Yes

getConnection

Yes

Yes

Yes

getCrossReference

Yes

Yes

Yes

getDatabaseMajorVersion

Yes

No

No

getDatabaseMinorVersion

Yes

No

No

getDatabaseProductName

Yes

Yes

Yes

getDatabaseProductVersion

Yes

Yes

Yes

getDefaultTransactionIsolation

Yes

Yes

Yes

getDriverMajorVersion

Yes

Yes

Yes

getDriverMinorVersion

Yes

Yes

Yes

getDriverName

Yes

Yes

Yes

getDriverVersion

Yes

Yes

Yes

getExportedKeys

Yes

Yes

Yes

getExtraNameCharacters

Yes

Yes

Yes

getIdentifierQuoteString

Yes

Yes

Yes

getImportedKeys

Yes

Yes

Yes

getIndexInfo

Yes

Yes

Yes

getJDBCMajorVersion

Yes

No

No

getJDBCMinorVersion

Yes

No

No

getMaxBinaryLiteralLength

Yes

Yes

Yes

getMaxCatalogNameLength

Yes

Yes

Yes

getMaxCharLiteralLength

Yes

Yes

Yes

getMaxColumnNameLength

Yes

Yes

Yes

getMaxColumnsInGroupBy

Yes

Yes

Yes

getMaxColumnsInIndex

Yes

Yes

Yes

getMaxColumnsInOrderBy

Yes

Yes

Yes

getMaxColumnsInSelect

Yes

Yes

Yes

getMaxColumnsInTable

Yes

Yes

Yes

getMaxConnections

Yes

Yes

Yes

getMaxCursorNameLength

Yes

Yes

Yes

getMaxIndexLength

Yes

Yes

Yes

getMaxProcedureNameLength

Yes

Yes

Yes

getMaxRowSize

Yes

Yes

Yes

getMaxSchemaNameLength

Yes

Yes

Yes

getMaxStatementLength

Yes

Yes

Yes

getMaxStatements

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

381

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

54.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getMaxTableNameLength

Yes

Yes

Yes

getMaxTablesInSelect

Yes

Yes

Yes

getMaxUserNameLength

Yes

Yes

Yes

getNumericFunctions

Yes

Yes

Yes

getPrimaryKeys

Yes

Yes

Yes

getProcedureColumns

Yes

Yes

Yes

getProcedures

Yes

Yes

Yes

getProcedureTerm

Yes

Yes

Yes

getResultSetHoldability

Yes

No

No

getSchemas

Yes1

Yes

Yes

getSchemaTerm

Yes

Yes

Yes

getSearchStringEscape

Yes

Yes

Yes

getSQLKeywords

Yes

Yes

Yes

getSQLStateType

Yes

No

No

getStringFunctions

Yes

Yes

Yes

getSuperTables

Yes2

No

No

getSuperTypes

Yes2

No

No

getSystemFunctions

Yes

Yes

Yes

getTablePrivileges

Yes

Yes

Yes

getTables

Yes1

Yes

Yes

getTableTypes

Yes

Yes

Yes

getTimeDateFunctions

Yes

Yes

Yes

getTypeInfo

Yes

Yes

Yes

getUDTs

No

No

Yes2

getURL

Yes

Yes

Yes

getUserName

Yes

Yes

Yes

getVersionColumns

Yes

Yes

Yes

insertsAreDetected

Yes

Yes

Yes

isCatalogAtStart

Yes

Yes

Yes

isReadOnly

Yes

Yes

Yes

nullPlusNonNullIsNull

Yes

Yes

Yes

nullsAreSortedAtEnd

Yes

Yes

Yes

nullsAreSortedAtStart

Yes

Yes

Yes

nullsAreSortedHigh

Yes

Yes

Yes

nullsAreSortedLow

Yes

Yes

Yes

othersDeletesAreVisible

Yes

Yes

Yes

382

Programming

Client

Applications

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

54.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

othersInsertsAreVisible

Yes

Yes

Yes

othersUpdatesAreVisible

Yes

Yes

Yes

ownDeletesAreVisible

Yes

Yes

Yes

ownInsertsAreVisible

Yes

Yes

Yes

ownUpdatesAreVisible

Yes

Yes

Yes

storesLowerCaseIdentifiers

Yes

Yes

Yes

storesLowerCaseQuotedIdentifiers

Yes

Yes

Yes

storesMixedCaseIdentifiers

Yes

Yes

Yes

storesMixedCaseQuotedIdentifiers

Yes

Yes

Yes

storesUpperCaseIdentifiers

Yes

Yes

Yes

storesUpperCaseQuotedIdentifiers

Yes

Yes

Yes

supportsAlterTableWithAddColumn

Yes

Yes

Yes

supportsAlterTableWithDropColumn

Yes

Yes

Yes

supportsANSI92EntryLevelSQL

Yes

Yes

Yes

supportsANSI92FullSQL

Yes

Yes

Yes

supportsANSI92IntermediateSQL

Yes

Yes

Yes

supportsBatchUpdates

Yes

Yes

Yes

supportsCatalogsInDataManipulation

Yes

Yes

Yes

supportsCatalogsInIndexDefinitions

Yes

Yes

Yes

supportsCatalogsInPrivilegeDefinitions

Yes

Yes

Yes

supportsCatalogsInProcedureCalls

Yes

Yes

Yes

supportsCatalogsInTableDefinitions

Yes

Yes

Yes

SupportsColumnAliasing

Yes

Yes

Yes

supportsConvert

Yes

Yes

Yes

supportsCoreSQLGrammar

Yes

Yes

Yes

supportsCorrelatedSubqueries

Yes

Yes

Yes

supportsDataDefinitionAndDataManipulationTransactions

Yes

Yes

Yes

supportsDataManipulationTransactionsOnly

Yes

Yes

Yes

supportsDifferentTableCorrelationNames

Yes

Yes

Yes

supportsExpressionsInOrderBy

Yes

Yes

Yes

supportsExtendedSQLGrammar

Yes

Yes

Yes

supportsFullOuterJoins

Yes

Yes

Yes

supportsGetGeneratedKeys

Yes

No

No

supportsGroupBy

Yes

Yes

Yes

supportsGroupByBeyondSelect

Yes

Yes

Yes

supportsGroupByUnrelated

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

383

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

54.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

supportsIntegrityEnhancementFacility

Yes

Yes

Yes

supportsLikeEscapeClause

Yes

Yes

Yes

supportsLimitedOuterJoins

Yes

Yes

Yes

supportsMinimumSQLGrammar

Yes

Yes

Yes

supportsMixedCaseIdentifiers

Yes

Yes

Yes

supportsMixedCaseQuotedIdentifiers

Yes

Yes

Yes

supportsMultipleOpenResults

Yes

Yes

No

supportsMultipleResultSets

Yes

Yes

Yes

supportsMultipleTransactions

Yes

Yes

Yes

supportsNamedParameters

Yes

No

No

supportsNonNullableColumns

Yes

Yes

Yes

supportsOpenCursorsAcross

Commit

Yes

Yes

Yes

supportsOpenCursorsAcross

Rollback

Yes

Yes

Yes

supportsOpenStatementsAcrossCommit

Yes

Yes

Yes

supportsOpenStatementsAcrossRollback

Yes

Yes

Yes

supportsOrderByUnrelated

Yes

Yes

Yes

supportsOuterJoins

Yes

Yes

Yes

supportsPositionedDelete

Yes

Yes

Yes

supportsPositionedUpdate

Yes

Yes

Yes

supportsResultSetConcurrency

Yes

Yes

Yes

supportsResultSetHoldability

Yes

No

No

supportsResultSetType

Yes

Yes

Yes

supportsSavepoints

Yes

No

No

supportsSchemasInDataManipulation

Yes

Yes

Yes

supportsSchemasInIndexDefinitions

Yes

Yes

Yes

supportsSchemasInPrivilegeDefinitions

Yes

Yes

Yes

supportsSchemasInProcedureCalls

Yes

Yes

Yes

supportsSchemasInTableDefinitions

Yes

Yes

Yes

supportsSelectForUpdate

Yes

Yes

Yes

supportsStoredProcedures

Yes

Yes

Yes

supportsSubqueriesInComparisons

Yes

Yes

Yes

supportsSubqueriesInExists

Yes

Yes

Yes

supportsSubqueriesInIns

Yes

Yes

Yes

supportsSubqueriesInQuantifieds

Yes

Yes

Yes

supportsSuperTables

Yes

No

No

supportsSuperTypes

Yes

No

No

384

Programming

Client

Applications

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

54.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

supportsTableCorrelationNames

Yes

Yes

Yes

supportsTransactionIsolationLevel

Yes

Yes

Yes

supportsTransactions

Yes

Yes

Yes

supportsUnion

Yes

Yes

Yes

supportsUnionAll

Yes

Yes

Yes

updatesAreDetected

Yes

Yes

Yes

usesLocalFilePerTable

Yes

Yes

Yes

usesLocalFiles

Yes

Yes

Yes

Notes:

1.

The

JDBC

3.0

version

of

this

method

is

supported.

2.

The

method

can

be

executed,

but

it

returns

an

empty

ResultSet.

Table

55.

DB2

JDBC

support

for

DataSource

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getConnection

Yes

Yes

Yes

getLoginTimeout

Yes

Yes

Yes1

getLogWriter

Yes

Yes

Yes

setLoginTimeout

Yes2

Yes

Yes1

setLogWriter

Yes

Yes

Yes

Notes:

1.

The

DB2

JDBC

Type

2

Driver

does

not

use

this

setting.

2.

This

method

is

not

supported

for

Universal

Type

2

Connectivity

on

DB2

UDB

in

the

OS/390

or

z/OS

environment.

Table

56.

DB2

JDBC

support

for

DataTruncation

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.lang.Throwable

Yes

Yes

Yes

Methods

inherited

from

java.sql.SQLException

Yes

Yes

Yes

Methods

inherited

from

java.sql.SQLWarning

Yes

Yes

Yes

getDataSize

Yes

Yes

Yes

getIndex

Yes

Yes

Yes

getParameter

Yes

Yes

Yes

getRead

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

385

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|

|
|
|

||

|
|
|
|
|

|
|
|

|
|
|||

|
|
|||

|
|
|||

||||

||||

||||

||||

Table

56.

DB2

JDBC

support

for

DataTruncation

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getTransferSize

Yes

Yes

Yes

Table

57.

DB2

JDBC

support

for

Driver

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

acceptsURL

Yes

Yes

Yes

connect

Yes

Yes

Yes

getMajorVersion

Yes

Yes

Yes

getMinorVersion

Yes

Yes

Yes

getPropertyInfo

Yes

Yes

Yes

jdbcCompliant

Yes

Yes

Yes

Table

58.

DB2

JDBC

support

for

DriverManager

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

deregisterDriver

Yes

Yes

Yes

getConnection

Yes

Yes

Yes

getDriver

Yes

Yes

Yes

getDrivers

Yes

Yes

Yes

getLoginTimeout

Yes

Yes

Yes1

getLogStream

Yes

Yes

Yes

getLogWriter

Yes

Yes

Yes

println

Yes

Yes

Yes

registerDriver

Yes

Yes

Yes

setLoginTimeout

Yes2

Yes

Yes1

setLogStream

Yes

Yes

Yes

setLogWriter

Yes

Yes

Yes

Notes:

1.

The

DB2

JDBC

Type

2

Driver

does

not

use

this

setting.

2.

This

method

is

not

supported

for

Universal

Type

2

Connectivity

on

DB2

UDB

in

the

OS/390

or

z/OS

environment.

Table

59.

DB2

JDBC

support

for

ParameterMetaData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getParameterClassName

No

No

No

getParameterCount

Yes

No

No

getParameterMode

Yes

No

No

386

Programming

Client

Applications

|

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

Table

59.

DB2

JDBC

support

for

ParameterMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getParameterType

Yes

No

No

getParameterTypeName

Yes

No

No

getPrecision

Yes

No

No

getScale

Yes

No

No

isNullable

Yes

No

No

isSigned

Yes

No

No

Table

60.

DB2

JDBC

support

for

PooledConnection

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

addConnectionEventListener

Yes

Yes

Yes

close

Yes

Yes

Yes

getConnection

Yes

Yes

Yes

removeConnectionEventListener

Yes

Yes

Yes

Table

61.

DB2

JDBC

support

for

PreparedStatement

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.sql.Statement

Yes

Yes

Yes

addBatch

Yes

Yes

Yes

clearParameters

Yes

Yes

Yes

execute

Yes

Yes

Yes

executeQuery

Yes

Yes

Yes

executeUpdate

Yes

Yes

Yes

getMetaData

Yes

Yes

Yes

setArray

No

No

No

setAsciiStream

Yes

Yes

Yes

setBigDecimal

Yes

Yes

Yes

setBinaryStream

Yes

Yes

Yes

setBlob

Yes

Yes

Yes

setBoolean

Yes

Yes

Yes

setByte

Yes

Yes

Yes

setBytes

Yes

Yes

Yes

setCharacterStream

Yes

Yes

Yes

setClob

Yes

Yes

Yes

setDate

Yes

Yes1

Yes

setDouble

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

387

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

61.

DB2

JDBC

support

for

PreparedStatement

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

setFloat

Yes

Yes

Yes

setInt

Yes

Yes

Yes

setLong

Yes

Yes

Yes

setNull

Yes2

Yes2

Yes2

setObject

Yes

Yes

Yes

setRef

No

No

No

setShort

Yes

Yes

Yes

setString

Yes3

Yes3

Yes3

setTime

Yes4

Yes4

Yes

setTimestamp

Yes5

Yes5

Yes

setUnicodeStream

Yes

Yes

Yes

setURL

Yes

No

Yes

Notes:

1.

The

following

form

of

setDate

is

not

supported:

setDate(int

parameterIndex,

java.sql.Date

x,

java.util.Calendar

cal)

2.

The

following

form

of

setNull

is

not

supported:

setNull(int

parameterIndex,

int

jdbcType,

String

typeName)

3.

setString

is

not

supported

if

the

column

has

the

FOR

BIT

DATA

attribute

or

the

data

type

is

BLOB.

4.

The

following

form

of

setTime

is

not

supported:

setTime(int

parameterIndex,

java.sql.Time

x,

java.util.Calendar

cal)

5.

The

following

form

of

setTimestamp

is

not

supported:

setTimestamp(int

parameterIndex,

java.sql.Timestamp

x,

java.util.Calendar

cal)

Table

62.

DB2

JDBC

support

for

Ref

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

get

BaseTypeName

No

No

No

Table

63.

DB2

JDBC

support

for

ResultSet

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

absolute

Yes

No

Yes

afterLast

Yes

No

Yes

beforeFirst

Yes

No

Yes

cancelRowUpdates

Yes

No

No

clearWarnings

Yes

Yes

Yes

close

Yes

Yes

Yes

deleteRow

Yes

No

No

388

Programming

Client

Applications

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|

|

|

|

|

|

|

|

|
|

||

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

Table

63.

DB2

JDBC

support

for

ResultSet

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

findColumn

Yes

Yes

Yes

first

Yes

No

Yes

getArray

No

No

No

getAsciiStream

Yes

Yes

Yes

getBigDecimal

Yes

Yes

Yes

getBinaryStream

Yes1

Yes1

Yes

getBlob

Yes

Yes

Yes

getBoolean

Yes

Yes

Yes

getByte

Yes

Yes

Yes

getBytes

Yes

Yes

Yes

getCharacterStream

Yes

Yes

Yes

getClob

Yes

Yes

Yes

getConcurrency

Yes

Yes

Yes

getCursorName

Yes

Yes

Yes

getDate

Yes

Yes2

Yes

getDouble

Yes

Yes

Yes

getFetchDirection

Yes

Yes

Yes

getFetchSize

Yes

Yes

Yes

getFloat

Yes

Yes

Yes

getInt

Yes

Yes

Yes

getLong

Yes

Yes

Yes

getMetaData

Yes

Yes

Yes

getObject

Yes3

Yes3

Yes3

getRef

No

No

No

getRow

Yes

No

Yes

getShort

Yes

Yes

Yes

getStatement

Yes

Yes

Yes

getString

Yes

Yes

Yes

getTime

Yes

Yes4

Yes

getTimestamp

Yes

Yes5

Yes

getType

Yes

Yes

Yes

getUnicodeStream

Yes

Yes

Yes

getURL

Yes

No

Yes

getWarnings

Yes

Yes

Yes

insertRow

No

No

No

isAfterLast

Yes

No

Yes

isBeforeFirst

Yes

No

Yes

isFirst

Yes

No

Yes

Chapter

17.

JDBC

and

SQLJ

reference

389

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

63.

DB2

JDBC

support

for

ResultSet

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

isLast

Yes

No

Yes

last

Yes

No

Yes

moveToCurrentRow

Yes

No

No

moveToInsertRow

No

No

No

next

Yes

Yes

Yes

previous

Yes

No

Yes

refreshRow

Yes

No

No

relative

Yes

No

Yes

rowDeleted

Yes

No

No

rowInserted

No

No

No

rowUpdated

Yes

No

No

setFetchDirection

Yes

Yes6

Yes

setFetchSize

Yes

Yes

Yes

updateAsciiStream

Yes

No

No

updateBigDecimal

Yes

No

No

updateBinaryStream

Yes

No

No

updateBoolean

Yes

No

No

updateByte

Yes

No

No

updateBytes

Yes

No

No

updateCharacterStream

Yes

No

No

updateDate

Yes

No

No

updateDouble

Yes

No

No

updateFloat

Yes

No

No

updateInt

Yes

No

No

updateLong

Yes

No

No

updateNull

Yes

No

No

updateObject

Yes

No

No

updateRow

Yes

No

No

updateShort

Yes

No

No

updateString

Yes

No

No

updateTime

Yes

No

No

updateTimestamp

Yes

No

No

wasNull

Yes

Yes

Yes

390

Programming

Client

Applications

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

63.

DB2

JDBC

support

for

ResultSet

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Notes:

1.

getBinaryStream

is

not

supported

for

CLOB

columns.

2.

The

following

forms

of

getDate

are

not

supported:

getDate(int

columnIndex,

java.util.Calendar

cal)

getDate(String

columnName,

java.util.Calendar

cal)

3.

The

following

form

of

the

getObject

method

is

not

supported:

getObject(int

parameterIndex,

java.util.Map

map)

4.

The

following

forms

of

getTime

are

not

supported:

getTime(int

columnIndex,

java.util.Calendar

cal)

getTime(String

columnName,

java.util.Calendar

cal)

5.

The

following

forms

of

getTimestamp

are

not

supported:

getTimestamp(int

columnIndex,

java.util.Calendar

cal)

getTimestamp(String

columnName,

java.util.Calendar

cal)

6.

Supported

only

if

direction

is

ResultSet.FETCH_FORWARD.

Table

64.

DB2

JDBC

support

for

ResultSetMetaData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getCatalogName

Yes

Yes

Yes

getColumnClassName

No

No

Yes

getColumnCount

Yes

Yes

Yes

getColumnDisplaySize

Yes

Yes

Yes

getColumnLabel

Yes

Yes

Yes

getColumnName

Yes

Yes

Yes

getColumnType

Yes

Yes

Yes

getColumnTypeName

Yes

Yes

Yes

getPrecision

Yes

Yes

Yes

getScale

Yes

Yes

Yes

getSchemaName

Yes

Yes

Yes

getTableName

Yes

Yes

Yes

isAutoIncrement

Yes

Yes

Yes

isCaseSensitive

Yes

Yes

Yes

isCurrency

Yes

Yes

Yes

isDefinitelyWritable

Yes

Yes

Yes

isNullable

Yes

Yes

Yes

isReadOnly

Yes

Yes

Yes

isSearchable

Yes

Yes

Yes

isSigned

Yes

Yes

Yes

isWritable

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

391

|

|
|
|
|
|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|
|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

Table

65.

DB2

JDBC

support

for

SQLData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getSQLTypeName

No

No

No

readSQL

No

No

No

writeSQL

No

No

No

Table

66.

DB2

JDBC

support

for

SQLException

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.lang.Exception

Yes

Yes

Yes

getSQLState

Yes

Yes

Yes

getErrorCode

Yes

Yes

Yes

getNextException

Yes

Yes

Yes

setNextException

Yes

Yes

Yes

Table

67.

DB2

JDBC

support

for

SQLInput

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

readArray

No

No

No

readAsciiStream

No

No

No

readBigDecimal

No

No

No

readBinaryStream

No

No

No

readBlob

No

No

No

readBoolean

No

No

No

readByte

No

No

No

readBytes

No

No

No

readCharacterStream

No

No

No

readClob

No

No

No

readDate

No

No

No

readDouble

No

No

No

readFloat

No

No

No

readInt

No

No

No

readLong

No

No

No

readObject

No

No

No

readRef

No

No

No

readShort

No

No

No

readString

No

No

No

readTime

No

No

No

readTimestamp

No

No

No

392

Programming

Client

Applications

||

|
|
|
|
|

|
|
|

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

67.

DB2

JDBC

support

for

SQLInput

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

wasNull

No

No

No

Table

68.

DB2

JDBC

support

for

SQLOutput

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

writeArray

No

No

No

writeAsciiStream

No

No

No

writeBigDecimal

No

No

No

writeBinaryStream

No

No

No

writeBlob

No

No

No

writeBoolean

No

No

No

writeByte

No

No

No

writeBytes

No

No

No

writeCharacterStream

No

No

No

writeClob

No

No

No

writeDate

No

No

No

writeDouble

No

No

No

writeFloat

No

No

No

writeInt

No

No

No

writeLong

No

No

No

writeObject

No

No

No

writeRef

No

No

No

writeShort

No

No

No

writeString

No

No

No

writeStruct

No

No

No

writeTime

No

No

No

writeTimestamp

No

No

No

Table

69.

DB2

JDBC

support

for

Statement

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

addBatch

Yes

Yes

Yes

cancel

Yes1

No

Yes

clearBatch

Yes

Yes

Yes

clearWarnings

Yes

Yes

Yes

close

Yes

Yes

Yes

execute

Yes2

Yes

Yes

executeBatch

Yes

Yes

Yes

Chapter

17.

JDBC

and

SQLJ

reference

393

|

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

Table

69.

DB2

JDBC

support

for

Statement

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

executeQuery

Yes

Yes

Yes

executeUpdate

Yes2

Yes

Yes

getConnection

Yes

No

Yes

getFetchDirection

Yes

No

Yes

getFetchSize

Yes

No

Yes

getGeneratedKeys

Yes

No

No

getMaxFieldSize

Yes

Yes

Yes

getMaxRows

Yes

Yes

Yes

getMoreResults

Yes3

Yes

Yes

getQueryTimeout

Yes1

Yes

Yes

getResultSet

Yes

Yes

Yes

getResultSetConcurrency

Yes

Yes

Yes

getResultSetType

Yes

Yes

Yes

getUpdateCount4

Yes

Yes

Yes

getWarnings

Yes

Yes

Yes

setCursorName

Yes

Yes

Yes

setEscapeProcessing

Yes

Yes

Yes

setFetchDirection

Yes

Yes

Yes

setFetchSize

Yes

No

Yes

setMaxFieldSize

Yes

Yes

Yes

setMaxRows

Yes

Yes

Yes

setQueryTimeout

Yes5

Yes5

Yes

Notes:

1.

This

method

is

not

supported

for

Universal

Type

2

Connectivity

in

the

OS/390

or

z/OS

environment.

2.

In

addition

to

the

other

forms

of

execute

or

executeUpdate,

the

DB2

Universal

JDBC

Driver

supports

the

following

JDBC

3.0

forms:

executeUpdate(String

sql,

int

autoGeneratedKeys)

execute(String

sql,

int

autoGeneratedKeys)

3.

In

addition

to

getMoreResults(),

the

DB2

Universal

JDBC

Driver

supports

the

following

JDBC

3.0

forms:

v

getMoreResults(java.sql.Statement.CLOSE_CURRENT_RESULT)

v

getMoreResults(java.sql.Statement.KEEP_CURRENT_RESULT)

v

getMoreResults(java.sql.Statement.CLOSE_ALL_RESULTS)

4.

Not

supported

for

stored

procedure

ResultSets.

5.

Supported

only

for

a

seconds

value

of

0.

Table

70.

DB2

JDBC

support

for

Struct

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getSQLTypeName

No

No

No

getAttributes

No

No

No

394

Programming

Client

Applications

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|

|
|

|
|
|
|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||
|

Table

71.

DB2

JDBC

support

for

XAConnection

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

javax.sql.PooledConnection

Yes1

No

Yes

getXAResource

Yes1

No

Yes

Notes:

1.

This

method

is

supported

for

DB2

Universal

JDBC

Driver

type

2

connectivity

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server

or

DB2

Universal

JDBC

Driver

type

4

connectivity

to

a

DB2

UDB

for

z/OS

server.

Table

72.

DB2

JDBC

support

for

XADataSource

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getLoginTimeout

Yes

No

Yes

getLogWriter

Yes

No

Yes

getXAConnection

Yes

No

Yes

setLoginTimeout

Yes

No

Yes

setLogWriter

Yes

No

Yes

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

SQLJ

statement

reference

The

sections

that

follow

contain

information

about

the

syntax

of

SQLJ

clauses.

SQLJ

clause

The

SQL

statements

in

an

SQLJ

program

are

in

SQLJ

clauses.

The

general

syntax

of

an

SQLJ

clause

is:

��

#sql

connection-declaration-clause

iterator-declaration-clause

executable-clause

;

��

Keywords

in

an

SQLJ

clause

are

case

sensitive,

unless

those

keywords

are

part

of

an

SQL

statement

in

an

executable

clause.

Related

reference:

v

“SQLJ

connection-declaration-clause”

on

page

399

v

“SQLJ

executable-clause”

on

page

401

v

“SQLJ

iterator-declaration-clause”

on

page

400

Chapter

17.

JDBC

and

SQLJ

reference

395

||

|
|
|
|
|

|
|
|

|
|
|||

||||

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||
|

|

|
|

SQLJ

host-expression

A

host

expression

is

a

Java

variable

or

expression

that

is

referenced

by

SQLJ

clauses

in

an

SQLJ

application

program.

Syntax:

��

:

simple-variable

IN

(complex-expression)

OUT

INOUT

��

Description:

:

Indicates

that

the

variable

or

expression

that

follows

is

a

host

expression.

The

colon

must

immediately

precede

the

variable

or

expression.

IN|OUT|INOUT

For

a

host

expression

that

is

used

as

a

parameter

in

a

stored

procedure

call,

identifies

whether

the

parameter

provides

data

to

the

stored

procedure

(IN),

retrieves

data

from

the

stored

procedure

(OUT),

or

does

both

(INOUT).

The

default

is

IN.

simple-variable

Specifies

a

Java

unqualified

identifier.

complex-expression

Specifies

a

Java

expression

that

results

in

a

single

value.

Usage

notes:

v

A

complex

expression

must

be

enclosed

in

parentheses.

v

ANSI/ISO

rules

govern

where

a

host

expression

can

appear

in

a

static

SQL

statement.

Related

concepts:

v

“Variables

in

SQLJ

applications”

on

page

320

SQLJ

implements-clause

The

implements

clause

derives

one

or

more

classes

from

a

Java

interface.

Syntax:

��

implements

�

,

interface-element

��

interface-element:

396

Programming

Client

Applications

��

sqlj.runtime.ForUpdate

sqlj.runtime.Scrollable

user-specified-interface-class

��

Description:

interface-element

Specifies

a

user-defined

Java

interface,

the

SQLJ

interface

sqlj.runtime.ForUpdate

or

the

SQLJ

interface

sqlj.runtime.Scrollable.

You

need

to

implement

sqlj.runtime.ForUpdate

when

you

declare

an

iterator

for

a

positioned

UPDATE

or

positioned

DELETE

operation.

See

Perform

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application

for

information

on

performing

a

positioned

UPDATE

or

positioned

DELETE

operation

in

SQLJ.

You

need

to

implement

sqlj.runtime.Scrollable

when

you

declare

a

scrollable

iterator.

See

Use

scrollable

iterators

in

an

SQLJ

application

for

information

on

scrollable

iterators.

Related

tasks:

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

v

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

361

SQLJ

with-clause

The

with

clause

specifies

a

set

of

one

or

more

attributes

for

an

iterator

or

a

connection

context.

Syntax:

��

with

�

,

(

with-element

)

��

with-element:

Chapter

17.

JDBC

and

SQLJ

reference

397

��

�

holdability=true

holdability=false

sensitivity=INSENSITIVE

sensitivity=SENSITIVE

dynamic=false

,

dynamic=true

,

updateColumns=

"

column-name

"

Java-ID=Java-constant-expression

dataSource=

"

logical-datasource-name

"

��

Description:

holdability

For

an

iterator,

specifies

whether

an

iterator

keeps

its

position

in

a

table

after

a

COMMIT

is

executed.

The

value

for

holdability

must

be

true

or

false.

sensitivity

For

an

iterator,

specifies

whether

changes

that

are

made

to

the

underlying

table

can

be

visible

to

the

iterator

after

it

is

opened.

The

value

must

be

INSENSITIVE

or

SENSITIVE.

The

default

is

INSENSITIVE.

dynamic

For

an

iterator

that

is

defined

with

sensitivity=SENSITIVE,

specifies

whether

the

following

cases

are

true:

v

When

the

application

executes

positioned

UPDATE

and

DELETE

statements

with

the

iterator,

those

changes

are

visible

to

the

iterator.

v

When

the

application

executes

INSERT,

UPDATE,

and

DELETE

statements

within

the

application

but

outside

the

iterator,

those

changes

are

visible

to

the

iterator.

The

value

for

dynamic

must

be

true

or

false.

The

default

is

false.

If

the

value

of

dynamic

is

true,

the

data

source

must

support

dynamic

scrollable

cursors.

updateColumns

For

an

iterator,

specifies

the

columns

that

are

to

be

modified

when

the

iterator

is

used

for

a

positioned

UPDATE

statement.

The

value

for

updateColumns

must

be

a

literal

string

that

contains

the

column

names,

separated

by

commas.

column-name

For

an

iterator,

specifies

a

column

of

the

result

table

that

is

to

be

updated

using

the

iterator.

Java-ID

For

an

iterator

or

connection

context,

specifies

a

Java

variable

that

identifies

a

user-defined

attribute

of

the

iterator

or

connection

context.

The

value

of

Java-constant-expression

is

also

user-defined.

dataSource

For

a

connection

context,

specifies

the

logical

name

of

a

separately-created

DataSource

object

that

represents

the

data

source

to

which

the

application

will

connect.

This

option

is

available

only

for

the

DB2

Universal

JDBC

Driver.

Usage

notes:

v

The

value

on

the

left

side

of

a

with

element

must

be

unique

within

its

with

clause.

398

Programming

Client

Applications

|
|
|

|
|

|
|
|

|

|
|

v

If

you

specify

updateColumns

in

a

with

element

of

an

iterator

declaration

clause,

the

iterator

declaration

clause

must

also

contain

an

implements

clause

that

specifies

the

sqlj.runtime.ForUpdate

interface.

v

If

you

do

not

customize

your

SQLJ

program,

the

JDBC

driver

ignores

the

value

of

holdability

that

is

in

the

with

clause.

Instead,

the

driver

uses

the

JDBC

driver

setting

for

holdability.

Related

concepts:

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

345

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

v

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

361

SQLJ

connection-declaration-clause

The

connection

declaration

clause

declares

a

connection

to

a

data

source

in

an

SQLJ

application

program.

Syntax:

��

Java-modifiers

context

Java-class-name

implements-clause

with-clause

��

Description:

Java-modifiers

Specifies

modifiers

that

are

valid

for

Java

class

declarations,

such

as

static,

public,

private,

or

protected.

Java-class-name

Specifies

a

valid

Java

identifier.

During

the

program

preparation

process,

SQLJ

generates

a

connection

context

class

whose

name

is

this

identifier.

implements-clause

See

SQLJ

implements-clause

for

a

description

of

this

clause.

In

a

connection

declaration

clause,

the

interface

class

to

which

the

implements

clause

refers

must

be

a

user-defined

interface

class.

with-clause

See

SQLJ

with-clause

for

a

description

of

this

clause.

Usage

notes:

v

SQLJ

generates

a

connection

class

declaration

for

each

connection

declaration

clause

you

specify.

SQLJ

data

source

connections

are

objects

of

those

generated

connection

classes.

v

You

can

specify

a

connection

declaration

clause

anywhere

that

a

Java

class

definition

can

appear

in

a

Java

program.

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

Chapter

17.

JDBC

and

SQLJ

reference

399

|
|
|

Related

reference:

v

“SQLJ

implements-clause”

on

page

396

v

“SQLJ

with-clause”

on

page

397

SQLJ

iterator-declaration-clause

An

iterator

declaration

clause

declares

a

positioned

iterator

class

or

a

named

iterator

class

in

an

SQLJ

application

program.

An

iterator

contains

the

result

table

from

a

query.

SQLJ

generates

an

iterator

class

for

each

iterator

declaration

clause

you

specify.

An

iterator

is

an

object

of

an

iterator

class.

An

iterator

declaration

clause

has

a

form

for

a

positioned

iterator

and

a

form

for

a

named

iterator.

The

two

kinds

of

iterators

are

distinct

and

incompatible

Java

types

that

are

implemented

with

different

interfaces.

Syntax:

��

Java-modifiers

iterator

Java-class-name

implements-clause

with-clause

�

�

(

positioned-iterator-column-declarations

)

named-iterator-column-declarations

��

positioned-iterator-column

declarations:

��

�

,

Java-data-type

��

named-iterator-column-declarations:

��

�

,

Java-data-type

Java-ID

��

Description:

Java-modifiers

Any

modifiers

that

are

valid

for

Java

class

declarations,

such

as

static,

public,

private,

or

protected.

Java-class-name

Any

valid

Java

identifier.

During

the

program

preparation

process,

SQLJ

generates

an

iterator

class

whose

name

is

this

identifier.

implements-clause

See

SQLJ

implements-clause

for

a

description

of

this

clause.

For

an

iterator

declaration

clause

that

declares

an

iterator

for

a

positioned

UPDATE

or

400

Programming

Client

Applications

positioned

DELETE

operation,

the

implements

clause

must

specify

interface

sqlj.runtime.ForUpdate.

For

an

iterator

declaration

clause

that

declares

a

scrollable

iterator,

the

implements

clause

must

specify

interface

sqlj.runtime.Scrollable.

with-clause

See

SQLJ

with-clause

for

a

description

of

this

clause.

positioned-iterator-column-declarations

Specifies

a

list

of

Java

data

types,

which

are

the

data

types

of

the

columns

in

the

positioned

iterator.

The

data

types

in

the

list

must

be

separated

by

commas.

The

order

of

the

data

types

in

the

positioned

iterator

declaration

is

the

same

as

the

order

of

the

columns

in

the

result

table.

For

online

checking

during

serialized

profile

customization

to

succeed,

the

data

types

of

the

columns

in

the

iterator

must

be

compatible

with

the

data

types

of

the

columns

in

the

result

table.

See

Java,

JDBC,

and

SQL

data

types

for

a

list

of

compatible

data

types.

named-iterator-column-declarations

Specifies

a

list

of

Java

data

types

and

Java

identifiers,

which

are

the

data

types

and

names

of

the

columns

in

the

named

iterator.

Pairs

of

data

types

and

names

must

be

separated

by

commas.

The

name

of

a

column

in

the

iterator

must

match,

except

for

case,

the

name

of

a

column

in

the

result

table.

For

online

checking

during

serialized

profile

customization

to

succeed,

the

data

types

of

the

columns

in

the

iterator

must

be

compatible

with

the

data

types

of

the

columns

in

the

result

table.

See

Java,

JDBC,

and

SQL

data

types

for

a

list

of

compatible

data

types.

Usage

notes:

v

An

iterator

declaration

clause

can

appear

anywhere

in

a

Java

program

that

a

Java

class

declaration

can

appear.

v

When

a

named

iterator

declaration

contains

more

than

one

pair

of

Java

data

types

and

Java

IDs,

all

Java

IDs

within

the

list

must

be

unique.

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

Related

reference:

v

“SQLJ

implements-clause”

on

page

396

v

“SQLJ

with-clause”

on

page

397

SQLJ

executable-clause

An

executable

clause

contains

an

SQL

statement

or

an

assignment

statement.

An

assignment

statement

assigns

the

result

of

an

SQL

operation

to

a

Java

variable.

This

topic

describes

the

general

form

of

an

executable

clause.

Syntax:

Chapter

17.

JDBC

and

SQLJ

reference

401

��

context-clause

statement-clause

assignment-clause

��

Usage

notes:

v

An

executable

clause

can

appear

anywhere

in

a

Java

program

that

a

Java

statement

can

appear.

v

SQLJ

reports

negative

SQL

codes

from

executable

clauses

through

class

java.sql.SQLException.

If

SQLJ

raises

a

run-time

exception

during

the

execution

of

an

executable

clause,

the

value

of

any

host

expression

of

type

OUT

or

INOUT

is

undefined.

Related

reference:

v

“SQLJ

assignment-clause”

on

page

405

v

“SQLJ

context-clause”

on

page

402

v

“SQLJ

statement-clause”

on

page

403

SQLJ

context-clause

A

context

clause

specifies

a

connection

context,

an

execution

context,

or

both.

You

use

a

connection

context

to

connect

to

a

data

source.

You

use

an

execution

context

to

monitor

and

modify

SQL

statement

execution.

Syntax:

��

[

connection-context

]

execution-context

connection-context

,

execution

context

��

Description:

connection-context

Specifies

a

valid

Java

identifier

that

is

declared

earlier

in

the

SQLJ

program.

That

identifier

must

be

declared

as

an

instance

of

the

connection

context

class

that

SQLJ

generates

for

a

connection

declaration

clause.

execution-context

Specifies

a

valid

Java

identifier

that

is

declared

earlier

in

the

SQLJ

program.

That

identifier

must

be

declared

as

an

instance

of

class

sqlj.runtime.ExecutionContext.

Usage

notes:

v

If

you

do

not

specify

a

connection

context

in

an

executable

clause,

SQLJ

uses

the

default

connection

context.

v

If

you

do

not

specify

an

execution

context,

SQLJ

obtains

the

execution

context

from

the

connection

context

of

the

statement.

Related

tasks:

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

353

402

Programming

Client

Applications

SQLJ

statement-clause

A

statement

clause

contains

an

SQL

statement

or

a

SET

TRANSACTION

clause.

Syntax:

��

{

SQL-statement

}

SET-TRANSACTION-clause

��

Description:

SQL-statement

You

can

include

the

DB2

UDB

for

Linux,

UNIX

and

Windows

SQL

statements

in

Table

73

in

a

statement

clause.

SET-TRANSACTION-clause

Sets

the

isolation

level

for

SQL

statements

in

the

program

and

the

access

mode

for

the

connection.

The

SET

TRANSACTION

clause

is

equivalent

to

the

SET

TRANSACTION

statement,

which

is

described

in

the

ANSI/ISO

SQL

standard

of

1992

and

is

supported

in

some

implementations

of

SQL.

See

SQLJ

SET-TRANSACTION-clause

for

more

information.

Table

73.

Valid

SQL

statements

in

an

SQLJ

statement

clause

ALTER

DATABASE

ALTER

FUNCTION

ALTER

INDEX

ALTER

PROCEDURE

ALTER

STOGROUP

ALTER

TABLE

ALTER

TABLESPACE

CALL

COMMENT

ON

COMMIT

CREATE

ALIAS

CREATE

DATABASE

CREATE

DISTINCT

TYPE

CREATE

FUNCTION

CREATE

GLOBAL

TEMPORARY

TABLE

CREATE

INDEX

CREATE

PROCEDURE

CREATE

STOGROUP

CREATE

SYNONYM

CREATE

TABLE

CREATE

TABLESPACE

CREATE

TRIGGER

CREATE

VIEW

DECLARE

GLOBAL

TEMPORARY

TABLE

DELETE

DROP

ALIAS

DROP

DATABASE

DROP

DISTINCT

TYPE

DROP

FUNCTION

DROP

INDEX

DROP

PACKAGE

Chapter

17.

JDBC

and

SQLJ

reference

403

Table

73.

Valid

SQL

statements

in

an

SQLJ

statement

clause

(continued)

DROP

PROCEDURE

DROP

STOGROUP

DROP

SYNONYM

DROP

TABLE

DROP

TABLESPACE

DROP

TRIGGER

DROP

VIEW

FETCH

GRANT

INSERT

LOCK

TABLE

REVOKE

ROLLBACK

SAVEPOINT

SELECT

INTO

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

SET

CURRENT

DEGREE

SET

CURRENT

EXPLAIN

MODE

SET

CURRENT

EXPLAIN

SNAPSHOT

SET

CURRENT

ISOLATION

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

SET

CURRENT

OPTIMIZATION

HINT

SET

CURRENT

PACKAGESET

(USER

is

not

supported)

SET

CURRENT

PRECISION

SET

CURRENT

QUERY

OPTIMIZATION

SET

CURRENT

REFRESH

AGE

SET

CURRENT

SCHEMA

SET

PATH

UPDATE

Usage

notes:

v

SQLJ

supports

both

positioned

and

searched

DELETE

and

UPDATE

operations.

v

For

a

FETCH

statement,

a

positioned

DELETE

statement,

or

a

positioned

UPDATE

statement,

you

must

use

an

iterator

to

refer

to

rows

in

a

result

table.

Related

tasks:

v

“Setting

the

isolation

level

for

an

SQLJ

transaction”

on

page

327

Related

reference:

v

“SQLJ

SET-TRANSACTION-clause”

on

page

404

SQLJ

SET-TRANSACTION-clause

The

SET

TRANSACTION

clause

sets

the

isolation

level

for

the

current

unit

of

work.

Syntax:

404

Programming

Client

Applications

|

��

SET

TRANSACTION

ISOLATION

LEVEL

READ

COMMITTED

READ

UNCOMMITTED

REPEATABLE

READ

SERIALIZABLE

��

Description:

ISOLATION

LEVEL

Specifies

one

of

the

following

isolation

levels:

READ

COMMITTED

Specifies

that

the

current

DB2

isolation

level

is

cursor

stability.

READ

UNCOMMITTED

Specifies

that

the

current

DB2

isolation

level

is

uncommitted

read.

REPEATABLE

READ

Specifies

that

the

current

DB2

isolation

level

is

read

stability.

SERIALIZABLE

Specifies

that

the

current

DB2

isolation

level

is

repeatable

read.

Usage

notes:

You

can

execute

SET

TRANSACTION

only

at

the

beginning

of

a

transaction.

SQLJ

assignment-clause

The

assignment

clause

assigns

the

result

of

an

SQL

operation

to

a

Java

variable.

Syntax:

��

Java-ID

=

{

fullselect

}

order-by-clause

optimize-for-clause

isolation-clause

queryno-clause

fetch-first-clause

iterator-conversion-clause

��

Description:

Java-ID

Identifies

an

iterator

that

was

declared

previously

as

an

instance

of

an

iterator

class.

fullselect

Generates

a

result

table.

iterator-conversion-clause

See

SQLJ

iterator-conversion-clause

for

a

description

of

this

clause.

Usage

notes:

v

If

the

object

that

is

identified

by

Java-ID

is

a

positioned

iterator,

the

number

of

columns

in

the

result

set

must

match

the

number

of

columns

in

the

iterator.

In

addition,

the

data

type

of

each

column

in

the

result

set

must

be

compatible

with

Chapter

17.

JDBC

and

SQLJ

reference

405

the

data

type

of

the

corresponding

column

in

the

iterator.

See

Java,

JDBC,

and

SQL

data

types

for

a

list

of

compatible

Java

and

SQL

data

types.

v

If

the

object

that

is

identified

by

Java-ID

is

a

named

iterator,

the

name

of

each

accessor

method

must

match,

except

for

case,

the

name

of

a

column

in

the

result

set,

except

for

case.

In

addition,

the

data

type

of

the

object

that

an

accessor

method

returns

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

result

set.

v

You

can

put

an

assignment

clause

anywhere

in

a

Java

program

that

a

Java

assignment

statement

can

appear.

However,

you

cannot

put

an

assignment

clause

where

a

Java

assignment

expression

can

appear.

For

example,

you

cannot

specify

an

assignment

clause

in

the

control

list

of

a

for

statement.

Related

concepts:

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

345

Related

reference:

v

“Fullselect”

in

the

SQL

Reference,

Volume

1

v

“Select-statement”

in

the

SQL

Reference,

Volume

1

v

“SQLJ

iterator-conversion-clause”

on

page

406

SQLJ

iterator-conversion-clause

The

iterator

conversion

clause

converts

a

JDBC

ResultSet

to

an

iterator.

Syntax:

��

CAST

host-expression

��

Description:

host-expression

Identifies

the

JDBC

ResultSet

that

is

to

be

converted

to

an

SQLJ

iterator.

Usage

notes:

v

If

the

iterator

to

which

the

JDBC

ResultSet

is

to

be

converted

is

a

positioned

iterator,

the

number

of

columns

in

the

ResultSet

must

match

the

number

of

columns

in

the

iterator.

In

addition,

the

data

type

of

each

column

in

the

ResultSet

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

iterator.

v

If

the

iterator

is

a

named

iterator,

the

name

of

each

accessor

method

must

match,

except

for

case,

the

name

of

a

column

in

the

ResultSet.

In

addition,

the

data

type

of

the

object

that

an

accessor

method

returns

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

ResultSet.

v

When

an

iterator

that

is

generated

through

the

iterator

conversion

clause

is

closed,

the

ResultSet

from

which

the

iterator

is

generated

is

also

closed.

Related

concepts:

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

345

406

Programming

Client

Applications

Selected

sqlj.runtime

classes

and

interfaces

The

sqlj.runtime

package

defines

the

run-time

classes

and

interfaces

that

SQLJ

uses.

This

topic

describes:

v

Each

class

of

sqlj.runtime

that

contains

methods

that

you

can

invoke

in

your

SQLJ

application

programs

v

Each

of

the

interfaces

that

you

might

need

to

implement

in

your

SQLJ

application

programs

sqlj.runtime.ExecutionContext

class:

The

sqlj.runtime.ExecutionContext

class

is

defined

for

execution

contexts.

You

can

use

an

execution

context

to

control

the

execution

of

SQL

statements.

After

you

declare

an

execution

context

and

create

an

instance

of

that

execution

context,

you

can

use

the

following

methods.

executeBatch

Format:

public

synchronized

int[]

executeBatch()

Executes

the

pending

statement

batch

and

returns

an

array

of

update

counts.

If

no

pending

statement

batch

exists,

null

is

returned.

When

this

method

is

called,

the

statement

batch

is

cleared,

even

if

the

call

results

in

an

exception.

getBatchLimit

Format:

synchronized

public

int

getBatchLimit()

Returns

the

current

batch

limit,

which

is

the

number

of

statements

that

are

added

to

a

batch

before

the

batch

is

implicitly

executed.

getBatchUpdateCounts

Format:

public

synchronized

int[]

getBatchUpdateCounts()

Returns

an

array

that

contains

the

number

of

rows

updated

by

each

statement

that

successfully

executed

in

a

batch.

Returns

null

if

no

statements

in

the

batch

completed

successfully.

getMaxFieldSize

Format:

public

int

getMaxFieldSize()

Returns

the

maximum

number

of

bytes

that

are

returned

for

any

character

or

binary

column

in

queries

that

use

the

given

execution

context.

A

value

of

0

means

that

the

maximum

number

of

bytes

is

unlimited.

getMaxRows

Format:

public

int

getMaxRows()

Returns

the

maximum

number

of

rows

that

are

returned

for

any

query

that

uses

the

given

execution

context.

A

value

of

0

means

that

the

maximum

number

of

rows

is

unlimited.

getNextResultSet

Formats:

Chapter

17.

JDBC

and

SQLJ

reference

407

public

ResultSet

getNextResultSet()

public

ResultSet

getNextResultSet(int

current)

After

a

stored

procedure

call,

returns

a

result

set

from

the

stored

procedure.

A

value

of

null

means

that

there

are

no

more

result

sets

to

be

returned.

When

you

invoke

getNextResultSet(),

SQLJ

closes

the

currently-open

result

set

and

advances

to

the

next

result

set.

When

you

invoke

getNextResultSet(int

current),

the

value

of

current

indicates

what

SQLJ

does

with

the

currently-open

result

set

before

it

advances

to

the

next

result

set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

is

closed

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

stays

open

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies

that

all

open

ResultSet

objects

are

closed

when

the

next

ResultSet

object

is

returned.

getNextResultSet(int

current)

requires

JDK

1.4

or

later.

getUpdateCount

Format:

public

abstract

int

getUpdateCount()

throws

SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT

If

the

statement

was

added

to

an

existing

batch.

ExecutionContext.NEW_BATCH_COUNT

If

the

statement

was

the

first

statement

in

a

new

batch.

ExecutionContext.EXEC_BATCH_COUNT

If

the

statement

was

part

of

a

batch,

and

the

batch

was

executed.

Other

integer

If

the

statement

was

executed

rather

than

added

to

a

batch.

This

value

is

the

number

of

rows

that

were

updated

by

the

statement.

getWarnings

Format:

public

SQLWarning

getWarnings()

Returns

the

first

warning

that

was

reported

by

the

last

SQL

operation

that

was

executed

using

this

context.

Subsequent

warnings

are

chained

to

the

first

warning.

Use

this

method

to

retrieve

positive

SQLCODEs.

isBatching

Format:

public

synchronized

boolean

isBatching()

Returns

true

if

batching

is

enabled.

Returns

false

if

batching

is

disabled.

408

Programming

Client

Applications

setBatching

Format:

public

synchronized

void

setBatching(boolean)

Enables

or

disables

batching.

setBatchLimit

Format:

public

synchronized

void

setBatchLimit(int)

Sets

the

maximum

number

of

statements

that

are

added

to

a

batch

before

the

batch

is

implicitly

executed.

Possible

values

for

the

input

parameter

are:

ExecutionContext.UNLIMITED_BATCH

Indicates

that

implicit

execution

occurs

only

when

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

Setting

this

value

is

the

same

as

not

invoking

setBatchLimit.

ExecutionContext.AUTO_BATCH

Indicates

that

implicit

execution

occurs

when

the

number

of

statements

in

the

batch

reaches

a

number

that

is

set

by

SQLJ.

Positive

integer

The

number

of

statements

that

are

added

to

the

batch

before

SQLJ

executes

the

batch

implicitly.

The

batch

might

be

executed

before

this

many

statements

have

been

added

if

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

setMaxFieldSize

Format:

public

void

setMaxFieldSize(int

max)

Specifies

the

maximum

number

of

bytes

that

are

returned

for

any

character

or

binary

column

in

queries

that

use

the

given

execution

context.

The

default

is

0,

which

means

that

the

maximum

number

of

bytes

is

unlimited.

setMaxRows

Format:

public

void

setMaxRows(int

max)

Specifies

the

maximum

number

of

rows

that

are

returned

for

any

query

that

uses

the

given

execution

context.

The

default

is

0,

which

means

that

the

maximum

number

of

rows

returned

is

unlimited.

sqlj.runtime.ConnectionContext

interface:

sqlj.runtime.ConnectionContext

is

an

interface

that

SQLJ

implements

when

you

execute

a

connection

declaration

clause

and

thereby

create

a

connection

context

class.

Suppose

that

you

declare

a

connection

named

Ctx.

You

can

then

use

the

following

methods

to

determine

or

change

the

default

context.

getDefaultContext

Format:

public

static

Ctx

getDefaultContext()

Returns

the

default

connection

context

object

for

the

Ctx

class.

Chapter

17.

JDBC

and

SQLJ

reference

409

SetDefaultContext

Format:

public

static

void

Ctx

setDefaultContext(Ctx

default-context)

Sets

the

default

connection

context

object

for

the

Ctx

class.

sqlj.runtime.ForUpdate

interface:

Implement

the

sqlj.runtime.ForUpdate

interface

for

positioned

UPDATE

or

DELETE

operations.

You

implement

sqlj.runtime.ForUpdate

in

an

SQLJ

iterator

declaration

clause.

sqlj.runtime.NamedIterator

interface:

sqlj.runtime.NamedIterator

is

an

interface

that

SQLJ

implements

when

you

declare

a

named

iterator.

When

you

declare

an

instance

of

a

named

iterator,

SQLJ

creates

an

accessor

method

for

each

column

in

the

expected

result

table.

An

accessor

method

returns

the

data

from

its

column

of

the

result

table.

The

name

of

an

accessor

method

matches

the

name

of

the

corresponding

column

in

the

named

iterator.

In

addition

to

the

accessor

methods,

SQLJ

generates

the

following

methods

that

you

can

invoke

in

your

SQLJ

application.

close

Format:

public

abstract

void

close()

throws

SQLException

Releases

database

resources

that

the

iterator

uses.

isClosed

Format:

public

abstract

boolean

isClosed()

throws

SQLException

Returns

a

value

of

true

if

the

close

method

has

been

invoked.

next

Format:

public

abstract

boolean

next()

throws

SQLException

Advances

the

iterator

to

the

next

row.

Before

an

instance

of

the

next

method

is

invoked

for

the

first

time,

the

iterator

is

positioned

before

the

first

row

of

the

result

table.

next

returns

a

value

of

true

when

a

next

row

is

available

and

false

when

all

rows

have

been

retrieved.

sqlj.runtime.PositionedIterator

interface:

sqlj.runtime.PositionedIterator

is

an

interface

that

SQLJ

implements

when

you

declare

a

positioned

iterator.

After

you

declare

and

create

an

instance

of

a

positioned

iterator,

you

can

use

the

following

method.

endFetch

Format:

public

abstract

boolean

endFetch()

throws

SQLException

Returns

a

value

of

true

if

the

iterator

is

not

positioned

on

a

row.

410

Programming

Client

Applications

sqlj.runtime.ResultSetIterator

interface:

sqlj.runtime.ResultSetIterator

is

an

interface

that

SQLJ

implements

when

you

declare

an

iterator.

After

you

declare

and

create

an

instance

of

an

iterator,

you

can

use

the

following

methods.

clearWarnings

Format:

public

abstract

void

clearWarnings()

throws

SQLException

Returns

null

until

a

new

warning

is

reported

for

this

iterator.

close

Format:

public

abstract

void

close()

throws

SQLException

Releases

database

resources

that

the

iterator

uses.

getResultSet

Format:

public

abstract

ResultSet

getResultSet()

throws

SQLException

Returns

a

JDBC

result

set

representation

of

an

SQLJ

iterator.

getWarnings

Format:

public

abstract

SQLWarning

getWarnings()

throws

SQLException

Returns

the

first

warning

that

is

reported

by

calls

on

this

iterator.

Subsequent

iterator

warnings

are

be

chained

to

this

SQLWarning.

The

warning

chain

is

automatically

cleared

each

time

a

new

row

is

read.

isClosed

Format:

public

abstract

boolean

isClosed()

throws

SQLException

Returns

a

value

of

true

if

the

close

method

has

been

invoked.

next

Format:

public

abstract

boolean

next()

throws

SQLException

Advances

the

iterator

to

the

next

row.

Before

an

instance

of

the

next

method

is

invoked

for

the

first

time,

the

iterator

is

positioned

before

the

first

row

of

the

result

table.

next

returns

a

value

of

true

when

a

next

row

is

available

and

false

when

all

rows

have

been

retrieved.

sqlj.runtime.Scrollable

interface:

sqlj.runtime.Scrollable

is

an

interface

that

you

implement

when

you

declare

a

scrollable

iterator.

You

use

the

sqlj.runtime.Scrollable

methods

to

move

around

in

the

result

table

and

to

check

your

position

in

the

result

table.

absolute(int)

Format:

public

abstract

boolean

absolute

(int

n)

throws

SQLException

Moves

the

iterator

to

a

specified

row.

Chapter

17.

JDBC

and

SQLJ

reference

411

If

n>0,

positions

the

iterator

on

row

n

of

the

result

table.

If

n<0,

and

m

is

the

number

of

rows

in

the

result

table,

positions

the

iterator

on

row

m+n+1

of

the

result

table.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

table,

positions

the

cursor

after

the

last

row

if

n

is

negative,

or

before

the

first

row

if

n

is

positive.

Absolute(1)

is

the

same

as

first().

Absolute(-1)

is

the

same

as

last().

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

afterLast()

Format:

public

abstract

void

afterLast()

throws

SQLException

Moves

the

iterator

after

the

last

row

of

the

result

table.

beforeFirst()

Format:

public

abstract

void

beforeFirst()

throws

SQLException

Moves

the

iterator

before

the

first

row

of

the

result

table.

first()

Format:

public

abstract

boolean

first()

throws

SQLException

Moves

the

iterator

to

the

first

row

of

the

result

table.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

getFetchDirection()

Format:

public

abstract

int

getFetchDirection

(

)

throws

SQLException

Returns

the

fetch

direction

of

the

iterator.

Possible

values

are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows

are

processed

in

a

forward

direction,

from

first

to

last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows

are

processed

in

a

backward

direction,

from

last

to

first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The

order

of

processing

is

not

known.

isAfterLast()

Format:

public

abstract

boolean

isAfterLast()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

after

the

last

row

of

the

result

table.

Otherwise,

returns

false.

isBeforeFirst()

Format:

public

abstract

boolean

isBeforeFirst()

throws

SQLException

412

Programming

Client

Applications

Returns

true

if

the

iterator

is

positioned

before

the

first

row

of

the

result

table.

Otherwise,

returns

false.

isFirst()

Format:

public

abstract

boolean

isFirst()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

on

the

first

row

of

the

result

table.

Otherwise,

returns

false.

isLast()

Format:

public

abstract

boolean

isLast()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

on

the

last

row

of

the

result

table.

Otherwise,

returns

false.

last()

Format:

public

abstract

boolean

last()

throws

SQLException

Moves

the

iterator

to

the

last

row

of

the

result

table.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

previous()

Format:

public

abstract

boolean

previous()

throws

SQLException

Moves

the

iterator

to

the

previous

row

of

the

result

table.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

relative(int)

Format:

public

abstract

boolean

relative(int

n)

throws

SQLException

If

n>0,

positions

the

iterator

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

positions

the

iterator

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

positions

the

iterator

on

the

current

row.

The

cursor

must

be

on

a

valid

row

of

the

result

table

before

you

can

use

this

method.

If

the

cursor

is

before

the

first

row

or

after

the

last

throw,

the

method

throws

an

SQLException.

Suppose

that

m

is

the

number

of

rows

in

the

result

table

and

x

is

the

current

row

number

in

the

result

table.

If

n>0

and

x+n>m,

the

the

iterator

is

positioned

after

the

last

row.

If

n<0

and

x+n<1,

the

iterator

is

positioned

before

the

first

row.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

setFetchDirection(int)

Format:

public

abstract

void

setFetchDirection

(int)

throws

SQLException

Gives

the

SQLJ

runtime

environment

a

hint

as

to

the

direction

in

which

rows

of

this

iterator

object

are

processed.

Possible

values

are:

Chapter

17.

JDBC

and

SQLJ

reference

413

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows

are

processed

in

a

forward

direction,

from

first

to

last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows

are

processed

in

a

backward

direction,

from

last

to

first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The

order

of

processing

is

not

known.

Related

tasks:

v

“Making

batch

updates

in

SQLJ

applications”

on

page

355

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

322

v

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

332

v

“Using

a

positioned

iterator

in

an

SQLJ

application”

on

page

334

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

336

v

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

361

v

“Handling

SQL

warnings

in

an

SQLJ

application”

on

page

344

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

353

DB2

Universal

JDBC

Driver

reference

information

The

sections

that

follow

contain

information

that

is

specific

to

the

DB2

Universal

JDBC

Driver.

Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC

This

topic

describes

the

JDBC

APIs

that

are

specific

to

the

DB2

Universal

JDBC

Driver.

To

use

any

of

the

methods

that

are

described

in

this

topic,

you

must

cast

an

instance

of

the

related,

standard

JDBC

class

to

an

instance

of

the

DB2-only

class.

For

example:

javax.sql.DataSource

ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setServerName("sysmvs1.stl.ibm.com");

DB2ActiveServerList

class:

The

com.ibm.db2.jcc.DB2ActiveServerList

class

implements

the

java.io.Serializable

and

javax.naming.Referenceable

interfaces.

DB2ActiveServerList

methods:

getAlternatePortNumber

Format:

public

int[]

getAlternatePortNumber()

Retrieves

the

port

numbers

that

are

associated

with

the

alternate

DB2

UDB

servers.

getAlternateServerName

Format:

public

String[]

getAlternateServerName()

414

Programming

Client

Applications

|

|
|

|

|
|

|

|
|

|
|

|

Retrieves

an

array

that

contains

the

names

of

the

alternate

DB2

UDB

servers.

These

values

are

IP

addresses

or

DNS

server

names.

setAlternatePortNumber

Format:

public

void

setAlternatePortNumber(int[]

alternatePortNumberList)

Sets

the

port

numbers

that

are

associated

with

the

alternate

DB2

UDB

servers.

setAlternateServerName

Format:

public

void

setAlternateServerName(String[]

alternateServer)

Sets

the

alternate

server

names

for

DB2

UDB

servers.

These

values

are

IP

addresses

or

DNS

server

names.

DB2BaseDataSource

class:

The

com.ibm.db2.jcc.DB2BaseDataSource

class

is

the

abstract

data

source

parent

class

for

all

DB2-specific

implementations

of

javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource,

and

javax.sql.XADataSource.

DB2BaseDataSource

properties:

The

following

properties

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

explanations

of

these

properties.

Each

of

these

properties

has

a

setXXX

method

to

set

the

value

of

the

property

and

a

getXXX

method

to

retrieve

the

value.

A

setXXX

method

has

this

form:

void

setProperty-name(data-type

property-value)

A

getXXX

method

has

this

form:

data-type

getProperty-name()

Property-name

is

the

unqualified

property

name,

with

the

first

character

capitalized.

Table

74

lists

the

DB2

Universal

JDBC

Driver

properties

and

their

data

types.

Table

74.

DB2

Universal

JDBC

Driver

properties

and

their

data

types

Property

name

Data

type

com.ibm.db2.jcc.DB2BaseDataSource.activeServerListJNDIName

String

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation

String

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation

String

com.ibm.db2.jcc.DB2BaseDataSource.clientUser

String

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation

String

com.ibm.db2.jcc.DB2BaseDataSource.cliSchema

String

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath

String

com.ibm.db2.jcc.DB2BaseDataSource.currentLockTimeout

int

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath

String

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity

int

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema

String

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID

String

Chapter

17.

JDBC

and

SQLJ

reference

415

|
|

|
|

|

|

|
|

|

|
|

||

||

||

||

Table

74.

DB2

Universal

JDBC

Driver

properties

and

their

data

types

(continued)

Property

name

Data

type

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID

String

com.ibm.db2.jcc.DB2BaseDataSource.databaseName

String

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares

boolean

com.ibm.db2.jcc.DB2BaseDataSource.description

String

com.ibm.db2.jcc.DB2BaseDataSource.driverType

int

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData

boolean

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential

Object

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection

String

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic

int

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal

String

com.ibm.db2.jcc.DB2BaseDataSource.logWriter

PrintWriter

com.ibm.db2.jcc.DB2BaseDataSource.portNumber

int

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability

int

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism

int

com.ibm.db2.jcc.DB2BaseDataSource.serverName

String

com.ibm.db2.jcc.DB2BaseDataSource.readOnly

boolean

com.ibm.db2.jcc.DB2BaseDataSource.traceFile

String

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel

int

com.ibm.db2.jcc.DB2BaseDataSource.user

String

DB2BaseDataSource

methods:

In

addition

to

the

getXXX

and

setXXX

methods

for

the

DB2BaseDataSource

properties,

the

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getReference

Format:

public

javax.naming.Reference

getReference()

throws

javax.naming.NamingException

Retrieves

the

Reference

of

a

DataSource

object.

For

an

explanation

of

a

Reference,

see

the

description

of

javax.naming.Referenceable

in

the

JNDI

documentation

at:

http://java.sun.com/products/jndi/docs.html

DB2Connection

interface:

The

com.ibm.db2.jcc.DB2Connection

interface

extends

the

java.sql.Connection

interface.

DB2Connection

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getDB2ClientAccountingInformation

Format:

416

Programming

Client

Applications

||

public

String

getDB2ClientAccountingInformation()

throws

SQLException

Returns

accounting

information

for

the

current

client.

getDB2ClientApplicationInformation

Format:

public

String

getDB2ClientApplicationInformation()

throws

SQLException

Returns

application

information

for

the

current

client.

getDB2ClientUser

Format:

public

String

getDB2ClientUser()

throws

SQLException

Returns

the

current

client

user

name

for

the

connection.

This

name

is

not

the

user

value

for

the

JDBC

connection.

getDB2ClientWorkstation

Format:

public

String

getDB2ClientWorkstation()

throws

SQLException

Returns

current

client

workstation

name

for

the

current

client.

getDB2CurrentPackagePath

Format:

public

String

getDB2CurrentPackagePath()

throws

SQLException

Returns

the

list

of

DB2

package

collections

that

are

searched

for

the

DB2

Universal

JDBC

Driver

packages.

getDB2CurrentPackageSet

Format:

public

String

getDB2CurrentPackageSet()

throws

SQLException

Returns

the

collection

ID

for

the

connection.

getDB2SystemMonitor

Format:

public

abstract

DB2SystemMonitor

getDB2SystemMonitor()

throws

SQLException

Returns

the

system

monitor

object

for

the

connection.

Each

DB2

Universal

JDBC

Driver

connection

can

have

a

single

system

monitor.

See

“DB2SystemMonitor

interface”

on

page

423

for

more

information.

getJccLogWriter

Format:

public

PrintWriter

getJccLogWriter()

throws

SQLException

Returns

the

current

trace

destination

for

the

DB2

Universal

JDBC

Driver

trace.

setDB2ClientAccountingInformation

Format:

Chapter

17.

JDBC

and

SQLJ

reference

417

|
|

|
|

|
|
|

public

void

setDB2ClientAccountingInformation(String

info)

throws

SQLException

Specifies

accounting

information

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

Parameter

description:

info

User-specified

accounting

information.

The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2ClientApplicationInformation

Format:

public

void

setDB2ClientApplicationInformation(String

info)

throws

SQLException

Specifies

application

information

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

Parameter

description:

info

User-specified

application

information.

The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2ClientUser

Format:

public

void

setDB2ClientUser(String

user)

throws

SQLException

Specifies

the

current

client

user

name

for

the

connection.

This

name

is

for

client

accounting

purposes,

and

is

not

the

user

value

for

the

JDBC

connection.

Unlike

the

user

for

the

JDBC

connection,

the

current

client

user

name

can

change

during

a

connection.

Parameter

description:

user

The

user

ID

for

the

current

client.The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2ClientWorkstation

Format:

public

void

setDB2ClientWorkstation(String

name)

throws

SQLException

Specifies

the

current

client

workstation

name

for

the

connection.

This

name

is

for

client

accounting

purposes.

The

current

client

workstation

name

can

change

during

a

connection.

Parameter

description:

418

Programming

Client

Applications

name

The

workstation

name

for

the

current

client.The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

maximum

length

is

255

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2CurrentPackagePath

Format:

public

void

setDB2CurrentPackagePath(String

packagePath)

throws

SQLException

Specifies

a

list

of

collection

IDs

that

DB2

searches

for

the

DB2

Universal

JDBC

Driver

DB2

packages.

Parameter

description:

packagePath

A

comma-separated

list

of

collection

IDs.

setDB2CurrentPackageSet

Format:

public

void

setDB2CurrentPackageSet(String

packageSet)

throws

SQLException

Specifies

the

collection

ID

for

the

connection.

When

you

set

this

value,

you

also

set

the

collection

ID

of

the

DB2

Universal

JDBC

Driver

instance

that

is

used

for

the

connection.

Parameter

description:

packageSet

The

collection

ID

for

the

connection.

The

maximum

length

for

the

packageSet

value

is

18

bytes.

You

can

invoke

this

method

as

an

alternative

to

executing

the

SQL

SET

CURRENT

PACKAGESET

statement

in

your

program.

setJccLogWriter

Formats:

public

void

setJccLogWriter(PrintWriter

logWriter)

throws

SQLException

public

void

setJccLogWriter(PrintWriter

logWriter,

int

traceLevel)

throws

SQLException

Enables

or

disables

the

DB2

Universal

JDBC

Driver

trace,

or

changes

the

trace

destination

during

an

active

connection.

Parameter

descriptions:

logWriter

An

object

of

type

java.io.PrintWriter

to

which

the

DB2

Universal

JDBC

Driver

writes

trace

output.

To

turn

off

the

trace,

set

the

value

of

logWriter

to

null.

traceLevel

Specifies

the

types

of

traces

to

collect.

See

the

description

of

the

traceLevel

property

in

Properties

for

the

DB2

Universal

JDBC

Driver

for

valid

values.

DB2DatabaseMetaData

interface:

Chapter

17.

JDBC

and

SQLJ

reference

419

The

com.ibm.db2.jcc.DB2DatabaseMetaData

interface

extends

the

java.sql.DatabaseMetaData

interface.

DB2DatabaseMetaData

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

DB2Diagnosable

interface:

The

com.ibm.db2.jcc.DB2Diagnosable

interface

provides

a

mechanism

for

getting

DB2

diagnostics

from

a

DB2

SQLException.

DB2Diagnosable

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getSqlca

Format:

public

DB2Sqlca

getSqlca()

Returns

a

DB2Sqlca

object

from

a

java.sql.Exception

that

is

produced

under

a

DB2

Universal

JDBC

Driver.

getThrowable

Format:

public

Throwable

getThrowable()

Returns

a

java.lang.Throwable

object

from

a

java.sql.Exception

that

is

produced

under

a

DB2

Universal

JDBC

Driver.

printTrace

Format:

static

public

void

printTrace(java.io.PrintWriter

printWriter,

String

header)

Prints

diagnostic

information

after

a

java.sql.Exception

is

thrown

under

a

DB2

Universal

JDBC

Driver.

Parameter

descriptions:

printWriter

The

destination

for

the

diagnostic

information.

header

User-defined

information

that

is

printed

at

the

beginning

of

the

output.

DB2ExceptionFormatter

class:

The

com.ibm.db2.jcc.DB2ExceptionFormatter

class

contains

methods

for

printing

diagnostic

information

to

a

stream.

DB2ExceptionFormatter

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

printTrace

Formats:

420

Programming

Client

Applications

static

public

void

printTrace(java.sql.SQLException

sqlException,

java.io.PrintWriter

printWriter,

String

header)

static

public

void

printTrace(DB2Sqlca

sqlca,

java.io.PrintWriter

printWriter,

String

header)

static

public

void

printTrace(java.lang.Throwable

throwable,

java.io.PrintWriter

printWriter,

String

header)

Prints

diagnostic

information

after

an

exception

is

thrown.

Parameter

descriptions:

sqlException|sqlca|throwable

The

exception

that

was

thrown

during

a

previous

JDBC

or

Java

operation.

printWriter

The

destination

for

the

diagnostic

information.

header

User-defined

information

that

is

printed

at

the

beginning

of

the

output.

DB2RowID

interface:

The

com.ibm.db2.jcc.DB2RowID

class

is

used

for

declaring

Java

objects

for

use

with

the

DB2

ROWID

data

type.

DB2RowID

methods:

The

following

method

is

defined

only

for

the

DB2

Universal

JDBC

Driver.

getBytes

Format:

public

byte[]

getBytes()

Converts

a

com.ibm.jcc.DB2RowID

object

to

bytes.

DB2SimpleDataSource

class:

The

com.ibm.db2.jcc.DB2SimpleDataSource

class

extends

the

DataBaseDataSource

class.

A

DataBaseDataSource

object

does

not

support

connection

pooling

or

distributed

transactions.

It

contains

all

of

the

properties

and

methods

that

the

DB2BaseDataSource

class

contains.

In

addition,

DB2SimpleDataSource

contains

the

following

DB2

Universal

JDBC

Driver-only

properties.

DB2SimpleDataSource

properties:

The

following

property

is

defined

only

for

the

DB2

Universal

JDBC

Driver.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

an

explanation

of

this

property.

String

com.ibm.db2.jcc.DB2SimpleDataSource.password

DB2SimpleDataSource

methods:

The

following

method

is

defined

only

for

the

DB2

Universal

JDBC

Driver.

setPassword

Format:

public

void

setPassword(String

password)

Chapter

17.

JDBC

and

SQLJ

reference

421

|

|
|

|

|

|
|

|

|

Sets

the

password

for

the

DB2SimpleDataSource

object.

There

is

no

corresponding

getPassword

method.

Therefore,

the

password

cannot

be

encrypted

because

there

is

no

way

to

retrieve

the

password

so

that

you

can

decrypt

it.

DB2Sqlca

class:

The

com.ibm.db2.jcc.DB2Sqlca

class

is

an

encapsulation

of

the

DB2

SQLCA.

.

DB2Sqlca

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getMessage

Format:

public

abstract

String

getMessage()

Returns

error

message

text.

getSqlCode

Format:

public

abstract

int

getSqlCode()

Returns

an

SQL

error

code

value.

getSqlErrd

Format:

public

abstract

int[]

getSqlErrd()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLERRD.

getSqlErrmc

Format:

public

abstract

String

getSqlErrmc()

Returns

a

string

that

contains

the

SQLCA

SQLERRMC

values,

delimited

with

spaces.

getSqlErrmcTokens

Format:

public

abstract

String[]

getSqlErrmcTokens()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLERRMC

token.

getSqlErrd

Format:

public

abstract

int[]

getSqlErrd()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLERRP

value.

getSqlErrp

Format:

public

abstract

String

getSqlErrp()

Returns

the

SQLCA

SQLERRP

value.

getSqlState

Format:

422

Programming

Client

Applications

public

abstract

String

getSqlState()

Returns

the

SQLCA

SQLSTATE

value.

getSqlWarn

Format:

public

abstract

char[]

getSqlWarn()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLWARN

value.

DB2SystemMonitor

interface:

The

com.ibm.db2.jcc.DB2SystemMonitor

interface

is

used

for

collecting

system

monitoring

data

for

a

connection.

Each

connection

can

have

one

DB2SystemMonitor

instance.

DB2SystemMonitor

fields:

The

following

fields

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

public

final

static

int

RESET_TIMES

public

final

static

int

ACCUMULATE_TIMES

These

values

are

arguments

for

the

DB2SystemMonitor.start

method.

RESET_TIMES

sets

time

counters

to

zero

before

monitoring

starts.

ACCUMULATE_TIMES

does

not

set

time

counters

to

zero.

DB2SystemMonitor

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

enable

Format:

public

void

enable(boolean

on)

throws

java.sql.SQLException

Enables

the

system

monitor

that

is

associated

with

a

connection.

This

method

cannot

be

called

during

monitoring.

All

times

are

reset

when

enable

is

invoked.

getApplicationTimeMillis

Format:

public

long

getApplicationTimeMillis()

throws

java.sql.SQLException

Returns

the

sum

of

the

application,

JDBC

driver,

network

I/O,

and

DB2

server

elapsed

times.

The

time

is

in

milliseconds.

A

monitored

elapsed

time

interval

is

the

difference,

in

milliseconds,

between

these

points

in

the

JDBC

driver

processing:

Interval

beginning

When

start

is

called.

Interval

end

When

stop

is

called.

getApplicationTimeMillis

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method

results

in

an

SQLException.

Chapter

17.

JDBC

and

SQLJ

reference

423

|

|
|
|

|

|

|
|
|
|
|

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

getCoreDriverTimeMicros

Format:

public

long

getCoreDriverTimeMicros()

throws

java.sql.SQLException

Returns

the

sum

of

elapsed

monitored

API

times

that

were

collected

while

system

monitoring

was

enabled.

The

time

is

in

microseconds.

A

monitored

API

is

a

JDBC

driver

method

for

which

processing

time

is

collected.

In

general,

elapsed

times

are

monitored

only

for

APIs

that

might

result

in

network

I/O

or

DB2

server

interaction.

For

example,

PreparedStatement.setXXX

methods

and

ResultSet.getXXX

methods

are

not

monitored.

Monitored

API

elapsed

time

includes

the

total

time

that

is

spent

in

the

driver

for

a

method

call.

This

time

includes

any

network

I/O

time

and

DB2

server

elapsed

time.

A

monitored

API

elapsed

time

interval

is

the

difference,

in

microseconds,

between

these

points

in

the

JDBC

driver

processing:

Interval

beginning

When

a

monitored

API

is

called

by

the

application.

Interval

end

Immediately

before

the

monitored

API

returns

control

to

the

application.

getCoreDriverTimeMicros

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method,

or

calling

this

method

when

the

underlying

JVM

does

not

support

reporting

times

in

microseconds

results

in

an

SQLException.

getNetworkIOTimeMicros

Format:

public

long

getNetworkIOTimeMicros()

throws

java.sql.SQLException

Returns

the

sum

of

elapsed

network

I/O

times

that

were

collected

while

system

monitoring

was

enabled.

The

time

is

in

microseconds.

Elapsed

network

I/O

time

includes

the

time

to

write

and

read

DRDA

data

from

network

I/O

streams.

A

network

I/O

elapsed

time

interval

is

the

time

interval

to

perform

the

following

operations

in

the

JDBC

driver:

v

Issue

a

TCP/IP

command

to

send

a

DRDA

message

to

the

DB2

server.

This

time

interval

is

the

difference,

in

microseconds,

between

points

immediately

before

and

after

a

write

and

flush

to

the

network

I/O

stream

is

performed.

v

Issue

a

TCP/IP

command

to

receive

DRDA

reply

messages

from

the

DB2

server.

This

is

time

interval

is

the

difference,

in

microseconds,

between

points

immediately

before

and

after

a

read

on

the

network

I/O

stream

is

performed.

Network

I/O

time

intervals

are

captured

for

all

send

and

receive

operations,

including

the

sending

of

messages

for

commits

and

rollbacks.

The

time

spent

waiting

for

network

I/O

might

be

impacted

by

delays

in

CPU

dispatching

at

the

DB2

server

for

low-priority

SQL

requests.

Network

I/O

time

intervals

include

DB2

server

elapsed

time.

424

Programming

Client

Applications

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

getNetworkIOTimeMicros

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method,

or

calling

this

method

when

the

underlying

JVM

does

not

support

reporting

times

in

microseconds

results

in

an

SQLException.

getServerTimeMicros

Format:

public

long

getServerTimeMicros()

throws

java.sql.SQLException

Returns

the

sum

of

all

reported

DB2

server

elapsed

times

that

were

collected

while

system

monitoring

was

enabled.

The

time

is

in

microseconds.

The

DB2

server

reports

elapsed

times

under

these

conditions:

v

The

server

supports

returning

elapsed

time

data

to

the

client.

v

The

server

performs

operations

that

can

be

monitored.

For

example,

DB2

server

elapsed

time

is

not

returned

for

commits

or

rollbacks.

DB2

server

elapsed

time

is

defined

as

the

elapsed

time

to

parse

the

request

data

stream,

process

the

command,

and

generate

the

reply

data

stream

at

the

server.

Network

time

to

receive

or

send

the

data

stream

is

not

included.

a

DB2

server

elapsed

time

interval

is

the

difference,

in

microseconds,

between

these

points

in

the

server

processing:

Interval

beginning

When

the

operating

system

dispatches

DB2

to

process

a

TCP/IP

message

that

is

received

from

the

JDBC

driver.

Interval

end

When

DB2

is

ready

to

issue

the

TCP/IP

command

to

return

the

reply

message

to

the

client.

getServerTimeMicros

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method

results

in

an

SQLException.

start

Format:

public

void

start

(int

lapMode)

throws

java.sql.SQLException

If

the

system

monitor

is

enabled,

start

begins

the

collection

of

system

monitoring

data

for

a

connection.

Valid

values

for

lapMode

are

RESET_TIMES

or

ACCUMULATE_TIMES.

Calling

this

method

with

system

monitoring

disabled

does

nothing.

Calling

this

method

more

than

once

without

an

intervening

stop

call

results

in

an

SQLException.

stop

Format:

public

void

stop()

throws

java.sql.SQLException

If

the

system

monitor

is

enabled,

stop

ends

the

collection

of

system

monitoring

data

for

a

connection.

After

monitoring

is

stopped,

monitored

times

can

be

obtained

with

the

getXXX

methods

of

DB2SystemMonitor.

Chapter

17.

JDBC

and

SQLJ

reference

425

|
|
|
|

|
|

|
|

|
|

|

|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

Calling

this

method

with

system

monitoring

disabled

does

nothing.

Calling

this

method

without

first

calling

start,

or

calling

this

method

more

than

once

without

an

intervening

start

call

results

in

an

SQLException.

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

Related

reference:

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

The

DB2

Universal

JDBC

Driver

differs

from

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

(DB2

JDBC

Type

2

Driver)

in

the

following

areas:

Supported

methods:

The

DB2

Universal

JDBC

Driver

supports

a

number

of

JDBC

methods

that

the

other

drivers

do

not

support,

and

does

not

support

several

methods

that

the

other

drivers

support.

For

details,

see

Comparison

of

driver

support

for

JDBC

APIs.

Support

for

scrollable

and

updatable

ResultSets:

The

DB2

Universal

JDBC

Driver

supports

scrollable

and

updatable

ResultSets.

The

DB2

JDBC

Type

2

Driver

supports

scrollable

ResultSets

but

not

updatable

ResultSets.

Difference

in

URL

syntax:

The

syntax

of

the

url

parameter

in

the

DriverManager.getConnection

method

is

different

for

each

driver.

See

the

following

topics

for

more

information:

v

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

v

Connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver

Difference

in

error

codes

and

SQLSTATEs

returned

for

driver

errors:

The

DB2

Universal

JDBC

Driver

does

not

use

existing

SQLCODEs

or

SQLSTATEs

for

internal

errors,

as

the

other

drivers

do.

See

Error

codes

issued

by

the

DB2

Universal

JDBC

Driver

and

SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver.

The

JDBC/SQLJ

driver

for

z/OS

return

ODBC

SQLSTATEs

when

internal

errors

occur.

How

much

error

message

text

is

returned:

426

Programming

Client

Applications

|
|
|

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

SQLException.getMessage(),

formatted

message

text

is

not

returned

unless

you

set

the

retrieveMessagesFromServerOnGetMessage

property

to

true.

With

the

DB2

JDBC

Type

2

Driver,

when

you

execute

SQLException.getMessage(),

formatted

message

text

is

returned.

Security

mechanisms:

The

JDBC

drivers

have

different

security

mechanisms.

For

information

on

DB2

Universal

JDBC

Driver

security

mechanisms,

seeSecurity

under

the

DB2

Universal

JDBC

Driver.

For

information

on

security

mechanisms

for

the

DB2

JDBC

Type

2

Driver,

see

Security

under

the

DB2

JDBC

Type

2

Driver.

Support

for

read-only

connections:

With

the

DB2

Universal

JDBC

Driver,

you

can

make

a

connection

read-only

through

the

readOnly

property

for

a

Connection

or

DataSource

object.

The

DB2

JDBC

Type

2

Driver

uses

the

Connection.setReadOnly

value

when

it

determines

whether

to

make

a

connection

read-only.

However,

setting

Connection.setReadOnly(true)

does

not

guarantee

that

the

connection

is

read-only.

Results

returned

from

ResultSet.getString

for

a

BIT

DATA

column:

The

DB2

Universal

JDBC

Driver

returns

data

from

a

ResultSet.getString

call

for

a

CHAR

FOR

BIT

DATA

or

VARCHAR

FOR

BIT

DATA

column

as

a

lowercase

hexadecimal

string.

The

DB2

JDBC

Type

2

Driver

returns

the

data

as

an

uppercase

hexadecimal

string.

Result

of

an

executeUpdate

call

that

affects

no

rows:

The

DB2

Universal

JDBC

Driver

generates

an

SQLWarning

when

an

executeUpdate

call

affects

no

rows.

The

DB2

JDBC

Type

2

Driver

does

not

generate

an

returns

an

SQLWarning.

Result

of

a

getDate

or

getTime

call

for

a

TIMESTAMP

column:

The

DB2

Universal

JDBC

Driver

does

not

generate

an

SQLWarning

when

a

getDate

or

getTime

call

is

made

against

a

TIMESTAMP

column.

The

DB2

JDBC

Type

2

Driver

generates

an

SQLWarning

when

a

getDate

or

getTime

call

is

made

against

a

TIMESTAMP

column.

When

an

exception

is

thrown

for

PreparedStatement.setXXXStream

with

a

length

mismatch:

When

you

use

the

PreparedStatement.setBinaryStream

,

PreparedStatement.setCharacterStream,

or

PreparedStatement.setUnicodeStream

method,

the

length

parameter

value

must

match

the

number

of

bytes

in

the

input

stream.

Chapter

17.

JDBC

and

SQLJ

reference

427

If

the

numbers

of

bytes

do

not

match,

the

DB2

Universal

JDBC

Driver

does

not

throw

an

exception

until

the

subsequent

PreparedStatement.executeUpdate

method

executes.

Therefore,

for

the

DB2

Universal

JDBC

Driver,

some

data

might

be

sent

to

the

server

when

the

lengths

to

not

match.

That

data

is

truncated

or

padded

by

the

server.

The

calling

application

needs

to

issue

a

rollback

request

to

undo

the

database

updates

that

include

the

truncated

or

padded

data.

The

DB2

JDBC

Type

2

Driver

throws

an

exception

after

the

PreparedStatement.setBinaryStream,

PreparedStatement.setCharacterStream,

or

PreparedStatement.setUnicodeStream

method

executes.

Default

mappings

for

PreparedStatement.setXXXStream:

With

the

DB2

Universal

JDBC

Driver,

when

you

use

the

PreparedStatement.setBinaryStream

,

PreparedStatement.setCharacterStream,

or

PreparedStatement.setUnicodeStream

method,

and

no

information

about

the

data

type

of

the

target

column

is

available,

the

input

data

is

mapped

to

a

BLOB

or

CLOB

data

type.

For

the

DB2

JDBC

Type

2

Driver,

the

input

data

is

mapped

to

a

VARCHAR

FOR

BIT

DATA

or

VARCHAR

data

type.

How

character

conversion

is

done:

When

character

data

is

transferred

between

a

client

and

a

server,

the

data

must

be

converted

to

a

form

that

the

receiver

can

process.

For

the

DB2

Universal

JDBC

Driver,

character

data

that

is

sent

from

the

database

server

to

the

client

is

converted

using

Java’s

built-in

character

converters.

The

conversions

that

the

DB2

Universal

JDBC

Driver

supports

are

limited

to

those

that

are

supported

by

the

underlying

JRE

implementation.

A

DB2

Universal

JDBC

Driver

client

sends

data

to

the

database

server

as

Unicode.

For

the

DB2

JDBC

Type

2

Driver,

character

conversions

can

be

performed

if

the

conversions

are

supported

by

the

DB2

server.

Implicit

or

explicit

data

type

conversion

for

input

parameters:

If

you

execute

a

PreparedStatement.setXXX

method,

and

the

resulting

data

type

from

the

setXXX

method

does

not

match

the

data

type

of

the

table

column

to

which

the

parameter

value

is

assigned,

the

driver

returns

an

error

unless

data

type

conversion

occurs.

With

the

DB2

Universal

JDBC

Driver,

conversion

to

the

correct

SQL

data

type

occurs

implicitly

if

the

target

data

type

is

known

and

if

the

deferPrepares

connection

property

is

set

to

false.

In

this

case,

the

implicit

values

override

any

explicit

values

in

the

setXXX

call.

If

the

deferPrepares

connection

property

is

set

to

true,

you

must

use

the

PreparedStatement.setObject

method

to

convert

the

parameter

to

the

correct

SQL

data

type.

For

the

DB2

JDBC

Type

2

Driver,

if

the

data

type

of

a

parameter

does

not

match

its

default

SQL

data

type,

you

must

use

the

PreparedStatement.setObject

method

to

convert

the

parameter

to

the

correct

SQL

data

type.

Support

for

String

to

BINARY

conversions

for

input

parameters:

428

Programming

Client

Applications

The

DB2

Universal

JDBC

Driver

does

not

support

PreparedStatement.setObject

calls

of

the

following

form

when

x

is

an

object

of

type

String:

setObject(parameterIndex,

x,

java.sqlTypes.BINARY)

The

DB2

JDBC

Type

2

Driver

supports

calls

of

this

type.

The

driver

interprets

the

value

of

x

as

a

hexadecimal

string.

Result

of

PreparedStatement.setObject

with

a

decimal

scale

mismatch:

With

the

DB2

Universal

JDBC

Driver,

if

you

call

PreparedStatement.setObject

with

a

decimal

input

parameter,

and

the

scale

of

the

input

parameter

is

greater

than

the

scale

of

the

target

column,

the

driver

truncates

the

trailing

digits

of

the

input

value

before

assigning

the

value

to

the

column.

The

DB2

JDBC

Type

2

Driver

rounds

the

trailing

digits

of

the

input

value

before

assigning

the

value

to

the

column.

Support

for

conversions

from

the

java.lang.Character

data

type

for

input

parameters:

For

the

following

form

of

PreparedStatement.setObject,

the

DB2

Universal

JDBC

Driver

supports

the

standard

data

type

mappings

of

Java

objects

to

JDBC

data

types

when

it

converts

x

to

a

JDBC

data

type:

setObject(parameterIndex,

x)

The

DB2

JDBC

Type

2

Driver

supports

the

non-standard

mapping

of

x

from

java.lang.Character

to

CHAR.

Support

for

ResultSet.getBinaryStream

against

a

character

column:

The

DB2

Universal

JDBC

Driver

supports

ResultSet.getBinaryStream

with

an

argument

that

represents

a

character

column

only

if

the

column

has

the

FOR

BIT

DATA

attribute.

For

the

DB2

JDBC

Type

2

Driver,

if

the

ResultSet.getBinaryStream

argument

is

a

character

column,

that

column

does

not

need

to

have

the

FOR

BIT

DATA

attribute.

Data

returned

from

ResultSet.getBinaryStream

against

a

binary

column:

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

ResultSet.getBinaryStream

against

a

binary

column,

the

returned

data

is

in

the

form

of

lowercase,

hexadecimal

digit

pairs.

With

the

DB2

JDBC

Type

2

Driver,

when

you

execute

ResultSet.getBinaryStream

against

a

binary

column,

the

returned

data

is

in

the

form

of

uppercase,

hexadecimal

digit

pairs.

Result

of

using

setObject

with

a

Boolean

input

type

and

a

CHAR

target

type:

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

PreparedStatement.setObject(parameterIndex,x,CHAR),

and

x

is

Boolean,

the

value

″0″

or

″1″

is

inserted

into

the

table

column.

With

the

DB2

JDBC

Type

2

Driver,

the

string

″false″

or

″true″

is

inserted

into

the

table

column.

The

table

column

length

must

be

at

least

5.

Chapter

17.

JDBC

and

SQLJ

reference

429

Result

of

using

getBoolean

to

retrieve

a

value

from

a

CHAR

column:

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

ResultSet.getBoolean

or

CallableStatement.getBoolean

to

retrieve

a

Boolean

value

from

a

CHAR

column,

and

the

column

contains

the

value

″false″

or

″0″,

the

value

false

is

returned.

If

the

column

contains

any

other

value,

true

is

returned.

With

the

DB2

JDBC

Type

2

Driver,

when

you

execute

ResultSet.getBoolean

or

CallableStatement.getBoolean

to

retrieve

a

Boolean

value

from

a

CHAR

column,

and

the

column

contains

the

value

″true″

or

″1″,

the

value

true

is

returned.

If

the

column

contains

any

other

value,

false

is

returned.

Result

of

executing

ResultSet.next()

on

a

closed

cursor:

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

ResultSet.next()

on

a

closed

cursor,

an

SQLException

is

thrown.

This

conforms

with

the

JDBC

standard.

With

the

DB2

JDBC

Type

2

Driver,

when

you

execute

ResultSet.next()

on

a

closed

cursor,

a

value

of

false

is

returned,

and

now

exception

is

thrown.

Result

of

specifying

null

arguments

in

DatabaseMetaData

calls:

With

the

DB2

Universal

JDBC

Driver,

you

can

specify

null

for

an

argument

in

a

DatabaseMetaData

method

call

only

where

the

JDBC

specification

states

that

null

is

allowed.

Otherwise,

an

exception

is

thrown.

With

the

DB2

JDBC

Type

2

Driver,

null

means

that

the

argument

is

not

used

to

narrow

the

search.

Support

for

DATALINKs:

The

DB2

Universal

JDBC

Driver

does

not

support

the

DATALINK

SQL

type.

The

DB2

JDBC

Type

2

Driver

supports

the

DATALINK

type

in

method

calls

of

these

forms:

v

PreparedStatement.setObject(parameterIndex,

x,

DB2Constants.DATALINK)

v

PreparedStatement.setObject(parameterIndex,

x,

java.sql.Types.DATALINK)

(Java

1.4

or

later)

v

PreparedStatement.setURL(

parameterIndex,

java.net.URL)

v

PreparedStatement.setObject(

parameterIndex,

java.net.URL)

v

PreparedStatement.setObject(parameterIndex,

java.net.URL,

java.sql.Types.DATALINK)

(Java

1.4

or

later)

v

ResultSet.getString

for

a

DATALINK

column

v

ResultSet.getURL

for

a

DATALINK

column

Folding

of

method

arguments

to

uppercase:

The

DB2

Universal

JDBC

Driver

does

not

fold

any

arguments

in

method

calls

to

uppercase.

The

DB2

JDBC

Type

2

Driver

folds

the

argument

of

a

Statement.setCursorName

call

to

uppercase.

To

prevent

the

cursor

name

from

being

folded

to

uppercase,

precede

and

follow

the

cursor

name

with

the

characters

\".

For

example:

Statement.setCursorName("\"mycursor\"");

Support

for

timestamp

escape

clauses:

430

Programming

Client

Applications

The

DB2

Universal

JDBC

Driver

supports

the

standard

form

of

an

escape

clause

for

TIME:

{t

’hh:mm:ss’}

In

addition

to

the

standard

form,

the

DB2

JDBC

Type

2

Driver

supports

the

following

form

of

a

TIME

escape

clause:

{ts

’hh:mm:ss’}

Using

literals

or

expressions

as

CALL

statement

parameters:

The

DB2

Universal

JDBC

Driver

supports

the

use

of

only

parameter

markers

as

CALL

statement

parameters.

The

DB2

JDBC

Type

2

Driver

supports

the

use

of

literal

and

parameters

as

call

statement

parameters.

Including

a

CALL

statement

in

a

statement

batch:

The

DB2

Universal

JDBC

Driver

supports

CALL

statements

in

a

statement

batch.

The

DB2

UDB

Type

2

Driver

does

not

support

CALL

statements

in

a

statement

batch.

Removal

of

extra

characters

from

SQL

statement

text:

The

DB2

Universal

JDBC

Driver

does

not

remove

white-space

characters,

such

as

spaces,

tabs,

and

new-line

characters,

from

SQL

statement

text

before

it

passes

that

text

to

the

database

server.

The

DB2

UDB

Type

2

Driver

removes

white-space

characters

from

SQLstatement

text

before

it

passes

that

text

to

the

database

server.

Result

of

executing

PreparedStatement.executeBatch:

When

a

PreparedStatement.executeBatch

statement

is

executed

under

the

DB2

Universal

JDBC

Driver,

the

driver

returns

an

int

array

of

update

counts.

Each

element

of

the

array

contains

the

number

of

rows

that

were

updated

by

a

statement

in

the

batch.

When

a

PreparedStatement.executeBatch

statement

is

executed

under

the

DB2

UDB

Type

2

Driver,

the

driver

cannot

determine

the

update

counts,

so

it

returns

-3

for

each

update

count.

Support

for

compound

SQL:

The

DB2

Universal

JDBC

Driver

driver

does

not

support

compound

SQL

blocks.

The

DB2

UDB

Type

2

Driver

supports

compound

SQL

blocks.

You

can

use

a

PreparedStatement.executeUpdate

or

Statement.executeUpdate

call

to

execute

a

compound

SQL

block.

Result

of

not

setting

a

parameter

in

a

batched

update:

The

DB2

Universal

JDBC

Driver

driver

throws

an

exception

after

a

PreparedStatement.addBatch

call

if

a

parameter

is

not

set.

Chapter

17.

JDBC

and

SQLJ

reference

431

The

DB2

UDB

Type

2

Driver

throws

an

exception

after

the

PreparedStatement.executeBatch

call

if

a

parameter

is

not

set

for

any

of

the

statements

in

the

batch.

Ability

to

call

uncatalogued

stored

procedures:

The

DB2

Universal

JDBC

Driver

driver

does

not

let

you

call

stored

procedures

that

are

not

defined

in

the

DB2

catalog.

The

DB2

UDB

Type

2

Driver

lets

you

call

stored

procedures

that

are

not

defined

in

the

DB2

catalog.

Related

concepts:

v

“Security

under

the

DB2

Universal

JDBC

Driver”

on

page

444

v

“LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

289

v

“Security

under

the

DB2

JDBC

Type

2

Driver”

on

page

443

Related

tasks:

v

“Making

batch

updates

in

JDBC

applications”

on

page

304

v

“Using

CallableStatement

methods

to

call

stored

procedures”

on

page

281

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

v

“Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables”

on

page

279

v

“Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications”

on

page

309

v

“Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects”

on

page

277

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

v

“Error

codes

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

434

v

“SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

434

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

SQLJ

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

SQLJ

support

in

the

DB2

Universal

JDBC

Driver

differs

from

SQLJ

support

in

the

other

DB2

JDBC

drivers

in

the

following

areas:

Differences

in

serialized

profiles:

The

DB2

JDBC

Type

2

Driver

and

the

DB2

Universal

JDBC

Driver

produce

different

binary

code

when

you

execute

their

SQLJ

translator

and

the

SQLJ

customizer

utilities.

Therefore,

SQLJ

applications

that

you

translated

and

customized

using

the

DB2

JDBC

Type

2

Driver

sqlj

and

db2profc

utilities

do

not

run

under

the

DB2

Universal

JDBC

Driver.

Before

you

can

run

those

SQLJ

432

Programming

Client

Applications

|

|

|
|
|
|
|

applications

under

the

DB2

Universal

JDBC

Driver,

you

must

retranslate

and

recustomize

the

applications

using

the

DB2

Universal

JDBC

Driver

sqlj

and

db2sqljcustomize

utilities.

You

must

do

so

even

if

you

have

not

modified

the

applications.

SQL

VALUES

support:

The

DB2

JDBC

Type

2

Driver

supports

the

SQL

VALUES

statement

in

an

SQLJ

statement

clause,

but

the

DB2

Universal

JDBC

Driver

does

not.

Therefore,

you

need

to

modify

your

SQLJ

applications

that

include

VALUES

statements.

Example:

Suppose

that

an

SQLJ

program

contains

the

following

statement:

#sql

[ctxt]

hv

=

{VALUES

(MY_ROUTINE(1))};

For

the

DB2

Universal

JDBC

Driver,

you

need

to

change

that

statement

to

something

like

this:

#sql

[ctxt]

{SELECT

MY_ROUTINE(1)

INTO

:hv

FROM

SYSIBM.SYSDUMMY1};

Compound

SQL

statement

support:

The

DB2

JDBC

Type

2

Driver

supports

compound

SQL

statements

in

an

SQLJ

statement

clause,

but

the

DB2

Universal

JDBC

Driver

does

not.

Therefore,

you

need

to

modify

your

SQLJ

applications

that

include

SQLJ

statements

with

BEGIN

COMPOUND

and

END

COMPOUND.

If

you

use

compound

statements

to

do

batch

updates,

you

can

use

the

SQLJ

batch

update

programming

interfaces

instead.

Difference

in

connection

techniques:

The

connection

techniques

that

are

available,

and

the

driver

names

and

URLs

that

are

used

for

those

connection

techniques,

vary

from

driver

to

driver.

See

Connect

to

a

data

source

using

SQLJ

for

more

information.

Support

for

scrollable

and

updatable

iterators:

SQLJ

with

the

DB2

Universal

JDBC

Driver

supports

scrollable

and

updatable

iterators.

The

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

(DB2

JDBC

Type

2

Driver)

supports

scrollable

cursors

but

not

updatable

iterators.

Dynamic

execution

of

SQL

statements

under

WebSphere

Application

Server:

With

the

DB2

Universal

JDBC

Driver,

if

you

are

using

a

version

of

WebSphere

Application

Server

before

version

5.0.1,

all

SQL

statements

in

an

SQLJ

program

are

executed

dynamically,

regardless

of

whether

you

customize

the

SQLJ

program.

For

WebSphere

Application

Server

Version

5.0.1

and

above,

if

you

customize

your

SQLJ

program,

SQL

statements

are

executed

statically.

Related

concepts:

v

“Security

under

the

DB2

Universal

JDBC

Driver”

on

page

444

v

“LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

289

v

“Security

under

the

DB2

JDBC

Type

2

Driver”

on

page

443

Related

tasks:

v

“Making

batch

updates

in

JDBC

applications”

on

page

304

Chapter

17.

JDBC

and

SQLJ

reference

433

|
|
|
|

|

|
|
|

|

|

|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|

v

“Using

CallableStatement

methods

to

call

stored

procedures”

on

page

281

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

v

“Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables”

on

page

279

v

“Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications”

on

page

309

v

“Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects”

on

page

277

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

v

“Error

codes

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

434

v

“SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

434

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

376

v

“Java,

JDBC,

and

SQL

data

types”

on

page

365

Error

codes

issued

by

the

DB2

Universal

JDBC

Driver

Error

codes

in

the

ranges

+4200

to

+4299,

+4450

to

+4499,

-4200

to

-4299,

and

-4450

to

-4499

are

reserved

for

the

DB2

Universal

JDBC

Driver.

Currently,

the

DB2

Universal

JDBC

Driver

issues

the

following

error

codes:

-4200

An

application

that

was

in

a

global

transaction

in

an

XA

environment

issued

an

invalid

commit

or

rollback.

-4498

A

failover

or

failback

occurred,

and

the

transaction

failed.

-4499

A

fatal

error

occurred

that

resulted

in

a

disconnect.

-99999

The

DB2

Universal

JDBC

Driver

issued

an

error

that

does

not

yet

have

an

error

code.

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

v

“Handling

SQL

errors

in

an

SQLJ

application”

on

page

343

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver

SQLSTATEs

in

the

range

46600

to

466ZZ

are

reserved

for

the

DB2

Universal

JDBC

Driver.

Currently,

the

DB2

Universal

JDBC

Driver

returns

a

null

SQLSTATE

value

for

an

internal

error,

unless

the

error

is

a

DRDA

error.

The

following

SQLSTATEs

are

issued

for

DRDA

errors:

08004

The

application

server

rejected

establishment

of

the

connection.

22021

A

character

is

not

in

the

coded

character

set.

24501

The

identified

cursor

is

not

open.

434

Programming

Client

Applications

2D521

SQL

COMMIT

or

ROLLBACK

are

invalid

in

the

current

operating

environment.

58008

Execution

failed

due

to

a

distribution

protocol

error

that

will

not

affect

the

successful

execution

of

subsequent

DDM

commands

or

SQL

statements.

58009

Execution

failed

due

to

a

distribution

protocol

error

that

caused

deallocation

of

the

conversation.

58010

Execution

failed

due

to

a

distribution

protocol

error

that

will

affect

the

successful

execution

of

subsequent

DDM

commands

or

SQL

statements.

58014

The

DDM

command

is

not

supported.

58015

The

DDM

object

is

not

supported.

58016

The

DDM

parameter

is

not

supported.

58017

The

DDM

parameter

value

is

not

supported.

Related

tasks:

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

282

v

“Handling

SQL

errors

in

an

SQLJ

application”

on

page

343

Related

reference:

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

426

Chapter

17.

JDBC

and

SQLJ

reference

435

436

Programming

Client

Applications

Chapter

18.

Installing

the

JDBC

drivers

The

sections

that

follow

contain

information

on

installing

the

JDBC

drivers.

Installing

the

DB2

Universal

JDBC

Driver

If

you

select

JDBC

support

during

the

installation

of

any

of

the

DB2

UDB

for

Linux,

UNIX

and

Windows

products,

the

installation

program

performs

some

of

the

installation

steps

for

the

DB2

Universal

JDBC

Driver.

The

DB2

UDB

Version

8

for

Windows

installation

program

performs

the

following

tasks:

v

Installs

the

db2jcc.jar

and

sqlj.zip

files

and

adds

them

to

the

system

CLASSPATH

v

Installs

file

db2jcct2.dll,

which

is

required

for

Universal

Type

2

Connectivity,

in

the

sqllib\bin

directory

The

DB2

UDB

Version

8

for

UNIX

installation

program

performs

the

following

tasks:

v

Installs

the

db2jcc.jar

and

sqlj.zip

files

v

Adds

the

db2jcc.jar

and

sqlj.zip

files

to

the

CLASSPATH

statement

in

the

db2profile

(for

Bourne

or

Korn

shell)

or

db2cshrc

(for

C

shell)

script

v

Installs

file

libdb2jcct2.so

(libdb2jcct2.sl

for

HP-UX),

which

is

required

for

Universal

Type

2

Connectivity,

in

the

sqllib/lib

directory

You

need

to

perform

the

following

additional

steps

to

install

the

DB2

Universal

JDBC

Driver.

Prerequisites:

v

JDK

1.3.1

or

later

JDBC

3.0

features

require

a

minimum

level

of

JDK

1.4.

v

TCP/IP

Servers

must

be

configured

for

TCP/IP

communication

in

the

following

cases:

–

JDBC

or

SQLJ

applications

use

Universal

Type

4

Connectivity.

–

JDBC

or

SQLJ

applications

use

Universal

Type

2

Connectivity,

and

specify

server

and

port

in

the

connection

URL.
v

DB2

UDB

for

z/OS

or

OS/390

stored

procedures

If

any

JDBC

or

SQLJ

applications

will

connect

to

a

DB2

UDB

for

z/OS

or

OS/390

server,

a

number

of

stored

procedures

need

to

be

installed

on

that

server

to

support

retrieval

of

DB2

catalog

information,

tracing,

and

error

message

formatting.

The

stored

procedures

are:

–

SQLCOLPRIVILEGES

–

SQLCOLUMNS

–

SQLFOREIGNKEYS

–

SQLGETTYPEINFO

–

SQLPRIMARYKEYS

–

SQLPROCEDURECOLS

–

SQLPROCEDURES

–

SQLSPECIALCOLUMNS

–

SQLSTATISTICS

–

SQLTABLEPRIVILEGES

–

SQLTABLES

–

SQLUDTS

–

SQLCAMESSAGE

©

Copyright

IBM

Corp.

