IBM~ DB2 Universal Database

Application Development Guide:
Programming Client Applications

Version 8.2

<|lI!

SC09-4826-01

IBM~ DB2 Universal Database

Application Development Guide:
Programming Client Applications

Version 8.2

<|lI!

SC09-4826-01

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at [www.ibm.com /shop /publications/order]

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
[www.ibm.com /planetwide]

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997 - 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book Xiii
Part 1. Introduction.1
Chapter 1. Overview of Supported
Programming Interfaces. .3
DB2 Universal Database tools for developmg
applications. . .3
IBM DB2 Development Add In overview . .4
Supported Programming Interfaces . . .5
DB2 Supported Programming Interfaces . .5
DB2 Application Programming Interfaces . .7
Embedded SQL . . .7
DB2 Call Level Interface .. .9
DB2 CLI versus Embedded Dynamlc SQL . . 10
Java Database Connectivity (JDBC) .11
Embedded SQL for Java (SQLJ). .12
ActiveX Data Objects and Remote Data Ob]ects 12
Perl DBI P I
ODBC End-User Tools .14
DB2 .NET Data Provider . .14
Web Applications . .14
Tools for Building Web Apphcatlons . .14
WebSphere Studio . . .15
XML Extender . . 16
MQSeries Enablement . . 16
Net.Data . 16
Programming Features . .17
DB2 Programming Features . .17
DB2 Stored Procedures . .18
DB2 User-Defined Functions and Methods . . 19
Development Center . .19
User-Defined Types (UDTs) and Large Ob]ects
(LOBs) . . .20
OLE Automation Routmes .21
OLE DB Table Functions . .22
DB2 Triggers . .22
Chapter 2. Coding a DB2 Appllcatlon 25
Prerequisites for Programming . .25
DB2 Application Coding Overview . . 26
Programming a Standalone Application . . 26
Creating the Declaration Section of a Standalone
Application . .27
Declaring Variables That Interact w1th the
Database Manager . . .27
Declaring Variables That Represent SQL Ob]ects 28
Declaring Host Variables with the db2dclgn
Declaration Generator . .. 29
Relating Host Variables to an SQL Statement . .30
Declaring the SQLCA for Error Handling .31
Error Handling Using the WHENEVER
Statement . e .32

© Copyright IBM Corp. 1997 - 2004

Adding Non-Executable Statements to an

Application . 33
Connecting an Apphcatlon to a Database .33
Coding Transactions . 34
Ending a Transaction with the COMMIT
Statement . . . 35
Ending a Transactron w1th the ROLLBACK
Statement . . . 36
Ending an Apphcatlon Program .37
Implicit Ending of a Transaction in a Standalone
Application . . 37
Application Pseudocode Framework . 38
Facilities for Prototyping SQL Statements . 39
Administrative APIs in Embedded SQL or DB2
CLI Programs . . 40
Controlling Data Values and Relatlonshlps . . 40
Data Value Control . . 40
Data Value Control Using Data Types .41
Data Value Control Using Unique Constraints. . 41
Data Value Control Using Table Check
Constraints .41
Data Value Control Usmg Referent1a1 Integrlty
Constraints .o .4
Data Value Control Usmg Vlews w1th Check
Option . .42
Data Value Control Usmg Apphcatlon Logrc and
Program Variable Types L. 42
Data Relationship Control .42
Data Relationship Control Using Referent1a1
Integrity Constraints . .43
Data Relationship Control Usmg Trlggers . 43
Data Relationship Control Using Before Triggers 44
Data Relationship Control Using After Triggers 44
Data Relationship Control Usmg Apphcatron
Logic . 44
Application Loglc at the Server . .45
Authorization Considerations for SQL and APIs . .46
Authorization Considerations for Embedded SQL 46
Authorization Considerations for Dynamic SQL 47
Authorization Considerations for Static SQL . 48
Authorization Considerations for APIs . 48
Testing the Application . 48
Setting up the Test Env1ronment for an
Application . 49
Debugging and Opt1m1zmg an Apphcatlon . 52
Part2. Embedded SQL. 53
Chapter 3. Embedded SQL Overview 55
Embedding SQL Statements in a Host Language . .55
Source File Creation and Preparation . . 57
Packages, binding, and embedded SQL . . 59
Package Creation for Embedded SQL. . 59
Precompilation of Source Files Containing
Embedded SQL . . 61
iii

Source File Requirements for Embedded SQL

Applications62
Compilation and L1nkage of Source Flles

Containing Embedded SQL 63
Package Creation Using the BIND Command . 64
Package Versioning. . . . 65
Effect of Special Registers on Bound Dynamlc

sQL. 66
CURRENT PACKAGE PATH spec1a1 reglster for
package schemas 66
Resolution of Unqualified Table Names N
Additional Considerations when Binding . . . 70
Advantages of Deferred Binding71
Bind File Contents71
Application, Bind File, and Package Relatlonshlps 71
Precompiler-Generated Timestamps72
Package Rebinding73

Chapter 4. Writing Static SQL

Programs 75
Characteristics and Reasons for Usmg Stat1c SQL .75
Advantages of StaticSQL.76
Example Static SQL Program76
Data Retrieval in Static SQL Programs78
Effects of REOPT on staticSQL.78
Host Variables in Static SQL Programs79

Host Variables in Static SQL.79

Declaring Host Variables in Static SQL Programs 80
Referencing Host Variables in Static SQL

Programs . . .81
Indicator Varlables in Statlc SQL Programs R A
Including Indicator Variables in Static SQL
Programs . . . 82
Data Types for Indlcator Varlables in Statlc SQL
Programs . . . 84
Example of an Indlcator Varlable ina Statlc SQL
Program86
Selecting Multiple Rows Usmg a Cursor . 74
Selecting Multiple Rows Using a Cursor. . . . 87
Declaring and Using Cursors in Static SQL
Programs . . . 88

Cursor Types and Unlt of Work Con51derat10ns 89
Example of a Cursor in a Static SQL Program . .9

Manipulating Retrieved Data92
Updating and Deleting Retrieved Data in Statlc
SQL Programs92
Cursor Types. . . .92
Example of a Fetch in a Statlc SQL Program . .93

Scrolling Through and Manipulating Retrieved Data 94
Scrolling Through Previously Retrieved Data . . 94

Keeping a Copy of the Data.95
Retrieving Data a Second Time 95
Row Order Differences Between the Flrst and
Second Result Table 9%
Positioning a Cursor at the End of a Table .. .97
Updating Previously Retrieved Data97
Example of an Insert, Update, and Delete in a
Static SQL Program.98
Diagnostic Information99
Return Codes.9

iv Programming Client Applications

Error Information in the SQLCODE, SQLSTATE,

and SQLWARN Fields . 100
Token Truncation in the SQLCA Structure . 101
Exception, Signal, and Interrupt Handler
Considerations . . . 101
Exit List Routine Consrderatrons . . 102
Error Message Retrieval in an Apphcatlon . 102
Chapter 5. Writing Dynamic SQL
Programs 103
Characteristics and Reasons for Usmg Dynamic
SQL . 103
Reasons for Using Dynamic SQL . . 103
Dynamic SQL Support Statements . 103
Dynamic SQL Versus Static SQL . . 104
Cursors in Dynamic SQL Programs . . 106
Declaring and Using Cursors in Dynamlc SQL
Programs. .. . 106
Example of a Cursor in a Dynamlc SQL
Program . . . 107
Effects of REOPT on dynam1c SQL . . 109
Effect of DYNAMICRULES bind option on
dynamic SQL .o . . 109
The SQLDA in Dynamic SQL Programs . 111
Host Variables and the SQLDA in Dynamlc SQL
Programs . . 111
Declaring the SQLDA Structure ina Dynamlc
SQL Program . 112
Preparing a Statement in Dynamlc SQL Usmg
the Minimum SQLDA Structure . . 113
Allocating an SQLDA with Sufficient SQLVAR
Entries for a Dynamic SQL Program . . 115
Describing a SELECT Statement in a Dynamlc
SQL Program . . . 115
Acquiring Storage to Hold a Row . . 116
Processing the Cursor in a Dynamic SQL
Program . . 117
Allocating an SQLDA Structure for a Dynamlc
SQL Program . 117
Transferring Data in a Dynamlc SQL Program
Using an SQLDA Structure . . 121
Processing Interactive SQL Statements in
Dynamic SQL Programs . . 122
Determination of Statement Type in Dynamlc
SQL Programs . . . 122
Processing Variable-List SELECT Statements in
Dynamic SQL Programs 123
Saving SQL Requests from End Users . .. 123
Parameter Markers in Dynamic SQL Programs . . 124
Providing Variable Input to Dynamlc SQL Using
Parameter Markers . .. 124
Example of Parameter Markers ina Dynamlc
SQL Program . . 125
DB2 Call Level Interface (CLI) Compared to
Dynamic SQL . . 126
DB2 Call Level Interface (CLI) versus embedded
dynamic SQL .o . 126
Advantages of DB2 CLI over embedded SQL 127
When to use DB2 CLI or embedded SQL . . 129

Chapter 6. Programming in C and C++
Programming Considerations for C/C++ .
Trigraph Sequences for C and C++ .

Input and Output Files for C and C++ .

Include Files.

Include Files for C and C++
Include Files in C and C++.

Embedded SQL Statements in C and C++
Host Variables in C and C++ .

Host Variables in C and C++ .

Host Variable Names in C and C++ .

Host Variable Declarations in C and C++ .
Syntax for Numeric Host Variables in C and
C++

Syntax for Frxed and Null Terrmnated Character

131

. 131
. 131
. 132
. 132
. 132
. 134
. 135
. 137
. 137
. 137
. 138

. 139

Host Variables in C and C++ . . 140
Syntax for Variable-Length Character Host
Variables in C or C++ . . 141
Indicator Variables in C and C++ . 142
Graphic Host Variables in C and C++ . . 143
Syntax for Graphic Declaration of

Single-Graphic and Null-Terminated Graphic

Forms in C and C++143

Syntax for Graphic Declaration of

VARGRAPHIC Structured Form in C or C++. . 145

Syntax for Large Object (LOB) Host Variables in

C or C++. .. 146

Syntax for Large Ob]ect (LOB) Locator Host

Variables in C or C++ . . . 147

Syntax for File Reference Host Varlable

Declarations in C or C++ . . 148

Host Variable Initialization in C and C++ . . 149

C Macro Expansion . . 149

Host Structure Support in C and C++ . . 150

Indicator Tables in C and C++. . . 152

Null-Terminated Strings in C and C++ . . 153

Host Variables Used as Pointer Data Types in C

and C++ . . 154

Class Data Members Used as Host Varlables in

Cand C++ . . 155

Qualification and Member Operators in C and

C++ . . 156

Multi-Byte Character Encodlng in C and C++ 156

wchar_t and sqldbchar Data Types in C and

C++ . . 157

WCHARTYPE Precornprler Optron in C and

C++ . 158

Japanese or Tradltlonal Chlnese EUC and

UCS-2 Considerations in C and C++. . 160

SQL Declare Section with Host Variables for C

and C++ . . . 161
Data Type Con51derat10ns for C and C++ . . 162

Supported SQL Data Types in C and C++ . . 162

FOR BIT DATA in C and C++. . . 166

C and C++ Data Types for Procedures,

Functions, and Methods . . . 166
SQLSTATE and SQLCODE Variables in C and C++ 168
Chapter 7. Multiple-Thread Database
Access for C and C++ Applications. . 169

Purpose of Multiple-Thread Database Access .
Recommendations for Using Multiple Threads
Code Page and Country/Region Code
Considerations for Multithreaded UNIX
Applications. .
Troubleshooting Multrthreaded Apphcatrons .
Potential Problems with Multiple Threads .
Deadlock Prevention for Multiple Contexts

Chapter 8. Programming in COBOL
Programming Considerations for COBOL .
Language Restrictions in COBOL. .
Multiple-Thread Database Access in COBOL
Input and Output Files for COBOL .
Include Files for COBOL
Embedded SQL Statements in COBOL
Host Variables in COBOL

Host Variables in COBOL

Host Variable Names in COBOL .

Host Variable Declarations in COBOL .

Syntax for Numeric Host Variables in COBOL

Syntax for Fixed-Length Character Host
Variables in COBOL .

Syntax for Fixed-Length Graphlc Host Varrables

in COBOL .

Indicator Variables in COBOL .
Syntax for LOB Host Variables in COBOL
Syntax for LOB Locator Host Variables in
COBOL

Syntax for File Reference Host Varrables in
COBOL .

Host Structure Support in COBOL
Indicator Tables in COBOL . .
REDEFINES in COBOL Group Data Items
SQL Declare Section with Host Variables for
COBOL . .

Data Type Con51deratrons for COBOL .
Supported SQL Data Types in COBOL .
BINARY/COMP-4 COBOL Data Types .

FOR BIT DATA in COBOL .
SQLSTATE and SQLCODE Variables in COBOL

Japanese or Traditional Chinese EUC, and UCS-2

Considerations for COBOL .
Object Oriented COBOL.

. 169
. 170

. 171
. 171
. 171
. 172

175

. 175
. 175
. 175
. 175
. 176
. 178
. 180
. 180
. 180
. 181

181

. 182

. 183
. 184
. 184

. 185

. 186
. 186
. 188
. 189

. 189
. 190
. 190
. 192
. 193

193

. 193
. 194

Chapter 9. Programming in FORTRAN 195

Programming Considerations for FORTRAN .
Language Restrictions in FORTRAN.

Call by Reference in FORTRAN .

Debug and Comment Lines in FORTRAN

Precompilation Considerations for FORTRAN
Multiple-Thread Database Access in FORTRAN

Input and Output Files for FORTRAN .
Include Files. -
Include Files for FORTRAN .
Include Files in FORTRAN Apphcatrons
Embedded SQL Statements in FORTRAN .
Host Variables in FORTRAN .
Host Variables in FORTRAN .
Host Variable Names in FORTRAN .

Contents

. 195
. 195
. 195
. 196

196
196

. 196
. 196
. 196
. 198
. 199
. 200
. 200
. 201

A\

Host Variable Declarations in FORTRAN . . 201
Syntax for Numeric Host Variables in
FORTRAN . . . 202
Syntax for Character Host Varlables in
FORTRAN . 202
Indicator Variables in FORTRAN . . 203
Syntax for Large Object (LOB) Host Varlables in
FORTRAN .. 204
Syntax for Large Ob]ect (LOB) Locator Host
Variables in FORTRAN . . 205
Syntax for File Reference Host Varlables in
FORTRAN . . 205
SQL Declare Section W1th Host Varlables for
FORTRAN . 206
Supported SQL Data Types in FORTRAN . 206
Considerations for Multi-Byte Character Sets in
FORTRAN . 207
Japanese or Tradrtlonal Chmese EUC and UCS 2
Considerations for FORTRAN . . 208

SQLSTATE and SQLCODE Variables in FORTRAN 208

Part 3. ADO.NET, OLE DB, and

OoDBC . . 209
Chapter 10. DB2 .NET Data Provider 211
DB2 .NET Data Provider overview . . . 211
DB2 .NET Data Provider system requlrements .21
Programming applications to use the DB2 .NET
Data Provider . . 212
Connecting to a database from an apphcatlon
using the DB2 .NET Data Provider . . 212
Executing SQL statements from an application
using the DB2 .NET Data Provider . . 212
Reading result sets from an application using
the DB2 .NET Data Provider . . 213
Calling stored procedures from an apphcatlon
using the DB2 .NET Data Provider . . 214
Supported SQL data types for the DB2 .NET
Data Provider . . . 215
Chapter 11. IBM OLE DB Provider for
DB2 . 219
Purpose of the IBM OLE DB Prov1der for DB2 . 219

Application Types Supported by the IBM OLE DB

Provider for DB2 . . 220
OLE DB Services . . 220
Thread Model Supported by IBM OLE DB
Provider . . 220
Large Object Manlpulatlon w1th the IBM OLE
DB Provider. . 220
Schema Rowsets Supported by the IBM OLE DB
Provider . . 221
OLE DB Services Automatlcally Enabled by IBM
OLE DB Provider 222
Data Services . 223
Supported Cursor Modes for the IBM OLE DB
Provider . . 223

Data Type Mappmgs between DB2 and OLE DB 223

vi Programming Client Applications

Data Conversion for Setting Data from OLE DB

Types to DB2 Types 224
Data Conversion for Setting Data from DBZ
Types to OLE DB Types . . . 226
IBM OLE DB Provider Restrictions . . . 227
IBM OLE DB Provider Support for OLE DB
Components and Interfaces. . . 227
IBM OLE DB Provider support for OLE DB
properties . 230
Connections to Data Sources Usmg IBM OLE DB
Provider . Coe e o232
ADO Apphcatlons . . 233
ADO Connection String Keywords . . . 233
Connections to Data Sources with Visual Basic
ADO Applications. . . 234
Updatable Scrollable Cursors in ADO
Applications. . . 234
Limitations for ADO Apphcatlons . . 234
IBM OLE DB Provider Support for ADO
Methods and Properties . . 234
C and C++ Applications. . 238
Compilation and Linking of C / C++
Applications and the IBM OLE DB Provider . . 238
Connections to Data Sources in C/C++
Applications using the IBM OLE DB Provider . 238
MTS and COM+ Distributed Transactions . . 239
MTS and COM+ Distributed Transaction
Support and the IBM OLE DB Provider . 239
Enablement of MTS Support in DB2 Universal
Database for C/C++ Applications . 239
Chapter 12. OLE DB .NET Data
Provider . . . 241
OLE DB .NET Data Prov1der . . . 241
OLE DB .NET Data Provider restrlctlons . 242
Connection pooling in OLE DB .NET Data
Provider applications. . 245
Time columns in OLE DB NET Data Prov1der
applications . . 245
ADORecordset ob]ects in OLE DB NET Data
Provider applications. o . 246

Chapter 13. ODBC .NET Data Provider 249

ODBC .NET Data Provider . . 249
ODBC .NET Data Provider restrlctlons . 249
Part 4. Java . 257
Chapter 14. Introduction to Java
application support. . 259
Chapter 15. JDBC appllcatlon
programming . 263
Basic JDBC application programming concepts . . 263
Basic steps in writing a JDBC application . . 263
Java packages for JDBC support . . 266
Variables in JDBC applications . 266

How JDBC applications connect to a data source 267

How DB2 applications connect to a data source | Providing extended client information to the

using the DriverManager interface with the DB2 | DB2 server with the DB2 Universal JDBC Driver 314
JDBC Type 2 Driver 268
Connecting to a data source usmg the Chapter 16. SQLJ app||cat|on
DriverManager interface with the DB2 Universal programming L. ... 317
JDBC Driver. 270
C tine to a dat th Basic SQL]J application programming concepts . . 317
DZE;?(;}E‘E 1r?t:r faacea souree us1ng ¢ o7 Basic steps in writing an SQL]J application. . . 317
Setting the isolation level for a]DBC transactlon 274 J ava packages for SQLJ SUppOrt 320
Variables in SQL]J applications. 320
JDBC connection objects. . . . - 275 Comments in an 5(55] application 322
Committing or rolling back JDBC transactlons 275 Connecting to a data sogrze usin SC'QL]' o 390
Closing a connection to a JDBC data source . . 276 ine th 2 lation level f 8 L o
JDBC interfaces for executing SQL 276 Setting the isolation level for an SQLJ
. & o transaction 327
Using the Statement.executeUpdate method to C i b K S I 328
te and modifv DB2 obiects. 277 ommitting or ro 1ng ac Q J transactlons
crea Y) R ’ | Savepoints in SQLJ applications 328
Using the Statement.executeQuery method to . . .
retriove data from DB2 tables 77 Closing the connection to a data source in an
Using the PreparedStatement. executeUpdate gQE} application .S .L li o ;gg
method to update data in DB2 tables 279 QL statements in an SQLJ app 1cat10n o
Using the PreparedStatement.executeQuery Crealltlng and modifying DB2 objects in an SQLJ
method to retrieve data from DB2 280 ia_ffvf;rtllggg a. trcahon retrleves data from - 331
Using CallableStatement methods to call stored DB2 tables PP 331
procedures 281 R ’

Using a named 1terator in an SQL] appllcatlon 332

Handling an SQLExceptlon under the DB2
Universal JDBC Driver 282 ;J;;rlll%;l};ﬁsmoned iterator in an SQLJ 334
I_]I)a}? g lrlrng ar; ?)QLExcep tion under the DB2 286 Performing posmoned UPDATE and DELETE
{-I dli ype S H]Y‘?Vr L d th DBZ C operations in an SQLJ application 336
Uan lngl a]I:;BgD arning under the 287 | Multiple open iterators for the same SQL
Hnlvdelrsa J S QLVerver C d. th DB2 DB c ’ | statement in an SQL]J application. 341
T an 21 rg; an arning under the] 088 | Multiple open instances of an iterator in an
ype river . . | SQLJ application . . . L. 342
Advanced JDBC apphcatlon prograrnrnlng Concepts 289 Calling stored procedures in an SQL]
LOBs in JDBC applications with the DB2 apphcitlon P 343
Unlvzrstal t] DBC fDrlvetr CL d H L OB - 289 Handling SQL errors in an SQL] apphcat1on .. 343
J a\lla a 3 zfpes]Ojliglg rlevll ngtor up a lng 290 Handling SQL warnings in an SQL]J application 344
%OQW% aa]II?BIC tt?}zﬁ ICS];(;S C 1 DB c Advanced SQLJ application programming concepts 345
D sin] wi ¢ niversa] 292 Using SQLJ and JDBC in the same application =~ 345
river. . I LOBs in SQLJ applications with the DB2
Distinct types in]DBC apphcatlons293 Universal JDBC Driver 348
Savepoints in JDBC applications . . - 204 | Java data types for retr1ev1ng or updatlng LOB
Retrieving identity column values in]DBC | column data in SQLJ applications . . 348
applications . . . 29 | ROWIDs in SQL] with the DB2 Universal]DBC
Retrieving multiple result sets frorn a stored
q DBC licati 297 I Driver.35
%roce Ere lﬁsa t]M A];ptp 1tca110n ’ b t C Distinct types in SQL] apphcatrons . . 352
sng Besuiioetvietaliata to fearn about a Controlling the execution of SQL statements in
ResultSet 300 QL] 353
Using DatabaseMetaData to learn about a data o1 Retrieving multrple result sets from a store d
i(})urcep) .t M ¢ D t t 1 b t o procedure in an SQLJ application. 354
Sing tarametervietaliata o learn abou Making batch updates in SQLJ apphcatlons . . 355
parameters in a PreparedStatement 303

Iterators as passed variables for positioned
UPDATE or DELETE operations in an SQLJ
application 359

Making batch updates in JDBC applications . . 304
Retrieving information from a

g;:igiﬁt;ixggtlfgg C ResultSet un der the - 306 Using scrollable 1terators in an SQL] apphcatlon 361
DB2 Universal JDBC Driver308
Specifying updatability, scrollability, and Chapter 17. JDBC and SQLJ reference 365
holdability for ResultSets in JDBC applications . 309 I Java, JDBC, and SQL data types 365
Creating and deploying DataSource objects 311 Properties for the DB2 Universal JDBC Drlver . . 370
DB2 Universal JDBC Driver client reroute | Comparison of driver support for]DBC APIs. . . 376
support313 SQLJ statement reference39%
SQLJ clause39

Contents Vil

SQL]J host-expression .

SQL]J implements-clause .

SQLJ with-clause . .

SQLJ connection- declarat1on clause .

SQLJ iterator-declaration-clause

SQLJ executable-clause .

SQLJ context-clause

SQLJ statement-clause .

SQL]J SET- TRANSACTION—clause

SQLJ assignment-clause .

SQLJ iterator-conversion-clause
Selected sqlj.runtime classes and interfaces

DB2 Universal J]DBC Driver reference information

Summary of DB2 Universal JDBC Driver
extensions to J]DBC

JDBC differences between the DBZ Un1versal
JDBC Driver and other DB2 JDBC drivers .
SQLJ differences between the DB2 Universal
JDBC Driver and other DB2 JDBC drivers .

Error codes issued by the DB2 Universal JDBC

Driver.

SQLSTATESs 1ssued by the DB2 Un1versal]DBC

Driver.

Chapter 18. Installing the JDBC
drivers
Installing the DB2 Un1versal]DBC Drlver

Chapter 19. JDBC and SQLJ security
Security under the DB2 JDBC Type 2 Driver .

Security under the DB2 Universal JDBC Driver .

User ID and password security under the DB2
Universal JDBC Driver .

User ID-only security under the DB2 Un1versal
JDBC Driver.

Encrypted user ID secur1ty or encrypted password
security under the DB2 Universal JDBC Driver .
Kerberos security under the DB2 Universal JDBC

Driver.

Chapter 20. Diaghosing JDBC and
SQLJ problems

Diagnosing JDBC and SQLJ problems under the
DB2 Universal J]DBC Driver

JDBC and SQL]J problem d1agnos1s w1th the DBZ
. 453

Universal JDBC Driver . .
Example of tracing under the DBZ Unlversal
JDBC Diriver.
Diagnosing JDBC and SQL] problems under the
DB2 JDBC Type 2 Driver .o .
CLI/ODBC/]JDBC trace fac111ty
CLI and JDBC trace files.

Chapter 21. Java 2 Platform
Enterprise Edition

. 396
. 396
. 397
. 399
. 400
. 401
. 402
. 403
. 404
. 405
. 406
. 407

414

. 414
. 426
. 432
. 434

. 434

. 437
. 437

443

. 443
. 444

. 445
. 446
. 447

. 448

. 453

. 453

. 455
. 460

. 460
. 466

. 475

Java 2 Platform Enterprise Edition (]2EE) Overv1ew 475

Java 2 Platform Enterprise Edition
Java 2 Platform Enterprise Edition Contalners
Java 2 Platform Enterprise Edition Server .

viii Programming Client Applications

. 475

. 476
. 477

Java 2 Enterprise Edition Database Requirements 477

Java Naming and Directory Interface (]NDI) .. 477
Java Transaction Management. 477
Example of a distributed transaction that uses]TA

methods Y V¢
Enterprise Java Beans483

Part 5. Other Programming
Interfaces

Chapter 22. Programming in Perl . . . 489

Programming Considerations for Perl 489
Perl Restrictions 489
Multiple-Thread Database Access in Perl 489
Database Connections in Perl 489
Fetching Results in Perl49
Parameter Markers in Perl 490
SQLSTATE and SQLCODE Var1ables in Perl ... 491
Example of a Perl Program.491

Chapter 23. Programming in REXX 493

Programming Considerations for REXX 493
Language Restrictions for REXX493
Language Restrictions for REXX 494
Registering SQLEXEC, SQLDBS and SQLDBZ in
REXX 494
Multiple-Thread Database Access in REXX .. 495
Japanese or Traditional Chinese EUC
Considerations for REXX49
Embedded SQL in REXX Applications 495
Host Variables in REXX497
Host Variables in REXX497
Host Variable Names in REXX.497
Host Variable References in REXX 497
Indicator Variables in REXX 498
Predefined REXX Variables. 498
LOB Host Variables in REXX 500

Syntax for LOB Locator Declarations in REXX 500
Syntax for LOB File Reference Declarations in

REXX501
LOB Host Var1able Clearlng in REXX502
Cursors in REXXbh02
Supported SQL Data Types in REXX502
Execution Requirements for REXX504
Building and Running REXX Appl1cat10ns . . 504
Bind Files for REXXbh05
API Syntax for REXX.505
Calling Stored Procedures from REXXb07
Stored Procedures in REXX.507
Stored Procedure Calls in REXX 507
Client Considerations for Calling Stored
Procedures in REXX508
Server Considerations for Calhng Stored
Procedures in REXX 508
Retrieval of Precision and SCALE Values from
SQLDA Decimal Fields508

Chapter 24. Writing Applications
Using DB2 WebSphere MQ Functions . 511

WebSphere MQ Functional Overview . 511
WebSphere MQ Messaging . . . 513
Sending Messages with WebSphere MQ Functlons 515
Retrieving Messages with WebSphere MQ
Functions. . 517
WebSphere MQ Apphcat1on—to—apphcatlon
Connectivity. . 519
Request/Reply Commun1cat1ons w1th WebSphere
MQ Functions . . 520
Publish /Subscribe w1th WebSphere MQ Funct1ons 522
Chapter 25. WebSphere . . 527
Connections to Enterprise Data . 527
WebSphere Connection Pooling and Data Sources 527
Benefits of WebSphere Connection Pooling . 528
Statement Caching in WebSphere. . 529
Part 6. Security Plug-ins . 531
Chapter 26. Security plug-ins . 533
Security plug-ins . . 533
Security plug-in library locatlons . 536
Security plug-in naming conventions . . 537
Security plug-in support for two-part user IDs . . 539
32-bit and 64-bit considerations for security
plug-ins . . . 541
Security plug-in problem determ1nat1on . 541
Deploying a group retrieval plug-in . . 543
Deploying a user ID/password plug-in. . 543
Deploying a GSS-API plug-in . . 545
Deploying a Kerberos plug-in . . 547
Chapter 27. Developing securlty
plug-ins. . 549
How DB2 loads secunty plug—ms . 549
Restrictions on security plug-in libraries . 550
Return codes for security plug-ins . 5562
Error messages for security plug-ins. . . 554
Calling sequences for the security plug-in APIs . . 555
Chapter 28. Security plug in APIs. . 559
Security plug-in APIs. . 559
Group plug-in APIs . 560
APIs for group retrieval plug ins . . 560
db2secGroupPluginlnit - Initialize group plug in 562
db2secPluginTerm - Clean up group plug—1n
resources . . . 563
deSeCGetGroupsForUser - Get l1st of groups for
user . 564
deSeCDoesGroupEx1st Check 1f group ex1sts 567
db25ecFreeGroupL1stMemory Free group list
memory . . . 568
deSeCFreeErrormsg Free error message
memory . . 569
User authent1cat1on plug in APIs . 569
APIs for user ID/password authent1cat10n
plug-in . . 569
db2secCllentAuthPlugmlmt - In1t1al1ze cl1ent
authentication plug-in . 576

db2secClientAuthPluginTerm - Clean up client

authentication plug-in resources . . . 577
db2secRemapUserid - Remap user 1D and
password. . . 577
db2secGetDefaultLongontext Get default
login context . . . 579
deSecGenerateln1t1alCred Generate 1n1t1al
credentials . . 580
deSeCVahdatePassword Val1date password 582
db2secProcessServerPrincipalName - Process
service principal name returned from server . . 584
db2secFreeToken - Free memory held by token 585
db2secFreelnitInfo - Clean up resources held by
db2secGeneratelnitial Cred() . . 586
db2secServer AuthPluginInit - Initialize server
authentication plug-in . 587
db2secServerAuthPluginTerm - Clean up server
authentication plug-in resources . . . 588
db2secGetAuthIDs - Get authentication IDs . 589
db2secDoesAuthIDExist - Check if
authentication ID exists . . 591
GSS-API plug-in APIs . 591
Required APIs and Def1n1t1ons for GSS API
authentication plug-ins . . 591
Restrictions for GSS-API authentrcahon plug ins 593
Security plug-in API versioning593
Part 7. General DB2 Appllcatlon
Concepts . 595
Chapter 29. National Language
Support. . 597
Collating Sequence OverV1ew . . 597
Collating sequences . . 597
Character comparisons based on collatmg
sequences . 599
Case Independent Compar1sons Usmg the
TRANSLATE Function . 600
Differences Between EBCDIC and ASCII
Collating Sequence Sort Orders . 601
Collating sequence specified when database is
created . . 602
Sample Collating Sequences . 604
Code Pages and Locales . . 604
Derivation of code page values . 604
Derivation of Locales in Application Programs 605
How DB2 Derives Locales . . 605
Application Considerations. . 605
National Language Support and Apphcat1on
Development Considerations . . 606

National Language Support and SQL Statements 607

Remote routines . 608

Package Name Consrderatrons in M1xed Code

Page Environments . 608

Active Code Page for Precomp1lat1on and

Binding .. 609

Active Code Page for Appl1cat1on Execut1on .. 609

Character conversion between different code

pages . . 609

When code page conversion occurs . . 609
Contents 1X

Character Substitutions During Code Page

Conversions . . . 610
Supported Code Page Convers1ons . . 610
Code Page Conversion Expansion Factor . . 611
DBCS Character Sets 612
Extended UNIX Code (EUC) Character Sets . . 613
CLI, ODBC, JDBC, and SQLJ Programs in a DBCS
Environment . . .614
Considerations for]apanese and Tradltronal
Chinese EUC and UCS-2 Code Sets . . 614
Japanese and Traditional Chinese EUC and
UCS-2 Code Set Considerations . 614
Mixed EUC and Double-Byte Client and
Database Considerations . 616
Character Conversion Cons1derat10ns for
Traditional Chinese Users . 616
Graphic Data in Japanese or Tradltronal Chlnese
EUC Applications . . 617
Application Development in Unequal Code
Page Situations . . 618
Client-Based Parameter Vahdatlon in a ered
Code Set Environment . . 621
DESCRIBE Statement in ered Code Set
Environments . . 622
Fixed-Length and Varrable Length Data in
Mixed Code Set Environments . 623
Code Page Conversion String-Length Overflow
in Mixed Code Set Environments. . 623
Applications Connected to Unicode Databases 625
Chapter 30. Managing Transactions 627
Remote Unit of Work. . . 627
Multisite Update Considerations . . 627
Multisite Update . 627
When to Use Multisite Update . 628
SQL Statements in Multisite Update
Applications. . 628
Precompilation of Multrsrte Update Apphcatlons 630
Configuration Parameter Considerations for
Multisite Update Applications . . 631
Accessing Host, AS/400, or iSeries Servers . 633
Concurrent Transactions. . 633
Concurrent Transactions . . 633
Potential Problems with Concurrent
Transactions . . 634
Deadlock Prevention for Concurrent
Transactions . . 635
Savepoints and Transactlons . . 635
Transaction management with savepomts . . 636
Application Savepoints Compared to
Compound SQL Blocks 637
SQL Statements for creating and controlhng
savepoints . . 639
Restrictions on Savepornt Usage . . 640
Savepoints and Data Definition Language (DDL) 640
Nesting savepoints 641
Savepoints and Buffered Inserts . . 642
Savepoints and Cursor Blocking . . 642
Savepoints and XA-Compliant Transaction
Managers. . 643

X/Open XA Interface Programmlng Consrderatlons 643

X Programming Client Applications

Application Linkage and the X/Open XA Interface 646
MTS and COM+ Transaction Management . 646
Microsoft Transaction Server (MTS) and
Microsoft Component Services (COM+) as
transaction manager . . 646
Loosely coupled support with Mrcrosoft
Component Services (COM+) . . 648
Microsoft Transaction Server (MTS) and
Microsoft Component Services (COM+)
transaction timeout . 648
ODBC and ADO connectlon poohng w1th
Microsoft Transaction Server (MTS) and
Microsoft Component Services (COM+) . 649
Chapter 31. Programming
Considerations for Partitioned
Database Environments . . . 653
FOR READ ONLY Cursors in a Partitioned
Database Environment . 653
Directed DSS and Local Bypass . 653
Directed DSS and Local Bypass in Partltloned
Database Environments653
Directed DSS in Partitioned Database
Environments . 653
Local Bypass in Partltloned Database
Environments . 654
Buffered Inserts . . 655
Buffered Inserts in Partltroned Database
Environments . 655
Considerations for Usmg Buffered Inserts . 657
Restrictions on Using Buffered Inserts . . 659
Example of Extracting a Large Volume of Data in a
Partitioned Database Environment . . 660
Creating a Simulated Partitioned Database
Environment . 664
Troubleshooting . 665
Error-Handling Consrderatrons in Partrtroned
Database Environments . . 665
Severe Errors in Partitioned Database
Environments . . 665
Merged Multiple SQLCA Structures . 666
Partition That Returns the Error . . 666
Looping or Suspended Applications . . 667
Chapter 32. Common DB2 Application
Techniques . . 669
Running applications from the Wlndows Local
System Account . 669
Generated Columns . . 669
Identity Columns . . 670
Retrieval of result sets frorn an SQL data change
statement. . . 671
Intermediate result tables . 672
Target tables and views . . 672
Result set sorting based on INPUT SEQUENCE 673
Retrieval of result sets from SQL data change
statements using cursors . 674
Include columns . . 675
Include columns in INSERT operatrons . 675

Include columns in UPDATE and DELETE

operations . 675
Searched UPDATE, INSERT DELETE and MERGE
operations against fullselects . 676
Sequential Values and Sequence Ob]ects . 676

Generation of Sequential Values . . 676

Management of Sequence Behavior . . 678

Application Performance and Sequence Ob]ects 679

Sequence Objects Compared to Identity

Columns . . . 679
Declared Temporary Tables and Appllcat1on
Performance. . 680
Transmission of Large Volumes of Data Across a
Network . . 682
Part 8. Appendixes 683
Appendix A. Supported sSQL
Statements . 685
Appendix B. Security plug-in
deployment limitations . 689
Appendix C. Programming in a Host
or iSeries Environment . . 691
Applications in Host or iSeries Environments. . 691
Data Definition Language in Host and iSeries
Environments . 692
Data Manipulation Language in Host and 1Ser1es
Environments . 692
Data Control Language in Host and 1Ser1es
Environments . 693
Database Connection Management w1th DBZ
Connect 693
Processing of Interrupt Requests . . 694
Package Attributes, PREP, and BIND . 694

Package Attribute Differences among IBM

Relational Database Systems . . 694

CNULREQD BIND Option for C

Null-Terminated Strings . . . 695

Standalone SQLCODE and SQLSTATE Var1ables 695

Isolation Levels Supported by DB2 Connect . . 696
User-Defined Sort Orders . 696
Referential Integrity Differences among IBM
Relational Database Systems . 697
Locking and Application Portab1l1ty . 697
SQLCODE and SQLSTATE Differences among IBM
Relational Database Systems . 697
System Catalog Differences among IBM Relatronal
Database Systems . . 698
Numeric Conversion Overﬂows on Retr1eval
Assignments. . . 698
Stored Procedures in Host or 1Ser1es Envrronments 698
DB2 Connect Support for Compound SQL . 699
Multisite Update with DB2 Connect . . 700
Host and iSeries Server SQL Statements Supported
by DB2 Connect . . 701
Host and iSeries Server SQL Statements Re]ected
by DB2 Connect . 701

Appendix D. Simulation of EBCDIC
Binary Collation

Appendix E. DB2 Universal Database
technical information .
DB2 documentation and help .
DB2 documentation updates
DB2 Information Center . .
DB2 Information Center 1nstallat10n scenarios
Installing the DB2 Information Center using the
DB2 Setup wizard (UNIX) . . .
Installing the DB2 Information Center usmg the
DB2 Setup wizard (Windows) .
Invoking the DB2 Information Center .
Updating the DB2 Information Center 1nstalled on
your computer or intranet server .
Displaying topics in your preferred language in the
DB2 Information Center .
DB2 PDF and printed documentatron
Core DB2 information
Administration information .
Application development mformat10n .
Business intelligence information .
DB2 Connect information
Getting started information.
Tutorial information . .
Optional component 1nformat1on
Release notes . .
Printing DB2 books from PDF f1les .
Ordering printed DB2 books .
Invoking contextual help from a DB2 tool
Invoking message help from the command line
processor .
Invoking command help from the Command lme
processor .
Invoking SQL state help from the command l1ne
processor .
DB2 tutorials .
DB2 troubleshooting mformat1on
Accessibility .
Keyboard input and naV1gat10n
Accessible display . . .
Compatibility with assistive technolog1es .
Accessible documentation .
Dotted decimal syntax diagrams .
Common Criteria certification of DB2 Umversal
Database products.

Appendix F. Notices

Trademarks .
Index .

Contacting IBM

Product information .

Contents

. 703

. 707
. 707
. 707
. 708
. 709

. 712

. 714

. 716

. 717

. 718
. 719
. 719
. 719
. 720
. 721
. 721
. 722
. 722
. 722
. 723
. 724
. 724
. 725

. 726
. 727

. 727
. 727
. 728
. 729
. 729
. 729
. 730
. 730
. 730

. 732

. 733
. 735

. 737

. 755
. 755

xi

X11 Programming Client Applications

About this book

The Application Development Guide is a three-volume book that describes what you
need to know about coding, debugging, building, and running DB2 applications:

* Application Development Guide: Programming Client Applications contains what you
need to know to code standalone DB2 applications that run on DB2 clients. It
includes information on:

Programming interfaces that are supported by DB2. High-level descriptions
are provided for DB2 Developer’s Edition, supported programming interfaces,
facilities for creating Web applications, and DB2-provided programming
features, such as routines and triggers.

The general structure that a DB2 application should follow. Recommendations
are provided on how to maintain data values and relationships in the
database, authorization considerations are described, and information is
provided on how to test and debug your application.

Embedded SQL, both dynamic and static. The general considerations for
embedded SQL are described, as well as the specific issues that apply to the
usage of static and dynamic SQL in DB2 applications.

Supported host and interpreted languages, such as C/C++, COBOL, Perl, and
REXX, and how to use embedded SQL in applications that are written in
these languages.

The DB2 .NET Data Provider, and the OLE DB .NET and ODBC .NET data
providers.

Java (both JDBC and SQLJ) and considerations for building Java applications
for use on WebSphere Application Servers.

The IBM OLE DB Provider for DB2 Servers. General information is provided
about IBM OLE DB Provider support for OLE DB services, components, and
properties. Specific information is also provided about Visual Basic and Visual
C++ applications that use the OLE DB interface for ActiveX Data Objects
(ADO).

National language support issues. General topics, such as collating sequences,
the derivation of code pages and locales, and character conversions are
described. More specific issues such as DBCS code pages, EUC character sets,
and issues that apply in Japanese and Traditional Chinese EUC and UCS-2
environments are also described.

Transaction management. Issues that apply to applications that perform
multisite updates, and to applications that perform concurrent transactions,
are described.

Applications in partitioned database environments. Directed DSS, local
bypass, buffered inserts, and troubleshooting applications in partitioned
database environments are described.

Commonly used application techniques. Information is provided on how to

use generated and identity columns, declared temporary tables, and how to
use savepoints to manage transactions.

The SQL statements that are supported for use in embedded SQL
applications.

Applications that access host and iSeries environments. The issues that
pertain to embedded SQL applications that access host and iSeries
envirionments are described.

© Copyright IBM Corp. 1997 - 2004 xiii

— The simulation of EBCDIC binary collation.

* Application Development Guide: Programming Server Applications contains what you
need to know about programming using server-side objects, including routines,
large objects, user-defined types, and triggers. It includes information on:

— Routines (stored procedures, user-defined functions, and methods), including;
- Routine performance, security, library management considerations, and

restrictions.

- Creating routines, including external routines, and the CREATE statement.
- Procedure parameter modes and parameter handling.
- Procedure result sets.
- SQL procedures including debugging and condition handling.
- User-defined scalar and table functions.

- User-defined scalar and table function calls (FIRST call, FINAL call,...) and
scratchpads.

- Methods.
- Authorizations and binding of external routines.

- Language-specific considerations for C, Java, .NET common language
runtime, and OLE automation routines.

- Invoking routines.

- Function selection.

- Passing distinct types and LOBs to functions.
- Code pages and routines.

— Large objects, including LOB usage and locators, reference variables, and
CLOB data.

— User-defined distinct types, including strong typing, defining and dropping
UDTs, creating tables with structured types, using distinct types and typed
tables for specific applications, manipulating distinct types and casting
between them, and performing comparisons and assignments with distinct
types, including UNION operations on distinctly typed columns.

— User-defined structured types, including storing instances and instantiation,
structured type hierarchies, defining structured type behavior, the dynamic
dispatch of methods, the comparison, casting, and constructor functions, and
mutator and observer methods for structured types.

— Typed tables, including creating, dropping, substituting, storing objects,
defining system-generated object identifiers, and constraints on object
identifier columns.

— Reference types, including relationships between objects in typed tables,
semantic relationships with references, and referential integrity versus scoped
references.

— Typed tables and typed views, including structured types as column types,
transform functions and transform groups, host language program mappings,
and structured type host variables.

- Triggers, including INSERT, UPDATE, and DELETE triggers, interactions with
referential constraints, creation guidelines, granularity, activation time,
transition variables and tables, triggered actions, multiple triggers, and
synergy between triggers, constraints, and routines.

* Application Development Guide: Building and Running Applications contains what
you need to know to build and run DB2 applications on the operating systems
supported by DB2:

- AIX

xiv Programming Client Applications

HP-UX
Linux
Solaris
Windows

It includes information on:

DB2 supported servers and software to build applications, including
supported compilers and interpreters.

The DB2 sample program files, makefiles, build files, and error-checking
utility files.

How to set up your application development environment, including specific
instructions for Java and WebSphere MQ functions.

How to set up the sample database

How to migrate your applications from previous versions of DB2.

How to build and run Java applets, applications, and routines.

How to build and run SQL procedures.

How to build and run C/C++ applications and routines.

How to build and run IBM and Micro Focus COBOL applications and
routines.

How to build and run REXX applications on AIX and Windows.

How to build and run C# and Visual Basic .NET appllcations and CLR .NET
routines on Windows.

How to build and run applications with ActiveX Data Objects (ADO) using
Visual Basic and Visual C++ on Windows.

How to build and run applications with remote data objects using Visual C++
on Windows.

About this book XV

xvi Programming Client Applications

Part 1. Introduction

© Copyright IBM Corp. 1997 - 2004

2 Programming Client Applications

Chapter 1. Overview of Supported Programming Interfaces

DB2 Universal Database tools for developing
applications. .
IBM DB2 Development Add In overview .
Supported Programming Interfaces . .
DB2 Supported Programming Interfaces .
DB2 Application Programmmg Interfaces .
Embedded SQL . .
DB2 Call Level Interface

DB2 CLI versus Embedded Dynamlc SQL .

Java Database Connectivity (JDBC)
Embedded SQL for Java (SQLJ).

ActiveX Data Objects and Remote Data Ob]ects

Perl DBI .

ODBC End-User Tools

DB2 .NET Data Provider .
Web Applications

Tools for Building Web Apphcatlons .
WebSphere Studio . .
XML Extender .

MQSeries Enablement .

Net.Data

Programming Features

DB2 Programming Features .

DB2 Stored Procedures .
DB2 User-Defined Functions and Methods .
Development Center

User-Defined Types (UDTs) and Large Ob]ects

(LOBs) .

OLE Automation Routmes
OLE DB Table Functions .
DB2 Triggers .

. 14
. 15
. 16
. 16
. 16
.17
.17
.18
.19
.19

. 20
.21
.22
.22

DB2 Universal Database tools for developing applications

You can use a variety of different tools when developing your applications. DB2®

Universal Database supplies the following tools to help you write and test the SQL
statements in your applications, and to help you monitor their performance.

Note: Not all tools are available on every platform.

Control Center

A graphical interface that displays database objects (such as databases, tables, and

packages) and their relationship to each other. Use the Control Center to perform

administrative tasks such as configuring the system, managing directories, backing
up and recovering the system, scheduling jobs, and managing media.

DB2 also provides the following facilities:

Command Editor

Is used to enter DB2 commands and SQL statements in an interactive

window, and to see the execution result in a result window. You can scroll
through the results and save the output to a file.

Task Center

Is used to create scripts, which you can store and invoke at a later time.
These scripts can contain DB2 commands, SQL statements, or operating
system commands. You can schedule scripts to run unattended. You can

run these jobs once or you can set them up to run on a repeating schedule.
A repeating schedule is particularly useful for tasks like backups. The Task

Center can also be used to monitor your system for early warnings of

potential problems, or to automate actions to correct problems.

Journal

Is used to view the following types of information: all available
information about jobs that are pending execution, executing, or that have
completed execution; the recovery history log; the alerts log; and the
messages log. You can also use the Journal to review the results of jobs that

run unattended.

© Copyright IBM Corp. 1997 - 2004

Tools Setting
Is used to change the settings for the Task Center.

Event Monitor
Collects performance information on database activities over a period of
time. Its collected information provides a good summary of the activity for
a particular database event: for example, a database connection or an SQL
statement.

Visual Explain
An installable option for the Control Center, Visual Explain is a graphical interface

that enables you to analyze and tune SQL statements, including viewing access
plans chosen by the optimizer for SQL statements.

| IBM DB2 Development Add-In overview

The IBM® DB2® Development Add-In is a collection of features that integrates
seamlessly into your Microsoft® Visual Studio .NET development environment for
working with DB2 servers and developing DB2 routines. With the add-in, you can:

* Launch various DB2 development and administration tools
* Create and manage DB2 projects in the Solution Explorer
* Access and manage DB2 data connections in the IBM Explorer

* Create and modify DB2 scripts, including scripts to create stored procedures and
user-defined functions (UDFs)

DB2 Tools toolbar:

The DB2 Tools toolbar enables you to launch the various DB2 development and
administration tools. With the DB2 Tools toolbar, you can launch the following DB2
tools:

* Development Center
* Control Center

* Replication Center

* Command Editor

* Task Center

* Health Center

* Journal
DB2 Project type:

The IBM DB2 Development Add-In introduces a new IBM Projects folder, which
includes a DB2 Database Project type for developing DB2 database server scripts.
With a DB2 Project, you can:

* Add new or existing SQL stored procedure scripts

* Add new or existing SQL UDF scripts

e Add new or existing scripts based on generic templates

* Specify build configuration options including script build order

* Check your script files into Microsoft Visual Source Safe source control
management system

Data Connections folder in the IBM Explorer:

4 Programming Client Applications

The IBM DB2 Development Add-In extends the Visual Studio .NET environment
by adding a new tool called IBM Explorer, a dockable window that is similar to
the Visual Studio .NET Server Explorer. The IBM Explorer provides Visual Studio
.NET users with access to IBM database connections using the Data Connections
folder. The Data Connections folder in the IBM Explorer is specifically designed for
DB2 managed provider connections. From the Data Connections folder in the IBM
Explorer, you can:

* Work with multiple named DB2 connections supporting connect of demand
technology

 Specify database catalog filters and local caching for higher performance and
scalability

* View properties of server objects including tables, views, stored procedures, and
functions

* Retrieve data from tables and views

* Execute test runs for stored procedures and UDFs

* View source code for stored procedures and functions
* Generate ADO .NET code using drag and drop

DB2 SQL Editor:

The IBM DB2 Development Add-In also provides you with a DB2 SQL Editor. With
the editor, you can change and view the code in your DB2 routines and scripts.
The DB2 SQL Editor includes the following features:

¢ Colorized text for increased readability of the SQL.

* Integration with the Microsoft Visual Studio .NET IntelliSense feature, which
allows for intelligent auto-completion while typing DB2 scripts.

Supported Programming Interfaces

The sections that follow provide an overview of the supported programming
interfaces.

DB2 Supported Programming Interfaces

You can use several different programming interfaces to manage or access DB2®
databases. You can:

* Use DB2 APIs to perform administrative functions such as backing up and
restoring databases.

e Embed static and dynamic SQL statements in your applications.

* Code DB2 Call Level Interface (DB2 CLI) function calls in your applications to
invoke dynamic SQL statements.

* Develop Java " applications and applets that call the Java Database Connectivity
application programming interface (JDBC API).

+ Develop Microsoft® Visual Basic and Visual C++ applications that conform to
Data Access Object (DAO) and Remote Data Object (RDO) specifications, and
ActiveX Data Object (ADO) applications that use the OLE DB Bridge.

¢ Develop ADO.NET applications using DB2 .NET Data Provider, OLE DB .NET
Data Provider or ODBC .NET Data Provider.

+ Develop applications using IBM® or third-party tools such as Net.Data®, Excel,
Perl, and Open Database Connectivity (ODBC) end-user tools such as Lotus®
Approach, and its programming language, LotusScript.

Chapter 1. Overview of Supported Programming Interfaces 5

The way your application accesses DB2 databases will depend on the type of
application you want to develop. For example, if you want a data entry
application, you might choose to embed static SQL statements in your application.
If you want an application that performs queries over the World Wide Web, you
might choose Net.Data, Perl, or Java.

Apart from how the application accesses data, you also need to consider the
following:

* Controlling data values using:
— Data types (built-in or user-defined)
— Table check constraints
— Referential integrity constraints
— Views using the CHECK OPTION
— Application logic and variable types
* Controlling the relationship between data values using:
— Referential integrity constraints
- Triggers
— Application logic
¢ Executing programs at the server using:
— Stored procedures
— User-defined functions
- Triggers

You will notice that this list mentions some capabilities more than once, such as
triggers. This reflects the flexibility of these capabilities to address more than one
design criteria.

Your first and most fundamental decision is whether or not to move the logic to
enforce application related rules about the data into the database.

The key advantage in transferring logic focused on the data from the application
into the database is that your application becomes more independent of the data.
The logic surrounding your data is centralized in one place, the database. This
means that you can change data or data logic once and affect all applications
immediately.

This latter advantage is very powerful, but you must also consider that any data
logic put into the database affects all users of the data equally. You must consider
whether the rules and constraints that you wish to impose on the data apply to all
users of the data or just the users of your application.

Your application requirements may also affect whether to enforce rules at the
database or the application. For example, you may need to process validation
errors on data entry in a specific order. In general, you should do these types of
data validation in the application code.

You should also consider the computing environment where the application is
used. You need to consider the difference between performing logic on the client
machines against running the logic on the usually more powerful database server
machines using either stored procedures, UDFs, or a combination of both.

6 Programming Client Applications

In some cases, the correct answer is to include the enforcement in both the
application (perhaps due to application specific requirements) and in the database
(perhaps due to other interactive uses outside the application).

Related concepts:

+ “DB2 Call Level Interface (CLI) versus embedded dynamic SQL” on page 126|
[“Embedded SQL” on page 7|

[“DB2 Call Level Interface” on page 9|

[“DB2 Application Programming Interfaces” on page 7|

[“ActiveX Data Objects and Remote Data Objects” on page 12|

[“Perl DBI” on page 13

[“ODBC End-User Tools” on page 14|

* [“Tools for Building Web Applications” on page 14|

[‘Java Database Connectivity (JDBC)” on page 11|

DB2 Application Programming Interfaces

Your applications may need to perform some database administration tasks, such
as creating, activating, backing up, or restoring a database. DB2® provides
numerous APIs so you can perform these tasks from your applications, including
embedded SQL and DB2 CLI applications. This enables you to program the same
administrative functions into your applications that you can perform using the
DB2 server administration tools available in the Control Center.

Additionally, you might need to perform specific tasks that can only be performed
using the DB2 APIs. For example, you might want to retrieve the text of an error
message so your application can display it to the end user. To retrieve the message,
you must use the Get Error Message APL

Related concepts:

+ |[“Authorization Considerations for APIs” on page 48|
* [“Administrative APIs in Embedded SQL or DB2 CLI Programs” on page 40|

Embedded SQL

Structured Query Language (SQL) is the database interface language used to access
and manipulate data in DB2® databases. You can embed SQL statements in your
applications, enabling them to perform any task supported by SQL, such as
retrieving or storing data. Using DB2, you can code your embedded SQL
applications in the C/C++, COBOL, FORTRAN, Java" (SQLJ), and REXX
programming languages.

Note: The REXX and Fortran programming languages have not been enhanced
since Version 5 of DB2 Universal Database.

An application in which you embed SQL statements is called a host program. The
programming language you use to create a host program is called a host language.
The program and language are defined this way because they host or
accommodate SQL statements.

For static SQL statements, you know before compile time the SQL statement type
and the table and column names. The only unknowns are specific data values the
statement is searching for or updating. You can represent those values in host

Chapter 1. Overview of Supported Programming Interfaces 7

language variables. You precompile, bind and then compile static SQL statements
before you run your application. Static SQL is best run on databases whose
statistics do not change a great deal. Otherwise, the statements will soon get out of
date.

In contrast, dynamic SQL statements are those that your application builds and
executes at run time. An interactive application that prompts the end user for key
parts of an SQL statement, such as the names of the tables and columns to be
searched, is a good example of dynamic SQL. The application builds the SQL
statement while it’s running, and then submits the statement for processing.

You can write applications that have static SQL statements, dynamic SQL
statements, or a mix of both.

Generally, static SQL statements are well-suited for high-performance applications
with predefined transactions. A reservation system is a good example of such an
application.

Generally, dynamic SQL statements are well-suited for applications that run against
a rapidly changing database where transactions need to be specified at run time.
An interactive query interface is a good example of such an application.

When you embed SQL statements in your application, you must precompile and
bind your application to a database with the following steps:

1. Create source files that contain programs with embedded SQL statements.
2. Connect to a database, then precompile each source file.

The precompiler converts the SQL statements in each source file into DB2
run-time API calls to the database manager. The precompiler also produces an
access package in the database and, optionally, a bind file, if you specify that
you want one created.

The access package contains access plans selected by the DB2 optimizer for the
static SQL statements in your application. The access plans contain the
information required by the database manager to execute the static SQL
statements in the most efficient manner as determined by the optimizer. For
dynamic SQL statements, the optimizer creates access plans when you run your
application.

The bind file contains the SQL statements and other data required to create an
access package. You can use the bind file to re-bind your application later
without having to precompile it first. The re-binding creates access plans that
are optimized for current database conditions. You need to re-bind your
application if it will access a different database from the one against which it
was precompiled. You should re-bind your application if the database statistics
have changed since the last binding.

3. Compile the modified source files (and other files without SQL statements)
using the host language compiler.

4. Link the object files with the DB2 and host language libraries to produce an
executable program.

5. Bind the bind file to create the access package if this was not already done at
precompile time, or if a different database is going to be accessed.

6. Run the application. The application accesses the database using the access plan
in the package.

Related concepts:

8 Programming Client Applications

[“Embedded SQL in REXX Applications” on page 495|
[“Embedded SQL Statements in C and C++” on page 135|
[“Embedded SQL Statements in COBOL” on page 178|
[“Embedded SQL Statements in FORTRAN” on page 199|
[“Embedded SQL for Java (SQLJ)” on page 12|

Related tasks:
* [“Embedding SQL Statements in a Host Language” on page 55|

DB2 Call Level Interface

DB2® CLI is a programming interface that your C and C++ applications can use to
access DB2 databases. DB2 CLI is based on the Microsoft® Open Database
Connectivity (ODBC) specification, and the ISO CLI standard. Since DB2 CLI is
based on industry standards, application programmers who are already familiar
with these database interfaces may benefit from a shorter learning curve.

When you use DB2 CLI, your application passes dynamic SQL statements as
function arguments to the database manager for processing. As such, DB2 CLI is
an alternative to embedded dynamic SQL.

It is also possible to run the SQL statements as static SQL in a CLI, ODBC or JDBC
application. The CLI/ODBC/JDBC Static Profiling feature enables end users of an
application to replace the use of dynamic SQL with static SQL in many cases.

You can build an ODBC application without using an ODBC driver manager, and
simply use DB2’s ODBC driver on any platform by linking your application with
1ibdb2 on UNIX®, and db2c1i.1ib on Windows® operating systems. The DB2 CLI
sample programs demonstrate this. They are located in sqllib/samples/c1i on
UNIX and sqllib\samples\c1i on Windows operating systems.

You do not need to precompile or bind DB2 CLI applications because they use
common access packages provided with DB2. You simply compile and link your
application.

However, before your DB2 CLI or ODBC applications can access DB2 databases,
the DB2 CLI bind files that come with the DB2 AD Client must be bound to each
DB2 database that will be accessed. This occurs automatically with the execution of
the first statement, but we recommend that the database administrator bind the
bind files from one client on each platform that will access a DB2 database.

For example, suppose you have AIX®, Solaris Operating Environment, and
Windows 98 clients that each access two DB2 databases. The administrator should
bind the bind files from one AIX client on each database that will be accessed.
Next, the administrator should bind the bind files from one Solaris Operating
Environment client on each database that will be accessed. Finally, the
administrator should do the same on one Windows 98 client.

Related concepts:
* [“Administrative APIs in Embedded SQL or DB2 CLI Programs” on page 40|
* |"DB2 CLI versus Embedded Dynamic SQL” on page 10|

Related tasks:

Chapter 1. Overview of Supported Programming Interfaces 9

10

* “Creating static SQL with CLI/ODBC/JDBC Static Profiling” in the CLI Guide
and Reference, Volume 1

DB2 CLI versus Embedded Dynamic SQL

You can develop dynamic applications using either embedded dynamic SQL
statements or DB2® CLI In both cases, SQL statements are prepared and processed
at run time. Each method has unique advantages.

The advantages of DB2 CLI are as follows:

Portability

No binding

DB2 CLI applications use a standard set of functions to pass SQL
statements to the database. All you need to do is compile and link
DB2 CLI applications before you can run them. In contrast, you
must precompile embedded SQL applications, compile them, and
then bind them to the database before you can run them. This
process effectively ties your application to a particular database.

You do not need to bind individual DB2 CLI applications to each
database they access. You only need to bind the bind files that are
shipped with DB2 CLI once for all your DB2 CLI applications. This
can significantly reduce the amount of time you spend managing
your applications.

Extended fetching and input

DB2 CLI functions enable you to retrieve multiple rows in the
database into an array with a single call. They also let you execute
an SQL statement many times using an array of input variables.

Consistent interface to catalog

Database systems contain catalog tables that have information
about the database and its users. The form of these catalogs can
vary among systems. DB2 CLI provides a consistent interface to
query catalog information about components such as tables,
columns, foreign and primary keys, and user privileges. This
shields your application from catalog changes across releases of
database servers, and from differences among database servers.
You don’t have to write catalog queries that are specific to a
particular server or product version.

Extended data conversion

DB2 CLI automatically converts data between SQL and C data
types. For example, fetching any SQL data type into a C char data
type converts it into a character-string representation. This makes
DB2 CLI well-suited for interactive query applications.

No global data areas

DB2 CLI eliminates the need for application controlled, often
complex global data areas, such as SQLDA and SQLCA, typically
associated with embedded SQL applications. Instead, DB2 CLI
automatically allocates and controls the necessary data structures,
and provides a handle for your application to reference them.

Retrieve result sets from stored procedures

Programming Client Applications

DB2 CLI applications can retrieve multiple rows and result sets
generated from a stored procedure residing on a DB2 Universal
Database " server, a DB2 for MVS™ /ESA server (Version 5 or later),
or an OS/400® server (Version 5 or later). Support for multiple
result sets retrieval on OS/400 requires that PTF (Program

Temporary Fix) SI01761 be applied to the server. Contact your
0S5/400 system administrator to ensure that this PTF has been
applied.

Scrollable cursors
DB2 CLI supports server-side scrollable cursors that can be used in
conjunction with array output. This is useful in GUI applications
that display database information in scroll boxes that make use of
the Page Up, Page Down, Home and End keys. You can declare a
cursor as scrollable and then move forwards or backwards through
the result set by one or more rows. You can also fetch rows by
specifying an offset from the current row, the beginning or end of a
result set, or a specific row you bookmarked previously.

The advantages of embedded dynamic SQL are as follows:

Granular Security
All DB2 CLI users share the same privileges. Embedded SQL offers
the advantage of more granular security through granting execute
privileges to particular users for a package.

More Supported Languages
Embedded SQL supports more than just C and C++. This might be
an advantage if you prefer to code your applications in another
language.

More Consistent with Static SQL
Dynamic SQL is generally more consistent with static SQL. If you
already know how to program static SQL, moving to dynamic SQL
might not be as difficult as moving to DB2 CLIL.

Related concepts:

+ ["DB2 Call Level Interface (CLI) versus embedded dynamic SQL” on page 126|
+ [“Advantages of DB2 CLI over embedded SQL” on page 127]

* [“When to use DB2 CLI or embedded SQL” on page 129|

Java Database Connectivity (JDBC)

DB2®’s Java'" support includes JDBC, a vendor-neutral dynamic SQL interface that
provides data access to your application through standardized Java methods. JDBC
is similar to DB2 CLI in that you do not have to precompile or bind a JDBC
program. As a vendor-neutral standard, JDBC applications offer increased
portability. An application written using JDBC uses only dynamic SQL.

JDBC can be especially useful for accessing DB2 databases across the Internet.
Using the Java programming language, you can develop JDBC applets and
applications that access and manipulate data in remote DB2 databases using a
network connection. You can also create JDBC stored procedures that reside on the
server, access the database server, and return information to a remote client
application that calls the stored procedure.

The JDBC API, which is similar to the CLI/ODBC API, provides a standard way to
access databases from Java code. Your Java code passes SQL statements as method
arguments to the DB2 JDBC driver. The driver handles the JDBC API calls from
your client Java code.

Chapter 1. Overview of Supported Programming Interfaces 11

Java’s portability enables you to deliver DB2 access to clients on multiple
platforms, requiring only a Java-enabled web browser, or a Java runtime
environment.

JDBC Type 2

Java applications based on the JDBC type 2 driver rely on the DB2 client to connect
to DB2. You start your application from the desktop or command line, like any
other application. The DB2 JDBC driver handles the JDBC API calls from your
application, and uses the client connection to communicate the requests to the
server and to receive the results. You cannot create Java applets using the JDBC
type 2 driver.

Note: The JDBC type 2 driver is recommended for WebSphere® Application
Servers.

JDBC Type 3

If you use the JDBC type 3 driver, you can only create Java applets. Java applets
do not require the DB2 client to be installed on the client machine. Typically, you
would embed the applet in a HyperText Markup Language (HTML) web page.

To run an applet based on the JDBC type 3 driver, you need only a Java-enabled
web browser or applet viewer on the client machine. When you load your HTML
page, the browser downloads the Java applet to your machine, which then
downloads the Java class files and DB2’s JDBC driver. When your applet calls the
JDBC API to connect to DB2, the JDBC driver establishes a separate network
connection with the DB2 database through the JDBC applet server residing on the
Web server.

Note: The JDBC type 3 driver is deprecated for Version 8.

JDBC Type 4

You can use the JDBC type 4 driver, which is new for Version 8, to create both Java
applications and applets. To run an application or an applet that is based on the

type 4 driver, you only require the db2jcc.jar file. No DB2 client is required.

For more information on DB2 JDBC support, visit the Web page at:
[http://www.ibm.com/software/data/db2/udb/ad/v8/javal

Embedded SQL for Java (SQLJ)

DB2® Java™ embedded SQL (SQLJ) support is provided by the DB2 AD Client.
With DB2 SQLJ support, in addition to DB2 JDBC support, you can build and run
SQLJ applets, applications, and stored procedures. These contain static SQL and
use embedded SQL statements that are bound to a DB2 database.