1997

-

2004

437

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The

stored

procedures

are

shipped

with

the

DB2

UDB

for

z/OS

Version

8

product.

The

stored

procedures

are

shipped

in

the

following

DB2

UDB

for

OS/390

and

z/OS

Version

7

or

DB2

UDB

for

OS/390

Version

6

PTFs:

Table

75.

PTFs

for

DB2

for

OS/390

and

z/OS

DB2

for

OS/390

and

z/OS

version

PTF

number

Version

6

UQ72081

and

UQ72082

Version

7

UQ72083

Ask

your

DB2

UDB

for

z/OS

system

administrator

whether

these

stored

procedures

are

installed.

v

Unicode

support

for

iSeries

servers

If

any

SQLJ

or

JDBC

programs

will

use

Universal

Type

4

Connectivity

to

connect

to

a

DB2

UDB

for

iSeries

server,

the

OS/400

operating

system

must

support

the

Unicode

UTF-8

encoding

scheme.

The

following

table

lists

the

OS/400

PTFs

that

you

need

for

Unicode

UTF-8

support:

Table

76.

OS/400

PTFs

for

Unicode

UTF-8

support

OS/400

version

PTF

numbers

V5R3

or

later

None

(support

is

included)

V5R2

SI06541,

SI06796,

SI07557,

SI07564,

SI07565,

SI07566,

and

SI07567

V5R1

SI06308,

SI06300,

SI06301,

SI06302,

SI06305,

SI06307,

and

SI05872

v

Java

support

for

HP-UX

clients

and

servers

HP-UX

servers:

The

DB2

Universal

JDBC

Driver

does

not

support

databases

that

are

in

the

HP-UX

default

character

set,

Roman8.

Therefore,

when

you

create

a

database

on

an

HP-UX

server

that

you

plan

to

access

with

the

DB2

Universal

JDBC

Driver,

you

need

to

create

the

database

with

a

different

character

set.

HP-UX

clients

and

servers:

The

Java

environment

on

an

HP-UX

system

requires

special

setup

run

applications

under

the

DB2

Universal

JDBC

Driver.

See

Set

Up

the

HP-UX

Java

Environment

for

details.

Procedure:

Note:

To

install

the

DB2

Universal

JDBC

Driver:

1.

Include

db2jcc.jar

in

the

Java

application

CLASSPATH,

before

any

JAR

file

names

for

other

JDBC

drivers.

2.

If

you

plan

to

use

Kerberos

security,

put

the

following

files

in

the

Java

application

CLASSPATH:

v

ibmjceprovider.jar

v

ibmjcefw.jar

v

ibmjlog.jar

v

US_export_policy.jar

v

Local_policy.jar

v

ibmjgssprovider.jar

v

jaas.jar

v

ibmjceprovider.jar

v

ibmjcefw.jar

v

ibmjlog.jar

438

Programming

Client

Applications

|
|
|

||

||

||

||
|
|
|

|

|
|
|
|

||

||

||

||
|

||
|
|

|

|
|
|
|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

v

US_export_policy.jar

v

Local_policy.jar
3.

Include

one

or

more

license

file

names

in

the

Java

application

CLASSPATH

to

permit

connectivity

to

servers.

Table

77

lists

those

license

files.

Table

77.

DB2

Universal

JDBC

Driver

license

files

License

file

Server

to

which

license

file

permits

a

connection

Product

that

includes

license

file

db2jcc_license_c.jar

Cloudscape

Cloudscape

Network

Server

db2jcc_license_cu.jar

Cloudscape

DB2

UDB

for

Linux,

UNIX

and

Windows

DB2

UDB

for

Linux,

UNIX

and

Windows

db2jcc_license_cisuz.jar

Cloudscape

DB2

UDB

for

Linux,

UNIX

and

Windows

DB2

UDB

for

z/OS

or

DB2

UDB

for

OS/390

and

z/OS

DB2

UDB

for

iSeries

DB2

Server

for

VSE

&

VM

DB2

Connect

4.

If

you

intend

to

use

SQLJ,

add

sqlj.zip

to

the

Java

application

CLASSPATH.

Remove

old

versions

of

sqlj.zip

and

runtime.zip

from

the

CLASSPATH.

5.

If

you

intend

to

connect

to

a

DB2

UDB

for

z/OS

or

OS/390

server,

run

the

com.ibm.db2.jcc.DB2Binder

utility

to

bind

the

DB2

packages

that

are

used

at

the

server

by

the

DB2

Universal

JDBC

Driver.

DB2Binder

syntax:

��

java

com.ibm.db2.jcc.DB2Binder

-url

jdbc:db2//server:port:database

-user

user-ID

�

�

-password

password

-size

integer

-collection

collection-name

�

�

�

,

-tracelevel

trace-option

-help

��

DB2Binder

option

descriptions:

-url

Specifies

the

data

source

at

which

the

JCC

packages

are

to

be

bound.

The

variable

parts

of

the

-url

value

are:

server

The

domain

name

or

IP

address

of

the

MVS

system

on

which

the

DB2

subsystem

resides.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

DB2

subsystem.

The

default

is

446.

database

The

location

name

for

the

DB2

subsystem,

as

defined

in

the

SYSIBM.LOCATIONS

catalog

table.

Chapter

18.

Installing

the

JDBC

drivers

439

|
|

|
|

||

|
|
||

|||

||
|
|

|
|

||
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|

|||||||||||
|

|
|||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

-user

Specifes

the

user

ID

under

which

the

packages

are

to

be

bound.

This

user

must

have

BIND

authority

on

the

packages.

-size

Specifies

the

number

of

DB2

packages

that

DB2binder

binds

for

each

of

the

four

DB2

isolation

levels

and

each

of

the

two

holdability

values.

The

DB2

Universal

JDBC

Driver

uses

these

packages

to

process

dynamic

SQL.

In

addition,

the

DB2binder

binds

a

single

package

that

the

DB2

Universal

JDBC

Driver

uses

for

static

SQL.

Therefore,

the

total

number

of

packages

that

DB2binder

binds

is:

4*2*integer+1

The

default

value

for

integer

is

3.

-collection

Specifies

the

collection

ID

for

the

packages

that

are

used

by

an

instance

of

the

DB2

Universal

JDBC

Driver.

The

default

is

NULLID.

DB2binder

translates

this

value

to

uppercase.

You

can

create

multiple

instances

of

the

JCC

package

set

at

a

single

location

by

running

com.ibm.db2.jcc.DB2Binder

multiple

times,

and

specifying

a

different

value

for

-collection

each

time.

At

run

time,

you

select

a

copy

of

the

DB2

Universal

JDBC

Driver

by

setting

the

currentPackageSet

property

to

a

value

that

matches

a

-collection

value.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

information

on

the

currentPackageSet

property.

-tracelevel

Specifies

what

to

trace

while

DB2Binder

runs.

See

the

explanation

of

the

traceLevel

property

in

Properties

for

the

DB2

Universal

JDBC

Driver

for

the

options

that

are

available.
6.

If

you

intend

to

use

LOB

locators

to

access

DBCLOB

columns

in

DB2

tables

on

a

DB2

UDB

for

z/OS

or

OS/390

server,

run

the

com.ibm.db2.jcc.DB2LobTableCreator

utility

on

each

of

those

servers

to

create

tables

that

are

needed

for

fetching

LOB

locators.

DB2LobTableCreator

syntax:

��

java

java

com.ibm.db2.jcc.DB2LobTableCreator

-url

jdbc:db2:

//server

/database

:port

�

�

-user

user-ID

-password

password

-help

��

DB2LobTableCreator

option

descriptions:

-url

Specifies

the

data

source

at

which

DB2LobTableCreator

is

to

run.

The

variable

parts

of

the

-url

value

are:

jdbc:db2:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

server

The

domain

name

or

IP

address

of

the

database

server.

440

Programming

Client

Applications

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

||||||||||||||||||||
|

|
||||||||||||||||||||

|
|
|

|
|
|

|
|

|
|

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

-user

Specifes

the

user

ID

under

which

DB2LobTableCreator

is

to

run.

This

user

must

have

authority

to

create

tables

in

the

DSNATPDB

database.

-password

Specifes

the

password

for

the

user

ID.

-help

Specifies

that

the

DB2LobTableCreator

utility

describes

each

of

the

options

that

it

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

Related

tasks:

v

“Setting

up

the

HP-UX

Java

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Configuring

TCP/IP

communications

for

a

DB2

instance”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

database

manager

configuration

file

on

the

server

for

TCP/IP

communications”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

services

file

on

the

server

for

TCP/IP

communications”

in

the

Installation

and

Configuration

Supplement

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Chapter

18.

Installing

the

JDBC

drivers

441

|
|
|

|
|

|
|
|
|

|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|

|

442

Programming

Client

Applications

Chapter

19.

JDBC

and

SQLJ

security

The

sections

that

follow

contain

information

on

security

mechanisms

that

are

available

under

the

JDBC

drivers.

Security

under

the

DB2

JDBC

Type

2

Driver

The

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

(DB2

JDBC

Type

2

Driver)

supports

user

ID

and

password

security.

You

must

set

the

user

ID

and

the

password,

or

set

neither.

If

you

do

not

set

a

user

ID

and

password,

the

driver

uses

the

user

ID

and

password

of

the

user

who

is

currently

logged

on

to

the

operating

system.

To

specify

user

ID

and

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DriverManager.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

id

=

"db2adm";

//

Set

user

ID

Sring

pw

=

"db2adm";

//

Set

password

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

id,

pw);

//

Create

connection

Alternatively,

you

can

set

the

user

ID

and

password

by

setting

the

user

and

password

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example:

import

java.sql.*;

//

JDBC

base

import

COM.ibm.db2.jdbc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

java.util.Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

String

url

=

"jdbc:db2:toronto";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

For

the

DataSource

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DataSource.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

import

COM.ibm.db2.jdbc.*;

//

DB2

implementation

of

JDBC

2.0

...

Context

ctx=new

InitialContext();

//

Create

context

for

JNDI

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

//

Get

DataSource

object

String

id

=

"db2adm";

//

Set

user

ID

Sring

pw

=

"db2adm";

//

Set

password

Connection

con

=

ds.getConnection(id,

pw);

//

Create

connection

©

Copyright

IBM

Corp.

1997

-

2004

443

Alternatively,

if

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

password

by

invoking

the

DataSource.setUser

and

DataSource.setPassword

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

COM.ibm.db2.jdbc.*;

//

DB2

implementation

of

JDBC

2.0

...

DB2DataSource

db2ds

=

new

DB2DataSource();

//

Create

DataSource

object

db2ds.setDatabaseName("toronto");

//

Set

location

db2ds.setUser("db2adm");

//

Set

user

ID

db2ds.setPassword("db2adm");

//

Set

password

Related

concepts:

v

“How

DB2

applications

connect

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

JDBC

Type

2

Driver”

on

page

268

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Creating

and

deploying

DataSource

objects”

on

page

311

Security

under

the

DB2

Universal

JDBC

Driver

When

you

use

the

DB2

Universal

JDBC

Driver,

you

choose

a

security

mechanism

by

specifying

a

value

for

the

securityMechanism

property.

You

can

set

this

property

in

one

of

the

following

ways:

v

If

you

use

the

DriverManager

interface,

set

securityMechanism

in

a

java.util.Properties

object

before

you

invoke

the

form

of

the

getConnection

method

that

includes

the

java.util.Properties

parameter.

v

If

you

use

the

DataSource

interface,

and

you

are

creating

and

deploying

your

own

DataSource

objects,

invoke

the

DataSource.setSecurityMechanism

method

after

you

create

a

DataSource

object.

Table

78

lists

the

security

mechanisms

that

the

DB2

Universal

JDBC

Driver

supports,

and

the

value

that

you

need

to

specify

for

the

securityMechanism

property

to

specify

each

security

mechanism.

The

default

security

mechanism

is

the

user

ID

and

password

mechanism.

Table

78.

Security

mechanisms

supported

by

the

DB2

Universal

JDBC

Driver

Security

mechanism

securityMechanism

property

value

User

ID

and

password

DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User

ID

only

DB2BaseDataSource.USER_ONLY_SECURITY

User

ID

and

encrypted

password

DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted

user

ID

and

encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Kerberos1

DB2BaseDataSource.KERBEROS_SECURITY

Note:

1.

Available

for

Universal

Type

4

Connectivity

only.

Related

concepts:

v

“Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver”

on

page

447

444

Programming

Client

Applications

v

“Kerberos

security

under

the

DB2

Universal

JDBC

Driver”

on

page

448

v

“User

ID-only

security

under

the

DB2

Universal

JDBC

Driver”

on

page

446

v

“User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver”

on

page

445

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver

To

specify

user

ID

and

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

You

can

specify

the

user

ID

and

password

directly

in

the

DriverManager.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

id

=

"db2adm";

//

Set

user

ID

String

pw

=

"db2adm";

//

Set

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

id,

pw);

//

Create

connection

Another

method

is

to

set

the

user

ID

and

password

directly

in

the

URL

string.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=db2adm;password=db2adm;";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url);

//

Create

connection

Alternatively,

you

can

set

the

user

ID

and

password

by

setting

the

user

and

password

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

Optionally,

you

can

set

the

securityMechanism

property

to

indicate

that

you

are

using

user

ID

and

password

security.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2®

implementation

of

JDBC

2.0

...

Properties

properties

=

new

java.util.Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

and

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

For

the

DataSource

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DataSource.getConnection

invocation.

For

example:

Chapter

19.

JDBC

and

SQLJ

security

445

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Context

ctx=new

InitialContext();

//

Create

context

for

JNDI

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

//

Get

DataSource

object

String

id

=

"db2adm";

//

Set

user

ID

String

pw

=

"db2adm";

//

Set

password

Connection

con

=

ds.getConnection(id,

pw);

//

Create

connection

Alternatively,

if

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

password

by

invoking

the

DataSource.setUser

and

DataSource.setPassword

methods

after

you

create

the

DataSource

object.

Optionally,

you

can

invoke

the

DataSource.setSecurityMechanism

method

property

to

indicate

that

you

are

using

user

ID

and

password

security.

For

example:

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

//

Create

DB2SimpleDataSource

object

new

com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDriverType(4);

//

Set

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

server

name

db2ds.setPortNumber(5021);

//

Set

port

number

db2ds.setUser("db2adm");

//

Set

user

ID

db2ds.setPassword("db2adm");

//

Set

password

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

//

Set

security

mechanism

to

//

user

ID

and

password

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Creating

and

deploying

DataSource

objects”

on

page

311

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

User

ID-only

security

under

the

DB2

Universal

JDBC

Driver

To

specify

user

ID

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

Set

the

user

ID

and

security

mechanism

by

setting

the

user

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2®

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

only

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

446

Programming

Client

Applications

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

security

mechanism

by

invoking

the

DataSource.setUser

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

DB2SimpleDataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setUser("db2adm");

//

Set

the

user

ID

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

//

Set

security

mechanism

to

//

user

ID

only

Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver

If

you

use

encrypted

user

ID

security

or

encrypted

password

security

when

you

access

a

DB2®

for

z/OS™

server,

the

Java™

Cryptography

Extension,

IBMJCE

for

z/OS

needs

to

be

enabled

on

the

server.

The

Java

Cryptography

Extension

is

part

of

the

IBM®

Developer

Kit

for

OS/390®,

Java

2

Technology

Edition,

or

the

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition.

For

information

on

how

to

enable

IBMJCE,

go

to

this

URL

on

the

Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

To

specify

encrypted

user

ID

or

encrypted

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

Set

the

user

ID,

password,

and

security

mechanism

by

setting

the

user,

password,

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

user

ID

and

encrypted

password

security

mechanism:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

and

encrypted

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

Chapter

19.

JDBC

and

SQLJ

security

447

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID,

password,

and

security

mechanism

by

invoking

the

DataSource.setUser,

DataSource.setPassword,

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example,

use

code

like

this

to

set

the

encrypted

user

ID

and

encrypted

password

security

mechanism:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setUser("db2adm");

//

Set

the

user

ID

db2ds.setPassword("db2adm");

//

Set

the

password

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

//

Set

security

mechanism

to

//

encrypted

user

ID

and

password

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Creating

and

deploying

DataSource

objects”

on

page

311

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Kerberos

security

under

the

DB2

Universal

JDBC

Driver

Kerberos

security

is

available

for

Universal

Type

4

Connectivity

only.

If

you

use

Kerberos

security

when

you

access

a

DB2®

for

z/OS™

server,

you

need

to

install

and

configure

the

following

products,

or

their

equivalents:

v

The

SecureWay®

Security

Server

for

z/OS

and

OS/390®

v

OS/390

SecureWay

Security

Server

Network

Authentication

and

Privacy

Service,

which

is

a

component

of

the

OS/390

SecureWay

Security

Server

This

is

the

IBM®

OS/390

implementation

of

Kerberos

Version

5.

For

more

information,

see

OS/390

SecureWay

Server

Network

Authentication

and

Privacy

Service

Administration.

You

also

need

to

enable

the

following

components

of

the

IBM

Developer

Kit

for

OS/390,

Java™

2

Technology

Edition,

or

the

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition:

v

Java

Cryptography

Extension

(IBMJCE)

for

OS/390

v

IBM

Java

Generic

Security

Service

(IBMJGSS)

v

Java

Authentication

and

Authorization

Service

(JAAS)

for

OS/390

For

information

on

how

to

enable

these

components,

go

to

this

URL

on

the

Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

448

Programming

Client

Applications

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

There

are

three

ways

to

specify

Kerberos

security

for

a

connection:

v

With

a

user

ID

and

password

v

Without

a

user

ID

or

password

v

With

a

delegated

credential

Using

Kerberos

security

with

a

user

ID

and

password:

For

this

case,

Kerberos

uses

the

specified

user

ID

and

password

to

obtain

a

ticket-granting

ticket

(TGT)

that

lets

you

authenticate

to

the

DB2

server.

You

need

to

set

the

user,

password,

kerberosServerPrincipal,

and

securityMechanism

properties.

The

kerberosServerPrincipal

property

specifies

the

address

of

the

Kerberos

server

for

the

realm

in

which

the

client

is

registered.

For

the

DriverManager

interface:

Set

the

user

ID,

password,

Kerberos

server,

and

security

mechanism

by

setting

the

user,

password,

kerberosServerPrincipal,

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

with

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setUser("db2adm");

//

Set

the

user

db2ds.setPassword("db2adm");

//

Set

the

password

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Chapter

19.

JDBC

and

SQLJ

security

449

Using

Kerberos

security

with

no

user

ID

or

password:

For

this

case,

the

Kerberos

default

credentials

cache

must

contain

a

ticket-granting

ticket

(TGT)

that

lets

you

authenticate

to

the

DB2

server.

You

need

to

set

the

kerberosServerPrincipal

and

securityMechanism

properties.

For

the

DriverManager

interface:

Set

the

Kerberos

server

and

security

mechanism

by

setting

the

kerberosServerPrincipal

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

without

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

DB2DataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Using

Kerberos

security

with

a

delegated

credential

from

another

principal:

For

this

case,

you

authenticate

to

the

DB2

server

using

a

delegated

credential

that

another

principal

passes

to

you.

You

need

to

set

the

kerberosServerPrincipal,

gssCredential,

and

securityMechanism

properties.

For

the

DriverManager

interface:

Set

the

Kerberos

server,

delegated

credential,

and

security

mechanism

by

setting

the

kerberosServerPrincipal,

and

securityMechanism

properties

in

a

Properties

object.

Because

the

gssCredential

property

is

not

a

string,

you

cannot

use

the

Properties.put

method

to

set

it.

450

Programming

Client

Applications

Instead,

use

the

DB2BaseDataSource.setGSSCredential

method.

Then

invoke

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

without

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("gssCredential",delegatedCredential);

//

Set

the

delegated

credential

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server,

delegated

credential,

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal,

DataSource.setGssCredential,

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

DB2DataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setGssCredential(delegatedCredential);

//

Set

the

delegated

credential

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Creating

and

deploying

DataSource

objects”

on

page

311

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Chapter

19.

JDBC

and

SQLJ

security

451

452

Programming

Client

Applications

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

The

sections

that

follow

contain

information

on

diagnosing

JDBC

and

SQLJ

problems.

Diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

Universal

JDBC

Driver

The

sections

that

follow

contain

information

on

diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

Universal

JDBC

Driver.

JDBC

and

SQLJ

problem

diagnosis

with

the

DB2

Universal

JDBC

Driver

To

obtain

data

for

diagnosing

SQLJ

or

JDBC

problems

with

the

DB2

Universal

JDBC

Driver,

collect

trace

data

and

run

utilities

that

format

the

trace

data.

You

should

run

the

trace

and

diagnostic

utilities

only

under

the

direction

of

IBM®

software

support.

If

your

application

connects

to

a

DB2®

UDB

for

z/OS™

or

OS/390®

server,

a

number

of

stored

procedures

need

to

be

installed

on

that

server

before

you

can

collect

trace

data.

Those

stored

procedures

are

also

used

for

some

DatabaseMetaData

calls.

The

stored

procedures

are:

v

SQLCOLPRIVILEGES

v

SQLCOLUMNS

v

SQLFOREIGNKEYS

v

SQLGETTYPEINFO

v

SQLPRIMARYKEYS

v

SQLPROCEDURECOLS

v

SQLPROCEDURES

v

SQLSPECIALCOLUMNS

v

SQLSTATISTICS

v

SQLTABLEPRIVILEGES

v

SQLTABLES

v

SQLUDTS

v

SQLCAMESSAGE

For

DB2

UDB

for

OS/390

and

z/OS,

Version

7

or

DB2

UDB

for

OS/390,

Version

6,

the

stored

procedures

are

shipped

in

PTFs.

The

PTFs

are

orderable

through

normal

service

channels

using

the

following

PTF

numbers:

Table

79.

PTFs

for

DB2

Universal

Database

for

z/OS

and

OS/390

DB2

Universal

Database

for

z/OS

and

OS/390

Version

PTF

number

Version

6

UQ72081

and

UQ72082

Version

7

UQ72083

Ask

your

DB2

UDB

for

z/OS

system

administrator

whether

these

stored

procedures

are

installed.

Collecting

JDBC

trace

data:

©

Copyright

IBM

Corp.

1997

-

2004

453

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Use

one

of

the

following

procedures

to

start

the

trace:

Procedure

1:

1.

If

you

use

the

DataSource

interface

to

connect

to

a

data

source,

invoke

the

DB2BaseDataSource.setTraceLevel

method

to

set

the

type

of

tracing

that

you

need.

The

default

trace

level

is

TRACE_ALL.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

information

on

how

to

specify

more

than

one

type

of

tracing.

2.

Invoke

the

DB2BaseDataSource.setJccLogWriter

method

to

specify

the

trace

destination

and

turn

the

trace

on.

Procedure

2:

If

you

use

the

DataSource

interface

to

connect

to

a

data

source,

invoke

the

javax.sql.DataSource.setLogWriter

method

to

turn

the

trace

on.

With

this

method,

TRACE_ALL

is

the

only

available

trace

level.

If

you

use

the

DriverManager

interface

to

connect

to

a

data

source,

follow

this

procedure

to

start

the

trace.

1.

Invoke

the

DriverManager.getConnection

method

with

the

traceLevel

property

set

in

the

info

parameter

or

url

parameter

for

the

type

of

tracing

that

you

need.

The

default

trace

level

is

TRACE_ALL.

See

Properties

for

the

DB2

Universal

JDBC

Driver

for

information

on

how

to

specify

more

than

one

type

of

tracing.

2.

Invoke

the

DriverManager.setLogWriter

method

to

specify

the

trace

destination

and

turn

the

trace

on.

After

a

connection

is

established,

you

can

turn

the

trace

off

or

back

on,

change

the

trace

destination,

or

change

the

trace

level

with

the

DB2Connection.setJccLogWriter

method.

To

turn

the

trace

off,

set

the

logWriter

value

to

null.

The

logWriter

property

is

an

object

of

type

java.io.PrintWriter.

If

your

application

cannot

handle

java.io.PrintWriter

objects,

you

can

use

the

traceFile

property

to

specify

the

destination

of

the

trace

output.

To

use

the

traceFile

property,

set

the

logWriter

property

to

null,

and

set

the

traceFile

property

to

the

name

of

the

file

to

which

the

driver

writes

the

trace

data.

This

file

and

the

directory

in

which

it

resides

must

be

writable.

If

the

file

already

exists,

the

driver

overwrites

it.

Procedure

3:

If

you

are

using

the

DriverManager

interface,

specify

the

traceFile

and

traceLevel

properties

as

part

of

the

URL

when

you

load

the

driver.

For

example:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose"

+

":traceFile=/u/db2p/jcctrace;"

+

"traceLevel=com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS;";

Trace

example

program:

For

a

complete

example

of

a

program

for

tracing

under

the

DB2

Universal

JDBC

Driver,

see

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver.

Collecting

SQLJ

trace

data:

To

collect

trace

data

to

diagnose

problems

during

the

SQLJ

customization

or

bind

process,

specify

the

-tracelevel

and

-tracefile

options

when

you

run

the

db2sqljcustomize

or

db2sqljbind

bind

utility.

Formatting

information

about

an

SQLJ

serialized

profile:

454

Programming

Client

Applications

The

profp

utility

formats

information

about

each

SQLJ

clause

in

a

serialized

profile.

The

format

of

the

profp

utility

is:

��

profp

serialized-profile-name

��

Run

the

profp

utility

on

the

serialized

profile

for

the

connection

in

which

the

error

occurs.

If

an

exception

is

thrown,

a

Java™

stack

trace

is

generated.

You

can

determine

which

serialized

profile

was

in

use

when

the

exception

was

thrown

from

the

stack

trace.

Formatting

information

about

an

SQLJ

customized

serialized

profile:

The

db2sqljprint

utility

formats

information

about

each

SQLJ

clause

in

a

serialized

profile

that

is

customized

for

the

DB2

Universal

JDBC

Driver.

The

format

of

the

db2sqljprint

utility

is:

��

db2sqljprint

customized-serialized-profile-name

��

Run

the

db2sqljprint

utility

on

the

customized

serialized

profile

for

the

connection

in

which

the

error

occurs.

Related

concepts:

v

“Example

of

tracing

under

the

DB2

Universal

JDBC

Driver”

on

page

455

Related

reference:

v

“db2sqljcustomize

-

DB2

SQLJ

Profile

Customizer

Command”

in

the

Command

Reference

v

“db2sqljbind

-

DB2

SQLJ

Profile

Binder

Command”

in

the

Command

Reference

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

The

following

example

shows

a

class

for

establishing

a

connection

and

gathering

and

displaying

trace

data

under

the

DB2

Universal

JDBC

Driver.

The

class

includes

a

method

for

the

DriverManager

interface

and

a

method

for

the

DataSource

interface.

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

455

public

class

TraceExample

{

public

static

void

main(String[]

args)

{

sampleConnectUsingSimpleDataSource();

sampleConnectWithURLUsingDriverManager();

}

private

static

void

sampleConnectUsingSimpleDataSource()

{

java.sql.Connection

c

=

null;

java.io.PrintWriter

printWriter

=

new

java.io.PrintWriter(System.out,

true);

//

Prints

to

console,

true

means

//

auto-flush

so

you

don’t

lose

trace

try

{

javax.sql.DataSource

ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setServerName("sysmvs1.stl.ibm.com");

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setPortNumber(5021);

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setDatabaseName("san_jose");

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setDriverType(4);

ds.setLogWriter(printWriter);

//

This

turns

on

tracing

//

Refine

the

level

of

tracing

detail

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).

setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS

|

com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

//

This

connection

request

is

traced

using

trace

level

//

TRACE_CONNECTS

|

TRACE_DRDA_FLOWS

c

=

ds.getConnection("myname",

"mypass");

//

Change

the

trace

level

to

TRACE_ALL

//

for

all

subsequent

requests

on

the

connection

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(printWriter,

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

Figure

60.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

1

of

5)

456

Programming

Client

Applications

//

The

following

INSERT

is

traced

using

trace

level

TRACE_ALL

java.sql.Statement

s1

=

c.createStatement();

s1.executeUpdate("INSERT

INTO

sampleTable(sampleColumn)

VALUES(1)");

s1.close();

//

This

code

disables

all

tracing

on

the

connection

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(null);

//

The

following

INSERT

statement

is

not

traced

java.sql.Statement

s2

=

c.createStatement();

s2.executeUpdate("INSERT

INTO

sampleTable(sampleColumn)

VALUES(1)");

s2.close();

c.close();

}

catch(java.sql.SQLException

e)

{

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

finally

{

cleanup(c,

printWriter);

printWriter.flush();

}

}

//

If

the

code

ran

successfully,

the

connection

should

//

already

be

closed.

Check

whether

the

connection

is

closed.

//

If

so,

just

return.

//

If

a

failure

occurred,

try

to

roll

back

and

close

the

connection.

private

static

void

cleanup(java.sql.Connection

c,

java.io.PrintWriter

printWriter)

{

if(c

==

null)

return;

try

{

if(c.isClosed())

{

printWriter.println("[TraceExample]

"

+

"The

connection

was

successfully

closed");

return;

}

//

If

we

get

to

here,

something

has

gone

wrong.

//

Roll

back

and

close

the

connection.

printWriter.println("[TraceExample]

Rolling

back

the

connection");

try

{

c.rollback();

}

Figure

60.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

2

of

5)

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

457

catch(java.sql.SQLException

e)

{

printWriter.println("[TraceExample]

"

+

"Trapped

the

following

java.sql.SQLException

while

trying

to

roll

back:");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

printWriter.println("[TraceExample]

"

+

"Unable

to

roll

back

the

connection");

}

catch(java.lang.Throwable

e)

{

printWriter.println("[TraceExample]

Trapped

the

"

+

"following

java.lang.Throwable

while

trying

to

roll

back:");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

printWriter.println("[TraceExample]

Unable

to

"

+

"roll

back

the

connection");

}

//

Close

the

connection

printWriter.println("[TraceExample]

Closing

the

connection");

try

{

c.close();

}

catch(java.sql.SQLException

e)

{

printWriter.println("[TraceExample]

Exception

while

"

+

"trying

to

close

the

connection");

printWriter.println("[TraceExample]

Deadlocks

could

"

+

"occur

if

the

connection

is

not

closed.");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

catch(java.lang.Throwable

e)

{

printWriter.println("[TraceExample]

Throwable

caught

"

+

"while

trying

to

close

the

connection");

printWriter.println("[TraceExample]

Deadlocks

could

"

+

"occur

if

the

connection

is

not

closed.");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

}

catch(java.lang.Throwable

e)

{

printWriter.println("[TraceExample]

Unable

to

"

+

"force

the

connection

to

close");

printWriter.println("[TraceExample]

Deadlocks

"

+

"could

occur

if

the

connection

is

not

closed.");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

}

Figure

60.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

3

of

5)

458

Programming

Client

Applications

private

static

void

sampleConnectWithURLUsingDriverManager()

{

java.sql.Connection

c

=

null;

//

This

time,

send

the

printWriter

to

a

file.

java.io.PrintWriter

printWriter

=

null;

try

{

printWriter

=

new

java.io.PrintWriter(

new

java.io.BufferedOutputStream(

new

java.io.FileOutputStream("/temp/driverLog.txt"),

4096),

true);

}

catch(java.io.FileNotFoundException

e)

{

java.lang.System.err.println("Unable

to

establish

a

print

writer

for

trace");

java.lang.System.err.flush();

return;

}

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch(ClassNotFoundException

e)

{

printWriter.println("[TraceExample]

Universal

Type

4

Connectivity

"

+

"is

not

in

the

application

classpath.

Unable

to

load

driver.");

printWriter.flush();

return;

}

//

This

URL

describes

the

target

data

source

for

Type

4

connectivity.

//

The

traceLevel

property

is

established

through

the

URL

syntax,

//

and

driver

tracing

is

directed

to

file

"/temp/driverLog.txt"

String

databaseURL

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021"

+

"/sample:traceFile=/temp/driverLog.txt;traceLevel="

+

"(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS

"

+

"|

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS);";

//

Set

other

properties

java.util.Properties

properties

=

new

java.util.Properties();

properties.setProperty("user",

"myname");

properties.setProperty("password",

"mypass");

Figure

60.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

4

of

5)

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

459

Related

tasks:

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

272

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

270

Related

reference:

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

370

Diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

JDBC

Type

2

Driver

The

sections

that

follow

contain

information

on

diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

(DB2

JDBC

Type

2

Driver).

CLI/ODBC/JDBC

trace

facility

This

topic

discusses

the

following

subjects:

v

“DB2

CLI

and

DB2

JDBC

trace

configuration”

on

page

461

v

“DB2

CLI

trace

options

and

the

db2cli.ini

file”

on

page

462

v

“DB2

JDBC

trace

options

and

the

db2cli.ini

file”

on

page

463

try

{

//

This

connection

request

is

traced

using

trace

level

//

TRACE_CONNECTS

|

TRACE_DRDA_FLOWS

c

=

java.sql.DriverManager.getConnection(databaseURL,

properties);

//

Change

the

trace

level

for

all

subsequent

requests

//

on

the

connection

to

TRACE_ALL

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(printWriter,

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

//

The

following

INSERT

is

traced

using

trace

level

TRACE_ALL

java.sql.Statement

s1

=

c.createStatement();

s1.executeUpdate("INSERT

INTO

sampleTable(sampleColumn)

VALUES(1)");

s1.close();

//

Disable

all

tracing

on

the

connection

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(null);

//

The

following

SQL

insert

code

is

not

traced

java.sql.Statement

s2

=

c.createStatement();

s2.executeUpdate("insert

into

sampleTable(sampleColumn)

values(1)");

s2.close();

c.close();

}

catch(java.sql.SQLException

e)

{

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

finally

{

cleanup(c,

printWriter);

printWriter.flush();

}

}

}

Figure

60.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

5

of

5)

460

Programming

Client

Applications

v

“DB2

CLI

driver

trace

versus

ODBC

driver

manager

trace”

on

page

464

v

“DB2

CLI

driver,

CLI-based

Legacy

Type

2

JDBC

Driver,

and

DB2

traces”

on

page

465

v

“DB2

CLI

and

DB2

JDBC

traces

and

CLI

or

Java

stored

procedures”

on

page

465

The

DB2

CLI

and

the

CLI-based

Legacy

Type

2

JDBC

Driver

for

Linux,

UNIX®,

and

Windows®

offer

comprehensive

tracing

facilities.

By

default,

these

facilities

are

disabled

and

use

no

additional

computing

resources.

When

enabled,

the

trace

facilities

generate

one

or

more

text

log

files

whenever

an

application

accesses

the

appropriate

driver

(DB2

CLI

or

CLI-based

Legacy

Type

2

JDBC

Driver).

These

log

files

provide

detailed

information

about:

v

the

order

in

which

CLI

or

JDBC

functions

were

called

by

the

application

v

the

contents

of

input

and

output

parameters

passed

to

and

received

from

CLI

or

JDBC

functions

v

the

return

codes

and

any

error

or

warning

messages

generated

by

CLI

or

JDBC

functions

DB2

CLI

and

DB2®

JDBC

trace

file

analysis

can

benefit

application

developers

in

a

number

of

ways.

First,

subtle

program

logic

and

parameter

initialization

errors

are

often

evident

in

the

traces.

Second,

DB2

CLI

and

DB2

JDBC

traces

may

suggest

ways

of

better

tuning

an

application

or

the

databases

it

accesses.

For

example,

if

a

DB2

CLI

trace

shows

a

table

being

queried

many

times

on

a

particular

set

of

attributes,

an

index

corresponding

to

those

attributes

might

be

created

on

the

table

to

improve

application

performance.

Finally,

analysis

of

DB2

CLI

and

DB2

JDBC

trace

files

can

help

application

developers

understand

how

a

third

party

application

or

interface

is

behaving.

DB2

CLI

and

DB2

JDBC

trace

configuration:

The

configuration

parameters

for

both

DB2

CLI

and

DB2

JDBC

traces

facilities

are

read

from

the

DB2

CLI

configuration

file

db2cli.ini.

By

default,

this

file

is

located

in

the

\sqllib

path

on

the

Windows

platform

and

the

/sqllib/cfg

path

on

UNIX

platforms.

You

can

override

the

default

path

by

setting

the

DB2CLIINIPATH

environment

variable.

On

the

Windows

platform,

an

additional

db2cli.ini

file

may

be

found

in

the

user’s

profile

(or

home)

directory

if

there

are

any

user-defined

data

sources

defined

using

the

ODBC

Driver

Manager.

This

db2cli.ini

file

will

override

the

default

file.

To

view

the

current

db2cli.ini

trace

configuration

parameters

from

the

command

line

processor,

issue

the

following

command:

db2

GET

CLI

CFG

FOR

SECTION

COMMON

There

are

three

ways

to

modify

the

db2cli.ini

file

to

configure

the

DB2

CLI

and

DB2

JDBC

trace

facilities:

v

use

the

DB2

Configuration

Assistant

if

it

is

available

v

manually

edit

the

db2cli.ini

file

using

a

text

editor

v

issue

the

UPDATE

CLI

CFG

command

from

the

command

line

processor

For

example,

the

following

command

issued

from

the

command

line

processor

updates

the

db2cli.ini

file

and

enables

the

JDBC

tracing

facility:

db2

UPDATE

CLI

CFG

FOR

SECTION

COMMON

USING

jdbctrace

1

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

461

|
|
|
|
|
|

|

|
|

|
|

Notes:

1.

Typically

the

DB2

CLI

and

DB2

JDBC

trace

configuration

options

are

only

read

from

the

db2cli.ini

configuration

file

at

the

time

an

application

is

initialized.

However,

a

special

db2cli.ini

trace

option,

TraceRefreshInterval,

can

be

used

to

indicate

an

interval

at

which

specific

DB2

CLI

trace

options

are

reread

from

the

db2cli.ini

file.

2.

The

DB2

CLI

tracing

facility

can

also

be

configured

dynamically

by

setting

the

SQL_ATTR_TRACE

and

SQL_ATTR_TRACEFILE

environment

attributes.

These

settings

will

override

the

settings

contained

in

the

db2cli.ini

file.

Important:

Disable

the

DB2

CLI

and

DB2

JDBC

trace

facilities

when

they

are

not

needed.

Unnecessary

tracing

can

reduce

application

performance

and

may

generate

unwanted

trace

log

files.

DB2

does

not

delete

any

generated

trace

files

and

will

append

new

trace

information

to

any

existing

trace

files.

DB2

CLI

Trace

options

and

the

db2cli.ini

file:

When

an

application

using

the

DB2

CLI

driver

begins

execution,

the

driver

checks

for

trace

facility

options

in

the

[COMMON]

section

of

the

db2cli.ini

file.

These

trace

options

are

specific

trace

keywords

that

are

set

to

certain

values

in

the

db2cli.ini

file

under

the

[COMMON]

section.

Note:

Because

DB2

CLI

trace

keywords

appear

in

the

[COMMON]

section

of

the

db2cli.ini

file,

their

values

apply

to

all

database

connections

through

the

DB2

CLI

driver.

The

DB2

CLI

trace

keywords

that

can

be

defined

are:

v

Trace

v

TraceComm

v

TraceErrImmediate

v

TraceFileName

v

TraceFlush

v

TraceFlushOnError

v

TraceLocks

v

TracePathName

v

TracePIDList

v

TracePIDTID

v

TraceRefreshInterval

v

TraceStmtOnly

v

TraceTime

v

TraceTimeStamp

Note:

DB2

CLI

trace

keywords

are

only

read

from

the

db2cli.ini

file

once

at

application

initialization

time

unless

the

TraceRefreshInterval

keyword

is

set.

If

this

keyword

is

set,

the

Trace

and

TracePIDList

keywords

are

reread

from

the

db2cli.ini

file

at

the

specified

interval

and

applied,

as

appropriate,

to

the

currently

executing

application.

An

example

db2cli.ini

file

trace

configuration

using

these

DB2

CLI

keywords

and

values

is:

462

Programming

Client

Applications

|

|

|

|

|

|

|

|

|

|

|

|

|

|

[COMMON]

trace=1

TraceFileName=\temp\clitrace.txt

TraceFlush=1

Notes:

1.

CLI

trace

keywords

are

NOT

case

sensitive.

However,

path

and

file

name

keyword

values

may

be

case-sensitive

on

some

operating

systems

(such

as

UNIX).

2.

If

either

a

DB2

CLI

trace

keyword

or

its

associated

value

in

the

db2cli.ini

file

is

invalid,

the

DB2

CLI

trace

facility

will

ignore

it

and

use

the

default

value

for

that

trace

keyword

instead.

DB2

JDBC

Trace

options

and

the

db2cli.ini

file:

When

an

application

using

the

CLI-based

Legacy

Type

2

JDBC

Driver

begins

execution,

the

driver

also

checks

for

trace

facility

options

in

the

db2cli.ini

file.

As

with

the

DB2

CLI

trace

options,

DB2

JDBC

trace

options

are

specified

as

keyword/value

pairs

located

under

the

[COMMON]

section

of

the

db2cli.ini

file.

Note:

Because

DB2

JDBC

trace

keywords

appear

in

the

[COMMON]

section

of

the

db2cli.ini

file,

their

values

apply

to

all

database

connections

through

the

CLI-based

Legacy

Type

2

JDBC

Driver.

The

DB2

JDBC

trace

keywords

that

can

be

defined

are:

v

JDBCTrace

v

JDBCTracePathName

v

JDBCTraceFlush

JDBCTrace

=

0

|

1

The

JDBCTrace

keyword

controls

whether

or

not

other

DB2

JDBC

tracing

keywords

have

any

effect

on

program

execution.

Setting

JDBCTrace

to

its

default

value

of

0

disables

the

DB2

JDBC

trace

facility.

Setting

JDBCTrace

to

1

enables

it.

By

itself,

the

JDBCTrace

keyword

has

little

effect

and

produces

no

trace

output

unless

the

JDBCTracePathName

keyword

is

also

specified.

JDBCTracePathName

=

<fully_qualified_trace_path_name>

The

value

of

JDBCTracePathName

is

the

fully

qualified

path

of

the

directory

to

which

all

DB2

JDBC

trace

information

is

written.

The

DB2

JDBC

trace

facility

attempts

to

generate

a

new

trace

log

file

each

time

a

JDBC

application

is

executed

using

the

CLI-based

Legacy

Type

2

JDBC

Driver.

If

the

application

is

multithreaded,

a

separate

trace

log

file

will

be

generated

for

each

thread.

A

concatenation

of

the

application

process

ID,

the

thread

sequence

number,

and

a

thread-identifying

string

are

automatically

used

to

name

trace

log

files.

There

is

no

default

path

name

to

which

DB2

JDBC

trace

output

log

files

are

written.

JDBCTraceFlush

=

0

|

1

The

JDBCTraceFlush

keyword

specifies

how

often

trace

information

is

written

to

the

DB2

JDBC

trace

log

file.

By

default,

JDBCTraceFlush

is

set

to

0

and

each

DB2

JDBC

trace

log

file

is

kept

open

until

the

traced

application

or

thread

terminates

normally.

If

the

application

terminates

abnormally,

some

trace

information

that

was

not

written

to

the

trace

log

file

may

be

lost.

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

463

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

To

ensure

the

integrity

and

completeness

of

the

trace

information

written

to

the

DB2

JDBC

trace

log

file,

the

JDBCTraceFlush

keyword

can

be

set

to

1.

After

each

trace

entry

has

been

written

to

the

trace

log

file,

the

DB2

JDBC

driver

closes

the

file

and

then

reopens

it,

appending

new

trace

entries

to

the

end

of

the

file.

This

guarantees

that

no

trace

information

will

be

lost.

Note:

Each

DB2

JDBC

log

file

close

and

reopen

operation

incurs

significant

input/output

overhead

and

can

reduce

application

performance

considerably.

An

example

db2cli.ini

file

trace

configuration

using

these

DB2

JDBC

keywords

and

values

is:

[COMMON]

jdbctrace=1

JdbcTracePathName=\temp\jdbctrace\

JDBCTraceFlush=1

Notes:

1.

JDBC

trace

keywords

are

NOT

case

sensitive.

However,

path

and

file

name

keyword

values

may

be

case-sensitive

on

some

operating

systems

(such

as

UNIX).

2.

If

either

a

DB2

JDBC

trace

keyword

or

its

associated

value

in

the

db2cli.ini

file

is

invalid,

the

DB2

JDBC

trace

facility

will

ignore

it

and

use

the

default

value

for

that

trace

keyword

instead.

3.

Enabling

DB2

JDBC

tracing

does

not

enable

DB2

CLI

tracing.

The

CLI-based

Legacy

Type

2

JDBC

Driver

depends

on

the

DB2

CLI

driver

to

access

the

database.

Consequently,

Java™

developers

may

also

want

to

enable

DB2

CLI

tracing

for

additional

information

on

how

their

applications

interact

with

the

database

through

the

various

software

layers.

DB2

JDBC

and

DB2

CLI

trace

options

are

independent

of

each

other

and

can

be

specified

together

in

any

order

under

the

[COMMON]

section

of

the

db2cli.ini

file.

DB2

CLI

Driver

trace

versus

ODBC

driver

manager

trace:

It

is

important

to

understand

the

difference

between

an

ODBC

driver

manager

trace

and

a

DB2

CLI

driver

trace.

An

ODBC

driver

manager

trace

shows

the

ODBC

function

calls

made

by

an

ODBC

application

to

the

ODBC

driver

manager.

In

contrast,

a

DB2

CLI

driver

trace

shows

the

function

calls

made

by

the

ODBC

driver

manager

to

the

DB2

CLI

driver

on

behalf

of

the

application.

An

ODBC

driver

manager

might

forward

some

function

calls

directly

from

the

application

to

the

DB2

CLI

driver.

However,

the

ODBC

driver

manager

might

also

delay

or

avoid

forwarding

some

function

calls

to

the

driver.

The

ODBC

driver

manager

may

also

modify

application

function

arguments

or

map

application

functions

to

other

functions

before

forwarding

the

call

on

to

the

DB2

CLI

driver.

Reasons

for

application

function

call

intervention

by

the

ODBC

driver

manager

include:

v

Applications

written

using

ODBC

2.0

functions

that

have

been

deprecated

in

ODBC

3.0

will

have

the

old

functions

mapped

to

new

functions.

v

ODBC

2.0

function

arguments

deprecated

in

ODBC

3.0

will

be

mapped

to

equivalent

ODBC

3.0

arguments.

464

Programming

Client

Applications

|
|
|
|
|
|
|

v

The

Microsoft®

cursor

library

will

map

calls

such

as

SQLExtendedFetch()

to

multiple

calls

to

SQLFetch()

and

other

supporting

functions

to

achieve

the

same

end

result.

v

ODBC

driver

manager

connection

pooling

will

usually

defer

SQLDisconnect()

requests

(or

avoid

them

altogether

if

the

connection

gets

reused).

For

these

and

other

reasons,

application

developers

may

find

an

ODBC

driver

manager

trace

to

be

a

useful

complement

to

the

DB2

CLI

driver

trace.

For

more

information

on

capturing

and

interpreting

ODBC

driver

manager

traces,

refer

to

the

ODBC

driver

manager

documentation.

On

the

Windows

platforms,

refer

to

the

Microsoft

ODBC

3.0

Software

Development

Kit

and

Programmer’s

Reference,

also

available

online

at:

http://www.msdn.microsoft.com/.

DB2

CLI

Driver,

CLI-based

Legacy

Type

2

JDBC

Driver,

and

DB2

traces:

Internally,

the

CLI-based

Legacy

Type

2

JDBC

Driver

makes

use

of

the

DB2

CLI

driver

for

database

access.

For

example,

the

Java

getConnection()

method

is

internally

mapped

by

the

CLI-based

Legacy

Type

2

JDBC

Driver

to

the

DB2

CLI

SQLConnect()

function.

As

a

result,

Java

developers

might

find

a

DB2

CLI

trace

to

be

a

useful

complement

to

the

DB2

JDBC

trace.

The

DB2

CLI

driver

makes

use

of

many

internal

and

DB2

specific

functions

to

do

its

work.

These

internal

and

DB2

specific

function

calls

are

logged

in

the

DB2

trace.

Application

developers

will

not

find

DB2

traces

useful,

as

they

are

only

meant

to

assist

IBM®

Service

in

problem

determination

and

resolution.

DB2

CLI

and

DB2

JDBC

traces

and

CLI

or

Java

stored

procedures:

On

all

workstation

platforms,

the

DB2

CLI

and

DB2

JDBC

trace

facilities

can

be

used

to

trace

DB2

CLI

and

DB2

JDBC

stored

procedures.

Most

of

the

DB2

CLI

and

DB2

JDBC

trace

information

and

instructions

given

in

earlier

sections

is

generic

and

applies

to

both

applications

and

stored

procedures

equally.

However,

unlike

applications

which

are

clients

of

a

database

server

(and

typically

execute

on

a

machine

separate

from

the

database

server),

stored

procedures

execute

at

the

database

server.

Therefore,

the

following

additional

steps

must

be

taken

when

tracing

DB2

CLI

or

DB2

JDBC

stored

procedures:

v

Ensure

the

trace

keyword

options

are

specified

in

the

db2cli.ini

file

located

at

the

DB2

server.

v

If

the

TraceRefreshInterval

keyword

is

not

set

to

a

positive,

non-zero

value,

ensure

all

keywords

are

configured

correctly

prior

to

database

startup

time

(that

is,

when

the

db2start

command

is

issued).

Changing

trace

settings

while

the

database

server

is

running

may

have

unpredictable

results.

For

example,

if

the

TracePathName

is

changed

while

the

server

is

running,

then

the

next

time

a

stored

procedure

is

executed,

some

trace

files

may

be

written

to

the

new

path,

while

others

are

written

to

the

original

path.

To

ensure

consistency,

restart

the

server

any

time

a

trace

keyword

other

than

Trace

or

TracePIDList

is

modified.

Related

concepts:

v

“db2cli.ini

initialization

file”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“CLI

and

JDBC

trace

files”

on

page

466

Related

reference:

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

465

|
|
|
|
|

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“GET

CLI

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

CLI

CONFIGURATION

Command”

in

the

Command

Reference

v

“Miscellaneous

variables”

in

the

Administration

Guide:

Performance

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

CLI

and

JDBC

trace

files

Applications

that

access

the

DB2®

CLI

and

DB2

JDBC

drivers

can

make

use

of

the

DB2

CLI

and

DB2

JDBC

trace

facilities.

These

utilities

record

all

function

calls

made

by

the

DB2

CLI

or

DB2

JDBC

drivers

to

a

log

file

which

is

useful

for

problem

determination.

This

topic

discusses

how

to

access

and

interpret

these

log

files

generated

by

the

tracing

facilities:

v

“CLI

and

JDBC

trace

file

location”

v

“CLI

trace

file

interpretation”

on

page

467

v

“JDBC

trace

file

interpretation”

on

page

471

CLI

and

JDBC

trace

file

location:

If

the

TraceFileName

keyword

was

used

in

the

db2cli.ini

file

to

specify

a

fully

qualified

file

name,

then

the

DB2

CLI

trace

log

file

will

be

in

the

location

specified.

If

a

relative

file

name

was

specified

for

the

DB2

CLI

trace

log

file

name,

the

location

of

that

file

will

depend

on

what

the

operating

system

considers

to

be

the

current

path

of

the

application.

Note:

If

the

user

executing

the

application

does

not

have

sufficient

authority

to

write

to

the

trace

log

file

in

the

specified

path,

no

file

will

be

generated

and

no

warning

or

error

is

given.

If

either

or

both

of

the

TracePathName

and

JDBCTracePathName

keywords

were

used

in

the

db2cli.ini

file

to

specify

fully

qualified

directories,

then

the

DB2

CLI

and

DB2

JDBC

trace

log

files

will

be

in

the

location

specified.

If

a

relative

directory

name

was

specified

for

either

or

both

trace

directories,

the

operating

system

will

determine

its

location

based

on

what

it

considers

to

be

the

current

path

of

the

application.

Note:

If

the

user

executing

the

application

does

not

have

sufficient

authority

to

write

trace

files

in

the

specified

path,

no

file

will

be

generated

and

no

warning

or

error

is

given.

If

the

specified

trace

path

does

not

exist,

it

will

not

be

created.

The

DB2

CLI

and

DB2

JDBC

trace

facilities

automatically

use

the

application’s

process

ID

and

thread

sequence

number

to

name

the

trace

log

files

when

the

TracePathName

and

JDBCTracePathName

keywords

have

been

set.

For

example,

a

DB2

CLI

trace

of

an

application

with

three

threads

might

generate

the

following

DB2

CLI

trace

log

files:

100390.0,

100390.1,

100390.2.

Similarly,

a

DB2

JDBC

trace

of

a

Java™

application

with

two

threads

might

generate

the

following

JDBC

trace

log

files:

7960main.trc,

7960Thread-1.trc.

466

Programming

Client

Applications

Note:

If

the

trace

directory

contains

both

old

and

new

trace

log

files,

file

date

and

time

stamp

information

can

be

used

to

locate

the

most

recent

trace

files.

If

no

DB2

CLI

or

DB2

JDBC

trace

output

files

appear

to

have

been

created:

v

Verify

that

the

trace

configuration

keywords

are

set

correctly

in

the

db2cli.ini

file.

Issuing

the

db2

GET

CLI

CFG

FOR

SECTION

COMMON

command

from

the

command

line

processor

is

a

quick

way

to

do

this.

v

Ensure

the

application

is

restarted

after

updating

the

db2cli.ini

file.

Specifically,

the

DB2

CLI

and

DB2

JDBC

trace

facilities

are

initialized

during

application

startup.

Once

initialized,

the

DB2

JDBC

trace

facility

cannot

be

reconfigured.

The

DB2

CLI

trace

facility

can

be

reconfigured

at

run

time

but

only

if

the

TraceRefreshInterval

keyword

was

appropriately

specified

prior

to

application

startup.

Note:

Only

the

Trace

and

TracePIDList

DB2

CLI

keywords

can

be

reconfigured

at

run

time.

Changes

made

to

other

DB2

CLI

keywords,

including

TraceRefreshInterval,

have

no

effect

without

an

application

restart.

v

If

the

TraceRefreshInterval

keyword

was

specified

prior

to

application

startup,

and

if

the

Trace

keyword

was

initially

set

to

0,

ensure

that

enough

time

has

elapsed

for

the

DB2

CLI

trace

facility

to

reread

the

Trace

keyword

value.

v

If

either

or

both

the

TracePathName

and

JDBCTracePathName

keywords

are

used

to

specify

trace

directories,

ensure

those

directories

exist

prior

to

starting

the

application.

v

Ensure

the

application

has

write

access

to

the

specified

trace

log

file

or

trace

directory.

v

Check

the

DB2CLIINIPATH

environment

variable.

If

set,

the

DB2

CLI

and

DB2

JDBC

trace

facilities

expect

the

db2cli.ini

file

to

be

at

the

location

specified

by

this

variable.

v

If

the

application

uses

ODBC

to

interface

with

the

DB2

CLI

driver,

verify

that

one

of

the

SQLConnect(),

SQLDriverConnect()

or

SQLBrowseConnect()

functions

have

been

successfully

called.

No

entries

will

be

written

to

the

DB2

CLI

trace

log

files

until

a

database

connection

has

successfully

been

made.

CLI

trace

file

interpretation:

DB2

CLI

traces

always

begin

with

a

header

that

identifies

the

process

ID

and

thread

ID

of

the

application

that

generated

the

trace,

the

time

the

trace

began,

and

product

specific

information

such

as

the

local

DB2

build

level

and

DB2

CLI

driver

version.

For

example:

1

[

Process:

1227,

Thread:

1024

]

2

[

Date,

Time:

01-27-2002

13:46:07.535211

]

3

[

Product:

QDB2/LINUX

7.1.0

]

4

[

Level

Identifier:

02010105

]

5

[

CLI

Driver

Version:

07.01.0000

]

6

[

Informational

Tokens:

"DB2

v7.1.0","n000510",""

]

Note:

Trace

examples

used

in

this

section

have

line

numbers

added

to

the

left

hand

side

of

the

trace.

These

line

numbers

have

been

added

to

aid

the

discussion

and

will

not

appear

in

an

actual

DB2

CLI

trace.

Immediately

following

the

trace

header,

there

are

usually

a

number

of

trace

entries

related

to

environment

and

connection

handle

allocation

and

initialization.

For

example:

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

467

7

SQLAllocEnv(

phEnv=&bffff684

)

8

–––>

Time

elapsed

-

+9.200000E-004

seconds

9

SQLAllocEnv(

phEnv=0:1

)

10

<–––

SQL_SUCCESS

Time

elapsed

-

+7.500000E-004

seconds

11

SQLAllocConnect(

hEnv=0:1,

phDbc=&bffff680

)

12

–––>

Time

elapsed

-

+2.334000E-003

seconds

13

SQLAllocConnect(

phDbc=0:1

)

14

<–––

SQL_SUCCESS

Time

elapsed

-

+5.280000E-004

seconds

15

SQLSetConnectOption(

hDbc=0:1,

fOption=SQL_ATTR_AUTOCOMMIT,

vParam=0

)

16

–––>

Time

elapsed

-

+2.301000E-003

seconds

17

SQLSetConnectOption(

)

18

<–––

SQL_SUCCESS

Time

elapsed

-

+3.150000E-004

seconds

19

SQLConnect(

hDbc=0:1,

szDSN="SAMPLE",

cbDSN=-3,

szUID="",

cbUID=-3,

szAuthStr="",

cbAuthStr=-3

)

20

–––>

Time

elapsed

-

+7.000000E-005

seconds

21

(

DBMS

NAME="DB2/LINUX",

Version="07.01.0000",

Fixpack="0x22010105"

)

22

SQLConnect(

)

23

<–––

SQL_SUCCESS

Time

elapsed

-

+5.209880E-001

seconds

24

(

DSN=""SAMPLE""

)

25

(

UID="

"

)

26

(

PWD="*"

)

In

the

above

trace

example,

notice

that

there

are

two

entries

for

each

DB2

CLI

function

call

(for

example,

lines

19-21

and

22-26

for

the

SQLConnect()

function

call).

This

is

always

the

case

in

DB2

CLI

traces.

The

first

entry

shows

the

input

parameter

values

passed

to

the

function

call

while

the

second

entry

shows

the

function

output

parameter

values

and

return

code

returned

to

the

application.

The

above

trace

example

shows

that

the

SQLAllocEnv()

function

successfully

allocated

an

environment

handle

(

phEnv=0:1

)

at

line

9.

That

handle

was

then

passed

to

the

SQLAllocConnect()

function

which

successfully

allocated

a

database

connection

handle

(

phDbc=0:1

)

as

of

line

13.

Next,

the

SQLSetConnectOption()

function

was

used

to

set

the

phDbc=0:1

connection’s

SQL_ATTR_AUTOCOMMIT

attribute

to

SQL_AUTOCOMMIT_OFF

(

vParam=0

)

at

line

15.

Finally,

SQLConnect()

was

called

to

connect

to

the

target

database

(

SAMPLE

)

at

line

19.

Included

in

the

input

trace

entry

of

the

SQLConnect()

function

on

line

21

is

the

build

and

FixPak

level

of

the

target

database

server.

Other

information

that

might

also

appear

in

this

trace

entry

includes

input

connection

string

keywords

and

the

code

pages

of

the

client

and

server.

For

example,

suppose

the

following

information

also

appeared

in

the

SQLConnect()

trace

entry:

(

Application

Codepage=819,

Database

Codepage=819,

Char

Send/Recv

Codepage=819,

Graphic

Send/Recv

Codepage=819,

Application

Char

Codepage=819,

Application

Graphic

Codepage=819

)

This

would

mean

the

application

and

the

database

server

were

using

the

same

code

page

(

819

).

The

return

trace

entry

of

the

SQLConnect()

function

also

contains

important

connection

information

(lines

24-26

in

the

above

example

trace).

Additional

information

that

might

be

displayed

in

the

return

entry

includes

any

PATCH1

or

PATCH2

keyword

values

that

apply

to

the

connection.

For

example,

if

468

Programming

Client

Applications

PATCH2=27,28

was

specified

in

the

db2cli.ini

file

under

the

COMMON

section,

the

following

line

should

also

appear

in

the

SQLConnect()

return

entry:

(

PATCH2="27,28"

)

Following

the

environment

and

connection

related

trace

entries

are

the

statement

related

trace

entries.

For

example:

27

SQLAllocStmt(

hDbc=0:1,

phStmt=&bffff684

)

28

–––>

Time

elapsed

-

+1.868000E-003

seconds

29

SQLAllocStmt(

phStmt=1:1

)

30

<–––

SQL_SUCCESS

Time

elapsed

-

+6.890000E-004

seconds

31

SQLExecDirect(

hStmt=1:1,

pszSqlStr="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))",

cbSqlStr=-3

)

32

–––>

Time

elapsed

-

+2.863000E-003

seconds

33

(

StmtOut="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))"

)

34

SQLExecDirect(

)

35

<–––

SQL_SUCCESS

Time

elapsed

-

+2.387800E-002

seconds

In

the

above

trace

example,

the

database

connection

handle

(

phDbc=0:1

)

was

used

to

allocate

a

statement

handle

(

phStmt=1:1

)

at

line

29.

An

unprepared

SQL

statement

was

then

executed

on

that

statement

handle

at

line

31.

If

the

TraceComm=1

keyword

had

been

set

in

the

db2cli.ini

file,

the

SQLExecDirect()

function

call

trace

entries

would

have

shown

additional

client-server

communication

information

as

follows:

SQLExecDirect(

hStmt=1:1,

pszSqlStr="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))",

cbSqlStr=-3

)

–––>

Time

elapsed

-

+2.876000E-003

seconds

(

StmtOut="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))"

)

sqlccsend(

ulBytes

-

232

)

sqlccsend(

Handle

-

1084869448

)

sqlccsend(

)

-

rc

-

0,

time

elapsed

-

+1.150000E-004

sqlccrecv(

)

sqlccrecv(

ulBytes

-

163

)

-

rc

-

0,

time

elapsed

-

+2.243800E-002

SQLExecDirect(

)

<–––

SQL_SUCCESS

Time

elapsed

-

+2.384900E-002

seconds

Notice

the

additional

sqlccsend()

and

sqlccrecv()

function

call

information

in

this

trace

entry.

The

sqlccsend()

call

information

reveals

how

much

data

was

sent

from

the

client

to

the

server,

how

long

the

transmission

took,

and

the

success

of

that

transmission

(

0

=

SQL_SUCCESS

).

The

sqlccrecv()

call

information

then

reveals

how

long

the

client

waited

for

a

response

from

the

server

and

the

amount

of

data

included

in

the

response.

Often,

multiple

statement

handles

will

appear

in

the

DB2

CLI

trace.

By

paying

close

attention

to

the

statement

handle

identifier,

one

can

easily

follow

the

execution

path

of

a

statement

handle

independent

of

all

other

statement

handles

appearing

in

the

trace.

Statement

execution

paths

appearing

in

the

DB2

CLI

trace

are

usually

more

complicated

than

the

example

shown

above.

For

example:

36

SQLAllocStmt(

hDbc=0:1,

phStmt=&bffff684

)

37

–––>

Time

elapsed

-

+1.532000E-003

seconds

38

SQLAllocStmt(

phStmt=1:2

)

39

<–––

SQL_SUCCESS

Time

elapsed

-

+6.820000E-004

seconds

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

469

40

SQLPrepare(

hStmt=1:2,

pszSqlStr="INSERT

INTO

GREETING

VALUES

(

?

)",

cbSqlStr=-3

)

41

–––>

Time

elapsed

-

+2.733000E-003

seconds

42

(

StmtOut="INSERT

INTO

GREETING

VALUES

(

?

)"

)

43

SQLPrepare(

)

44

<–––

SQL_SUCCESS

Time

elapsed

-

+9.150000E-004

seconds

45

SQLBindParameter(

hStmt=1:2,

iPar=1,

fParamType=SQL_PARAM_INPUT,

fCType=SQL_C_CHAR,

fSQLType=SQL_CHAR,

cbColDef=14,

ibScale=0,

rgbValue=&080eca70,

cbValueMax=15,

pcbValue=&080eca4c

)

46

–––>

Time

elapsed

-

+4.091000E-003

seconds

47

SQLBindParameter(

)

48

<–––

SQL_SUCCESS

Time

elapsed

-

+6.780000E-004

seconds

49

SQLExecute(

hStmt=1:2

)

50

–––>

Time

elapsed

-

+1.337000E-003

seconds

51

(

iPar=1,

fCType=SQL_C_CHAR,

rgbValue="Hello

World!!!",

pcbValue=14,

piIndicatorPtr=14

)

52

SQLExecute(

)

53

<–––

SQL_ERROR

Time

elapsed

-

+5.951000E-003

seconds

In

the

above

trace

example,

the

database

connection

handle

(

phDbc=0:1

)

was

used

to

allocate

a

second

statement

handle

(

phStmt=1:2

)

at

line

38.

An

SQL

statement

with

one

parameter

marker

was

then

prepared

on

that

statement

handle

at

line

40.

Next,

an

input

parameter

(

iPar=1

)

of

the

appropriate

SQL

type

(

SQL_CHAR

)

was

bound

to

the

parameter

marker

at

line

45.

Finally,

the

statement

was

executed

at

line

49.

Notice

that

both

the

contents

and

length

of

the

input

parameter

(

rgbValue=″Hello

World!!!″,

pcbValue=14

)

are

displayed

in

the

trace

on

line

51.

The

SQLExecute()

function

fails

at

line

52.

If

the

application

calls

a

diagnostic

DB2

CLI

function

like

SQLError()

to

diagnose

the

cause

of

the

failure,

then

that

cause

will

appear

in

the

trace.

For

example:

54

SQLError(

hEnv=0:1,

hDbc=0:1,

hStmt=1:2,

pszSqlState=&bffff680,

pfNativeError=&bfffee78,

pszErrorMsg=&bffff280,

cbErrorMsgMax=1024,

pcbErrorMsg=&bfffee76

)

55

–––>

Time

elapsed

-

+1.512000E-003

seconds

56

SQLError(

pszSqlState="22001",

pfNativeError=-302,

pszErrorMsg="[IBM][CLI

Driver][DB2/LINUX]

SQL0302N

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

is

too

large

for

its

corresponding

use.

SQLSTATE=22001",

pcbErrorMsg=157

)

57

<–––

SQL_SUCCESS

Time

elapsed

-

+8.060000E-004

seconds

The

error

message

returned

at

line

56

contains

the

DB2

native

error

code

that

was

generated

(

SQL0302N

),

the

sqlstate

that

corresponds

to

that

code

(

SQLSTATE=22001

)

and

a

brief

description

of

the

error.

In

this

example,

the

source

of

the

error

is

evident:

on

line

49,

the

application

is

trying

to

insert

a

string

with

14

characters

into

a

column

defined

as

VARCHAR(10)

on

line

31.

If

the

application

does

not

respond

to

a

DB2

CLI

function

warning

or

error

return

code

by

calling

a

diagnostic

function

like

SQLError(),

the

warning

or

error

message

should

still

be

written

to

the

DB2

CLI

trace.

However,

the

location

of

that

message

in

the

trace

may

not

be

close

to

where

the

error

actually

occurred.

Furthermore,

the

trace

will

indicate

that

the

error

or

warning

message

was

not

retrieved

by

the

470

Programming

Client

Applications

application.

For

example,

if

not

retrieved,

the

error

message

in

the

above

example

might

not

appear

until

a

later,

seemingly

unrelated

DB2

CLI

function

call

as

follows:

SQLDisconnect(

hDbc=0:1

)

–––>

Time

elapsed

-

+1.501000E-003

seconds

sqlccsend(

ulBytes

-

72

)

sqlccsend(

Handle

-

1084869448

)

sqlccsend(

)

-

rc

-

0,

time

elapsed

-

+1.080000E-004

sqlccrecv(

)

sqlccrecv(

ulBytes

-

27

)

-

rc

-

0,

time

elapsed

-

+1.717950E-001

(

Unretrieved

error

message="SQL0302N

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

is

too

large

for

its

corresponding

use.

SQLSTATE=22001"

)

SQLDisconnect(

)

<–––

SQL_SUCCESS

Time

elapsed

-

+1.734130E-001

seconds

The

final

part

of

a

DB2

CLI

trace

should

show

the

application

releasing

the

database

connection

and

environment

handles

that

it

allocated

earlier

in

the

trace.

For

example:

58

SQLTransact(

hEnv=0:1,

hDbc=0:1,

fType=SQL_ROLLBACK

)

59

–––>

Time

elapsed

-

+6.085000E-003

seconds

60

(

ROLLBACK=0

)

61

SQLTransact(

)

<–––

SQL_SUCCESS

Time

elapsed

-

+2.220750E-001

seconds

62

SQLDisconnect(

hDbc=0:1

)

63

–––>

Time

elapsed

-

+1.511000E-003

seconds

64

SQLDisconnect(

)

65

<–––

SQL_SUCCESS

Time

elapsed

-

+1.531340E-001

seconds

66

SQLFreeConnect(

hDbc=0:1

)

67

–––>

Time

elapsed

-

+2.389000E-003

seconds

68

SQLFreeConnect(

)

69

<–––

SQL_SUCCESS

Time

elapsed

-

+3.140000E-004

seconds

70

SQLFreeEnv(

hEnv=0:1

)

71

–––>

Time

elapsed

-

+1.129000E-003

seconds

72

SQLFreeEnv(

)

73

<–––

SQL_SUCCESS

Time

elapsed

-

+2.870000E-004

seconds

JDBC

trace

file

interpretation:

DB2

JDBC

traces

always

begin

with

a

header

that

lists

important

system

information

such

as

key

environment

variable

settings,

the

JDK

or

JRE

level,

the

DB2

JDBC

driver

level,

and

the

DB2

build

level.

For

example:

1

==

2

|

Trace

beginning

on

2002-1-28

7:21:0.19

3

==

4

System

Properties:

5

6

user.language

=

en

7

java.home

=

c:\Program

Files\SQLLIB\java\jdk\bin\..

8

java.vendor.url.bug

=

9

awt.toolkit

=

sun.awt.windows.WToolkit

10

file.encoding.pkg

=

sun.io

11

java.version

=

1.1.8

12

file.separator

=

\

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

471

13

line.separator

=

14

user.region

=

US

15

file.encoding

=

Cp1252

16

java.compiler

=

ibmjitc

17

java.vendor

=

IBM®

Corporation

18

user.timezone

=

EST

19

user.name

=

db2user

20

os.arch

=

x86

21

java.fullversion

=

JDK

1.1.8

IBM

build

n118p-19991124

(JIT

ibmjitc

V3.5-IBMJDK1.1-19991124)

22

os.name

=

Windows®

NT

23

java.vendor.url

=

http://www.ibm.com/

24

user.dir

=

c:\Program

Files\SQLLIB\samples\java

25

java.class.path

=

.:C:\Program

Files\SQLLIB\lib;C:\Program

Files\SQLLIB\java;

C:\Program

Files\SQLLIB\java\jdk\bin\

26

java.class.version

=

45.3

27

os.version

=

5.0

28

path.separator

=

;

29

user.home

=

C:\home\db2user

30

--

Note:

Trace

examples

used

in

this

section

have

line

numbers

added

to

the

left

hand

side

of

the

trace.

These

line

numbers

have

been

added

to

aid

the

discussion

and

will

not

appear

in

an

actual

DB2

JDBC

trace.

Immediately

following

the

trace

header,

one

usually

finds

a

number

of

trace

entries

related

to

initialization

of

the

JDBC

environment

and

database

connection

establishment.

For

example:

31

jdbc.app.DB2Driver

–>

DB2Driver()

(2002-1-28

7:21:0.29)

32

|

Loaded

db2jdbc

from

java.library.path

33

jdbc.app.DB2Driver

<–

DB2Driver()

[Time

Elapsed

=

0.01]

34

DB2Driver

-

connect(jdbc:db2:sample)

35

jdbc.app.DB2ConnectionTrace

–>

connect(

sample,

info,

db2driver,

0,

false

)

(2002-1-28

7:21:0.59)

36

|

10:

connectionHandle

=

1

37

jdbc.app.DB2ConnectionTrace

<–

connect()

[Time

Elapsed

=

0.16]

38

jdbc.app.DB2ConnectionTrace

–>

DB2Connection

(2002-1-28

7:21:0.219)

39

|

source

=

sample

40

|

Connection

handle

=

1

41

jdbc.app.DB2ConnectionTrace

<–

DB2Connection

In

the

above

trace

example,

a

request

to

load

the

DB2

JDBC

driver

was

made

on

line

31.

This

request

returned

successfully

as

reported

on

line

33.

The

DB2

JDBC

trace

facility

uses

specific

Java

classes

to

capture

the

trace

information.

In

the

above

trace

example,

one

of

those

trace

classes,

DB2ConnectionTrace,

has

generated

two

trace

entries

numbered

35-37

and

38-41.

Line

35

shows

the

connect()

method

being

invoked

and

the

input

parameters

to

that

method

call.

Line

37

shows

that

the

connect()

method

call

has

returned

successfully

while

line

36

shows

the

output

parameter

of

that

call

(

Connection

handle

=

1

).

Following

the

connection

related

entries,

one

usually

finds

statement

related

entries

in

the

JDBC

trace.

For

example:

42

jdbc.app.DB2ConnectionTrace

–>

createStatement()

(2002-1-28

7:21:0.219)

43

|

Connection

handle

=

1

44

|

jdbc.app.DB2StatementTrace

–>

DB2Statement(

con,

1003,

1007

)

472

Programming

Client

Applications

(2002-1-28

7:21:0.229)

45

|

jdbc.app.DB2StatementTrace

<–

DB2Statement()

[Time

Elapsed

=

0.0]

46

|

jdbc.app.DB2StatementTrace

–>

DB2Statement

(2002-1-28

7:21:0.229)

47

|

|

Statement

handle

=

1:1

48

|

jdbc.app.DB2StatementTrace

<–

DB2Statement

49

jdbc.app.DB2ConnectionTrace

<–

createStatement

-

Time

Elapsed

=

0.01

50

jdbc.app.DB2StatementTrace

–>

executeQuery(SELECT

*

FROM

EMPLOYEE

WHERE

empno

=

000010)

(2002-1-28

7:21:0.269)

51

|

Statement

handle

=

1:1

52

|

jdbc.app.DB2StatementTrace

–>

execute2(

SELECT

*

FROM

EMPLOYEE

WHERE

empno

=

000010

)

(2002-1-28

7:21:0.269)

52

|

|

jdbc.DB2Exception

–>

DB2Exception()

(2002-1-28

7:21:0.729)

53

|

|

|

10:

SQLError

=

[IBM][CLI

Driver][DB2/NT]

SQL0401N

The

data

types

of

the

operands

for

the

operation

"="

are

not

compatible.

SQLSTATE=42818

54

|

|

|

SQLState

=

42818

55

|

|

|

SQLNativeCode

=

-401

56

|

|

|

LineNumber

=

0

57

|

|

|

SQLerrmc

=

=

58

|

|

jdbc.DB2Exception

<–

DB2Exception()

[Time

Elapsed

=

0.0]

59

|

jdbc.app.DB2StatementTrace

<–

executeQuery

-

Time

Elapsed

=

0.0

On

line

42

and

43,

the

DB2ConnectionTrace

class

reported

that

the

JDBC

createStatement()

method

had

been

called

with

connection

handle

1.

Within

that

method,

the

internal

method

DB2Statement()

was

called

as

reported

by

another

DB2

JDBC

trace

facility

class,

DB2StatementTrace.

Notice

that

this

internal

method

call

appears

’nested’

in

the

trace

entry.

Lines

47-49

show

that

the

methods

returned

successfully

and

that

statement

handle

1:1

was

allocated.

On

line

50,

an

SQL

query

method

call

is

made

on

statement

1:1,

but

the

call

generates

an

exception

at

line

52.

The

error

message

is

reported

on

line

53

and

contains

the

DB2

native

error

code

that

was

generated

(

SQL0401N

),

the

sqlstate

that

corresponds

to

that

code

(

SQLSTATE=42818

)

and

a

brief

description

of

the

error.

In

this

example,

the

error

results

because

the

EMPLOYEE.EMPNO

column

is

defined

as

CHAR(6)

and

not

an

integer

value

as

assumed

in

the

query.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

on

page

460

Related

reference:

v

“Miscellaneous

variables”

in

the

Administration

Guide:

Performance

v

“Trace

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“TraceComm

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“TraceFileName

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“TracePathName

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“TracePIDList

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“TraceRefreshInterval

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

Chapter

20.

Diagnosing

JDBC

and

SQLJ

problems

473

474

Programming

Client

Applications

Chapter

21.

Java

2

Platform

Enterprise

Edition

The

sections

that

follow

describe

the

Java

2

Platform

Enterprise

Edition

(J2EE).

Java

2

Platform

Enterprise

Edition

(J2EE)

Overview

In

today’s

global

business

environment,

organizations

need

to

extend

their

reach,

lower

their

costs,

and

lower

their

response

times

by

providing

services

that

are

easily

accessible

to

their

customers,

employees,

suppliers,

and

other

business

partners.

These

services

need

to

have

the

following

characteristics:

v

Highly

available,

to

meet

the

requirements

of

global

business

environment

v

Secure,

to

protect

the

privacy

of

the

users

and

the

integrity

of

the

enterprise

v

Reliable

and

scalable,

so

that

business

transactions

are

accurately

and

promptly

processed

In

most

cases,

these

services

are

provided

with

the

help

of

multi-tier

applications

with

each

tier

serving

a

specific

purpose.

The

Java™

2

Platform

Enterprise

Edition,

reduces

the

cost

and

complexity

of

developing

these

multi-tier

services,

resulting

in

services

that

can

be

rapidly

deployed

and

easily

enhanced

based

on

the

requirements

of

the

enterprise.

Java

2

Enterprise

Edition

achieves

these

benefits

by

defining

a

standard

architecture

that

is

delivered

as

the

following

elements:

v

Java

2

Enterprise

Edition

Application

Model,

a

standard

application

model

for

developing

multi-tier,

thin-client

services

v

Java

2

Enterprise

Edition

Platform,

a

standard

platform

for

hosting

Java

2

Enterprise

Edition

applications

v

Java

2

Enterprise

Edition

Compatibility

Test

Suite

for

verifying

that

a

Java

2

Enterprise

Edition

platform

product

complies

with

the

Java

2

Enterprise

Edition

platform

standard

v

Java

2

Enterprise

Edition

Reference

Implementation

for

demonstrating

the

capabilities

of

Java

2

Enterprise

Edition,

and

for

providing

an

operational

definition

of

the

Java

2

Enterprise

Edition

platform

Related

concepts:

v

“Java

2

Platform

Enterprise

Edition”

on

page

475

Java

2

Platform

Enterprise

Edition

The

Java™

2

Platform

Enterprise

Edition

provides

the

runtime

environment

for

hosting

Java

2

Enterprise

Edition

applications.

The

runtime

environment

defines

four

application

component

types

that

a

Java

2

Enterprise

Edition

product

must

support:

v

Application

clients

are

Java

programming

language

programs

that

are

typically

GUI

programs

that

execute

on

a

desktop

computer.

Application

clients

have

access

to

all

of

the

facilities

of

the

Java

2

Enterprise

Edition

middle

tier.

v

Applets

are

GUI

components

that

typically

execute

in

a

web

browser,

but

can

execute

in

a

variety

of

other

applications

or

devices

that

support

the

applet

programming

model.

©

Copyright

IBM

Corp.

1997

-

2004

475

v

Servlets,

JavaServer

Pages

(JSPs),

filters,

and

web

event

listeners

typically

execute

in

a

web

server

and

may

respond

to

HTTP

requests

from

web

clients.

Servlets,

JSPs,

and

filters

may

be

used

to

generate

HTML

pages

that

are

an

application’s

user

interface.

They

may

also

be

used

to

generate

XML

or

other

format

data

that

is

consumed

by

other

application

components.

Servlets,

pages

created

with

the

JSP

technology,

web

filters,

and

web

event

listeners

are

referred

to

collectively

in

this

specification

as

web

components.

Web

applications

are

composed

of

web

components

and

other

data

such

as

HTML

pages.

v

Enterprise

JavaBeans™

(EJB)

components

execute

in

a

managed

environment

that

supports

transactions.

Enterprise

beans

typically

contain

the

business

logic

for

a

Java

2

Enterprise

Edition

application.

The

application

components

listed

above

can

divided

into

three

categories,

based

on

how

they

can

be

deployed

and

managed:

v

Components

that

are

deployed,

managed,

and

executed

on

a

Java

2

Enterprise

Edition

server.

v

Components

that

are

deployed,

managed

on

a

Java

2

Enterprise

Edition

server,

but

are

loaded

to

and

executed

on

a

client

machine.

v

Components

whose

deployment

and

management

are

not

completely

defined

by

this

specification.

Application

clients

can

be

under

this

category.

The

runtime

support

for

these

components

is

provided

by

containers.

Related

concepts:

v

“Java

2

Platform

Enterprise

Edition

Containers”

on

page

476

v

“Enterprise

Java

Beans”

on

page

483

Java

2

Platform

Enterprise

Edition

Containers

A

container

provides

a

federated

view

of

the

underlying

Java™

2

Platform

Enterprise

Edition

APIs

to

the

application

components.

A

typical

Java

2

Platform

Enterprise

Edition

product

will

provide

a

container

for

each

application

component

type;

application

client

container,

applet

container,

web

container,

and

enterprise

bean

container.

The

container

tools

also

understand

the

file

formats

for

packaging

the

application

components

for

deployment.

The

specification

requires

that

these

containers

provide

a

Java-compatible

runtime

environment,

as

defined

by

the

Java

2

Platform

Enterprise

Edition,

Standard

Edition

V1.3.1

specification

J2SE.

This

specification

defines

a

set

of

standard

services

that

each

Java

2

Enterprise

Edition

product

must

support.

These

standard

services

are:

v

HTTP

service

v

HTTPS

service

v

Java

transaction

API

v

Remote

invocation

method

v

Java

IDL

v

JDBC

API

v

Java

message

service

v

Java

naming

and

directory

interface

v

JavaMail

v

JavaBeans™

activation

framework

v

Java

API

for

XML

parsing

v

Connector

architecture

v

Java

authentication

and

authorization

service

476

Programming

Client

Applications

Related

concepts:

v

“Java

Naming

and

Directory

Interface

(JNDI)”

on

page

477

v

“Enterprise

Java

Beans”

on

page

483

Java

2

Platform

Enterprise

Edition

Server

Underlying

a

Java™

2

Platform

Enterprise

Edition

container

is

the

server

of

which

the

container

is

a

part.

A

Java

2

Enterprise

Edition

Product

Provider

typically

implements

the

Java

2

Platform

Enterprise

Edition

server-side

functionality

using

an

existing

transaction

processing

infrastructure

in

combination

with

J2SE

technology.

The

Java

2

Platform

Enterprise

Edition

client

functionality

is

typically

built

on

J2SE

technology.

Note:

The

IBM®

WebSphere®

Application

Server

is

a

Java

2

Platform

Enterprise

Edition-compliant

server.

Java

2

Enterprise

Edition

Database

Requirements

The

Java™

2

Enterprise

Edition

platform

requires

a

database,

accessible

through

the

JDBC

API,

for

the

storage

of

business

data.

The

database

is

accessible

from

web

components,

enterprise

beans,

and

application

client

components.

The

database

need

not

be

accessible

from

applets.

Related

concepts:

v

Chapter

14,

“Introduction

to

Java

application

support,”

on

page

259

Java

Naming

and

Directory

Interface

(JNDI)

JNDI

enables

Java™

platform-based

applications

to

access

multiple

naming

and

directory

services.

It

is

a

part

of

the

Java

Enterprise

application

programming

interface

(API)

set.

JNDI

makes

it

possible

for

developers

to

create

portable

applications

that

are

enabled

for

a

number

of

different

naming

and

directory

services,

including:

file

systems;

directory

services

such

as

Lightweight

Directory

Access

Protocol

(LDAP),

Novell

Directory

Services,

and

Network

Information

System

(NIS);

and

distributed

object

systems

such

as

the

Common

Object

Request

Broker

Architecture

(CORBA),

Java

Remote

Method

Invocation

(RMI),

and

Enterprise

JavaBeans™

(EJB).

The

JNDI

API

has

two

parts:

an

application-level

interface

used

by

the

application

components

to

access

naming

and

directory

services

and

a

service

provider

interface

to

attach

a

provider

of

a

naming

and

directory

service.

Java

Transaction

Management

Java™

2

Enterprise

Edition

simplifies

application

programming

for

distributed

transaction

management.

Java

2

Enterprise

Edition

includes

support

for

distributed

transactions

through

two

specifications,

Java

Transaction

API

and

Java

Transaction

Service

(JTS).

JTA

is

a

high-level,

implementation-independent,

protocol-independent

API

that

allows

applications

and

application

servers

to

access

transactions.

In

addition,

the

JTA

is

always

enabled.

The

DB2

Universal

JDBC

Driver

and

the

DB2®

JDBC

Type

2

Driver

for

Linux,

UNIX®

and

Windows®

implement

the

JTA

and

JTS

specifications.

Chapter

21.

Java

2

Platform

Enterprise

Edition

477

|
|

JTA

specifies

standard

Java

interfaces

between

a

transaction

manager

and

the

parties

involved

in

a

distributed

transaction

system:

the

resource

manager,

the

application

server,

and

the

transactional

applications.

JTS

specifies

the

implementation

of

a

Transaction

Manager

which

supports

JTA

and

implements

the

Java

mapping

of

the

OMG

Object

Transaction

Service

(OTS)

1.1

specification

at

the

level

below

the

API.

JTS

propagates

transactions

using

IIOP.

JTA

and

JTS

allow

application

Java

2

Enterprise

Edition

servers

to

take

the

burden

of

transaction

management

off

of

the

component

developer.

Developers

can

define

the

transactional

properties

of

EJB

technology

based

components

during

design

or

deployment

using

declarative

statements

in

the

deployment

descriptor.

The

application

server

takes

over

the

transaction

management

responsibilities.

In

the

DB2

and

WebSphere®

Application

Server

environment,

WebSphere

Application

Server

assumes

the

role

of

transaction

manager,

and

DB2

acts

as

a

resource

manager.

WebSphere

Application

Server

implements

JTS

and

part

of

JTA,

and

the

JDBC

drivers

also

implement

part

of

JTA

so

that

WebSphere

Application

Server

and

DB2

can

provide

coordinated

distributed

transactions.

It

is

not

necessary

to

configure

DB2

to

be

JTA-enabled

in

the

WebSphere

Application

Server

environment

because

the

JDBC

drivers

automatically

detect

this

environment.

The

DB2

JDBC

Type

2

Driver

provides

these

two

DataSource

classes:

v

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

v

COM.ibm.db2.jdbc.DB2XADataSource

The

DB2

Universal

JDBC

Driver

provides

these

two

DataSource

classes:

v

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

v

com.ibm.db2.jcc.DB2XADataSource

WebSphere

Application

Server

provides

pooled

DB2

connections

to

databases.

If

the

application

will

be

involved

in

a

distributed

transaction,

the

COM.ibm.db2.jdbc.DB2XADataSource

class

should

be

used

when

defining

DB2

data

sources

within

the

WebSphere

Application

Server.

For

the

detail

information

about

how

to

configure

the

WebSphere

Application

Server

with

DB2,

refer

to

WebSphere

Application

Server

InfoCenter

at:

http://www-4.ibm.com/software/webservers/appserv/library.html

Example

of

a

distributed

transaction

that

uses

JTA

methods

The

best

way

to

demonstrate

distributed

transactions

is

to

contrast

them

with

local

transactions.

With

local

transactions,

a

JDBC

application

makes

changes

to

a

database

permanent

and

indicates

the

end

of

a

unit

of

work

in

one

of

the

following

ways:

v

By

calling

the

Connection.commit

or

Connection.rollback

methods

after

executing

one

or

more

SQL

statements

v

By

calling

the

Connection.setAutoCommit(true)

method

at

the

beginning

of

the

application

to

commit

changes

after

every

SQL

statement

Figure

61

on

page

479

outlines

code

that

executes

local

transactions.

478

Programming

Client

Applications

|

|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|
|

In

contrast,

applications

that

participate

in

distributed

transactions

cannot

call

the

Connection.commit,

Connection.rollback,

or

Connection.setAutoCommit(true)

methods

within

the

distributed

transaction.

With

distributed

transactions,

the

Connection.commit

or

Connection.rollback

methods

do

not

indicate

transaction

boundaries.

Instead,

your

applications

let

the

application

server

manage

transaction

boundaries.

Distributed

transactions

typically

involve

multiple

connections

to

the

same

data

source

or

different

data

sources,

which

can

include

data

sources

from

different

manufacturers.

Figure

62

demonstrates

an

application

that

uses

distributed

transactions.

While

the

code

in

the

example

is

running,

the

application

server

is

also

executing

other

EJBs

that

are

part

of

this

same

distributed

transaction.

When

all

EJBs

have

called

utx.commit(),

the

entire

distributed

transaction

is

committed

by

the

application

server.

If

any

of

the

EJBs

are

unsuccessful,

the

application

server

rolls

back

all

the

work

done

by

all

EJBs

that

are

associated

with

the

distributed

transaction.

Figure

63

on

page

480

illustrates

a

program

that

uses

JTA

methods

to

execute

a

distributed

transaction.

This

program

acts

as

the

transaction

manager

and

a

transactional

application.

Two

connections

to

two

different

data

sources

do

SQL

work

under

a

single

distributed

transaction.

con1.setAutoCommit(false);

//

Set

autocommit

off

//

execute

some

SQL

...

con1.commit();

//

Commit

the

transaction

//

execute

some

more

SQL

...

con1.rollback();

//

Roll

back

the

transaction

con1.setAutoCommit(true);

//

Enable

commit

after

every

SQL

statement

...

//

Execute

some

more

SQL,

which

is

automatically

committed

after

//

every

SQL

statement.

Figure

61.

Example

of

a

local

transaction

javax.transaction.UserTransaction

utx;

//

Use

the

begin

method

on

a

UserTransaction

object

to

indicate

//

the

beginning

of

a

distributed

transaction.

utx.begin();

...

//

Execute

some

SQL

with

one

Connection

object.

//

Do

not

call

Connection

methods

commit

or

rollback.

...

//

Use

the

commit

method

on

the

UserTransaction

object

to

//

drive

all

transaction

branches

to

commit

and

indicate

//

the

end

of

the

distributed

transaction.

utx.commit();

...

Figure

62.

Example

of

a

distributed

transaction

under

an

application

server

Chapter

21.

Java

2

Platform

Enterprise

Edition

479

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

class

XASample

{

javax.sql.XADataSource

xaDS1;

javax.sql.XADataSource

xaDS2;

javax.sql.XAConnection

xaconn1;

javax.sql.XAConnection

xaconn2;

javax.transaction.xa.XAResource

xares1;

javax.transaction.xa.XAResource

xares2;

java.sql.Connection

conn1;

java.sql.Connection

conn2;

public

static

void

main

(String

args

[])

throws

java.sql.SQLException

{

XASample

xat

=

new

XASample();

xat.runThis(args);

}

//

As

the

transaction

manager,

this

program

supplies

the

global

//

transaction

ID

and

the

branch

qualifier.

The

global

//

transaction

ID

and

the

branch

qualifier

must

not

be

//

equal

to

each

other,

and

the

combination

must

be

unique

for

//

this

transaction

manager.

public

void

runThis(String[]

args)

{

byte[]

gtrid

=

new

byte[]

{

0x44,

0x11,

0x55,

0x66

};

byte[]

bqual

=

new

byte[]

{

0x00,

0x22,

0x00

};

int

rc1

=

0;

int

rc2

=

0;

try

{

javax.naming.InitialContext

context

=

new

javax.naming.InitialContext();

/*

*

Note

that

javax.sql.XADataSource

is

used

instead

of

a

specific

*

driver

implementation

such

as

com.ibm.db2.jcc.DB2XADataSource,

*

which

can

be

used

only

if

this

is

a

DB2

connection.

*/

xaDS1

=

(javax.sql.XADataSource)context.lookup("checkingAccounts");

xaDS2

=

(javax.sql.XADataSource)context.lookup("savingsAccounts");

//

The

XADatasource

contains

the

user

ID

and

password.

//

Get

the

XAConnection

object

from

each

XADataSource

xaconn1

=

xaDS1.getXAConnection();

xaconn2

=

xaDS2.getXAConnection();

//

Get

the

java.sql.Connection

object

from

each

XAConnection

conn1

=

xaconn1.getConnection();

conn2

=

xaconn2.getConnection();

//

Get

the

XAResource

object

from

each

XAConnection

xares1

=

xaconn1.getXAResource();

xares2

=

xaconn2.getXAResource();

Figure

63.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

1

of

4)

480

Programming

Client

Applications

|

//

Create

the

Xid

object

for

this

distributed

transaction.

//

This

example

uses

the

com.ibm.db2.jcc.DB2Xid

implementation

//

of

the

Xid

interface.

This

Xid

can

be

used

with

any

JDBC

driver

//

that

supports

JTA.

javax.transaction.xa.Xid

xid1

=

new

com.ibm.db2.jcc.DB2Xid(100,

gtrid,

bqual);

//

Start

the

distributed

transaction

on

the

two

connections.

//

The

two

connections

do

NOT

need

to

be

started

and

ended

together.

//

They

might

be

done

in

different

threads,

along

with

their

SQL

operations.

xares1.start(xid1,

javax.transaction.xa.XAResource.TMNOFLAGS);

xares2.start(xid1,

javax.transaction.xa.XAResource.TMNOFLAGS);

...

//

Do

the

SQL

operations

on

connection

1.

//

Do

the

SQL

operations

on

connection

2.

...

//

Now

end

the

distributed

transaction

on

the

two

connections.

xares1.end(xid1,

javax.transaction.xa.XAResource.TMSUCCESS);

xares2.end(xid1,

javax.transaction.xa.XAResource.TMSUCCESS);

//

If

connection

2

work

had

been

done

in

another

thread,

//

a

thread.join()

call

would

be

needed

here

to

wait

until

the

//

connection

2

work

is

done.

try

{

//

Now

prepare

both

branches

of

the

distributed

transaction.

//

Both

branches

must

prepare

successfully

before

changes

//

can

be

committed.

//

If

the

distributed

transaction

fails,

an

XAException

is

thrown.

rc1

=

xares1.prepare(xid1);

if(rc1

==

javax.transaction.xa.XAResource.XA_OK)

{

//

Prepare

was

successful.

Prepare

the

second

connection.

rc2

=

xares2.prepare(xid1);

if(rc2

==

javax.transaction.xa.XAResource.XA_OK)

{

//

Both

connections

prepared

successfully

and

neither

was

read-only.

xares1.commit(xid1,

false);

xares2.commit(xid1,

false);

}

else

if(rc2

==

javax.transaction.xa.XAException.XA_RDONLY)

{

//

The

second

connection

is

read-only,

so

just

commit

the

//

first

connection.

xares1.commit(xid1,

false);

}

}

else

if(rc1

==

javax.transaction.xa.XAException.XA_RDONLY)

{

//

SQL

for

the

first

connection

is

read-only

(such

as

a

SELECT).

//

The

prepare

committed

it.

Prepare

the

second

connection.

rc2

=

xares2.prepare(xid1);

if(rc2

==

javax.transaction.xa.XAResource.XA_OK)

{

//

The

first

connection

is

read-only

but

the

second

is

not.

//

Commit

the

second

connection.

xares2.commit(xid1,

false);

}

else

if(rc2

==

javax.transaction.xa.XAException.XA_RDONLY)

{

//

Both

connections

are

read-only,

and

both

already

committed,

//

so

there

is

nothing

more

to

do.

}

}

}

Figure

63.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

2

of

4)

Chapter

21.

Java

2

Platform

Enterprise

Edition

481

|

catch

(javax.transaction.xa.XAException

xae)

{

//

Distributed

transaction

failed,

so

roll

it

back.

//

Report

XAException

on

prepare/commit.

System.out.println("Distributed

transaction

prepare/commit

failed.

"

+

"Rolling

it

back.");

System.out.println("XAException

error

code

=

"

+

xae.errorCode);

System.out.println("XAException

message

=

"

+

xae.getMessage());

xae.printStackTrace();

try

{

xares1.rollback(xid1);

}

catch

(javax.transaction.xa.XAException

xae1)

{

//

Report

failure

of

rollback.

System.out.println("distributed

Transaction

rollback

xares1

failed");

System.out.println("XAException

error

code

=

"

+

xae1.errorCode);

System.out.println("XAException

message

=

"

+

xae1.getMessage());

}

try

{

xares2.rollback(xid1);

}

catch

(javax.transaction.xa.XAException

xae2)

{

//

Report

failure

of

rollback.

System.out.println("distributed

Transaction

rollback

xares2

failed");

System.out.println("XAException

error

code

=

"

+

xae2.errorCode);

System.out.println("XAException

message

=

"

+

xae2.getMessage());

}

}

try

{

conn1.close();

xaconn1.close();

}

catch

(Exception

e)

{

System.out.println("Failed

to

close

connection

1:

"

+

e.toString());

e.printStackTrace();

}

try

{

conn2.close();

xaconn2.close();

}

catch

(Exception

e)

{

System.out.println("Failed

to

close

connection

2:

"

+

e.toString());

e.printStackTrace();

}

}

Figure

63.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

3

of

4)

482

Programming

Client

Applications

|

Recommendation:

For

better

performance,

complete

a

distributed

transaction

before

you

start

another

distributed

or

local

transaction.

Related

concepts:

v

“Java

Transaction

Management”

on

page

477

Enterprise

Java

Beans

The

Enterprise

Java™

beans

architecture

is

a

component

architecture

for

the

development

and

deployment

of

component-based

distributed

business

applications.

Applications

that

are

written

using

the

Enterprise

Java

beans

architecture

can

be

written

once,

and

then

deployed

on

any

server

platform

that

supports

the

Enterprise

Java

beans

specification.

Java

2

Enterprise

Edition

applications

implement

server-side

business

components

using

Enterprise

Java

beans

(EJBs)

that

include

session

beans

and

entity

beans.

Session

beans

represent

business

services

and

are

not

shared

between

users.

Entity

beans

are

multi-user,

distributed

transactional

objects

that

represent

persistent

data.

The

transactional

boundaries

of

a

EJB

application

can

be

set

by

specifying

either

container-managed

or

bean-managed

transactions.

The

sample

program

AccessEmployee.ear

uses

Enterprise

Java

beans

to

implement

a

Java

2

Enterprise

Edition

application

to

access

a

DB2®

database.

You

can

find

this

sample

in

the

SQLLIB/samples/websphere

directory.

The

EJB

sample

application

provides

two

business

services.

One

service

allows

the

user

to

access

information

about

an

employee

(which

is

stored

in

the

EMPLOYEE

table

of

the

sample

database)

through

that

employee’s

employee

number.

The

other

service

allows

the

user

to

retrieve

a

list

of

the

employee

numbers,

so

that

the

user

can

obtain

an

employee

number

to

use

for

querying

employee

data.

The

following

sample

uses

EJBs

to

implement

a

Java

2

Enterprise

Edition

application

to

access

a

DB2

database.

The

sample

utilizes

the

Model-View-
Controller

(MVC)

architecture,

which

is

a

commonly-used

GUI

architecture.

The

JSP

is

used

to

implement

the

view

(the

presentation

component).

A

servlet

acts

as

the

controller

in

the

sample.

It

controls

the

workflow

and

delegates

the

user’s

request

to

the

model,

which

is

implemented

using

EJBs.

The

model

component

of

the

sample

consists

of

two

EJBs,

one

session

bean

and

one

entity

bean.

The

catch

(java.sql.SQLException

sqe)

{

System.out.println("SQLException

caught:

"

+

sqe.getMessage());

sqe.printStackTrace();

}

catch

(javax.transaction.xa.XAException

xae)

{

System.out.println("XA

error

is

"

+

xae.getMessage());

xae.printStackTrace();

}

catch

(javax.naming.NamingException

nme)

{

System.out.println("

Naming

Exception:

"

+

nme.getMessage());

}

}

}

Figure

63.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

4

of

4)

Chapter

21.

Java

2

Platform

Enterprise

Edition

483

|
|

|

|

container-managed

persistence

(CMP)

bean,

Employee,

represents

the

distributed

transactional

objects

that

represent

the

persistent

data

in

the

EMPLOYEE

table

of

the

sample

database.

The

term

container-managed

persistence

means

that

the

EJB

container

handles

all

database

access

required

by

the

entity

bean.

The

bean’s

code

contains

no

database

access

(SQL)

calls.

As

a

result,

the

bean’s

code

is

not

tied

to

a

specific

persistent

storage

mechanism

(database).

The

session

bean,

AccessEmployee,

acts

as

the

Façade

of

the

entity

bean

and

provides

provide

a

uniform

client

access

strategy.

This

Façade

design

reduces

the

network

traffic

between

the

EJB

client

and

the

entity

bean

and

is

more

efficient

in

distributed

transactions

than

if

the

EJB

client

accesses

the

entity

bean

directly.

Access

to

the

DB2

database

can

be

provided

from

the

session

bean

or

entity

bean.

The

two

services

of

the

sample

application

demonstrate

both

approaches

to

accessing

the

DB2

database.

In

the

first

service,

the

entity

bean

is

used:

//==

//

This

method

returns

an

employee’s

information

by

//

interacting

with

the

entity

bean

located

by

the

//

provided

employee

number

public

EmployeeInfo

getEmployeeInfo(String

empNo)

throws

java.rmi.RemoteException

}

Employee

employee

=

null;

try

}

employee

=

employeeHome.findByPrimaryKey(new

EmployeeKey(empNo));

EmployeeInfo

empInfo

=

new

EmployeeInfo(empNo);

//set

the

employee’s

information

to

the

dependent

value

object

empInfo.setEmpno(employee.getEmpno());

empInfo.setFirstName

(employee.getFirstName());

empInfo.setMidInit(employee.getMidInit());

empInfo.setLastName(employee.getLastName());

empInfo.setWorkDept(employee.getWorkDept());

empInfo.setPhoneNo(employee.getPhoneNo());

empInfo.setHireDate(employee.getHireDate());

empInfo.setJob(employee.getJob());

empInfo.setEdLevel(employee.getEdLevel());

empInfo.setSex(employee.getSex());

empInfo.setBirthDate(employee.getBirthDate());

empInfo.setSalary(employee.getSalary());

empInfo.setBonus(employee.getBonus());

empInfo.setComm(employee.getComm());

return

empInfo;

}

catch

(java.rmi.RemoteException

rex)

{

......

In

the

second

service,

which

displays

employee

numbers,

the

session

bean,

AccessEmployee,

directly

accesses

the

DB2

sample

database.

/===

*

Get

the

employee

number

list.

*

@return

Collection

*/

public

Collection

getEmpNoList()

{

ResultSet

rs

=

null;

PreparedStatement

ps

=

null;

Vector

list

=

new

Vector();

DataSource

ds

=

null;

Connection

con

=

null;

try

{

ds

=

getDataSource();

484

Programming

Client

Applications

con

=

ds.getConnection();

String

schema

=

getEnvProps(DBschema);

String

query

=

"Select

EMPNO

from

"

+

schema

+

".EMPLOYEE";

ps

=

con.prepareStatement(query);

ps.executeQuery();

rs

=

ps.getResultSet();

EmployeeKey

pk;

while

(rs.next())

{

pk

=

new

EmployeeKey();

pk.employeeId

=

rs.getString(1);

list.addElement(pk.employeeId);

}

rs.close();

return

list;

Related

reference:

v

“Java

WebSphere

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Chapter

21.

Java

2

Platform

Enterprise

Edition

485

486

Programming

Client

Applications

Part

5.

Other

Programming

Interfaces

©

Copyright

IBM

Corp.

1997

-

2004

487

488

Programming

Client

Applications

Chapter

22.

Programming

in

Perl

Programming

Considerations

for

Perl

.

.

.

.

. 489

Perl

Restrictions

.

.

.

.

.

.

.

.

.

.

.

. 489

Multiple-Thread

Database

Access

in

Perl

.

.

.

. 489

Database

Connections

in

Perl

.

.

.

.

.

.

.

. 489

Fetching

Results

in

Perl

.

.

.

.

.

.

.

.

.

. 490

Parameter

Markers

in

Perl

.

.

.

.

.

.

.

.

. 490

SQLSTATE

and

SQLCODE

Variables

in

Perl

.

.

. 491

Example

of

a

Perl

Program

.

.

.

.

.

.

.

.

. 491

Programming

Considerations

for

Perl

Perl

is

a

popular

programming

language

that

is

freely

available

for

many

operating

systems.

Using

the

DBD::DB2

driver

available

from

http://www.ibm.com/software/data/db2/perl

with

the

Perl

Database

Interface

(DBI)

Module

available

from

http://www.perl.com,

you

can

create

DB2®

applications

using

Perl.

Because

Perl

is

an

interpreted

language

and

the

Perl

DBI

Module

uses

dynamic

SQL,

Perl

is

an

ideal

language

for

quickly

creating

and

revising

prototypes

of

DB2

applications.

The

Perl

DBI

Module

uses

an

interface

that

is

quite

similar

to

the

CLI

and

JDBC

interfaces,

which

makes

it

easy

for

you

to

port

your

Perl

prototypes

to

CLI

and

JDBC.

Most

database

vendors

provide

a

database

driver

for

the

Perl

DBI

Module,

which

means

that

you

can

also

use

Perl

to

create

applications

that

access

data

from

many

different

database

servers.

For

example,

you

can

write

a

Perl

DB2

application

that

connects

to

an

Oracle

database

using

the

DBD::Oracle

database

driver,

fetch

data

from

the

Oracle

database,

and

insert

the

data

into

a

DB2

database

using

the

DBD::DB2

database

driver.

Perl

Restrictions

The

Perl

DBI

module

supports

only

dynamic

SQL.

When

you

need

to

execute

a

statement

multiple

times,

you

can

improve

the

performance

of

your

Perl

DB2®

applications

by

issuing

a

prepare

call

to

prepare

the

statement.

For

current

information

on

the

restrictions

of

the

version

of

the

DBD::DB2

driver

that

you

install

on

your

workstation,

refer

to

the

CAVEATS

file

in

the

DBD::DB2

driver

package.

Multiple-Thread

Database

Access

in

Perl

Perl

does

not

support

multiple-thread

database

access.

Database

Connections

in

Perl

To

enable

Perl

to

load

the

DBI

module,

you

must

include

the

following

line

in

your

DB2®

application:

use

DBI;

The

DBI

module

automatically

loads

the

DBD::DB2

driver

when

you

create

a

database

handle

using

the

DBI->connect

statement

with

the

following

syntax:

my

$dbhandle

=

DBI->connect(‘dbi:DB2:dbalias’,

$userID,

$password);

©

Copyright

IBM

Corp.

1997

-

2004

489

http://www.ibm.com/software/data/db2/perl/
http://www.perl.com/

where:

$dbhandle

represents

the

database

handle

returned

by

the

connect

statement

dbalias

represents

a

DB2

alias

cataloged

in

your

DB2

database

directory

$userID

represents

the

user

ID

used

to

connect

to

the

database

$password

represents

the

password

for

the

user

ID

used

to

connect

to

the

database

Fetching

Results

in

Perl

Because

the

Perl

DBI

Module

only

supports

dynamic

SQL,

you

do

not

use

host

variables

in

your

Perl

DB2

applications.

Procedure:

To

return

results

from

an

SQL

query,

perform

the

following

steps:

1.

Create

a

database

handle

by

connecting

to

the

database

with

the

DBI->connect

statement.

2.

Create

a

statement

handle

from

the

database

handle.

For

example,

you

can

call

prepare

with

an

SQL

statement

as

a

string

argument

to

return

statement

handle

$sth

from

the

database

handle,

as

demonstrated

in

the

following

Perl

statement:

my

$sth

=

$dbhandle->prepare(

’SELECT

firstnme,

lastname

FROM

employee

’

);

3.

Execute

the

SQL

statement

by

calling

execute

on

the

statement

handle.

A

successful

call

to

execute

associates

a

result

set

with

the

statement

handle.

For

example,

you

can

execute

the

statement

prepared

in

the

previous

example

using

the

following

Perl

statement:

#Note:

$rc

represents

the

return

code

for

the

execute

call

my

$rc

=

$sth->execute();

4.

Fetch

a

row

from

the

result

set

associated

with

the

statement

handle

with

a

call

to

fetchrow().

The

Perl

DBI

returns

a

row

as

an

array

with

one

value

per

column.

For

example,

you

can

return

all

of

the

rows

from

the

statement

handle

in

the

previous

example

using

the

following

Perl

statement:

while

(($firstnme,

$lastname)

=

$sth->fetchrow())

{

print

"$firstnme

$lastname\n";

}

Related

concepts:

v

“Database

Connections

in

Perl”

on

page

489

Parameter

Markers

in

Perl

To

enable

you

to

execute

a

prepared

statement

using

different

input

values

for

specified

fields,

the

Perl

DBI

module

enables

you

to

prepare

and

execute

a

statement

using

parameter

markers.

To

include

a

parameter

marker

in

an

SQL

statement,

use

the

question

mark

(?)

character.

490

Programming

Client

Applications

The

following

Perl

code

creates

a

statement

handle

that

accepts

a

parameter

marker

for

the

WHERE

clause

of

a

SELECT

statement.

The

code

then

executes

the

statement

twice

using

the

input

values

25000

and

35000

to

replace

the

parameter

marker.

my

$sth

=

$dbhandle->prepare(

’SELECT

firstnme,

lastname

FROM

employee

WHERE

salary

>

?’

);

my

$rc

=

$sth->execute(25000);

...

my

$rc

=

$sth->execute(35000);

SQLSTATE

and

SQLCODE

Variables

in

Perl

To

return

the

SQLSTATE

associated

with

a

Perl

DBI

database

handle

or

statement

handle,

call

the

state

method.

For

example,

to

return

the

SQLSTATE

associated

with

the

database

handle

$dbhandle,

include

the

following

Perl

statement

in

your

application:

my

$sqlstate

=

$dbhandle->state;

To

return

the

SQLCODE

associated

with

a

Perl

DBI

database

handle

or

statement

handle,

call

the

err

method.

To

return

the

message

for

an

SQLCODE

associated

with

a

Perl

DBI

database

handle

or

statement

handle,

call

the

errstr

method.

For

example,

to

return

the

SQLCODE

associated

with

the

database

handle

$dbhandle,

include

the

following

Perl

statement

in

your

application:

my

$sqlcode

=

$dbhandle->err;

Example

of

a

Perl

Program

Following

is

an

example

of

an

application

written

in

Perl:

#!/usr/bin/perl

use

DBI;

my

$database=’dbi:DB2:sample’;

my

$user=’’;

my

$password=’’;

my

$dbh

=

DBI->connect($database,

$user,

$password)

or

die

"Can’t

connect

to

$database:

$DBI::errstr";

my

$sth

=

$dbh->prepare(

q{

SELECT

firstnme,

lastname

FROM

employee

}

)

or

die

"Can’t

prepare

statement:

$DBI::errstr";

my

$rc

=

$sth->execute

or

die

"Can’t

execute

statement:

$DBI::errstr";

print

"Query

will

return

$sth->{NUM_OF_FIELDS}

fields.\n\n";

print

"$sth->{NAME}->[0]:

$sth->{NAME}->[1]\n";

while

(($firstnme,

$lastname)

=

$sth->fetchrow())

{

print

"$firstnme:

$lastname\n";

}

#

check

for

problems

which

may

have

terminated

the

fetch

early

Chapter

22.

Programming

in

Perl

491

warn

$DBI::errstr

if

$DBI::err;

$sth->finish;

$dbh->disconnect;

492

Programming

Client

Applications

Chapter

23.

Programming

in

REXX

Programming

Considerations

for

REXX

.

.

.

. 493

Language

Restrictions

for

REXX

.

.

.

.

.

.

. 493

Language

Restrictions

for

REXX

.

.

.

.

.

. 494

Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

Multiple-Thread

Database

Access

in

REXX

.

. 495

Japanese

or

Traditional

Chinese

EUC

Considerations

for

REXX

.

.

.

.

.

.

.

. 495

Embedded

SQL

in

REXX

Applications

.

.

.

.

. 495

Host

Variables

in

REXX

.

.

.

.

.

.

.

.

.

. 497

Host

Variables

in

REXX

.

.

.

.

.

.

.

.

. 497

Host

Variable

Names

in

REXX

.

.

.

.

.

.

. 497

Host

Variable

References

in

REXX

.

.

.

.

. 497

Indicator

Variables

in

REXX

.

.

.

.

.

.

. 498

Predefined

REXX

Variables

.

.

.

.

.

.

.

. 498

LOB

Host

Variables

in

REXX

.

.

.

.

.

.

. 500

Syntax

for

LOB

Locator

Declarations

in

REXX

500

Syntax

for

LOB

File

Reference

Declarations

in

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

LOB

Host

Variable

Clearing

in

REXX

.

.

.

. 502

Cursors

in

REXX

.

.

.

.

.

.

.

.

.

.

. 502

Supported

SQL

Data

Types

in

REXX

.

.

.

.

.

. 502

Execution

Requirements

for

REXX

.

.

.

.

.

. 504

Building

and

Running

REXX

Applications

.

.

. 504

Bind

Files

for

REXX

.

.

.

.

.

.

.

.

.

. 505

API

Syntax

for

REXX

.

.

.

.

.

.

.

.

.

.

. 505

Calling

Stored

Procedures

from

REXX

.

.

.

.

. 507

Stored

Procedures

in

REXX

.

.

.

.

.

.

.

. 507

Stored

Procedure

Calls

in

REXX

.

.

.

.

.

. 507

Client

Considerations

for

Calling

Stored

Procedures

in

REXX

.

.

.

.

.

.

.

.

.

. 508

Server

Considerations

for

Calling

Stored

Procedures

in

REXX

.

.

.

.

.

.

.

.

.

. 508

Retrieval

of

Precision

and

SCALE

Values

from

SQLDA

Decimal

Fields

.

.

.

.

.

.

.

.

. 508

Programming

Considerations

for

REXX

Special

host-language

programming

considerations

are

discussed

in

the

following

sections.

Included

is

information

on

embedding

SQL

statements,

language

restrictions,

and

supported

data

types

for

host

variables.

Note:

REXX

support

stabilized

in

DB2

Version

5,

and

no

enhancements

for

REXX

support

are

planned

for

the

future.

For

example,

REXX

cannot

handle

SQL

object

identifiers,

such

as

table

names,

that

are

longer

than

18

bytes.

To

use

features

introduced

to

DB2

after

Version

5,

such

as

table

names

from

19

to

128

bytes

long,

you

must

write

your

applications

in

a

language

other

than

REXX.

Because

REXX

is

an

interpreted

language,

no

precompiler,

compiler,

or

linker

is

used.

Instead,

three

DB2

APIs

are

used

to

create

DB2

applications

in

REXX.

Use

these

APIs

to

access

different

elements

of

DB2.

SQLEXEC

Supports

the

SQL

language.

SQLDBS

Supports

command-like

versions

of

DB2

APIs.

SQLDB2

Supports

a

REXX

specific

interface

to

the

command-line

processor.

See

the

description

of

the

API

syntax

for

REXX

for

details

and

restrictions

on

how

this

interface

can

be

used.

Related

concepts:

v

“API

Syntax

for

REXX”

on

page

505

Language

Restrictions

for

REXX

The

sections

that

follow

describe

the

language

restrictions

for

REXX.

©

Copyright

IBM

Corp.

1997

-

2004

493

Language

Restrictions

for

REXX

It

is

possible

that

tokens

within

statements

or

commands

that

are

passed

to

the

SQLEXEC,

SQLDBS,

and

SQLDB2

routines

could

correspond

to

REXX

variables.

In

this

case,

the

REXX

interpreter

substitutes

the

variable’s

value

before

calling

SQLEXEC,

SQLDBS,

or

SQLDB2.

To

avoid

this

situation,

enclose

statement

strings

in

quotation

marks

(’

’

or

″

″).

If

you

do

not

use

quotation

marks,

any

conflicting

variable

names

are

resolved

by

the

REXX

interpreter,

instead

of

being

passed

to

the

SQLEXEC,

SQLDBS

or

SQLDB2

routines.

Compound

SQL

is

not

supported

in

REXX/SQL.

REXX/SQL

stored

procedures

are

supported

on

Windows®

operating

systems,

but

not

on

AIX®.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

on

page

494

Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX

Before

using

any

of

the

DB2

APIs

or

issuing

SQL

statements

in

an

application,

you

must

register

the

SQLDBS,

SQLDB2

and

SQLEXEC

routines.

This

notifies

the

REXX

interpreter

of

the

REXX/SQL

entry

points.

The

method

you

use

for

registering

varies

slightly

between

Windows-based

and

AIX

platforms.

Procedure:

Use

the

following

examples

for

correct

syntax

for

registering

each

routine:

Sample

registration

on

Windows-based

platforms

/*

Register

SQLDBS

with

REXX

-------------------------*/

If

Rxfuncquery('SQLDBS')

<>

0

then

rcy

=

Rxfuncadd('SQLDBS','DB2AR','SQLDBS')

If

rcy

\=

0

then

do

say

’SQLDBS

was

not

successfully

added

to

the

REXX

environment’

signal

rxx_exit

end

/*

Register

SQLDB2

with

REXX

-------------------------*/

If

Rxfuncquery('SQLDB2')

<>

0

then

rcy

=

Rxfuncadd('SQLDB2','DB2AR','SQLDB2')

If

rcy

\=

0

then

do

say

’SQLDB2

was

not

successfully

added

to

the

REXX

environment’

signal

rxx_exit

end

/*

Register

SQLEXEC

with

REXX

--------------------*/

If

Rxfuncquery('SQLEXEC')

<>

0

then

rcy

=

Rxfuncadd('SQLEXEC','DB2AR','SQLEXEC')

If

rcy

\=

0

then

do

say

’SQLEXEC

was

not

successfully

added

to

the

REXX

environment’

signal

rxx_exit

end

494

Programming

Client

Applications

Sample

registration

on

AIX

/*

Register

SQLDBS,

SQLDB2

and

SQLEXEC

with

REXX

--------*/

rcy

=

SysAddFuncPkg("db2rexx")

If

rcy

\=

0

then

do

say

’db2rexx

was

not

successfully

added

to

the

REXX

environment’

signal

rxx_exit

end

On

Windows-based

platforms,

the

RxFuncAdd

commands

need

to

be

executed

only

once

for

all

sessions.

On

AIX,

the

SysAddFuncPkg

should

be

executed

in

every

REXX/SQL

application.

Details

on

the

RXfuncadd

and

SysAddFuncPkg

APIs

are

available

in

the

REXX

documentation

for

Windows-based

platforms

and

AIX,

respectively.

Multiple-Thread

Database

Access

in

REXX

REXX

does

not

support

multiple-thread

database

access.

Japanese

or

Traditional

Chinese

EUC

Considerations

for

REXX

REXX

applications

are

not

supported

under

Japanese

or

Traditional

Chinese

EUC

environments.

Embedded

SQL

in

REXX

Applications

REXX

applications

use

APIs

that

enable

them

to

use

most

of

the

features

provided

by

database

manager

APIs

and

SQL.

Unlike

applications

written

in

a

compiled

language,

REXX

applications

are

not

precompiled.

Instead,

a

dynamic

SQL

handler

processes

all

SQL

statements.

By

combining

REXX

with

these

callable

APIs,

you

have

access

to

most

of

the

database

manager

capabilities.

Although

REXX

does

not

directly

support

some

APIs

using

embedded

SQL,

they

can

be

accessed

using

the

DB2®

command

line

processor

from

within

the

REXX

application.

As

REXX

is

an

interpretive

language,

you

may

find

it

is

easier

to

develop

and

debug

your

application

prototypes

in

REXX

as

compared

to

compiled

host

languages.

Although

DB2

applications

coded

in

REXX

do

not

provide

the

performance

of

DB2

applications

that

use

compiled

languages,

they

do

provide

the

ability

to

create

DB2

applications

without

precompiling,

compiling,

linking,

or

using

additional

software.

Use

the

SQLEXEC

routine

to

process

all

SQL

statements.

The

character

string

arguments

for

the

SQLEXEC

routine

are

made

up

of

the

following

elements:

v

SQL

keywords

v

Pre-declared

identifiers

v

Statement

host

variables

Make

each

request

by

passing

a

valid

SQL

statement

to

the

SQLEXEC

routine.

Use

the

following

syntax:

CALL

SQLEXEC

'statement'

Chapter

23.

Programming

in

REXX

495

SQL

statements

can

be

continued

onto

more

than

one

line.

Each

part

of

the

statement

should

be

enclosed

in

single

quotation

marks,

and

a

comma

must

delimit

additional

statement

text

as

follows:

CALL

SQLEXEC

'SQL

text',

'additional

text',

.

.

.

'final

text'

The

following

is

an

example

of

embedding

an

SQL

statement

in

REXX:

statement

=

"UPDATE

STAFF

SET

JOB

=

’Clerk’

WHERE

JOB

=

’Mgr’"

CALL

SQLEXEC

’EXECUTE

IMMEDIATE

:statement’

IF

(

SQLCA.SQLCODE

<

0)

THEN

SAY

’Update

Error:

SQLCODE

=

’

SQLCA.SQLCODE

In

this

example,

the

SQLCODE

field

of

the

SQLCA

structure

is

checked

to

determine

whether

the

update

was

successful.

The

following

rules

apply

to

embedded

SQL

statements:

v

The

following

SQL

statements

can

be

passed

directly

to

the

SQLEXEC

routine:

–

CALL

–

CLOSE

–

COMMIT

–

CONNECT

–

CONNECT

TO

–

CONNECT

RESET

–

DECLARE

–

DESCRIBE

–

DISCONNECT

–

EXECUTE

–

EXECUTE

IMMEDIATE

–

FETCH

–

FREE

LOCATOR

–

OPEN

–

PREPARE

–

RELEASE

–

ROLLBACK

–

SET

CONNECTION

Other

SQL

statements

must

be

processed

dynamically

using

the

EXECUTE

IMMEDIATE,

or

PREPARE

and

EXECUTE

statements

in

conjunction

with

the

SQLEXEC

routine.

v

You

cannot

use

host

variables

in

the

CONNECT

and

SET

CONNECTION

statements

in

REXX.

v

Cursor

names

and

statement

names

are

predefined

as

follows:

c1

to

c100

Cursor

names,

which

range

from

c1

to

c50

for

cursors

declared

without

the

WITH

HOLD

option,

and

c51

to

c100

for

cursors

declared

using

the

WITH

HOLD

option.

The

cursor

name

identifier

is

used

for

DECLARE,

OPEN,

FETCH,

and

CLOSE

statements.

It

identifies

the

cursor

used

in

the

SQL

request.

s1

to

s100

Statement

names,

which

range

from

s1

to

s100.

496

Programming

Client

Applications

The

statement

name

identifier

is

used

with

the

DECLARE,

DESCRIBE,

PREPARE,

and

EXECUTE

statements.
The

pre-declared

identifiers

must

be

used

for

cursor

and

statement

names.

Other

names

are

not

allowed.

v

When

declaring

cursors,

the

cursor

name

and

the

statement

name

should

correspond

in

the

DECLARE

statement.

For

example,

if

c1

is

used

as

a

cursor

name,

s1

must

be

used

for

the

statement

name.

v

Do

not

use

comments

within

an

SQL

statement.

Host

Variables

in

REXX

The

sections

that

follow

describe

how

to

declare

and

use

host

variables

in

REXX

programs.

Host

Variables

in

REXX

Host

variables

are

REXX

language

variables

that

are

referenced

within

SQL

statements.

They

allow

an

application

to

pass

input

data

to

DB2

and

receive

output

data

from

DB2.

REXX

applications

do

not

need

to

declare

host

variables,

except

for

LOB

locators

and

LOB

file

reference

variables.

Host

variable

data

types

and

sizes

are

determined

at

run

time

when

the

variables

are

referenced.

The

sections

that

follow

describe

the

rules

to

follow

when

naming

and

using

host

variables.

Related

concepts:

v

“Host

Variable

Names

in

REXX”

on

page

497

v

“Host

Variable

References

in

REXX”

on

page

497

v

“Indicator

Variables

in

REXX”

on

page

498

v

“LOB

Host

Variables

in

REXX”

on

page

500

v

“LOB

Host

Variable

Clearing

in

REXX”

on

page

502

Related

reference:

v

“Predefined

REXX

Variables”

on

page

498

v

“Syntax

for

LOB

Locator

Declarations

in

REXX”

on

page

500

v

“Syntax

for

LOB

File

Reference

Declarations

in

REXX”

on

page

501

v

“Supported

SQL

Data

Types

in

REXX”

on

page

502

Host

Variable

Names

in

REXX

Any

properly

named

REXX

variable

can

be

used

as

a

host

variable.

A

variable

name

can

be

up

to

64

characters

long.

Do

not

end

the

name

with

a

period.

A

host

variable

name

can

consist

of

alphabetic

characters,

numerics,

and

the

characters

@,

_,

!,

.,

?,

and

$.

Host

Variable

References

in

REXX

The

REXX

interpreter

examines

every

string

without

quotation

marks

in

a

procedure.

If

the

string

represents

a

variable

in

the

current

REXX

variable

pool,

REXX

replaces

the

string

with

the

current

value.

The

following

is

an

example

of

how

you

can

reference

a

host

variable

in

REXX:

CALL

SQLEXEC

’FETCH

C1

INTO

:cm’

SAY

’Commission

=

’

cm

Chapter

23.

Programming

in

REXX

497

To

ensure

that

a

character

string

is

not

converted

to

a

numeric

data

type,

enclose

the

string

with

single

quotation

marks

as

in

the

following

example:

VAR

=

’100’

REXX

sets

the

variable

VAR

to

the

3-byte

character

string

100.

If

single

quotation

marks

are

to

be

included

as

part

of

the

string,

follow

this

example:

VAR

=

"’100’"

When

inserting

numeric

data

into

a

CHARACTER

field,

the

REXX

interpreter

treats

numeric

data

as

integer

data,

thus

you

must

concatenate

numeric

strings

explicitly

and

surround

them

with

single

quotation

marks.

Indicator

Variables

in

REXX

An

indicator

variable

data

type

in

REXX

is

a

number

without

a

decimal

point.

Following

is

an

example

of

an

indicator

variable

in

REXX

using

the

INDICATOR

keyword.

CALL

SQLEXEC

’FETCH

C1

INTO

:cm

INDICATOR

:cmind’

IF

(

cmind

<

0

)

SAY

’Commission

is

NULL’

In

the

above

example,

cmind

is

examined

for

a

negative

value.

If

it

is

not

negative,

the

application

can

use

the

returned

value

of

cm.

If

it

is

negative,

the

fetched

value

is

NULL

and

cm

should

not

be

used.

The

database

manager

does

not

change

the

value

of

the

host

variable

in

this

case.

Predefined

REXX

Variables

SQLEXEC,

SQLDBS,

and

SQLDB2

set

predefined

REXX

variables

as

a

result

of

certain

operations.

These

variables

are:

RESULT

Each

operation

sets

this

return

code.

Possible

values

are:

n

Where

n

is

a

positive

value

indicating

the

number

of

bytes

in

a

formatted

message.

The

GET

ERROR

MESSAGE

API

alone

returns

this

value.

0

The

API

was

executed.

The

REXX

variable

SQLCA

contains

the

completion

status

of

the

API.

If

SQLCA.SQLCODE

is

not

zero,

SQLMSG

contains

the

text

message

associated

with

that

value.

–1

There

is

not

enough

memory

available

to

complete

the

API.

The

requested

message

was

not

returned.

–2

SQLCA.SQLCODE

is

set

to

0.

No

message

was

returned.

–3

SQLCA.SQLCODE

contained

an

invalid

SQLCODE.

No

message

was

returned.

–6

The

SQLCA

REXX

variable

could

not

be

built.

This

indicates

that

there

was

not

enough

memory

available

or

the

REXX

variable

pool

was

unavailable

for

some

reason.

–7

The

SQLMSG

REXX

variable

could

not

be

built.

This

indicates

that

there

was

not

enough

memory

available

or

the

REXX

variable

pool

was

unavailable

for

some

reason.

–8

The

SQLCA.SQLCODE

REXX

variable

could

not

be

fetched

from

the

REXX

variable

pool.

498

Programming

Client

Applications

–9

The

SQLCA.SQLCODE

REXX

variable

was

truncated

during

the

fetch.

The

maximum

length

for

this

variable

is

5

bytes.

–10

The

SQLCA.SQLCODE

REXX

variable

could

not

be

converted

from

ASCII

to

a

valid

long

integer.

–11

The

SQLCA.SQLERRML

REXX

variable

could

not

be

fetched

from

the

REXX

variable

pool.

–12

The

SQLCA.SQLERRML

REXX

variable

was

truncated

during

the

fetch.

The

maximum

length

for

this

variable

is

2

bytes.

–13

The

SQLCA.SQLERRML

REXX

variable

could

not

be

converted

from

ASCII

to

a

valid

short

integer.

–14

The

SQLCA.SQLERRMC

REXX

variable

could

not

be

fetched

from

the

REXX

variable

pool.

–15

The

SQLCA.SQLERRMC

REXX

variable

was

truncated

during

the

fetch.

The

maximum

length

for

this

variable

is

70

bytes.

–16

The

REXX

variable

specified

for

the

error

text

could

not

be

set.

–17

The

SQLCA.SQLSTATE

REXX

variable

could

not

be

fetched

from

the

REXX

variable

pool.

–18

The

SQLCA.SQLSTATE

REXX

variable

was

truncated

during

the

fetch.

The

maximum

length

for

this

variable

is

2

bytes.

Note:

The

values

–8

through

–18

are

returned

only

by

the

GET

ERROR

MESSAGE

API.

SQLMSG

If

SQLCA.SQLCODE

is

not

0,

this

variable

contains

the

text

message

associated

with

the

error

code.

SQLISL

The

isolation

level.

Possible

values

are:

RR

Repeatable

read.

RS

Read

stability.

CS

Cursor

stability.

This

is

the

default.

UR

Uncommitted

read.

NC

No

commit.

(NC

is

only

supported

by

some

host,

AS/400,

or

iSeries

servers.)

SQLCA

The

SQLCA

structure

updated

after

SQL

statements

are

processed

and

DB2

APIs

are

called.

SQLRODA

The

input/output

SQLDA

structure

for

stored

procedures

invoked

using

the

CALL

statement.

It

is

also

the

output

SQLDA

structure

for

stored

procedures

invoked

using

the

Database

Application

Remote

Interface

(DARI)

API.

SQLRIDA

The

input

SQLDA

structure

for

stored

procedures

invoked

using

the

Database

Application

Remote

Interface

(DARI)

API.

SQLRDAT

An

SQLCHAR

structure

for

server

procedures

invoked

using

the

Database

Application

Remote

Interface

(DARI)

API.

Chapter

23.

Programming

in

REXX

499

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLCHAR”

in

the

Administrative

API

Reference

v

“SQLDA”

in

the

Administrative

API

Reference

LOB

Host

Variables

in

REXX

When

you

fetch

a

LOB

column

into

a

REXX

host

variable,

it

will

be

stored

as

a

simple

(that

is,

uncounted)

string.

This

is

handled

in

the

same

manner

as

all

character-based

SQL

types

(such

as

CHAR,

VARCHAR,

GRAPHIC,

LONG,

and

so

on).

On

input,

if

the

size

of

the

contents

of

your

host

variable

is

larger

than

32K,

or

if

it

meets

other

criteria

set

out

below,

it

will

be

assigned

the

appropriate

LOB

type.

In

REXX

SQL,

LOB

types

are

determined

from

the

string

content

of

your

host

variable

as

follows:

Host

variable

string

content

Resulting

LOB

type

:hv1=’ordinary

quoted

string

longer

than

32K

...’

CLOB

:hv2=″’string

with

embedded

delimiting

quotation

marks

″,

″longer

than

32K...’″

CLOB

:hv3=″G’DBCS

string

with

embedded

delimiting

single

″,

″quotation

marks,

beginning

with

G,

longer

than

32K...’″

DBCLOB

:hv4=″BIN’string

with

embedded

delimiting

single

″,

″quotation

marks,

beginning

with

BIN,

any

length...’″

BLOB

Syntax

for

LOB

Locator

Declarations

in

REXX

The

following

shows

the

syntax

for

declaring

LOB

locator

host

variables

in

REXX:

Syntax

for

LOB

Locator

Host

Variables

in

REXX

��

�

,

DECLARE

:

variable-name

LANGUAGE

TYPE

BLOB

LOCATOR

CLOB

DBCLOB

��

You

must

declare

LOB

locator

host

variables

in

your

application.

When

REXX/SQL

encounters

these

declarations,

it

treats

the

declared

host

variables

as

locators

for

the

remainder

of

the

program.

Locator

values

are

stored

in

REXX

variables

in

an

internal

format.

Example:

CALL

SQLEXEC

’DECLARE

:hv1,

:hv2

LANGUAGE

TYPE

CLOB

LOCATOR’

Data

represented

by

LOB

locators

returned

from

the

engine

can

be

freed

in

REXX/SQL

using

the

FREE

LOCATOR

statement

which

has

the

following

format:

500

Programming

Client

Applications

Syntax

for

FREE

LOCATOR

Statement

��

�

,

FREE

LOCATOR

:

variable-name

��

Example:

CALL

SQLEXEC

’FREE

LOCATOR

:hv1,

:hv2’

Syntax

for

LOB

File

Reference

Declarations

in

REXX

You

must

declare

LOB

file

reference

host

variables

in

your

application.

When

REXX/SQL

encounters

these

declarations,

it

treats

the

declared

host

variables

as

LOB

file

references

for

the

remainder

of

the

program.

The

following

shows

the

syntax

for

declaring

LOB

file

reference

host

variables

in

REXX:

REXX

File

Reference

Declarations

��

�

,

DECLARE

:

variable-name

LANGUAGE

TYPE

BLOB

FILE

CLOB

DBCLOB

��

Example:

CALL

SQLEXEC

’DECLARE

:hv3,

:hv4

LANGUAGE

TYPE

CLOB

FILE’

File

reference

variables

in

REXX

contain

three

fields.

For

the

above

example

they

are:

hv3.FILE_OPTIONS.

Set

by

the

application

to

indicate

how

the

file

will

be

used.

hv3.DATA_LENGTH.

Set

by

DB2

to

indicate

the

size

of

the

file.

hv3.NAME.

Set

by

the

application

to

the

name

of

the

LOB

file.

For

FILE_OPTIONS,

the

application

sets

the

following

keywords:

Keyword

(Integer

Value)

Meaning

READ

(2)

File

is

to

be

used

for

input.

This

is

a

regular

file

that

can

be

opened,

read

and

closed.

The

length

of

the

data

in

the

file

(in

bytes)

is

computed

(by

the

application

requestor

code)

upon

opening

the

file.

CREATE

(8)

On

output,

create

a

new

file.

If

the

file

already

exists,

it

is

an

error.

The

length

(in

bytes)

of

the

file

is

returned

in

the

DATA_LENGTH

field

of

the

file

reference

variable

structure.

OVERWRITE

(16)

On

output,

the

existing

file

is

overwritten

if

it

exists,

otherwise

a

new

file

is

created.

The

length

(in

bytes)

of

the

file

is

returned

in

the

DATA_LENGTH

field

of

the

file

reference

variable

structure.

Chapter

23.

Programming

in

REXX

501

APPEND

(32)

The

output

is

appended

to

the

file

if

it

exists,

otherwise

a

new

file

is

created.

The

length

(in

bytes)

of

the

data

that

was

added

to

the

file

(not

the

total

file

length)

is

returned

in

the

DATA_LENGTH

field

of

the

file

reference

variable

structure.

Note:

A

file

reference

host

variable

is

a

compound

variable

in

REXX,

thus

you

must

set

values

for

the

NAME,

NAME_LENGTH

and

FILE_OPTIONS

fields

in

addition

to

declaring

them.

LOB

Host

Variable

Clearing

in

REXX

On

Windows®-based

platforms

it

may

be

necessary

to

explicitly

clear

REXX

SQL

LOB

locator

and

file

reference

host

variable

declarations

as

they

remain

in

effect

after

your

application

program

ends.

This

occurs

because

the

application

process

does

not

exit

until

the

session

in

which

it

is

run

is

closed.

If

REXX

SQL

LOB

declarations

are

not

cleared,

they

may

interfere

with

other

applications

that

are

running

in

the

same

session

after

a

LOB

application

has

been

executed.

The

syntax

to

clear

the

declaration

is:

CALL

SQLEXEC

"CLEAR

SQL

VARIABLE

DECLARATIONS"

You

should

code

this

statement

at

the

end

of

LOB

applications.

Note

that

you

can

code

it

anywhere

as

a

precautionary

measure

to

clear

declarations

which

might

have

been

left

by

previous

applications

(for

example,

at

the

beginning

of

a

REXX

SQL

application).

Cursors

in

REXX

When

a

cursor

is

declared

in

REXX,

the

cursor

is

associated

with

a

query.

The

query

is

associated

with

a

statement

name

assigned

in

the

PREPARE

statement.

Any

referenced

host

variables

are

represented

by

parameter

markers.

The

following

example

shows

a

DECLARE

statement

associated

with

a

dynamic

SELECT

statement:

prep_string

=

"SELECT

TABNAME

FROM

SYSCAT.TABLES

WHERE

TABSCHEMA

=

?"

CALL

SQLEXEC

’PREPARE

S1

FROM

:prep_string’;

CALL

SQLEXEC

’DECLARE

C1

CURSOR

FOR

S1’;

CALL

SQLEXEC

’OPEN

C1

USING

:schema_name’;

Related

reference:

v

“Supported

SQL

Data

Types

in

REXX”

on

page

502

Supported

SQL

Data

Types

in

REXX

Certain

predefined

REXX

data

types

correspond

to

DB2

column

types.

The

following

table

shows

how

SQLEXEC

and

SQLDBS

interpret

REXX

variables

in

order

to

convert

their

contents

to

DB2

data

types.

Note:

There

is

no

host

variable

support

for

the

DATALINK

data

type

in

any

of

the

DB2

host

languages.

Table

80.

SQL

Column

Types

Mapped

to

REXX

Declarations

SQL

Column

Type1

REXX

Data

Type

SQL

Column

Type

Description

SMALLINT

(500

or

501)

A

number

without

a

decimal

point

ranging

from

-32

768

to

32

767

16-bit

signed

integer

502

Programming

Client

Applications

Table

80.

SQL

Column

Types

Mapped

to

REXX

Declarations

(continued)

SQL

Column

Type1

REXX

Data

Type

SQL

Column

Type

Description

INTEGER

(496

or

497)

A

number

without

a

decimal

point

ranging

from

-2

147

483

648

to

2

147

483

647

32-bit

signed

integer

REAL2

(480

or

481)

A

number

in

scientific

notation

ranging

from

-3.40282346

x

1038

to

3.40282346

x

1038

Single-precision

floating

point

DOUBLE3

(480

or

481)

A

number

in

scientific

notation

ranging

from

-1.79769313

x

10308

to

1.79769313

x

10308

Double-precision

floating

point

DECIMAL(p,s)

(484

or

485)

A

number

with

a

decimal

point

Packed

decimal

CHAR(n)

(452

or

453)

A

string

with

a

leading

and

trailing

quotation

mark

(’),

which

has

length

n

after

removing

the

two

quotation

marks

A

string

of

length

n

with

any

non-numeric

characters,

other

than

leading

and

trailing

blanks

or

the

E

in

scientific

notation

Fixed-length

character

string

of

length

n

where

n

is

from

1

to

254

VARCHAR(n)

(448

or

449)

Equivalent

to

CHAR(n)

Variable-length

character

string

of

length

n,

where

n

ranges

from

1

to

4000

LONG

VARCHAR

(456

or

457)

Equivalent

to

CHAR(n)

Variable-length

character

string

of

length

n,

where

n

ranges

from

1

to

32

700

CLOB(n)

(408

or

409)

Equivalent

to

CHAR(n)

Large

object

variable-length

character

string

of

length

n,

where

n

ranges

from

1

to

2

147

483

647

CLOB

locator

variable4

(964

or

965)

DECLARE

:var_name

LANGUAGE

TYPE

CLOB

LOCATOR

Identifies

CLOB

entities

residing

on

the

server

CLOB

file

reference

variable4

(920

or

921)

DECLARE

:var_name

LANGUAGE

TYPE

CLOB

FILE

Descriptor

for

file

containing

CLOB

data

BLOB(n)

(404

or

405)

A

string

with

a

leading

and

trailing

apostrophe,

preceded

by

BIN,

containing

n

characters

after

removing

the

preceding

BIN

and

the

two

apostrophes.

Large

object

variable-length

binary

string

of

length

n,

where

n

ranges

from

1

to

2

147

483

647

BLOB

locator

variable4

(960

or

961)

DECLARE

:var_name

LANGUAGE

TYPE

BLOB

LOCATOR

Identifies

BLOB

entities

on

the

server

BLOB

file

reference

variable4

(916

or

917)

DECLARE

:var_name

LANGUAGE

TYPE

BLOB

FILE

Descriptor

for

the

file

containing

BLOB

data

DATE

(384

or

385)

Equivalent

to

CHAR(10)

10-byte

character

string

TIME

(388

or

389)

Equivalent

to

CHAR(8)

8-byte

character

string

TIMESTAMP

(392

or

393)

Equivalent

to

CHAR(26)

26-byte

character

string

Note:

The

following

data

types

are

only

available

in

the

DBCS

environment.

GRAPHIC(n)

(468

or

469)

A

string

with

a

leading

and

trailing

apostrophe

preceded

by

a

G

or

N,

containing

n

DBCS

characters

after

removing

the

preceding

character

and

the

two

apostrophes

Fixed-length

graphic

string

of

length

n,

where

n

is

from

1

to

127

VARGRAPHIC(n)

(464

or

465)

Equivalent

to

GRAPHIC(n)

Variable-length

graphic

string

of

length

n,

where

n

ranges

from

1

to

2

000

LONG

VARGRAPHIC

(472

or

473)

Equivalent

to

GRAPHIC(n)

Long

variable-length

graphic

string

of

length

n,

where

n

ranges

from

1

to

16

350

DBCLOB(n)

(412

or

413)

Equivalent

to

GRAPHIC(n)

Large

object

variable-length

graphic

string

of

length

n,

where

n

ranges

from

1

to

1

073

741

823

Chapter

23.

Programming

in

REXX

503

Table

80.

SQL

Column

Types

Mapped

to

REXX

Declarations

(continued)

SQL

Column

Type1

REXX

Data

Type

SQL

Column

Type

Description

DBCLOB

locator

variable4

(968

or

969)

DECLARE

:var_name

LANGUAGE

TYPE

DBCLOB

LOCATOR

Identifies

DBCLOB

entities

residing

on

the

server

DBCLOB

file

reference

variable4

(924

or

925)

DECLARE

:var_name

LANGUAGE

TYPE

DBCLOB

FILE

Descriptor

for

file

containing

DBCLOB

data

Notes:

1.

The

first

number

under

Column

Type

indicates

that

an

indicator

variable

is

not

provided,

and

the

second

number

indicates

that

an

indicator

variable

is

provided.

An

indicator

variable

is

needed

to

indicate

NULL

values,

or

to

hold

the

length

of

a

truncated

string.

2.

FLOAT(n)

where

0

<

n

<

25

is

a

synonym

for

REAL.

The

difference

between

REAL

and

DOUBLE

in

the

SQLDA

is

the

length

value

(4

or

8).

3.

The

following

SQL

types

are

synonyms

for

DOUBLE:

v

FLOAT

v

FLOAT(n)

where

24

<

n

<

54

is

v

DOUBLE

PRECISION

4.

This

is

not

a

column

type

but

a

host

variable

type.

Related

concepts:

v

“Cursors

in

REXX”

on

page

502

Execution

Requirements

for

REXX

The

sections

that

follow

describe

the

execution

requirements

for

REXX

applications.

Building

and

Running

REXX

Applications

REXX

applications

are

not

precompiled,

compiled,

or

linked.

The

instructions

below

describe

how

to

build

and

run

REXX

applications

on

Windows

operating

systems,

and

on

the

AIX

operating

system.

Restrictions:

On

Windows-based

platforms,

your

application

file

must

have

a

.CMD

extension.

After

creation,

you

can

run

your

application

directly

from

the

operating

system

command

prompt.

On

AIX,

your

application

file

can

have

any

extension.

Procedure:

Build

and

run

your

REXX

applications

as

follows:

v

On

Windows

operating

systems,

your

application

file

can

have

any

name.

After

creation,

you

can

run

your

application

from

the

operating

system

command

prompt

by

invoking

the

REXX

interpreter

as

follows:

REXX

file_name

v

On

AIX,

you

can

run

your

application

using

either

of

the

following

two

methods:

–

At

the

shell

command

prompt,

type

rexx

name

where

name

is

the

name

of

your

REXX

program.

–

If

the

first

line

of

your

REXX

program

contains

a

″magic

number″

(#!)

and

identifies

the

directory

where

the

REXX/6000

interpreter

resides,

you

can

run

your

REXX

program

by

typing

its

name

at

the

shell

command

prompt.

For

example,

if

the

REXX/6000

interpreter

file

is

in

the

/usr/bin

directory,

include

the

following

as

the

very

first

line

of

your

REXX

program:

504

Programming

Client

Applications

#!

/usr/bin/rexx

Then,

make

the

program

executable

by

typing

the

following

command

at

the

shell

command

prompt:

chmod

+x

name

Run

your

REXX

program

by

typing

its

file

name

at

the

shell

command

prompt.

Note:

On

AIX,

you

should

set

the

LIBPATH

environment

variable

to

include

the

directory

where

the

REXX

SQL

library,

db2rexx

is

located.

For

example:

export

LIBPATH=/lib:/usr/lib:/usr/lpp/db2_08_01/lib

Bind

Files

for

REXX

Five

bind

files

are

provided

to

support

REXX

applications.

The

names

of

these

files

are

included

in

the

DB2UBIND.LST

file.

Each

bind

file

was

precompiled

using

a

different

isolation

level;

therefore,

there

are

five

different

packages

stored

in

the

database.

The

five

bind

files

are:

DB2ARXCS.BND

Supports

the

cursor

stability

isolation

level.

DB2ARXRR.BND

Supports

the

repeatable

read

isolation

leve.l

DB2ARXUR.BND

Supports

the

uncommitted

read

isolation

level.

DB2ARXRS.BND

Supports

the

read

stability

isolation

level.

DB2ARXNC.BND

Supports

the

no

commit

isolation

level.

This

isolation

level

is

used

when

working

with

some

host,

AS/400,

or

iSeries

database

servers.

On

other

databases,

it

behaves

like

the

uncommitted

read

isolation

level.

Note:

In

some

cases,

it

may

be

necessary

to

explicitly

bind

these

files

to

the

database.

When

you

use

the

SQLEXEC

routine,

the

package

created

with

cursor

stability

is

used

as

a

default.

If

you

require

one

of

the

other

isolation

levels,

you

can

change

isolation

levels

with

the

SQLDBS

CHANGE

SQL

ISOLATION

LEVEL

API,

before

connecting

to

the

database.

This

will

cause

subsequent

calls

to

the

SQLEXEC

routine

to

be

associated

with

the

specified

isolation

level.

Windows-based

REXX

applications

cannot

assume

that

the

default

isolation

level

is

in

effect

unless

they

know

that

no

other

REXX

programs

in

the

session

have

changed

the

setting.

Before

connecting

to

a

database,

a

REXX

application

should

explicitly

set

the

isolation

level.

API

Syntax

for

REXX

Use

the

SQLDBS

routine

to

call

DB2

APIs

with

the

following

syntax:

CALL

SQLDBS

’command

string’

If

a

DB2®

API

you

want

to

use

cannot

be

called

using

the

SQLDBS

routine,

you

may

still

call

the

API

by

calling

the

DB2

command

line

processor

(CLP)

from

within

the

REXX

application.

However,

because

the

DB2

CLP

directs

output

either

Chapter

23.

Programming

in

REXX

505

to

the

standard

output

device

or

to

a

specified

file,

your

REXX

application

cannot

directly

access

the

output

from

the

called

DB2

API,

nor

can

it

easily

make

a

determination

as

to

whether

the

called

API

is

successful

or

not.

The

SQLDB2

API

provides

an

interface

to

the

DB2

CLP

that

provides

direct

feedback

to

your

REXX

application

on

the

success

or

failure

of

each

called

API

by

setting

the

compound

REXX

variable,

SQLCA,

after

each

call.

You

can

use

the

SQLDB2

routine

to

call

DB2

APIs

using

the

following

syntax:

CALL

SQLDB2

’command

string’

where

’command

string’

is

a

string

that

can

be

processed

by

the

command-line

processor

(CLP).

Calling

a

DB2

API

using

SQLDB2

is

equivalent

to

calling

the

CLP

directly,

except

for

the

following:

v

The

call

to

the

CLP

executable

is

replaced

by

the

call

to

SQLDB2

(all

other

CLP

options

and

parameters

are

specified

the

same

way).

v

The

REXX

compound

variable

SQLCA

is

set

after

calling

the

SQLDB2

but

is

not

set

after

calling

the

CLP

executable.

v

The

default

display

output

of

the

CLP

is

set

to

off

when

you

call

SQLDB2,

whereas

the

display

is

set

to

on

output

when

you

call

the

CLP

executable.

Note

that

you

can

turn

the

display

output

of

the

CLP

to

on

by

passing

the

+o

or

the

−o−

option

to

the

SQLDB2.

Because

the

only

REXX

variable

that

is

set

after

you

call

SQLDB2

is

the

SQLCA,

you

only

use

this

routine

to

call

DB2

APIs

that

do

not

return

any

data

other

than

the

SQLCA

and

that

are

not

currently

implemented

through

the

SQLDBS

interface.

Thus,

only

the

following

DB2

APIs

are

supported

by

SQLDB2:

v

Activate

Database

v

Add

Node

v

Bind

for

DB2

Version

1(1)

(2)

v

Bind

for

DB2

Version

2

or

5(1)

v

Create

Database

at

Node

v

Drop

Database

at

Node

v

Drop

Node

Verify

v

Deactivate

Database

v

Deregister

v

Load(3)

v

Load

Query

v

Precompile

Program(1)

v

Rebind

Package(1)

v

Redistribute

Database

Partition

Group

v

Register

v

Start

Database

Manager

v

Stop

Database

Manager

Notes

on

DB2

APIs

Supported

by

SQLDB2:

1.

These

commands

require

a

CONNECT

statement

through

the

SQLDB2

interface.

Connections

using

the

SQLDB2

interface

are

not

accessible

to

the

SQLEXEC

interface

and

connections

using

the

SQLEXEC

interface

are

not

accessible

to

the

SQLDB2

interface.

2.

Is

supported

on

Windows®-based

platforms

through

the

SQLDB2

interface.

3.

The

optional

output

parameter,

pLoadInfoOut

for

the

Load

API

is

not

returned

to

the

application

in

REXX.

506

Programming

Client

Applications

Note:

Although

the

SQLDB2

routine

is

intended

to

be

used

only

for

the

DB2

APIs

listed

above,

it

can

also

be

used

for

other

DB2

APIs

that

are

not

supported

through

the

SQLDBS

routine.

Alternatively,

the

DB2

APIs

can

be

accessed

through

the

CLP

from

within

the

REXX

application.

Calling

Stored

Procedures

from

REXX

The

sections

that

follow

describe

how

to

call

stored

procedures

from

REXX

applications.

Stored

Procedures

in

REXX

REXX

SQL

applications

can

call

stored

procedures

at

the

database

server

by

using

the

SQL

CALL

statement.

The

stored

procedure

can

be

written

in

any

language

supported

on

that

server,

except

for

REXX

on

AIX®

systems.

(Client

applications

may

be

written

in

REXX

on

AIX

systems,

but,

as

with

other

languages,

they

cannot

call

a

stored

procedure

written

in

REXX

on

AIX.)

Related

concepts:

v

“Stored

Procedure

Calls

in

REXX”

on

page

507

Stored

Procedure

Calls

in

REXX

The

CALL

statement

allows

a

client

application

to

pass

data

to,

and

receive

data

from,

a

server

stored

procedure.

The

interface

for

both

input

and

output

data

is

a

list

of

host

variables.

Because

REXX

generally

determines

the

type

and

size

of

host

variables

based

on

their

content,

any

output-only

variables

passed

to

CALL

should

be

initialized

with

dummy

data

similar

in

type

and

size

to

the

expected

output.

Data

can

also

be

passed

to

stored

procedures

through

SQLDA

REXX

variables,

using

the

USING

DESCRIPTOR

syntax

of

the

CALL

statement.

The

following

table

shows

how

the

SQLDA

is

set

up.

In

the

table,

':value'

is

the

stem

of

a

REXX

host

variable

that

contains

the

values

needed

for

the

application.

For

the

DESCRIPTOR,

'n'

is

a

numeric

value

indicating

a

specific

sqlvar

element

of

the

SQLDA.

The

numbers

on

the

right

refer

to

the

notes

following

the

table.

Table

81.

Client-side

REXX

SQLDA

for

Stored

Procedures

using

the

CALL

Statement

USING

DESCRIPTOR

:value.SQLD

1

:value.n.SQLTYPE

1

:value.n.SQLLEN

1

:value.n.SQLDATA

1

2

:value.n.SQLDIND

1

2

Notes:

1.

Before

invoking

the

stored

procedure,

the

client

application

must

initialize

the

REXX

variable

with

appropriate

data.

When

the

SQL

CALL

statement

is

executed,

the

database

manager

allocates

storage

and

retrieves

the

value

of

the

REXX

variable

from

the

REXX

variable

pool.

For

an

SQLDA

used

in

a

CALL

statement,

the

database

manager

allocates

storage

for

the

SQLDATA

and

SQLIND

fields

based

on

the

SQLTYPE

and

SQLLEN

values.

In

the

case

of

a

REXX

stored

procedure

(that

is,

the

procedure

being

called

is

itself

written

in

Windows®-based

REXX),

the

data

passed

by

the

client

from

Chapter

23.

Programming

in

REXX

507

either

type

of

CALL

statement

or

the

DARI

API

is

placed

in

the

REXX

variable

pool

at

the

database

server

using

the

following

predefined

names:

SQLRIDA

Predefined

name

for

the

REXX

input

SQLDA

variable

SQLRODA

Predefined

name

for

the

REXX

output

SQLDA

variable
2.

When

the

stored

procedure

terminates,

the

database

manager

also

retrieves

the

value

of

the

variables

from

the

stored

procedure.

The

values

are

returned

to

the

client

application

and

placed

in

the

client’s

REXX

variable

pool.

Related

concepts:

v

“Client

Considerations

for

Calling

Stored

Procedures

in

REXX”

on

page

508

v

“Server

Considerations

for

Calling

Stored

Procedures

in

REXX”

on

page

508

v

“Retrieval

of

Precision

and

SCALE

Values

from

SQLDA

Decimal

Fields”

on

page

508

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

Client

Considerations

for

Calling

Stored

Procedures

in

REXX

When

using

host

variables

in

the

CALL

statement,

initialize

each

host

variable

to

a

value

that

is

type

compatible

with

any

data

that

is

returned

to

the

host

variable

from

the

server

procedure.

You

should

perform

this

initialization

even

if

the

corresponding

indicator

is

negative.

When

using

descriptors,

SQLDATA

must

be

initialized

and

contain

data

that

is

type

compatible

with

any

data

that

is

returned

from

the

server

procedure.

You

should

perform

this

initialization

even

if

the

SQLIND

field

contains

a

negative

value.

Related

reference:

v

“Supported

SQL

Data

Types

in

REXX”

on

page

502

Server

Considerations

for

Calling

Stored

Procedures

in

REXX

Ensure

that

all

the

SQLDATA

fields

and

SQLIND

(if

it

is

a

nullable

type)

of

the

predefined

output

sqlda

SQLRODA

are

initialized.

For

example,

if

SQLRODA.SQLD

is

2,

the

following

fields

must

contain

some

data

(even

if

the

corresponding

indicators

are

negative

and

the

data

is

not

passed

back

to

the

client):

v

SQLRODA.1.SQLDATA

v

SQLRODA.2.SQLDATA

Retrieval

of

Precision

and

SCALE

Values

from

SQLDA

Decimal

Fields

To

retrieve

the

precision

and

scale

values

for

decimal

fields

from

the

SQLDA

structure

returned

by

the

database

manager,

use

the

sqllen.scale

and

sqllen.precision

values

when

you

initialize

the

SQLDA

output

in

your

REXX

program.

For

example:

508

Programming

Client

Applications

.

.

.

/*

INITIALIZE

ONE

ELEMENT

OF

OUTPUT

SQLDA

*/

io_sqlda.sqld

=

1

io_sqlda.1.sqltype

=

485

/*

DECIMAL

DATA

TYPE

*/

io_sqlda.1.sqllen.scale

=

2

/*

DIGITS

RIGHT

OF

DECIMAL

POINT

*/

io_sqlda.1.sqllen.precision

=

7

/*

WIDTH

OF

DECIMAL

*/

io_sqlda.1.sqldata

=

00000.00

/*

HELPS

DEFINE

DATA

FORMAT

*/

io_sqlda.1.sqlind

=

-1

/*

NO

INPUT

DATA

*/

.

.

.

Chapter

23.

Programming

in

REXX

509

510

Programming

Client

Applications

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

WebSphere

MQ

Functional

Overview

.

.

.

.

. 511

WebSphere

MQ

Messaging

.

.

.

.

.

.

.

.

. 513

Sending

Messages

with

WebSphere

MQ

Functions

515

Retrieving

Messages

with

WebSphere

MQ

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

WebSphere

MQ

Application-to-application

Connectivity

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Request/Reply

Communications

with

WebSphere

MQ

Functions

.

.

.

.

.

.

.

.

.

.

.

.

. 520

Publish/Subscribe

with

WebSphere

MQ

Functions

522

WebSphere

MQ

Functional

Overview

WebSphere®

MQ

provides

the

ability

for

message

operations

and

database

operations

to

be

combined,

and

in

some

cases

in

a

single

unit

of

work

as

an

atomic

transaction.

This

feature

is

supported

by

the

WebSphere

MQ

functions

on

UNIX®

and

Windows®

with

the

non-transactional

and

transactional

MQ

user-defined

functions,

using

schemas

DB2MQ

and

DB2MQ1C.

A

set

of

WebSphere

MQ

functions

are

provided

with

DB2®

to

allow

SQL

statements

to

include

messaging

operations.

This

means

that

this

support

is

available

to

applications

written

in

any

supported

language,

for

example,

C,

Java™,

SQL

using

any

of

the

database

interfaces.

All

examples

shown

below

are

in

SQL.

This

SQL

can

be

used

from

other

programming

languages

in

all

of

the

standard

ways.

All

of

the

WebSphere

MQ

messaging

styles

described

above

are

supported.

In

a

basic

configuration,

a

WebSphere

MQ

server

is

located

on

the

database

server

machine

along

with

DB2.

The

WebSphere

MQ

functions

are

installed

into

DB2

and

provide

access

to

the

WebSphere

MQ

server.

DB2

clients

can

be

located

on

any

machine

accessible

to

the

DB2

server.

Multiple

clients

can

concurrently

access

the

WebSphere

MQ

functions

through

the

database.

Through

the

provided

functions,

DB2

clients

can

perform

messaging

operations

within

SQL

statements.

These

messaging

operations

allow

DB2

applications

to

communicate

among

themselves

or

with

other

WebSphere

MQ

applications.

The

enable_MQFunctions

command

is

used

to

enable

a

DB2

database

for

the

WebSphere

MQ

functions.

It

will

automatically

establish

a

simple

default

configuration

that

client

applications

may

utilize

with

no

further

administrative

action.

For

a

description,

see

the

topics

″enable_MQFunctions″

and

″disable_MQFunctions″.

The

default

configuration

allows

application

programmers

a

quick

way

to

get

started

and

a

simpler

interface

for

development.

Additional

functionality

can

be

configured

incrementally

as

needed.

To

send

a

simple

message

using

the

default

configuration,

use

the

following

SQL

statement:

Example

1:

VALUES

DB2MQ.MQSEND(’simple

message’)

This

sends

the

message

“simple

message”

to

the

WebSphere

MQ

queue

manager

and

queue

specified

by

the

default

configuration.

The

Application

Messaging

Interface

(AMI)

of

WebSphere

MQ

provides

a

clean

separation

between

messaging

actions

and

the

definitions

that

dictate

how

those

actions

should

be

carried

out.

These

definitions

are

kept

in

an

external

repository

file

and

managed

using

the

AMI

Administration

tool.

This

makes

AMI

applications

©

Copyright

IBM

Corp.

1997

-

2004

511

||
||
||
|
||

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

simple

to

develop

and

maintain.

The

WebSphere

MQ

functions

provided

with

DB2

Universal

Database™

are

based

on

the

AMI

WebSphere

MQ

interface.

AMI

supports

the

use

of

an

external

configuration

file,

called

the

AMI

Repository,

to

store

configuration

information.

The

default

configuration

includes

a

WebSphere

MQ

AMI

Repository

configured

for

use

with

DB2

Universal

Database.

Two

key

concepts

in

WebSphere

MQ

AMI,

service

points

and

policies,

are

carried

forward

into

the

DB2

WebSphere

MQ

functions.

A

service

point

is

a

logical

end-point

from

which

a

message

can

be

sent

or

received.

In

the

AMI

repository,

each

service

point

is

defined

with

a

WebSphere

MQ

queue

name

and

queue

manager.

Policies

define

the

quality

of

service

options

that

should

be

used

for

a

given

messaging

operation.

Key

qualities

of

service

include

message

priority

and

persistence.

Default

service

points

and

policy

definitions

are

provided

and

can

be

used

by

developers

to

further

simplify

their

applications.

The

example

in

“Example

1”

on

page

511

can

be

re-written

as

follows

to

explicitly

specify

the

default

service

point

and

policy

name:

Example

2:

VALUES

DB2MQ.MQSEND(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’,

’simple

message’)

Queues

can

be

serviced

by

one

or

more

applications

at

the

server

upon

which

the

queues

and

applications

reside.

In

many

configurations

multiple

queues

are

defined

to

support

different

applications

and

purposes.

For

this

reason,

it

is

often

important

to

define

different

service

points

when

making

WebSphere

MQ

requests.

This

is

demonstrated

in

the

following

example:

Example

3:

VALUES

DB2MQ.MQSEND(’ODS_Input’,

’simple

message’)

In

the

above

example,

the

policy

is

not

specified

and

so

the

default

policy

is

used.

Limitations

When

using

the

sending

or

receiving

functions,

the

maximum

length

of

a

message

of

type

VARCHAR

is

4000

characters

for

schema

DB2MQ,

and

32,000

characters

for

schema

DB2MQ1C.

The

maximum

length

when

sending

or

receiving

a

message

of

type

CLOB

is

1

MB

for

schema

DB2MQ.

These

are

also

the

maximum

message

sizes

for

publishing

a

message

using

MQPublish.

Different

functions

are

sometimes

required

when

working

with

CLOB

messages

and

VARCHAR

messages.

Generally,

the

CLOB

version

of

an

MQ

function

uses

the

identical

syntax

as

its

counterpart.

The

only

difference

is

that

its

name

has

the

characters

CLOB

at

the

end.

For

example,

the

CLOB

equivalent

of

MQREAD

is

MQREADCLOB.

Error

codes

The

WebSphere

MQ

function

return

codes

can

be

found

in

Appendix

B

of

the

MQSeries®

Application

Messaging

Interface

Manual.

Other

messages,

using

component

identifier

AMI,

are

listed

in

the

DB2

Universal

Database

Messages

and

Codes.

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Messaging”

on

page

513

v

“Sending

Messages

with

WebSphere

MQ

Functions”

on

page

515

512

Programming

Client

Applications

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|

|

v

“Retrieving

Messages

with

WebSphere

MQ

Functions”

on

page

517

v

“WebSphere

MQ

Application-to-application

Connectivity”

on

page

519

v

“Request/Reply

Communications

with

WebSphere

MQ

Functions”

on

page

520

v

“Publish/Subscribe

with

WebSphere

MQ

Functions”

on

page

522

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

WebSphere

MQ

Messaging

The

DB2®

WebSphere®

MQ

functions

support

three

messaging

models:

datagrams,

publish/subscribe

(p/s),

and

request/reply

(r/r).

Messages

that

are

sent

as

datagrams

are

sent

to

a

single

destination

with

no

reply

expected.

In

the

p/s

model,

one

or

more

publishers

send

a

message

to

a

publication

service

which

distributes

the

message

to

one

or

more

subscribers.

Request/reply

is

similar

to

datagram,

but

the

sender

expects

to

receive

a

response.

WebSphere

MQ

does

not,

itself,

mandate

or

support

any

particular

structuring

of

the

messages

it

transports.

Other

products,

such

as

MQSeries®

Integrator

(MQSI)

do

offer

support

for

messages

formed

as

C

or

Cobol

or

as

XML

strings.

Structured

messages

in

MQSI

are

defined

by

a

message

repository.

XML

messages

typically

have

a

self-describing

message

structure

and

can

also

be

managed

through

the

repository.

Messages

can

also

be

unstructured,

requiring

user

code

to

parse

or

construct

the

message

content.

Such

messages

are

often

semi-structured,

that

is,

they

use

either

byte

positions

or

fixed

delimiters

to

separate

the

fields

within

a

message.

Support

for

such

semi-structured

messages

is

provided

by

the

WebSphere

MQ

Assist

Wizard.

Support

for

XML

messages

is

provided

through

features

of

the

DB2

XML

Extender.

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

513

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

The

most

basic

form

of

messaging

with

the

WebSphere

MQ

DB2

functions

occurs

when

all

database

applications

connect

to

the

same

DB2

server.

Clients

can

be

local

to

the

database

server

or

distributed

in

a

network

environment.

In

a

simple

scenario,

Client

A

invokes

the

MQSEND

function

to

send

a

user-defined

string

to

the

default

service

location.

The

WebSphere

MQ

functions

are

then

executed

within

DB2

on

the

database

server.

At

some

later

time,

Client

B

invokes

the

MQRECEIVE

function

to

remove

the

message

at

the

head

of

the

queue

defined

by

the

default

service

and

return

it

to

the

client.

Again,

the

WebSphere

MQ

functions

used

to

perform

this

work

are

executed

by

DB2.

Database

clients

can

use

simple

messaging

in

a

number

of

ways.

Some

common

uses

for

messaging

are:

Data

collection

Information

is

received

in

the

form

of

messages

from

one

or

more

possibly

diverse

sources

of

information.

Information

sources

can

be

commercial

applications

such

as

SAP

or

applications

developed

in-house.

Such

data

can

be

received

from

queues

and

stored

in

database

tables

for

further

processing

or

analysis.

Workload

distribution

Work

requests

are

posted

to

a

queue

shared

by

multiple

instances

of

the

same

application.

When

an

instance

is

ready

to

perform

some

work,

it

receives

a

message

from

the

top

of

the

queue

containing

a

work

request

to

perform.

Using

this

technique,

multiple

instances

can

share

the

workload

represented

by

a

single

queue

of

pooled

requests.

Application

signaling

In

a

situation

where

several

processes

collaborate,

messages

are

often

used

to

coordinate

their

efforts.

These

messages

can

contain

commands

or

requests

for

work

to

be

performed.

Typically,

this

kind

of

signaling

is

one-way;

that

is,

the

party

that

initiates

the

message

does

not

expect

a

reply.

See

the

topic

″Request/Reply

Communications

with

WebSphere

MQ

Functions″

for

more

information.

Application

notification

Notification

is

similar

to

signaling

in

that

data

is

sent

from

an

initiator

with

no

expectation

of

a

response.

Typically,

however,

notification

contains

data

about

business

events

that

have

taken

place.

Publish/Subscribe

is

a

more

advanced

form

of

notification.

For

more

information,

see

the

topic

″Publish/Subscribe

with

WebSphere

MQ

Functions″.

The

following

scenario

extends

the

simple

scenario

described

above

to

incorporate

remote

messaging.

That

is,

a

message

is

sent

between

Machine

A

and

Machine

B.

The

sequence

of

steps

is

as

follows:

1.

The

DB2

Client

executes

an

MQSEND

call,

specifying

a

target

service

that

has

been

defined

to

represent

a

remote

queue

on

Machine

B.

2.

The

WebSphere

MQ

DB2

functions

perform

the

actual

WebSphere

MQ

work

to

send

the

message.

The

WebSphere

MQ

server

on

Machine

A

accepts

the

message

and

guarantees

that

it

will

deliver

it

to

the

destination

defined

by

the

service

point

definition

and

current

WebSphere

MQ

configuration

of

Machine

A.

The

server

determines

that

this

is

a

queue

on

Machine

B.

It

then

attempts

to

deliver

the

message

to

the

WebSphere

MQ

server

on

Machine

B,

transparently

retrying

as

needed.

3.

The

WebSphere

MQ

server

on

Machine

B

accepts

the

message

from

the

server

on

Machine

A

and

places

it

in

the

destination

queue

on

Machine

B.

514

Programming

Client

Applications

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

4.

A

WebSphere

MQ

client

on

Machine

B

requests

the

message

at

the

head

of

the

queue.

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Functional

Overview”

on

page

511

v

“Sending

Messages

with

WebSphere

MQ

Functions”

on

page

515

v

“Retrieving

Messages

with

WebSphere

MQ

Functions”

on

page

517

v

“WebSphere

MQ

Application-to-application

Connectivity”

on

page

519

v

“Request/Reply

Communications

with

WebSphere

MQ

Functions”

on

page

520

v

“Publish/Subscribe

with

WebSphere

MQ

Functions”

on

page

522

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

Sending

Messages

with

WebSphere

MQ

Functions

By

using

MQSEND,

a

DB2®

user

chooses

what

data

to

send,

where

to

send

it,

and

when

it

will

be

sent.

In

the

industry

this

is

commonly

called

“Send

and

Forget”″

meaning

that

the

sender

just

sends

a

message,

relying

on

the

guaranteed

delivery

protocols

of

WebSphere®

MQ

to

ensure

that

the

message

reaches

its

destination.

The

following

examples

illustrate

this.

“Example

4”

sends

a

user-defined

string

to

the

service

point

myPlace

with

the

policy

highPriority:

Example

4:

VALUES

DB2MQ.MQSEND(’myplace’,’highPriority’,’test’)

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

515

|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|

|
|

In

“Example

4”

on

page

515,

the

policy

highPriority

refers

to

a

policy

defined

in

the

AMI

Repository

that

sets

the

WebSphere

MQ

priority

to

the

highest

level

and

perhaps

adjusts

other

qualities

of

service,

such

as

persistence,

as

well.

The

message

content

can

be

composed

of

any

legal

combination

of

SQL

and

user-specified

data.

This

includes

nested

functions,

operators,

and

casts.

For

instance,

given

a

table

EMPLOYEE,

with

VARCHAR

columns

LASTNAME,

FIRSTNAME,

and

DEPARTMENT,

if

you

want

to

send

a

message

containing

this

information

for

each

employee

in

DEPARTMENT

5LGA

you

would

do

the

following:

Example

5:

SELECT

DB2MQ.MQSEND(LASTNAME

||

’

’

||

FIRSTNAME

||

’

’

||

DEPARTMENT)

FROM

EMPLOYEE

WHERE

DEPARTMENT

=

’5LGA’

If

this

table

also

had

a

column

AGE

defined

as

an

integer,

you

could

include

it

with

the

following

addition

to

the

statement:

Example

6:

SELECT

DB2MQ.MQSEND

(LASTNAME

||

’

’

||

FIRSTNAME

||

’

’

||

DEPARTMENT

||

’

’

||

char(AGE))

FROM

EMPLOYEE

WHERE

DEPARTMENT

=

’5LGA’

If

the

table

EMPLOYEE

has

a

column

RESUME

of

type

CLOB

instead

of

an

AGE

column,

then

a

message

containing

the

information

for

each

employee

in

DEPARTMENT

5LGA

can

be

issued

with

the

following

statement:

Example

7:

SELECT

DB2MQ.MQSEND(clob(LASTNAME)

||

’

’

||

clob(FIRSTNAME)

||

’

’

||

clob(DEPARTMENT)

||

’

’

||

RESUME))

FROM

EMPLOYEE

WHERE

DEPARTMENT

=

’5LGA’

The

following

example

shows

how

message

content

can

be

derived

using

any

valid

SQL

expression.

Given

a

second

table

DEPT

containing

VARCHAR

columns

DEPT_NO

and

DEPT_NAME,

messages

can

be

sent

that

contain

employee

LASTNAME

and

DEPT_NAME:

Example

8:

SELECT

DB2MQ.MQSEND(e.LASTNAME

||

’

’

||

d.DEPTNAME)

FROM

EMPLOYEE

e,

DEPT

d

WHERE

e.DEPARTMENT

=

d.DEPTNAME

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Functional

Overview”

on

page

511

v

“WebSphere

MQ

Messaging”

on

page

513

v

“Retrieving

Messages

with

WebSphere

MQ

Functions”

on

page

517

v

“WebSphere

MQ

Application-to-application

Connectivity”

on

page

519

v

“Request/Reply

Communications

with

WebSphere

MQ

Functions”

on

page

520

v

“Publish/Subscribe

with

WebSphere

MQ

Functions”

on

page

522

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

516

Programming

Client

Applications

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

Retrieving

Messages

with

WebSphere

MQ

Functions

By

using

the

WebSphere®

MQ

DB2®

functions,

messages

can

be

either

received

or

read.

The

difference

between

reading

and

receiving

is

that

reading

returns

the

message

at

the

head

of

a

queue

without

removing

it

from

the

queue,

while

receiving

operations

cause

the

message

to

be

removed

from

the

queue.

When

you

use

a

receive

operation

to

retrieve

a

message,

the

same

message

can

only

be

retrieved

once.

When

you

use

a

read

operation

to

retrieve

a

message,

the

same

message

can

be

retrieved

many

times.

The

following

examples

demonstrate

the

retrieve

operations.

Example

9:

VALUES

DB2MQ.MQREAD()

“Example

9”

on

page

517

returns

a

VARCHAR

string

containing

the

message

at

the

head

of

queue

that

is

defined

by

the

default

service

using

the

default

quality

of

service

policy.

If

no

messages

are

available

to

be

read,

a

null

value

is

returned.

This

operation

does

not

change

the

queue.

Example

10:

VALUES

DB2MQ.MQRECEIVE(’Employee_Changes’)

“Example

10”

on

page

517

shows

how

a

message

can

be

removed

from

the

head

of

the

queue

defined

by

the

Employee_Changes

service

using

the

default

policy.

One

feature

of

DB2

is

the

ability

to

generate

a

table

from

a

user-defined

(or

DB2–provided)

function.

You

can

exploit

this

table-function

feature

so

that

the

contents

of

a

queue

are

materialized

as

a

DB2

Universal

Database™

table.

The

following

example

demonstrates

the

simplest

form

of

this

feature:

Example

11:

SELECT

t.*

FROM

table

(

DB2MQ.MQREADALL())

t

The

query

in

“Example

11”

returns

a

table

consisting

of

all

of

the

messages

in

the

queue

that

are

defined

by

the

default

service

and

the

metadata

about

these

messages.

To

return

just

the

messages,

the

example

could

be

rewritten:

Example

12:

SELECT

t.MSG

FROM

table

(DB2MQ.MQREADALL())

t

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

517

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|

The

table

returned

by

a

table

function

is

no

different

from

a

table

retrieved

from

the

database

directly.

This

means

that

you

can

use

this

table

in

a

wide

variety

of

ways.

For

instance,

you

can

join

the

contents

of

the

table

with

another

table

or

count

the

number

of

messages

in

a

queue:

Example

13:

SELECT

t.MSG,

e.LASTNAME

FROM

table

(DB2MQ.MQREADALL()

)

t,

EMPLOYEE

e

WHERE

t.MSG

=

e.LASTNAME

Example

14:

SELECT

COUNT(*)

FROM

table

(DB2MQ.MQREADALL())

t

You

can

also

hide

the

fact

that

the

source

of

the

table

is

a

queue

by

creating

a

view

over

a

table

function.

For

instance,

the

following

example

creates

a

view

called

NEW_EMP

over

the

queue

referred

to

by

the

service

named

NEW_EMPLOYEES:

Example

15:

CREATE

VIEW

NEW_EMP

(msg)

AS

SELECT

t.msg

FROM

table(DB2MQ.MQREADALL(NEW_EMPLOYEES))

t

In

this

case

(“Example

15”),

the

view

is

defined

with

only

a

single

column

containing

an

entire

message.

If

messages

are

simply

structured,

for

instance

containing

two

fields

of

fixed

length,

it

is

straightforward

to

use

the

DB2

built-in

functions

to

parse

the

message

into

the

two

columns.

For

example,

if

you

know

that

messages

sent

to

a

particular

queue

always

contain

an

18-character

last

name

followed

by

an

18-character

first

name,

then

you

can

define

a

view

containing

each

field

as

a

separate

column

as

follows:

Example

16:

CREATE

VIEW

NEW_EMP2

AS

SELECT

left(t.msg,18)

AS

LNAME,

right(t.msg,18)

AS

FNAME

FROM

table(DB2MQ.MQREADALL())

t

A

feature

of

the

DB2

Development

Center,

the

WebSphere

MQ

Assist

Wizard,

can

be

used

to

create

new

DB2

table

functions

and

views

that

map

delimited

message

structures

to

columns.

It

is

often

desirable

to

store

the

contents

of

one

or

more

messages

into

the

database.

This

can

be

done

by

using

the

full

power

of

SQL

to

manipulate

and

store

message

content.

A

simple

example

of

this

is

shown

below:

Example

17:

INSERT

INTO

MESSAGES

SELECT

t.msg

FROM

table

(DB2MQ.MQRECEIVEALL())

t

Given

a

table

MESSAGES,

with

a

single

column

of

VARCHAR(2000),

the

above

statement

inserts

the

messages

from

the

default

service

queue

into

the

table.

This

technique

can

be

used

to

cover

a

very

wide

variety

of

circumstances.

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Functional

Overview”

on

page

511

v

“WebSphere

MQ

Messaging”

on

page

513

v

“Sending

Messages

with

WebSphere

MQ

Functions”

on

page

515

v

“WebSphere

MQ

Application-to-application

Connectivity”

on

page

519

v

“Request/Reply

Communications

with

WebSphere

MQ

Functions”

on

page

520

v

“Publish/Subscribe

with

WebSphere

MQ

Functions”

on

page

522

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

518

Programming

Client

Applications

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

WebSphere

MQ

Application-to-application

Connectivity

Application

integration

is

a

common

element

in

many

solutions.

Whether

integrating

a

purchased

application

into

an

existing

infrastructure

or

just

integrating

a

newly

developed

application

into

an

existing

environment,

we

are

often

faced

with

the

task

of

gluing

a

heterogeneous

collection

of

subsystems

together

to

form

a

working

whole.

WebSphere®

MQ

is

commonly

viewed

as

an

essential

tool

for

integrating

applications.

Accessible

in

most

hardware,

software,

and

language

environments,

WebSphere

MQ

provides

the

means

to

interconnect

a

very

heterogeneous

collection

of

applications.

Please

see

the

topics

″Request/Reply

Communications

with

WebSphere

MQ

Functions″

and

″Publish/Subscribe

with

WebSphere

MQ

Functions″

for

application

integration

scenarios

and

how

they

can

be

used

with

DB2®.

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Functional

Overview”

on

page

511

v

“WebSphere

MQ

Messaging”

on

page

513

v

“Sending

Messages

with

WebSphere

MQ

Functions”

on

page

515

v

“Retrieving

Messages

with

WebSphere

MQ

Functions”

on

page

517

v

“Request/Reply

Communications

with

WebSphere

MQ

Functions”

on

page

520

v

“Publish/Subscribe

with

WebSphere

MQ

Functions”

on

page

522

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

519

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

Request/Reply

Communications

with

WebSphere

MQ

Functions

The

Request/Reply

(R/R)

communications

method

is

a

very

common

technique

for

one

application

to

request

the

services

of

another.

One

way

to

do

this

is

for

the

requester

to

send

a

message

to

the

service

provider

requesting

some

work

to

be

performed.

Once

the

work

has

been

completed,

the

provider

may

decide

to

send

results

(or

just

a

confirmation

of

completion)

back

to

the

requestor.

However,

using

the

basic

messaging

techniques

described

above,

there

is

nothing

that

connects

the

sender’s

request

with

the

service

provider’s

response.

Unless

the

requester

waits

for

a

reply

before

continuing,

some

mechanism

must

be

used

to

associate

each

reply

with

its

request.

Rather

than

force

the

developer

to

create

such

a

mechanism,

WebSphere®

MQ

provides

a

correlation

identifier

that

allows

the

correlation

of

messages

in

an

exchange.

While

there

are

a

number

of

ways

in

which

this

mechanism

could

be

used,

the

simplest

is

for

the

requestor

to

mark

a

message

with

a

known

correlation

identifier

using,

for

instance,

the

following:

Example

18:

VALUES

DB2MQ.MQSEND

(’myRequester’,’myPolicy’,’SendStatus:cust1’,’Req1’)

This

statement

adds

a

final

parameter

Req1

to

the

MQSEND

statement

from

above

to

indicate

the

correlation

identifier

for

the

request.

To

receive

a

reply

to

this

specific

request,

use

the

corresponding

MQRECEIVE

statement

to

selectively

retrieve

the

first

message

defined

by

the

indicated

service

that

matches

this

correlation

identifier

as

follows:

Example

19:

VALUES

DB2MQ.MQRECEIVE(’myReceiver’,’myPolicy’,’Req1’)

If

the

application

servicing

the

request

is

busy

and

the

requestor

issues

the

above

MQRECEIVE

before

the

reply

is

sent,

then

no

messages

matching

this

correlation

identifier

are

found.

520

Programming

Client

Applications

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

To

receive

both

the

service

request

and

the

correlation

identifier,

use

a

statement

like

the

following:

Example

20:

SELECT

msg,

correlid

FROM

table

(VALUES

DB2MQ.MQRECEIVEALL(’aServiceProvider’,’myPolicy’,1))

t

This

returns

the

message

and

correlation

identifier

of

the

first

request

from

the

service

aServiceProvider.

Once

the

service

has

been

performed,

it

sends

the

reply

message

to

the

queue

described

by

aRequester.

Meanwhile,

the

service

requester

could

have

been

doing

other

work.

In

fact,

there

is

no

guarantee

that

the

initial

service

request

will

receive

a

response

within

a

set

time.

Application

level

timeouts

such

as

this

must

be

managed

by

the

developer;

the

requester

must

poll

to

detect

the

presence

of

the

reply.

The

advantage

of

such

time-independent

asynchronous

processing

is

that

the

requester

and

service

provider

execute

completely

independently

of

one

another.

This

can

be

used

both

to

accommodate

environments

in

which

applications

are

only

intermittently

connected,

and

more

batch-oriented

environments

in

which

multiple

requests

or

replies

are

aggregated

before

processing.

This

kind

of

aggregation

is

often

used

in

data

warehouse

environments

to

periodically

update

a

data

warehouse

or

operational

data

store.

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Functional

Overview”

on

page

511

v

“WebSphere

MQ

Messaging”

on

page

513

v

“Sending

Messages

with

WebSphere

MQ

Functions”

on

page

515

v

“Retrieving

Messages

with

WebSphere

MQ

Functions”

on

page

517

v

“WebSphere

MQ

Application-to-application

Connectivity”

on

page

519

v

“Publish/Subscribe

with

WebSphere

MQ

Functions”

on

page

522

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

521

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

Publish/Subscribe

with

WebSphere

MQ

Functions

Two

techniques

in

database

messaging

are

simple

data

publication

and

automated

publication.

Simple

Data

Publication

A

common

scenario

in

application

integration

is

for

one

application

to

notify

other

applications

about

events

of

interest.

This

is

easily

done

by

sending

a

message

to

a

queue

monitored

by

another

application.

The

contents

of

the

message

can

be

a

user-defined

string

or

can

be

composed

from

database

columns.

Often

a

simple

message

is

all

that

needs

to

be

sent

using

the

MQSEND

function.

When

such

messages

need

to

be

sent

concurrently

to

multiple

recipients,

the

Distribution

List

facility

of

the

WebSphere®

MQ

AMI

can

be

used.

A

distribution

list

is

defined

using

the

AMI

Administration

tool.

A

distribution

list

comprises

a

list

of

individual

services.

A

message

sent

to

a

distribution

list

is

forwarded

to

every

service

defined

within

the

list.

This

is

especially

useful

when

it

is

known

that

a

few

services

will

always

be

interested

in

every

message.

The

following

example

shows

sending

of

a

message

to

the

distribution

list

interestedParties:

Example

21:

VALUES

DB2MQ.MQSEND(’interestedParties’,

’information

of

general

interest’);

When

more

control

over

the

messages

that

particular

services

should

receive

is

required,

a

Publish/Subscribe

capability

is

needed.

Publish/Subscribe

systems

typically

provide

a

scalable,

secure

environment

in

which

many

subscribers

can

register

to

receive

messages

from

multiple

publishers.

To

support

this

capability,

the

MQPublish

interface

can

be

used,

in

conjunction

with

MQSeries®

Integrator

or

the

WebSphere

MQ

Publish/Subscribe

facility.

MQPublish

allows

users

to

optionally

specify

a

topic

to

be

associated

with

a

message.

Topics

allow

a

subscriber

to

more

clearly

specify

the

messages

to

be

accepted.

The

sequence

of

steps

is

as

follows:

1.

A

WebSphere

MQ

administrator

configures

MQSeries

Integrator

publish/subscribe

capabilities.

2.

Interested

applications

subscribe

to

subscription

points

defined

by

the

MQSI

configuration,

optionally

specifying

topics

of

interest

to

them.

Each

subscriber

selects

relevant

topics,

and

can

also

utilize

the

content-based

subscription

techniques

of

MQSeries

Integrator

Version

2.

It

is

important

to

note

that

queues,

as

represented

by

service

names,

define

the

subscriber.

3.

A

DB2®

application

publishes

a

message

to

the

service

point

Weather.

The

messages

indicate

that

the

weather

is

Sleet

with

a

topic

of

Austin,

thus

notifying

interested

subscribers

that

the

weather

in

Austin

is

Sleet.

4.

The

mechanics

of

actually

publishing

the

message

are

handled

by

the

WebSphere

MQ

functions

provided

by

DB2.

The

message

is

sent

to

MQSeries

Integrator

using

the

service

named

Weather.

5.

MQSI

accepts

the

message

from

the

Weather

service,

performs

any

processing

defined

by

the

MQSI

configuration,

and

determines

which

subscriptions

satisfy.

MQSI

then

forwards

the

message

to

the

subscriber

queues

whose

criteria

it

meets.

522

Programming

Client

Applications

|

|

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

6.

Applications

that

have

subscribed

to

the

Weather

service,

and

registered

an

interest

in

Austin,

will

receive

the

message

Sleet

in

their

receiving

service.

To

publish

this

data

using

all

the

defaults

and

a

null

topic,

use

the

following

statement:

Example

22:

SELECT

DB2MQ.MQPUBLISH

(LASTNAME

||

’

’

||

FIRSTNAME

||

’

’

||

DEPARTMENT

||’

’

||

char(AGE))

FROM

EMPLOYEE

WHERE

DEPARTMENT

=

’5LGA’

Fully

specifying

all

the

parameters

and

simplifying

the

message

to

contain

only

the

LASTNAME,

the

statement

now

looks

like:

Example

23:

SELECT

DB2MQ.MQPUBLISH(’HR_INFO_PUB’,

’SPECIAL_POLICY’,

LASTNAME,

’ALL_EMP:5LGA’,

’MANAGER’)

FROM

EMPLOYEE

WHERE

DEPARTMENT

=

’5LGA’

This

statement

publishes

messages

to

the

HR_INFO_PUB

publication

service

using

the

SPECIAL_POLICY

service.

The

messages

indicate

that

the

sender

is

the

MANAGER

correlation

identifier.

The

topic

string

(“ALL_EMP:5LGA”)

demonstrates

that

you

can

specify

multiple

topics,

concatenating

them

using

a

colon

(“:”).

In

this

example,

the

use

of

two

topics

allows

subscribers

to

register

for

either

ALL_EMP

or

just

5LGA

to

receive

these

messages.

To

receive

published

messages,

you

must

first

register

your

interest

in

messages

containing

a

given

topic

and

indicate

the

name

of

the

subscriber

service

that

messages

should

be

sent

to.

It

is

important

to

note

that

an

AMI

subscriber

service

defines

a

broker

service

and

a

receiver

service.

The

broker

service

is

how

the

subscriber

communicates

with

the

publish/subscribe

broker

and

the

receiver

service

is

where

messages

matching

the

subscription

request

will

be

sent.

The

following

statement

registers

an

interest

in

the

topic

ALL_EMP.

Example

24:

VALUES

DB2MQ.MQSUBSCRIBE(’aSubscriber’,

’ALL_EMP’)

Once

an

application

has

subscribed,

messages

published

with

the

topic

ALL_EMP

are

forwarded

to

the

receiver

service

that

is

defined

by

the

subscriber

service.

An

application

can

have

multiple

concurrent

subscriptions.

To

obtain

the

messages

that

meet

your

subscription,

you

can

use

any

of

the

standard

message

retrieval

functions.

For

instance,

if

the

subscriber

service

aSubscriber

defines

the

receiver

service

to

be

aSubscriberReceiver,

then

the

following

statement

non-destructively

reads

the

first

message:

Example

25:

VALUES

DB2MQ.MQREAD(’aSubscriberReceiver’)

To

determine

both

the

messages

and

the

topics

that

they

were

published

under,

use

one

of

the

table

functions.

The

following

statement

receives

the

first

five

messages

from

aSubscriberReceiver

and

displays

both

the

message

and

the

topic:

Example

26:

SELECT

t.msg,

t.topic

FROM

table

(DB2MQ.MQRECEIVEALL(’aSubscriberReceiver’,5))

t

To

read

all

of

the

messages

with

the

topic

ALL_EMP,

you

can

leverage

the

power

of

SQL

by

issuing

the

following

statement:

Example

27:

SELECT

t.msg

FROM

table

(DB2MQ.MQREADALL(’aSubscriberReceiver’))

t

WHERE

t.topic

=

’ALL_EMP’

Note:

It

is

important

to

realize

that

if

MQRECEIVEALL

is

used

with

a

constraint

then

the

entire

queue

will

be

consumed,

not

just

those

messages

published

with

topic

ALL_EMP.

This

is

because

the

table

function

is

performed

before

the

constraint

is

applied.

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

523

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

When

you

are

no

longer

interested

in

subscribing

to

a

particular

topic

you

must

explicitly

unsubscribe

using

a

statement

such

as:

Example

28:

VALUES

DB2MQ.MQUNSUBSCRIBE(’aSubscriber’,

’ALL_EMP’)

After

you

issue

the

above

statement,

the

publish/subscribe

broker

no

longer

delivers

messages

matching

this

subscription.

Automated

Publication

Another

important

technique

in

database

messaging

is

automated

publication.

Using

the

trigger

facility

within

DB2,

you

can

automatically

publish

messages

as

part

of

a

trigger

invocation.

While

other

techniques

exist

for

automated

data

publication,

the

trigger-based

approach

allows

administrators

or

developers

great

freedom

in

constructing

the

message

content

and

flexibility

in

defining

the

trigger

actions.

As

with

any

use

of

triggers,

you

must

be

aware

of

the

frequency

and

cost

of

execution.

The

following

examples

demonstrate

how

triggers

can

be

used

with

the

WebSphere

MQ

DB2

functions.

The

example

below

shows

how

easy

it

is

to

publish

a

message

each

time

a

new

employee

is

hired.

Any

users

or

applications

subscribing

to

the

HR_INFO_PUB

service

with

a

registered

interest

in

NEW_EMP

will

receive

a

message

containing

the

date,

name

and

department

of

each

new

employee.

Example

29:

CREATE

TRIGGER

new_employee

AFTER

INSERT

ON

employee

REFERENCING

NEW

AS

n

FOR

EACH

ROW

MODE

DB2SQL

VALUES

DB2MQ.MQPUBLISH(’HR_INFO_PUB’,current

date||’’||

’LASTNAME’||’’DEPARTMENT,’NEW_EMP’)

Related

concepts:

v

“MQSeries

Enablement”

on

page

16

v

“WebSphere

MQ

Functional

Overview”

on

page

511

v

“WebSphere

MQ

Messaging”

on

page

513

v

“Sending

Messages

with

WebSphere

MQ

Functions”

on

page

515

v

“Retrieving

Messages

with

WebSphere

MQ

Functions”

on

page

517

v

“WebSphere

MQ

Application-to-application

Connectivity”

on

page

519

v

“Request/Reply

Communications

with

WebSphere

MQ

Functions”

on

page

520

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

v

“Setting

up

DB2

WebSphere

MQ

functions”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

524

Programming

Client

Applications

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQREADCLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVECLOB

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALLCLOB

table

function”

in

the

SQL

Administrative

Routines

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

Chapter

24.

Writing

Applications

Using

DB2

WebSphere

MQ

Functions

525

|

|

|

|

|

|

|

|

526

Programming

Client

Applications

Chapter

25.

WebSphere

The

sections

that

follow

describe

WebSphere

connection

pooling

and

statement

caching.

Connections

to

Enterprise

Data

Many

companies

store

their

data

on

large

systems

such

as

the

zSeries®

servers.

Web

applications

need

ways

to

get

to

that

data.

DB2®

Connect

gives

a

Windows®-based

application

or

UNIX®-application

the

ability

to

connect

to

and

use

the

data

stored

on

these

large

systems.

DB2

also

provides

its

own

set

of

features

such

as

connection

pooling,

and

the

connection

concentrator.

WebSphere

Connection

Pooling

and

Data

Sources

Each

time

a

resource

attempts

to

access

a

database,

it

must

connect

to

that

database.

A

database

connection

incurs

overhead;

it

requires

resources

to

create

the

connection,

maintain

it,

and

then

release

it

when

it

is

no

longer

required.

Note:

The

information

provided

here

refers

to

Version

4

of

the

WebSphere®

Application

Server

for

UNIX®,

LINUX,

and

Windows®.

The

total

database

overhead

for

an

application

is

particularly

high

for

Web-based

applications

because

Web

users

connect

and

disconnect

more

frequently.

In

addition,

user

interactions

are

typically

shorter,

because

of

the

nature

of

the

Internet.

Often,

more

effort

is

spent

connecting

and

disconnecting

than

is

spent

during

the

interactions

themselves.

Further,

because

Internet

requests

can

arrive

from

virtually

anywhere,

usage

volumes

can

be

large

and

difficult

to

predict.

IBM®

WebSphere

Application

Server

enables

administrators

to

establish

a

pool

of

database

connections

that

can

be

shared

by

applications

on

an

application

server

to

address

these

overhead

problems.

Connection

pooling

spreads

the

connection

overhead

across

several

user

requests,

thereby

conserving

resources

for

future

requests.

You

can

either

use

WebSphere

connection

pooling,

or

you

can

use

the

DB2®

connection

pooling

support

that

is

provided

by

the

JDBC

2.1

Optional

Package

API

to

establish

the

connection

pool.

WebSphere

connection

pooling

is

the

implementation

of

the

JDBC

2.1

Optional

Package

API

specification.

Therefore,

the

connection

pooling

programming

model

is

as

specified

in

the

JDBC

2.1

Core

and

JDBC

2.1

Optional

Package

API

specifications.

This

means

that

applications

obtaining

their

connections

through

a

datasource

created

in

WebSphere

Application

Server

can

benefit

from

JDBC

2.1

features

such

as

pooling

of

connections

and

JTA-enabled

connections.

In

addition,

WebSphere

connection

pooling

provides

additional

features

that

enable

administrators

to

tune

the

pool

for

best

performance

and

provide

applications

with

WebSphere

exceptions

that

enable

programmers

to

write

applications

without

©

Copyright

IBM

Corp.

1997

-

2004

527

knowledge

of

common

vendor-specific

SQLExceptions.

Not

all

vendor-specific

SQLExceptions

are

mapped

to

WebSphere

exceptions;

applications

must

still

be

coded

to

deal

with

vendor-specific

SQLExceptions.

However,

the

most

common,

recoverable

exceptions

are

mapped

to

WebSphere

exceptions.

The

datasource

obtained

through

WebSphere

is

a

datasource

that

implements

the

JDBC

2.1

Optional

Package

API.

It

provides

pooling

of

connections

and,

depending

on

the

vendor-specific

datasource

selected,

may

provide

connections

capable

of

participating

in

two-phase

commit

protocol

transactions

(JTA-enabled).

The

AccessEmployee

program

in

the

AccessEmployee.ear

file

uses

the

WebSphere

DataSource

to

access

a

DB2

database.

Related

reference:

v

“Java

WebSphere

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Benefits

of

WebSphere

Connection

Pooling

Connection

pooling

can

improve

the

response

time

of

any

application

that

requires

connections,

especially

Web-based

applications.

When

a

user

makes

a

request

over

the

Web

to

a

resource,

the

resource

accesses

a

datasource.

Most

user

requests

do

not

incur

the

overhead

of

creating

a

new

connection,

because

the

datasource

might

locate

and

use

an

existing

connection

from

the

pool

of

connections.

When

the

request

is

satisfied

and

the

response

is

returned

to

the

user,

the

resource

returns

the

connection

to

the

connection

pool

for

reuse.

Again,

the

overhead

of

a

disconnect

is

avoided.

Each

user

request

incurs

a

fraction

of

the

cost

of

connection

or

disconnecting.

After

the

initial

resources

are

used

to

produce

the

connections

in

the

pool,

additional

overhead

is

insignificant

because

the

existing

connections

are

reused.

Caching

of

prepared

statements

is

another

mechanism

by

which

WebSphere®

connection

pooling

improves

Web-based

application

response

times.

A

cache

of

previously

prepared

statements

is

available

on

a

connection.

When

a

new

prepared

statement

is

requested

on

a

connection,

the

cached

prepared

statement

is

returned

if

available.

This

caching

reduces

the

number

of

costly

prepared

statements

created,

which

improves

response

times.

The

cache

is

useful

for

applications

that

tend

to

prepare

the

same

statement

time

and

again.

In

addition

to

improved

response

times,

WebSphere

connection

pooling

provides

a

layer

of

abstraction

from

the

database

which

can

buffer

the

client

application

and

make

different

databases

appear

to

work

in

the

same

manner

to

an

application

This

buffering

makes

it

easier

to

switch

application

databases,

because

the

application

code

does

not

have

to

deal

with

common

vendor-specific

SQLExceptions

but,

rather,

with

a

WebSphere

connection

pooling

exception.

528

Programming

Client

Applications

Statement

Caching

in

WebSphere

WebSphere®

provides

a

mechanism

for

caching

previously

prepared

statements.

Caching

prepared

statements

improves

response

times,

because

an

application

can

reuse

a

PreparedStatement

on

a

connection

if

it

exists

in

that

connection’s

cache,

bypassing

the

need

to

create

a

new

PreparedStatement.

When

an

application

creates

a

PreparedStatement

on

a

connection,

the

connection’s

cache

is

first

searched

to

determine

if

a

PreparedStatement

with

the

same

SQL

string

already

exists.

This

search

is

done

by

using

the

entire

string

of

SQL

statements

in

the

prepareStatement()

method.

If

a

match

is

found,

the

cached

PreparedStatement

is

returned

for

use.

If

it

is

not,

a

new

PreparedStatement

is

created

and

returned

to

the

application.

As

the

prepared

statements

are

closed

by

the

application,

they

are

returned

to

the

connection’s

cache

of

statements.

By

default,

only

100

prepared

statements

can

be

kept

in

cache

for

the

entire

pool

of

connections.

For

example,

if

there

are

ten

connections

in

the

pool,

the

number

of

cached

prepared

statements

for

those

ten

connections

cannot

exceed

100.

This

ensures

that

a

limited

number

of

prepared

statements

are

concurrently

open

to

the

database,

which

helps

to

avoid

resource

problems

with

a

database.

Elements

are

removed

from

the

connection’s

cache

of

prepared

statements

only

when

the

number

of

currently

cached

prepared

statements

exceeds

the

statementCacheSize

(by

default

100).

If

a

prepared

statement

needs

to

be

removed

from

the

cache,

it

is

removed

and

added

to

a

vector

of

discarded

statements.

As

soon

as

the

method

in

which

the

prepared

statement

was

removed

has

ended,

the

prepared

statements

on

the

discarded

statements

vector

are

closed

to

the

database.

Therefore,

at

any

given

time,

there

might

be

100

plus

the

number

of

recently

discarded

statements

open

to

the

database.

The

extra

prepared

statements

are

closed

after

the

method

ends.

The

number

of

prepared

statements

to

be

cached

is

configurable

at

the

data

source.

Each

cache

should

be

tuned

according

to

the

application’s

requirements

for

prepared

statements.

Chapter

25.

WebSphere

529

530

Programming

Client

Applications

Part

6.

Security

Plug-ins

©

Copyright

IBM

Corp.

1997

-

2004

531

532

Programming

Client

Applications

Chapter

26.

Security

plug-ins

Security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

. 533

Security

plug-in

library

locations

.

.

.

.

.

.

. 536

Security

plug-in

naming

conventions

.

.

.

.

. 537

Security

plug-in

support

for

two-part

user

IDs

.

. 539

32-bit

and

64-bit

considerations

for

security

plug-ins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 541

Security

plug-in

problem

determination

.

.

.

. 541

Deploying

a

group

retrieval

plug-in

.

.

.

.

.

. 543

Deploying

a

user

ID/password

plug-in

.

.

.

.

. 543

Deploying

a

GSS-API

plug-in

.

.

.

.

.

.

.

. 545

Deploying

a

Kerberos

plug-in

.

.

.

.

.

.

.

. 547

Security

plug-ins

Authentication

in

DB2®

is

done

using

security

plug-ins.

A

security

plug-in

is

a

dynamically

loadable

library

that

DB2

loads

to

provide

the

following

functionality:

v

group

retrieval

plug-in:

retrieves

group

membership

information

for

a

given

user

v

client

authentication

plug-in:

manages

authentication

on

a

DB2

client.

v

server

authentication

plug-in:

manages

authentication

on

a

DB2

server.

DB2

supports

two

mechanisms

for

plug-in

authentication:

v

Authentication

using

a

user

ID

and

password

which

is

known

as

user

ID/password

authentication.

The

authentication

types

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

and

DATA_ENCRYPT_CMP

determine

how

and

where

authentication

of

a

user

takes

place.

The

authentication

type

used

depends

on

the

authentication

type

specified

using

the

authentication

database

configuration

parameter.

These

authentication

types

are

all

implemented

using

user

ID/password

authentication

plug-ins.

v

Authentication

using

GSS-API,

formally

known

as

Generic

Security

Service

Application

Program

Interface,

Version

2

(IETF

RFC2743)

and

Generic

Security

Service

API

Version

2:

C-Bindings

(IETF

RFC2744).

Kerberos

authentication

is

also

implemented

using

GSS-API.

The

authentication

types

KERBEROS,

GSSPLUGIN,

KRB_SERVER_ENCRYPT,

and

GSS_SERVER_ENCRYPT

use

GSS-API

authentication

plug-ins.

KRB_SERVER_ENCRYPT

and

GSS_SERVER_ENCRYPT

support

both

GSS-API

authentication

and

user

ID/password

authentication

however

GSS-API

authentication

is

the

preferred

authentication

type.

Each

of

the

plug-ins

can

be

used

independently

or

in

conjunction

with

one

or

more

of

the

other

plug-ins.

For

example

you

might

only

use

a

server

authentication

plug-in

and

assume

the

DB2

defaults

for

client

and

group

authentication.

Alternatively

you

might

have

only

a

group

or

client

authentication

plug-in.

The

only

case

however

where

both

a

client

and

server

plug-in

are

required

is

for

GSS-API

authentication

plug-ins.

In

DB2

Version

8.2,

the

default

behavior

is

to

use

a

user

ID/password

plug-in

that

implements

an

operating

system

level

mechanism

for

authentication.

In

all

previous

releases

of

DB2

the

default

behavior

is

to

directly

use

operating

system

level

authentication

without

a

plug-in

implementation.

In

DB2

Version

8.2

client-side

Kerberos

support

is

available

on

Solaris,

AIX®,

Windows®,

and

IA32

Linux

operating

systems

however

it

is

only

enabled

by

default

on

Windows.

DB2

includes

sets

of

plug-ins

for

group

retrieval,

user

ID/password

authentication,

and

for

Kerberos

authentication.

With

the

security

plug-in

architecture

you

can

customize

DB2’s

authentication

behavior

by

either

developing

your

own

plug-ins

or

buying

plug-ins

from

a

third

party.

©

Copyright

IBM

Corp.

1997

-

2004

533

||
||
||
||
|
||

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

Deployment

of

security

plug-ins

on

DB2

clients:

DB2

clients

can

support

one

group

plug-in,

one

user

ID/password

authentication

plug-in,

and

will

negotiate

with

the

DB2

server

for

a

particular

GSS-API

plug-in.

This

negotiation

consists

of

a

scan

by

the

client

of

the

DB2

server’s

list

of

implemented

GSS-API

plug-ins

for

the

first

authentication

plug-in

name

that

matches

an

authentication

plug-in

implemented

on

the

client.

The

server’s

list

of

plug-ins

is

a

user-specified

database

manager

configuration

parameter

value

that

contains

the

names

of

all

of

the

plug-ins

that

are

implemented

on

the

server.

The

following

figure

portrays

the

security

plug-in

infrastructure

on

a

DB2

client.

User ID/password
client plug-in

Kerberos
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Client

Security layer

Plug-in interface

Deployment

of

security

plug-ins

on

DB2

servers:

DB2

servers

can

support

one

group

plug-in,

one

user

ID/password

authentication

plug-in,

and

multiple

GSS-API

plug-ins.

The

multiple

GSS-API

plug-ins

are

named

in

a

database

manager

configuration

parameter

value

as

a

list.

Only

one

GSS-API

plug-in

in

this

list

can

be

a

Kerberos

plug-in.

In

addition

to

deploying

server-side

security

plug-ins,

you

might

also

need

to

deploy

client

authorization

plug-ins

on

your

database

server.

When

you

run

instance-level

operations

like

db2start

and

db2trc,

DB2

performs

authorization

checking

for

the

operation

using

client

authentication

plug-ins.

Therefore,

you

should

install

a

client

version

of

the

authentication

plug-in

of

the

type

specified

in

the

database

manager

configuration

parameter

authentication.

If

you

do

not

deploy

client

authentication

plug-ins

on

the

database

server,

instance

level

operations

such

as

db2start

will

fail.

For

example,

if

the

authentication

type

is

SERVER

and

no

user-supplied

client

plug-in

is

used,

then

DB2

will

fall

back

to

using

the

IBM

shipped

default

client

operating

system

plug-in.

The

following

figure

portrays

the

534

Programming

Client

Applications

|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

security

plug-in

infrastructure

on

a

DB2

server.

User ID/password
client plug-in

Kerberos
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Server

Security layer

Plug-in interface

User ID/password
server plug-in

Kerberos
server plug-in

GSS-API
server plug-in

Enabling

security

plug-ins:

The

system

administrator

can

specify

the

names

of

the

plug-ins

to

use

for

each

authentication

mechanism

by

updating

certain

plug-in-related

database

manager

configuration

parameters.

If

these

parameters

are

null,

they

will

default

to

the

DB2-supplied

plug-ins

for

group

retrieval,

user

ID/password

management,

or

Kerberos

(if

authentication

is

set

to

Kerberos

--

server-side

only).

However,

DB2

does

not

provide

a

default

GSS-API

plug-in.

Therefore,

if

the

system

administrator

specifies

an

authentication

type

of

GSSPLUGIN

in

authentication,

she

must

also

specify

an

authentication

plug-in

in

srvcon_gssplugin_list.

How

DB2

loads

security

plug-ins:

On

the

DB2

server,

all

of

the

supported

plug-ins

identified

in

the

database

manager

configuration

parameters

will

be

loaded

when

the

database

manager

starts

up.

For

database

connections

and

instance

attachments,

the

DB2

client

will

load

an

appropriate

plug-in

based

on

the

security

mechanism

negotiated

with

the

server

during

connection

or

attachment

operations.

It

is

possible

that

a

client

application

can

cause

multiple

security

plug-ins

to

be

concurrently

loaded

and

in

use.

This

could

happen,

for

example,

in

a

threaded

program

that

has

concurrent

connections

to

different

databases

from

different

instances.

For

actions

other

than

database

connections

or

instance

attachments

that

require

authorization

(such

as

updating

the

database

configuration,

starting

and

stopping

the

database

manager,

turning

DB2

trace

on

and

off),

the

DB2

client

program

will

load

a

plug-in

specified

in

another

database

manager

configuration

parameter.

If

authentication

is

set

to

GSSPLUGIN,

then

DB2

will

use

the

plug-in

specified

by

local_gssplugin.

If

authentication

is

set

to

KERBEROS,

then

DB2

will

use

the

plug-in

specified

by

clnt_krb_plugin.

Otherwise,

DB2

will

use

the

plug-in

specified

by

clnt_pw_plugin.

Developing

security

plug-ins:

Chapter

26.

Security

plug-ins

535

|
|

|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

If

you

are

developing

a

security

plug-in,

you

will

need

to

implement

the

standard

authentication

functions

that

DB2

will

invoke.

For

the

available

types

of

plug-ins,

the

functionality

you

will

need

to

implement

is

as

follows:

Group

retrieval

Get

the

list

of

groups

to

which

a

user

belongs.

User

ID/password

authentication

Identify

the

default

security

context

(client

only),

validate

and

optionally

change

a

password,

determine

if

a

given

string

represents

a

valid

user

(server

only),

modify

the

user

ID

or

password

provided

on

the

client

before

it

is

sent

to

the

server

(client

only),

return

the

DB2

authorization

ID

associated

with

a

given

user.

GSS-API

authentication

Implement

the

required

GSS-API

functions,

identify

the

default

security

context

(client

only),

generate

initial

credentials

based

on

a

user

ID

and

password

and

optionally

change

password

(client

only),

create

and

accept

security

tickets,

and

return

the

DB2

authorization

ID

associated

with

a

given

GSS-API

security

context.

Related

concepts:

v

“Authentication

methods

for

your

server”

in

the

Administration

Guide:

Implementation

v

“Security

plug-in

library

locations”

on

page

536

v

“How

DB2

loads

security

plug-ins”

on

page

549

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“authentication

-

Authentication

type

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“Security

plug-in

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Security

plug-in

library

locations

Once

you

acquire

your

security

plug-ins

(by

developing

them

yourself,

or

purchasing

them

from

a

third

party),

you

need

to

copy

them

to

specific

locations

on

your

database

server.

DB2®

will

look

for

client-side

user

authentication

plug-ins

in

the

following

directory:

v

UNIX®

32-bit:

$DB2PATH/security32/plugin/client

v

UNIX

64-bit:

$DB2PATH/security64/plugin/client

v

WINDOWS

32-bit

and

64-bit:

$DB2PATH\security\plugin\<instance

name>\client

Note:

For

Windows®,

the

subdirectories

<instance

name>

and

client

are

not

created

automatically.

The

instance

owner

has

to

manually

create

them.

DB2

will

look

for

server-side

user

authentication

plug-ins

in

the

following

directory:

536

Programming

Client

Applications

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|
|

|
|

|
|

|

|
|
|

|
|

|

|

|
|

|
|

|
|

v

UNIX

32-bit:

$DB2PATH/security32/plugin/server

v

UNIX

64-bit:

$DB2PATH/security64/plugin/server

v

WINDOWS

32-bit

and

64-bit:

$DB2PATH\security\plugin\<instance

name>\server

Note:

For

Windows,

the

subdirectories

<instance

name>

and

server

are

not

created

automatically.

The

instance

owner

has

to

manually

create

them.

DB2

will

look

for

group

plug-ins

in

the

following

directory:

v

UNIX

32-bit:

$DB2PATH/security32/plugin/group

v

UNIX

64-bit:

$DB2PATH/security64/plugin/group

v

WINDOWS

32-bit

and

64-bit:

$DB2PATH\security\plugin\<instance

name>\group

Note:

For

Windows,

the

subdirectories

<instance

name>

and

group

are

not

created

automatically.

The

instance

owner

has

to

manually

create

them.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“How

DB2

loads

security

plug-ins”

on

page

549

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

543

v

“Deploying

a

user

ID/password

plug-in”

on

page

543

v

“Deploying

a

GSS-API

plug-in”

on

page

545

v

“Deploying

a

Kerberos

plug-in”

on

page

547

Related

reference:

v

“Restrictions

on

security

plug-in

libraries”

on

page

550

Security

plug-in

naming

conventions

The

security

plug-in

libraries

must

have

the

appropriate

filename

extension

for

each

individual

platform.