For more information on DB2 SQL] support, visit the Web page at:
[http://www.ibm.com/software/data/db2/udb/ad/v8/javal

ActiveX Data Objects and Remote Data Objects

You can write Microsoft® Visual Basic and Microsoft Visual C++ database
applications that conform to the Data Access Object (DAO) and Remote Data

12 Programming Client Applications

http://www.ibm.com/software/data/db2/udb/ad/v8/java/
http://www.ibm.com/software/data/db2/udb/ad/v8/java/

Object (RDO) specifications. DB2® also supports ActiveX Data Object (ADO)
applications that use the Microsoft OLE DB to ODBC Bridge.

ActiveX Data Objects (ADO) allow you to write an application to access and
manipulate data in a database server through an OLE DB provider. The primary
benefits of ADO are high speed development time, ease of use, and a small disk
footprint.

Remote Data Objects (RDO) provide an information model for accessing remote
data sources through ODBC. RDO offers a set of objects that make it easy to
connect to a database, execute queries and stored procedures, manipulate results,
and commit changes to the server. It is specifically designed to access remote
ODBC relational data sources, and makes it easier to use ODBC without complex
application code.

For full samples of DB2 applications that use the ADO and RDO specifications, see

the following directories:

 For Visual Basic ActiveX Data Object samples, refer to sql1ib\samples\VB\ADO

 For Visual Basic Remote Data Object samples, refer to sql1ib\samples\VB\RDO

 For Visual Basic Microsoft Transaction Server samples, refer to
sqllib\samples\VB\MTS

» For Visual C++ ActiveX Data Object samples, refer to sql1ib\samples\VC\ADO

Related tasks:

* “Building ADO applications with Visual Basic” in the Application Development
Guide: Building and Running Applications

* “Building RDO applications with Visual Basic” in the Application Development
Guide: Building and Running Applications

¢ “Building ADO applications with Visual C++” in the Application Development
Guide: Building and Running Applications

Related reference:

* “Visual Basic samples” in the Application Development Guide: Building and
Running Applications

e “Visual C++ samples” in the Application Development Guide: Building and Running
Applications

Perl DBI

DB2® supports the Perl Database Interface (DBI) specification for data access
through the DBD::DB2 driver. The DB2 Universal Database "~ Perl DBI website is
located at:

|http://www.ibm.com/software/data/db2/perl/|

and contains the latest DBD::DB2 driver, and related information.

Perl is an interpreted language and the Perl DBI Module uses dynamic SQL. This
makes Perl an ideal language for quickly creating and revising prototypes of DB2
applications. The Perl DBI Module uses an interface that is quite similar to the CLI
and JDBC interfaces. This makes it easy to port Perl prototypes to CLI and JDBC.

Related concepts:

* [“Programming Considerations for Perl” on page 489

Chapter 1. Overview of Supported Programming Interfaces 13

http://www.ibm.com/software/data/db2/perl/

ODBC End-User Tools

You can use ODBC end-user tools such as Lotus® Approach, Microsoft® Access,
and Microsoft Visual Basic to create applications. ODBC tools provide a simpler
alternative to developing applications than using a high-level programming
language.

Lotus Approach provides two ways to access DB2® data. You can use the graphical
interface to perform queries, develop reports, and analyze data. Or you can
develop applications using LotusScript, a full-featured, object-oriented
programming language that comes with a wide array of objects, events, methods,
and properties, along with a built-in program editor.

DB2 .NET Data Provider

The DB2® .NET Data Provider extends DB2 support for the ADO.NET interface.
The DB2 .NET Data Provider delivers high-performing, secure access to DB2 data.

The DB2 .NET Data Provider allows your .NET applications to access the following

database management systems:

» DB2 Universal Database'" Version 8 for Windows®, UNIX®, and Linux-based
computers

+ DB2 Universal Database Version 6 (or later) for OS/390® and z/0S", through
DB2 Connect

+ DB2 Universal Database Version 5, Release 1 (or later) for AS/400® and iSeries ",
through DB2 Connect

* DB2 Universal Database Version 7.3 (or later) for VSE & VM, through DB2
Connect

To develop and run applications that use DB2 .NET Data Provider you need the
NET Framework, Version 1.0 or 1.1.

In addition to the DB2 .NET Data Provider, there is also a collection of add-ins to
the Microsoft® Visual Studio .NET IDE. These add-ins simplify the creation of DB2
applications that use the ADO.NET interface. You can also use these add-ins to
develop server-side objects, such as SQL stored procedures and user-defined
functions.

Sample applications in VB.NET and C#NET demonstrating the DB2 .NET Data
Provider are available at:

[http://www.ibm.com/software/data/db2/udb/ad/v8/samples.htmi|

Web Applications

The sections that follow describe the products and functions that are available for
building Web applications.

Tools for Building Web Applications

DB2® Universal Database supports all the key Internet standards, making it an
ideal database for use on the Web. It has in-memory speed to facilitate Internet
searches and complex text matching combined with the scalability and availability

14 Programming Client Applications

http://www.ibm.com/software/data/db2/udb/ad/v8/samples.html

characteristics of a relational database. Because DB2 Universal Database supports
WebSphere®, Java'~ and XML Extender, it makes it easy for you to deploy your
e-business applications.

DB2 Universal Developer’s Edition has several tools that provide Web enablement
support. WebSphere Studio Application Developer, Version 4, is an integrated
development environment (IDE) that enables you to build, test, and deploy Java
applications to a WebSphere Application Server and DB2 Universal Database.
WebSphere Studio is a suite of tools that brings all aspects of Web site
development into a common interface. WebSphere Application Server Advanced
Edition (single-server) provides a robust deployment environment for e-business
applications. Its components let you build and deploy personalized, dynamic Web
content quickly and easily.

Related concepts:
* [“WebSphere Studio” on page 15|
* XML Extender” on page 16|

WebSphere Studio

WebSphere® Studio is a suite of tools that brings all aspects of Web site
development into a common interface. The WebSphere Studio makes it easier than
ever to cooperatively create, assemble, publish, and maintain dynamic interactive
Web applications. The Studio is composed of the Workbench, the Page Designer,
the Remote Debugger, and wizards, and it comes with trial copies of companion
Web development products, such as Macromedia Flash, Fireworks, Freehand, and
Director. WebSphere Studio enables you to do everything you need to create
interactive Web sites that support your advanced business functions.

WebSphere Application Server Standard Edition (provided with DB2® Universal
Developer’s Edition) is a component of WebSphere Studio. It combines the
portability of server-side business applications with the performance and
manageability of Java™ technologies to offer a comprehensive platform for
designing Java-based Web applications. It enables powerful interactions with
enterprise databases and transaction systems. You can run the DB2 server on the
same machine as WebSphere Application Server or on a different Web server.

WebSphere Application Server Advanced Edition (not provided with DB2
Universal Developer’s Edition) provides additional support for Enterprise JavaBean
applications. DB2 Universal Database " is provided with the WebSphere
Application Server Advanced Edition, to be used as the administrative server
repository. It introduces server capabilities for applications built to the E]B
Specification from Sun Microsystems, which provides support for integrating Web
applications to non-Web business systems.

Related concepts:

+ |“Enterprise Java Beans” on page 483|

Related reference:

* “Java WebSphere samples” in the Application Development Guide: Building and
Running Applications

Chapter 1. Overview of Supported Programming Interfaces 15

16

XML Extender

Extensible Markup Language (XML) is the accepted standard technique for data
exchange between applications. An XML document is a tagged document which is
human-legible. The text consists of character data and markup tags. The markup
tags are definable by the author of the document. A Document Type Definition
(DTD) is used to declare the markup definitions and constraints. DB2® XML
Extender (provided with DB2 Universal Developer’s Edition, as well as with
Personal Developer’s Edition on Windows®) gives a mechanism for programs to
manipulate XML data using SQL extensions.

The DB2 XML Extender introduces three new data types: XMLVARCHAR, XMLCLOB, and
XMLFILE. The extender provides UDFs to store, extract and update XML documents
located within single or multiple columns and tables. Searching can be performed

on the entire XML document or based on structural components using the location

path, which uses a subset of the Extensible Stylesheet Language Transformation
(XSLT) and XPath for XML Path Language.

To facilitate storing XML documents as a set of columns, the DB2 XML Extender
provides an administration tool to aid the designer with XML-to-relational
database mapping. The Document Access Definition (DAD) is used to maintain the
structural and mapping data for the XML documents. The DAD is defined and
stored as an XML document, which makes it simple to manipulate and
understand. New stored procedures are available to compose or decompose the
document.

For more information on DB2 XML Extender, visit:

[http://www.ibm.com/software/data/db2/extenders/xmlext/index.html|

MQSeries Enablement

A set of MQSeries® functions are provided with DB2® Universal Database to allow
DB2 applications to interact with asynchronous messaging operations. This means
that MQSeries support is available to applications written in any programming
language supported by DB2.

In a basic configuration, an MQSeries server is located on the database server
machine along with DB2 Universal Database . The MQSeries functions are
available from a DB2 server and provide access to other MQSeries applications.
Multiple DB2 clients can concurrently access the MQSeries functions through the
database. The MQSeries operations allow DB2 applications to asynchronously
communicate with other MQSeries applications. For instance, the new functions
provide a simple way for a DB2 application to publish database events to remote
MQSeries applications, initiate a workflow through the optional MQSeries
Workflow product, or communicate with an existing application package with the
optional MQSeries Integrator product.

Net.Data

Net.Data® enables Internet and intranet access to DB2® data through your web
applications. It exploits Web server interfaces (APIs), providing higher performance
than common gateway interface (CGI) applications. Net.Data supports client-side
processing as well as server-side processing with languages such as Java'", REXX,
Perl and C++. Net.Data provides conditional logic and a rich macro language. It

Programming Client Applications

http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

also provides XML support which allows you to generate XML tags as output from
your Net.Data macro, instead of manually entering the tags. You can also specify
an XML style sheet (XSL) to be used to format and display the generated output.
Net.Data is only available as a Web-based download. For more information, refer
to the following Web site:

|http://www-4.ibm.com/software/data/net.data/support/index.html|

Note: Net.Data support stabilized in DB2 Version 7.2, and no enhancements for
Net.Data support are planned for the future.

Related concepts:

* [“Tools for Building Web Applications” on page 14|
* XML Extender” on page 16|

Programming Features

The sections that follow describe the programming features that are available with
DB2.

DB2 Programming Features

DB2® comes with a variety of features that run on the server which you can use to
supplement or extend your applications. When you use DB2 features, you do not
have to write your own code to perform the same tasks. DB2 also lets you store
some parts of your code at the server instead of keeping all of it in your client
application. This can have performance and maintenance benefits.

There are features to protect data and to define relationships between data. As
well, there are object-relational features to create flexible, advanced applications.
You can use some features in more than one way. For example, constraints enable
you to protect data and to define relationships between data values. Here are some
key DB2 features:

* Constraints

* User-defined types (UDTs) and large objects (LOBs)
» User-defined functions (UDFs)

» Triggers

* Stored procedures

To decide whether or not to use DB2 features, consider the following points:

Application independence
You can make your application independent of the data it processes. Using
DB2 features that run at the database enables you to maintain and change
the logic surrounding the data without affecting your application. If you
need to make a change to that logic, you only need to change it in one
place; at the server, and not in each application that accesses the data.

Performance
You can make your application perform more quickly by storing and
running parts of your application on the server. This shifts some
processing to generally more powerful server machines, and can reduce
network traffic between your client application and the server.

Chapter 1. Overview of Supported Programming Interfaces 17

http://www.ibm.com/software/data/net.data/support/index.html

18

Application requirements
Your application might have unique logic that other applications do not.
For example, if your application processes data entry errors in a particular
order that would be inappropriate for other applications, you might want
to write your own code to handle this situation.

In some cases, you might decide to use DB2 features that run on the server
because they can be used by several applications. In other cases, you might decide

to keep logic in your application because it is used by your application only.

Related concepts:

* |“DB2 Stored Procedures” on page 18|

+ ["DB2 User-Defined Functions and Methods” on page 19|

+ [“User-Defined Types (UDTs) and Large Objects (LOBs)” on page 20|
* |"DB2 Triggers” on page 22|

DB2 Stored Procedures

Typically, applications access the database across the network. This can result in
poor performance if a lot of data is being returned. A stored procedure runs on the
database server. A client application can call the stored procedure which then
performs the database accessing without returning unnecessary data across the
network. Only the results the client application needs are returned by the stored
procedure.

You gain several benefits using stored procedures:

Reduced network traffic
Grouping SQL statements together can save on network traffic. A
typical application requires two trips across the network for each
SQL statement. Grouping SQL statements results in two trips
across the network for each group of statements, resulting in better
performance for applications.

Access to features that exist only on the server
Stored procedures can have access to commands that run only on
the server, such as LIST DATABASE DIRECTORY and LIST NODE
DIRECTORY; they might have the advantages of increased memory
and disk space on server machines; and they can access any
additional software installed on the server.

Enforcement of business rules
You can use stored procedures to define business rules that are
common to several applications. This is another way to define
business rules, in addition to using constraints and triggers.

When an application calls the stored procedure, it will process data
in a consistent way according to the rules defined in the stored
procedure. If you need to change the rules, you only need to make
the change once in the stored procedure, not in every application
that calls the stored procedure.

Related concepts:

* ["Development Center” on page 19|

Programming Client Applications

DB2 User-Defined Functions and Methods

The built-in capabilities supplied through SQL may not satisfy all of your
application needs. To allow you to extend those capabilities, DB2® supports
user-defined functions (UDFs) and methods. You can write your own code in
Visual Basic, C/C++, Java'", or SQL to perform operations within any SQL
statement that returns a single scalar value or a table.

UDFs and methods give you significant flexibility. They return a single scalar value
as part of an expression. Additionally, functions can return whole tables from
non-database sources such as spreadsheets.

UDFs and methods provide a way to standardize your applications. By
implementing a common set of routines, many applications can process data in the
same way, thus ensuring consistent results.

User-defined functions and methods also support object-oriented programming in
your applications. They provide for abstraction, allowing you to define the
common interfaces that can be used to perform operations on data objects. And
they provide for encapsulation, allowing you to control access to the underlying
data of an object, protecting it from direct manipulation and possible corruption.

Development Center

DB2® Development Center provides an easy-to-use development environment for
creating, installing, and testing stored procedures. It allows you to focus on
creating your stored procedure logic rather than the details of registering, building,
and installing stored procedures on a DB2 server. Additionally, with Development
Center, you can develop stored procedures on one operating system and build
them on other server operating systems.

Development Center is a graphical application that supports rapid development.
Using Development Center, you can perform the following tasks:

* Create new stored procedures.
* Build stored procedures on local and remote DB2 servers.
* Modify and rebuild existing stored procedures.

¢ Test and debug the execution of installed stored procedures.

You can launch Development Center as a separate application from the DB2
Universal Database " program group, or you can launch Development Center from
any of the following development applications:

* Microsoft® Visual Studio
e Microsoft Visual Basic
+ IBM® VisualAge® for Java'"

You can also launch Development Center from the Control Center for DB2 for
0S/390®. You can start Development Center as a separate process from the Control
Center Tools menu, toolbar, or Stored Procedures folder. In addition, from the
Development Center Project window, you can export one or more selected SQL
stored procedures built to a DB2 for OS/390 server to a specified file capable of
running within the command line processor (CLP).

Development Center manages your work by using projects. Each Development
Center project saves your connections to specific databases, such as DB2 for

Chapter 1. Overview of Supported Programming Interfaces 19

20

0S/390 servers. In addition, you can create filters to display subsets of the stored
procedures on each database. When opening a new or existing Development
Center project, you can filter stored procedures so that you view stored procedures
based on their name, schema, language, or collection ID (for OS/390 only).

Connection information is saved in a Development Center project; therefore, when
you open an existing project, you are automatically prompted to enter your user
ID and password for the database. Using the Inserting SQL Stored Procedure
wizard, you can build SQL stored procedures on a DB2 for OS/390 server. For an
SQL stored procedure built to a DB2 for OS/390 server, you can set specific
compile, pre-link, link, bind, runtime, WLM environment, and external security
options.

Additionally, you can obtain SQL costing information about the SQL stored
procedure, including information about CPU time and other DB2 costing
information for the thread on which the SQL stored procedure is running. In
particular, you can obtain costing information about latch/lock contention wait
time, the number of getpages, the number of read I/Os, and the number of write
1/0s.

To obtain costing information, Development Center connects to a DB2 for OS/390
server, executes the SQL statement, and calls a stored procedure (DSNWSPM) to
find out how much CPU time the SQL stored procedure used.

Related concepts:
+ ["DB2 Stored Procedures” on page 18|
+ [“OLE Automation Routines” on page 21|

User-Defined Types (UDTs) and Large Objects (LOBSs)

Every data element in the database is stored in a column of a table, and each
column is defined to have a data type. The data type places limits on the types of
values you can put into the column and the operations you can perform on them.
For example, a column of integers can only contain numbers within a fixed range.
DB2® includes a set of built-in data types with defined characteristics and
behaviors: character strings, numerics, datetime values, large objects, Nulls, graphic
strings, binary strings, and datalinks.

Sometimes, however, the built-in data types might not serve the needs of your
applications. DB2 provides user-defined types (UDTs) which enable you to define
the distinct data types you need for your applications.

UDTs are based on the built-in data types. When you define a UDT, you also
define the operations that are valid for the UDT. For example, you might define a
MONEY data type that is based on the DECIMAL data type. However, for the
MONEY data type, you might allow only addition and subtraction operations, but
not multiplication and division operations.

Large Objects (LOBs) enable you to store and manipulate large, complex data
objects in the database: objects such as audio, video, images, and large documents.

The combination of UDTs and LOBs gives you considerable power. You are no
longer restricted to using the built-in data types provided by DB2 to model your
business data, and to capture the semantics of that data. You can use UDTs to
define large, complex data structures for advanced applications.

Programming Client Applications

In addition to extending built-in data types, UDTs provide several other benefits:

Support for object-oriented programming in your applications
You can group similar objects into related data types. These types have a
name, an internal representation, and a specific behavior. By using UDTs,
you can tell DB2 the name of your new type and how it is represented
internally. A LOB is one of the possible internal representations for your
new type, and is the most suitable representation for large, complex data
structures.

Data integrity through strong typing and encapsulation
Strong typing guarantees that only functions and operations defined on the
distinct type can be applied to the type. Encapsulation ensures that the
behavior of UDTs is restricted by the functions and operators that can be
applied to them. In DB2, behavior for UDTs can be provided in the form of
user-defined functions (UDFs), which can be written to accommodate a
broad range of user requirements.

Performance through integration into the database manager
Because UDTs are represented internally, the same way as built-in data
types, they share the same efficient code as built-in data types to
implement built-in functions, comparison operators, indexes, and other
functions. The exception to this is UDTs that utilize LOBs, which cannot be
used with comparison operators and indexes.

Related concepts:

* “Large object usage” in the Application Development Guide: Programming Server
Applications

* “User-Defined Types” in the Application Development Guide: Programming Server
Applications

OLE Automation Routines

OLE (Object Linking and Embedding) automation is part of the OLE 2.0
architecture from Microsoft® Corporation. With OLE automation, your applications,
regardless of the language in which they are written, can expose their properties
and methods in OLE automation objects. Other applications, such as Lotus® Notes
or Microsoft Exchange, can then integrate these objects by taking advantage of
these properties and methods through OLE automation.

DB2® for Windows® operating systems provides access to OLE automation objects
using UDFs, methods, and stored procedures. To access OLE automation objects
and invoke their methods, you must register the methods of the objects as routines
(UDFs, methods, or stored procedures) in the database. DB2 applications can then
use the methods by invoking the routines.

For example, you can develop an application that queries data in a spreadsheet
created using a product such as Microsoft Excel. To do this, you would develop an
OLE automation table function that retrieves data from the worksheet, and returns
it to DB2. DB2 can then process the data, perform online analytical processing
(OLAP), and return the query result to your application.

Related concepts:

* |“DB2 Stored Procedures” on page 18|

+ ["Development Center” on page 19|

Chapter 1. Overview of Supported Programming Interfaces 21

22

OLE DB Table Functions

Microsoft® OLE DB is a set of OLE/COM interfaces that provide applications with
uniform access to data stored in diverse information sources. DB2® Universal
Database simplifies the creation of OLE DB applications by enabling you to define
table functions that access an OLE DB data source. You can perform operations
including GROUP BY, JOIN, and UNION, on data sources that expose their data
through OLE DB interfaces. For example, you can define an OLE DB table function
to return a table from a Microsoft Access database or a Microsoft Exchange address
book, then create a report that seamlessly combines data from this OLE DB table
function with data in your DB2 database.

Using OLE DB table functions reduces your application development effort by
providing built-in access to any OLE DB provider. For C, Java ", and OLE
automation table functions, the developer needs to implement the table function,
whereas in the case of OLE DB table functions, a generic built-in OLE DB
consumer interfaces with any OLE DB provider to retrieve data. You only need to
register a table function of language type OLEDB, and refer to the OLE DB
provider and the relevant rowset as a data source. You do not have to do any UDF
programming to take advantage of OLE DB table functions.

Related concepts:
* [“Purpose of the IBM OLE DB Provider for DB2” on page 219
* |“OLE DB Services Automatically Enabled by IBM OLE DB Provider” on page]

P27

Related reference:
+ [“IBM OLE DB Provider Support for OLE DB Components and Interfaces” on|

[page 222|

+ |“IBM OLE DB Provider support for OLE DB properties” on page 230

DB2 Triggers

A trigger defines a set of actions executed executed in response to the event of an
INSERT, UPDATE or DELETE operation on a specified table. When such an SQL
operation is executed, the trigger is said to be activated. The trigger can be
activated before the SQL operation or after it. You define a trigger using the SQL
statement CREATE TRIGGER.

You can use triggers that run before an update or insert in several ways:

* To check or modify values before they are actually updated or inserted in the
database. This is useful if you need to transform data from the way the user sees
it to some internal database format.

* To run other non-database operations coded in user-defined functions.

Similarly, you can use triggers that run after an update or insert in several ways:

* To update data in other tables. This capability is useful for maintaining
relationships between data or in keeping audit trail information.

* To check against other data in the table or in other tables. This capability is
useful to ensure data integrity when referential integrity constraints aren’t
appropriate, or when table check constraints limit checking to the current table
only.

Programming Client Applications

* To run non-database operations coded in user-defined functions. This capability
is useful when issuing alerts or to update information outside the database.

You gain several benefits using triggers:

Faster application development
Triggers are stored in the database, and are available to all applications,
which relieves you of the need to code equivalent functions for each
application.

Global enforcement of business rules
Triggers are defined once, and are used by all applications that use the
data governed by the triggers.

Easier maintenance
Any changes need to be made only once in the database instead of in
every application that uses a trigger.

Related concepts:

» “Triggers in application development” in the Application Development Guide:
Programming Server Applications

e “Trigger creation guidelines” in the Application Development Guide: Programming
Server Applications

Chapter 1. Overview of Supported Programming Interfaces 23

24 Programming Client Applications

Chapter 2. Coding a DB2 Application

Prerequisites for Programming25 Data Value Control Using Data Types41

DB2 Application Coding Overview26 Data Value Control Using Unique Constraints. . 41
Programming a Standalone Application26 Data Value Control Using Table Check
Creating the Declaration Section of a Standalone Constraints41
Application . . .27 Data Value Control Usmg Referentlal Integrlty
Declaring Variables That Interact w1th the Constraints . . .4
Database Manager27 Data Value Control Usmg Vrews w1th Check
Declaring Variables That Represent SQL Ob]ects 28 Option42
Declaring Host Variables with the db2dclgn Data Value Control Usmg Apphcatlon Loglc and
Declaration Generator29 Program Variable Types oL 42
Relating Host Variables to an SQL Statement . .30 Data Relationship Control . . .42
Declaring the SQLCA for Error Handling . . . 31 Data Relationship Control Using Referent1a1
Error Handling Using the WHENEVER Integrity Constraints . . .)
Statement 032 Data Relationship Control Usmg Trlggers .. .43
Adding Non—Executable Statements to an Data Relationship Control Using Before Triggers 44
Application33 Data Relationship Control Using After Triggers 44
Connecting an Apphcatlon to a Database .. .33 Data Relationship Control Usmg Apphcatlon
Coding Transactions34 Logic . . .44
Ending a Transaction with the COMMIT Application Loglc at the Server . . .45
Statement35 Authorization Considerations for SQL and APIs . .46
Ending a Transactron w1th the ROLLBACK Authorization Considerations for Embedded SQL 46
Statement36 Authorization Considerations for Dynamic SQL 47
Ending an Apphcatlon Program .o .37 Authorization Considerations for Static SQL . . 48
Implicit Ending of a Transaction in a Standalone Authorization Considerations for APIs48
Application . . N V4 Testing the Application48
Application Pseudocode Framework38 Setting up the Test Envrronment for an
Facilities for Prototyping SQL Statements . . . 39 Application . . . L. .8
Administrative APIs in Embedded SQL or DB2 Setting up a Testmg EnVlronment R
CLI Programs40 Creating Test Tables and Views.49

Controlling Data Values and Relatlonsh1ps40 Generating Test Data50
Data Value Control.40 Debugging and Optimizing an Appllcatlon . .52

Prerequisites for Programming

Before developing an application, you require the appropriate operating
environment. The following must also be properly installed and configured:

* A supported compiler or interpreter for developing your applications.
* DB2 Universal Database, either locally or remotely.
* DB2 Application Development Client.

You can develop applications at a server or on any client that has the DB2
Application Development Client installed. You can run applications with either the
server, the DB2 Run-Time Client, or the DB2 Administrative Client. You can also
develop Java ' JDBC programs on one of these clients, provided that you install
the "Java Enablement” component when you install the client. That means you can
execute any DB2 application on these clients. However, unless you also install the
DB2 Application Development Client with these clients, you can only develop
JDBC applications on them.

DB2® supports the C, C++, Java (SQLJ), COBOL, and FORTRAN programming

languages through its precompilers. In addition, DB2 provides support for the Perl,
Java (JDBC), and REXX dynamically interpreted languages

© Copyright IBM Corp. 1997 - 2004 25

Note: FORTRAN and REXX support stabilized in DB2 Version 5, and no
enhancements for FORTRAN or REXX support are planned for the future.

DB2 provides a sample database, which you require to run the supplied sample
programs.

Related tasks:
* “Setting up the application development environment” in the Application
Development Guide: Building and Running Applications

* “Setting up the sample database” in the Application Development Guide: Building
and Running Applications

DB2 Application Coding Overview

26

The sections that follow provide an overview of coding a DB2 application.

Programming a Standalone Application

A standalone application is an application that does not call database objects, such
as stored procedures, when it executes. When you write the application, you must
ensure that certain SQL statements appear at the beginning and end of the
program to handle the transition from the host language to the embedded SQL
statements.

Procedure:

To program a standalone application, you must ensure that you:

1. Create the declaration section.

2. Connect to the database.

3. Write one or more transactions.

4. End each transaction using either of the following methods:
* Commit the changes made by the application to the database.
* Roll back the changes made by the application to the database.

5. End the program.

Related concepts:

» [“Prerequisites for Programming” on page 25|

+ |“Application Pseudocode Framework” on page 38|

* [“Facilities for Prototyping SQL Statements” on page 39|

* “Sample files” in the Application Development Guide: Building and Running
Applications

Related tasks:
+ [“Creating the Declaration Section of a Standalone Application” on page 27

+ [“Connecting an Application to a Database” on page 33|

* |“Coding Transactions” on page 34

* [“Ending a Transaction with the COMMIT Statement” on page 35|

* [“Ending a Transaction with the ROLLBACK Statement” on page 36|
+ |“"Ending an Application Program” on page 37|

* [“Setting up a Testing Environment” on page 49|

Programming Client Applications

Creating the Declaration Section of a Standalone Application

The beginning of every program must contain a declaration section, which
contains:

* Declarations of all variables and data structures that the database manager uses
to interact with the host program

* SQL statements that provide for error handling by setting up the SQL
Communications Area (SQLCA)

Note that DB2 applications written in Java throw an SQLException, which you
handle in a catch block, rather than using the SQLCA.

A program may contain multiple SQL declare sections.
Procedure:

To create the declaration section:

1. Use the SQL statement BEGIN DECLARE SECTION to open the section.
2. Code your declarations

3. Use the SQL statement END DECLARE SECTION to end the section.

Related tasks:

+ |["“Declaring Variables That Interact with the Database Manager” on page 27|
+ [“Declaring Variables That Represent SQL Objects” on page 28|

[‘Relating Host Variables to an SQL Statement” on page 30|

* [“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|
* [“Declaring the SQLCA for Error Handling” on page 31

Declaring Variables That Interact with the Database Manager

All variables that interact with the database manager must be declared in the SQL
declare section.

Host program variables declared in an SQL declare section are called host
variables. You can use host variables in host-variable references in SQL statements.
The host-variable tag is used in syntax diagrams in SQL statements.

Procedure:

To declare a variable, code it in the SQL declare section. An example of a host
variable in C/C++ is as follows:
EXEC SQL BEGIN DECLARE SECTION;
short dept=38, age=26;
double salary;

char CH;

char namel[9], NAME2[9];
/* C comment */

short nul ind;

EXEC SQL END DECLARE SECTION;

The attributes of each host variable depend on how the variable is used in the SQL
statement. For example, variables that receive data from or store data in DB2 tables
must have data type and length attributes compatible with the column being
accessed. To determine the data type for each variable, you must be familiar with
DB2 data types.

Chapter 2. Coding a DB2 Application 27

28

Related reference:

* |“Supported SQL Data Types in C and C++” on page 162
* [“Supported SQL Data Types in COBOL” on page 190|

* [“Supported SQL Data Types in FORTRAN” on page 206
* |“Supported SQL Data Types in REXX” on page 502|

+ [“Java, JDBC, and SQL data types” on page 365|

Declaring Variables That Represent SQL Objects

Declare the variables that represent SQL objects in the SQL declare section of your
application program.

Procedure:

Code the variable in the appropriate format for the language in which you are
writing your application program.

When you code the variable, remember that the names of tables, aliases, views,
and correlations have a maximum length of 128 bytes. Column names have a
maximum length of 30 bytes. Schema names have a maximum length of 30 bytes.
Future releases of DB2 may increase the lengths of column names and other
identifiers of SQL objects up to 128 bytes. If you declare variables that represent
SQL objects with less than 128-byte lengths, future increases in SQL object
identifier lengths may affect the stability of your applications. For example, if you
declare the variable char[9]schema_name in a C++ application to hold a schema
name, your application functions properly for the allowed schema names in DB2
Version 6, which have a maximum length of 8 bytes.

char[9] schema_name; /* holds null-delimited schema name of up to 8 bytes;
works for DB2 Version 6, but may truncate schema names in future releases */

However, if you migrate the database to a version of DB2 that accepts schema
names with a maximum length of 30 bytes, your application cannot differentiate
between the schema names LONGSCHEMAL and LONGSCHEMA2. The database manager
truncates the schema names to their 8-byte limit of LONGSCHE, and any statement in
your application that depends on differentiating the schema names fails. To
increase the longevity of your application, declare the schema name variable with a
128-byte length as follows:

char[129] schema_name; /* holds null-delimited schema name of up to 128 bytes

good for DB2 Version 7 and beyond */

To improve the future operation of your application, consider declaring all of the
variables in your applications that represent SQL object names with lengths of 128
bytes. You must weigh the advantage of improved compatibility against the
increased system resources that longer variables require.

For C/C++ applications, you can simplify the coding of declarations and increase
the clarity of your code by using C macro expansion to declare the lengths of SQL
object identifiers. Because the include file sq1.h declares SQL_MAX_IDENT to be
128, you can easily declare SQL object identifiers with the SQL_MAX_IDENT
macro. For example:
#include <sql.h>

char[SQL_MAX_IDENT+1] schema_name;

char[SQL_MAX_ IDENT+1] table_name;

char[SQL_MAX_IDENT+1] employee_column;

char[SQL_MAX_ IDENT+1] manager_column;

Programming Client Applications

Related concepts:

[‘Host Variables in C and C++” on page 137
“Syntax for Fixed and Null-Terminated Character Host Variables in C and C++"]

on page 140|

[“C Macro Expansion” on page 149|

[“Host Variables in COBOL” on page 180|
[“Host Variables in FORTRAN” on page 200|
[‘Host Variables in REXX” on page 497

Related reference:

[‘Syntax for Numeric Host Variables in C and C++” on page 139

[‘Syntax for Variable-Length Character Host Variables in C or C++” on page 141]

“Syntax for Graphic Declaration of Single-Graphic and Null-Terminated Graphid|
Forms in C and C++” on page 143

“Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C o1
C++" on page 145

[‘Syntax for Large Object (LOB) Host Variables in C or C++” on page 146|
“Syntax for Large Object (LOB) Locator Host Variables in C or C++” on page]

127

[‘Syntax for File Reference Host Variable Declarations in C or C++” on page 148
[‘Syntax for Numeric Host Variables in COBOL” on page 181|

[‘Syntax for Fixed-Length Character Host Variables in COBOL” on page 182
[‘Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 183|
[‘Syntax for LOB Host Variables in COBOL” on page 184

[‘Syntax for LOB Locator Host Variables in COBOL” on page 185|

|

|

|

|

“Syntax for File Reference Host Variables in COBOL” on page 186|
“Syntax for Numeric Host Variables in FORTRAN” on page 202|

“Syntax for Character Host Variables in FORTRAN” on page 202|

“Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 204|

“Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on page|
205

[‘Syntax for File Reference Host Variables in FORTRAN” on page 205|
[‘Syntax for LOB Locator Declarations in REXX” on page 500]
[‘Syntax for LOB File Reference Declarations in REXX” on page 501]

Declaring Host Variables with the db2dcign Declaration
Generator

You can use the Declaration Generator to generate declarations for a given table in
a database. It creates embedded SQL declaration source files which you can easily
insert into your applications. db2dc1gn supports the C/C++, Java, COBOL, and
FORTRAN languages.

Procedure:

To generate declaration files, enter the db2dcTgn command in the following format:

db2dclgn -d database-name -t table-name [options]

Chapter 2. Coding a DB2 Application 29

30

For example, to generate the declarations for the STAFF table in the SAMPLE
database in C in the output file staff.h, issue the following command:

db2dclgn -d sample -t staff -1 C

The resulting staff.h file contains:
struct

{
short id;
struct
{
short length;
char data[9];
} name;
short dept;
char job[6];
short years;
double salary;
double comm;
} staff;

Related reference:
* “db2dclgn - Declaration Generator Command” in the Command Reference

Relating Host Variables to an SQL Statement

You use host variables to receive data from the database manager or to transfer
data to it from the host program. Host variables that receive data from the
database manager are output host variables, while those that transfer data to it from
the host program are input host variables.

Consider the following SELECT INTO statement:

SELECT HIREDATE, EDLEVEL
INTO :hdate, :1vl
FROM EMPLOYEE
WHERE EMPNO = :idno

The statement contains two output host variables, hdate and 1v1, and one input
host variable, idno. The database manager uses the data stored in the host variable
idno to determine the EMPNO of the row that is retrieved from the EMPLOYEE
table. If the database manager finds a row that meets the search criteria, hdate and
1v1 receive the data stored in the columns HIREDATE and EDLEVEL, respectively.
This statement illustrates an interaction between the host program and the
database manager using columns of the EMPLOYEE table.

Procedure:

To define the host variable for use with a column:

1. Find out the SQL data type for that column. Do this by querying the system
catalog, which is a set of views containing information about all tables created
in the database.

2. Code the appropriate declarations based on the host language.

Each column of a table is assigned a data type in the CREATE TABLE
definition. You must relate this data type to the host language data type. For
example, the INTEGER data type is a 32-bit signed integer. This is equivalent to
the following data description entries in each of the host languages,
respectively:

Programming Client Applications

C/C++:
sqlint32 variable_name;

Java: int variable_name;

COBOL:
01 variable-name PICTURE S9(9) COMPUTATIONAL-5.

FORTRAN:
INTEGER*4 variable_name

You can also use the Declaration Generator utility (db2dc1gn) to generate the
appropriate declarations for a given table in a database.

Related concepts:
* “Catalog views” in the SQL Reference, Volume 1

Related tasks:
* |["“Declaring Variables That Interact with the Database Manager” on page 27|

* |“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|

+ [“Creating the Declaration Section of a Standalone Application” on page 27|

Related reference:

+ [“Supported SQL Data Types in C and C++” on page 162|
* [“Supported SQL Data Types in COBOL” on page 190|

* [“Supported SQL Data Types in FORTRAN” on page 206
* [“Supported SQL Data Types in REXX” on page 502|

+ [“Java, JDBC, and SQL data types” on page 365|

Declaring the SQLCA for Error Handling

You can declare the SQLCA in your application program so that the database
manager can return information to your application. When you preprocess your
program, the database manager inserts host language variable declarations in place
of the INCLUDE SQLCA statement. The system communicates with your program
using the variables for warning flags, error codes, and diagnostic information.

After executing each SQL statement, the system returns a return code in both
SQLCODE and SQLSTATE. SQLCODE is an integer value that summarizes the
execution of the statement, and SQLSTATE is a character field that provides
common error codes across IBM’s relational database products. SQLSTATE also
conforms to the ISO/ANS SQL92 and FIPS 127-2 standard.

Note: FIPS 127-2 refers to Federal Information Processing Standards Publication 127-2
for Database Language SQL. ISO/ANS SQL92 refers to American National
Standard Database Language SQL X3.135-1992 and International Standard
ISO/IEC 9075:1992, Database Language SQL.

Note that if SQLCODE is less than 0, it means an error has occurred and the
statement has not been processed. If the SQLCODE is greater than 0, it means a
warning has been issued, but the statement is still processed.

For a DB2 application written in C or C++, if the application is made up of

multiple source files, only one of the files should include the EXEC SQL INCLUDE

Chapter 2. Coding a DB2 Application 31

SQLCA statement to avoid multiple definitions of the SQLCA. The remaining
source files should use the following lines:

#include "sqlca.h"
extern struct sqlca sqlca;

Procedure:

To declare the SQLCA, code the INCLUDE SQLCA statement in your program as
follows:

* For C or C++ applications use:
EXEC SQL INCLUDE SQLCA;

* For Java applications, you do not explicitly use the SQLCA. Instead, use the
SQLException instance methods to get the SQLSTATE and SQLCODE values.

* For COBOL applications use:
EXEC SQL INCLUDE SQLCA END-EXEC.
* For FORTRAN applications use:
EXEC SQL INCLUDE SQLCA

If your application must be compliant with the ISO/ANS SQL92 or FIPS 127-2
standard, do not use the above statements or the INCLUDE SQLCA statement.

Related concepts:

* |“Error Handling Using the WHENEVER Statement” on page 32|

* |“SQLSTATE and SQLCODE Variables in C and C++” on page 168
* ["SQLSTATE and SQLCODE Variables in COBOL” on page 193]

+ [“SQLSTATE and SQLCODE Variables in FORTRAN” on page 208|
* [“SQLSTATE and SQLCODE Variables in Perl” on page 491|

Related tasks:
* |“Creating the Declaration Section of a Standalone Application” on page 27|

Error Handling Using the WHENEVER Statement

The WHENEVER statement causes the precompiler to generate source code that
directs the application to go to a specified label if either an error, a warning, or no
rows are found during execution. The WHENEVER statement affects all
subsequent executable SQL statements until another WHENEVER statement alters
the situation.

The WHENEVER statement has three basic forms:

EXEC SQL WHENEVER SQLERROR action
EXEC SQL WHENEVER SQLWARNING action
EXEC SQL WHENEVER NOT FOUND action

In the above statements:

SQLERROR
Identifies any condition where SQLCODE < 0.

SQLWARNING
Identifies any condition where SQLWARN(0) = W or SQLCODE > 0 but is
not equal to 100.

32 Programming Client Applications

NOT FOUND
Identifies any condition where SQLCODE = 100.

In each case, the action can be either of the following:

CONTINUE
Indicates to continue with the next instruction in the application.

GO TO label
Indicates to go to the statement immediately following the label specified
after GO TO. (GO TO can be two words, or one word, GOTO.)

If the WHENEVER statement is not used, the default action is to continue
processing if an error, warning, or exception condition occurs during execution.

The WHENEVER statement must appear before the SQL statements you want to
affect. Otherwise, the precompiler does not know that additional error-handling
code should be generated for the executable SQL statements. You can have any
combination of the three basic forms active at any time. The order in which you
declare the three forms is not significant.

To avoid an infinite looping situation, ensure that you undo the WHENEVER
handling before any SQL statements are executed inside the handler. You can do
this using the WHENEVER SQLERROR CONTINUE statement.

Related reference:
* “WHENEVER statement” in the SQL Reference, Volume 2

Adding Non-Executable Statements to an Application

If you need to include non-executable SQL statements in an application program,
you typically put them in the declaration section of the application. Examples of
non-executable statements are the INCLUDE, INCLUDE SQLDA, and DECLARE
CURSOR statements.

Procedure:

If you want to use the non-executable statement INCLUDE in your application,
code it as follows:

INCLUDE text-file-name

Related tasks:
* |“Creating the Declaration Section of a Standalone Application” on page 27|

Connecting an Application to a Database

Your program must establish a connection to the target database before it can run
any executable SQL statements. This connection identifies both the authorization
ID of the user who is running the program, and the name of the database server
on which the program is run. Generally, your application process can only connect
to one database server at a time. This server is called the current server. However,
your application can connect to multiple database servers within a multisite update
environment. In this case, only one server can be the current server.

Restrictions:

Chapter 2. Coding a DB2 Application 33

34

The following restrictions apply:

¢ A connection lasts until a CONNECT RESET, CONNECT TO, or DISCONNECT
statement is issued.

* In a multisite update environment, a connection also lasts until a DB2 RELEASE
then DB2 COMMIT is issued. A CONNECT TO statement does not terminate a
connection when using multisite update.

Procedure:

Your program can establish a connection to a database server either:
* Explicitly, using the CONNECT statement

* Implicitly, connecting to the default database server

* For Java applications, through a Connection instance

See the CONNECT statement description for a discussion of connection states and
how to use the CONNECT statement. Upon initialization, the application requester
establishes a default database server. If implicit connects are enabled, application
processes started after initialization connect implicitly to the default database
server. It is good practice to use the CONNECT statement as the first SQL
statement executed by an application program. An explicit CONNECT avoids
accidentally executing SQL statements against the default database.

Related concepts:
+ [“Multisite Update” on page 627]

Related reference:
* “CONNECT (Type 1) statement” in the SQL Reference, Volume 2
e “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

Coding Transactions

A transaction is a sequence of SQL statements (possibly with intervening host
language code) that the database manager treats as a whole. An alternative term
that is often used for transaction is unit of work.

Prerequisites:

A connection must be established with the database against which the transaction
will execute.

Procedure:

To code a transaction:
1. Start the transaction with an executable SQL statement.

After the connection to the database is established, your program can issue one
or more:

¢ Data manipulation statements (for example, the SELECT statement)
* Data definition statements (for example, the CREATE statement)
* Data control statements (for example, the GRANT statement)

An executable SQL statement always occurs within a transaction. If a program
contains an executable SQL statement after a transaction ends, it automatically
starts a new transaction.

Programming Client Applications

Note: The following six statements do not start a transaction because they are
not executable statements:

* BEGIN DECLARE SECTION
* INCLUDE SQLCA
* END DECLARE SECTION
» INCLUDE SQLDA
* DECLARE CURSOR
* WHENEVER
2. End the transaction in either of the following ways:
¢ COMMIT the transaction
¢ ROLLBACK the transaction

Related tasks:
* ["Ending a Transaction with the COMMIT Statement” on page 35|
* [“Ending a Transaction with the ROLLBACK Statement” on page 36|

Ending a Transaction with the COMMIT Statement

The COMMIT statement ends the current transaction and makes the database
changes performed during the transaction visible to other processes.

Procedure:

Commit changes as soon as application requirements permit. In particular, write
your programs so that uncommitted changes are not held while waiting for input
from a terminal, as this can result in database resources being held for a long time.
Holding these resources prevents other applications that need these resources from
running.

Your application programs should explicitly end any transactions before
terminating.

If you do not end transactions explicitly, DB2 automatically commits all the
changes made during the program’s pending transaction when the program ends
successfully, except on Windows operating systems. On Windows operating
systems, if you do not explicitly commit the transaction, the database manager
always rolls back the changes.

DB2 rolls back the changes under the following conditions:
* Alog full condition
* Any other system condition that causes database manager processing to end

The COMMIT statement has no effect on the contents of host variables.

Related concepts:

+ |“Implicit Ending of a Transaction in a Standalone Application” on page 37|

* ["“Return Codes” on page 99|
* |“Error Information in the SQLCODE, SQLSTATE, and SQLWARN Fields” on|

[page 100|

Related tasks:

Chapter 2. Coding a DB2 Application 35

36

+ “Ending an Application Program” on page 37|

Related reference:
* “COMMIT statement” in the SQL Reference, Volume 2

Ending a Transaction with the ROLLBACK Statement

To ensure the consistency of data at the transaction level, the database manager
ensures that either all operations within a transaction are completed, or none are
completed. Suppose, for example, that the program is supposed to deduct money
from one account and add it to another. If you place both of these updates in a
single transaction, and a system failure occurs while they are in progress, when
you restart the system the database manager automatically performs crash
recovery to restore the data to the state it was in before the transaction began. If a
program error occurs, the database manager restores all changes made by the
statement in error. The database manager will not undo work performed in the
transaction prior to execution of the statement in error, unless you specifically roll
it back.

Procedure:

To prevent the changes that were effected by the transaction from being committed
to the database, issue the ROLLBACK statement to end the transaction. The
ROLLBACK statement returns the database to the state it was in before the
transaction ran.

Note: On Windows operating systems, if you do not explicitly commit the
transaction, the database manager always rolls back the changes.

If you use a ROLLBACK statement in a routine that was entered because of an
error or warning and you use the SQL WHENEVER statement, then you should
specify WHENEVER SQLERROR CONTINUE and WHENEVER SQLWARNING
CONTINUE before the ROLLBACK. This avoids a program loop if the ROLLBACK
fails with an error or warning.

In the event of a severe error, you will receive a message indicating that you
cannot issue a ROLLBACK statement. Do not issue a ROLLBACK statement if a
severe error occurs such as the loss of communications between the client and
server applications, or if the database gets corrupted. After a severe error, the only
statement you can issue is a CONNECT statement.

The ROLLBACK statement has no effect on the contents of host variables.
You can code one or more transactions within a single application program, and it
is possible to access more than one database from within a single transaction. A

transaction that accesses more than one database is called a multisite update.

Related concepts:

+ |“Implicit Ending of a Transaction in a Standalone Application” on page 37|
+ ["Remote Unit of Work” on page 627
+ [“Multisite Update” on page 627]

Related reference:
* “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

Programming Client Applications

¢ “CONNECT (Type 2) statement” in the SQL Reference, Volume 2
* “WHENEVER statement” in the SQL Reference, Volume 2

Ending an Application Program

End an application program to clean up resources that the program was using.
Procedure:

To properly end your program:
1. End the current transaction (if one is in progress) by explicitly issuing either a
COMMIT statement or a ROLLBACK statement.

2. Release your connection to the database server by using the CONNECT RESET
statement.

3. Clean up resources used by the program. For example, free any temporary
storage or data structures that are used.

Note: If the current transaction is still active when the program terminates, DB2
implicitly ends the transaction. Because DB2’s behavior when it implicitly
ends a transaction is platform specific, you should explicitly end all
transactions by issuing a COMMIT or a ROLLBACK statement before the
program terminates.

Related concepts:

+ |“Implicit Ending of a Transaction in a Standalone Application” on page 37|

Related reference:
* “CONNECT (Type 1) statement” in the SQL Reference, Volume 2
e “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

Implicit Ending of a Transaction in a Standalone Application

If your program terminates without ending the current transaction, DB2® implicitly
ends the current transaction. DB2 implicitly terminates the current transaction by
issuing either a COMMIT or a ROLLBACK statement when the application ends.
Whether DB2 issues a COMMIT or ROLLBACK depends on factors such as:

* Whether the application terminated normally

On most supported operating systems, DB2 implicitly commits a transaction if
the termination is normal, or implicitly rolls back the transaction if it is
abnormal. Note that what your program considers to be an abnormal
termination may not be considered abnormal by the database manager. For
example, you may code exit(-16) when your application encounters an
unexpected error and terminate your application abruptly. The database
manager considers this to be a normal termination and commits the transaction.
The database manager considers items such as an exception or a segmentation
violation as abnormal terminations.

¢ The platform on which the DB2 server runs

On Windows® 32-bit operating systems, DB2 always rolls back the transaction
regardless of whether your application terminates normally or abnormally. If
you want the transaction to be committed, you must issue the COMMIT
statement explicitly.

Chapter 2. Coding a DB2 Application 37

38

* Whether the application uses the DB2 context APIs for multiple-thread database
access
If your application uses these, DB2 implicitly rolls back the transaction whether
your application terminates normally or abnormally. Unless you explicitly
commit the transaction using the COMMIT statement, DB2 rolls back the
transaction.

Related concepts:

* [“Purpose of Multiple-Thread Database Access” on page 169

Related tasks:
* |“Ending an Application Program” on page 37|

Related reference:
* “COMMIT statement” in the SQL Reference, Volume 2
¢ “ROLLBACK statement” in the SQL Reference, Volume 2

Application Pseudocode Framework

The following example summarizes the general framework for a DB2 application
program in pseudocode format. You must, of course, tailor this framework to suit
your own program.

Start Program

EXEC SQL BEGIN DECLARE SECTION
DECLARE USERID FIXED CHARACTER (8)
DECLARE PW FIXED CHARACTER (8)

AppTlication

(other host variable declarations) Setup

EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK

(program logic)

EXEC SQL CONNECT TO database A USER :userid USING :pw

EXEC SQL SELECT ...

EXEC SQL INSERT ... First Unit
(more SQL statements) of Work

EXEC SQL COMMIT

(more program logic)

EXEC SQL CONNECT TO database B USER :userid USING :pw

EXEC SQL SELECT ...

EXEC SQL DELETE ... Second Unit
(more SQL statements) of Work

EXEC SQL COMMIT

(more program logic)

EXEC SQL CONNECT TO database A

EXEC SQL SELECT ...

EXEC SQL DELETE ... Third Unit
(more SQL statements) of Work

EXEC SQL COMMIT

(more program logic)

EXEC SQL CONNECT RESET
ERRCHK

Programming Client Applications

Application
(check error information in SQLCA) Cleanup

End Program

Related tasks:
* [“Programming a Standalone Application” on page 26|

Facilities for Prototyping SQL Statements

As you design and code your application, you can take advantage of certain
database manager features and utilities to prototype portions of your SQL code,
and to improve performance. For example, you can do the following:

Use the Control Center or the command line processor (CLP) to test many SQL
statements before you attempt to compile and link a complete program.

This allows you to define and manipulate information stored in a database table,
index, or view. You can add, delete, or update information as well as generate
reports from the contents of tables. Note that you have to minimally change the
syntax for some SQL statements in order to use host variables in your embedded
SQL program. Host variables are used to store data that is output to your screen.
In addition, some embedded SQL statements (such as BEGIN DECLARE
SECTION) are not supported by the Command Center or CLP as they are not
relevant to that environment.

You can also redirect the input and output of command line processor requests.
For example, you could create one or more files containing SQL statements you
need as input into a command line processor request, to save retyping the
statement.

Use the Explain facility to get an idea of the estimated costs of the DELETE,
INSERT, UPDATE, or SELECT statements you plan to use in your program. The
Explain facility places the information about the structure and the estimated
costs of the subject statement into user supplied tables. You can view this
information using Visual Explain or the db2exfmt utility.

Use the system catalog views to easily retrieve information about existing
databases. The database manager creates and maintains the system catalog tables
on which the views are based during normal operation as databases are created,
altered, and updated. These views contain data about each database, including
authorities granted, column names, data types, indexes, package dependencies,
referential constraints, table names, views, and so on. Data in the system catalog
views is available through normal SQL query facilities.

You can update some system catalog views containing statistical information
used by the SQL optimizer. You may change some columns in these views to
influence the optimizer or to investigate the performance of hypothetical
databases. You can use this method to simulate a production system on your
development or test system and analyze how queries perform.

Related concepts:

“Catalog views” in the SQL Reference, Volume 1
“Catalog statistics tables” in the Administration Guide: Performance

“Catalog statistics for modeling and what-if planning” in the Administration
Guide: Performance

“General rules for updating catalog statistics manually” in the Administration
Guide: Performance

“SQL explain facility” in the Administration Guide: Performance

Chapter 2. Coding a DB2 Application 39

+ |“DB2 Universal Database tools for developing applications” on page 3|

Related reference:

* |Appendix A, “Supported SQL Statements,” on page 685|

Administrative APIs in Embedded SQL or DB2 CLI Programs

Your application can use APIs to access database manager facilities that are not
available using SQL statements.

You can use the DB2® APIs to:

* Manipulate the database manager environment, which includes cataloging and
uncataloging databases and nodes, and scanning database and node directories.
You can also use APIs to create, delete, and migrate databases.

* Provide facilities to import and export data, and administer, backup, and restore
the database.

* Modify the database manager and database configuration parameter values.
* Provide operations specific to the client/server environment.

* Provide the run-time interface for precompiled SQL statements. These APIs are
not usually called directly by the programmer. Instead, they are inserted into the
modified source file by the precompiler after processing.

The database manager includes APIs for language vendors who want to write their
own precompiler, and other APIs useful for developing applications.

Related concepts:

+ |[“Authorization Considerations for APIs” on page 48|

Controlling Data Values and Relationships

The sections that follow describe how to control data values and data relationships.
Data Value Control

One traditional area of application logic is validating and protecting data integrity
by controlling the values allowed in the database. Applications have logic that
specifically checks data values as they are entered for validity. (For example,
checking that the department number is a valid number and that it refers to an
existing department.) There are several different ways of providing these same
capabilities in DB2®, but from within the database.

Related concepts:

+ [“Data Value Control Using Data Types” on page 41|

+ |“Data Value Control Using Unique Constraints” on page 41|

* |["Data Value Control Using Table Check Constraints” on page 41|

+ [“Data Value Control Using Referential Integrity Constraints” on page 41|

+ [“Data Value Control Using Views with Check Option” on page 42|

* |“Data Value Control Using Application Logic and Program Variable Types” on|

page 42|

40 Programming Client Applications

Data Value Control Using Data Types

The database stores every data element in a column of a table, and defines each
column with a data type. This data type places certain limits on the types of values
for the column. For example, an integer must be a number within a fixed range.
The use of the column in SQL statements must conform to certain behaviors; for
instance, the database does not compare an integer to a character string. DB2®
includes a set of built-in data types with defined characteristics and behaviors. DB2
also supports defining your own data types, called user-defined distinct types, that
are based on the built-in types but do not automatically support all the behaviors
of the built-in type. You can also use data types, like binary large object (BLOB), to
store data that may consist of a set of related values, such as a data structure.

Related concepts:

* “User-defined distinct types” in the Application Development Guide: Programming
Server Applications

Data Value Control Using Unique Constraints

Unique constraints prevent occurrences of duplicate values in one or more columns
within a table. Unique and primary keys are the supported unique constraints. For
example, you can define a unique constraint on the DEPTNO column in the
DEPARTMENT table to ensure that the same department number is not given to
two departments.

Use unique constraints if you need to enforce a uniqueness rule for all applications
that use the data in a table.

Related tasks:
* “Defining a unique constraint” in the Administration Guide: Implementation
* “Adding a unique constraint” in the Administration Guide: Implementation

Data Value Control Using Table Check Constraints

You can use a table check constraint to define restrictions, beyond those of the data
type, on the values that are allowed for a column in the table. Table check
constraints take the form of range checks or checks against other values in the
same row of the same table.

If the rule applies for all applications that use the data, use a table check constraint
to enforce your restriction on the data allowed in the table. Table check constraints
make the restriction generally applicable and easier to maintain.

Related tasks:
* “Defining a table check constraint” in the Administration Guide: Implementation
* “Adding a table check constraint” in the Administration Guide: Implementation

Data Value Control Using Referential Integrity Constraints
Use referential integrity (RI) constraints if you must maintain value-based
relationships for all applications that use the data. For example, you can use an RI

constraint to ensure that the value of a DEPTNO column in an EMPLOYEE table
matches a value in the DEPARTMENT table. This constraint prevents inserts,

Chapter 2. Coding a DB2 Application 41

42

updates or deletes that would otherwise result in missing DEPARTMENT
information. By centralizing your rules in the database, RI constraints make the
rules generally applicable and easier to maintain.

Related concepts:
e “Constraints” in the SQL Reference, Volume 1

+ |“Data Relationship Control Using Referential Integrity Constraints” on page 43|

+ [“Referential Integrity Differences among IBM Relational Database Systems” onl|

page 69Z|

Data Value Control Using Views with Check Option

If your application cannot define the desired rules as table check constraints, or the
rules do not apply to all uses of the data, there is another alternative to placing the
rules in the application logic. You can consider creating a view of the table with
the conditions on the data as part of the WHERE clause and the WITH CHECK
OPTION clause specified. This view definition restricts the retrieval of data to the
set that is valid for your application. Additionally, if you can update the view, the
WITH CHECK OPTION clause restricts updates, inserts, and deletes to the rows
applicable to your application.

Related reference:
* “CREATE VIEW statement” in the SQL Reference, Volume 2

Data Value Control Using Application Logic and Program
Variable Types

When you write your application logic in a programming language, you also
declare variables to provide some of the same restrictions on data that are
described in other topics about data value control. In addition, you can choose to
write code to enforce rules in the application instead of the database. Place the
logic in the application server when:

* The rules are not generally applicable, except in the case of views that use the
WITH CHECK OPTION

* You do not have control over the definitions of the data in the database

* You believe the rule can be more effectively handled in the application logic

For example, processing errors on input data in the order that they are entered
may be required, but cannot be guaranteed from the order of operations within the

database.

Related concepts:

* [“Data Value Control Using Views with Check Option” on page 42|

Data Relationship Control

A major area of focus in application logic is in the area of managing the
relationships between different logical entities in your system. For example, if you
add a new department, then you need to create a new account code. DB2®
provides two methods of managing the relationships between different objects in
your database: referential integrity constraints and triggers.

Related concepts:

Programming Client Applications

[‘Data Relationship Control Using Referential Integrity Constraints” on page 43|

[‘Data Relationship Control Using Triggers” on page 43|

[‘Data Relationship Control Using Before Triggers” on page 44]

[‘Data Relationship Control Using After Triggers” on page 44|

[‘Data Relationship Control Using Application Logic” on page 44|

Data Relationship Control Using Referential Integrity
Constraints

Referential integrity (RI) constraints, considered from the perspective of data
relationship control, allow you to control the relationships between data in more
than one table. Use the CREATE TABLE or ALTER TABLE statements to define the
behavior of operations that affect the related primary key, such as DELETE and
UPDATE.

RI constraints enforce your rules on the data across one or more tables. If the rules
apply for all applications that use the data, then RI constraints centralize the rules
in the database. This makes the rules generally applicable and easier to maintain.

Related concepts:
* “Constraints” in the SQL Reference, Volume 1

Related tasks:

* “Defining referential constraints” in the Administration Guide: Implementation

Related reference:
e “ALTER TABLE statement” in the SQL Reference, Volume 2
¢ “CREATE TABLE statement” in the SQL Reference, Volume 2

Data Relationship Control Using Triggers

You can use triggers before or after an update to support logic that can also be
performed in an application. If the rules or operations supported by the triggers
apply for all applications that use the data, then triggers centralize the rules or
operations in the database, making it generally applicable and easier to maintain.

Related concepts:

* |[“Data Relationship Control Using Before Triggers” on page 44|

* |“Data Relationship Control Using After Triggers” on page 44|

* ["DB2 Triggers” on page 22|

Related tasks:
e “Creating a trigger” in the Administration Guide: Implementation

¢ “Creating triggers” in the Application Development Guide: Programming Server
Applications

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Chapter 2. Coding a DB2 Application 43

Data Relationship Control Using Before Triggers

By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually modified.
These can be used to transform input from the application (user view of the data)
to an internal database format where desired. These before triggers can also be used
to cause other non-database operations to be activated through user-defined
functions.

Related concepts:

+ [“Data Relationship Control Using After Triggers” on page 44|

* |"DB2 Triggers” on page 22|

Related tasks:
* “Creating a trigger” in the Administration Guide: Implementation

* “Creating triggers” in the Application Development Guide: Programming Server
Applications

Related reference:
e “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Data Relationship Control Using After Triggers

Triggers that run after an update, insert, or delete can be used in several ways:

* Triggers can update, insert, or delete data in the same or other tables. This is
useful to maintain relationships between data or to keep audit trail information.

 Triggers can check data against values of data in the rest of the table or in other
tables. This is useful when you cannot use RI constraints or check constraints
because of references to data from other rows from this or other tables.

* Triggers can use user-defined functions to activate non-database operations. This
is useful, for example, for issuing alerts or updating information outside the
database.

Related concepts:

+ [“Data Relationship Control Using Before Triggers” on page 44|

+ |"'DB2 Triggers” on page 22|

Related tasks:
* “Creating a trigger” in the Administration Guide: Implementation

* “Creating triggers” in the Application Development Guide: Programming Server
Applications

Related reference:
e “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Data Relationship Control Using Application Logic

You may decide to write code to enforce rules or perform related operations in the
application instead of the database. You must do this for cases where you cannot
generally apply the rules to the database. You may also choose to place the logic in

44 Programming Client Applications

the application when you do not have control over the definitions of the data in
the database or you believe the application logic can handle the rules or operations
more efficiently.

Related concepts:

+ |“Application Logic at the Server” on page 45|

Application Logic at the Server

A final aspect of application design for which DB2® offers additional capability is
running some of your application logic at the database server. Usually you will
choose this design to improve performance, but you may also run application logic
at the server to support common functions.

You can use the following:
¢ Stored procedures

A stored procedure is a routine for your application that is called from the client
application logic, but runs on the database server. The most common reason to
use a stored procedure is for database-intensive processing that produces only
small amounts of result data. This can save a large amount of communications
across the network during the execution of the stored procedure. You may also
consider using a stored procedure for a set of operations that are common to
multiple applications. In this way, all the applications use the same logic to
perform the operation.

¢ User-defined functions

You can write a user-defined function (UDF) for use in performing operations
within an SQL statement to return:

— A single scalar value (scalar function)
— A table from a non-DB2 data source, for example, an ASCII file or a Web page
(table function)

UDFs are useful for tasks like transforming data values, performing calculations
on one or more data values, or extracting parts of a value (such as extracting
parts of a large object).

 Triggers
Triggers can be used to invoke user-defined functions. This is useful when you
always want a certain non-SQL operation performed when specific statements
occur, or data values are changed. Examples include such operations as issuing

an electronic mail message under specific circumstances or writing alert type
information to a file.

Related concepts:

* |“Data Relationship Control Using Before Triggers” on page 44|

[‘Data Relationship Control Using After Triggers” on page 44|

* “Guidelines for stored procedures” in the Administration Guide: Performance

* “Trigger interactions with referential constraints” in the Application Development
Guide: Programming Server Applications

[“DB2 Stored Procedures” on page 18|
[“DB2 User-Defined Functions and Methods” on page 19|
['DB2 Triggers” on page 22|

Related tasks:

Chapter 2. Coding a DB2 Application 45

* “Creating a trigger” in the Administration Guide: Implementation

* “Creating triggers” in the Application Development Guide: Programming Server
Applications

Related reference:
* “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Authorization Considerations for SQL and APIs

46

The sections that follow describe the general authorization considerations for
embedded SQL, and the authorization considerations for static and dynamic SQL,
and for APlIs.

Authorization Considerations for Embedded SQL

An authorization allows a user or group to perform a general task such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a specified
way. DB2® uses a set of privileges to provide protection for the information that
you store in it.

Most SQL statements require some type of privilege on the database objects which
the statement utilizes. Most API calls usually do not require any privilege on the
database objects which the call utilizes, however, many APIs require that you
possess the necessary authority in order to invoke them. The DB2 APIs enable you
to perform the DB2 administrative functions from within your application
program. For example, to recreate a package stored in the database without the
need for a bind file, you can use the sqlarbnd (or REBIND) APL

When you design your application, consider the privileges your users will need to
run the application. The privileges required by your users depend on:

* Whether your application uses dynamic SQL, including JDBC and DB2 CLI, or
static SQL. For information about the privileges required to issue a statement,
see the description of that statement.

* Which APIs the application uses. For information about the privileges and
authorities required for an API call, see the description of that APL

Consider two users, PAYROLL and BUDGET, who need to perform queries against
the STAFF table. PAYROLL is responsible for paying the employees of the
company, so it needs to issue a variety of SELECT statements when issuing
paychecks. PAYROLL needs to be able to access each employee’s salary. BUDGET
is responsible for determining how much money is needed to pay the salaries.
BUDGET should not, however, be able to see any particular employee’s salary.

Because PAYROLL issues many different SELECT statements, the application you
design for PAYROLL could probably make good use of dynamic SQL. The
dynamic SQL would require that PAYROLL have SELECT privilege on the STAFF
table. This requirement is not a problem because PAYROLL requires full access to
the table.

BUDGET, on the other hand, should not have access to each employee’s salary.
This means that you should not grant SELECT privilege on the STAFF table to
BUDGET. Because BUDGET does need access to the total of all the salaries in the
STAFF table, you could build a static SQL application to execute a SELECT
SUM(SALARY) FROM STAFF, bind the application and grant the EXECUTE

Programming Client Applications

privilege on your application’s package to BUDGET. This enables BUDGET to
obtain the required information, without exposing the information that BUDGET
should not see.

Related concepts:

* |“Authorization Considerations for Dynamic SQL” on page 47|

* |“Authorization Considerations for Static SQL” on page 48|

+ [“Authorization Considerations for APIs” on page 48|

¢ “Authorization” in the Administration Guide: Planning

Authorization Considerations for Dynamic SQL

To use dynamic SQL in a package bound with DYNAMICRULES RUN (default),
the person who runs a dynamic SQL application must have the privileges
necessary to issue each SQL request performed, as well as the EXECUTE privilege
on the package. The privileges may be granted to the user’s authorization ID, to
any group of which the user is a member, or to PUBLIC.

If you bind the application with the DYNAMICRULES BIND option, DB2
associates your authorization ID with the application packages. This allows any
user who runs the application to inherit the privileges associated with your
authorization ID.