By

operating

system

these

extensions

are

as

follows:

v

Windows®:

.DLL

v

AIX®:

.a

v

Linux,

HP

IPF

and

Solaris:

.so

v

HPUX

on

PA-RISC:

.sl

For

example,

assume

you

have

a

security

plug-in

library

called

MyPlugin.

For

each

supported

operating

system,

the

appropriate

library

file

name

follows:

v

Windows

32-bit:

MyPlugin.dll

v

Windows

64-bit:

MyPlugin64.dll

v

AIX

32

or

64-bit:

MyPlugin.a

v

SUN

32

or

64-bit,

Linux

32

or

64

bit,

HP

32

or

64

bit

on

IPF:

MyPlugin.so

v

HP-UX

32

or

64-bit

on

PA-RISC:

MyPlugin.sl

Note:

The

suffix

″64″

is

only

required

on

the

library

name

for

64-bit

Windows

security

plug-ins.

When

you

specify

the

name

of

a

security

plug-in

in

the

database

manager

configuration,

remember

to

use

the

full

name

of

the

library

without

the

″64″

suffix

Chapter

26.

Security

plug-ins

537

|

|

|
|

|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

and

to

omit

both

the

file

extension

and

any

qualified

path

portion

of

the

name.

Regardless

of

the

operating

system,

the

security

plug-in

library

called

MyPlugin

would

be

registered

as

follows:

UPDATE

DBM

CFG

USING

CLNT_PW_PLUGIN

MyPlugin

The

security

plug-in

name

is

case

sensitive,

and

should

exactly

match

the

library

name.

DB2®

will

use

the

value

from

the

database

manager

configuration

parameter

to

assemble

the

library

path,

and

then

use

the

library

path

to

load

the

security

plug-in

library.

To

avoid

security

plug-in

name

conflicts,

it

is

recommended

that

you

name

the

plug-in

based

on

the

authentication

method

used,

and

an

identifying

symbol

of

the

firm

that

wrote

the

plug-in.

For

instance,

if

the

company

Foo,

Inc.

wrote

a

plug-in

implementing

the

authentication

method

somemethod,

then

the

plug-in

could

have

a

name

like

FOOsomemethod.DLL.

The

maximum

length

of

a

plug-in

name

(not

including

the

file

extension

and

the

″64″

suffix)

is

limited

to

32

bytes.

There

is

no

maximum

number

of

plug-ins

supported

by

the

database

server,

but

the

maximum

length

of

the

comma-separated

list

of

plug-ins

in

the

database

manager

configuration

will

be

255

bytes.

There

are

two

defines

located

in

the

include

file

sqlenv.h

that

establish

these

two

limits:

#define

SQL_PLUGIN_NAME_SZ

32

/*

plug-in

name

*/

#define

SQL_SRVCON_GSSPLUGIN_LIST_SZ

255

/*

GSS

API

plug-in

list

*/

The

security

plug-in

library

files

must

have

the

following

file

permissions:

v

Owned

by

the

instance

owner.

v

Readable

by

all

users

on

the

system.

v

Executable

by

all

users

on

the

system.

Related

concepts:

v

“Configuration

parameters”

in

the

Administration

Guide:

Performance

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

in

the

Administration

Guide:

Performance

v

“Deploying

a

group

retrieval

plug-in”

on

page

543

v

“Deploying

a

user

ID/password

plug-in”

on

page

543

v

“Deploying

a

GSS-API

plug-in”

on

page

545

v

“Deploying

a

Kerberos

plug-in”

on

page

547

Related

reference:

v

“UPDATE

DATABASE

MANAGER

CONFIGURATION

Command”

in

the

Command

Reference

v

“clnt_krb_plugin

-

Client

Kerberos

plug-in

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“clnt_pw_plugin

-

Client

userid-password

plug-in

configuration

parameter”

in

the

Administration

Guide:

Performance

538

Programming

Client

Applications

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

|
|

Security

plug-in

support

for

two-part

user

IDs

The

DB2®

UDB

for

Linux,

UNIX®,

and

Windows®

product

supports

the

use

of

two-part

user

IDs

and

the

mapping

of

two-part

user

IDs

to

two-part

authorization

IDs.

For

example,

consider

a

Windows

operating

system

two-part

user

ID

composed

of

a

domain

and

user

ID

such

as:

MEDWAY\peter.

In

this

example

of

a

two-part

user

ID

MEDWAY

is

a

domain

and

peter

is

the

user

name.

In

DB2,

you

can

specify

whether

you

this

two-part

user

ID

should

be

mapped

to

either

a

one-part

authid

or

a

two-part

authid.

In

DB2,

prior

to

Version

8.2,

you

could

only

have

a

one-part

user

ID

that

mapped

to

a

one-part

authid.

In

DB2

Version

8.2,

by

default,

one-part

user

IDs

map

to

one-part

authids

and

two-part

user

IDs

map

to

one-part

authids.

The

mapping

of

a

two-part

user

ID

to

a

two-part

authid

is

supported,

but

is

not

the

default

behavior.

This

allows

a

user

to

connect

to

the

database

using:

db2

connect

to

db

user

MEDWAY\peter

using

pw

In

this

case,

if

the

default

behavior

is

used,

the

user

ID

MEDWAY\peter

will

map

to

the

authorization

ID

PETER.

If

the

support

for

mapping

a

two-part

user

ID

to

a

two-part

authorization

ID

is

used,

the

authorization

ID

in

this

case

could

be

MEDWAY\PETER.

To

enable

DB2

support

for

authentication

of

two-part

user

IDs

that

map

to

two-part

authids,

you

must

enable

the

security

plug-ins

that

perform

the

mapping

of

a

two-part

user

ID

to

a

two-part

authid

by

setting

database

manager

configuration

parameters.

These

configuration

parameters

are

discussed

below.

DB2

supplies

two

sets

of

authentication

plug-ins.

One

set

is

exclusively

for

mapping

user

IDs

to

one-part

authids;

that

is

for

mapping

a

one-part

user

ID

to

a

one-part

authid

and

mapping

a

two-part

user

ID

to

a

one-part

authid.

The

second

set

adds

the

flexibly

to

map

a

one-part

user

ID

to

a

one-part

authid

and

maps

a

two-part

user

ID

to

a

two-part

authid.

If

a

user

name

in

your

work

environment

can

be

mapped

to

multiple

accounts

defined

in

different

locations

(such

as

local

account,

domain

account,

and

trusted

domain

accounts),

then

you

may

want

to

specify

the

plug-ins

that

enable

the

two-part

authid

mapping.

It

is

important

to

note

that

a

one-part

authid,

such

as,

PETER

and

a

two-part

authid

that

combines

a

domain

and

a

user

ID

like

MEDWAY\PETER

are

functionally

distinct

authids.

The

set

of

privileges

associated

with

one

of

these

authids

is

completely

distinct

from

the

set

of

privileges

associated

with

the

other

authid.

Care

should

be

taken

when

working

with

one-part

and

two-part

authids.

The

following

table

identifies

the

kinds

of

plug-ins

supplied

by

DB2,

and

the

plug-in

names

for

the

specific

authentication

implementations.

Table

82.

DB2

security

plug-ins

Authentication

type

Name

of

one-part

user

ID

plug-in

Name

of

two-part

user

ID

plug-in

User

ID/password

(Client)

IBMOSauthclient

IBMOSauthclientTwoPart

Chapter

26.

Security

plug-ins

539

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

||

|
|
|
|
|

|||

Table

82.

DB2

security

plug-ins

(continued)

Authentication

type

Name

of

one-part

user

ID

plug-in

Name

of

two-part

user

ID

plug-in

User

ID/password

(Server)

IBMOSauthserver

IBMOSauthserverTwoPart

Kerberos

IBMkrb5

IBMkrb5TwoPart

Note:

On

Windows

64-bit

platforms,

the

characters

″64″

are

appended

to

the

plug-in

names

listed

here.

To

map

a

two-part

user

ID

to

a

two-part

authid,

you

must

specify

that

the

two-part

plug-in,

which

is

the

non-default

plug-in,

be

used.

Security

plug-ins

are

specified

at

the

instance

level

by

setting

the

security

related

database

manager

configuration

parameters

as

follows:

For

server

authentication

that

maps

two-part

user

IDs

to

two-part

authids,

you

must

set:

v

SRVCON_PW_PLUGIN

to

IBMOSauthserverTwoPart

v

CLNT_PW_PLUGIN

to

IBMOSauthclientTwoPart

For

client

authentication

that

maps

two-part

user

IDs

to

two-part

authids,

you

must

set:

v

SRVCON_PW_PLUGIN

to

IBMOSauthserverTwoPart

v

CLNT_PW_PLUGIN

to

IBMOSauthclientTwoPart

For

Kerberos

authentication

that

maps

two-part

user

IDs

to

two-part

authids,

you

must

set:

v

SRVCON_GSSPLUGIN_LIST

to

IBMOSkrb5TwoPart

v

CLNT_KRB_PLUGIN

to

IBMkrb5TwoPart

The

security

plug-in

libraries

accept

two-part

user

IDs

specified

in

a

Microsoft®

Windows

Security

Account

Manager

compatible

format.

For

example,

in

the

format:

domain\user

ID.

Both

the

domain

and

user

ID

information

will

be

used

by

the

DB2

authentication

and

authorization

processes

at

connection

time.

When

you

specify

an

authentication

type

that

requires

a

user

ID/password

or

Kerberos

plug-in,

the

plug-ins

that

are

listed

in

the

″Name

of

one-part

user

ID

plug-in″

column

are

used

by

default.

It

is

advised

that

the

two-part

plug-ins

be

considered

for

implementation

when

creating

new

databases

to

avoid

conflicts

with

one-part

authids

in

existing

databases.

New

databases

that

will

make

use

of

the

two-part

authid

authentication

must

be

created

in

a

separate

instance

than

databases

that

use

single-part

authids.

Related

concepts:

v

“DB2

for

Windows

NT

and

Windows

NT

security

introduction”

in

the

Administration

Guide:

Implementation

Related

tasks:

v

“DB2

for

Windows

NT

authentication

with

groups

and

domain

security”

in

the

Administration

Guide:

Implementation

Related

reference:

540

Programming

Client

Applications

|

|
|
|
|
|

|||

|||
|

|
|

|
|
|
|

|
|

|

|

|
|

|

|

|
|

|

|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|

|
|

|

v

“clnt_pw_plugin

-

Client

userid-password

plug-in

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

32-bit

and

64-bit

considerations

for

security

plug-ins

In

general,

a

32-bit

DB2®

instance

will

use

the

32-bit

security

plug-in

and

64-bit

DB2

instance

will

use

the

64-bit

security

plug-in.

However,

on

a

64-bit

instance,

DB2

supports

32-bit

applications,

which

will

require

the

32-bit

plug-in

library.

A

database

instance

where

both

the

32-bit

and

the

64-bit

applications

can

run

is

known

as

a

hybrid

instance.

If

you

have

a

hybrid

instance

and

intend

to

run

32-bit

applications,

ensure

that

the

required

32-bit

security

plug-ins

are

available

in

the

32-bit

plug-in

directory.

For

hybrid

DB2

instances

on

a

UNIX®

operating

system,

the

directories

security32

and

security64

appear.

For

a

Windows®

64-bit

hybrid

instance,

both

32-bit

and

64-bit

security

plug-ins

are

located

in

the

same

directory,

but

64-bit

plug-in

names

have

a

suffix,

″64″.

If

you

wish

to

migrate

from

a

32-bit

instance

to

a

64-bit

instance,

you

should

obtain

versions

of

your

security

plug-ins

that

are

recompiled

for

64-bit.

If

you

acquired

your

security

plug-ins

from

a

vendor

who

will

not

supply

64-bit

plug-in

libraries,

you

can

implement

a

64-bit

stub

that

executes

a

32-bit

application.

In

this

situation,

the

security

plug-in

is

an

external

program

rather

than

a

library.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Related

tasks:

v

“Migrating

applications

from

32-bit

to

64-bit

environments”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Security

plug-in

problem

determination

Problems

with

security

plug-ins

are

reported

in

two

ways:

through

SQL

errors

and

through

the

administrative

log.

Following

are

the

SQLCODE

values

related

to

security

plug-ins:

v

SQLCODE

-1365

is

returned

when

a

plug-in

error

occurs

during

db2start

or

db2stop.

v

SQLCODE

-1366

is

returned

whenever

there

is

a

local

authorization

problem.

v

SQLCODE

-30082

is

returned

for

all

connection-related

plug-in

errors.

The

administrative

log

is

a

good

resource

for

debugging

and

administrating

security

plug-ins.

To

see

the

administrative

log

on

UNIX®,

check

sqllib/db2dump/<instance

name>.nfy.

To

see

the

administrative

log

on

Windows

operating

systems,

use

the

Event

Viewer

tool.

The

Event

Viewer

tool

can

be

found

by

navigating

from

the

Windows

operating

system

″Start″

button

to

Settings

->

Control

Panel

->

Administrative

Tools

-l>

Event

Viewer.

Following

are

the

administration

log

values

related

to

security

plug-ins:

Chapter

26.

Security

plug-ins

541

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

v

13000

indicates

that

a

call

to

a

GSS-API

security

plug-in

API

failed

with

an

error,

and

returned

an

optional

error

message.

SQLT_ADMIN_GSS_API_ERROR

(13000)

Plug-in

"<plug-in

name>"

received

error

code

"<error

code>"

from

GSS

API

"<gss

api

name>"

with

the

error

message

"<error

message>"

v

13001

indicates

that

a

call

to

a

DB2®

security

plug-in

API

failed

with

an

error,

and

returned

an

optional

error

message.

SQLT_ADMIN_PLUGIN_API_ERROR(13001)

Plug-in

"<plug-in

name>"

received

error

code

"<error

code>"

from

DB2

security

plug-in

API

"<gss

api

name>"

with

the

error

message

"<error

message>"

v

13002

indicates

that

DB2

failed

to

unload

a

plug-in.

SQLT_ADMIN_PLUGIN_UNLOAD_ERROR

(13002)

Unable

to

unload

plug-in

"<plug-in

name>".

No

further

action

required.

v

13003

indicates

a

bad

principal

name.

SQLT_ADMIN_INVALID_PRIN_NAME

(13003)

The

principal

name

"<principal

name>"

used

for

"<plug-in

name>"

is

invalid.

Fix

the

principal

name.

v

13004

indicates

that

the

plug-in

name

is

not

valid.

Path

separators

(On

UNIX

″/″

and

on

Windows®

″\″)

are

not

allowed

to

be

used

as

part

of

the

plug-in

name.

SQLT_ADMIN_INVALID_PLGN_NAME

(13004)

The

plug-in

name

"<plug-in

name>"

is

invalid.

Fix

the

plug-in

name.

v

13005

indicates

that

the

security

plug-in

failed

to

load.

Ensure

the

plug-in

is

in

the

correct

directory

and

that

the

appropriate

database

manager

configuration

parameters

are

updated.

SQLT_ADMIN_PLUGIN_LOAD_ERROR

(13005)

Unable

to

load

plug-in

"<plug-in

name>".

Verify

the

plug-in

existence

and

directory

where

it

is

located

is

correct.

v

13006

indicates

that

an

unexpected

error

was

encountered

by

a

security

plug-in.

Gather

all

the

db2support

information,

if

possible

capture

a

db2trc,

and

then

call

IBM®

support

for

further

assistance.

SQLT_ADMIN_PLUGIN_UNEXP_ERROR

(13006)

Plug-in

encountered

unexpected

error.

Contact

IBM

Support

for

further

assistance.

Note:

If

you

are

using

security

plug-ins

on

a

Windows

64-bit

database

server

and

are

seeing

a

load

error

for

a

security

plug-in,

consult

the

topics

32-bit

and

64-bit

considerations

for

security

plug-ins

and

Security

plug-in

naming

conventions.

The

64-bit

plug-in

library

requires

the

suffix

″64″

on

the

library

name,

but

the

entry

in

the

security

plug-in

database

manager

configuration

parameters

should

not

indicate

this

suffix.

Related

concepts:

v

“Event

monitors”

in

the

System

Monitor

Guide

and

Reference

v

“Error

Information

in

the

SQLCODE,

SQLSTATE,

and

SQLWARN

Fields”

on

page

100

v

“SQLSTATE

and

SQLCODE

Variables

in

C

and

C++”

on

page

168

v

“SQLCODE

and

SQLSTATE

Differences

among

IBM

Relational

Database

Systems”

on

page

697

v

“DB2

trace

(db2trc)”

in

the

Troubleshooting

Guide

v

“Security

plug-ins”

on

page

533

v

“32-bit

and

64-bit

considerations

for

security

plug-ins”

on

page

541

v

“Security

plug-in

APIs”

on

page

559

542

Programming

Client

Applications

|
|

|
|
|

|
|

|
|
|
|

|

|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|

|
|

|

|
|

|

|

|

|

Related

reference:

v

“CREATE

EVENT

MONITOR

statement”

in

the

SQL

Reference,

Volume

2

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“Error

messages

for

security

plug-ins”

on

page

554

v

“Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins”

on

page

591

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

Deploying

a

group

retrieval

plug-in

If

you

want

to

customize

the

DB2

security

system’s

group

retrieval

behavior,

you

can

develop

your

own

group

retrieval

plug-in

or

buy

one

from

a

third

party.

Once

you

acquire

a

group

retrieval

plug-in

that

is

suitable

for

your

database

management

system,

you

can

deploy

it.

Procedure:

To

deploy

a

group

retrieval

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

group

retrieval

plug-in

library

in

the

server’s

group

plug-in

directory.

2.

Update

the

database

manager

configuration

parameter

group_plugin

with

the

name

of

the

plug-in.

To

deploy

a

group

retrieval

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

group

retrieval

plug-in

library

in

the

client’s

group

plug-in

directory.

2.

Update

the

database

manager

configuration

parameter

group_plugin

with

the

name

of

the

plug-in.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

v

“Security

plug-in

naming

conventions”

on

page

537

Related

tasks:

v

“Deploying

a

user

ID/password

plug-in”

on

page

543

v

“Deploying

a

GSS-API

plug-in”

on

page

545

v

“Deploying

a

Kerberos

plug-in”

on

page

547

Related

reference:

v

“group_plugin

-

Group

plug-in

configuration

parameter”

in

the

Administration

Guide:

Performance

Deploying

a

user

ID/password

plug-in

If

you

want

to

customize

the

DB2

security

system’s

user

ID/password

authentication

behavior,

you

can

develop

your

own

user

ID/password

authentication

plug-ins

or

buy

one

from

a

third

party.

Chapter

26.

Security

plug-ins

543

|

|

|

|

|
|

|

|

|

|
|

|
|

|

|
|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|

Once

you

acquire

user

ID/password

authentication

plug-ins

that

are

suitable

for

your

database

management

system,

you

can

deploy

them.

All

user

ID-password

based

authentication

plug-ins

must

be

placed

in

either

the

client

plug-in

directory

or

the

server

plug-in

directory

depending

on

the

intended

usage

of

the

plug-ins.

If

a

plug-in

is

placed

in

the

client

plug-in

directory,

it

will

be

used

for

local

authorization

checking

and

whenever

a

client

attempts

to

connect

with

the

server.

If

the

plug-in

is

placed

in

the

server

plug-in

directory,

it

will

be

used

for

handling

incoming

connections

to

the

server

and

for

checking

whether

an

authid

exists

and

is

valid

whenever

the

GRANT

statement

is

issued

without

specifying

either

the

keyword

USER

or

GROUP.

In

most

cases

user

ID/password

authentication

requires

only

a

server-side

plug-in.

It

is

possible,

though

generally

deemed

less

useful,

to

have

only

a

client

user

ID/password

plug-in.

It

is

possible

though

quite

unusual

to

require

matching

user

ID/password

plug-ins

on

both

the

client

and

the

server.

Procedure:

To

deploy

a

user

ID/password

authentication

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

user

ID/password

authentication

plug-in

library

in

the

server’s

plug-in

directory.

2.

Update

the

database

manager

configuration

parameter

srvcon_pw_plugin

with

the

name

of

the

server

plug-in.

This

plug-in

is

used

by

the

server

when

it

is

handling

connection

(CONNECT)

and

attachment

(ATTACH)

requests.

3.

Either:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

the

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP

authentication

type.

Or:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

NOT_SPECIFIED

and

set

authentication

to

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP

authentication

type.

To

deploy

a

user

ID/password

authentication

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

user

ID/password

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client.

2.

Update

the

database

manager

configuration

parameter

clnt_pw_plugin

with

the

name

of

the

client

plug-in.

This

plug-in

is

loaded

and

called

regardless

of

where

the

authentication

is

being

done,

that

is,

not

only

when

client

authentication

is

enabled.

For

local

authorization

on

a

client,

server,

or

gateway,

using

a

user

ID/password

authentication

plug-in,

perform

the

following

steps:

1.

Place

the

user

ID/password

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client,

server,

or

gateway.

2.

Update

the

database

manager

configuration

parameter

clnt_pw_plugin

with

the

name

of

the

plug-in.

3.

Set

the

authentication

database

manager

configuration

parameter

to

CLIENT,

SERVER,

SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP.

544

Programming

Client

Applications

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

543

v

“Deploying

a

GSS-API

plug-in”

on

page

545

Related

reference:

v

“authentication

-

Authentication

type

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“GRANT

(Database

Authorities)

statement”

in

the

SQL

Reference,

Volume

2

v

“clnt_pw_plugin

-

Client

userid-password

plug-in

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_pw_plugin

-

Userid-password

plug-in

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

Deploying

a

GSS-API

plug-in

If

you

want

to

customize

the

DB2

security

system’s

authentication

behavior,

you

can

develop

your

own

authentication

plug-ins

using

the

GSS-API,

or

buy

one

from

a

third

party.

Once

you

acquire

GSS-API

authentication

plug-ins

that

are

suitable

for

your

database

management

system,

you

can

deploy

them.

In

the

case

of

a

GSS-API

or

Kerberos

plug-ins,

you

must

have

matching

plug-in

types

on

the

client

and

the

server.

The

plug-ins

on

the

client

and

server

need

not

be

from

the

same

vendor,

but

they

must

generate

and

consume

compatible

GSS-API

tokens.

For

example,

any

combination

of

Kerberos

plug-ins

deployed

on

the

client

and

the

server

is

okay

since

Kerberos

plug-ins

are

standardized,

however,

different

implementations

of

less

standardized

GSS-API

mechanisms,

such

as

x.509

certificates

might

not

be

completely

compatible.

All

GSS-API

authentication

plug-ins

must

be

placed

in

either

the

client

plug-in

directory

or

the

server

plug-in

directory

depending

on

the

intended

usage

of

the

plug-ins.

If

a

plug-in

is

placed

in

the

client

plug-in

directory,

it

will

be

used

for

local

authorization

checking

and

when

a

client

attempts

to

connect

with

the

server.

If

the

plug-in

is

placed

in

the

server

plug-in

directory,

it

will

be

used

for

handling

incoming

connections

to

the

server

and

for

checking

whether

an

authid

exists

and

is

valid

whenever

the

GRANT

statement

is

issued

without

specifying

either

the

keyword

USER

or

GROUP.

Procedure:

To

deploy

a

GSS-API

authentication

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

GSS-API

authentication

plug-in

library

in

the

server

plug-in

directory

on

the

server.

You

can

copy

numerous

GSS-API

plug-ins

into

this

directory.

Chapter

26.

Security

plug-ins

545

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|

|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

2.

Update

the

database

manager

configuration

parameter

srvcon_gssplugin_list

with

an

ordered,

comma-delimited

list

of

the

names

of

the

plug-ins

installed

in

the

GSS-API

plug-in

directory.

3.

Either:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

GSSPLUGIN.

Or:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

NOT_SPECIFIED

and

set

authentication

to

GSSPLUGIN.

To

deploy

a

GSS-API

authentication

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

GSS-API

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client.

You

can

copy

numerous

GSS-API

plug-ins

into

this

directory.

The

client

selects

the

appropriate

GSS-API

plug-in

for

authentication

during

CONNECT/ATTACH

by

picking

the

first

GSS-API

plug-in

contained

in

the

server’s

plug-in

list

on

the

client.

2.

Optional:

Catalog

the

databases

that

the

client

will

access,

indicating

that

the

client

will

only

accept

a

GSS-API

authentication

plug-in

as

the

authentication

mechanism.

For

example:

CATALOG

DB

testdb

AT

NODE

testnode

AUTHENTICATION

GSSPLUGIN

For

local

authorization

on

a

client,

server,

or

gateway,

using

a

GSS-API

authentication

plug-in,

perform

the

following

steps:

1.

Place

the

GSS-API

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client,

server,

or

gateway.

2.

Update

the

database

manager

configuration

parameter

local_gssplugin

with

the

name

of

the

plug-in.

3.

Set

the

authentication

database

manager

configuration

parameter

to

GSSPLUGIN,

or

GSS_SERVER_ENCRYPT.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Related

reference:

v

“authentication

-

Authentication

type

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“CATALOG

DATABASE

Command”

in

the

Command

Reference

v

“local_gssplugin

-

GSS

API

plug-in

used

for

local

instance

level

authorization

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“Security

plug-in

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

546

Programming

Client

Applications

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

Deploying

a

Kerberos

plug-in

If

you

want

to

customize

the

DB2

security

system’s

Kerberos

authentication

behavior,

you

can

develop

your

own

Kerberos

authentication

plug-ins

or

buy

one

from

a

third

party.

Once

you

acquire

Kerberos

authentication

plug-ins

that

are

suitable

for

your

database

management

system,

you

can

deploy

them.

Procedure:

To

deploy

a

Kerberos

authentication

plug-in

on

the

database

server,

perform

the

following

steps:

1.

Place

the

Kerberos

authentication

plug-in

library

in

the

server

plug-in

directory

on

the

server.

2.

Update

the

database

manager

configuration

parameter

srvcon_gssplugin_list,

which

is

presented

as

an

ordered,

comma

delimited

list,

to

include

the

Kerberos

server

plug-in

name.

Only

one

plug-in

in

this

list

can

be

a

Kerberos

plug-in.

If

this

list

is

blank

and

authentication

is

set

to

KERBEROS

or

KRB_SVR_ENCRYPT,

the

default

DB2

Kerberos

plug-in:

IBMkrb5

will

be

used.

3.

Either:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

the

KERBEROS

or

KRB_SERVER_ENCRYPT

authentication

type.

Or:

v

Set

the

database

manager

configuration

parameter

srvcon_auth

to

NOT_SPECIFIED

and

set

authentication

to

KERBEROS

or

KRB_SERVER_ENCRYPT

authentication

type.

To

deploy

a

Kerberos

authentication

plug-in

on

database

clients,

perform

the

following

steps:

1.

Place

the

Kerberos

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client.

2.

Update

the

database

manager

configuration

parameter

clnt_krb_plugin

with

the

name

of

the

client

Kerberos

plug-in.

If

clnt_krb_plugin

is

blank,

DB2

assumes

that

the

client

cannot

use

Kerberos

authentication.

This

is

only

appropriate

when

the

server

cannot

support

plug-ins.

See

the

limititaions

on

the

use

of

security

plug-ins

for

more

information.

If

both

the

server

and

the

client

support

security

plug-ins,

then

the

client

will

not

use

the

value

of

clnt_krb_plugin

because

the

server

has

a

GSS-API

plug-in

with

the

name

IBMkrb5

listed.

For

local

authorization

on

a

client,

server,

or

gateway,

using

a

Kerberos

authentication

plug-in,

perform

the

following

steps:

a.

Place

the

Kerberos

authentication

plug-in

library

in

the

client

plug-in

directory

on

the

client,

server,

or

gateway.

b.

Update

the

database

manager

configuration

parameter

clnt_krb_plugin

with

the

name

of

the

plug-in.

c.

Set

the

authentication

database

manager

configuration

parameter

to

KERBEROS,

or

KRB_SERVER_ENCRYPT.

The

Kerberos

plug-in

provided

by

DB2

is

named

IBMkrb5.

3.

Optional:

Catalog

the

databases

that

the

client

will

access,

indicating

that

the

client

will

only

use

a

Kerberos

authentication

plug-in.

For

example:

CATALOG

DB

testdb

AT

NODE

testnode

AUTHENTICATION

KERBEROS

TARGET

PRINCIPAL

service/host@REALM

Chapter

26.

Security

plug-ins

547

|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

Note:

For

platforms

supporting

Kerberos,

the

IBMkrb5

library

will

be

present

in

the

client

plug-in

directory.

DB2

will

recognize

this

library

as

a

valid

GSS-API

plug-in,

because

Kerberos

plug-ins

are

implemented

using

GSS-API.

plug-in.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

543

v

“Deploying

a

user

ID/password

plug-in”

on

page

543

v

“Deploying

a

GSS-API

plug-in”

on

page

545

Related

reference:

v

“authentication

-

Authentication

type

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“CATALOG

DATABASE

Command”

in

the

Command

Reference

v

“clnt_krb_plugin

-

Client

Kerberos

plug-in

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_auth

-

Authentication

type

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“srvcon_gssplugin_list

-

List

of

GSS

API

plug-ins

for

incoming

connections

at

the

server

configuration

parameter”

in

the

Administration

Guide:

Performance

548

Programming

Client

Applications

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|

Chapter

27.

Developing

security

plug-ins

How

DB2

loads

security

plug-ins

.

.

.

.

.

.

. 549

Restrictions

on

security

plug-in

libraries

.

.

.

. 550

Return

codes

for

security

plug-ins

.

.

.

.

.

. 552

Error

messages

for

security

plug-ins

.

.

.

.

.

. 554

Calling

sequences

for

the

security

plug-in

APIs

.

. 555

How

DB2

loads

security

plug-ins

Each

plug-in

library

must

contain

an

initialization

function

with

a

specific

name

determined

by

the

plug-in

type:

v

Server

side

authentication

plug-in:

db2secServerAuthPluginInit()

v

Client

side

authentication

plug-in:

db2secClientAuthPluginInit()

v

Group

plug-in:

db2secGroupPluginInit()

This

function

is

known

as

the

plug-in

initialization

function.

The

plug-in

initialization

function

initializes

the

specified

plug-in

and

provides

DB2®

with

information

that

it

requires

to

call

the

plug-in’s

functions.

The

plug-in

initialization

function

accepts

the

following

parameters:

v

the

highest

version

number

of

the

functions

pointer

structure

that

DB2

can

support

v

pointer

to

a

structure

containing

pointers

to

all

the

APIs

requiring

implementation

v

pointer

to

a

function

that

adds

log

messages

to

the

db2diag.log

file

v

pointer

to

an

error

message

string

v

length

of

the

error

message

The

following

is

a

function

signature

for

the

initialization

function

of

a

group

retrieval

plug-in:

SQL_API_RC

SQL_API_FN

db2secGroupPluginInit(

db2int32

version,

void

*group_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Note:

Plug-in

libraries

can

only

be

implemented

in

C

or

C++.

If

the

plug-in

library

is

compiled

as

C++,

all

functions

must

be

declared

with:

extern

"C".

DB2

relies

on

the

underlying

operating

system

dynamic

loader

to

handle

the

C++

constructors

and

destructors

used

inside

of

a

C++

user-written

plug-in

library.

This

is

the

only

function

in

the

plug-in

library

that

must

have

a

prescribed

function

name.

The

other

plug-in

functions

are

referenced

through

function

pointers

returned

from

the

initialization

function.

Server

plug-ins

are

loaded

at

db2start

time

on

the

server.

Client

plug-ins

are

loaded

when

required

on

the

client.

Immediately

after

DB2

loads

the

plug-in

library,

it

will

resolve

the

location

of

this

function

and

then

call

it.

The

specific

task

of

this

function

is

as

follows:

v

cast

the

functions

pointer

to

a

pointer

to

an

appropriate

functions

structure

v

fill

in

the

pointers

to

the

other

functions

in

the

library

v

fill

in

the

version

number

of

the

function

pointer

structure

being

returned

©

Copyright

IBM

Corp.

1997

-

2004

549

||
||
||

|

|

|

|

|

|
|

|

|

|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|

DB2

can

potentially

call

the

plug-in

initialization

function

more

than

once.

A

situation

where

this

is

would

occur

is

when

an

application

dynamically

loads

the

DB2

client

library,

unloads

it

and

reloads

it

again,

and

then

performs

authentication

functions

from

a

plug-in

both

before

and

after

reloading.

In

this

case,

the

plug-in

library

might

not

be

unloaded

and

then

re-loaded,

however,

this

behavior

varies

depending

on

the

operating

system.

Another

example

of

DB2

issuing

multiple

calls

to

a

plug-in

initialization

function

is

during

the

execution

of

stored

procedures

or

federated

system

calls,

where

the

database

server

can

itself

act

as

a

client.

If

the

client

and

server

plug-ins

on

the

database

server

are

in

the

same

file,

DB2

could

call

the

plug-in

initialization

function

twice.

If

the

plug-in

detects

that

db2secGroupPluginInit

is

called

more

than

once,

it

should

handle

this

as

if

it

was

directed

to

terminate

and

reinitialize

the

plug-in

library.

As

such,

the

plug-in

initialization

function

should

do

the

entire

cleanup

that

a

call

to

db2secPluginTerm

would

do

before

returning

the

set

of

function

pointers

again.

On

a

DB2

server

running

a

UNIX®

operating

system,

DB2

can

potentially

load

and

initialize

plug-in

libraries

more

than

once

after

db2start

in

different

processes.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Related

reference:

v

“Restrictions

on

security

plug-in

libraries”

on

page

550

v

“Return

codes

for

security

plug-ins”

on

page

552

v

“Calling

sequences

for

the

security

plug-in

APIs”

on

page

555

v

“db2secGroupPluginInit

-

Initialize

group

plug-in”

on

page

562

v

“db2secPluginTerm

-

Clean

up

group

plug-in

resources”

on

page

563

v

“db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in”

on

page

576

v

“db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in”

on

page

587

Restrictions

on

security

plug-in

libraries

Following

are

restrictions

for

developing

plug-in

libraries.

C-linkage

Plug-in

libraries

must

be

linked

with

C-linkage.

Header

files

providing

the

prototypes,

data

structures

needed

to

implement

the

plug-ins,

and

error

code

definitions

will

be

provided

for

C/C++

only.

Functions

that

DB2

will

resolve

at

load

time

must

be

declared

with

extern

″C″

if

the

plug-in

library

is

compiled

as

C++.

.NET

common

language

runtime

is

not

supported

The

.NET

common

language

runtime

(CLR)

is

not

supported

for

compiling

and

linking

source

code

for

plug-in

libraries.

Signal

handlers

The

plug-in

libraries

must

not

install

signal

handlers

or

change

the

signal

mask,

since

doing

so

will

interfere

with

DB2’s

signal

handlers.

Interfering

550

Programming

Client

Applications

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

with

the

DB2

signal

handlers

could

seriously

interfere

with

DB2’s

ability

to

report

and

recover

from

errors,

including

traps

in

the

plug-in

code

itself.

Plug-in

libraries

should

also

never

throw

C++

exceptions,

as

this

can

also

interfere

with

DB2’s

error

handling.

Thread-safe

Plug-in

libraries

must

be

thread-safe

and

re-entrant.

The

plug-in

initialization

function

is

the

only

API

that

is

not

required

to

be

re-entrant.

This

is

because

the

plug-in

initialization

function

could

potentially

be

called

multiple

times

from

different

processes;

in

which

case,

the

plug-in

will

cleanup

all

used

resources

and

reinitialize

itself.

Exit

handlers

and

overriding

standard

C

library

and

operating

system

calls

Plug-in

libraries

should

not

override

standard

C

library

or

operating

system

calls.

Plug-in

libraries

should

also

not

install

at

exit

handlers

or

pthread_atfork

handlers.

The

use

of

exit

handlers

is

not

recommended

because

they

may

be

unloaded

before

the

program

exits.

Library

dependencies

On

Linux

or

Unix

the

processes

that

load

the

plug-in

libraries

can

be

setuid

or

setgid,

which

means

that

they

will

not

be

able

to

rely

n

the

$LD_LIBRARY_PATH,

$SHLIB_PATH,

or

$LIBPATH

environment

variables

to

find

dependent

libraries.

Therefore,

plug-in

libraries

should

not

depend

on

other

libraries,

unless

any

dependant

libraries

are

accessible

through

other

methods,

such

as

the

following:

v

by

being

in

/lib

or

/usr/lib

v

by

having

the

directories

they

reside

in

being

specified

OS-wide

(such

as

in

the

ld.so.conf

file

on

Linux)

v

by

being

specified

in

the

RPATH

in

the

plug-in

library

itself

This

restriction

is

not

applicable

to

Windows

operating

systems.

Symbol

collisions

When

possible,

plug-in

libraries

should

be

compiled

and

linked

with

any

available

options

that

reduce

the

likelihood

of

symbol

collisions,

such

as

those

that

reduce

unbound

external

symbolic

references.

For

example,

use

of

the

″-Bsymbolic″

linker

option

on

HP,

Sun

Solaris,

and

Linux

can

help

prevent

problems

related

to

symbol

collisions.

However,

for

a

plug-in

written

on

AIX

platform,

please

do

not

use

"-brtl"

linker

option

explicitly

or

implicitly,

because

this

will

cause

a

problem.

32-bit

and

64-bit

applications

32-bit

applications

must

use

32-bit

plug-ins.

64-bit

applications

must

use

64-bit

plug-ins.

Please

refer

to

the

topic

32-bit

and

64-bit

considerations

for

security

plug-ins

for

more

details.

Text

strings

Input

text

strings

are

not

guaranteed

to

be

null-terminated,

and

output

strings

are

not

required

to

be

null-terminated.

Instead,

integer

lengths

are

given

for

all

input

strings,

and

pointers

to

integers

are

given

for

lengths

to

be

returned.

Passing

authid

parameters

An

authid

parameter

that

DB2

passes

into

a

plug-in

(an

input

authid

parameter)

will

contain

an

upper-case

authid,

with

padded

blanks

removed.

An

authid

parameter

that

a

plug-in

returns

to

DB2

(an

output

authid

parameter)

does

not

require

any

special

treatment,

but

DB2

will

take

the

authid

and

make

it

upper-case,

and

padded

with

blanks

according

to

the

internal

DB2

standard.

Chapter

27.

Developing

security

plug-ins

551

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Size

limits

for

parameters

The

plug-in

APIs

use

the

following

as

length

limits

for

parameters:

#define

DB2SEC_MAX_AUTHID_LENGTH

255

#define

DB2SEC_MAX_USERID_LENGTH

255

#define

DB2SEC_MAX_USERNAMESPACE_LENGTH

255

#define

DB2SEC_MAX_PASSWORD_LENGTH

255

#define

DB2SEC_MAX_DBNAME_LENGTH

128

A

particular

plug-in

implementation

may

require

or

enforce

smaller

maximum

lengths

for

the

authorization

IDs,

user

IDs,

and

passwords.

In

particular,

the

operating

system

authentication

plug-ins

supplied

with

DB2

UDB

are

restricted

to

the

maximum

user,

group

and

namespace

length

limits

enforced

by

the

operating

system

for

cases

where

the

operating

system

limits

are

lower

than

those

stated

above.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

library

locations”

on

page

536

Return

codes

for

security

plug-ins

All

security

plug-in

APIs

must

return

an

integer

value

for

the

purpose

of

indicating

success

or

failure

of

the

execution

of

the

API.

A

return

code

value

of

0

indicates

that

the

API

ran

successfully.

All

negative

return

codes,

with

the

exception

of

-3,

-4,

and

-5,

indicate

that

the

API

encountered

an

error.

All

negative

return

codes

returned

from

the

security-plug-in

APIS

will

be

mapped

to

SQLCODE

-1365,

SQLCODE

-1366,

or

SQLCODE

-30082,

with

the

exception

of

return

codes

with

the

-3,

-4,

or

-5.

The

values

-3,

-4,

and

-5

are

used

to

indicate

whether

or

not

an

AUTHID

is

represent

a

valid

user

or

group.

All

the

security

plug-in

API

return

codes

are

defined

in

db2secPlugin.h,

which

can

be

found

in

DB2’s

include

directory:

SQLLIB/include.

Details

regarding

all

of

the

security

plug-in

return

codes

are

presented

in

the

following

table:

Table

83.

Security

plug-in

return

codes

Return

code

Define

value

Meaning

Applicable

APIs

0

DB2SEC_PLUGIN_OK

The

plug-in

API

executed

successfully.

All

-1

DB2SEC_PLUGIN

_UNKNOWNERROR

The

plug-in

API

encountered

an

unexpected

error.

All

-2

DB2SEC_PLUGIN_BADUSER

The

user

ID

passed

in

as

input

is

not

defined.

db2secGenerateInitialCred

db2secValidatePassword

db2secRemapUserid

db2secGetGroupsForUser

-3

DB2SEC_PLUGIN

_INVALIDUSERORGROUP

No

such

user

or

group.

/entry>

db2secDoesAuthIDExist

db2secDoesGroupExist

-4

DB2SEC_PLUGIN

_USERSTATUSNOTKNOWN

Unknown

user

status.

This

is

not

treated

as

an

error

by

DB2;

it

is

used

by

a

GRANT

statement

to

determine

if

an

authid

represent

an

user

or

an

operating

system

group.

db2secDoesAuthIDExist

552

Programming

Client

Applications

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|

||

||||

|||
|
|

||
|
|
|
|

|||
|
|
|
|
|

||
|
||
|

||
|
|
|
|
|
|

|

Table

83.

Security

plug-in

return

codes

(continued)

Return

code

Define

value

Meaning

Applicable

APIs

-5

DB2SEC_PLUGIN

_GROUPSTATUSNOTKNOWN

Unknown

group

status.

This

is

not

treated

as

an

error

by

DB2;

it

is

used

by

a

GRANT

statement

to

determine

if

an

authid

represent

an

user

or

an

operating

system

group.

db2secDoesGroupExist

-6

DB2SEC_PLUGIN_UID_EXPIRED

Userid

expired.

db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-7

DB2SEC_PLUGIN_PWD_EXPIRED

Password

expired.

db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-8

DB2SEC_PLUGIN_USER_REVOKED

User

revoked.

db2secValidatePassword

db2GetGroupsForUser

-9

DB2SEC_PLUGIN

_USER_SUSPENDED

User

suspended.

db2secValidatePassword

db2GetGroupsForUser

-10

DB2SEC_PLUGIN_BADPWD

Bad

password.

db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-11

DB2SEC_PLUGIN

_BAD_NEWPASSWORD

Bad

new

password.

db2secValidatePassword

db2secRemapUserid

-12

DB2SEC_PLUGIN

_CHANGEPASSWORD

_NOTSUPPORTED

Change

password

not

supported.

db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-13

DB2SEC_PLUGIN_NOMEM

Plug-in

attempt

to

allocate

memory

failed

due

to

insufficient

memory.

All

-14

DB2SEC_PLUGIN_DISKERROR

Plug-in

encountered

a

disk

error.

All

-15

DB2SEC_PLUGIN_NOPERM

Plug-in

attempt

to

access

a

file

failed

because

of

wrong

permissions

on

the

file.

All

-16

DB2SEC_PLUGIN_NETWORKERROR

Plug-in

encountered

a

network

error.

All

-17

DB2SEC_PLUGIN

_CANTLOADLIBRARY

Plug-in

is

unable

to

load

a

required

library.

db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-18

DB2SEC_PLUGIN_CANT

_OPEN_FILE

Plug-in

is

unable

to

open

and

read

a

file

for

a

reason

other

than

missing

file

or

inadequate

file

permissions.

All

-19

DB2SEC_PLUGIN_FILENOTFOUND

Plug-in

is

unable

to

open

and

read

a

file,

because

the

file

is

missing

from

the

file

system.

All

-20

DB2SEC_PLUGIN

_CONNECTION_DISALLOWED

The

plug-in

is

refusing

the

connection

because

of

the

restriction

on

which

database

is

allowed

to

connect,

or

which

TCP/IP

address

can

connect

to

a

specific

database.

All

server-side

plug-in

APIs.

-21

DB2SEC_PLUGIN_NO_CRED

GSS

API

plug-in

only:

Initial

client

credential

is

missing.

db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-22

DB2SEC_PLUGIN_CRED_EXPIRED

GSS

API

plug-in

only:

Client

credential

has

expired.

db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-23

DB2SEC_PLUGIN

_BAD_PRINCIPAL_NAME

GSS

API

plug-in

only:

The

principal

name

is

invalid.

db2secProcessServerPrincipalName

-24

DB2SEC_PLUGIN

_NO_CON_DETAILS

This

return

code

is

returned

by

the

db2secGetConDetails

callback

(for

example,

from

DB2

to

the

plug-in)

to

indicate

that

DB2

is

unable

to

determine

the

client’s

TCP/IP

address.

db2secGetConDetails

Chapter

27.

Developing

security

plug-ins

553

|

||||

||
|
|
|
|
|
|

|

||||
|
|

||||
|
|

||||
|

||
|
||
|

||||
|
|

||
|
||
|

||
|
|

||
|
|

|||
|
|

||||

|||
|
|

|

||||

||
|
|
|
|
|
|

||
|
|
|
|

|

|||
|
|

|

||
|
|
|
|
|
|

|

|||
|
|
|

|||
|
|
|

||
|
|
|
|

||
|
|
|
|
|
|
|

|

Table

83.

Security

plug-in

return

codes

(continued)

Return

code

Define

value

Meaning

Applicable

APIs

-25

DB2SEC_PLUGIN

_BAD_INPUT_PARAMETERS

Some

parameters

are

not

valid

or

are

missing

when

plug-in

API

is

called.

All

-26

DB2SEC_PLUGIN

_INCOMPATIBLE_VER

The

version

of

the

APIs

reported

by

the

plug-in

is

not

compatible

with

DB2.

db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-27

DB2SEC_PLUGIN_PROCESS_LIMIT

The

plug-in

ran

out

of

resources

when

attempting

to

create

a

new

process.

All

-28

DB2SEC_PLUGIN_NO_LICENSES

The

plug-in

encountered

a

user

license

problem.

A

possibility

exists

that

the

underlying

mechanism

license

has

reached

the

limit.

All

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

problem

determination”

on

page

541

Error

messages

for

security

plug-ins

When

an

error

occurs

in

a

security

plug-in

API,

the

API

can

return

an

ASCII

text

string

in

the

errormsg

field

to

provide

a

more

specific

description

of

the

problem

than

the

return

code.

For

instance,

the

errormsg

string

can

contain

"File

/home/db2inst1/mypasswd.txt

does

not

exist."

DB2

will

write

this

entire

string

into

the

DB2

administration

notification

log,

and

will

also

include

a

truncated

version

as

a

token

in

some

SQL

messages.

Since

tokens

in

SQL

messages

can

only

be

of

limited

length,

it

is

therefore

recommended

that

these

messages

be

kept

short,

and

that

important

variable

portions

of

these

messages

appear

at

the

front

of

the

string.

To

aid

in

debugging,

consider

adding

the

name

of

the

security

plug-in

to

the

error

message.

For

non-urgent

errors,

such

as

password

expired

errors,

the

errormsg

string

will

only

be

dumped

when

the

DIAGLEVEL

database

manager

configuration

parameter

is

set

at

4.

The

memory

for

these

error

messages

must

be

allocated

by

the

security

plug-in.

The

plug-ins

must

therefore

also

provide

an

API

to

free

this

memory:

db2secFreeErrormsg.

The

errormsg

field

will

only

be

checked

by

DB2

if

an

API

returns

a

non-zero

value.

The

plug-in

should

therefore

not

allocate

memory

for

this

returned

error

message

if

there

is

no

error.

At

initialization

time

a

message

logging

function

pointer,

logMessage_fn,

is

passed

to

the

group,

client

and

server

plug-ins.

The

plug-ins

can

use

the

function

to

log

any

debugging

information

to

db2diag.log.

For

example:

//

Log

an

message

indicate

init

successful

(*(logMessage_fn))(DB2SEC_LOG_CRITICAL,

"db2secGroupPluginInit

successful",

strlen("db2secGroupPluginInit

successful"));

For

more

details

about

each

parameter

for

the

db2secLogMessage

function,

please

refer

to

the

initialization

API

for

each

of

the

plug-in

types.

554

Programming

Client

Applications

|

||||

||
|
|
|
|

||
|
|
|
|

|
|
|

|||
|
|

|

|||
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

problem

determination”

on

page

541

v

“Security

plug-in

APIs”

on

page

559

v

“Security

plug-in

support

for

two-part

user

IDs”

on

page

539

Related

reference:

v

“Return

codes

for

security

plug-ins”

on

page

552

Calling

sequences

for

the

security

plug-in

APIs

There

are

five

main

scenarios

in

which

DB2

will

call

security

plug-in

APIs:

v

On

a

client

for

a

database

connection.

v

On

a

client,

server,

or

gateway

for

local

authorization.

v

On

a

server

for

a

database

connection.

v

On

a

server

for

a

grant

statement.

v

On

a

server

to

get

a

list

of

groups

that

an

authid

belongs

to.

Note:

The

DB2

server

treats

database

actions

requiring

local

authorizations,

such

as

db2start,

db2stop,

and

db2trc,

like

client

applications.

For

each

of

these

operations,

the

sequence

with

which

DB2

calls

security

plug-in

APIs

is

appropriately

different.

Following

are

the

sequences

of

APIs

called

by

DB2

for

each

of

these

scenarios.

On

a

client

for

a

database

connection

When

the

user-configured

authentication

type

is

CLIENT,

the

DB2

client

application

will

call

the

following

security

plug-in

APIs:

v

db2secGetDefaultLoginContext();

v

db2secValidatePassword();

v

db2secFreetoken();

In

the

case

of

an

implicit

authentication,

that

is,

when

you

connect

without

specifying

a

particular

user

ID

or

password,

the

db2secValidatePassword

API

will

be

called

if

you

are

using

a

user

ID/password

plug-in.

This

API

permits

plug-in

developers

to

prohibit

implicit

authentication

if

necessary.

On

an

implicit

authentication,

if

the

database

manager

configuration

parameter,

authentication,

is

set

to

anything

other

than

CLIENT

(implying

authentication

at

the

server),

the

application

will

call

the

following

security

plug-in

APIs

for

the

user

ID/password

authentication

mechanism:

v

db2secGetDefaultLoginContext();

v

db2secFreeToken();

On

an

implicit

authentication,

if

authentication

is

set

to

anything

other

than

CLIENT

(implying

authentication

at

the

server),

the

application

will

call

the

following

security

plug-in

APIs

for

GSS-API

plug-ins.

(The

call

to

gss_init_sec_context()

will

use

GSS_C_NO_CREDENTIAL

as

the

input

credential.)

v

db2secGetDefaultLoginContext();

v

db2secProcessServerPrincipalName();

v

gss_init_sec_context();

Chapter

27.

Developing

security

plug-ins

555

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

|

|

|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|

|

|

|

v

gss_release_buffer();

v

gss_release_name();

v

gss_delete_sec_context();

v

db2secFreeToken();

The

API

gss_init_sec_context()

may

be

called

twice

if

a

mutual

authentication

token

is

returned

from

the

server.

On

an

explicit

authentication,

if

authentication

is

set

to

CLIENT

the

DB2

client

application

will

call

the

following

security

plug-in

APIs:

v

db2secRemapUserid();

v

db2secValidatePassword();

v

db2secFreeToken();

On

an

explicit

authentication,

if

authentication

is

set

to

anything

other

than

CLIENT,

the

application

will

call

the

following

security

plug-in

APIs

for

the

user

ID/password

authentication

mechanism:

v

db2secRemapUserid();

If

the

negotiated

authentication

type

is

GSS-API

or

Kerberos,

the

client

application

will

call

the

following

security

plug-in

APIs

for

GSS-API

plugins

in

the

following

ordered

sequence.

These

APIs

are

used

for

implicit

or

explicit

authentication

(

a

connection

to

a

database

in

which

both

the

user

ID

and

password

are

specified)

unless

otherwise

stated.

v

db2secProcessServerPrincipalName();

v

db2secGenerateInitialCred();

(For

explicit

authentication

only)

v

gss_init_sec_context();

v

gss_release_buffer

();

v

gss_release_name();

v

gss_release_cred();

v

db2secFreeInitInfo();

v

gss_delete_sec_context();

v

db2secFreeToken();

The

API

gss_init_sec_context()

may

be

called

twice

if

a

mutual

authentication

token

is

returned

from

the

server.

On

a

client,

server,

or

gateway

for

local

authorization

For

a

local

authorization,

the

DB2

command

being

used

will

call

the

following

security

plug-in

APIs:

v

db2secGetDefaultLoginContext();

v

db2secGetGroupsForUser();

v

db2secFreeToken();

v

db2secFreeGroupList();

These

APIs

will

be

called

for

both

user

ID/password

and

GSS-API

authentication

mechanisms.

On

a

server

for

a

database

connection

For

a

database

connection

on

the

database

server,

the

DB2

agent

process

or

thread

will

call

the

following

security

plug-in

APIs

for

the

user

ID/password

authentication

mechanism:

556

Programming

Client

Applications

|

|

|

|

|
|

|
|

|

|

|

|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

|
|

|
|
|
|

v

db2secValidatePassword();

Only

if

authentication

is

not

CLIENT

v

db2secGetAuthIDs();

v

db2secGetGroupsForUser();

v

db2secFreeToken();

v

db2secFreeGroupList();

For

a

database

connection

on

the

database

server,

the

DB2

agent

process

or

thread

will

call

the

following

security

plug-in

APIs

for

the

GSS-API

authentication

mechanism:

v

gss_accept_sec_context();

v

gss_release_buffer();

v

db2secGetAuthIDs();

v

db2secGetGroupsForUser();

v

gss_delete_sec_context();

v

db2secFreeToken();

v

db2secFreeGroupList();

On

a

server

for

a

GRANT

statement

For

a

GRANT

statement

that

does

not

specify

the

USER

or

GROUP

keyword,

(for

example,

″GRANT

CONNECT

ON

DATABASE

TO

user1″),

DB2

must

be

able

to

determine

if

user1

is

a

user,

a

group,

or

both.

Therefore,

DB2

will

call

the

following

security

plug-in

APIs:

v

db2secDoesGroupExist();

v

db2secDoesAuthIDExist();

On

a

server

to

get

a

list

of

groups

to

which

an

authid

belongs

From

your

database

server,

when

you

need

to

get

a

list

of

groups

to

which

an

authid

belongs,

DB2

will

call

the

following

security

plug-in

API

with

only

the

authid

as

input:

v

db2secGetGroupsForUser();

There

will

be

no

token

from

other

security

plug-ins.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Chapter

27.

Developing

security

plug-ins

557

|

|

|

|

|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|
|
|
|

|

|

|

|

|

558

Programming

Client

Applications

Chapter

28.

Security

plug-in

APIs

Security

plug-in

APIs

.

.

.

.

.

.

.

.

.

.

. 559

Group

plug-in

APIs

.

.

.

.

.

.

.

.

.

.

. 560

APIs

for

group

retrieval

plug-ins

.

.

.

.

.

. 560

db2secGroupPluginInit

-

Initialize

group

plug-in

562

db2secPluginTerm

-

Clean

up

group

plug-in

resources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

db2secGetGroupsForUser

-

Get

list

of

groups

for

user

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 564

db2secDoesGroupExist

-

Check

if

group

exists

567

db2secFreeGroupListMemory

-

Free

group

list

memory

.

.

.

.

.

.

.

.

.

.

.

.

.

. 568

db2secFreeErrormsg

-

Free

error

message

memory

.

.

.

.

.

.

.

.

.

.

.

.

.

. 569

User

authentication

plug-in

APIs

.

.

.

.

.

.

. 569

APIs

for

user

ID/password

authentication

plug-in

.

.

.

.

.

.

.

.

.

.

.

.

.

. 569

db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in

.

.

.

.

.

.

.

.

. 576

db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

.

.

.

.

.

. 577

db2secRemapUserid

-

Remap

user

ID

and

password

.

.

.

.

.

.

.

.

.

.

.

.

.

. 577

db2secGetDefaultLoginContext

-

Get

default

login

context

.

.

.

.

.

.

.

.

.

.

.

. 579

db2secGenerateInitialCred

-

Generate

initial

credentials

.

.

.

.

.

.

.

.

.

.

.

.

. 580

db2secValidatePassword

-

Validate

password

582

db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

.

. 584

db2secFreeToken

-

Free

memory

held

by

token

585

db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

.

.

.

.

.

.

. 586

db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

.

.

.

.

.

.

.

.

. 587

db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

.

.

.

.

.

. 588

db2secGetAuthIDs

-

Get

authentication

IDs

.

. 589

db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

.

.

.

.

.

.

.

.

. 591

GSS-API

plug-in

APIs

.

.

.

.

.

.

.

.

.

. 591

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

.

.

.

.

.

.

.

.

. 591

Restrictions

for

GSS-API

authentication

plug-ins

593

Security

plug-in

API

versioning

.

.

.

.

.

.

. 593

Security

plug-in

APIs

To

enable

you

to

customize

DB2®’s

authorization

behavior,

DB2

has

exposed

APIs

that

you

can

use

to

modify

existing

plug-ins

or

build

new

security

plug-ins.

When

you

develop

a

security

plug-in,

you

will

need

to

implement

the

standard

authentication

functions

that

DB2

will

invoke.

For

the

three

available

types

of

plug-ins,

the

functionality

you

will

need

to

implement

is

as

follows:

Group

retrieval

Retrieves

group

membership

information

for

a

given

user

and

determine

if

a

given

string

represents

a

valid

group

name.

User

ID/password

authentication

Authentication

that

identifies

the

default

security

context

(client

only),

validate

and

optionally

change

a

password,

determine

if

a

given

string

represents

a

valid

user

(server

only),

modify

the

user

ID

or

password

provided

on

the

client

before

it

is

sent

to

the

server

(client

only),

return

the

DB2

authorization

ID

associated

with

a

given

user.

GSS-API

authentication

Authentication

that

implements

the

required

GSS-API

functions,

identify

the

default

security

context

(client

side

only),

generate

initial

credentials

basedon

user

ID

and

password

and

optionally

change

password

(client

side

only),

create

and

accept

security

tickets,

and

return

the

DB2

authorization

ID

associated

with

a

given

GSS-API

security

context.

The

following

are

definitions

for

terminology

used

in

the

descriptions

of

the

plug-in

APIs.

©

Copyright

IBM

Corp.

1997

-

2004

559

||

||
||
|
||
|
||
||
|
||
|
||

|
||
|
||
|
||
|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

Plug-in

A

dynamically

loadable

library

that

DB2

will

load

to

access

user-written

authentication

functions.

Implicit

authentication

A

connection

to

a

database

without

specifying

a

user

ID

or

a

password.

Explicit

authentication

A

connection

to

a

database

in

which

both

the

user

ID

and

password

are

specified.

Authid

An

internal

ID

representing

an

individual

or

group

to

which

authorities

and

privileges

within

the

database

are

granted.

Internally,

DB2

authid

is

upper-cased

and

has

a

minimum

of

8

characters

(blank

padded

to

8

characters).

Currently,

DB2

requires

authids,

user

IDs,

passwords,

group

names,

namespaces,

and

domain

names

that

can

be

represented

in

7-bit

ASCII.

The

maximum

length

of

an

authid

is

30

characters.

Local

authorization

Authorization

that

is

local

to

the

server

or

client

that

implements

it,

that

checks

if

a

user

is

authorized

to

perform

an

action,

other

than

connecting

to

the

database

that

requires

authorization,

such

as

starting

and

stopping

the

database

manager,

turning

DB2

trace

on

and

off,

or

updating

the

database

manager

configuration.

Namespace

A

collection

or

grouping

of

users

within

which

individual

user

identifiers

must

be

unique.

Common

examples

include

Windows®

domains

and

Kerberos

Realms.

For

example,

within

the

Windows

domain

″usa.company.com″

all

user

names

must

be

unique.

For

example,

″user1@usa.company.com″.

The

same

user

ID

in

another

domain,

as

in

the

case

of

″user1@canada.company.com″,

however

refers

to

a

different

person.

A

fully

qualified

user

identifier

includes

a

user

ID

and

namespace

pair;

for

example,

″user@domain.name″

or

″domain\user″.

Related

concepts:

v

“Security

plug-ins”

on

page

533

Group

plug-in

APIs

APIs

for

group

retrieval

plug-ins

For

the

group

retrieval

plug-in

library,

you

will

need

to

implement

the

following

APIs:

SQL_API_RC

SQL_API_FN

db2secGroupPluginInit(

db2int32

version,

void

*group_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Note:

The

above

function

takes

as

input

a

pointer

to

a

function,

*logMessage_fn,

with

the

following

prototype:

SQL_API_RC

(SQL_API_FN

db2secLogMessage)

(

db2int32

level,

void

*data,

db2int32

length);

560

Programming

Client

Applications

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

SQL_API_RC

SQL_API_FN

db2secPluginTerm(char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secGetGroupsForUser(

const

char

*authid,

db2int32

authidlen,

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

const

void

*token,

db2int32

tokentype,

db2int32

location,

const

char

*authpluginname,

db2int32

authpluginname,

char

**grouplist,

db2int32

*numgroups,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secDoesGroupExist(

const

char

*groupname,

db2int32

groupnamelen

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeGroupListMemory(

char

*ptr,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*msgtobefree);

The

only

API

that

must

be

resolvable

externally

is

db2secGroupPluginInit().

This

function

will

take

a

void

*

parameter,

which

should

be

cast

to

the

type:

typedef

struct

db2secGroupFunctions_1

{

db2int32

version;

db2int32

plugintype;

SQL_API_RC

(SQL_API_FN

*

db2secGetGroupsForUser)

(

const

char

*authid,

db2int32

authidlen,

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

const

void

*token,

db2int32

tokentype,

db2int32

location,

const

char

*authpluginname,

db2int32

authpluginnamelen,

void

**grouplist,

db2int32

*numgroups,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secDoesGroupExist)(

const

char

*groupname,

db2int32

groupnamelen,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeGroupListMemory)(

Chapter

28.

Security

plug-in

APIs

561

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

void

*ptr,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(

char

*msgtobefree);

SQL_API_RC

(SQL_API_FN

*

db2secPluginTerm)(

char

**errormsg,

db2int32

*errormsglen);

}

db2secGroupFunctions_1;

db2secGroupPluginInit()

will

assign

the

addresses

for

the

rest

of

the

externally

available

functions.

Note:

The

_1

indicates

that

this

is

the

structure

corresponding

to

version

1

of

the

API.

Subsequent

interface

versions

will

have

the

extension

_2,

_3,

and

so

on.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

tasks:

v

“Deploying

a

group

retrieval

plug-in”

on

page

543

Related

reference:

v

“db2secGroupPluginInit

-

Initialize

group

plug-in”

on

page

562

v

“db2secPluginTerm

-

Clean

up

group

plug-in

resources”

on

page

563

v

“db2secGetGroupsForUser

-

Get

list

of

groups

for

user”

on

page

564

v

“db2secDoesGroupExist

-

Check

if

group

exists”

on

page

567

v

“db2secFreeGroupListMemory

-

Free

group

list

memory”

on

page

568

v

“db2secFreeErrormsg

-

Free

error

message

memory”

on

page

569

db2secGroupPluginInit

-

Initialize

group

plug-in

This

is

the

initialization

function

for

the

library

that

DB2

will

call

immediately

after

loading

the

plug-in

library.

The

functions

pointer

should

be

cast

to

the

appropriate

group_functions

structure

for

the

interface

version.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secGroupPluginInit(

db2int32

version,

void

*group_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Input:

db2int32

version

The

highest

version

number

of

the

API

that

DB2

will

currently

support.

db2secLogMessage

*logMessage_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

to

log

additional

error

string

to

db2diag.log

for

debugging

or

informational

purposes.

The

first

parameter

should

use

the

define

in

562

Programming

Client

Applications

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|

db2secPlugin.h

and

the

last

two

parameters

are

the

message

string

and

its

length.

The

defines

to

be

used

in

the

first

parameter

are:

#define

DB2SEC_LOG_NONE

0

-

No

logging

#define

DB2SEC_LOG_CRITICAL

1

-

Severe

Error

encountered

#define

DB2SEC_LOG_ERROR

2

-

Error

encountered

#define

DB2SEC_LOG_WARNING

3

-

Warning

#define

DB2SEC_LOG_INFO

4

-

Informational

If

you

use

the

DB2SEC_LOG_INFO

define,

the

message

text

will

only

show

up

in

the

db2diag.log

if

the

diaglevel

database

manager

configuration

parameter

is

set

to

4.

Output:

void

*group_fns

A

pointer

to

memory

provided

by

DB2

for

a

db2secGroupFunction_1

structure.

In

future

versions

of

DB2,

there

may

be

different

versions

of

the

APIs,

so

this

should

be

cast

to

a

pointer

to

the

db2secGroupFunction_1

structure

corresponding

to

the

version

of

the

API

that

the

plug-in

has

implemented.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

db2secPluginTerm

-

Clean

up

group

plug-in

resources

This

function

will

be

called

by

DB2

just

before

it

unloads

the

plug-in.

It

should

do

a

proper

cleanup

of

any

resources

the

plug-in

library

holds,

for

instance,

free

any

memory

allocated

by

the

plug-in,

close

files

that

are

still

open,

and

close

network

connections.

The

plug-in

is

responsible

for

keeping

track

of

these

resources

in

order

to

free

them.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secPluginTerm(char

**errormsg,

db2int32

*errormsglen);

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Chapter

28.

Security

plug-in

APIs

563

|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|
|

|

|
|

|

|
|
|

|
|
|

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

db2secGetGroupsForUser

-

Get

list

of

groups

for

user

This

function

will

be

called

by

DB2

to

get

the

list

of

groups

to

which

a

user

belongs.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secGetGroupsForUser(

const

char

*authid,

db2int32

authidlen,

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2inst32

dbnamelen,

const

void

*token,

db2int32

tokentype,

db2int32

location,

const

char

*authpluginname,

db2int32

authpluginnamelen,

void

**grouplist,

db2int32

*numgroups,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*authid

The

only

input

field

that

is

provided

by

DB2.

This

field

value

is

an

SQL

authid,

therefore

it

is

formatted

to

be

a

fully

upper-cased

character

string

with

no

trailing

blanks.

The

plug-in

must

be

able

to

return

a

list

of

groups

to

which

the

authid

belongs

without

depending

on

the

other

input

parameters.

It

is

permissible

to

return

a

shortened

or

empty

list

if

this

cannot

be

determined.

If

a

user

does

not

exist,

the

function

should

return

DB2SEC_PLUGIN_BADUSER.

DB2

does

not

treat

the

case

of

a

user

not

existing

as

an

error,

since

it

is

permissible

for

an

authid

to

not

have

any

groups

associated

with

it.

For

example,

when

the

db2secGetAuthids

function

returns

an

authid

that

does

not

exist

on

the

operating

system.

The

authid

is

not

associated

with

any

groups,

however

it

can

still

be

directly

assigned

privileges.

If

the

plug-in

cannot

return

a

complete

list

of

groups

from

only

the

authid,

then

there

will

be

some

restrictions

on

certain

SQL

functions

related

to

group

support.

Please

refer

to

the

note

in

this

topic,

titled

″Problems

that

may

occur

if

an

incomplete

group

list

is

returned″

for

a

list

of

possible

problem

scenarios.

564

Programming

Client

Applications

|

|

|

|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

db2int32

authidlen

Length

of

the

authid.

const

char

*userid

This

is

the

user

ID

corresponding

to

the

authid.

When

this

API

is

called

on

the

server

in

a

non-connect

scenario,

this

will

not

be

filled.

db2int32

useridlen

Length

of

the

user

ID.

const

void

*token

A

pointer

to

data

provided

by

the

authentication

plug-in.

It

is

not

seen

by

DB2.

It

provides

the

ability

to

the

plug-in

writer

for

coordinating

user

and

group

information,

if

desired.

This

may

not

be

given

in

all

cases,

in

which

case

it

will

be

NULL.

If

the

authentication

plug-in

used

is

GSS-API

based,

the

token

will

be

set

to

the

GSS-API

context

handle

(gss_ctx_id_t).

db2int32

tokentype

Indicates

the

type

of

data

provided

by

the

authentication

plug-in.

If

the

authentication

plug-in

used

is

GSS-API

based,

the

token

will

be

set

to

the

GSS-API

context

handle

(gss_ctx_id_t).

If

the

authentication

plug-in

used

is

user

ID/password

based,

it

will

be

a

generic

type.

See

the

following

defines

in

db2secPlugin.h:

v

#define

DB2SEC_GENERIC

0

--

This

indicates

that

the

token

is

from

a

user

ID/password

based

plug-in.

v

#define

DB2SEC_GSSAPI_CTX_HANDLE

1

--

This

indicates

that

the

token

is

from

a

GSS-API

(including

Kerberos)

based

plug-in.

db2int32

location

Indicates

whether

DB2

is

to

call

the

plug-in

on

the

client

side

or

server

side.

See

the

following

define

in

db2secPlugin.h:

v

#define

DB2SEC_SERVER_SIDE

0

--

the

group

plug-in

is

being

called

on

the

database

server.

v

#define

DB2SEC_CLIENT_SIDE

1

--

the

group

plug-in

is

being

called

on

a

client.

const

char

*usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

When

the

user

ID

is

not

available,

this

will

not

be

filled.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

The

type

of

namespace.

Possible

values

are:

DB2SEC_NAMESPACE_SAM_COMPATIBLE

(corresponding

to

a

username

style

like

torolab\myname″),

or

DB2SEC_NAMESPACE_USER_PRINCIPAL

(corresponding

to

a

username

style

like

myname@torolab.ibm.com).

Currently

DB2

only

supports

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

When

the

user

ID

is

not

available,

this

will

be

filled

with

DB2SEC_USER_NAMESPACE_UNDEFINED.

All

the

defines

are

located

in

db2secPlugin.h.

const

char

*dbname

This

is

the

name

of

the

database

being

connected

to.

db2int32

dbnamelen

Length

of

the

database

name

specified

by

dbname.

Chapter

28.

Security

plug-in

APIs

565

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

const

char

*authpluginname

This

is

the

name

of

the

authentication

plug-in

that

provided

the

data

in

the

token.

The

plug-in

may

use

this

information

in

determining

the

correct

group

memberships.

This

may

not

be

given

if

the

authid

is

not

authenticated

(for

instance,

if

the

authid

does

not

match

the

current

connected

user).

db2int32

authpluginnamelen

Length

of

the

authpluginname.

Output:

void

**grouplist

The

list

of

groups

must

be

returned

as

a

pointer

to

a

section

of

memory

allocated

by

the

plug-in

containing

concatenated

varchars

(a

varchar

is

a

character

array

in

which

the

first

byte

indicates

the

number

of

bytes

following

it).

The

length

is

an

unsigned

char

and

that

limits

the

maximum

length

of

a

groupname

to

255

characters.

In

other

words,

since

we’re

using

an

unsigned

char

(1

byte)

to

indicate

the

length

of

the

group

name,

the

maximum

length

is

255.

For

example:

"\006GROUP1\007MYGROUP\008MYGROUP3"

Each

group

name

should

be

a

valid

DB2

authid.

The

memory

for

this

array

must

be

allocated

by

the

plug-in.

The

plug-in

must

therefore

provide

a

function,

such

as

the

db2secFreeGroupListMemory()

plug-in

function

that

DB2

will

call

to

free

the

memory.

db2int32

*numgroups

The

number

of

groups

contained

in

the

grouplist.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Problems

that

may

occur

if

an

incomplete

group

list

is

returned

from

the

API:

The

following

problems

can

occur

if

an

incomplete

group

list

is

returned

from

this

API

to

DB2

UDB:

v

Embedded

SQL

application

with

DYNAMICRULES

BIND

(or

DEFINEDBIND

or

INVOKEDBIND

if

the

packages

are

running

as

a

standalone

application).

DB2

checks

for

SYSADM

membership

and

the

application

will

fail

if

it

is

dependent

on

the

implicit

DBADM

authority

granted

by

being

a

member

of

the

SYSADM

group.

v

Alternate

authorization

is

provided

in

CREATE

SCHEMA

statement.

Group

lookup

will

be

performed

against

the

AUTHORIZATION

NAME

parameter

if

there

are

nested

CREATE

statements

in

the

CREATE

SCHEMA

statement.

v

Embedded

SQL

applications

with

DYNAMICRULES

DEFINERUN/DEFINEBIND

and

the

packages

are

running

in

a

routine

context.

DB2

checks

for

SYSADM

membership

of

the

routine

definer

and

the

application

will

fail

if

it

is

dependent

on

the

implicit

DBADM

authority

granted

by

being

a

member

of

the

SYSADM

group.

v

Processing

a

jar

file

in

an

MPP

environment.

In

an

MPP

environment,

the

jar

processing

request

is

sent

from

the

coordinator

node

with

the

session

authid.

566

Programming

Client

Applications

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

The

catalog

node

received

the

requests

and

process

the

jar

files

based

on

the

privilege

of

the

session

authid

(the

user

executing

the

jar

processing

requests).

–

Install

jar

file.

The

session

authid

needs

to

have

one

of

the

following

rights:

SYSADM,

DBADM,

or

CREATEIN

(implicit

or

explicit

on

the

jar

schema).

The

operation

will

fail

if

the

above

rights

are

granted

to

group

containing

the

session

authid,

but

not

explicitly

to

the

session

authid

or

if

only

SYSADM

is

held,

since

SYSADM

membership

is

determined

by

membership

in

the

group

defined

by

a

database

configuration

parameter.

–

Remove

jar

file.

The

session

authid

needs

to

have

one

of

the

following

rights

rights:

SYSADM,

DBADM,

or

DROPIN

(implicit

or

explicit

on

the

jar

schema),

or

is

the

definer

of

the

jar

file.

The

operation

will

fail

if

the

above

rights

are

granted

to

group

containing

the

session

authid,

but

not

explicitly

to

the

session

authid,

and

if

the

session

authid

is

not

the

definer

of

the

jar

file

or

if

only

SYSADM

is

held

since

SYSADM

membership

is

determined

by

membership

in

the

group

defined

by

a

database

configuration

parameter.

–

Replace

jar

file.

This

is

same

as

removing

the

jar

file,

followed

by

installing

the

jar

file.

Both

of

the

above

apply.
v

Regenerate

views.

This

is

triggered

by

the

ALTER

TABLE,

ALTER

COLUMN,

SET

DATA

TYPE

VARCHAR/VARGRAPHIC

statements,

or

during

migration.

DB2

checks

for

SYSADM

membership

of

the

view

definer.

The

application

will

fail

if

it

is

dependent

on

the

implicit

DBADM

authority

granted

by

being

a

member

of

the

SYSADM

group.

v

When

SET

SESSION_USER

statement

is

issued.

Subsequent

DB2

operations

are

run

under

the

context

of

the

authid

specified

by

this

statement.

These

operations

will

fail

if

any

required

group

privileges

are

owned

by

one

of

the

SESSION_USER’s

groups,

but

are

not

explicitly

granted

to

the

SESSION_USER

authid.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

db2secDoesGroupExist

-

Check

if

group

exists

This

function

will

be

used

to

determine

if

an

authid

represents

a

group.

The

function

should

return

DB2SEC_PLUGIN_OK,

to

indicate

success,

if

the

groupname

exists.

It

should

return

DB2SEC_PLUGIN_INVALIDUSERORGROUP

if

the

group

name

is

not

valid.

It

is

also

permissible

for

the

API

to

return

DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN

if

it

is

impossible

to

determine

if

the

input

is

a

valid

group.

If

invalid

group

or

group

not

known

is

returned,

DB2

might

not

be

able

to

determine

whether

the

authid

is

a

group

or

user

when

issuing

the

GRANT

statement

without

the

keywords

USER

and

GROUP,

which

would

result

in

the

error

SQLCODE

-569,

SQLSTATE

56092

being

returned

to

the

user.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secDoesGroupExist(

const

char

*groupname,

db2int32

groupnamelen,

char

**errormsg,

db2int32

*errormsglen

);

Chapter

28.

Security

plug-in

APIs

567

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

Input:

const

char

*groupname

An

authid,

upper-cased,

with

no

trailing

blanks.

db2int32

groupnamelen

Length

of

the

groupname.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

db2secFreeGroupListMemory

-

Free

group

list

memory

This

function

tells

the

plug-in

library

that

the

memory

pointed

to

by

ptr

is

no

longer

needed

by

DB2.

The

plug-in

needs

to

free

this

memory.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeGroupListMemory(

void

*ptr

char

**errormsg,

db2int32

*errormsglen);

Input:

void

*ptr

Pointer

to

the

memory

to

be

freed.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

568

Programming

Client

Applications

|

|
|

|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|

|
|
|

|
|
|

|

|

|

|

|

db2secFreeErrormsg

-

Free

error

message

memory

This

function

will

be

called

by

DB2

to

free

the

memory

used

to

hold

an

error

message

from

a

previous

call

to

a

plug-in

API.

This

is

the

only

API

that

does

not

also

return

an

error

message.

If

this

function

returns

an

error,

DB2

will

log

it

and

continue.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*msgtobefree);

Input:

char

*msgtobefree

A

pointer

to

the

error

message

allocated

from

a

previous

API

call.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

group

retrieval

plug-ins”

on

page

560

User

authentication

plug-in

APIs

APIs

for

user

ID/password

authentication

plug-in

For

the

user

ID/password

plug-in

library,

you

will

need

to

implement

the

following

client-side

APIs:

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginInit(

db2int32

version,

void

*client_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Note:

The

above

function

takes

as

input

a

pointer

to

a

function,

*logMessage_fn,

with

the

following

prototype:

SQL_API_RC

(SQL_API_FN

db2secLogMessage)

(

db2int32

level,

void

*data,

db2int32

length);

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginTerm(

char

**errormsg,

db2int32

*errormsglen);

/*

Only

used

for

gssapi:

*/

db2secGenerateInitialCred(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

Chapter

28.

Security

plug-in

APIs

569

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

gss_cred_id_t

*pGSSCredHandle,

void

**initInfo,

char

**errormsg,

db2int32

*errormsglen);

/*

Optional

*/

SQL_API_RC

SQL_API_FN

db2secRemapUserid(

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

char

password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*passwordlen,

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secGetDefaultLoginContext(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secValidatePassword(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

/*

This

is

only

for

GSS-API

*/

SQL_API_RC

SQL_API_FN

db2secProcessServerPrincipalName(

const

void

*name,

db2int32

nameLen,

gss_name_t

*gssName,

char

**errormsg,

db2int32

*errormsglen);

570

Programming

Client

Applications

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

/*

Functions

to

free

memory

held

by

the

DLL

*/

SQL_API_RC

SQL_API_FN

db2secFreeToken(

void

*token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*errormsg);

SQL_API_RC

SQL_API_FN

db2secFreeInitInfo(

void

*initInfo,

char

**errormsg,

db2int32

*errormsglen);

The

only

API

that

must

be

resolvable

externally

is

db2secClientAuthPluginInit().

This

function

will

take

a

void

*

parameter,

which

should

be

cast

to

either:

typedef

struct

db2secUseridPasswordClientAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

SQL_API_RC

(SQL_API_FN

*

db2secGetDefaultLoginContext)(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secRemapUserid)(

//

Optional

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

char

password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*passwordlen,

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secValidatePassword)(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

Chapter

28.

Security

plug-in

APIs

571

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(char

*errormsg);

SQL_API_RC

(SQL_API_FN

*

db2secClientAuthPluginTerm)(

char

**errormsg,

db2int32

*errormsglen);

}

or

typedef

struct

db2secGssapiClientAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

SQL_API_RC

(SQL_API_FN

*

db2secGetDefaultLoginContext)

(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secProcessServerPrincipalName)

(

const

void

*data,

gss_name_t

*gssName,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secGenerateInitialCred)

(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

gss_cred_id_t

*pGSSCredHandle,

void

**initInfo,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(

void

*token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(char

*errormsg);

SQL_API_RC

(SQL_API_FN

*

db2secFreeInitInfo)

(

572

Programming

Client

Applications

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

void

*initInfo,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

(SQL_API_FN

*

db2secClientAuthPluginTerm)

(

char

**errormsg,

db2int32

*errormsglen);

/*

GSS-API

specific

functions

--

refer

to

db2secPlugin.h

for

parameter

list*/

OM_uint32

(SQL_API_FN

*

gss_init_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_delete_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_display_status

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_buffer

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_cred

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_name

)(<parameter

list>);

}

You

should

use

db2secUseridPasswordClientAuthFunctions_1

if

you

are

writing

an

user

ID/password

plug-in.

If

you

are

writing

a

GSS-API

(including

Kerberos)

plug-in,

you

should

use

db2secGssapiClientAuthFunctions_1.

For

the

user

ID/password

plug-in

library,

you

will

need

to

implement

the

following

server-side

APIs:

db2secServerAuthPluginInit(

db2int32

version,

void

*server_fns,

db2secGetConDetails

*getConDetails_fn,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

The

above

function

takes

as

input

a

pointer

to

a

function,

*logMessage_fn,

and

a

function,

*getConDetails_fn,

with

the

following

prototypes:

SQL_API_RC

(SQL_API_FN

db2secLogMessage)

(

db2int32

level,

void

*data,

db2int32

length);

SQL_API_RC

(SQL_API_FN

db2secGetConDetails)(

db2int32

conDetailsVersion,

const

void

*pConDetails);

This

function

in

turn,

takes

as

its

second

parameter,

pConDetails,

a

pointer

to

a

structure

defined

as

follows:

typedef

struct

db2sec_con_details_1

{

db2int32

clientProtocol;

db2Uint32

clientIPAddress;

db2Uint32

connect_info_bitmap;

db2int32

dbnameLen;

char

dbname[DB2SEC_MAX_DBNAME_LENGTH

+

1];

}

db2sec_con_details_1;

See

the

detailed

description

section

for

an

explanation

of

this

function

and

structure.

db2secServerAuthPluginTerm(

char

**errormsg,

db2int32

*errormsglen);

Chapter

28.

Security

plug-in

APIs

573

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

SQL_API_RC

SQL_API_FN

db2secValidatePassword(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpasswd,

db2int32

newpasswdlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secGetAuthIDs(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

SystemAuthid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

SystemAuthidlen,

char

InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*InitialSessionAuthIdlen,

char

username[DB2SEC_MAX_USERID_LENGTH],

db2int32

*usernamelen,

db2int32

*initsessionidtype,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secDoesAuthIDExist(

const

char

*authid,

db2int32

authidlen,

const

char

*errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeToken(

void

*token,

char

**errormsg,

db2int32

*errormsglen);

SQL_API_RC

SQL_API_FN

db2secFreeErrormsg(char

*errormsg);

The

only

API

that

must

be

resolvable

externally

is

db2secServerAuthPluginInit().

This

function

will

take

a

void

*

parameter,

which

should

be

cast

to

either:

typedef

struct

db2secUseridPasswordServerAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

/*

parameter

lists

left

blank

for

readability

see

above

for

parameters

*/

SQL_API_RC

(SQL_API_FN

*

db2secValidatePassword)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secGetAuthIDs)(<parameter

list);

SQL_API_RC

(SQL_API_FN

*

db2secDoesAuthIDExist)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secServerAuthPluginTerm)();

}

userid_password_server_auth_functions;

or

574

Programming

Client

Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

typedef

struct

db2secGssapiServerAuthFunctions_1

{

db2int32

version;

db2int32

plugintype;

gss_buffer_desc

serverPrincipalName;

gss_cred_id_t

ServerCredHandle;

SQL_API_RC

(SQL_API_FN

*

db2secGetAuthIDs)(<parameter

list);

SQL_API_RC

(SQL_API_FN

*

db2secDoesAuthIDExist)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeToken)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secFreeErrormsg)(<parameter

list>);

SQL_API_RC

(SQL_API_FN

*

db2secServerAuthPluginTerm)();

/*

GSS-API

specific

functions

refer

to

db2secPlugin.h

for

parameter

list*/

OM_uint32

(SQL_API_FN

*

gss_accept_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_display_name

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_delete_sec_context

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_display_status

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_buffer

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_cred

)(<parameter

list>);

OM_uint32

(SQL_API_FN

*

gss_release_name

)(<parameter

list>);

}

gssapi_server_auth_functions;

You

should

use

db2secUseridPasswordServerAuthFunctions_1

if

you

are

writing

an

user

ID/password

plug-in.

If

you

are

writing

a

GSS-API

(including

Kerberos)

plug-in,

you

should

use

db2secGssapiServerAuthFunctions_1.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

tasks:

v

“Deploying

a

user

ID/password

plug-in”

on

page

543

Related

reference:

v

“db2secGetGroupsForUser

-

Get

list

of

groups

for

user”

on

page

564

v

“db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in”

on

page

576

v

“db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources”

on

page

577

v

“db2secRemapUserid

-

Remap

user

ID

and

password”

on

page

577

v

“db2secGetDefaultLoginContext

-

Get

default

login

context”

on

page

579

v

“db2secGenerateInitialCred

-

Generate

initial

credentials”

on

page

580

v

“db2secValidatePassword

-

Validate

password”

on

page

582

v

“db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server”

on

page

584

v

“db2secFreeToken

-

Free

memory

held

by

token”

on

page

585

v

“db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()”

on

page

586

v

“db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in”

on

page

587

v

“db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources”

on

page

588

v

“db2secGetAuthIDs

-

Get

authentication

IDs”

on

page

589

Chapter

28.

Security

plug-in

APIs

575

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|

|
|

|

|
|

|
|

|
|

|

v

“db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists”

on

page

591

db2secClientAuthPluginInit

-

Initialize

client

authentication

plug-in

This

is

the

initialization

function

for

the

plug-in

library

that

DB2

will

call

immediately

after

loading

the

library.

The

functions

pointer

should

be

cast

to

the

appropriate

client_auth_functions

structure

for

the

interface

version.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginInit(

db2int32

version,

void

*client_fns,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Input:

db2int32

version

The

highest

version

number

of

the

API

that

DB2

will

currently

support.

db2secLogMessage

*logMessage_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

to

log

additional

error

string

to

db2diag.log

for

debugging

or

informational

purposes.

The

first

parameter

should

use

the

define

in

db2secPlugin.h

and

the

last

two

parameters

are

the

message

string

and

its

length.

The

defines

to

be

used

in

the

first

parameter

are:

#define

DB2SEC_LOG_NONE

0

-

No

logging

#define

DB2SEC_LOG_CRITICAL

1

-

Severe

Error

encountered

#define

DB2SEC_LOG_ERROR

2

-

Error

encountered

#define

DB2SEC_LOG_WARNING

3

-

Warning

#define

DB2SEC_LOG_INFO

4

-

Informational

If

you

use

the

DB2SEC_LOG_INFO

define,

the

message

text

will

only

show

up

in

the

db2diag.log

if

the

diaglevel

database

manager

configuration

parameter

is

set

to

4.

Output:

void

*client_fns

A

pointer

to

memory

provided

by

DB2

for

a

client_auth_functions

structure.

In

future

versions

of

DB2,

there

can

be

different

versions

of

the

APIs,

so

this

should

be

cast

to

a

pointer

to

the

client_auth_functions

structure

corresponding

to

the

version

of

the

API

that

the

plug-in

implements.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

576

Programming

Client

Applications

|

|

|

|
|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secClientAuthPluginTerm

-

Clean

up

client

authentication

plug-in

resources

This

function

will

be

called

by

DB2

just

before

it

unloads

the

plug-in.

It

should

do

a

proper

cleanup

of

any

resources

the

plug-in

library

holds,

for

instance,

free

any

memory

allocated

by

the

plug-in,

close

files

that

are

still

open,

and

close

network

connections.

The

plug-in

is

responsible

for

keeping

track

of

these

resources

in

order

to

free

them.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secClientAuthPluginTerm(

char

**errormsg

db2int32

*errormsglen);

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secRemapUserid

-

Remap

user

ID

and

password

This

function

will

be

called

on

the

client

side

to

provide

the

ability

to

remap

a

given

user

ID

and

password

(and

possibly

new

password

and

usernamespace)

to

different

values

from

those

given

at

connect

time.

DB2

will

only

call

this

function

if

at

least

a

user

ID

and

a

password

are

supplied

at

connect

time.

This

prevents

a

plug-in

from

remapping

a

user

ID

by

itself

to

a

user

ID/password

pair.

This

function

is

optional

and

will

not

be

called

if

it

is

not

provided.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secRemapUserid(

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

char

password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*passwordlen,

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32

*newpasswordlen,

Chapter

28.

Security

plug-in

APIs

577

|

|
|

|

|

|

|
|
|
|
|

|

|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

const

char

*dbname,

db2int32

dbnamelen,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*dbname

The

name

of

the

database

to

which

the

client

is

connecting.

db2int32

dbnamelen

Length

of

the

dbname.

Input/output:

char

userid[DB2SEC_MAX_USERID_LENGTH]

The

user

ID

to

be

remapped.

If

there

is

an

input

user

ID

value,

then

there

must

be

an

output

user

ID

value

that

can

be

the

same

or

different

from

the

input

user

ID

value.

If

there

is

no

input

user

ID

value,

then

the

plug-in

should

not

return

an

output

user

ID

value.

db2int32

*useridlen

Length

of

the

user

ID

returned

in

the

userid

parameter.

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH]

The

namespace

the

user

ID

came

from.

It

is

optional

to

remap

this.

If

usernamespace

was

not

provided

as

input

to

this

function,

and

the

function

does

provide

a

value

as

output,

then

the

usernamespace

will

only

be

used

by

DB2

for

CLIENT

authentication

and

be

disregarded

for

other

authentication

types.

db2int32

*usernamespacelen

Old

and

new

length

of

the

usernamespace.

Under

the

limitation

that

the

usernamespacetype

must

be

DB2SEC_NAMESPACE_SAM_COMPATIBLE,

the

maximum

length

supported

in

the

current

version

of

DB2

is

15

bytes.

db2int32

*usernamespacetype

Old

and

new

namespacetype.

In

the

current

version

of

DB2,

the

only

supported

namespace

type

is

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

char

password[DB2SEC_MAX_PASSWORD_LENGTH]

The

password

to

be

remapped.

If

a

password

was

passed

as

input,

then

the

plug-in

must

output

the

new

password,

which

can

be

a

different

than

the

original

password.

If

there

is

no

password

passed

in

as

input,

then

the

plug-in

should

not

return

an

output

password.

db2int32

*passwordlen

Length

of

the

password.

char

newpassword[DB2SEC_MAX_PASSWORD_LENGTH]

A

new

password

if

the

password

is

to

be

changed.

Note:

This

is

the

new

password

that

will

be

passed

by

DB2

into

the

newpassword

field

of

the

db2secValidatePassword

function

on

the

client

or

the

server

(depending

on

the

value

of

the

AUTHENTICATION

dbm

configuration

parameter).

If

a

new

password

was

passed

as

input,

then

there

must

an

output

new

password

and

can

be

a

different

new

password.

If

there

is

no

new

password

passed

in

as

input,

then

the

plug-in

should

not

return

an

output

new

password.

578

Programming

Client

Applications

|
|
|
|

|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

db2int32

*newpasswordlen

Length

of

the

new

password.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secGetDefaultLoginContext

-

Get

default

login

context

This

function

is

called

by

DB2

to

determine

the

user

associated

with

the

default

login

context,

in

other

words,

to

determine

the

DB2

authid

of

the

user

invoking

a

DB2

command

without

explicitly

specifying

a

user

ID

(either

an

implicit

authentication

to

a

database,

or

a

local

authorization).

This

function

must

return

both

an

authid

and

a

user

ID.

C

API

syntax:

db2secGetDefaultLoginContext(

char

authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*authidlen,

char

userid[DB2SEC_MAX_USERID_LENGTH],

db2int32

*useridlen,

db2int32

useridtype,

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32

*usernamespacelen,

db2int32

*usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*dbname

This

will

contain

the

name

of

the

database

being

connected

to

if

this

call

is

being

used

in

the

context

of

a

database

connection.

For

local

authorization

actions

or

instance

attachments,

this

parameter

will

be

NULL.

db2int32

dbnamelen

Length

of

the

dbname.

db2int32

useridtype

Specifies

if

DB2

wants

the

real

or

effective

user

of

the

process.

Output:

Chapter

28.

Security

plug-in

APIs

579

|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|

char

authid[DB2SEC_MAX_AUTHID_LENGTH]

The

field

in

which

the

authid

should

be

returned.

The

returned

value

must

conform

to

DB2

authid

naming

questions,

or

the

user

will

not

be

authorized

to

perform

the

requested

action.

db2int32

*authidlen

Length

of

the

authid

returned.

char

userid[DB2SEC_MAX_USERID_LENGTH]

The

field

in

which

the

user

ID

should

be

returned.

db2int32

*useridlen

Length

of

the

user

ID

returned.

void

**token

This

is

a

pointer

to

data

allocated

by

the

plug-in

that

it

will

want

to

pass

to

subsequent

authentication

calls

in

the

plug-in,

or

possibly

to

the

group

retrieval

plug-in.

The

structure

of

this

data

is

to

be

decided

by

the

plug-in

writer.

char

usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH]

Length

of

the

returned

namespace.

Under

the

limitation

that

the

usernamespacetype

must

be

DB2SEC_NAMESPACE_SAM_COMPATIBLE,

the

maximum

length

supported

in

the

current

version

of

DB2

is

15

bytes.

db2int32

*usernamespacelen

Length

of

the

namespace

returned.

Under

the

limitation

that

the

usernamespacetype

must

be

DB2SEC_NAMESPACE_SAM_COMPATIBLE,

the

maximum

length

supported

in

the

current

version

of

DB2

is

15

bytes.

db2int32

*usernamespacetype

As

specified

above.

In

the

current

version

of

DB2,

the

only

supported

namespace

type

is

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“authentication

-

Authentication

type

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secGenerateInitialCred

-

Generate

initial

credentials

This

function

will

obtain

the

initial

GSS-API

credentials

based

on

the

user

ID

and

password

that

are

passed

in.

For

Kerberos

this

will

be

the

TGT.

The

credential

handle

that

is

returned

in

pGSSCredHandle

is

the

handle

that

will

be

used

with

gss_init_sec_context()

and

must

be

either

an

INITIATE

or

BOTH

credential.

This

function

will

only

be

called

when

a

user

ID,

and

possibly

a

password

are

supplied.

580

Programming

Client

Applications

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|
|

|

|

|
|
|
|
|

Otherwise,

DB2

will

specify

GSS_C_NO_CREDENTIAL

when

calling

gss_init_sec_context()

to

signify

that

the

default

credential

obtained

from

the

current

login

context

is

to

be

used.

C

API

syntax:

db2secGenerateInitialCred(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamspacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

gss_cred_id_t

*pGSSCredHandle,

void

**initInfo,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*userid

The

user

ID

whose

password

is

to

be

verified.

db2int32

useridlen

Length

of

the

user

ID.

const

char

*usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

The

type

of

namespace.

const

char

*password

The

password

to

be

verified.

This

will

be

unencrypted

by

DB2

before

being

passed

to

the

plug-in.

db2int32

passwordlen

Length

of

the

newpassword.

const

char

*newpassword

A

new

password

if

the

password

is

to

be

changed.

If

no

change

is

requested,

this

will

be

NULL.

If

this

is

non-NULL,

the

function

should

validate

the

old

password

before

changing

to

the

new

password.

The

plug-in

does

not

have

to

honour

a

request

to

change

the

password,

but

if

it

does

not,

it

should

immediately

return

DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED

without

validating

the

old

password.

db2int32

newpasswordlen

Length

of

the

newpassword.

const

char

*dbname

The

name

of

the

database

being

connected

to.

This

function

is

free

to

ignore

this,

or

this

function

can

return

DB2SEC_PLUGIN_CONNECTION_DISALLOWED

if

it

wishes

to

restrict

access

to

certain

databases

to

users

who

otherwise

have

valid

passwords.

Chapter

28.

Security

plug-in

APIs

581

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

db2int32

dbnamelen

Length

of

the

dbname.

Output:

gss_cred_id_t

*pGSSCredHandle

Pointer

to

the

GSS-API

credential

handle.

void

**initInfo

A

pointer

to

data

that

is

opaque

to

DB2.

The

plug-in

can

use

this

to

maintain

a

list

of

resources

that

are

allocated

in

the

process

of

generating

the

credential

handle.

DB2

will

call

db2secFreeInitInfo()

at

the

end

of

authentication,

at

which

point

the

plug-in

can

then

free

these

resources.

If

the

plug-in

does

not

need

to

maintain

such

a

list,

then

it

should

return

NULL.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

Note:

For

this

API,

error

messages

should

not

be

created

if

the

return

value

indicates

a

bad

user

ID

or

password.

An

error

message

should

only

be

returned

if

there

is

an

internal

error

in

the

API

that

prevented

it

from

returning

properly.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secValidatePassword

-

Validate

password

This

function

will

provide

a

user

ID-and-password-style

authentication

method

during

a

database

connect

operation.

Note:

The

plug-in

code

will

be

run

with

the

privileges

of

the

client

application.

The

plug-in

writer

should

take

this

into

consideration

if

authentication

requires

special

privileges

(such

as

root).

This

API

should

return

DB2SEC_PLUGIN_OK

(success)

if

the

password

is

valid,

or

an

error

code

such

as

DB2SEC_PLUGIN_BADPWD

if

the

password

is

invalid.

This

API

will

only

be

called

on

the

client

side

if

authentication

is

set

to

CLIENT.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secValidatePassword(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*password,

db2int32

passwordlen,

582

Programming

Client

Applications

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

const

char

*newpassword,

db2int32

newpasswordlen,

const

char

*dbname,

db2int32

dbnamelen,

db2Uint32

connection_details,

void

**token,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*userid

The

user

ID

whose

password

is

to

be

verified.

db2int32

useridlen

Length

of

the

user

ID.

const

char

*password

The

password

to

be

verified.

This

will

be

unencrypted

by

DB2

before

being

passed

in.

db2int32

passwordlen

Length

of

the

password

given.

const

char

*newpassword

A

new

password,

if

the

password

is

to

be

changed.

If

no

change

is

requested,

this

parameter

will

be

NULL.

If

this

parameter

is

not

NULL,

the

function

should

validate

the

old

password

before

changing

to

the

new

password.

The

plug-in

does

not

have

to

fulfill

a

request

to

change

the

password,

but

if

it

does

not,

it

should

immediately

return

DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED

without

validating

the

old

password.

db2int32

newpasswordlen

Length

of

the

newpassword.

const

char

*dbname

The

name

of

the

database

being

connected

to.

The

function

is

free

to

ignore

this,

or

it

can

return

DB2SEC_PLUGIN_CONNECTIONREFUSED

if

it

has

a

policy

of

restricting

access

to

certain

databases

to

users

who

otherwise

have

valid

passwords.

db2int32

dbnamelen

Length

of

the

dbname.

db2int32

usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

The

type

of

namespace.

Possible

values

are:

DB2SEC_NAMESPACE_SAM_COMPATIBLE

(corresponding

to

a

username

style

like

torolab\myname″),

or

DB2SEC_NAMESPACE_USER_PRINCIPAL

(corresponding

to

a

username

style

like

myname@torolab.ibm.com).

Currently

DB2

only

supports

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

When

the

user

ID

is

not

available,

this

will

be

filled

with

DB2SEC_USER_NAMESPACE_UNDEFINED.

All

the

defines

are

located

in

db2secPlugin.h.

db2Uint32

connection_details

A

bit

field

currently

consisting

of

2

fields:

Chapter

28.

Security

plug-in

APIs

583

|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

v

1

bit

will

indicate

whether

the

connection

is

local

(using

ipc

or

connect

from

one

of

the

nodes

in

the

db2nodes.cfg

in

the

EEE

cluster),

or

remote

(through

network

or

loopback).

This

will

give

the

plug-in

the

ability

to

decide

whether

clients

on

the

same

machine

can

connect

to

the

DB2

server

without

a

password.

Currently,

DB2

always

allows

local

connections

without

a

password

from

clients

on

the

same

machine

(assuming

the

client

has

connect

privileges).

v

1

bit

will

indicate

whether

the

source

of

the

user

ID

is

the

default

from

db2secGetDefaultLoginContext,

or

was

explicitly

provided

during

the

connect.

The

bit

values

are

defined

in

db2secPlugin.h:

#define

DB2SEC_USERID_FROM_OS

0x00000001

DB2SEC_USERID_FROM_OS

indicates

user

ID

is

obtained

from

OS

and

not

explicitly

given

on

the

connect

statement.

#define

DB2SEC_CONNECTION_ISLOCAL

0x00000002

DB2SEC_CONNECTION_ISLOCAL

indicates

a

local

connection.

#define

DB2SEC_VALIDATING_ON_SERVER_SIDE

0x0000004

DB2SEC_VALIDATING_ON_SERVER_SIDE

indicates

whether

DB2

is

calling

from

the

server

side

for

validating

password.

DB2’s

default

behavior

for

an

implicit

authentication

is

to

allow

the

connection

without

any

password

validation.

However,

plug-in

developers

have

the

option

of

disallowing

implicit

authentication

by

returning

a

DB2SEC_PLUGIN_BADPASSWORD

error.

void

**token

A

pointer

to

data

which

can

be

passed

into

subsequent

plug-in

API

calls

(db2secGetAuthIDs,

db2secGetGroupsForUser)

during

this

connection.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secProcessServerPrincipalName

-

Process

service

principal

name

returned

from

server

This

function

will

process

the

service

principal

name

returned

from

the

server

and

return

the

principal

name

in

the

gss_name_t

internal

format

to

be

used

with

gss_init_sec_context().

This

function

will

also

be

called

to

process

the

service

principal

name

cataloged

with

the

db

directory

in

the

case

of

Kerberos

authentication.

Normally,

this

conversion

employs

the

use

of

the

584

Programming

Client

Applications

|
|
|
|
|
|
|

|
|
|

|

|
|

|

|

|

|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

gss_import_name()

API.

Once

the

context

has

been

established,

the

gss_name_t

object

will

be

freed

through

the

call

to

gss_release_name().

The

function

will

return

DB2SEC_PLUGIN_OK

if

gssName

points

to

a

valid

GSS

name;

a

DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME

error

code

will

be

returned

if

the

principal

name

is

invalid.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secProcessServerPrincipalName(

const

void

*name,

db2int32

nameLen,

gss_name_t

*gssName,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

void

*name

Text

name

of

the

service

principal

in

GSS_C_NT_USER_NAME

format,

e.g.,

service/host@REALM.

db2int32

nameLen

Length

of

the

text

service

principal

name.

Output:

gss_name_t

*gssName

Pointer

to

the

output

service

principal

name

in

the

GSS-API

internal

format

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secFreeToken

-

Free

memory

held

by

token

This

function

will

be

called

by

DB2

when

it

no

longer

needs

the

memory

held

by

token.

The

plug-in

must

free

the

memory.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeToken(

void

*token

char

**errormsg,

db2int32

*errormsglen);

Input:

void

*token

Pointer

to

the

memory

to

be

freed.

Chapter

28.

Security

plug-in

APIs

585

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secFreeInitInfo

-

Clean

up

resources

held

by

db2secGenerateInitialCred()

This

function

will

free

any

resource

allocated

by

db2secGenerateInitialCred().

This

can

include

for

example,

handles

to

underlying

mechanism

contexts

or

a

credential

cache

created

for

the

GSS-API

credential

cache.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secFreeInitInfo(

void

*initinfo,

char

**errormsg,

db2int32

*errormsglen);

Input:

void

*initinfo

A

pointer

to

data

opaque

to

DB2.

The

pointer

is

used

to

maintain

a

list

of

resources

that

are

allocated

in

the

process

of

generating

the

credential

handle.

These

resources

will

be

freed

by

calling

this

API.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

586

Programming

Client

Applications

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

db2secServerAuthPluginInit

-

Initialize

server

authentication

plug-in

This

is

the

initialization

function

for

the

library

that

DB2

will

call

immediately

after

loading

the

library.

The

functions

pointer

should

be

cast

to

the

appropriate

server_auth_functions

structure

for

the

interface

version.

In

the

case

of

GSS-API,

the

plug-in

is

responsible

for

filling

in

the

server’s

principal

name

in

the

serverPrincipalName

variable

inside

the

gssapi_server_auth_functions

structure

at

initialization

time

and

providing

the

server’s

credential

handle

in

the

serverCredHandle

variable.

The

freeing

of

the

memory

allocated

to

hold

the

principal

name

and

the

credential

handle

is

the

responsibility

of

the

db2secServerAuthPluginTerm()

cleanup

function.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secServerAuthPluginInit(

db2int32

version,

void

*server_fns,

db2secGetConDetails

*getConDetails_fn,

db2secLogMessage

*logMessage_fn,

char

**errormsg,

db2int32

*errormsglen);

Input:

db2int32

version

The

highest

version

number

of

the

API

that

DB2

will

currently

support.

db2secGetConDetails

*getConDetails_fn

This

is

a

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

in

any

one

of

the

other

authentication

APIs

to

obtain

details

related

to

the

database

connection.

These

details

will

include

information

about

the

communication

mechanism

associated

with

the

connection

(such

as

the

IP

address,

in

the

case

of

TCP/IP),

which

the

plug-in

writer

might

need

to

reference

when

making

authentication

decisions.

For

instance,

the

plug-in

could

disallow

a

connection

for

a

particular

user,

unless

that

user

is

connecting

from

a

particular

IP

address.

The

use

of

this

callback

is

optional.

If

the

callback

is

called

in

a

situation

not

involving

a

database

connection,

this

function

will

return

DB2SEC_PLUGIN_NO_CON_DETAILS,

otherwise,

this

function

will

return

0

on

success.

The

parameter

getConDetails_fn

takes

two

input

parameters,

a

pointer

to

the

db2sec_con_details

structure,

and

a

version

number

indicating

which

db2sec_con_details

structure

to

use.

The

current

version

number

is

1.

Upon

a

successful

return,

the

db2sec_con_details

structure

will

be

filled

out

with

the

following

details:

v

The

protocol

used

for

the

connection

to

the

server.

The

listing

of

protocol

definitions

can

be

found

in

file

sqlenv.h

lpar;SQL_PROTOCOL_).

v

The

TCP/IP

address

of

the

inbound

connect

to

the

server

if

the

protocol

is

TCP/IP.

v

The

database

name

the

client

is

attempting

to

connect

to.

This

will

not

be

set

for

instance

attachments.

v

A

connection

information

bit-map

that

contains

the

same

details

as

documented

in

the

connection_details

parameter

of

the

db2secValidatePassword()

API.

Chapter

28.

Security

plug-in

APIs

587

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|

db2secLogMessage

*logMessage_fn

A

pointer

to

a

function

provided

by

DB2.

The

plug-in

can

call

this

function

to

log

additional

error

string

to

db2diag.log

for

debugging

or

informational

purposes.

The

first

parameter

should

use

the

define

in

db2secPlugin.h

and

the

last

two

parameters

are

the

message

string

and

its

length.