If the program contains no static SQL, the person binding the application (for
embedded dynamic SQL applications) only needs the BINDADD authority on the
database. Again, this privilege can be granted to the user’s authorization ID, to a
group of which the user is a member, or to PUBLIC.

When a package exhibits bind or define behavior, the user that runs the application
needs only the EXECUTE privilege on the package to run it. At run-time, the
binder of a package that exhibits bind behavior must have the privileges necessary
to execute all the dynamic statements generated by the package, because all
authorization checking for dynamic statements is done using the ID of the binder
and not the executors. Similarly, the definer of a routine whose package exhibits
define behavior must have all the privileges necessary to execute all the dynamic
statements generated by the define behavior package. If you have SYSADM or
DBADM authority and create a bind behavior package, consider using the
OWNER BIND option to designate a different authorization ID. The OWNER
BIND option prevents a package from automatically inheriting SYSADM or
DBADM privileges within dynamic SQL statements. For more information on the
DYNAMICRULES and OWNER bind options, refer to the BIND command. For
more information on package behaviors, see the description of DYNAMICRULES
effects on dynamic SQL statements.

Related concepts:
+ |“Authorization Considerations for Embedded SQL” on page 46|
* |“Authorization Considerations for Static SQL” on page 48|

+ [“Authorization Considerations for APIs” on page 48|

* “Authorizations and binding of routines that contain SQL” in the Application
Development Guide: Programming Server Applications

Related reference:

* “BIND Command” in the Command Reference

Chapter 2. Coding a DB2 Application 47

Authorization Considerations for Static SQL

To use static SQL, the user running the application only needs the EXECUTE
privilege on the package. No privileges are required for each of the statements that
make up the package. The EXECUTE privilege may be granted to the user’s
authorization ID, to any group of which the user is a member, or to PUBLIC.

Unless you specify the VALIDATE RUN option when binding the application, the
authorization ID you use to bind the application must have the privileges
necessary to perform all the statements in the application. If VALIDATE RUN was
specified at BIND time, all authorization failures for any static SQL within this
package will not cause the BIND to fail and those statements will be revalidated at
run time. The person binding the application must always have BINDADD
authority. The privileges needed to execute the statements must be granted to the
user’s authorization ID or to PUBLIC. Group privileges are not used when binding
static SQL statements. As with dynamic SQL, the BINDADD privilege can be
granted to the user authorization ID, to a group of which the user is a member, or
to PUBLIC.

These properties of static SQL give you very precise control over access to
information in DB2°.

Related concepts:
* [“Authorization Considerations for Embedded SQL” on page 46|

* |“Authorization Considerations for Dynamic SQL” on page 47|

+ [“Authorization Considerations for APIs” on page 48|

Related reference:
* “BIND Command” in the Command Reference

Authorization Considerations for APIs

Most of the APIs provided by DB2® do not require the use of privileges, however,
many do require some kind of authority to invoke. For the APIs that do require a
privilege, the privilege must be granted to the user running the application. The
privilege may be granted to the user’s authorization ID, to any group of which the
user is a member, or to PUBLIC. For information on the required privilege and
authority to issue each API call, see the description of the APL

Some APIs can be accessed via a stored procedure interface. For information
whether a specific API can be accessed via a stored procedure, see the description
of that APL

Related concepts:
+ [“Authorization Considerations for Embedded SQL” on page 46|

+ |“Authorization Considerations for Dynamic SQL” on page 47]

* [“Authorization Considerations for Static SQL” on page 48|

Testing the Application

The sections that follow describe how to set up a test environment, and how to
debug and optimize the application.

48 Programming Client Applications

Setting up the Test Environment for an Application

The sections that follow describe how to set up the test environment for your
application.

Setting up a Testing Environment

To validate your application, you should set up a test environment. For example,
you need a database to test your application’s SQL code.

Procedure:

To set up the test environment, do the following:
1. Create a test database.

To create a test database, write a small server application that calls the CREATE
DATABASE API, or use the command line processor.

2. Create test tables and views.

If your application updates, inserts, or deletes data from tables and views, use
test data to verify its execution. If the application only retrieves data from
tables and views, consider using production-level data when testing it.

3. Generate test data for the tables.

The input data used to test an application should be valid data that represents
all possible input conditions. If the application verifies that input data is valid,
include both valid and invalid data to verify that the valid data is processed
and the invalid data is flagged.

4. Debug and optimize the application.

Related tasks:
* |“Creating Test Tables and Views” on page 49|

* [“Generating Test Data” on page 50|

+ “Debugging and Optimizing an Application” on page 52|

Related reference:
* “sqlecrea - Create Database” in the Administrative API Reference
* “CREATE DATABASE Command” in the Command Reference

Creating Test Tables and Views

To design the test tables and views needed, first analyze the data needs of the
application. To create a table, you need the CREATETAB authority and the
CREATEIN privilege on the schema. See the CREATE TABLE statement for
alternative authorities.

Procedure:

To create test tables:

1. List the data the application accesses and describe how each data item is
accessed. For example, suppose the application being developed accesses the
TEST.TEMPL, TEST.TDEPT, and TEST.TPROJ tables. You could record the type
of accesses as shown in the following table

Chapter 2. Coding a DB2 Application 49

Table 1. Description of the Application Data

Table or View Insert Delete Update

Name Rows Rows Column Name Data Type Access

TEST.TEMPL No No EMPNO CHAR(6) Yes
LASTNAME VARCHAR(15) Yes
WORKDEPT CHAR(3) Yes
PHONENO CHAR(4)
JOBCODE DECIMAL(3)

TEST.TDEPT No No DEPTNO CHAR(3)
MGRNO CHAR(6)

TEST.TPROJ Yes Yes PROJNO CHAR(6) Yes
DEPTNO CHAR(3) Yes
RESPEMP CHAR(6) Yes
PRSTAFF DECIMAL(5,2) Yes
PRSTDATE DECIMAL(6) Yes
PRENDATE DECIMAL(6)

2. When the description of the application data access is complete, construct the
test tables and views that are needed to test the application:

* Create a test table when the application modifies data in a table or a view.
Create the following test tables using the CREATE TABLE SQL statement:
- TEMPL
- TPROJ

* Create a test view when the application does not modify data in the
production database.

In this example, create a test view of the TDEPT table using the CREATE
VIEW SQL statement.

3. Generate test data for the tables.

If the database schema is being developed along with the application, the
definitions of the test tables might be refined repeatedly during the development
process. Usually, the primary application cannot both create the tables and access
them because the database manager cannot bind statements that refer to tables and
views that do not exist. To make the process of creating and changing tables less
time-consuming, consider developing a separate application to create the tables.
You can also create test tables interactively using the command line processor
(CLP).

After you complete the procedure, you need to create the related topics for this
task.

Related tasks:
* [“Generating Test Data” on page 50

Related reference:
e “CREATE TABLE statement” in the SQL Reference, Volume 2

Generating Test Data

After creating the test tables, you can populate them with test data to verify the
data handling behavior of the application.

Procedure:

50 Programming Client Applications

Use any of the following methods to insert data into a table:

* INSERT...VALUES (an SQL statement) puts one or more rows into a table each
time the command is issued.

* INSERT...SELECT obtains data from an existing table (based on a SELECT
clause) and puts it into the table identified with the INSERT statement.

e The IMPORT or LOAD utility inserts large amounts of new or existing data
from a defined source.

* The RESTORE utility can be used to duplicate the contents of an existing
database into an identical test database by using a BACKUP copy of the original
database.

* The DB2MOVE utility to move large numbers of tables between DB2 databases
located on workstations.

The following SQL statements demonstrate a technique you can use to populate
your tables with randomly generated test data. Suppose the table EMP contains
four columns, ENO (employee number), LASTNAME (last name), HIREDATE
(date of hire) and SALARY (employee’s salary) as in the following CREATE TABLE
statement:

CREATE TABLE EMP (ENO INTEGER, LASTNAME VARCHAR(30),
HIREDATE DATE, SALARY INTEGER);

Suppose you want to populate this table with employee numbers from 1 to a
number, say 100, with random data for the rest of the columns. You can do this
using the following SQL statement:

INSERT INTO EMP

-- generate 100 records

WITH DT(ENO) AS (VALUES(1) UNION ALL
SELECT ENO+1 FROM DT WHERE ENO < 100) n

-- Now, use the generated records in DT to create other columns
-- of the employee record.
SELECT ENO, HA

TRANSLATE (CHAR (INTEGER (RAND () x1000000)), [El

CASE MOD(ENO,4) WHEN O THEN 'aeiou’ "bedfg!
WHEN 1 THEN 'aeiou' "hjkim'
WHEN 2 THEN 'aeiou' "npgrs'

ELSE 'aeiou' "twxyz' END,

'1234567890') AS LASTNAME,
CURRENT DATE - (RAND()*10957) DAYS AS HIREDATE, [}
INTEGER (10000+RAND () *200000) AS SALARY H
FROM DT;

SELECT * FROM EMP;

The following is an explanation of the above statement:

1. The first part of the INSERT statement generates 100 records for the first 100
employees using a recursive subquery to generate the employee numbers. Each
record contains the employee number. To change the number of employees, use
a number other than 100.

2. The SELECT statement generates the LASTNAME column. It begins by
generating a random integer up to 6 digits long using the RAND function. It
then converts the integer to its numeric character format using the CHAR
function.

3. To convert the numeric characters to alphabet characters, the statement uses the
TRANSLATE function to convert the ten numeric characters (0 through 9) to
alphabet characters. Since there are more than 10 alphabet characters, the

Chapter 2. Coding a DB2 Application 51

52

statement selects from five different translations. This results in names having
enough random vowels to be pronounceable and so the vowels are included in
each translation.

4. The statement generates a random HIREDATE value. The value of HIREDATE
ranges back from the current date to 30 years ago. HIREDATE is calculated by
subtracting a random number of days between 0 and 10 957 from the current
date. (10 957 is the number of days in 30 years.)

5. Finally, the statement randomly generates the SALARY. The minimum salary is
10 000, to which a random number from 0 to 200 000 is added.

You may also want to consider prototyping any user-defined functions (UDF) you
are developing against the test data.

Related concepts:

* “Import Overview” in the Data Movement Ultilities Guide and Reference
* “Load Overview” in the Data Movement Ultilities Guide and Reference

+ ["DB2 User-Defined Functions and Methods” on page 19|

Related tasks:
* ["Debugging and Optimizing an Application” on page 52|

Related reference:
e “INSERT scalar function” in the SQL Reference, Volume 1
¢ “RESTORE DATABASE Command” in the Command Reference

Debugging and Optimizing an Application

You can debug and optimize your application while you develop it.
Procedure:

To debug and optimize your application:

* Prototype your SQL statements. You can use the command line processor, the
Explain facility, analyze the system catalog views for information about the
tables and databases that your program is manipulating, and update certain
system catalog statistics to simulate production conditions.

* Use the flagger facility to check the syntax of SQL statements in applications
being developed for DB2 Universal Database for z/OS and OS/390, or for
conformance to the SQL92 Entry Level standard. This facility is invoked during
precompilation.

* Make full use of the error-handling APIs. For example, you can use
error-handling APIs to print all messages during the testing phase.

* Use the database system monitor to capture certain optimizing information for
analysis.

Related concepts:

* “Catalog statistics for modeling and what-if planning” in the Administration
Guide: Performance

+ [“Facilities for Prototyping SQL Statements” on page 39|

* “The database system monitor information” in the Administration Guide:
Performance

* [“Source File Requirements for Embedded SQL Applications” on page 62|

Programming Client Applications

Part 2. Embedded SQL

© Copyright IBM Corp. 1997 - 2004

53

54 Programming Client Applications

Chapter 3. Embedded SQL Overview

Embedding SQL Statements in a Host Language . .55 Effect of Special Registers on Bound Dynamic

Source File Creation and Preparation.57 SQL. . . . 66

Packages, binding, and embedded SQL59 | CURRENT PACKAGE PATH spec1a1 reg1ster for
Package Creation for Embedded SQL.59 | package schemas66
Precompilation of Source Files Containing Resolution of Unqualified Table Names .. .69
Embedded SQL 61 Additional Considerations when Binding . . .70
Source File Requirements for Embedded SQL Advantages of Deferred Binding71
Applications62 Bind File Contents71
Compilation and Lmkage of Source Flles Application, Bind File, and Package Relatlonshlps 71
Containing Embedded SQL 63 Precompiler-Generated Timestamps72
Package Creation Using the BIND Command . 64 Package Rebinding73
Package Versioning.65

Embedding SQL Statements in a Host Language

You can write applications with SQL statements embedded within a host language.
The SQL statements provide the database interface, while the host language
provides the remaining support needed for the application to execute.

Procedure:

Use the examples in the following table as a guide on how to embed SQL
statements in a host language application. In the example, the application checks
the SQLCODE field of the SQLCA structure to determine whether the update was
successful.

Table 2. Embedding SQL Statements in a Host Language

Language Sample Source Code

C/CH+ EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr';
if (SQLCODE < 0)
printf("Update Error: SQLCODE = %1d \n", SQLCODE);

Java (SQLJ) try {
#sql { UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr' };

1
catch (SQLException e) {
printin("Update Error: SQLCODE = " + e.getErrorCode());

COBOL EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job
IF SQLCODE LESS THAN ©
DISPLAY 'UPDATE ERROR: SQLCODE = ', SQLCODE.

'Mgr' END_EXEC.

FORTRAN EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job
if (sqlcode .1t. 0) THEN
write(x,*) 'Update error: sqlcode = ', sqlcode

'Mgr"

SQL statements placed in an application are not specific to the host language. The
database manager provides a way to convert the SQL syntax for processing by the
host language:

© Copyright IBM Corp. 1997 - 2004 55

* For the C, C++, COBOL, or FORTRAN languages, this conversion is handled by
the DB2 precompiler. The DB2 precompiler is invoked using the PREP command.
The precompiler converts embedded SQL statements directly into DB2 run-time
services API calls.

* For the Java language, the SQL]J translator converts SQL]J clauses into JDBC
statements. The SQLJ translator is invoked with the sqlj command.

When the precompiler processes a source file, it specifically looks for SQL
statements and avoids the non-SQL host language. It can find SQL statements
because they are surrounded by special delimiters. The examples in the following
table show how to use delimiters and comments to create valid embedded SQL
statements in the supported compiled host languages.

Table 3. Embedding SQL Statements in a Host Language

Language Sample Source Code
C/C++ /* Only C or C++ comments allowed here =/
EXEC SQL

-- SQL comments or
/* C comments or */
// C++ comments allowed here
DECLARE C1 CURSOR FOR sname;
/* Only C or C++ comments allowed here */

sQLy /* Only Java comments allowed here =/
#sql cl = {
-- SQL comments or
/* Java comments or */
// Java comments allowed here
SELECT name FROM employee
}s

/* Only Java comments allowed here =/

COBOL * See COBOL documentation for comment rules
* Only COBOL comments are allowed here
EXEC SQL
-- SQL comments or
* full-Tine COBOL comments are allowed here
DECLARE C1 CURSOR FOR sname END-EXEC.
* Only COBOL comments are allowed here

FORTRAN C Only FORTRAN comments are allowed here
EXEC SQL
+ -- SQL comments, and
C full-Tine FORTRAN comment are allowed here
+ DECLARE C1 CURSOR FOR sname
I=7 ! End of 1line FORTRAN comments allowed here
C Only FORTRAN comments are allowed here

Related concepts:

+ [“Embedded SQL in REXX Applications” on page 495|

* ["Embedded SQL Statements in C and C++” on page 135|
* [“Embedded SQL Statements in COBOL” on page 17|

* [“Embedded SQL Statements in FORTRAN” on page 199|

56 Programming Client Applications

Source File Creation and Preparation

You can create the source code in a standard ASCII file, called a source file, using a
text editor. The source file must have the proper extension for the host language in
which you write your code.

Note: Not all platforms support all host languages.
For this discussion, assume that you have already written the source code.

If you have written your application using a compiled host language, you must
follow additional steps to build your application. Along with compiling and
linking your program, you must precompile and bind it.

Simply stated, precompiling converts embedded SQL statements into DB2 run-time
API calls that a host compiler can process, and creates a bind file. The bind file
contains information on the SQL statements in the application program. The BIND
command creates a package in the database. Optionally, the precompiler can
perform the bind step at precompile time.

Binding is the process of creating a package from a bind file and storing it in a
database. If your application accesses more than one database, you must create a

package for each database.

The following figure shows the order of these steps, along with the various
modules of a typical compiled DB2 application.

Chapter 3. Embedded SQL Overview 57

Source Files
With SQL
Statements

v

Precompiler PACKAGE BINDFILE
(db2 PREP) Create a Create a
Package Bind File

Modified
Source Files

Source Files
Without SQL
Statements

! !

Host Language Compiler

!

Object
Files

! !

Host Language Linker

Libraries

! !

Executable Bind
Program File
‘ }
:
: Binder
I (db2 BIND)
I
: |
v v
Database Manager Package (Package)

Figure 1. Preparing Programs Written in Compiled Host Languages

Related concepts:

* [“Precompilation of Source Files Containing Embedded SQL” on page 61|

* [“Source File Requirements for Embedded SQL Applications” on page 62|

+ |“Compilation and Linkage of Source Files Containing Embedded SQL” on page]

63

* [“Embedded SQL” on page 7|

Related reference:
* “BIND Command” in the Command Reference

58 Programming Client Applications

Packages, binding, and embedded SQL

The sections that follow describe how to create packages for embedded SQL
applications, as well as other topics, such as deferred binding and the relationships
between the application, the bind file, and the package.

Package Creation for Embedded SQL

To run applications written in compiled host languages, you must create the
packages needed by the database manager at execution time. This involves the
following steps as shown in the following figure:

Chapter 3. Embedded SQL Overview 59

Source Files
With SQL
Statements

v

Precompiler PACKAGE BINDFILE
(db2 PREP) Create a Create a
Package Bind File

Modified
Source Files

Source Files
Without SQL
Statements

! !

Host Language Compiler

!

Object
Files

! !

Host Language Linker

Libraries

! !

Executable Bind
Program File
‘ }
:
: Binder
I (db2 BIND)
I
: |
v v
Database Manager Package (Package)

Figure 2. Preparing Programs Written in Compiled Host Languages

* Precompiling (step 2), to convert embedded SQL source statements into a form
the database manager can use,

* Compiling and linking (steps 3 and 4), to create the required object modules,
and,

* Binding (step 5), to create the package to be used by the database manager when
the program is run.

Related concepts:

* [“Precompilation of Source Files Containing Embedded SQL” on page 61]

* [“Source File Requirements for Embedded SQL Applications” on page 62|

60 Programming Client Applications

+ |“Compilation and Linkage of Source Files Containing Embedded SQL” on page]

63

[‘Package Creation Using the BIND Command” on page 64|

[“Package Versioning” on page 65|

[“Effect of Special Registers on Bound Dynamic SQL” on page 66|

+ [“Resolution of Unqualified Table Names” on page 69|

[“Additional Considerations when Binding” on page 70|

[“Advantages of Deferred Binding” on page 71|

* |“Application, Bind File, and Package Relationships” on page 71|

* [“Precompiler-Generated Timestamps” on page 72|

+ [“Package Rebinding” on page 73|

Related reference:
* “db2bfd - Bind File Description Tool Command” in the Command Reference

Precompilation of Source Files Containing Embedded SQL

After you create the source files, you must precompile each host language file
containing SQL statements with the PREP command for host-language source files.
The precompiler converts SQL statements contained in the source file to comments,
and generates the DB2 run-time API calls for those statements.

Before precompiling an application you must connect to a server, either implicitly
or explicitly. Although you precompile application programs at the client
workstation and the precompiler generates modified source and messages on the
client, the precompiler uses the server connection to perform some of the
validation.

The precompiler also creates the information the database manager needs to
process the SQL statements against a database. This information is stored in a
package, in a bind file, or in both, depending on the precompiler options selected.

A typical example of using the precompiler follows. To precompile a C embedded
SQL source file called filename.sqc, you can issue the following command to create a
C source file with the default name filename.c and a bind file with the default
name filename.bnd:

DB2® PREP filename.sqc BINDFILE

The precompiler generates up to four types of output:

Modified Source
This file is the new version of the original source file after the
precompiler converts the SQL statements into DB2 run-time API
calls. It is given the appropriate host language extension.

Package If you use the PACKAGE option (the default), or do not specify
any of the BINDFILE, SYNTAX, or SQLFLAG options, the package
is stored in the connected database. The package contains all the
information required to execute the static SQL statements of a
particular source file against this database only. Unless you specify
a different name with the PACKAGE USING option, the
precompiler forms the package name from the first 8 characters of
the source file name.

Chapter 3. Embedded SQL Overview 61

62

Bind File

Message File

If you use the PACKAGE option without SQLERROR CONTINUE,
the database used during the precompile process must contain all
of the database objects referenced by the static SQL statements in
the source file. For example, you cannot precompile a SELECT
statement unless the table it references exists in the database.

With the VERSION option the bindfile, (if the BINDFILE option is
used), and the package (either if bound at PREP time or if a bound
separately) will be designated with a particular version identifier.
Many versions of packages with the same name and creator can
exit at once.

If you use the BINDFILE option, the precompiler creates a bind file
(with extension .bnd) that contains the data required to create a
package. This file can be used later with the BIND command to
bind the application to one or more databases. If you specify
BINDFILE and do not specify the PACKAGE option, binding is
deferred until you invoke the BIND command. Note that for the
command line processor (CLP), the default for PREP does not
specify the BINDFILE option. Thus, if you are using the CLP and
want the binding to be deferred, you need to specify the BINDFILE
option.

Specifying SQLERROR CONTINUE creates a package, even if
errors occur when binding SQL statements. Those statements that
fail to bind for authorization or existence reasons can be
incrementally bound at execution time if VALIDATE RUN is also
specified. Any attempt to execute them at run time generates an
error.

If you use the MESSAGES option, the precompiler redirects
messages to the indicated file. These messages include warnings
and error messages that describe problems encountered during
precompilation. If the source file does not precompile successfully,
use the warning and error messages to determine the problem,
correct the source file, and then attempt to precompile the source
file again. If you do not use the MESSAGES option, precompilation
messages are written to the standard output.

Related concepts:

+ [“Package Versioning” on page 65|

Related reference:
* “PRECOMPILE Command” in the Command Reference

Source File Requirements for Embedded SQL Applications

You must always precompile a source file against a specific database, even if
eventually you do not use the database with the application. In practice, you can
use a test database for development, and after you fully test the application, you
can bind its bind file to one or more production databases. This practice is known
as deferred binding.

If your application uses a code page that is not the same as your database code
page, you need to consider which code page to use when precompiling.

Programming Client Applications

If your application uses user-defined functions (UDFs) or user-defined distinct
types (UDTs), you may need to use the FUNCPATH option when you precompile
your application. This option specifies the function path that is used to resolve
UDFs and UDTs for applications containing static SQL. If FUNCPATH is not
specified, the default function path is SYSIBM, SYSFUN, USER, where USER refers
to the current user ID.

To precompile an application program that accesses more than one server, you can
do one of the following:

* Split the SQL statements for each database into separate source files. Do not mix
SQL statements for different databases in the same file. Each source file can be
precompiled against the appropriate database. This is the recommended method.

* Code your application using dynamic SQL statements only, and bind against
each database your program will access.

* If all the databases look the same, that is, they have the same definition, you can
group the SQL statements together into one source file.

The same procedures apply if your application will access a host, AS/400® or
iSeries application server through DB2 Connect. Precompile it against the server to
which it will be connecting, using the PREP options available for that server.

If you are precompiling an application that will run on DB2 Universal Database for
z/0S and OS/390, consider using the flagger facility to check the syntax of the
SQL statements. The flagger indicates SQL syntax that is supported by DB2
Universal Database, but not supported by DB2 Universal Database for z/OS and
0S/390. You can also use the flagger to check that your SQL syntax conforms to
the SQL92 Entry Level syntax. You can use the SQLFLAG option on the PREP
command to invoke it and to specify the version of DB2 Universal Database for
z/0S and OS/390 SQL syntax to be used for comparison. The flagger facility will
not enforce any changes in SQL use; it only issues informational and warning
messages regarding syntax incompatibilities, and does not terminate preprocessing
abnormally.

Related concepts:

* [“Advantages of Deferred Binding” on page 71|

* [“Character conversion between different code pages” on page 609

+ [“When code page conversion occurs” on page 609

* [“Character Substitutions During Code Page Conversions” on page 610

+ [“Supported Code Page Conversions” on page 610|

[‘Code Page Conversion Expansion Factor” on page 611

Related reference:
* “PRECOMPILE Command” in the Command Reference

Compilation and Linkage of Source Files Containing
Embedded SQL

Compile the modified source files and any additional source files that do not
contain SQL statements using the appropriate host language compiler. The
language compiler converts each modified source file into an object module.

Chapter 3. Embedded SQL Overview 63

64

Refer to the programming documentation for your operating platform for any
exceptions to the default compiler options. Refer to your compiler’s documentation
for a complete description of available compiler options.

The host language linker creates an executable application. For example:
+ On Windows® operating systems, the application can be an executable file or a
dynamic link library (DLL).

+ On UNIX®-based systems, the application can be an executable load module or a
shared library.

Note: Although applications can be DLLs on Windows operating systems, the
DLLs are loaded directly by the application and not by the DB2® database
manager. On Windows operating systems, the database manager can load
DLLs. Stored procedures are normally built as DLLs or shared libraries.

To create the executable file, link the following:

* User object modules, generated by the language compiler from the modified
source files and other files not containing SQL statements.

* Host language library APIs, supplied with the language compiler.

* The database manager library containing the database manager APIs for your
operating environment. Refer to the appropriate programming documentation
for your operating platform for the specific name of the database manager
library you need for your database manager APIs.

Related concepts:

+ ["DB2 Stored Procedures” on page 18|

Related tasks:
¢ |“Building and Running REXX Applications” on page 504|

* “Building JDBC applets” in the Application Development Guide: Building and
Running Applications

e “Building JDBC applications” in the Application Development Guide: Building and
Running Applications

* “Building SQLJ applets” in the Application Development Guide: Building and
Running Applications

* “Building SQL]J applications” in the Application Development Guide: Building and
Running Applications

* “Building UNIX C applications” in the Application Development Guide: Building
and Running Applications

e “Building UNIX C++ applications” in the Application Development Guide: Building
and Running Applications

* “Building IBM COBOL applications on AIX” in the Application Development
Guide: Building and Running Applications

* “Building UNIX Micro Focus COBOL applications” in the Application
Development Guide: Building and Running Applications

Package Creation Using the BIND Command

Binding is the process that creates the package the database manager needs to
access the database when the application is executed. Binding can be done
implicitly by specifying the PACKAGE option during precompilation, or explicitly
by using the BIND command against the bind file created during precompilation.

Programming Client Applications

A typical example of using the BIND command follows. To bind a bind file named
filename.bnd to the database, you can issue the following command:

DB2® BIND filename.bnd

One package is created for each separately precompiled source code module. If an
application has five source files, of which three require precompilation, three
packages or bind files are created. By default, each package is given a name that is
the same as the name of the source module from which the .bnd file originated,
but truncated to 8 characters. To explicitly specify a different package name, you
must use the PACKAGE USING option on the PREP command. The version of a
package is given by the VERSION precompile option and defaults to the empty
string. If the name and schema of this newly created package is the same as a
package that currently exists in the target database, but the version identifier
differs, a new package is created and the previous package still remains. However
if a package exists that matches the name, schema and the version of the package
being bound, then that package is dropped and replaced with the new package
being bound (specifying ACTION ADD on the bind would prevent that and an
error (SQL0719) would be returned instead).

Related reference:
* “BIND Command” in the Command Reference
¢ “PRECOMPILE Command” in the Command Reference

Package Versioning

If you need to create multiple versions of an application, you can use the
VERSION option of the PRECOMPILE command. This option allows multiple
versions of the same package name (that is, the package name and creator name)
to coexist. For example, assume you have an application called foo, which is
compiled from foo.sqc. You would precompile and bind the package foo to the
database and deliver the application to the users. The users could then run the
application. To make subsequent changes to the application, you would update
foo.sqc, then repeat the process of recompiling, binding, and sending the
application to the users. If the VERSION option was not specified for either the
first or second precompilation of foo.sqc, the first package is replaced by the
second package. Any user who attempts to run the old version of the application
will receive the SQLCODE -818, indicating a mismatched timestamp error.

To avoid the mismatched timestamp error and in order to allow both versions of
the application to run at the same time, use package versioning. As an example,
when you build the first version of foo, precompile it using the VERSION option,
as follows:

DB2® PREP F00.SQC VERSION V1.1

This first version of the program may now be run. When you build the new
version of foo, precompile it with the command:

DB2 PREP F00.SQC VERSION V1.2

At this point this new version of the application will also run, even if there still are
instances of the first application still executing. Because the package version for the
first package is V1.1 and the package version for the second is V1.2, no naming
confict exists: both packages will exist in the database and both versions of the
application can be used.

Chapter 3. Embedded SQL Overview 65

You can use the ACTION option of the PRECOMPILE or BIND commands in
conjunction with the VERSION option of the PRECOMPILE command. You use the
ACTION option to control the way in which different versions of packages can be
added or replaced.

Package privileges do not have granularity at the version level. That is, a GRANT
or a REVOKE of a package privilege applies to all versions of a package that share
the name and creator. So, if package privileges on package foo were granted to a
user or a group after version V1.1 was created, when version V1.2 is distributed
the user or group has the same privileges on version V1.2. This behavior is usually
required because typically the same users and groups have the same privileges on
all versions of a package. If you do not want the same package privileges to apply
to all versions of an application, you should not use the PRECOMPILE VERSION
option to accomplish package versioning. Instead, you should use different
package names (either by renaming the updated source file, or by using the
PACKAGE USING option to explicitly rename the package).

Related concepts:

* |“Precompiler-Generated Timestamps” on page 72|

Related reference:
* “BIND Command” in the Command Reference
e “PRECOMPILE Command” in the Command Reference

Effect of Special Registers on Bound Dynamic SQL

For dynamically prepared statements, the values of a number of special registers
determine the statement compilation environment:

* The CURRENT QUERY OPTIMIZATION special register determines which
optimization class is used.

* The CURRENT PATH special register determines the function path used for
UDF and UDT resolution.

e The CURRENT EXPLAIN SNAPSHOT register determines whether explain
snapshot information is captured.

¢ The CURRENT EXPLAIN MODE register determines whether explain table
information is captured for any eligible dynamic SQL statement. The default
values for these special registers are the same defaults used for the related bind
options.

Related reference:
e “CURRENT EXPLAIN MODE special register” in the SQL Reference, Volume 1

* “CURRENT EXPLAIN SNAPSHOT special register” in the SQL Reference, Volume
1

* “CURRENT PATH special register” in the SQL Reference, Volume 1

* “CURRENT QUERY OPTIMIZATION special register” in the SQL Reference,
Volume 1

CURRENT PACKAGE PATH special register for package
schemas

Package schemas provide a method for logically grouping packages. Different
approaches exist for grouping packages into schemas. Some implementations use
one schema per environment (for example, a production and a test schema). Other

66 Programming Client Applications

implementations use one schema per business area (for example, stocktrd and
onlinebnk schemas), or one schema per application (for example, stocktrd AddUser
and onlinebnkAddUser). You can also group packages for general administration
purposes, or to provide variations in the packages (for example, maintaining
backup variations of applications, or testing new variations of applications).

When multiple schemas are used for packages, the database manager must
determine in which schema to look for a package. To accomplish this task, the
database manager uses the value of the CURRENT PACKAGESET special register.
You can set this special register to a single schema name to indicate that any
package to be invoked belongs to that schema. If an application uses packages in
different schemas, a SET CURRENT PACKAGESET statement might have to be
issued before each package is invoked if the schema for the package is different
from that of the previous package.
Note: Only DB2® Universal Database for OS/390® and z/OS"" has a CURRENT
PACKAGESET special register, which allows you to explicitly set the value
(a single schema name) with the corresponding SET CURRENT
PACKAGESET statement. Although DB2 Universal Database " for Linux,
UNIX®, and Windows® has a SET CURRENT PACKAGESET statement, it
does not have a CURRENT PACKAGESET special register. This means that
CURRENT PACKAGESET cannot be referenced in other contexts (such as in
a SELECT statement) with DB2 Universal Database for Linux, UNIX, and
Windows. DB2 Universal Database for AS/00 does not provide support for
CURRENT PACKAGESET.

DB2 has more flexibility when it can consider a list of schemas during package
resolution. The list of schemas is similar to the SQL path that is provided by the
CURRENT PATH special register. The schema list is used for user-defined
functions, procedures, methods, and distinct types.

Note: The SQL path is a list of schema names that DB2 should consider when
trying to determine the schema for an unqualified function, procedure,
method, or distinct type name.

If you need to associate multiple variations of a package (that is, multiple sets of
BIND options for a package) with a single compiled program, consider isolating
the path of schemas that are used for SQL objects from the path of schemas that
are used for packages.

The CURRENT PACKAGE PATH special register allows you to specify a list of
package schemas. Other DB2 family products provide similar capability with
special registers such as CURRENT PATH and CURRENT PACKAGESET, which
are pushed and popped for nested procedures and user-defined functions without
corrupting the runtime environment of the invoking application. The CURRENT
PACKAGE PATH special register provides this capability for package schema
resolution.

Many installations use more than one schema for packages. If you do not specify a
list of package schemas, you must issue the SET CURRENT PACKAGESET
statement (which can contain at most one schema name) each time you require a
package from a different schema. If, however, you issue a SET CURRENT
PACKAGE PATH statement at the beginning of the application to specify a list of
schema names, you do not need to issue a SET CURRENT PACKAGESET
statement each time a package in a different schema is needed. This capability is
especially useful if you are building an SQL]J application, because the application

Chapter 3. Embedded SQL Overview 67

68

can search a list of package schemas without having to issue a SET CURRENT
PACKAGESET statement each time it switches between SQL]J and JDBC.

For example, assume that the following packages exist, and, using the following
list, that you want to invoke the first one that exists on the server:
SCHEMA1.PKG1, SCHEMA2.PKG2, SCHEMA3.PKG3, SCHEMA PKG, and
SCHEMAS5.PKG5. Assuming the current support for a SET CURRENT
PACKAGESET statement in DB2 Universal Database for Linux, UNIX, and
Windows (that is, accepting a single schema name), a SET CURRENT
PACKAGESET statement would have to be issued before trying to invoke each
package to specify the specific schema. For this example, five SET CURRENT
PACKAGESET statements would need to be issued. However, using the CURRENT
PACKAGE PATH special register, a single SET statement is sufficient. For example:

SET CURRENT PACKAGE PATH = SCHEMA1l, SCHEMAZ, SCHEMA3, SCHEMA, SCHEMA5;

Note: In DB2 Universal Database for Linux, UNIX, Windows, you can set the
CURRENT PACKAGE PATH special register in the db2cli.ini file, by using
the SQLSetConnectAttr API, in the SQLE-CLIENT-INFO structure, and by
including the SET CURRENT PACKAGE PATH statement in embedded SQL
programs. Only DB2 Universal Database for OS/390 and z/OS, Version 8 or
later, supports the SET CURRENT PACKAGE PATH statement. If you issue
this statement against a DB2 Universal Database for Linux, UNIX, Windows
server or against DB2 Universal Database for AS/00, -30005 is returned.

You can use multiple schemas to maintain several variations of a package. These
variations can be a very useful in helping to control changes made in production
environments. You can also use different variations of a package to keep a backup
version of a package, or a test version of a package (for example, to evaluate the
impact of a new index). A previous version of a package is used in the same way
as a backup application (load module or executable), specifically, to provide the
ability to revert to a previous version.

For example, assume the PROD schema includes the current packages used by the
production applications, and the BACKUP schema stores a backup copy of those
packages. A new version of the application (and thus the packages) are promoted
to production by binding them using the PROD schema. The backup copies of the
packages are created by binding the current version of the applications using the
backup schema (BACKUP). Then, at runtime, you can use the SET CURRENT
PACKAGE PATH statement to specify the order in which the schemas should be
checked for the packages. Assume that a backup copy of the application MYAPPL
has been bound using the BACKUP schema, and the version of the application
currently in production has been bound to the PROD schema creating a package
PROD.MYAPPL. To specify that the variation of the package in the PROD schema
should be used if it is available (otherwise the variation in the BACKUP schema is
used), issue the following SET statement for the special register:

SET CURRENT PACKAGE PATH = PROD, BACKUP;

If you need to revert to the previous version of the package, the production
version of the application can be dropped with the DROP PACKAGE statement,
which causes the old version of the application (load module or executable) that
was bound using the BACKUP schema to be invoked instead (application path
techniques could be used here, specific to each operating system platform).

Note: This example assumes that the only difference between the versions of the
package are in the BIND options that were used to create the packages (that
is, there are no differences in the executable code).

Programming Client Applications

The application does not use the SET CURRENT PACKAGESET statement to select
the schema it wants. Instead, it allows DB2 to pick up the package by checking for
it in the schemas listed in the CURRENT PACKAGE PATH special register.

Note: The DB2 Universal Database for OS/390 and z/OS precompile process
stores a consistency token in the DBRM (which can be set using the LEVEL
option), and during package resolution a check is made to ensure that the
consistency token in the program matches the package. Similarly, the DB2
Universal Database for Linux, UNIX, Windows bind process stores a
timestamp in the bind file. DB2 Universal Database for Linux, UNIX,
Windows also supports a LEVEL option.

Another reason for creating several versions of a package in different schemas
could be to cause different BIND options to be in affect. For example, you can use
different qualifiers for unqualified name references in the package.

Applications are often written with unqualified table names. This supports
multiple tables that have identical table names and structures, but different
qualifiers to distinguish different instances. For example, a test system and a
production system might have the same objects created in each, but they might
have different qualifiers (for example, PROD and TEST). Another example is an
application that horizontally partitions data into different tables across different
DB2 systems, each with a different qualifier (for example, EAST, WEST, NORTH,
SOUTH; COMPANYA, COMPANYB; Y1999, Y2000, Y2001.). With DB2 Universal
Database for OS/390 and z/OS, you specify the table qualifier using the
QUALIFIER option of the BIND command. When you use the QUALIFIER option,
users do not have to maintain multiple programs, each of which specifies the fully
qualified names that are required to access unqualified tables. Instead, the correct
package can be accessed at runtime by issuing the SET CURRENT PACKAGESET
statement from the application, and specifying a single schema name. However, if
you use SET CURRENT PACKAGESET, multiple applications will still need to be
kept and modified: each one with its own SET CURRENT PACKAGESET
statement to access the required package. If you issue a SET CURRENT PACKAGE
PATH statement instead, all of the schemas could be listed. At execution time, DB2
could choose the correct package.

Note: DB2 Universal Database for Linux, UNIX, Windows also supports a
QUALIFIER bind option. However, the QUALIFIER bind option only affects
static SQL or packages that use the DYNAMICRULES option of the BIND
command.

Resolution of Unqualified Table Names

You can handle unqualified table names in your application by using one of the
following methods:

* For each user, bind the package with different COLLECTION parameters from

different authorization identifiers by using the following commands:

CONNECT TO db_name USER user_name

BIND file_name COLLECTION schema_name
In the above example, db_name is the name of the database, user_name is the
name of the user, and file_name is the name of the application that will be
bound. Note that user_name and schema_name are usually the same value. Then
use the SET CURRENT PACKAGESET statement to specify which package to
use, and therefore, which qualifiers will be used. The default qualifier is the
authorization identifier that is used when binding the package.

Chapter 3. Embedded SQL Overview 69

70

* Create views for each user with the same name as the table so the unqualified
table names resolve correctly.

* Create an alias for each user to point to the desired table.

Related reference:
* “SET CURRENT PACKAGESET statement” in the SQL Reference, Volume 2
e “BIND Command” in the Command Reference

Additional Considerations when Binding

If your application code page uses a different code page from your database code
page, you may need to consider which code page to use when binding.

If your application issues calls to any of the database manager utility APIs, such as
IMPORT or EXPORT, you must bind the supplied utility bind files to the database.

You can use bind options to control certain operations that occur during binding,
as in the following examples:

* The QUERYOPT bind option takes advantage of a specific optimization class
when binding.

e The EXPLSNAP bind option stores Explain Snapshot information for eligible
SQL statements in the Explain tables.

* The FUNCPATH bind option properly resolves user-defined distinct types and
user-defined functions in static SQL.

If the bind process starts but never returns, it may be that other applications
connected to the database hold locks that you require. In this case, ensure that no
applications are connected to the database. If they are, disconnect all applications
on the server and the bind process will continue.

If your application will access a server using DB2 Connect, you can use the BIND
options available for that server.

Bind files are not backward compatible with previous versions of DB2 Universal
Database. In mixed-level environments, DB2® can only use the functions available
to the lowest level of the database environment. For example, if a V8 client
connects to a V7.2 server, the client will only be able to use V7.2 functions. As bind
files express the functionality of the database, they are subject to the mixed-level
restriction.

If you need to rebind higher-level bind files on lower-level systems, you can:

* Use a lower-level DB2 Application Development Client to connect to the
higher-level server and create bind files which can be shipped and bound to the
lower-level DB2 Universal Database environment.

* Use a higher-level DB2 client in the lower-level production environment to bind
the higher-level bind files that were created in the test environment. The
higher-level client passes only the options that apply to the lower-level server.

Related concepts:
* “Binding utilities to the database” in the Administration Guide: Implementation

+ |“Character conversion between different code pages” on page 609

* |“Character Substitutions During Code Page Conversions” on page 610|

+ [“Code Page Conversion Expansion Factor” on page 611

Programming Client Applications

Related reference:
¢ “BIND Command” in the Command Reference

Advantages of Deferred Binding

Precompiling with binding enabled allows an application to access only the
database used during the precompile process. Precompiling with binding deferred,
however, allows an application to access many databases, because you can bind the
BIND file against each one. This method of application development is inherently
more flexible in that applications are precompiled only once, but the application
can be bound to a database at any time.

Using the BIND API during execution allows an application to bind itself, perhaps
as part of an installation procedure or before an associated module is executed. For
example, an application can perform several tasks, only one of which requires the
use of SQL statements. You can design the application to bind itself to a database
only when the application calls the task requiring SQL statements, and only if an
associated package does not already exist.

Another advantage of the deferred binding method is that it lets you create
packages without providing source code to end users. You can ship the associated
bind files with the application.

Related reference:
e “sqlabndx - Bind” in the Administrative API Reference

Bind File Contents

With the DB2® Bind File Description (db2bfd) utility, you can easily display the
contents of a bind file to examine and verify the SQL statements within it, as well
as display the precompile options used to create the bind file. This may be useful
in problem determination related to your application’s bind file.

Related reference:
* “db2bfd - Bind File Description Tool Command” in the Command Reference

Application, Bind File, and Package Relationships

A package is an object stored in the database that includes information needed to
execute specific SQL statements in a single source file. A database application uses
one package for every precompiled source file used to build the application. Each
package is a separate entity, and has no relationship to any other packages used by
the same or other applications. Packages are created by running the precompiler
against a source file with binding enabled, or by running the binder at a later time
with one or more bind files.

Database applications use packages for some of the same reasons that applications
are compiled: improved performance and compactness. By precompiling an SQL
statement, the statement is compiled into the package when the application is built,
instead of at run time. Each statement is parsed, and a more efficiently interpreted
operand string is stored in the package. At run time, the code generated by the
precompiler calls run-time services database manager APIs with any variable
information required for input or output data, and the information stored in the
package is executed.

Chapter 3. Embedded SQL Overview 71

72

The advantages of precompilation apply only to static SQL statements. SQL
statements that are executed dynamically (using PREPARE and EXECUTE or
EXECUTE IMMEDIATE) are not precompiled; therefore, they must go through the
entire set of processing steps at run time.

Note: Do not assume that a static version of an SQL statement automatically
executes faster than the same statement processed dynamically. In some
cases, static SQL is faster because of the overhead required to prepare the
dynamic statement. In other cases, the same statement prepared dynamically
executes faster, because the optimizer can make use of current database
statistics, rather than the database statistics available at an earlier bind time.
Note that if your transaction takes less than a couple of seconds to complete,
static SQL will generally be faster. To choose which method to use, you
should prototype both forms of binding.

Related concepts:
+ ["Dynamic SQL Versus Static SQL” on page 104|

Precompiler-Generated Timestamps

When generating a package or a bind file, the precompiler generates a timestamp.
The timestamp is stored in the bind file or package and in the modified source file.
The timestamp is also known as the consistency token.

When an application is precompiled with binding enabled, the package and
modified source file are generated with timestamps that match. If multiple versions
of a package exist (by using the PRECOMPILE VERSION option), each version will
have with it an associated timestamp. When the application is run, the package
name, creator and timestamp are sent to the database manager, which checks for a
package whose name, creator and timestamp match that sent by the application. If
such a match does not exist, one of the two following SQL error codes is returned
to the application:

* SQLO818N (timestamp conflict). This error is returned if a single package is
found that matches the name and creator (but not the consistency token), and
the package has a version of "” (an empty string)

* SQLO805N (package not found). This error is returned in all other situations.

Remember that when you bind an application to a database, the first eight
characters of the application name are used as the package name unless you override
the default by using the PACKAGE USING option on the PREP command. As well the
version ID will be " (an empty string) unless it is specified by the VERSION
option of the PREP command. This means that if you precompile and bind two
programs using the same name without changing the version ID, the second
package will replace the package of the first. When you run the first program, you
will get a timestamp or a package not found error because the timestamp for the
modified source file no longer matches that of the package in the database. The
package not found error can also result from the use of the ACTION REPLACE
REPLVER precompile or bind option as in the following example:

1. Precompile and bind the package SCHEMA1.PKG specifying VERSION VERI.
Then generate the associated application Al.
2. Precompile and bind the package SCHEMA1.PKG, specifying VERSION VER2

ACTION REPLACE REPLVER VERL. Then generate the associated application
A2.

Programming Client Applications

The second precompile and bind generates a package SCHEMA1.PKG that has
a VERSION of VER2, and the specification of ACTION REPLACE REPLVER
VERI1 removes the SCHEMA1.PKG package that had a VERSION of VER1.

An attempt to run the first application will result in a package mismatch and
will fail.

A similar symptom will occur in the following example:

1. Precompile and bind teh package SCHEMA1.PKG, specifying VERSION VERI.
Then generate the associated application Al

2. Precompile and bind the package SCHEMA1.PKG, specifying VERSION VER2.
Then generate the associated application A2

At this point it is possible to run both applications Al and A2, which will
execute from packages SCHEMA1.PKG versions VER1 and VER2 respectively.
If, for example, the first package is dropped (using the DROP PACKAGE
SCHEMA1.PKG VERSION VER1 SQL statement), an attempt to run the
application Al will fail with a package not found error.

When a source file is precompiled but a respective package is not created, a bind
file and modified source file are generated with matching timestamps. To run the
application, the bind file is bound in a separate BIND step to create a package and
the modified source file is compiled and linked. For an application that requires
multiple source modules, the binding process must be done for each bind file.

In this deferred binding scenario, the application and package timestamps match
because the bind file contains the same timestamp as the one that was stored in

the modified source file during precompilation.

Related concepts:

* |“Package Creation Using the BIND Command” on page 64|

Package Rebinding

Rebinding is the process of recreating a package for an application program that
was previously bound. You must rebind packages if they have been marked
invalid or inoperative. In some situations, however, you may want to rebind
packages that are valid. For example, you may want to take advantage of a newly
created index, or make use of updated statistics after executing the RUNSTATS
command.

Packages can be dependent on certain types of database objects such as tables,
views, aliases, indexes, triggers, referential constraints and table check constraints.
If a package is dependent on a database object (such as a table, view, trigger, and
so on), and that object is dropped, the package is placed into an invalid state. If the
object that is dropped is a UDEF, the package is placed into an inoperative state.

Invalid packages are implicitly (or automatically) rebound by the database
manager when they are executed. Inoperative packages must be explicitly rebound
by executing either the BIND command or the REBIND command. Note that implicit
rebinding can cause unexpected errors if the implicit rebind fails. That is, the
implicit rebind error is returned on the statement being executed, which may not
be the statement that is actually in error. If an attempt is made to execute an
inoperative package, an error occurs. You may decide to explicitly rebind invalid
packages rather than have the system automatically rebind them. This enables you
to control when the rebinding occurs.

Chapter 3. Embedded SQL Overview 73

74

The choice of which command to use to explicitly rebind a package depends on
the circumstances. You must use the BIND command to rebind a package for a
program which has been modified to include more, fewer, or changed SQL
statements. You must also use the BIND command if you need to change any bind
options from the values with which the package was originally bound. In all other
cases, use either the BIND or REBIND command. You should use REBIND whenever
your situation does not specifically require the use of BIND, as the performance of
REBIND is significantly better than that of BIND.

When multiple versions of the same package name coexist in the catalog, only one
version at a time can be rebound.

Related concepts:

* “Statement dependencies when changing objects” in the Administration Guide:
Implementation

Related reference:
* “BIND Command” in the Command Reference
* “REBIND Command” in the Command Reference

Programming Client Applications

Chapter 4. Writing Static SQL Programs

Characteristics and Reasons for Using Static SQL .
Advantages of Static SQL. ..
Example Static SQL Program

Data Retrieval in Static SQL Programs

Effects of REOPT on static SQL. .

Host Variables in Static SQL Programs
Host Variables in Static SQL.

Declaring Host Variables in Static SQL Programs
Referencing Host Variables in Static SQL
Programs . .

Indicator Variables in Statlc SQL Programs
Including Indicator Variables in Static SQL
Programs . .

Data Types for Indrcator Varrables in Statrc SQL
Programs . . .

Example of an Indlcator Varlable ina Statlc SQL
Program

Selecting Multiple Rows Usmg a Cursor
Selecting Multiple Rows Using a Cursor.
Declaring and Using Cursors in Static SQL
Programs . .

Cursor Types and Urut of Work Consrderatrons
Example of a Cursor in a Static SQL Program .
Manipulating Retrieved Data

.75
. 76
. 76
. 78
.78
.79
.79

80

. 81
. 82

. 82
. 84
. 86
. 87
. 87

. 88

89

. 90
.92

Updating and Deleting Retrieved Data in Static
SQL Programs
Cursor Types .
Example of a Fetch in a Stat1c SQL Program

Scrolling Through and Manipulating Retrieved Data
Scrolling Through Previously Retrieved Data .
Keeping a Copy of the Data . .
Retrieving Data a Second Time .
Row Order Differences Between the Flrst and
Second Result Table .
Positioning a Cursor at the End of a Table .
Updating Previously Retrieved Data .
Example of an Insert, Update, and Delete in a
Static SQL Program.

Diagnostic Information
Return Codes.
Error Information in the SQLCODE SQLSTATE
and SQLWARN Fields
Token Truncation in the SQLCA Structure
Exception, Signal, and Interrupt Handler
Considerations . .
Exit List Routine Consrderatlons .
Error Message Retrieval in an Apphcatlon

.92
.92
. 93

94

. 94
. 95
. 95

. 96
. 97
.97

. 98
. 99
.99

. 100
. 101

. 101
. 102
. 102

Characteristics and Reasons for Using Static SQL

When the syntax of embedded SQL statements is fully known at precompile time,
the statements are referred to as static SQL. This is in contrast to dynamic SQL
statements whose syntax is not known until run time.

Note: Static SQL is not supported in interpreted languages, such as REXX.

The structure of an SQL statement must be completely specified for a statement to
be considered static. For example, the names for the columns and tables referenced
in a statement must be fully known at precompile time. The only information that
can be specified at run time are values for any host variables referenced by the
statement. However, host variable information, such as data types, must still be

precompiled.

When a static SQL statement is prepared, an executable form of the statement is
created and stored in the package in the database. The executable form can be
constructed either at precompile time, or at a later bind time. In either case,
preparation occurs before run time. The authorization of the person binding the
application is used, and optimization is based upon database statistics and
configuration parameters that may not be current when the application runs.

© Copyright IBM Corp. 1997 - 2004

75

Advantages of Static SQL

Programming using static SQL requires less effort than using embedded dynamic
SQL. Static SQL statements are simply embedded into the host language source
file, and the precompiler handles the necessary conversion to database manager
run-time services API calls that the host language compiler can process.

Because the authorization of the person binding the application is used, the end
user does not require direct privileges to execute the statements in the package. For
example, an application could allow a user to update parts of a table without
granting an update privilege on the entire table. This can be achieved by restricting
the static SQL statements to allow updates only to certain columns or to a range of
values.

Static SQL statements are persistent, meaning that the statements last for as long as
the package exists.

Dynamic SQL statements are cached until they are either invalidated, freed for
space management reasons, or the database is shut down. If required, the dynamic
SQL statements are recompiled implicitly by the DB2® SQL compiler whenever a
cached statement becomes invalid.

The key advantage of static SQL, with respect to persistence, is that the static
statements exist after a particular database is shut down, whereas dynamic SQL
statements cease to exist when this occurs. In addition, static SQL does not have to
be compiled by the DB2 SQL compiler at run time, while dynamic SQL must be
explicitly compiled at run time (for example, by using the PREPARE statement).
Because DB2 caches dynamic SQL statements, the statements do not need to be
compiled often by DB2, but they must be compiled at least once when you execute
the application.

There can be performance advantages to static SQL. For simple, short-running SQL
programs, a static SQL statement executes faster than the same statement processed
dynamically because the overhead of preparing an executable form of the
statement is done at precompile time instead of at run time.

Note: The performance of static SQL depends on the statistics of the database the
last time the application was bound. However, if these statistics change, the
performance of equivalent dynamic SQL can be very different. If, for
example, an index is added to a database at a later time, an application
using static SQL cannot take advantage of the index unless it is rebound to
the database. In addition, if you are using host variables in a static SQL
statement, the optimizer will not be able to take advantage of any
distribution statistics for the table.

Related reference:
* “EXECUTE statement” in the SQL Reference, Volume 2

Example Static SQL Program

76

This sample program shows examples of static SQL statements and database

manager API calls in the C/C++, Java , and COBOL languages.

Programming Client Applications

The sample in C/C++ and Java queries the org table in the sample database to
find the department name and department number of the department that is
located in New York, then places the department name and department number
into host variables.

The sample in COBOL queries the employee table in the sample database for the
first name of the employee whose last name is Johnson, then place the first name
into a host variable.

Note: The REXX language does not support static SQL, so a sample is not
provided.

e C/C++ (tbread)

SELECT deptnumb, deptname INTO :deptnumb, :deptname
FROM org
WHERE Tocation = 'New York'

This query is in the ThRowSubselect () function of the sample. For more
information, see the related samples below.

* Java (TbRead.sqlj)

#sql cur2 = {SELECT deptnumb, deptname
FROM org
WHERE Tocation = 'New York'};

// fetch the cursor
#sql {FETCH :cur2 INTO :deptnumb, :deptname};

This query is in the rowSubselect() function of the TbRead.sqlj sample. For
more information, see the related samples below.

* COBOL (static.sqb)

The sample static contains examples of static SQL statements and database
manager API calls in the COBOL language. The SELECT INTO statement selects
one row of data from tables in a database, and the values in this row are
assigned to host variables specified in the statement. For example, the following
statement delivers the first name of the employee with the last name JOHNSON
into the host variable firstname:
SELECT FIRSTNME

INTO :firstname

FROM EMPLOYEE
WHERE LASTNAME = 'JOHNSON'

Related concepts:

+ [“Data Retrieval in Static SQL Programs” on page 78|

s |[“Error Message Retrieval in an Application” on page 102

Related tasks:
* [“Declaring Host Variables in Static SQL Programs” on page 80|

* [“Selecting Multiple Rows Using a Cursor” on page 87|

e “Setting up the sample database” in the Application Development Guide: Building
and Running Applications

Related reference:
e “SELECT INTO statement” in the SQL Reference, Volume 2

Related samples:
» “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

Chapter 4. Writing Static SQL Programs 77

* “tbinfo.out -- HOW TO GET INFORMATION AT THE TABLE LEVEL (C)”
* “tbread.out -- HOW TO READ TABLES (C)”

e “tbread.sqc -- How to read tables (C)”

» “dtlob.sqC -- How to use the LOB data type (C++)”

* “tbinfo.sqC -- How to get information at the table level (C++)”

* “tbread.out -- HOW TO READ TABLES (C++)”

* “tbread.sqC -- How to read tables (C++)”

* “static.sqb -- Get table data using static SQL statement (IBM COBOL)”

* “static.sqb -- Get table data using static SQL statement (MF COBOL)”

* “TbRead.out -- HOW TO READ TABLE DATA. Connect to 'sample’ database
using JDBC type 2 driver (JDBC)”

* “TbRead.sqlj -- How to read table data (SQLj)”

Data Retrieval in Static SQL Programs

One of the most common tasks of an SQL application program is to retrieve data.
This task is done using the select-statement, which is a form of query that searches
for rows of tables in the database that meet specified search conditions. If such
rows exist, the data is retrieved and put into specified variables in the host
program, where it can be used for whatever it was designed to do.

After you have written a select-statement, you code the SQL statements that define
how information will be passed to your application.

You can think of the result of a select-statement as being a table having rows and
columns, much like a table in the database. If only one row is returned, you can
deliver the results directly into host variables specified by the SELECT INTO
statement.

If more than one row is returned, you must use a cursor to fetch them one at a
time. A cursor is a named control structure used by an application program to
point to a specific row within an ordered set of rows.

Related concepts:
* [“Host Variables in Static SQL” on page 79|
* [“Example of a Cursor in a Static SQL Program” on page 90|

Related tasks:
* |“Declaring Host Variables in Static SQL Programs” on page 80|

+ [“Referencing Host Variables in Static SQL Programs” on page 81|

+ |“Including Indicator Variables in Static SQL Programs” on page 82|

* [“Selecting Multiple Rows Using a Cursor” on page 87|

* ["“Declaring and Using Cursors in Static SQL Programs” on page 88|

Effects of REOPT on static SQL

78

The bind option REOPT can make static SQL statements containing host variables
or special registers behave like incremental-bind statements. This means that these
statements get compiled at the time of EXECUTE or OPEN instead of at bind time.
During this compilation, the access plan is chosen, based on the real values of
these variables.

Programming Client Applications

With REOPT ONCE, the access plan is cached after the first OPEN or EXECUTE
request and is used for subsequent execution of this statement. With REOPT
ALWAYS, the access plan is regenerated for every OPEN and EXECUTE request,
and the current set of host variable, parameter marker, and special register values
is used to create this plan.

Host Variables in Static SQL Programs

The sections that follow describe how to use host variables in static SQL programs.
Host Variables in Static SQL

Host variables are variables referenced by embedded SQL statements. They transmit
data between the database manager and an application program. When you use a
host variable in an SQL statement, you must prefix its name with a colon, (:).
When you use a host variable in a host language statement, omit the colon.

Host variables are declared in compiled host languages, and are delimited by
BEGIN DECLARE SECTION and END DECLARE SECTION statements. These
statements enable the precompiler to find the declarations.

™

Note: Java JDBC and SQL]J programs do not use declare sections. Host variables
in Java follow the normal Java variable declaration syntax.

Host variables are declared using a subset of the host language.

The following rules apply to host variable declaration sections:

* All host variables must be declared in the source file before they are referenced,
except for host variables referring to SQLDA structures.

* Multiple declare sections may be used in one source file.
* The precompiler is unaware of host language variable scoping rules.

With respect to SQL statements, all host variables have a global scope regardless
of where they are actually declared in a single source file. Therefore, host
variable names must be unique within a source file.

This does not mean that the DB2® precompiler changes the scope of host
variables to global so that they can be accessed outside the scope in which they
are defined. Consider the following example:

fool(){

BEGIN SQL DECLARE SECTION;

int x;

END SQL DECLARE SECTION;
x=10;

Chapter 4. Writing Static SQL Programs 79

}

Depending on the language, the above example will either fail to compile
because variable x is not declared in function foo2(), or the value of x would
not be set to 10 in foo2(). To avoid this problem, you must either declare x as a
global variable, or pass x as a parameter to function foo2() as follows:

fool(){

BEGIN SQL DECLARE SECTION;
int x;

END SQL DECLARE SECTION;
x=10;

fo02(x);

foo2(int x){
Y=X3

}
Related concepts:
+ [“Host Variables in C and C++” on page 137
+ ["Host Variables in COBOL” on page 180

+ [“Host Variables in FORTRAN” on page 200|
* |“Host Variables in REXX” on page 497|

Related tasks:
* |“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|

* ["“Declaring Host Variables in Static SQL Programs” on page 80|

+ [“Referencing Host Variables in Static SQL Programs” on page 81|

Declaring Host Variables in Static SQL Programs

Declare host variables for your program so that they can be used to transmit data
between the database manager and the application.

Procedure:

Declare the host variables using the syntax for the host language that you are
using. The following table provides examples.

80 Programming Client Applications

Table 4. Host Variable Declarations by Host Language

Language

Example Source Code

C/C++

EXEC SQL BEGIN DECLARE SECTION;
short dept=38, age=26;
doubTe salary;
char CH;
char namel[9], NAME2[9];
/* C comment =/
short nul_ind;

EXEC SQL END DECLARE SECTION;

Java

// Note that Java host variable declarations follow
// normal Java variable declaration rules, and have
// no equivalent of a DECLARE SECTION

short dept=38, age=26;

doubTe salary;

char CH;

String namel[9], NAME2[9];

/* Java comment */

short nul_ind;

COBOL

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 age PIC S9(4) COMP-5 VALUE 26.
01 DEPT PIC S9(9) COMP-5 VALUE 38.
01 salary PIC S9(6)V9(3) COMP-3.
01 CH PIC X(1).
01 namel PIC X(8).
01 NAME2 PIC X(8).

* (COBOL comment

01 nul-ind PIC S9(4) COMP-5.

EXEC SQL END DECLARE SECTION END-EXEC.

FORTRAN

EXEC SQL BEGIN DECLARE SECTION
integer*2 age /26/
integerx4 dept /38/

real*8 salary

character ch

character*8 namel,NAME2
C FORTRAN comment

integer*2 nul_ind

EXEC SQL END DECLARE SECTION

Related tasks:

+ [“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|

* [“Referencing Host Variables in Static SQL Programs” on page 81|

Referencing Host Variables in Static SQL Programs

After declaring the host variable, you can reference it in the application program.
When you use a host variable in an SQL statement, prefix its name with a colon (:).
If you use a host variable in a host language statement, omit the colon.

Procedure:

Reference the host variables using the syntax for the host language that you are
using. The following table provides examples.

Chapter 4. Writing Static SQL Programs 81

Table 5. Host Variable Refrerences by Host Language

Language Example Source Code

C/CH+ EXEC SQL FETCH C1 INTO :cm;
printf("Commission = %f\n", cm);

JAVA (SQLJ) #SQL { FETCH :cl INTO :cm };
System.out.printIn("Commission = " + cm);

COBOL EXEC SQL FETCH C1 INTO :cm END-EXEC
DISPLAY 'Commission = ' cm

FORTRAN EXEC SQL FETCH C1 INTO :cm

WRITE(*,*) 'Commission = ', cm

Related tasks:
* |“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|

* |[“Declaring Host Variables in Static SQL Programs” on page 80|

Indicator Variables in Static SQL Programs

82

The sections that follow describe how to use indicator variables in static SQL
programs.

Including Indicator Variables in Static SQL Programs

Applications written in languages other than Java must prepare for receiving null
values by associating an indicator variable with any host variable that can receive a
null. Java applications compare the value of the host variable with Java null to
determine whether the received value is null. An indicator variable is shared by
both the database manager and the host application; therefore, the indicator
variable must be declared in the application as a host variable. This host variable
corresponds to the SQL data type SMALLINT.

An indicator variable is placed in an SQL statement immediately after the host
variable, and is prefixed with a colon. A space can separate the indicator variable
from the host variable, but is not required. However, do not put a comma between
the host variable and the indicator variable. You can also specify an indicator
variable by using the optional INDICATOR keyword, which you place between the
host variable and its indicator.

Procedure:

Use the INDICATOR keyword to write indicator variables. The following table
provides examples for the supported host languages:

Table 6. Indicator Variables by Host Language

Language Example Source Code

C/C++ EXEC SQL FETCH Cl INTO :cm INDICATOR :cmind;
if (cmind <0)
printf("Commission is NULL\n");

JAVA (SQL)J) #SQL { FETCH :cl INTO :cm };
if (cm == null)
System.out.printin("Commission is NULL\n");

Programming Client Applications

Table 6. Indicator Variables by Host Language (continued)

Language Example Source Code

COBOL EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind END-EXEC
IF cmind LESS THAN 0
DISPLAY 'Commission is NULL'

FORTRAN EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind
IF (cmind .LT. 0) THEN
WRITE(*,*) 'Commission is NULL'
ENDIF

In the preceding examples, cmind is examined for a negative value. If the value is
not negative, the application can use the returned value of cm. If the value is
negative, the fetched value is NULL and cm should not be used. The database
manager does not change the value of the host variable in this case.

Note: If the database configuration parameter dft_sqlmathwarn is set to "YES’, the
value of cmind may be -2. This value indicates a NULL that was either
caused by evaluating an expression with an arithmetic error, or by an
overflow while attempting to convert the numeric result value to the host
variable.

If the data type can handle NULLSs, the application must provide a NULL
indicator. Otherwise, an error may occur. If a NULL indicator is not used, an
SQLCODE -305 (SQLSTATE 22002) is returned.

If the SQLCA structure indicates a truncation warning, the indicator variables can
be examined for truncation. If an indicator variable has a positive value, a
truncation occurred.

* If the seconds portion of a TIME data type is truncated, the indicator value
contains the seconds portion of the truncated data.

* For all other string data types, except large objects (LOB), the indicator value
represents the actual length of the data returned. User-defined distinct types
(UDT) are handled in the same way as their base type.

When processing INSERT or UPDATE statements, the database manager checks the
indicator variable if one exists. If the indicator variable is negative, the database
manager sets the target column value to NULL if NULLs are allowed.

If the indicator variable is zero or positive, the database manager uses the value of
the associated host variable.

The SQLWARNI field in the SQLCA structure may contain an X or W if the value of
a string column is truncated when it is assigned to a host variable. The field
contains an N if a null terminator is truncated.

A value of X is returned by the database manager only if all of the following
conditions are met:

* A mixed code page connection exists where conversion of character string data
from the database code page to the application code page involves a change in
the length of the data.

e A cursor is blocked.