The

defines

to

be

used

in

the

first

parameter

are:

#define

DB2SEC_LOG_NONE

0

-

No

logging

#define

DB2SEC_LOG_CRITICAL

1

-

Severe

Error

encountered

#define

DB2SEC_LOG_ERROR

2

-

Error

encountered

#define

DB2SEC_LOG_WARNING

3

-

Warning

#define

DB2SEC_LOG_INFO

4

-

Informational

If

you

use

the

DB2SEC_LOG_INFO

define,

the

message

text

will

only

show

up

in

the

db2diag.log

if

the

diaglevel

database

manager

configuration

parameter

is

set

to

4.

Output:

void

*server_fns

A

pointer

to

memory

provided

by

DB2

for

a

server_auth_functions

structure.

In

future

versions

of

DB2,

there

can

be

different

versions

of

the

APIs,

so

this

should

be

cast

to

a

pointer

to

the

server_auth_functions

structure

corresponding

to

the

version

of

the

API

that

the

plug-in

implements.

Inside

the

server_auth_functions,

the

plugintype

variable

should

be

set

to

one

of

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,

DB2SEC_PLUGIN_TYPE_GSSAPI,

or

DB2SEC_PLUGIN_TYPE_KERBEROS.

Other

values

can

be

defined

in

future

versions

of

the

API.

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“diaglevel

-

Diagnostic

error

capture

level

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secServerAuthPluginTerm

-

Clean

up

server

authentication

plug-in

resources

This

function

will

be

called

by

DB2

just

before

it

unloads

the

plug-in.

It

should

do

a

proper

cleanup

of

any

resources

the

plug-in

library

holds,

for

instance,

free

any

memory

allocated

by

the

plug-in,

close

files

that

are

still

open,

and

close

network

connections.

The

plug-in

is

responsible

for

keeping

track

of

these

resources

in

order

to

free

them.

C

API

syntax:

588

Programming

Client

Applications

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|
|

|

|

|

|
|
|
|
|

|

SQL_API_RC

SQL_API_FN

db2secServerAuthPluginTerm(char

**errormsg,

db2int32

*errormsglen);

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secGetAuthIDs

-

Get

authentication

IDs

This

function

returns

an

SQL

authid

for

an

authenticated

user.

This

will

be

called

during

database

connections

for

both

user

ID/password

and

GSS-API

authentication

methods.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secGetAuthIDs(

const

char

*userid,

db2int32

useridlen,

const

char

*usernamespace,

db2int32

usernamespacelen,

db2int32

usernamespacetype,

const

char

*dbname,

db2int32

dbnamelen,

void

**token,

char

SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*SystemAuthIDlen,

char

InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],

db2int32

*InitialSessionAuthIDlen,

char

username[DB2SEC_MAX_USERID_LENGTH],

db2int32

*usernamelen,

db2int32

*initsessionidtype,

char

**errormsg,

db2int32

*errormsglen);

Input:

const

char

*

userid

The

authenticated

user.

This

will

be

blank

for

GSS-API.

db2int32

useridlen

Length

of

the

user

ID.

void

**token

Data

that

the

plug-in

might

pass

to

the

db2secGetGroupsForUser

call.

For

GSS-API,

this

is

a

context

handle

(gss_ctx_id_t).

Normally,

this

is

an

input-only

parameter

and

its

value

is

taken

from

db2secValidatePassword.

It

can

also

be

an

output

parameter

when

authentication

is

done

on

the

client

and

therefore

db2secValidatePassword

is

not

called.

Chapter

28.

Security

plug-in

APIs

589

|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|

const

char

*dbname

The

name

of

the

database

being

connected

to.

The

plug-in

can

ignore

this,

or

it

can

return

differing

authids

when

the

same

user

connects

to

different

databases.

db2int32

dbnamelen

Length

of

the

dbname.

const

char

*usernamespace

The

namespace

from

which

the

user

ID

was

obtained.

db2int32

usernamespacelen

Length

of

the

namespace

field.

db2int32

usernamespacetype

As

specified

above.

In

the

current

version

of

DB2,

the

only

supported

namespace

type

is

DB2SEC_NAMESPACE_SAM_COMPATIBLE.

Output:

char

SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH]

The

system

authid

corresponds

to

the

id

of

the

authenticated

user.

The

size

is

255,

but

DB2

will

currently

only

be

able

to

use

up

to

30.

db2int32

*SystemAuthiIDlen

Length

of

the

SystemAuthId

returned.

char

InitialSessionAuthid[DB2SEC_MAX_AUTHID_LENGTH]

This

is

the

authid

used

for

this

connection

session.

This

is

usually

the

same

as

the

SystemAuthID

but

can

be

different

in

certain

cases

such

as

issuing

set

session

authorization

statement.

Size

is

255,

but

DB2

will

currently

only

be

able

to

use

up

to

30.

db2int32

*InitialSessionAuthidlen

Length

of

the

InitialSessionAuthID

returned.

char

username[DB2SEC_MAX_USERID_LENGTH]

A

username

corresponding

to

the

authenticated

user

and

authid.

This

will

only

be

used

for

auditing

and

will

be

logged

in

the

″User

ID″

field.

If

the

plug-in

does

not

fill

in

this

field,

DB2

will

copy

it

from

the

userid.

db2int32

*usernamelen

Length

of

the

user

ID

returned.

db2int32

*initsessionidtype

Session

authid

type

indicating

whether

or

not

the

InitialSessionAuthid

is

a

role

or

an

authid.

The

plug-in

should

return

the

one

of

the

following

(defined

in

db2secPlugin.h):

DB2SEC_ID_TYPE_AUTHID

(0)

or

DB2SEC_ID_TYPE_ROLE

(1).

Currently,

DB2

only

supports

authid

(DB2SEC_ID_TYPE_AUTHID).

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

590

Programming

Client

Applications

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

db2secDoesAuthIDExist

-

Check

if

authentication

ID

exists

This

function

will

determine

if

the

authid

represents

an

individual

user

(for

instance,

whether

the

function

can

map

the

authid

to

an

external

user

id).

This

function

should

return

DB2SEC_PLUGIN_OK

if

it

is

successful

-

the

authid

is

valid,

DB2SEC_PLUGIN_INVALID_USERORGROUP

if

it

is

not

valid,

or

DB2SEC_PLUGIN_USERSTATUSNOTKNOWN

if

the

existence

cannot

be

determined.

C

API

syntax:

SQL_API_RC

SQL_API_FN

db2secDoesAuthIDExist(

const

char

*authid,

db2int32

authidlen,

const

char

*errormsg,

db2int32

*errormsglen);

Input:

const

char

*authid

The

authid

to

validate.

This

will

be

upper-cased,

with

no

trailing

blanks.

db2int32

authidlen

Length

of

the

authid.

Output:

char

**errormsg

A

pointer

to

the

address

of

an

ASCII

string

allocated

by

the

plug-in

that

can

be

returned

in

this

parameter

if

the

API

is

not

successful.

db2int32

*errormsglen

A

pointer

to

an

integer

that

indicates

the

length

of

the

error

message

string

in

char

**errormsg.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“APIs

for

user

ID/password

authentication

plug-in”

on

page

569

GSS-API

plug-in

APIs

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

This

topic

presents

a

complete

list

of

GSS-APIs

required

for

the

DB2

security

plug-in

interface.

The

supported

APIs

follow

these

specifications:

Generic

Security

Service

Application

Program

Interface,

Version

2

(IETF

RFC2743)

and

Generic

Security

Service

API

Version

2:

C-Bindings

(IETF

RFC2744).

Before

implementing

a

GSS-API

based

plug-in,

you

should

have

a

complete

understanding

of

these

specifications.

Chapter

28.

Security

plug-in

APIs

591

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

Table

84.

Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins

Name

Description

Client-side

APIs

gss_init_sec_context

Initiate

a

security

context

with

a

peer

application

Server-side

APIs

gss_accept_sec_context

Accept

a

security

context

initiated

by

a

peer

application.

gss_display_name

Convert

an

internal

format

name

to

text.

Common

APIs

gss_delete_sec_context

Delete

an

established

security

context.

gss_display_status

Obtain

the

text

error

message

associated

with

a

GSS-API

status

code

gss_release_buffer

Delete

a

buffer.

gss_release_cred

Releases

local

data

structures

associated

with

a

GSS-API

credential.

gss_release_name

Delete

internal

format

name.

Required

definitions

GSS_C_DELEG_FLAG

Delegation

requested.

GSS_C_EMPTY_BUFFER

Signifies

that

the

gss_buffer_desc

does

not

contain

any

data.

GSS_C_GSS_CODE

Indicates

a

GSS

major

status

code.

GSS_C_INDEFINITE

Indicates

that

mechanism

does

not

support

context

expiration.

GSS_C_MECH_CODE

Indicates

a

GSS

minor

status

code.

GSS_C_MUTUAL_FLAG

Mutual

authentication

requested.

GSS_C_NO_BUFFER

Signifies

that

the

gss_buffer_t

variable

does

not

point

to

a

valid

gss_buffer_desc

structure.

GSS_C_NO_CHANNEL_BINDINGS

No

communication

channel

bindings.

GSS_C_NO_CONTEXT

Signifies

that

the

gss_ctx_id_t

variable

does

not

point

to

a

valid

context.

GSS_C_NO_CREDENTIAL

Signifies

that

gss_cred_id_t

variable

does

not

point

to

a

valid

credential

handle.

GSS_C_NO_NAME

Signifies

that

the

gss_name_t

variable

does

not

point

to

a

valid

internal

name.

GSS_C_NO_OID

Use

default

authentication

mechanism.

GSS_C_NULL_OID_SET

Use

default

mechanism.

GSS_S_COMPLETE

API

completed

successfully.

GSS_S_CONTINUE_NEEDED

Processing

is

not

complete

and

the

API

must

be

called

again

with

the

reply

token

received

from

the

peer.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“Restrictions

for

GSS-API

authentication

plug-ins”

on

page

593

592

Programming

Client

Applications

||

||

|

|||

|

|||

|||

|

|||

|||
|

|||

|||
|

|||

|

|||

|||
|

|||

|||
|

|||

|||

|||
|

|||

|||
|

|||
|

|||
|

|||

|||

|||

|||
|
|

|

|

|

|

|

Restrictions

for

GSS-API

authentication

plug-ins

The

following

is

a

list

of

restrictions

for

GSS-API

authentication

plug-ins.

v

The

default

security

mechanism

will

always

be

assumed,

therefore

there

is

no

OID

consideration.

v

The

only

GSS

services

requested

in

gss_init_sec_context()

are

mutual

authentication

and

delegation.

DB2

will

always

request

a

ticket

for

delegation,

but

will

currently

not

use

that

ticket

to

generate

a

new

ticket.

v

Only

the

default

context

time

will

be

requested.

v

Context

tokens

from

gss_delete_sec_context()

are

not

sent

from

the

client

to

the

server

and

vice-versa.

v

Anonymity

is

not

supported.

v

Channel

binding

is

not

supported

v

If

initial

credentials

expire,

DB2

will

not

automatically

renew

them.

v

The

GSS-API

specification

stipulates

that

even

if

gss_init_sec_context()

or

gss_accept_sec_context()

fail,

either

function

must

return

a

token

to

send

to

the

peer.

However,

because

of

DRDA

limitations,

DB2

can

only

manage

to

do

send

a

token

if

gss_init_sec_context()

fails

and

generates

a

token

on

the

first

call.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Related

reference:

v

“Required

APIs

and

Definitions

for

GSS-API

authentication

plug-ins”

on

page

591

Security

plug-in

API

versioning

Since

it

is

possible

that

future

releases

of

DB2®

will

need

different

versions

of

the

security

plug-in

APIs,

DB2

supports

version

numbering

of

the

APIs.

These

version

numbers

will

be

integers

starting

with

1

for

DB2

UDB

Version

8.2.

The

version

number

that

DB2

passes

to

the

security

plug-in

APIs

will

be

the

highest

version

number

of

the

API

that

DB2

can

support,

and

will

correspond

to

a

version

number

of

the

structure.

If

the

plug-in

can

support

a

higher

API

version,

it

must

return

function

pointers

for

the

version

that

DB2

has

requested.

If

the

plug-in

can

only

support

a

lower

version

of

the

API,

it

should

fill

in

function

pointers

for

that

lower

version.

In

either

case,

the

security

plug-in

APIs

should

return

the

version

number

for

the

API

it

is

supporting

in

the

version

field

of

the

functions

structure.

For

DB2,

the

version

numbers

of

the

security

plug-ins

will

only

change

when

necessary.

For

example,

when

there

are

changes

to

the

parameters

of

the

APIs.

Version

numbers

will

not

automatically

change

with

DB2

release

numbers.

Related

concepts:

v

“Security

plug-ins”

on

page

533

v

“Security

plug-in

APIs”

on

page

559

Chapter

28.

Security

plug-in

APIs

593

|

|

|
|

|
|
|

|

|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

594

Programming

Client

Applications

Part

7.

General

DB2

Application

Concepts

©

Copyright

IBM

Corp.

1997

-

2004

595

596

Programming

Client

Applications

Chapter

29.

National

Language

Support

Collating

Sequence

Overview

.

.

.

.

.

.

.

. 597

Collating

sequences

.

.

.

.

.

.

.

.

.

. 597

Character

comparisons

based

on

collating

sequences

.

.

.

.

.

.

.

.

.

.

.

.

. 599

Case

Independent

Comparisons

Using

the

TRANSLATE

Function

.

.

.

.

.

.

.

.

. 600

Differences

Between

EBCDIC

and

ASCII

Collating

Sequence

Sort

Orders

.

.

.

.

.

. 601

Collating

sequence

specified

when

database

is

created

.

.

.

.

.

.

.

.

.

.

.

.

.

. 602

Sample

Collating

Sequences

.

.

.

.

.

.

. 604

Code

Pages

and

Locales

.

.

.

.

.

.

.

.

.

. 604

Derivation

of

code

page

values

.

.

.

.

.

. 604

Derivation

of

Locales

in

Application

Programs

605

How

DB2

Derives

Locales

.

.

.

.

.

.

.

. 605

Application

Considerations

.

.

.

.

.

.

.

.

. 605

National

Language

Support

and

Application

Development

Considerations

.

.

.

.

.

.

. 606

National

Language

Support

and

SQL

Statements

607

Remote

routines

.

.

.

.

.

.

.

.

.

.

. 608

Package

Name

Considerations

in

Mixed

Code

Page

Environments

.

.

.

.

.

.

.

.

.

. 608

Active

Code

Page

for

Precompilation

and

Binding

.

.

.

.

.

.

.

.

.

.

.

.

.

. 609

Active

Code

Page

for

Application

Execution

.

. 609

Character

conversion

between

different

code

pages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 609

When

code

page

conversion

occurs

.

.

.

.

. 609

Character

Substitutions

During

Code

Page

Conversions

.

.

.

.

.

.

.

.

.

.

.

.

. 610

Supported

Code

Page

Conversions

.

.

.

.

. 610

Code

Page

Conversion

Expansion

Factor

.

.

. 611

DBCS

Character

Sets

.

.

.

.

.

.

.

.

.

.

. 612

Extended

UNIX

Code

(EUC)

Character

Sets

.

.

. 613

CLI,

ODBC,

JDBC,

and

SQLJ

Programs

in

a

DBCS

Environment

.

.

.

.

.

.

.

.

.

.

.

.

. 614

Considerations

for

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Sets

.

.

.

.

.

. 614

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations

.

.

.

.

.

. 614

Mixed

EUC

and

Double-Byte

Client

and

Database

Considerations

.

.

.

.

.

.

.

. 616

Character

Conversion

Considerations

for

Traditional

Chinese

Users

.

.

.

.

.

.

.

. 616

Graphic

Data

in

Japanese

or

Traditional

Chinese

EUC

Applications

.

.

.

.

.

.

.

.

.

.

. 617

Application

Development

in

Unequal

Code

Page

Situations

.

.

.

.

.

.

.

.

.

.

.

. 618

Client-Based

Parameter

Validation

in

a

Mixed

Code

Set

Environment

.

.

.

.

.

.

.

.

. 621

DESCRIBE

Statement

in

Mixed

Code

Set

Environments

.

.

.

.

.

.

.

.

.

.

.

. 622

Fixed-Length

and

Variable-Length

Data

in

Mixed

Code

Set

Environments

.

.

.

.

.

. 623

Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments

.

.

.

.

.

. 623

Applications

Connected

to

Unicode

Databases

625

Collating

Sequence

Overview

The

sections

that

follow

describe

collating

sequences,

and

how

character

comparisons

are

performed.

Collating

sequences

The

database

manager

compares

character

data

using

a

collating

sequence.

This

is

an

ordering

for

a

set

of

characters

that

determines

whether

a

particular

character

sorts

higher,

lower,

or

the

same

as

another.

Note:

Character

string

data

defined

with

the

FOR

BIT

DATA

attribute,

and

BLOB

data,

is

sorted

using

the

binary

sort

sequence.

For

example,

a

collating

sequence

can

be

used

to

indicate

that

lowercase

and

uppercase

versions

of

a

particular

character

are

to

be

sorted

equally.

The

database

manager

allows

databases

to

be

created

with

custom

collating

sequences.

The

following

sections

help

you

determine

and

implement

a

particular

collating

sequence

for

a

database.

Each

single-byte

character

in

a

database

is

represented

internally

as

a

unique

number

between

0

and

255

(in

hexadecimal

notation,

between

X'00'

and

X'FF').

©

Copyright

IBM

Corp.

1997

-

2004

597

|
|
|

This

number

is

referred

to

as

the

code

point

of

the

character;

the

assignment

of

numbers

to

characters

in

a

set

is

collectively

called

a

code

page.

A

collating

sequence

is

a

mapping

between

the

code

point

and

the

desired

position

of

each

character

in

a

sorted

sequence.

The

numeric

value

of

the

position

is

called

the

weight

of

the

character

in

the

collating

sequence.

In

the

simplest

collating

sequence,

the

weights

are

identical

to

the

code

points.

This

is

called

the

identity

sequence.

For

example,

suppose

the

characters

B

and

b

have

the

code

points

X'42'

and

X'62',

respectively.

If

(according

to

the

collating

sequence

table)

they

both

have

a

sort

weight

of

X'42'

(B),

they

collate

the

same.

If

the

sort

weight

for

B

is

X'9E',

and

the

sort

weight

for

b

is

X'9D',

b

will

be

sorted

before

B.

The

collation

sequence

table

specifies

the

weight

of

each

character.

The

table

is

different

from

a

code

page,

which

specifies

the

code

point

of

each

character.

Consider

the

following

example.

The

ASCII

characters

A

through

Z

are

represented

by

X'41'

through

X'5A'.

To

describe

a

collating

sequence

in

which

these

characters

are

sorted

consecutively

(no

intervening

characters),

you

can

write:

X'41',

X'42',

...

X'59',

X'5A'.

The

hexadecimal

value

of

a

multi-byte

character

is

also

used

as

the

weight.

For

example,

suppose

the

code

points

for

the

double-byte

characters

A

and

B

are

X'8260'

and

X'8261'

respectively,

then

the

collation

weights

for

X'82',

X'60',

and

X'61'

are

used

to

sort

these

two

characters

according

to

their

code

points.

The

weights

in

a

collating

sequence

need

not

be

unique.

For

example,

you

could

give

uppercase

letters

and

their

lowercase

equivalents

the

same

weight.

Specifying

a

collating

sequence

can

be

simplified

if

the

collating

sequence

provides

weights

for

all

256

code

points.

The

weight

of

each

character

can

be

determined

using

the

code

point

of

the

character.

In

all

cases,

DB2

Universal

Database™

(DB2

UDB)

uses

the

collation

table

that

was

specified

at

database

creation

time.

If

you

want

the

multi-byte

characters

to

be

sorted

the

way

that

they

appear

in

their

code

point

table,

you

must

specify

IDENTITY

as

the

collation

sequence

when

you

create

the

database.

Once

a

collating

sequence

is

defined,

all

future

character

comparisons

for

that

database

will

be

performed

with

that

collating

sequence.

Except

for

character

data

defined

as

FOR

BIT

DATA

or

BLOB

data,

the

collating

sequence

will

be

used

for

all

SQL

comparisons

and

ORDER

BY

clauses,

and

also

in

setting

up

indexes

and

statistics.

Potential

problems

can

occur

in

the

following

cases:

v

An

application

merges

sorted

data

from

a

database

with

application

data

that

was

sorted

using

a

different

collating

sequence.

v

An

application

merges

sorted

data

from

one

database

with

sorted

data

from

another,

but

the

databases

have

different

collating

sequences.

v

An

application

makes

assumptions

about

sorted

data

that

are

not

true

for

the

relevant

collating

sequence.

For

example,

numbers

collating

lower

than

alphabetics

may

or

may

not

be

true

for

a

particular

collating

sequence.

A

final

point

to

remember

is

that

the

results

of

any

sort

based

on

a

direct

comparison

of

character

code

points

will

only

match

query

results

that

are

ordered

using

an

identity

collating

sequence.

598

Programming

Client

Applications

|
|
|
|

Related

concepts:

v

“Character

conversion”

in

the

SQL

Reference,

Volume

1

v

“Unicode

implementation

in

DB2

Universal

Database”

in

the

Administration

Guide:

Planning

v

“Character

comparisons

based

on

collating

sequences”

on

page

599

Character

comparisons

based

on

collating

sequences

Once

a

collating

sequence

is

established

for

a

database

with

SYSTEM,

NLSCHAR,

COMPATIBILITY,

or

user

defined

collation

option,

character

comparison

is

performed

by

comparing

the

weights

of

two

characters,

instead

of

directly

comparing

their

code

point

values.

If

weights

that

are

not

unique

are

used,

characters

that

are

not

identical

may

compare

equally.

Because

of

this,

string

comparison

can

become

a

two-phase

process:

1.

Compare

the

characters

in

each

string

based

on

their

weights.

2.

If

step

1

yields

equality,

compare

the

characters

of

each

string

based

on

their

code

point

values.

If

the

collating

sequence

contains

256

unique

weights,

only

the

first

step

is

performed.

If

the

collating

sequence

is

the

identity

sequence,

only

the

second

step

is

performed.

In

either

case,

there

is

a

performance

benefit.

For

Unicode

databases,

if

the

collation

option

is

SYSTEM

or

IDENTITY,

the

collation

sequence

will

be

IDENTITY

and

only

the

second

step

is

performed.

A

Unicode

database

with

the

SQL_CS_IDENTITY_16BIT

collation

option

will

collate

the

CHAR

or

VARCHAR

data

in

the

database

according

to

their

CESU-8

binary

order

instead

of

the

UTF-8

binary

order.

CESU-8

stands

for

Compatibility

Encoding

Scheme

for

UTF-16:

8-Bit,

as

specified

in

the

Unicode

Technical

Report

#26

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

CESU-8

is

binary

identical

to

UTF-8,

except

for

the

Unicode

supplementary

characters,

that

is,

those

characters

that

are

defined

outside

the

16-bit

Basic

Multilingual

Plane

(BMP

or

Plane

0).

In

UTF-8

encoding,

a

supplementary

character

is

represented

by

one

4-byte

sequence,

but

the

same

character

in

CESU-8

requires

two

3-byte

sequences.

In

a

Unicode

database,

character

data

are

stored

in

UTF-8

and

graphic

data

are

stored

in

UCS-2.

For

SQL_CS_NONE

collation,

non-supplementary

characters

in

UTF-8

and

UCS-2

have

identical

binary

collation,

but

supplementary

characters

in

UTF-8

collate

differently

from

the

same

characters

in

UCS-2.

For

Unicode

databases

whose

collation

option

is

of

the

UCA

(Unicode

Collation

Algorithm)

type,

then

characters

that

are

not

binary

identical

but

semantically

equal

will

compare

equally.

Because

of

this,

string

comparison

can

become

a

two-phase

process:

1.

Compare

the

characters

in

each

string

as

per

the

algorithm

specified

in

the

Unicode

Technical

Standard

#10,

available

at

the

Unicode

Technical

Consortium

web

site

(www.unicode.org).

2.

If

step

1

yields

equality,

compare

the

characters

of

each

string

based

on

their

code

point

values.

Related

concepts:

v

“Character

conversion”

in

the

SQL

Reference,

Volume

1

Chapter

29.

National

Language

Support

599

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

http://www.unicode.org
http://www.unicode.org

Case

Independent

Comparisons

Using

the

TRANSLATE

Function

To

perform

character

comparisons

that

are

independent

of

case,

you

can

use

the

TRANSLATE

function

to

select

and

compare

mixed

case

column

data

by

translating

it

to

uppercase

(for

purposes

of

comparison

only).

Consider

the

following

data:

Abel

abels

ABEL

abel

ab

Ab

The

following

SELECT

statement:

SELECT

c1

FROM

T1

WHERE

TRANSLATE(c1)

LIKE

’AB%’

returns

ab

Ab

abel

Abel

ABEL

abels

You

could

also

specify

the

following

SELECT

statement

when

creating

view

″v1″,

make

all

comparisons

against

the

view

in

uppercase,

and

request

table

INSERTs

in

mixed

case:

CREATE

VIEW

v1

AS

SELECT

TRANSLATE(c1)

FROM

T1

At

the

database

level,

you

can

set

the

collating

sequence

as

part

of

the

sqlecrea

-

Create

Database

API.

This

allows

you

to

decide

if

″a″

is

processed

before

″A″,

or

if

″A″

is

processed

after

″a″,

or

if

they

are

processed

with

equal

weighting.

This

will

make

them

equal

when

collating

or

sorting

using

the

ORDER

BY

clause.

″A″

will

always

come

before

″a″,

because

they

are

equal

in

every

sense.

The

only

basis

upon

which

to

sort

is

the

hexadecimal

value.

Thus

SELECT

c1

FROM

T1

WHERE

c1

LIKE

’ab%’

returns

ab

abel

abels

and

SELECT

c1

FROM

T1

WHERE

c1

LIKE

’A%’

returns

Abel

Ab

ABEL

The

following

statement

SELECT

c1

FROM

T1

ORDER

BY

c1

600

Programming

Client

Applications

returns

ab

Ab

abel

Abel

ABEL

abels

Thus,

you

may

want

to

consider

using

the

scalar

function

TRANSLATE(),

as

well

as

sqlecrea.

Note

that

you

can

only

specify

a

collating

sequence

using

sqlecrea.

You

cannot

specify

a

collating

sequence

from

the

command

line

processor

(CLP).

You

can

also

use

the

UCASE

function

as

follows,

but

note

that

DB2®

performs

a

table

scan

instead

of

using

an

index

for

the

select:

SELECT

*

FROM

EMP

WHERE

UCASE(JOB)

=

’NURSE’

Related

reference:

v

“TRANSLATE

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“UCASE

or

UPPER

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“sqlecrea

-

Create

Database”

in

the

Administrative

API

Reference

Differences

Between

EBCDIC

and

ASCII

Collating

Sequence

Sort

Orders

The

order

in

which

data

in

a

database

is

sorted

depends

on

the

collating

sequence

defined

for

the

database.

For

example,

suppose

that

database

A

uses

the

EBCDIC

code

page’s

default

collating

sequence

and

that

database

B

uses

the

ASCII

code

page’s

default

collating

sequence.

Sort

orders

at

these

two

databases

would

differ,

as

shown

in

the

following

example:

Similarly,

character

comparisons

in

a

database

depend

on

the

collating

sequence

defined

for

that

database.

So

if

database

A

uses

the

EBCDIC

code

page’s

default

collating

sequence

and

database

B

uses

the

ASCII

code

page’s

default

collating

sequence,

the

results

of

character

comparisons

at

the

two

databases

would

differ.

The

difference

is

as

follows:

SELECT.....

ORDER

BY

COL2

EBCDIC-Based

Sort

ASCII-Based

Sort

COL2

COL2

V1G

7AB

Y2W

V1G

7AB

Y2W

Figure

64.

Example

of

How

a

Sort

Order

in

an

EBCDIC-Based

Sequence

Differs

from

a

Sort

Order

in

an

ASCII-Based

Sequence

Chapter

29.

National

Language

Support

601

If

you

are

creating

a

federated

database,

consider

specifying

that

your

collating

sequence

matches

the

collating

sequence

at

a

data

source.

This

approach

will

maximize

“pushdown”

opportunities

and

possibly

increase

query

performance.

Related

concepts:

v

“Guidelines

for

analyzing

where

a

federated

query

is

evaluated”

in

the

Administration

Guide:

Performance

Collating

sequence

specified

when

database

is

created

The

collating

sequence

for

a

database

is

specified

at

database

creation

time.

Once

the

database

has

been

created,

the

collating

sequence

cannot

be

changed.

The

CREATE

DATABASE

API

accepts

a

data

structure

called

the

Database

Descriptor

Block

(SQLEDBDESC).

You

can

define

your

own

collating

sequence

within

this

structure.

Note:

You

can

only

define

your

own

collating

sequence

for

a

single-byte

database.

To

specify

a

collating

sequence

for

a

database:

v

Pass

the

desired

SQLEDBDESC

structure,

or

v

Pass

a

NULL

pointer.

The

collating

sequence

of

the

operating

system

(based

on

current

country/region

code

and

code

page)

is

used.

This

is

the

same

as

specifying

SQLDBCSS

equal

to

SQL_CS_SYSTEM

(0).

The

SQLEDBDESC

structure

contains:

SQLDBCSS

A

4-byte

integer

indicating

the

source

of

the

database

collating

sequence.

Valid

values

are:

SQL_CS_SYSTEM

The

collating

sequence

of

the

operating

system

(based

on

current

country/region

code

and

code

page)

is

used.

SQL_CS_SYSTEM_NLSCHAR

Collating

sequence

from

user

using

the

NLS

version

of

compare

routines

for

character

types

SQL_CS_IDENTITY_16BIT

A

Unicode

database

can

be

created

with

the

SQL_CS_IDENTITY_16BIT

collation

option.

SQL_CS_DENTITY_16BIT

differs

from

the

default

SQL_CS_NONE

collation

option

in

that

the

CHAR

or

VARCHAR

data

in

the

Unicode

database

will

be

SELECT.....

WHERE

COL2

>

’TT3’

EBCDIC-Based

Results

ASCII-Based

Results

COL2

COL2

TW4

TW4

X72

X72

39G

Figure

65.

Example

of

How

a

Comparison

of

Characters

in

an

EBCDIC-Based

Sequence

Differs

from

a

Comparison

of

Characters

in

an

ASCII-Based

Sequence

602

Programming

Client

Applications

|
|
|
|
|
|

collated

using

the

CESU-8

binary

order

instead

of

the

UTF-8

binary

order.

CESU-8

stands

for

Compatibility

Encoding

Scheme

for

UTF-16:

8-Bit,

as

specified

in

the

Unicode

Technical

Report

#26,

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

CESU-8

is

binary

identical

to

UTF-8

except

for

the

Unicode

supplementary

characters,

that

is,

those

characters

that

are

defined

outside

the

16-bit

Basic

Multilingual

Plane

(BMP

or

Plane

0).

In

UTF-8

encoding,

a

supplementary

character

is

represented

by

one

4-byte

sequence,

but

the

same

character

in

CESU-8

requires

two

3-byte

sequences.

In

a

Unicode

database,

character

data

are

stored

in

UTF-8,

and

graphic

data

are

stored

in

UCS-2.

For

SQL_CS_NONE

collation,

non-supplementary

characters

in

UTF-8

and

UCS-2

have

identical

binary

collation,

but

supplementary

characters

in

UTF-8

collate

differently

from

the

same

characters

in

UCS-2.

SQL_CS_IDENTITY_16BIT

ensures

all

characters,

supplementary

and

non-supplementary,

in

a

DB2®

Unicode

databases

have

the

same

binary

collation.

SQL_CS_UCA_NO

A

Unicode

database

can

be

created

with

the

SQL_CS_UCA400_NO

collation

option.

SQL_CS_UCA400_NO

specifies

the

UCA

(Unicode

Collation

Algorithm)

collation

sequence

based

on

the

Unicode

Standard

version

4.00

with

normalization

implicitly

set

to

on.

Details

of

the

UCA

can

be

found

in

the

Unicode

Technical

Standard

#10,

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

SQL_CS_UCA_LTH

A

Unicode

database

can

be

created

with

the

SQL_CS_UCA400_LTH

collation

option.

SQL_CS_UCA400_LTH

specifies

the

UCA

(Unicode

Collation

Algorithm)

collation

sequence

based

on

the

Unicode

Standard

version

4.00,

but

will

sort

all

Thai

characters

as

per

the

Royal

Thai

Dictionary

order.

Details

of

the

UCA

can

be

found

in

the

Unicode

Technical

Standard

#10,

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

SQL_CS_USER

The

collating

sequence

is

specified

by

the

value

in

the

SQLDBUDC

field.

SQL_CS_NONE

The

collating

sequence

is

the

identity

sequence.

Strings

are

compared

byte

for

byte,

starting

with

the

first

byte,

using

a

simple

code

point

comparison.

Note:

These

constants

are

defined

in

the

SQLENV

include

file.

SQLDBUDC

A

256-byte

field.

The

nth

byte

contains

the

sort

weight

of

the

nth

Chapter

29.

National

Language

Support

603

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

character

in

the

code

page

of

the

database.

If

SQLDBCSS

is

not

equal

to

SQL_CS_USER,

this

field

is

ignored.

Related

reference:

v

“sqlecrea

-

Create

Database”

in

the

Administrative

API

Reference

Sample

Collating

Sequences

Several

sample

collating

sequences

are

provided

(as

include

files)

to

facilitate

database

creation

using

the

EBCDIC

collating

sequences

instead

of

the

default

workstation

collating

sequence.

The

collating

sequences

in

these

include

files

can

be

specified

in

the

SQLDBUDC

field

of

the

SQLEDBDESC

structure.

They

can

also

be

used

as

models

for

the

construction

of

other

collating

sequences.

Include

files

that

contain

collating

sequences

are

available

for

the

following

host

languages:

v

C/C++

v

COBOL

v

FORTRAN

Related

reference:

v

“Include

Files

for

C

and

C++”

on

page

132

v

“Include

Files

for

COBOL”

on

page

176

v

“Include

Files

for

FORTRAN”

on

page

196

Code

Pages

and

Locales

The

sections

that

follow

describe

code

pages,

and

how

code

pages

and

locales

are

derived.

Derivation

of

code

page

values

The

application

code

page

is

derived

from

the

active

environment

when

the

database

connection

is

made.

If

the

DB2CODEPAGE

registry

variable

is

set,

its

value

is

taken

as

the

application

code

page.

However,

it

is

not

necessary

to

set

the

DB2CODEPAGE

registry

variable

because

DB2®

will

determine

the

appropriate

code

page

value

from

the

operating

system.

Setting

the

DB2CODEPAGE

registry

variable

to

incorrect

values

may

cause

unpredictable

results.

The

database

code

page

is

derived

from

the

value

specified

(explicitly

or

by

default)

at

the

time

the

database

is

created.

For

example,

the

following

defines

how

the

active

environment

is

determined

in

different

operating

environments:

UNIX®

On

UNIX-based

operating

systems,

the

active

environment

is

determined

from

the

locale

setting,

which

includes

information

about

language,

territory

and

code

set.

Windows®

operating

systems

For

all

Windows

operating

systems,

if

the

DB2CODEPAGE

environment

variable

is

not

set,

the

code

page

is

derived

from

the

ANSI

code

page

setting

in

the

Registry.

604

Programming

Client

Applications

The

section

code

page

is

derived

from

the

tables

used

in

an

SQL

statement.

If

the

tables

are

implicitly

or

explicitly

defined

with

CCSID

ASCII,

then

the

section

code

page

is

the

same

as

the

database

code

page.

If

the

tables

are

defined

with

CCSID

UNICODE,

then

the

section

code

page

is

the

Unicode

code

page.

Related

reference:

v

“Supported

territory

codes

and

code

pages”

in

the

Administration

Guide:

Planning

Derivation

of

Locales

in

Application

Programs

Locales

are

implemented

one

way

on

Windows®

and

another

way

on

UNIX®-based

systems.

There

are

two

locales

on

UNIX-based

systems:

v

The

environment

locale

allows

you

to

specify

the

language,

currency

symbol,

and

so

on,

that

you

want

to

use.

v

The

program

locale

contains

the

current

language,

currency

symbol,

and

so

on,

of

a

program

that

is

running.

On

Windows

systems,

cultural

preferences

can

be

set

through

Regional

Settings

on

the

Control

Panel.

However,

there

is

no

environment

locale

like

the

one

on

UNIX-based

systems.

When

your

program

is

started,

it

gets

a

default

C

locale.

It

does

not

get

a

copy

of

the

environment

locale.

If

you

set

the

program

locale

to

any

locale

other

than

″C″,

DB2

Universal

Database

uses

your

current

program

locale

to

determine

the

code

page

and

territory

settings

for

your

application

environment.

Otherwise,

these

values

are

obtained

from

the

operating

system

environment.

Note

that

setlocale()

is

not

thread-safe,

and

if

you

issue

setlocale()

from

within

your

application,

the

new

locale

is

set

for

the

entire

process.

How

DB2

Derives

Locales

On

UNIX®-based

systems,

the

active

locale

used

by

DB2®

is

determined

from

the

LC_CTYPE

portion

of

the

locale.

For

details,

see

the

NLS

documentation

for

your

operating

system.

v

If

LC_CTYPE

of

the

program

locale

has

a

value

other

than

C,

DB2

will

use

this

value

to

determine

the

application

code

page

by

mapping

it

to

its

corresponding

code

page.

v

If

LC_CTYPE

has

a

value

of

C

(the

C

locale),

DB2

will

set

the

program

locale

according

to

the

environment

locale,

using

the

setlocale()

function.

v

If

LC_CTYPE

still

has

a

value

of

C,

DB2

will

assume

the

default

of

the

US

English

environment,

and

code

page

819

(ISO

8859-1).

v

If

LC_CTYPE

no

longer

has

a

value

of

C,

its

new

value

will

be

used

to

map

to

a

corresponding

code

page.

Related

reference:

v

“Supported

territory

codes

and

code

pages”

in

the

Administration

Guide:

Planning

Application

Considerations

The

sections

that

follow

describe

considerations

that

you

should

be

aware

of

when

coding

an

application.

Chapter

29.

National

Language

Support

605

|
|
|
|

National

Language

Support

and

Application

Development

Considerations

Constant

character

strings

in

static

SQL

statements

are

converted

at

bind

time,

from

the

application

code

page

to

the

database

code

page,

and

will

be

used

at

execution

time

in

this

database

code

page

representation.

To

avoid

such

conversions

if

they

are

not

desired,

you

can

use

host

variables

in

place

of

string

constants.

If

your

program

contains

constant

character

strings,

you

should

precompile,

bind,

compile,

and

execute

the

application

using

the

same

code

page.

For

a

Unicode

database,

you

should

use

host

variables

instead

of

using

string

constants.

The

reason

for

this

recommendation

is

that

data

conversions

by

the

server

can

occur

in

both

the

bind

and

the

execution

phases.

This

could

be

a

concern

if

constant

character

strings

are

used

within

the

program.

These

embedded

strings

are

converted

at

bind

time

based

on

the

code

page

which

is

in

effect

during

the

bind

phase.

Seven-bit

ASCII

characters

are

common

to

all

the

code

pages

supported

by

DB2

Universal

Database

and

will

not

cause

a

problem.

For

non-ASCII

characters,

users

should

ensure

that

the

same

conversion

tables

are

used

by

binding

and

executing

with

the

same

active

code

page.

Any

external

data

obtained

by

the

application

will

be

assumed

to

be

in

the

application

code

page.

This

includes

data

obtained

from

a

file

or

from

user

input.

Make

sure

that

data

from

sources

outside

the

application

uses

the

same

code

page

as

the

application.

If

you

use

host

variables

that

use

graphic

data

in

your

C

or

C++

applications,

there

are

special

precompiler,

application

performance,

and

application

design

issues

you

need

to

consider.

If

you

deal

with

EUC

code

sets

in

your

applications,

refer

to

the

applicable

topics

for

guidelines.

When

developing

an

application,

you

should

review

the

topics

that

follow

this

one.

Failure

to

follow

the

recomentations

described

in

these

topics

can

produce

unpredictable

conditions.

These

conditions

cannot

be

detected

by

the

database

manager,

so

no

error

or

warning

message

will

result.

For

example,

a

C

application

contains

the

following

SQL

statements

operating

against

a

table

T1

with

one

column

defined

as

C1

CHAR(20):

(0)

EXEC

SQL

CONNECT

TO

GLOBALDB;

(1)

EXEC

SQL

INSERT

INTO

T1

VALUES

(’a-constant’);

strcpy(sqlstmt,

"SELECT

C1

FROM

T1

WHERE

C1=’a-constant’);

(2)

EXEC

SQL

PREPARE

S1

FROM

:sqlstmt;

Where:

application

code

page

at

bind

time

=

x

application

code

page

at

execution

time

=

y

database

code

page

=

z

At

bind

time,

'a-constant'

in

statement

(1)

is

converted

from

code

page

x

to

code

page

z.

This

conversion

can

be

noted

as

(x→z).

At

execution

time,

'a-constant'

(x→z)

is

inserted

into

the

table

when

statement

(1)

is

executed.

However,

the

WHERE

clause

of

statement

(2)

will

be

executed

with

'a-constant'

(y→z).

If

the

code

points

in

the

constant

are

such

that

the

two

conversions

(x→z

and

y→z)

yield

different

results,

the

SELECT

in

statement

(2)

will

fail

to

retrieve

the

data

inserted

by

statement

(1).

Related

concepts:

606

Programming

Client

Applications

v

“Graphic

Host

Variables

in

C

and

C++”

on

page

143

v

“Derivation

of

code

page

values”

on

page

604

v

“Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations”

on

page

614

National

Language

Support

and

SQL

Statements

The

coding

of

SQL

statements

is

not

language

dependent.

The

SQL

keywords

must

be

typed

as

shown,

although

they

may

be

typed

in

uppercase,

lowercase,

or

mixed

case.

The

names

of

database

objects,

host

variables

and

program

labels

that

occur

in

an

SQL

statement

must

be

characters

supported

by

your

application

code

page.

The

server

does

not

convert

file

names.

To

code

a

file

name,

either

use

the

ASCII

invariant

set,

or

provide

the

path

in

the

hexadecimal

values

that

are

physically

stored

in

the

file

system.

In

a

multi-byte

environment,

there

are

four

characters

which

are

considered

special

that

do

not

belong

to

the

invariant

character

set.

These

characters

are:

v

The

double-byte

percentage

and

double-byte

underscore

characters

used

in

LIKE

processing.

v

The

double-byte

space

character,

used

for,

among

other

things,

blank

padding

in

graphic

strings.

v

The

double-byte

substitution

character,

used

as

a

replacement

during

code

page

conversion

when

no

mapping

exists

between

a

source

code

page

and

a

target

code

page.

The

code

points

for

each

of

these

characters,

by

code

page,

is

as

follows:

Table

85.

Code

Points

for

Special

Double-Byte

Characters

Code

Page

Double-Byte

Percentage

Double-Byte

Underscore

Double-Byte

Space

Double-Byte

Substitution

Character

932

X'8193'

X'8151'

X'8140'

X'FCFC'

938

X'8193'

X'8151'

X'8140'

X'FCFC'

942

X'8193'

X'8151'

X'8140'

X'FCFC'

943

X'8193'

X'8151'

X'8140'

X'FCFC'

948

X'8193'

X'8151'

X'8140'

X'FCFC'

949

X'A3A5'

X'A3DF'

X'A1A1'

X'AFFE'

950

X'A248'

X'A1C4'

X'A140'

X'C8FE'

954

X'A1F3'

X'A1B2'

X'A1A1'

X'F4FE'

964

X'A2E8'

X'A2A5'

X'A1A1'

X'FDFE'

970

X'A3A5'

X'A3DF'

X'A1A1'

X'AFFE'

1381

X'A3A5'

X'A3DF'

X'A1A1'

X'FEFE'

1383

X'A3A5'

X'A3DF'

X'A1A1'

X'A1A1'

13488

X'FF05'

X'FF3F'

X'3000'

X'FFFD'

1363

X'A3A5'

X'A3DF'

X'A1A1'

X'A1E0'

1386

X'A3A5'

X'A3DF'

X'A1A1'

X'FEFE'

5039

X'8193'

X'8151'

X'8140'

X'FCFC'

Chapter

29.

National

Language

Support

607

For

Unicode

databases,

the

GRAPHIC

space

is

X'0020',

which

is

different

from

the

GRAPHIC

space

of

X'3000'

used

for

euc-Japan

and

euc-Taiwan

databases.

Both

X'0020'

and

X'3000'

are

space

characters

in

the

Unicode

standard.

The

difference

in

the

GRAPHIC

space

code

points

should

be

taken

into

consideration

when

comparing

data

from

these

EUC

databases

to

data

from

a

Unicode

database.

Related

reference:

v

“LIKE

predicate”

in

the

SQL

Reference,

Volume

1

v

“Extended

UNIX

Code

(EUC)

Character

Sets”

on

page

613

Remote

routines

When

coding

routines

that

will

be

running

remotely,

the

following

considerations

apply:

v

Data

in

a

routine

must

be

in

the

code

page

defined

by

the

PARAMETER

CCSID

option

implicitly

or

explicitly

specified

when

the

routine

was

created.

v

Data

passed

to

or

from

a

routine

with

a

character

data

type

will

be

code

page

converted

to

the

section

or

routine

code

page

as

appropriate.

Therefore,

numeric

data

and

data

structures

must

never

be

passed

with

a

character

type

if

the

client

application

code

page

is

different

from

the

statement

or

routine

code

pages.

To

avoid

character

conversion,

you

can

pass

data

by

defining

it

in

binary

string

format

by

using

a

data

type

of

BLOB,

or

by

defining

the

character

data

as

FOR

BIT

DATA.

By

default,

when

you

invoke

routines,

they

run

under

a

default

national

language

environment,

which

may

not

match

the

database’s

national

language

environment.

Consequently,

using

country/region

or

code-page-specific

operations,

such

as

the

C

wchar_t

graphic

host

variables

and

functions,

may

not

work

as

you

expect.

You

need

to

ensure

that,

if

applicable,

the

correct

environment

is

initialized

when

you

invoke

the

routine.

Package

Name

Considerations

in

Mixed

Code

Page

Environments

Package

names

are

determined

when

you

invoke

the

PRECOMPILE

PROGRAM

command

or

API.

By

default,

they

are

generated

based

on

the

first

eight

bytes

of

the

application

program

source

file

(without

the

file

extension)

and

are

folded

to

upper

case.

Optionally,

a

name

can

be

explicitly

defined.

Regardless

of

the

origin

of

a

package

name,

if

you

are

running

in

an

unequal

code

page

environment,

the

characters

for

your

package

names

should

be

in

the

invariant

character

set.

Otherwise

you

may

experience

problems

related

to

the

modification

of

your

package

name.

The

database

manager

will

not

be

able

to

find

the

package

for

the

application

or

a

client-side

tool

will

not

display

the

right

name

for

your

package.

A

package

name

modification

due

to

character

conversion

will

occur

if

any

of

the

characters

in

the

package

name

are

not

directly

mapped

to

a

valid

character

in

the

database

code

page.

In

such

cases,

a

substitution

character

replaces

the

character

that

is

not

converted.

After

such

a

modification,

the

package

name,

when

converted

back

to

the

application

code

page,

may

not

match

the

original

package

name.

An

example

of

a

case

where

this

behavior

is

undesirable

is

when

you

use

the

Control

Center

to

list

and

work

with

packages.

Package

names

displayed

may

not

match

the

expected

names.

608

Programming

Client

Applications

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

To

avoid

conversion

problems

with

package

names,

ensure

that

only

characters

are

used

which

are

valid

under

both

the

application

and

database

code

pages.

Active

Code

Page

for

Precompilation

and

Binding

At

precompile/bind

time,

the

precompiler

is

the

executing

application.

The

active

code

page

when

the

database

connection

was

made

prior

to

the

precompile

request

is

used

for

precompiled

statements,

and

any

character

data

returned

in

the

SQLCA.

Related

concepts:

v

“Active

Code

Page

for

Application

Execution”

on

page

609

Active

Code

Page

for

Application

Execution

At

execution

time,

the

active

code

page

of

the

user

application

when

a

database

connection

is

made

is

in

effect

for

the

duration

of

the

connection.

All

data

is

interpreted

based

on

this

code

page;

this

includes

dynamic

SQL

statements,

user

input

data,

user

output

data,

and

character

fields

in

the

SQLCA.

Related

concepts:

v

“Active

Code

Page

for

Precompilation

and

Binding”

on

page

609

Character

conversion

between

different

code

pages

Ideally,

for

optimal

performance,

your

applications

should

always

use

the

same

code

page

as

the

statements

invoked

from

the

application.

However,

this

is

not

always

practical

or

possible.

The

DB2®

products

provide

support

for

code

page

conversion

that

allows

your

application

and

database

to

use

different

code

pages.

Characters

from

one

code

page

must

be

mapped

to

the

other

code

page

to

maintain

data

integrity.

When

code

page

conversion

occurs

Code

page

conversion

can

occur

in

the

following

situations:

v

When

a

client

or

application

accessing

a

database

is

running

in

a

code

page

that

is

different

from

the

code

page

of

the

statement

being

invoked:

You

can

minimize

or

eliminate

client/server

character

conversion

in

some

situations.

For

example,

you

could:

–

Create

a

database

on

Windows

NT

using

code

page

850

to

match

a

Windows®

client

application

environment

that

predominately

uses

code

page

850.

If

a

Windows

ODBC

application

is

used

with

the

IBM®

DB2®

ODBC

driver

in

Windows

database

client,

this

problem

may

be

alleviated

by

the

use

of

the

TRANSLATEDLL

and

TRANSLATEOPTION

keywords

in

the

odbc.ini

or

db2cli.ini

file.

–

Create

a

database

on

AIX®

using

code

page

850

to

match

a

client

application

environment

that

predominately

uses

code

page

850.

–

Avoid

specifying

the

CCSID

option

when

creating

tables

and

the

PARAMETER

CCSID

option

when

creating

routines.
v

When

a

client

or

application

importing

a

PC/IXF

file

runs

in

a

code

page

that

is

different

from

the

file

being

imported.

Chapter

29.

National

Language

Support

609

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

This

data

conversion

will

occur

on

the

database

client

machine

before

the

client

accesses

the

database

server.

Additional

data

conversion

may

take

place

if

the

application

is

running

in

a

code

page

that

is

different

from

the

code

page

of

the

database

(as

stated

in

the

previous

point).

Data

conversion,

if

any,

also

depends

on

how

the

import

utility

was

called.

v

When

DB2

Connect

is

used

to

access

data

on

a

host,

AS/400®,

or

iSeries

server.

In

this

case,

the

data

receiver

converts

the

character

data.

For

example,

data

that

is

sent

to

DB2

for

MVS/ESA

is

converted

to

the

appropriate

MVS™

coded

character

set

identifier

(CCSID)

by

DB2

for

MVS/ESA.

The

data

sent

back

to

the

DB2

Connect

machine

from

DB2

for

MVS/ESA

is

converted

by

DB2

Connect.

Character

conversion

will

not

occur

for:

v

File

names.

You

should

either

use

the

ASCII

invariant

set

for

file

names

or

provide

the

file

name

in

the

hexadecimal

values

that

are

physically

stored

in

the

file

system.

Note

that

if

you

include

a

file

name

as

part

of

an

SQL

statement,

it

gets

converted

as

part

of

the

statement

conversion.

v

Data

that

is

targeted

for

or

comes

from

a

column

assigned

the

FOR

BIT

DATA

attribute,

or

data

used

in

an

SQL

operation

whose

result

is

FOR

BIT

or

BLOB

data.

In

these

cases,

the

data

is

treated

as

a

byte

stream

and

no

conversion

occurs.

Note:

A

literal

inserted

into

a

column

defined

as

FOR

BIT

DATA

could

be

converted

if

that

literal

was

part

of

an

SQL

statement

that

was

converted.

v

A

DB2

product

or

platform

that

does

not

support,

or

that

does

not

have

support

installed,

for

the

desired

combination

of

code

pages.

In

this

case,

an

SQLCODE

-332

(SQLSTATE

57017)

is

returned

when

you

try

to

run

your

application.

Related

concepts:

v

“Character

conversion”

in

the

SQL

Reference,

Volume

1

Character

Substitutions

During

Code

Page

Conversions

When

your

application

converts

from

one

code

page

to

another,

it

is

possible

that

one

or

more

characters

are

not

represented

in

the

target

code

page.

If

this

occurs,

DB2

inserts

a

substitution

character

into

the

target

string

in

place

of

the

character

that

has

no

representation.

The

replacement

character

is

then

considered

a

valid

part

of

the

string.

In

situations

where

a

substitution

occurs,

the

SQLWARN10

indicator

in

the

SQLCA

is

set

to

‘W’.

Note:

Any

character

conversions

resulting

from

using

the

WCHARTYPE

CONVERT

precompiler

option

will

not

flag

a

warning

if

any

substitutions

take

place.

Related

concepts:

v

“WCHARTYPE

Precompiler

Option

in

C

and

C++”

on

page

158

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

Supported

Code

Page

Conversions

When

data

conversion

occurs,

conversion

will

take

place

from

a

source

code

page

to

a

target

code

page.

610

Programming

Client

Applications

The

source

code

page

is

determined

from

the

source

of

the

data;

data

from

the

application

has

a

source

code

page

equal

to

the

application

code

page,

and

data

from

the

database

has

a

source

code

page

equal

to

the

database

code

page.

The

determination

of

target

code

page

is

more

involved;

where

the

data

is

to

be

placed,

including

rules

for

intermediate

operations,

is

considered:

v

If

the

data

is

moved

directly

from

an

application

into

a

database,

with

no

intervening

operations,

the

target

code

page

is

the

database

code

page.

v

If

the

data

is

being

imported

into

a

database

from

a

PC/IXF

file,

there

are

two

character

conversion

steps:

1.

From

the

PC/IXF

file

code

page

(source

code

page)

to

the

application

code

page

(target

code

page)

2.

From

the

application

code

page

(source

code

page)

to

the

database

code

page

(target

code

page)

Exercise

caution

in

situations

where

two

conversion

steps

might

occur.

To

avoid

a

possible

loss

of

character

data,

ensure

you

follow

the

supported

character

conversions.

Additionally,

within

each

group,

only

characters

that

exist

in

both

the

source

and

target

code

page

have

meaningful

conversions.

Other

characters

are

used

as

substitutions

and

are

only

useful

for

converting

from

the

target

code

page

back

to

the

source

code

page

(and

may

not

necessarily

provide

meaningless

conversions

in

the

two-step

conversion

process

mentioned

above).

Such

problems

are

avoided

if

the

application

code

page

is

the

same

as

the

database

code

page.

v

If

the

data

is

derived

from

operations

performed

on

character

data,

where

the

source

may

be

any

of

the

application

code

page,

the

database

code

page,

FOR

BIT

DATA,

or

for

BLOB

data,

data

conversion

is

based

on

a

set

of

rules.

Some

or

all

of

the

data

items

may

have

to

be

converted

to

an

intermediate

result,

before

the

final

target

code

page

can

be

determined.

Note:

Code

page

conversions

between

multi-byte

code

pages,

for

example

DBCS

and

EUC,

may

result

in

either

an

increase

or

a

decrease

in

the

length

of

the

string.

Related

concepts:

v

“Character

conversion”

in

the

SQL

Reference,

Volume

1

v

“Character

conversion

between

different

code

pages”

on

page

609

Related

reference:

v

“Supported

territory

codes

and

code

pages”

in

the

Administration

Guide:

Planning

Code

Page

Conversion

Expansion

Factor

When

your

application

successfully

completes

an

attempt

to

connect

to

a

DB2

database

server,

you

should

consider

the

following

fields

in

the

returned

SQLCA:

v

The

second

token

in

the

SQLERRMC

field

(tokens

are

separated

by

X'FF')

indicates

the

code

page

of

the

database.

The

ninth

token

in

the

SQLERRMC

field

indicates

the

code

page

of

the

application.

Querying

the

application’s

code

page

and

comparing

it

to

the

database’s

code

page

informs

the

application

whether

it

has

established

a

connection

that

will

undergo

character

conversions.

v

The

first

and

second

entries

in

the

SQLERRD

array.

SQLERRD(1)

contains

an

integer

value

equal

to

the

maximum

expected

expansion

or

contraction

factor

for

the

length

of

mixed

character

data

(CHAR

data

types)

when

converted

to

the

database

code

page

from

the

application

code

page.

SQLERRD(2)

contains

an

Chapter

29.

National

Language

Support

611

integer

value

equal

to

the

maximum

expected

expansion

or

contraction

factor

for

the

length

of

mixed

character

data

(CHAR

data

types)

when

converted

to

the

application

code

page

from

the

database

code

page.

A

value

of

0

or

1

indicates

no

expansion;

a

value

greater

than

1

indicates

a

possible

expansion

in

length;

a

negative

value

indicates

a

possible

contraction.

The

considerations

for

graphic

string

data

should

not

be

a

factor

in

unequal

code

page

situations.

Each

string

always

has

the

same

number

of

characters,

regardless

of

whether

the

data

is

in

the

application

or

the

database

code

page.

Related

concepts:

v

“Application

Development

in

Unequal

Code

Page

Situations”

on

page

618

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

DBCS

Character

Sets

Each

combined

single-byte

character

set

(SBCS)

or

double-byte

character

set

(DBCS)

code

page

allows

for

both

single-

and

double-byte

character

code

points.

This

is

usually

accomplished

by

reserving

a

subset

of

the

256

available

code

points

of

a

mixed

code

table

for

single-byte

characters,

with

the

remainder

of

the

code

points

either

undefined,

or

allocated

to

the

first

byte

of

double-byte

code

points.

These

code

points

are

shown

in

the

following

table.

Table

86.

Mixed

Character

Set

Code

Points

Country/Region

Supported

Mixed

Code

Page

Code

Points

for

Single-Byte

Characters

Code

Points

for

First

Byte

of

Double-Byte

Characters

Japan

932,

943

X'00'-X'7F',

X'A1'-X'DF'

X'81'-X'9F',

X'E0'-X'FC'

Japan

942

X'00'-X'80',

X'A0'-X'DF',

X'FD'-X'FF'

X'81'-X'9F',

X'E0'-X'FC'

Taiwan

938

(*)

X'00'-X'7E'

X'81'-X'FC'

Taiwan

948

(*)

X'00'-X'80',

X'FD',

X'FE'

X'81'-X'FC'

Korea

949

X'00'-X'7F'

X'8F'-X'FE'

Taiwan

950

X'00'-X'7E'

X'81'-X'FE'

China

1381

X'00'-X'7F'

X'8C'-X'FE'

Korea

1363

X'00'-X'7F'

X'81'-X'FE'

China

1386

X'00'

X'81'-X'FE'

Note:

(*)

This

is

an

old

code

page

that

is

no

longer

recommended.

Code

points

not

assigned

to

either

of

these

categories

are

not

defined,

and

are

processed

as

single-byte

undefined

code

points.

Within

each

implied

DBCS

code

table,

there

are

256

code

points

available

as

the

second

byte

for

each

valid

first

byte.

Second

byte

values

can

have

any

value

from

612

Programming

Client

Applications

X'40'

to

X'7E',

and

from

X'80'

to

X'FE'.

Note

that

in

DBCS

environments,

DB2

does

not

perform

validity

checking

on

individual

double-byte

characters.

Extended

UNIX

Code

(EUC)

Character

Sets

Each

EUC

code

page

allows

for

both

single-byte

character

code

points,

and

up

to

three

different

sets

of

multi-byte

character

code

points.

This

support

is

accomplished

by

reserving

a

subset

of

the

256

available

code

points

of

each

implied

SBCS

code

page

identifier

for

single-byte

characters.

The

remainder

of

the

code

points

is

undefined,

allocated

as

an

element

of

a

multi-byte

character,

or

allocated

as

a

single-shift

introducer

of

a

multi-byte

character.

These

code

points

are

shown

in

the

following

tables.

Table

87.

Japanese

EUC

Code

Points

Group

1st

Byte

2nd

Byte

3rd

Byte

4th

Byte

G0

X'20'-X'7E'

n/a

n/a

n/a

G1

X'A1'-X'FE'

X'A1'-X'FE'

n/a

n/a

G2

X'8E'

X'A1'-X'FE'

n/a

n/a

G3

X'8E'

X'A1'-X'FE'

X'A1'-X'FE'

n/a

Table

88.

Korean

EUC

Code

Points

Group

1st

Byte

2nd

Byte

3rd

Byte

4th

Byte

G0

X'20'-X'7E'

n/a

n/a

n/a

G1

X'A1'-X'FE'

X'A1'-X'FE'

n/a

n/a

G2

n/a

n/a

n/a

n/a

G3

n/a

n/a

n/a

n/a

Table

89.

Traditional

Chinese

EUC

Code

Points

Group

1st

Byte

2nd

Byte

3rd

Byte

4th

Byte

G0

X'20'-X'7E'

n/a

n/a

n/a

G1

X'A1'-X'FE'

X'A1'-X'FE'

n/a

n/a

G2

X'8E'

X'A1'-X'FE'

X'A1'-X'FE'

X'A1'-X'FE'

G3

n/a

n/a

n/a

n/a

Table

90.

Simplified

Chinese

EUC

Code

Points

Group

1st

Byte

2nd

Byte

3rd

Byte

4th

Byte

G0

X'20'-X'7E'

n/a

n/a

n/a

G1

X'A1'-X'FE'

X'A1'-X'FE'

n/a

n/a

G2

n/a

n/a

n/a

n/a

G3

n/a

n/a

n/a

n/a

Code

points

not

assigned

to

any

of

these

categories

are

not

defined,

and

are

processed

as

single-byte

undefined

code

points.

Chapter

29.

National

Language

Support

613

CLI,

ODBC,

JDBC,

and

SQLJ

Programs

in

a

DBCS

Environment

JDBC

and

SQLJ

programs

access

DB2®

using

the

DB2

CLI/ODBC

driver

and

therefore

use

the

same

configuration

file

(db2cli.ini).

The

following

entries

must

be

added

to

this

configuration

file

if

you

run

Java™

programs

that

access

DB2

Universal

Database

in

a

DBCS

environment:

PATCH1

=

65536

Forces

the

driver

to

manually

insert

a

″G″

in

front

of

character

literals

that

are

in

fact

graphic

literals.

This

PATCH1

value

should

always

be

set

when

working

in

a

double-byte

environment.

PATCH1

=

64

Forces

the

driver

to

NULL

terminate

graphic

output

strings.

This

PATCH1

value

is

needed

by

Microsoft®

Access

in

a

double-byte

environment.

If

you

need

to

use

this

PATCH1

value

as

well,

you

would

add

the

two

values

together

(64+65536

=

65600)

and

set

PATCH1=65600.

See

note

2

below

for

more

information

about

specifying

multiple

PATCH1

values.

PATCH2

=

7

Forces

the

driver

to

map

all

graphic

column

data

types

to

char

column

data

type.

This

PATCH2

value

is

needed

in

a

double-byte

environment.

PATCH2

=

10

Should

only

be

used

in

an

EUC

(Extended

Unix

Code)

environment.

This

PATCH2

value

ensures

that

the

CLI

driver

provides

data

for

character

variables

(CHAR,

VARCHAR,

and

so

on)

in

the

proper

format

for

the

JDBC

driver.

The

data

in

these

character

types

will

not

be

usable

in

JDBC

without

this

setting.

Notes:

1.

Each

of

these

keywords

is

set

in

each

database

specific

stanza

of

the

db2cli.ini

file.

If

you

want

to

set

them

for

multiple

databases,

repeat

them

for

each

database

stanza

in

db2cli.ini.

2.

To

set

multiple

PATCH1

values,

add

the

individual

values

and

use

the

sum.

To

set

PATCH1

to

both

64

and

65536,

set

PATCH1=65600

(64+65536).

If

you

already

have

other

PATCH1

values

set,

replace

the

existing

number

with

the

sum

of

the

existing

number

and

the

new

PATCH1

values

that

you

want

to

add.

3.

To

set

multiple

PATCH2

values,

specify

them

in

a

comma

delimited

string

(unlike

the

PATCH1

option).

To

set

PATCH2

values

1

and

7,

set

PATCH2=″1,7″

Considerations

for

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Sets

The

sections

that

follow

describe

the

considerations

for

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

code

sets,

Japanese

and

Traditional

Chinese

EUC

and

UCS-2

Code

Set

Considerations

Extended

UNIX®

Code

(EUC)

denotes

a

set

of

general

encoding

rules

that

can

support

from

one

to

four

character

sets

in

UNIX-based

operating

environments.

The

encoding

rules

are

based

on

the

ISO

2022

definition

for

encoding

7-bit

and

8-bit

data

in

which

control

characters

are

used

to

separate

some

of

the

character

sets.

A

code

set

based

on

EUC

conforms

to

the

EUC

encoding

rules,

but

also

identifies

the

specific

character

sets

associated

with

the

specific

instances.

For

614

Programming

Client

Applications

example,

the

IBM®-eucJP

code

set

for

Japanese

refers

to

the

encoding

of

the

Japanese

Industrial

Standard

characters

according

to

the

EUC

encoding

rules.

Database

and

client

application

support

for

graphic

(pure

double-byte

character)

data,

while

running

under

EUC

code

pages

with

character

encoding

that

is

greater

than

two

bytes

in

length

is

limited.

The

DB2

Universal

Database

products

implement

strict

rules

for

graphic

data

that

require

all

characters

to

be

exactly

two

bytes

wide.

These

rules

do

not

allow

many

characters

from

both

the

Japanese

and

Traditional

Chinese

EUC

code

pages.

To

overcome

this

situation,

support

is

provided

at

both

the

application

level

and

the

database

level

to

represent

Japanese

and

Traditional

Chinese

EUC

graphic

data

using

another

encoding

scheme.

A

database

created

under

either

Japanese

or

Traditional

Chinese

EUC

code

pages

will

actually

store

and

manipulate

graphic

data

using

the

Unicode

UCS-2

code

set,

a

double-byte

encoding

scheme

that

is

a

proper

subset

of

the

full

Unicode

character

repertoire.

Similarly,

an

application

running

under

those

code

pages

will

send

graphic

data

to

the

database

server

as

UCS-2

encoded

data.

With

this

support,

applications

running

under

EUC

code

pages

can

access

the

same

types

of

data

as

those

running

under

DBCS

code

pages.

The

IBM-defined

code

page

identifier

associated

with

UCS-2

is

1200,

and

the

CCSID

number

for

the

same

code

page

is

13488.

Graphic

data

in

an

eucJP

or

eucTW

database

uses

the

CCSID

number

13488.

In

a

Unicode

database,

use

CCSID

1200

for

GRAPHIC

data.

DB2

Universal

Database

supports

the

all

the

Unicode

characters

that

can

be

encoded

using

UCS-2,

but

does

not

perform

any

composition,

decomposition,

or

normalization

of

characters.

More

information

about

the

Unicode

standard

can

be

found

at

the

Unicode

Consortium

web

site,

www.unicode.org,

and

from

the

latest

edition

of

the

Unicode

Standard

book

published

by

Addison

Wesley

Longman,

Inc.

If

you

are

working

with

applications

or

databases

using

these

character

sets

you

may

need

to

consider

dealing

with

UCS-2

encoded

data.

When

converting

UCS-2

graphic

data

to

the

application’s

EUC

code

page,

there

is

the

possibility

of

an

increase

in

the

length

of

data.

When

large

amounts

of

data

are

being

displayed,

it

may

be

necessary

to

allocate

buffers,

convert,

and

display

the

data

in

a

series

of

fragments.

The

following

sections

discuss

how

to

handle

data

in

this

environment.

For

these

sections,

the

term

EUC

is

used

to

refer

only

to

Japanese

and

Traditional

Chinese

EUC

character

sets.

Note

that

the

discussions

do

not

apply

to

DB2

Korean

or

Simplified-Chinese

EUC

support,

because

graphic

data

in

these

character

sets

is

represented

using

the

EUC

encoding.

Related

concepts:

v

“Code

Page

Conversion

Expansion

Factor”

on

page

611

v

“Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments”

on

page

623

Related

reference:

v

“Supported

territory

codes

and

code

pages”

in

the

Administration

Guide:

Planning

v

“Extended

UNIX

Code

(EUC)

Character

Sets”

on

page

613

Chapter

29.

National

Language

Support

615

Mixed

EUC

and

Double-Byte

Client

and

Database

Considerations

The

administration

of

database

objects

in

mixed

EUC

and

double-byte

code

page

environments

is

complicated

by

the

possible

expansion

or

contraction

in

the

length

of

object

names

as

a

result

of

conversions

between

the

client

and

database

code

page.

In

particular,

many

administrative

commands

and

utilities

have

documented

limits

to

the

lengths

of

character

strings

that

they

can

take

as

input

or

output

parameters.

These

limits

are

typically

enforced

at

the

client,

unless

documented

otherwise.

For

example,

the

limit

for

a

table

name

is

128

bytes.

It

is

possible

that

a

character

string

that

is

128

bytes

under

a

double-byte

code

page

is

larger,

say

135

bytes,

under

an

EUC

code

page.

This

hypothetical

135-byte

table

name

would

be

considered

invalid

by

such

commands

as

REORGANIZE

TABLE

if

used

as

an

input

parameter,

despite

being

valid

in

the

target

double-byte

database.

Similarly,

the

maximum

permitted

length

of

output

parameters

may

be

exceeded,

after

conversion,

from

the

database

code

page

to

the

application

code

page.

This

may

cause

either

a

conversion

error

or

output

data

truncation

to

occur.

If

you

expect

to

use

administrative

commands

and

utilities

extensively

in

a

mixed

EUC

and

double-byte

environment,

you

should

define

database

objects

and

their

associated

data

with

the

possibility

of

length

expansion

past

the

supported

limits.

Administering

an

EUC

database

from

a

double-byte

client

imposes

fewer

restrictions

than

administering

a

double-byte

database

from

an

EUC

client.

Double-byte

character

strings

typically

are

equal

or

shorter

than

the

corresponding

EUC

character

string.

This

characteristic

will

generally

lead

to

fewer

problems

caused

by

enforcing

the

character

string

length

limits.

Note:

In

the

case

of

SQL

statements,

validation

of

input

parameters

is

not

conducted

until

the

entire

statement

has

been

converted

to

the

database

code

page.

Thus

you

can

use

character

strings

that

may

be

technically

longer

than

allowed

when

represented

in

the

client

code

page,

but

which

meet

length

requirements

when

represented

in

the

database

code

page.

Character

Conversion

Considerations

for

Traditional

Chinese

Users

Due

to

the

standards

definition

for

Traditional

Chinese,

there

is

a

side

effect

that

you

may

encounter

when

you

convert

some

characters

between

double-byte

or

EUC

code

pages

and

UCS-2.

There

are

189

characters

(consisting

of

187

radicals

and

2

numbers)

that

share

the

same

UCS-2

code

point,

when

converted,

as

another

character

in

the

code

set.

When

these

characters

are

converted

back

to

double-byte

or

EUC,

they

are

converted

to

the

code

point

of

the

same

character’s

ideograph,

with

which

it

shares

the

same

UCS-2

code

point,

rather

then

back

to

the

original

code

point.

When

displayed,

the

character

appears

the

same,

but

has

a

different

code

point.

Depending

on

your

application’s

design,

you

may

have

to

take

this

behavior

into

account.

As

an

example,

consider

what

happens

to

code

point

A7A1

in

EUC

code

page

964

when

it

is

converted

to

UCS-2,

then

converted

back

to

the

original

code

page,

EUC

946:

EUC 946 UCS-2 EUC 946

A7A1

C4A1
UCS-2 C4A1

616

Programming

Client

Applications

Thus,

the

original

code

points

A7A1

and

C4A1

end

up

as

code

point

C4A1

after

conversion.

Graphic

Data

in

Japanese

or

Traditional

Chinese

EUC

Applications

The

information

that

follows

describes

EUC

application

development

considerations

for

graphic

data,

including

graphic

constants,

graphic

data

in

UDFs,

stored

procedures,

DBCLOB

files,

and

collation:

v

Graphic

constants

Graphic

constants,

or

literals,

are

actually

classified

as

mixed

character

data,

as

they

are

part

of

an

SQL

statement.

Any

graphic

constants

in

an

SQL

statement

from

a

Japanese

or

Traditional

Chinese

EUC

client

are

implicitly

converted

to

the

graphic

encoding

by

the

database

server.

You

can

use

graphic

literals

that

are

composed

of

EUC

encoded

characters

in

your

SQL

applications.

An

EUC

database

server

will

convert

these

literals

to

the

graphic

database

code

set,

which

will

be

UCS-2.

Graphic

constants

from

EUC

clients

should

never

contain

single-width

characters,

such

as

CS0

7-bit

ASCII

characters

or

Japanese

EUC

CS2

(Katakana)

characters.

v

UDFs

UDFs

are

invoked

at

the

database

server,

and

are

meant

to

deal

with

data

encoded

in

the

same

code

set

as

the

database.

In

the

case

of

databases

running

under

the

Japanese

or

Traditional

Chinese

code

set,

mixed

character

data

is

encoded

using

the

EUC

code

set

under

which

the

database

is

created.

Graphic

data

is

encoded

using

UCS-2.

UDFs

need

to

recognize

and

handle

graphic

data

that

is

encoded

with

UCS-2.

For

example,

assume

that

you

create

a

UDF

called

VARCHAR,

and

the

UDF

converts

a

graphic

string

to

a

mixed

character

string.

The

VARCHAR

function

has

to

convert

a

graphic

string

encoded

as

UCS-2

to

an

EUC

representation

if

the

database

is

created

under

the

EUC

code

set.

v

Stored

procedures

A

stored

procedure

running

under

a

Japanese

or

a

Traditional

Chinese

EUC

code

set

must

be

able

to

recognize

and

handle

graphic

data

that

is

encoded

using

UCS-2.

With

these

code

sets,

graphic

data

that

is

either

received

or

returned

through

the

stored

procedure’s

input/output

SQLDA

is

encoded

using

UCS-2.

v

DBCLOB

files

The

important

considerations

for

DBCLOB

files

are:

–

The

DBCLOB

file

data

is

assumed

to

be

in

the

EUC

code

page

of

the

application.

For

EUC

DBCLOB

files,

data

is

converted

to

UCS-2

at

the

client

on

read,

and

from

UCS-2

at

the

client

on

write.

–

The

number

of

bytes

read

or

written

at

the

server

is

returned

in

the

data

length

field

of

the

file

reference

variable.

The

number

of

bytes

is

based

on

the

number

of

UCS-2

encoded

characters

that

are

either

read

from

or

written

to

the

file.

The

number

of

bytes

actually

read

from

or

written

to

the

file

may

be

larger

than

the

server

writes

in

the

data

length

field.
v

Collation

Graphic

data

is

sorted

in

binary

sequence.

Mixed

data

is

sorted

in

the

collating

sequence

of

the

database

applied

on

each

byte.

Because

of

the

possible

difference

in

the

ordering

of

characters

in

an

EUC

code

set

and

a

DBCS

code

set

for

the

same

country/region,

different

results

may

be

obtained

when

the

same

data

is

sorted

in

an

EUC

database

and

in

a

DBCS

database.

Chapter

29.

National

Language

Support

617

Related

reference:

v

“GRAPHIC

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“Graphic

strings”

in

the

SQL

Reference,

Volume

1

Application

Development

in

Unequal

Code

Page

Situations

Depending

on

the

character

encoding

schemes

used

by

the

application

code

page

and

the

database

code

page,

there

may

or

may

not

be

a

change

in

the

length

of

a

string

as

it

is

converted

from

the

source

code

page

to

the

target

code

page.

A

change

in

length

is

usually

associated

with

conversions

between

multi-byte

code

pages

with

different

encoding

schemes,

for

example

DBCS

and

EUC.

A

possible

increase

in

length

is

usually

more

serious

than

a

possible

decrease

in

length,

because

an

over-allocation

of

memory

is

less

problematic

than

an

under-allocation.

Application

considerations

for

sending

or

retrieving

data

depending

on

where

the

possible

expansion

may

occur

need

to

be

dealt

with

separately.

It

is

also

important

to

note

the

differences

between

a

best-case

and

worst-case

situation

when

an

expansion

or

contraction

in

length

is

indicated.

Positive

values,

indicating

a

possible

expansion,

will

give

the

worst-case

multiplying

factor.

For

example,

a

value

of

2

for

the

SQLERRD(1)

or

SQLERRD(2)

field

means

that

a

maximum

of

twice

the

string

length

of

storage

will

be

required

to

handle

the

data

after

conversion.

This

is

a

worst-case

indicator.

In

this

example,

best-case

would

be

that

after

conversion

the

length

remains

the

same.

Negative

values

for

SQLERRD(1)

or

SQLERRD(2),

indicating

a

possible

contraction,

also

provide

the

worst-case

expansion

factor.

For

example,

a

value

of

-1

means

that

the

maximum

storage

required

is

equal

to

the

string

length

prior

to

conversion.

It

is

indeed

possible

that

less

storage

may

be

required,

but

practically

this

is

of

little

use

unless

the

receiving

application

knows

in

advance

how

the

source

data

is

structured.

To

ensure

that

you

always

have

sufficient

storage

allocated

to

cover

the

maximum

possible

expansion

after

character

conversion,

you

should

allocate

storage

equal

to

the

value

max_target_length

obtained

from

the

following

calculation:

1.

Determine

the

expansion

factor

for

the

data.

For

data

transfer

from

the

application

to

the

database:

expansion_factor

=

ABS[SQLERRD(1)]

if

expansion_factor

=

0

expansion_factor

=

1

For

data

transfer

from

the

database

to

the

application:

expansion_factor

=

ABS[SQLERRD(2)]

if

expansion_factor

=

0

expansion_factor

=

1

In

the

above

calculations,

ABS

refers

to

the

absolute

value.

The

check

for

expansion_factor

=

0

is

necessary

because

some

DB2

Universal

Database

products

return

0

in

SQLERRD(1)

and

SQLERRD(2).

These

servers

do

not

support

code

page

conversions

that

result

in

the

expansion

or

shrinkage

of

data;

this

is

represented

by

an

expansion

factor

of

1.

2.

Intermediate

length

calculation.

temp_target_length

=

actual_source_length

*

expansion_factor

3.

Determine

the

maximum

length

for

target

data

type.

618

Programming

Client

Applications

Target

data

type

Maximum

length

of

type

(type_maximum_length)

CHAR

254

VARCHAR

32

672

LONG

VARCHAR

32

700

CLOB

2

147

483

647
4.

Determine

the

maximum

target

length.

�1�

if

temp_target_length

<

actual_source_length

max_target_length

=

type_maximum_length

else

�2�

if

temp_target_length

>

type_maximum_length

max_target_length

=

type_maximum_length

else

�3�

max_target_length

=

temp_target_length

All

the

above

checks

are

required

to

allow

for

overflow,

which

may

occur

during

the

length

calculation.

The

specific

checks

are:

�1�

Numeric™

overflow

occurs

during

the

calculation

of

temp_target_length

in

step

2.

If

the

result

of

multiplying

two

positive

values

together

is

greater

than

the

maximum

value

for

the

data

type,

the

result

wraps

around

and

is

returned

as

a

value

less

than

the

larger

of

the

two

values.

For

example,

the

maximum

value

of

a

2-byte

signed

integer

(which

is

used

for

the

length

of

non-CLOB

data

types)

is

32

767.

If

the

actual_source_length

is

25

000

and

the

expansion

factor

is

2,

temp_target_length

is

theoretically

50

000.

This

value

is

too

large

for

the

2-byte

signed

integer

so

it

gets

wrapped

around

and

is

returned

as

-15

536.

For

the

CLOB

data

type,

a

4-byte

signed

integer

is

used

for

the

length.

The

maximum

value

of

a

4-byte

signed

integer

is

2

147

483

647.

�2�

temp_target_length

is

too

large

for

the

data

type.

The

length

of

a

data

type

cannot

exceed

the

values

listed

in

step

3.

If

the

conversion

requires

more

space

than

is

available

in

the

data

type,

it

may

be

possible

to

use

a

larger

data

type

to

hold

the

result.

For

example,

if

a

CHAR(250)

value

requires

500

bytes

to

hold

the

converted

string,

it

will

not

fit

into

a

CHAR

value

because

the

maximum

length

is

254

bytes.

However,

it

may

be

possible

to

use

a

VARCHAR(500)

to

hold

the

result

after

conversion.

See

the

topic

on

code

page

conversion

string-length

overflow

in

mixed

code

set

environments

for

more

information

about

what

happens

when

converted

data

exceeds

the

limit

for

a

data

type.

�3�

temp_target_length

is

the

correct

length

for

the

result.

Using

the

SQLERRD(1)

and

SQLERRD(2)

values

returned

when

connecting

to

the

database

and

the

above

calculations,

you

can

determine

whether

the

length

of

a

string

will

possibly

increase

or

decrease

as

a

result

of

character

conversion.

In

general,

a

value

of

0

or

1

indicates

no

expansion;

a

value

greater

than

1

indicates

a

possible

expansion

in

length;

a

negative

value

indicates

a

possible

contraction.

(Note

that

values

of

‘0’

will

only

come

from

down-level

DB2

Universal

Database

products.

Also,

these

values

are

undefined

for

other

database

server

products.

The

Chapter

29.

National

Language

Support

619

following

table

lists

values

to

expect

for

various

application

code

page

and

database

code

page

combinations

when

using

DB2

Universal

Database.

Table

91.

SQLCA.SQLERRD

Settings

on

CONNECT

Application

Code

Page

Database

Code

Page

SQLERRD(1)

SQLERRD(2)

SBCS

SBCS

+1

+1

DBCS

DBCS

+1

+1

eucJP

eucJP

+1

+1

eucJP

DBCS

-1

+2

DBCS

eucJP

+2

-1

eucTW

eucTW

+1

+1

eucTW

DBCS

-1

+2

DBCS

eucTW

+2

-1

eucKR

eucKR

+1

+1

eucKR

DBCS

+1

+1

DBCS

eucKR

+1

+1

eucCN

eucCN

+1

+1

eucCN

DBCS

+1

+1

DBCS

eucCN

+1

+1

If

the

SQLERRD(1)

or

SQLERRD(2)

values

indicate

an

expansion

at

either

the

database

server

or

the

application

client,

you

should

consider

the

following:

v

Expansion

at

the

database

server

If

the

SQLERRD(1)

entry

indicates

an

expansion

at

the

database

server,

your

application

must

consider

the

possibility

that

length-dependent

character

data

that

is

valid

at

the

client

will

not

be

valid

at

the

database

server

after

it

is

converted.

For

example,

DB2

products

require

that

column

names

be

no

more

than

128

bytes

in

length.

It

is

possible

that

a

character

string

that

is

128

bytes

in

length

encoded

under

a

DBCS

code

page

expands

past

the

128-byte

limit

when

it

is

converted

to

an

EUC

code

page.

This

possibility

means

that

there

may

be

activities

that

are

valid

when

the

application

code

page

and

the

database

code

page

are

equal,

and

invalid

when

they

are

different.

Exercise

caution

when

you

design

EUC

and

DBCS

databases

for

unequal

code

page

situations.

v

Expansion

at

the

application

If

the

SQLERRD(2)

entry

indicates

an

expansion

at

the

client

application,

your

application

must

consider

the

possibility

that

length-dependent

character

data

will

expand

in

length

after

being

converted.

For

example,

a

row

with

a

CHAR(128)

column

is

retrieved.

When

the

database

and

application

code

pages

are

equal,

the

length

of

the

data

returned

is

128

bytes.

However,

in

an

unequal

code

page

situation,

128

bytes

of

data

encoded

under

a

DBCS

code

page

may

expand

past

128

bytes

when

converted

to

an

EUC

code

page.

Thus,

additional

storage

may

have

to

allocated

to

retrieve

the

complete

string.

Related

concepts:

v

“Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments”

on

page

623

620

Programming

Client

Applications

Client-Based

Parameter

Validation

in

a

Mixed

Code

Set

Environment

An

important

side

effect

of

potential

character

data

expansion

or

contraction

between

the

client

and

server

involves

the

validation

of

data

passed

between

the

client

application

and

the

database

server.

In

an

unequal

code

page

situation,

it

is

possible

that

data

determined

to

be

valid

at

the

client

is

actually

invalid

at

the

database

server

after

code

page

conversion.

Conversely,

data

that

is

invalid

at

the

client

may

be

valid

at

the

database

server

after

conversion.

Any

end-user

application

or

API

library

has

the

potential

of

not

being

able

to

handle

all

possibilities

in

an

unequal

code

page

situation.

In

addition,

while

some

parameter

validation,

such

as

string

length,

is

performed

at

the

client

for

commands

and

APIs,

the

tokens

within

SQL

statements

are

not

verified

until

they

have

been

converted

to

the

database’s

code

page.

This

verification

can

lead

to

situations

where

it

is

possible

to

use

an

SQL

statement

in

an

unequal

code

page

environment

to

access

a

database

object,

such

as

a

table,

but

it

will

not

be

possible

to

access

the

same

object

using

a

particular

command

or

API.

Consider

an

application

that

returns

data

contained

in

a

table

provided

by

an

end-user,

and

checks

that

the

table

name

is

not

greater

than

128

bytes

long.

Now

consider

the

following

scenarios

for

this

application:

1.

A

DBCS

database

is

created.

From

a

DBCS

client,

a

table

(t1)

is

created

with

a

table

name

which

is

128

bytes

long.

The

table

name

includes

several

characters

which

would

be

greater

than

two

bytes

in

length

if

the

string

is

converted

to

EUC,

resulting

in

the

EUC

representation

of

the

table

name

being

a

total

of

131

bytes

in

length.

Because

there

is

no

expansion

for

DBCS

to

DBCS

connections,

the

table

name

is

128

bytes

in

the

database

environment,

and

the

CREATE

TABLE

is

successful.

2.

An

EUC

client

connects

to

the

DBCS

database.

It

creates

a

table

(t2)

with

a

table

name

that

is

120

bytes

long

when

encoded

as

EUC,

and

100

bytes

long

when

converted

to

DBCS.

The

table

name

in

the

DBCS

database

is

100

bytes.

The

CREATE

TABLE

is

successful.

3.

The

EUC

client

creates

a

table

(t3)

with

a

table

name

that

is

64

EUC

characters

in

length

(131

bytes).

When

this

name

is

converted

to

DBCS,

its

length

shrinks

to

the

128-byte

limit.

The

CREATE

TABLE

is

successful.

4.

The

EUC

client

invokes

the

application

against

the

each

of

the

tables

(t1,

t2,

and

t3)

in

the

DBCS

database,

which

results

in:

Table

Result

t1

The

application

considers

the

table

name

invalid

because

it

is

131

bytes

long.

t2

Displays

correct

results

t3

The

application

considers

the

table

name

invalid

because

it

is

131

bytes

long.
5.

The

EUC

client

is

used

to

query

the

DBCS

database

from

the

CLP.

Although

the

table

name

is

131

bytes

long

on

the

client,

the

queries

are

successful

because

the

table

name

is

128

bytes

long

at

the

server.

Chapter

29.

National

Language

Support

621

DESCRIBE

Statement

in

Mixed

Code

Set

Environments

A

DESCRIBE

performed

against

an

EUC

database

will

return

information

about

mixed

character

and

GRAPHIC

columns

based

on

the

definition

of

these

columns

in

the

database.

This

information

is

based

on

code

page

of

the

server

before

it

is

converted

to

the

client’s

code

page.

When

you

perform

a

DESCRIBE

against

a

select

list

item

that

is

resolved

in

the

application

context

(for

example

VALUES

SUBSTR(?,1,2))

then,

for

any

character

or

graphic

data

involved,

you

should

evaluate

the

returned

SQLLEN

value

along

with

the

returned

code

page.

If

the

returned

code

page

is

the

same

as

the

application

code

page,

there

is

no

expansion.

If

the

returned

code

page

is

the

same

as

the

database

code

page,

expansion

is

possible.

Select

list

items

that

are

FOR

BIT

DATA

(code

page

0)

or

in

the

application

code

page

are

not

converted

when

returned

to

the

application,

therefore

there

is

no

expansion

or

contraction

of

the

reported

length.

Considerations

are

different

for

an

EUC

application

accessing

a

DBCS

database

as

compared

to

a

DBCS

application

accessing

an

EUC

database:

v

EUC

application

accessing

a

DBCS

database

If

your

application’s

code

page

is

an

EUC

code

page,

and

it

issues

a

DESCRIBE

against

a

database

with

a

DBCS

code

page,

the

information

returned

for

CHAR

and

GRAPHIC

columns

is

returned

in

the

database

context.

For

example,

a

CHAR(5)

column

returned

as

part

of

a

DESCRIBE

has

a

value

of

five

for

the

SQLLEN

field.

In

the

case

of

non-EUC

data,

you

allocate

five

bytes

of

storage

when

you

fetch

the

data

from

this

column.

With

EUC

data,

this

may

not

be

the

case.

When

the

code

page

conversion

from

DBCS

to

EUC

takes

place,

there

may

be

an

increase

in

the

length

of

the

data

due

to

the

different

encoding

used

for

characters

for

CHAR

columns.

For

example,

with

the

Traditional

Chinese

character

set,

the

maximum

increase

is

double.

That

is,

the

maximum

character

length

in

the

DBCS

encoding

is

two

bytes,

which

may

increase

to

a

maximum

character

length

of

four

bytes

in

EUC.

For

the

Japanese

code

set,

the

maximum

increase

is

also

double.

Note,

however,

that

while

the

maximum

character

length

in

Japanese

DBCS

is

two

bytes,

it

may

increase

to

a

maximum

character

length

in

Japanese

EUC

of

three

bytes.

Although

this

increase

appears

to

be

only

by

a

factor

of

1.5,

the

single-byte

Katakana

characters

in

Japanese

DBCS

are

only

one

byte

in

length,

while

they

are

two

bytes

in

length

in

Japanese

EUC.

Possible

changes

in

data

length

as

a

result

of

character

conversions

apply

only

to

mixed

character

data.

Graphic

character

data

encoding

is

always

the

same

length,

two

bytes,

regardless

of

the

encoding

scheme.

To

avoid

losing

the

data,

you

need

to

evaluate

whether

an

unequal

code

page

situation

exists,

and

whether

or

not

it

is

between

an

EUC

application

and

a

DBCS

database.

You

can

determine

the

database

code

page

and

the

application

code

page

from

tokens

in

the

SQLCA

returned

from

a

CONNECT

statement.

If

such

a

situation

exists,

your

application

needs

to

allocate

additional

storage

for

mixed

character

data

based

on

the

maximum

expansion

factor

for

that

encoding

scheme.

v

DBCS

application

accessing

an

EUC

database

If

your

application

code

page

is

a

DBCS

code

page

and

issues

a

DESCRIBE

against

an

EUC

database,

the

situation

is

similar

to

that

in

in

which

an

EUC

application

accesses

a

DBCS

database.

However,

in

this

situation

your

application

may

require

less

storage

than

is

indicated

by

the

value

of

the

SQLLEN

field.

The

worst

case

in

this

situation

is

that

all

of

the

data

is

single-byte

or

double-byte

under

EUC,

meaning

that

exactly

SQLLEN

bytes

are

622

Programming

Client

Applications

required

under

the

DBCS

encoding

scheme.

In

any

other

situation,

less

than

SQLLEN

bytes

are

required

because

a

maximum

of

two

bytes

is

required

to

store

any

EUC

character.

Related

concepts:

v

“Derivation

of

code

page

values”

on

page

604

v

“Code

Page

Conversion

Expansion

Factor”

on

page

611

v

“Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments”

on

page

623

Related

reference:

v

“DESCRIBE

statement”

in

the

SQL

Reference,

Volume

2

Fixed-Length

and

Variable-Length

Data

in

Mixed

Code

Set

Environments

Due

to

the

possible

change

in

length

of

strings

when

conversions

occur

between

DBCS

and

EUC

code

pages,

you

should

consider

not

using

fixed-length

data

types.

Depending

on

whether

you

require

blank

padding,

you

should

consider

changing

the

SQLTYPE

from

a

fixed-length

character

string

to

a

variable-length

character

string

after

performing

the

DESCRIBE.

For

example,

if

an

EUC

to

DBCS

connection

is

informed

of

a

maximum

expansion

factor

of

two

for

a

CHAR(5)

column,

the

application

should

allocate

ten

bytes.

If

the

SQLTYPE

is

fixed-length,

the

EUC

application

will

receive

the

column

as

an

EUC

data

stream

converted

from

the

DBCS

data

(which

itself

may

have

up

to

five

bytes

of

trailing

blank

pads)

with

further

blank

padding

if

the

code

page

conversion

does

not

cause

the

data

element

to

grow

to

its

maximum

size.

If

the

SQLTYPE

is

variable-length,

the

original

meaning

of

the

content

of

the

CHAR(5)

column

is

preserved,

however,

the

source

five

bytes

may

have

a

target

of

between

five

and

ten

bytes.

Similarly,

in

the

case

of

possible

data

shrinkage

(DBCS

application

and

EUC

database),

you

should

consider

working

with

variable-length

data

types.

An

alternative

to

either

allocating

extra

space

or

promoting

the

data

type

is

to

select

the

data

in

fragments.

For

example,

to

select

the

same

VARCHAR(3000),

which

may

be

up

to

6

000

bytes

in

length

after

the

conversion,

you

could

perform

two

selects,

SUBSTR(VC3000,

1,

LENGTH(VC3000)/2)

and

SUBSTR(VC3000,

(LENGTH(VC3000)/2)+1),

separately

into

2

VARCHAR(3000)

application

areas.

This

method

is

the

only

possible

solution

when

the

data

type

is

no

longer

promotable.

For

example,

a

CLOB

encoded

in

the

Japanese

DBCS

code

page

with

the

maximum

length

of

2

gigabytes

is

possibly

up

to

twice

that

size

when

encoded

in

the

Japanese

EUC

code

page.

This

means

that

the

data

will

have

to

be

broken

up

into

fragments,

because

there

is

no

support

for

a

data

type

in

excess

of

2

gigabytes

in

length.

Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments

In

EUC

and

DBCS

unequal

code

page

environments,

situations

may

occur

after

conversion

takes

place,

when

there

is

not

enough

space

allocated

in

a

column

to

accommodate

the

entire

string.

In

this

case,

the

maximum

expansion

will

be

twice

the

length

of

the

string

in

bytes.

In

cases

where

expansion

does

exceed

the

capacity

of

the

column,

SQLCODE

-334

(SQLSTATE

22524)

is

returned.

Chapter

29.

National

Language

Support

623

This

leads

to

situations

that

may

not

be

immediately

obvious

or

previously

considered

as

follows:

v

An

SQL

statement

may

be

no

longer

than

32

765

bytes

in

length.

If

the

statement

is

complex

enough

or

uses

enough

constants

or

database

object

names

that

may

be

subject

to

expansion

upon

conversion,

this

limit

may

be

reached

earlier

than

expected.

v

SQL

identifiers

are

allowed

to

expand

on

conversion

up

to

their

maximum

length,

which

is

eight

bytes

for

short

identifiers

and

128

bytes

for

long

identifiers.

v

Host

language

identifiers

are

allowed

to

expand

on

conversion

up

to

their

maximum

length,

which

is

255

bytes.

v

When

the

character

fields

in

the

SQLCA

structure

are

converted,

they

are

allowed

to

expand

to

no

more

than

their

maximum

defined

length.

When

you

design

applications

for

mixed

code

set

environments,

you

should

refer

to

the

appropriate

documentation

if

you

have

any

of

the

following

situations:

v

Corresponding

string

columns

in

full

selects

with

set

operations

(UNION,

INTERSECT

and

EXCEPT)

v

Operands

of

concatenation

v

Operands

of

predicates

(with

the

exception

of

LIKE)

v

Result

expressions

of

a

CASE

statement

v

Arguments

of

the

scalar

function

COALESCE

(and

VALUE)

v

Expression

values

of

the

IN

list

of

an

IN

predicate

v

Corresponding

expressions

of

a

multiple

row

VALUES

clause

In

these

situations,

conversions

may

occur

according

to

the

application

code

page

instead

of

the

database

code

page.

Other

situations

that

you

need

to

consider

are

those

in

which

the

character

conversion

results

in

a

string

length

beyond

the

limit

for

the

data

type,

and

code

page

conversions

in

stored

procedures:

v

Character

conversion

past

a

data

type

limit

In

EUC

and

DBCS

unequal

code

page

environments,

situations

may

occur

after

conversion

takes

place

in

which

the

length

of

the

mixed

character

or

graphic

string

exceeds

the

maximum

length

allowed

for

that

data

type.

If

the

length

of

the

string,

after

expansion,

exceeds

the

limit

of

the

data

type,

type

promotion

does

not

occur.

Instead,

an

error

message

is

returned

indicating

that

the

maximum

allowed

expansion

length

has

been

exceeded.

This

situation

is

more

likely

to

occur

while

evaluating

predicates

than

inserts.

With

inserts,

the

column

width

is

more

readily

known

by

the

application,

and

the

maximum

expansion

factor

can

be

readily

taken

into

account.

In

many

cases,

this

side

effect

of

character

conversion

can

be

avoided

by

casting

the

value

to

an

associated

data

type

with

a

longer

maximum

length.

For

example,

the

maximum

length

of

a

CHAR

value

is

254

bytes,

while

the

maximum

length

of

a

VARCHAR

is

32

672

bytes.

In

cases

where

expansion

does

exceed

the

maximum

length

of

the

data

type,

SQLCODE

-334

(SQLSTATE

22524)

is

returned.

v

Code

page

conversion

in

a

stored

procedure

Mixed

character

or

graphic

data

specified

in

host

variables

and

SQLDAs

in

sqleproc()

or

SQL

CALL

invocations

are

converted

in

situations

where

the

application

and

database

code

pages

are

different.

In

cases

where

string

length

expansion

occurs

as

a

result

of

conversion,

you

receive

an

SQLCODE

-334

(SQLSTATE

22524)

if

there

is

not

enough

space

allocated

to

handle

the

expansion.

Thus

you

must

be

sure

to

provide

enough

space

for

potentially

624

Programming

Client

Applications

expanding

strings

when

developing

stored

procedures.

You

should

use

variable-length

data

types

with

enough

space

allocated

to

allow

for

expansion.

Related

reference:

v

“COALESCE

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“VALUE

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“Fullselect”

in

the

SQL

Reference,

Volume

1

v

“VALUES

statement”

in

the

SQL

Reference,

Volume

2

v

“CASE

statement”

in

the

SQL

Reference,

Volume

2

v

“Predicates”

in

the

SQL

Reference,

Volume

1

Applications

Connected

to

Unicode

Databases

Applications

from

any

code

page

environment

can

connect

to

a

Unicode

database.

For

applications

that

connect

to

a

Unicode

database,

the

database

manager

converts

character

string

data

between

the

application

code

page

and

the

database

code

page

(UTF-8).

When

DB2

converts

characters

from

a

code

page

to

UTF-8,

the

total

number

of

bytes

that

represent

the

characters

may

expand

or

shrink,

depending

on

the

code

page

and

the

code

points

of

the

characters.

7-bit

ASCII

remains

invariant

in

UTF-8,

and

each

ASCII

character

requires

one

byte.

Non-ASCII

characters

become

more

than

one

byte

each.

For

more

information

about

UTF-8

conversions,

refer

to

the

Unicode

standard

documents.

Note:

The

information

that

applies

to

applications

in

mixed

code

sets

also

applies

to

applications

that

connect

to

Unicode

databases.

For

a

Unicode

database,

GRAPHIC

data

is

in

UCS-2

big-endian

order.

If

you

use

the

command

line

processor

to

retrieve

graphic

data,

the

graphic

characters

are

also

converted

to

the

client

code

page.

This

conversion

allows

the

command

line

processor

to

display

graphic

characters

in

the

current

font.

Data

loss

may

occur

whenever

the

database

manager

converts

UCS-2

characters

to

a

client

code

page.

Characters

that

the

database

manager

cannot

convert

to

a

valid

character

in

the

client

code

page

are

replaced

with

the

default

substitution

character

in

that

code

page.

Starting

with

DB2®

Version

8,

the

database

manager

checks

the

code

page

setting

of

the

client,

and

performs

all

required

conversions

for

UCS-2

GRAPHIC

data.

For

example,

if

a

non-Unicode

application

sends

GRAPHIC

data,

DB2

converts

the

GRAPHIC

data

to

UCS-2

before

the

data

is

stored

in

a

UCS-2

database.

Conversely,

if

a

non-Unicode

application

requests

GRAPHIC

data

from

a

UCS-2

database,

DB2

converts

the

GRAPHIC

data

to

the

code

page

of

the

application

before

the

application

can

access

the

data.

Note:

The

following

restrictions

apply:

v

When

the

DB2

Load,

Import,

or

Export

utilities

are

working

with

a

DBCLOB

file,

the

database

manager

does

not

check

the

code

page

of

the

client.

v

When

GRAPHIC

data

is

retrieved

from

a

UCS-2

database

to

a

non-SBCS,

non-EUC,

or

non-Unicode

application,

DB2

substitutes

an

ASCII

blank

character

(U+0020)

for

each

blank

that

is

padded

to

the

UCS-2

GRAPHIC

column.

The

substitution

is

performed

because

pure

DBCS

code

pages

have

no

equivalent

to

the

UCS-2

blank.

Chapter

29.

National

Language

Support

625

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

v

When

DATE,

TIME,

and

TIMESTAMP

data

is

retrieved

from

a

UCS-2

database

as

a

GRAPHIC

data

type

to

a

non-SBCS,

non-EUC,

or

non-Unicode

application,

DB2

converts

these

data

types

to

the

substitution

character.

The

substitution

is

performed

because

the

UCS-2

data

types

contain

SBCS

characters

that

have

no

equivalent

in

pure

DBCS

code

pages.

Before

Version

8,

DB2

did

not

perform

any

automatic

conversion

of

UCS-2

GRAPHIC

data.

Non-Unicode

applications

had

to

perform

the

necessary

conversions

to

and

from

Unicode

themselves,

or

set

the

WCHARTYPE

CONVERT

option

and

use

wchar_t.

If

a

Version

7

client

connects

to

a

DB2

Version

8

server,

the

database

manager,

by

default,

does

not

perform

data

conversion

for

UCS-2

GRAPHIC

data.

If

you

want

to

override

this

default

behaviour,

you

can

set

the

DB2GRAPHICUNICODESERVER

registry

variable

to

OFF.

For

applications

that

connect

to

DBCS

databases,

GRAPHIC

data

is

converted

between

the

application

DBCS

code

page

and

the

database

DBCS

code

page.

Related

concepts:

v

“Unicode

handling

of

data

types”

in

the

Administration

Guide:

Planning

v

“String

comparisons

in

a

Unicode

database”

in

the

Administration

Guide:

Planning

v

“Graphic

Host

Variables

in

C

and

C++”

on

page

143

v

“Package

Name

Considerations

in

Mixed

Code

Page

Environments”

on

page

608

v

“Mixed

EUC

and

Double-Byte

Client

and

Database

Considerations”

on

page

616

v

“Client-Based

Parameter

Validation

in

a

Mixed

Code

Set

Environment”

on

page

621

v

“DESCRIBE

Statement

in

Mixed

Code

Set

Environments”

on

page

622

v

“Fixed-Length

and

Variable-Length

Data

in

Mixed

Code

Set

Environments”

on

page

623

v

“Code

Page

Conversion

String-Length

Overflow

in

Mixed

Code

Set

Environments”

on

page

623

626

Programming

Client

Applications

|
|
|
|
|
|

|
|
|
|
|
|
|

Chapter

30.

Managing

Transactions

Remote

Unit

of

Work

.

.

.

.

.

.

.

.

.

.

. 627

Multisite

Update

Considerations

.

.

.

.

.

.

. 627

Multisite

Update

.

.

.

.

.

.

.

.

.

.

. 627

When

to

Use

Multisite

Update

.

.

.

.

.

. 628

SQL

Statements

in

Multisite

Update

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 628

Precompilation

of

Multisite

Update

Applications

630

Configuration

Parameter

Considerations

for

Multisite

Update

Applications

.

.

.

.

.

.

. 631

Accessing

Host,

AS/400,

or

iSeries

Servers

.

.

. 633

Concurrent

Transactions

.

.

.

.

.

.

.

.

.

. 633

Concurrent

Transactions

.

.

.

.

.

.

.

.

. 633

Potential

Problems

with

Concurrent

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

. 634

Deadlock

Prevention

for

Concurrent

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

. 635

Savepoints

and

Transactions

.

.

.

.

.

.

.

. 635

Transaction

management

with

savepoints

.

.

. 636

Application

Savepoints

Compared

to

Compound

SQL

Blocks

.

.

.

.

.

.

.

.

. 637

SQL

Statements

for

creating

and

controlling

savepoints

.

.

.

.

.

.

.

.

.

.

.

.

. 639

Restrictions

on

Savepoint

Usage

.

.

.

.

.

. 640

Savepoints

and

Data

Definition

Language

(DDL)

640

Nesting

savepoints

.

.

.

.

.

.

.

.

.

. 641

Savepoints

and

Buffered

Inserts

.

.

.

.

.

. 642

Savepoints

and

Cursor

Blocking

.

.

.

.

.

. 642

Savepoints

and

XA-Compliant

Transaction

Managers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 643

X/Open

XA

Interface

Programming

Considerations

643

Application

Linkage

and

the

X/Open

XA

Interface

646

MTS

and

COM+

Transaction

Management

.

.

. 646

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager

.

.

.

.

.

.

.

.

.

. 646

Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)

.

.

.

.

.

.

. 648

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout

.

.

.

.

.

.

.

.

.

. 648

ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

.

.

. 649

Remote

Unit

of

Work

A

unit

of

work

is

a

single

logical

transaction.

It

consists

of

a

sequence

of

SQL

statements

in

which

either

all

of

the

operations

are

successfully

performed,

or

the

sequence

as

a

whole

is

considered

unsuccessful.

A

remote

unit

of

work

lets

a

user

or

application

program

read

or

update

data

at

one

location

per

unit

of

work.

It

supports

access

to

one

database

within

a

unit

of

work.

While

an

application

program

can

access

several

remote

databases,

it

can

only

access

one

database

within

a

unit

of

work.

A

remote

unit

of

work

has

the

following

characteristics:

v

Multiple

requests

per

unit

of

work

are

supported.

v

Multiple

cursors

per

unit

of

work

are

supported.

v

Each

unit

of

work

can

access

only

one

database.

v

The

application

program

either

commits

or

rolls

back

the

unit

of

work.