* An indicator variable is provided by your application.

Chapter 4. Writing Static SQL Programs 83

84

The value returned in the indicator variable will be the length of the resultant
character string in the application’s code page.

In all other cases involving data truncation (as opposed to NULL terminator
truncation), the database manager returns a W. In this case, the database manager
returns a value in the indicator variable to the application that is the length of the
resultant character string in the code page of the select list item (either the
application code page, the database code page, or nothing).

Related tasks:
* |“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|

* ["Declaring Host Variables in Static SQL Programs” on page 80|

* [“Referencing Host Variables in Static SQL Programs” on page 81|

Related reference:

* |“Data Types for Indicator Variables in Static SQL Programs” on page 84|

Data Types for Indicator Variables in Static SQL Programs

Each column of every DB2 table is given an SQL data type when the column is
created. For information about how these types are assigned to columns, see the
CREATE TABLE statement. The database manager supports the following column
data types:

SMALLINT
16-bit signed integer.

INTEGER
32-bit signed integer. INT can be used as a synonym for this type.

BIGINT
64-bit signed integer.

DOUBLE
Double-precision floating point. DOUBLE PRECISION and FLOAT ()
(where n is greater than 24) are synonyms for this type.

REAL Single-precision floating point. FLOAT (1) (where # is less than 24) is a
synonym for this type.

DECIMAL
Packed decimal. DEC, NUMERIC, and NUM are synonyms for this type.

CHAR
Fixed-length character string of length 1 byte to 254 bytes. CHARACTER
can be used as a synonym for this type.

VARCHAR
Variable-length character string of length 1 byte to 32 672 bytes.
CHARACTER VARYING and CHAR VARYING are synonyms for this

type.

LONG VARCHAR
Long variable-length character string of length 1 byte to 32 700 bytes.

CLOB Large object variable-length character string of length 1 byte to 2 gigabytes.
BLOB Large object variable-length binary string of length 1 byte to 2 gigabytes.
DATE Character string of length 10 representing a date.

Programming Client Applications

TIME Character string of length 8 representing a time.

TIMESTAMP
Character string of length 26 representing a timestamp.

The following data types are supported only in double-byte character set (DBCS)
and Extended UNIX Code (EUC) character set environments:

GRAPHIC
Fixed-length graphic string of length 1 to 127 double-byte characters.

VARGRAPHIC
Variable-length graphic string of length 1 to 16 336 double-byte characters.

LONG VARGRAPHIC
Long variable-length graphic string of length 1 to 16 350 double-byte
characters.

DBCLOB
Large object variable-length graphic string of length 1 to 1 073 741 823
double-byte characters.

Notes:

1. Every supported data type can have the NOT NULL attribute. This is treated as
another type.

2. The above set of data types can be extended by defining user-defined distinct
types (UDT). UDTs are separate data types that use the representation of one of
the built-in SQL types.

Supported host languages have data types that correspond to the majority of the
database manager data types. Only these host language data types can be used in
host variable declarations. When the precompiler finds a host variable declaration,
it determines the appropriate SQL data type value. The database manager uses this
value to convert the data exchanged between itself and the application.

As the application programmer, it is important for you to understand how the
database manager handles comparisons and assignments between different data
types. Simply put, data types must be compatible with each other during
assignment and comparison operations, whether the database manager is working
with two SQL column data types, two host-language data types, or one of each.

The general rule for data type compatibility is that all supported host-language
numeric data types are comparable and assignable with all database manager
numeric data types, and all host-language character types are compatible with all
database manager character types; numeric types are incompatible with character
types. However, there are also some exceptions to this general rule, depending on
host language idiosyncrasies and limitations imposed when working with large
objects.

Within SQL statements, DB2 provides conversions between compatible data types.
For example, in the following SELECT statement, SALARY and BONUS are
DECIMAL columns; however, each employee’s total compensation is returned as
DOUBLE data:

SELECT EMPNO, DOUBLE(SALARY+BONUS) FROM EMPLOYEE

Note that the execution of the above statement includes conversion between
DECIMAL and DOUBLE data types.

Chapter 4. Writing Static SQL Programs 85

86

To make the query results more readable on your screen, you could use the
following SELECT statement:

SELECT EMPNO, DIGIT(SALARY+BONUS) FROM EMPLOYEE

To convert data within your application, contact your compiler vendor for
additional routines, classes, built-in types, or APIs that support this conversion.

If your application code page is not the same as your database code page,
character data types may also be subject to character conversion.

Related concepts:

* “Data conversion considerations” in the Application Development Guide:
Programming Server Applications

+ [“Character conversion between different code pages” on page 609

Related reference:

* “CREATE TABLE statement” in the SQL Reference, Volume 2
* |“Supported SQL Data Types in C and C++” on page 162

* [“Supported SQL Data Types in COBOL” on page 190|

* [“Supported SQL Data Types in FORTRAN” on page 206

* [“Supported SQL Data Types in REXX” on page 502|

+ [“Java, JDBC, and SQL data types” on page 365|

Example of an Indicator Variable in a Static SQL Program

Following are examples of how to use indicator variables C/C++ programs that
use have static SQL:

* Example 1

The following example show the implementation of indicator variables on data
columns that are nullable. In this example, the column FIRSTNAME is not
nullable, but the column WORKDEPT can contain a null value.
EXEC SQL BEGIN DECLARE SECTION;

char wd[3];

short wd_ind;

char firstname[13];
EXEC SQL END DECLARE SECTION;

/* connect to sample database */

EXEC SQL SELECT FIRSTNME, WORKDEPT
INTO :firstname, :wd:wdind
FROM EMPLOYEE
WHERE LASTNAME = 'JOHNSON';

Because the column WORKDEPT can have a null value, an indicator variable
must be declared as a host variable before being used.

e Example 2 (dtlob)

The sample dtlob has a function called BlobFileUse(). The function
BlobFileUse() contains a query that reads BLOB data in a file using a SELECT
INTO statement:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB_FILE blobFilePhoto;
char photoFormat[10];
char empno[7];
short lobind;

Programming Client Applications

EXEC SQL END DECLARE SECTION;
/* Connect to the sample database */

SELECT picture INTO :blobFilePhoto:1obind
FROM emp_photo
WHERE photo_format = :photoFormat AND empno = '000130'

Because the column BLOBFILEPHOTO can have a null value, an indicator
variable LOBIND must be declared as a host variable before being used. The
sample dtlob shows how to work with LOBs. See the samples for more
information about using LOBs.

Related concepts:

+ [“Example Static SQL Program” on page 76|

Related tasks:
+ |“Including Indicator Variables in Static SQL Programs” on page 82

Related reference:

* |[“Data Types for Indicator Variables in Static SQL Programs” on page 84|

Related samples:

* “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”

+ “dtlob.sqc -- How to use the LOB data type (C)”

* “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”
* “dtlob.sqC -- How to use the LOB data type (C++)”

Selecting Multiple Rows Using a Cursor

The sections that follow describe how to select rows using a cursor. The sample
programs that show how to declare a cursor, open the cursor, fetch rows from the
table, and close the cursor are also briefly described.

Selecting Multiple Rows Using a Cursor

To allow an application to retrieve a set of rows, SQL uses a mechanism called a
cursor.

To help understand the concept of a cursor, assume that the database manager
builds a result table to hold all the rows retrieved by executing a SELECT
statement. A cursor makes rows from the result table available to an application by
identifying or pointing to a current row of this table. When a cursor is used, an
application can retrieve each row sequentially from the result table until an end of
data condition, that is, the NOT FOUND condition, SQLCODE +100 (SQLSTATE
02000) is reached. The set of rows obtained as a result of executing the SELECT
statement can consist of zero, one, or more rows, depending on the number of
rows that satisfy the search condition.

Procedure:

The steps involved in processing a cursor are as follows:
1. Specify the cursor using a DECLARE CURSOR statement.
2. Perform the query and build the result table using the OPEN statement.

Chapter 4. Writing Static SQL Programs 87

88

3. Retrieve rows one at a time using the FETCH statement.
4. Process rows with the DELETE or UPDATE statements (if required).
5. Terminate the cursor using the CLOSE statement.

An application can use several cursors concurrently. Each cursor requires its own
set of DECLARE CURSOR, OPEN, CLOSE, and FETCH statements.

Related concepts:

+ [“Example of a Cursor in a Static SQL Program” on page 90|

Declaring and Using Cursors in Static SQL Programs

Use the DECLARE CURSOR statement to define and name the cursor, and to
identify the set of rows to be retrieved using a SELECT statement.

The application assigns a name for the cursor. This name is referred to in
subsequent OPEN, FETCH, and CLOSE statements. The query is any valid select
statement.

Restrictions:

The placement of the DECLARE statement is arbitrary, but it must be placed above
the first use of the cursor.

Procedure:

Use the DECLARE statement to define the cursor. The following table provides
examples for the supported host languages:

Table 7. Cursor Declarations by Host Language

Language Example Source Code

C/C++ EXEC SQL DECLARE C1 CURSOR FOR
SELECT PNAME, DEPT FROM STAFF
WHERE JOB=:host_vars;

JAVA (SQLJ) #sql iterator cursorl(host_var data type);
#sql cursorl = { SELECT PNAME, DEPT FROM STAFF
WHERE JOB=:host_var };

COBOL EXEC SQL DECLARE C1 CURSOR FOR
SELECT NAME, DEPT FROM STAFF
WHERE JOB=:host-var END-EXEC.

FORTRAN EXEC SQL DECLARE C1 CURSOR FOR
+ SELECT NAME, DEPT FROM STAFF
+ WHERE JOB=:host_var

Related concepts:

s [“Cursor Types and Unit of Work Considerations” on page 89

Related tasks:
* [“Selecting Multiple Rows Using a Cursor” on page 87|

Related reference:

* |“Cursor Types” on page 92|

Programming Client Applications

Cursor Types and Unit of Work Considerations

The actions of a COMMIT or ROLLBACK operation vary for cursors, depending
on how the cursors are declared:

Read-only cursors

If a cursor is determined to be read only and uses a repeatable read
isolation level, repeatable read locks are still gathered and maintained on
system tables needed by the unit of work. Therefore, it is important for
applications to periodically issue COMMIT statements, even for read only
cursors.

WITH HOLD option

If an application completes a unit of work by issuing a COMMIT
statement, all open cursors, except those declared using the WITH HOLD
option, are automatically closed by the database manager.

A cursor that is declared WITH HOLD maintains the resources it accesses
across multiple units of work. The exact effect of declaring a cursor WITH
HOLD depends on how the unit of work ends:

¢ If the unit of work ends with a COMMIT statement, open cursors
defined WITH HOLD remain OPEN. The cursor is positioned before the
next logical row of the result table. In addition, prepared statements
referencing OPEN cursors defined WITH HOLD are retained. Only
FETCH and CLOSE requests associated with a particular cursor are valid
immediately following the COMMIT. UPDATE WHERE CURRENT OF
and DELETE WHERE CURRENT OF statements are valid only for rows
fetched within the same unit of work.

Note: If a package is rebound during a unit of work, all held cursors are
closed.
¢ If the unit of work ends with a ROLLBACK statement, all open cursors
are closed, all locks acquired during the unit of work are released, and
all prepared statements that are dependent on work done in that unit
are dropped.

For example, suppose that the TEMPL table contains 1 000 entries. You
want to update the salary column for all employees, and you expect to
issue a COMMIT statement every time you update 100 rows.

1. Declare the cursor using the WITH HOLD option:

EXEC SQL DECLARE EMPLUPDT CURSOR WITH HOLD FOR
SELECT EMPNO, LASTNAME, PHONENO, JOBCODE, SALARY
FROM TEMPL FOR UPDATE OF SALARY

2. Open the cursor and fetch data from the result table one row at a time:
EXEC SQL OPEN EMPLUPDT

EXEC SQL FETCH EMPLUPDT
INTO :upd_emp, :upd_Tname, :upd_tele, :upd_jobcd, :upd_wage,
3. When you want to update or delete a row, use an UPDATE or DELETE
statement using the WHERE CURRENT OF option. For example, to
update the current row, your program can issue:

EXEC SQL UPDATE TEMPL SET SALARY = :newsalary
WHERE CURRENT OF EMPLUPDT

Chapter 4. Writing Static SQL Programs 89

90

4. After a COMMIT is issued, you must issue a FETCH before you can
update another row.

You should include code in your application to detect and handle an
SQLCODE -501 (SQLSTATE 24501), which can be returned on a FETCH or
CLOSE statement if your application either:

* Uses cursors declared WITH HOLD

* Executes more than one unit of work and leaves a WITH HOLD cursor
open across the unit of work boundary (COMMIT WORK).

If an application invalidates its package by dropping a table on which it is
dependent, the package gets rebound dynamically. If this is the case, an
SQLCODE -501 (SQLSTATE 24501) is returned for a FETCH or CLOSE
statement because the database manager closes the cursor. The way to
handle an SQLCODE -501 (SQLSTATE 24501) in this situation depends on
whether you want to fetch rows from the cursor:

* If you want to fetch rows from the cursor, open the cursor, then run the
FETCH statement. Note, however, that the OPEN statement repositions
the cursor to the start. The previous position held at the COMMIT
WORK statement is lost.

* If you do not want to fetch rows from the cursor, do not issue any more
SQL requests against the cursor.
WITH RELEASE option

When an application closes a cursor using the WITH RELEASE option,
DB2® attempts to release all READ locks that the cursor still holds. The
cursor will only continue to hold WRITE locks. If the application closes the
cursor without using the RELEASE option, the READ and WRITE locks
will be released when the unit of work completes.

Related tasks:
+ [“Selecting Multiple Rows Using a Cursor” on page 87|

* ["Declaring and Using Cursors in Static SQL Programs” on page 88|

Example of a Cursor in a Static SQL Program

The samples tut_read.sqc in C, tut_read.sqC/sqx in C++, TutRead.sqlj in SQLJ,
and cursor.sqb in COBOL show how to declare a cursor, open the cursor, fetch
rows from the table, and close the cursor.

Because REXX does not support static SQL, a sample is not provided.

e C/C++
The sample tut_read shows a basic select from a table using a cursor. For
example:

/* declare cursor */
EXEC SQL DECLARE cl CURSOR FOR
SELECT deptnumb, deptname FROM org WHERE deptnumb < 40;

/* open cursor */
EXEC SQL OPEN cl;

/% fetch cursor */
EXEC SQL FETCH cl INTO :deptnumb, :deptname;

while (sqlca.sqlcode !'= 100)

printf(" %8d %-14s\n", deptnumb, deptname);

Programming Client Applications

EXEC SQL FETCH cl INTO :deptnumb, :deptname;
}

/* close cursor */
EXEC SQL CLOSE c1;

°]ava'l'l\l
The sample TutRead shows how to read table data with a simple select using a
cursor. For example:

// cursor definition
#sql iterator TutRead Cursor(int, String);

// declare cursor
TutRead_Cursor cur2;
#sq1 cur2 = {SELECT deptnumb, deptname FROM org WHERE deptnumb < 40};

// fetch cursor
#sql {FETCH :cur2 INTO :deptnumb, :deptname};

// retrieve and display the result from the SELECT statement
while (!cur2.endFetch())
{
System.out.printin(deptnumb + ", " + deptname);
#sql {FETCH :cur2 INTO :deptnumb, :deptname};
}

// close cursor
cur2.close();

 COBOL

The sample cursor shows an example on how to retrieve table data using a
cursor with Static SQL statement. For example:

* Declare a cursor
EXEC SQL DECLARE c1 CURSOR FOR
SELECT name, dept FROM staff
WHERE job='Mgr' END-EXEC.

* Open the cursor
EXEC SQL OPEN cl END-EXEC.

* Fetch rows from the 'staff' table
perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

* Close the cursor
EXEC SQL CLOSE c1 END-EXEC.
move "CLOSE CURSOR" to errloc.

Related concepts:

* |“Cursor Types and Unit of Work Considerations” on page 89|

* |“Error Message Retrieval in an Application” on page 102|

Related tasks:
+ [“Selecting Multiple Rows Using a Cursor” on page 87|

* |“Declaring and Using Cursors in Static SQL Programs” on page 88|

Related reference:

* |“Cursor Types” on page 92|

Related samples:
* “cursor.sgb - How to update table data with cursor statically (IBM COBOL)”
* “tut_read.out -- HOW TO READ TABLES (C)”

Chapter 4. Writing Static SQL Programs 91

* “tut_read.sqc -- How to read tables (C)”
e “tut_read.out -- HOW TO READ TABLES (C++)”
e “tut_read.sqC -- How to read tables (C++)”

* “TutRead.out -- HOW TO READ TABLE DATA. Connect to 'sample’ database
using JDBC type 2 driver (SQLJ)”

* “TutRead.sqlj -- Read data in a table (SQLj)”

Manipulating Retrieved Data

The sections that follow describe how to update and delete retrieved data. The
sample programs that show how to manipulate data are also briefly described.

Updating and Deleting Retrieved Data in Static SQL Programs

It is possible to update and delete the row referenced by a cursor. For a row to be
updatable, the query corresponding to the cursor must not be read-only.

Procedure:

To update with a cursor, use the WHERE CURRENT OF clause in an UPDATE
statement. Use the FOR UPDATE clause to tell the system that you want to update
some columns of the result table. You can specify a column in the FOR UPDATE
without it being in the fullselect; therefore, you can update columns that are not
explicitly retrieved by the cursor. If the FOR UPDATE clause is specified without
column names, all columns of the table or view identified in the first FROM clause
of the outer fullselect are considered to be updatable. Do not name more columns
than you need in the FOR UPDATE clause. In some cases, naming extra columns
in the FOR UPDATE clause can cause DB2 to be less efficient in accessing the data.

Deletion with a cursor is done using the WHERE CURRENT OF clause in a
DELETE statement. In general, the FOR UPDATE clause is not required for
deletion of the current row of a cursor. The only exception occurs when using
dynamic SQL for either the SELECT statement or the DELETE statement in an
application that has been precompiled with LANGLEVEL set to SAA1 and bound
with BLOCKING ALL. In this case, a FOR UPDATE clause is necessary in the
SELECT statement.

The DELETE statement causes the row being referenced by the cursor to be

deleted. The deletion leaves the cursor positioned before the next row, and a
FETCH statement must be issued before additional WHERE CURRENT OF

operations may be performed against the cursor.

Related reference:
* “PRECOMPILE Command” in the Command Reference
* “SQL queries” in the SQL Reference, Volume 1

Cursor Types

Cursors fall into three categories:

Read only
The rows in the cursor can only be read, not updated. Read-only cursors
are used when an application will only read data, not modify it. A cursor
is considered read only if it is based on a read-only select-statement. See

92 Programming Client Applications

the description of how to update and retrieve data for the rules for
select-statements that define non-updatable result tables.

There can be performance advantages for read-only cursors.

Updatable
The rows in the cursor can be updated. Updatable cursors are used when
an application modifies data as the rows in the cursor are fetched. The
specified query can only refer to one table or view. The query must also
include the FOR UPDATE clause, naming each column that will be
updated (unless the LANGLEVEL MIA precompile option is used).

Ambiguous
The cursor cannot be determined to be updatable or read only from its
definition or context. This situation can happen when a dynamic SQL
statement is encountered that could be used to change a cursor that would
otherwise be considered read-only.

An ambiguous cursor is treated as read only if the BLOCKING ALL option
is specified when precompiling or binding. Otherwise, the cursor is
considered updatable.

Note: Cursors processed dynamically are always ambiguous.

Related concepts:
* [“Supported Cursor Modes for the IBM OLE DB Provider” on page 223|

Related tasks:
* [“Updating and Deleting Retrieved Data in Static SQL Programs” on page 92|

Example of a Fetch in a Static SQL Program

The following sample selects from a table using a cursor, opens the cursor, and
fetches rows from the table. For each row fetched, the program decides, based on
simple criteria, whether the row should be deleted or updated.

The REXX language does not support static SQL, so a sample is not provided.
¢ C/C++ (tut_mod.sqc/tut_mod.sqC)

The following example is from the sample tut_mod. This example selects from a
table using a cursor, opens the cursor, fetches, updates, or delete rows from the
table, then closes the cursor.

EXEC SQL DECLARE cl CURSOR FOR SELECT = FROM staff WHERE id >= 310;

EXEC SQL OPEN cl;

EXEC SQL FETCH c1 INTO :id, :name, :dept, :job:jobInd, :years:yearsInd, :salary,

scomm:commInd;

The sample tbmod is a longer version of the tut_mod sample, and shows almost
all possible cases of table data modification.

s Java'" (TutMod.sqlj)
The following example is from the sample TutMod. This example selects from a
table using a cursor, opens the cursor, fetches, updates, or delete rows from the
table, then closes the cursor.

#sql cur = {SELECT * FROM staff WHERE id >= 310};
#sql {FETCH :cur INTO :id, :name, :dept, :job, :years, :salary, :comm};

The sample TbMod is a longer version of TutMod sample, and shows almost all
possible cases of table data modification.

Chapter 4. Writing Static SQL Programs 93

* COBOL (openftch.sqb)
The following example is from the sample openftch. This example selects from a
table using a cursor, opens the cursor, and fetches rows from the table.

EXEC SQL DECLARE c1 CURSOR FOR
SELECT name, dept FROM staff
WHERE job="'Mgr'

FOR UPDATE OF job END-EXEC.

EXEC SQL OPEN cl END-EXEC
* call the FETCH and UPDATE/DELETE Toop.
perform Fetch-Loop thru End-Fetch-Loop

until SQLCODE not equal 0.

EXEC SQL CLOSE cl END-EXEC.

Related concepts:

* |“Error Message Retrieval in an Application” on page 102|

Related samples:

* “openftch.sqb -- How to modify table data using cursor statically (IBM COBOL)”
e “tbmod.sqc -- How to modify table data (C)”

¢ “tut_mod.out -- HOW TO MODIFY TABLE DATA (C)”

* “tut_mod.sqc -- How to modify table data (C)”

e “tbmod.sqC -- How to modify table data (C++)”

* “tut_mod.out -- HOW TO MODIFY TABLE DATA (C++)”

* “tut_mod.sqC -- How to modify table data (C++)”

* “TbMod.sqlj -- How to modify table data (SQLj)”

* “TutMod.out -- HOW TO MODIFY TABLE DATA. Connect to 'sample’ database
using JDBC type 2 driver (SQLJ)”

* “TutMod.sqlj -- Modify data in a table (SQLj)”

Scrolling Through and Manipulating Retrieved Data

The sections that follow describe how to scroll through retrieved data. The sample
programs that show how to manipulate data are also briefly described.

Scrolling Through Previously Retrieved Data

When an application retrieves data from the database, the FETCH statement allows
it to scroll forward through the data, however, the database manager has no
embedded SQL statement that allows it scroll backwards through the data,
(equivalent to a backward FETCH). DB2 CLI and Java, however, do support a
backward FETCH through read-only scrollable cursors.

Procedure:

For embedded SQL applications, you can use the following techniques to scroll
through data that has been retrieved:

* Keep a copy of the data that has been fetched and scroll through it by some
programming technique.

* Use SQL to retrieve the data again, typically by a second SELECT statement.

94 Programming Client Applications

Related tasks:
* [“Keeping a Copy of the Data” on page 95|

* [“Retrieving Data a Second Time” on page 95|

Related reference:

* “SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound
columns” in the CLI Guide and Reference, Volume 2

* “Cursor positioning rules for SQLFetchScroll() (CLI)” in the CLI Guide and
Reference, Volume 2

Keeping a Copy of the Data

In some situations, it may be useful to maintain a copy of data that is fetched by
the application.

Procedure:

To keep a copy of the data, your application can do the following;:
* Save the fetched data in virtual storage.

* Write the data to a temporary file (if the data does not fit in virtual storage).
One effect of this approach is that a user, scrolling backward, always sees exactly
the same data that was fetched, even if the data in the database was changed in
the interim by a transaction.

* Using an isolation level of repeatable read, the data you retrieve from a
transaction can be retrieved again by closing and opening a cursor. Other
applications are prevented from updating the data in your result set. Isolation
levels and locking can affect how users update data.

Related concepts:

* [“Row Order Differences Between the First and Second Result Table” on page 96|

Related tasks:
* [“Retrieving Data a Second Time” on page 95|

Retrieving Data a Second Time

The technique that you use to retrieve data a second time depends on the order in
which you want to see the data again.

Procedure:

You can retrieve data a second time by using any of the following methods:
* Retrieve data from the beginning

To retrieve the data again from the beginning of the result table, close the active
cursor and reopen it. This action positions the cursor at the beginning of the
result table. But, unless the application holds locks on the table, others may have
changed it, so what had been the first row of the result table may no longer be.

¢ Retrieve data from the middle

To retrieve data a second time from somewhere in the middle of the result table,
execute a second SELECT statement and declare a second cursor on the
statement. For example, suppose the first SELECT statement was:

Chapter 4. Writing Static SQL Programs 95

96

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO
Now, suppose that you want to return to the rows that start with DEPTNO =
'M95' and fetch sequentially from that point. Code the following:
SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'

AND DEPTNO >= 'M95'
ORDER BY DEPTNO

This statement positions the cursor where you want it.
* Retrieve data in reverse order

Ascending ordering of rows is the default. If there is only one row for each
value of DEPTNO, then the following statement specifies a unique ascending
ordering of rows:
SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO
To retrieve the same rows in reverse order, specify that the order is descending,
as in the following statement:
SELECT *~ FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO DESC
A cursor on the second statement retrieves rows in exactly the opposite order
from a cursor on the first statement. Order of retrieval is guaranteed only if the
first statement specifies a unique ordering sequence.

For retrieving rows in reverse order, it can be useful to have two indexes on the
DEPTNO column, one in ascending order, and the other in descending order.

Related concepts:
* ['Row Order Differences Between the First and Second Result Table” on page 96|

Row Order Differences Between the First and Second Result

The rows of the second result table may not be displayed in the same order as in
the first. The database manager does not consider the order of rows as significant
unless the SELECT statement uses ORDER BY. Thus, if there are several rows with
the same DEPTNO value, the second SELECT statement may retrieve them in a
different order from the first. The only guarantee is that they will all be in order by
department number, as demanded by the clause ORDER BY DEPTNO.

The difference in ordering could occur even if you were to execute the same SQL
statement, with the same host variables, a second time. For example, the statistics
in the catalog could be updated between executions, or indexes could be created or
dropped. You could then execute the SELECT statement again.

The ordering is more likely to change if the second SELECT has a predicate that
the first did not have; the database manager could choose to use an index on the
new predicate. For example, it could choose an index on LOCATION for the first
statement in our example, and an index on DEPTNO for the second. Because rows
are fetched in order by the index key, the second order need not be the same as the
first.

Programming Client Applications

Again, executing two similar SELECT statements can produce a different ordering
of rows, even if no statistics change and no indexes are created or dropped. In the
example, if there are many different values of LOCATION, the database manager
could choose an index on LOCATION for both statements. Yet changing the value of
DEPTNO in the second statement to the following, could cause the database manager
to choose an index on DEPTNO:

SELECT = FROM DEPARTMENT

WHERE LOCATION = 'CALIFORNIA'

AND DEPTNO >= '798'
ORDER BY DEPTNO

Because of the subtle relationships between the form of an SQL statement and the
values in this statement, never assume that two different SQL statements will
return rows in the same order unless the order is uniquely determined by an
ORDER BY clause.

Related tasks:

+ [“Retrieving Data a Second Time” on page 95|

Positioning a Cursor at the End of a Table

If you need to position the cursor at the end of a table, you can use an SQL
statement to position it.

Procedure:

Use either of the following examples as a method for positioning a cursor:
¢ The database manager does not guarantee an order to data stored in a table;

therefore, the end of a table is not defined. However, order is defined on the
result of an SQL statement:

SELECT *~ FROM DEPARTMENT
ORDER BY DEPTNO DESC

 The following statement positions the cursor at the row with the highest DEPTNO
value:

SELECT *~ FROM DEPARTMENT
WHERE DEPTNO =
(SELECT MAX(DEPTNO) FROM DEPARTMENT)

Note, however, that if several rows have the same value, the cursor is positioned
on the first of them.

Updating Previously Retrieved Data

To scroll backward and update data that was retrieved previously, you can use a
combination of the techniques that are used to scroll through previously retrieved
data and to update retrieved data.

Procedure:

To update previously retrieved data, you can do one of two things:

* If you have a second cursor on the data to be updated and the SELECT
statement uses none of the restricted elements, you can use a cursor-controlled
UPDATE statement. Name the second cursor in the WHERE CURRENT OF
clause.

Chapter 4. Writing Static SQL Programs 97

98

e In other cases, use UPDATE with a WHERE clause that names all the values in

the row or specifies the primary key of the table. You can execute one statement
many times with different values of the variables.

Related tasks:

+ “Updating and Deleting Retrieved Data in Static SQL Programs” on page 92|

* |“Scrolling Through Previously Retrieved Data” on page 94|

Example of an Insert, Update, and Delete in a Static SQL
Program

The following examples show how to insert, update, and delete data using static
SQL.

* C/C++ (tut_mod.sqc/tut_mod.sqC)

The following three examples are from the tut_mod sample. See this sample for
a complete program that shows how to modify table data in C or C++.

The following example shows how to insert table data:

EXEC SQL INSERT INTO staff(id, name, dept, job, salary)
VALUES (380, 'Pearce', 38, 'Clerk', 13217.50),
(390, 'Hachey', 38, 'Mgr', 21270.00),
(400, 'Wagland', 38, 'Clerk', 14575.00);

The following example shows how to update table data:

EXEC SQL UPDATE staff
SET salary = salary + 10000
WHERE id >= 310 AND dept = 84;

The following example shows how to delete from a table:

EXEC SQL DELETE
FROM staff
WHERE id >= 310 AND salary > 20000;

* Java'" (TutMod.sqlj)

The following three examples are from in the TutMod sample. See this sample
for a complete program that shows how to modify table data in SQL]J.
The following example shows how to insert table data:

#sql {INSERT INTO staff(id, name, dept, job, salary)
VALUES (380, 'Pearce', 38, 'Clerk', 13217.50),
(390, 'Hachey', 38, 'Mgr', 21270.00),
(400, 'Wagland', 38, 'Clerk', 14575.00)};
The following example shows how to update table data:

#sql {UPDATE staff
SET salary = salary + 1000
WHERE id >= 310 AND dept = 84};
The following example shows how to delete from a table:

#sql {DELETE FROM staff
WHERE id >= 310 AND salary > 20000} ;

COBOL (updat.sqb)

The following three examples are from the updat sample. See this sample for a
complete program that shows how to modify table data in COBOL.

The following example shows how to insert table data:

EXEC SQL INSERT INTO staff
VALUES (999, 'Testing', 99, :job-update, 0, 0, 0)
END-EXEC.

The following example shows how to update table data:

Programming Client Applications

EXEC SQL UPDATE staff
SET job=:job-update
WHERE job='Mgr'
END-EXEC.

The following example shows how to delete from a table:

EXEC SQL DELETE
FROM staff
WHERE job=:job-update
END-EXEC.

Related concepts:

* |“Error Message Retrieval in an Application” on page 102|

Related samples:

“tbinfo.out -- HOW TO GET INFORMATION AT THE TABLE LEVEL (C++)”
“tbmod.out -- HOW TO MODIFY TABLE DATA (C++)”

“tbmod.sqC -- How to modify table data (C++)”

“tut_mod.out -- HOW TO MODIFY TABLE DATA (C++)”

“tut_mod.sqC -- How to modify table data (C++)”

“tbmod.out -- HOW TO MODIFY TABLE DATA (C)”

“tbmod.sqc -- How to modify table data (C)”

“tut_mod.out -- HOW TO MODIFY TABLE DATA (C)”

“tut_mod.sqc -- How to modify table data (C)”

“TbMod.out -- HOW TO MODIFY TABLE DATA. Connect to 'sample’ database
using JDBC type 2 driver (SQLJ)”

“TbMod.sqlj - How to modify table data (SQLj)”

“TutMod.out -- HOW TO MODIFY TABLE DATA. Connect to 'sample’ database
using JDBC type 2 driver (SQLJ)”

“TutMod.sqlj -- Modify data in a table (SQL;j)”

Diagnostic Information

The sections that follow describe the diagnostic information that is available for a
static SQL program, such as return codes and how an application should retrieve
error messages.

Return Codes

Most database manager APIs pass back a zero return code when successful. In
general, a non-zero return code indicates that the secondary error handling
mechanism, the SQLCA structure, may be corrupt. In this case, the called API is
not executed. A possible cause for a corrupt SQLCA structure is passing an invalid
address for the structure.

Related reference:

“SQLCA” in the Administrative API Reference

Chapter 4. Writing Static SQL Programs 99

100

Error Information in the SQLCODE, SQLSTATE, and SQLWARN

Error information is returned in the SQLCODE and SQLSTATE fields of the
SQLCA structure, which is updated after every executable SQL statement and most
database manager API calls.

A source file containing executable SQL statements can provide at least one
SQLCA structure with the name sqlca. The SQLCA structure is defined in the
SQLCA include file. Source files without embedded SQL statements, but calling
database manager APIs, can also provide one or more SQLCA structures, but their
names are arbitrary.

If your application is compliant with the FIPS 127-2 standard, you can declare the
SQLSTATE and SQLCODE as host variables for C, C++, COBOL, and FORTRAN
applications, instead of using the SQLCA structure.

An SQLCODE value of 0 means successful execution (with possible SQLWARN
warning conditions). A positive value means that the statement was successfully
executed but with a warning, as with truncation of a host variable. A negative
value means that an error condition occurred.

An additional field, SQLSTATE, contains a standardized error code consistent
across other IBM® database products and across SQL92-conformant database
managers. Practically speaking, you should use SQLSTATE values when you are
concerned about portability since SQLSTATE values are common across many
database managers.

The SQLWARN field contains an array of warning indicators, even if SQLCODE is
zero. The first element of the SQLWARN array, SQLWARNO, contains a blank if all
other elements are blank. SQLWARNO contains a W if at least one other element
contains a warning character.

Note: If you want to develop applications that access various IBM RDBMS servers
you should:
* Where possible, have your applications check the SQLSTATE rather than
the SQLCODE.
* If your applications will use DB2 Connect, consider using the mapping

facility provided by DB2 Connect to map SQLCODE conversions between
unlike databases.

Related concepts:

* [“Return Codes” on page 99|

* “SQLSTATE and SQLCODE Variables in C and C++” on page 168
+ [“SQLSTATE and SQLCODE Variables in COBOL” on page 193]

* [“SQLSTATE and SQLCODE Variables in FORTRAN” on page 208|
* |“SQLSTATE and SQLCODE Variables in Perl” on page 491|

Related reference:
* “SQLCA” in the Administrative API Reference

Programming Client Applications

Token Truncation in the SQLCA Structure

Since tokens may be truncated in the SQLCA structure, you should not use the
token information for diagnostic purposes. While you can define table and column
names with lengths of up to 128 bytes, the SQLCA tokens will be truncated to 17
bytes plus a truncation terminator (>). Application logic should not depend on
actual values of the sqlerrmc field.

Related reference:
* “SQLCA” in the Administrative API Reference

Exception, Signal, and Interrupt Handler Considerations

An exception, signal, or interrupt handler is a routine that gets control when an
exception, signal, or interrupt occurs. The type of handler applicable is determined
by your operating environment, as shown in the following:

Windows® operating systems
Pressing Ctr1-C or Ctr1-Break generates an interrupt.

UNIX®-based systems
Usually, pressing Ctr1-C generates the SIGINT interrupt signal. Note that
keyboards can easily be redefined so SIGINT may be generated by a
different key sequence on your machine.

Do not put SQL statements (other than COMMIT or ROLLBACK) in exception,
signal, and interrupt handlers. With these kinds of error conditions, you normally
want to do a ROLLBACK to avoid the risk of inconsistent data.

Note that you should exercise caution when coding a COMMIT and ROLLBACK
in exception/signal/interrupt handlers. If you call either of these statements by
themselves, the COMMIT or ROLLBACK is not executed until the current SQL
statement is complete, if one is running. This is not the behavior desired from a
Ctr1-C handler.

The solution is to call the INTERRUPT API (sqleintr/sqlgintr) before issuing a
ROLLBACK. This API interrupts the current SQL query (if the application is
executing one) and lets the ROLLBACK begin immediately. If you are going to
perform a COMMIT rather than a ROLLBACK, you do not want to interrupt the
current command.

When using APPC to access a remote database server (DB2 for AIX or host
database system using DB2 Connect), the application may receive a SIGUSR1
signal. This signal is generated by SNA Services/6000 when an unrecoverable error
occurs and the SNA connection is stopped. You may want to install a signal
handler in your application to handle SIGUSR1.

Refer to your platform documentation for specific details on the various handler
considerations.

Related concepts:

+ [“Processing of Interrupt Requests” on page 694

Chapter 4. Writing Static SQL Programs 101

102

Exit List Routine Considerations

Do not use SQL or DB2 API calls in exit list routines. Note that you cannot
disconnect from a database in an exit routine.

Error Message Retrieval in an Application

Depending on the language in which your application is written, you use a
different method to retrieve error information:

e C, C++, and COBOL applications can use the GET ERROR MESSAGE API to
obtain the corresponding information related to the SQLCA passed in.

* JDBC and SQLJ applications throw an SQLException when an error occurs
during SQL processing. Your applications can catch and display an
SQLException with the following code:

try {
Statement stmt = connection.createStatement();
int rowsDeleted = stmt.executeUpdate(
"DELETE FROM employee WHERE empno = '000010'");
System.out.printin(rowsDeleted + " rows were deleted");

}

catch (SQLException sqle) {
System.out.printin(sqle);
}

* REXX applications use the CHECKERR procedure.

Related concepts:

* “SQLSTATE and SQLCODE Variables in C and C++” on page 168
+ [“SQLSTATE and SQLCODE Variables in COBOL” on page 193]

* “SQLSTATE and SQLCODE Variables in FORTRAN” on page 208|
* “SQLSTATE and SQLCODE Variables in Perl” on page 491|

Related reference:
* “sqlaintp - Get Error Message” in the Administrative API Reference

Programming Client Applications

Chapter 5. Writing Dynamic SQL Programs

Characteristics and Reasons for Using Dynamic
SQL .
Reasons for Usmg Dynam1c SQL
Dynamic SQL Support Statements
Dynamic SQL Versus Static SQL .
Cursors in Dynamic SQL Programs .

Declaring and Using Cursors in Dynam1c SQL

Programs.

Example of a Cursor in a Dynamlc SQL

Program . .
Effects of REOPT on dynarmc SQL .
Effect of DYNAMICRULES bind option on
dynamic SQL . .
The SQLDA in Dynamic SQL Programs

Host Variables and the SQLDA in Dynamrc SQL

Programs . .
Declaring the SQLDA Structure in a Dynamlc
SQL Program

Preparing a Statement in Dynamlc SQL Usmg
the Minimum SQLDA Structure .

Allocating an SQLDA with Sufficient SQLVAR
Entries for a Dynamic SQL Program .
Describing a SELECT Statement in a Dynamlc

SQL Program
Acquiring Storage to Hold a Row

. 103
. 103
. 103
. 104
. 106

. 106

. 107
. 109

. 109

. 111

. 111

. 112

. 113

. 115

. 115
. 116

Saving SQL Requests from End Users . .
Parameter Markers in Dynamic SQL Programs .
Providing Variable Input to Dynamic SQL Using

. 124

Processing the Cursor in a Dynamic SQL

Program .

Allocating an SQLDA Structure for a Dynamlc
SQL Program .

Transferring Data in a Dynamlc SQL Program

Using an SQLDA Structure .

Processing Interactive SQL Statements in

Dynamic SQL Programs . .o

Determination of Statement Type in Dynamlc

SQL Programs . .

Processing Variable-List SELECT Statements in

Dynamic SQL Programs .

Parameter Markers . -
Example of Parameter Markers in a Dynamlc
SQL Program

DB2 Call Level Interface (CLI) Compared to
Dynamic SQL .

DB2 Call Level Interface (CLI) versus embedded
dynamic SQL ..

Advantages of DB2 CLI over embedded SQL
When to use DB2 CLI or embedded SQL .

. 117

. 117

. 121

. 122

. 122

. 123

. 123
. 124

. 125

. 126

. 126

127

. 129

Characteristics and Reasons for Using Dynamic SQL

The sections that follow describe the reasons for using dynamic SQL as compared

to static SQL.

Reasons for Using Dynamic SQL

You may want to use dynamic SQL when:

* You need all or part of the SQL statement to be generated during application

execution.

* The objects referenced by the SQL statement do not exist at precompile time.

* You want the statement to always use the most optimal access path, based on

current database statistics.

* You want to modify the compilation environment of the statement, that is,
experiment with the special registers.

Related concepts:

+ [“Dynamic SQL Support Statements” on page 103|

+ [“Dynamic SQL Versus Static SQL” on page 104|

Dynamic SQL Support Statements

The dynamic SQL support statements accept a character-string host variable and a
statement name as arguments. The host variable contains the SQL statement to be
processed dynamically in text form. The statement text is not processed when an

© Copyright IBM Corp. 1997 - 2004

103

104

application is precompiled. In fact, the statement text does not have to exist at the
time the application is precompiled. Instead, the SQL statement is treated as a host
variable for precompilation purposes and the variable is referenced during
application execution. These SQL statements are referred to as dynamic SQL.

Dynamic SQL support statements are required to transform the host variable
containing SQL text into an executable form and operate on it by referencing the
statement name. These statements are:

EXECUTE IMMEDIATE
Prepares and executes a statement that does not use any host variables. All
EXECUTE IMMEDIATE statements in an application are cached in the
same place at run time, so only the last statement is known. Use this
statement as an alternative to the PREPARE and EXECUTE statements.

PREPARE
Turns the character string form of the SQL statement into an executable
form of the statement, assigns a statement name, and optionally places
information about the statement in an SQLDA structure.

EXECUTE
Executes a previously prepared SQL statement. The statement can be
executed repeatedly within a connection.

DESCRIBE
Places information about a prepared statement into an SQLDA.

An application can execute most supported SQL statements dynamically.

Note: The content of dynamic SQL statements follows the same syntax as static
SQL statements, with the following exceptions:

* Comments are not allowed.
* The statement cannot begin with EXEC SQL.

¢ The statement cannot end with the statement terminator. An exception to
this is the CREATE TRIGGER statement which can contain a semicolon (;).

Related reference:

* |Appendix A, “Supported SQL Statements,” on page 685|

Dynamic SQL Versus Static SQL

The question of whether to use static or dynamic SQL for performance is usually
of great interest to programmers. The answer depends on your situation.

Use the following table when deciding whether to use static or dynamic SQL.
Considerations such as security dictate static SQL, while environmental
considerations (for example, using DB2 CLI or the CLP) dictate dynamic SQL.
When making your decision, consider the following recommendations on whether
to choose static or dynamic SQL in a particular situation. In the following table,
'Either' means that there is no advantage to either static or dynamic SQL.

Note: These are general recommendations only. Your specific application, its
intended usage, and working environment dictate the actual choice. When in
doubt, prototyping your statements as static SQL, then as dynamic SQL,
then comparing the differences is the best approach.

Programming Client Applications

Table 8. Comparing Static and Dynamic SQL

Likely Best
Consideration Choice

Time to run the SQL statement:

* Less than 2 seconds Static

* 2 to 10 seconds * Either

* More than 10 seconds ¢ Dynamic
Data Uniformity

* Uniform data distribution Static
 Slight non-uniformity * Either

* Highly non-uniform distribution * Dynamic
Range (<,>,BETWEEN,LIKE) Predicates

¢ Very Infrequent * Static

* Occasional FEither

¢ Frequent * Dynamic
Repetitious Execution

* Runs many times (10 or more times) * Either

* Runs a few times (less than 10 times) * FEither

* Runs once Static

Nature of Query

* Random * Dynamic
¢ Permanent * Either
Run Time Environment (DML /DDL)

* Transaction Processing (DML Only) * Either

* Mixed (DML and DDL - DDL affects packages) * Dynamic
¢ Mixed (DML and DDL - DDL does not affect packages) FEither
Frequency of RUNSTATS

* Very infrequently * Static

* Regularly * Either

* Frequently * Dynamic

In general, an application using dynamic SQL has a higher start-up (or initial) cost
per SQL statement due to the need to compile the SQL statements before using
them. Once compiled, the execution time for dynamic SQL compared to static SQL
should be equivalent and, in some cases, faster due to better access plans being
chosen by the optimizer. Each time a dynamic statement is executed, the initial
compilation cost becomes less of a factor. If multiple users are running the same
dynamic application with the same statements, only the first application to issue
the statement realizes the cost of statement compilation.

In a mixed DML and DDL environment, the compilation cost for a dynamic SQL
statement may vary as the statement may be implicitly recompiled by the system
while the application is running. In a mixed environment, the choice between static
and dynamic SQL must also factor in the frequency in which packages are
invalidated. If the DDL does invalidate packages, dynamic SQL may be more
efficient as only those queries executed are recompiled when they are next used.
Others are not recompiled. For static SQL, the entire package is rebound once it
has been invalidated.

Now suppose your particular application contains a mixture of the above

characteristics, and some of these characteristics suggest that you use static while
others suggest dynamic. In this case, there is no obvious decision, and you should

Chapter 5. Writing Dynamic SQL Programs 105

probably use the method you have the most experience with, and with which you
feel most comfortable. Note that the considerations in the above table are listed
roughly in order of importance.

Note: Static and dynamic SQL each come in two types that make a difference to
the DB2 optimizer. These types are:

1. Static SQL containing no host variables
This is an unlikely situation which you may see only for:
e Initialization code
* Novice training examples

This is actually the best combination from a performance perspective in
that there is no run-time performance overhead, and the DB2 optimizer’s
capabilities can be fully realized.

2. Static SQL containing host variables

This is the traditional legacy style of DB2® applications. It avoids the run
time overhead of a PREPARE and catalog locks acquired during
statement compilation. Unfortunately, the full power of the optimizer
cannot be utilized because the optimizer does not know the entire SQL
statement. A particular problem exists with highly non-uniform data
distributions.

3. Dynamic SQL containing no parameter markers

This is the typical style for random query interfaces (such as the CLP),
and is the optimizer’s preferred flavor of SQL. For complex queries, the
overhead of the PREPARE statement is usually offset by the improved

execution time.

4. Dynamic SQL containing parameter markers

This is the most common type of SQL for CLI applications. The key
benefit is that the presence of parameter markers allows the cost of the
PREPARE to be amortized over the repeated executions of the statement,
typically a select or insert. This amortization is true for all repetitive
dynamic SQL applications. Unfortunately, just like static SQL with host
variables, parts of the DB2 optimizer will not work because complete
information is unavailable. The recommendation is to use static SQL with
host variables or dynamic SQL without parameter markers as the most
efficient options.

Related concepts:

+ [“Example of Parameter Markers in a Dynamic SQL Program” on page 125

Related tasks:
+ [“Providing Variable Input to Dynamic SQL Using Parameter Markers” on page]

2]

Cursors in Dynamic SQL Programs

The sections that follow describe how to declare and use cursors in dynamic SQL,
and briefly describe the sample programs that use cursors.

Declaring and Using Cursors in Dynamic SQL Programs

Processing a cursor dynamically is nearly identical to processing it using static
SQL. When a cursor is declared, it is associated with a query.

106 Programming Client Applications

In static SQL, the query is a SELECT statement in text form, while in dynamic
SQL, the query is associated with a statement name assigned in a PREPARE
statement. Any referenced host variables are represented by parameter markers.

The main difference between a static and a dynamic cursor is that a static cursor is
prepared at precompile time, and a dynamic cursor is prepared at run time.
Additionally, host variables referenced in the query are represented by parameter
markers, which are replaced by run-time host variables when the cursor is opened.

Procedure:

Use the examples shown in the following table when coding cursors for a dynamic
SQL program:

Table 9. Declare Statement Associated with a Dynamic SELECT

Language

Example Source Code

C/C++

strcpy(prep_string, "SELECT tabname FROM syscat.tables"
"WHERE tabschema = ?");

EXEC SQL PREPARE s1 FROM :prep_string;

EXEC SQL DECLARE cl CURSOR FOR sl;

EXEC SQL OPEN cl USING :host_var;

Java (JDBC)

PreparedStatement prep_string = ("SELECT tabname FROM syscat.tables
WHERE tabschema = ?");

prep_string.setCursor("cl");

prep_string.setString(l, host var);

ResultSet rs = prep_string.executeQuery();

COBOL MOVE "SELECT TABNAME FROM SYSCAT.TABLES WHERE TABSCHEMA = ?"
TO PREP-STRING.
EXEC SQL PREPARE S1 FROM :PREP-STRING END-EXEC.
EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.
EXEC SQL OPEN C1 USING :host-var END-EXEC.
FORTRAN

prep_string = 'SELECT tabname FROM syscat.tables WHERE tabschema = ?'
EXEC SQL PREPARE sl FROM :prep_string

EXEC SQL DECLARE c1 CURSOR FOR sl

EXEC SQL OPEN cl USING :host_var

Related concepts:

+ [“Example of a Cursor in a Dynamic SQL Program” on page 107|
+ [“Cursors in REXX” on page 502|

Related tasks:
* [“Selecting Multiple Rows Using a Cursor” on page 87|

Example of a Cursor in a Dynamic SQL Program

A dynamic SQL statement can be prepared for execution with the PREPARE
statement and executed with the EXECUTE statement or the DECLARE CURSOR
statement.

PREPARE with EXECUTE
The following example shows how a dynamic SQL statement can be prepared for

execution with the PREPARE statement and executed with the EXECUTE
statement:

e C/C++ (dbuse.sqc/dbuse.sqC):

Chapter 5. Writing Dynamic SQL Programs 107

108

The following example is from the sample dbuse:

EXEC SQL BEGIN DECLARE SECTION;
char hostVarStmt[50];
EXEC SQL END DECLARE SECTION;

strcpy(hostVarStmt, "DELETE FROM org WHERE deptnumb = 15");
EXEC SQL PREPARE Stmt FROM :hostVarStmt;
EXEC SQL EXECUTE Stmt;

PREPARE with DECLARE CURSOR

The following examples show how a dynamic SQL statement can be prepared for
execution with the PREPARE statement, and executed with the DECLARE
CURSOR statement:

e C

EXEC SQL BEGIN DECLARE SECTION;
char st[80];
char parm_var[19};

EXEC SQL END DECLARE SECTION;

strcpy(st, "SELECT tabname FROM syscat.tables");
strcat(st, " WHERE tabname <> ? ORDER BY 1");
EXEC SQL PREPARE sl FROM :st;

EXEC SQL DECLARE cl CURSOR FOR s1;

strcpy(parm_var, "STAFF");

EXEC SQL OPEN cl USING :parm_var;

s Java

PreparedStatement pstmtl = con.prepareStatement (
"SELECT tabname FROM syscat.tables " +
"WHERE tabname <> ? ORDER BY 1");

// set cursor name for the positioned update statement
pstmtl.setCursorName("cl");

pstmtl.setString(1, "STAFF");

ResultSet rs = pstmtl.executeQuery();

COBOL (dynamic.sqb)
The following example is from the dynamic.sqb sample:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 st pic x(80).
01 parm-var pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

move "SELECT TABNAME FROM SYSCAT.TABLES ORDER BY 1 WHERE TABNAME <> ?" to st.
EXEC SQL PREPARE s1 FROM :st END-EXEC.

EXEC SQL DECLARE cl CURSOR FOR s1 END-EXEC.

move "STAFF" to parm-var.
EXEC SQL OPEN cl1 USING :parm-var END-EXEC.

EXECUTE IMMEDIATE

You can can also prepare and execute a dynamic SQL satement with the EXECUTE
IMMEDIATE statement (except for SELECT statements that return more than one
row).

e C/C++ (dbuse.sqc/dbuse.sqC)

The following example is from the function DynamicStmtEXECUTE_IMMEDIATE() in
the sample dbuse:

Programming Client Applications

EXEC SQL BEGIN DECLARE SECTION;
char stmt1[50];
EXEC SQL END DECLARE SECTION;

strcpy(stmtl, "CREATE TABLE tablel(coll INTEGER)");
EXEC SQL EXECUTE IMMEDIATE :stmtl;

Related concepts:

* [“Error Message Retrieval in an Application” on page 102]

Related samples:

» “dbuse.out -- HOW TO USE A DATABASE (C)”

* “dbuse.sqc -- How to use a database (C)”

* “dbuse.out -- HOW TO USE A DATABASE (C++)”
* “dbuse.sqC -- How to use a database (C++)”

| Effects of REOPT on dynamic SQL

When you specify the option REOPT ALWAYS, DB2® postpones preparing any
statement containing host variables, parameter markers, or special registers until it
encounters an OPEN or EXECUTE statement; that is, when the values for these
variables become known. At this time, the access plan is generated using these
values. Subsequent OPEN or EXECUTE requests for the same statement will
recompile the statement, reoptimize the query plan using the current set of values
for the variables, and execute the newly generated query plan.

The option REOPT ONCE has a similar effect, with the exception that the plan is
only optimized once using the values of the host variables, parameter markers and
special registers. This plan is cached and will be used by subsequent requests.

Effect of DYNAMICRULES bind option on dynamic SQL

The PRECOMPILE and BIND option DYNAMICRULES determines what values
apply at run-time for the following dynamic SQL attributes:

* The authorization ID that is used during authorization checking.
¢ The qualifier that is used for qualification of unqualified objects.

* Whether the package can be used to dynamically prepare the following
statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT ON,
RENAME, SET INTEGRITY and SET EVENT MONITOR STATE statements.

In addition to the DYNAMICRULES value, the run-time environment of a package
controls how dynamic SQL statements behave at run-time. The two possible
run-time environments are:

* The package runs as part of a stand-alone program

* The package runs within a routine context

The combination of the DYNAMICRULES value and the run-time environment
determine the values for the dynamic SQL attributes. That set of attribute values is
called the dynamic SQL statement behavior. The four behaviors are:

Run behavior DB2® uses the authorization ID of the user (the ID that initially
connected to DB2) executing the package as the value to be used
for authorization checking of dynamic SQL statements and for the

Chapter 5. Writing Dynamic SQL Programs 109

Bind behavior

initial value used for implicit qualification of unqualified object
references within dynamic SQL statements.

At run-time, DB2 uses all the rules that apply to static SQL for
authorization and qualification. That is, take the authorization ID
of the package owner as the value to be used for authorization
checking of dynamic SQL statements and the package default
qualifier for implicit qualification of unqualified object references
within dynamic SQL statements.

Define behavior

Define behavior applies only if the dynamic SQL statement is in a
package that is run within a routine context, and the package was
bound with DYNAMICRULES DEFINEBIND or DYNAMICRULES
DEFINERUN. DB2 uses the authorization ID of the routine definer
(not the routine’s package binder) as the value to be used for
authorization checking of dynamic SQL statements and for implicit
qualification of unqualified object references within dynamic SQL
statements within that routine.

Invoke behavior

Invoke behavior applies only if the dynamic SQL statement is in a
package that is run within a routine context, and the package was
bound with DYNAMICRULES INVOKEBIND or DYNAMICRULES
INVOKERUN. DB2 uses the current statement authorization ID in
effect when the routine is invoked as the value to be used for
authorization checking of dynamic SQL and for implicit
qualification of unqualified object references within dynamic SQL
statements within that routine. This is summarized by the
following table:

Invoking Environment

ID Used

Any static SQL

Implicit or explicit value of the OWNER of
the package the SQL invoking the routine
came from.

Used in definition of view or trigger

Definer of the view or trigger.

Dynamic SQL from a run behavior package

ID used to make the initial connection to
DB2.

Dynamic SQL from a define behavior

Definer of the routine that uses the package

package

that the SQL invoking the routine came
from.

package

Dynamic SQL from an invoke behavior

Current® authorization ID invoking the
routine.

The following table shows the combination of the DYNAMICRULES value and the
run-time environment that yields each dynamic SQL behavior.

Table 10. How DYNAMICRULES and the Run-Time Environment Determine Dynamic SQL Statement Behavior

DYNAMICRULES Value

Behavior of Dynamic SQL
Statements in a Standalone Program
Environment

Behavior of Dynamic SQL Statements in
a Routine Environment

BIND Bind behavior Bind behavior
RUN Run behavior Run behavior
DEFINEBIND Bind behavior Define behavior

110 Programming Client Applications

Table 10. How DYNAMICRULES and the Run-Time Environment Determine Dynamic SQL Statement
Behavior (continued)

DYNAMICRULES Value

Behavior of Dynamic SQL
Statements in a Standalone Program

Behavior of Dynamic SQL Statements in
a Routine Environment

Environment
DEFINERUN Run behavior Define behavior
INVOKEBIND Bind behavior Invoke behavior
INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Table 11. Definitions of Dynamic SQL Statement Behaviors

Dynamic SQL
Attribute

Setting for Dynamic
SQL Attributes:
Bind Behavior

Setting for Dynamic
SQL Attributes:
Run Behavior

Setting for Dynamic
SQL Attributes:
Define Behavior

Setting for Dynamic SQL
Attributes: Invoke
Behavior

Authorization ID

The implicit or
explicit value of the

ID of User Executing
Package

Routine definer (not
the routine’s package

Current statement
authorization ID when

GRANT,
REVOKE, ALTER,
CREATE, DROP,
COMMENT ON,
RENAME, SET
INTEGRITY and
SET EVENT
MONITOR STATE

OWNER BIND owner) routine is invoked.
option

Default qualifier | The implicit or CURRENT Routine definer (not Current statement

for unqualified explicit value of the | SCHEMA Special the routine’s package |authorization ID when

objects QUALIFIER BIND Register owner) routine is invoked.
option

Can execute No Yes No No

Related concepts:

* |“Authorization Considerations for Dynamic SQL” on page 47|

* “Authorizations and binding of routines that contain SQL” in the Application
Development Guide: Programming Server Applications

The SQLDA in Dynamic SQL Programs

The sections that follow describe the different considerations that apply when you
declare the SQLDA for a dynamic SQL program.

Host Variables and the SQLDA in Dynamic SQL Programs

With static SQL, host variables used in embedded SQL statements are known at
application compile time. With dynamic SQL, the embedded SQL statements and
consequently the host variables are not known until application run time. Thus, for
dynamic SQL applications, you need to deal with the list of host variables that are
used in your application. You can use the DESCRIBE statement to obtain host

Chapter 5. Writing Dynamic SQL Programs

111

variable information for any SELECT statement that has been prepared (using
PREPARE), and store that information into the SQL descriptor area (SQLDA).

Note: Java " applications do not use the SQLDA structure, and therefore do not
use the PREPARE or DESCRIBE statements. In JDBC applications, you can
use a PreparedStatement object and the executeQuery() method to generate
a ResultSet object, which is the equivalent of a host-language cursor. In
SQLJ applications, you can also declare an SQL]J iterator object with a
CursorByPos or CursorByName cursor to return data from FETCH statements.

When the DESCRIBE statement gets executed in your application, the database
manager defines your host variables in an SQLDA. Once the host variables are
defined in the SQLDA, you can use the FETCH statement to assign values to the
host variables, using a cursor.

Related concepts:

+ [“Example of a Cursor in a Dynamic SQL Program” on page 107|

Related reference:

* “DESCRIBE statement” in the SQL Reference, Volume 2
¢ “FETCH statement” in the SQL Reference, Volume 2

* “PREPARE statement” in the SQL Reference, Volume 2
e “SQLDA” in the Administrative API Reference

Declaring the SQLDA Structure in a Dynamic SQL Program

An SQLDA contains a variable number of occurrences of SQLVAR entries, each of
which contains a set of fields that describe one column in a row of data, as shown
in the following figure. There are two types of SQLVAR entries: base SQLVAR
entries, and secondary SQLVAR entries.

sqldaid CHAR sgldabc INTEGER

HEADER

sqin SMALLINT sqld SMALLINT
sqltype SMALLINT sqllen SMALLINT
SQLVAR

RIS RY | scidata POINTER sqlind POINTER

sglname VARCHAR (30)

Other SQLVAR Entries

Figure 3. The SQL Descriptor Area (SQLDA)

Procedure:

112 Programming Client Applications

Because the number of SQLVAR entries required depends on the number of
columns in the result table, an application must be able to allocate an appropriate
number of SQLVAR elements when needed. Use one of the following methods:

* Provide the largest SQLDA (that is, the one with the greatest number of
SQLVAR entries) that is needed. The maximum number of columns that can be
returned in a result table is 255. If any of the columns being returned is either a
LOB type or a distinct type, the value in SQLN is doubled, and the number of
SQLVAR entries needed to hold the information is doubled to 510. However, as
most SELECT statements do not even retrieve 255 columns, most of the allocated
space is unused.

* Provide a smaller SQLDA with fewer SQLVAR entries. In this case, if there are
more columns in the result than SQLVAR entries allowed for in the SQLDA, no
descriptions are returned. Instead, the database manager returns the number of
select list items detected in the SELECT statement. The application allocates an
SQLDA with the required number of SQLVAR entries, then uses the DESCRIBE
statement to acquire the column descriptions.

For both methods, the question arises as to how many initial SQLVAR entries you
should allocate. Each SQLVAR element uses up 44 bytes of storage (not counting
storage allocated for the SQLDATA and SQLIND fields). If memory is plentiful, the
first method of providing an SQLDA of maximum size is easier to implement.

The second method of allocating a smaller SQLDA is only applicable to
programming languages such as C and C++ that support the dynamic allocation of
memory. For languages such as COBOL and FORTRAN that do not support the
dynamic allocation of memory, you have to use the first method.

Related tasks:
* [“Preparing a Statement in Dynamic SQL Using the Minimum SQLDA Structure”|

on page 113|
+ [“Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQLJ
Program” on page 115

» [“Allocating an SQLDA Structure for a Dynamic SQL Program” on page 117]

Related reference:
* “SQLDA” in the Administrative API Reference

Preparing a Statement in Dynamic SQL Using the Minimum
SQLDA Structure

Use the information provided here as an example of how to allocate the minimum
SQLDA structure for a statement.

Restrictions:

You can only allocate a smaller SQLDA structure with programming languages,
such as C and C++, that support the dynamic allocation of memory.

Procedure:

Suppose an application declares an SQLDA structure named minsqlda that contains
no SQLVAR entries. The SQLN field of the SQLDA describes the number of
SQLVAR entries that are allocated. In this case, SQLN must be set to 0. Next, to
prepare a statement from the character string dstring and to enter its description

Chapter 5. Writing Dynamic SQL Programs 113

into minsqlda, issue the following SQL statement (assuming C syntax, and
assuming that minsqlda is declared as a pointer to an SQLDA structure):

EXEC SQL
PREPARE STMT INTO :*minsqlda FROM :dstring;

Suppose that the statement contained in dstring is a SELECT statement that
returns 20 columns in each row. After the PREPARE statement (or a DESCRIBE
statement), the SQLD field of the SQLDA contains the number of columns of the
result table for the prepared SELECT statement.

The SQLVAR entries in the SQLDA are set in the following cases:
* SQLN >= SQLD and no column is either a LOB or a distinct type.

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
* SQLN >= 2*SQLD and at least one column is a LOB or a distinct type.

2* SQLD SQLVAR entries are set and SQLDOUBLED is set to 2.

* SQLD <= SQLN < 2*SQLD and at least one column is a distinct type, but there
are no LOB columns.

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +237 (SQLSTATE 01594) is
issued.

The SQLVAR entries in the SQLDA are not set (requiring allocation of additional
space and another DESCRIBE) in the following cases:

* SQLN < SQLD and no column is either a LOB or distinct type.

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN
bind option is YES, a warning SQLCODE +236 (SQLSTATE 01005) is issued.

Allocate SQLD SQLVAR entries for a successful DESCRIBE.

* SQLN < SQLD and at least one column is a distinct type, but there are no LOB
columns.

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN
bind option is YES, a warning SQLCODE +239 (SQLSTATE 01005) is issued.

Allocate 2*SQLD SQLVAR entries for a successful DESCRIBE, including the
names of the distinct types.

* SQLN < 2*SQLD and at least one column is a LOB.

No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning
SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of the
SQLWARN bind option).

Allocate 2*SQLD SQLVAR entries for a successful DESCRIBE.

The SQLWARN option of the BIND command is used to control whether the
DESCRIBE (or PREPARE...INTO) will return the following warnings:

* SQLCODE +236 (SQLSTATE 01005)
* SQLCODE +237 (SQLSTATE 01594)
* SQLCODE +239 (SQLSTATE 01005).

It is recommended that your application code always consider that these
SQLCODE values could be returned. The warning SQLCODE +238 (SQLSTATE
01005) is always returned when there are LOB columns in the select list and there
are insufficient SOLVAR entries in the SQLDA. This is the only way the application
can know that the number of SQLVAR entries must be doubled because of a LOB
column in the result set.

114 Programming Client Applications

Related tasks:
* [“Declaring the SQLDA Structure in a Dynamic SQL Program” on page 112]

+ [“Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQLJ
Program” on page 115|

+ |“Allocating an SQLDA Structure for a Dynamic SQL Program” on page 117]

Allocating an SQLDA with Sufficient SQLVAR Entries for a
Dynamic SQL Program

After you determine the number of columns in the result table, allocate storage for
a second, full-size SQLDA.

Procedure:

Assume that the result table contains 20 columns (none of which are LOB
columns). In this situation, you must allocate a second SQLDA structure, fulsqlda
with at least 20 SQLVAR elements (or 40 elements if the result table contains any
LOBs or distinct types). For the rest of this example, assume that no LOBs or
distinct types are in the result table.

When you calculate the storage requirements for SQLDA structures, include the
following:

* A fixed-length header, 16 bytes in length, containing fields such as SQLN and
SQLD

e A variable-length array of SQLVAR entries, of which each element is 44 bytes in
length on 32-bit platforms, and 56 bytes in length on 64-bit platforms.

The number of SQLVAR entries needed for fulsqlda is specified in the SQLD field
of minsqlda. Assume this value is 20. Therefore, the storage allocation required for
fulsqlda is:

16 + (20 * sizeof(struct sqlvar))

Note: On 64-bit platforms, sizeof (struct sqlvar) and sizeof(struct sqlvar2)
returns 56. On 32-bit platforms, sizeof(struct sqlvar) and sizeof(struct
sqlvar2) returns 44,

This value represents the size of the header plus 20 times the size of each SQLVAR
entry, giving a total of 896 bytes.