In

certain

error

conditions,

the

server

may

roll

back

the

unit

of

work.

Multisite

Update

Considerations

The

sections

that

follow

describe

multisite

updates,

and

how

to

develop

applications

that

perform

multisite

updates.

Multisite

Update

Multisite

update,

also

known

as

distributed

unit

of

work

(DUOW)

and

two-phase

commit,

is

a

function

that

enables

your

applications

to

update

data

in

multiple

remote

database

servers

with

guaranteed

integrity.

A

good

example

of

a

multisite

update

is

a

banking

transaction

that

involves

the

transfer

of

money

from

one

©

Copyright

IBM

Corp.

1997

-

2004

627

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

account

to

another

in

a

different

database

server.

In

such

a

transaction

it

is

critical

that

updates

that

implement

debit

operation

on

one

account

do

not

get

committed

unless

the

updates

required

to

process

credit

to

the

other

account

are

committed

as

well.

The

multisite

update

considerations

apply

when

data

representing

these

accounts

is

managed

by

two

different

database

servers.

You

can

use

multisite

update

to

read

and

update

multiple

DB2

Universal

Database

databases

within

a

unit

of

work.

If

you

have

installed

DB2®

Connect

or

use

the

DB2

Connect™

capability

provided

with

DB2

Universal

Database™

Enterprise

Edition,

you

can

also

use

multisite

update

with

host,

AS/400®,

or

iSeries

database

servers

such

as

DB2

Universal

Database

for

z/OS

and

OS/390

and

DB2

UDB

for

AS/400.

Certain

restrictions

apply

when

you

use

DB2

Connect

in

a

multisite

update

with

other

database

servers.

A

transaction

manager

coordinates

the

commit

among

multiple

databases.

If

you

use

a

transaction

processing

(TP)

monitor

environment

such

as

TxSeries

CICS®,

the

TP

monitor

uses

its

own

transaction

manager.

Otherwise,

the

transaction

manager

supplied

with

DB2

is

used.

DB2

Universal

Database

for

UNIX®,

and

Windows®

32-bit

operating

systems

is

an

XA

(extended

architecture)

compliant

resource

manager.

Host

and

iSeries

database

servers

that

you

access

with

DB2

Connect

are

XA

compliant

resource

managers.

Also

note

that

the

DB2

Universal

Database

transaction

manager

isnot

an

XA

compliant

transaction

manager,

meaning

the

transaction

manager

can

only

coordinate

DB2

databases.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“Multisite

Updates”

in

the

DB2

Connect

User’s

Guide

When

to

Use

Multisite

Update

Multisite

update

is

most

useful

when

you

want

to

work

with

two

or

more

databases

and

maintain

data

integrity.

For

example,

if

each

branch

of

a

bank

has

its

own

database,

a

money

transfer

application

could

do

the

following:

1.

Connect

to

the

sender’s

database.

2.

Read

the

sender’s

account

balance

and

verify

that

enough

money

is

present.

3.

Reduce

the

sender’s

account

balance

by

the

transfer

amount.

4.

Connect

to

the

recipient’s

database

5.

Increase

the

recipient’s

account

balance

by

the

transfer

amount.

6.

Commit

the

databases.

By

doing

the

transfer

of

funds

within

one

unit

of

work,

you

ensure

that

either

both

databases

are

updated

or

neither

database

is

updated.

SQL

Statements

in

Multisite

Update

Applications

The

following

table

shows

how

you

code

SQL

statements

for

multisite

update.

The

left

column

shows

SQL

statements

that

do

not

use

multisite

update;

the

right

column

shows

similar

statements

with

multisite

update.

628

Programming

Client

Applications

Table

92.

RUOW

and

Multisite

Update

SQL

Statements

RUOW

Statements

Multisite

Update

Statements

CONNECT

TO

D1

SELECT

UPDATE

COMMIT

CONNECT

TO

D2

INSERT

COMMIT

CONNECT

TO

D1

SELECT

COMMIT

CONNECT

RESET

CONNECT

TO

D1

SELECT

UPDATE

CONNECT

TO

D2

INSERT

RELEASE

CURRENT

SET

CONNECTION

D1

SELECT

RELEASE

D1

COMMIT

The

SQL

statements

in

the

left

column

access

only

one

database

for

each

unit

of

work.

This

is

a

remote

unit

of

work

(RUOW)

application.

The

SQL

statements

in

the

right

column

access

more

than

one

database

within

a

unit

of

work.

This

is

a

multisite

update

application.

Some

SQL

statements

are

coded

and

interpreted

differently

in

a

multisite

update

application:

v

The

current

unit

of

work

does

not

need

to

be

committed

or

rolled

back

before

you

connect

to

another

database.

v

When

you

connect

to

another

database,

the

current

connection

is

not

disconnected.

Instead,

it

is

put

into

a

dormant

state.

If

the

CONNECT

statement

fails,

the

current

connection

is

not

affected.

v

You

cannot

connect

with

the

USER/USING

clause

if

a

current

or

dormant

connection

to

the

database

already

exists.

v

You

can

use

the

SET

CONNECTION

statement

to

change

a

dormant

connection

to

the

current

connection.

You

can

also

accomplish

the

same

thing

by

issuing

a

CONNECT

statement

to

the

dormant

database.

This

method

is

not

allowed

if

you

set

SQLRULES

to

STD.

You

can

set

the

value

of

SQLRULES

using

a

precompiler

option

or

the

SET

CLIENT

command

or

API.

The

default

value

of

SQLRULES

(DB2)

allows

you

to

switch

connections

using

the

CONNECT

statement.

v

In

a

select,

the

cursor

position

is

not

affected

if

you

switch

to

another

database,

then

back

to

the

original

database.

v

The

CONNECT

RESET

statement

does

not

disconnect

the

current

connection

and

does

not

implicitly

commit

the

current

unit

of

work.

Instead,

this

statement

is

equivalent

to

explicitly

connecting

to

the

default

database

(if

one

has

been

defined).

If

an

implicit

connection

is

not

defined,

SQLCODE

-1024

(SQLSTATE

08003)

is

returned.

v

You

can

use

the

RELEASE

statement

to

mark

a

connection

for

disconnection

at

the

next

COMMIT.

The

RELEASE

CURRENT

statement

applies

to

the

current

connection,

the

RELEASE

connection

applies

to

the

named

connection,

and

the

RELEASE

ALL

statement

applies

to

all

connections.

A

connection

that

is

marked

for

release

can

still

be

used

until

it

is

dropped

at

the

next

COMMIT

statement.

A

rollback

does

not

drop

the

connection;

this

behavior

allows

a

retry

with

the

connections

still

in

place.

Use

the

DISCONNECT

statement

(or

precompiler

option)

to

drop

connections

after

a

commit

or

rollback.

Chapter

30.

Managing

Transactions

629

v

The

COMMIT

statement

commits

all

databases

in

the

unit

of

work

(current

or

dormant).

v

The

ROLLBACK

statement

rolls

back

all

databases

in

the

unit

of

work,

and

closes

held

cursors

for

all

databases

whether

or

not

they

are

accessed

in

the

unit

of

work.

v

All

connections

(including

dormant

connections

and

connections

marked

for

release)

are

disconnected

when

the

application

process

terminates.

v

Upon

any

successful

connection

(including

a

CONNECT

statement

with

no

options,

which

only

queries

the

current

connection)

a

number

will

be

returned

in

the

SQLERRD(3)

and

SQLERRD(4)

fields

of

the

SQLCA.

The

SQLERRD(3)

field

returns

information

on

whether

the

database

connected

is

currently

updatable

in

a

unit

of

work.

Its

possible

values

are:

1

Updatable.

2

Read-only.
The

SQLERRD(4)

field

returns

the

following

information

on

the

current

characteristics

of

the

connection:

0

Not

applicable.

This

state

is

only

possible

if

running

from

a

down-level

client

that

uses

one-phase

commit

and

is

an

updater.

1

One-phase

commit.

2

One-phase

commit

(read-only).

This

state

is

only

applicable

to

host,

AS/400®,

or

iSeries

database

servers

that

you

access

with

DB2®

Connect

without

starting

the

DB2

Connect™

sync

point

manager.

3

Two-phase

commit.
If

you

are

writing

tools

or

utilities,

you

may

want

to

issue

a

message

to

your

users

if

the

connection

is

read-only.

Precompilation

of

Multisite

Update

Applications

When

you

precompile

a

multisite

update

application,

you

should

set

the

CLP

connection

to

a

type

1

connection;

otherwise,

you

will

receive

an

SQLCODE

30090

(SQLSTATE

25000)

when

you

attempt

to

precompile

your

application.

The

following

precompiler

options

are

used

when

you

precompile

an

application

that

uses

multisite

updates:

CONNECT

(1

|

2)

Specify

CONNECT

2

to

indicate

that

this

application

uses

the

SQL

syntax

for

multisite

update

applications.

The

default,

CONNECT

1,

means

that

the

normal

(RUOW)

rules

for

SQL

syntax

apply

to

the

application.

SYNCPOINT

(ONEPHASE

|

TWOPHASE

|

NONE)

If

you

specify

SYNCPOINT

TWOPHASE

and

DB2®

coordinates

the

transaction,

DB2

requires

a

database

to

maintain

the

transaction

state

information.

When

you

deploy

your

application,

you

must

define

this

database

by

configuring

the

database

manager

configuration

parameter

tm_database.

SQLRULES

(DB2

|

STD)

Specifies

whether

DB2

rules

or

standard

(STD)

rules

based

on

ISO/ANSI

SQL92

should

be

used

in

multisite

update

applications.

DB2

rules

allow

you

to

issue

a

CONNECT

statement

to

a

dormant

database;

STD

rules

do

not

allow

this.

DISCONNECT

(EXPLICIT

|

CONDITIONAL

|

AUTOMATIC)

Specifies

which

database

connections

are

disconnected

at

COMMIT:

only

630

Programming

Client

Applications

databases

that

are

marked

for

release

with

a

RELEASE

statement

(EXPLICIT),

all

databases

that

have

no

open

WITH

HOLD

cursors

(CONDITIONAL),

or

all

connections

(AUTOMATIC).

Multisite

update

precompiler

options

become

effective

when

the

first

database

connection

is

made.

You

can

use

the

SET

CLIENT

API

to

supersede

connection

settings

when

there

are

no

existing

connections

(before

any

connection

is

established

or

after

all

connections

are

disconnected).

You

can

use

the

QUERY

CLIENT

API

to

query

the

current

connection

settings

of

the

application

process.

The

binder

fails

if

an

object

referenced

in

your

application

program

does

not

exist.

There

are

three

possible

ways

to

deal

with

multisite

update

applications:

v

You

can

split

the

application

into

several

files,

each

of

which

accesses

only

one

database.

You

then

prep

and

bind

each

file

against

the

one

database

that

it

accesses.

v

You

can

ensure

that

each

table

exists

in

each

database.

For

example,

the

branches

of

a

bank

might

have

databases

whose

tables

are

identical

(except

for

the

data).

v

You

can

use

only

dynamic

SQL.

Related

concepts:

v

“SQL

Statements

in

Multisite

Update

Applications”

on

page

628

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

v

“sqlesetc

-

Set

Client”

in

the

Administrative

API

Reference

v

“sqleqryi

-

Query

Client

Information”

in

the

Administrative

API

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

Configuration

Parameter

Considerations

for

Multisite

Update

Applications

The

following

configuration

parameters

affect

applications

which

perform

multisite

updates.

With

the

exception

of

locktimeout,

the

configuration

parameters

are

database

manager

configuration

parameters.

locktimeout

is

a

database

configuration

parameter.

tm_database

Specifies

which

database

will

act

as

a

transaction

manager

for

two-phase

commit

transactions.

resync_interval

Specifies

the

number

of

seconds

that

the

system

waits

between

attempts

to

try

to

resynchronize

an

indoubt

transaction.

(An

indoubt

transaction

is

a

transaction

that

successfully

completes

the

first

phase

of

a

two-phase

commit

but

fails

during

the

second

phase.)

locktimeout

Specifies

the

number

of

seconds

before

a

lock

wait

will

time-out

and

roll

back

the

current

transaction

for

a

given

database.

The

application

must

issue

an

explicit

ROLLBACK

to

roll

back

all

databases

that

participate

in

the

multisite

update.

locktimeout

is

a

database

configuration

parameter.

Chapter

30.

Managing

Transactions

631

tp_mon_name

Specifies

the

name

of

the

TP

monitor,

if

any.

spm_resync_agent_limit

Specifies

the

number

of

simultaneous

agents

that

can

perform

resync

operations

with

the

host,

AS/400®,

or

iSeries

server

using

SNA.

spm_name

v

If

the

sync

point

manager

is

being

used

with

a

TCP/IP

two-phase

commit

connection,

the

spm_name

must

be

an

unique

identifier

within

the

network.

When

you

create

a

DB2®

instance,

DB2

derives

the

default

value

of

spm_name

from

the

TCP/IP

hostname.

You

may

modify

this

value

if

it

is

not

acceptable

in

your

environment.

For

TCP/IP

connectivity

with

host

database

servers,

the

default

value

should

be

acceptable.

For

SNA

connections

to

host,

AS/400,

or

iSeries

database

servers,

this

value

must

match

an

SNA

LU

profile

defined

within

your

SNA

product.

v

If

the

sync

point

manager

is

being

used

with

an

SNA

two-phase

commit

connection,

the

sync

point

manager

name

must

be

set

to

the

LU_NAME

that

is

used

for

two-phase

commit.

v

If

the

sync

point

manager

is

being

used

for

both

TCP/IP

and

SNA,

the

LU_NAME

that

is

used

for

two-phase

commit

must

be

used.

Note:

Multisite

updates

in

an

environment

with

host,

AS/400,

or

iSeries

database

servers

may

require

the

sync

point

manager.

spm_log_size

The

number

of

4

kilobyte

pages

of

each

primary

and

secondary

log

file

used

by

the

sync

point

manager

to

record

information

on

connections,

status

of

current

connections,

and

so

on.

Additional

considerations

exist

if

your

application

performs

multisite

updates

that

are

coordinated

by

an

XA

transaction

manager

with

connections

to

a

host,

AS/400,

or

iSeries

database.

Related

concepts:

v

“Multisite

Updates”

in

the

DB2

Connect

User’s

Guide

v

“Multisite

update

and

sync

point

manager”

in

the

DB2

Connect

User’s

Guide

Related

tasks:

v

“Enabling

Multisite

Updates

using

the

Control

Center”

in

the

DB2

Connect

User’s

Guide

Related

reference:

v

“spm_log_path

-

Sync

point

manager

log

file

path

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“resync_interval

-

Transaction

resync

interval

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“tm_database

-

Transaction

manager

database

name

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“tp_mon_name

-

Transaction

processor

monitor

name

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“locktimeout

-

Lock

timeout

configuration

parameter”

in

the

Administration

Guide:

Performance

632

Programming

Client

Applications

v

“spm_name

-

Sync

point

manager

name

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“spm_log_file_sz

-

Sync

point

manager

log

file

size

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“spm_max_resync

-

Sync

point

manager

resync

agent

limit

configuration

parameter”

in

the

Administration

Guide:

Performance

Accessing

Host,

AS/400,

or

iSeries

Servers

Procedure:

If

you

want

to

develop

applications

that

can

access

(or

update)

different

database

systems,

you

should:

1.

Use

SQL

statements

and

precompile/bind

options

that

are

supported

on

all

of

the

database

systems

that

your

applications

will

access.

For

example,

stored

procedures

are

not

supported

on

all

platforms.

For

IBM

products,

see

the

SQL

documentation

before

you

start

coding.

2.

Where

possible,

have

your

applications

check

the

SQLSTATE

rather

than

the

SQLCODE.

If

your

applications

will

use

DB2

Connect

and

you

want

to

use

SQLCODE

values,

consider

using

the

mapping

facility

provided

by

DB2

Connect

to

map

SQLCODE

conversions

between

unlike

databases.

3.

Test

your

application

with

the

host,

AS/400,

or

iSeries

databases

(such

as

DB2

Universal

Database

for

z/OS

and

OS/390,

OS/400,

or

DB2

Server

for

VSE

&

VM)

that

you

intend

to

support.

Related

concepts:

v

“Applications

in

Host

or

iSeries

Environments”

on

page

691

Concurrent

Transactions

The

sections

that

follow

describe

concurrent

transactions,

and

how

to

avoid

problems

with

them.

Concurrent

Transactions

Sometimes

it

is

useful

for

an

application

to

have

multiple

independent

connections

called

concurrent

transactions.

Using

concurrent

transactions,

an

application

can

connect

to

several

databases

at

the

same

time,

and

can

establish

several

distinct

connections

to

the

same

database.

The

context

APIs

that

are

used

for

multiple-thread

database

access

allow

an

application

to

use

concurrent

transactions.

Each

context

created

in

an

application

is

independent

from

the

other

contexts.

This

means

you

create

a

context,

connect

to

a

database

using

the

context,

and

run

SQL

statements

against

the

database

without

being

affected

by

the

activities

such

as

running

COMMIT

or

ROLLBACK

statements

of

other

contexts.

For

example,

suppose

you

are

creating

an

application

that

allows

a

user

to

run

SQL

statements

against

one

database,

and

keeps

a

log

of

the

activities

performed

in

a

second

database.

Because

the

log

must

be

kept

up

to

date,

it

is

necessary

to

issue

a

COMMIT

statement

after

each

update

of

the

log,

but

you

do

not

want

the

user’s

SQL

statements

affected

by

commits

for

the

log.

This

is

a

perfect

situation

Chapter

30.

Managing

Transactions

633

for

concurrent

transactions.

In

your

application,

create

two

contexts:

one

connects

to

the

user’s

database

and

is

used

for

all

the

user’s

SQL;

the

other

connects

to

the

log

database

and

is

used

for

updating

the

log.

With

this

design,

when

you

commit

a

change

to

the

log

database,

you

do

not

affect

the

user’s

current

unit

of

work.

Another

benefit

of

concurrent

transactions

is

that

if

the

work

on

the

cursors

in

one

connection

is

rolled

back,

it

has

no

affect

on

the

cursors

in

other

connections.

After

the

rollback

in

the

one

connection,

both

the

work

done

and

the

cursor

positions

are

still

maintained

in

the

other

connections.

Related

concepts:

v

“Purpose

of

Multiple-Thread

Database

Access”

on

page

169

Potential

Problems

with

Concurrent

Transactions

An

application

that

uses

concurrent

transactions

can

encounter

some

problems

that

cannot

arise

when

writing

an

application

that

uses

a

single

connection.

When

writing

an

application

with

concurrent

transactions,

exercise

caution

with

the

following:

v

Database

dependencies

between

two

or

more

contexts.

Each

context

in

an

application

has

its

own

set

of

database

resources,

including

locks

on

database

objects.

These

different

sets

of

resources

make

it

possible

for

two

contexts,

if

they

are

accessing

the

same

database

object,

to

become

deadlocked.

The

database

manager

will

detect

the

deadlock,

one

of

the

contexts

will

receive

an

SQLCODE

-911,

and

its

unit

of

work

will

be

rolled

back.

v

Application

dependencies

between

two

or

more

contexts.

Switching

contexts

within

a

single

thread

creates

dependencies

between

the

contexts.

If

the

contexts

also

have

database

dependencies,

it

is

possible

for

a

deadlock

to

develop.

Because

some

of

the

dependencies

are

outside

of

the

database

manager,

the

deadlock

will

not

be

detected

and

the

application

will

be

suspended.

As

an

example

of

this

sort

of

problem,

consider

the

following

application:

context

1

UPDATE

TAB1

SET

COL

=

:new_val

context

2

SELECT

*

FROM

TAB1

COMMIT

context

1

COMMIT

Suppose

the

first

context

successfully

executes

the

UPDATE

statement.

The

update

establishes

locks

on

all

the

rows

of

TAB1.

Now

context

2

tries

to

select

all

the

rows

from

TAB1.

Because

the

two

contexts

are

independent,

context

2

waits

on

the

locks

held

by

context

1.

Context

1,

however,

cannot

release

its

locks

until

context

2

finishes

executing.

The

application

is

now

deadlocked,

but

the

database

manager

does

not

know

that

context

1

is

waiting

on

context

2,

so

it

will

not

force

one

of

the

contexts

to

be

rolled

back.

The

unresolved

dependency

leaves

the

application

suspended.

Related

concepts:

v

“Deadlock

Prevention

for

Concurrent

Transactions”

on

page

635

634

Programming

Client

Applications

Deadlock

Prevention

for

Concurrent

Transactions

Because

the

database

manager

cannot

detect

deadlocks

between

contexts,

you

must

design

and

code

your

application

in

a

way

that

will

prevent

(or

at

least

avoid)

deadlocks.

Consider

the

following

example,

which

can

result

in

a

deadlock

situation:

context

1

UPDATE

TAB1

SET

COL

=

:new_val

context

2

SELECT

*

FROM

TAB1

COMMIT

context

1

COMMIT

Suppose

the

first

context

successfully

executes

the

UPDATE

statement.

The

update

establishes

locks

on

all

the

rows

of

TAB1.

Now

context

2

tries

to

select

all

the

rows

from

TAB1.

Because

the

two

contexts

are

independent,

context

2

waits

on

the

locks

held

by

context

1.

Context

1,

however,

cannot

release

its

locks

until

context

2

finishes

executing.

The

application

is

now

deadlocked,

but

the

database

manager

does

not

know

that

context

1

is

waiting

on

context

2,

so

it

will

not

force

one

of

the

contexts

to

be

rolled

back.

The

unresolved

dependency

leaves

the

application

suspended.

You

can

avoid

the

deadlock

in

the

example

in

several

ways:

v

Release

all

locks

held

before

switching

contexts.

Change

the

code

so

that

context

1

performs

its

commit

before

switching

to

context

2.

v

Do

not

access

a

given

object

from

more

than

one

context

at

a

time.

Change

the

code

so

that

both

the

update

and

the

select

are

done

from

the

same

context.

v

Set

the

locktimeout

database

configuration

parameter

to

a

value

other

than

-1.

While

a

value

other

than

-1

will

not

prevent

the

deadlock,

it

will

allow

execution

to

resume.

Context

2

is

eventually

rolled

back

because

it

is

unable

to

obtain

the

requested

lock.

When

context

2

is

rolled

back,

context

1

can

continue

executing

(which

releases

the

locks)

and

context

2

can

retry

its

work.

Althought

the

techniques

for

avoiding

deadlocks

are

described

in

terms

of

the

example,

you

can

apply

them

to

all

applications

that

use

concurrent

transactions.

Related

concepts:

v

“Potential

Problems

with

Concurrent

Transactions”

on

page

634

Related

reference:

v

“locktimeout

-

Lock

timeout

configuration

parameter”

in

the

Administration

Guide:

Performance

Savepoints

and

Transactions

The

sections

that

follow

describe

savepoints,

and

how

to

use

them

to

manage

transactions.

Chapter

30.

Managing

Transactions

635

Transaction

management

with

savepoints

Application

savepoints

provide

control

over

the

work

performed

by

a

subset

of

SQL

statements

in

a

transaction

or

unit

of

work.

Within

your

application

you

can

set

a

savepoint,

and

later

either

release

the

savepoint

or

roll

back

the

work

performed

since

you

set

the

savepoint.

You

can

use

as

many

savepoints

as

you

require

within

a

single

transaction.

The

following

example

demonstrates

the

use

of

two

savepoints

within

a

single

transaction

to

control

the

behavior

of

an

application:

Example

of

an

order

using

application

savepoints::

INSERT

INTO

order

...

INSERT

INTO

order_item

...

lamp

--

set

the

first

savepoint

in

the

transaction

SAVEPOINT

before_radio

ON

ROLLBACK

RETAIN®

CURSORS

INSERT

INTO

order_item

...

Radio

INSERT

INTO

order_item

...

Power

Cord

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

Power

Cord"

ROLLBACK

TO

SAVEPOINT

before_radio

RELEASE

SAVEPOINT

before_radio

--

set

the

second

savepoint

in

the

transaction

SAVEPOINT

before_checkout

ON

ROLLBACK

RETAIN

CURSORS

INSERT

INTO

order

...

Approval

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

approval"

ROLLBACK

TO

SAVEPOINT

before_checkout

--

commit

the

transaction,

which

releases

the

savepoint

COMMIT

In

the

preceding

example,

the

first

savepoint

enforces

a

dependency

between

two

data

objects

where

the

dependency

is

not

intrinsic

to

the

objects

themselves.

You

would

not

use

referential

integrity

to

describe

the

above

relationship

between

radios

and

power

cords

since

one

can

exist

without

the

other.

However,

you

do

not

want

to

ship

the

radio

to

the

customer

without

a

power

cord.

You

also

would

not

want

to

cancel

the

order

of

the

lamp

by

rolling

back

the

entire

transaction

because

there

are

no

power

cords

for

the

radio.

Application

savepoints

provide

the

granular

control

you

need

to

complete

this

order.

When

you

issue

a

ROLLBACK

TO

SAVEPOINT

statement,

the

corresponding

savepoint

is

not

automatically

released.

Any

subsequent

SQL

statements

are

associated

with

that

savepoint,

until

the

savepoint

is

released

either

explicitly

with

a

RELEASE

SAVEPOINT

statement

or

implicitly

by

ending

the

transaction

or

unit

of

work.

The

savepoint

can

also

be

implicitly

released

at

the

end

of

the

current

savepoint

level,

or

until

a

prior

active

savepoint

is

released

or

rolled

back,

at

which

point

the

current

savepoint

would

become

obsolete.

This

means

that

you

can

issue

multiple

ROLLBACK

TO

SAVEPOINT

statements

for

a

single

savepoint.

Savepoints

give

you

better

performance

and

a

cleaner

application

design

than

using

multiple

COMMIT

and

ROLLBACK

statements.

When

you

issue

a

COMMIT

statement,

DB2®

must

do

some

extra

work

to

commit

the

current

transaction

and

start

a

new

transaction.

Savepoints

allow

you

to

break

a

transaction

into

smaller

units

or

steps

without

the

added

overhead

of

multiple

COMMIT

statements.

The

following

example

demonstrates

the

performance

penalty

incurred

by

using

multiple

transactions

instead

of

savepoints:

636

Programming

Client

Applications

Example

of

an

order

using

multiple

transactions::

INSERT

INTO

order

...

INSERT

INTO

order_item

...

lamp

--

commit

current

transaction,

start

new

transaction

COMMIT

INSERT

INTO

order_item

...

Radio

INSERT

INTO

order_item

...

Power

Cord

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

Power

Cord"

--

roll

back

current

transaction,

start

new

transaction

ROLLBACK

ELSE

--

commit

current

transaction,

start

new

transaction

COMMIT

INSERT

INTO

order

...

Approval

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

approval"

--

roll

back

current

transaction,

start

new

transaction

ROLLBACK

ELSE

--

commit

current

transaction,

start

new

transaction

COMMIT

Another

drawback

of

multiple

commit

points

is

that

an

object

might

be

committed

and

therefore

visible

to

other

applications

before

it

is

fully

completed.

In

the

second

example,

the

order

is

available

to

another

user

before

all

the

items

have

been

added,

and

worse,

before

it

has

been

approved.

Using

application

savepoints

avoids

this

exposure

to

’dirty

data’

while

providing

granular

control

over

an

operation.

Related

samples:

v

“tbsavept.sqc

--

How

to

use

external

savepoints

(C)”

Application

Savepoints

Compared

to

Compound

SQL

Blocks

Savepoints

offer

the

following

advantages

over

compound

SQL

blocks:

v

Enhanced

control

of

transactions

v

Less

locking

contention

v

Improved

integration

with

application

logic

Compound

SQL

blocks

can

either

be

ATOMIC

or

NOT

ATOMIC.

If

a

statement

within

an

ATOMIC

compound

SQL

block

fails,

the

entire

compound

SQL

block

is

rolled

back.

If

a

statement

within

a

NOT

ATOMIC

compound

SQL

block

fails,

the

commit

or

roll

back

of

the

transaction,

including

the

entire

compound

SQL

block,

is

controlled

by

the

application.

In

comparison,

if

a

statement

within

the

scope

of

a

savepoint

fails,

the

application

can

roll

back

all

of

the

statements

in

the

scope

of

the

savepoint,

but

commit

the

work

performed

by

statements

outside

of

the

scope

of

the

savepoint.

This

option

is

illustrated

in

the

following

example.

If

the

work

of

the

savepoint

is

rolled

back,

the

work

of

the

two

INSERT

statements

before

the

savepoint

is

committed.

Alternatively,

the

application

can

commit

the

work

performed

by

all

of

the

statements

in

the

transaction,

including

the

statements

within

the

scope

of

the

savepoint.

Example

of

an

order

using

application

savepoints::

INSERT

INTO

order

...

INSERT

INTO

order_item

...

lamp

Chapter

30.

Managing

Transactions

637

--

set

the

first

savepoint

in

the

transaction

SAVEPOINT

before_radio

ON

ROLLBACK

RETAIN®

CURSORS

INSERT

INTO

order_item

...

Radio

INSERT

INTO

order_item

...

Power

Cord

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

Power

Cord"

ROLLBACK

TO

SAVEPOINT

before_radio

RELEASE

SAVEPOINT

before_radio

--

set

the

second

savepoint

in

the

transaction

SAVEPOINT

before_checkout

ON

ROLLBACK

RETAIN

CURSORS

INSERT

INTO

order

...

Approval

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

approval"

ROLLBACK

TO

SAVEPOINT

before_checkout

--

commit

the

transaction,

which

releases

the

savepoint

COMMIT

When

you

issue

a

compound

SQL

block,

DB2®

simultaneously

acquires

the

locks

needed

for

the

entire

compound

SQL

block

of

statements.

When

you

set

an

application

savepoint,

DB2

acquires

locks

as

each

statement

in

the

scope

of

the

savepoint

is

issued.

The

locking

behavior

of

savepoints

can

lead

to

significantly

less

locking

contention

than

compound

SQL

blocks,

so

unless

your

application

requires

the

locking

performed

by

compound

SQL

statements,

it

may

be

best

to

use

savepoints.

Compound

SQL

blocks

execute

a

complete

set

of

statements

as

a

single

statement.

An

application

cannot

use

control

structures

or

functions

to

add

statements

to

a

compound

SQL

block.

In

comparison,

when

you

set

an

application

savepoint,

your

application

can

issue

SQL

statements

within

the

scope

of

the

savepoint

by

calling

other

application

functions

or

methods,

through

control

structures

such

as

while

loops,

or

with

dynamic

SQL

statements.

Application

savepoints

give

you

the

freedom

to

integrate

your

SQL

statements

with

your

application

logic

in

an

intuitive

way.

For

example,

in

the

following

example,

the

application

sets

a

savepoint

and

issues

two

INSERT

statements

within

the

scope

of

the

savepoint.

The

application

uses

an

IF

statement

that,

when

true,

calls

the

function

add_batteries().

The

add_batteries()

function

issues

an

SQL

statement

that

in

this

context

is

included

within

the

scope

of

the

savepoint.

Finally,

the

application

either

rolls

back

the

work

performed

within

the

savepoint

(including

the

SQL

statement

issued

by

the

add_batteries()

function),

or

commits

the

work

performed

in

the

entire

transaction:

Example

of

integrating

savepoints

and

SQL

statements

within

application

logic:

void

add_batteries()

{

--

the

work

performed

by

the

following

statement

--

is

controlled

by

the

savepoint

set

in

main()

INSERT

INTO

order_item

...

Batteries

}

void

main(int

argc,

char[]

*argv)

{

INSERT

INTO

order

...

INSERT

INTO

order_item

...

lamp

--

set

the

first

savepoint

in

the

transaction

SAVEPOINT

before_radio

ON

ROLLBACK

RETAIN

CURSORS

INSERT

INTO

order_item

...

Radio

INSERT

INTO

order_item

...

Power

Cord

638

Programming

Client

Applications

if

(strcmp(Radio..power_source(),

"AC/DC"))

{

add_batteries();

}

--

Pseudo-SQL:

IF

SQLSTATE

=

"No

Power

Cord"

ROLLBACK

TO

SAVEPOINT

before_radio

COMMIT

}

SQL

Statements

for

creating

and

controlling

savepoints

The

following

SQL

statements

enable

you

to

create

and

control

savepoints:

SAVEPOINT

To

set

a

savepoint,

issue

a

SAVEPOINT

SQL

statement.

To

identify

a

specific

savepoint

for

nested

savepoints

and

to

improve

the

clarity

of

your

code,

you

can

choose

a

meaningful

name

for

the

savepoint.

These

names

are

known

as

savepoint

references.

For

example:

SAVEPOINT

before_sales

ON

ROLLBACK

RETAIN

CURSORS

RELEASE

SAVEPOINT

To

release

a

savepoint,

issue

a

RELEASE

SAVEPOINT

SQL

statement.

For

example:

RELEASE

SAVEPOINT

before_sales

If

you

do

not

explicitly

release

a

savepoint

with

a

RELEASE

SAVEPOINT

SQL

statement,

it

is

released

at

the

end

of

the

current

savepoint

level.

ROLLBACK

TO

SAVEPOINT

To

rollback

to

a

savepoint,

issue

a

ROLLBACK

TO

SAVEPOINT

SQL

statement.

For

example:

ROLLBACK

TO

SAVEPOINT

before_sales

A

savepoint

level

refers

to

the

scope

of

reference

for

any

savepoint-related

statement.

When

a

savepoint

level

is

started,

no

savepoint-related

statement

can

refer

to

a

savepoint

created

outside

the

new

savepoint

level.

Similarly,

savepoint

references

are

resolved

within

the

current

savepoint

level

and

do

not

take

into

account

savepoint

references

outside

of

the

current

savepoint

level.

A

new

savepoint

level

is

started

or

entered

only

when

any

the

following

happens:

v

A

new

unit

of

work

is

started

v

A

stored

procedure

defined

with

the

NEW

SAVEPOINT

LEVEL

clause

v

An

atomic

compound

SQL

statement

is

started

A

savepoint

level

is

ended

when

the

event

that

caused

its

creation

is

finished

or

removed.

The

following

rules

apply

to

actions

within

a

savepoint

level’s

scope:

v

Savepoints

can

only

be

referenced

within

the

savepoint

level

in

which

they

are

established.

You

cannot

release

or

rollback

to

a

savepoint

established

outside

of

the

current

savepoint

level.

v

All

active

savepoints

established

within

the

current

savepoint

level

are

automatically

released

when

the

savepoint

level

ends.

Chapter

30.

Managing

Transactions

639

|
|

|

|
|

|
|
|
|
|

|

|

|

|

|
|

|

|
|
|

|
|

v

Savepoint

unique

names

are

only

enforced

within

the

current

savepoint

level.

The

names

of

savepoints

that

are

active

in

surrounding

savepoint

levels

can

be

reused

in

the

current

savepoint

level

without

affecting

these

other

savepoints.

Related

reference:

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

v

“RELEASE

SAVEPOINT

statement”

in

the

SQL

Reference,

Volume

2

v

“SAVEPOINT

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“tbsavept.sqc

--

How

to

use

external

savepoints

(C)”

Restrictions

on

Savepoint

Usage

DB2®

Universal

Database

places

the

following

restrictions

on

your

use

of

savepoints

in

applications:

Triggers

DB2

does

not

support

savepoint-related

SQL

statements

within

the

definition

body

of

a

trigger.

However,

you

can

use

a

trigger

to

call

stored

procedures

that

contain

savepoints.

These

stored

procedures

must

be

defined

as

starting

a

new

savepoint

level

when

invoked

(this

is

done

with

the

NEW

SAVEPOINT

LEVEL

clause

of

the

CREATE

PROCEDURE

statement).

SET

INTEGRITY

statement

Within

a

savepoint,

DB2

treats

SET

INTEGRITY

statements

as

DDL

statements.

Related

concepts:

v

“Savepoints

and

Data

Definition

Language

(DDL)”

on

page

640

Savepoints

and

Data

Definition

Language

(DDL)

DB2®

enables

you

to

include

DDL

statements

within

a

savepoint.

If

the

application

successfully

releases

a

savepoint

that

executes

DDL

statements,

the

application

can

continue

to

use

the

SQL

objects

created

by

the

DDL.

However,

if

the

application

issues

a

ROLLBACK

TO

SAVEPOINT

statement

for

a

savepoint

that

executes

DDL

statements,

DB2

marks

any

cursors

that

depend

on

the

effects

of

those

DDL

statements

as

invalid.

In

the

following

example,

the

application

attempts

to

fetch

from

three

previously

opened

cursors

after

issuing

a

ROLLBACK

TO

SAVEPOINT

statement:

SAVEPOINT

savepoint_name;

PREPARE

s1

FROM

'SELECT

FROM

t1';

--issue

DDL

statement

for

t1

ALTER

TABLE

t1

ADD

COLUMN...

PREPARE

s2

FROM

'SELECT

FROM

t2';

--issue

DDL

statement

for

t3

ALTER

TABLE

t3

ADD

COLUMN...

PREPARE

s3

FROM

'SELECT

FROM

t3';

OPEN

c1

USING

s1;

OPEN

c2

USING

s2;

OPEN

c3

USING

s3;

640

Programming

Client

Applications

|
|
|

|
|
|
|
|
|

ROLLBACK

TO

SAVEPOINT

FETCH

c1;

--invalid

(SQLCODE

−910)

FETCH

c2;

--successful

FETCH

c3;

--invalid

(SQLCODE

−910)

At

the

ROLLBACK

TO

SAVEPOINT

statement,

DB2

marks

cursors

“c1”

and

“c3”

as

invalid

because

the

SQL

objects

on

which

they

depend

have

been

manipulated

by

DDL

statements

within

the

savepoint.

However,

a

FETCH

using

cursor

“c2”

from

the

example

is

successful

after

the

ROLLBACK

TO

SAVEPOINT

statement.

You

can

issue

a

CLOSE

statement

to

close

invalid

cursors.

If

you

issue

a

FETCH

against

an

invalid

cursor,

DB2

returns

SQLCODE

−910.

If

you

issue

an

OPEN

statement

against

an

invalid

cursor,

DB2

returns

SQLCODE

−502.

If

you

issue

an

UPDATE

or

DELETE

WHERE

CURRENT

OF

statement

against

an

invalid

cursor,

DB2

returns

SQLCODE

−910.

Within

savepoints,

DB2

treats

tables

with

the

NOT

LOGGED

INITIALLY

property

and

temporary

tables

as

follows:

NOT

LOGGED

INITIALLY

tables

If

you

create

a

table

with

the

NOT

LOGGED

INITIALLY

property,

or

alter

a

table

to

have

the

NOT

LOGGED

INITIALLY

property

within

a

savepoint,

DB2

treats

a

ROLLBACK

TO

SAVEPOINT

statement

as

a

ROLLBACK

WORK

statement,

and

rolls

back

the

entire

unit

of

work.

DECLARE

TEMPORARY

TABLE

inside

savepoint

If

a

temporary

table

is

declared

within

a

savepoint,

a

ROLLBACK

TO

SAVEPOINT

statement

drops

the

temporary

table.

DECLARE

TEMPORARY

TABLE

outside

savepoint

If

a

temporary

table

is

declared

outside

a

savepoint,

a

ROLLBACK

TO

SAVEPOINT

statement

does

not

drop

the

temporary

table.

If

the

temporary

table

is

declared

as

logged

(if

the

NOT

LOGGED

clause

is

not

used

in

the

DECLARE

GLOBAL

TEMPORARY

TABLE

statement),

the

changes

made

to

the

table

within

the

savepoint

will

be

rolled

back.

If

the

temporary

table

is

declared

as

NOT

LOGGED

and

the

data

in

the

table

has

been

changed

within

the

savepoint,

all

the

rows

will

be

deleted.

Otherwise,

if

the

data

has

not

been

changed,

all

the

rows

will

be

preserved.

Nesting

savepoints

DB2®

supports

nested

savepoints,

where

you

can

set

up

a

savepoint

within

another

savepoint.

You

can

set

an

unlimited

number

of

savepoints

and

there

is

also

no

limit

to

the

number

of

nested

savepoint

levels.

This

example

demonstrates

the

use

of

nested

savepoints:

CREATE

TABLE

Department

(deptno

CHAR(6),

deptname

VARCHAR(20),

mgrno

INT)

INSERT

INTO

Department

VALUES

(’A20’,

’Marketing’,

301)

SAVEPOINT

savepoint1

ON

ROLLBACK

RETAIN®

CURSORS

INSERT

INTO

Department

VALUES

(’B30’,

’Finance’,

520)

SAVEPOINT

savepoint2

ON

ROLLBACK

RETAIN

CURSORS

INSERT

INTO

Department

VALUES

(’C40’,

’IT

Support’,

430)

SAVEPOINT

savepoint3

ON

ROLLBACK

RETAIN

CURSORS

INSERT

INTO

Department

VALUES

(’R50’,

’Research’,

150)

ROLLBACK

TO

SAVEPOINT

savepoint3

ROLLBACK

TO

SAVEPOINT

savepoint1

There

are

two

levels

of

nesting

in

this

example,

with

savepoint3

nested

in

savepoint2,

and

savepoint2

nested

in

savepoint1.

In

savepoint3,

once

the

insertion

of

department

’R50’

takes

place,

a

total

of

four

rows

will

have

been

Chapter

30.

Managing

Transactions

641

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

added

to

the

Department

table

in

this

example.

When

the

ROLLBACK

to

savepoint3

statement

is

issued,

only

the

insertion

in

savepoint3

is

rolled

back,

leaving

three

rows

in

the

Department

table.

When

the

ROLLBACK

to

savepoint1

statement

is

issued,

all

the

work

in

savepoint2,

and

savepoint1

is

rolled

back,

leaving

one

row

in

the

Department

table.

Savepoints

and

Buffered

Inserts

To

improve

the

performance

of

DB2®

applications,

you

can

use

buffered

inserts

in

your

applications

by

precompiling

or

binding

with

the

INSERT

BUF

option.

If

your

application

takes

advantage

of

both

buffered

inserts

and

savepoints,

DB2

flushes

the

buffer

before

executing

SAVEPOINT,

RELEASE

SAVEPOINT,

OR

ROLLBACK

TO

SAVEPOINT

statements.

Related

concepts:

v

“Buffered

Inserts

in

Partitioned

Database

Environments”

on

page

655

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

Savepoints

and

Cursor

Blocking

If

your

application

uses

savepoints,

consider

preventing

cursor

blocking

by

precompiling

or

binding

the

application

with

the

precompile

option

BLOCKING

NO.

While

blocking

cursors

can

improve

the

performance

of

your

application

by

prefetching

multiple

rows,

the

data

returned

by

an

application

that

uses

savepoints

and

blocking

cursors

may

not

reflect

data

that

has

been

committed

to

the

database.

If

you

do

not

precompile

the

application

using

BLOCKING

NO,

and

your

application

issues

a

FETCH

statement

after

a

ROLLBACK

TO

SAVEPOINT

has

occurred,

the

FETCH

statement

may

retrieve

deleted

data.

For

example,

assume

that

the

application

containing

the

following

SQL

is

precompiled

without

the

BLOCKING

NO

option:

CREATE

TABLE

t1(c1

INTEGER);

DECLARE

CURSOR

c1

AS

'SELECT

c1

FROM

t1

ORDER

BY

c1';

INSERT

INTO

t1

VALUES

(1);

SAVEPOINT

showFetchDelete;

INSERT

INTO

t1

VALUES

(2);

INSERT

INTO

t1

VALUES

(3);

OPEN

CURSOR

c1;

FETCH

c1;

--get

first

value

and

cursor

block

ALTER

TABLE

t1...

--add

constraint

ROLLBACK

TO

SAVEPOINT;

FETCH

c1;

--retrieves

second

value

from

cursor

block

When

your

application

issues

the

first

FETCH

on

table

“t1”,

the

DB2®

server

sends

a

block

of

column

values

(1,

2,

and

3)

to

the

client

application.

These

column

values

are

stored

locally

by

the

client.

When

your

application

issues

the

ROLLBACK

TO

SAVEPOINT

SQL

statement,

column

values

'2'

and

'3'

are

deleted

from

the

table.

After

the

ROLLBACK

TO

SAVEPOINT

statement,

the

next

FETCH

from

the

table

returns

column

value

'2',

even

though

that

value

no

longer

exists

in

the

table.

The

application

receives

this

value

because

it

takes

advantage

of

the

cursor

blocking

option

to

improve

performance

and

accesses

the

data

that

it

has

stored

locally.

642

Programming

Client

Applications

|
|
|
|
|

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“PRECOMPILE

Command”

in

the

Command

Reference

Savepoints

and

XA-Compliant

Transaction

Managers

If

there

are

any

active

savepoints

in

an

application

when

an

XA-compliant

transaction

manager

issues

an

XA_END

request,

DB2®

issues

a

RELEASE

SAVEPOINT

statement.

X/Open

XA

Interface

Programming

Considerations

The

X/Open

XA

Interface

is

an

open

standard

for

coordinating

changes

to

multiple

resources,

while

ensuring

the

integrity

of

these

changes.

Software

products

known

as

transaction

processing

monitors

typically

use

the

XA

interface,

and

because

DB2

supports

this

interface,

one

or

more

DB2

databases

may

be

concurrently

accessed

as

resources

in

such

an

environment.

Special

consideration

is

required

by

DB2

when

operating

in

a

distributed

transaction

processing

(DTP)

environment

that

uses

the

XA

interface,

because

a

different

model

is

used

for

transaction

processing

as

compared

to

applications

running

independently

of

a

TP

monitor.

The

characteristics

of

this

transaction

processing

model

are:

v

Multiple

types

of

recoverable

resources

(such

as

DB2

databases)

can

be

modified

within

a

transaction.

v

Resources

are

updated

using

two-phase

commit

to

ensure

the

integrity

of

the

transactions

being

executed.

v

Application

programs

send

requests

to

commit

or

roll

back

a

transaction

to

the

TP

monitor

product

rather

than

to

the

managers

of

the

resources.

For

example,

in

a

CICS®

environment

an

application

would

issue

EXEC

CICS

SYNCPOINT

to

commit

a

transaction,

and

issuing

EXEC

SQL

COMMIT

to

DB2

would

be

invalid

and

unnecessary.

v

Authorization

to

run

transactions

is

screened

by

the

TP

monitor

and

related

software,

so

resource

managers

such

as

DB2

treat

the

TP

monitor

as

the

single

authorized

user.

For

example,

any

use

of

a

CICS

transaction

must

be

authenticated

by

CICS

and

the

access

privilege

to

the

database

must

be

granted

to

CICS

rather

than

the

end

user

who

invokes

the

CICS

application.

v

Multiple

programs

(transactions)

are

typically

queued

and

executed

on

a

database

server

(which

appears

to

DB2

to

be

a

single,

long-running

application

program).

Due

to

the

unique

nature

of

this

environment,

DB2

has

special

behavior

and

requirements

for

applications

coded

to

run

in

it:

v

Multiple

databases

can

be

connected

to

and

updated

within

a

unit

of

work,

without

consideration

of

distributed

unit

of

work

precompiler

options

or

client

settings.

v

The

DISCONNECT

statement

is

disallowed,

and

will

be

rejected

with

SQLCODE

-30090

(SQLSTATE

25000)

if

attempted.

v

The

RELEASE

statement

is

not

supported,

and

will

be

rejected

with

a

-30090.

v

COMMIT

and

ROLLBACK

statements

are

not

allowed

within

stored

procedures

accessed

by

a

TP

monitor

transaction.

Chapter

30.

Managing

Transactions

643

v

When

two-phase

commit

flows

are

explicitly

disabled

for

a

transaction

(these

are

called

LOCAL

transactions

in

XA

Interface

terminology)

only

one

database

can

be

accessed

within

that

transaction.

This

database

cannot

be

a

host,

AS/400®,

or

iSeries

database

that

is

accessed

using

SNA

connectivity.

Local

transactions

to

DB2®

for

OS/390®

Version

5

using

TCP/IP

connectivity

are

supported.

v

LOCAL

transactions

should

issue

SQL

COMMIT

or

SQL

ROLLBACK

at

the

end

of

each

transaction;

otherwise,

the

transaction

will

be

considered

part

of

the

next

transaction

that

is

processed.

v

Switching

between

current

database

connections

is

done

through

the

use

of

either

SQL

CONNECT

or

SQL

SET

CONNECTION.

The

authorization

used

for

a

connection

cannot

be

changed

by

specifying

a

user

ID

or

password

on

the

CONNECT

statement.

v

If

a

database

object

such

as

a

table,

view,

or

index

is

not

fully

qualified

in

a

dynamic

SQL

statement,

it

will

be

implicitly

qualified

with

the

single

authentication

ID

that

the

TP

monitor

is

executing

under,

rather

than

user’s

ID.

v

Any

use

of

DB2

COMMIT

or

ROLLBACK

statements

for

transactions

that

are

not

LOCAL

will

be

rejected.

The

following

codes

will

be

returned:

–

SQLCODE

-925

(SQLSTATE

2D521)

for

static

COMMIT

–

SQLCODE

-926

(SQLSTATE

2D521)

for

static

ROLLBACK

–

SQLCODE

-426

(SQLSTATE

2D528)

for

dynamic

COMMIT

–

SQLCODE

-427

(SQLSTATE

2D529)

for

dynamic

ROLLBACK
v

CLI

requests

to

COMMIT

or

ROLLBACK

are

also

rejected.

v

Handling

database-initiated

rollback:

In

a

DTP

environment,

if

an

RM

has

initiated

a

rollback

(for

instance,

due

to

a

system

error

or

deadlock)

to

terminate

its

own

branch

of

a

global

transaction,

it

must

not

process

any

more

requests

from

the

same

application

process

until

a

transaction

manager-initiated

sync

point

request

occurs.

This

includes

deadlocks

that

occur

within

a

stored

procedure.

For

the

database

manager,

this

means

rejecting

all

subsequent

SQL

requests

with

SQLCODE

-918

(SQLSTATE

51021)

to

inform

you

that

you

must

roll

back

the

global

transaction

with

the

transaction

manager’s

sync

point

service

such

as

using

the

CICS

SYNCPOINT

ROLLBACK

command

in

a

CICS

environment.

If

for

some

reason

you

request

the

TM

to

commit

the

transaction

instead,

the

RM

will

inform

the

TM

about

the

rollback

and

cause

the

TM

to

roll

back

other

RMs

anyway.

v

Cursors

declared

WITH

HOLD:

Cursors

declared

WITH

HOLD

are

supported

in

XA/DTP

environments

for

CICS

transaction

processing

monitors.

In

cases

where

cursors

declared

WITH

HOLD

are

not

supported,

the

OPEN

statement

will

be

rejected

with

SQLCODE

-30090

(SQLSTATE

25000),

reason

code

03.

It

is

the

responsibility

of

the

transactions

to

ensure

that

cursors

specified

to

be

WITH

HOLD

are

explicitly

closed

when

they

are

no

longer

required;

otherwise,

they

might

be

inherited

by

other

transactions,

causing

conflict

or

unnecessary

use

of

resources.

If

the

TP

monitor

supports

WITH

HOLD

cursors,

the

xa_commit,

xa_rollback

and

xa_prepare

must

be

issued

on

the

same

connection

as

the

global

transaction.

v

Statements

that

update

or

change

a

database

are

not

allowed

against

databases

that

do

not

support

two-phase

commit

request

flows.

For

example,

accessing

host,

AS/400,

or

iSeries

database

servers

in

environments

in

which

level

2

of

DRDA®

protocol

(DRDA2)

is

not

supported.

644

Programming

Client

Applications

v

Whether

a

database

supports

updates

in

an

XA

environment

can

be

determined

at

run-time

by

issuing

a

CONNECT

statement.

The

third

SQLERRD

token

will

have

the

value

1

if

the

database

is

updatable;

otherwise,

this

token

will

have

the

value

2.

v

When

updates

are

restricted,

only

the

following

SQL

statements

will

be

allowed:

CONNECT

DECLARE

DESCRIBE

EXECUTE

IMMEDIATE

(where

the

first

token

or

keyword

is

SET

but

not

SET

INTEGRITY)

OPEN

CURSOR

FETCH

CURSOR

CLOSE

CURSOR

PREPARE

(where

the

first

token

or

keyword

that

is

not

blank

or

left

parenthesis

is

SET

(other

than

SET

INTEGRITY),

SELECT,

WITH,

or

VALUES)

SELECT...INTO

VALUES...INTO

Any

other

attempts

will

be

rejected

with

SQLCODE

-30090

(SQLSTATE

25000).

The

PREPARE

statement

will

only

be

usable

to

prepare

SELECT

statements.

The

EXECUTE

IMMEDIATE

statement

is

also

allowed

to

execute

SQL

SET

statements

that

do

not

return

any

output

value,

such

as

the

SET

SQLID

statement

from

DB2

Universal

Database

for

z/OS

and

OS/390.

v

API

Restrictions:

APIs

that

internally

issue

a

commit

in

the

database

and

bypass

the

two-phase

commit

process

will

be

rejected

with

SQLCODE

-30090

(SQLSTATE

25000).

For

a

list

of

these

APIs,

see

the

article

on

restrictions

on

multisite

update

applications.

These

APIs

are

not

supported

in

a

multisite

update

(Connect

Type

2).

v

DB2

supports

a

multi-threaded

XA/DTP

environment.

Note

that

the

above

restrictions

apply

to

applications

running

in

a

TP

monitor

environment

that

uses

the

XA

interface.

If

DB2

databases

are

not

defined

for

use

with

the

XA

interface,

these

restrictions

do

not

apply;

however,

it

is

still

necessary

to

ensure

that

transactions

are

coded

in

a

way

that

will

not

leave

DB2

in

a

state

that

will

adversely

affect

the

next

transaction

to

be

run.

Related

concepts:

v

“Security

considerations

for

XA

transaction

managers”

in

the

Administration

Guide:

Planning

v

“Configuration

considerations

for

XA

transaction

managers”

in

the

Administration

Guide:

Planning

v

“XA

function

supported

by

DB2

Universal

Database”

in

the

Administration

Guide:

Planning

v

“Multisite

Update

with

DB2

Connect”

on

page

700

Related

tasks:

v

“Updating

host

or

iSeries

database

servers

with

an

XA-compliant

transaction

manager”

in

the

Administration

Guide:

Planning

Chapter

30.

Managing

Transactions

645

|
|
|
|
|
|
|
|
|
|
|
|
|

Application

Linkage

and

the

X/Open

XA

Interface

To

produce

an

executable

application,

you

need

to

link

in

the

application

objects

with

the

language

libraries,

the

operating

system

libraries,

the

normal

database

manager

libraries,

and

the

libraries

of

the

TP

monitor

and

transaction

manager

products.

MTS

and

COM+

Transaction

Management

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager

DB2®

UDB

can

be

fully

integrated

with

Microsoft®

Transaction

Server

(MTS)

Version

2.0

on

Windows®

NT

or

Microsoft

Component

Services

(COM+)

on

Windows

2000

and

Windows

XP

to

coordinate

two-phase

commit

with

multiple

DB2

UDB,

zSeries®,

and

iSeries™

database

servers,

as

well

as

with

other

resource

managers

that

comply

with

MTS

or

COM+

specifications.

Prerequisites:

To

use

MTS

or

COM+

distributed

transaction

support,

ensure

that

the

following

requirements

are

met

for

the

Windows

machine

where

the

DB2

client

is

installed:

v

Windows

NT®

with

MTS

at

Version

2.0:

Microsoft

Hotfix

0772

or

later

MTS

Version

2.0

for

Windows

NT

is

available

as

part

of

the

Windows

NT

4.0

Option

Pack.

You

can

download

the

Option

Pack

from:

http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/

v

Windows

2000:

Service

Pack

3

or

later

For

DB2

CLI

applications

using

MTS

or

COM+:

v

Do

not

change

the

default

value

of

the

SQL_ATTR_CONNECTION_POOLING

CLI

environment

attribute

(default

SQL_CP_OFF)

v

The

installation

of

the

DB2

ODBC

driver

on

Windows

operating

systems

will

automatically

add

a

new

keyword

to

the

registry:

HKEY_LOCAL_MACHINE\software\ODBC\odbcinit.ini\IBM

DB2

ODBC

Driver:

Keyword

Value

Name:

CPTimeout

Data

Type:

REG_SZ

Value:

60

Supported

DB2

database

servers:

The

following

servers

are

supported

for

multisite

update

using

MTS

or

COM+

coordinated

transactions:

v

DB2

Universal

Database™

Enterprise

Server

Edition

(ESE)

Note:

Loosely

coupled

global

transactions

for

MTS

or

COM+

are

not

supported

in

massively

parallel

processing

(MPP)

environments.

Loosely

coupled

global

transactions

exist

when

each

of

a

number

of

application

processes

accesses

resource

managers

as

if

it

was

in

a

separate

global

transaction,

however,

those

application

processes

are

under

the

coordination

of

the

transaction

manager.

Each

application

process

will

have

its

own

transaction

branch

within

a

resource

manager.

When

a

commit

or

rollback

is

requested

by

any

one

of

the

application

processes,

transaction

manager,

646

Programming

Client

Applications

|

|

|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|

or

resource

manager,

the

transaction

branches

are

completed

altogether.

It

is

the

application’s

responsibility

to

ensure

that

resource

deadlock

does

not

occur

among

the

branches.

(Tightly

coupled

global

transactions

exist

when

multiple

application

processes

take

turns

to

do

work

under

the

same

transaction

branch

in

a

resource

manager.

To

the

resource

manager,

the

two

application

processes

are

a

single

entity.

The

resource

manager

must

ensure

that

resource

deadlock

does

not

occur

within

the

transaction

branch.)

v

DB2

Universal

Database

for

z/OS™

v

DB2

Universal

Database

for

iSeries

v

DB2

Server

for

VSE

&

VM

Installation

and

configuration

considerations:

The

following

is

a

summary

of

installation

and

configuration

considerations

for

using

MTS

(COM+

should

be

installed

by

default

as

part

of

Windows

2000):

v

Install

MTS

and

the

DB2

client

on

the

same

machine

where

the

MTS

application

runs.

v

If

host

or

iSeries

database

servers

are

involved

in

a

multisite

update:

1.

Install

DB2

Connect™

functionality

(either

DB2

Connect

Enterprise

Edition

(EE)

or

DB2

UDB

Enterprise

Server

Edition

(ESE)

with

the

DB2

Connect

functionality

installed)

on

your

local

machine

or

on

a

remote

machine.

DB2

Connect

functionality

allows

host

or

iSeries

database

servers

to

participate

in

a

multisite

update

transaction.

2.

Ensure

that

your

DB2

Connect

server

is

enabled

for

multisite

update.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

on

page

239

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout”

on

page

648

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

648

v

“ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)”

on

page

649

Related

tasks:

v

“Installing

DB2

Connect

Enterprise

Edition

(Windows)”

in

the

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

Related

reference:

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“DB2

Connect

product

offerings”

in

the

DB2

Connect

User’s

Guide

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Environment

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

30.

Managing

Transactions

647

|
|
|

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|

|

|

Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)

Loosely

coupled

global

transactions

exist

when

each

of

a

number

of

application

processes

accesses

resource

managers

as

if

it

was

in

a

separate

global

transaction,

however,

those

application

processes

are

under

the

coordination

of

the

transaction

manager.

Each

application

process

will

have

its

own

transaction

branch

within

a

resource

manager.

When

a

commit

or

rollback

is

requested

by

any

one

of

the

application

processes,

transaction

manager,

or

resource

manager,

the

transaction

branches

are

completed

altogether.

It

is

the

application’s

responsibility

to

ensure

that

resource

deadlock

does

not

occur

among

the

branches.

DB2®

Universal

Database

Version

8

supports

loosely

coupled

global

transactions

for

COM+

objects,

with

no

lock

timeout

or

deadlock,

given

the

following

restrictions:

v

Data

definition

language

(DDL)

is

supported

if

it

is

executed

on

a

single

branch

while

no

other

loosely

coupled

transactions

are

active.

If

a

loosely

coupled

branch

attempts

to

start

while

a

single

branch

executing

DDL

is

active,

the

loosely

coupled

branch

will

be

rejected.

Conversely,

if

there

is

at

least

one

active

loosely

coupled

transaction,

then

any

attempts

to

execute

DDL

on

another

branch

will

be

rejected.

v

Loosely

coupled

global

transactions

are

not

supported

on

massively

parallel

processing

(MPP)

environments.

In

an

MPP

environment,

each

global

transaction

is

treated

in

isolation,

where

deadlock

or

timeout

might

occur.

v

Savepoint

processing

and

SQL

statements

are

executed

serially

across

multiple

connections.

v

When

an

implicit

rollback

has

been

performed

on

one

connection,

all

branches

on

other

connections

that

are

related

to

the

loosely

coupled

transaction

will

return

SQL0998N,

with

reason

code:

225

and

subcode

4:

″Only

rollbacks

are

allowed

for

this

transaction″.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

on

page

239

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

646

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout”

on

page

648

v

“ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)”

on

page

649

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout

Transaction

timeout

can

be

set

through

the

following

tools

when

MTS

or

COM+

is

used:

v

MTS

(Microsoft

Windows®

NT):

MTS

Explorer

tool

v

COM+

(Microsoft

Windows

2000

and

XP):

Component

Services,

located

under

Administrative

Tools

of

the

Windows

Control

Panel

648

Programming

Client

Applications

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

If

a

transaction

takes

longer

than

the

transaction

timeout

value

(the

default

value

is

60

seconds),

MTS

or

COM+

will

asynchronously

issue

an

abort

to

all

Resource

Managers

involved,

and

the

entire

transaction

is

aborted.

The

abort

is

translated

into

a

DB2®

rollback

request

at

the

server.

The

rollback

request

is

serialized

on

the

connection,

on

servers

other

than

DB2

for

z/OS™

and

DB2

for

iSeries™,

to

guarantee

the

integrity

of

the

data

on

the

database

server.

When

the

server

is

DB2

for

z/OS

or

DB2

for

iSeries,

then

the

connection

should

be

defined

with

the

INTERRUPT_ENABLED

option

in

the

DCS

catalog

entry

so

that

when

a

timeout

occurs,

the

connection

from

the

DB2

Connect™

server

to

the

z/OS

or

iSeries

server

will

be

disconnected,

forcing

a

rollback

on

the

z/OS

or

iSeries

server.

As

a

result:

v

If

the

connection

is

idle,

the

rollback

is

executed

immediately.

v

If

a

long-running

SQL

statement

is

processing,

the

rollback

request

waits

until

the

SQL

statement

finishes.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“DCS

directory

values”

in

the

DB2

Connect

User’s

Guide

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

on

page

239

v

“Processing

of

Interrupt

Requests”

on

page

694

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

646

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

648

v

“ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)”

on

page

649

ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

Connection

pooling

enables

an

application

to

use

a

connection

from

a

pool

of

connections,

so

that

the

connection

does

not

need

to

be

re-established

for

each

use.

Once

a

connection

has

been

created

and

placed

in

a

pool,

an

application

can

reuse

that

connection

without

performing

a

complete

connection

process.

The

connection

is

pooled

when

the

application

disconnects

from

the

data

source

and

will

be

given

to

a

new

connection

whose

attributes

are

the

same.

ODBC

connection

pooling:

Connection

pooling

has

been

a

feature

of

the

ODBC

Driver

Manager

since

ODBC

2.x.

With

the

latest

ODBC

Driver

Manager

(version

3.5)

available

as

part

of

the

Microsoft®

Data

Access

Components

(MDAC)

download,

connection

pooling

has

some

configuration

changes

and

new

behavior

for

ODBC

connections

of

transactional

MTS

COM+

objects.

Chapter

30.

Managing

Transactions

649

|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

The

ODBC

Driver

Manager

3.5

requires

that

the

ODBC

driver

register

a

new

keyword

in

the

registry

before

it

allows

connection

pooling

to

be

activated.

The

keyword

is:

Key

Name:

SOFTWARE\ODBC\ODBCINST.INI\IBM

DB2®

ODBC

DRIVER

Name:

CPTimeout

Type:

REG_SZ

Data:

60

The

DB2

ODBC

driver

for

the

Windows®

operating

system

fully

supports

connection

pooling;

therefore,

this

keyword

is

registered.

The

default

value

of

60

means

that

the

connection

will

be

pooled

for

60

seconds

before

it

is

disconnected.

In

a

busy

environment,

it

is

better

to

increase

the

CPTimeout

value

to

a

large

number

to

prevent

too

many

physical

connects

and

disconnects,

because

these

consume

large

amounts

of

system

resource,

including

system

memory

and

communications

stack

resources.

In

addition,

to

ensure

that

the

same

connection

is

used

between

objects

in

the

same

transaction

in

a

multiple

processor

machine,

you

must

turn

off

″multiple

pool

per

processor″

support.

To

do

this,

copy

the

following

registry

setting

into

a

file

called

odbcpool.reg,

save

it

as

a

plain

text

file,

and

issue

the

command

odbcpool.reg.

The

Windows

operating

system

will

import

this

registry

setting.

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC

Connection

Pooling]

"NumberOfPools"="1"

Without

this

keyword

set

to

1,

MTS

or

COM+

may

pool

connections

for

the

same

transaction

in

different

pools,

and

hence

may

not

reuse

the

same

connection.

ADO

connection

pooling:

If

the

MTS

or

COM+

objects

use

ADO

to

access

the

database,

you

must

turn

off

the

OLE

DB

resource

pooling

so

that

the

Microsoft

OLE

DB

provider

for

ODBC

(MSDASQL)

will

not

interfere

with

ODBC

connection

pooling.

This

feature

was

initialized

to

OFF

in

ADO

2.0,

but

is

initialized

to

ON

in

ADO

2.1.

To

turn

OLE

DB

resource

pooling

off,

copy

the

following

lines

into

a

file

called

oledb.reg,

save

it

as

a

plain

text

file,

and

issue

the

command

oledb.reg.

The

Windows

operating

system

will

import

these

registry

settings.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{c8b522cb-5cf3-11ce-ade5-00aa0044773d}]

@="MSDASQL"

"OLEDB_SERVICES"=dword:fffffffc

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

on

page

239

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

646

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout”

on

page

648

650

Programming

Client

Applications

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

648

Chapter

30.

Managing

Transactions

651

|
|

652

Programming

Client

Applications

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

FOR

READ

ONLY

Cursors

in

a

Partitioned

Database

Environment

.

.

.

.

.

.

.

.

.

. 653

Directed

DSS

and

Local

Bypass

.

.

.

.

.

.

. 653

Directed

DSS

and

Local

Bypass

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

. 653

Directed

DSS

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 653

Local

Bypass

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 654

Buffered

Inserts

.

.

.

.

.

.

.

.

.

.

.

. 655

Buffered

Inserts

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 655

Considerations

for

Using

Buffered

Inserts

.

.

. 657

Restrictions

on

Using

Buffered

Inserts

.

.

.

. 659

Example

of

Extracting

a

Large

Volume

of

Data

in

a

Partitioned

Database

Environment

.

.

.

.

.

. 660

Creating

a

Simulated

Partitioned

Database

Environment

.

.

.

.

.

.

.

.

.

.

.

.

. 664

Troubleshooting

.

.

.

.

.

.

.

.

.

.

.

. 665

Error-Handling

Considerations

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

. 665

Severe

Errors

in

Partitioned

Database

Environments

.

.

.

.

.

.

.

.

.

.

.

. 665

Merged

Multiple

SQLCA

Structures

.

.

.

.

. 666

Partition

That

Returns

the

Error

.

.

.

.

.

. 666

Looping

or

Suspended

Applications

.

.

.

.

. 667

FOR

READ

ONLY

Cursors

in

a

Partitioned

Database

Environment

If

you

declare

a

cursor

from

which

you

intend

only

to

read,

include

FOR

READ

ONLY

or

FOR

FETCH

ONLY

in

the

OPEN

CURSOR

declaration.

(FOR

READ

ONLY

and

FOR

FETCH

ONLY

are

equivalent

statements.)

FOR

READ

ONLY

cursors

allow

the

coordinator

partition

to

retrieve

multiple

rows

at

a

time,

dramatically

improving

the

performance

of

subsequent

FETCH

statements.

When

you

do

not

explicitly

declare

cursors

FOR

READ

ONLY,

the

coordinator

partition

treats

them

as

updatable

cursors.

Updatable

cursors

incur

considerable

expense

because

they

require

the

coordinator

partition

to

retrieve

only

a

single

row

per

FETCH.

Directed

DSS

and

Local

Bypass

The

sections

that

follow

describe

considerations

for

using

directed

DSS

and

local

bypass

in

partitioned

database

environments.

Directed

DSS

and

Local

Bypass

in

Partitioned

Database

Environments

To

optimize

online

transaction

processing

(OLTP)

applications,

you

may

want

to

avoid

simple

SQL

statements

that

require

processing

on

all

database

partitions.

You

should

design

the

application

so

that

SQL

statements

can

retrieve

data

from

single

database

partitions.

The

directed

distributed

subsection

(DSS)

and

local

bypass

techniques

avoid

the

expense

the

coordinator

partition

incurs

communicating

with

one

or

all

of

the

associated

partitions.

Related

concepts:

v

“Directed

DSS

in

Partitioned

Database

Environments”

on

page

653

v

“Local

Bypass

in

Partitioned

Database

Environments”

on

page

654

Directed

DSS

in

Partitioned

Database

Environments

A

distributed

subsection

(DSS)

is

the

action

of

sending

subsections

to

the

database

partition

that

needs

to

do

some

work

for

a

parallel

query.

It

also

describes

the

©

Copyright

IBM

Corp.

1997

-

2004

653

initiation

of

subsections

with

invocation-specific

values,

such

as

values

of

variables

in

an

OLTP

environment.

A

directed

DSS

uses

the

table

partitioning

key

to

direct

a

query

to

a

single

partition.

Use

this

type

of

query

in

your

application

to

avoid

the

coordinator

partition

overhead

required

for

a

query

broadcast

to

all

partitions.

An

example

SELECT

statement

fragment

that

can

take

advantage

of

directed

DSS

follows:

SELECT

...

FROM

t1

WHERE

PARTKEY=:hostvar

When

the

coordinator

partition

receives

the

query,

it

determines

which

database

partition

holds

the

subset

of

data

for

:hostvar,

and

directs

the

query

specifically

to

that

database

partition.

To

optimize

your

application

using

directed

DSS,

divide

complex

queries

into

multiple

simple

queries.

For

example,

in

the

following

query

the

coordinator

partition

matches

the

partitioning

key

with

multiple

values.

Because

the

data

that

satisfies

the

query

lies

on

multiple

database

partitions,

the

coordinator

partition

broadcasts

the

query

to

all

database

partitions:

SELECT

...

FROM

t1

WHERE

PARTKEY

IN

(:hostvar1,

:hostvar2)

Instead,

break

the

query

into

multiple

SELECT

statements

(each

with

a

single

host

variable),

or

use

a

single

SELECT

statement

with

a

UNION

to

achieve

the

same

result.

The

coordinator

partition

can

take

advantage

of

simpler

SELECT

statements

to

use

directed

DSS

to

communicate

only

to

the

necessary

database

partitions.

The

optimized

query

looks

like:

SELECT

...

AS

res1

FROM

t1

WHERE

PARTKEY=:hostvar1

UNION

SELECT

...

AS

res2

FROM

t1

WHERE

PARTKEY=:hostvar2

Note

that

the

above

technique

will

only

improve

performance

if

the

number

of

selects

in

the

UNION

is

significantly

smaller

than

the

number

of

partitions.

Local

Bypass

in

Partitioned

Database

Environments

A

specialized

form

of

the

directed

DSS

query

accesses

data

stored

only

on

the

coordinator

partition.

This

is

called

a

local

bypass

because

the

coordinator

partition

completes

the

query

without

having

to

communicate

with

another

partition.

Local

bypass

is

enabled

automatically

whenever

possible,

but

you

can

increase

its

use

by

routing

transactions

to

the

database

partition

containing

the

data

for

that

transaction.

One

technique

for

doing

this

is

to

have

a

remote

client

maintain

connections

to

each

database

partition.

A

transaction

can

then

use

the

correct

connection

based

on

the

input

partitioning

key.

Another

technique

is

to

group

transactions

by

database

partition

and

have

a

separate

application

server

for

each

database

partition.

To

determine

the

number

of

the

database

partition

on

which

the

transaction

data

resides,

you

can

use

the

sqlugrpn

API

(Get

Row

Partitioning

Number).

This

API

allows

an

application

to

efficiently

calculate

the

partition

number

of

a

row,

given

the

partitioning

key.

654

Programming

Client

Applications

Another

alternative

is

to

use

the

db2atld

utility

to

divide

input

data

by

partition

number

and

run

a

copy

of

the

application

against

each

database

partition.

Related

reference:

v

“sqlugrpn

-

Get

Row

Partitioning

Number”

in

the

Administrative

API

Reference

v

“db2atld

-

Autoloader

Command”

in

the

Command

Reference

Buffered

Inserts

The

sections

that

follow

describe

considerations

for

using

buffered

inserts

in

partitioned

database

environments.

Buffered

Inserts

in

Partitioned

Database

Environments

A

buffered

insert

is

an

insert

statement

that

takes

advantage

of

table

queues

to

buffer

the

rows

being

inserted,

thereby

gaining

a

significant

performance

improvement.

To

use

a

buffered

insert,

an

application

must

be

prepared

or

bound

with

the

INSERT

BUF

option.

Buffered

inserts

can

result

in

substantial

performance

improvement

in

applications

that

perform

inserts.

Typically,

you

can

use

a

buffered

insert

in

applications

where

a

single

insert

statement

(and

no

other

database

modification

statement)

is

used

within

a

loop

to

insert

many

rows

and

where

the

source

of

the

data

is

a

VALUES

clause

in

the

INSERT

statement.

Typically

the

INSERT

statement

is

referencing

one

or

more

host

variables

that

change

their

values

during

successive

executions

of

the

loop.

The

VALUES

clause

can

specify

a

single

row

or

multiple

rows.

Typical

decision

support

applications

require

the

loading

and

periodic

insertion

of

new

data.

This

data

could

be

hundreds

of

thousands

of

rows.

You

can

prepare

and

bind

applications

to

use

buffered

inserts

when

loading

tables.

To

cause

an

application

to

use

buffered

inserts,

use

the

PREP

command

to

process

the

application

program

source

file,

or

use

the

BIND

command

on

the

resulting

bind

file.

In

both

situations,

you

must

specify

the

INSERT

BUF

option.

Note:

Buffered

inserts

cause

the

following

steps

to

occur:

1.

The

database

manager

opens

one

4

KB

buffer

for

each

database

partition

on

which

the

table

resides.

2.

The

INSERT

statement

with

the

VALUES

clause

issued

by

the

application

causes

the

row

(or

rows)

to

be

placed

into

the

appropriate

buffer

(or

buffers).

3.

The

database

manager

returns

control

to

the

application.

4.

The

rows

in

the

buffer

are

sent

to

the

partition

when

the

buffer

becomes

full,

or

an

event

occurs

that

causes

the

rows

in

a

partially

filled

buffer

to

be

sent.

A

partially

filled

buffer

is

flushed

when

one

of

the

following

occurs:

v

The

application

issues

a

COMMIT

(implicitly

or

explicitly

through

application

termination)

or

ROLLBACK.

v

The

application

issues

another

statement

that

causes

a

savepoint

to

be

taken.

OPEN,

FETCH,

and

CLOSE

cursor

statements

do

not

cause

a

savepoint

to

be

taken,

nor

do

they

close

an

open

buffered

insert.

The

following

SQL

statements

will

close

an

open

buffered

insert:

–

BEGIN

COMPOUND

SQL

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

655

–

COMMIT

–

DDL

–

DELETE

–

END

COMPOUND

SQL

–

EXECUTE

IMMEDIATE

–

GRANT

–

INSERT

to

a

different

table

–

OPEN

CURSOR

for

a

full-select

of

a

data

change

statement

–

PREPARE

of

the

same

dynamic

statement

(by

name)

doing

buffered

inserts

–

REDISTRIBUTE

DATABASE

PARTITION

GROUP

–

RELEASE

SAVEPOINT

–

REORG

–

REVOKE

–

ROLLBACK

–

ROLLBACK

TO

SAVEPOINT

–

RUNSTATS

–

SAVEPOINT

–

SELECT

INTO

–

UPDATE

–

Execution

of

any

other

statement,

but

not

another

(looping)

execution

of

the

buffered

INSERT

–

End

of

application

The

following

APIs

will

close

an

open

buffered

insert:

–

BIND

(API)

–

REBIND

(API)

–

RUNSTATS

(API)

–

REORG

(API)

–

REDISTRIBUTE

(API)

In

any

of

these

situations

where

another

statement

closes

the

buffered

insert,

the

coordinator

partition

waits

until

every

database

partition

receives

the

buffers

and

the

rows

are

inserted.

It

then

executes

the

other

statement

(the

one

closing

the

buffered

insert),

provided

all

the

rows

were

successfully

inserted.

The

standard

interface

in

a

partitioned

environment,

(without

a

buffered

insert)

loads

one

row

at

a

time

doing

the

following

steps

(assuming

that

the

application

is

running

locally

on

one

of

the

database

partitions):

1.

The

coordinator

partition

passes

the

row

to

the

database

manager

that

is

on

the

same

partition.

2.

The

database

manager

uses

indirect

hashing

to

determine

the

database

partition

where

the

row

should

be

placed:

v

The

target

partition

receives

the

row.

v

The

target

partition

inserts

the

row

locally.

v

The

target

partition

sends

a

response

to

the

coordinator

partition.
3.

The

coordinator

partition

receives

the

response

from

the

target

partition.

4.

The

coordinator

partition

gives

the

response

to

the

application.

The

insertion

is

not

committed

until

the

application

issues

a

COMMIT.

5.

Any

INSERT

statement

containing

the

VALUES

clause

is

a

candidate

for

buffered

insert,

regardless

of

the

number

of

rows

or

the

type

of

elements

in

the

rows.

That

is,

the

elements

can

be

constants,

special

registers,

host

variables,

expressions,

functions

and

so

on.

656

Programming

Client

Applications

|

For

a

given

INSERT

statement

with

the

VALUES

clause,

the

DB2®

SQL

compiler

may

not

buffer

the

insert

based

on

semantic,

performance,

or

implementation

considerations.

If

you

prepare

or

bind

your

application

with

the

INSERT

BUF

option,

ensure

that

it

is

not

dependent

on

a

buffered

insert.

This

means:

v

Errors

may

be

reported

asynchronously

for

buffered

inserts,

or

synchronously

for

regular

inserts.

If

reported

asynchronously,

an

insert

error

may

be

reported

on

a

subsequent

insert

within

the

buffer,

or

on

the

other

statement

that

closes

the

buffer.

The

statement

that

reports

the

error

is

not

executed.

For

example,

consider

using

a

COMMIT

statement

to

close

a

buffered

insert

loop.

The

commit

reports

an

SQLCODE

-803

(SQLSTATE

23505)

due

to

a

duplicate

key

from

an

earlier

insert.

In

this

scenario,

the

commit

is

not

executed.

If

you

want

your

application

to

really

commit,

for

example,

some

updates

that

are

performed

before

it

enters

the

buffered

insert

loop,

you

must

reissue

the

COMMIT

statement.

v

Rows

inserted

may

be

immediately

visible

through

a

SELECT

statement

using

a

cursor

without

a

buffered

insert.

With

a

buffered

insert,

the

rows

will

not

be

immediately

visible.

Do

not

write

your

application

to

depend

on

these

cursor-selected

rows

if

you

precompile

or

bind

it

with

the

INSERT

BUF

option.

Buffered

inserts

result

in

the

following

performance

advantages:

v

Only

one

message

is

sent

from

the

target

partition

to

the

coordinator

partition

for

each

buffer

received

by

the

target

partition.

v

A

buffer

can

contain

a

large

number

of

rows,

especially

if

the

rows

are

small.

v

Parallel

processing

occurs

as

insertions

are

being

done

across

partitions

while

the

coordinator

partition

is

receiving

new

rows.

An

application

that

is

bound

with

INSERT

BUF

should

be

written

so

that

the

same

INSERT

statement

with

VALUES

clause

is

iterated

repeatedly

before

any

statement

or

API

that

closes

a

buffered

insert

is

issued.

Note:

You

should

do

periodic

commits

to

prevent

the

buffered

inserts

from

filling

the

transaction

log.

Related

concepts:

v

“Source

File

Creation

and

Preparation”

on

page

57

v

“Package

Creation

Using

the

BIND

Command”

on

page

64

v

“Considerations

for

Using

Buffered

Inserts”

on

page

657

v

“Restrictions

on

Using

Buffered

Inserts”

on

page

659

Considerations

for

Using

Buffered

Inserts

Buffered

inserts

exhibit

behaviors

that

can

affect

an

application

program.

This

behavior

is

caused

by

the

asynchronous

nature

of

the

buffered

inserts.

Based

on

the

values

of

the

row’s

partitioning

key,

each

inserted

row

is

placed

in

a

buffer

destined

for

the

correct

partition.

These

buffers

are

sent

to

their

destination

partitions

as

they

become

full,

or

an

event

causes

them

to

be

flushed.

You

must

be

aware

of

the

following,

and

account

for

them

when

designing

and

coding

the

application:

v

Certain

error

conditions

for

inserted

rows

are

not

reported

when

the

INSERT

statement

is

executed.

They

are

reported

later,

when

the

first

statement

other

than

the

INSERT

(or

INSERT

to

a

different

table)

is

executed,

such

as

DELETE,

UPDATE,

COMMIT,

or

ROLLBACK.

Any

statement

or

API

that

closes

the

buffered

insert

statement

can

see

the

error

report.

Also,

any

invocation

of

the

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

657

insert

itself

may

see

an

error

of

a

previously

inserted

row.

Moreover,

if

a

buffered

insert

error

is

reported

by

another

statement,

such

as

UPDATE

or

COMMIT,

DB2®

will

not

attempt

to

execute

that

statement.

v

An

error

detected

during

the

insertion

of

a

group

of

rows

causes

all

the

rows

of

that

group

to

be

backed

out.

A

group

of

rows

is

defined

as

all

the

rows

inserted

through

executions

of

a

buffered

insert

statement:

–

From

the

beginning

of

the

unit

of

work,

–

Since

the

statement

was

prepared

(if

it

is

dynamic),

or

–

Since

the

previous

execution

of

another

updating

statement.

For

a

list

of

statements

that

close

(or

flush)

a

buffered

insert,

see

the

description

of

buffered

inserts

in

partitioned

database

environments.
v

An

inserted

row

may

not

be

immediately

visible

to

SELECT

statements

issued

after

the

INSERT

by

the

same

application

program,

if

the

SELECT

is

executed

using

a

cursor.

A

buffered

INSERT

statement

is

either

open

or

closed.

The

first

invocation

of

the

statement

opens

the

buffered

INSERT,

the

row

is

added

to

the

appropriate

buffer,

and

control

is

returned

to

the

application.

Subsequent

invocations

add

rows

to

the

buffer,

leaving

the

statement

open.

While

the

statement

is

open,

buffers

may

be

sent

to

their

destination

partitions,

where

the

rows

are

inserted

into

the

target

table’s

partition.

If

any

statement

or

API

that

closes

a

buffered

insert

is

invoked

while

a

buffered

INSERT

statement

is

open

(including

invocation

of

a

different

buffered

INSERT

statement),

or

if

a

PREPARE

statement

is

issued

against

an

open

buffered

INSERT

statement,

the

open

statement

is

closed

before

the

new

request

is

processed.

If

the

buffered

INSERT

statement

is

closed,

the

remaining

buffers

are

flushed.

The

rows

are

then

sent

to

the

target

partitions

and

inserted.

Only

after

all

the

buffers

are

sent

and

all

the

rows

are

inserted

does

the

new

request

begin

processing.

If

errors

are

detected

during

the

closing

of

the

INSERT

statement,

the

SQLCA

for

the

new

request

will

be

filled

in

describing

the

error,

and

the

new

request

is

not

done.

Also,

the

entire

group

of

rows

that

were

inserted

through

the

buffered

INSERT

statement

since

it

was

opened

are

removed

from

the

database.

The

state

of

the

application

will

be

as

defined

for

the

particular

error

detected.

For

example:

v

If

the

error

is

a

deadlock,

the

transaction

is

rolled

back

(including

any

changes

made

before

the

buffered

insert

section

was

opened).

v

If

the

error

is

a

unique

key

violation,

the

state

of

the

database

is

the

same

as

before

the

statement

was

opened.

The

transaction

remains

active,

and

any

changes

made

before

the

statement

was

opened

are

not

affected.

For

example,

consider

the

following

application

that

is

bound

with

the

buffered

insert

option:

EXEC

SQL

UPDATE

t1

SET

COMMENT=’about

to

start

inserts’;

DO

UNTIL

EOF

OR

SQLCODE

<

0;

READ

VALUE

OF

hv1

FROM

A

FILE;

EXEC

SQL

INSERT

INTO

t2

VALUES

(:hv1);

IF

1000

INSERTS

DONE,

THEN

DO

EXEC

SQL

INSERT

INTO

t3

VALUES

(’another

1000

done’);

RESET

COUNTER;

END;

END;

EXEC

SQL

COMMIT;

Suppose

the

file

contains

8

000

values,

but

value

3

258

is

not

legal

(for

example,

a

unique

key

violation).

Each

1

000

inserts

results

in

the

execution

of

another

SQL

statement,

which

then

closes

the

INSERT

INTO

t2

statement.

During

the

fourth

658

Programming

Client

Applications

group

of

1

000

inserts,

the

error

for

value

3

258

will

be

detected.

It

may

be

detected

after

the

insertion

of

more

values

(not

necessarily

the

next

one).

In

this

situation,

an

error

code

is

returned

for

the

INSERT

INTO

t2

statement.

The

error

may

also

be

detected

when

an

insertion

is

attempted

on

table

t3,

which

closes

the

INSERT

INTO

t2

statement.

In

this

situation,

the

error

code

is

returned

for

the

INSERT

INTO

t3

statement,

even

though

the

error

applies

to

table

t2.

Suppose,

instead,

that

you

have

3

900

rows

to

insert.

Before

being

told

of

the

error

on

row

number

3

258,

the

application

may

exit

the

loop

and

attempt

to

issue

a

COMMIT.

The

unique-key-violation

return

code

will

be

issued

for

the

COMMIT

statement,

and

the

COMMIT

will

not

be

performed.

If

the

application

wants

to

COMMIT

the

3

000

rows

that

are

in

the

database

thus

far

(the

last

execution

of

EXEC

SQL

INSERT

INTO

t3

...

ends

the

savepoint

for

those

3

000

rows),

the

COMMIT

has

to

be

reissued.

Similar

considerations

apply

to

ROLLBACK

as

well.

Note:

When

using

buffered

inserts,

you

should

carefully

monitor

the

SQLCODES

returned

to

avoid

having

the

table

in

an

indeterminate

state.

For

example,

if

you

remove

the

SQLCODE

<

0

clause

from

the

THEN

DO

statement

in

the

above

example,

the

table

could

end

up

containing

an

indeterminate

number

of

rows.

Related

concepts:

v

“Buffered

Inserts

in

Partitioned

Database

Environments”

on

page

655

Restrictions

on

Using

Buffered

Inserts

The

following

restrictions

apply

to

buffered

inserts:

v

For

an

application

to

take

advantage

of

the

buffered

inserts,

one

of

the

following

must

be

true:

–

The

application

must

either

be

prepared

through

PREP

or

bound

with

the

BIND

command

and

the

INSERT

BUF

option

is

specified.

–

The

application

must

be

bound

using

the

BIND

or

the

PREP

API

with

the

SQL_INSERT_BUF

option.
v

If

the

INSERT

statement

with

VALUES

clause

includes

long

fields

or

LOBS

in

the

explicit

or

implicit

column

list,

the

INSERT

BUF

option

is

ignored

for

that

statement

and

a

normal

insert

section

is

done,

not

a

buffered

insert.

This

is

not

an

error

condition,

and

no

error

or

warning

message

is

issued.

v

INSERT

with

fullselect

is

not

affected

by

INSERT

BUF.

A

buffered

insert

does

not

improve

the

performance

of

this

type

of

INSERT.

v

Buffered

inserts

can

be

used

only

in

applications,

and

not

through

CLP-issued

inserts,

as

these

are

done

through

the

EXECUTE

IMMEDIATE

statement.

The

application

can

then

be

run

from

any

supported

client

platform.

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

659

Example

of

Extracting

a

Large

Volume

of

Data

in

a

Partitioned

Database

Environment

Although

DB2

Universal

Database

provides

excellent

features

for

parallel

query

processing,

the

single

point

of

connection

of

an

application

or

an

EXPORT

command

can

become

a

bottleneck

if

you

are

extracting

large

volumes

of

data.

This

bottleneck

occurs

because

the

passing

of

data

from

the

database

manager

to

the

application

is

a

CPU-intensive

process

that

executes

on

a

single

partition

(typically

a

single

processor

as

well).

DB2

Universal

Database

provides

several

methods

to

overcome

the

bottleneck,

so

that

the

volume

of

extracted

data

scales

linearly

per

unit

of

time

with

an

increasing

number

of

processors.

The

following

example

describes

the

basic

idea

behind

these

methods.

Assume

that

you

have

a

table

called

EMPLOYEE

which

is

stored

on

20

database

partitions,

and

you

generate

a

mailing

list

(FIRSTNME,

LASTNAME,

JOB)

of

all

employees

who

are

in

a

legitimate

department

(that

is,

WORKDEPT

is

not

NULL).

The

following

query

is

run

on

each

partition,

then

generates

the

entire

answer

set

at

a

single

partition

(the

coordinator

partition):

SELECT

FIRSTNME,

LASTNAME,

JOB

FROM

EMPLOYEE

WHERE

WORKDEPT

IS

NOT

NULL

But,

the

following

query

could

be

run

on

each

partition

for

the

database

(that

is,

if

there

are

five

partitions,

five

separate

queries

are

required,

one

at

each

partition).

Each

query

generates

the

set

of

all

the

employee

names

whose

record

is

on

the

particular

partition

where

the

query

runs.

Each

local

result

set

can

be

redirected

to

a

file.

The

result

sets

then

need

to

be

merged

into

a

single

result

set.

On

AIX®,

you

can

use

a

property

of

Network

File

System

(NFS)

files

to

automate

the

merge.

If

all

the

partitions

direct

their

answer

sets

to

the

same

file

on

an

NFS

mount,

the

results

are

merged.

Note

that

using

NFS

without

blocking

the

answer

into

large

buffers

results

in

very

poor

performance.

SELECT

FIRSTNME,

LASTNAME,

JOB

FROM

EMPLOYEE

WHERE

WORKDEPT

IS

NOT

NULL

AND

NODENUMBER(NAME)

=

CURRENT

NODE

The

result

can

either

be

stored

in

a

local

file

(meaning

that

the

final

result

would

be

20

files,

each

containing

a

portion

of

the

complete

answer

set),

or

in

a

single

NFS-mounted

file.

The

following

example

uses

the

second

method,

so

that

the

result

is

in

a

single

file

that

is

NFS

mounted

across

the

20

nodes.

The

NFS

locking

mechanism

ensures

serialization

of

writes

into

the

result

file

from

the

different

partitions.

Note

that

this

example,

as

presented,

runs

on

the

AIX

platform

with

an

NFS

file

system

installed.

#define

_POSIX_SOURCE

#define

INCL_32

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

#include

<fcntl.h>

#include

<sqlenv.h>

#include

<errno.h>

#include

<sys/access.h>

#include

<sys/flock.h>

#include

<unistd.h>

660

Programming

Client

Applications

#define

BUF_SIZE

1500000

/*

Local

buffer

to

store

the

fetched

records

*/

#define

MAX_RECORD_SIZE

80

/*

>=

size

of

one

written

record

*/

int

main(int

argc,

char

*argv[])

{

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

dbname[10];

/*

Database

name

(argument

of

the

program)

*/

char

userid[9];

char

passwd[19];

char

first_name[21];

char

last_name[21];

char

job_code[11];

EXEC

SQL

END

DECLARE

SECTION;

struct

flock

unlock

;

/*

structures

and

variables

for

handling

*/

struct

flock

lock

;

/*

the

NFS

locking

mechanism

*/

int

lock_command

;

int

lock_rc

;

int

iFileHandle

;

/*

output

file

*/

int

iOpenOptions

=

0

;

int

iPermissions

;

char

*

file_buf

;

/*

pointer

to

the

buffer

where

the

fetched

records

are

accumulated

*/

char

*

write_ptr

;

/*

position

where

the

next

record

is

written

*/

int

buffer_len

=

0

;

/*

length

of

used

portion

of

the

buffer

*/

/*

Initialization

*/

lock.l_type

=

F_WRLCK;

/*

An

exclusive

write

lock

request

*/

lock.l_start

=

0;

/*

To

lock

the

entire

file

*/

lock.l_whence

=

SEEK_SET;

lock.l_len

=

0;

unlock.l_type

=

F_UNLCK;

/*

An

release

lock

request

*/

unlock.l_start

=

0;

/*

To

unlock

the

entire

file

*/

unlock.l_whence

=

SEEK_SET;

unlock.l_len

=

0;

lock_command

=

F_SETLKW;

/*

Set

the

lock

*/

iOpenOptions

=

O_CREAT;

/*

Create

the

file

if

not

exist

*/

iOpenOptions

|=

O_WRONLY;

/*

Open

for

writing

only

*/

/*

Connect

to

the

database

*/

if

(argc

==

3)

{

strcpy(

dbname,

argv[2]

);

/*

get

database

name

from

the

argument

*/

EXEC

SQL

CONNECT

TO

:dbname

IN

SHARE

MODE

;

if

(

SQLCODE

!=

0

)

{

printf(

"Error:

CONNECT

TO

the

database

failed.

SQLCODE

=

%ld\n",

SQLCODE

);

exit(1);

}

}

else

if

(

argc

==

5

)

{

strcpy(

dbname,

argv[2]

);

/*

get

database

name

from

the

argument

*/

strcpy

(userid,

argv[3]);

strcpy

(passwd,

argv[4]);

EXEC

SQL

CONNECT

TO

:dbname

IN

SHARE

MODE

USER

:userid

USING

:passwd;

if

(

SQLCODE

!=

0

)

{

printf(

"Error:

CONNECT

TO

the

database

failed.

SQLCODE

=

%ld\n",

SQLCODE

);

exit(

1

);

}

}

else

{

printf

("\nUSAGE:

largevol

txt_file

database

[userid

passwd]\n\n");

exit(

1

)

;

}

/*

endif

*/

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

661

/*

Open

the

input

file

with

the

specified

access

permissions

*/

if

(

(

iFileHandle

=

open(argv[1],

iOpenOptions,

0666

)

)

==

-1

)

{

printf(

"Error:

Could

not

open

%s.\n",

argv[2]

)

;

exit(

2

)

;

}

/*

Set

up

error

and

end

of

table

escapes

*/

EXEC

SQL

WHENEVER

SQLERROR

GO

TO

ext

;

EXEC

SQL

WHENEVER

NOT

FOUND

GO

TO

cls

;

/*

Declare

and

open

the

cursor

*/

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

firstnme,

lastname,

job

FROM

employee

WHERE

workdept

IS

NOT

NULL

AND

NODENUMBER(lastname)

=

CURRENT

NODE;

EXEC

SQL

OPEN

c1

;

/*

Set

up

the

temporary

buffer

for

storing

the

fetched

result

*/

if

(

(

file_buf

=

(

char

*

)

malloc(

BUF_SIZE

)

)

==

NULL

)

{

printf(

"Error:

Allocation

of

buffer

failed.\n"

)

;

exit(

3

)

;

}

memset(

file_buf,

0,

BUF_SIZE

)

;

/*

reset

the

buffer

*/

buffer_len

=

0

;

/*

reset

the

buffer

length

*/

write_ptr

=

file_buf

;

/*

reset

the

write

pointer

*/

/*

For

each

fetched

record

perform

the

following

*/

/*

-

insert

it

into

the

buffer

following

the

*/

/*

previously

stored

record

*/

/*

-

check

if

there

is

still

enough

space

in

the

*/

/*

buffer

for

the

next

record

and

lock/write/

*/

/*

unlock

the

file

and

initialize

the

buffer

*/

/*

if

not

*/

do

{

EXEC

SQL

FETCH

c1

INTO

:first_name,

:last_name,

:job_code;

buffer_len

+=

sprintf(

write_ptr,

"%s

%s

%s\n",

first_name,

last_name,

job_code

);

buffer_len

=

strlen(

file_buf

)

;

/*

Write

the

content

of

the

buffer

to

the

file

if

*/

/*

the

buffer

reaches

the

limit

*/

if

(

buffer_len

>=

(

BUF_SIZE

-

MAX_RECORD_SIZE

)

)

{

/*

get

excl.

write

lock

*/

lock_rc

=

fcntl(

iFileHandle,

lock_command,

&lock

);

if

(

lock_rc

!=

0

)

goto

file_lock_err;

/*

position

at

the

end

of

file

*/

lock_rc

=

lseek(

iFileHandle,

0,

SEEK_END

);

if

(

lock_rc

<

0

)

goto

file_seek_err;

/*

write

the

buffer

*/

lock_rc

=

write(

iFileHandle,

(

void

*

)

file_buf,

buffer_len

);

if

(

lock_rc

<

0

)

goto

file_write_err;

/*

release

the

lock

*/

lock_rc

=

fcntl(

iFileHandle,

lock_command,

&unlock

);

if

(

lock_rc

!=

0

)

goto

file_unlock_err;

file_buf[0]

=

’\0’

;

/*

reset

the

buffer

*/

buffer_len

=

0

;

/*

reset

the

buffer

length

*/

write_ptr

=

file_buf

;

/*

reset

the

write

pointer

*/

}

else

{

write_ptr

=

file_buf

+

buffer_len

;

/*

next

write

position

*/

}

}

while

(1)

;

662

Programming

Client

Applications

cls:

/*

Write

the

last

piece

of

data

out

to

the

file

*/

if

(buffer_len

>

0)

{

lock_rc

=

fcntl(iFileHandle,

lock_command,

&lock);

if

(lock_rc

!=

0)

goto

file_lock_err;

lock_rc

=

lseek(iFileHandle,

0,

SEEK_END);

if

(lock_rc

<

0)

goto

file_seek_err;

lock_rc

=

write(iFileHandle,

(void

*)file_buf,

buffer_len);

if

(lock_rc

<

0)

goto

file_write_err;

lock_rc

=

fcntl(iFileHandle,

lock_command,

&unlock);

if

(lock_rc

!=

0)

goto

file_unlock_err;

}

free(file_buf);

close(iFileHandle);

EXEC

SQL

CLOSE

c1;

exit

(0);

ext:

if

(

SQLCODE

!=

0

)

printf(

"Error:

SQLCODE

=

%ld.\n",

SQLCODE

);

EXEC

SQL

WHENEVER

SQLERROR

CONTINUE;

EXEC

SQL

CONNECT

RESET;

if

(

SQLCODE

!=

0

)

{

printf(

"CONNECT

RESET

Error:

SQLCODE

=

%ld\n",

SQLCODE

);

exit(4);

}

exit

(5);

file_lock_err:

printf("Error:

file

lock

error

=

%ld.\n",lock_rc);

/*

unconditional

unlock

of

the

file

*/

fcntl(iFileHandle,

lock_command,

&unlock);

exit(6);

file_seek_err:

printf("Error:

file

seek

error

=

%ld.\n",lock_rc);

/*

unconditional

unlock

of

the

file

*/

fcntl(iFileHandle,

lock_command,

&unlock);

exit(7);

file_write_err:

printf("Error:

file

write

error

=

%ld.\n",lock_rc);

/*

unconditional

unlock

of

the

file

*/

fcntl(iFileHandle,

lock_command,

&unlock);

exit(8);

file_unlock_err:

printf("Error:

file

unlock

error

=

%ld.\n",lock_rc);

/*

unconditional

unlock

of

the

file

*/

fcntl(iFileHandle,

lock_command,

&unlock);

exit(9);

}

This

method

is

applicable

not

only

to

a

select

from

a

single

table,

but

also

for

more

complex

queries.

If,

however,

the

query

requires

noncollocated

operations

(that

is,

the

Explain

shows

more

than

one

subsection

besides

the

Coordinator

subsection),

this

can

result

in

too

many

processes

on

some

partitions

if

the

query

is

run

in

parallel

on

all

partitions.

In

this

situation,

you

can

store

the

query

result

in

a

temporary

table

TEMP

on

as

many

partitions

as

required,

then

do

the

final

extract

in

parallel

from

TEMP.

If

you

want

to

extract

all

employees,

but

only

for

selected

job

classifications,

you

can

define

the

TEMP

table

with

the

column

names,

FIRSTNME,

LASTNAME,

and

JOB,

as

follows:

INSERT

INTO

TEMP

SELECT

FIRSTNME,

LASTNAME,

JOB

FROM

EMPLOYEE

WHERE

WORKDEPT

IS

NOT

NULL

AND

EMPNO

NOT

IN

(SELECT

EMPNO

FROM

EMP_ACT

WHERE

EMPNO<200)

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

663

Then

you

would

perform

the

parallel

extract

on

TEMP.

When

defining

the

TEMP

table,

consider

the

following:

v

If

the

query

specifies

an

aggregation

GROUP

BY,

you

should

define

the

partitioning

key

of

TEMP

as

a

subset

of

the

GROUP

BY

columns.

v

The

partitioning

key

of

the

TEMP

table

should

have

enough

cardinality

(that

is,

number

of

distinct

values

in

the

answer

set)

to

ensure

that

the

table

is

equally

distributed

across

the

partitions

on

which

it

is

defined.

v

Create

the

TEMP

table

with

the

NOT

LOGGED

INITIALLY

attribute,

then

COMMIT

the

unit

of

work

that

created

the

table

to

release

any

acquired

catalog

locks.

v

When

you

use

the

TEMP

table,

you

should

issue

the

following

statements

in

a

single

unit

of

work:

1.

ALTER

TABLE

TEMP

ACTIVATE

NOT

LOGGED

INITIALLY

WITH

EMPTY

TABLE

(to

empty

the

TEMP

table

and

turn

logging

off)

2.

INSERT

INTO

TEMP

SELECT

FIRSTNAME...

3.

COMMIT

This

technique

allows

you

to

insert

a

large

answer

set

into

a

table

without

logging

and

without

catalog

contention.

However,

if

a

table

has

the

NOT

LOGGED

INITIALLY

attribute

activated,

a

non-logged

activity

occurs

and

either

of

the

following

situations

occur::

–

A

statement

fails,

causing

a

rollback

–

A

ROLLBACK

TO

SAVEPOINT

is

executed

the

entire

unit

of

work

is

rolled

back

(SQL1476N),

resulting

in

an

unusable

TEMP

table.

If

this

occurs,

you

will

have

to

drop

and

recreate

the

TEMP

table.

For

this

reason,

you

should

not

use

this

technique

to

add

data

to

a

table

that

you

could

not

easily

recreate.

If

you

require

the

final

answer

set

(which

is

the

merged

partial

answer

set

from

all

partitions)

to

be

sorted,

you

can:

v

Specify

the

SORT

BY

clause

on

the

final

SELECT

v

Do

an

extract

into

a

separate

file

on

each

partition

v

Merge

the

separate

files

into

one

output

set

using,

for

example,

the

sort

-m

AIX

command.

Creating

a

Simulated

Partitioned

Database

Environment

You

can

create

a

test

environment

for

your

partitioned

environment

applications

without

setting

up

a

partitioned

database

environment.

Procedure:

To

create

a

simulated

partitioned

database

environment:

1.

Create

a

model

of

your

database

design

with

DB2

Enterprise

Server

Edition.

2.

Create

sample

tables

with

the

PARTITIONING

KEY

clause

that

you

will

use

to

distribute

your

data

across

partitions

in

the

production

environment.

3.

Develop

and

run

your

applications

against

the

test

database.

DB2

Enterprise

Server

Edition

enforces

the

partitioning

key

constraints

that

apply

in

a

partitioned

database

environment,

and

provides

a

useful

test

environment

for

your

applications.

664

Programming

Client

Applications

Troubleshooting

The

sections

that

follow

describe

how

to

troubleshoot

applications

in

a

partitioned

database

environment.

Error-Handling

Considerations

in

Partitioned

Database

Environments

In

a

partitioned

database

environment,

DB2®

breaks

up

SQL

statements

into

subsections,

each

of

which

is

processed

on

the

partition

that

contains

the

relevant

data.

As

a

result,

an

error

may

occur

on

a

partition

that

does

not

have

access

to

the

application.

This

condition

does

not

occur

in

a

nonpartitioned

database

environment.

You

should

consider

the

following:

v

Non-CURSOR

(EXECUTE)

non-severe

errors

v

CURSOR

non-severe

errors

v

Severe

errors

v

Merged

multiple

SQLCA

structures

v

How

to

identify

the

partition

that

returned

the

error

If

an

application

ends

abnormally

because

of

a

severe

error,

indoubt

transactions

may

be

left

in

the

database.

(An

indoubt

transaction

pertains

to

global

transactions

when

one

phase

completes

successfully,

but

the

system

fails

before

the

subsequent

phase

can

complete,

leaving

the

database

in

an

inconsistent

state.)

Related

concepts:

v

“Severe

Errors

in

Partitioned

Database

Environments”

on

page

665

v

“Merged

Multiple

SQLCA

Structures”

on

page

666

v

“Partition

That

Returns

the

Error”

on

page

666

Related

tasks:

v

“Manually

resolving

indoubt

transactions”

in

the

Administration

Guide:

Planning

Severe

Errors

in

Partitioned

Database

Environments

If

a

severe

error

occurs

in

a

partitioned

database

environment,

one

of

the

following

will

occur:

v

The

database

manager

on

the

partition

where

the

error

occurs

shuts

down.

Active

units

of

work

are

not

rolled

back.

In

this

situation,

you

must

recover

the

partition

and

any

databases

that

were

active

on

the

partition

when

the

shutdown

occurred.

v

All

agents

are

forced

off

the

database

at

the

partition

where

the

error

occurred.

All

units

of

work

on

that

database

are

rolled

back.

In

this

situation,

the

database

partition

where

the

error

occurred

is

marked

as

inconsistent.

Any

attempt

to

access

it

results

in

either

SQLCODE

-1034

(SQLSTATE

58031)

or

SQLCODE

-1015

(SQLSTATE

55025)

being

returned.

Before

you

or

any

other

application

on

another

partition

can

access

this

database

partition,

you

must

run

the

RESTART

DATABASE

command

against

the

database.

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

665

The

severe

error

SQLCODE

-30081

(SQLSTATE

08001)

can

occur

for

a

variety

of

reasons.