You can use the SQLDASIZE macro to avoid doing your own calculations and to
avoid any version-specific dependencies.

Related tasks:
* ["“Declaring the SQLDA Structure in a Dynamic SQL Program” on page 112

+ |“Preparing a Statement in Dynamic SQL Using the Minimum SQLDA Structure”]

on page 113|

» |“Allocating an SQLDA Structure for a Dynamic SQL Program” on page 117]

Describing a SELECT Statement in a Dynamic SQL Program

After you allocate sufficient space for the second SQLDA (in this example, called
fulsglda), you must code the application to describe the SELECT statement.

Chapter 5. Writing Dynamic SQL Programs 115

Procedure:

Code your application to perform the following steps:

1. Store the value 20 in the SQLN field of fulsqlda (the assumption in this
example is that the result table contains 20 columns, and none of these columns
are LOB columns).

2. Obtain information about the SELECT statement using the second SQLDA
structure, fulsglda. Two methods are available:

* Use another PREPARE statement, specifying fulsqlda instead of minsqlda.
* Use the DESCRIBE statement specifying fulsqlda.

Using the DESCRIBE statement is preferred because the costs of preparing the
statement a second time are avoided. The DESCRIBE statement simply reuses
information previously obtained during the prepare operation to fill in the new
SQLDA structure. The following statement can be issued:

EXEC SQL DESCRIBE STMT INTO :fulsqlda

After this statement is executed, each SQLVAR element contains a description of
one column of the result table.

Related tasks:
* |“Acquiring Storage to Hold a Row” on page 116|

Acquiring Storage to Hold a Row

Before the application can fetch a row of the result table using an SQLDA
structure, the application must first allocate storage for the row.

Procedure:

Code your application to do the following:

1. Analyze each SQLVAR description to determine how much space is required
for the value of that column.

Note that for LOB values, when the SELECT is described, the data type given
in the SQLVAR is SQL_TYP_xLOB. This data type corresponds to a plain LOB
host variable, that is, the whole LOB will be stored in memory at one time. This
will work for small LOBs (up to a few MB), but you cannot use this data type
for large LOBs (say 1 GB). It will be necessary for your application to change
its column definition in the SQLVAR to be either SQL_TYP_xLOB_LOCATOR
or SQL_TYPE_xLOB_FILE. (Note that changing the SQLTYPE field of the
SQLVAR also necessitates changing the SQLLEN field.) After changing the
column definition in the SQLVAR, your application can then allocate the correct
amount of storage for the new type.

2. Allocate storage for the value of that column.

3. Store the address of the allocated storage in the SQLDATA field of the SQLDA
structure.

These steps are accomplished by analyzing the description of each column and
replacing the content of each SQLDATA field with the address of a storage area
large enough to hold any values from that column. The length attribute is
determined from the SQLLEN field of each SQLVAR entry for data items that are

116 Programming Client Applications

not of a LOB type. For items with a type of BLOB, CLOB, or DBCLOB, the length
attribute is determined from the SQLLONGLEN field of the secondary SQLVAR
entry.

In addition, if the specified column allows nulls, the application must replace the
content of the SQLIND field with the address of an indicator variable for the
column.

Related concepts:

* “Large object usage” in the Application Development Guide: Programming Server
Applications

Related tasks:
* [“Processing the Cursor in a Dynamic SQL Program” on page 117

Processing the Cursor in a Dynamic SQL Program

After the SQLDA structure is properly allocated, the cursor associated with the
SELECT statement can be opened and rows can be fetched.

Procedure:

To process the cursor that is associated with a SELECT statement, first open the
cursor, then fetch rows by specifying the USING DESCRIPTOR clause of the
FETCH statement. For example, a C application could have the following;:

EXEC SQL OPEN pcurs

EMB_SQL_CHECK("OPEN") ;

EXEC SQL FETCH pcurs USING DESCRIPTOR :*sqldaPointer

EMB_SQL_CHECK("FETCH") ;

For a successful FETCH, you could write the application to obtain the data from
the SQLDA and display the column headings. For example:

display_col_titles(sqldaPointer) ;

After the data is displayed, you should close the cursor and release any
dynamically allocated memory. For example:

EXEC SQL CLOSE pcurs ;
EMB_SQL_CHECK("CLOSE CURSOR") ;

Allocating an SQLDA Structure for a Dynamic SQL Program

Allocate an SQLDA structure for your application so that you can use it to pass
data to and from your application.

Procedure:

To create an SQLDA structure with C, either embed the INCLUDE SQLDA
statement in the host language or include the SQLDA include file to get the
structure definition. Then, because the size of an SQLDA is not fixed, the
application must declare a pointer to an SQLDA structure and allocate storage for
it. The actual size of the SQLDA structure depends on the number of distinct data
items being passed using the SQLDA.

Chapter 5. Writing Dynamic SQL Programs 117

Language

In the C/C++ programming language, a macro is provided to facilitate SQLDA
allocation. With the exception of the HP-UX platform, this macro has the following
format:

#define SQLDASIZE(n) (offsetof(struct sqlda, sqlvar) \
+ (n) x sizeof(struct sqlvar))

On the HP-UX platform, the macro has the following format:

#define SQLDASIZE(n) (sizeof(struct sqlda) \
+ (n-1) x sizeof(struct sqlvar))

The effect of this macro is to calculate the required storage for an SQLDA with n
SQLVAR elements.

To create an SQLDA structure with COBOL, you can either embed an INCLUDE
SQLDA statement or use the COPY statement. Use the COPY statement when you
want to control the maximum number of SQLVAR entries and hence the amount of
storage that the SQLDA uses. For example, to change the default number of
SQLVAR entries from 1489 to 1, use the following COPY statement:

COPY "sqglda.cbl"

replacing --1489--
by --1--.

The FORTRAN language does not directly support self-defining data structures or
dynamic allocation. No SQLDA include file is provided for FORTRAN, because it
is not possible to support the SQLDA as a data structure in FORTRAN. The
precompiler will ignore the INCLUDE SQLDA statement in a FORTRAN program.

However, you can create something similar to a static SQLDA structure in a
FORTRAN program, and use this structure wherever an SQLDA can be used. The
file sqldact.f contains constants that help in declaring an SQLDA structure in
FORTRAN.

Execute calls to SQLGADDR to assign pointer values to the SQLDA elements that
require them.

The following table shows the declaration and use of an SQLDA structure with one
SQLVAR element.

Example Source Code

C/C++

#include <sqlda.h>
struct sqlda *outda = (struct sqlda *)malloc(SQLDASIZE(1));

/* DECLARE LOCAL VARIABLES FOR HOLDING ACTUAL DATA =*/
double sal;

double sal = 0;

short salind;

short salind = 0;

/* INITIALIZE ONE ELEMENT OF SQLDA =/

memcpy (outda->sqldaid,"SQLDA ",sizeof(outda->sqldaid));
outda->sqln = outda->sqld = 1;

outda->sqlvar[0].sqltype = SQL_TYP_NFLOAT;
outda->sqlvar[0].sqllen sizeof(double);.
outda->sqlvar[0] .sqldata = (unsigned char *)&sal;
outda->sqlvar[0].sqlind (short *)&salind;

118 Programming Client Applications

Language Example Source Code

COBOL WORKING-STORAGE SECTION.
77 SALARY PIC S99999V99 COMP-3.
77 SAL-IND PIC S9(4) COMP-5.,

EXEC SQL INCLUDE SQLDA END-EXEC

*

Or code a useful way to save unused SQLVAR entries.
COPY "sglda.cb1" REPLACING --1489-- BY --1--.

*

01 decimal-sqllen pic s9(4) comp-5.

01 decimal-parts redefines decimal-sqllen.
05 precision pic x.
05 scale pic x.

* Initialize one element of output SQLDA
MOVE 1 TO SQLN
MOVE 1 TO SQLD
MOVE SQL-TYP-NDECIMAL TO SQLTYPE(1)

*

Length = 7 digits precision and 2 digits scale

MOVE x"07" TO PRECISION.

MOVE x"02" TO SCALE.

MOVE DECIMAL-SQLLEN TO 0-SQLLEN(1).
SET SQLDATA(1) TO ADDRESS OF SALARY
SET SQLIND(1) TO ADDRESS OF SAL-IND

Chapter 5. Writing Dynamic SQL Programs 119

Language Example Source Code

FORTRAN include 'sqldact.f'

integer*2 sqlvarl
parameter (sqlvarl = sqlda_header sz + O*sqlvar_struct sz)

C Declare an Output SQLDA -- 1 Variable
character out_sqlda(sqlda_header_sz + 1lxsqlvar_struct_sz)

character*8 out_sqldaid ! Header
integer=4 out_sqldabc

integer*2 out_sqln

integer*2 out_sqld

integer*2 out_sqltypel ! First Variable
integer=2 out_sqllenl

integer=4 out_sqldatal

integer=4 out_sqlindl

integer*2 out_sqlnamell

character*30 out_sqlnamecl

equivalence(out_sqlda(sqlda_sqldaid_ofs), out_sqldaid)
equivalence(out_sqlda(sqlda_sqldabc_ofs), out_sqgldabc)
equivalence(out_sqlda(sqlda_sqln_ofs), out_sqln)
equivalence(out_sqlda(sqlda_sqld_ofs), out_sqld)
equivalence(out_sqlda(sqlvarl+sqlvar_type ofs), out_sqltypel)
equivalence(out_sqlda(sqlvarl+sqlvar_len_ofs), out_sqllenl)
equivalence(out_sqlda(sqlvarl+sqlvar_data ofs), out_sqldatal)
equivalence(out_sqlda(sqlvarl+sqlvar_ind_ofs), out_sqlindl)
equivalence(out_sqlda(sqlvarl+sqlvar_name_length_ofs),

+ out_sglnamell)

equivalence(out_sqlda(sqlvarl+sqlvar_name_data_ofs),

+ out_sqlnamecl)
C Declare Local Variables for Holding Returned Data.

real*8 salary

integer=2 sal_ind

C Initialize the Output SQLDA (Header)

out_sqldaid = 'OUT_SQLDA'

out_sqldabc = sqlda_header_sz + l*sqlvar_struct_sz
out_sqln =1

out_sqld =1

C Initialize VARL
out_sqltypel = SQL_TYP_NFLOAT
out_sqllenl =38
rc = sqlgaddr(%ref(salary), %ref(out_sqldatal))
rc = sqlgaddr(%ref(sal_ind), %ref(out_sqlindl))

In languages not supporting dynamic memory allocation, an SQLDA with the
desired number of SQLVAR elements must be explicitly declared in the host
language. Be sure to declare enough SQLVAR elements as determined by the needs
of the application.

Related tasks:
* |[“Preparing a Statement in Dynamic SQL Using the Minimum SQLDA Structure”|

on page 113|
+ [“Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQLJ
Program” on page 115|

* [“Transferring Data in a Dynamic SQL Program Using an SQLDA Structure” on|

page 121|

120 Programming Client Applications

Transferring Data in a Dynamic SQL Program Using an SQLDA
Structure

Greater flexibility is available when transferring data using an SQLDA than is
available using lists of host variables. For example, You can use an SQLDA to

transfer data that has no native host language equivalent, such as DECIMAL data

in the C language.

Procedure:

Use the following table as a cross-reference listing that shows how the numeric

values and symbolic names are related.

Table 12. DB2 SQLDA SQL Types. Numeric Values and Corresponding Symbolic Names

SQL Column Type

SQLTYPE numeric value SQLTYPE symbolic namel

DATE 384/385 SQL_TYP_DATE / SQL_TYP_NDATE

TIME 388/389 SQL_TYP_TIME / SQL_TYP_NTIME

TIMESTAMP 392/393 SQL_TYP_STAMP / SQL_TYP_NSTAMP

n/d8 400/401 SQL_TYP_CGSTR / SQL_TYP_NCGSTR

BLOB 404/405 SQL_TYP_BLOB / SQL_TYP_NBLOB

CLOB 408/409 SQL_TYP_CLOB / SQL_TYP_NCLOB

DBCLOB 412/413 SQL_TYP_DBCLOB / SQL_TYP_NDBCLOB

VARCHAR 448/449 SQL_TYP_VARCHAR / SQL_TYP_NVARCHAR

CHAR 452/453 SQL_TYP_CHAR / SQL_TYP_NCHAR

LONG VARCHAR 456/457 SQL_TYP_LONG / SQL_TYP_NLONG

n/& 460/461 SQL_TYP_CSTR / SQL_TYP_NCSTR

VARGRAPHIC 464/465 SQL_TYP_VARGRAPH / SQL_TYP_NVARGRAPH

GRAPHIC 468/469 SQL_TYP_GRAPHIC / SQL_TYP_NGRAPHIC

LONG VARGRAPHIC 472/473 SQL_TYP_LONGRAPH / SQL_TYP_NLONGRAPH

FLOAT 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT

REALH 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT

DECIMALE 484/485 SQL_TYP_DECIMAL / SQL_TYP_DECIMAL

INTEGER 496/497 SQL_TYP_INTEGER / SQL_TYP_NINTEGER

SMALLINT 500/501 SQL_TYP_SMALL / SQL_TYP_NSMALL

n/a 804/805 SQL_TYP_BLOB_FILE / SQL_TYPE_NBLOB_FILE

n/a 808/809 SQL_TYP_CLOB_FILE / SQL_TYPE_NCLOB FILE

n/a 812/813 SQL_TYP_DBCLOB_FILE / SQL_TYPE_NDBCLOB FILE
n/a 960/961 SQL_TYP_BLOB_LOCATOR / SQL_TYP_NBLOB_LOCATOR
n/a 964/965 SQL_TYP_CLOB_LOCATOR / SQL_TYP_NCLOB_LOCATOR
n/a 968/969 SQL_TYP_DBCLOB_LOCATOR / SQL_TYP_NDBCLOB_LOCATOR

Chapter 5. Writing Dynamic SQL Programs

121

Table 12. DB2 SQLDA SQL Types (continued). Numeric Values and Corresponding Symbolic Names

SQL Column Type

SQLTYPE numeric value SQLTYPE symbolic namd

Note: These defined types can be found in the sql.h include file located in the include sub-directory of the sq11ib
directory. (For example, sq11ib/include/sql.h for the C programming language.)

1. For the COBOL programming language, the SQLTYPE name does not use underscore (_) but uses a hyphen (-)

instead.

A < A

This is a null-terminated graphic string.

This is a null-terminated character string.

The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).
Precision is in the first byte. Scale is in the second byte.

122

Related tasks:
* [“Describing a SELECT Statement in a Dynamic SQL Program” on page 115|

* |“Acquiring Storage to Hold a Row” on page 116|

* [“Processing the Cursor in a Dynamic SQL Program” on page 117]

Processing Interactive SQL Statements in Dynamic SQL
Programs

An application using dynamic SQL can be written to process arbitrary SQL
statements. For example, if an application accepts SQL statements from a user, the
application must be able to execute the statements without any prior knowledge of
the statements.

Procedure:
Use the PREPARE and DESCRIBE statements with an SQLDA structure so that the
application can determine the type of SQL statement being executed, and act

accordingly.

Related concepts:

* |“Determination of Statement Type in Dynamic SQL Programs” on page 122|

Determination of Statement Type in Dynamic SQL Programs

When an SQL statement is prepared, information concerning the type of statement
can be determined by examining the SQLDA structure. This information is placed
in the SQLDA structure either at statement preparation time with the INTO clause,
or by issuing a DESCRIBE statement against a previously prepared statement.

In either case, the database manager places a value in the SQLD field of the
SQLDA structure, indicating the number of columns in the result table generated
by the SQL statement. If the SQLD field contains a zero (0), the statement is not a
SELECT statement. Since the statement is already prepared, it can immediately be
executed using the EXECUTE statement.

If the statement contains parameter markers, the USING clause must be specified.
The USING clause can specify either a list of host variables or an SQLDA structure.

If the SQLD field is greater than zero, the statement is a SELECT statement and
must be processed as described in the following sections.

Programming Client Applications

Related reference:
* “EXECUTE statement” in the SQL Reference, Volume 2

Processing Variable-List SELECT Statements in Dynamic SQL
Programs

A varying-list SELECT statement is one in which the number and types of columns
that are to be returned are not known at precompilation time. In this case, the
application does not know in advance the exact host variables that need to be
declared to hold a row of the result table.

Procedure:

To process a variable-list SELECT statement, code your application to do the
following:

1. Declare an SQLDA.
An SQLDA structure must be used to process varying-list SELECT statements.
2. PREPARE the statement using the INTO clause.

The application then determines whether the SQLDA structure declared has
enough SQLVAR elements. If it does not, the application allocates another
SQLDA structure with the required number of SQLVAR elements, and issues an
additional DESCRIBE statement using the new SQLDA.

3. Allocate the SQLVAR elements.

Allocate storage for the host variables and indicators needed for each SQLVAR.
This step involves placing the allocated addresses for the data and indicator
variables in each SQLVAR element.

4. Process the SELECT statement.

A cursor is associated with the prepared statement, opened, and rows are
fetched using the properly allocated SQLDA structure.

Related tasks:
* ["“Declaring the SQLDA Structure in a Dynamic SQL Program” on page 112

* [“Preparing a Statement in Dynamic SQL Using the Minimum SQLDA Structure”|

on page 113|
+ [“Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQLJ
Program” on page 115|

* [“Describing a SELECT Statement in a Dynamic SQL Program” on page 115|

* |“Acquiring Storage to Hold a Row” on page 116|

* [“Processing the Cursor in a Dynamic SQL Program” on page 117]

Saving SQL Requests from End Users

If the users of your application can issue SQL requests from the application, you
may want to save these requests.

Procedure:
If your application allows users to save arbitrary SQL statements, you can save

them in a table with a column having a data type of VARCHAR, LONG
VARCHAR, CLOB, VARGRAPHIC, LONG VARGRAPHIC or DBCLOB. Note that

Chapter 5. Writing Dynamic SQL Programs 123

the VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB data types are only
available in double-byte character set (DBCS) and Extended UNIX Code (EUC)
environments.

You must save the source SQL statements, not the prepared versions. This means
that you must retrieve and then prepare each statement before executing the
version stored in the table. In essence, your application prepares an SQL statement
from a character string and executes this statement dynamically.

Parameter Markers in Dynamic SQL Programs

124

The sections that follow describe how use parameter markers to provide variable
input to a dynamic SQL program, and briefly describe the sample programs that
use parameter markers.

Providing Variable Input to Dynamic SQL Using Parameter
Markers

A dynamic SQL statement cannot contain host variables, because host variable
information (data type and length) is available only during application
precompilation. At execution time, the host variable information is not available.

In dynamic SQL, parameter markers are used instead of host variables. Parameter
markers are indicated by a question mark (?), and indicate where a host variable is
to be substituted inside an SQL statement.

Procedure:

Assume that your application uses dynamic SQL, and that you want to be able to
perform a DELETE. A character string containing a parameter marker might look
like the following;:

DELETE FROM TEMPL WHERE EMPNO = ?

When this statement is executed, a host variable or SQLDA structure is specified
by the USING clause of the EXECUTE statement. The contents of the host variable
are used when the statement executes.

The parameter marker takes on an assumed data type and length that is dependent
on the context of its use inside the SQL statement. If the data type of a parameter
marker is not obvious from the context of the statement in which it is used, use a
CAST to specify the type. Such a parameter marker is considered a typed parameter
marker. Typed parameter markers will be treated like a host variable of the given
type. For example, the statement SELECT ? FROM SYSCAT.TABLES is not valid
because DB2 does not know the type of the result column. However, the statement
SELECT CAST(? AS INTEGER) FROM SYSCAT.TABLES is valid because the cast indicates
that the parameter marker represents an INTEGER, so DB2 knows the type of the
result column.

If the SQL statement contains more than one parameter marker, the USING clause
of the EXECUTE statement must either specify a list of host variables (one for each
parameter marker), or it must identify an SQLDA that has an SQLVAR entry for
each parameter marker. (Note that for LOBs, there are two SQLVAR entries per
parameter marker.) The host variable list or SQLVAR entries are matched according
to the order of the parameter markers in the statement, and they must have
compatible data types.

Programming Client Applications

Note: Using a parameter marker with dynamic SQL is like using host variables

with static SQL. In either case, the optimizer does not use distribution
statistics, and possibly may not choose the best access plan.

The rules that apply to parameter markers are described with the PREPARE
statement.

Related reference:
* “PREPARE statement” in the SQL Reference, Volume 2

Example of Parameter Markers in a Dynamic SQL Program

The following examples show how to use parameter markers in a dynamic SQL

program:
¢ C/C++ (dbuse.sqc/dbuse.sqC)

The function DynamicStmtWithMarkersEXECUTEusingHostVars() in the C-language

sample dbuse.sqc shows how to perform a delete using a parameter marker

with a host variable:

EXEC SQL BEGIN DECLARE SECTION;
char hostVarStmt1[50];
short hostVarDeptnumb;

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */
strcpy(hostVarStmtl, "DELETE FROM org WHERE deptnumb = ?");
EXEC SQL PREPARE Stmtl FROM :hostVarStmtl;

/* execute the statement for hostVarDeptnumb = 15 %/
hostVarDeptnumb = 15;
EXEC SQL EXECUTE Stmtl USING :hostVarDeptnumb;

» JDBC (DbUse.java)

The function execPreparedStatementWithParam() in the JDBC sample
DbUse.java shows how to perform a delete using parameter markers:
// prepare the statement with parameter markers

PreparedStatement prepStmt = con.prepareStatement (
" DELETE FROM org WHERE deptnumb <= ? AND division = 7 ");

// execute the statement
prepStmt.setInt(1, 70);
prepStmt.setString(2, "Eastern");
prepStmt.execute();

// close the statement
prepStmt.close();

* COBOL (varinp.sqb)

The following example is from the COBOL sample varinp.sqb, and shows how

to use a parameter marker in search and update conditions:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 pname pic x(10).

01 dept pic s9(4) comp-5.
01 st pic x(127).

01 parm-var pic x(5).

EXEC SQL END DECLARE SECTION END-EXEC.
move "SELECT name, dept FROM staff

- " WHERE job = ? FOR UPDATE OF job" to st.
EXEC SQL PREPARE s1 FROM :st END-EXEC.

Chapter 5. Writing Dynamic SQL Programs

125

EXEC SQL DECLARE cl CURSOR FOR sl END-EXEC.

move "Mgr" to parm-var.
EXEC SQL OPEN cl USING :parm-var END-EXEC

move "Clerk" to parm-var.
move "UPDATE staff SET job = ? WHERE CURRENT OF cl" to st.
EXEC SQL PREPARE s2 from :st END-EXEC.
* call the FETCH and UPDATE loop.
perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE cl END-EXEC.

Related concepts:

* |“Error Message Retrieval in an Application” on page 102|

Related samples:

* “dbuse.out -- HOW TO USE A DATABASE (C)”

* “dbuse.sqc -- How to use a database (C)”

* “dbuse.out -- HOW TO USE A DATABASE (C++)”
* “dbuse.sqC -- How to use a database (C++)”

* “DbUsejava -- How to use a database (JDBC)”

* “DbUse.out -- HOW TO USE A DATABASE. Connect to 'sample’ database using
JDBC type 2 driver (JDBC)”

DB2 Call Level Interface (CLI) Compared to Dynamic SQL

126

The sections that follow describe the differences between DB2 CLI and dynamic
SQL, the advantages that DB2 CLI has over dynamic SQL, and when you should
use DB2 CLI or dynamic SQL.

DB2 Call Level Interface (CLI) versus embedded dynamic SQL

An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the
database, and executed. In contrast, a DB2 CLI application does not have to be
precompiled or bound, but instead uses a standard set of functions to execute SQL
statements and related services at run time.

This difference is important because, traditionally, precompilers have been specific
to each database product, which effectively ties your applications to that product.
DB2 CLI enables you to write portable applications that are independent of any
particular database product. This independence means DB2 CLI applications do
not have to be recompiled or rebound to access different DB2® databases,
including host system databases. They just connect to the appropriate database at
run time.

The following are differences and similarities between DB2 CLI and embedded

SQL:

* DB2 CLI does not require the explicit declaration of cursors. DB2 CLI has a
supply of cursors that get used as needed. The application can then use the
generated cursor in the normal cursor fetch model for multiple row SELECT
statements and positioned UPDATE and DELETE statements.

Programming Client Applications

e The OPEN statement is not used in DB2 CLI. Instead, the execution of a SELECT
automatically causes a cursor to be opened.

* Unlike embedded SQL, DB2 CLI allows the use of parameter markers on the
equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect() function).

* A COMMIT or ROLLBACK in DB2 CLI is typically issued via the SQLEndTran()
function call rather than by executing it as an SQL statement, however, doing do
is permitted.

* DB2 CLI manages statement related information on behalf of the application,
and provides an abstract object to represent the information called a statement
handle. This handle eliminates the need for the application to use product
specific data structures.

e Similar to the statement handle, the environment handle and connection handle
provide a means to refer to global variables and connection specific information.
The descriptor handle describes either the parameters of an SQL statement or the
columns of a result set.

» DB2 CLI applications can dynamically describe parameters in an SQL statement
the same way that CLI and embedded SQL applications describe result sets. This
enables CLI applications to dynamically process SQL statements that contain
parameter markers without knowing the data type of those parameter markers
in advance. When the SQL statement is prepared, describe information is
returned detailing the data types of the parameters.

* DB2 CLI uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent with
values used by the IBM® relational database products, there are differences.
(There are also differences between ODBC SQLSTATES and the X/Open defined
SQLSTATES).

Despite these differences, there is an important common concept between
embedded SQL and DB2 CLI: DB2 CLI can execute any SQL statement that can be
prepared dynamically in embedded SQL.

Note: DB2 CLI can also accept some SQL statements that cannot be prepared
dynamically, such as compound SQL statements.

Each DBMS may have additional statements that you can dynamically prepare. In
this case, DB2 CLI passes the statements directly to the DBMS. There is one
exception: the COMMIT and ROLLBACK statements can be dynamically prepared
by some DBMSs but will be intercepted by DB2 CLI and treated as an appropriate
SQLEndTran() request. However, it is recommended you use the SQLEndTran ()
function to specify either the COMMIT or ROLLBACK statement.

Related reference:

* |Appendix A, “Supported SQL Statements,” on page 685|

Advantages of DB2 CLI over embedded SQL

The DB2 CLI interface has several key advantages over embedded SQL.

e It is ideally suited for a client-server environment, in which the target database
is not known when the application is built. It provides a consistent interface for
executing SQL statements, regardless of which database server the application is
connected to.

Chapter 5. Writing Dynamic SQL Programs 127

128

It increases the portability of applications by removing the dependence on
precompilers. Applications are distributed not as embedded SQL source code
which must be preprocessed for each database product, but as compiled
applications or run time libraries.

Individual DB2 CLI applications do not need to be bound to each database, only
bind files shipped with DB2 CLI need to be bound once for all DB2 CLI
applications. This can significantly reduce the amount of management required
for the application once it is in general use.

DB2 CLI applications can connect to multiple databases, including multiple
connections to the same database, all from the same application. Each connection
has its own commit scope. This is much simpler using CLI than using embedded
SQL where the application must make use of multi-threading to achieve the
same result.

DB2 CLI eliminates the need for application controlled, often complex data
areas, such as the SQLDA and SQLCA, typically associated with embedded SQL
applications. Instead, DB2 CLI allocates and controls the necessary data
structures, and provides a handle for the application to reference them.

DB2 CLI enables the development of multi-threaded thread-safe applications
where each thread can have its own connection and a separate commit scope
from the rest. DB2 CLI achieves this by eliminating the data areas described
above, and associating all such data structures that are accessible to the
application with a specific handle. Unlike embedded SQL, a multi-threaded CLI
application does not need to call any of the context management DB2® APIs; this
is handled by the DB2 CLI driver automatically.

DB2 CLI provides enhanced parameter input and fetching capability, allowing
arrays of data to be specified on input, retrieving multiple rows of a result set
directly into an array, and executing statements that generate multiple result
sets.

DB2 CLI provides a consistent interface to query catalog (Tables, Columns,
Foreign Keys, Primary Keys, etc.) information contained in the various DBMS
catalog tables. The result sets returned are consistent across DBMSs. This shields
the application from catalog changes across releases of database servers, as well
as catalog differences amongst different database servers; thereby saving
applications from writing version specific and server specific catalog queries.

Extended data conversion is also provided by DB2 CLI, requiring less
application code when converting information between various SQL and C data

types.

DB2 CLI incorporates both the ODBC and X/Open CLI functions, both of which
are accepted industry specifications. DB2 CLI is also aligned with the ISO CLI
standard. Knowledge that application developers invest in these specifications
can be applied directly to DB2 CLI development, and vice versa. This interface is
intuitive to grasp for those programmers who are familiar with function libraries
but know little about product specific methods of embedding SQL statements
into a host language.

DB2 CLI provides the ability to retrieve multiple rows and result sets generated
from a stored procedure residing on a DB2 Universal Database (or DB2
Universal Database for z/0OS and OS/390 version 5 or later) server. However,
note that this capability exists for Version 5 DB2 Universal Database clients
using embedded SQL if the stored procedure resides on a server accessible from
a DataJoiner® Version 2 server.

DB2 CLI offers more extensive support for scrollable cursors. With scrollable
cursors, you can scroll through a cursor as follows:

— Forward by one or more rows

Programming Client Applications

— Backward by one or more rows
— From the first row by one or more rows

— From the last row by one or more rows.

Scrollable cursors can be used in conjunction with array output. You can declare
an updatable cursor as scrollable then move forward or backward through the
result set by one or more rows. You can also fetch rows by specifying an offset
from:

— The current row
— The beginning or end of the result set
— A specific row you have previously set with a bookmark.

When to use DB2 CLI or embedded SQL

Which interface you choose depends on your application.

DB2 CLI is ideally suited for query-based graphical user interface (GUI)
applications that require portability. The advantages listed above, may make using
DB2 CLI seem like the obvious choice for any application. There is however, one
factor that must be considered, the comparison between static and dynamic SQL. It
is much easier to use static SQL in embedded applications.

Static SQL has several advantages:
* Performance

Dynamic SQL is prepared at run time, static SQL is prepared at precompile time.
As well as requiring more processing, the preparation step may incur additional
network-traffic at run time. The additional network traffic can be avoided if the
DB2 CLI application makes use of deferred prepare (which is the default
behavior).

It is important to note that static SQL will not always have better performance
than dynamic SQL. Dynamic SQL is prepared at runtime and uses the database
statistics available at that time, whereas static SQL makes use of database
statistics available at BIND time. Dynamic SQL can make use of changes to the
database, such as new indexes, to choose the optimal access plan, resulting in
potentially better performance than the same SQL executed as static SQL. In
addition, precompilation of dynamic SQL statements can be avoided if they are
cached.

* Encapsulation and Security

In static SQL, the authorizations to access objects (such as a table, view) are
associated with a package and are validated at package binding time. This
means that database administrators need only to grant execute on a particular
package to a set of users (thus encapsulating their privileges in the package)
without having to grant them explicit access to each database object. In dynamic
SQL, the authorizations are validated at run time on a per statement basis;
therefore, users must be granted explicit access to each database object. This
permits these users access to parts of the object that they do not have a need to
access.

* Embedded SQL is supported in languages other than C or C++.
* For fixed query selects, embedded SQL is simpler.

If an application requires the advantages of both interfaces, it is possible to make

use of static SQL within a DB2 CLI application by creating a stored procedure that
contains the static SQL. The stored procedure is called from within a DB2 CLI

Chapter 5. Writing Dynamic SQL Programs 129

130

application and is executed on the server. Once the stored procedure is created,
any DB2 CLI or ODBC application can call it.

It is also possible to write a mixed application that uses both DB2 CLI and
embedded SQL, taking advantage of their respective benefits. In this case, DB2 CLI
is used to provide the base application, with key modules written using static SQL
for performance or security reasons. This complicates the application design, and
should only be used if stored procedures do not meet the applications
requirements.

Ultimately, the decision on when to use each interface, will be based on individual
preferences and previous experience rather than on any one factor.

Related concepts:
+ [“CLI/ODBC/JDBC trace facility” on page 460

Related tasks:

* “Preparing and executing SQL statements in CLI applications” in the CLI Guide
and Reference, Volume 1

* “Issuing SQL statements in CLI applications” in the CLI Guide and Reference,
Volume 1

* “Creating static SQL with CLI/ODBC/JDBC Static Profiling” in the CLI Guide
and Reference, Volume 1

Programming Client Applications

Chapter 6. Programming in C and C++

Programming Considerations for C/C++ 131 Syntax for File Reference Host Variable
Trigraph Sequences for Cand C++ 131 Declarations in C or C++ 148
Input and Output Files for Cand C++ 132 Host Variable Initialization in C and C++ oo 149
Include Files. . . B < 72 C Macro Expansion 149
Include Files for C and C++ B 1< 72 Host Structure Support in C and C++150
Include Files in C and C++. 134 Indicator Tables in Cand C++. 152
Embedded SQL Statements in C and C++ .. . 135 Null-Terminated Strings in C and C++ 153
Host VariablesinCand C++137 Host Variables Used as Pointer Data Types in C
Host VariablesinCand C++ 137 and C++ 154
Host Variable Names in Cand C++. 137 Class Data Members Used as Host Varlables in
Host Variable Declarations in C and C++ . . . 138 Cand C++ 155
Syntax for Numeric Host Variables in C and Qualification and Member Operators in C and
C++ 139 C++ 156
Syntax for Frxed and Null Termmated Character Multi-Byte Character Encodlng in C and C++ 156
Host Variables in C and C++ 140 wchar_t and sqldbchar Data Types in C and
Syntax for Variable-Length Character Host C++ 157
Variables in C or C++ . . . R | WCHARTYPE Precornpller Optlon in C and
Indicator Variables in C and C++ B) C++ 158
Graphic Host Variables in Cand C++ 143 Japanese or Trad1t10nal Chlnese EUC and
Syntax for Graphic Declaration of UCS-2 Considerations in C and C++. . . . 160
Single-Graphic and Null-Terminated Graphic SQL Declare Section with Host Variables for C
Formsin Cand C++ 143 and C++1lel
Syntax for Graphic Declaration of Data Type C0n51derat10ns for C and C++ ... L 1e2
VARGRAPHIC Structured Form in C or C++. . 145 Supported SQL Data Types in C and C++. . . 162
Syntax for Large Object (LOB) Host Variables in FOR BIT DATAinCand C++. 166
Cor C++. 146 C and C++ Data Types for Procedures,
Syntax for Large Ob]ect (LOB) Locator Host Functions, and Methods. 166
VariablesinCorC++147 SQLSTATE and SQLCODE Variables in C and C++ 168

Programming Considerations for C/C++

Special host language programming considerations are discussed in the following
topics. Included is information on language restrictions, host-language-specific
include files, embedding SQL statements, host variables, and supported data types
for host variables.

Related reference:

e “C samples” in the Application Development Guide: Building and Running
Applications

Trigraph Sequences for C and C++

Some characters from the C or C++ character set are not available on all
keyboards. These characters can be entered into a C or C++ source program using
a sequence of three characters called a trigraph. Trigraphs are not recognized in
SQL statements. The precompiler recognizes the following trigraphs within host
variable declarations:

Trigraph Definition
?22(Left bracket '’
??) Right bracket '|'

© Copyright IBM Corp. 1997 - 2004 131

7< Left brace '{'

27> Right brace '}'

The remaining trigraphs listed below may occur elsewhere in a C or C++ source

program:

Trigraph Definition
7= Hash mark '#
2?2/ Back slash "\
2 Caret 'N'

22! Vertical Bar 'I"
27— Tilde '~'

Input and Output Files for C and C++

By default, the input file can have the following extensions:

.sqc For C files on all supported platforms

.8qC For C++ files on UNIX® platforms

sqx For C++ files on Windows® operating systems

By default, the corresponding precompiler output files have the following
extensions:

. For C files on all supported platforms

.C For C++ files on UNIX platforms

.cxx For C++ files on Windows operating systems

You can use the OUTPUT precompile option to override the name and path of the

output modified source file. If you use the TARGET C or TARGET CPLUSPLUS
precompile option, the input file does not need a particular extension.

Include Files

132

The following sections describe include files for C and C++.
Include Files for C and C++

The host-language-specific include files (header files) for C and C++ have the file
extension .h. The include files that are intended to be used in your applications are
described below.
SQL (sql.h)
This file includes language-specific prototypes for the binder, precompiler,
and error message retrieval APIs. It also defines system constants.

SQLADEF (sqladef.h)
This file contains function prototypes used by precompiled C and C++
applications.

SQLAPREP (sqlaprep.h)
This file contains definitions required to write your own precompiler.

Programming Client Applications

SQLCA (sqlca.h)
This file defines the SQL. Communication Area (SQLCA) structure. The
SQLCA contains variables that are used by the database manager to
provide an application with error information about the execution of SQL
statements and API calls.

SQLCLI (sqlcli.h)
This file contains the function prototypes and constants needed to write a
Call Level Interface (DB2 CLI) application. The functions in this file are
common to both X/Open Call Level Interface and ODBC Core Level.

SQLCLI1 (sqlclil.h)
This file contains the function prototypes and constants needed to write a
Call Level Interface (DB2 CLI) that makes use of the more advanced
features in DB2 CLIL. Many of the functions in this file are common to both
X/Open Call Level Interface and ODBC Level 1. In addition, this file also
includes X/Open-only functions and DB2-specific functions.

This file includes both sqlcli.h and sqlext.h (which contains ODBC
Level2 API definitions).

SQLCODES (sqlcodes.h)
This file defines constants for the SQLCODE field of the SQLCA structure.

SQLDA (sqlda.h)
This file defines the SQL Descriptor Area (SQLDA) structure. The SQLDA
is used to pass data between an application and the database manager.

SQLENYV (sqlenv.h)
This file defines language-specific calls for the database environment APIs,
and the structures, constants, and return codes for those interfaces.

SQLEXT (sqlext.h)
This file contains the function prototypes and constants of those ODBC
Level 1 and Level 2 APIs that are not part of the X/Open Call Level
Interface specification and is therefore used with the permission of
Microsoft Corporation.

SQLES19A (sqle819a.h)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts
character strings that are not FOR BIT DATA according to the host CCSID
500 (EBCDIC International) binary collation. This file is used by the
CREATE DATABASE APL

SQLES19B (sqle819b.h)
If the code page of the database is 819 (ISO Latin-1), this sequence sorts
character strings that are not FOR BIT DATA according to the host CCSID
037 (EBCDIC US English) binary collation. This file is used by the CREATE
DATABASE APIL

SQLES50A (sqle850a.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts
character strings that are not FOR BIT DATA according to the host CCSID
500 (EBCDIC International) binary collation. This file is used by the
CREATE DATABASE APL

SQLE850B (sqle850b.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence sorts
character strings that are not FOR BIT DATA according to the host CCSID
037 (EBCDIC US English) binary collation. This file is used by the CREATE
DATABASE APIL

Chapter 6. Programming in C and C++ 133

134

SQLE932A (sqle932a.h)
If the code page of the database is 932 (ASCII Japanese), this sequence
sorts character strings that are not FOR BIT DATA according to the host
CCSID 5035 (EBCDIC Japanese) binary collation. This file is used by the
CREATE DATABASE APL

SQLE932B (sqle932b.h)
If the code page of the database is 932 (ASCII Japanese), this sequence
sorts character strings that are not FOR BIT DATA according to the host
CCSID 5026 (EBCDIC Japanese) binary collation. This file is used by the
CREATE DATABASE APL

SQLJACB (sqljacb.h)
This file defines constants, structures, and control blocks for the DB2
Connect interface.

SQLMON (sqlmon.h)
This file defines language-specific calls for the database system monitor
APIs, and the structures, constants, and return codes for those interfaces.

SQLSTATE (sqlstate.h)
This file defines constants for the SQLSTATE field of the SQLCA structure.

SQLSYSTM (sqlsystm.h)
This file contains the platform-specific definitions used by the database
manager APIs and data structures.

SQLUDF (sqludf.h)
This file defines constants and interface structures for writing user-defined
functions (UDFs).

SQLUTIL (sqlutil.h)
This file defines the language-specific calls for the utility APIs, and the
structures, constants, and codes required for those interfaces.

SQLUYV (sqluv.h)

This file defines structures, constants, and prototypes for the asynchronous
Read Log API, and APIs used by the table load and unload vendors.

SQLUVEND (sqluvend.h)
This file defines structures, constants, and prototypes for the APIs to be
used by the storage management vendors.

SQLXA (sqlxa.h)
This file contains function prototypes and constants used by applications
that use the X/Open XA Interface.

Related concepts:

* [“Include Files in C and C++” on page 134]

Include Files in C and C++

There are two methods for including files: the EXEC SQL INCLUDE statement and
the #include macro. The precompiler will ignore the #include, and only process
files included with the EXEC SQL INCLUDE statement.

To locate files included using EXEC SQL INCLUDE, the DB2® C precompiler searches
the current directory first, then the directories specified by the DB2INCLUDE
environment variable. Consider the following examples:

« EXEC SQL INCLUDE payroll;

Programming Client Applications

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the C precompiler searches for payroll.sqc, then payroll.h, in
each directory in which it looks. On UNIX® operating systems, the C++
precompiler searches for payroll.sqC, then payroll.sqgx, then payroll.hpp, then
payroll.h in each directory in which it looks. On Windows®-32 bit operating
systems, the C++ precompiler searches for payroll.sqx, then payroll.hpp, then
payroll.h in each directory in which it looks.

e EXEC SQL INCLUDE 'pay/payroll.h';

If the file name is enclosed in quotation marks, as above, no extension is added
to the name.

If the file name in quotation marks does not contain an absolute path, then the
contents of DB2INCLUDE are used to search for the file, prepended to whatever
path is specified in the INCLUDE file name. For example, on UNIX-based
systems, if DB2INCLUDE is set to ‘/disk2:myfiles/c’, the C/C++ precompiler
searches for ‘. /pay/payroll.h’, then ‘/disk2/pay/payroll.h’, and finally
‘./myfiles/c/pay/payroll.h’. The path where the file is actually found is
displayed in the precompiler messages. On Windows-based operating systems,
substitute back slashes (\) for the forward slashes in the above example.

Note: The setting of DB2INCLUDE is cached by the command line processor. To
change the setting of DB2INCLUDE after any CLP commands have been
issued, enter the TERMINATE command, then reconnect to the database and
precompile as usual.

To help relate compiler errors back to the original source the precompiler generates
ANSI #line macros in the output file. This allows the compiler to report errors
using the file name and line number of the source or included source file, rather
than the precompiler output.

However, if you specify the PREPROCESSOR option, all the #line macros
generated by the precompiler reference the preprocessed file from the external C
preprocessor.

Some debuggers and other tools that relate source code to object code do not
always work well with the #line macro. If the tool you want to use behaves
unexpectedly, use the NOLINEMACRO option (used with DB2 PREP) when
precompiling. This option prevents the #line macros from being generated.

Related concepts:

+ |“C Macro Expansion” on page 149

Related reference:
* “PREPARE statement” in the SQL Reference, Volume 2
* [“Include Files for C and C++” on page 132

Embedded SQL Statements in C and C++

Embedded SQL statements consist of the following three elements:

Element Correct Syntax
Statement initializer EXEC SQL

Statement string Any valid SQL statement
Statement terminator semicolon (;)

Chapter 6. Programming in C and C++ 135

For example:
EXEC SQL SELECT col INTO :hostvar FROM table;

The following rules apply to embedded SQL statements:

* You can begin the SQL statement string on the same line as the keyword pair or
a separate line. The statement string can be several lines long. Do not split the
EXEC SQL keyword pair between lines.

* You must use the SQL statement terminator. If you do not use it, the
precompiler will continue to the next terminator in the application. This may
cause indeterminate errors.

C/C++ comments can be placed before the statement initializer or after the
statement terminator.

* Multiple SQL statements and C/C++ statements may be placed on the same
line. For example:

EXEC SQL OPEN cl; if (SQLCODE >= 0) EXEC SQL FETCH cl INTO :hv;

* The SQL precompiler leaves carriage returns, line feeds, and TABs in a quoted
string as is.

* SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed statements.
The format for an SQL comment is a double dash (--) followed by a string of
zero or more characters, and terminated by a line end. Do not place SQL
comments after the SQL statement terminator. Comments after the terminator
cause compilation errors because they appear to be part of the C/C++ language.

You can use comments in a static statement string wherever blanks are allowed.
Use the C/C++ comment delimiters /* %/, or the SQL comment symbol (--).
//-style C++ comments are not permitted within static SQL statements, but they
may be used elsewhere in your program. The precompiler removes comments
before processing the SQL statement. You cannot use the C and C++ comment
delimiters /* */ or // in a dynamic SQL statement. However, you can use them
elsewhere in your program.

* You can continue SQL string literals and delimited identifiers over line breaks in
C and C++ applications. To do this, use a back slash (\) at the end of the line
where the break is desired. For example:

EXEC SQL SELECT "NA\

ME" INTO :n FROM staff WHERE name='Sa\

nders';
Any new line characters (such as carriage return and line feed) are not included
in the string or delimited identifier.

* Substitution of white space characters, such as end-of-line and TAB characters,
occurs as follows:

— When they occur outside quotation marks (but inside SQL statements),
end-of-lines and TABs are substituted by a single space.

— When they occur inside quotation marks, the end-of-line characters disappear,
provided the string is continued properly for a C program. TABs are not
modified.

Note that the actual characters used for end-of-line and TAB vary from platform
to platform. For example, UNIX®-based systems use a line feed.

Related reference:

* |Appendix A, “Supported SQL Statements,” on page 685|

136 Programming Client Applications

Host Variables in C and C++

The sections that follow describe how to declare and use host variables in C and
C++ programs.

Host Variables in C and C++

Host variables are C or C++ language variables that are referenced within SQL
statements. They allow an application to pass input data to and receive output
data from the database manager. After the application is precompiled, host
variables are used by the compiler as any other C/C++ variable. Follow the rules
described in the following sections when naming, declaring, and using host
variables.

In applications that manually construct the SQLDA, long variables cannot be used
when sqlvar::sqltype==SQL_TYP_INTEGER. Instead, sqlint32 types must be used.
This problem is identical to using long variables in host variable declarations,
except that with a manually constructed SQLDA, the precompiler will not uncover
this error and run time errors will occur.

Any long and unsigned long casts that are used to access sqlvar::sqldata
information must be changed to sqlint32 and sqluint32. Val members for the
sqloptions and sqla_option structures are declared as sqluintptr. Therefore,
assignment of pointer members into sqla_option::val or sqloptions::val members
should use sqluintptr casts rather than unsigned long casts. This change will not
cause run-time problems in 64-bit UNIX® platforms, but should be made in
preparation for 64-bit Windows® NT applications, where the long type is only
32-bit.

Related concepts:

+ [“Host Variable Names in C and C++” on page 137

+ [“Host Variable Declarations in C and C++” on page 138|
* [“Syntax for Fixed and Null-Terminated Character Host Variables in C and C++"|

on page 140|

[“Indicator Variables in C and C++” on page 142

[‘Graphic Host Variables in C and C++” on page 143|

[‘Host Variable Initialization in C and C++” on page 149

[“Host Structure Support in C and C++” on page 150|
[‘SQL Declare Section with Host Variables for C and C++” on page 161]

Related reference:

* [“Syntax for Numeric Host Variables in C and C++” on page 139

[‘Syntax for Variable-Length Character Host Variables in C or C++” on page 141]
* |“Syntax for Large Object (LOB) Host Variables in C or C++” on page 146|
+ [“Syntax for Large Object (LOB) Locator Host Variables in C or C++” on page|

127

[‘Syntax for File Reference Host Variable Declarations in C or C++” on page 148|

Host Variable Names in C and C++

The SQL precompiler identifies host variables by their declared name. The
following rules apply:

Chapter 6. Programming in C and C++ 137

138

* Specify variable names up to 255 characters in length.

* Begin host variable names with prefixes other than SQL, sql, DB2®, and db2,
which are reserved for system use. For example:

EXEC SQL BEGIN DECLARE SECTION;
char varsql; /* allowed =*/
char sqlvar; /* not allowed */
char SQL_VAR; /* not allowed =/
EXEC SQL END DECLARE SECTION;

* The precompiler considers host variable names as global to a module. This does
not mean, however, that host variables have to be declared as global variables; it
is perfectly acceptable to declare host variables as local variables within
functions. For example, the following code will work correctly:

void fl(int 1)
{
EXEC SQL BEGIN DECLARE SECTION;
short host_var_1;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT COL1 INTO :host_var_1 from TBL1;

}

void f2(int 1)

{

EXEC SQL BEGIN DECLARE SECTION;

short host_var_2;

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO TBL1 VALUES (:host_var_2);

}
It is also possible to have several local host variables with the same name, as
long as they all have the same type and size. To do this, declare the first
occurrence of the host variable to the precompiler between BEGIN DECLARE
SECTION and END DECLARE SECTION statements, and leave subsequent
declarations of the variable out of declare sections. The following code shows an
example of this:

void f3(int 1)

{

EXEC SQL BEGIN DECLARE SECTION;

char host_var 3[25];
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT COL2 INTO :host_var_3 FROM TBLZ;

}

void f4(int i)

{

char host_var_3[25];

EXEC SQL INSERT INTO TBL2 VALUES (:host var_3);

}
Because f3 and f4 are in the same module, and host_var_3 has the same type
and length in both functions, a single declaration to the precompiler is sufficient
to use it in both places.

Related concepts:

* [“Host Variable Declarations in C and C++” on page 138|

Host Variable Declarations in C and C++

An SQL declare section must be used to identify host variable declarations. This
alerts the precompiler to any host variables that can be referenced in subsequent
SQL statements.

The C/C++ precompiler only recognizes a subset of valid C or C++ declarations as
valid host variable declarations. These declarations define either numeric or

Programming Client Applications

character variables. Typedefs for host variable types are not allowed. Host
variables can be grouped into a single host structure. You can declare C++ class
data members as host variables.

A numeric host variable can be used as an input or output variable for any
numeric SQL input or output value. A character host variable can be used as an
input or output variable for any character, date, time, or timestamp SQL input or
output value. The application must ensure that output variables are long enough to
contain the values that they receive.

Related concepts:

* [“Syntax for Fixed and Null-Terminated Character Host Variables in C and C++"|

on page 140|

* |“Graphic Host Variables in C and C++” on page 143

» [“Host Structure Support in C and C++” on page 150|
+ [“Class Data Members Used as Host Variables in C and C++” on page 155|

Related tasks:
* |“Declaring Host Variables with the db2dclgn Declaration Generator” on page 29|

* “Declaring structured type host variables” in the Application Development Guide:
Programming Server Applications

Related reference:

* |“Syntax for Numeric Host Variables in C and C++” on page 139

* [“Syntax for Variable-Length Character Host Variables in C or C++” on page 141

Syntax for Numeric Host Variables in C and C++

Following is the syntax for declaring numeric host variables in C or C++.

Syntax for Numeric Host Variables in C or C++

(1)

> float >
auto i:const (2)
extern—-y volatile— (—double
static— (3)
register— —short
|—1'nt—|
:l INTEGER (SQLTYPE 496) '—

BIGINT (SQLTYPE 492) '—

-

varname H
|—=—value—| ,

l
5 Feons

volatile—

Chapter 6. Programming in C and C++ 139

140

INTEGER (SQLTYPE 496)

|
sqlint3e————
(4)

e
int

BIGINT (SQLTYPE 492)

sqlint64
int64

ﬁng 1ong—L—_|—
int
(5)

T hd

int

Notes:

1 REAL (SQLTYPE 480), length 4

2 DOUBLE (SQLTYPE 480), length 8

3 SMALLINT (SQLTYPE 500)

4 For maximum application portability, use sqlint32 and sqlint64 for INTEGER
and BIGINT host variables, respectively. By default, the use of long host
variables results in the precompiler error SQL0402 on platforms where long is
a 64 bit quantity, such as 64 BIT UNIX. Use the PREP option LONGERROR
NO to force DB2 to accept long variables as acceptable host variable types
and treat them as BIGINT variables.

5 For maximum application portability, use sqlint32 and sqlint64 for INTEGER

and BIGINT host variables, respectively. To use the BIGINT data type, your
platform must support 64 bit integer values. By default, the use of long host
variables results in the precompiler error SQL0402 on platforms where long is
a 64 bit quantity, such as 64 BIT UNIX. Use the PREP option LONGERROR
NO to force DB2 to accept long variables as acceptable host variable types
and treat them as BIGINT variables.

Syntax for Fixed and Null-Terminated Character Host Variables
in C and C++

Following is the syntax for declaring fixed and null-terminated character host
variables in C or C++.

Syntax for Fixed and Null-Terminated Character Host Variables

char: »>
auto |—uns1'gned—|

i:const

extern—-y volatile—
static—
register—

Programming Client Applications

»Y CHAR } ; ><
El C Str1lng ’J |—=—value—|

CHAR
(1)

i varname I

L

l—&—l i:const

volatile—
C String
(2)

}—[varname [length] I

('.arname—)—|

l
R

volatile—

Notes:
1 CHAR (SQLTYPE 452), length 1

2 Null-terminated C string (SQLTYPE 460); length can be any valid constant
expression

Syntax for Variable-Length Character Host Variables in C or
C++

Following is the syntax for declaring variable-length character host variables in C
or C++.

Syntax for Variable-Length Character Host Variables in C

»> struct >
auto |:const |—t(igJ
extern—- volatile—
static—
register—
(1)
»—{—short varl—; char—var2—[length] —1 >
|—1'ntJ |—unsignedJ

Chapter 6. Programming in C and C++ 141

142

varname H >

l—‘ Values |—|

T oo

volatile—

Values

|—=—{—vaZue—1—,—value-2—} I

Notes:

1

In form 2, length can be any valid constant expression. Its value after
evaluation determines if the host variable is VARCHAR (SQLTYPE 448) or
LONG VARCHAR (SQLTYPE 456).

Variable-Length Character Host Variable Considerations:

1.

Although the database manager converts character data to either form 1 or
form 2 whenever possible, form 1 corresponds to column types CHAR or
VARCHAR, while form 2 corresponds to column types VARCHAR and LONG
VARCHAR.

If form 1 is used with a length specifier [11], the value for the length specifier
after evaluation must be no greater than 32 672, and the string contained by the
variable should be null-terminated.

If form 2 is used, the value for the length specifier after evaluation must be no
greater than 32 700.

In form 2, varl and var2 must be simple variable references (no operators), and
cannot be used as host variables (varname is the host variable).

varname can be a simple variable name, or it can include operators such as
*varname. See the description of pointer data types in C and C++ for more
information.

The precompiler determines the SQLTYPE and SQLLEN of all host variables. If
a host variable appears in an SQL statement with an indicator variable, the
SQLTYPE is assigned to be the base SQLTYPE plus one for the duration of that
statement.

The precompiler permits some declarations which are not syntactically valid in
C or C++. Refer to your compiler documentation if in doubt about a particular
declaration syntax.

Related concepts:

+ ["Host Variables Used as Pointer Data Types in C and C++” on page 154|

Indicator Variables in C and C++

Indicator variables should be declared as a short data type.

Related concepts:

+ |“Indicator Tables in C and C++” on page 152|

Programming Client Applications

Graphic Host Variables in C and C++

To handle graphic data in C or C++ applications, use host variables based on either
the wchar_t C/C++ data type or the sqldbchar data type provided by DB2®. You
can assign these types of host variables to columns of a table that are GRAPHIC,
VARGRAPHIC, or DBCLOB. For example, you can update or select DBCS data
from GRAPHIC or VARGRAPHIC columns of a table.

There are three valid forms for a graphic host variable:

Single-graphic form

Single-graphic host variables have an SQLTYPE of 468/469 that is equivalent to
the GRAPHIC(1) SQL data type.

Null-terminated graphic form

Null-terminated refers to the situation where all the bytes of the last character of

the graphic string contain binary zeros ('\0's). They have an SQLTYPE of
400“/401.

VARGRAPHIC structured form

VARGRAPHIC structured host variables have an SQLTYPE of 464 /465 if their
length is between 1 and 16 336 bytes. They have an SQLTYPE of 472/473 if their
length is between 2 000 and 16 350 bytes.

Related concepts:

[“Host Variable Names in C and C++” on page 137]

[“Host Variable Declarations in C and C++” on page 138|

[“Host Variable Initialization in C and C++” on page 149

[“Host Structure Support in C and C++” on page 150|

[“Indicator Tables in C and C++” on page 152|
[“Multi-Byte Character Encoding in C and C++” on page 156|

[“wchar_t and sqldbchar Data Types in C and C++” on page 157
["WCHARTYPE Precompiler Option in C and C++” on page 158

Related reference:

“Syntax for Graphic Declaration of Single-Graphic and Null-Terminated Graphid|
Forms in C and C++” on page 143|

“Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C o1
C++" on page 145|

[‘Syntax for Large Object (LOB) Host Variables in C or C++” on page 146|
“Syntax for Large Object (LOB) Locator Host Variables in C or C++” on page|

147]

[‘Syntax for File Reference Host Variable Declarations in C or C++” on page 148

Syntax for Graphic Declaration of Single-Graphic and
Null-Terminated Graphic Forms in C and C++

Following is the syntax for declaring a graphic host variable using the
single-graphic form and the null-terminated graphic form.

Syntax for Graphic Declaration of Single-Graphic Form and

Chapter 6. Programming in C and C++ 143

144

A4
Y

(1)

auto
extern—-
static—

register—

i:const
volatile—

v

qu]dbchar
wchar_t

’J |—=—valueJ

(2)

(o] i:

C String

const
volatile—

varname

| N s
I varname
L

varname—) —|

T oo

Notes:

1 To determine which of the two graphic types should be used, see the
description of the wchar_t and sqldbchar data types in C and C++.

volatile—

2 GRAPHIC (SQLTYPE 468), length 1
3 Null-terminated graphic string (SQLTYPE 400)

Graphic Host Variable Considerations:

1. The single-graphic form declares a fixed-length graphic string host variable of

length 1 with SQLTYPE of 468 or 469.

2. wvalue is an initializer. A wide-character string literal (L-literal) should be used if
the WCHARTYPE CONVERT precompiler option is used.

3. length can be any valid constant expression, and its value after evaluation must

be greater than or equal to 1, and not greater than the maximum length of
VARGRAPHIC, which is 16 336.

[length]

(3)

4. Null-terminated graphic strings are handled differently, depending on the value
of the standards level precompile option setting.

Related concepts:

* [“Null-Terminated Strings in C and C++” on page 153

Programming Client Applications

* [“wchar_t and sqldbchar Data Types in C and C++” on page 157]

Syntax for Graphic Declaration of VARGRAPHIC Structured
Form in C or C++

Following is the syntax for declaring a graphic host variable using the
VARGRAPHIC structured form.

Syntax for Graphic Declaration of VARGRAPHIC Structured

[.

» struct
auto |:const |—tagJ
extern—-y volatile—
static—
register—

(1) (2)
»—{—short var-1—; sqldbchar var-2—/[length 1—;—}
Ei nt:| |:wchar‘_t——l_

> i Variable s ><

)
o] Ceonst

volatile—

Variable:

|—variable-name |_ _| }
=—{—value-1—,—value-2—}

Notes:

1 To determine which of the two graphic types should be used, see the
description of the wchar_t and sqldbchar data types in C and C++.

2 length can be any valid constant expression. Its value after evaluation
determines if the host variable is VARGRAPHIC (SQLTYPE 464) or LONG
VARGRAPHIC (SQLTYPE 472). The value of length must be greater than or
equal to 1, and not greater than the maximum length of LONG
VARGRAPHIC which is 16 350.

Graphic Declaration (VARGRAPHIC Structured Form) Considerations:

1. wvar-1 and var-2 must be simple variable references (no operators) and cannot be
used as host variables.

2. wvalue-1 and value-2 are initializers for var-1 and var-2. value-1 must be an integer
and value-2 should be a wide-character string literal (L-literal) if the
WCHARTYPE CONVERT precompiler option is used.

3. The struct tag can be used to define other data areas, but itself cannot be used
as a host variable.

Related concepts:

* [“wchar_t and sqldbchar Data Types in C and C++” on page 157

Chapter 6. Programming in C and C++ 145

146

Syntax for Large Object (LOB) Host Variables in C or C++

Following is the syntax for declaring large object (LOB) host variables in C or C++.

Syntax for Large Object (LOB) Host Variables in C or C++

(1)
> SQL TYPE IS BLOB (length) >
auto i:const i:CLOB—
extern—- volatile— DBCLOB—
static—
register—
Y 'variable-name—| LOB Data | : ><

l
5 Feors

volatile—

LOB Data

={init-len,"init-data"}
=SQL_BLOB_INIT("init-data") —
=SQL_CLOB_INIT("init-data") —
=SQL_DBCLOB_INIT("init-data") —

Notes:

1

length can be any valid constant expression, in which the constant K, M, or G
can be used. The value of length after evaluation for BLOB and CLOB must
be 1 <= length <= 2 147 483 647. The value of length after evaluation for
DBCLOB must be 1 <= length <= 1073 741 823.

LOB Host Variable Considerations:

1.

The SQL TYPE IS clause is needed to distinguish the three LOB-types from
each other so that type checking and function resolution can be carried out for
LOB-type host variables that are passed to functions.
SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G may be in mixed case.
The maximum length allowed for the initialization string "init-data” is 32 702
bytes, including string delimiters (the same as the existing limit on C/C++
strings within the precompiler).
The initialization length, init-len, must be a numeric constant (i.e. it cannot
include K, M, or G).
A length for the LOB must be specified; that is, the following declaration is not
permitted:

SQL TYPE IS BLOB my_blobs;
If the LOB is not initialized within the declaration, no initialization will be done
within the precompiler-generated code.
If a DBCLOB is initialized, it is the user’s responsibility to prefix the string
with an 'L’ (indicating a wide-character string).

Programming Client Applications

Note: Wide-character literals, for example, L"Hel10", should only be used in a
precompiled program if the WCHARTYPE CONVERT precompile option
is selected.

8. The precompiler generates a structure tag which can be used to cast to the host
variable’s type.

BLOB Example:

Declaration:
static Sql Type is Blob(2M) my_blob=SQL_BLOB_INIT("mydata");

Results in the generation of the following structure:

static struct my_blob_t {

sqluint32 length;

char data[2097152];
} my_blob=SQL_BLOB_INIT("mydata");

CLOB Example:

Declaration:
volatile sql type is clob(125m) =varl, var2 = {10, "databdata5"};

Results in the generation of the following structure:

volatile struct varl_t {

sqluint32 length;

char data[131072000] ;
} % varl, var2 = {10, "databdata5"};

DBCLOB Example:

Declaration:
SQL TYPE IS DBCLOB(30000) my_dbclobl;

Precompiled with the WCHARTYPE NOCONVERT option, results in the
generation of the following structure:

struct my_dbclobl_t {
sqluint32 length;
sqldbchar data[30000];
} my_dbclobl;

Declaration:
SQL TYPE IS DBCLOB(30000) my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Precompiled with the WCHARTYPE CONVERT option, results in the generation of
the following structure:

struct my_dbclob2_t {
sqluint32 length;
wchar_t data[30000];
} my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Syntax for Large Object (LOB) Locator Host Variables in C or
C++

Following is the syntax for declaring large object (LOB) locator host variables in C
or C++.

Chapter 6. Programming in C and C++ 147

Syntax for Large Object (LOB) Locator Host Variables in

auto
extern—-
static—

register—

-

const
volatile—

SQL TYPE IS—E

-

BLOB_LOCATOR >
CLOB_LOCATOR
DBCLOB_LOCATOR—

>y ;
L‘ Variable ’J

Variable

=T oo

volatile—

variable-name |_

LOB Locator Host Variable Considerations:

1. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR may
be in mixed case.

inilt—value—I

init-value permits the initialization of pointer and reference locator variables.

Other types of initialization will have no meaning.

CLOB Locator Example (other LOB locator type declarations are similar):

Declaration:

SQL TYPE IS CLOB_LOCATOR my_locator;

Results in the generation of the following declaration:

sqluint32 my_locator;

Syntax for File Reference Host Variable Declarations in C or

C++

Following is the syntax for declaring file reference host variables in C or C++.

Syntax for File Reference Host Variables in C or C++

auto
extern—-
static—

register—

148

Programming Client Applications

-

const
volatile—

SQL TYPE IS—E

BLOB_FILE >
CLOB_FILEﬂ
DBCLOB_FILE

i | ‘
L‘ Variable ’J

Variable

variable-name |_ — : _| I
= init-value

T oo

volatile—

Note: SQL TYPE IS, BLOB_FILE, CLOB_FILE, DBCLOB_FILE may be in mixed
case.

CLOB File Reference Example (other LOB file reference type declarations are
similar):

Declaration:
static volatile SQL TYPE IS BLOB_FILE my file;

Results in the generation of the following structure:
static volatile struct {

sqluint32 name_length;
sqluint32 data_length;
sqluint32 file_options;

char name[255] ;
}omy_files

Host Variable Initialization in C and C++

In C++ declare sections, you cannot initialize host variables using parentheses. The
following example shows the correct and incorrect methods of initialization in a
declare section:
EXEC SQL BEGIN DECLARE SECTION;
short my_short 2 = 5; /* correct */

short my_short_1(5); /* incorrect x/
EXEC SQL END DECLARE SECTION;

C Macro Expansion

The C/C++ precompiler cannot directly process any C macro used in a declaration
within a declare section. Instead, you must first preprocess the source file with an
external C preprocessor. To do this, specify the exact command for invoking a C
preprocessor to the precompiler through the PREPROCESSOR option.

When you specify the PREPROCESSOR option, the precompiler first processes all
the SQL INCLUDE statements by incorporating the contents of all the files referred
to in the SQL INCLUDE statement into the source file. The precompiler then
invokes the external C preprocessor using the command you specify with the
modified source file as input. The preprocessed file, which the precompiler always
expects to have an extension of .1, is used as the new source file for the rest of the
precompiling process.

Chapter 6. Programming in C and C++ 149

Any #line macro generated by the precompiler no longer references the original
source file, but instead references the preprocessed file. To relate any compiler
errors back to the original source file, retain comments in the preprocessed file.
This helps you to locate various sections of the original source files, including the
header files. The option to retain comments is commonly available in C
preprocessors, and you can include the option in the command you specify
through the PREPROCESSOR option. You should not have the C preprocessor
output any #line macros itself, as they may be incorrectly mixed with ones
generated by the precompiler.

Notes on Using Macro Expansion:

1. The command you specify through the PREPROCESSOR option should include
all the desired options, but not the name of the input file. For example, for
IBM® C on AIX® you can use the option:

x1C -P -DMYMACRO=1

2. The precompiler expects the command to generate a preprocessed file with a .1
extension. However, you cannot use redirection to generate the preprocessed
file. For example, you cannot use the following option to generate a
preprocessed file:

x1C -E > x.i

3. Any errors the external C preprocessor encounters are reported in a file with a
name corresponding to the original source file, but with a .err extension.

For example, you can use macro expansion in your source code as follows:
#define SIZE 3

EXEC SQL BEGIN DECLARE SECTION;
char a[SIZE+1];
char b[(SIZE+1)*3];
struct
{
short length;
char data[SIZE*6];
}om;
SQL TYPE IS BLOB(SIZE+1) x;
SQL TYPE IS CLOB((SIZE+2)%3) y;
SQL TYPE IS DBCLOB(SIZE*2K) z;
EXEC SQL END DECLARE SECTION;

The previous declarations resolve to the following after you use the
PREPROCESSOR option:

EXEC SQL BEGIN DECLARE SECTION;
char a[4];
char b[12];
struct
{
short length;
char data[18];
}om;
SQL TYPE IS BLOB(4) x;
SQL TYPE IS CLOB(15) y;
SQL TYPE IS DBCLOB(6144) z;
EXEC SQL END DECLARE SECTION;

Host Structure Support in C and C++

With host structure support, the C/C++ precompiler allows host variables to be
grouped into a single host structure. This feature provides a shorthand for

150 Programming Client Applications

referencing that same set of host variables in an SQL statement. For example, the
following host structure can be used to access some of the columns in the STAFF
table of the SAMPLE database:

struct tag

{
short id;
struct

{
short length;
char data[10];
} name;
struct

{
short years;
double salary;
} info;
} staff_record;

The fields of a host structure can be any of the valid host variable types. Valid
types include all numeric, character, and large object types. Nested host structures
are also supported up to 25 levels. In the example above, the field info is a
sub-structure, whereas the field name is not, as it represents a VARCHAR field. The
same principle applies to LONG VARCHAR, VARGRAPHIC and LONG
VARGRAPHIC. Pointer to host structure is also supported.

There are two ways to reference the host variables grouped in a host structure in
an SQL statement:

e The host structure name can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary
INTO :staff_record
FROM staff
WHERE id = 10;

The precompiler converts the reference to staff_record into a list, separated by
commas, of all the fields declared within the host structure. Each field is
qualified with the host structure names of all levels to prevent naming conflicts
with other host variables or fields. This is equivalent to the following method.

* Fully qualified host variable names can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary
INTO :staff_record.id, :staff_record.name,
:staff_record.info.years, :staff_record.info.salary
FROM staff
WHERE id = 10;

References to field names must be fully qualified, even if there are no other host
variables with the same name. Qualified sub-structures can also be referenced. In
the example above, :staff_record.info can be used to replace
:staff_record.info.years, :staff_record.info.salary.

Because a reference to a host structure (first example) is equivalent to a
comma-separated list of its fields, there are instances where this type of reference
may lead to an error. For example:

EXEC SQL DELETE FROM :staff_record;

Here, the DELETE statement expects a single character-based host variable. By
giving a host structure instead, the statement results in a precompile-time error:

SQLOO87N Host variable "staff record" is a structure used where structure
references are not permitted.

Chapter 6. Programming in C and C++ 151

Other uses of host structures, which may cause an SQL0087N error to occur,
include PREPARE, EXECUTE IMMEDIATE, CALL, indicator variables and SQLDA
references. Host structures with exactly one field are permitted in such situations,
as are references to individual fields (second example).

Related concepts:

* [“Indicator Tables in C and C++” on page 152|

Indicator Tables in C and C++

An indicator table is a collection of indicator variables to be used with a host
structure. It must be declared as an array of short integers. For example:

short ind tab[10];

The example above declares an indicator table with 10 elements. The following
shows the way it can be used in an SQL statement:
EXEC SQL SELECT id, name, years, salary
INTO :staff_record INDICATOR :ind_tab

FROM staff
WHERE id = 10;

The following lists each host structure field with its corresponding indicator
variable in the table:

staff record.id ind_tab][0]
staff record.name ind_tab[1]
staff record.info.years ind_tab[2]
staff record.info.salary ind_tab|[3]

Note: An indicator table element, for example ind_tab[1], cannot be referenced
individually in an SQL statement. The keyword INDICATOR is optional.
The number of structure fields and indicators do not have to match; any
extra indicators are unused, as are extra fields that do not have indicators
assigned to them.

A scalar indicator variable can also be used in the place of an indicator table to
provide an indicator for the first field of the host structure. This is equivalent to
having an indicator table with only one element. For example:

short scalar_ind;

EXEC SQL SELECT id, name, years, salary
INTO :staff_record INDICATOR :scalar_ind
FROM staff
WHERE id = 10;

If an indicator table is specified along with a host variable instead of a host
structure, only the first element of the indicator table, for example ind_tab[0], will
be used:
EXEC SQL SELECT id
INTO :staff_record.id INDICATOR :ind_tab

FROM staff
WHERE id = 10;

If an array of short integers is declared within a host structure:

152 Programming Client Applications

struct tag

short i[2];
} test_record;

The array will be expanded into its elements when test_record is referenced in an
SQL statement making :test_record equivalent to :test_record.i[0],

:test_record.i[1].

Related concepts:

* [“Host Structure Support in C and C++” on page 150

Null-Terminated Strings in C and C++

C/C++ null-terminated strings have their own SQLTYPE (460/461 for character
and 468/469 for graphic).

C/C++ null-terminated strings are handled differently, depending on the value of
the LANGLEVEL precompiler option. If a host variable of one of these SQLTYPE
values and declared length n is specified within an SQL statement, and the number
of bytes (for character types) or double-byte characters (for graphic types) of data
is k, then:

* If the LANGLEVEL option on the PREP command is SAA1 (the default):
For Output:
If... Then...

k>n n characters are moved to the target host
variable, SQLWARN1 is set to 'W', and
SQLCODE 0 (SQLSTATE 01004). No
null-terminator is placed in the string. If an
indicator variable was specified with the host
variable, the value of the indicator variable is set
to k.

k=n k characters are moved to the target host
variable, SQLWARNT1 is set to 'N', and
SQLCODE 0 (SQLSTATE 01004). No
null-terminator is placed in the string. If an
indicator variable was specified with the host
variable, the value of the indicator variable is set
to 0.

k<n k characters are moved to the target host variable
and a null character is placed in character k + 1.
If an indicator variable was specified with the
host variable, the value of the indicator variable
is set to 0.

For Input: When the database manager encounters an input host variable of
one of these SQLTYPE values that does not end with a
null-terminator, it will assume that character n+1 will contain the
null-terminator character.

* If the LANGLEVEL option on the PREP command is MIA:
For Output:
If... Then...

Chapter 6. Programming in C and C++ 153

154

k>=n n - 1 characters are moved to the target host
variable, SQLWARNI1 is set to 'W', and
SQLCODE 0 (SQLSTATE 01501). The nth
character is set to the null-terminator. If an
indicator variable was specified with the host
variable, the value of the indicator variable is set
to k.

k+1=n k characters are moved to the target host
variable, and the null-terminator is placed in
character n. If an indicator variable was specified
with the host variable, the value of the indicator
variable is set to 0.

k+1<mn k characters are moved to the target host
variable, n - k -1 blanks are appended on the
right starting at character k + 1, then the
null-terminator is placed in character n. If an
indicator variable was specified with the host
variable, the value of the indicator variable is set
to 0.

For Input: When the database manager encounters an input host variable of
one of these SQLTYPE values that does not end with a null
character, SQLCODE -302 (SQLSTATE 22501) is returned.

When specified in any other SQL context, a host variable of SQLTYPE 460 with
length n is treated as a VARCHAR data type with length 7, as defined above.
When specified in any other SQL context, a host variable of SQLTYPE 468 with
length n is treated as a VARGRAPHIC data type with length 7, as defined above.

Host Variables Used as Pointer Data Types in C and C++

Host variables may be declared as pointers to specific data types with the
following restrictions:

* If a host variable is declared as a pointer, no other host variable may be declared
with that same name within the same source file. The following example is not
allowed:

char mystring[20];
char (*mystring)[20];

* Use parentheses when declaring a pointer to a null-terminated character array.
In all other cases, parentheses are not allowed. For example:

EXEC SQL BEGIN DECLARE SECTION;
char (*arr)[10]; /* correct =/
char =*(arr); /* incorrect */
char =arr[10]; /* incorrect */
EXEC SQL END DECLARE SECTION;
The first declaration is a pointer to a 10-byte character array. This is a valid host
variable. The second is an invalid declaration. The parentheses are not allowed
in a pointer to a character. The third declaration is an array of pointers. This is
not a supported data type.

The host variable declaration:
char *ptr

is accepted, but it does not mean null-terminated character string of undetermined
length. Instead, it means a pointer to a fixed-length, single-character host variable.

Programming Client Applications

This may not be what is intended. To define a pointer host variable that can
indicate different character strings, use the first declaration form above.

* When pointer host variables are used in SQL statements, they should be prefixed
by the same number of asterisks as they were declared with, as in the following
example:

EXEC SQL BEGIN DECLARE SECTION;

char (*mychar)[20]; /* Pointer to character array of 20 bytes =/
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT column INTO :*mychar FROM table; /% Correct =*/

* Only the asterisk may be used as an operator over a host variable name.

¢ The maximum length of a host variable name is not affected by the number of
asterisks specified, because asterisks are not considered part of the name.

* Whenever using a pointer variable in an SQL statement, you should leave the
optimization level precompile option (OPTLEVEL) at the default setting of 0 (no
optimization). This means that no SQLDA optimization will be done by the
database manager.

Class Data Members Used as Host Variables in C and C++

You can declare class data members as host variables (but not classes or objects
themselves). The following example illustrates the method to use:

class STAFF
{

private:

EXEC SQL BEGIN DECLARE SECTION;
char staff_name[20];
short int staff_id;
double staff_salary;

EXEC SQL END DECLARE SECTION;

short staff_in_db;

}s

Data members are only directly accessible in SQL statements through the implicit
this pointer provided by the C++ compiler in class member functions. You cannot
explicitly qualify an object instance (such as SELECT name INTO :my_obj.staff_name
...) in an SQL statement.

If you directly refer to class data members in SQL statements, the database
manager resolves the reference using the this pointer. For this reason, you should
leave the optimization level precompile option (OPTLEVEL) at the default setting
of 0 (no optimization). This means that no SQLDA optimization will be done by
the database manager. (This is true whenever pointer host variables are involved in
SQL statements.)

The following example shows how you might directly use class data members
which you have declared as host variables in an SQL statement.

class STAFF
{

public:

short int hire(void)

Chapter 6. Programming in C and C++ 155

156

{
EXEC SQL INSERT INTO staff (name,id,salary)
VALUES (:staff _name, :staff_id, :staff_salary);
staff_in_db = (sqlca.sqlcode == 0);
return sqlca.sqlcode;
1
}s

In this example, class data members staff_name, staff_id, and staff_salary are
used directly in the INSERT statement. Because they have been declared as host
variables (see the first example in this section), they are implicitly qualified to the
current object with the this pointer. In SQL statements, you can also refer to data
members that are not accessible through the this pointer. You do this by referring
to them indirectly using pointer or reference host variables.

The following example shows a new method, asWellPaidAs that takes a second
object, otherGuy. This method references its members indirectly through a local
pointer or reference host variable, as you cannot reference its members directly
within the SQL statement.

short int STAFF::asWellPaidAs(STAFF otherGuy)
{
EXEC SQL BEGIN DECLARE SECTION;
short &otherID = otherGuy.staff_id
double otherSalary;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT SALARY INTO :otherSalary
FROM STAFF WHERE id = :otherID;
if(sqlca.sqlcode == 0)
return staff_salary >= otherSalary;
else
return 0;

}

Qualification and Member Operators in C and C++

You cannot use the C++ scope resolution operator "::', nor the C/C++ member
operators "' or '->' in embedded SQL statements. You can easily accomplish the
same thing through use of local pointer or reference variables, which are set
outside the SQL statement, to point to the desired scoped variable, then used
inside the SQL statement to refer to it. The following example shows the correct
method to use:

EXEC SQL BEGIN DECLARE SECTION;

char (& localName)[20] = ::name;
EXEC SQL END DECLARE SECTION;
EXEC SQL

SELECT name INTO :1ocalName FROM STAFF
WHERE name = 'Sanders';

Multi-Byte Character Encoding in C and C++

Some character encoding schemes, particularly those from east Asian countries,
require multiple bytes to represent a character. This external representation of data
is called the multi-byte character code representation of a character, and includes
double-byte characters (characters represented by two bytes). Graphic data in DB2®
consists of double-byte characters.

To manipulate character strings with double-byte characters, it may be convenient
for an application to use an internal representation of data. This internal
representation is called the wide-character code representation of the double-byte

Programming Client Applications

characters, and is the format customarily used in the wchar_t C/C++ data type.
Subroutines that conform to ANSI C and X/OPEN Portability Guide 4 (XPG4) are
available to process wide-character data, and to convert data in wide-character
format to and from multibyte format.

Note that although an application can process character data in either multibyte
format or wide-character format, interaction with the database manager is done
with DBCS (multibyte) character codes only. That is, data is stored in and retrieved
from GRAPHIC columns in DBCS format. The WCHARTYPE precompiler option is
provided to allow application data in wide-character format to be converted
to/from multibyte format when it is exchanged with the database engine.

Related concepts:

* [“Graphic Host Variables in C and C++” on page 143|

* |“wchar_t and sqldbchar Data Types in C and C++” on page 157]

wchar_t and sqldbchar Data Types in C and C++

While the size and encoding of DB2® graphic data is constant from one platform to
another for a particular code page, the size and internal format of the ANSI C or
C++ wchar_t data type depends on which compiler you use and which platform
you are on. The sqldbchar data type, however, is defined by DB2 to be two bytes
in size, and is intended to be a portable way of manipulating DBCS and UCS-2
data in the same format in which it is stored in the database.

You can define all DB2 C graphic host variable types using either wchar_t or
sqldbchar. You must use wchar_t if you build your application using the
WCHARTYPE CONVERT precompile option.

Note: When specifying the WCHARTYPE CONVERT option on a Windows®
platform, you should note that wchar_t on Windows platforms is Unicode.
Therefore, if your C/C++ compiler’s wchar_t is not Unicode, the wcstombs ()
function call may fail with SQLCODE -1421 (SQLSTATE=22504). If this
happens, you can specify the WCHARTYPE NOCONVERT option, and
explicitly call the westombs () and mbstowcs() functions from within your
program.

If you build your application with the WCHARTYPE NOCONVERT precompile
option, you should use sqldbchar for maximum portability between different DB2
client and server platforms. You may use wchar_t with WCHARTYPE
NOCONVERT, but only on platforms where wchar_t is defined as two bytes in
length.

If you incorrectly use either wchar_t or sqldbchar in host variable declarations, you
will receive an SQLCODE 15 (no SQLSTATE) at precompile time.

Related concepts:
* ["WCHARTYPE Precompiler Option in C and C++” on page 158|
* [“Japanese and Traditional Chinese EUC and UCS-2 Code Set Considerations” on|

[page 614|

Chapter 6. Programming in C and C++ 157

WCHARTYPE Precompiler Option in C and C++

Using the WCHARTYPE precompiler option, you can specify which graphic
character format you want to use in your C/C++ application. This option provides
you with the flexibility to choose between having your graphic data in multibyte
format or in wide-character format. There are two possible values for the
WCHARTYPE option:

CONVERT
If you select the WCHARTYPE CONVERT option, character codes are
converted between the graphic host variable and the database manager.
For graphic input host variables, the character code conversion from
wide-character format to multibyte DBCS character format is performed
before the data is sent to the database manager, using the ANSI C function
wcstombs (). For graphic output host variables, the character code
conversion from multibyte DBCS character format to wide-character format
is performed before the data received from the database manager is stored
in the host variable, using the ANSI C function mbstowcs ().

The advantage to using WCHARTYPE CONVERT is that it allows your
application to fully exploit the ANSI C mechanisms for dealing with
wide-character strings (L-literals, "wc” string functions, and so on) without
having to explicitly convert the data to multibyte format before
communicating with the database manager. The disadvantage is that the
implicit conversions may have an impact on the performance of your
application at run time, and may increase memory requirements.

If you select WCHARTYPE CONVERT, declare all graphic host variables
using wchar_t instead of sqldbchar.

If you want WCHARTYPE CONVERT behavior, but your application does
not need to be precompiled (for example, a CLI application), then define
the C preprocessor macro SQL_WCHART_CONVERT at compile time. This
ensures that certain definitions in the DB2 header files use the data type
wchar_t instead of sqldbchar.

Note: The WCHARTYPE CONVERT precompile option is not currently
supported in programs running on the DB2® Windows® 3.1 client.
For those programs, use the default (WCHARTYPE NOCONVERT).

NOCONVERT (default)
If you choose the WCHARTYPE NOCONVERT option, or do not specify
any WCHARTYPE option, no implicit character code conversion occurs
between the application and the database manager. Data in a graphic host
variable is sent to and received from the database manager as unaltered
DBCS characters. This has the advantage of improved performance, but the
disadvantage that your application must either refrain from using
wide-character data in wchar_t host variables, or must explicitly call the
wcstombs () and mbstowcs () functions to convert the data to and from
multibyte format when interfacing with the database manager.

If you select WCHARTYPE NOCONVERT, declare all graphic host
variables using the sqldbchar type for maximum portability to other DB2
client/server platforms.

Other guidelines you need to observe are:

* Because wchar_t or sqldbchar support is used to handle DBCS data, its use
requires DBCS or EUC capable hardware and software. This support is only

158 Programming Client Applications

available in the DBCS environment of DB2 Universal Database, or for dealing
with GRAPHIC data in any application (including single-byte applications)
connected to a UCS-2 database.

Non-DBCS characters, and wide-characters that can be converted to non-DBCS
characters, should not be used in graphic strings. Non-DBCS characters refers to
single-byte characters, and non-double byte characters. Graphic strings are not
validated to ensure that their values contain only double-byte character code
points. Graphic host variables must contain only DBCS data, or, if WCHARTYPE
CONVERT is in effect, wide-character data that converts to DBCS data. You
should store mixed double-byte and single-byte data in character host variables.
Note that mixed data host variables are unaffected by the setting of the
WCHARTYPE option.

In applications where the WCHARTYPE NOCONVERT precompile option is
used, L-literals should not be used in conjunction with graphic host variables,
because L-literals are in wide-character format. An L-literal is a C wide-character
string literal prefixed by the letter L which has the data type "array of
wchar_t". For example, L"dbcs-string" is an L-literal.

In applications where the WCHARTYPE CONVERT precompile option is used,
L-literals can be used to initialize wchar_t host variables, but cannot be used in
SQL statements. Instead of using L-literals, SQL statements should use graphic
string constants, which are independent of the WCHARTYPE setting.

The setting of the WCHARTYPE option affects graphic data passed to and from
the database manager using the SQLDA structure as well as host variables. If
WCHARTYPE CONVERT is in effect, graphic data received from the application
through an SQLDA will be presumed to be in wide-character format, and will be
converted to DBCS format via an implicit call to westombs (). Similarly, graphic
output data received by an application will have been converted to
wide-character format before being placed in application storage.

Not-fenced stored procedures must be precompiled with the WCHARTYPE
NOCONVERT option. Ordinary fenced stored procedures may be precompiled
with either the CONVERT or NOCONVERT options, which will affect the
format of graphic data manipulated by SQL statements contained in the stored
procedure. In either case, however, any graphic data passed into the stored
procedure through the SQLDA will be in DBCS format. Likewise, data passed
out of the stored procedure through the SQLDA must be in DBCS format.

If an application calls a stored procedure through the Database Application
Remote Interface (DARI) interface (the sqleproc() API), any graphic data in the
input SQLDA must be in DBCS format, or in UCS-2 if connected to a UCS-2
database, regardless of the state of the calling application’s WCHARTYPE
setting. Likewise, any graphic data in the output SQLDA will be returned in
DBCS format, or in UCS-2 if connected to a UCS-2 database, regardless of the
WCHARTYPE setting.

If an application calls a stored procedure through the SQL CALL statement,
graphic data conversion will occur on the SQLDA, depending on the calling
application’s WCHARTYPE setting.

Graphic data passed to user-defined functions (UDFs) will always be in DBCS
format. Likewise, any graphic data returned from a UDF will be assumed to be
in DBCS format for DBCS databases, and UCS-2 format for EUC and UCS-2
databases.

Data stored in DBCLOB files through the use of DBCLOB file reference variables
is stored in either DBCS format, or, in the case of UCS-2 databases, in UCS-2
format. Likewise, input data from DBCLOB files is retrieved either in DBCS
format, or, in the case of UCS-2 databases, in UCS-2 format.

Chapter 6. Programming in C and C++ 159

160

Note: If you precompile C applications using the WCHARTYPE CONVERT option,
DB2 validates the applications” graphic data on both input and output as the
data is passed through the conversion functions. If you do not use the
CONVERT option, no conversion of graphic data, and hence no validation
occurs. In a mixed CONVERT/NOCONVERT environment, this may cause
problems if invalid graphic data is inserted by a NOCONVERT application
and then fetched by a CONVERT application. This data fails the conversion
with an SQLCODE -1421 (SQLSTATE 22504) on a FETCH in the CONVERT
application.

Related reference:
* “PREPARE statement” in the SQL Reference, Volume 2

Japanese or Traditional Chinese EUC, and UCS-2
Considerations in C and C++

If your application code page is Japanese or Traditional Chinese EUC, or if your
application connects to a UCS-2 database, you can access GRAPHIC columns at a
database server by using either the CONVERT or the NOCONVERT option and
wchar_t or sqldbchar graphic host variables, or input/output SQLDAs. In this
section, DBCS format refers to the UCS-2 encoding scheme for EUC data. Consider
the following cases:

e CONVERT option used

The DB2® client converts graphic data from the wide character format to your
application code page, then to UCS-2 before sending the input SQLDA to the
database server. Any graphic data is sent to the database server tagged with the
UCS-2 code page identifier. Mixed character data is tagged with the application
code page identifier. When graphic data is retrieved from a database by a client,
it is tagged with the UCS-2 code page identifier. The DB2 client converts the
data from UCS-2 to the client application code page, then to the wide character
format. If an input SQLDA is used instead of a host variable, you are required to
ensure that graphic data is encoded using the wide character format. This data
will be converted to UCS-2, then sent to the database server. These conversions
will impact performance.

* NOCONVERT option used

The graphic data is assumed by DB2 to be encoded using UCS-2 and is tagged
with the UCS-2 code page, and no conversions are done. DB2 assumes that the
graphic host variable is being used simply as a bucket. When the NOCONVERT
option is chosen, graphic data retrieved from the database server is passed to the
application encoded using UCS-2. Any conversions from the application code
page to UCS-2 and from UCS-2 to the application code page are your
responsibility. Data tagged as UCS-2 is sent to the database server without any
conversions or alterations.

To minimize conversions you can either use the NOCONVERT option and handle
the conversions in your application, or not use GRAPHIC columns. For the client
environments where wchar_t encoding is in two-byte Unicode, for example
Windows® NT or AIX® version 4.3 and higher, you can use the NOCONVERT
option and work directly with UCS-2. In such cases, your application should
handle the difference between big-endian and little-endian architectures. With the
NOCONVERT option, DB2 Universal Database uses sqldbchar, which is always
two-byte big-endian.

Programming Client Applications

Do not assign IBM®-eucJP/IBM-eucTW CS0 (7-bit ASCII) and IBM-euc]P CS2
(Katakana) data to graphic host variables either after conversion to UCS-2 (if
NOCONVERT is specified) or by conversion to the wide character format (if
CONVERT is specified). The reason is that characters in both of these EUC code
sets become single-byte when converted from UCS-2 to PC DBCS.

In general, although eucJP and eucTW store GRAPHIC data as UCS-2, the
GRAPHIC data in these databases is still non-ASCII euc]P or eucTW data.
Specifically, any space padded to such GRAPHIC data is DBCS space (also known
as ideographic space in UCS-2, U+3000). For a UCS-2 database, however,
GRAPHIC data can contain any UCS-2 character, and space padding is done with
UCS-2 space, U+0020. Keep this difference in mind when you code applications to
retrieve UCS-2 data from a UCS-2 database versus UCS-2 data from eucJP and
eucTW databases.

Related concepts:
+ [“Japanese and Traditional Chinese EUC and UCS-2 Code Set Considerations” on|

page 614]

SQL Declare Section with Host Variables for C and C++

The following is a sample SQL declare section with host variables declared for
supported SQL data types:

EXEC SQL BEGIN DECLARE SECTION;

short age = 26; /* SQL type 500 =/
short year; /* SQL type 500 */
sqlint32 salary; /* SQL type 496 */
sqlint32 deptno; /* SQL type 496 */
float bonus; /* SQL type 480 */
double wage; /* SQL type 480 =/
char mi; /* SQL type 452 */
char name[6] ; /* SQL type 460 =/
struct {

short len;

char data[24];

} address; /* SQL type 448 */
struct {

short len;

char data[32695];

} voice; /* SQL type 456 */
sql type is clob(1m)

chapter; /* SQL type 408 */
sql type is clob_Tocator

chapter_locator; /* SQL type 964 */
sql type is clob_file

chapter_file_ref; /* SQL type 920 =/
sql type is blob(1m)

video; /* SQL type 404 */
sql type is blob_Tlocator

video_locator; /* SQL type 960 */
sql type is blob_file

video_file ref; /* SQL type 916 =*/
sql type is dbclob(1m)

tokyo_phone_dir; /* SQL type 412 */

sql type is dbclob_locator

tokyo_phone_dir_lctr; /* SQL type 968 x/
sql type is dbclob_file

tokyo_phone_dir_flref; /* SQL type 924 x/

Chapter 6. Programming in C and C++ 161

struct {

short len;
sqldbchar data[100];
} vargraphicl; /* SQL type 464 */
/* Precompiled with
WCHARTYPE NOCONVERT option =/
struct {
short len;
wchar_t data[100];
} vargraphic2; /* SQL type 464 */
/* Precompiled with
WCHARTYPE CONVERT option */
struct {
short len;
sqldbchar data[10000];
} Tong_vargraphicl; /* SQL type 472 */
/* Precompiled with
WCHARTYPE NOCONVERT option =/
struct {
short len;
wchar_t data[10000];
} Tong_vargraphic2; /* SQL type 472 */

/* Precompiled with

WCHARTYPE CONVERT option */
sqldbchar graphicl[100]; /* SQL type 468 */

/* Precompiled with

WCHARTYPE NOCONVERT option x/
wchar_t graphic2[100]; /* SQL type 468 */

/* Precompiled with

WCHARTYPE CONVERT option */

char date[11]; /* SQL type 384 */
char time[9]; /* SQL type 388 */
char timestamp[27]; /* SQL type 392 */
short wage_ind; /* Null indicator */

EXEC SQL END DECLARE SECTION;

Data Type Considerations for C and C++

The sections that follow describe how SQL data types map to C and C++ data
types.

Supported SQL Data Types in C and C++

Certain predefined C and C++ data types correspond to the database manager
column types. Only these C/C++ data types can be declared as host variables.

The following table shows the C/C++ equivalent of each column type. When the
precompiler finds a host variable declaration, it determines the appropriate SQL

type value. The database manager uses this value to convert the data exchanged
between the application and itself.

Note: There is no host variable support for the DATALINK data type in any of the
DB2 host languages.

162 Programming Client Applications

Table 13. SQL Data Types Mapped to C/C++ Declarations

SQL Column Typdd

C/C++ Data Type

SQL Column Type Description

SMALLINT short 16-bit signed integer
(500 or 501) short int
sqlint16
INTEGER long 32-bit signed integer
(496 or 497) long int
sqlir1’c3jZI
BIGINT long long 64-bit signed integer
(492 or 493) long
__int64
sqlint6
REATH float Single-precision floating point
(480 or 481)
DOUBLHY double Double-precision floating point
(480 or 481)
DECIMAL(p,s) No exact equivalent; use double Packed decimal

(484 or 485)

(Consider using the CHAR and DECIMAL
functions to manipulate packed decimal
fields as character data.)

CHAR(1) char Single character
(452 or 453)
CHAR(n) No exact equivalent; use Fixed-length character string

(452 or 453)

char[n+1] where n is large enough

to hold the data

1<=n<=254

VARCHAR(n)
(448 or 449)

struct tag {
short int;
char[n]

}

1<=n<=32 672

Non null-terminated varying character string
with 2-byte string length indicator

Alternatively, use char[n+1] where
n is large enough to hold the data

1<=n<=32 672

Null-terminated variable-length character
string
Note: Assigned an SQL type of 460/461.

LONG VARCHAR
(456 or 457)

struct tag {
short int;
char[n]

}

32 673<=n<=32 700

Non null-terminated varying character string
with 2-byte string length indicator

CLOB(n)
(408 or 409)

sql type is
clob(n)

1<=n<=2 147 483 647

Non null-terminated varying character string
with 4-byte string length indicator

CLOB locator variabldd sql type is Identifies CLOB entities residing on the
(964 or 965) clob_locator server

CLOB file reference variabldd sql type is Descriptor for file containing CLOB data
(920 or 921) clob_file

Chapter 6. Programming in C and C++ 163

Table 13. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Typdd

C/C++ Data Type

SQL Column Type Description

BLOB(n)
(404 or 405)

sql type is
blob(1)

1<=n<=2 147 483 647

Non null-terminated varying binary string
with 4-byte string length indicator

BLOB locator variabldd
(960 or 961)

sql type is
blob_locator

Identifies BLOB entities on the server

BLOB file reference variabldd
(916 or 917)

sql type is
blob_file

Descriptor for the file containing BLOB data

DATE
(384 or 385)

Null-terminated character form

Allow at least 11 characters to accommodate
the null-terminator.

VARCHAR structured form

Allow at least 10 characters.

TIME
(388 or 389)

Null-terminated character form

Allow at least 9 characters to accommodate
the null-terminator.

VARCHAR structured form

Allow at least 8 characters.

TIMESTAMP
(392 or 393)

Null-terminated character form

Allow at least 27 characters to accommodate
the null-terminator.

VARCHAR structured form

Allow at least 26 characters.

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE NOCONVERT option.

GRAPHIC(1) sqldbchar Single double-byte character
(468 or 469)
GRAPHIC(n) No exact equivalent; use Fixed-length double-byte character string

(468 or 469)

sqldbchar[rn+1] where n is large

enough to hold the data

1<=n<=127

VARGRAPHIC(n)
(464 or 465)

struct tag {
short int;
sqldbchar[n]
}

1<=n<=16 336

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Alternatively use sqldbchar[n+1]
where n is large enough to hold

Null-terminated variable-length double-byte
character string

the data Note: Assigned an SQL type of 400/401.
1<=n<=16 336
LONG VARGRAPHIC struct tag { Non null-terminated varying double-byte
(472 or 473) short int; character string with 2-byte string length
sqldbchar[n] indicator

}

16 337<=n<=16 350

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the

WCHARTYPE CONVERT option.

GRAPHIC(1)
(468 or 469)

wchar_t

* Single wide character (for C-type)
* Single double-byte character (for column

type)

164 Programming Client Applications

Table 13. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Typ C/C++ Data Type SQL Column Type Description
GRAPHIC(n) No exact equivalent; use wchar_t Fixed-length double-byte character string
(468 or 469) [n+1] where n is large enough to
hold the data
1<=n<=127
VARGRAPHIC(r) struct tag { Non null-terminated varying double-byte
(464 or 465) short int; character string with 2-byte string length
wchar_t [n] indicator
}
1<=n<=16 336

Alternately use char[n+1] where n Null-terminated variable-length double-byte
is large enough to hold the data character string
Note: Assigned an SQL type of 400/401.

1<=n<=16 336
LONG VARGRAPHIC struct tag { Non null-terminated varying double-byte
(472 or 473) short int; character string with 2-byte string length
wchar_t [n] indicator

}

16 337<=n<=16 350

Note: The following data types are only available in the DBCS or EUC environment.

DBCLOB(1) sql type is Non null-terminated varying double-byte
(412 or 413) dbclob() character string with 4-byte string length
indicator

1<=n<=1 073 741 823
DBCLOB locator variabldd sql type is Identifies DBCLOB entities residing on the
(968 or 969) dbclob_locator server

sql type is Descriptor for file containing DBCLOB data
DBCLOB file reference dbclob_file
variabldd

(924 or 925)

Notes:

1.

The first number under SQL Column Type indicates that an indicator variable is not provided, and the second
number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

For platform compatibility, use sqlint32. On 64-bit UNIX platforms, "long” is a 64 bit integer. On 64-bit Windows
operating systems and 32-bit UNIX platforms "long” is a 32 bit integer.

For platform compatibility, use sqlint64. The DB2 Universal Database sqlsystm.h header file will type define
sqlint64 as "__int64" on the Windows NT platform when using the Microsoft compiler, "long long” on 32-bit
UNIX platforms, and "long” on 64 bit UNIX platforms.

FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

The following SQL types are synonyms for DOUBLE:
* FLOAT

* FLOAT(n) where 24 < n < 54 is

* DOUBLE PRECISION

This is not a column type but a host variable type.

The following are additional rules for supported C/C++ data types:

Chapter 6. Programming in C and C++ 165

* The data type char can be declared as char or unsigned char.

* The database manager processes null-terminated variable-length character string
data type char[n] (data type 460), as VARCHAR(m).

— If LANGLEVEL is SAAI, the host variable length m equals the character
string length n in char[n] or the number of bytes preceding the first
null-terminator (\0), whichever is smaller.

— If LANGLEVEL is MIA, the host variable length m equals the number of
bytes preceding the first null-terminator (\0).

* The database manager processes null-terminated, variable-length graphic string
data type, wchar_t[n] or sqldbchar[n] (data type 400), as VARGRAPHIC(m).

— If LANGLEVEL is SAA1, the host variable length m equals the character
string length n in wchar_t[n] or sqldbchar[n], or the number of characters
preceding the first graphic null-terminator, whichever is smaller.

— If LANGLEVEL is MIA, the host variable length m equals the number of
characters preceding the first graphic null-terminator.

* Unsigned numeric data types are not supported.

e The C/C++ data type int is not allowed because its internal representation is
machine dependent.

Related concepts:
* [“SQL Declare Section with Host Variables for C and C++” on page 161|

FOR BIT DATA in C and C++

The standard C or C++ string type 460 should not be used for columns designated
FOR BIT DATA. The database manager truncates this data type when a null
character is encountered. Use either the VARCHAR (SQL type 448) or CLOB (SQL
type 408) structures.

Related concepts:
* [“SQL Declare Section with Host Variables for C and C++” on page 161|

Related reference:
* |“Supported SQL Data Types in C and C++” on page 162

C and C++ Data Types for Procedures, Functions, and
Methods

The following table lists the supported mappings between SQL data types and C
data types for procedures, UDFs, and methods.

Table 14. SQL Data Types Mapped to C/C++ Declarations

SQL Column Type C/C++ Data Type SQL Column Type Description
SMALLINT short 16-bit signed integer

(500 or 501)

INTEGER sqlint32 32-bit signed integer

(496 or 497)

BIGINT sqlint64 64-bit signed integer

(492 or 493)

REAL float Single-precision floating point

(480 or 481)

166 Programming Client Applications

Table 14. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type

C/C++ Data Type

SQL Column Type Description

DOUBLE double Double-precision floating point
(480 or 481)
DECIMAL(p,s) Not supported. To pass a decimal value, define the parameter to be

(484 or 485)

of a data type castable from DECIMAL (for
example CHAR or DOUBLE) and explicitly cast the
argument to this type.

CHAR(n)
(452 or 453)

char[n+1] where n is large enough to
hold the data

1<=n<=254

Fixed-length, null-terminated character string

CHAR(1) FOR BIT DATA
(452 or 453)

char[n+1] where n is large enough to
hold the data

1<=n<=254

Fixed-length character string

VARCHAR(n)
(448 or 449) (460 or 461)

char[n+1] where n is large enough to
hold the data

Null-terminated varying length string

1<=n<=32 672
VARCHAR(n) FOR BIT DATA struct { Not null-terminated varying length character string
(448 or 449) sqluint16 length;
char[n]
}
1<=n<=32 672
LONG VARCHAR struct { Not null-terminated varying length character string
(456 or 457) sqluint16 length;
char[n]

}

32 673<=n<=32 700

CLOB(n)
(408 or 409)

struct {
sqluint32 length;
char data[n];

}

1<=n<=2 147 483 647

Not null-terminated varying length character string
with 4-byte string length indicator

BLOB(n)
(404 or 405)

struct {
sqluint32 length;
char data[n];

}

1<=n<=2 147 483 647

Not null-terminated varying binary string with
4-byte string length indicator

DATE char[11] Null-terminated character form
(384 or 385)
TIME char[9] Null-terminated character form
(388 or 389)
TIMESTAMP char[27] Null-terminated character form

(392 or 393)

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the WCHARTYPE

NOCONVERT option.

GRAPHIC(n)
(468 or 469)

sqldbchar[n+1] where n is large
enough to hold the data

1<=n<=127

Fixed-length, null-terminated double-byte character
string

VARGRAPHIC(n)
(400 or 401)

sqldbchar[n+1] where n is large
enough to hold the data

1<=n<=16 336

Not null-terminated, variable-length double-byte
character string

Chapter 6. Programming in C and C++ 167

Table 14. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type

C/C++ Data Type SQL Column Type Description

LONG VARGRAPHIC
(472 or 473)

struct { Not null-terminated, variable-length double-byte
sqluint16 length; character string
sqldbchar(#n]

}

16 337<=n<=16 350

DBCLOB(1)
(412 or 413)

struct {
sqluint32 length;
sqldbchar data[n];
}

with 4-byte string length indicator

1<=n<=1073 741 823

SQLSTATE and SQLCODE Variables in C and C++

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6]
sqlint32 SQLCODE;

‘ EXEC SQL END DECLARE SECTION;

If neither of these is specified, the SQLCODE declaration is assumed during the
precompile step. Note that when using this option, the INCLUDE SQLCA
statement should not be specified.

In an application that is made up of multiple source files, the SQLCODE and
SQLSTATE variables may be defined in the first source file as above. Subsequent
source files should modify the definitions as follows:

extern sqlint32 SQLCODE;
extern char SQLSTATE[6] ;

Related concepts:

* [“Return Codes” on page 99|
* |“Error Information in the SQLCODE, SQLSTATE, and SQLWARN Fields” on|

[page 100|

168 Programming Client Applications

Not null-terminated varying length character string

Chapter 7. Multiple-Thread Database Access for C and C++
Applications

Purpose of Multiple-Thread Database Access. . . 169 Troubleshooting Multithreaded Applications . . . 171
Recommendations for Using Multiple Threads . . 170 Potential Problems with Multiple Threads. . . 171
Code Page and Country/Region Code Deadlock Prevention for Multiple Contexts . . 172
Considerations for Multithreaded UNIX

Applications.17

Purpose of Multiple-Thread Database Access

One feature of some operating systems is the ability to run several threads of
execution within a single process. The multiple threads allow an application to
handle asynchronous events, and makes it easier to create event-driven
applications, without resorting to polling schemes. The information that follows
describes how the database manager works with multiple threads, and lists some
design guidelines that you should keep in mind.

If you are not familiar with terms relating to the development of multithreaded
applications (such as critical section and semaphore), consult the programming
documentation for your operating system.

A DB2 application can execute SQL statements from multiple threads using
contexts. A context is the environment from which an application runs all SQL
statements and API calls. All connections, units of work, and other database
resources are associated with a specific context. Each context is associated with one
or more threads within an application.

For each executable SQL statement in a context, the first run-time services call
always tries to obtain a latch. If it is successful, it continues processing. If not
(because an SQL statement in another thread of the same context already has the
latch), the call is blocked on a signaling semaphore until that semaphore is posted,
at which point the call gets the latch and continues processing. The latch is held
until the SQL statement has completed processing, at which time it is released by
the last run-time services call that was generated for that particular SQL statement.

The net result is that each SQL statement within a context is executed as an atomic
unit, even though other threads may also be trying to execute SQL statements at
the same time. This action ensures that internal data structures are not altered by
different threads at the same time. APIs also use the latch used by run-time
services; therefore, APIs have the same restrictions as run-time services routines
within each context.

For DB2® Version 8, all Version 8 applications are multithreaded by default, and
are capable of using multiple contexts. (The behavior of pre-Version 8 applications
remains unchanged.) If you want, you can use the following DB2 APIs to use
multiple contexts. Specifically, your application can create a context for a thread,
attach to or detach from a separate context for each thread, and pass contexts
between threads. If your application does not call any of these APIs, DB2 will
automatically manage the multiple contexts for your application:

* sqleBeginCtx()

* sqleEndCtx()

* sqleAttachToCtx()

© Copyright IBM Corp. 1997 - 2004 169

* sqgleDetachFromCtx ()
* sqleGetCurrentCtx()
e sqlelnterruptCtx()

Contexts may be exchanged between threads in a process, but not exchanged
between processes. One use of multiple contexts is to provide support for

concurrent transactions.

Related concepts:

* |“Concurrent Transactions” on page 633|

Related reference:
* “sqleAttachToCtx - Attach to Context” in the Administrative API Reference

* “sqleBeginCtx - Create and Attach to an Application Context” in the
Administrative API Reference

* “sqleDetachFromCtx - Detach From Context” in the Administrative API Reference

* “sqleEndCtx - Detach and Destroy Application Context” in the Administrative
API Reference

* “sqleGetCurrentCtx - Get Current Context” in the Administrative API Reference
* “sqleInterruptCtx - Interrupt Context” in the Administrative API Reference

Related samples:
* “dbthrds.sqc -- How to use multiple context APIs on UNIX (C)”
* “dbthrds.sqC -- How to use multiple context APIs on UNIX (C++)”

Recommendations for Using Multiple Threads

Follow these guidelines when accessing a database from multiple thread
applications:

¢ Serialize alteration of data structures.

Applications must ensure that user-defined data structures used by SQL
statements and database manager routines are not altered by one thread while
an SQL statement or database manager routine is being processed in another
thread. For example, do not allow a thread to reallocate an SQLDA while it was
being used by an SQL statement in another thread.

* Consider using separate data structures.

It may be easier to give each thread its own user-defined data structures to
avoid having to serialize their usage. This guideline is especially true for the
SQLCA, which is used not only by every executable SQL statement, but also by
all of the database manager routines. There are three alternatives for avoiding
this problem with the SQLCA:

— Use EXEC SQL INCLUDE SQLCA, but add struct sqlca sqlca at the
beginning of any routine that is used by any thread other than the first
thread.

— Place EXEC SQL INCLUDE SQLCA inside each routine that contains SQL,
instead of in the global scope.

— Replace EXEC SQL INCLUDE SQLCA with #include "sqlca.h", then add
"struct sqlca sqlca" at the beginning of any routine that uses SQL.

Note: It is recommended that you do not use the default stack size, but instead
increase the stack size to at least 256 000. DB2® requires a minimum stack

170 Programming Client Applications

size of 256 000 when calling a DB2 function. You must ensure therefore, that
you allocate a total stack size that is large enough for both your application
and the minimum requirements for a DB2 function call.

Code Page and Country/Region Code Considerations for Multithreaded
UNIX Applications

On AIX®, the Solaris Operating Environment, HP-UX, and Silicon Graphics IRIX,
changes have been made to the functions that are used for run-time querying of
the code page and country/region code to be used for a database connection.
These functions are now thread safe, but can create some lock contention (and
resulting performance degradation) in a multithreaded application that uses a large
number of concurrent database connections.

You can use the DB2®_FORCE_NLS_CACHE environment variable to eliminate the
chance of lock contention in multithreaded applications. When
DB2_FORCE_NLS_CACHE is set to TRUE, the code page and country/region code
information is saved the first time a thread accesses it. From that point on, the
cached information will be used for any other thread that requests this
information. By saving this information, lock contention is eliminated, and in
certain situations a performance benefit will be realized.

You should not set DB2_FORCE_NLS_CACHE to TRUE if the application changes
locale settings between connections. If this situation occurs, the original locale
information will be returned even after the locale settings have been changed. In
general, multithreaded applications will not change locale settings, which, ensures
that the application remains thread safe.

Related concepts:

* “DB2 registry and environment variables” in the Administration Guide:
Performance

Troubleshooting Multithreaded Applications

The sections that follow describe problems that can occur with multithreaded
application, and how to avoid them.

Potential Problems with Multiple Threads

An application that uses multiple threads is, understandably, more complex than a
single-threaded application. This extra complexity can potentially lead to some
unexpected problems. When writing a multithreaded application, exercise caution
with the following:
* Database dependencies between two or more contexts.
Each context in an application has its own set of database resources, including
locks on database objects. This characteristic makes it possible for two contexts,
if they are accessing the same database object, to deadlock. The database

manager will detect the deadlock. One of the contexts will receive SQLCODE
-911 and its unit of work will be rolled back.

* Application dependencies between two or more contexts.

Be careful with any programming techniques that establish inter-context
dependencies. Latches, semaphores, and critical sections are examples of
programming techniques that can establish such dependencies. If an application

Chapter 7. Multiple-Thread Database Access for C and C++ Applications 171

172

has two contexts that have both application and database dependencies between
the contexts, it is possible for the application to become deadlocked. If some of
the dependencies are outside of the database manager, the deadlock is not
detected, thus the application gets suspended or hung.

Related concepts:

¢ [“Deadlock Prevention for Multiple Contexts” on page 17
p pag

Deadlock Prevention for Multiple Contexts

Because the database manager cannot detect deadlocks between threads, design
and code your application in a way that will prevent (or at least avoid) deadlocks.

As an example of a deadlock that the database manager would not detect, consider
an application that has two contexts, both of which access a common data
structure. To avoid problems where both contexts change the data structure
simultaneously, the data structure is protected by a semaphore. The contexts look
like this:

context 1

SELECT = FROM TAB1 FOR UPDATE....

UPDATE TAB1 SET....

get semaphore

access data structure

release semaphore
COMMIT

context 2

get semaphore

access data structure
SELECT * FROM TABI...
release semaphore
COMMIT

Suppose the first context successfully executes the SELECT and the UPDATE
statements, while the second context gets the semaphore and accesses the data
structure. The first context now tries to get the semaphore, but it cannot because
the second context is holding the semaphore. The second context now attempts to
read a row from table TAB1, but it stops on a database lock held by the first
context. The application is now in a state where context 1 cannot finish before
context 2 is done and context 2 is waiting for context 1 to finish. The application is
deadlocked, but because the database manager does not know about the
semaphore dependency neither context will be rolled back. The unresolved
dependency leaves the application suspended.

You can avoid the deadlock that would occur for the previous example in several
ways.

* Release all locks held before obtaining the semaphore.
Change the code for context 1 to perform a commit before it gets the semaphore.
* Do not code SQL statements inside a section protected by semaphores.

Change the code for context 2 to release the semaphore before doing the
SELECT.

* Code all SQL statements within semaphores.

Change the code for context 1 to obtain the semaphore before running the
SELECT statement. While this technique will work, it is not highly

recommended because the semaphores will serialize access to the database
manager, which potentially negates the benefits of using multiple threads.

Programming Client Applications

* Set the locktimeout database configuration parameter to a value other than -1.

While a value other than -1 will not prevent the deadlock, it will allow execution
to resume. Context 2 is eventually rolled back because it is unable to obtain the
requested lock. When handling the roll back error, context 2 should release the
semaphore. Once the semaphore has been released, context 1 can continue and
context 2 is free to retry its work.

The techniques for avoiding deadlocks are described in terms of the example, but
you can apply them to all multithreaded applications. In general, treat the database
manager as you would treat any protected resource and you should not run into
problems with multithreaded applications.

Related concepts:

» |“Potential Problems with Multiple Threads” on page 171|

Chapter 7. Multiple-Thread Database Access for C and C++ Applications 173

174 Programming Client Applications

Chapter 8. Programming in COBOL

Programming Considerations for COBOL 175 Syntax for LOB Locator Host Variables in

Language Restrictions in COBOL. 175 coBoOL 185

Multiple-Thread Database Access in COBOL . . 175 Syntax for File Reference Host Varlables in

Input and Output Files for COBOL 175 cosBoL 186

Include Files for COBOL R V(& Host Structure Support in COBOL 186

Embedded SQL Statements in COBOL178 Indicator Tables in COBOL. 188

Host Variables in COBOL180 REDEFINES in COBOL Group Data Items .. 189
Host Variables in COBOL180 SQL Declare Section with Host Variables for
Host Variable Names in COBOL 180 cosBoL o 189
Host Variable Declarations in COBOL 181 Data Type Cons1derat10ns for COBOL19
Syntax for Numeric Host Variables in COBOL 181 Supported SQL Data Types in COBOL 190
Syntax for Fixed-Length Character Host BINARY/COMP-4 COBOL Data Types. . . . 192
Variables in COBOL . . . 182 FOR BIT DATA in COBOL 193
Syntax for Fixed-Length Graphlc Host Varlables SQLSTATE and SQLCODE Variables in COBOL 193

in COBOL
Indicator Variables in

. 183 Japanese or Traditional Chinese EUC, and UCS-2

COBOL 184 Considerations for COBOL.193

Syntax for LOB Host Variables in COBOL .. 184 Object Oriented COBOL.194

Programming Considerations for COBOL

Special host-language programming considerations are discussed in the following
sections. Included is information on language restrictions, host language specific
include files, embedding SQL statements, host variables, and supported data types
for host variables. See the Micro Focus COBOL documentation for information
about embedding SQL statements, language restrictions, and supported data types
for host variables.

Related reference:

* “COBOL samples” in the Application Development Guide: Building and Running
Applications

Language Restrictions in COBOL

All API pointers are 4 bytes long. All integer variables used as value parameters in
API calls must be declared with a USAGE COMP-5 clause.

Multiple-Thread Database Access in COBOL

COBOL does not support multiple-thread database access.

Input and Output Files for COBOL

By default, the input file has an extension of .sqb, but if you use the TARGET
precompile option (TARGET ANSI_COBOL, TARGET IBMCOB, TARGET MFCOB
or TARGET MFCOB16), the input file can have any extension you prefer.

By default, the output file has an extension of .cb1, but you can use the OUTPUT
precompile option to specify a new name and path for the output modified source
file.

© Copyright IBM Corp. 1997 - 2004 175

Include Files for COBOL

176

The host-language-specific include files for COBOL have the file extension .cb1. If
you use the "System /390 host data type support” feature of IBM COBOL compiler,
the DB2 include files for your applications are in the following directory:

$HOME/sq11ib/include/cobol i

If you build the DB2 sample programs with the supplied script files, you must
change the include file path specified in the script files to the cobol_i directory
and not the cobol_a directory.

If you do not use the "System /390 host data type support” feature of the IBM
COBOL compiler, or you use an earlier version of this compiler, the DB2 include
files for your applications are in the following directory:

$HOME/sq11ib/include/cobol_a

The include files that are intended to be used in your applications are described
below.

SQL (sql.cbl) This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines
system constants.

SQLAPREP (sqlaprep.cbl)
This file contains definitions required to write your own
precompiler.

SQLCA (sqlca.cbl)
This file defines the SQL. Communication Area (SQLCA) structure.
The SQLCA contains variables that are used by the database
manager to provide an application with error information about
the execution of SQL statements and API calls.

SQLCA _92 (sqlca_92.cbl)
This file contains a FIPS SQL92 Entry Level compliant version of
the SQL Communications Area (SQLCA) structure. This file should
be included in place of the sqlca.cbl file when writing DB2
applications that conform to the FIPS SQL92 Entry Level standard.
The sqlca_92.ch1 file is automatically included by the DB2
precompiler when the LANGLEVEL precompiler option is set to
SQL92E.

SQLCODES (sqlcodes.cbl)
This file defines constants for the SQLCODE field of the SQLCA
structure.

SQLDA (sqlda.cbl)
This file defines the SQL Descriptor Area (SQLDA) structure. The
SQLDA is used to pass data between an application and the
database manager.

SQLEAU (sqleau.cbl)
This file contains constant and structure definitions required for the
DB2 security audit APIs. If you use these APIs, you need to
include this file in your program. This file also contains constant
and keyword value definitions for fields in the audit trail record.
These definitions can be used by external or vendor audit trail
extract programs.

Programming Client Applications

SQLENYV (sqlenv.cbl)
This file defines language-specific calls for the database
environment APIs, and the structures, constants, and return codes
for those interfaces.

SQLETSD (sqletsd.cbl)
This file defines the Table Space Descriptor structure,
SQLETSDESC, which is passed to the Create Database API,
sqlgcrea.

SQLE819A (sqle819a.cbl)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 500 (EBCDIC International) binary collation. This file is
used by the CREATE DATABASE APL

SQLES819B (sqle819b.cbl)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLES850A (sqle850a.cbl)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International) binary
collation. This file is used by the CREATE DATABASE APL

SQLES50B (sqle850b.cbl)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932A (sqle932a.cbl)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5035 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932B (sqle932b.cbl)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5026 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE APL

SQL1252A (sql1252a.cbl)
If the code page of the database is 1252 (Windows Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International) binary
collation. This file is used by the CREATE DATABASE API.

SQL1252B (sql1252b.cbl)
If the code page of the database is 1252 (Windows Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE APL

Chapter 8. Programming in COBOL 177

SQLMON (sqlmon.cbl)

This file defines language-specific calls for the database system
monitor APIs, and the structures, constants, and return codes for
those interfaces.

SQLMONCT (sqlmonct.cbl)

This file contains constant definitions and local data structure
definitions required to call the Database System Monitor APIs.

SQLSTATE (sqlstate.cbl)

This file defines constants for the SQLSTATE field of the SQLCA
structure.

SQLUTBCQ (sqlutbcq.cbl)

This file defines the Table Space Container Query data structure,
SQLB-TBSCONTQRY-DATA, which is used with the table space
container query APlIs, sqlgstsc, sqlgftcq, and sqlgtcq.

SQLUTBSQ (sqlutbsq.cbl)

This file defines the Table Space Query data structure,
SQLB-TBSQRY-DATA, which is used with the table space query
APIs, sqlgstsq, sqlgftsq, and sqlgtsq.

SQLUTIL (sqlutil.cbl)

This file defines the language-specific calls for the utility APIs, and
the structures, constants, and codes required for those interfaces.

Embedded SQL Statements in COBOL

178

Embedded SQL statements consist of the following three elements:

Element Correct COBOL Syntax
Keyword pair EXEC SQL

Statement string Any valid SQL statement
Statement terminator END-EXEC.

For example:

EXEC SQL SELECT col INTO :hostvar FROM table END-EXEC.

The following rules apply to embedded SQL statements:

Executable SQL statements must be placed in the PROCEDURE DIVISION. The
SQL statements can be preceded by a paragraph name, just as a COBOL
statement.

SQL statements can begin in either Area A (columns 8 through 11) or Area B
(columns 12 through 72).

Start each SQL statement with EXEC SQL and end it with END-EXEC. The SQL
precompiler includes each SQL statement as a comment in the modified source
file.

You must use the SQL statement terminator. If you do not use it, the
precompiler will continue to the next terminator in the application. This may
cause indeterminate errors.

SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed statements.
The format for an SQL comment is a double dash (--), followed by a string of
zero or more characters and terminated by a line end. Do not place SQL

Programming Client Applications

comments after the SQL statement terminator as they will cause compilation
errors because they would appear to be part of the COBOL language.

COBOL comments are allowed almost anywhere within an embedded SQL
statement. The exceptions are:

— Comments are not allowed between EXEC and SQL.

— Comments are not allowed in dynamically executed statements.

SQL statements follow the same line continuation rules as the COBOL language.
However, do not split the EXEC SQL keyword pair between lines.

Do not use the COBOL COPY statement to include files containing SQL
statements. SQL statements are precompiled before the module is compiled. The
precompiler will ignore the COBOL COPY statement. Instead, use the SQL
INCLUDE statement to include these files.

To locate the INCLUDE file, the DB2® COBOL precompiler searches the current
directory first, then the directories specified by the DB2INCLUDE environment
variable. Consider the following examples:

— EXEC SQL INCLUDE payroll END-EXEC.

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the precompiler searches for payrol1.sqb, then payroll.cpy,
then payrol1.cbhl, in each directory in which it looks.

— EXEC SQL INCLUDE 'pay/payroll.cbl' END-EXEC.

If the file name is enclosed in quotation marks, as above, no extension is
added to the name.

If the file name in quotation marks does not contain an absolute path, the
contents of DB2INCLUDE are used to search for the file, prepended to
whatever path is specified in the INCLUDE file name. For example, with DB2
for AIX, if DB2INCLUDE is set to ‘/disk2:myfiles/cobol’, the precompiler
searches for “./pay/payroll.cbl’, then ‘/disk2/pay/payrol1.cbl’, and finally
“./myfiles/cobol/pay/payroll.cbl’. The path where the file is actually found
is displayed in the precompiler messages. On Windows® platforms, substitute
back slashes (\) for the forward slashes in the above example.

Note: The setting of DB2INCLUDE is cached by the DB2 command line
processor. To change the setting of DB2INCLUDE after any CLP
commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile as usual.

To continue a string constant to the next line, column 7 of the continuing line
must contain a '-' and column 12 or beyond must contain a string delimiter.

SQL arithmetic operators must be delimited by blanks.

Full-line COBOL comments can occur anywhere in the program, including
within SQL statements.

Use host variables exactly as declared when referencing host variables in an SQL
statement.

Substitution of white space characters, such as end-of-line and TAB characters,
occurs as follows:

— When they occur outside quotation marks (but inside SQL statements),
end-of-lines and TABs are substituted by a single space.

— When they occur inside quotation marks, the end-of-line characters disappear,
provided the string is continued properly for a COBOL program. TABs are
not modified.

Note that the actual characters used for end-of-line and TAB vary from platform
to platform. For example, Windows-based platforms use Carriage Return/Line
Feed for end-of-line, whereas UNIX®-based systems use just a Line Feed.

Chapter 8. Programming in COBOL 179

Related reference:

* |Appendix A, “Supported SQL Statements,” on page 685|

Host Variables in COBOL

The sections that follow describe how to declare and use host variables in COBOL
programs.

Host Variables in COBOL

Host variables are COBOL language variables that are referenced within SQL
statements. They allow an application to pass input data to the database manager
and receive output data from the database manager. After the application is
precompiled, host variables are used by the compiler as any other COBOL variable.

Related concepts:
+ [“Host Variable Names in COBOL” on page 180
* [“Host Variable Declarations in COBOL” on page 181]

Related reference:

* |“Syntax for Numeric Host Variables in COBOL” on page 181

* |“Syntax for Fixed-Length Character Host Variables in COBOL” on page 182|
* |“Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 183|

* |“Syntax for LOB Host Variables in COBOL” on page 184|

+ [“Syntax for LOB Locator Host Variables in COBOL” on page 185

* [“Syntax for File Reference Host Variables in COBOL” on page 186|

Host Variable Names in COBOL

The SQL precompiler identifies host variables by their declared name. The

following rules apply:

* Specify variable names up to 255 characters in length.

* Begin host variable names with prefixes other than SQL, sq1, DB2®, or db2, which
are reserved for system use.

* FILLER items using the declaration syntaxes described below are permitted in
group host variable declarations, and will be ignored by the precompiler.
However, if you use FILLER more than once within an SQL DECLARE section,
the precompiler fails. You may not include FILLER items in VARCHAR, LONG
VARCHAR, VARGRAPHIC or LONG VARGRAPHIC declarations.

* You can use hyphens in host variable names.

SQL interprets a hyphen enclosed by spaces as a subtraction operator. Use
hyphens without spaces in host variable names.

* The REDEFINES clause is permitted in host variable declarations.

* Level-88 declarations are permitted in the host variable declare section, but are
ignored.

Related concepts:
* [“Host Variable Declarations in COBOL” on page 181]

Related reference:
* |“Syntax for Numeric Host Variables in COBOL” on page 181

180 Programming Client Applications

[‘Syntax for Fixed-Length Character Host Variables in COBOL” on page 182|
* |“Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 183|

* |“Syntax for LOB Host Variables in COBOL” on page 184|

[‘Syntax for LOB Locator Host Variables in COBOL” on page 185|

[‘Syntax for File Reference Host Variables in COBOL” on page 186|

Host Variable Declarations in COBOL

An SQL declare section must be used to identify host variable declarations. This
section alerts the precompiler to any host variables that can be referenced in
subsequent SQL statements.

The COBOL precompiler only recognizes a subset of valid COBOL declarations.

Related tasks:

* “Declaring structured type host variables” in the Application Development Guide:
Programming Server Applications

Related reference:

* [“Syntax for Numeric Host Variables in COBOL” on page 181

* |“Syntax for Fixed-Length Character Host Variables in COBOL” on page 182|
* [“Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 183

* |“Syntax for LOB Host Variables in COBOL” on page 184|

* [“Syntax for LOB Locator Host Variables in COBOL” on page 185

* |“Syntax for File Reference Host Variables in COBOL” on page 186

Syntax for Numeric Host Variables in COBOL

Following is the syntax for numeric host variables.

Syntax for Numeric Host Variables in COBOL

IS
> 01 variable-name PICTURE picture-string >
77 PIC

—>d

Yy

(1) L IS J
VALUE—I_——I—vaZue

COMP-3
ECOMPUTATIONALJ—

IS
LUSAGE_I___I_

COMP-5
COMPUTATIONAL-5—

Notes:
1 An alternative for COMP-3 is PACKED-DECIMAL.

Floating Point

Chapter 8. Programming in COBOL 181

182

(1)

v

01 variable-name COMPUTATIONAL-1

77 L IS COMP-1
USAGE—r——I— (2)
COMPUTATIONAL-2
COMP-2
[O]
VALUE value
Notes:

1 REAL (SQLTYPE 480), Length 4
2 DOUBLE (SQLTYPE 480), Length 8

Numeric Host Variable Considerations:

1. Picture-string must have one of the following forms:

* S9(m)VI(n)

* SY(m)V

* S9(m)
2. Nines may be expanded (for example., "S999" instead of S9(3)")
3. m and n must be positive integers.

Syntax for Fixed-Length Character Host Variables in COBOL

Following is the syntax for character host variables.

Syntax for Character Host Variables in COBOL:

IS
> 01 variable-name PICTURE picture-string >
77 PIC

| 2

T

Variable Length

»»>—01l—variable-name—. »><
]
»»—A49—identifier-1 PICTURE S9(4) >
PIC4

> —>a
|

COMP-5 | L IS J
L [IS] |—COMPUTATIONAL-5—| VALUE—l_——I—vaZue
USAGE

Programming Client Applications

IS
»»>—49—identifier-2 PICTURE picture-string
PIC

v

»
>

Is J
LVALUE—l_——I—vaZue

A\
A

Character Host Variable Consideration:

1.

Picture-string must have the form X(m). Alternatively, X's may be expanded (for
example, "XXX" instead of "X(3)").

m is from 1 to 254 for fixed-length strings.
m is from 1 to 32 700 for variable-length strings.

If m is greater than 32 672, the host variable will be treated as a LONG
VARCHAR string, and its use may be restricted.

Use X and 9 as the picture characters in any PICTURE clause. Other characters
are not allowed.

Variable-length strings consist of a length item and a value item. You can use
acceptable COBOL names for the length item and the string item. However,
refer to the variable-length string by the collective name in SQL statements.

In a CONNECT statement, such as shown below, COBOL character string host
variables dbname and userid will have any trailing blanks removed before
processing:

EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

However, because blanks can be significant in passwords, the p-word host
variable should be declared as a VARCHAR data item, so that your application
can explicitly indicate the significant password length for the CONNECT
statement as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 dbname PIC X(8).
01 userid PIC X(8).
01 p-word.

49 L PIC S9(4) COMP-5.

49 D PIC X(18).
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

MOVE "sample" TO dbname.

MOVE "userid" TO userid.

MOVE "password" TO D OF p-word.

MOVE 8 TO L of p-word.
EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

Syntax for Fixed-Length Graphic Host Variables in COBOL

Following is the syntax for graphic host variables.

Syntax for Graphic Host Variables in COBOL.:

IS
»—[01 variable-name PICTURE picture-string—USAGE——
77 PIC

Chapter 8. Programming in COBOL 183

Y
A

IS
>J_——|—DISPLAY-1 L .
Is J
VALUE—l_——I—vuZue

Variable Length

Y
A

»»—01—variable-name—.

IS
|_ —l 39(4) >

»»—A49—identifier-1 PICTURE
|—PICJ

> e o |

o c | L J '
COMP-5 I
L 1S L computATIONAL-5] VALE—— | vatue
ushoe—— 1|

\/

IS
»»—A9—identifier-2 PICTURE |_ —l picture-string—USAGE
PIC

IS
»J_——I—DISPLAY-I L . >
Is J
VALUE—l_——I—value

A

Graphic Host Variable Considerations:

1. Picture-string must have the form G(m). Alternatively, G's may be expanded (for
example, "GGG" instead of "G(3)").

2. mis from 1 to 127 for fixed-length strings.
3. mis from 1 to 16 350 for variable-length strings.

4. If m is greater than 16 336, the host variable will be treated as a LONG
VARGRAPHIC string, and its use may be restricted.

Indicator Variables in COBOL
Indicator variables should be declared as a PIC S9(4) COMP-5 data type.

Related concepts:
+ [“Indicator Tables in COBOL” on page 18|

Syntax for LOB Host Variables in COBOL

Following is the syntax for declaring large object (LOB) host variables in COBOL.
Syntax for LOB Host Variables in COBOL

BLOB >

»»—01—variable-name SQL TYPE IS
I—USAGEﬁJ i:CLOB—
IS DBCLOB—

184 Programming Client Applications

»—(—length)—.

A\
A

<

o

LOB Host Variable Considerations:
1. For BLOB and CLOB 1 <= lob-length <= 2 147 483 647.
2. For DBCLOB 1 <= lob-length <=1 073 741 823.

3. SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G can be in either uppercase,
lowercase, or mixed.

4. Initialization within the LOB declaration is not permitted.

5. The host variable name prefixes LENGTH and DATA in the precompiler
generated code.

BLOB Example:

Declaring;:
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(2M).