If

you

receive

this

message,

check

the

SQLCA,

which

will

indicate

which

partition

failed.

Then

check

the

administration

notification

log

file

for

details.

Related

concepts:

v

“Partition

That

Returns

the

Error”

on

page

666

Related

reference:

v

“RESTART

DATABASE

Command”

in

the

Command

Reference

Merged

Multiple

SQLCA

Structures

One

SQL

statement

may

be

executed

by

a

number

of

agents

on

different

database

partition,

and

each

agent

may

return

a

different

SQLCA

for

different

errors

or

warnings.

The

coordinating

agent

also

has

its

own

SQLCA.

In

addition,

the

SQLCA

also

has

fields

that

indicate

global

numbers

(such

as

the

sqlerrd

fields

that

indicate

row

counts).

To

provide

a

consistent

view

for

applications,

all

the

SQLCA

values

are

merged

into

one

structure.

Error

reporting

is

as

follows:

v

Severe

error

conditions

are

always

reported.

As

soon

as

a

severe

error

is

reported,

no

additions

beyond

the

severe

error

are

added

to

the

SQLCA.

v

If

no

severe

error

occurs,

a

deadlock

error

takes

precedence

over

other

errors.

v

For

all

other

errors,

the

SQLCA

for

the

first

negative

SQLCODE

is

returned

to

the

application.

v

If

no

negative

SQLCODE

values

are

detected,

the

SQLCA

for

the

first

warning

(that

is,

positive

SQLCODE)

is

returned

to

the

application.

The

exception

to

this

occurs

if

a

data

manipulation

operation

is

issued

on

a

table

that

is

empty

on

one

partition,

but

has

data

on

other

partitions.

The

SQLCODE

+100

is

only

returned

to

the

application

if

agents

from

all

partitions

return

SQL0100W,

either

because

the

table

is

empty

on

all

partitions

or

there

are

no

rows

that

satisfy

the

WHERE

clause

in

an

UPDATE

statement.

v

For

all

errors

and

warnings,

the

sqlwarn

field

contains

the

warning

flags

received

from

all

agents.

v

The

values

in

the

sqlerrd

fields

that

indicate

row

counts

are

accumulations

from

all

agents.

An

application

may

receive

a

subsequent

error

or

warning

after

the

problem

that

caused

the

first

error

or

warning

is

corrected.

Errors

are

reported

to

the

SQLCA

to

ensure

that

the

first

error

detected

is

given

priority

over

others.

This

ensures

that

an

error

caused

by

an

earlier

error

cannot

overwrite

the

original

error.

Severe

errors

and

deadlock

errors

are

given

higher

priority

because

they

require

immediate

action

by

the

coordinating

agent.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Partition

That

Returns

the

Error

If

a

partition

returns

an

error

or

warning,

its

number

is

in

the

SQLERRD(6)

field

of

the

SQLCA.

The

number

in

this

field

is

the

same

as

that

specified

for

the

partition

in

the

db2nodes.cfg

file.

666

Programming

Client

Applications

If

an

SQL

statement

or

API

call

is

successful,

the

partition

number

in

this

field

is

not

significant.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Looping

or

Suspended

Applications

It

is

possible

that,

after

you

start

a

query

or

application,

you

suspect

that

it

is

suspended

(it

does

not

show

any

activity)

or

that

it

is

looping

(it

shows

activity,

but

no

results

are

returned

to

the

application).

Ensure

that

you

have

turned

lock

timeouts

on.

In

some

situations,

however,

no

error

is

returned.

In

these

situations,

you

may

find

the

diagnostic

tools

provided

with

DB2®

and

the

database

system

monitor

snapshot

helpful.

One

of

the

functions

of

the

database

system

monitor

that

is

useful

for

debugging

applications

is

to

display

the

status

of

all

active

agents.

To

obtain

the

greatest

use

from

a

snapshot,

ensure

that

statement

collection

is

being

done

before

you

run

the

application

(preferably

immediately

after

you

run

DB2START)

as

follows:

db2_all

"db2

UPDATE

MONITOR

SWITCHES

USING

STATEMENT

ON"

When

you

suspect

that

your

application

or

query

is

either

stalled

or

looping,

issue

the

following

command:

db2_all

"db2

GET

SNAPSHOT

FOR

AGENTS

ON

database

Related

concepts:

v

“Database

system

monitor”

in

the

System

Monitor

Guide

and

Reference

v

“The

database

system

monitor

information”

in

the

Administration

Guide:

Performance

Related

reference:

v

“GET

SNAPSHOT

Command”

in

the

Command

Reference

v

“UPDATE

MONITOR

SWITCHES

Command”

in

the

Command

Reference

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“db2support

-

Problem

Analysis

and

Environment

Collection

Tool

Command”

in

the

Command

Reference

Chapter

31.

Programming

Considerations

for

Partitioned

Database

Environments

667

668

Programming

Client

Applications

Chapter

32.

Common

DB2

Application

Techniques

Running

applications

from

the

Windows

Local

System

Account

.

.

.

.

.

.

.

.

.

.

.

. 669

Generated

Columns

.

.

.

.

.

.

.

.

.

.

. 669

Identity

Columns

.

.

.

.

.

.

.

.

.

.

.

. 670

Retrieval

of

result

sets

from

an

SQL

data

change

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 671

Intermediate

result

tables

.

.

.

.

.

.

.

. 672

Target

tables

and

views

.

.

.

.

.

.

.

.

. 672

Result

set

sorting

based

on

INPUT

SEQUENCE

673

Retrieval

of

result

sets

from

SQL

data

change

statements

using

cursors

.

.

.

.

.

.

.

.

. 674

Include

columns

.

.

.

.

.

.

.

.

.

.

.

. 675

Include

columns

in

INSERT

operations

.

.

.

. 675

Include

columns

in

UPDATE

and

DELETE

operations

.

.

.

.

.

.

.

.

.

.

.

.

. 675

Searched

UPDATE,

INSERT,

DELETE,

and

MERGE

operations

against

fullselects

.

.

.

.

.

.

.

. 676

Sequential

Values

and

Sequence

Objects

.

.

.

. 676

Generation

of

Sequential

Values

.

.

.

.

.

. 676

Management

of

Sequence

Behavior

.

.

.

.

. 678

Application

Performance

and

Sequence

Objects

679

Sequence

Objects

Compared

to

Identity

Columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 679

Declared

Temporary

Tables

and

Application

Performance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 680

Transmission

of

Large

Volumes

of

Data

Across

a

Network

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 682

Running

applications

from

the

Windows

Local

System

Account

On

Windows

platforms,

DB2

supports

running

applications

from

the

Local

System

Account

(LSA)

using

an

implicit

local

database

connection.

You

cannot

make

an

explicit

database

connection

using

the

LSA,

and

you

also

cannot

make

a

remote

database

connection

using

the

LSA.

In

DB2,

the

schema

name

for

the

LSA

is

SYSTEM.

Since

DB2

has

restrictions

on

objects

with

a

schema

name

that

starts

with

″SYS″,

database

applications

that

are

run

from

the

LSA

cannot

create

DB2

objects

using

the

implicit

connection

schema.

To

create

DB2

objects

from

an

application

that

will

run

from

the

LSA,

you

must

do

the

following:

v

For

static

SQL,

bind

the

application

with

a

QUALIFIER

value

other

than

″SYSTEM″.

v

For

dynamic

SQL,

you

should

explicitly

qualify

the

objects

you

are

creating

with

a

schema

name

other

than

″SYSTEM″,

or

set

the

CURRENT

SCHEMA

register

to

a

schema

name

other

than

″SYSTEM″.

Related

reference:

v

“SET

SCHEMA

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

v

“CURRENT

SCHEMA

special

register”

in

the

SQL

Reference,

Volume

1

Generated

Columns

Rather

than

using

cumbersome

insert

and

update

triggers,

DB2®

enables

you

to

include

generated

columns

in

your

tables

using

the

GENERATED

ALWAYS

AS

clause.

A

generated

column

is

a

column

that

derives

the

values

for

each

row

from

an

expression,

rather

than

from

an

insert

or

update

operation.

While

combining

an

update

trigger

and

an

insert

trigger

can

achieve

a

similar

effect,

using

a

generated

column

guarantees

that

the

derived

value

is

consistent

with

the

expression.

To

create

a

generated

column

in

a

table,

use

the

GENERATED

ALWAYS

AS

clause

for

the

column

and

include

the

expression

from

which

the

value

for

the

column

will

be

derived.

You

can

include

the

GENERATED

ALWAYS

AS

clause

in

ALTER

©

Copyright

IBM

Corp.

1997

-

2004

669

|
||
||
||
||
|
||
||
||
|
||

TABLE

and

CREATE

TABLE

statements.

The

following

example

creates

a

table

with

two

regular

columns,

“c1”

and

“c2”,

and

two

generated

columns,

“c3”

and

“c4”,

that

are

derived

from

the

regular

columns

of

the

table.

CREATE

TABLE

T1(c1

INT,

c2

DOUBLE,

c3

DOUBLE

GENERATED

ALWAYS

AS

(c1

+

c2),

c4

SMALLINT

GENERATED

ALWAYS

AS

(CASE

WHEN

c1

>

c2

THEN

1

ELSE

NULL

END)

);

Related

tasks:

v

“Defining

a

generated

column

on

a

new

table”

in

the

Administration

Guide:

Implementation

v

“Defining

a

generated

column

on

an

existing

table”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“ALTER

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“TbGenCol.java

--

How

to

use

generated

columns

(JDBC)”

Identity

Columns

Identity

columns

provide

DB2®

application

developers

with

an

easy

way

of

automatically

generating

a

numeric

column

value

for

every

row

in

a

table.

You

can

have

this

value

generated

as

a

unique

value,

then

define

the

identity

column

as

the

primary

key

for

the

table.

To

create

an

identity

column,

include

the

IDENTITY

clause

in

the

CREATE

TABLE.

Use

identity

columns

in

your

applications

to

avoid

the

concurrency

and

performance

problems

that

can

occur

when

an

application

generates

its

own

unique

counter

outside

the

database.

When

you

do

not

use

identity

columns

to

automatically

generate

unique

primary

keys,

a

common

design

is

to

store

a

counter

in

a

table

with

a

single

row.

Each

transaction

then

locks

this

table,

increments

the

number,

and

then

commits

the

transaction

to

unlock

the

counter.

Unfortunately,

this

design

only

allows

a

single

transaction

to

increment

the

counter

at

a

time.

In

contrast,

if

you

use

an

identity

column

to

automatically

generate

primary

keys,

the

application

can

achieve

much

higher

levels

of

concurrency.

With

identity

columns,

DB2

maintains

the

counter

so

that

transactions

do

not

have

to

lock

the

counter.

Applications

that

use

identity

columns

can

perform

better

because

an

uncommitted

transaction

that

has

incremented

the

counter

does

not

prevent

other

subsequent

transactions

from

also

incrementing

the

counter.

The

counter

for

the

identity

column

is

incremented

or

decremented

independently

of

the

transaction.

If

a

given

transaction

increments

an

identity

counter

two

times,

that

transaction

may

see

a

gap

in

the

two

numbers

that

are

generated

because

there

may

be

other

transactions

concurrently

incrementing

the

same

identity

counter.

670

Programming

Client

Applications

|
|
|
|
|
|
|
|

|
|
|
|
|

An

identity

column

may

appear

to

have

generated

gaps

in

the

counter,

as

the

result

of

a

transaction

that

was

rolled

back,

or

because

the

database

cached

a

range

of

values

that

have

been

deactivated

(normally

or

abnormally)

before

all

the

cached

values

were

assigned.

To

retrieve

the

generated

value

after

inserting

a

new

row

into

a

table

with

an

identity

column

use

the

identity_val_local()

function.

The

IDENTITY

clause

is

available

on

both

the

CREATE

TABLE

and

ALTER

TABLE

statements.

Related

concepts:

v

“Identity

columns”

in

the

Administration

Guide:

Planning

Related

tasks:

v

“Defining

an

identity

column

on

a

new

table”

in

the

Administration

Guide:

Implementation

v

“Modifying

an

identity

column

definition”

in

the

Administration

Guide:

Implementation

v

“Altering

an

identity

column”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“ALTER

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“tbident.sqc

--

How

to

use

identity

columns

(C)”

v

“TbIdent.java

--

How

to

use

Identity

Columns

(JDBC)”

v

“TbIdent.sqlj

--

How

to

use

Identity

Columns

(SQLj)”

Retrieval

of

result

sets

from

an

SQL

data

change

statement

Applications

that

modify

tables

with

INSERT,

UPDATE,

or

DELETE

statements

might

require

additional

processing

on

the

modified

rows.

To

facilitate

this

processing,

you

can

embed

SQL

data-change

operations

in

the

FROM

clause

of

SELECT

and

SELECT

INTO

statements.

Within

a

single

unit

of

work,

applications

can

retrieve

a

result

set

containing

the

modified

rows

from

a

table

or

view

modified

by

an

SQL

data-change

operation.

For

example,

the

following

statement

updates

the

salaries

of

all

the

records

in

the

EMPLOYEE

table

in

the

SAMPLE

database

and

then

returns

the

employee

number

and

new

salary

for

all

the

updated

rows.

SELECT

empno,

salary

FROM

FINAL

TABLE

(UPDATE

employee

SET

salary

=

salary

*

1.10

WHERE

job

=

’CLERK’)

To

return

data

successfully,

SELECT

statements

that

retrieve

result

sets

FROM

SQL

data-change

operations

require

the

SQL

data-change

operations

to

run

successfully.

The

success

of

SQL

data-change

operations

includes

the

processing

of

all

constraints

and

triggers,

if

applicable.

For

instance,

suppose

a

user

with

SELECT

privileges,

but

without

INSERT

privileges

on

the

EMPLOYEE

table

attempts

a

SELECT

FROM

INSERT

statement

Chapter

32.

Common

DB2

Application

Techniques

671

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

on

the

EMPLOYEE

table.

The

INSERT

operation

fails

because

of

the

missing

privileges,

and

as

a

result,

the

entire

SELECT

statement

fails.

Consider

the

following

query,

where

records

from

the

EMPLOYEE

table

are

selected

and

then

inserted

into

a

different

table,

named

EMP.

This

SELECT

statement

will

fail.

SELECT

empno

FROM

FINAL

TABLE

(INSERT

INTO

emp(name,

salary)

SELECT

firstnme

||

midinit

||

lastname,

salary

FROM

employee)

If

the

EMPLOYEE

table

has

100

rows

and

row

90

has

a

SALARY

value

of

$9,999,000.00,

then

the

addition

of

$10,000.00

would

cause

a

decimal

overflow

to

occur.

The

overflow

would

force

the

database

manager

to

rollback

the

insertions

into

the

EMP

table.

Intermediate

result

tables

The

modified

rows

of

the

table

or

view

targeted

by

an

SQL

data-change

operation

in

the

FROM

clause

of

a

SELECT

statement

compose

an

intermediate

result

table.

The

intermediate

result

table

includes

all

the

columns

of

the

target

table

or

view,

in

addition

to

any

include

columns

defined

in

the

SQL

data-change

operation.

You

can

reference

all

of

the

columns

in

an

intermediate

result

table

by

name

in

the

select

list,

the

ORDER

BY

clause,

or

the

WHERE

clause.

The

contents

of

the

intermediate

result

table

are

dependant

on

the

qualifier

specified

in

the

FROM

clause.

You

must

include

one

of

the

following

FROM

clause

qualifiers

in

SELECT

statements

that

retrieve

result

sets

as

intermediate

result

tables.

OLD

TABLE

The

rows

in

the

intermediate

result

table

will

contain

values

of

the

target

table

rows

at

the

point

immediately

preceding

the

execution

of

before

triggers

and

the

SQL

data-change

operation.

The

OLD

TABLE

qualifier

applies

to

UPDATE

and

DELETE

operations.

NEW

TABLE

The

rows

in

the

intermediate

result

table

will

contain

values

of

the

target

table

rows

at

the

point

immediately

after

the

SQL

data-change

statement

has

been

executed,

but

before

referential

integrity

evaluation

and

the

firing

of

any

after

triggers.

The

NEW

TABLE

qualifier

applies

to

UPDATE

and

INSERT

operations.

FINAL

TABLE

This

qualifier

returns

the

same

intermediate

result

table

as

NEW

TABLE.

In

addition,

the

use

of

FINAL

TABLE

guarantees

that

no

after

trigger

or

referential

integrity

constraint

will

further

modify

the

target

of

the

UPDATE

or

INSERT

operation.

The

FINAL

TABLE

qualifier

applies

to

UPDATE

and

INSERT

operations.

The

FROM

clause

qualifiers

determine

what

version

of

the

targeted

data

is

in

the

intermediate

result

table.

These

qualifiers

do

not

affect

the

insertion,

deletion,

or

updates

of

target

table

rows.

Target

tables

and

views

When

selecting

result

sets

FROM

SQL

data-change

operations,

the

target

can

be

either

a

table

or

a

view.

672

Programming

Client

Applications

|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

In

SQL

data-change

operations

against

views,

the

result

table

cannot

include

rows

that

no

longer

satisfy

the

view

definition

for

NEW

TABLE

and

FINAL

TABLE.

If

you

embed

an

INSERT

or

UPDATE

statement

that

references

a

view

in

a

SELECT

statement,

the

view

must

be

defined

as

WITH

CASCADED

CHECK

OPTION.

Alternatively,

the

view

must

satisfy

the

restrictions

that

would

allow

you

to

define

it

as

WITH

CASCADED

CHECK

OPTION.

If

the

target

of

SQL

data-change

operations

embedded

in

the

FROM

clause

of

a

SELECT

statement

is

a

fullselect,

the

result

table

can

include

rows

that

no

longer

qualify

in

the

fullselect.

This

is

because

the

predicates

in

the

WHERE

clause

are

not

re-evaluated

against

the

updated

values.

Result

set

sorting

based

on

INPUT

SEQUENCE

To

SELECT

rows

in

the

same

order

as

they

are

inserted

into

the

target

table

or

view,

use

the

INPUT

SEQUENCE

keywords

in

the

ORDER

BY

clause.

Use

of

the

INPUT

SEQUENCE

keywords

does

not

force

rows

to

be

inserted

in

the

same

order

they

are

provided.

The

following

example

demonstrates

the

use

of

the

INPUT

SEQUENCE

keywords

in

the

ORDER

BY

clause

to

sort

the

result

set

of

an

INSERT

operation.

CREATE

TABLE

orders

(purchase_date

DATE,

sales_person

VARCHAR(16),

region

VARCHAR(10),

quantity

SMALLINT,

order_num

INTEGER

NOT

NULL

GENERATED

ALWAYS

AS

IDENTITY

(START

WITH

100,

INCREMENT

BY

1))

SELECT

*

FROM

FINAL

TABLE

(INSERT

INTO

orders

(purchase_date,

sales_person,

region,

quantity)

VALUES

(CURRENT

DATE,’Judith’,’Beijing’,6),

(CURRENT

DATE,’Marieke’,’Medway’,5),

(CURRENT

DATE,’Hanneke’,’Halifax’,5))

ORDER

BY

INPUT

SEQUENCE

PURCHASE_DATE

SALES_PERSON

REGION

QUANTITY

ORDER_NUM

07/18/2003

Judith

Beijing

6

100

07/18/2003

Marieke

Medway

5

101

07/18/2003

Hanneke

Halifax

5

102

You

can

also

sort

result

set

rows

using

include

columns.

Related

concepts:

v

“Retrieval

of

result

sets

from

SQL

data

change

statements

using

cursors”

on

page

674

v

“Include

columns”

on

page

675

Related

reference:

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“INSERT

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

INTO

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

Chapter

32.

Common

DB2

Application

Techniques

673

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

Retrieval

of

result

sets

from

SQL

data

change

statements

using

cursors

You

can

declare

cursors

for

queries

that

retrieve

result

sets

from

SQL

data-change

operations.

For

example:

DECLARE

C1

CURSOR

FOR

SELECT

salary

FROM

FINAL

TABLE

(INSERT

INTO

employee

(name,

salary,

level)

SELECT

name,

income,

band

FROM

old_employee)

Errors

that

occur

when

fetching

from

a

cursor

whose

definition

contains

an

SQL

data-change

operation

will

not

cause

a

rollback

of

the

modified

rows.

Even

if

the

errors

result

in

the

cursor’s

closing,

the

row

modifications

will

remain

intact

because

they

were

completed

when

the

application

opened

the

cursor.

Upon

the

opening

of

such

a

cursor,

the

database

manager

completely

executes

the

SQL

data-change

operation

and

the

result

set

is

stored

in

a

temporary

table.

If

an

error

occurs

while

the

cursor

opens,

the

changes

made

by

the

SQL

data-change

operation

are

rolled

back.

Further

updates

to

the

target

table

or

view

will

not

appear

in

the

result

table

rows

for

cursors

that

retrieve

result

sets

from

SQL

data-change

operations.

For

example,

an

application

declares

a

cursor,

opens

the

cursor,

performs

a

fetch,

updates

the

table,

and

fetches

additional

rows.

The

fetches

after

the

UPDATE

statement

will

return

those

values

that

were

determined

during

open

cursor

processing

prior

to

the

UPDATE

statement.

You

can

declare

scrollable

cursors

for

queries

that

retrieve

result

sets

from

SQL

data-change

operations.

Since

the

result

table

is

generated

when

you

OPEN

the

cursor,

the

data

modifications

have

already

been

written

to

the

target

table

or

view.

Cursors

with

queries

that

select

rows

from

an

SQL

data

change

operation

must

be

defined

as

INSENSITIVE

or

ASENSITIVE.

Note:

Scrollable

cursors

are

supported

only

in

CLI,

JDBC,

and

SQLJ

applications.

If

you

declare

a

cursor

with

the

WITH

HOLD

option

and

the

application

performs

a

COMMIT,

all

of

the

data

changes

are

committed.

Cursors

that

you

do

not

declare

as

WITH

HOLD

behave

in

the

same

manner.

For

all

cursors,

the

SQL

data-change

operation

included

in

the

query

is

completely

evaluated

before

any

row

is

fetched.

When

performing

an

explicit

rollback

for

an

OPEN

CURSOR

statement,

or

when

rolling

back

to

a

save

point

prior

to

an

OPEN

CURSOR

statement,

all

of

the

data

changes

for

that

cursor

will

be

undone.

For

cursors

with

queries

that

retrieve

result

sets

from

SQL

data-change

operations,

all

data

changes

are

undone

after

a

ollback,

but

the

cursor

is

retained

and

the

previously

inserted

rows

can

still

be

fetched.

Related

concepts:

v

“Retrieval

of

result

sets

from

an

SQL

data

change

statement”

on

page

671

v

“Include

columns”

on

page

675

Related

reference:

v

“DECLARE

CURSOR

statement”

in

the

SQL

Reference,

Volume

2

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“FETCH

statement”

in

the

SQL

Reference,

Volume

2

v

“OPEN

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

674

Programming

Client

Applications

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

Include

columns

With

include

columns,

you

can

introduce

columns

that

do

not

exist

in

the

target

table

or

view

into

an

intermediate

result

table.

You

can

assign

values

to

include

columns

to

use

as

handles

for

rows

in

the

intermediate

result

table.

Include

columns

do

not

affect

SQL

data-change

operations,

nor

do

they

change

the

definitions

of

target

tables

or

views.

An

include

column

can

be

of

any

data

type,

is

nullable,

and

must

have

a

name

that

is

unique

from

any

column

in

the

target

table

or

view

in

the

SQL

data-change

operation.

You

can

refer

to

include

columns

in

the

select

list,

ORDER

BY

clause,

or

WHERE

clause

of

the

SELECT

statement.

In

result

sets,

include

columns

appear

as

the

right-most

columns.

Include

columns

in

INSERT

operations

To

assign

values

to

include

columns

in

INSERT

operations,

you

can

use

the

VALUES

clause.

A

common

use

for

include

columns

in

INSERT

operations

is

to

customize

the

ordering

of

result

sets.

For

example:

SELECT

*

FROM

FINAL

TABLE

(INSERT

INTO

sales

INCLUDE

(sortkey

integer)

VALUES

(CURRENT

DATE,’Judith’,

’Halifax’,6,1),

(CURRENT

DATE,’Marieke’,

’Medway’,5,3),

(CURRENT

DATE,’Hanneke’,

’Halifax’,5,2))

ORDER

BY

sortkey

SALES_DATE

SALES_PERSON

REGION

SALES

SORTKEY

07/16/2003

Judith

Amsterdam

6

1

07/16/2003

Hanneke

Halifax

5

2

07/16/2003

Marieke

Medway

5

3

You

can

also

assign

values

to

an

include

column

in

an

INSERT

operation

by

using

a

fullselect.

Include

columns

in

UPDATE

and

DELETE

operations

To

assign

values

to

include

columns

in

UPDATE

or

DELETE

operations,

use

the

SET

clause.

If

no

value

is

assigned

to

an

include

column

in

the

SET

clause

of

an

UPDATE

or

a

DELETE

statement,

a

NULL

value

is

returned

for

that

column.

In

UPDATE

statements,

you

can

use

include

columns

to

return

both

the

old

and

new

column

values

for

a

row.

For

example:

SELECT

salary,

oldSalary

FROM

FINAL

TABLE

(UPDATE

employee

INCLUDE

(oldSalary

decimal(9,2))

SET

oldSalary

=

salary,

salary

=

salary

*

1.05

WHERE

job

=

’CLERK’)

SALARY

OLDSALARY

30712.50

29250.00

23289.00

22180.00

30198.00

28760.00

20139.00

19180.00

18112.50

17250.00

28749.00

27380.00

Related

concepts:

v

“Retrieval

of

result

sets

from

an

SQL

data

change

statement”

on

page

671

Chapter

32.

Common

DB2

Application

Techniques

675

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

v

“Retrieval

of

result

sets

from

SQL

data

change

statements

using

cursors”

on

page

674

Related

reference:

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“INSERT

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

Searched

UPDATE,

INSERT,

DELETE,

and

MERGE

operations

against

fullselects

As

of

DB2®

Version

8.1.4

you

can

issue

searched

INSERT,

UPDATE,

DELETE,

and

MERGE

statements

on

the

results

of

fullselects.

This

feature

enables

you

to

reduce

work

that

might

otherwise

require

two

statements

(a

fullselect

and

an

INSERT,

UPDATE,

DELETE,

or

MERGE

on

the

results

of

the

fullselect)

to

a

single

statement.

By

combining

this

work

into

a

single

statement,

you

can

reduce

the

potential

for

deadlocks

and

possibly

eliminate

the

need

for

view

and

cursor

definitions.

Any

query

that

can

be

used

to

produce

an

insertable,

updatable,

or

deletable

view

can

be

the

target

of

searched

INSERT,

UPDATE,

DELETE,

or

MERGE

statements.

For

example,

the

following

statement

will

delete

the

ten

employees

in

the

EMPLOYEE

table

with

the

lowest

level

of

education.

DELETE

FROM

(SELECT

edlevel

FROM

employee

ORDER

BY

edlevel

FETCH

FIRST

10

ROWS

ONLY)

Related

reference:

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“INSERT

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

INTO

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

v

“MERGE

statement”

in

the

SQL

Reference,

Volume

2

Sequential

Values

and

Sequence

Objects

The

sections

that

follow

describe

considerations

for

sequential

values

and

sequence

objects.

Generation

of

Sequential

Values

Generating

sequential

values

is

a

common

database

application

development

problem.

The

best

solution

to

that

problem

is

to

use

sequence

objects

and

sequence

expressions

in

SQL.

Each

sequence

object

is

a

uniquely

named

database

object

that

can

be

accessed

only

by

sequence

expressions.

There

are

two

sequence

expressions:

the

PREVVAL

expression

and

the

NEXTVAL

expression.

The

PREVVAL

expression

returns

the

value

most

recently

generated

in

the

application

process

for

the

specified

sequence

object.

Any

NEXTVAL

expressions

occuring

in

the

same

statement

as

the

PREVVAL

expression

have

no

effect

on

the

value

generated

by

the

676

Programming

Client

Applications

|
|

|

|

|

|

|

PREVAL

expression

in

that

statement.

The

NEXTVAL

sequence

expression

increments

the

value

of

the

sequence

object

and

returns

the

new

value

of

the

sequence

object.

To

create

a

sequence

object,

issue

the

CREATE

SEQUENCE

statement.

For

example,

to

create

a

sequence

object

called

id_values

using

the

default

attributes,

issue

the

following

statement:

CREATE

SEQUENCE

id_values

To

generate

the

first

value

in

the

application

session

for

the

sequence

object,

issue

a

VALUES

statement

using

the

NEXTVAL

expression:

VALUES

NEXTVAL

FOR

id_values

1

1

1

record(s)

selected.

To

display

the

current

value

of

the

sequence

object,

issue

a

VALUES

statement

using

the

PREVVAL

expression:

VALUES

PREVVAL

FOR

id_values

1

1

1

record(s)

selected.

You

can

repeatedly

retrieve

the

current

value

of

the

sequence

object,

and

the

value

that

the

sequence

object

returns

does

not

change

until

you

issue

a

NEXTVAL

expression.

In

the

following

example,

the

PREVVAL

expression

returns

a

value

of

1,

until

the

NEXTVAL

expression

in

the

current

connection

increments

the

value

of

the

sequence

object:

VALUES

PREVVAL

FOR

id_values

1

1

1

record(s)

selected.

VALUES

PREVVAL

FOR

id_values

1

1

1

record(s)

selected.

VALUES

NEXTVAL

FOR

id_values

1

2

1

record(s)

selected.

VALUES

PREVVAL

FOR

id_values

1

Chapter

32.

Common

DB2

Application

Techniques

677

2

1

record(s)

selected.

To

update

the

value

of

a

column

with

the

next

value

of

the

sequence

object,

include

the

NEXTVAL

expression

in

the

UPDATE

statement,

as

follows:

UPDATE

staff

SET

id

=

NEXTVAL

FOR

id_values

WHERE

id

=

350

To

insert

a

new

row

into

a

table

using

the

next

value

of

the

sequence

object,

include

the

NEXTVAL

expression

in

the

INSERT

statement,

as

follows:

INSERT

INTO

staff

(id,

name,

dept,

job)

VALUES

(NEXTVAL

FOR

id_values,

‘Kandil’,

51,

‘Mgr’)

Related

reference:

v

“CREATE

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“DbSeq.java

--

How

to

create,

alter

and

drop

a

sequence

in

a

database

(JDBC)”

Management

of

Sequence

Behavior

You

can

tailor

the

behavior

of

sequence

objects

to

meet

the

needs

of

your

application.

You

change

change

the

attributes

of

a

sequence

object

when

you

issue

the

CREATE

SEQUENCE

statement

to

create

a

new

sequence

object,

and

when

you

issue

the

ALTER

SEQUENCE

statement

for

an

existing

sequence

object.

Following

are

some

of

the

attributes

of

a

sequence

object

that

you

can

specify:

Data

type

The

AS

clause

of

the

CREATE

SEQUENCE

statement

specifies

the

numeric

data

type

of

the

sequence

object.

The

data

type

determines

the

possible

minimum

and

maximum

values

of

the

sequence

object

(the

minimum

and

maximum

values

for

a

data

type

are

listed

in

the

topic

describing

SQL

limits).

You

cannot

change

the

data

type

of

a

sequence

object;

instead,

you

must

drop

the

sequence

object

by

issuing

the

DROP

SEQUENCE

statement

and

issue

a

CREATE

SEQUENCE

statement

with

the

new

data

type.

Start

value

The

START

WITH

clause

of

the

CREATE

SEQUENCE

statement

sets

the

initial

value

of

the

sequence

object.

The

RESTART

WITH

clause

of

the

ALTER

SEQUENCE

statement

resets

the

value

of

the

sequence

object

to

a

specified

value.

Minimum

value

The

MINVALUE

clause

sets

the

minimum

value

of

the

sequence

object.

Maximum

value

The

MAXVALUE

clause

sets

the

maximum

value

of

the

sequence

object.

Increment

value

The

INCREMENT

BY

clause

sets

the

value

that

each

NEXTVAL

expression

adds

to

the

current

value

of

the

sequence

object.

To

decrement

the

value

of

the

sequence

object,

specify

a

negative

value.

Sequence

cycling

The

CYCLE

clause

causes

the

value

of

a

sequence

object

that

reaches

its

678

Programming

Client

Applications

maximum

or

minimum

value

to

generate

its

respective

minimum

value

or

maximum

value

on

the

following

NEXTVAL

expression.

For

example,

to

create

a

sequence

object

called

id_values

that

starts

with

a

minimum

value

of

0,

has

a

maximum

value

of

1000,

increments

by

2

with

each

NEXTVAL

expression,

and

returns

to

its

minimum

value

when

the

maximum

value

is

reached,

issue

the

following

statement:

CREATE

SEQUENCE

id_values

START

WITH

0

INCREMENT

BY

2

MAXVALUE

1000

CYCLE

Related

reference:

v

“SQL

limits”

in

the

SQL

Reference,

Volume

1

v

“ALTER

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SEQUENCE

statement”

in

the

SQL

Reference,

Volume

2

Application

Performance

and

Sequence

Objects

Like

identity

columns,

using

sequence

objects

to

generate

values

generally

improves

the

performance

of

your

applications

in

comparison

to

alternative

approaches.

The

alternative

to

sequence

objects

is

to

create

a

single-column

table

that

stores

the

current

value

and

incrementing

that

value

with

either

a

trigger

or

under

the

control

of

the

application.

In

a

distributed

environment

where

applications

concurrently

access

the

single-column

table,

the

locking

required

to

force

serialized

access

to

the

table

can

seriously

affect

performance.

Sequence

objects

avoid

the

locking

issues

that

are

associated

with

the

single-column

table

approach

and

can

cache

sequence

values

in

memory

to

improve

DB2®

response

time.

To

maximize

the

performance

of

applications

that

use

sequence

objects,

ensure

that

your

sequence

object

caches

an

appropriate

amount

of

sequence

values.

The

CACHE

clause

of

the

CREATE

SEQUENCE

and

ALTER

SEQUENCE

statements

specifies

the

maximum

number

of

sequence

values

that

DB2

generates

and

stores

in

memory.

If

your

sequence

object

must

generate

values

in

order,

without

introducing

gaps

in

that

order

because

of

a

system

failure

or

database

deactivation,

use

the

ORDER

and

NO

CACHE

clauses

in

the

CREATE

SEQUENCE

statement.

The

NO

CACHE

clause

guarantees

that

no

gaps

appear

in

the

generated

values

at

the

cost

of

some

of

your

application’s

performance

because

it

forces

your

sequence

object

to

write

to

the

database

log

every

time

it

generates

a

new

value.

Note

that

gaps

can

still

appear

due

to

transactions

that

rollback

and

do

not

actually

use

that

sequence

value

that

they

requested.

Sequence

Objects

Compared

to

Identity

Columns

Although

sequence

objects

and

identity

columns

appear

to

serve

similar

purposes

for

DB2®

applications,

there

is

an

important

difference.

An

identity

column

automatically

generates

values

for

a

column

in

a

single

table.

A

sequence

object

generates

sequential

values

upon

request

that

can

be

used

in

any

SQL

statement.

Chapter

32.

Common

DB2

Application

Techniques

679

Declared

Temporary

Tables

and

Application

Performance

A

declared

temporary

table

is

a

temporary

table

that

is

only

accessible

to

SQL

statements

that

are

issued

by

the

application

which

created

the

temporary

table.

A

declared

temporary

table

does

not

persist

beyond

the

duration

of

the

connection

of

the

application

to

the

database.

Use

declared

temporary

tables

to

potentially

improve

the

performance

of

your

applications.

When

you

create

a

declared

temporary

table,

DB2®

does

not

insert

an

entry

into

the

system

catalog

tables;

therefore,

your

server

does

not

suffer

from

catalog

contention

issues.

In

comparison

to

regular

tables,

DB2

does

not

lock

declared

temporary

tables

or

their

rows,

and,

if

you

specify

the

NOT

LOGGED

parameter

when

you

create

it,

does

not

log

declared

temporary

tables

or

their

contents.

If

your

current

application

creates

tables

to

process

large

amounts

of

data

and

drops

those

tables

once

the

application

has

finished

manipulating

that

data,

consider

using

declared

temporary

tables

instead

of

regular

tables.

If

you

develop

applications

written

for

concurrent

users,

your

applications

can

take

advantage

of

declared

temporary

tables.

Unlike

regular

tables,

declared

temporary

tables

are

not

subject

to

name

collision.

For

each

instance

of

the

application,

DB2

can

create

a

declared

temporary

table

with

an

identical

name.

For

example,

to

write

an

application

for

concurrent

users

that

uses

regular

tables

to

process

large

amounts

of

temporary

data,

you

must

ensure

that

each

instance

of

the

application

uses

a

unique

name

for

the

regular

table

that

holds

the

temporary

data.

Typically,

you

would

create

another

table

that

tracks

the

names

of

the

tables

that

are

in

use

at

any

given

time.

With

declared

temporary

tables,

simply

specify

one

declared

temporary

table

name

for

your

temporary

data.

DB2

guarantees

that

each

instance

of

the

application

uses

a

unique

table.

To

use

a

declared

temporary

table,

perform

the

following

steps:

Step

1.

Ensure

that

a

USER

TEMPORARY

TABLESPACE

exists.

If

a

USER

TEMPORARY

TABLESPACE

does

not

exist,

issue

a

CREATE

USER

TEMPORARY

TABLESPACE

statement.

Step

2.

Issue

a

DECLARE

GLOBAL

TEMPORARY

TABLE

statement

in

your

application.

The

schema

for

declared

temporary

tables

is

always

SESSION.

To

use

the

declared

temporary

table

in

your

SQL

statements,

you

must

refer

to

the

table

using

the

SESSION

schema

qualifier

either

explicitly

or

by

using

a

DEFAULT

schema

of

SESSION

to

qualify

any

unqualified

references.

In

the

following

example,

the

table

name

is

always

qualified

by

the

schema

name

SESSION

when

you

create

a

declared

temporary

table

named

TT1

with

the

following

statement:

DECLARE

GLOBAL

TEMPORARY

TABLE

TT1

To

select

the

contents

of

the

column1

column

from

the

declared

temporary

table

created

in

the

previous

example,

use

the

following

statement:

SELECT

column1

FROM

SESSION.TT1;

Note

that

DB2

also

enables

you

to

create

persistent

tables

with

the

SESSION

schema.

If

you

create

a

persistent

table

with

the

qualified

name

SESSION.TT3,

you

can

then

create

a

declared

temporary

table

with

the

qualified

name

SESSION.TT3.

In

this

situation,

DB2

always

resolves

references

to

persistent

and

declared

temporary

tables

with

identical

qualified

names

to

the

declared

temporary

table.

To

680

Programming

Client

Applications

avoid

confusing

persistent

tables

with

declared

temporary

tables,

you

should

not

create

persistent

tables

using

the

SESSION

schema.

If

you

create

an

application

that

includes

a

static

SQL

reference

to

a

table,

view,

or

alias

qualified

with

the

SESSION

schema,

the

DB2

precompiler

does

not

compile

that

statement

at

bind

time

and

marks

the

statement

as

“needing

compilation”.

At

run

time,

DB2

compiles

the

statement.

This

behavior

is

called

incremental

binding.

DB2

automatically

performs

incremental

binding

for

static

SQL

references

to

tables,

views,

and

aliases

qualified

with

the

SESSION

schema.

You

do

not

need

to

specify

the

VALIDATE

RUN

option

on

the

BIND

or

PRECOMPILE

command

to

enable

incremental

binding

for

these

statements.

If

you

issue

a

ROLLBACK

statement

for

a

transaction

that

includes

a

DECLARE

GLOBAL

TEMPORARY

TABLE

statement,

DB2

drops

the

declared

temporary

table.

If

you

issue

a

DROP

TABLE

statement

for

a

declared

temporary

table,

issuing

a

ROLLBACK

statement

for

that

transaction

only

restores

an

empty

declared

temporary

table.

A

ROLLBACK

of

a

DROP

TABLE

statement

does

not

restore

the

rows

that

existed

in

the

declared

temporary

table.

The

default

behavior

of

a

declared

temporary

table

is

to

delete

all

rows

from

the

table

when

you

commit

a

transaction.

However,

if

one

or

more

WITH

HOLD

cursors

are

still

open

on

the

declared

temporary

table,

DB2

does

not

delete

the

rows

from

the

table

when

you

commit

a

transaction.

To

avoid

deleting

all

rows

when

you

commit

a

transaction,

create

the

temporary

table

using

the

ON

COMMIT

PRESERVE

ROWS

clause

in

the

DECLARE

GLOBAL

TEMPORARY

TABLE

statement.

If

you

modify

the

contents

of

a

declared

temporary

table

using

an

INSERT,

UPDATE,

or

DELETE

statement

within

a

transaction,

and

roll

back

that

transaction,

DB2

deletes

all

of

the

rows

of

the

declared

temporary

table.

If

you

attempt

to

modify

the

contents

of

a

declared

temporary

table

using

an

INSERT,

UPDATE,

or

DELETE

statement,

and

the

statement

fails,

DB2

behaves

as

follows:

v

If

the

table

was

created

without

the

NOT

LOGGED

parameter

(that

is,

the

table

is

logged),

only

the

changes

made

by

the

failed

INSERT,

UPDATE,

or

DELETE

statement

are

rolled

back.

v

If

the

table

was

created

with

the

NOT

LOGGED

parameter,

DB2

deletes

all

of

the

rows

of

the

declared

temporary

table.

When

a

failure

is

encountered

in

a

partitioned

database

environment,

all

declared

temporary

tables

that

exist

on

the

failed

database

partition

become

unusable.

Any

subsequent

access

to

those

unusable

declared

temporary

tables

returns

an

error

(SQL1477N).

When

your

application

encounters

an

unusable

declared

temporary

table,

the

application

can

either

drop

the

table

or

recreate

the

table

by

specifying

the

WITH

REPLACE

clause

in

the

DECLARE

GLOBAL

TEMPORARY

TABLE

statement.

Declared

temporary

tables

are

subject

to

a

number

of

restrictions.

For

example,

you

cannot

define

aliases

or

views

for

declared

temporary

tables.

You

cannot

use

IMPORT

and

LOAD

to

populate

declared

temporary

tables.

You

can,

with

some

restrictions,

create

indexes

for

declared

temporary

tables.

In

addition,

you

can

execute

RUNSTATS

against

a

declared

temporary

table

to

update

the

statistics

for

the

declared

temporary

table

and

its

indexes.

Related

reference:

Chapter

32.

Common

DB2

Application

Techniques

681

v

“DECLARE

GLOBAL

TEMPORARY

TABLE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“tbtemp.sqc

--

How

to

use

a

declared

temporary

table

(C)”

v

“TbTemp.java

--

How

to

use

Declared

Temporary

Table

(JDBC)”

Transmission

of

Large

Volumes

of

Data

Across

a

Network

You

can

combine

the

techniques

of

stored

procedures

and

row

blocking

to

significantly

improve

the

performance

of

applications

that

need

to

pass

large

amounts

of

data

across

a

network.

Applications

that

pass

arrays,

large

amounts

of

data,

or

packages

of

data

across

the

network

can

pass

the

data

in

blocks

using

the

SQLDA

data

structure

or

host

variables

as

the

transport

mechanism.

This

technique

is

extremely

powerful

in

host

languages

that

support

structures.

Either

a

client

application

or

a

server

procedure

can

pass

the

data

across

the

network.

The

data

can

be

passed

using

one

of

the

following

data

types:

v

VARCHAR

v

LONG

VARCHAR

v

CLOB

v

BLOB

The

data

can

also

be

passed

using

one

of

the

following

graphic

types:

v

VARGRAPHIC

v

LONG

VARGRAPHIC

v

DBCLOB

Note:

Be

sure

to

consider

the

possibility

of

character

conversion

when

using

this

technique.

If

you

are

passing

data

with

one

of

the

character

string

data

types

such

as

VARCHAR,

LONG

VARCHAR,

or

CLOB,

or

graphic

data

types

such

as

VARGRAPHIC,

LONG

VARGRAPHIC,

OR

DBCLOB,

and

the

application

code

page

is

not

the

same

as

the

database

code

page,

any

non-character

data

will

be

converted

as

if

it

were

character

data.

To

avoid

character

conversion,

you

should

pass

data

in

a

variable

with

a

data

type

of

BLOB.

Related

concepts:

v

“Character

conversion

between

different

code

pages”

on

page

609

v

“DB2

Stored

Procedures”

on

page

18

Related

tasks:

v

“Specifying

row

blocking

to

reduce

overhead”

in

the

Administration

Guide:

Performance

682

Programming

Client

Applications

Part

8.

Appendixes

©

Copyright

IBM

Corp.

1997

-

2004

683

684

Programming

Client

Applications

Appendix

A.

Supported

SQL

Statements

The

following

table

lists

all

the

supported

SQL

statements

in

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows.

All

of

the

statements

in

the

″SQL

Statement″

column

are

supported

in

static

SQL

applications.

The

remaining

columns

show

whether

individual

statements

are

supported

in

other

DB2

application

development

contexts.

Table

93.

SQL

Statements

(DB2

Universal

Database)

SQL

Statement

Dynamic1

Command

Line

Processor

(CLP)

Triggers4

SQL

User-defined

functions

(UDFs)

and

methods

SQL

Procedures

ALLOCATE

CURSOR

X

ALTER

{

BUFFERPOOL,

DATABASE

PARTITION

GROUP,

FUNCTION,

METHOD,

NICKNAME,

8

PROCEDURE,

SEQUENCE,

SERVER,

8

TABLE,

TABLESPACE,

TYPE,

USER

MAPPING,

8

VIEW

}

X

ASSOCIATE

LOCATORS

X

BEGIN

DECLARE

SECTION2

CALL

X7

X

X

X

CASE

statement

X

CLOSE

X

X

COMMENT

ON

X

X

X

COMMIT

X

X

X

Compound

SQL

(Embedded)

compound

statement

X

CONNECT

(Type

1)

X

CONNECT

(Type

2)

X

CREATE

{

ALIAS,

BUFFERPOOL,

DATABASE

PARTITION

GROUP,

DISTINCT

TYPE,

EVENT

MONITOR,

FUNCTION,

FUNCTION

MAPPING,8

INDEX,

INDEX

EXTENSION,

METHOD,

NICKNAME,8

PROCEDURE,

SCHEMA,

SEQUENCE,

SERVER,

TABLE,

TABLESPACE,

TRANSFORM,

TRIGGER,

TYPE,

TYPE

MAPPING,8

USER

MAPPING,8

VIEW,

WRAPPER8

}

X

X

X9

DECLARE

CURSOR2

X

X

DECLARE

GLOBAL

TEMPORARY

TABLE

X

X

X

DELETE

X

X

X3

X

X

DESCRIBE6

X

DISCONNECT

X

©

Copyright

IBM

Corp.

1997

-

2004

685

Table

93.

SQL

Statements

(DB2

Universal

Database)

(continued)

SQL

Statement

Dynamic1

Command

Line

Processor

(CLP)

Triggers4

SQL

User-defined

functions

(UDFs)

and

methods

SQL

Procedures

DROP

X

X

X9

END

DECLARE

SECTION2

EXECUTE

X

EXECUTE

IMMEDIATE

X

EXPLAIN

X

X

X

FETCH

X

X

FLUSH

EVENT

MONITOR

X

X

FLUSH

PACKAGE

CACHE

X

X

X

FOR

statement

X

X

X

FREE

LOCATOR

GET

DIAGNOSTICS

X

X

X

GOTO

statement

X

GRANT

X

X

X

IF

statement

X

X

X

INCLUDE2

INSERT

X

X

X3

X

X

ITERATE

X

X

X

LEAVE

statement

X

X

X

LOCK

TABLE

X

X

X

LOOP

statement

X

MERGE

X

X

X3

X

X

OPEN

X

X

PREPARE

X

REFRESH

TABLE

X

X

RELEASE

X

RELEASE

SAVEPOINT

X

X

X

RENAME

TABLE

X

X

RENAME

TABLESPACE

X

X

REPEAT

statement

X

RESIGNAL

statement

X

RETURN

statement

X

X

REVOKE

X

X

ROLLBACK

X

X

X

SAVEPOINT

X

X

X

select-statement

X

X

X

X

SELECT

INTO

X

SET

CONNECTION

X

686

Programming

Client

Applications

Table

93.

SQL

Statements

(DB2

Universal

Database)

(continued)

SQL

Statement

Dynamic1

Command

Line

Processor

(CLP)

Triggers4

SQL

User-defined

functions

(UDFs)

and

methods

SQL

Procedures

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

X

X

X

SET

CURRENT

DEGREE

X

X

X

SET

CURRENT

EXPLAIN

MODE

X

X

X

SET

CURRENT

EXPLAIN

SNAPSHOT

X

X

X

SET

CURRENT

ISOLATION

X

X

X

SET

CURRENT

LOCK

TIMEOUT

X

X

X

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

X

X

X

SET

CURRENT

PACKAGE

PATH

SET

CURRENT

PACKAGESET

SET

CURRENT

QUERY

OPTIMIZATION

X

X

X

SET

CURRENT

REFRESH

AGE

X

X

X

SET

ENCRYPTION

PASSWORD

X

X

X

SET

EVENT

MONITOR

STATE

X

X

X

SET

INTEGRITY

X

X

SET

PASSTHRU8

X

X

SET

PATH

X

X

X

SET

SCHEMA

X

X

X

SET

SERVER

OPTION8

X

X

SET

SESSION

AUTHORIZATION8

X

X

Set

variable

X

X

X

SIGNAL

statement

X

X

X

SIGNAL

SQLSTATE5

X

X

UPDATE

X

X

X3

X

X

VALUES

INTO

X

WHENEVER2

WHILE

statement

X

X

X

Appendix

A.

Supported

SQL

Statements

687

Table

93.

SQL

Statements

(DB2

Universal

Database)

(continued)

SQL

Statement

Dynamic1

Command

Line

Processor

(CLP)

Triggers4

SQL

User-defined

functions

(UDFs)

and

methods

SQL

Procedures

Notes:

1.

You

can

code

all

statements

in

this

list

as

static

SQL,

but

only

those

marked

with

X

as

dynamic

SQL.

2.

You

cannot

execute

this

statement.

3.

You

cannot

modify

table

data

in

before-triggers.

Therefore,

you

cannot

CALL

procedures

defined

with

MODIFIES

SQL

DATA

or

use

INSERT,

UPDATE,

DELETE,

or

MERGE

statements

in

before-triggers.

4.

SQL

statements

in

triggers

cannot

reference

undefined

transition

variables,

federated

objects,

or

declared

temporary

tables.

Also,

SQL

statements

in

before-triggers

cannot

reference

materialized

query

tables

defined

with

REFRESH

IMMEDIATE.

For

a

complete

list

of

the

restrictions

for

triggers,

see

“CREATE

TRIGGER

statement”

in

the

SQL

Reference,

Volume

2

.

5.

You

can

only

use

this

statement

within

CREATE

FUNCTION,

CREATE

METHOD,

CREATE

PROCEDURE,

or

CREATE

TRIGGER

statements.

6.

The

DESCRIBE

SQL

statement

has

a

different

syntax

than

that

of

the

CLP

DESCRIBE

command.

7.

When

CALL

is

issued

through

the

command

line

processor,

only

certain

procedures

and

their

respective

parameters

are

supported.

8.

Statement

is

supported

only

for

federated

database

servers.

9.

SQL

procedures

can

only

issue

CREATE

and

DROP

statements

for

indexes,

tables,

and

views.

Related

reference:

v

“DESCRIBE

statement”

in

the

SQL

Reference,

Volume

2

v

“JAR

file

administration

on

the

database

server”

in

the

Application

Development

Guide:

Programming

Server

Applications

688

Programming

Client

Applications

Appendix

B.

Security

plug-in

deployment

limitations

The

following

are

limitations

on

the

use

of

security

plug-ins:

DB2

Universal

JDBC

Driver

support

limitations:

The

DB2®

Universal

JDBC

Driver

does

not

support

the

client

side

plug-in

authentication

model.

Therefore

you

will

not

be

able

to

use

a

GSS-API

authentication

plug-in

to

connect

to

a

DB2

Universal

Database

(DB2

UDB)

for

Linux,

UNIX®,

and

Windows®

server

from

a

DB2

Universal

JDBC

Driver

client.

A

DB2

Universal

JDBC

Driver

client

can

only

use

the

supported

operating

system

level

authentication

mechanism

or

the

Kerberos

authentication

method.

This

limitation

applies

to

both

Type

2

and

Type

4

connectivity.

Specifically,

the

server’s

database

manager

configuration

parameter

srvcon_auth

cannot

be

set

to

GSSPLUGIN

if

simultaneously

the

database

manager

configuration

parameter

srvcon_gssplugin_list

value

does

not

contain

the

name

of

a

Kerberos

based

GSS-API

plug-in.

The

srvcon_auth

parameter

can

however

be

set

to

any

of:

CLIENT,

SERVER,

SERVER_ENCRYPT,

KERBEROS,

KRB_SERVER_ENCRYPT,

or

GSS_SERVER_ENCRYPT,

DATA_ENCRYPT,

or

DATA_ENCRYPT_CMP.

DB2

UDB

family

support

limitations:

You

cannot

use

GSS-API

plug-in

to

authenticate

connections

between

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

client

and

another

DB2

UDB

family

server.

You

also

cannot

authenticate

connections

from

another

DB2

UDB

family

server,

acting

as

a

client,

to

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

server.

If

you

use

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

client

to

connect

to

other

DB2

UDB

family

servers,

you

can

however

use

client-side

user

ID/password

plug-ins

such

as

the

IBM®-shipped

operating

system

authentication

plug-in,

or

you

can

write

your

own

user

ID/password

plug-in.

You

can

also

use

Kerberos

plug-ins,

or

you

can

implement

your

own

Kerberos

plug-in.

With

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

client

you

should

not

catalog

a

database

using

the

GSSPLUGIN

authentication

type.

DB2

Information

Integrator

support

limitations:

DB2

II

does

not

support

the

use

of

delegated

credentials

from

a

GSS_API

plug-in

to

establish

outbound

connections

to

data

sources.

Connections

to

data

sources

must

continue

to

use

the

CREATE

USER

MAPPING

command.

Database

Administration

Server

support

limitations:

The

DB2

Administration

Server

(DAS)

does

not

support

security

plug-ins.

DAS

only

supports

the

operating

system

authentication

mechanism.

©

Copyright

IBM

Corp.

1997

-

2004

689

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

|

|
|

690

Programming

Client

Applications

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

Applications

in

Host

or

iSeries

Environments

.

.

. 691

Data

Definition

Language

in

Host

and

iSeries

Environments

.

.

.

.

.

.

.

.

.

.

.

.

. 692

Data

Manipulation

Language

in

Host

and

iSeries

Environments

.

.

.

.

.

.

.

.

.

.

.

.

. 692

Data

Control

Language

in

Host

and

iSeries

Environments

.

.

.

.

.

.

.

.

.

.

.

.

. 693

Database

Connection

Management

with

DB2

Connect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 693

Processing

of

Interrupt

Requests

.

.

.

.

.

.

. 694

Package

Attributes,

PREP,

and

BIND

.

.

.

.

. 694

Package

Attribute

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

. 694

CNULREQD

BIND

Option

for

C

Null-Terminated

Strings

.

.

.

.

.

.

.

.

. 695

Standalone

SQLCODE

and

SQLSTATE

Variables

695

Isolation

Levels

Supported

by

DB2

Connect

.

. 696

User-Defined

Sort

Orders

.

.

.

.

.

.

.

.

. 696

Referential

Integrity

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

.

. 697

Locking

and

Application

Portability

.

.

.

.

.

. 697

SQLCODE

and

SQLSTATE

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

.

. 697

System

Catalog

Differences

among

IBM

Relational

Database

Systems

.

.

.

.

.

.

.

.

.

.

.

. 698

Numeric

Conversion

Overflows

on

Retrieval

Assignments

.

.

.

.

.

.

.

.

.

.

.

.

.

. 698

Stored

Procedures

in

Host

or

iSeries

Environments

698

DB2

Connect

Support

for

Compound

SQL

.

.

. 699

Multisite

Update

with

DB2

Connect

.

.

.

.

.

. 700

Host

and

iSeries

Server

SQL

Statements

Supported

by

DB2

Connect

.

.

.

.

.

.

.

.

.

.

.

. 701

Host

and

iSeries

Server

SQL

Statements

Rejected

by

DB2

Connect

.

.

.

.

.

.

.

.

.

.

.

. 701

Applications

in

Host

or

iSeries

Environments

DB2®

Connect

lets

an

application

program

access

data

in

DB2

databases

on

System/390®,

zSeries®,

iSeries™

servers.

For

example,

an

application

running

on

Windows®

can

access

data

in

a

DB2

Universal

Database

for

z/OS

and

OS/390

database.

You

can

create

new

applications,

or

modify

existing

applications

to

run

in

a

host

or

iSeries

environment.

You

can

also

develop

applications

in

one

environment

and

port

them

to

another.

DB2

Connect™

enables

you

to

use

the

following

APIs

with

host

database

products

such

as

DB2

Universal

Database

for

z/OS

and

OS/390,

as

long

as

the

item

is

supported

by

the

host

database

product:

v

Embedded

SQL,

both

static

and

dynamic

v

The

DB2

Call

Level

Interface

v

The

Microsoft®

ODBC

API

v

JDBC

Some

SQL

statements

differ

among

relational

database

products.

You

may

encounter

SQL

statements

that

are:

v

The

same

for

all

the

database

products

that

you

use

regardless

of

standards

v

Available

in

all

IBM®

relational

database

products

(see

your

SQL

reference

information

for

details)

v

Unique

to

one

database

system

that

you

access.

SQL

statements

in

the

first

two

categories

are

highly

portable,

but

those

in

the

third

category

will

first

require

changes.

In

general,

SQL

statements

in

Data

Definition

Language

(DDL)

are

not

as

portable

as

those

in

Data

Manipulation

Language

(DML).

DB2

Connect

accepts

some

SQL

statements

that

are

not

supported

by

DB2

Universal

Database.

DB2

Connect

passes

these

statements

on

to

the

host

or

iSeries

©

Copyright

IBM

Corp.

1997

-

2004

691

server.

For

information

on

limits

on

different

platforms,

such

as

the

maximum

column

length,

see

the

topic

on

SQL

limits.

If

you

move

a

CICS®

application

from

OS/390®

or

VSE

to

run

under

another

CICS

product

(for

example,

CICS

for

AIX),

it

can

also

access

the

OS/390

or

VSE

database

using

DB2

Connect.

Refer

to

the

CICS/6000

Application

Programming

Guide

and

the

CICS

Customization

and

Operation

manual

for

more

details.

Note:

You

can

use

DB2

Connect

with

a

DB2

Universal

Database

Version

8

database,

although

all

you

need

is

a

DB2

client.

Most

of

the

incompatibility

issues

listed

in

the

following

topics

will

not

apply

if

you

are

using

DB2

Connect

against

a

DB2

Universal

Database

Version

8

database,

except

in

cases

where

a

restriction

is

due

to

a

limitation

of

DB2

Connect

itself.

Related

tasks:

v

“Creating

the

sample

database

on

Host

or

AS/400

and

iSeries

servers”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

reference:

v

“SQL

limits”

in

the

SQL

Reference,

Volume

1

Data

Definition

Language

in

Host

and

iSeries

Environments

DDL

statements

differ

among

the

IBM®

database

products

because

storage

is

handled

differently

on

different

systems.

On

host

or

iSeries™

server

systems,

there

can

be

several

steps

between

designing

a

database

and

issuing

a

CREATE

TABLE

statement.

For

example,

a

series

of

statements

may

translate

the

design

of

logical

objects

into

the

physical

representation

of

those

objects

in

storage.

The

precompiler

passes

many

such

DDL

statements

to

the

host

or

iSeries

server

when

you

precompile

to

a

host

or

iSeries

server

database.

The

same

statements

would

not

precompile

against

a

database

on

the

system

where

the

application

is

running.

For

example,

in

an

Windows®

application

the

CREATE

STORGROUP

statement

will

precompile

successfully

to

a

DB2

Universal

Database

for

z/OS

and

OS/390

database,

but

not

to

a

DB2®

for

Windows

database.

Data

Manipulation

Language

in

Host

and

iSeries

Environments

In

general,

DML

statements

are

highly

portable.

SELECT,

INSERT,

UPDATE,

and

DELETE

statements

are

similar

across

the

IBM®

relational

database

products.

Most

applications

primarily

use

DML

SQL

statements,

which

are

supported

by

DB2®

Connect.

Following

are

the

considerations

for

using

DML

in

host

and

iSeries™

environments:

v

Numeric™

data

types

When

numeric

data

is

transferred

to

DB2

Universal

Database,

the

data

type

may

change.

Numeric

and

zoned

decimal

SQLTYPE

values,

supported

by

OS/400®,

are

converted

to

fixed

(packed)

decimal

SQLTYPE

values.

v

Mixed-byte

data

Mixed-byte

data

can

consist

of

characters

from

an

extended

UNIX®

code

(EUC)

character

set,

a

double-byte

character

set

(DBCS)

and

a

single-byte

character

set

(SBCS)

in

the

same

column.

On

systems

that

store

data

in

EBCDIC

(OS/390,

z/OS™,

OS/400,

VSE,

and

VM),

shift-out

and

shift-in

characters

mark

the

start

692

Programming

Client

Applications

and

end

of

double-byte

data.

On

systems

that

store

data

in

ASCII

(such

as

UNIX),

shift-in

and

shift-out

characters

are

not

required.

If

your

application

transfers

mixed-byte

data

from

an

ASCII

system

to

an

EBCDIC

system,

be

sure

to

allow

enough

room

for

the

shift

characters.

For

each

switch

from

SBCS

to

DBCS

data,

add

2

bytes

to

your

data

length.

For

better

portability,

use

variable-length

strings

in

applications

that

use

mixed-byte

data.

v

Long

fields

Long

fields

(strings

longer

than

254

characters)

are

handled

differently

on

different

systems.

A

host

or

iSeries

server

may

support

only

a

subset

of

scalar

functions

for

long

fields;

for

example,

DB2

Universal

Database

for

z/OS

and

OS/390

allows

only

the

LENGTH

and

SUBSTR

functions

for

long

fields.

Also,

a

host

or

iSeries

server

may

require

different

handling

for

certain

SQL

statements;

for

example,

DB2

Server

for

VSE

&

VM

requires

that

with

the

INSERT

statement,

only

a

host

variable,

the

SQLDA,

or

a

NULL

value

be

used.

v

Large

object

data

type

The

LOB

data

type

is

supported

by

DB2

Connect.

v

User-defined

types

Only

user-defined

distinct

types

are

supported

by

DB2

Connect.

Structured

types,

also

known

as

abstract

data

types,

are

not

supported

by

DB2

Connect.

v

ROWID

data

type

The

ROWID

data

type

is

handled

by

DB2

Connect

as

VARCHAR

for

bit

data.

v

BIGINT

data

type

Eight

byte

(64-bit)

integers

are

supported

by

DB2

Connect.

The

BIGINT

internal

data

type

is

used

to

provide

support

for

the

cardinality

of

very

large

databases,

while

retaining

data

precision.

Data

Control

Language

in

Host

and

iSeries

Environments

Each

IBM®

relational

database

management

system

provides

different

levels

of

granularity

for

the

GRANT

and

REVOKE

SQL

statements.

Check

the

product-specific

publications

to

verify

the

appropriate

SQL

statements

to

use

for

each

database

management

system.

Database

Connection

Management

with

DB2

Connect

DB2®

Connect

supports

the

CONNECT

TO

and

CONNECT

RESET

versions

of

the

CONNECT

statement,

as

well

as

CONNECT

with

no

parameters.

If

an

application

calls

an

SQL

statement

without

first

performing

an

explicit

CONNECT

TO

statement,

an

implicit

connect

is

performed

to

the

default

application

server

(if

one

is

defined).

When

you

connect

to

a

database,

information

identifying

the

relational

database

management

system

is

returned

in

the

SQLERRP

field

of

the

SQLCA.

If

the

application

server

is

an

IBM®

relational

database,

the

first

three

bytes

of

SQLERRP

contain

one

of

the

following:

DSN

DB2

Universal

Database

for

z/OS

and

OS/390

ARI

DB2

Server

for

VSE

&

VM

QSQ

DB2

UDB

for

iSeries™

SQL

DB2

Universal

Database.

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

693

If

you

issue

a

CONNECT

TO

or

null

CONNECT

statement

while

using

DB2

Connect™,

the

territory

code

or

territory

token

in

the

SQLERRMC

field

of

the

SQLCA

is

returned

as

blanks;

the

CCSID

of

the

application

server

is

returned

in

the

code

page

or

code

set

token.

You

can

explicitly

disconnect

by

using

the

CONNECT

RESET

statement

(for

type

1

connect),

the

RELEASE

and

COMMIT

statements

(for

type

2

connect),

or

the

DISCONNECT

statement

(either

type

of

connect,

but

not

in

a

TP

monitor

environment).

Note:

An

application

can

receive

SQLCODE

values

indicating

errors

and

still

end

normally;

DB2

Connect

commits

the

data

in

this

case.

If

you

do

not

want

the

data

to

be

committed,

you

must

issue

a

ROLLBACK

command.

The

FORCE

command

lets

you

disconnect

selected

users

or

all

users

from

the

database.

This

is

supported

for

host

and

iSeries

server

databases;

the

user

can

be

forced

off

the

DB2

Connect

workstation.

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

Processing

of

Interrupt

Requests

DB2®

Connect

handles

an

interrupt

request

from

a

DB2

client

in

one

of

two

ways:

v

If

the

keyword

INTERRUPT_ENABLED

exists

in

the

PARMS

field

of

the

DCS

catalog

entry,

DB2

Connect™

will

drop

the

connection

to

the

host

or

iSeries™

server

on

receipt

of

an

interrupt

request.

The

loss

of

connection,

at

least

on

DB2

UDB

for

OS/390®

and

z/OS™

servers,

will

cause

the

current

request

to

be

interrupted

at

the

server.

v

If

the

keyword

INTERRUPT_ENABLED

does

not

exist

in

the

PARMS

field

of

the

DCS

catalog

entry,

interrupt

requests

are

ignored.

Package

Attributes,

PREP,

and

BIND

The

sections

that

follow

describe

differences

in

package

attributes

across

IBM

relational

database

systems,

and

considerations

for

the

PREPCOMPILE

and

BIND

commands.

Package

Attribute

Differences

among

IBM

Relational

Database

Systems

A

package

has

the

following

attributes:

Collection

ID

The

ID

of

the

package.

It

can

be

specified

on

the

PREP

command.

Owner

The

authorization

ID

of

the

package

owner.

It

can

be

specified

on

the

PREP

or

BIND

command.

Creator

The

user

name

that

binds

the

package.

694

Programming

Client

Applications

Qualifier

The

implicit

qualifier

for

objects

in

the

package.

It

can

be

specified

on

the

PREP

or

BIND

command.

Each

host

or

iSeries™

server

system

has

limitations

on

the

use

of

these

attributes:

DB2

Universal

Database

for

z/OS

and

OS/390

All

four

attributes

can

be

different.

The

use

of

a

different

qualifier

requires

special

administrative

privileges.

For

more

information

on

the

conditions

concerning

the

usage

of

these

attributes,

refer

to

the

Command

Reference

for

DB2

Universal

Database

for

z/OS

and

OS/390.

DB2

Server

for

VSE

&

VM

All

of

the

attributes

must

be

identical.

If

USER1

creates

a

bind

file

(with

PREP),

and

USER2

performs

the

actual

bind,

USER2

needs

DBA

authority

to

bind

for

USER1.

Only

USER1’s

user

name

is

used

for

the

attributes.

DB2®

UDB

for

iSeries

The

qualifier

indicates

the

collection

name.

The

relationship

between

qualifiers

and

ownership

affects

the

granting

and

revoking

of

privileges

on

the

object.

The

user

name

that

is

logged

on

is

the

creator

and

owner

unless

it

is

qualified

by

a

collection

ID,

in

which

case

the

collection

ID

is

the

owner.

The

collection

ID

must

already

exist

before

it

is

used

as

a

qualifier.

DB2

Universal

Database

All

four

attributes

can

be

different.

The

use

of

a

different

owner

requires

administrative

authority

and

the

binder

must

have

CREATEIN

privilege

on

the

schema

(if

it

already

exists).

CNULREQD

BIND

Option

for

C

Null-Terminated

Strings

The

CNULREQD

bind

option

overrides

the

handling

of

null-terminated

strings

that

are

specified

using

the

LANGLEVEL

option.

By

default,

CNULREQD

is

set

to

YES.

This

causes

null-terminated

strings

to

be

interpreted

according

to

MIA

standards.

If

connecting

to

a

DB2

Universal

Database

for

z/OS

and

OS/390

server,

it

is

strongly

recommended

that

you

set

CNULREQD

to

YES.

You

need

to

bind

applications

coded

to

SAA1

standards

(with

respect

to

null-terminated

strings)

with

the

CNULREQD

option

set

to

NO.

Otherwise,

null-terminated

strings

will

be

interpreted

according

to

MIA

standards,

even

if

they

are

prepared

using

LANGLEVEL

set

to

SAA1.

Related

concepts:

v

“Null-Terminated

Strings

in

C

and

C++”

on

page

153

Standalone

SQLCODE

and

SQLSTATE

Variables

Standalone

SQLCODE

and

SQLSTATE

variables,

as

defined

in

ISO/ANS

SQL92,

are

supported

through

the

LANGLEVEL

SQL92E

precompile

option.

An

SQL0020W

warning

will

be

issued

at

precompile

time,

indicating

that

LANGLEVEL

is

not

supported.

This

warning

applies

only

to

the

features

listed

under

LANGLEVEL

MIA,

which

is

a

subset

of

LANGLEVEL

SQL92E.

Related

reference:

v

“PRECOMPILE

Command”

in

the

Command

Reference

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

695

Isolation

Levels

Supported

by

DB2

Connect

DB2

Connect

accepts

the

following

isolation

levels

when

you

prep

or

bind

an

application:

RR

Repeatable

Read

RS

Read

Stability

CS

Cursor

Stability

UR

Uncommitted

Read

NC

No

Commit

The

isolation

levels

are

listed

in

order

from

most

protection

to

least

protection.

If

the

host

or

iSeries™

server

does

not

support

the

isolation

level

that

you

specify,

the

next

higher

supported

level

is

used.

The

following

table

shows

the

result

of

each

isolation

level

on

each

host

or

iSeries

application

server.

Table

94.

Isolation

Levels

DB2

Connect

DB2

Universal

Database

for

z/OS

and

OS/390

DB2

Server

for

VSE

&

VM

DB2®

UDB

for

iSeries

DB2

Universal

Database

RR

RR

RR

note

1

RR

RS

note

2

RR

COMMIT(*ALL)

RS

CS

CS

CS

COMMIT(*CS)

CS

UR

note

3

CS

COMMIT(*CHG)

UR

NC

note

4

note

5

COMMIT(*NONE)

UR

Notes:

1.

There

is

no

equivalent

COMMIT

option

on

DB2

UDB

for

iSeries

that

matches

RR.

DB2

UDB

for

iSeries

support

RR

by

locking

the

whole

table.

2.

Results

in

RR

for

Version

3.1,

and

results

in

RS

for

Version

4.1

with

APAR

PN75407

or

Version

5.1.

3.

Results

in

CS

for

Version

3.1,

and

results

in

UR

for

Version

4.1

or

Version

5.1.

4.

Results

in

CS

for

Version

3.1,

and

results

in

UR

for

Version

4.1

with

APAR

PN60988

or

Version

5.1.

5.

Isolation

level

NC

is

not

supported

with

DB2

Server

for

VSE

&

VM.

With

DB2

UDB

for

iSeries,

you

can

access

an

unjournalled

table

if

an

application

is

bound

with

an

isolation

level

of

UR

and

blocking

set

to

ALL,

or

if

the

isolation

level

is

set

to

NC.

User-Defined

Sort

Orders

The

differences

between

EBCDIC

and

ASCII

cause

differences

in

sort

orders

in

the

various

database

products,

and

also

affect

ORDER

BY

and

GROUP

BY

clauses.

One

way

to

minimize

these

differences

is

to

create

a

user-defined

collating

sequence

that

mimics

the

EBCDIC

sort

order.

You

can

specify

a

collating

sequence

only

when

you

create

a

new

database.

Note:

Database

tables

can

now

be

stored

on

DB2

Universal

Database

for

z/OS

and

OS/390

in

ASCII

format.

This

permits

faster

exchange

of

data

between

DB2

696

Programming

Client

Applications

Connect

and

DB2

Universal

Database

for

z/OS

and

OS/390,

and

removes

the

need

to

provide

field

procedures

which

must

otherwise

be

used

to

convert

data

and

resequence

it.

Referential

Integrity

Differences

among

IBM

Relational

Database

Systems

Different

systems

handle

referential

constraints

differently:

DB2

Universal

Database

for

z/OS

and

OS/390

An

index

must

be

created

on

a

primary

key

before

a

foreign

key

can

be

created

using

the

primary

key.

Tables

can

reference

themselves.

DB2

Server

for

VSE

&

VM

An

index

is

automatically

created

for

a

foreign

key.

Tables

cannot

reference

themselves.

DB2®

UDB

for

iSeries™

An

index

is

automatically

created

for

a

foreign

key.

Tables

can

reference

themselves.

DB2

Universal

Database

For

DB2

Universal

Database

databases,

an

index

is

automatically

created

for

a

unique

constraint,

including

a

primary

key.

Tables

can

reference

themselves.

Other

rules

vary

concerning

levels

of

cascade.

Locking

and

Application

Portability

The

way

in

which

the

database

server

performs

locking

can

affect

some

applications.

For

example,

applications

designed

around

row-level

locking

and

the

isolation

level

of

cursor

stability

are

not

directly

portable

to

systems

that

perform

page-level

locking.

Because

of

these

underlying

differences,

applications

may

need

to

be

adjusted.

The

DB2

Universal

Database

for

z/OS

and

OS/390

and

DB2

Universal

Database

products

have

the

ability

to

time-out

a

lock

and

send

an

error

return

code

to

waiting

applications.

SQLCODE

and

SQLSTATE

Differences

among

IBM

Relational

Database

Systems

Different

IBM®

relational

database

products

do

not

always

produce

the

same

SQLCODE

values

for

similar

errors.

You

can

handle

this

problem

in

either

of

two

ways:

v

Use

the

SQLSTATE

instead

of

the

SQLCODE

for

a

particular

error.

SQLSTATE

values

have

approximately

the

same

meaning

across

the

database

products,

and

the

products

produce

SQLSTATE

values

that

correspond

to

the

SQLCODE

values.

v

Map

the

SQLCODE

values

from

one

system

to

another

system.

By

default,

DB2®

Connect

maps

SQLCODE

values

and

tokens

from

each

IBM

host

or

iSeries™

server

system

to

your

DB2

Universal

Database

system.

You

can

specify

your

own

SQLCODE

mapping

file

if

you

want

to

override

the

default

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

697

mapping

or

you

are

using

a

database

server

that

does

not

have

SQLCODE

mapping

(a

non-IBM

database

server).

You

can

also

turn

off

SQLCODE

mapping.

Related

concepts:

v

“SQLCODE

mapping”

in

the

DB2

Connect

User’s

Guide

System

Catalog

Differences

among

IBM

Relational

Database

Systems

The

system

catalogs

vary

across

the

IBM®

database

products.

Many

differences

can

be

masked

by

the

use

of

views.

For

information,

see

the

documentation

for

the

database

server

that

you

are

using.

The

catalog

functions

in

CLI

avoid

this

problem

by

presenting

support

of

the

same

API

and

result

sets

for

catalog

queries

across

the

DB2®

family.

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Numeric

Conversion

Overflows

on

Retrieval

Assignments

Numeric™

conversion

overflows

on

retrieval

assignments

may

be

handled

differently

by

different

IBM®

relational

database

products.

For

example,

consider

fetching

a

float

column

into

an

integer

host

variable

from

DB2

Universal

Database

for

z/OS

and

OS/390

and

from

DB2

Universal

Database.

When

converting

the

float

value

to

an

integer

value,

a

conversion

overflow

may

occur.

By

default,

DB2

Universal

Database

for

z/OS

and

OS/390

will

return

a

warning

SQLCODE

and

a

null

value

to

the

application.

In

contrast,

DB2

Universal

Database

will

return

a

conversion

overflow

error.

It

is

recommended

that

applications

avoid

numeric

conversion

overflows

on

retrieval

assignments

by

fetching

into

appropriately

sized

host

variables.

Stored

Procedures

in

Host

or

iSeries

Environments

The

considerations

for

stored

procedures

in

host

and

iSeries™

environments

are

as

follows:

v

Invocation

A

client

program

can

invoke

a

server

program

by

issuing

an

SQL

CALL

statement.

Each

server

works

a

little

differently

to

the

other

servers

in

this

case.

z/OS™

and

OS/390®

The

schema

name

must

be

no

more

than

8

bytes

long,

the

procedure

name

must

be

no

more

than

18

bytes

long,

and

the

stored

procedure

must

be

defined

in

the

SYSIBM.SYSPROCEDURES

catalog

on

the

server.

VSE

or

VM

The

procedure

name

must

not

be

more

than

18

bytes

long

and

must

be

defined

in

the

SYSTEM.SYSROUTINES

catalog

on

the

server.

OS/400®

The

procedure

name

must

be

an

SQL

identifier.

You

can

also

use

the

698

Programming

Client

Applications

DECLARE

PROCEDURE

or

CREATE

PROCEDURE

statements

to

specify

the

actual

path

name

(the

schema-name

or

collection-name)

to

locate

the

stored

procedure.

All

CALL

statements

to

DB2®

UDB

for

iSeries

from

REXX/SQL

must

be

dynamically

prepared

and

executed

by

the

application,

as

the

CALL

statement

implemented

in

REXX/SQL

maps

to

CALL

USING

DESCRIPTOR.
You

can

invoke

the

server

program

on

DB2

Universal

Database

with

the

same

parameter

convention

that

server

programs

use

on

DB2

Universal

Database

for

z/OS

and

OS/390,

DB2

UDB

for

iSeries

or

DB2

Server

for

VSE

&

VM.

For

more

information

on

the

parameter

convention

on

other

platforms,

refer

to

the

DB2

product

documentation

for

that

platform.

All

the

SQL

statements

in

a

stored

procedure

are

executed

as

part

of

the

SQL

unit

of

work

started

by

the

client

SQL

program.

v

Do

not

pass

indicator

values

with

special

meaning

to

or

from

stored

procedures.

Between

DB2

Universal

Database,

the

systems

pass

whatever

you

put

into

the

indicator

variables.

However,

when

using

DB2

Connect™,

you

can

only

pass

0,

-1,

and

-128

in

the

indicator

variables.

v

You

should

define

a

parameter

to

return

any

error

or

warning

encountered

by

the

server

application.

A

server

program

on

DB2

Universal

Database

can

update

the

SQLCA

to

return

any

error

or

warning,

but

a

stored

procedure

on

DB2

Universal

Database

for

z/OS

and

OS/390

or

DB2

UDB

for

iSeries

has

no

such

support.

If

you

want

to

return

an

error

code

from

your

stored

procedure,

you

must

pass

it

as

a

parameter.

The

SQLCODE

and

SQLCA

is

only

set

by

the

server

for

system

detected

errors.

v

DB2

Server

for

VSE

&

VM

Version

7

or

higher,

DB2

Universal

Database

for

z/OS

and

OS/390

Version

5.1

or

higher,

DB2

for

AS/400®

V5R1,

and

DB2

for

iSeries

Version

7

or

higher

are

the

only

host

or

iSeries

application

servers

that

can

return

the

result

sets

of

stored

procedures

at

this

time.

Related

concepts:

v

“DB2

Stored

Procedures”

on

page

18

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

DB2

Connect

Support

for

Compound

SQL

Compound

SQL

allows

multiple

SQL

statements

to

be

grouped

into

a

single

executable

block.

This

may

reduce

network

overhead

and

improve

response

time.

With

NOT

ATOMIC

compound

SQL,

processing

of

compound

SQL

continues

following

an

error.

With

ATOMIC

compound

SQL,

an

error

rolls

back

the

entire

group

of

compound

SQL.

Statements

will

continue

execution

until

terminated

by

the

application

server.

In

general,

execution

of

the

compound

SQL

statement

will

be

stopped

only

in

the

case

of

serious

errors.

NOT

ATOMIC

compound

SQL

can

be

used

with

all

of

the

supported

host

or

iSeries™

application

servers.

ATOMIC

compound

SQL

can

be

used

with

supported

host

application

servers.

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

699

If

multiple

SQL

errors

occur,

the

SQLSTATE

values

of

the

first

seven

failing

statements

are

returned

in

the

SQLERRMC

field

of

the

SQLCA

with

a

message

that

multiple

errors

occurred.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

Multisite

Update

with

DB2

Connect

DB2®

Connect

allows

you

to

perform

a

multisite

update,

also

known

as

two-phase

commit.

A

multisite

update

is

an

update

of

multiple

databases

within

a

single

distributed

unit

of

work

(DUOW).

Whether

you

can

use

this

capability

depends

on

several

factors:

v

Your

application

program

must

be

precompiled

with

the

CONNECT

2

and

SYNCPOINT

TWOPHASE

options.

v

If

you

have

SNA

network

connections,

you

can

use

two-phase

commit

support

provided

by

the

sync

point

manager

(SPM)

function

of

DB2

Connect™

Enterprise

Edition

on

AIX®,

and

Windows®

NT.

This

feature

enables

the

following

host

database

servers

to

participate

in

a

distributed

unit

of

work:

–

DB2

for

AS/400®

Version

3.1

or

later

–

DB2

UDB

for

iSeries™

Version

5.1

or

later

–

DB2

for

OS/390®

Version

5.1

or

later

–

DB2

UDB

for

OS/390

and

z/OS™

Version

7

or

later

–

DB2

for

VM

&

VSE

Version

V5.1

or

later.

The

above

is

true

for

native

DB2

UDB

applications

and

applications

coordinated

by

an

external

TP

monitor

such

as

IBM®

TXSeries®,

CICS®

for

Open

Systems,

BEA

Tuxedo,

Encina®

Monitor,

and

Microsoft®

Transaction

Server.

v

If

you

have

TCP/IP

network

connections,

then

a

DB2

for

OS/390

V5.1

or

later

server

can

participate

in

a

distributed

unit

of

work.

If

the

application

is

controlled

by

a

Transaction

Processing

Monitor

such

as

IBM

TXSeries,

CICS

for

Open

Systems,

Encina

Monitor,

or

Microsoft

Transaction

Server,

then

you

must

use

SPM.

If

a

common

DB2

Connect

Enterprise

Edition

server

is

used

by

both

native

DB2

applications

and

TP

monitor

applications

to

access

host

data

over

TCP/IP

connections,

the

sync

point

manager

must

be

used.

If

a

single

DB2

Connect

Enterprise

Edition

server

is

used

to

access

host

data

using

both

SNA

and

TCP/IP

network

protocols

and

two-phase

commit

is

required,

you

must

use

SPM.

This

is

true

for

both

DB2

applications

and

TP

monitor

applications.

Related

concepts:

v

“XA

function

supported

by

DB2

Universal

Database”

in

the

Administration

Guide:

Planning

v

“Configuring

DB2

Connect

with

an

XA

compliant

transaction

manager”

in

the

DB2

Connect

User’s

Guide

Related

tasks:

v

“Configuring

BEA

Tuxedo”

in

the

Administration

Guide:

Planning

v

“Updating

host

or

iSeries

database

servers

with

an

XA-compliant

transaction

manager”

in

the

Administration

Guide:

Planning

700

Programming

Client

Applications

Host

and

iSeries

Server

SQL

Statements

Supported

by

DB2

Connect

The

following

statements

compile

successfully

for

host

and

iSeries™

server

processing,

but

not

for

processing

with

DB2

Universal

Database

systems:

v

ACQUIRE

v

DECLARE

(modifier.(qualifier.)table_name

TABLE

...

v

LABEL

ON

These

statements

are

also

supported

by

the

command

line

processor.

The

following

statements

are

supported

for

host

and

iSeries

server

processing

but

are

not

added

to

the

bind

file

or

the

package

and

are

not

supported

by

the

command

line

processor:

v

DESCRIBE

statement_name

INTO

descriptor_name

USING

NAMES

v

PREPARE

statement_name

INTO

descriptor_name

USING

NAMES

FROM

...

The

precompiler

makes

the

following

assumptions:

v

Host

variables

are

input

variables

v

The

statement

is

assigned

a

unique

section

number.

Host

and

iSeries

Server

SQL

Statements

Rejected

by

DB2

Connect

The

following

SQL

statements

are

not

supported

by

DB2®

Connect

and

not

supported

by

the

command

line

processor:

v

COMMIT

WORK

RELEASE

v

DECLARE

state_name,

statement_name

STATEMENT

v

DESCRIBE

statement_name

INTO

descriptor_name

USING

xxxx

(where

xxxx

is

ANY,

BOTH,

or

LABELS)

v

PREPARE

statement_name

INTO

descriptor_name

USING

xxxx

FROM

:host_variable

(where

xxxx

is

ANY,

BOTH,

or

LABELS)

v

PUT

...

v

ROLLBACK

WORK

RELEASE

v

SET

:host_variable

=

CURRENT

...

DB2

Server

for

VSE

&

VM

extended

dynamic

SQL

statements

are

rejected

with

-104

and

syntax

error

SQLCODE

values.

Appendix

C.

Programming

in

a

Host

or

iSeries

Environment

701

702

Programming

Client

Applications

Appendix

D.

Simulation

of

EBCDIC

Binary

Collation

With

DB2®,

you

can

collate

character

strings

according

to

a

user-defined

collating

sequence.

You

can

use

this

feature

to

simulate

EBCDIC

binary

collation.

As

an

example

of

how

to

simulate

EBCDIC

collation,

suppose

you

want

to

create

an

ASCII

database

with

code

page

850,

but

you

also

want

the

character

strings

to

be

collated

as

if

the

data

actually

resides

in

an

EBCDIC

database

with

code

page

500.

See

figures

below

for

the

definitions

of

code

page

500

and

code

page

850.

Consider

the

relative

collation

of

four

characters

in

a

EBCDIC

code

page

500

database,

when

they

are

collated

in

binary:

Character

Code

Page

500

Code

Point

’a’

X'81'

’b’

X'82'

’A’

X'C1'

’B’

X'C2'

The

code

page

500

binary

collation

sequence

(the

desired

sequence)

is:

’a’

<

’b’

<

’A’

<

’B’

If

you

create

the

database

with

ASCII

code

page

850,

binary

collation

would

yield:

Character

Code

Page

850

Code

Point

’a’

X'61'

’b’

X'62'

’A’

X'41'

’B’

X'42'

The

code

page

850

binary

collation

(which

is

not

the

desired

sequence)

is:

’A’

<

’B’

<

’a’

<

’b’

To

achieve

the

desired

collation,

you

need

to

create

your

database

with

a

user-defined

collating

sequence.

A

sample

collating

sequence

for

just

this

purpose

is

supplied

with

DB2

in

the

sqle850a.h

include

file.

The

content

of

sqle850a.h

is

shown

in

the

following.

©

Copyright

IBM

Corp.

1997

-

2004

703

To

see

how

to

achieve

code

page

500

binary

collation

on

code

page

850

characters,

examine

the

sample

collating

sequence

in

sqle_850_500.

For

each

code

page

850

character,

its

weight

in

the

collating

sequence

is

simply

its

corresponding

code

point

in

code

page

500.

For

example,

consider

the

letter

‘a’.

This

letter

is

code

point

X'61'

for

code

page

850.

In

the

array

sqle_850_500,

letter

‘a’

is

assigned

a

weight

of

X'81'

(that

is,

the

98th

element

in

the

array

sqle_850_500).

Consider

how

the

four

characters

collate

when

the

database

is

created

with

the

above

sample

user-defined

collating

sequence:

Character

Code

Page

850

Code

Point

/

Weight

(from

sqle_850_500)

’a’

X'61'

/

X'81'

’b’

X'62'

/

X'82'

’A’

X'41'

/

X'C1'

’B’

X'42'

/

X'C2'

The

code

page

850

user-defined

collation

by

weight

(the

desired

collation)

is:

’a’

<

’b’

<

’A’

<

’B’

In

this

example,

you

achieve

the

desired

collation

by

specifying

the

correct

weights

to

simulate

the

desired

behavior.

Closely

observing

the

actual

collating

sequence,

notice

that

the

sequence

itself

is

merely

a

conversion

table,

where

the

source

code

page

is

the

code

page

of

the

data

base

(850)

and

the

target

code

page

is

the

desired

binary

collating

code

page

(500).

Other

sample

collating

sequences

supplied

by

DB2

enable

different

conversions.

If

#ifndef

SQL_H_SQLE850A

#define

SQL_H_SQLE850A

#ifdef

__cplusplus

extern

"C"

{

#endif

unsigned

char

sqle_850_500[256]

=

{

0x00,0x01,0x02,0x03,0x37,0x2d,0x2e,0x2f,0x16,0x05,0x25,0x0b,0x0c,0x0d,0x0e,0x0f,

0x10,0x11,0x12,0x13,0x3c,0x3d,0x32,0x26,0x18,0x19,0x3f,0x27,0x1c,0x1d,0x1e,0x1f,

0x40,0x4f,0x7f,0x7b,0x5b,0x6c,0x50,0x7d,0x4d,0x5d,0x5c,0x4e,0x6b,0x60,0x4b,0x61,

0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0x7a,0x5e,0x4c,0x7e,0x6e,0x6f,

0x7c,�0xc1�,�0xc2�,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,

0xd7,0xd8,0xd9,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0x4a,0xe0,0x5a,0x5f,0x6d,

0x79,�0x81�,�0x82�,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x91,0x92,0x93,0x94,0x95,0x96,

0x97,0x98,0x99,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xc0,0xbb,0xd0,0xa1,0x07,

0x68,0xdc,0x51,0x42,0x43,0x44,0x47,0x48,0x52,0x53,0x54,0x57,0x56,0x58,0x63,0x67,

0x71,0x9c,0x9e,0xcb,0xcc,0xcd,0xdb,0xdd,0xdf,0xec,0xfc,0x70,0xb1,0x80,0xbf,0xff,

0x45,0x55,0xce,0xde,0x49,0x69,0x9a,0x9b,0xab,0xaf,0xba,0xb8,0xb7,0xaa,0x8a,0x8b,

0x2b,0x2c,0x09,0x21,0x28,0x65,0x62,0x64,0xb4,0x38,0x31,0x34,0x33,0xb0,0xb2,0x24,

0x22,0x17,0x29,0x06,0x20,0x2a,0x46,0x66,0x1a,0x35,0x08,0x39,0x36,0x30,0x3a,0x9f,

0x8c,0xac,0x72,0x73,0x74,0x0a,0x75,0x76,0x77,0x23,0x15,0x14,0x04,0x6a,0x78,0x3b,

0xee,0x59,0xeb,0xed,0xcf,0xef,0xa0,0x8e,0xae,0xfe,0xfb,0xfd,0x8d,0xad,0xbc,0xbe,

0xca,0x8f,0x1b,0xb9,0xb6,0xb5,0xe1,0x9d,0x90,0xbd,0xb3,0xda,0xfa,0xea,0x3e,0x41

};

#ifdef

__cplusplus

}

#endif

#endif

/*

SQL_H_SQLE850A

*/

Figure

66.

User-Defined

Collating

Sequence

-

sqle_850_500

704

Programming

Client

Applications

a

conversion

table

that

you

require

is

not

supplied

with

DB2,

additional

conversion

tables

can

be

obtained

from

the

IBM®

publication,

Character

Data

Representation

Architecture,

Reference

and

Registry,

SC09-2190.

You

will

find

the

additional

conversion

tables

in

a

CD-ROM

enclosed

with

that

publication.

HEX
DIGITS
1ST
2ND

4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-A

-B

-C

-D

-E

-F

(SP)
SP010000 SM030000

&
SP010000

-
LO610000

ø
LO620000

Ø
SM190000

˚
SM170000

µ
SC040000

¢
SM110000

{
SM140000

}
SM070000

\
ND100000

0

(RSP)
SP300000 LE110000

é
SP120000

/
LE120000

É
LA010000

a
LJ010000

j
SD190000

~
SC020000

£
LA020000

A
LJ020000

J
SA060000

÷
ND010000

1

LA150000
â

LE150000
ê

LA160000
Â

LE160000
Ê b

LB010000 LK010000
k

LS010000
s

SC050000
¥

LB020000
B

LK020000
K

LS020000
S

ND020000
2

LA170000
ä

LE170000
ë

LA180000
Ä

LE180000
Ë

LC010000
c

LL010000
l

LT010000
t

SD630000 LC020000
C

LL020000
L

LT020000
T

ND030000
3

LA130000
à

LE130000
è

LA140000
À

LE140000
È

LD010000
d

LM010000
m

LU010000
u

SM520000
©

LD020000
D

LM020000
M

LU020000
U

ND040000
4

LA110000
á

LI110000
í

LA120000
Á

LI120000
Í

LE010000
e

LN010000
n

LV010000
v

SM240000
§

LE020000
E

LN020000
N

LV020000
V

ND050000
5

LA190000
ã

LI150000
î

LA200000
Ã

LI160000
Î

LF010000
f

LO010000
o

LW010000
w

SM250000
¶

LF020000
F

LO020000
O

LW020000
W

ND060000
6

LA270000
å

LI170000
ï

LA280000
Å

LI180000
Ï

LG010000
g

LP010000
p

LX010000
x

NF040000
¼

LG020000
G

LP020000
P

LX020000
X

ND070000
7

LC410000
ç

LI130000
ì

LC420000
Ç

LI140000
Ì

LH010000
h

LQ010000
q

LY010000
y

NF010000
½

LH020000
H

LQ020000
Q

LY020000
Y

ND080000
8

LN190000
ñ

LS610000
ß

LN200000
Ñ

SD130000
`

LI010000
i

LR010000
r

LZ010000
z

NF050000
¾

LI020000
I

LR020000
R

LZ020000
Z

ND090000
9

SM060000
[

SM080000
]

SM650000
¦

SP130000
:

SP170000
«

SM210000
ª

SP030000
¡

SM660000
¬ (SHY)

SP320000 ND011000
¹

ND021000
²

ND031000
³

SP110000
.

SC030000
$

SP080000
,

SM010000
#

SP180000
»

SM200000
º

SP160000
¿

SM130000
l

LO150000
ô

LU150000
û

LO160000
Ô

LU160000
Û

SA030000
<

SM040000
*

SM020000
%

SM050000
@

LD630000
ð

LA510000
æ Ð

LD620000 SM150000
¯

LO170000
ö

LU170000
ü

LO180000
Ö

LU180000
Ü

SP060000
(

SP070000
)

SP090000
_

SP050000
'

LY110000
ý

SD410000
,

LY120000
Ý

SD170000
¨

LO130000
ò

LU130000
ù

LO140000
Ò

LU140000
Ù

SA010000
+

SP140000
;

SA050000
>

SA040000
=

LT630000
þ

LA520000
Æ

LT640000
Þ

SD110000
´ ó

LO110000 LU110000
ú

LO120000
Ó

LU120000
Ú

SP020000
!

SD150000
^

SP150000
?

SP040000
"

SA020000
±

SC010000
¤

SM530000
®

SA070000
×

LO190000
õ

LY170000
ÿ

LO200000
Õ

(EO)

Code Page 00500

¯

Figure

67.

Code

Page

500

Appendix

D.

Simulation

of

EBCDIC

Binary

Collation

705

Related

concepts:

v

“Collating

sequences”

on

page

597

Related

reference:

v

“sqlecrea

-

Create

Database”

in

the

Administrative

API

Reference

HEX
DIGITS
1ST
2ND

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B-

-0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-A

-B

-C

-D

-E

-F

SM590000
(SP)

SP010000 ND100000
0

SM050000
@

LP020000
P

SD130000
`

LP010000
p

LC420000
Ç

LE120000
É

LA110000
á

SF140000

SS000000 SM630000 SP020000
!

ND010000
1

LA020000
A

LQ020000
Q

LA010000
a

LQ010000
q

LU170000
ü

LA510000
æ

LI110000
í

SF150000

SS010000 SM760000 SP040000
"

ND020000
2 B

LB020000 LR020000
R

LB010000
b

LR010000
r

LE110000
é

LA520000
Æ

LO110000
ó

SF160000

SS020000 SP330000
!!

SM010000
#

ND030000
3

LC020000
C

LS020000
S

LC010000
c

LS010000
s

LA150000
â

LO150000
ô

LU110000
ú

SF110000

SS030000 SM250000
¶

SC030000
$

ND040000
4

LD020000
D

LT020000
T

LD010000
d

LT010000
t ä

LA170000 LO170000
ö

LN190000
ñ

SF090000

SS040000 SM240000
§

SM020000
%

ND050000
5

LE020000
E

LU020000
U

LE010000
e

LU010000
u

LA130000
à

LO130000
ò

LN200000
Ñ

LA120000
Á

SS050000 SM700000 SM030000
&

ND060000
6

LF020000
F

LV020000
V

LF010000
f

LV010000
v

LA270000
å

LU150000
û

SM210000
ª

LA160000
Â

SM570000 SM770000 SP050000
'

ND070000
7

LG020000
G

LW020000
W

LG010000
g

LW010000
w

LC410000
ç

LU130000
ù

SM200000
º

LA140000
À

SM570001 SM320000 SP060000
(

ND080000
8

LH020000
H

LX020000
X

LH010000
h

LX010000
x

LE150000
ê

LY170000
ÿ

SP160000
¿

SM520000
©

SM750000 SM330000 SP070000
)

ND090000
9

LI020000
I

LY020000
Y

LI010000
i

LY010000
y

LE170000
ë

LO180000
Ö

SM530000
®

SF230000

SM750002 SM310000 SM040000
*

SP130000
:

LJ020000
J

LZ020000
Z

LJ010000
j

LZ010000
z

LE130000
è

LU180000
Ü

SM660000
¬

SF240000

SM280000 SM300000 SA010000
+

SP140000
;

LK020000
K

SM060000
[

LK010000
k

SM110000
{

LI170000
ï

LO610000
ø

NF010000
½

SF250000

SM290000 SA420000 SP080000
,

SA030000
<

LL020000
L

SM070000
\ l

LL010000 SM130000
l

LI150000
î

SC020000
£

NF040000
¼

SF260000

SM930000 SM780000 SP100000
-

SA040000
=

LM020000
M

LM080000
]

LM010000
m

SM140000
}

LI130000
ì

LO620000
Ø

SP030000
¡

SC040000
¢

SM910000 SM600000 SP110000
.

SA050000
>

LN020000
N

SD150000
^

LN010000
n

SD190000
~ Ä

LA180000 SA070000
×

SP170000
«

SC050000
¥

SM690000 SV040000 SP120000
/

SP150000
?

LO020000
O

SP090000
_

LO010000
o

SM790000 LA280000
Å

SC070000
ƒ

SP180000
»

SF030000

Code Page 00850

C- D- E- F-

SF020000 LD630000
ð

SF070000 LD620000
Ð

SF060000
Ê

LE160000

SF080000 LE180000
Ë

SF100000 LE140000
È

SF050000
1

LI610000

LA190000
ã

LI120000
Í

LA200000
Ã

LI160000
Î

SF380000 LI180000
Ï

SF390000 SF040000

SF400000 SF010000

SF410000 SF610000

SF420000 SP570000

SF430000 SM650000
¦

SF440000 LI140000
Ì

SC010000
¤

SF600000

LO120000
Ó (SHY)

SP320000

LS610000
ß

SA020000
±

LO160000
Ô

SM100000

LO140000
Ò

NF050000
¾

LO190000
õ

SM250000
¶

LO200000
Õ

SM240000
§

SM170000
µ

SA060000
÷

LT630000
þ

SD410000
,

LT640000
Þ

SM190000
˚

LU120000
Ú

SD170000
¨

LU160000
Û

SD630000

LU140000
Ù

ND011000
¹

LY110000
ý

ND031000
³

LY120000
Ý

ND021000
²

SM150000
¯

SM470000

SD110000
´ (RSP)

SP300000

¯

Figure

68.

Code

Page

850

706

Programming

Client

Applications

Appendix

E.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

concepts:

v

“CLI

sample

programs”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Java

sample

programs”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“DB2

Information

Center”

on

page

708

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

725

©

Copyright

IBM

Corp.

1997

-

2004

707

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

717

v

“Invoking

message

help

from

the

command

line

processor”

on

page

726

v

“Invoking

command

help

from

the

command

line

processor”

on

page

727

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

727

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

719

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

708

Programming

Client

Applications

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

709

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

717

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

718

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

712

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

714

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

Appendix

E.

DB2

Universal

Database

technical

information

709

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

710

Programming

Client

Applications

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

708

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

717

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

712

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

714

v

“Setting

the

location

for

accessing

the

DB2

Information

Center:

Common

GUI

help”

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Appendix

E.

DB2

Universal

Database

technical

information

711

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|
|

|

|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

712

Programming

Client

Applications

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center”

on

page

708

v

“DB2

Information

Center

installation

scenarios”

on

page

709

Appendix

E.

DB2

Universal

Database

technical

information

713

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

Related

tasks:

v

“Installing

DB2

using

a

response

file

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

717

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

718

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

714

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

714

Programming

Client

Applications

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Appendix

E.

DB2

Universal

Database

technical

information

715

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

708

v

“DB2

Information

Center

installation

scenarios”

on

page

709

Related

tasks:

v

“Installing

a

DB2

product

using

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

717

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

718

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

712

Related

reference:

v

“db2rspgn

-

Response

File

Generator

Command

(Windows)”

in

the

Command

Reference

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

716

Programming

Client

Applications

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

708

v

“DB2

Information

Center

installation

scenarios”

on

page

709

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

718

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

725

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

717

v

“Invoking

command

help

from

the

command

line

processor”

on

page

727

v

“Setting

the

location

for

accessing

the

DB2

Information

Center:

Common

GUI

help”

Related

reference:

v

“HELP

Command”

in

the

Command

Reference

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

Appendix

E.

DB2

Universal

Database

technical

information

717

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

709

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

712

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

714

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

718

Programming

Client

Applications

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

708

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

products.

Table

95.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Appendix

E.

DB2

Universal

Database

technical

information

719

|

|

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order

Table

96.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

97.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

720

Programming

Client

Applications

Table

97.

Application

development

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

98.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

99.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Appendix

E.

DB2

Universal

Database

technical

information

721

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Table

100.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

101.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

102.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

722

Programming

Client

Applications

Table

102.

Optional

component

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

103.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

707

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

724

v

“Ordering

printed

DB2

books”

on

page

724

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

725

Appendix

E.

DB2

Universal

Database

technical

information

723

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

708

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

724

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

719

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

724

Programming

Client

Applications

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

724

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

719

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Appendix

E.

DB2

Universal

Database

technical

information

725

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Invoking

message

help

from

the

command

line

processor”

on

page

726

v

“Invoking

command

help

from

the

command

line

processor”

on

page

727

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

727

v

“Access

to

the

DB2

Information

Center:

Concepts

help”

v

“How

to

use

the

DB2

UDB

help:

Common

GUI

help”

v

“Setting

the

location

for

accessing

the

DB2

Information

Center:

Common

GUI

help”

v

“Setting

up

access

to

DB2

contextual

help

and

documentation:

Common

GUI

help”

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

726

Programming

Client

Applications

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

725

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Invoking

message

help

from

the

command

line

processor”

on

page

726

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

727

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

716

v

“Invoking

message

help

from

the

command

line

processor”

on

page

726

v

“Invoking

command

help

from

the

command

line

processor”

on

page

727

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Appendix

E.

DB2

Universal

Database

technical

information

727

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

728

Programming

Client

Applications

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

708

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

730.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

730.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Appendix

E.

DB2

Universal

Database

technical

information

729

|
|
|
|

|
|

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

730

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

v

“Changing

the

fonts

for

menus

and

text:

Common

GUI

help”

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

730

Programming

Client

Applications

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

Appendix

E.

DB2

Universal

Database

technical

information

731

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

concepts:

v

“Accessibility”

on

page

729

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

732

Programming

Client

Applications

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

Appendix

F.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1997

-

2004

733

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

734

Programming

Client

Applications

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Appendix

F.

Notices

735

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

736

Programming

Client

Applications

Index

Special

characters
#ifdefs

C/C++

restrictions

149

#include

macro
C/C++

restrictions

134

#line

macros
C/C++

restrictions

134

Numerics
64-bit

integer

(BIGINT)

data

type
supported

by

DB2

Connect

692

A
accessibility

dotted

decimal

syntax

diagrams

730

features

729

accessing

Java

packages
JDBC

266

SQLJ

320

ACQUIRE

statement
not

supported

on

DB2

UDB

701

ActiveX

Data

Object

(ADO)

specification
DB2

.NET

Data

Provider

14

supported

in

DB2

12

administration

notification

log
partitioned

database

environments

665

ADO

applications
connection

pooling,

with

MTS

and

COM+

649

connection

string

keywords

233

IBM

OLE

DB

Provider

support

for

ADO

methods

and

properties

234

limitations

234

stored

procedures

234

updatable

scrollable

cursors

234

APIs
comparison

of

JDBC

implementations

376

plug-in

APIs

560,

569

security

plug-in

API

562

security

plug-in

APIs

559,

563,

564,

567,

568,

569,

576,

577,

579,

580,

582,

584,

585,

587,

588,

589,

591

APPC

(Advanced

Program-to-Program

Communication)
handling

interrupts

101

application

design
binding

57

character

conversion

considerations

606

character

conversion

in

SQL

statements

607

character

conversions

in

stored

procedures

608

COBOL

Japanese

and

traditional

Chinese

EUC

considerations

193

code

points

for

special

characters

607

application

design

(continued)
collating

sequences,

guidelines

597

concurrent

users,

declared

temporary

tables

680

creating

SQLDA

structure,

guidelines

117

cursor

processing

89

data

object

relationships

42

data

value

control

40

declaring

sufficient

SQLVAR

entities

112

describing

SELECT

statement

115

double-byte

character

support

(DBCS)

607

dynamic

SQL

caching

76

dynamic

SQL,

purpose

103

error

handling,

guidelines

32

executing

statements

without

variables

103

include

files,

COBOL

176

logic

at

the

server

45

multisite

update,

purpose

628

package

versions

with

same

name

65

passing

data,

guidelines

121

Perl

example

491

precompiling

57

prototyping

in

Perl

489

pseudocode

38

receiving

NULL

values

82

required

statements

27

retrieving

data

a

second

time

95

REXX,

registering

routines

494

sample

programs

98

saving

end

user

requests

123

scrolling

through

previously

retrieved

data

94

setting

up

testing

environment

49

static

SQL,

advantages

76

structure

of

standalone

application

26

using

parameter

markers

124

varying-list

statements,

processing

123

application

development
DB2

.NET

Data

Provider

14

IBM

DB2

Development

Add-In

4

application

environment,

for

programming

25

application

logic
data

relationship

control

44

data

value

control

42

server

45

stored

procedures

45

triggers

45

user-defined

functions

45

application

performance
comparison

of

sequence

objects

and

identity

columns

679

declared

temporary

tables

680

local

bypass

654

passing

blocks

of

data

682

application

performance

(continued)
sequence

objects

679

application

programming

interfaces

(API)
authorization

considerations

48

for

setting

contexts

between

threads
sqleAttachToCtx()

169

sqleBeginCtx()

169

sqleDetachFromCtx()

169

sqleEndCtx()

169

sqleGetCurrentCtx()

169

sqleInterruptCtx()

169

sqleSetTypeCtx()

169

overview

of

40

restrictions

in

an

XA

environment

643

syntax

for

REXX

505

types

of

40

uses

of

40

application

programs
COBOL

host

variables,

example

189

no

multiple-thread

database

access

175

connecting

to

database

33

DB2

application

programming

interfaces

7

DB2

CLI

overview

9

DBCS

environment

considerations

614

debugging

52

embedded

SQL

for

Java

(SQLJ),

overview

12

embedded

SQL,

overview

7

exist

list

routines

102

FORTRAN
no

multiple-thread

database

access

196

multisite

update

with

DB2

Connect

700

Net.Data,

overview

16

ODBC

end-user

tools

14

OLE

DB

table

functions

22

optimizing

52

partitioned

database

environments

653

Perl
no

multiple-thread

database

access

489

Perl

DBI

13

prerequisites

25

required

statements

27

REXX
calling

stored

procedures,

server

considerations

508

no

multiple-thread

database

access

495

sequences,

controlling

678

setting

up

testing

environment

49

static

SQL
return

codes

99

static

SQL,

example

76

©

Copyright

IBM

Corp.

1997

-

2004

737

application

programs

(continued)
stored

procedures,

overview

18

structure

26

triggers,

overview

22

applications
ADO

limitations

234

updatable

scrollable

cursors

234

connecting

to

data

sources,

IBM

OLE

DB

Provider

238

DB2

programming

features

17

DB2

tools

for

developing

3

in

host

iSeries

environments

691

looping

667

managing

transactions

with

savepoints

636

MQSeries

functions

16

multisite

update,

precompilation

630

savepoints,

restrictions

640

supported

by

IBM

OLE

DB

Provider

220

supported

by

Java

2

Enterprise

Edition

475

supported

programming

interfaces

5

suspended

667

tools

for

building

Web

applications

14

Visual

Basic,

connecting

to

data

source

234

X/Open

XA

Interface,

linkage

646

ARI

in

SQLERRP

field
DB2

for

VSE

VM

693

ASCII
mixed-byte

data

692

sort

order

696

assignment-clause,

SQLJ

405

asynchronous

events

169

asynchronous

nature

of

buffered

insert

657

ATOMIC

compound

SQL
DB2

Connect

support

699

authentication
plug-ins

API

for

checking

if

authentication

ID

exists

591

API

for

cleaning

client

authentication

resources

577

API

for

initializing

a

client

authentication

plug-in

576

API

for

validating

passwords

582

for

initializing

a

client

authentication

plug-in

576

Library

locations

536

user

ID/

password

authentication

569

security

plug-in

authentication

533

B
batch

updates
JDBC

application

304

SQLJ

application

355

BatchUpdateException
retrieving

information

from,

JDBC

306

BEGIN

DECLARE

SECTION

statement
creating

the

declaration

section

27

BIGINT

data

type
in

static

SQL

84

BIGINT

SQL

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

supported

by

DB2

Connect

692

BINARY

data

types,

COBOL

192

Bind

API
creating

packages

64

deferred

binding

71

bind

behavior,

DYNAMICRULES

109

BIND

command
creating

packages

64

INSERT

BUF

option

655

bind

files
backwards

compatibility

70

precompile

options

61

REXX

505

support

to

REXX

applications

505

bind

options
EXPLSNAP

70

FUNCPATH

70

QUERYOPT

70

BIND

PACKAGE

command
rebinding

73

binding
bind

file

description

utility,

db2bfd

71

considerations

70

deferring

71

dynamic

statements

66

options

64

overview

64

blob

C/C++

type

162

BLOB

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

REXX

502

static

SQL

84

BLOB

FORTRAN

data

type

206

blob_file

C/C++

type

162

BLOB_FILE

FORTRAN

data

type

206

blob_locator

C/C++

type

162

BLOB_LOCATOR

FORTRAN

data

type

206

BLOB-FILE

COBOL

type

190

BLOB-LOCATOR

COBOL

type

190

buffered

inserts
advantages

655

asynchronous

657

buffer

size

655

closed

state

657

considerations

657

deadlock

errors

657

error

detection

657

error

reporting

657

group

of

rows

657

INSERT

BUF

bind

option

655

long

field

restriction

659

not

supported

in

CLP

659

open

state

657

overview

655

partially

filled

655

restrictions

659

savepoint

consideration

655

buffered

inserts

(continued)
savepoints

642

SELECT

buffered

insert

657

statements

that

close

655

transaction

logs

655

unique

key

violation

657

buffers,

size

for

buffered

insert

655

C
C

null-terminated

strings

695

C/C++

applications
compiling

and

linking,

IBM

OLE

DB

Provider

238

connections

to

data

sources,

IBM

OLE

DB

Provider

238

multiple

thread

database

access

169

C/C++

language
#include

macro,

restrictions

134

#line

macros,

restrictions

134

character

set

131

Chinese

(Traditional)

EUC

considerations

160

class

data

members

155

data

types
for

functions

166

for

methods

166

for

stored

procedures

166

supported

162

debugging

134

declaring

graphic

host

variables

143

embedded

SQL

statements

135

embedding

SQL

statements

55

file

reference

declarations

148

FOR

BIT

DATA

166

graphic

declaration

of

VARGRAPHIC

structured

form,

syntax

145

graphic

host

variables

143

handling

null-terminated

strings

153

host

structure

support

150

host

variables
declaring

138

naming

137

purpose

137

include

files,

required

132

indicator

tables

152

indicator

variables

142

initializing

host

variables

149

input

files

132

Japanese

EUC

considerations

160

LOB

data

declarations

146

LOB

locator

declarations

147

macro

expansion

149

member

operator,

restriction

156

multi-byte

character

encoding

156

numeric

host

variables

139

output

files

132

pointer

to

data

type

154

programming

considerations

131

qualification

operator,

restriction

156

SQLCODE

variables

168

sqldbchar

data

type

157

SQLSTATE

variables

168

supported

data

types

162

trigraph

sequences

131

wchart

data

type

157

738

Programming

Client

Applications

C/C++

language

(continued)
WCHARTYPE

precompiler

option

158

call

level

interface

(CLI)
advantages

127

compared

with

embedded

SQL

129

comparing

embedded

SQL

and

DB2

CLI

126

overview

126

supported

SQL

statements

685

CALL

statements
CALL

USING

DESCRIPTOR

698

supported

platforms

698

cascade

levels

697

catalog

statistics
user

updatable

39

char

C/C++

data

type

162

CHAR

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

indicator

variables

84

REXX

502

character

comparison

599

character

conversion
coding

SQL

statements

607

coding

stored

procedures

608,

623

during

precompiling

and

binding

609

expansion

611

national

language

support

(NLS)

609

programming

considerations

606

string

length

overflow

623

string

length

overflow

past

data

types

623

supported

code

pages

610

Unicode

(UCS2)

625

when

executing

an

application

609

when

occurs

609

character

host

variables
C/C++

fixed

and

null-terminated

140

C/C++

variable

length

141

fixed

and

null-terminated

in

C/C++

140

FORTRAN

202

variable

length

in

C/C++

141

character

sets
double

byte

612

Extended

UNIX

Code

(EUC)

613

multi-byte,

FORTRAN

207

CHARACTER*n

FORTRAN

data

type

206

characters
substitution

during

code

page

conversion

610

Chinese

(Traditional)

code

sets
C/C++

considerations

160

COBOL

considerations

193

double-byte

considerations

616

Extended

UNIX

Code
considerations

614

conversion

considerations

616

FORTRAN

208

REXX,

considerations

495

UCS2,

considerations

614

CICS

(Customer

Information

Control

System)
application

differences

by

platform

691

CICS

SYNCPOINT

ROLLBACK

command

643

class

data

members

155

CLI

(call

level

interface)
trace

facility

460

trace

files

466

versus

embedded

dynamic

SQL

126

CLI/ODBC/JDBC
trace

facility

460

files

466

client

reroute

support
DB2

Universal

JDBC

Driver

313

client-based

parameter

validation

621

client/server

code

page

conversion

609

clients
calling

stored

procedures

in

REXX

508

CLOB

(character

large

object)
C/C++,

conversion

162

data

type
C/C++

166

COBOL

190

FORTRAN

206

indicator

variables

84

REXX

502

CLOB

FORTRAN

data

type

206

clob_file

C/C++

data

type

162

CLOB_FILE

FORTRAN

data

type

206

clob_locator

C/C++

data

type

162

CLOB_LOCATOR

FORTRAN

data

type

206

CLOB-FILE

COBOL

type

190

CLOB-LOCATOR

COBOL

type

190

closed

state
buffered

inserts

657

closing

buffered

insert

655

closing

connection
JDBC

data

source

276

SQLJ

data

source

329

COBOL

data

types
BINARY

192

BLOB

190

BLOB-FILE

190

BLOB-LOCATOR

190

CLOB

190

CLOB-FILE

190

CLOB-LOCATOR

190

COMP

192

COMP-1

190

COMP-3

190

COMP-4

192

COMP-5

190

DBCLOB

190

DBCLOB-FILE

190

DBCLOB-LOCATOR

190

PICTURE

(PIC)

clause

190

USAGE

clause

190

COBOL

language
Chinese

(Traditional)

EUC

considerations

193

data

types

190

declaring

graphic

host

variables

183

COBOL

language

(continued)
declaring

host

variables

181

embedded

SQL

statements

55,

178

file

reference

declarations

186

fixed-length

character

host

variables,

syntax

182

FOR

BIT

DATA

193

host

structures

186

include

files

176

indicator

tables

188

input

and

output

files

175

Japanese

EUC

considerations

193

LOB

data

declarations

184

LOB

locator

declarations

185

naming

host

variables

180

no

support

for

multiple-thread

database

access

175

numeric

host

variables

181

object-oriented

restrictions

194

programming

considerations

175

REDEFINES

189

referencing

host

variables

180

restrictions

175

rules

for

indicator

variables

184

SQLCODE

variables

193

SQLSTATE

variables

193

code

page

conversion
character

substitutions

610

code

pages
allocating

storage

for

unequal

situations

618

binding

considerations

70

character

conversion

609

conversion
iSeries

server

692

OS/390

server

692

DB2CODEPAGE

registry

variable

604

for

application

execution

609

for

precompile

and

bind

609

handling

expansion

at

application

618

handling

expansion

at

server

618

locales,

deriving

605

national

language

support

(NLS)

609

SQLERRMC

field

of

SQLCA

693

supported

conversions

610

unequal

situations

611,

618

when

character

conversion

occurs

609

Windows

code

pages

604

code

point

597

code

sets
SQLERRMC

field

of

SQLCA

693

collating

sequences
case

independent

comparisons

600

character

comparisons

599

code

point

597

concerns,

general

597

EBCDIC

and

ASCII

sort

order
description

696

example

601

identity

sequence

597

include

files
C/C

132

COBOL

176

FORTRAN

196

Index

739

collating

sequences

(continued)
multi-byte

characters

597

overview

597

samples

604

simulating

EBCDIC

binary

collation

703

sort

order

example

601

specifying

602

TRANSLATE

function

600

collation
Chinese

(Traditional)

code

sets

617

Japanese

code

sets

617

collection

ID

attribute
DB2

for

iSeries

694

package

694

COLLECTION

parameters

69

column

types
creating

C/C++

162

COBOL

190

FORTRAN

206

columns
derived

669

generated

669

identity

670

include

columns

675

setting

null

values

82

supported

SQL

data

types

84

using

indicator

variables

on

nullable

data

columns

86

com.ibm.db2.jcc.DB2BaseDataSource
methods

414

properties

414

com.ibm.db2.jcc.DB2DatabaseMetaData
methods

414

com.ibm.db2.jcc.DB2Diagnosable
methods

414

com.ibm.db2.jcc.DB2Driver
methods

414

com.ibm.db2.jcc.DB2ExceptionFormatter
methods

414

com.ibm.db2.jcc.DB2JccDataSource
methods

414

com.ibm.db2.jcc.DB2SimpleDataSource
methods

414

properties

414

com.ibm.db2.jcc.DB2Sqlca
methods

414

COM+
connection

reuse

648

loosely

coupled

support

648

transaction

manager

646

transaction

processing

648

transaction

timeout

648

command

help
invoking

727

command

line

processor

(CLP)
caches

setting

of

DB2INCLUDE

environment

variable

134

calling

from

REXX

application

505

prototyping

39

supported

SQL

statements

685

commands
FORCE

693

comments
embedded

SQL

statement

495

SQL,

rules

135,

178,

199

comments

(continued)
SQLJ

application

322

commit
transaction,

JDBC

275

transaction,

SQLJ

328

COMMIT

statement
association

with

cursor

89

ending

transaction

35

ending

transactions

37

COMMIT

WORK

RELEASE

statement,

not

supported

in

DB2

Connect

701

committing

changes
tables

35

common

language

runtime
routines

supported

SQL

data

types

in

215

COMP

data

types,

in

COBOL

192

COMP-1

data

types,

in

COBOL

190

COMP-3

data

types,

in

COBOL

190

COMP-4

data

types,

in

COBOL

192

COMP-5

data

types,

in

COBOL

190

compiled

applications,

creating

packages

59

compiling
overview

63

completion

codes

31

compound

SQL
compared

to

savepoints

637

DB2

Connect

support

699

concurrent

transactions
potential

problems

634

preventing

deadlocks

635

purpose

633

configuration

parameters
locktimeout

172

multisite

update

631

CONNECT

RESET

statement

37

CONNECT

statement
sample

programs

98

SQLCA.SQLERRD

settings

618

connecting
to

a

data

source

using

DataSource

272

to

a

data

source

using

DriverManager
DB2

JDBC

Type

2

Driver

268

DB2

Universal

JDBC

Driver

270

to

a

data

source

using

SQLJ

322

connection

handles
description

126

connection

pooling
ADO

649

ODBC

649

connection-declaration-clause,

SQLJ

399,

400

connections
CONNECT

RESET

statement

693

CONNECT

TO

statement

693

implicit
differences

by

platform

693

null

CONNECT

693

pooling
WebSphere

527,

528

using

in

JDBC

275

consistency
of

data

34

consistency

tokens

72

containers
Java

2

Enterprise

Edition

476

context-clause,

SQLJ

402

contexts
application

dependencies

between

171

database

dependencies

between

171

deadlock

prevention

between

172

setting

in

multithreaded

DB2

applications
described

169

controlling

statement

execution
SQLJ

353

coordinator

partition,

without

buffered

insert

655

create

database

API
SQLEDBDESC

structure

602

CREATE

SEQUENCE

statement
to

create

sequence

objects

676

creating
DB2

objects,

JDBC

277

DB2

objects,

SQLJ

331

packages

for

compiled

applications

59

critical

sections

171

CURRENT

EXPLAIN

MODE

special

register
effect

on

dynamic

bound

SQL

66

CURRENT

PATH

special

register
effect

on

bound

dynamic

SQL

66

CURRENT

QUERY

OPTIMIZATION

special

register
effect

on

bound

dynamic

SQL

66

cursor

stability

(CS)
host

and

iSeries

environments

697

cursors
ambiguous

92

behavior
after

ROLLBACK

TO

SAVEPOINT

640

with

COMMIT

statement

89

blocking,

savepoint

considerations

642

CLI

(call

level

interface)
versus

embedded

dynamic

SQL

126

COMMIT

considerations

89

declaring
in

static

SQL

programs

88

dynamic

SQL,

sample

program

107

FOR

FETCH

ONLY

92

IBM

OLE

DB

Provider

223

multiple

in

application

87

names,

REXX

495

package

invalidated,

fetching

rows

89

positioning

at

table

end

97

processing
in

dynamic

SQL

106

summary

87

with

SQLDA

structure

117

purpose

78,

87

read-only
declaring

88

definition

92

in

partitioned

database

environments

653

740

Programming

Client

Applications

cursors

(continued)
read-only

(continued)
unit

of

work

considerations

89

releasing,

lock

behavior

89

retrieval

of

rows

88

retrieving

multiple

rows

87

REXX

502

ROLLBACK

considerations

89

rows
deleting

92

updating

92

sample

program

93

scrollable
in

ADO

applications

234

static

SQL,

example

90

types

92

unit

of

work
completion

89

updatable
definition

92

in

ADO

applications

234

WITH

HOLD
behavior

after

COMMIT

89

behavior

after

ROLLBACK

89

package

rebound

during

unit

of

work

89

X/Open

XA

Interface

643

CURVAL

expression

676

D
data

accessing

enterprise

with

WebSphere

527

accessing

with

Microsoft

specifications

12

committing

changes

35

consistency

at

transaction

level

34

deleting

92

expansion
iSeries

server

692

OS/390

server

692

extracting

large

volumes

660

fetched,

saving

95

generating

test

50

inconsistent

36

partitioned

database

environments

660

previously

retrieved
scrolling

94

updating

97

relationship

control

42

retrieving
second

time

95

with

static

SQL

78

second

retrieval

96

transmitting

large

volumes

682

undoing

changes

with

ROLLBACK

statement

36

updating

92

data

control

language

(DCL)
host

and

iSeries

environments

693

data

definition

language

(DDL)
in

host

and

iSeries

environments

692

issuing

in

savepoint

640

data

manipulation

language

(DML)
host

and

iSeries

environments

692

data

relationship

control
after

triggers

44

application

logic

44

before

triggers

44

referential

integrity

43

triggers

43

data

source
retrieving

data

about,

JDBC

301

data

sources
connecting

to
JDBC

267

data

structures
declaring

27

SQLEDBDESC

602

user-defined,

with

multiple

threads

170

data

transfer
updating

97

data

type

mappings
between

OLE

DB

and

DB2

223

Java,

JDBC,

and

SQL

365

table

of

223

data

types
BINARY

COBOL

192

C/C++

162

C/C++,

conversion

162

character

conversion

overflow

623

class

data

members,

declaring

in

C/C++

155

CLOB

in

C/C++

166

COBOL

190

compatibility

issues

84

conversion
between

DB2

and

COBOL

190

between

DB2

and

FORTRAN

206

between

DB2

and

REXX

502

conversion

between

DB2

and

C/C++

162

data

value

control

41

DATALINK
host

variable,

restriction

206

DECIMAL
FORTRAN

206

description

27

Extended

UNIX

Code

consideration

623

FOR

BIT

DATA
COBOL

193

FOR

BIT

DATA

in

C/C++

166

FORTRAN

206

host

language

and

DB2

correspondences

84

numeric
differences

by

platform

692

pointer

to,

declaring

in

C/C++

154

ROWID
supported

by

DB2

Connect

692

selecting

graphic

types

157

supported

84

COBOL,

rules

190

FORTRAN,

rules

206

VARCHAR

in

C/C++

166

data

types

and

scrollable

cursors
restrictions

309,

361

data

value

control
application

logic

and

variable

type

42

data

types

41

purpose

40

referential

integrity

constraints

41

table

check

constraints

41

unique

constraints

41

views

with

check

option

42

database
connecting

application

to

33

Database

Descriptor

Block

(SQLEDBDESC),

specifying

collating

sequences

602

database

manager
defining

APIs,

sample

programs

98

databases
accessing

multiple

threads

169

connecting

with

Perl

489

creating
collating

sequence

602

using

different

contexts

169

DataSource

interface
SQLJ

325

DataSource

objects,

JDBC
creating

and

deploying

311

DATE

data

type

84

C/C++,

conversion

162

COBOL

190

FORTRAN

206

REXX

502

DB2
derivation

of

locales

605

DB2

.NET

Data

Provider

14

DB2

Application

Development

Client

219

DB2

application

programming

interfaces

(APIs)
overview

7

DB2

books
printing

PDF

files

724

DB2

Call

Level

Interface

(DB2

CLI)
compared

to

embedded

dynamic

SQL

10

overview

9

DB2

Connect
isolation

levels

696

processing

of

interrupt

requests

694

DB2

information

Center
viewing

in

different

languages

718

DB2

Information

Center

708

invoking

716

updating

717

DB2

JDBC

Type

2

Driver
connecting

to

data

source
DriverManager

interface

268

handling

SQLException

286

security

443

DB2

programming

features

17

DB2

tutorials

727

DB2

Universal

JDBC

Driver
client

reroute

support

313

connecting

to

a

data

source
DriverManager

interface

270

diagnosing

JDBC

problems

453

diagnosing

SQLJ

problems

453

Index

741

DB2

Universal

JDBC

Driver

(continued)
encrypted

user

ID

or

encrypted

password

security

447

error

codes

for

driver

errors

434

example,

tracing

455

extended

client

information

314

handling

SQLException

282

Kerberos

security

448

LOB

support,

JDBC

289

LOB

support,

SQLJ

348

methods

defined

only

in

414

properties

370

ROWID,

JDBC

292

ROWID,

SQLJ

350

security

444

SQLSTATEs

for

driver

errors

434

trace

data,

collecting

453

user

ID

and

password

security

445

user

ID-only

security

446

DB2ARXCS.BND

REXX

bind

file

505

DB2ARXNC.BND

REXX

bind

file

505

DB2ARXRR.BND

REXX

bind

file

505

DB2ARXRS.BND

REXX

bind

file

505

DB2ARXUR.BND

REXX

bind

file

505

db2bfd

bind

file

description

utility

71

DB2CODEPAGE
registry

variable

604

db2dclgn

declaration

generator
declaring

host

variables

29

DB2INCLUDE
environment

variable

178,

198

command

line

processor

caches

setting

134

DBCLOB

data

type
C/C++,

conversion

162

Chinese

(Traditional)

code

sets

617

COBOL

190

in

static

SQL

programs

84

Japanese

code

sets

617

REXX

502

dbclob_file

C/C++

data

type

162

dbclob_locator

C/C++

data

type

162

DBCLOB-FILE

COBOL

type

190

DBCLOB-LOCATOR

COBOL

type

190

DBCS

(double-byte

character

set)
Japanese

and

Traditional

Chinese

code

sets

614

DCL

(data

control

language)
host

and

iSeries

environments

693

DDL

(data

definition

language)
dynamic

SQL

performance

104

in

host

and

iSeries

environments

692

deadlocks
error

in

buffered

insert

657

in

multithreaded

applications

171

preventing

in

concurrent

transactions

635

preventing

in

multiple

contexts

172

debugging
application

programs

52

FORTRAN

programs

196

DECIMAL

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

in

static

SQL

84

REXX

502

DECLARE

CURSOR

statement
adding

to

an

application

33

description

88

DECLARE

PROCEDURE

statement

(OS/400)

698

declare

section
C/C++

161

COBOL

181

creating

27

FORTRAN

201,

206

in

C/C++

138

in

COBOL

189

rules

for

statements

79

DECLARE

statements
not

supported

in

DB2

Connect

701

not

supported

on

DB2

UDB

701

declared

temporary

tables
purpose

680

ROLLBACK

statement

680

declaring
host

variables,

rules

79

indicator

variables

82

variables

in

a

JDBC

application

266

variables

in

an

SQLJ

application

320

define

behavior,

DYNAMICRULES

109

derived

columns
purpose

669

DESCRIBE

statement

701

Extended

UNIX

Code

consideration

622

not

supported

in

DB2

Connect

701

processing

arbitrary

statements

122

descriptor

handles
description

126

Development

Center
features

19

overview

19

diagnosing

suspended

or

looping

applications

667

disability

729

distinct

types
in

JDBC

applications

293

in

SQLJ

applications

352

supported

by

DB2

Connect

692

distributed

subsection

(DSS)
directed

653

distributed

transactions
example

478

distributed

unit

of

work

627

DML

(data

manipulation

language)
dynamic

SQL

performance

104

host

and

iSeries

environments

692

documentation
displaying

716

dotted

decimal

syntax

diagrams

730

double

data

type
C

and

C++

programs

162

DOUBLE

data

type

84

double-byte

character

sets

(DBCS)
application

program

considerations

614

Chinese

(Traditional)

code

sets

614

Chinese

(Traditional)

considerations

616

code

pages

616

code

points

612

collation

considerations

617

double-byte

character

sets

(DBCS)

(continued)
Japanese

code

sets

614

unequal

code

pages

618

DriverManager

interface
SQLJ

322

DSN

in

SQLERRP

field
DB2

UDB

for

OS/390

693

DSS

(distributed

subsection)
directed

653

dynamic

SQL
arbitrary

statements,

processing

of

122

authorization

considerations

47

binding

66

caching

of

76

comparing

to

static

SQL

104

considerations

104

contrast

with

static

SQL

75

cursor

processing

106

cursors,

sample

program

107

DB2

Connect

support

691

declaring

SQLDA

112

definition

103

deleting

rows

92

DESCRIBE

statement

103,

111

determining

arbitrary

statement

type

122

effects

of

DYNAMICRULES

109

EXECUTE

IMMEDIATE

statement

103

EXECUTE

statement

103

FETCH

statement

111

limitations

103

not

supported

in

DB2

Connect

701

parameter

markers

124

performance

104

Perl

support

489

PREPARE

statement

103,

111

processing

cursors

117

purpose

103

supported

SQL

statements

685

supported

statements

103

syntax

rules

103

DYNAMICRULES

precompile/bind

option
effects

on

dynamic

SQL

109

E
EBCDIC

mixed-byte

data

692

sort

order

696

EBCDIC

collating

sequences
samples

604

embedded

dynamic

SQL

10

embedded

SQL
authorization

46

COBOL

178

comments
C/C++

135

COBOL

178

rules

199

comments

in

C/C++

135

compared

to

DB2

CLI

129

examples

55

742

Programming

Client

Applications

embedded

SQL

(continued)
generated

columns

669

generating
sequential

values

676

host

variable

referencing

79,

81

identity

columns

670

overview

7,

55

rules
C/C++

135

FORTRAN

199

syntax

rules

55

embedded

SQL

for

Java

(SQLJ)
overview

12

END

DECLARE

SECTION

statement

27

ending

transactions

implicitly

37

Enterprise

Java

beans

483

environment

APIs
include

file
C/C++

132

COBOL

176

FORTRAN

196

environment

handles
description

126

environment

variables
DB2INCLUDE

134,

198

error

codes,

JDBC
for

DB2

Universal

JDBC

Driver

errors

434

error

handling
C/C++

language

precompiler

134

during

precompilation

61

identifying

database

partition

that

returns

error

666

include

files
C/C++

132

COBOL

176

FORTRAN

196

looping

applications

667

partitioned

database

environment

665

partitioned

database

environments

665

Perl

491

reporting

666

SQLCA

structure

666

SQLCA

structures
merged

multiple

structures

666

using

31

SQLCODE

666

suspended

applications

667

WHENEVER

statement

32

error

messages
error

conditions

flag

100

error

handling

31

exception

condition

flag

100

SQLCA

structure

100

SQLSTATE

100

SQLWARN

structure

100

warning

condition

flag

100

errors
detecting

in

buffered

insert

657

handling

in

SQLJ

343

EUC

(extended

UNIX

code)
character

sets

613

considerations

614

examples
BLOB

data

declarations

146

class

data

members

in

SQL

statements

155

CLOB

data

declarations

146

CLOB

file

reference

148

CLOB

locator

147

DBCLOB

data

declarations

146

declaring

BLOB

file

references
COBOL

186

FORTRAN

205

declaring

BLOB

locator,

COBOL

185

declaring

BLOBs
COBOL

184

FORTRAN

204

declaring

CLOB

file

locator
FORTRAN

205

declaring

CLOBs
COBOL

184

FORTRAN

204

declaring

DBCLOBs,

COBOL

184

parameter

markers,

used

in

search

and

update

125

Perl

program

491

REXX

program,

registering

SQLEXEC,

SQLDBS

and

SQLDB2

494

sample

SQL

declare

section

for

supported

SQL

data

types

161

syntax,

character

host

variables,

FORTRAN

202

exception

handlers
COMMIT

and

ROLLBACK

consideration

101

purpose

101

EXEC

SQL

INCLUDE

SQLCA

170

EXEC

SQL

INCLUDE

statement

134

executable-clause,

SQLJ

401

EXECUTE

IMMEDIATE

statement
purpose

103

EXECUTE

statement
purpose

103

executing
SQL

in

a

JDBC

application

276

SQL

in

an

SQLJ

application

330

execution

context
SQLJ

353

exit

list

routines
usage

restrictions

102

expansion

of

data
iSeries

server

692

OS/390

server

692

Explain

facility
prototyping

39

explain

snapshots
during

bind

70

EXPLSNAP

bind

option

70

extended

client

information
DB2

Universal

JDBC

Driver

314

Extended

UNIX

Code

(EUC)
character

conversion

overflow

623

character

conversions,

stored

procedures

623

character

sets

613

character

string

length

overflow

623

Chinese

(Traditional)
C/C++

160

COBOL

consideration

193

Extended

UNIX

Code

(EUC)

(continued)
Chinese

(Traditional)

(continued)
code

sets

614

considerations

616

FORTRAN

208

REXX

495

client-based

parameter

validation

621

considerations

for

collation

617

DBCLOB

files

617

DESCRIBE

statement

622

double-byte

code

pages

616

expansion

at

application

618

expansion

at

server

618

expansion

samples

621

fixed-length

data

types

623

graphic

constants

617

graphic

data

handling

617

Japanese
C/C++

160

code

sets

614

FORTRAN

208

REXX

495

Japanese

and

traditional

Chinese
COBOL

consideration

193

mixed

code

pages

616

stored

procedures

617

UDF

(user-defined

function)

considerations

617

unequal

code

pages

618

variable-length

data

types

623

Extensible

Markup

Language

(XML)
description

16

extracting
large

volumes

of

data

660

F
FETCH

statement
host

variables

111

repeated

data

access

95

SQLDA

structure

116

file

reference

declarations

in

REXX

501

files
reference

declarations

in

C/C++

148

FIPS

127-2

standard
declaring

SQLSTATE

and

SQLCODE

as

host

variables

100

flagger

utility

for

precompiling

62

FLOAT

data

type

84

C/C++,

conversion

162

COBOL

190

FORTRAN

206

REXX

502

flushed

buffered

inserts

655

FOR

BIT

DATA

data

type,

C/C++

166

FOR

UPDATE

clause

92

FORCE

command
differences

by

operating

system

693

foreign

keys
differences

by

platform

697

FORTRAN

data

types
BLOB

206

BLOB_FILE

206

BLOB_LOCATOR

206

CHARACTER*n

206

CLOB

206

Index

743

FORTRAN

data

types

(continued)
CLOB_FILE

206

CLOB_LOCATOR

206

conversion

with

DB2

206

INTEGER*2

206

INTEGER*4

206

REAL*2

206

REAL*4

206

REAL*8

206

FORTRAN

language
Chinese

(Traditional)

considerations

208

comment

lines

196

conditional

lines

196

data

types

206

debugging

196

embedding

SQL

statements

55,

199

file

reference

declarations

205

host

variables
declaring

201

naming

201

purpose

200

referencing

199

include

files

196,

198

indicator

variables

203

input

and

output

files

196

Japanese

considerations

208

LOB

data

declarations

204

LOB

locator

declarations

205

locating

include

files

198

multi-byte

character

sets

207

no

planned

enhancements

25

no

support

for

multiple-thread

database

access

196

numeric

host

variables

202

precompiling

196

programming

considerations

195

restrictions

195

SQL

declare

section

206

SQLCODE

variables

208

SQLSTATE

variables

208

fullselect
buffered

insert

consideration

659

FUNCPATH

bind

option

70

G
generated

columns
purpose

669

GET

ERROR

MESSAGE

API
error

message

retrieval

102

predefined

REXX

variables

498

graphic

constants
Chinese

(Traditional)

code

sets

617

Japanese

code

sets

617

graphic

data
Chinese

(Traditional)

code

sets

614,

617

Japanese

code

sets

614,

617

GRAPHIC

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN,

not

supported

206

REXX

502

selecting

157

graphic

declaration

of

VARGRAPHIC

structured

form
C/C++,

syntax

145

graphic

host

variables
C/C++

143

COBOL

183

GRAPHIC

space

607

graphic

strings
character

conversion

611

GROUP

BY

clause
sort

order

696

group

of

rows

in

buffered

insert

657

GSS-APIs
GSS-API

authentication

plug-ins

591

Restrictions

591

H
handles

connection

126

descriptor

126

environment

126

statement

126

help
displaying

716,

718

for

commands

727

for

messages

726

for

SQL

statements

727

holdable

result

set,

JDBC

309

host

and

iSeries

environments
application

considerations

691

C

null-terminated

strings

695

cursor

stability

697

data

control

language

(DCL)

693

data

definition

language

(DDL)

692

data

manipulation

language

(DML)

692

DB2

Connect

isolation

levels

696

differences

in

SQLCODE

and

SQLSTATE

values

697

page-level

locking

697

processing

of

interrupt

requests

694

row-level

locking

697

standalone

SQLCODE

and

SQLSTATE

695

stored

procedures

698

system

catalogs

698

host

expression,

SQLJ

320

host

language,

embedding

SQL

statements

55

host

servers,

accessing

633

host

structure

support
C/C++

150

COBOL

186

host

variables
class

data

members

in

C/C++

155

COBOL

data

types

190

DATALINK

restriction

206

declaring
as

pointer

to

data

type

154

C/C++

138

COBOL

181

FORTRAN

201

graphic,

COBOL

183

LOB

locator,

COBOL

185

rules

79

sample

programs

98

host

variables

(continued)
declaring

(continued)
static

SQL

programs

80

using

variable

list

statement

123

with

db2dclgn

declaration

generator

29

defining

for

use

with

columns

30

definition

79

file

reference

declarations
C/C++

148

COBOL

186

FORTRAN

205

REXX

501

fixed-length

character

syntax,

COBOL

182

FORTRAN

200

graphic
C/C++

143

FORTRAN

207

in

dynamic

SQL

103

in

host

language

statement

79

in

SQL

statement

79

initializing

in

C/C++

149

LOB

data

declarations
C/C++

146

COBOL

184

FORTRAN

204

REXX

500

LOB

locator

declarations
C/C++

147

FORTRAN

205

REXX

500

LOB,

clearing

in

REXX

502

multi-byte

character

encoding

156

naming
C/C++

137

COBOL

180

FORTRAN

201

REXX

497

null-terminated

strings,

handling

in

C/C++

153

passing

blocks

of

data

682

precompiler

considers

as

global

to

a

module

in

C/C++

137

purpose

137

referencing
C/C++

137

COBOL

180

FORTRAN

199

REXX

497

referencing

from

SQL

79,

81

relating

to

SQL

statement

30

REXX

497

selecting

graphic

data

types

157

static

SQL

79

truncation

82

unsupported

in

Perl

490

WCHARTYPE

precompiler

option

158

host-expression,

SQLJ

396

I
IBM

DB2

Development

Add-In

4

IBM

OLE

DB

Provider
ADO

applications

233

744

Programming

Client

Applications

IBM

OLE

DB

Provider

(continued)
automatic

enablement

of

OLE

DB

services

222

C/C++

applications
connections

to

data

sources

238

compiling

and

linking

C/C++

applications

238

connecting

Visual

Basic

applications

to

data

source

234

connections

to

data

sources

232

consumer

219

cursors

223

cursors

in

ADO

applications

234

data

conversion
from

DB2

types

to

OLE

DB

types

226

data

conversion

from

OLE

DB

to

DB2

types

224

enabling

MTS

support

in

DB2

239

for

DB2
installing

219

limitations

for

ADO

applications

234

LOBs

220

MTS

and

COM

distributed

transaction

support

239

OLE

DB

support

227

provider

219

restrictions

227

schema

rowsets

221

support

for

ADO

methods

and

properties

234

supported

application

types

220

supported

OLE

DB

properties

230

threading

220

identity

columns
comparison

with

sequence

objects

679

purpose

670

retrieving

data

from,

JDBC

295

identity

sequence

597

implements-clause,

SQLJ

396

implicit

connections
differences

by

platform

693

INCLUDE

clause

675

include

files
locating

in

C/C

134

in

COBOL

178

in

FORTRAN

198

requirements
C/C

132

COBOL

176

FORTRAN

196

SQL
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQL1252A
COBOL

176

FORTRAN

196

SQL1252B
COBOL

176

FORTRAN

196

SQLADEF

for

C/C++

132

SQLAPREP
for

C/C

132

for

COBOL

176

include

files

(continued)
SQLAPREP

(continued)
for

FORTRAN

196

SQLCA
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLCA_92
COBOL

176

FORTRAN

196

SQLCACN
FORTRAN

196

SQLCACS
FORTRAN

196

SQLCLI

for

C/C++

132

SQLCLI1

for

C/C++

132

SQLCODES
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLDA
COBOL

176

for

C/C

132

for

FORTRAN

196

SQLDACT
FORTRAN

196

SQLE819A
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLE819B
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLE850A
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLE850B
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLE932A
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLE932B
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLEAU
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLENV
COBOL

176

for

C/C

132

FORTRAN

196

SQLETSD
COBOL

176

SQLEXT

for

C/C++

132

SQLJACB

for

C/C++

132

SQLMON
COBOL

176

for

C/C

132

FORTRAN

196

include

files

(continued)
SQLMONCT

for

COBOL

176

SQLSTATE
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLSYSTM

for

C/C++

132

SQLUDF

for

C/C++

132

SQLUTBCQ
COBOL

176

SQLUTBSQ
COBOL

176

SQLUTIL
for

C/C

132

for

COBOL

176

for

FORTRAN

196

SQLUV

for

C/C++

132

SQLUVEND

for

C/C++

132

SQLXA

for

C/C++

132

INCLUDE

SQLCA

statement
pseudocode

31

INCLUDE

SQLDA

statement

33

creating

SQLDA

structure

117

INCLUDE

statement

33

inconsistent
data

36

states

36

indicator

tables
C/C++

152

COBOL

support

188

indicator

variables
C/C++

142

COBOL

184

declaring

82

during

INSERT

or

UPDATE

82

FORTRAN

203

purpose

82

REXX

498

truncation

82

using

on

nullable

columns

86

Information

Center
installing

709,

712,

714

input

and

output

files
COBOL

175

FORTRAN

196

input

file

extensions

for

C/C

132

input

files

for

C/C

132

INSERT

BUF

bind

option
buffered

inserts

655

INSERT

statement
not

supported

in

CLP

659

VALUES

clause

655

inserts,

without

buffered

insert

655

installing
Information

Center

709,

712,

714

universal

JDBC

driver

437

INTEGER

data

type

84

C/C++,

conversion

162

COBOL

190

FORTRAN

206

REXX

502

integer

data

type,

64-bit
supported

by

DB2

Connect

692

INTEGER*2

FORTRAN

data

type

206

INTEGER*4

FORTRAN

data

type

206

Index

745

interrupt

handlers
COMMIT

and

ROLLBACK

consideration

101

purpose

101

interrupt

handling

with

SQL

statements

101

interrupts,

SIGUSR1

101

invoke

behavior,

DYNAMICRULES

109

invoking
command

help

727

message

help

726

SQL

statement

help

727

iSeries

environment
accessing

host

servers

633

ISO
10646

standard

614

2022

standard

614

ISO/ANS

SQL92

standard
support

695

isolation

level
setting

for

JDBC

application

274

setting

for

SQLJ

application

327

isolation

levels
repeatable

read

(RR)

95

supported

platforms

696

iterator
named,

SQLJ

332

obtaining

JDBC

result

sets

from

345

positioned,

SQLJ

334

scrollable,

SQLJ

361

iterator-conversion-clause,

SQLJ

406

J
Japanese

and

traditional

Chinese

EUC

code

sets
COBOL

considerations

193

Japanese

code

sets
C/C++

considerations

160

Extended

UNIX

Code,

considerations

614

FORTRAN

208

REXX

495

UCS2,

considerations

614

Java
embedding

SQL

statements

55

Enterprise

Java

beans

483

Java

2

Enterprise

Edition
database

requirements

477

overview

475

server

477

WebSphere

Studio,

overview

15

Java

2

Enterprise

Edition
application

support

475

containers

476

Enterprise

Java

beans

483

overview

475

requirements

477

server

477

transaction

management

477

Java

application

support

259

Java

database

connectivity

(JDBC)
overview

11

Java

naming

and

directory

interface

(JNDI)

477

Java

transaction

API

(JTA)

477

Java

transaction

service

(JTS)

477

JDBC
accessing

Java

packages

for

266

calling

stored

procedures

281

closing

connection

to

a

data

source

276

comparison

of

DB2

driver

support

376

connecting

to

a

data

source,

DataSource

interface

272

data

type

mappings

365

DataSource

objects
creating

and

deploying

311

DB2

JDBC

Type

2

Driver
error

handling

286

DB2

Universal

JDBC

Driver
error

handling

282

diagnosing

problems,

DB2

Universal

JDBC

Driver

453

differences,

JDBC

drivers

426,

432

distinct

types,

using

293

distributed

transaction

478

handling

an

SQL

warning

287,

288

holdable

result

set

309

retrieving

data

from

DB2

tables

277,

280

retrieving

information

about

a

ResultSet

300

retrieving

information

about

statement

parameters

303

scrollable

result

set

309

stored

procedure,

retrieving

multiple

result

sets

297

supported

drivers

259

transaction,

committing

275

transaction,

rolling

back

275

updatable

result

set

309

updating

data

in

DB2

tables

279

using

a

connection

275

JDBC

(Java

database

connectivity)
overview

11

universal

JDBC

driver
installing

437

JDBC

application
basic

steps

263

batch

updates

304

connecting

to

a

data

source

267

creating

and

modifying

DB2

objects

277

declaring

variables

266

example

263

executing

SQL

276

retrieving

data

from

identity

columns

295

setting

isolation

level

for

274

working

with

savepoints

294

JDBC

driver

type
definition

259

JDBC

ResultSet
DB2

Universal

JDBC

Driver

308

JNDI

(Java

naming

and

directory

interface)

477

JTA

(Java

transaction

API)

477

JTS

(Java

transaction

service)

477

K
keyboard

shortcuts
support

for

729

keys
foreign

differences

by

platform

697

primary

697

L
LABEL

ON

statement,

not

supported

701

LANGLEVEL

precompile

option
MIA

162

SAA1

162

SQL92E

and

SQLSTATE

or

SQLCODE

variables

168,

193,

208,

695

large

object

(LOB)

data

types
application

considerations

20

data

declarations

in

C/C++

146

IBM

OLE

DB

Provider

220

locator

declarations

in

C/C++

147

supported

by

DB2

Connect

692

large

objects

(LOBs)
DB2

Universal

JDBC

Driver,

JDBC

289

DB2

Universal

JDBC

Driver,

SQLJ

348

latches,

status

with

multiple

threads

169

libraries
security

plug-in

libraries

549

restrictions

on

550

linking
description

63

LOB

(large

object)

data

types
application

considerations

20

data

declarations

in

C/C++

146

IBM

OLE

DB

Provider

220

locator

declarations

in

C/C++

147

supported

by

DB2

Connect

692

LOB

column
choosing

compatible

Java

data

types,

JDBC

290

choosing

compatible

Java

data

types,

SQLJ

348

LOB

support
beyond

JDBC

specification

290

LOB

locator

289

local
bypass

654

locales
deriving

in

application

programs

605

how

DB2

derives

605

locating

include

files,

FORTRAN

198

locking
buffered

insert

error

657

locks
page-level

697

releasing

cursor

89

row-level

697

timeout

697

locktimeout

configuration

parameter

172

long

C/C++

data

type

162

long

fields
buffered

inserts,

restriction

659

746

Programming

Client

Applications

long

fields

(continued)
differences

by

platform

692

long

int

C/C++

data

type

162

long

long

C/C++

data

type

162

long

long

int

C/C++

data

type

162

LONG

VARCHAR

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

in

static

SQL

programs

84

REXX

502

LONG

VARGRAPHIC

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

in

static

SQL

programs

84

REXX

502

M
member

operator,

C/C

restriction

156

memory
allocation

for

unequal

code

pages

618

message

files
definition

61

message

help
invoking

726

methods
overview

19

MIA

LANGLEVEL

precompile

option

162

Microsoft

Component

Services

(COM+)
transaction

manager

646

Microsoft

OLE

DB

Provider

for

ODBC
OLE

DB

support

227

Microsoft

specifications
accessing

data

12

ADO

(ActiveX

Data

Object)

12

MTS

(Microsoft

Transaction

Server)

12

RDO

(Remote

Data

Object)

12

Visual

Basic

12

Visual

C

12

Microsoft

Transaction

Server

(MTS)
enabling

support

in

DB2

239

MTS

and

COM

distributed

transaction

support

239

transaction

manager

646

transaction

timeout

648

Microsoft

Transaction

Server

(MTS)

specifications
accessing

data

12

mixed

code

page

environments
package

names

608

mixed

Extended

UNIX

Code

considerations

616

mixed-byte

data
iSeries

server

692

OS/390

server

692

model

for

DB2

programming

38

modifying
DB2

objects,

JDBC

277

DB2

objects,

SQLJ

331

MQSeries
support

for

applications

16

MTS

(Microsoft

Transaction

Server)

specifications
accessing

data

12

MTS

(Microsoft

Transaction

Server)

support
enabling

in

DB2

239

transaction

manager

646

transaction

timeout

648

MTS

and

COM

distributed

transaction

support
IBM

OLE

DB

Provider

239

transaction

manager

646

multibyte

character

support
code

points

for

special

characters

607

multibyte

code

pages
Chinese

(Traditional)

code

sets

614

Japanese

code

sets

614

multibyte

considerations
Chinese

(Traditional)

code

sets
C/C

160

FORTRAN

208

REXX

495

Japanese

and

traditional

Chinese

EUC

code

sets
COBOL

193

Japanese

code

sets
C/C

160

FORTRAN

208

REXX

495

multiple

result

sets
retrieving

from

a

stored

procedure

354

multisite

updates
configuration

parameters

631

DB2

Connect

support

700

overview

627

precompiling

applications

630

purpose

628

SQL

statements

in

multisite

update

applications

628

N
named

iterators

in

SQLJ

applications

332

national

language

support

(NLS)
character

conversion

609

code

pages

609

mixed-byte

data

692

Net.Data
overview

16

NEXTVAL

expression

676

NLS

(national

language

support)
character

conversion

609

code

pages

609

mixed-byte

data

692

NOLINEMACRO

precompile

option

134

nonexecutable

SQL

statements
DECLARE

CURSOR

33

INCLUDE

33

INCLUDE

SQLDA

33

NOT

ATOMIC

compound

SQL
DB2

Connect

support

699

null

value,

SQL
indicator

variable

receives

82

null-terminated

character

form

C/C++

data

type

162

null-terminated

strings
CNULREQD

BIND

option

695

null-terminator,

processing

variable-length

graphic

data

162

numeric

conversion

overflows

698

numeric

data

types
differences

by

platform

692

numeric

host

variables
C/C++

139

COBOL

181

FORTRAN

202

NUMERIC

SQL

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

REXX

502

O
object-oriented

COBOL

restrictions

194

ODBC

(open

database

connectivity)
application

development

tools

14

connection

pooling,

with

MTS

and

COM+

649

OLE

automation

routines

21

OLE

DB
BLOB

support

227

Command

support

227

component

and

interface

support

227

connections

to

data

sources

using

IBM

OLE

DB

Provider

232

data

conversion
from

DB2

to

OLE

DB

types

226

from

OLE

DB

to

DB2

types

224

data

type

mappings

with

DB2

223

RowSet

support

227

services

automatically

enabled

222

Session

support

227

supported

in

DB2

12

supported

properties

230

table

functions
overview

22

View

Objects

support

227

OLE

DB

table

functions

219

online
help,

accessing

725

open

state,

buffered

inserts

657

optimizer
static

and

dynamic

SQL

considerations

104

optimizing
application

programs

52

ORDER

BY

clause
sort

order

696

ordering

DB2

books

724

output

file

extensions
C/C++

132

output

files
C/C++

132

overflows,

numeric

698

P
package

names
mixed

code

page

environments

608

Index

747

packages
attributes,

by

platform

694

creating

59,

64

description

71

inoperative

73

invalid
state

73

rebound

during

unit

of

work
cursor

behavior

89

REXX

application

support

505

timestamp

errors

72

versions

with

same

name

65

versions,

privileges

65

page-level

locking
host

and

iSeries

environments

697

parameter

markers
in

processing

arbitrary

statements

122

Perl

490

programming

example

125

retrieving

information

about,

JDBC

303

SQLVAR

entries

124

typed

124

use

in

dynamic

SQL

124

use

in

SQLExecDirect

126

partitioned

database

environments
buffered

inserts
considerations

657

purpose

655

restrictions

659

distributed

subsections,

directed

653

error

handling

665

extracting

large

volume

of

data

660

identifying

partition

that

returns

error

666

local

bypass

654

optimizing

OLTP

applications

653

READ

ONLY

cursors

653

severe

errors

665

suspended

or

looping

application

667

test

environment,

creating

664

passing

contexts

between

threads

169

performance
buffered

inserts

655

distributed

subsections,

directed

653

dynamic

SQL

76,

104

factors

affecting,

static

SQL

75

FOR

UPDATE

clause

92

identity

columns

670

optimizing

with

packages

71

precompiling

static

SQL

statements

71

read-only

cursors

92,

653

releasing

locks

89

sequences,

controlling

678

static

SQL

76

Perl
application

example

491

connecting

to

database

489

Database

Interface

(DBI)

specification

13

drivers

489

no

support

for

multiple-thread

database

access

489

parameter

markers

490

Perl

(continued)
programming

considerations

489

restrictions

489

returning

data

490

SQLCODEs

491

SQLSTATEs

491

PICTURE

(PIC)

clause

in

COBOL

types

190

plug-ins
security

names,

naming

conventions

537

security

plug-ins
APIs

559

calling

sequence,

order

plug-ins

are

called

555

deploying

security

plug-ins

543,

545,

547

error

messages

554

limitations

on

deployment

689

restrictions

on

GSS-API

plug-ins

593

return

codes

552

versions

of,

versioning

593

Plug-ins
autentication,

security,

group

retrieval

plug-ins

569

authentication,

security,

group

retrieval

plug-ins

560

authentication,security,

group

retrieval

plug-ins

591

portability

when

using

CLI

instead

of

embedded

SQL

127

positioned

delete
SQLJ

336

positioned

iterator
passed

as

variable,

SQLJ

359

SQLJ

application

334

positioned

update
SQLJ

336

precompiler
C/C++

character

set

131

C/C++

language

156

C/C++

language

debugging

134

C/C++

trigraph

sequences

131

COBOL

175

FORTRAN

195

LANGLEVEL

SQL92E

option

695

options

61

output

types

61

overview

55

section

number

701

precompiling

62

accessing

host

or

AS/400

application

server

through

DB2

Connect

62

accessing

multiple

servers

62

consistency

token

72

example

61

flagger

utility

62

FORTRAN

196

overview

61

supporting

dynamic

SQL

statements

103

timestamps

72

updatable

cursor

option

92

PREP

command

(PRECOMPILE)
description

61

example

61

PREP

option,

NOLINEMACRO

134

PREPARE

statement
not

supported

in

DB2

Connect

701

processing

arbitrary

statements

122

purpose

103

PreparedStatement

methods
SQL

statements

with

no

parameter

markers

280

preprocessor

functions
and

the

SQL

precompiler

149

primary

keys
differences

by

platform

697

printed

books,

ordering

724

printing
PDF

files

724

problem

determination
online

information

728

tutorials

728

programming

considerations
accessing

host,

AS/400,

or

iSeries

servers

633

C/C++

131

COBOL

175

environments

25

FORTRAN

195

interfaces

supported

5

pseudocode

framework

38

REXX

493

variable

types,

data

value

control

42

X/Open

XA

interface

643

properties
DB2

Universal

JDBC

Driver

370

OLE

DB

properties

supported

230

prototyping

SQL

code

39

PUT

statement,

not

supported

in

DB2

Connect

701

Q
QSQ

in

SQLERRP

field

for

iSeries

693

qualification

and

member

operators

in

C/C++

156

queries
deletable

92

updatable

92

queryopt

precompile/bind

option
code

page

considerations

70

R
REAL

SQL

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

list

84

REXX

502

REAL*2

FORTRAN

SQL

data

type

206

REAL*4

FORTRAN

SQL

data

type

206

REAL*8

FORTRAN

SQL

data

type

206

rebinding
description

73

REBIND

PACKAGE

command

73

REDEFINES

clause,

COBOL

189

referential

constraints
data

value

control

41

748

Programming

Client

Applications

referential

integrity
data

relationship

consideration

43

differences

by

platform

697

RELEASE

SAVEPOINT

statement

639

releasing
connections,

CMS

applications

35

Remote

Data

Object

(RDO)

specification
supported

in

DB2

12

remote

unit

of

work
purpose

627

REORGANIZE

TABLE

command
mixed

code

pages

616

repeatable

read

(RR)
method

95

reporting

errors

666

restriction

on

data

types
scrollable

iterator

361

scrollable

result

set

309

restrictions
buffered

inserts

659

COBOL

175

FORTRAN

195

IBM

OLE

DB

Provider

227

in

C/C++

149

REXX

494

SQLJ

variable

names

321

result

codes

31

RESULT

REXX

predefined

variable

498

result

set

iterator
public

declaration

in

separate

file

345

restrictions

on

declaration

335

ResultSet
DB2

Universal

JDBC

Driver

308

retrieval

assignments
numeric

conversion

overflows

698

retrieving

data
from

DB2

tables,

JDBC

277,

280

from

DB2

tables,

SQLJ

331

Perl

490

static

SQL

78

using

multiple

instances

of

an

iterator,

SQLJ

342

using

multiple

iterators

on

a

DB2

table,

SQLJ

341

using

named

iterator,

SQLJ

332

using

positioned

iterator,

SQLJ

334

retrieving

information

about

a

data

source
JDBC

301

retrieving

information

about

parameter

markers
JDBC

303

retrieving

information

about

result

sets
JDBC

300

retrieving

information

from

a

BatchUpdateException

306

return

codes
declaring

the

SQLCA

31

SQLCA

structure

99

REXX

applications

504

REXX

data

types

502

REXX

language
API

syntax

505

APIs
SQLDB2

493

SQLDBS

493

REXX

language

(continued)
APIs

(continued)
SQLEXEC

493

bind

files

505

calling

stored

procedures

508

calling

the

DB2

CLP

505

Chinese

(Traditional)

495

cursor

identifiers

495

cursors

502

data

types

502

embedding

SQL

statements

495

host

variables
naming

497

purpose

497

referencing

497

indicator

variables

498

initializing

variables

507

Japanese

495

LOB

data

500

LOB

file

reference

declarations

501

LOB

host

variables,

clearing

502

LOB

locator

declarations

500

no

support

for

multiple-thread

database

access

495

predefined

variables

498

programming

considerations

493,

494

registering

routines

494

registering

SQLEXEC,

SQLDBS

and

SQLDB2

494

restrictions

494

running

applications

504

SQL

statements

495

SQLDA

decimal

fields
retrieving

data

508

stored

procedures
calling

507

overview

507

server

considerations

508

rollback
to

savepoint,

JDBC

294

to

savepoint,

SQLJ

328

transaction,

JDBC

275

transaction,

SQLJ

328

ROLLBACK

statement
association

with

cursor

89

backing

out

changes

36

differences

by

platform

693

ending

transactions

37

rolling

back

changes

36

ROLLBACK

TO

SAVEPOINT

statement
cursor

behavior

640

ROLLBACK

WORK

RELEASE

statement
not

supported

in

DB2

Connect

701

rolling

back

changes

36

routines
common

language

runtime

routines
supported

SQL

data

types

in

215

OLE

automation
overview

21

row

blocking
customizing

for

performance

682

row-level

locking
host

and

iSeries

environments

697

ROWID
DB2

Universal

JDBC

Driver

292,

350

ROWID

data

type
supported

by

DB2

Connect

692

rows
fetching

after

package

invalidated

89

positioning

in

table

97

retrieving

multiple

87

retrieving

using

SQLDA

116

retrieving

with

cursor

92

second

retrieval
methods

95

row

order

96

run

behavior,

DYNAMICRULES

109

run-time

services
multiple

threads
effect

on

latches

169

RUOW
see

remote

unit

of

work

627

S
SAA1

LANGLEVEL

precompile

option

162

SAVEPOINT

statement
controlling

transactions

639

savepoints
atomic

compound

SQL

640

buffered

inserts

642,

655

compared

to

compound

SQL

637

controlling

639

creating

639

creating,

JDBC

294

creating,

SQLJ

328

cursor

blocking

considerations

642

data

definition

language

(DDL)

640

nested

640

releasing,

JDBC

294

releasing,

SQLJ

328

restrictions

640

SET

INTEGRITY

statement

640

transaction

management

636

triggers

640

XA

transaction

managers

643

schema

rowsets
IBM

OLE

DB

Provider

221

scrollable

iterator
restrictions

on

data

types

361

using

in

an

SQLJ

application

361

scrollable

result

set
JDBC

309

restriction

on

data

types

309

searching
DB2

documentation

708

security
DB2

JDBC

Type

2

Driver

443

DB2

Universal

JDBC

Driver

444

encrypted

user

ID

or

encrypted

password
DB2

Universal

JDBC

Driver

447

Kerberos
DB2

Universal

JDBC

Driver

448

plug-in
APIs

567

APIs,

versions

of

APIs

593

debugging,

problem

determination

541

error

messages

554

Index

749

security

(continued)
plug-in

(continued)
SQLCODES,

SQLSTATES

related

to

541

two-part

user

ID

support

539

plug-ins

533

32

bit

considerations

541

64

bit

considerations

541

API

for

validating

passwords

582

APIs

559,

562,

563,

564,

568,

569,

576,

577,

579,

580,

584,

585,

586,

587,

588,

589,

591

APIs

for

group

retrieval

plug-ins

560

APIs

for

GSS-API

plug-ins

591

APIs

for

user

ID/password

plug-ins

569

calling

sequence

of,

order

in

which

called

555

deploying

plug-ins

543

deploying

security

plug-ins

545,

547

deployment

689

group

retrieval

plug-ins

543

libraries;

location

of

security

plug-in

536

limitations

on

deployment

of

plug-ins

689

loading

of

549

naming

537

Overview

of

security

plug-in

infrastructure

533

restrictions

593

restrictions

on

security

plug-in

libraries

550

return

codes

552

user

ID

and

password
DB2

Universal

JDBC

Driver

445

user

ID-only
DB2

Universal

JDBC

Driver

446

SELECT

statement
association

with

EXECUTE

statement

103

buffered

inserts

657

DECLARE

CURSOR

statement

88

declaring

an

SQLDA

112

describing

after

allocating

SQLDA

115

retrieving
data

a

second

time

95

multiple

rows

87

selecting

from

a

data

change

statement

671

updating

retrieved

data

97

varying-list

123

semaphores

171

sequences
application

performance

679

comparison

with

identity

columns

679

purpose

676

sequential

values,

see

sequences

676

serialization
data

structures

170

SQL

statement

execution

169

SET

CURRENT

PACKAGESET

statement

69

SET

CURRENT

statement,

not

supported

in

DB2

Connect

701

SET-TRANSACTION-clause,

SQLJ

404

severe

errors,

partitioned

database

environments

665

shift-out

characters,

differences

by

platform

692

short

C/C++

data

type

162

short

int

C/C++

data

type

162

signal

handlers
COMMIT

and

ROLLBACK

considerations

101

installing,

sample

programs

98

purpose

101

with

SQL

statements

101

SIGUSR1

interrupt

101

SMALLINT

data

type
C/C++,

conversion

162

COBOL

190

CREATE

TABLE

statement

84

FORTRAN

206

REXX

502

sorting
collating

sequence

602,

696

ordering

of

results

696

source

files
creating

57

sources
embedded

SQL

applications

62

file

name

extensions

61

modified

source

files

61

SQL

file

extensions

57

special

registers
CURRENT

EXPLAIN

MODE

66

CURRENT

PATH

66

CURRENT

QUERY

OPTIMIZATION

66

SQL

(Structured

Query

Language)
authorization

APIs

48

dynamic

SQL

47

embedded

SQL

46

static

SQL

48

dynamically

prepared

126

SQL

communications

area

(SQLCA)

31

SQL

data

types
BIGINT

84

BLOB

84

C/C++,

conversion

162

CHAR

84

CLOB

84

COBOL

190

DATE

84

DBCLOB

84

DECIMAL

84

FLOAT

84

FORTRAN

206

INTEGER

84

LONG

VARCHAR

84

LONG

VARGRAPHIC

84

REAL

84

REXX

502

SMALLINT

84

TIME

84

TIMESTAMP

84

VARCHAR

84

VARGRAPHIC

84

SQL

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQL

objects
representing

with

variables

28

SQL

procedural

language

685

SQL

statement

help
invoking

727

SQL

statements
C/C++

syntax

135

COBOL

syntax

178

CONNECT
SQLCA.SQLERRD

settings

618

exception

handlers

101

FORTRAN

syntax

199

interrupt

handlers

101

multisite

update

applications

628

REXX

495

REXX

syntax

495

saving

end

user

requests

123

serializing

execution

169

signal

handlers

101

SQL

warning
handling

in

JDBC

287,

288

handling

in

SQLJ

344

SQL_WCHART_CONVERT

preprocessor

macro

158

SQL1252A

include

file
COBOL

applications

176

FORTRAN

applications

196

SQL1252B

include

file
COBOL

applications

176

FORTRAN

applications

196

SQL92

standard
support

695

SQLADEF

include

file
C/C++

applications

132

SQLAPREP

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLCA

(SQL

communication

area)
error

reporting

in

buffered

insert

657

incomplete

insert

when

error

occurs

657

multithreading

considerations

170

SQLERRMC

field

693,

699

SQLERRP

field

identifies

RDBMS

693

SQLCA

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLCA

predefined

variable

498

SQLCA

structure
defining,

sample

programs

98

include

file

for

C/C++

132

include

files
COBOL

applications

176

FORTRAN

applications

196

merged

multiple

structures

666

multiple

definitions

32

overview

100

partitioned

database

environments
merged

multiple

SQLCA

structures

666

750

Programming

Client

Applications

SQLCA

structure

(continued)
reporting

errors

666

requirements

100

SQLCODE

field

100

sqlerrd

666

SQLSTATE

field

100

SQLWARN1

field

82

token

truncation

101

warnings

82

SQLCA_92

include

file
COBOL

applications

176

FORTRAN

applications

196

SQLCA_92

structure

196

SQLCA_CN

include

file

196

SQLCA_CS

include

file

196

SQLCA.SQLERRD

settings

on

CONNECT

618

SQLCHAR

structure
passing

data

with

121

SQLCLI

include

file

132

SQLCLI1

include

file

132

SQLCODE
error

codes

31

field,

SQLCA

structure

100

including

SQLCA

31

platform

differences

697

reporting

errors

666

standalone

695

structure

100

SQLCODE

-1015
partitioned

database

environments

665

SQLCODE

-1034
partitioned

database

environments

665

SQLCODE

-30081
partitioned

database

environments

665

SQLCODES

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLDA
retrieving

data
REXX

application

programs

508

SQLDA

(SQL

descriptor

area)
multithreading

considerations

170

SQLDA

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLDA

structure
association

with

PREPARE

statement

103

creating

117

declaring

112

declaring

sufficient

SQLVAR

entities

115

determining

arbitrary

statement

type

122

passing

blocks

of

data

682

passing

data

121

placing

information

about

prepared

statement

into

103

preparing

statements

using

minimum

structure

113

SQLDACT

include

file

196

SQLDB2

REXX

API

493,

505

SQLDB2

routine,

registering

for

REXX

494

sqldbchar

data

type
equivalent

column

type

162

selecting

157

SQLDBS

REXX

API

493

SQLDBS

routine,

registering

for

REXX

494

SQLE819A

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLE819B

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLE850A

include

file
COBOL

applications

176

FORTRAN

applications

196

SQLE850B

include

file
COBOL

applications

176

FORTRAN

applications

196

SQLE859A

include

file
C/C++

applications

132

SQLE859B

include

file
C/C++

applications

132

SQLE932A

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLE932B

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

sqleAttachToCtx

API

169

SQLEAU

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

sqleBeginCtx

API

169

sqleDetachFromCtx

API

169

sqleEndCtx

API

169

sqleGetCurrentCtx

API

169

sqleInterruptCtx

API

169

SQLENV

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLERRD(1)

611,

618

SQLERRD(2)

611,

618

SQLERRD(3)

643

SQLERRMC

field

of

SQLCA

611,

693,

699

SQLERRP

field

of

SQLCA

693

sqleSetTypeCtx

API

169

SQLETSD

include

file

176

SQLException
handling

102

SQLEXEC

REXX

API
embedded

SQL

493

processing

SQL

statements

495

registering

494

SQLEXT

include

file
CLI

applications

132

sqlint64

C/C++

data

type

162

SQLISL

predefined

variable

498

SQLJ
accessing

Java

packages

for

320

calling

stored

procedures

343

closing

connection

to

a

data

source

329

connecting

to

a

data

source

322

diagnosing

problems,

DB2

Universal

JDBC

Driver

453

distinct

types,

using

352

execution

context

353

handling

an

SQL

warning

344

host

expression

320

multiple

instances

of

an

iterator

342

multiple

iterators

on

a

table

341

positioned

iterator,

passed

as

variable

359

transaction,

committing

328

transaction,

rolling

back

328

using

DataSource

interface

325

using

default

connection

327

using

DriverManager

interface

322

SQLJ

application
basic

steps

317

batch

updates

355

comments

322

controlling

statement

execution

353

creating

and

modifying

DB2

objects

331

declaring

variables

320

example

317

executing

SQL

330

handling

errors

343

named

iterator,

using

332

positioned

delete

336

positioned

update

336

retrieving

data

from

DB2

tables

331

setting

isolation

level

for

327

using

a

scrollable

iterator

361

working

with

savepoints

328

SQLJ

assignment-clause

405

SQLJ

clause

395

SQLJ

connection-declaration-clause

399,

400

SQLJ

context-clause

402

SQLJ

executable-clause

401

SQLJ

host-expression

396

SQLJ

implements-clause

396

SQLJ

iterator-conversion-clause

406

SQLJ

SET-TRANSACTION-clause

404

SQLJ

statement-clause

403

SQLJ

variable

names
restrictions

321

SQLJ

with-clause

397

sqlj.runtime.ConnectionContext
methods

407

sqlj.runtime.ExecutionContext
methods

407

sqlj.runtime.ForUpdate
methods

407

sqlj.runtime.NamedIterator
methods

407

sqlj.runtime.PositionedIterator
methods

407

sqlj.runtime.ResultSetIterator
methods

407

sqlj.runtime.Scrollable
methods

407

Index

751

SQLJACB

include

file
C/C++

applications

132

SQLMON

include

file
COBOL

applications

176

for

C/C++

applications

132

FORTRAN

applications

196

SQLMONCT

include

file

176

SQLMSG

predefined

variable

498

SQLRDAT

predefined

variable

498

SQLRIDA

predefined

variable

498

SQLRODA

predefined

variable

498

SQLSTATE
codes

issued

by

the

DB2

Universal

JDBC

Driver

434

differences

697

in

CLI

126

standalone

695

SQLSTATE

field

100

SQLSTATE

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLSYSTM

include

file

132

SQLUDF

include

file
C/C++

applications

132

SQLUTBCQ

include

file

176

SQLUTBSQ

include

file

176

SQLUTIL

include

file
C/C++

applications

132

COBOL

applications

176

FORTRAN

applications

196

SQLUV

include

file
C/C++

applications

132

SQLUVEND

include

file

132

SQLVAR

entities
declaring

sufficient

number

115

variable

number,

declaring

112

SQLWARN

structure

100

SQLXA

include

file
C/C++

applications

132

statement

handles
description

126

statement-clause,

SQLJ

403

statements
ACQUIRE,

not

supported

on

DB2

UDB

701

BEGIN

DECLARE

SECTION

27

caching,

WebSphere

529

CALL

USING

DESCRIPTOR

698

CALL,

supported

platforms

698

COMMIT

35

COMMIT

WORK

RELEASE

701

CONNECT

693

CREATE

SEQUENCE

676

DB2

Connect
not

supported

701

supported

701

DECLARE

CURSOR

33

DECLARE,

not

supported

on

DB2

UDB

701

DESCRIBE

701

END

DECLARE

SECTION

27

INCLUDE

33

INCLUDE

SQLCA

31

INCLUDE

SQLDA

33

LABEL

ON,

not

supported

on

DB2

UDB

701

statements

(continued)
preparing

using

minimum

SQLDA

structure

113

RELEASE

SAVEPOINT

639

ROLLBACK
declared

temporary

tables

680

differences

by

platform

693

ending

transactions

36

ROLLBACK

TO

SAVEPOINT

639

SAVEPOINT

639

static

SQL
authorization

48

considerations

104

DB2

Connect

support

691

declaring

host

variables

80

dynamic

SQL
comparison

104

contrast

75

overview

75

performance

76

Perl,

unsupported

489

precompiling,

advantages

71

retrieving

data

78

sample

cursor

program

90

sample

program

76

static

update

programming

example

98

using

host

variables

79

storage
allocating

to

hold

rows

116

allocation

for

unequal

code

pages

618

declaring

sufficient

SQLVAR

entities

112

stored

procedure
retrieving

result

sets

354

stored

procedures
application

logic

consideration

45

calling
JDBC

281

REXX

507

SQLJ

343

character

conversion

608

character

conversion,

EUC

623

Chinese

(Traditional)

code

sets

617

initializing
REXX

variables

507

Japanese

code

sets

617

overview

18

retrieving

multiple

result

sets,

JDBC

297

REXX

applications

507

supported

platforms

698

strings
null-terminated,

C,

CNULREQD

BIND

option

695

Structured

Query

Language

(SQL)
supported

statements
Call

Level

Interface

(CLI)

685

Command

Line

Processor

(CLP)

685

dynamic

SQL

685

SQL

procedural

language

685

structured

types
not

supported

by

DB2

Connect

692

success

codes

31

symbols
substitutions,

C/C++

language

restrictions

149

syntax
character

host

variables

141

declare

section
C/C++

138

COBOL

181

FORTRAN

201

embedded

SQL

statements
avoiding

line

breaks

135

C/C++

135

COBOL

178

comments,

C/C++

135

comments,

COBOL

178

comments,

FORTRAN

199

comments,

REXX

495

FORTRAN

199

substitution

of

white

space

characters

135

embedding

SQL

statements
REXX

495

LOB

indicator

declarations,

REXX

500

SYSIBM.SYSPROCEDURES

catalog

(OS/390)

698

SYSIBM.SYSROUTINES

catalog

(VM/VSE)

698

system

catalog

views
prototyping

utility

39

system

catalogs
host

and

iSeries

environments

698

system

requirements
IBM

0LE

DB

Provider

for

DB2

219

T
tables

check

constraints
data

value

control

41

committing

changes

35

declared

temporary
creating

in

savepoint

640

creating

outside

savepoint

640

fetching

rows,

example

93

generated

columns

669

identity

columns

670

names
resolving

unqualified

69

not

logged

initially,

creating

in

savepoint

640

positioning

cursor

at

end

97

resolving

unqualified

names

69

self-referencing

697

temporary
declared

680

target

partitions
behavior

without

buffered

insert

655

temporary

tables
declared

680

territory

codes
SQLERRMC

field

of

SQLCA

693

territory,

SQLERRMC

field

of

SQLCA

693

test

data
generating

50

752

Programming

Client

Applications

test

environments
partitioned

databases

664

test

tables,

creating

49

test

views,

creating

49

threads
IBM

OLE

DB

Provider

220

IBM

OLE

DB

Provider

for

DB2

219

multiple
application

dependencies

between

contexts

171

code

page

considerations

171

country/region

code

page

considerations

171

database

dependencies

between

contexts

171

potential

problems

171

preventing

deadlocks

between

contexts

172

recommendations

170

UNIX

application

considerations

171

using

in

DB2

applications

169

TIME

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

in

CREATE

TABLE

statement

84

REXX

502

TIMESTAMP

data

type
C/C++,

conversion

162

COBOL

190

description

84

FORTRAN

206

REXX

502

timestamps
when

precompiling

72

tokens
truncation,

SQLCA

structure

101

tools
for

application

development

3

traces
CLI/ODBC/JDBC

460

tracing
DB2

Universal

JDBC

Driver,

example

455

transaction

logs,

buffered

inserts

655

transaction

managers
COM+

646

MTS

646

transaction

processing

monitors
X/Open

XA

Interface

643

transactions
coding

34

committing

work

35

concurrent
potential

problems

634

preventing

deadlocks

635

purpose

633

data

consistency

34

ending
COMMIT

statement

37

CONNECT

RESET

statement

37

ROLLBACK

statement

37

ending

implicitly

37

loosely

coupled

648

savepoints

636

timeout,

with

MTS

and

COM+

648

transactions

(continued)
undoing

changes

with

ROLLBACK

statement

36

transmitting

large

volumes

of

data

682

triggers
after

updates

44

application

logic

consideration

45

before

updates

44

data

relationship

control

43

overview

22

trigraph

sequences,

C/C++

131

troubleshooting
online

information

728

tutorials

728

truncation
host

variables

82

indicator

variables

82

tutorials

727

troubleshooting

and

problem

determination

728

two-phase

commit
updating

multiple

databases

627

typed

parameter

marker

124

U
unequal

code

pages

618

Unicode

(UCS-2)
character

conversion

625

character

conversion

overflow

623

Chinese

(Traditional)

code

sets

614

Japanese

code

sets

614

UDF

(user-defined

function)

considerations

617

unique

constraints
data

value

control

41

unique

key

violation,

buffered

inserts

657

units

of

work

(UOW)
coding

34

completing,

cursor

behavior

89

cursor

considerations

89

remote

627

universal

JDBC

driver
installing

437

updatable

result

set
JDBC

309

updates
to

DB2

tables,

JDBC

279

updating
DB2

Information

Center

717

USAGE

clause

in

COBOL

types

190

user

IDs
two-part

user

IDs

539

user

updatable

catalog

statistics

prototyping

utility

39

user-defined

collating

sequence

696,

703

user-defined

functions

(UDFs)
application

logic

consideration

45

Chinese

(Traditional)

code

sets

617

Japanese

code

sets

617

overview

19

user-defined

types

(UDTs)
application

considerations

20

supported

by

DB2

Connect

692

utility

APIs
include

file

for

C/C++

applications

132

include

files
COBOL

applications

176

FORTRAN

applications

196

V
VARCHAR

data

type
C

or

C++

166

C/C++,

conversion

162

COBOL

190

FORTRAN

206

in

table

columns

84

REXX

502

structured

form,

C/C++

162

VARGRAPHIC

data

type
C/C++,

conversion

162

COBOL

190

FORTRAN

206

list

84

REXX

502

variables
declaring

27

interacting

with

database

manager

27

representing

SQL

objects

28

REXX,

predefined

498

SQLCODE

168,

193,

208

SQLSTATE

168,

193,

208

version

levels
IBM

OLE

DB

Provider

for

DB2

219

views
data

value

control

42

system

catalogs

698

Visual

Basic
applications,

connecting

to

data

source

234

cursor

considerations

234

data

control

support

234

supported

in

DB2

12

Visual

C
supported

in

DB2

12

W
warning

messages
truncation

82

wchar_t

data

type
selecting

157

WCHARTYPE

precompiler

option
data

types

available

with

NOCONVERT

option

162

guidelines

158

Web

applications
tools

for

building

14

WebSphere
accessing

enterprise

data

527

connection

pooling
benefits

528

purpose

527

data

sources

527

statement

caching

529

WebSphere

Studio

15

weight,

definition

597

Index

753

WHENEVER

statement
error

handling

32

Windows
code

pages

604

DB2CODEPAGE

registry

variable

604

with-clause,

SQLJ

397

X
XA

interface
API

restrictions

643

application

linkage

646

CICS

environment

643

COMMIT

statement

643

cursors

declared

WITH

HOLD

643

DISCONNECT

643

multithreaded

application

643

purpose

643

RELEASE

not

supported

643

ROLLBACK

statement

643

savepoints

643

single-threaded

application

643

SQL

CONNECT

643

transaction

processing

characteristics

643

transactions

643

XA

environment

643

XASerialize

643

XML

Extender
overview

16

754

Programming

Client

Applications

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1997

-

2004

755

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

756

Programming

Client

Applications

����

Printed

in

USA

SC09-4826-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

Pr
og

ra
m

m
in

g

C
lie

nt

Ap
pl

ic
at

io
ns

Ve
rs

io
n

8.
2

	Contents
	About this book
	Part 1. Introduction
	Chapter 1. Overview of Supported Programming Interfaces
	DB2 Universal Database tools for developing applications
	IBM DB2 Development Add-In overview
	Supported Programming Interfaces
	DB2 Supported Programming Interfaces
	DB2 Application Programming Interfaces
	Embedded SQL
	DB2 Call Level Interface
	DB2 CLI versus Embedded Dynamic SQL
	Java Database Connectivity (JDBC)
	Embedded SQL for Java (SQLJ)
	ActiveX Data Objects and Remote Data Objects
	Perl DBI
	ODBC End-User Tools
	DB2 .NET Data Provider

	Web Applications
	Tools for Building Web Applications
	WebSphere Studio
	XML Extender
	MQSeries Enablement
	Net.Data

	Programming Features
	DB2 Programming Features
	DB2 Stored Procedures
	DB2 User-Defined Functions and Methods
	Development Center
	User-Defined Types (UDTs) and Large Objects (LOBs)
	OLE Automation Routines
	OLE DB Table Functions
	DB2 Triggers

	Chapter 2. Coding a DB2 Application
	Prerequisites for Programming
	DB2 Application Coding Overview
	Programming a Standalone Application
	Creating the Declaration Section of a Standalone Application
	Declaring Variables That Interact with the Database Manager
	Declaring Variables That Represent SQL Objects
	Declaring Host Variables with the db2dclgn Declaration Generator
	Relating Host Variables to an SQL Statement
	Declaring the SQLCA for Error Handling
	Error Handling Using the WHENEVER Statement
	Adding Non-Executable Statements to an Application
	Connecting an Application to a Database
	Coding Transactions
	Ending a Transaction with the COMMIT Statement
	Ending a Transaction with the ROLLBACK Statement
	Ending an Application Program
	Implicit Ending of a Transaction in a Standalone Application
	Application Pseudocode Framework
	Facilities for Prototyping SQL Statements
	Administrative APIs in Embedded SQL or DB2 CLI Programs

	Controlling Data Values and Relationships
	Data Value Control
	Data Value Control Using Data Types
	Data Value Control Using Unique Constraints
	Data Value Control Using Table Check Constraints
	Data Value Control Using Referential Integrity Constraints
	Data Value Control Using Views with Check Option
	Data Value Control Using Application Logic and Program Variable Types
	Data Relationship Control
	Data Relationship Control Using Referential Integrity Constraints
	Data Relationship Control Using Triggers
	Data Relationship Control Using Before Triggers
	Data Relationship Control Using After Triggers
	Data Relationship Control Using Application Logic
	Application Logic at the Server

	Authorization Considerations for SQL and APIs
	Authorization Considerations for Embedded SQL
	Authorization Considerations for Dynamic SQL
	Authorization Considerations for Static SQL
	Authorization Considerations for APIs

	Testing the Application
	Setting up the Test Environment for an Application
	Setting up a Testing Environment
	Creating Test Tables and Views
	Generating Test Data

	Debugging and Optimizing an Application

	Part 2. Embedded SQL
	Chapter 3. Embedded SQL Overview
	Embedding SQL Statements in a Host Language
	Source File Creation and Preparation
	Packages, binding, and embedded SQL
	Package Creation for Embedded SQL
	Precompilation of Source Files Containing Embedded SQL
	Source File Requirements for Embedded SQL Applications
	Compilation and Linkage of Source Files Containing Embedded SQL
	Package Creation Using the BIND Command
	Package Versioning
	Effect of Special Registers on Bound Dynamic SQL
	CURRENT PACKAGE PATH special register for package schemas
	Resolution of Unqualified Table Names
	Additional Considerations when Binding
	Advantages of Deferred Binding
	Bind File Contents
	Application, Bind File, and Package Relationships
	Precompiler-Generated Timestamps
	Package Rebinding

	Chapter 4. Writing Static SQL Programs
	Characteristics and Reasons for Using Static SQL
	Advantages of Static SQL
	Example Static SQL Program
	Data Retrieval in Static SQL Programs
	Effects of REOPT on static SQL
	Host Variables in Static SQL Programs
	Host Variables in Static SQL
	Declaring Host Variables in Static SQL Programs
	Referencing Host Variables in Static SQL Programs

	Indicator Variables in Static SQL Programs
	Including Indicator Variables in Static SQL Programs
	Data Types for Indicator Variables in Static SQL Programs
	Example of an Indicator Variable in a Static SQL Program

	Selecting Multiple Rows Using a Cursor
	Selecting Multiple Rows Using a Cursor
	Declaring and Using Cursors in Static SQL Programs
	Cursor Types and Unit of Work Considerations
	Example of a Cursor in a Static SQL Program

	Manipulating Retrieved Data
	Updating and Deleting Retrieved Data in Static SQL Programs
	Cursor Types
	Example of a Fetch in a Static SQL Program

	Scrolling Through and Manipulating Retrieved Data
	Scrolling Through Previously Retrieved Data
	Keeping a Copy of the Data
	Retrieving Data a Second Time
	Row Order Differences Between the First and Second Result Table
	Positioning a Cursor at the End of a Table
	Updating Previously Retrieved Data
	Example of an Insert, Update, and Delete in a Static SQL Program

	Diagnostic Information
	Return Codes
	Error Information in the SQLCODE, SQLSTATE, and SQLWARN Fields
	Token Truncation in the SQLCA Structure
	Exception, Signal, and Interrupt Handler Considerations
	Exit List Routine Considerations
	Error Message Retrieval in an Application

	Chapter 5. Writing Dynamic SQL Programs
	Characteristics and Reasons for Using Dynamic SQL
	Reasons for Using Dynamic SQL
	Dynamic SQL Support Statements
	Dynamic SQL Versus Static SQL

	Cursors in Dynamic SQL Programs
	Declaring and Using Cursors in Dynamic SQL Programs
	Example of a Cursor in a Dynamic SQL Program

	Effects of REOPT on dynamic SQL
	Effect of DYNAMICRULES bind option on dynamic SQL
	The SQLDA in Dynamic SQL Programs
	Host Variables and the SQLDA in Dynamic SQL Programs
	Declaring the SQLDA Structure in a Dynamic SQL Program
	Preparing a Statement in Dynamic SQL Using the Minimum SQLDA Structure
	Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL Program
	Describing a SELECT Statement in a Dynamic SQL Program
	Acquiring Storage to Hold a Row
	Processing the Cursor in a Dynamic SQL Program
	Allocating an SQLDA Structure for a Dynamic SQL Program
	Transferring Data in a Dynamic SQL Program Using an SQLDA Structure
	Processing Interactive SQL Statements in Dynamic SQL Programs
	Determination of Statement Type in Dynamic SQL Programs
	Processing Variable-List SELECT Statements in Dynamic SQL Programs

	Saving SQL Requests from End Users
	Parameter Markers in Dynamic SQL Programs
	Providing Variable Input to Dynamic SQL Using Parameter Markers
	Example of Parameter Markers in a Dynamic SQL Program

	DB2 Call Level Interface (CLI) Compared to Dynamic SQL
	DB2 Call Level Interface (CLI) versus embedded dynamic SQL
	Advantages of DB2 CLI over embedded SQL
	When to use DB2 CLI or embedded SQL

	Chapter 6. Programming in C and C++
	Programming Considerations for C/C++
	Trigraph Sequences for C and C++
	Input and Output Files for C and C++
	Include Files
	Include Files for C and C++
	Include Files in C and C++

	Embedded SQL Statements in C and C++
	Host Variables in C and C++
	Host Variables in C and C++
	Host Variable Names in C and C++
	Host Variable Declarations in C and C++
	Syntax for Numeric Host Variables in C and C++
	Syntax for Fixed and Null-Terminated Character Host Variables in C and C++
	Syntax for Variable-Length Character Host Variables in C or C++
	Indicator Variables in C and C++
	Graphic Host Variables in C and C++
	Syntax for Graphic Declaration of Single-Graphic and Null-Terminated Graphic Forms in C and C++
	Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C or C++
	Syntax for Large Object (LOB) Host Variables in C or C++
	Syntax for Large Object (LOB) Locator Host Variables in C or C++
	Syntax for File Reference Host Variable Declarations in C or C++
	Host Variable Initialization in C and C++
	C Macro Expansion
	Host Structure Support in C and C++
	Indicator Tables in C and C++
	Null-Terminated Strings in C and C++
	Host Variables Used as Pointer Data Types in C and C++
	Class Data Members Used as Host Variables in C and C++
	Qualification and Member Operators in C and C++
	Multi-Byte Character Encoding in C and C++
	wchar_t and sqldbchar Data Types in C and C++
	WCHARTYPE Precompiler Option in C and C++
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and C++
	SQL Declare Section with Host Variables for C and C++

	Data Type Considerations for C and C++
	Supported SQL Data Types in C and C++
	FOR BIT DATA in C and C++
	C and C++ Data Types for Procedures, Functions, and Methods

	SQLSTATE and SQLCODE Variables in C and C++

	Chapter 7. Multiple-Thread Database Access for C and C++ Applications
	Purpose of Multiple-Thread Database Access
	Recommendations for Using Multiple Threads
	Code Page and Country/Region Code Considerations for Multithreaded UNIX Applications
	Troubleshooting Multithreaded Applications
	Potential Problems with Multiple Threads
	Deadlock Prevention for Multiple Contexts

	Chapter 8. Programming in COBOL
	Programming Considerations for COBOL
	Language Restrictions in COBOL
	Multiple-Thread Database Access in COBOL
	Input and Output Files for COBOL
	Include Files for COBOL
	Embedded SQL Statements in COBOL
	Host Variables in COBOL
	Host Variables in COBOL
	Host Variable Names in COBOL
	Host Variable Declarations in COBOL
	Syntax for Numeric Host Variables in COBOL
	Syntax for Fixed-Length Character Host Variables in COBOL
	Syntax for Fixed-Length Graphic Host Variables in COBOL
	Indicator Variables in COBOL
	Syntax for LOB Host Variables in COBOL
	Syntax for LOB Locator Host Variables in COBOL
	Syntax for File Reference Host Variables in COBOL
	Host Structure Support in COBOL
	Indicator Tables in COBOL
	REDEFINES in COBOL Group Data Items
	SQL Declare Section with Host Variables for COBOL

	Data Type Considerations for COBOL
	Supported SQL Data Types in COBOL
	BINARY/COMP-4 COBOL Data Types
	FOR BIT DATA in COBOL

	SQLSTATE and SQLCODE Variables in COBOL
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations for COBOL
	Object Oriented COBOL

	Chapter 9. Programming in FORTRAN
	Programming Considerations for FORTRAN
	Language Restrictions in FORTRAN
	Call by Reference in FORTRAN
	Debug and Comment Lines in FORTRAN
	Precompilation Considerations for FORTRAN
	Multiple-Thread Database Access in FORTRAN

	Input and Output Files for FORTRAN
	Include Files
	Include Files for FORTRAN
	Include Files in FORTRAN Applications

	Embedded SQL Statements in FORTRAN
	Host Variables in FORTRAN
	Host Variables in FORTRAN
	Host Variable Names in FORTRAN
	Host Variable Declarations in FORTRAN
	Syntax for Numeric Host Variables in FORTRAN
	Syntax for Character Host Variables in FORTRAN
	Indicator Variables in FORTRAN
	Syntax for Large Object (LOB) Host Variables in FORTRAN
	Syntax for Large Object (LOB) Locator Host Variables in FORTRAN
	Syntax for File Reference Host Variables in FORTRAN
	SQL Declare Section with Host Variables for FORTRAN

	Supported SQL Data Types in FORTRAN
	Considerations for Multi-Byte Character Sets in FORTRAN
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations for FORTRAN
	SQLSTATE and SQLCODE Variables in FORTRAN

	Part 3. ADO.NET, OLE DB, and ODBC
	Chapter 10. DB2 .NET Data Provider
	DB2 .NET Data Provider overview
	DB2 .NET Data Provider system requirements
	Programming applications to use the DB2 .NET Data Provider
	Connecting to a database from an application using the DB2 .NET Data Provider
	Executing SQL statements from an application using the DB2 .NET Data Provider
	Reading result sets from an application using the DB2 .NET Data Provider
	Calling stored procedures from an application using the DB2 .NET Data Provider
	Supported SQL data types for the DB2 .NET Data Provider

	Chapter 11. IBM OLE DB Provider for DB2
	Purpose of the IBM OLE DB Provider for DB2
	Application Types Supported by the IBM OLE DB Provider for DB2
	OLE DB Services
	Thread Model Supported by IBM OLE DB Provider
	Large Object Manipulation with the IBM OLE DB Provider
	Schema Rowsets Supported by the IBM OLE DB Provider
	OLE DB Services Automatically Enabled by IBM OLE DB Provider

	Data Services
	Supported Cursor Modes for the IBM OLE DB Provider
	Data Type Mappings between DB2 and OLE DB
	Data Conversion for Setting Data from OLE DB Types to DB2 Types
	Data Conversion for Setting Data from DB2 Types to OLE DB Types

	IBM OLE DB Provider Restrictions
	IBM OLE DB Provider Support for OLE DB Components and Interfaces
	IBM OLE DB Provider support for OLE DB properties
	Connections to Data Sources Using IBM OLE DB Provider
	ADO Applications
	ADO Connection String Keywords
	Connections to Data Sources with Visual Basic ADO Applications
	Updatable Scrollable Cursors in ADO Applications
	Limitations for ADO Applications
	IBM OLE DB Provider Support for ADO Methods and Properties

	C and C++ Applications
	Compilation and Linking of C/C++ Applications and the IBM OLE DB Provider
	Connections to Data Sources in C/C++ Applications using the IBM OLE DB Provider

	MTS and COM+ Distributed Transactions
	MTS and COM+ Distributed Transaction Support and the IBM OLE DB Provider
	Enablement of MTS Support in DB2 Universal Database for C/C++ Applications

	Chapter 12. OLE DB .NET Data Provider
	OLE DB .NET Data Provider
	OLE DB .NET Data Provider restrictions
	Connection pooling in OLE DB .NET Data Provider applications
	Time columns in OLE DB .NET Data Provider applications
	ADORecordset objects in OLE DB .NET Data Provider applications

	Chapter 13. ODBC .NET Data Provider
	ODBC .NET Data Provider
	ODBC .NET Data Provider restrictions

	Part 4. Java
	Chapter 14. Introduction to Java application support
	Chapter 15. JDBC application programming
	Basic JDBC application programming concepts
	Basic steps in writing a JDBC application
	Java packages for JDBC support
	Variables in JDBC applications
	How JDBC applications connect to a data source
	How DB2 applications connect to a data source using the DriverManager interface with the DB2 JDBC Type 2 Driver
	Connecting to a data source using the DriverManager interface with the DB2 Universal JDBC Driver
	Connecting to a data source using the DataSource interface
	Setting the isolation level for a JDBC transaction
	JDBC connection objects
	Committing or rolling back JDBC transactions
	Closing a connection to a JDBC data source
	JDBC interfaces for executing SQL
	Using the Statement.executeUpdate method to create and modify DB2 objects
	Using the Statement.executeQuery method to retrieve data from DB2 tables
	Using the PreparedStatement.executeUpdate method to update data in DB2 tables
	Using the PreparedStatement.executeQuery method to retrieve data from DB2
	Using CallableStatement methods to call stored procedures
	Handling an SQLException under the DB2 Universal JDBC Driver
	Handling an SQLException under the DB2 JDBC Type 2 Driver
	Handling an SQLWarning under the DB2 Universal JDBC Driver
	Handling an SQLWarning under the DB2 JDBC Type 2 Driver

	Advanced JDBC application programming concepts
	LOBs in JDBC applications with the DB2 Universal JDBC Driver
	Java data types for retrieving or updating LOB column data in JDBC applications
	ROWIDs in JDBC with the DB2 Universal JDBC Driver
	Distinct types in JDBC applications
	Savepoints in JDBC applications
	Retrieving identity column values in JDBC applications
	Retrieving multiple result sets from a stored procedure in a JDBC application
	Using ResultSetMetaData to learn about a ResultSet
	Using DatabaseMetaData to learn about a data source
	Using ParameterMetaData to learn about parameters in a PreparedStatement
	Making batch updates in JDBC applications
	Retrieving information from a BatchUpdateException
	Characteristics of a JDBC ResultSet under the DB2 Universal JDBC Driver
	Specifying updatability, scrollability, and holdability for ResultSets in JDBC applications
	Creating and deploying DataSource objects
	DB2 Universal JDBC Driver client reroute support
	Providing extended client information to the DB2 server with the DB2 Universal JDBC Driver

	Chapter 16. SQLJ application programming
	Basic SQLJ application programming concepts
	Basic steps in writing an SQLJ application
	Java packages for SQLJ support
	Variables in SQLJ applications
	Comments in an SQLJ application
	Connecting to a data source using SQLJ
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions
	Savepoints in SQLJ applications
	Closing the connection to a data source in an SQLJ application
	SQL statements in an SQLJ application
	Creating and modifying DB2 objects in an SQLJ application
	How an SQLJ application retrieves data from DB2 tables
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Calling stored procedures in an SQLJ application
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Advanced SQLJ application programming concepts
	Using SQLJ and JDBC in the same application
	LOBs in SQLJ applications with the DB2 Universal JDBC Driver
	Java data types for retrieving or updating LOB column data in SQLJ applications
	ROWIDs in SQLJ with the DB2 Universal JDBC Driver
	Distinct types in SQLJ applications
	Controlling the execution of SQL statements in SQLJ
	Retrieving multiple result sets from a stored procedure in an SQLJ application
	Making batch updates in SQLJ applications
	Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Chapter 17. JDBC and SQLJ reference
	Java, JDBC, and SQL data types
	Properties for the DB2 Universal JDBC Driver
	Comparison of driver support for JDBC APIs
	SQLJ statement reference
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	Selected sqlj.runtime classes and interfaces
	DB2 Universal JDBC Driver reference information
	Summary of DB2 Universal JDBC Driver extensions to JDBC
	JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers
	SQLJ differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers
	Error codes issued by the DB2 Universal JDBC Driver
	SQLSTATEs issued by the DB2 Universal JDBC Driver

	Chapter 18. Installing the JDBC drivers
	Installing the DB2 Universal JDBC Driver

	Chapter 19. JDBC and SQLJ security
	Security under the DB2 JDBC Type 2 Driver
	Security under the DB2 Universal JDBC Driver
	User ID and password security under the DB2 Universal JDBC Driver
	User ID-only security under the DB2 Universal JDBC Driver
	Encrypted user ID security or encrypted password security under the DB2 Universal JDBC Driver
	Kerberos security under the DB2 Universal JDBC Driver

	Chapter 20. Diagnosing JDBC and SQLJ problems
	Diagnosing JDBC and SQLJ problems under the DB2 Universal JDBC Driver
	JDBC and SQLJ problem diagnosis with the DB2 Universal JDBC Driver
	Example of tracing under the DB2 Universal JDBC Driver

	Diagnosing JDBC and SQLJ problems under the DB2 JDBC Type 2 Driver
	CLI/ODBC/JDBC trace facility
	CLI and JDBC trace files

	Chapter 21. Java 2 Platform Enterprise Edition
	Java 2 Platform Enterprise Edition (J2EE) Overview
	Java 2 Platform Enterprise Edition
	Java 2 Platform Enterprise Edition Containers
	Java 2 Platform Enterprise Edition Server
	Java 2 Enterprise Edition Database Requirements
	Java Naming and Directory Interface (JNDI)
	Java Transaction Management
	Example of a distributed transaction that uses JTA methods
	Enterprise Java Beans

	Part 5. Other Programming Interfaces
	Chapter 22. Programming in Perl
	Programming Considerations for Perl
	Perl Restrictions
	Multiple-Thread Database Access in Perl
	Database Connections in Perl
	Fetching Results in Perl
	Parameter Markers in Perl
	SQLSTATE and SQLCODE Variables in Perl
	Example of a Perl Program

	Chapter 23. Programming in REXX
	Programming Considerations for REXX
	Language Restrictions for REXX
	Language Restrictions for REXX
	Registering SQLEXEC, SQLDBS and SQLDB2 in REXX
	Multiple-Thread Database Access in REXX
	Japanese or Traditional Chinese EUC Considerations for REXX

	Embedded SQL in REXX Applications
	Host Variables in REXX
	Host Variables in REXX
	Host Variable Names in REXX
	Host Variable References in REXX
	Indicator Variables in REXX
	Predefined REXX Variables
	LOB Host Variables in REXX
	Syntax for LOB Locator Declarations in REXX
	Syntax for LOB File Reference Declarations in REXX
	LOB Host Variable Clearing in REXX
	Cursors in REXX

	Supported SQL Data Types in REXX
	Execution Requirements for REXX
	Building and Running REXX Applications
	Bind Files for REXX

	API Syntax for REXX
	Calling Stored Procedures from REXX
	Stored Procedures in REXX
	Stored Procedure Calls in REXX
	Client Considerations for Calling Stored Procedures in REXX
	Server Considerations for Calling Stored Procedures in REXX
	Retrieval of Precision and SCALE Values from SQLDA Decimal Fields

	Chapter 24. Writing Applications Using DB2 WebSphere MQ Functions
	WebSphere MQ Functional Overview
	WebSphere MQ Messaging
	Sending Messages with WebSphere MQ Functions
	Retrieving Messages with WebSphere MQ Functions
	WebSphere MQ Application-to-application Connectivity
	Request/Reply Communications with WebSphere MQ Functions
	Publish/Subscribe with WebSphere MQ Functions

	Chapter 25. WebSphere
	Connections to Enterprise Data
	WebSphere Connection Pooling and Data Sources
	Benefits of WebSphere Connection Pooling
	Statement Caching in WebSphere

	Part 6. Security Plug-ins
	Chapter 26. Security plug-ins
	Security plug-ins
	Security plug-in library locations
	Security plug-in naming conventions
	Security plug-in support for two-part user IDs
	32-bit and 64-bit considerations for security plug-ins
	Security plug-in problem determination
	Deploying a group retrieval plug-in
	Deploying a user ID/password plug-in
	Deploying a GSS-API plug-in
	Deploying a Kerberos plug-in

	Chapter 27. Developing security plug-ins
	How DB2 loads security plug-ins
	Restrictions on security plug-in libraries
	Return codes for security plug-ins
	Error messages for security plug-ins
	Calling sequences for the security plug-in APIs

	Chapter 28. Security plug-in APIs
	Security plug-in APIs
	Group plug-in APIs
	APIs for group retrieval plug-ins
	db2secGroupPluginInit - Initialize group plug-in
	db2secPluginTerm - Clean up group plug-in resources
	db2secGetGroupsForUser - Get list of groups for user
	db2secDoesGroupExist - Check if group exists
	db2secFreeGroupListMemory - Free group list memory
	db2secFreeErrormsg - Free error message memory

	User authentication plug-in APIs
	APIs for user ID/password authentication plug-in
	db2secClientAuthPluginInit - Initialize client authentication plug-in
	db2secClientAuthPluginTerm - Clean up client authentication plug-in resources
	db2secRemapUserid - Remap user ID and password
	db2secGetDefaultLoginContext - Get default login context
	db2secGenerateInitialCred - Generate initial credentials
	db2secValidatePassword - Validate password
	db2secProcessServerPrincipalName - Process service principal name returned from server
	db2secFreeToken - Free memory held by token
	db2secFreeInitInfo - Clean up resources held by db2secGenerateInitialCred()
	db2secServerAuthPluginInit - Initialize server authentication plug-in
	db2secServerAuthPluginTerm - Clean up server authentication plug-in resources
	db2secGetAuthIDs - Get authentication IDs
	db2secDoesAuthIDExist - Check if authentication ID exists

	GSS-API plug-in APIs
	Required APIs and Definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Security plug-in API versioning

	Part 7. General DB2 Application Concepts
	Chapter 29. National Language Support
	Collating Sequence Overview
	Collating sequences
	Character comparisons based on collating sequences
	Case Independent Comparisons Using the TRANSLATE Function
	Differences Between EBCDIC and ASCII Collating Sequence Sort Orders
	Collating sequence specified when database is created
	Sample Collating Sequences

	Code Pages and Locales
	Derivation of code page values
	Derivation of Locales in Application Programs
	How DB2 Derives Locales

	Application Considerations
	National Language Support and Application Development Considerations
	National Language Support and SQL Statements
	Remote routines
	Package Name Considerations in Mixed Code Page Environments
	Active Code Page for Precompilation and Binding
	Active Code Page for Application Execution
	Character conversion between different code pages
	When code page conversion occurs
	Character Substitutions During Code Page Conversions
	Supported Code Page Conversions
	Code Page Conversion Expansion Factor

	DBCS Character Sets
	Extended UNIX Code (EUC) Character Sets
	CLI, ODBC, JDBC, and SQLJ Programs in a DBCS Environment
	Considerations for Japanese and Traditional Chinese EUC and UCS-2 Code Sets
	Japanese and Traditional Chinese EUC and UCS-2 Code Set Considerations
	Mixed EUC and Double-Byte Client and Database Considerations
	Character Conversion Considerations for Traditional Chinese Users
	Graphic Data in Japanese or Traditional Chinese EUC Applications
	Application Development in Unequal Code Page Situations
	Client-Based Parameter Validation in a Mixed Code Set Environment
	DESCRIBE Statement in Mixed Code Set Environments
	Fixed-Length and Variable-Length Data in Mixed Code Set Environments
	Code Page Conversion String-Length Overflow in Mixed Code Set Environments
	Applications Connected to Unicode Databases

	Chapter 30. Managing Transactions
	Remote Unit of Work
	Multisite Update Considerations
	Multisite Update
	When to Use Multisite Update
	SQL Statements in Multisite Update Applications
	Precompilation of Multisite Update Applications
	Configuration Parameter Considerations for Multisite Update Applications

	Accessing Host, AS/400, or iSeries Servers
	Concurrent Transactions
	Concurrent Transactions
	Potential Problems with Concurrent Transactions
	Deadlock Prevention for Concurrent Transactions

	Savepoints and Transactions
	Transaction management with savepoints
	Application Savepoints Compared to Compound SQL Blocks
	SQL Statements for creating and controlling savepoints
	Restrictions on Savepoint Usage
	Savepoints and Data Definition Language (DDL)
	Nesting savepoints
	Savepoints and Buffered Inserts
	Savepoints and Cursor Blocking
	Savepoints and XA-Compliant Transaction Managers

	X/Open XA Interface Programming Considerations
	Application Linkage and the X/Open XA Interface
	MTS and COM+ Transaction Management
	Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+) as transaction manager
	Loosely coupled support with Microsoft Component Services (COM+)
	Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+) transaction timeout
	ODBC and ADO connection pooling with Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+)

	Chapter 31. Programming Considerations for Partitioned Database Environments
	FOR READ ONLY Cursors in a Partitioned Database Environment
	Directed DSS and Local Bypass
	Directed DSS and Local Bypass in Partitioned Database Environments
	Directed DSS in Partitioned Database Environments
	Local Bypass in Partitioned Database Environments

	Buffered Inserts
	Buffered Inserts in Partitioned Database Environments
	Considerations for Using Buffered Inserts
	Restrictions on Using Buffered Inserts

	Example of Extracting a Large Volume of Data in a Partitioned Database Environment
	Creating a Simulated Partitioned Database Environment
	Troubleshooting
	Error-Handling Considerations in Partitioned Database Environments
	Severe Errors in Partitioned Database Environments
	Merged Multiple SQLCA Structures
	Partition That Returns the Error
	Looping or Suspended Applications

	Chapter 32. Common DB2 Application Techniques
	Running applications from the Windows Local System Account
	Generated Columns
	Identity Columns
	Retrieval of result sets from an SQL data change statement
	Intermediate result tables
	Target tables and views
	Result set sorting based on INPUT SEQUENCE

	Retrieval of result sets from SQL data change statements using cursors
	Include columns
	Include columns in INSERT operations
	Include columns in UPDATE and DELETE operations

	Searched UPDATE, INSERT, DELETE, and MERGE operations against fullselects
	Sequential Values and Sequence Objects
	Generation of Sequential Values
	Management of Sequence Behavior
	Application Performance and Sequence Objects
	Sequence Objects Compared to Identity Columns

	Declared Temporary Tables and Application Performance
	Transmission of Large Volumes of Data Across a Network

	Part 8. Appendixes
	Appendix A. Supported SQL Statements
	Appendix B. Security plug-in deployment limitations
	Appendix C. Programming in a Host or iSeries Environment
	Applications in Host or iSeries Environments
	Data Definition Language in Host and iSeries Environments
	Data Manipulation Language in Host and iSeries Environments
	Data Control Language in Host and iSeries Environments
	Database Connection Management with DB2 Connect
	Processing of Interrupt Requests
	Package Attributes, PREP, and BIND
	Package Attribute Differences among IBM Relational Database Systems
	CNULREQD BIND Option for C Null-Terminated Strings
	Standalone SQLCODE and SQLSTATE Variables
	Isolation Levels Supported by DB2 Connect

	User-Defined Sort Orders
	Referential Integrity Differences among IBM Relational Database Systems
	Locking and Application Portability
	SQLCODE and SQLSTATE Differences among IBM Relational Database Systems
	System Catalog Differences among IBM Relational Database Systems
	Numeric Conversion Overflows on Retrieval Assignments
	Stored Procedures in Host or iSeries Environments
	DB2 Connect Support for Compound SQL
	Multisite Update with DB2 Connect
	Host and iSeries Server SQL Statements Supported by DB2 Connect
	Host and iSeries Server SQL Statements Rejected by DB2 Connect

	Appendix D. Simulation of EBCDIC Binary Collation
	Appendix E. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix F. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