Results in the generation of the following structure:

01 MY-BLOB.
49 MY-BLOB-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-DATA PIC X(2097152).

CLOB Example:

Declaring;:
01 MY-CLOB USAGE IS SQL TYPE IS CLOB(125M).

Results in the generation of the following structure:

01 MY-CLOB.
49 MY-CLOB-LENGTH PIC S9(9) COMP-5.
49 MY-CLOB-DATA PIC X(131072000).

DBCLOB Example:

Declaring;:
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(30000).

Results in the generation of the following structure:
61 MY-DBCLOB.

49 MY-DBCLOB-LENGTH PIC S9(9) COMP-5.
49 MY-DBCLOB-DATA PIC G(30000) DISPLAY-1.

Syntax for LOB Locator Host Variables in COBOL

Following is the syntax for declaring large object (LOB) locator host variables in
COBOL.

Chapter 8. Programming in COBOL 185

186

Syntax for LOB Locator Host Variables in COBOL

»»—01—variable-name SQL TYPE IS——BLOB-LOCATOR———.—— >
L
USAGEﬁJ CLOB-LOCATOR—
IS

DBCLOB-LOCATOR—

LOB Locator Host Variable Considerations:

1. SQL TYPE IS, BLOB-LOCATOR, CLOB-LOCATOR, DBCLOB-LOCATOR can be
either uppercase, lowercase, or mixed.

2. Initialization of locators is not permitted.
BLOB Locator Example (other LOB locator types are similar):

Declaring;:
01 MY-LOCATOR USAGE SQL TYPE IS BLOB-LOCATOR.

Results in the generation of the following declaration:
01 MY-LOCATOR PIC S9(9) COMP-5.

Syntax for File Reference Host Variables in COBOL

Following is the syntax for declaring file reference host variables in COBOL.

Syntax for File Reference Host Variables in COBOL

»»—01—variable-name |_ SQL TYPE IS BLOB-FILE >
USAGEﬁJ ECLOB-FILE?
IS DBCLOB-FILE

* SQL TYPE IS, BLOB-FILE, CLOB-FILE, DBCLOB-FILE can be either uppercase,
lowercase, or mixed.

BLOB File Reference Example (other LOB types are similar):

Declaring:
01 MY-FILE USAGE IS SQL TYPE IS BLOB-FILE.

Results in the generation of the following declaration:

01 MY-FILE.
49 MY-FILE-NAME-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-FILE-OPTIONS PIC S9(9) COMP-5.
49 MY-FILE-NAME PIC X(255).

Host Structure Support in COBOL

The COBOL precompiler supports declarations of group data items in the host
variable declare section. Among other things, this provides a shorthand for
referring to a set of elementary data items in an SQL statement. For example, the
following group data item can be used to access some of the columns in the STAFF
table of the SAMPLE database:

01 staff-record.

05 staff-id pic s9(4) comp-5.
05 staff-name.
49 1 pic s9(4) comp-5.

Programming Client Applications

49 d pic x(9).

05 staff-info.
10 staff-dept pic s9(4) comp-5.
10 staff-job pic x(5).

Group data items in the declare section can have any of the valid host variable
types described above as subordinate data items. This includes all numeric and
character types, as well as all large object types. You can nest group data items up
to 10 levels. Note that you must declare VARCHAR character types with the
subordinate items at level 49, as in the above example. If they are not at level 49,
the VARCHAR is treated as a group data item with two subordinates, and is
subject to the rules of declaring and using group data items. In the example above,
staff-info is a group data item, whereas staff-name is a VARCHAR. The same
principle applies to LONG VARCHAR, VARGRAPHIC, and LONG VARGRAPHIC.
You may declare group data items at any level between 02 and 49.

You can use group data items and their subordinates in four ways:
Method 1.

The entire group may be referenced as a single host variable in an SQL statement:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record
FROM staff WHERE id = 10 END-EXEC.

The precompiler converts the reference to staff-record into a list, separated by
commas, of all the subordinate items declared within staff-record. Each
elementary item is qualified with the group names of all levels to prevent naming
conflicts with other items.This is equivalent to the following method.

Method 2.

The second way of using group data items:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-record.staff-id,
:staff-record.staff-name,
:staff-record.staff-info.staff-dept,
:staff-record.staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Note: The reference to staff-id is qualified with its group name using the prefix
staff-record., and not staff-id of staff-record as in pure COBOL.

Assuming there are no other host variables with the same names as the
subordinates of staff-record, the above statement can also be coded as in method
3, eliminating the explicit group qualification.

Method 3.

Here, subordinate items are referenced in a typical COBOL fashion, without being
qualified to their particular group item:
EXEC SQL SELECT id, name, dept, job

INTO
:staff-id,

Chapter 8. Programming in COBOL 187

188

:staff-name,

:staff-dept,

:staff-job

FROM staff WHERE id = 10 END-EXEC.

As in pure COBOL, this method is acceptable to the precompiler as long as a given
subordinate item can be uniquely identified. If, for example, staff-job occurs in
more than one group, the precompiler issues an error indicating an ambiguous
reference:

SQLOO88BN Host variable "staff-job" is ambiguous.

Method 4.

To resolve the ambiguous reference, you can use partial qualification of the
subordinate item, for example:
EXEC SQL SELECT id, name, dept, job

INTO

:staff-id,

:staff-name,

:staff-info.staff-dept,

:staff-info.staff-job

FROM staff WHERE id = 10 END-EXEC.

Because a reference to a group item alone, as in method 1, is equivalent to a
comma-separated list of its subordinates, there are instances where this type of
reference leads to an error. For example:

EXEC SQL CONNECT TO :staff-record END-EXEC.

Here, the CONNECT statement expects a single character-based host variable. By
giving the staff-record group data item instead, the host variable results in the
following precompile-time error:

SQLOO87N Host variable "staff-record" is a structure used where
structure references are not permitted.

Other uses of group items that cause an SQLO087N to occur include PREPARE,
EXECUTE IMMEDIATE, CALL, indicator variables, and SQLDA references. Groups
with only one subordinate are permitted in such situations, as are references to
individual subordinates, as in methods 2, 3, and 4 above.

Indicator Tables in COBOL

The COBOL precompiler supports the declaration of tables of indicator variables,
which are convenient to use with group data items. They are declared as follows:
01 <indicator-table-name>.
05 <indicator-name> pic s9(4) comp-5
occurs <table-size> times.

For example:
01 staff-indicator-table.
05 staff-indicator pic s9(4) comp-5
occurs 7 times.

This indicator table can be used effectively with the first format of group item
reference above:
EXEC SQL SELECT id, name, dept, job

INTO :staff-record :staff-indicator
FROM staff WHERE id = 10 END-EXEC.

Programming Client Applications

Here, the precompiler detects that staff-indicator was declared as an indicator
table, and expands it into individual indicator references when it processes the
SQL statement. staff-indicator(l) is associated with staff-id of staff-record,
staff-indicator(2) is associated with staff-name of staff-record, and so on.

Note: If there are k more indicator entries in the indicator table than there are
subordinates in the data item (for example, if staff-indicator has 10
entries, making k=6), the k extra entries at the end of the indicator table are
ignored. Likewise, if there are k fewer indicator entries than subordinates,
the last k subordinates in the group item do not have indicators associated
with them. Note that you can refer to individual elements in an indicator table in
an SQL statement.

Related concepts:
+ |“Indicator Variables in COBOL” on page 184|

REDEFINES in COBOL Group Data Items

You can use the REDEFINES clause when declaring host variables. If you declare a
member of a group data item with the REDEFINES clause, and that group data
item is referred to as a whole in an SQL statement, any subordinate items
containing the REDEFINES clause are not expanded. For example:

01 foo.
10 a pic s9(4) comp-5.
10 al redefines a pic x(2).
10 b pic x(10).

Referring to foo in an SQL statement as follows:
. INTO :foo ...

The above statement is equivalent to:
. INTO :foo.a, :foo.b ...

That is, the subordinate item al that is declared with the REDEFINES clause, is not
automatically expanded out in such situations. If al is unambiguous, you can
explicitly refer to a subordinate with a REDEFINES clause in an SQL statement, as
follows:

. INTO :foo.al ...

or
. INTO :al ...

SQL Declare Section with Host Variables for COBOL

The following is a sample SQL declare section with a host variable declared for
each supported SQL data type.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

*

01 age PIC S9(4) COMP-5.

01 divis PIC S9(9) COMP-5.

01 salary PIC S9(6)V9(3) COMP-3.
01 bonus USAGE IS COMP-1.

01 wage USAGE IS COMP-2.

01 nm PIC X(5).

01 varchar.

49 Teng PIC S9(4) COMP-5.

Chapter 8. Programming in COBOL 189

49 strg PIC X(14).
01 Tongvchar.
49 Ten PIC S9(4) COMP-5.
49 str PIC X(6027).
01 MY-CLOB USAGE IS SQL TYPE IS CLOB(1M).
01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-FILE.
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(1M).
01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS BLOB-LOCATOR.
01 MY-BLOB-FILE USAGE IS SQL TYPE IS BLOB-FILE.
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(1M).
01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS DBCLOB-LOCATOR.
01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS DBCLOB-FILE.
01 MY-PICTURE PIC G(16000) USAGE IS DISPLAY-1.
01 dt PIC X(10).
01 tm PIC X(8).
01 tmstmp PIC X(26).
01 wage-ind PIC S9(4) COMP-5.

*

EXEC SQL END DECLARE SECTION END-EXEC.

Related reference:
+ [“Supported SQL Data Types in COBOL” on page 190|

Data Type Considerations for COBOL
The sections that follow describe how SQL data types map to COBOL data types.

Supported SQL Data Types in COBOL

Certain predefined COBOL data types correspond to column types. Only these
COBOL data types can be declared as host variables.

The following table shows the COBOL equivalent of each column type. When the
precompiler finds a host variable declaration, it determines the appropriate SQL
type value. The database manager uses this value to convert the data exchanged
between the application and itself.

Not every possible data description for host variables is recognized. COBOL data
items must be consistent with the ones described in the following table. If you use
other data items, an error can result.

Note: There is no host variable support for the DATALINK data type in any of the
DB2 host languages.

Table 15. SQL Data Types Mapped to COBOL Declarations

SQL Column Type

SQL Column Typ COBOL Data Type Description

SMALLINT 01 name PIC S9(4) COMP-5. 16-bit signed integer

(500 or 501)

INTEGER 01 name PIC S9(9) COMP-5. 32-bit signed integer

(496 or 497)

BIGINT 01 name PIC S9(18) COMP-5. 64-bit signed integer

(492 or 493)

DECIMAL(p,s) 01 name PIC S9(m)V9(11) COMP-3. Packed decimal

(484 or 485)

REAIR 01 name USAGE IS COMP-1. Single-precision floating point

(480 or 481)

190 Programming Client Applications

Table 15. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type.EI

COBOL Data Type

SQL Column Type
Description

DOUBLHEZ 01 name USAGE IS COMP-2. Double-precision floating
(480 or 481) point

CHAR(n) 01 name PIC X(n). Fixed-length character string
(452 or 453)

VARCHAR(n) 01 name. Variable-length character

(448 or 449)

49 length PIC S9(4) COMP-5.
49 name PIC X(n).

1<=n<=32 672

string

LONG VARCHAR
(456 or 457)

01 name.
49 length PIC S9(4) COMP-5.
49 data PIC X(n).

32 673<=n<=32700

Long variable-length character
string

CLOB(n)
(408 or 409)

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(n).

1<=n<=2 147 483 647

Large object variable-length
character string

CLOB locator variabled
(964 or 965)

01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS
CLOB-LOCATOR.

Identifies CLOB entities
residing on the server

CLOB file reference variabldd
(920 or 921)

01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-FILE.

Descriptor for file containing
CLOB data

BLOB(n)
(404 or 405)

01 MY-BLOB USAGE IS SQL TYPE IS BLOB(n).

1<=n<=2 147 483 647

Large object variable-length
binary string

BLOB locator variabldd
(960 or 961)

01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS
BLOB-LOCATOR.

Identifies BLOB entities
residing on the server

BLOB file reference variablé®
(916 or 917)

01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-FILE.

Descriptor for file containing
CLOB data

DATE 01 identifier PIC X(10). 10-byte character string
(384 or 385)

TIME 01 identifier PIC X(8). 8-byte character string
(388 or 389)

TIMESTAMP 01 identifier PIC X(26). 26-byte character string

(392 or 393)

Note: The following data types are only available in the DBCS environment.

GRAPHIC(n) 01 name PIC G(n) DISPLAY-1. Fixed-length double-byte
(468 or 469) character string
VARGRAPHIC(n) 01 name. Variable length double-byte

(464 or 465)

49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

1<=n<=16 336

character string with 2-byte
string length indicator

LONG VARGRAPHIC
(472 or 473)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

16 337<=n<=16 350

Variable length double-byte
character string with 2-byte
string length indicator

DBCLOB(1)
(412 or 413)

01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(n).

1<=n<=1073 741 823

Large object variable-length
double-byte character string
with 4-byte string length
indicator

DBCLOB locator variabld®
(968 or 969)

01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS
DBCLOB-LOCATOR.

Identifies DBCLOB entities
residing on the server

Chapter 8. Programming in COBOL 191

Table 15. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type

SQL Column Typ COBOL Data Type Description

DBCLOB file reference variabldd 01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS Descriptor for file containing
(924 or 925) DBCLOB-FILE. DBCLOB data

Notes:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second number indicates
that an indicator variable is provided. An indicator variable is needed to indicate NULL values, or to hold the length of a
truncated string. These are the values that would appear in the SQLTYPE field of the SQLDA for these data types.

2. FLOAT(n) where 0 < 1 < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is the length
value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
« FLOAT
¢ FLOAT(n) where 24 < n < 54 is
< DOUBLE PRECISION

4. This is not a column type but a host variable type.

The following are additional rules for supported COBOL data types:
* PIC S9 and COMP-3/COMP-5 are required where shown.

* You can use level number 77 instead of 01 for all column types except
VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC and all
LOB variable types.

* Use the following rules when declaring host variables for DECIMAL(p,s) column
types. See the following sample:

01 identifier PIC S9(m)V9(n) COMP-3
— Use V to denote the decimal point.
— Values for n and m must be greater than or equal to 1.
— The value for n + m cannot exceed 31.
— The value for s equals the value for 7.
— The value for p equals the value for n + m.
— The repetition factors (1) and (m) are optional. The following examples are all
valid:
01 identifier PIC S9(3)V COMP-3
01 identifier PIC SV9(3) COMP-3

01 identifier PIC S9V COMP-3
01 identifier PIC SV9 COMP-3

PACKED-DECIMAL can be used instead of COMP-3.
* Arrays are not supported by the COBOL precompiler.

Related concepts:
* |“SQL Declare Section with Host Variables for COBOL” on page 189

BINARY/COMP-4 COBOL Data Types

The DB2® COBOL precompiler supports the use of BINARY, COMP, and COMP-4
data types wherever integer host variables and indicators are permitted, as long as
the target COBOL compiler views (or can be made to view) the BINARY, COMP, or
COMP-4 data types as equivalent to the COMP-5 data type. In this book, such host
variables and indicators are shown with the type COMP-5. Target compilers
supported by DB2 that treat COMP, COMP-4, BINARY COMP and COMP-5 as
equivalent are:

 IBM® COBOL Set for AIX®

¢ Micro Focus COBOL for AIX

192 Programming Client Applications

FOR BIT DATA in COBOL

Certain database columns can be declared FOR BIT DATA. These columns, which
generally contain characters, are used to hold binary information. The CHAR(#n),
VARCHAR, LONG VARCHAR, and BLOB data types are the COBOL host variable
types that can contain binary data. Use these data types when working with
columns with the FOR BIT DATA attribute.

Related reference:
* [“Supported SQL Data Types in COBOL” on page 190|

SQLSTATE and SQLCODE Variables in COBOL

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SQLSTATE PICTURE X(5).
01 SQLCODE PICTURE S9(9) USAGE COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

If neither of these is specified, the SQLCODE declaration is assumed during the
precompile step. The 01 can also be 77 and the PICTURE can be PIC. Note that when
using this option, the INCLUDE SQLCA statement should not be specified.

For applications made up of multiple source files, the SQLCODE and SQLSTATE
declarations may be included in each source file as shown above.

Japanese or Traditional Chinese EUC, and UCS-2 Considerations for
COBOL

Any graphic data sent from your application running under an eucJp or eucTW
code set, or connected to a UCS-2 database, is tagged with the UCS-2 code page
identifier. Your application must convert a graphic-character string to UCS-2 before
sending it to a the database server. Likewise, graphic data retrieved from a UCS-2
database by any application, or from any database by an application running
under an EUC euc]P or eucTW code page, is encoded using UCS-2. This requires
your application to convert from UCS-2 to your application code page internally,
unless the user is to be presented with UCS-2 data.

Your application is responsible for converting to and from UCS-2 because this
conversion must be conducted before the data is copied to, and after it is copied
from, the SQLDA. DB2 Universal Database does not supply any conversion
routines that are accessible to your application. Instead, you must use the system
calls available from your operating system. In the case of a UCS-2 database, you
may also consider using the VARCHAR and VARGRAPHIC scalar functions.

Related concepts:
* |“Japanese and Traditional Chinese EUC and UCS-2 Code Set Considerations” on|

page 614]

Related reference:

Chapter 8. Programming in COBOL 193

* “VARCHAR scalar function” in the SQL Reference, Volume 1
* “VARGRAPHIC scalar function” in the SQL Reference, Volume 1

Object Oriented COBOL

If you are using object oriented COBOL, you must observe the following;:

* SQL statements can only appear in the first program or class in a compile unit.
This restriction exists because the precompiler inserts temporary working data
into the first Working-Storage section it sees.

* In an object oriented COBOL program, every class containing SQL statements
must have a class-level Working-Storage Section, even if it is empty. This section
is used to store data definitions generated by the precompiler.

194 Programming Client Applications

Chapter 9. Programming in FORTRAN

Programming Considerations for FORTRAN . . . 195
Language Restrictions in FORTRAN.19
Call by Reference in FORTRAN 195
Debug and Comment Lines in FORTRAN .. 196

Precompilation Considerations for FORTRAN 196
Multiple-Thread Database Access in FORTRAN 196

Input and Output Files for FORTRAN 196
Include Files.19
Include Files for FORTRAN R .. .19
Include Files in FORTRAN Apphcatlons .. . 198
Embedded SQL Statements in FORTRAN 199
Host Variables in FORTRAN200
Host Variables in FORTRAN200
Host Variable Names in FORTRAN 201
Host Variable Declarations in FORTRAN . . . 201
Syntax for Numeric Host Variables in
FORTRAN20

Syntax for Character Host Variables in

FORTRAN 202
Indicator Variables in FORTRAN e . 203
Syntax for Large Object (LOB) Host Varlables in
FORTRAN 204
Syntax for Large Ob]ect (LOB) Locator Host
Variables in FORTRAN 205
Syntax for File Reference Host Varlables in
FORTRAN 205
SQL Declare Section w1th Host Varlables for
FORTRAN 206
Supported SQL Data Types in FORTRAN .. . 206
Considerations for Multi-Byte Character Sets in
FORTRAN 207
Japanese or Tradltlonal Chmese EUC and UCS 2
Considerations for FORTRAN 208

SQLSTATE and SQLCODE Variables in FORTRAN 208

Programming Considerations for FORTRAN

Special host-language programming considerations are discussed in the following
sections. Included is information on language restrictions, host-language-specific
include files, embedding SQL statements, host variables, and supported data types

for host variables.

Note: FORTRAN support stabilized in DB2 Version 5, and no enhancements for
FORTRAN support are planned for the future. For example, the FORTRAN
precompiler cannot handle SQL object identifiers, such as table names, that
are longer than 18 bytes. To use features introduced to DB2 after Version 5,
such as table names from 19 to 128 bytes long, you must write your
applications in a language other than FORTRAN.

Language Restrictions in FORTRAN

The sections that follow describe the language restrictions for FORTRAN.

Call by Reference in FORTRAN

Some API parameters require addresses rather than values in the call variables.
The database manager provides the GET ADDRESS, DEREFERENCE ADDRESS,
and COPY MEMORY APIs, which simplify your ability to provide these

parameters.

Related reference:

* “sqlgdref - Dereference Address” in the Administrative API Reference
* “sqlgaddr - Get Address” in the Administrative API Reference
* “sqlgmcpy - Copy Memory” in the Administrative API Reference

© Copyright IBM Corp. 1997 - 2004

195

Debug and Comment Lines in FORTRAN

Some FORTRAN compilers treat lines with a 'D' or 'd' in column 1 as conditional
lines. These lines can either be compiled for debugging or treated as comments.
The precompiler will always treat lines with a 'D' or 'd' in column 1 as comments.

Precompilation Considerations for FORTRAN

The following items affect the precompiling process:

e The precompiler allows only digits, blanks, and tab characters within columns
1-5 on continuation lines.

* Hollerith constants are not supported in .sqf source files.

Multiple-Thread Database Access in FORTRAN

FORTRAN does not support multiple-thread database access.

Input and Output Files for FORTRAN

By default, the input file has an extension of .sqf, but if you use the TARGET
precompile option the input file can have any extension you prefer.

By default, the output file has an extension of .f on UNIX®-based platforms, and
.for on Windows®-based platforms; however, you can use the OUTPUT
precompile option to specify a new name and path for the output modified source
file.

Related reference:
* “PRECOMPILE Command” in the Command Reference

Include Files

196

The sections that follow describe include files for FORTRAN.
Include Files for FORTRAN

The host-language-specific include files for FORTRAN have the file extension .f on
UNIX-based platforms, and .for on Windows-based platforms. You can use the
following FORTRAN include files in your applications.

SQL (sql.f) This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines
system constants.

SQLAPREP (sqlaprep.f)
This file contains definitions required to write your own
precompiler.

SQLCA (sqlca_cn.f, sqlca_cs.f)
This file defines the SQL Communication Area (SQLCA) structure.
The SQLCA contains variables that are used by the database
manager to provide an application with error information about
the execution of SQL statements and API calls.

Programming Client Applications

Two SQLCA files are provided for FORTRAN applications. The
default, sqica_cs.f, defines the SQLCA structure in an IBM SQL
compatible format. The sqlca_cn.f file, precompiled with the
SQLCA NONE option, defines the SQLCA structure for better
performance.

SQLCA_92 (sqlca_92.f)
This file contains a FIPS SQL92 Entry Level compliant version of
the SQL Communications Area (SQLCA) structure. This file should
be included in place of either the sqlca_cn.f or the sqlca_cs.f
files when writing DB2 applications that conform to the FIPS
SQL92 Entry Level standard. The sqlca_92.f file is automatically
included by the DB2 precompiler when the LANGLEVEL
precompiler option is set to SQL92E.

SQLCODES (sqlcodes.f)
This file defines constants for the SQLCODE field of the SQLCA
structure.

SQLDA (sqldact.f)
This file defines the SQL Descriptor Area (SQLDA) structure. The
SQLDA is used to pass data between an application and the
database manager.

SQLEAU (sqleau.f)
This file contains constant and structure definitions required for the
DB2 security audit APIs. If you use these APIs, you need to
include this file in your program. This file also contains constant
and keyword value definitions for fields in the audit trail record.
These definitions can be used by external or vendor audit trail
extract programs.

SQLENV (sqlenv.f)
This file defines language-specific calls for the database
environment APIs, and the structures, constants, and return codes
for those interfaces.

SQLES19A (sqle819a.f)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 500 (EBCDIC International) binary collation. This file is
used by the CREATE DATABASE APL

SQLE819B (sqle819b.f)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE APL

SQLES50A (sqle850a.f)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International) binary
collation. This file is used by the CREATE DATABASE API.

SQLE850B (sqle850b.f)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

Chapter 9. Programming in FORTRAN 197

198

SQLE932A (sqle932a.f)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5035 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE APL

SQLEY32B (sqle932b.f)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5026 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQL1252A (sql1252a.f)
If the code page of the database is 1252 (Windows Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International) binary
collation. This file is used by the CREATE DATABASE APL

SQL1252B (sql1252b.f)
If the code page of the database is 1252 (Windows Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLMON (sqlmon.f)
This file defines language-specific calls for the database system
monitor APIs, and the structures, constants, and return codes for
those interfaces.

SQLSTATE (sqlstate.f)
This file defines constants for the SQLSTATE field of the SQLCA
structure.

SQLUTIL (sqlutil.f)
This file defines the language-specific calls for the utility APIs, and
the structures, constants, and codes required for those interfaces.

Related concepts:
* [“Include Files in FORTRAN Applications” on page 198

Include Files in FORTRAN Applications

There are two methods for including files: the EXEC SQL INCLUDE statement and
the FORTRAN INCLUDE statement. The precompiler will ignore FORTRAN
INCLUDE statements, and only process files included with the EXEC SQL
statement.

To locate the INCLUDE file, the DB2® FORTRAN precompiler searches the current
directory first, then the directories specified by the DB2INCLUDE environment
variable. Consider the following examples:

e EXEC SQL INCLUDE payroll

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the precompiler searches for payrol1.sqf, then payroll.f
(payrol1.for on Windows®- based platforms) in each directory in which it looks.

« EXEC SQL INCLUDE 'pay/payroll.f'

Programming Client Applications

If the file name is enclosed in quotation marks, as above, no extension is added
to the name. (For Windows-based platforms, the file would be specified as
"pay\payroll.for'.)

If the file name in quotation marks does not contain an absolute path, then the
contents of DB2INCLUDE are used to search for the file, prepended to whatever
path is specified in the INCLUDE file name. For example, with DB2 for
UNIX®-based platforms, if DB2INCLUDE is set to ‘/disk2:myfiles/fortran’, the
precompiler searches for ‘./pay/payroll.f’, then ‘/disk2/pay/payroll.f’, and
finally ‘. /myfiles/cobol/pay/payroll.f’. The path where the file is actually
found is displayed in the precompiler messages. On Windows-based platforms,
substitute back slashes (\) for the forward slashes, and substitute 'for' for the
'f' extension in the above example.

Note: The setting of DB2INCLUDE is cached by the DB2 command line processor.
To change the setting of DB2INCLUDE after any CLP commands have been
issued, enter the TERMINATE command, then reconnect to the database and
precompile as usual.

Related concepts:

* “DB2 registry and environment variables” in the Administration Guide:
Performance

Related reference:
* |“Include Files for FORTRAN” on page 196}

Embedded SQL Statements in FORTRAN

Embedded SQL statements consist of the following three elements:

Element Correct FORTRAN Syntax

Keyword EXEC SQL

Statement string Any valid SQL statement with blanks as delimiters
Statement terminator End of source line.

The end of the source line serves as the statement terminator. If the line is
continued, the statement terminator is the end of the last continued line.

For example:
EXEC SQL SELECT COL INTO :hostvar FROM TABLE

The following rules apply to embedded SQL statements:
* Code SQL statements between columns 7 and 72 only.
e Use full-line FORTRAN comments, or SQL comments, but do not use the

FORTRAN end-of-line comment '!" character in SQL statements. This comment
character may be used elsewhere, including host variable declarations.

* Use blanks as delimiters when coding embedded SQL statements, even though
FORTRAN statements do not require blanks as delimiters.

* Use only one SQL statement for each FORTRAN source line. Normal FORTRAN
continuation rules apply for statements that require more than one source line.
Do not split the EXEC SQL keyword pair between lines.

* SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed statements.

Chapter 9. Programming in FORTRAN 199

The format for an SQL comment is a double dash (--), followed by a string of
zero or more characters and terminated by a line end.

* FORTRAN comments are allowed almost anywhere within an embedded SQL
statement. The exceptions are:
— Comments are not allowed between EXEC and SQL.
— Comments are not allowed in dynamically executed statements.
— The extension of using ! to code a FORTRAN comment at the end of a line is
not supported within an embedded SQL statement.

* Use exponential notation when specifying a real constant in SQL statements. The
database manager interprets a string of digits with a decimal point in an SQL
statement as a decimal constant, not a real constant.

* Statement numbers are invalid on SQL statements that precede the first
executable FORTRAN statement. If an SQL statement has a statement number
associated with it, the precompiler generates a labeled CONTINUE statement
that directly precedes the SQL statement.

* Use host variables exactly as declared when referencing host variables within an
SQL statement.

* Substitution of white space characters, such as end-of-line and TAB characters,
occurs as follows:

— When they occur outside quotation marks (but inside SQL statements),
end-of-lines and TABs are substituted by a single space.

— When they occur inside quotation marks, the end-of-line characters disappear,
provided the string is continued properly for a FORTRAN program. TABs are
not modified.

Note that the actual characters used for end-of-line and TAB vary from platform
to platform. For example, Windows®-based platforms use the Carriage
Return/Line Feed for end-of-line, whereas UNIX®-based platforms use just a
Line Feed.

Related reference:

* |Appendix A, “Supported SQL Statements,” on page 685|

Host Variables

in FORTRAN

The sections that follow describe how to declare and use host variables in
FORTRAN programs.

Host Variables in FORTRAN

Host variables are FORTRAN language variables that are referenced within SQL
statements. They allow an application to pass input data to the database manager
and receive output data from it. After the application is precompiled, host
variables are used by the compiler as any other FORTRAN variable.

Related concepts:

+ ["Host Variable Names in FORTRAN” on page 201|

+ [“Host Variable Declarations in FORTRAN” on page 201
* [“Indicator Variables in FORTRAN” on page 203|

Related reference:
* |“Syntax for Numeric Host Variables in FORTRAN” on page 202|
* [“Syntax for Character Host Variables in FORTRAN” on page 202|

200 Programming Client Applications

+ [“Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 204|

* |“Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on page|
205

* [“Syntax for File Reference Host Variables in FORTRAN” on page 205

Host Variable Names in FORTRAN

The SQL precompiler identifies host variables by their declared name. The
following suggestions apply:

* Specify variable names up to 255 characters in length.

* Begin host variable names with prefixes other than SQL, sql, DB2®, or db2, which
are reserved for system use.

Related concepts:
» [“Host Variable Declarations in FORTRAN” on page 201

Related reference:

+ [“Syntax for Numeric Host Variables in FORTRAN” on page 202|

+ [“Syntax for Character Host Variables in FORTRAN” on page 202|

+ |“Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 204|

+ [“Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on page|
205

[‘Syntax for File Reference Host Variables in FORTRAN” on page 205

Host Variable Declarations in FORTRAN

An SQL declare section must be used to identify host variable declarations. This
alerts the precompiler to any host variables that can be referenced in subsequent
SQL statements.

The FORTRAN precompiler only recognizes a subset of valid FORTRAN
declarations as valid host variable declarations. These declarations define either
numeric or character variables. A numeric host variable can be used as an input or
output variable for any numeric SQL input or output value. A character host
variable can be used as an input or output variable for any character, date, time or
timestamp SQL input or output value. The programmer must ensure that output
variables are long enough to contain the values that they will receive.

Related tasks:

* “Declaring structured type host variables” in the Application Development Guide:
Programming Server Applications

Related reference:

* |“Syntax for Numeric Host Variables in FORTRAN” on page 202|

* |“Syntax for Character Host Variables in FORTRAN” on page 202

+ |“Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 204|

* |“Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on page|
205

[‘Syntax for File Reference Host Variables in FORTRAN” on page 205|

Chapter 9. Programming in FORTRAN 201

Syntax for Numeric Host Variables in FORTRAN

Following is the syntax for numeric host variables in FORTRAN.
Syntax for Numeric Host Variables in FORTRAN

INTEGER*2 vFvar‘nclme
INTEGER*4———— I— / initial-value / —l
REAL*4
REAL =8
DOUBLE PRECISION—

v
A

Numeric Host Variable Considerations:
1. REAL*8 and DOUBLE PRECISION are equivalent.
2. Use an E rather than a D as the exponent indicator for REAL*8 constants.

Syntax for Character Host Variables in FORTRAN

Following is the syntax for fixed-length character host variables.

Syntax for Character Host Variables in FORTRAN: Fixed

-

Y_varname D
L*nJ |—/ initial-value / Bl

»»—CHARACTER

Following is the syntax for variable-length character host variables.

Variable Length

B

v
A

»»>—SQL TYPE IS VARCHAR—(length)—Y—varname

Character Host Variable Considerations:
1. *n has a maximum value of 254.

2. When length is between 1 and 32 672 inclusive, the host variable has type
VARCHAR(SQLTYPE 448).

3. When length is between 32 673 and 32 700 inclusive, the host variable has type
LONG VARCHAR(SQLTYPE 456).

4. Initialization of VARCHAR and LONG VARCHAR host variables is not
permitted within the declaration.

VARCHAR Example:

Declaring:
sql type is varchar(1000) my_varchar

Results in the generation of the following structure:

202 Programming Client Applications

character my_varchar(1000+2)
integer=2 my_varchar_length
character my_varchar_data(1000)
equivalence(my_varchar(1),

+ my_varchar_length)
equivalence(my_varchar(3),
+ my_varchar_data)

The application may manipulate both my_varchar_length and my_varchar_data; for
example, to set or examine the contents of the host variable. The base name (in this
case, my_varchar), is used in SQL statements to refer to the VARCHAR as a whole.

LONG VARCHAR Example:

Declaring;:
sql type is varchar(10000) my_lvarchar

Results in the generation of the following structure:

character my_Tvarchar(10000+2)
integerx2 my_lvarchar_length
character my_Tvarchar_data(10000)
equivalence(my lvarchar(l),

+ my_lvarchar_length)
equivalence(my_lvarchar(3),
+ my_Tvarchar_data)

The application may manipulate both my_Tlvarchar_length and my_lvarchar_data;
for example, to set or examine the contents of the host variable. The base name (in
this case, my_Tvarchar), is used in SQL statements to refer to the LONG VARCHAR
as a whole.

Note: In a CONNECT statement, such as in the following example, the FORTRAN
character string host variables dbname and userid will have any trailing
blanks removed before processing.

EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

However, because blanks can be significant in passwords, you should
declare host variables for passwords as VARCHAR, and have the length
field set to reflect the actual password length:

EXEC SQL BEGIN DECLARE SECTION
characterx8 dbname, userid
sql type is varchar(18) passwd
EXEC SQL END DECLARE SECTION
character=18 passwd_string
equivalence(passwd_data,passwd_string)
dbname = 'sample'
userid = 'userid'
passwd_Tength= 8
passwd_string = 'password'
EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

Indicator Variables in FORTRAN

Indicator variables should be declared as an INTEGER*2 data type.

Chapter 9. Programming in FORTRAN 203

204

Syntax for Large Object (LOB) Host Variables in FORTRAN

Following is the syntax for declaring large object (LOB) host variables in
FORTRAN.

Syntax for Large Object (LOB) Host Variables in FORTRAN

v
A

»>—SQL TYPE IS BLOB:I—(Zength)—Y-variable-name
CLOB

<
|

<

[<p}

LOB Host Variable Considerations:
1. GRAPHIC types are not supported in FORTRAN.

2. SQL TYPE IS, BLOB, CLOB, K, M, G can be in either uppercase, lowercase, or
mixed.

3. For BLOB and CLOB 1 <= lob-length <= 2 147 483 647.
4. The initialization of a LOB within a LOB declaration is not permitted.

5. The host variable name prefixes ‘length” and 'data’ in the precompiler
generated code.

BLOB Example:

Declaring:
sql type is blob(2m) my blob

Results in the generation of the following structure:
character my_blob(2097152+4)
integer*4 my_blob_Tength
character my_blob_data(2097152)
equivalence(my blob(1),

+ my_blob_Tlength)
equivalence(my_blob(5),
+ my_blob_data)

CLOB Example:

Declaring;:
sql type is clob(125m) my_clob

Results in the generation of the following structure:
character my_clob(131072000+4)
integerx4 my_clob_Tength
character my_clob_data(131072000)
equivalence(my_clob(1),

+ my_clob_Tlength)
equivalence(my_clob(5),
+ my clob_data)

Programming Client Applications

Syntax for Large Object (LOB) Locator Host Variables in
FORTRAN

Following is the syntax for declaring large object (LOB) locator host variables in
FORTRAN.

Syntax for Large Object (LOB) Locator Host Variables

s

»»—SQL TYPE IS BLOB_LOCATOR Y _variable-name >
[CLOB_LOCATOR

LOB Locator Host Variable Considerations:
1. GRAPHIC types are not supported in FORTRAN.

2. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR can be either uppercase,
lowercase, or mixed.

3. Initialization of locators is not permitted.
CLOB Locator Example (BLOB locator is similar):

Declaring;:
SQL TYPE IS CLOB_LOCATOR my_Tocator

Results in the generation of the following declaration:
integer*4 my Tocator

Syntax for File Reference Host Variables in FORTRAN

Following is the syntax for declaring file reference host variables in FORTRAN.

Syntax for File Reference Host Variables in FORTRAN

B

»—SQL TYPE IS—EBLOB_FILE Y variable-name ><
CLOB_FILE

File Reference Host Variable Considerations:
1. Graphic types are not supported in FORTRAN.

2. SQL TYPE IS, BLOB_FILE, CLOB_FILE can be either uppercase, lowercase, or
mixed.

Example of a BLOB file reference variable (CLOB file reference variable is
similar):
SQL TYPE IS BLOB_FILE my file

Results in the generation of the following declaration:
character my_file(267)

integerx4 my_file name_length
integer=4 my_file_data_length
integer=4 my_file_file_options

character*255 my_ file_name
equivalence(my file(1),

Chapter 9. Programming in FORTRAN 205

+ my_file_name_length)

equivalence(my _file(5),

+ my file data_Tlength)

equivalence(my _file(9),

+ my file_file options)

equivalence(my file(13),
+ my_file_name)

SQL Declare Section with Host Variables for FORTRAN

The following is a sample SQL declare section with a host variable declared for

each supported data type:

EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 AGE /26/
INTEGER*4 DEPT
REAL*4 BONUS
REAL*8 SALARY
CHARACTER MI
CHARACTER=112 ADDRESS

SQL TYPE IS VARCHAR (512) DESCRIPTION
SQL TYPE IS VARCHAR (32000) COMMENTS
SQL TYPE IS CLOB (1M) CHAPTER

SQL TYPE IS CLOB_LOCATOR CHAPLOC

SQL TYPE IS CLOB_FILE CHAPFL

SQL TYPE IS BLOB (1M) VIDEO

SQL TYPE IS BLOB_LOCATOR VIDLOC

SQL TYPE IS BLOB_FILE VIDFL
CHARACTER*10 DATE
CHARACTER#8 TIME
CHARACTER*26 ~ TIMESTAMP
INTEGER*2 WAGE_IND

EXEC SQL END DECLARE SECTION

Related reference:

* [“Supported SQL Data Types in FORTRAN” on page 206

Supported SQL Data Types in FORTRAN

Certain predefined FORTRAN data types correspond to database manager column
types. Only these FORTRAN data types can be declared as host variables.

The following table shows the FORTRAN equivalent of each column type. When
the precompiler finds a host variable declaration, it determines the appropriate
SQL type value. The database manager uses this value to convert the data
exchanged between the application and itself.

Note: There is no host variable support for the DATALINK data type in any of the

DB2 host languages.
Table 16. SQL Data Types Mapped to FORTRAN Declarations

SQL Column Typ FORTRAN Data Type

SQL Column Type Description

SMALLINT INTEGER*2 16-bit, signed integer

(500 or 501)

INTEGER INTEGER*4 32-bit, signed integer

(496 or 497)

REAIR REAL*4 Single precision floating point
(480 or 481)

DOUBLH REAL*8 Double precision floating point

(480 or 481)

206 Programming Client Applications

Table 16. SQL Data Types Mapped to FORTRAN Declarations (continued)

SQL Column Typ

FORTRAN Data Type

SQL Column Type Description

DECIMAL(p,s) No exact equivalent; use REAL*8 Packed decimal

(484 or 485)

CHAR(n) CHARACTER*n Fixed-length character string of length n where n is
(452 or 453) from 1 to 254

VARCHAR(n) SQL TYPE IS VARCHAR(n) where n is Variable-length character string

(448 or 449)

from 1 to 32 672

LONG VARCHAR
(456 or 457)

SQL TYPE IS VARCHAR(n) where n is

from 32 673 to 32 700

Long variable-length character string

CLOB(n)
(408 or 409)

SQL TYPE IS CLOB (n) where 7 is
from 1 to 2 147 483 647

Large object variable-length character string

CLOB locator variabled
(964 or 965)

SQL TYPE IS CLOB_LOCATOR

Identifies CLOB entities residing on the server

CLOB file reference variabld®
(920 or 921)

SQL TYPE IS CLOB_FILE

Descriptor for file containing CLOB data

BLOB(1)
(404 or 405)

SQL TYPE IS BLOB(n) where n is
from 1 to 2 147 483 647

Large object variable-length binary string

BLOB locator variabldd
(960 or 961)

SQL TYPE IS BLOB_LOCATOR

Identifies BLOB entities on the server

BLOB file reference variabldl
(916 or 917)

SQL TYPE IS BLOB_FILE

Descriptor for the file containing BLOB data

DATE CHARACTER*10 10-byte character string
(384 or 385)

TIME CHARACTER*8 8-byte character string
(388 or 389)

TIMESTAMP CHARACTER*26 26-byte character string

(392 or 393)

Notes:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second number
indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values, or to hold the length
of a truncated string. These are the values that would appear in the SQLTYPE field of the SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is the length

value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:

* FLOAT

e FLOAT(n) where 24 < n < 54 is

* DOUBLE PRECISION

4. This is not a column type but a host variable type.

The following is an additional rule for supported FORTRAN data types:

* You may define dynamic SQL statements longer than 254 characters by using

Related concepts:
* |“SQL Declare Section with Host Variables for FORTRAN” on page 206|

VARCHAR, LONG VARCHAR, OR CLOB host variables.

Considerations for Multi-Byte Character Sets in FORTRAN

There are no graphic (multi-byte) host variable data types supported in FORTRAN.
Only mixed-character host variables are supported through the character data
type. It is possible to create a user SQLDA that contains graphic data.

Chapter 9. Programming in FORTRAN 207

Japanese or Traditional Chinese EUC, and UCS-2 Considerations for

FORTRAN

Any graphic data sent from your application running under an eucJp or eucTW
code set, or connected to a UCS-2 database, is tagged with the UCS-2 code page
identifier. Your application must convert a graphic-character string to UCS-2 before
sending it to a the database server. Likewise, graphic data retrieved from a UCS-2
database by any application, or from any database by an application running
under an EUC eucJP or eucTW code page, is encoded using UCS-2. This requires
your application to convert from UCS-2 to your application code page internally,
unless the user is to be presented with UCS-2 data.

Your application is responsible for converting to and from UCS-2 because this
conversion must be conducted before the data is copied to, and after it is copied
from, the SQLDA. DB2 Universal Database does not supply any conversion
routines that are accessible to your application. Instead, you must use the system
calls available from your operating system. In the case of a UCS-2 database, you
may also consider using the VARCHAR and VARGRAPHIC scalar functions.

Related concepts:
+ [“Japanese and Traditional Chinese EUC and UCS-2 Code Set Considerations” on|

page 614|

Related reference:
* “VARCHAR scalar function” in the SQL Reference, Volume 1
* “VARGRAPHIC scalar function” in the SQL Reference, Volume 1

SQLSTATE and SQLCODE Variables in FORTRAN

208

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION;
CHARACTER=5 SQLSTATE
INTEGER SQLCOD

EXEC SQL END DECLARE SECTION

If neither of these is specified, the SQLCOD declaration is assumed during the
precompile step. The variable named SQLSTATE may also be SQLSTA. Note that when
using this option, the INCLUDE SQLCA statement should not be specified.

For applications that contain multiple source files, the declarations of SQLCOD and
SQLSTATE may be included in each source file, as shown above.

Related reference:
* “PRECOMPILE Command” in the Command Reference

Programming Client Applications

Part 3. ADO.NET, OLE DB, and ODBC

© Copyright IBM Corp. 1997 - 2004 209

210 Programming Client Applications

Chapter 10. DB2 .NET Data Provider

DB2 .NET Data Provider overview . . . o211 | Reading result sets from an application using
DB2 .NET Data Provider system requlrements LoL21m | the DB2 .NET Data Provider 213
Programming applications to use the DB2 .NET [Calling stored procedures from an apphcatlon
Data Provider . . L2120 | using the DB2 .NET Data Provider 214
Connecting to a database from an apphcatlon Supported SQL data types for the DB2 .NET
using the DB2 .NET Data Provider 212 Data Provider 0215
Executing SQL statements from an application
using the DB2 .NET Data Provider 212

DB2 .NET Data Provider overview

The DB2® .NET Data Provider is an extension of the ADO.NET interface that
allows .NET applications to access a DB2 database through a secure connection,
execute commands, and retrieve result sets.

Reference documentation is included with the DB2 .NET Data Provider, presenting
detailed information about all the DB2 .NET Data Provider objects and their
members. During the DB2 installation process, this documentation is registered
with Microsoft® Visual Studio .NET. To view the DB2 .NET Data Provider
documentation from Microsoft Visual Studio .NET, select the Help menu option,
and Contents. Once the help viewer opens, filter by IBM® DB2 .NET Data Provider
Help.

DB2 .NET Data Provider system requirements

The DB2® .NET Data Provider allows your .NET applications to access the
following database management systems:

+ DB2 Universal Database’ " Version 8 for Windows®, UNIX®, and Linux-based
computers

+ DB2 Universal Database Version 6 (or later) for OS/390% and z/0S™, through
DB2 Connect™

+ DB2 Universal Database Version 5, Release 1 (or later) for AS/400® and iSeries™,
through DB2 Connect

* DB2 Universal Database Version 7.3 (or later) for VSE & VM, through DB2
Connect

Before using the DB2 Install program to install the DB2 .NET Data Provider, you
must already have the NET Framework (Version 1.0 or Version 1.1) installed on
the computer. If the NET Framework is not installed, the DB2 Install program will
not install the DB2 .NET Data Provider.

For DB2 Universal Database for AS/400 and iSeries, the following fix is required
on the server: APAR ii13348.

Only the .NET Framework Version 1.1 and Visual Studio .NET 2003 are supported
for use with DB2 for VSE & VM, and DB2 for iSeries servers. The .NET Framework
Version 1.0 and Visual Studio .NET 2002 are not supported for use with these
servers.

© Copyright IBM Corp. 1997 - 2004 211

Programming applications to use the DB2 .NET Data Provider

212

The following sections describe the main steps in programming a .NET application
to access or manipulate data in a DB2 database. Examples in C# and Visual Basic
NET are provided to illustrate each step.

Connecting to a database from an application using the DB2
.NET Data Provider

When using the DB2 .NET Data Provider, a database connection is established
through the DB2Connection class. First, you must create a string that stores the
connection parameters.

Examples of possible connection strings are:
¢ String connectString = "Database=SAMPLE";
// When used, attempts to connect to the SAMPLE database.
* String connectString = "Server=srv:50000;Database=SAMPLE;UID=db2adm;PWD=ablcd";
// When used, attempts to connect to the SAMPLE database on the server
// 'srv' through port 50000 using 'db2adm' and 'ablcd' as the user id and
// password respectively.

To create the database connection, pass the connectString to the DB2Connection
constructor. Then use the DB2Connection object’s Open method to formally connect
to the database identified in connectString.

Connecting to a database in C#:

String connectString = "Database=SAMPLE";
DB2Connection conn = new DB2Connection(connectString);
conn.Open();

return conn;

Connecting to a database in Visual Basic .NET:

Dim connectString As String = "Database=SAMPLE"

Dim conn As DB2Connection = new DB2Connection(connectString)
conn.Open()

Return conn

Executing SQL statements from an application using the DB2
.NET Data Provider

When using the DB2 .NET Data Provider, the execution of SQL statements is done
through a DB2Command class using its methods ExecuteReader() and
ExecuteNonQuery (), and its properties CommandText, CommandType and Transaction.
For SQL statements that produce output, the ExecuteReader() method should be
used and its results can be retrieved from a DB2DataReader object. For all other SQL
statements, the method ExecuteNonQuery () should be used. The Transaction
property of the DB2Command object should be initialized to a DB2Transaction. A
DB2Transaction object is responsible for rolling back and committing database
transactions.

Executing an UPDATE statement in C#:

// assume a DB2Connection conn
DB2Command cmd = conn.CreateCommand();
DB2Transaction trans = conn.BeginTransaction();
cmd.Transaction = trans;
cmd.CommandText = "UPDATE staff " +
" SET salary = (SELECT MIN(salary) " +

Programming Client Applications

" FROM staff " +
" WHERE id >= 310) " +
" WHERE id = 310";
cmd . ExecuteNonQuery () ;

Executing an UPDATE statement in Visual Basic .NET:

' assume a DB2Connection conn

DB2Command cmd = conn.CreateCommand();

DB2Transaction trans = conn.BeginTransaction();

cmd.Transaction = trans;

cmd.CommandText = "UPDATE staff " +
" SET salary = (SELECT MIN(salary) " +
" FROM staff " +
n WHERE id >= 310) " +
" WHERE id = 310";

cmd . ExecuteNonQuery () ;

Executing a SELECT statement in C#:

// assume a DB2Connection conn
DB2Command cmd = conn.CreateCommand();
DB2Transaction trans = conn.BeginTransaction();
cmd.Transaction = trans;
cmd. CommandText = "SELECT deptnumb, Tocation " +
" FROM org " +
" WHERE deptnumb < 25";
DB2DataReader reader = cmd.ExecuteReader();

Executing a SELECT statement in Visual Basic .NET:

assume a DB2Connection conn

Dim cmd As DB2Command = conn.CreateCommand ()

Dim trans As DB2Transaction = conn.BeginTransaction()

cmd.Transaction = trans

cmd.CommandText = "UPDATE staff " +
" SET salary = (SELECT MIN(salary) " +
" FROM staff " +
" WHERE id >= 310) " +
" WHERE id = 310"

cmd . ExecuteNonQuery ()

Once your application has performed a database transaction, you must either roll it
back or commit it. This is done through the Commit () and Rollback() methods of a
DB2Transaction object.

Rolling back or committing a transaction in C#:
// assume a DB2Transaction object conn
trans.Rollback();

trans.Commit();

Rolling back or committing a transaction in C#:

assume a DB2Transaction object conn
trans.Rollback()

trans.Commit()

Reading result sets from an application using the DB2 .NET
Data Provider

When using the DB2 .NET Data Provider, the reading of result sets is done through
a DB2DataReader object. The DB2DataReader method, Read() is used to advance to
the next row of result set. The methods GetString(), GetInt32(), GetDecimal(),

Chapter 10. DB2 .NET Data Provider 213

214

and other methods for all the available data types are used to extract data from the
individual columns of output. DB2DataReader’s Close() method is used to close the
DB2DataReader, which should always be done when finished reading output.

Reading a result set in C#:

// assume a DB2DataReader reader
Intl6 deptnum = 0;
String Tocation="";

// Output the results of the query
while(reader.Read())
{

deptnum = reader.GetInt16(0);

location = reader.GetString(1);

Console.WriteLine(" " + deptnum + " " + Tocation);
}

reader.Close();

Reading a result set in Visual Basic .NET:

assume a DB2DataReader reader
Dim deptnum As Intlée = 0
Dim location As String ""

' Output the results of the query
Do While (reader.Read())
deptnum = reader.GetInt16(0)
location = reader.GetString(1)
Console.WriteLine(" " & deptnum & " " & location)
Loop
reader.Close();

Calling stored procedures from an application using the DB2
.NET Data Provider

When using the DB2 .NET Data Provider, you can call stored procedures by using
a DB2Command object. The default value of the CommandType property is
CommandType.Text. This is the appropriate value for SQL statements and can also
be used to call stored procedures. However, calling stored procedures is easier
when you set CommandType to CommandType.StoredProcedure. In this case, you only
need to specify the stored procedure name and any parameters.

The following examples demonstrates how to invoke a stored procedure called
INOUT_PARAM, with the CommandType property set to either
CommandType.StoredProcedure or CommandType.Text.

Calling a stored procedure by setting the CommandType property of the DB2Command
to CommandType.StoredProcedure in C#:

// assume a DB2Connection comm

DB2Transaction trans = conn.BeginTransaction();
DB2Command cmd = conn.CreateCommand();

String procName = "INOUT_PARAM";

cmd.Transaction = trans;
cmd. CommandType = CommandType.StoredProcedure;
cmd.CommandText = procName;

// Register input-output and output parameters for the DB2Command

// Call the stored procedure
Console.WriteLine(" Call stored procedure named " + procName);
cmd . ExecuteNonQuery () ;

Programming Client Applications

Calling a stored procedure by setting the CommandType property of the
DB2Command to CommandType.Text in C#:

// assume a DB2Connection comm

DB2Transaction trans = conn.BeginTransaction();
DB2Command cmd = conn.CreateCommand();

String procName "INOUT_PARAM";

String procCall "CALL INOUT_PARAM (?, 7, 7)";

cmd.Transaction = trans;
cmd.CommandType = CommandType.Text;
cmd. CommandText = procCall;

// Register input-output and output parameters for the DB2Command

// Call the stored procedure
Console.WriteLine(" Call stored procedure named " + procName);
cmd . ExecuteNonQuery () ;

Calling a stored procedure by setting the CommandType property of the
DB2Command to CommandType.StoredProcedure in Visual Basic .NET:

' assume a DB2DataReader reader

Dim trans As DB2Transaction = conn.BeginTransaction()
Dim cmd As DB2Command = conn.CreateCommand()

Dim procName As String = "INOUT_PARAM"
cmd.Transaction = trans

cmd. CommandType = CommandType.StoredProcedure

cmd. CommandText = procName

' Register input-output and output parameters for the DB2Command

' Call the stored procedure
Console.WriteLine(" Call stored procedure named " & procName)
cmd . ExecuteNonQuery ()

Calling a stored procedure by setting the CommandType property of the
DB2Command to CommandType.Text in Visual Basic .NET:

' assume a DB2DataReader reader

Dim trans As DB2Transaction = conn.BeginTransaction()
Dim cmd As DB2Command = conn.CreateCommand ()

Dim procName As String = "INOUT_PARAM"

Dim procCall As String = "CALL INOUT_PARAM (?, ?, ?)"
cmd.Transaction = trans

cmd. CommandType = CommandType.Text

cmd. CommandText = procCall

' Register input-output and output parameters for the DB2Command

' Call the stored procedure
Console.WriteLine(" Call stored procedure named " & procName)
cmd . ExecuteNonQuery ()

Supported SQL data types for the DB2 .NET Data Provider

The following table lists the mappings between the DB2Type data types in the DB2
.NET Data Provider, the DB2 data type, and the corresponding .NET Framework

data type:

Chapter 10. DB2 .NET Data Provider

215

Table 17. Mapping DB2 Data Types to .NET data types

DB2Type Enum DB2 Data Type .NET Data Type
Smalllnt SMALLINT Intl6
Integer INTEGER Int32
Biglnt BIGINT Int64
Real REAL Single
Double DOUBLE PRECISION Double
Float FLOAT Double
Decimal DECIMAL Decimal
Numeric DECIMAL Decimal
Date DATE DateTime
Time TIME TimeSpan
Timestamp TIMESTAMP DateTime
Char CHAR String
VarChar VARCHAR String
LongVarChar(1) LONG VARCHAR String
Binary CHAR FOR BIT DATA Byte[]
VarBinary VARCHAR FOR BIT DATA Byte[]

LONG VARCHAR FOR BIT
LongVarBinary(1) DATA Byte[]
Graphic GRAPHIC String
VarGraphic VARGRAPHIC String
LongVarGraphic(1) LONG GRAPHIC String
Clob CLOB String
Blob BLOB Byte[]
DbClob DBCLOB(N) String
Notes:

1. These data types are not supported in DB2 .NET common language runtime
routines. They are only supported in client applications.

Note: The dbinfo structure is passed into CLR functions and procedures as a
parameter. The scratchpad and call type for CLR UDFs are also passed into
CLR routines as parameters. For information about the appropriate CLR
data types for these parameters, see the related topic:

+ [Parameters in CLR routines|

Related concepts:

* “Parameter styles for external routines” in the Application Development Guide:
Programming Server Applications

¢ “Common language runtime (CLR) routines” in the Application Development
Guide: Programming Server Applications

* “Parameters in CLR routines” in the Application Development Guide: Programming
Server Applications

Related tasks:

216 Programming Client Applications

“Passing structured type parameters to external routines” in the Application
Development Guide: Programming Server Applications

“Creating CLR routines” in the Application Development Guide: Programming Server
Applications

“Examples of CLR user-defined functions in C#” in the Application Development
Guide: Programming Server Applications

“Examples of CLR procedures in C#” in the Application Development Guide:
Programming Server Applications

Related samples:

“SpCreate.db2 -- Creates the external procedures implemented in spserver.cs”

“SpServer.cs -- C# external code implementation of procedures created in
spcat.db2”

“SpCreate.db2 -- Creates the external procedures implemented in spserver.vb”
“SpServer.vb -- VB.NET implementation of procedures created in SpCat.db2”

Chapter 10. DB2 .NET Data Provider 217

218 Programming Client Applications

Chapter 11. IBM OLE DB Provider for DB2

Purpose of the IBM OLE DB Provider for DB2 . . 219 IBM OLE DB Provider support for OLE DB

Application Types Supported by the IBM OLE DB properties . . . 230

Provider for DB2 220 Connections to Data Sources Usmg IBM OLE DB

OLE DB Services 220 Provider . . . o0 232
Thread Model Supported by IBM OLE DB ADO Apphcatlons .o 233
Provider 220 ADO Connection String Keywords o . 233
Large Object Manrpulatron w1th the IBM OLE Connections to Data Sources with Visual Basrc
DB Provider. . . . 220 ADO Applications. 234
Schema Rowsets Supported by the IBM OLE DB Updatable Scrollable Cursors in ADO
Provider 221 Applications. 0234
OLE DB Services Automatrcally Enabled by IBM Limitations for ADO Apphcatrons ... 234
OLE DB Providero .. 222 IBM OLE DB Provider Support for ADO

Data Services . . . 223 Methods and Properties 234
Supported Cursor Modes for the IBM OLE DB C and C++ Applications. 238
Provider 223 Compilation and Linking of C / C++
Data Type Mapplngs between DB2 and OLE DB 223 Applications and the IBM OLE DB Provider . . 238
Data Conversion for Setting Data from OLE DB Connections to Data Sources in C/C++
Types to DB2 Types 224 Applications using the IBM OLE DB Provider . 238
Data Conversion for Setting Data from DB2 MTS and COM+ Distributed Transactions 239
Types to OLE DB Types.226 MTS and COM+ Distributed Transaction

IBM OLE DB Provider Restrictions . . L. 227 Support and the IBM OLE DB Provider . . . 239

IBM OLE DB Provider Support for OLE DB Enablement of MTS Support in DB2 Universal

Components and Interfaces. . . Lo 227 Database for C/C++ Applications 239

Purpose of the IBM OLE DB Provider for DB2

Microsoft® OLE DB is a set of OLE/COM interfaces that provides applications
with uniform access to data stored in diverse information sources. The OLE DB
architecture defines OLE DB consumers and OLE DB providers. An OLE DB
consumer is any system or application that uses OLE DB interfaces; an OLE DB
provider is a component that exposes OLE DB interfaces.

The IBM® OLE DB Provider for DB2® allows DB2 to act as a resource manager for
the OLE DB provider. This support gives OLE DB-based applications the ability to
extract or query DB2 data using the OLE interface. The IBM OLE DB Provider for
DB2, whose provider name is IBMDADB2, enables OLE DB consumers to access
data on a DB2 Universal Database’" server. If DB2 Connect™" is installed, these OLE
DB consumers can also access data on a host DBMS such as DB2 for MVS™, DB2
for VM/VSE, or SQL/400.

The IBM OLE DB Provider for DB2 offers the following features:

* Support level 0 of the OLE DB provider specification, including some additional
level 1 interfaces.

* A free threaded provider implementation, which enables the application to
create components in one thread and use those components in any other thread.

* An Error Lookup Service that returns DB2 error messages.

Note that the IBM OLE DB Provider resides on the client and is different from the
OLE DB table functions, which are also supported by DB2 UDB.

Subsequent sections of this document describe the specific implementation of the
IBM OLE DB Provider for DB2. For more information on the Microsoft OLE DB 2.0

© Copyright IBM Corp. 1997 - 2004 219

specification, refer to the Microsoft OLE DB 2.0 Programmer’s Reference and Data
Access SDK, available from Microsoft Press.

Version Compliance:

The IBM OLE DB Provider for DB2 complies with Version 2.7 of the Microsoft OLE
DB specification.

System Requirements:

Refer to the announcement letter for the IBM OLE DB Provider for DB2 Servers to
see the supported Windows® operating systems.

To install the IBM OLE DB Provider for DB2, you must first be running on one of
the supported operating systems listed above. You also need to install the DB2
Application Development Client, as well as the Microsoft Data Access Components
(MDAC) Version 2.7 or higher, which was available at the time of writing from the
following site: http://www.microsoft.com/data.

Related reference:
+ |“IBM OLE DB Provider Support for OLE DB Components and Interfaces” onl|

page 222|

Application Types Supported by the IBM OLE DB Provider for DB2

With the IBM® OLE DB Provider for DB2®, you can create the following types of
applications:

* ADO applications, including;:
— Microsoft® Visual Studio C++ applications
— Microsoft Visual Basic applications
* ADO.NET applications using the OLE DB .NET Data Provider

* C/C++ applications which access IBMDADB?2 directly using the OLE DB
interfaces, including ATL applications whose Data Access Consumer Objects
were generated by the ATL COM AppWizard.

OLE DB Services

220

The sections that follow describe OLE DB services.

Thread Model Supported by IBM OLE DB Provider

The IBM® OLE DB Provider for DB2® supports the Free Threaded model, which
allows applications to create components in one thread and use those components
in any other thread.

Large Object Manipulation with the IBM OLE DB Provider

To get and set data as storage objects (DBTYPE_IUNKNOWN) with IBMDADB2,

use the ISequentialStream interface as follows:

* To bind a storage object to a parameter, the DBOBJECT in the DBBINDING
structure can only contain the value STGM_READ for the dwFlag field.
IBMDADB?2 will execute the Read method of the ISequentialStream interface of
the bound object.

Programming Client Applications

* To get data from a storage object, your application must perform a Read method
on the ISequentialStream interface of the storage object.

* When getting data, the value of the length part is the length of the real data, not
the length of the IUnknown pointer.

Schema Rowsets Supported by the IBM OLE DB Provider

The following table shows the schema rowsets that are supported by
IDBSchemaRowset. Note that unsupported columns will be set to null in the rowsets.

Table 18. Schema Rowsets Supported by the IBM OLE DB Provider for DB2

Supported GUIDs

Supported Restrictions

Supported Columns

Notes

DBSCHEMA
_COLUMN_PRIVILEGES

COLUMN_NAME
TABLE_NAME
TABLE_SCHEMA

COLUMN_NAME
GRANTEE
GRANTOR
IS_.GRANTABLE
PRIVILEGE_TYPE
TABLE_NAME
TABLE_SCHEMA

DB_SCHEMA_COLUMNS

COLUMN_NAME
TABLE_NAME
TABLE_SCHEMA

CHARACTER_MAXIMUM_LENGTH
CHARACTER_OCTET_LENGTH
COLUMN_DEFAULT
COLUMN_FLAGS
COLUMN_HASDEFAULT
COLUMN_NAME

DATA_TYPE

DESCRIPTION

IS_NULLABLE
NUMERIC_PRECISION
NUMERIC_SCALE
ORDINAL_POSITION
TABLE_NAME
TABLE_SCHEMA

DBSCHEMA_FOREIGN_KEYS

FK_TABLE_NAME
FK_TABLE_SCHEMA
PK_TABLE_NAME
PK_TABLE_SCHEMA

DEFERRABILITY
DELETE_RULE
FK_COLUMN_NAME
FK_NAME
FK_TABLE_NAME
FK_TABLE_SCHEMA
ORDINAL
PK_COLUMN_NAME
PK_NAME
PK_TABLE_NAME
PK_TABLE_SCHEMA
UPDATE_RULE

Must specify at least one of
the following restrictions:
PK_TABLE_NAME or
FK_TABLE_NAME

No “%” wildcard allowed.

DBSCHEMA_INDEXES

TABLE_NAME
TABLE_SCHEMA

CARDINALITY
CLUSTERED
COLLATION
COLUMN_NAME
INDEX_NAME
INDEX_SCHEMA
ORDINAL_POSITION
PAGES
TABLE_NAME
TABLE_SCHEMA
TYPE

UNIQUE

No sort order supported.
Sort order, if specified, will
be ignored.

DBSCHEMA_PRIMARY_KEYS

TABLE_NAME
TABLE_SCHEMA

COLUMN_NAME
ORDINAL
PK_NAME
TABLE_NAME
TABLE_SCHEMA

Must specify at least the
following restrictions:
TABLE_NAME

No “%” wildcard allowed.

Chapter 11. IBM OLE DB Provider for DB2 221

Table 18. Schema Rowsets Supported by the IBM OLE DB Provider for DB2 (continued)

Supported GUIDs

Supported Restrictions

Supported Columns

Notes

DBSCHEMA
_PROCEDURE_PARAMETERS

PARAMETER_NAME
PROCEDURE_NAME
PROCEDURE_SCHEMA

CHARACTER_MAXIMUM_LENGTH
CHARACTER_OCTET_LENGTH

DATA_TYPE
DESCRIPTION
IS_NULLABLE
NUMERIC_PRECISION
NUMERIC_SCALE
ORDINAL_POSITION
PARAMETER_DEFAULT

PARAMETER_HASDEFAULT

PARAMETER_NAME
PARAMETER_TYPE
PROCEDURE_NAME
PROCEDURE_SCHEMA
TYPE_NAME

DBSCHEMA_PROCEDURES

PROCEDURE_NAME
PROCEDURE_SCHEMA

DESCRIPTION
PROCEDURE_NAME
PROCEDURE_SCHEMA
PROCEDURE_TYPE

DBSCHEMA_PROVIDER_TYPES

DATA_TYPE
BEST_MATCH

AUTO_UNIQUE_VALUE
BEST_MATCH
CASE_SENSITIVE
CREATE_PARAMS
COLUMNL_SIZE
DATA_TYPE
FIXED_PREC_SCALE
IS_FIXEDLENGTH
IS_LONG

IS_NULLABLE
LITERAL_PREFIX
LITERAL_SUFFIX
LOCAL_TYPE_NAME
MINIMUM_SCALE
MAXIMUM_SCALE
SEARCHABLE
TYPE_NAME
UNSIGNED_ATTRIBUTE

DBSCHEMA_STATISTICS

TABLE_NAME
TABLE_SCHEMA

CARDINALITY
TABLE_NAME
TABLE_SCHEMA

No sort order supported.
Sort order, if specified, will
be ignored.

DBSCHEMA
_TABLE_PRIVILEGES

TABLE_NAME
TABLE_SCHEMA

GRANTEE
GRANTOR
IS_GRANTABLE
PRIVILEGE_TYPE

TABLE_NAME
TABLE_SCHEMA
DBSCHEMA_TABLES TABLE_NAME DESCRIPTION
TABLE_SCHEMA TABLE_NAME
TABLE_TYPE TABLE_SCHEMA
TABLE_TYPE

OLE DB Services Automatically Enabled by IBM OLE DB

Provider

By default, the IBM® OLE DB Provider for DB2® automatically enables all the OLE
DB services by adding a registry entry OLEDB_SERVICES under the class ID
(CLSID) of the provider with the DWORD value of OxFFFFFFFF. The meaning of
this value is as follows:

Table 19. OLE DB Services

Enabled Services

DWORD Value

All services (default)

OxFFFFFFFF

All except pooling and AutoEnlistment

OxFFFFFFFC

222 Programming Client Applications

Table 19. OLE DB Services (continued)

Enabled Services DWORD Value
All except client cursor OxFFFFFFFB
All except pooling, enlistment and cursor OxFFFFFFF8
No services 0x000000000

Data Services

The sections that follow describe data services considerations.

Supported Cursor Modes for the IBM OLE DB Provider

Data Type Mappings between DB2 and OLE DB

The IBM® OLE DB Provider for DB2® natively supports read-only, forward-only,
read-only scrollable, and updatable scrollable cursors.

The IBM OLE DB Provider supports data type mappings between DB2 data types
and OLE DB data types. The following table provides a complete list of supported
mappings and available names for indicating the data types of columns and

parameters.

Table 20. Data Type Mappings between DB2 Data Types and OLE DB Data Types

DB2 Data Types

OLE DB Data Types Indicators

OLE DB Standard Type Names

DB2 Specific Names

SMALLINT DBTYPE_I2 “DBTYPE_I2” “SMALLINT”
INTEGER DBTYPE_l4 “DBTYPE_I4" “INTEGER” or “INT”
BIGINT DBTYPE_I8 “DBTYPE_I8” “BIGINT”
REAL DBTYPE_R4 “DBTYPE_R4” “REAL”
FLOAT DBTYPE_R8 “DBTYPE_R8” “FLOAT”
DOUBLE DBTYPE_RS8 “DBTYPE_RS8" “DOUBLE” or

“DOUBLE PRECISION”
DECIMAL DBTYPE_NUMERIC “DBTYPE_NUMERIC” “DEC” or “DECIMAL”
NUMERIC DBTYPE_NUMERIC “DBTYPE_NUMERIC” “NUM” or “NUMERIC”
DATE DBTYPE_DBDATE “DBTYPE_DBDATE” “DATE”
TIME DBTYPE_DBTIME “DBTYPE_DBTIME” “TIME”
TIMESTAMP DBTYPE_DBTIMESTAMP “DBTYPE_DBTIMESTAMP” “TIMESTAMP”
CHAR DBTYPE_STR “DBTYPE_CHAR” “CHAR” or

“CHARACTER”
VARCHAR DBTYPE_STR “DBTYPE_VARCHAR” “VARCHAR”
LONG DBTYPE_STR “DBTYPE_LONGVARCHAR” “LONG VARCHAR”
VARCHAR
CLOB DBTYPE_STR “DBTYPE_CHAR” “CLOB”

and DBCOLUMNFLAGS_ISLONG “DBTYPE_VARCHAR”
or DBPARAMFLAGS_ISLONG “DBTYPE_LONGVARCHAR”
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

GRAPHIC DBTYPE_WSTR “DBTYPE_WCHAR” “GRAPHIC”
VARGRAPHIC | DBTYPE_WSTR “DBTYPE_WVARCHAR” “VARGRAPHIC”
LONG DBTYPE_WSTR “DBTYPE_WLONGVARCHAR” “LONG VARGRAPHIC”
VARGRAPHIC

Chapter 11. IBM OLE DB Provider for DB2

223

Table 20. Data Type Mappings between DB2 Data Types and OLE DB Data Types (continued)

DB2 Data Types

OLE DB Data Types Indicators

OLE DB Standard Type Names

DB2 Specific Names

DBCLOB DBTYPE_WSTR “DBTYPE_WCHAR” “DBCLOB”
and DBCOLUMNFLAGS_ISLONG “DBTYPE_WVARCHAR”
or DBPARAMFLAGS_ISLONG “DBTYPE_WLONGVARCHAR”
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG
CHAR(n) FOR | DBTYPE_BYTES “DBTYPE_BINARY”
BIT DATA
VARCHAR(n) DBTYPE_BYTES “DBTYPE_VARBINARY”
FOR BIT DATA
LONG DBTYPE_BYTES “DBTYPE_LONGVARBINARY”
VARCHAR FOR
BIT DATA
BLOB DBTYPE_BYTES “DBTYPE_BINARY” “BLOB”
and DBCOLUMNFLAGS_ISLONG “DBTYPE_VARBINARY”
or DBPARAMFLAGS_ISLONG “DBTYPE_LONGVARBINARY”
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG
DATA LINK DBTYPE_STR “DBTYPE_CHAR” “DATA LINK”

Data Conversion for Setting Data from OLE DB Types to DB2
Types

The IBM OLE DB Provider supports data conversions for setting data from OLE
DB types to DB2 types. Note that truncation of the data may occur in some cases,
depending on the types and the value of the data.

Table 21. Data Conversions from OLE DB Types to DB2 Types

DB2 Data Types
D L For Bit
E o Data
C N
F |1 L G L
LM () (0]
O|A N VIV N
A|L T G Al A G D
S T 1 R|R A
M| I N M V|V G|G|G V|V T
A|N|B D|U E Al A R|R|R|D Al A A
L|T]|I oM S R | R A|lA|A|B R | R
LIE|G|IR|U|E|D|T|T|C|C|C|Cc|Pp|P|P|C|C|C|C|B|L
I/ G|T|E|B|R|A|T|A{HIHIH|L|H/HH|L|H| H|H|L]|TI
N|IEIN|IA|L|IT| T MM|A|A|IA|O|T|[T|T|O|A|A|A|O|N
OLE DB Type Indicator TIR|T|L|E|C|E|E|P|IR|R|R|B|C|C|C|B|R|R|R|B|K
DBTYPE_EMPTY
DBTYPE_NULL
DBTYPE_RESERVED
DBTYPE_I1 X[X[X]|X]|X]|X X | X
DBTYPE_I2 X | X[X|X]|X|[X X | X
DBTYPE_I4 X | X[X[X]|X|[X X | X
DBTYPE_I8 X | X[X[X]|X|X X | X
DBTYPE_UI1 X[X[X]|X]|X]|X X | X
DBTYPE_UI2 X | X[X|X]|X|[X X | X
DBTYPE_UI4 X | X[X | X]|X|X X | X
224 Programming Client Applications

Table 21. Data Conversions from OLE DB Types to DB2 Types (continued)

DB2 Data Types

D L For Bit
E o Data
C N
F|I L G L
LM (o] (o]
O|A N V|V N
A|L T G AlA G D
S T I R | R A
M| I N M V|V G|G|G V|V T
A|N|B D|U E A|A R|R|R|D A|A A
L|(T]|I oM S R | R A|A|A|B R | R
LIE|G|IR|U|JE|D|T|T|C|C|C|C|P|P|P|C|C|C|C|B|L
I|G|I|E|B|R|A|I|A|HIHH|L|H H/H|L|{H/H H|L|I
N/ E(N|A|L|I|T MM|A|A|(A|O|T|I|I|O|A|A|A|O|N
OLE DB Type Indicator T|IR|T|L|E|C|E|E|P|R|R|R|B|C|C|C|B|R|R|R|B|K
DBTYPE_UI8 X | X[X|X]|X]|X X | X
DBTYPE_R4 X | X[X | X]|X]|X X | X
DBTYPE_RS8 X | X[X|X]|X]|X X | X
DBTYPE_CY
DBTYPE_DECIMAL X | X[X|X]|X]|X X | X
DBTYPE_NUMERIC X[X[X]|X[X]X X | X
DBTYPE_DATE
DBTYPE_BOOL X | X[X|X]|X]|X X | X
DBTYPE_BYTES X X X | X | X X X | X | X
DBTYPE_BSTR
— to be determined
DBTYPE_STR XXX X[X|X]|X[X]|X]X|X]|X X[X | X X | X | X X
DBTYPE_WSTR X[X | X

DBTYPE_VARIANT
— to be determined

DBTYPE_IDISPATCH

DBTYPE_IUNKNOWN XXX [X]|X]|X]|X]|X]|X]|X]|X

DBTYPE_GUID

DBTYPE_ERROR

DBTYPE_BYREF

DBTYPE_ARRAY

DBTYPE_VECTOR

DBTYPE_UDT

DBTYPE_DBDATE X X | X | X
DBTYPE_DBTIME X[X[XX
DBTYPE_DBTIMESTAMP X[X[X]|X|X

DBTYPE_FILETIME

DBTYPE_PROP_VARIANT

DBTYPE_HCHAPTER

DBTYPE_VARNUMERIC

Related reference:

+ |["“Data Conversion for Setting Data from DB2 Types to OLE DB Types” on page|

P2

Chapter 11. IBM OLE DB Provider for DB2 225

Data Conversion for Setting Data from DB2 Types to OLE DB
Types

For getting data, the IBM OLE DB Provider allows data conversions from DB2
types to OLE DB types. Note that truncation of the data may occur in some cases,
depending on the types and the value of the data.

Table 22. Data Conversions from DB2 Types to OLE DB Types

DB2 Data Types

For Bit
Data

H>»Z~0NmY
DZOor

~ P> O m
QZOor
QDZOor

> = » U

HZ~rrpEw
Am QM- Z -~
HZ~0~w
= m A
merwaOU
N~="mZC2z
m- O

m g~
~ZpHuumZ~H
=PI 0
APINRP<
APINRP<

w O N
N=T=P RO
N=TITRPIQORP<
N=ITRPIQORP<
@WOrNwU
=PI 0
APINRP<
APINRP<
WO w

RZ =

OLE DB Type Indicator

DBTYPE_EMPTY

DBTYPE_NULL

DBTYPE_RESERVED

DBTYPE_I1

DBTYPE_I2

DBTYPE_I4

DBTYPE_I8

DBTYPE_UI1

DBTYPE_UI2

DBTYPE_Ul4

DBTYPE_UI8

DBTYPE_R4

DBTYPE_RS8

DBTYPE_CY

DBTYPE_DECIMAL

NAX| XX XXX X XXX X]| X
HAYX|Y XXX XXX XX XXX
AR R XXX XX XXX X]| X
RAXR| XXX XXX X[XX X]| X

DBTYPE_NUMERIC

DBTYPE_DATE

DBTYPE_BOOL

DBTYPE_BYTES

DBTYPE_BSTR

DBTYPE_STR

DBTYPE_WSTR

AR XXX XXX XXX XX XXX X| XX
FKAXREXRY XXX XXX XXX XX XXX X| XX
AR XX XXX XXX XXX XXX X| XX
AR XX XXX XXX XXX XXX XXX
AR XXX XXX XXX XX XXX X| XX
AR XXX XXX XXX XX XXX X| XX
R R XXX XXX XXX XX XXX XXX
AR XY XX XXX XXX XXX XXX XXX
AR XX XXX X XXX XX XXX XXX
RXAXREXY XX XXX X XXX XX XXX XXX
AR XX XXX XXX XXX XXX XXX

X XXX

XXX XXX
XXX XX
XXX XX
XXX XX
XXX XXX
XXX XXX
XXX XXX

DBTYPE_VARIANT

DBTYPE_IDISPATCH

DBTYPE_IUNKNOWN X[X[X[X]|X]|X]|X]|X|X

>
<
X
X
X
X
X
X
X
>
<
<
X

DBTYPE_GUID X | X | X X | X | X X | X | X X

DBTYPE_ERROR

DBTYPE_BYREF

226 Programming Client Applications

Table 22. Data Conversions from DB2 Types to OLE DB Types (continued)

DB2 Data Types
D L For Bit
E o Data
C N
F|I L G L
LM o o
O|A N V|V N
A|L T G AlA G D
S T I R | R A
M| I N M V|V G|G|G V|V T
A|IN|B D|U E A|A R|R|R|D A|A A
L|T]|I oM S R | R A|lA|A|B R | R
LIE|G|R|U|E|D|T|T|C|C|C|C|P|P|P|C|C|C|C|B|L
I|G|IT|E|B|R|A|I|/A/HIHIH|L|IH HH|LIHHH|L|TI
N|/E|N/A|L|I|T MM|A|A|A|O|T |I|T|O|A|A|A|O|N
OLE DB Type Indicator T RIT|L|E|C|E|E|P|R|R|R|B[C|C|C|B|R|R|R|B|K
DBTYPE_ARRAY
DBTYPE_VECTOR
DBTYPE_UDT
DBTYPE_DBDATE X[X|X|X|X]|X X|X]|X XXX X
DBTYPE_DBTIME XX |X|X|X]|X X | X]|X X
DBTYPE_DBTIMESTAMP X[X|X|X|X]|X X[X|X XX |X X
DBTYPE_FILETIME X X[X|X|X|X]|X X|X]|X XXX X
DBTYPE_PROP_VARIANT X[X|[X|X]|X XXX X|X]|X XXX X
DBTYPE_HCHAPTER
DBTYPE_VARNUMERIC
Note: When the application performs the ISequentialStream::Read to get the data from the storage object, the format of the data
returned depends on the column data type:
* For non character and binary data types, the data of the column is exposed as a sequence of bytes which represent those values
in the operating system.
* For character data type, the data is first converted to DBTYPE_STR.
¢ For DBCLOB, the data is first converted to DBTYPE_WCHAR.

Related reference:

“Data Conversion for Setting Data from OLE DB Types to DB2 Types” on page]

pod]

IBM OLE DB Provider Restrictions

Following are the restrictions for the IBM® OLE DB Provider:

IBMDADB?2 supports auto commit and user-controlled transaction scope with
the ITransactionLocal interface. Auto commit transaction scope is the default
scope. Nested transactions are not supported.

RestartPosition is not supported when the command text contains parameters.

IBMDADB?2 does not quote table names passed through the DBID parameters,
which are parameters used by the I0penRowset interface. Instead, the OLE DB
consumer must add quotes to the table names when quotes are required.

IBM OLE DB Provider Support for OLE DB Components and Interfaces

The following table lists the OLE DB components and interfaces that are supported
by the IBM OLE DB Provider and the Microsoft OLE DB Provider for ODBC.

Chapter 11. IBM OLE DB Provider for DB2 227

Table 23. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider for DB2 and
the Microsoft OLE DB Provider for ODBC

| Interface | DB2 | ODBC Provider
BLOB
| ISequentialStream | Yes | Yes
Command
TAccessor Yes Yes
ICommand Yes Yes
ICommandPersist No No
ICommandPrepare Yes Yes
ICommandProperties Yes Yes
ICommandText Yes Yes
ICommandWithParameters Yes Yes
IColumnsInfo Yes Yes
IColumnsRowset Yes Yes
IConvertType Yes Yes
ISupportErrorInfo Yes Yes
DataSource
IConnectionPoint No Yes
IDBAsynchNotify (consumer) No No
IDBAsynchStatus No No
IDBConnectionPointContainer No Yes
IDBCreateSession Yes Yes
IDBDataSourceAdmin No No
IDBInfo Yes Yes
IDBlInitialize Yes Yes
IDBProperties Yes Yes
IPersist Yes No
IPersistFile Yes Yes
ISupportErrorInfo Yes Yes
Enumerator
IDBInitialize Yes Yes
IDBProperties Yes Yes
IParseDisplayName Yes No
ISourcesRowset Yes Yes
ISupportErrorInfo Yes Yes
Error Lookup Service
IErrorLookUp Yes Yes
Error Object
IErrorInfo Yes No
[ErrorRecords Yes No
ISQLErrorInfo (custom) Yes No

228 Programming Client Applications

Table 23. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider for DB2 and
the Microsoft OLE DB Provider for ODBC (continued)

Interface | DB2 ODBC Provider
Multiple Results
IMultipleResults Yes Yes
ISupportErrorinfo Yes Yes
RowSet
TAccessor Yes Yes
IColumnsRowset Yes Yes
IColumnsInfo Yes Yes
IConvertType Yes Yes
IChapteredRowset No No
IConnectionPointContainer Yes Yes
IDBAsynchStatus No No
IParentRowset No No
IRowset Yes Yes
IRowsetChange Yes Yes
IRowsetChapterMember No No
IRowsetFind No No
IRowsetldentity Yes Yes
IRowsetIndex No No
IRowsetInfo Yes Yes
IRowsetLocate Yes Yes
IRowsetNotify (consumer) Yes No
IRowsetRefresh Cursor Service Component Yes
IRowsetResynch Cursor Service Component Yes
IRowsetScroll Yedl Yes
IRowsetUpdate Cursor Service Component Yes
IRowsetView No No
ISupportErrorinfo Yes Yes
Notes:

1. The values to be returned are approximations. Deleted rows will not be skipped.

Session
IAlterIndex No No
IAlterTable No No
IDBCreateCommand Yes Yes
IDBSchemaRowset Yes Yes
IGetDataSource Yes Yes
IIndexDefinition No No
IOpenRowset Yes Yes
ISessionProperties Yes Yes
ISupportErrorInfo Yes Yes

Chapter 11. IBM OLE DB Provider for DB2

229

Table 23. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider for DB2 and
the Microsoft OLE DB Provider for ODBC (continued)

Interface DB2 ODBC Provider
ITableDefinition No No
ITableDefinitionWithConstraints No No
ITransaction Yes Yes
ITransactionJoin Yes Yes
ITransactionLocal Yes Yes
ITransactionObject No No
ITransactionOptions No Yes
View Objects
IViewChapter No No
IViewFilter No No
IViewRowset No No
IViewSort No No

IBM OLE DB Provider support for OLE DB properties

The following table shows the OLE DB properties that are supported by the IBM
OLE DB Provider:

Table 24. Properties Supported by the IBM OLE DB Provider for DB2

Information _DATASOURCEINFO

Property

Group Property Set Properties Default Value RIW

Data Source DBPROPSET_DATASOURCE DBPROP_MULTIPLECONNECTIONS VARIANT_FALSE R
DBPROP_RESETDATASOURCE DBPROPVAL_RD_RESETALL R/W

Data Source | DBPROPSET DBPROP_ACTIVESESSIONS 0 R

DBPROP_ASYNCTXNABORT

VARIANT_FALSE

DBPROP_ASYNCTXNCOMMIT

VARIANT_FALSE

DBPROP_BYREFACCESSORS

VARIANT_FALSE

DBPROP_COLUMNDEFINITION

DBPROPVAL_CD_NOTNULL

DBPROP_CONCATNULLBEHAVIOR

DBPROPVAL_CB_NULL

DBPROP_CONNECTIONSTATUS

DBPROPVAL_CS_INITIALIZED

DBPROP_DATASOURCENAME N/A
DBPROP_DATASOURCEREADONLY VARIANT_FALSE
DBPROP_DBMSNAME N/A
DBPROP_DBMSVER N/A

DBPROP_DSOTHREADMODEL

DBPROPVAL_RT_FREETHREAD

DBPROP_GROUPBY

DBPROPVAL_GB_CONTAINS_SELECT

DBPROP_IDENTIFIERCASE

DBPROPVAL_IC_UPPER

DBPROP_MAXINDEXSIZE

0

DBPROP_MAXROWSIZE

0

DBPROP_MAXROWSIZEINCLUDESBLOB

VARIANT_TRUE

DBPROP_MAXTABLEINSELECT

0

DBPROP_MULTIPLEPARAMSETS

VARIANT_FALSE

DBPROP_MULTIPLERESULTS

DBPROPVAL_MR_SUPPORTED

DBPROP_MULTIPLESTORAGEOBJECTS

VARIANT_TRUE

DBPROP_MULTITABLEUPDATE

VARIANT_FALSE

DBPROP_NULLCOLLATION

DBPROPVAL_NC_LOW

DBPROP_OLEOBJECTS

DBPROPVAL_OO_BLOB

DBPROP_ORDERBYCOLUMNSINSELECT

VARIANT_FALSE

DBPROP
_OUTPUTPARAMETERAVAILABILITY

DBPROPVAL_OA_ATEXECUTE

AR ARNAN R R AR R| AR RAR| AR A B AR| AR R AR |BR| A | =R

230 Programming Client Applications

Table 24. Properties Supported by the IBM OLE DB Provider for DB2 (continued)

Property
Group Property Set Properties Default Value R/W
DBPROP_PERSISTENTIDTYPE DBPROPVAL_PT_NAME R
DBPROP_PREPAREABORTBEHAVIOR DBPROPVAL_CB_DELETE R
DBPROP_PROCEDURETERM “STORED PROCEDURE” R
DBPROP_PROVIDERFRIENDLYNAME “IBM OLE DB Provider for DB2” R
DBPROP_PROVIDERNAME “IBMDADB2.DLL” R
DBPROP_PROVIDEROLEDBVER “02.7” R
DBPROP_PROVIDERVER N/A R
DBPROP_QUOTEIDENTIFIERCASE DBPROPVAL_IC_SENSITIVE R
DBPROP VARIANT_TRUE R
_ROWSETCONVERSIONSONCOMMAND
DBPROP_SCHEMATERM “SCHEMA” R
DBPROP_SCHEMAUSAGE DBPROPVAL_SU_DML_STATEMENTS | R
DBPROPVAL_SU_TABLE_DEFINITION |
DBPROPVAL_SU_INDEX_DEFINITION |
DBPROPVAL_SU_PRIVILEGE_DEFINITION
DBPROP_SQLSUPPORT DBPROPVAL_SQL_ODBC_EXTENDED | R
DBPROPVAL_SQL_ESCAPECLAUSES |
DBPROPVAL_SQL_ANSI92_ENTRY
DBPROP_SERVERNAME N/A R
DBPROP_STRUCTUREDSTORAGE DBPROPVAL_SS_ISEQUENTIALSTREAM R
DBPROP_SUBQUERIES DBPROPVAL_SQ_CORRELATEDSUBQUERIES | R
DBPROPVAL_SQ_COMPARISON |
DBPROPVAL_SQ_EXISTS |
DBPROPVAL_SQ_IN |
DBPROPVAL_SQ_QUANTIFIED |
DBPROP_SUPPORTEDTXNDDL DBPROPVAL_TC_ALL R
DBPROP_SUPPORTEDTXNISOLEVELS DBPROPVAL_TI_CURSORSTABILITY | R
DBPROPVAL_TI_READCOMMITTED |
DBPROPVAL_TI_READUNCOMMITTED |
DBPROPVAL_TI_SERIALIZABLE |
DBPROP_SUPPORTEDTXNISORETAIN DBPROPVAL_TR_COMMIT_DC | R
DBPROPVAL_TR_ABORT_NO |
DBPROP_TABLETERM “TABLE” R
DBPROP_USERNAME N/A R
Initialization | DBPROPSET_DBINIT DBPROP_AUTH_PASSWORD N/A R/W
DBPROP_AUTH_PERSIST VARIANT_FALSE R/W
_SENSITIVE_AUTHINFO
DBPROP_AUTH_USERID N/A R/W
DBPROP_INIT_DATASOURCE N/A R/W
DBPROP_INIT_HWND N/A R/W
DBPROP_INIT_MODE DB_MODE_READWRITE R/W
DBPROP_INIT_OLEDBSERVICES OxFFFFFFFF R/W
DBPROP_INIT_PROMPT DBPROMPT_NOPROMPT R/W
DBPROP_INIT_PROVIDERSTRING N/A R/W
Rowset DBPROPSET_ROWSET DBPROP_ABORTPRESERVE VARIANT_FALSE R
DBPROP_ACCESSORDER DBPROPVAL_AO_RANDOM R
DBPROP_BLOCKINGSTORAGEOBJECTS VARIANT_FALSE R
DBPROP_BOOKMARKS VARIANT_FALSE R/W
DBPROP_BOOKMARKSKIPPED VARIANT_FALSE R
DBPROP_BOOKMARKTYPE DBPROPVAL_BMK_NUMERIC R
DBPROP_CACHEDEFERRED VARIANT_FALSE R/W
DBPROP_CANFETCHBACKWARDS VARIANT_FALSE R/W
DBPROP_CANHOLDROWS VARIANT_FALSE R
DBPROP_CANSCROLLBACKWARDS VARIANT_FALSE R/W
DBPROP_CHANGEINSERTEDROWS VARIANT_FALSE R
DBPROP_COMMITPRESERVE VARIANT_TRUE R/W
DBPROP_COMMANDTIMEOUT 0 R/W
DBPROP_DEFERRED VARIANT_FALSE R
DBPROP_IAccessor VARIANT_TRUE R
DBPROP_IColumnsInfo VARIANT_TRUE R
DBPROP_IColumnsRowset VARIANT_TRUE R/W
DBPROP_IConvertType VARIANT_TRUE R
DBPROP_IMultipleResults VARIANT_FALSE R/W
Chapter 11. IBM OLE DB Provider for DB2 231

Table 24. Properties Supported by the IBM OLE DB Provider for DB2 (continued)

Property
Group Property Set Properties Default Value RIW
DBPROP_IRowset VARIANT_TRUE R
DBPROP_IRowChange VARIANT_FALSE R/W
DBPROP_IRowsetFind VARIANT_FALSE R
DBPROP_IRowsetIdentity VARIANT_TRUE R
DBPROP_IRowsetInfo VARIANT_TRUE R
DBPROP_IRowsetLocate VARIANT_FALSE R/W
DBPROP_IRowsetScroll VARIANT_FALSE R/W
DBPROP_IRowsetUpdate VARIANT_FALSE R
DBPROP_ISequentialStream VARIANT_TRUE R
DBPROP_ISupportErrorInfo VARIANT_TRUE R
DBPROP_LITERALBOOKMARKS VARIANT_FALSE R
DBPROP_LITERALIDENTITY VARIANT_TRUE R
DBPROP_LOCKMODE DBPROPVAL_LM_SINGLEROW R/W
DBPROP_MAXOPENROWS 32767 R
DBPROP_MAXROWS 0 R/W
DBPROP_NOTIFICATIONGRANULARITY DBPROPVAL_NT_SINGLEROW R/W
DBPROP_NOTIFICATION PHASES DBPROPVAL_NP_OKTODO R
DBPROPBAL_NP_ABOUTTODO
DBPROPVAL_NP_SYNCHAFTER
DBPROPVAL_NP_FAILEDTODO
DBPROPVAL_NP_DIDEVENT
DBPROP_NOTIFYROWSETRELEASE DBPROPVAL_NP_OKTODO R
DBPROPVAL_NP_ABOUTTODO
DBPROP DBPROPVAL_NP_OKTODO R
_NOTIFYROWSETFETCHPOSITIONCHANGE DBPROPVAL_NP_ABOUTTODO
DBPROP_NOTIFYCOLUMNSET DBPROPVAL_NP_OKTODO R
DBPROPVAL_NP_ABOUTTODO
DBPROP_NOTIFYROWDELETE DBPROPVAL_NP_OKTODO R
DBPROPVAL_NP_ABOUTTODO
DBPROP_NOTIFYROWINSERT DBPROPVAL_NP_OKTODO R
DBPROPVAL_NP_ABOUTTODO
DBPROP_ORDEREDBOOKMARKS VARIANT_FALSE R
DBPROP_OTHERINSERT VARIANT_FALSE R
DBPROP_OTHERUPDATEDELETE VARIANT_FALSE R/W
DBPROP_OWNINSERT VARIANT_FALSE R
DBPROP_OWNUPDATEDELETE VARIANT_FALSE R
DBPROP_QUICKRESTART VARIANT_FALSE R/W
DBPROP_REMOVEDELETED VARIANT_FALSE R/W
DBPROP_ROWTHREADMODEL DBPROPVAL_RT_FREETHREAD R
DBPROP_SERVERCURSOR VARIANT_TRUE R
DBPROP_SERVERDATAONINSERT VARIANT_FALSE R
DBPROP_UNIQUEROWS VARIANT_FALSE R/W
DBPROP_UPDATABILITY 0 R/W
Rowset DBPROPSET_DB2ROWSET DBPROP_ISLONGMINLENGTH 32000 R/W
Session DBPROPSET_SESSION DBPROP_SESS_AUTOCOMMITISOLEVELS DBPROPVAL_TI_CURSORSTABILITY R/W

Connections to Data Sources Using IBM OLE DB Provider

232

The following examples show how to connect to a DB2® data source using the

IBM® OLE

DB Provider for DB2:

Example 1: Visual Basic application using ADO:

Dim db As ADODB.Connection

Set db = New ADODB.Connection
db.Provider = "IBMDADB2"
db.CursorLocation = adUseClient

Example 2: C/C++ application using IDBPromptInitialize and Data Links:

Programming Client Applications

// Create Datalinks

hr = CoCreatelnstance (
CLSID DataLinks,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDBPromptInitialize,
(void**)&pIDBPromptInitialize);

// Invoke the Datalinks UI to select the provider and data source
hr = pIDBPromptInitialize—>PromptDataSource (

NULL,

GetDesktopWindow(),

DBPROMPTOPTIONS_PROPERTYSHEET,

0,
NULL,
NULL,
IID IDBInitialize,
(IUnknown==)&pIDBInitialize);

Example 3: C/C++ application using IDatalnitialize and Service Component:

hr = CoCreatelInstance (
CLSID_MSDAINITIALIZE,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDatalnitialize,
(void**)&pIDatalnitialize);

hr = pIDatalnitialize—>CreateDBInstance(
CLSID IBMDADB2, // ClassID of IBMDADB2
NULL,
CLSCTX_INPROC_SERVER,
NULL,
IID_IDBInitialize,
(IUnknown*x)&pIDBInitialize);

ADO Applications

The sections that follow describe considerations for ADO applications.

ADO Connection String Keywords

To specify ADO (ActiveX Data Objects) connection string keywords, specify the
keyword using the keyword=value format in the provider (connection) string.
Delimit multiple keywords with a semicolon (;).

The following table describes the keywords supported by the IBM® OLE DB
Provider for DB2®:

Table 25. Keywords Supported by the IBM OLE DB Provider for DB2

Keyword Value Meaning

DSN Name of the database alias The DB2 database alias in the database
directory.

UID User ID The user ID used to connect to the DB2
server.

PWD Password of UID Password for the user ID used to connect to
the DB2 server.

Other DB2 CLI configuration keywords also affect the behavior of the IBM OLE
DB Provider.

Chapter 11. IBM OLE DB Provider for DB2 233

Related reference:

* “CLI/ODBC configuration keywords listing by category” in the CLI Guide and
Reference, Volume 1

Connections to Data Sources with Visual Basic ADO
Applications

To connect to a DB2® data source using the IBM® OLE DB Provider for DB2,
specify the IBMDADB?2 provider name.

Related concepts:
+ [“Connections to Data Sources Using IBM OLE DB Provider” on page 232|

Related tasks:

* “Building ADO applications with Visual Basic” in the Application Development
Guide: Building and Running Applications

Updatable Scrollable Cursors in ADO Applications

The IBM® OLE DB Provider for DB2® natively supports read-only, forward-only,
read-only scrollable, and updatable scrollable cursors. An ADO application that
wants to access updatable scrollable cursors can set the cursor location to either
adUseClient or adUseServer. Setting the cursor location to adUseServer causes the
cursor to materialize on the server.

Limitations for ADO Applications

Following are the limitations for ADO applications:

* ADO applications calling stored procedures must have their parameters created
and explicitly bound. The Parameters.Refresh method for automatically
generating parameters is not supported for DB2 Server for VSE & VM.

* There is no support for default parameter values.

* When inserting a new row using a server-side scrollable cursor, use the
AddNew() method with the Fieldlist and Values arguments. This is more
efficient than calling AddNew() with no arguments following Update() calls for
each column. Each AddNew() and Update() call is a separate request to the
server and therefore, is less efficient than a single call to AddNew().

* Newly inserted rows are not updatable with a server-side scrollable cursor.

* Tables with long data, LOB, or Datalink columns are not updatable when using
a server-side scrollable cursor.

IBM OLE DB Provider Support for ADO Methods and
Properties

The IBM OLE DB Provider supports the following ADO methods and properties:
Table 26. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support
Command Cancel ICommand Yes
Methods

CreateParameter Yes

234 Programming Client Applications

Table 26. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support
Execute Yes
Command ActiveConnection (ADO specific)
Properties
Command Text ICommandText Yes
Command Timeout ICommandProperties::SetProperties Yes
DBPROP_COMMANDTIMEOUT
CommandType (ADO specific)
Prepared ICommandPrepare Yes
State (ADO specific)
Command Parameters ICommandWithParameter Yes
Collection DBSCHEMA
_PROCEDURE_PARAMETERS
Properties ICommandProperties Yes
IDBProperties
Connection BeginTrans ITransactionLocal Yes (but not nested)
Methods CommitTrans Yes (but not nested)
RollbackTrans Yes (but not nested)
Execute ICommand Yes
IOpenRowset
Open IDBCreateSession Yes
IDBInitialize
OpenSchema IDBSchemaRowset
adSchemaColumnPrivileges Yes
adSchemaColumns Yes
adSchemaForeignKeys Yes
adSchemalndexes Yes
adSchemaPrimaryKeys Yes
adSchemaProcedureParam Yes
adSchemaProcedures Yes
adSchemaProviderType Yes
adSchemaStatistics Yes
adSchemaTablePrivileges Yes
adSchemaTables Yes
Cancel Yes
Connection Attributes ITransactionLocal
Properties adXactCommitRetaining Yes
adXactRollbackRetaining Yes
CommandTimeout ICommandProperties Yes
DBPROP_COMMAND_TIMEOUT
ConnectionString (ADO specific)
ConnectionTimeout IDBProperties No
DBPROP_INIT_TIMEOUT
CursorLocation:
adUseClient (Use OLE DB Cursor Service) Yes
adUseNone (Not Used) No
adUseServer Yes
DefaultDataBase IDBProperties No
DBPROP_CURRENTCATALOG
IsolationLevel ITransactionLocal Yes
DBPROP_SESS
_AUTOCOMMITISOLEVELS

Chapter 11. IBM OLE DB Provider for DB2

235

Table 26. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support
Mode IDBProperties
adModeRead DBPROP_INIT_MODE No
adModeReadWrite Yes
adModeShareDenyNone No
adModeShareDenyRead No
adModeShareDenyWrite No
adModeShareExclusive No
adModeUnknown No
adModeWrite No
Provider ISourceRowset::GetSourceRowset Yes
State (ADO specific)
Version (ADO specific)
Connection Errors IErrorRecords Yes
Collection
Properties IDBProperties Yes
Error Properties | Description IErrorRecords Yes
NativeError Yes
Number Yes
Source Yes
SQLState Yes
HelpContext No
HelpkFile No
Field Methods AppendChunk ISequentialStream Yes
GetChunk Yes
Field Properties | Actual Size IAccessor Yes
IRowset
Attributes IColumniInfo
DataFormat Yes
DefinedSize Yes
Name Yes
NumericScale Yes
Precision Yes
Type Yes
OriginalValue IRowsetUpdate Yes (Cursor Service)
UnderlyingValue IRowsetRefresh Yes
(Cursor Service)
IRowsetResynch Yes
(Cursor Service)
Value TAccessor Yes
IRowset
Field Collection | Properties IDBProperties Yes
IRowsetInfo
Parameter AppendChunk ISequentialStream Yes
Methods
Attributes ICommandWithParameter
Direction DBSCHEMA Yes
Name _PROCEDURE_PARAMETERS No
NumericScale Yes
Precision Yes
Scale Yes
Size Yes
Type Yes
Value TAccessor Yes
ICommand
Parameter Properties Yes
Collection

236 Programming Client Applications

Table 26. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support
RecordSet AddNew IRowsetChange Yes
Methods
Cancel Yes
CancelBatch IRowsetUpdate::Undo Yes (Cursor Service)
CancelUpdate Yes (Cursor Service)
Clone IRowsetLocate Yes
Close TAccessor Yes
IRowset
CompareBookmarks No
Delete IRowsetChange Yes
GetRows TAccessor Yes
IRowset
Move IRowset Yes
IRowsetLocate
MoveFirst IRowset Yes
IRowsetLocate
MoveNext IRowset Yes
IRowsetLocate
MoveLast IRowsetLocate Yes
MovePrevious IRowsetLocate Yes
NextRecordSet IMultipleResults Yes
Open ICommand Yes
IOpenRowset
Requery ICommand Yes
IOpenRowset
Resync IRowsetRefresh Yes (Cursor Service)
Supports IRowsetInfo Yes
Update IRowsetChange Yes
UpdateBatch IRowsetUpdate Yes (Cursor Service)
RecordSet AbsolutePage IRowsetLocate Yes
Properties IRowsetScroll Yedl
AbsolutePosition IRowsetLocate Yes
IRowsetScroll Yedl
ActiveConnection IDBCreateSession Yes
IDBInitialize
BOF (ADO specific)
Bookmark TAccessor Yes
IRowsetLocate
CacheSize cRows in IRowsetLocate Yes
IRowset
CursorType ICommandProperties
adOpenDynamic No
adOpenForwardOnly Yes
adOpenKeySet Yes
adOpenStatic Yes
EditMode IRowsetUpdate Yes (Cursor Service)
EOF (ADO specific)

Chapter 11. IBM OLE DB Provider for DB2

237

Table 26. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support
Filter IRowsetLocate No
IRowsetView
IRowsetUpdate
IViewChapter
IViewFilter
LockType ICommandProperties Yes
MarshallOption No
MaxRecords ICommandProperties Yes
IOpenRowset
PageCount IRowsetScroll Yedl
PageSize (ADO specific)
Sort (ADO specific)
Source (ADO specific)
State (ADO specific)
Status IRowsetUpdate Yes (Cursor Service)
Notes:
1. The values to be returned are approximations. Deleted rows will not be skipped.
RecordSet Fields IColumnlInfo Yes
Collection
Properties IDBProperties Yes
IRowsetInfo::GetProperties

C and C++ Applications

The sections that follow describe considerations for C and C++ applications.

Compilation and Linking of C/C++ Applications and the IBM

OLE DB Provider

C/C++ applications that use the constant CLSID_IBMDADB2 must include the
ibmdadb2.h file, which can be found in the SQLLIB\include directory. These
applications must define the DBINITCONSTANTS before the include statement.
The following example shows the correct sequence of statements:

#define DBINITCONSTANTS
#include "ibmdadb2.h"

Connections to Data Sources in C/C++ Applications using the
IBM OLE DB Provider

To connect to a DB2® data source using the IBM® OLE DB Provider for DB2 in a
C/C++ application, you can use one of the two OLE DB core interfaces,
IDBPromptInitialize or IDatalnitialize, or you can call the COM API
CoCreatelnstance. The IDatalnitialize interface is exposed by the OLE DB
Service Component, and the IDBPromptInitialize is exposed by the Data Links
Component.

Related concepts:
* |“Connections to Data Sources Using IBM OLE DB Provider” on page 232|

238 Programming Client Applications

Related tasks:

* “Building ADO applications with Visual C++” in the Application Development
Guide: Building and Running Applications

MTS and COM+ Distributed Transactions

The sections that follow describe considerations for MTS and COM+ distributed
transactions.

MTS and COM+ Distributed Transaction Support and the IBM
OLE DB Provider

OLE DB applications running in either a Microsoft® Transaction Server (MTS)
environment on Windows® NT or a Component Services (COM+) environment on
Windows 2000 can use the ITransactionJoin interface to participate in distributed
transactions with multiple DB2® Universal Database, host, and iSeries database
servers as well as other resource managers that comply with the MTS/COM+
specifications.

Prerequisites:

To use the MTS or COM+ distributed transaction support offered by the IBM® OLE
DB Provider for DB2, ensure that your server meets the following prerequisites.

Note: These requirements are only for the Windows machine where the DB2 client
is installed.

» Windows NT® with MTS at Version 2.0 with Microsoft Hotfix 0772 or later

MTS Version 2.0 for Windows NT is available as part of the Windows NT 4.0
Option Pack. You can download the Option Pack from:

http://www.microsoft.com/ntserver/nts/downloads/recommended/NT40ptPk/
* Windows 2000 with Service Pack 3 or later

Related concepts:

* ["“Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+)|
as transaction manager” on page 646|

* [“Loosely coupled support with Microsoft Component Services (COM+)” on page|
648

Enablement of MTS Support in DB2 Universal Database for
C/C++ Applications

To run a C or C++ application in MTS or COM+ transactional mode, you can
create the IBMDADB?2 data source instance using the DatalLink interface. You could
also use CoCreatelInstance, get a session object, and use JoinTransaction. See the
description of how to connect a C or C++ application to a data source for more
information.

To run an ADO application in MTS or COM+ transactional mode, see the
description of how to connect a C or C++ application to a data source.

To use a component in an MTS or COM+ package in transactional mode, set the
Transactions property of the component to one of the following values:

* “Required”

Chapter 11. IBM OLE DB Provider for DB2 239

* “Required New”
* “Supported”

For information about these values, see the MTS documentation.

Related concepts:

* ["“Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+)|
as transaction manager” on page 646|

* |“Loosely coupled support with Microsoft Component Services (COM+)” on page|
648

240 Programming Client Applications

Chapter 12. OLE DB .NET Data Provider

OLE DB .NET Data Provider241 | Time columns in OLE DB .NET Data Provider

OLE DB .NET Data Provider restrictions242 | applications.245
Connection pooling in OLE DB .NET Data | ADORecordset objects in OLE DB .NET Data

Provider applications. . . 245 | Provider applications.246

OLE DB .NET Data Provider

The OLE DB .NET Data Provider uses the IBM® DB2® OLE DB Driver, which is
referred to in a ConnectionString object as IBMDADB2. The connection string
keywords supported by the OLE DB .NET Data Provider are the same as those
supported by the IBM OLE DB Provider for DB2. Also, the OLE DB .NET Data
Provider has the same restrictions as the IBM DB2 OLE DB Provider. There are
additional restrictions for the OLE DB .NET Data Provider, which are identified in
the topic: OLE DB .NET Data Provider restrictions.

In order to use the OLE DB .NET Data Provider, you must have the .NET
Framework Version 1.1 installed.

For DB2 Universal Database " for AS/400® and iSeries ", the following fix is
required on the server: APAR ii13348.

The following are all the supported connection keywords for the OLE DB .NET
Data Provider:

Table 27. ConnectionString keywords for the OLE DB .NET Data Provider

Keyword Value Meaning

PROVIDER IBMDADB2 Specifies the IBM OLE DB
Provider for DB2 (required)

DSN or Data Source database alias The DB2 database alias as
cataloged in the database
directory

UID user 1D The user ID used to connect

to the DB2 server

PWD password The password for the user ID
used to connect to the DB2
server

The following is an example of creating an 01eDbConnection to connect to the
SAMPLE database:

[Visual Basic .NET]

Dim con As New OleDbConnection("Provider=IBMDADB2;" +
"Data Source=sample;UID=userid;PWD=password;")

con.Open()

[C#]

OleDbConnection con = new OleDbConnection("Provider=IBMDADB2;" +
"Data Source=sample;UID=userid;PWD=password;");

con.0Open()

© Copyright IBM Corp. 1997 - 2004 241

OLE DB .NET Data Provider restrictions
The following table identifies usage restrictions for the IBM OLE DB .NET Data

Provider:

Table 28. IBM OLE DB .NET Data Provider restrictions

Class or feature

Restriction description

DB2 servers affected

ASCII character streams

You cannot use ASCII character streams with 01eDbParameters when using
DbType.AnsiString or DbType.AnsiStringFixedLength.

The OLE DB .NET Data Provider will throw the following exception:

"Specified cast is not valid"
Workaround:

Use DbType.Binary instead of using DbType.AnsiString or
DbType.AnsiStringFixedLength.

All

ADORecord

ADORecord is not supported.

All

ADORecordSet and
Timestamp

As documented in MSDN, the ADORecordSet variant time resolves to one second.
Consequently, all fractional seconds are lost when a DB2 Timestamp column is
stored into a ADORecordSet. Similarly, after filling a DataSet from a ADORecordSet,
the Timestamp columns in the DataSet will not have any fractional seconds.

Workaround:

This workaround only works for DB2 Universal Database for Linux, UNIX, and
Windows, Version 8.1, FixPak 4 or later. In order to avoid the loss of fraction of
seconds, you can set the following CLI keyword:

MAPTIMESTAMPDESCRIBE = 2

This keyword will describe the Timestamp as a WCHAR(26). To set the keyword,
execute the following command from a DB2 Command Window:

db2 update c1i cfg for section common using MAPTIMESTAMPDESCRIBE 2

All

Chapters

Chapters are not supported.

All

Key information

The OLE DB .NET Data Provider cannot retrieve key information when opening an
IDataReader at the same time.

DB2 for VM/VSE

Key information from
stored procedures

The OLE DB .NET Data Provider can retrieve key information about a result set
returned by a stored procedure only from DB2 Universal Database for Linux,
UNIX, and Windows. This is because the DB2 servers for platforms other than
Linux, UNIX, and Windows do not return extended describe information for the
result sets opened in the stored procedure.

In order to retrieve key information of a result set returned by a stored procedure
on DB2 Universal Database for Linux, UNIX, and Windows, you need to set the
following registry variable on the DB2 server:

db2set DB2_APM_PERFORMANCE=8

Setting this server-side DB2 registry variable will keep the result set meta-data
available on the server for a longer period of time, thus allowing OLE DB to
successfully retrieve the key information. However, depending on the server
workload, the meta-data might not be available long enough before the OLE DB
Provider queries for the information. As such, there is no guarantee that the key

information will always be available for result sets returned from a store procedure.

In order to retrieve any key information about a CALL statement, the application
must execute the CALL statement. Calling 01eDbDataAdapter.Fil1Schema() or
0TeDbCommand.ExecuteReader (CommandBehavior.SchemaOnly |
CommandBehavior.KeyInfo), will not actually execute the stored procedure call.
Therefore, you will not retrieve any key information for the result set that is to be
returned by the stored procedure.

All

242 Programming Client Applications

Table 28. IBM OLE DB .NET Data Provider restrictions (continued)

Class or feature

Restriction description

DB2 servers affected

Key information from When using batched SQL statements that return multiple results, the Fi11Schema() |All
batched SQL statements | method attempts to retrieve schema information only for the first SQL statement in

the batched SQL statement list. If this statement does not return a result set then no

table is created. For example:

[c#]

cmd.CommandText = "INSERT INTO ORG(C1) VALUES(1000); SELECT C1 FROM ORG;";

da = new OleDbDataAdapter(cmd);

da.Fil1Schema(ds, SchemaType.Source);

No table will be created in the data set because the first statement in the batch SQL

statement is an "INSERT” statement, which does not return a result set.

0leDbCommandBuilder The UPDATE, DELETE and INSERT statements automatically generated by the All
0leDbCommandBuilder are incorrect if the SELECT statement contains any columns

of the following data types:

+ CLOB

* BLOB

* DBCLOB

* LONG VARCHAR

* LONG VARCHAR FOR BIT DATA

¢ LONG VARGRAPHIC

If you are connecting to a DB2 server other than DB2 Universal Database for Linux,

Unix and Windows, then columns of the following data types also cause this

problem:

* VARCHARE

* VARCHAR FOR BIT DATA

* VARGRAPHICT

* REAL

* FLOAT or DOUBLE

* TIMESTAMP

Notes:

1. Columns of these data types are applicable if they are defined to be VARCHAR
values greater than 254 bytes, VARCHAR values FOR BIT DATA greater than
254 bytes, or VARGRAPHICs greater than 127 bytes. This condition is only
valid if you are connecting to a DB2 server other than DB2 Universal Database
for Linux, Unix and Windows.

The 01eDbCommandBuilder generates SQL statements that use all of the selected

columns in an equality comparison in the WHERE clause, but the data types listed

previously cannot be used in an equality comparison.

Note: Note that this restriction will affect the IDbDataAdapter.Update() method

that relies on the 0TeDbCommandBuilder to automatically generate the UPDATE,

DELETE, and INSERT statements. The UPDATE operation will fail if the generated

statement contains any one of the data types listed previously.

Workaround:

You will need to explicitly remove all columns that are of the data types listed

previously from the WHERE clause of the generated SQL statement. It is

recommended that you code your own UPDATE, DELETE and INSERT statements.

0TeDbCommandBuilder. | Case-sensitivity is important when using DeriveParameters (). The stored procedure | All

DeriveParameters

name specified in the 0TeDbCommand.CommandText needs to be in the same case as
how it is stored in the DB2 system catalog tables. To see how stored procedure
names are stored, call OpenSchema(OleDbSchemaGuid.Procedures) without
supplying the procedure name restriction. This will return all the stored procedure
names. By default, DB2 stores stored procedure names in uppercase, so most often,
you need to specify the stored procedure name in uppercase.

Chapter 12. OLE DB .NET Data Provider

243

Table 28. IBM OLE DB .NET Data Provider restrictions (continued)

Class or feature

Restriction description

DB2 servers affected

01eDbCommandBuilder.
DeriveParameters

The 01eDbCommandBuilder.DeriveParameters() method does not include the
ReturnValue parameter in the generated 0leDbParameterCollection. SqlClient and
the DB2 .NET Data Provider by default adds the parameter with
ParameterDirection.ReturnValue to the generated ParameterCollection.

All

01eDbCommandBuilder.
DeriveParameters

The 01eDbCommandBuilder.DeriveParameters () method will fail for overloaded
stored procedures. If you have multiple stored procedures of the name "MYPROC”
with each of them taking a different number of parameters or different type of
parameter, the 01eDbCommandBuilder.DeriveParameters () will retrieve all the
parameters for all the overloaded stored procedures.

All

01eDbCommandBuilder.
DeriveParameters

If the application does not qualify a stored procedure with a schema,
DeriveParameters() will return all the parameters for that procedure name.
Therefore, if multiple schemas exist for the same procedure name,
DeriveParameters() will return all the parameters for all the procedures with the
same name.

All

01eDbConnection.
ChangeDatabase

The 01eDbConnection.ChangeDatabase() method is not supported.

All

01eDbConnection.
ConnectionString

Use of nonprintable characters such as "\b’, "\a” or "\O’ in the connection string
will cause an exception to be thrown.

The following keywords have restrictions:

Data Source
The data source is the name of the database, not the server. You can
specify the SERVER keyword, but it is ignored by the IBMDADB2
provider.

Initial Catalog and Connect Timeout
These keywords are not supported. In general, the OLE DB .NET Data
Provider will ignore all unrecognized and unsupported keywords.
However, specifying these keywords will cause the following exception:

Multiple-step OLE DB operation generated errors. Check each
OLE DB status value, if available. No work was done.

ConnectionTimeout
ConnectionTimeout is read only.

All

0leDbConnection.
GetOleDbSchemaTable

Restriction values are case-sensitive, and need to match the case of the database
objects stored in the system catalog tables, which defaults to uppercase.

For instance, if you have created a table in the following manner:
CREATE TABLE abc(cl SMALLINT)

DB2 will store the table name in uppercase ("ABC") in the system catalog.
Therefore, you will need to use "ABC" as the restriction value. For instance:

schemaTable = con.GetOleDbSchemaTable(0leDbSchemaGuid.Tables,
new object[] { null, null, "ABC", "TABLE" });

Workaround:

If you need case-sensitivity or spaces in your data definitions, you must put
quotation marks around them. For example:

cmd.CommandText = "create table \"Case Sensitive\"(cl int)";

cmd. ExecuteNonQuery() ;

tablename = "\"Case Sensitive\"";

schemaTable = con.GetOleDbSchemaTable(0leDbSchemaGuid.Tables,
new object[] { null, null, tablename, "TABLE" });

All

0leDbDataAdapter and

The source column name is case-sensitive. It needs to match the case as stored in

All

DataColumnMapping the DB2 catalogs, which by default is uppercase.

For example:

colMap = new DataColumnMapping("EMPNO", "Employee ID");
244 Programming Client Applications

Table 28. IBM OLE DB .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected
OleDbDataReader. The OLE DB .NET Data Provider is not able to retrieve extended describe DB2 for OS/390,
GetSchemaTable information from servers that do not return extended describe information. if you version 7 or lower
are connecting to a server that does not support extended describe (the affected DB2 for OS/400
servers), the following columns in the metadata table returned from DB2 for VM/VSE
IDataReader.GetSchemaTable() are invalid:
e IsReadOnly
* IsUnique
* IsAutoIncrement
* BaseSchemaName

BaseCatalogName

Stored procedures: no
column names for
result sets

The DB2 for OS/390 version 6.1 server does not return column names for result DB2 for OS/390
sets returned from a stored procedure. The OLE DB .NET Data Provider maps version 6.1

these unnamed columns to their ordinal position (for example, "1”, "2" "3"). This is
contrary to the mapping documented in MSDN: "Columnl", "Column2", "Column3".

Connection pooling in OLE DB .NET Data Provider applications

The OLE DB .NET Data Provider automatically pools connections using OLE DB
session pooling. Connection string arguments can be used to enable or disable OLE
DB services including pooling. For example, the following connection string will
disable OLE DB session pooling and automatic transaction enlistment.

Provider=IBMDADB2;0LE DB Services=-4;Data Source=SAMPLE;

The following table describes the ADO connection string attributes you can use to
set the OLE DB services:

Table 29. Setting OLE DB services by using ADO connection string attributes

Services enabled Value in connection string
All services (the default) "OLE DB Services = -1;"
All services except pooling "OLE DB Services = -2;"
All services except pooling and "OLE DB Services = -4;"

auto-enlistment

All services except client cursor "OLE DB Services = -5;"

All services except client cursor and pooling |"OLE DB Services = -6;"

No services "OLE DB Services = 0;"

For more information about OLE DB session pooling or resource pooling, as well
as how to disable pooling by overriding OLE DB provider service defaults, see the
OLE DB Programmer’s Reference in the MSDN library located at

http:/ /msdn.microsoft.com/library.

Time columns in OLE DB .NET Data Provider applications

The following sections describe how to implement time columns in OLE DB .NET
Data Provider applications.

Inserting using parameter markers:

You want to insert a time value into a Time column:

command.CommandText = "insert into mytable(cl) values(?)";

Chapter 12. OLE DB .NET Data Provider 245

where column c1 is a Time column. Here are two methods to bind a time value to
the parameter marker:

Using OleDbParameter.0leDbType = 0leDbType.DBTime

Because OleDbType.DBTime maps to a TimeSpan object, you must supply a
TimeSpan object as the parameter value. The parameter value cannot be a String or
a DateTime object, it must be a TimeSpan object. For example:

pl.0TeDbType = 01eDbType.DBTime;

pl.Value = TimeSpan.Parse("0.11:20:30");
rowsAffected = cmd.ExecuteNonQuery();

The format of the TimeSpan is represented as a string in the format
"[-]d.hh:mm:ss.ff” as documented in the MSDN documentation.

Using OleDbParameter.0leDbType = OleDbType.DateTime

This will force the OLE DB .NET Data Provider to convert the parameter value to
a DateTime object, instead of a TimeSpan object, consequently the parameter value
can be any valid string/object that can be converted into a DateTime object. This
means values such as "11:20:30" will work. The value can also be a DateTime
object. The value cannot be a TimeSpan object since a TimeSpan object cannot be
converted to a DateTime object -- TimeSpan doesn’t implement IConvertible.

For example:

pl.01eDbType = 0leDbType.DBTimeStamp;
pl.Value = "11:20:30";
rowsAffected = cmd.ExecuteNonQuery();

Retrieval:

To retrieve a time column you need to use the IDataRecord.GetValue() method or
the OleDbDataReader.GetTimeSpan() method.

For example:

TimeSpan tsl
TimeSpan ts2

((01eDbDataReader)reader).GetTimeSpan(0);
(TimeSpan) reader.GetValue(0);

ADORecordset objects in OLE DB .NET Data Provider applications

246

Following are considerations regarding the use of ADORecordset objects.

* The ADO type adDBTime class is mapped to the .NET Framework DateTime class.
01eDbType.DBTime corresponds to a TimeSpan object.

* You cannot assign a TimeSpan object to an ADORecordset object’s Time field. This
is because the ADORecordset object’s Time field expects a DateTime object. When
you assign a TimeSpan object to an ADORecordsetobject, you will get the
following message:

Method's type signature is not Interop compatible.

You can only populate the Time field with a DateTime object, or a String that can
be parsed into a DateTime object.

* When you fill a DataSet with a ADORecordset using the OleDbDataAdapter, the
Time field in the ADORecordset is converted to a TimeSpan column in the DataSet.

Programming Client Applications

* Recordsets do not store primary keys or constraints. Therefore, no key
information is added when filling out a DataSet from a Recordset using the
MissingSchemaAction.AddWithKey.

Chapter 12. OLE DB .NET Data Provider 247

248 Programming Client Applications

Chapter 13. ODBC .NET Data Provider

| ODBC .NET Data Provider.249 | ODBC .NET Data Provider restrictions 249

| ODBC .NET Data Provider

The ODBC .NET Data Provider makes ODBC calls to a DB2® data source using the
DB2 CLI Driver. Therefore, the connection string keywords supported by the
ODBC .NET Data Provider are the same as those supported by the DB2 CLI driver.
Also, the ODBC .NET Data Provider has the same restrictions as the DB2 CLI
driver. There are additional restrictions for the ODBC .NET Data Provider, which
are identified in the topic: ODBC .NET Data Provider restrictions.

[In order to use the ODBC .NET Data Provider, you must have the .NET
| Framework Version 1.1 installed. For DB2 Universal Database for AS/400® and
I iSeries", the following fix is required on the server: APAR 1113348.

I The following are the supported connection keywords for the ODBC .NET Data
I Provider:

| Table 30. ConnectionString keywords for the ODBC .NET Data Provider

I Keyword Value Meaning

| DSN database alias The DB2 database alias as

| cataloged in the database

I directory

| uID user 1D The user ID used to connect

I to the DB2 server

PWD password The password for the user ID
used to connect to the DB2
server

The following is an example of creating an OdbcConnection to connect to the
SAMPLE database:

[Visual Basic .NET]
Dim con As New OdbcConnection("DSN=sample;UID=userid;PWD=password;")
con.Open()

[C#]
0dbcConnection con = new OdbcConnection("DSN=sample;UID=userid;PWD=password;");
con.Open()

| ODBC .NET Data Provider restrictions

I The following table identifies usage restrictions for the IBM ODBC .NET Data
I Provider:

© Copyright IBM Corp. 1997 - 2004 249

Table 31. IBM ODBC .

NET Data Provider restrictions

Class or feature

Restriction description

DB2 servers affected

ASCII character streams

You cannot use ASCII character streams with OdbcParameters when using
DbType.AnsiString or DbType.AnsiStringFixedLength.

The ODBC .NET Data Provider will throw the following exception:
"Specified cast is not valid"

Workaround:

Use DbType.Binary instead of using DbType.AnsiString or
DbType.AnsiStringFixedLength.

All

Command.Prepare

Before executing a command (Command. ExecuteNonQuery or Command.ExecuteReader),
you must explicitly run 0dbcCommand.Prepare() if the CommandText has changed
since the last prepare. If you do not call 0dbcCommand.Prepare() again, the ODBC
NET Data Provider will execute the previously prepared CommandText.

For Example:

[c#]

command.CommandText="select CLOB('ABC') from tablel";

command.Prepare();

command.ExecuteReader() ;

command.CommandText="select CLOB('XYZ') from table2";
command.ExecuteReader(); // This ends up re-executing the first statement

All

CommandBehavior.
Sequential Access

When using IDataReader.GetChars() to read from a reader created with
CommandBehavior.SequentialAccess, you must allocate a buffer that is large enough
to hold the entire column. Otherwise, you will hit the following exception:
Requested range extends past the end of the array.
at System.Runtime.InteropServices.Marshal.Copy(Int32 source,
Char[] destination, Int32 startIndex, Int32 length)
at System.Data.Odbc.OdbcDataReader.GetChars(Int32 i,
Int64 datalndex, Char[] buffer, Int32 bufferIndex, Int32 length)
at OleRestrict.TestGetCharsAndBufferSize(IDbConnection con)

The following example demonstrates how to allocate an adequate buffer:

CREATE TABLE myTable(cO int, cl1 CLOB(10K))
SELECT cl1 FROM myTable;

[c#]
cmd.CommandText = "SELECT cl from myTable";
IDataReader reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess);

Int32 iChunkSize = 10;
Int32 iBufferSize = 10;
Int32 iFieldOffset = 0;

Char[] buffer = new Char[iBufferSize];

reader.Read();
reader.GetChars (0, iFieldOffset, buffer, 0, iChunkSize);

The call to GetChars() will throw the following exception:

"Requested range extends past the end of the array"

To ensure that GetChars() does not throw the above exception, you must set the
BufferSize to the size of the column, as follows:

Int32 iBufferSize = 10000;

Note that the value of 10,000 for iBufferSize corresponds to the value of 10K
allocated to the CLOB column cl.

All

250

Programming Client Applications

Table 31. IBM ODBC .

NET Data Provider restrictions (continued)

Class or feature

Restriction description

DB2 servers affected

CommandBehavior.
Sequential Access

The ODBC .NET Data Provider throws the following exception when there is no
more data to read when using OdbcDataReader.GetChars():

NO_DATA - no error information available
at System.Data.Odbc.OdbcConnection.HandleError(HandleRef hrHandle,
SQL_HANDLE hType, RETCODE retcode)
at System.Data.Odbc.0OdbcDataReader.GetData(Int32 i, SQL_C sqlctype,
Int32 cb)
at System.Data.Odbc.OdbcDataReader.GetChars(Int32 i, Int64 datalndex,
Char[] buffer, Int32 bufferIndex, Int32 length)

All

CommandBehavior.
Sequential Access

You may not be able to use large chunksizes, such as a value of 5000, when using
OdbcDataReader.GetChars(). When you attempt to use a large chunk size, the
ODBC .NET Data Provider will throw the following exception:

Object reference not set to an instance of an object.
at System.Runtime.InteropServices.Marshal.Copy(Int32 source,
Char[] destination, Int32 startIndex, Int32 Tength)
at System.Data.Odbc.OdbcDataReader.GetChars(Int32 i, Int64 datalndex,
Char[] buffer, Int32 bufferIndex, Int32 length)
at OleRestrict.TestGetCharsAndBufferSize(IDbConnection con)

All

Connection pooling

The ODBC .NET Data Provider does not control connection pooling. Connection
pooling is handled by the ODBC Driver Manager. For more information on
connection pooling, see the ODBC Programmer’s Reference in the MSDN library
located at http://msdn.microsoft.com/library.

All

DataColumnMapping

The case of the source column name needs to match the case used in the system
catalog tables, which is upper-case by default.

All

Decimal columns

Parameter markers are not supported for Decimal columns.

You generally use 0dbcType.Decimal for an OdbcParameter if the target SQLType is a
Decimal column; however, when the ODBC .NET Data Provider sees the
0dbcType.Decimal, it binds the parameter using C-type of SQL C WCHAR and
SQLType of SQL_VARCHAR, which is invalid.

For example:

[C#]

cmd.CommandText = "SELECT dec_col FROM MYTABLE WHERE dec_col > ? ";
OdbcParameter pl = cmd.CreateParameter();

pl.DbType = DbType.Decimal;

pl.Value = 10.0;

cmd. Parameters.Add(pl);

IDataReader rdr = cmd.ExecuteReader();

You will get an exception:
ERROR [07606] [IBM][CLI Driver] [SQLDS/VM] SQLO30IN The value of input

host variable or parameter number "" cannot be used because of its
data type. SQLSTATE=07006

Workaround:

Instead of using OdbcParameter values, use literals exclusively.

DB2 for VM/VSE

Chapter 13. ODBC .NET Data Provider 251

Table 31. IBM ODBC .

NET Data Provider restrictions (continued)

Class or feature

Restriction description

DB2 servers affected

Key information

The schema name used to qualify the table name (for example, MYSCHEMA.MYTABLE)
must match the connection user ID. The ODBC .NET Data Provider is unable to
retrieve any key information in which the specified schema is different from the
connection user id.

For example:

CREATE TABLE USERID2.TABLE1(cl INT NOT NULL PRIMARY KEY);

[C#]

// Connect as user bob

odbcCon = new OdbcConnection("DSN=sample;UID=bob;PWD=mypassword");

O0dbcCommand cmd = odbcCon.CreateCommand();

// Select from table with schema USERID2
cmd. CommandText="SELECT * FROM USERID2.TABLE1";

// Fails - No key info retrieved
da.Fill1Schema(ds, SchemaType.Source);

// Fails - SchemaTable has no primary key
cmd. ExecuteReader (CommandBehavior.KeyInfo)

// Throws exception because no primary key
cbuilder.GetUpdateCommand () ;

All

Key information

The ODBC .NET Data Provider cannot retrieve key information when opening a
IDataReader at the same time. When the ODBC .NET Data Provider opens a
IDataReader, a cursor on the server is opened. If key information is requested, it
will then call SQLPrimaryKeys () or SQLStatistic() to get the key information, but
these schema functions will open another cursor. Since DB2 for VM/VSE does not
support cursor withhold, the first cursor is then closed. Consequently,
IDataReader.Read() calls to the IDataReader will result in the following exception:

System.Data.0dbc.0dbcException: ERROR [HY010] [IBM][CLI Driver]
CLIO125E Function sequence error. SQLSTATE=HY010

Workaround:
You will need to retrieve key information first then retrieve the data.

For example:

[C#]
O0dbcCommand cmd = odbcCon.CreateCommand();
OdbcDataAdapter da = new OdbcDataAdapter(cmd);

cmd.CommandText = "SELECT = FROM MYTABLE";

// Use FillSchema to retrieve just the schema information
da.Fill1Schema(ds, SchemaType.Source);

// Use FillSchema to retrieve just the schema information
da.Fill(ds);

DB2 for VM/VSE

Key information

You must refer to database objects in your SQL statements using the same case that
the database objects are stored in the system catalog tables. By default database
objects are stored in uppercase in the system catalog tables, so most often, you
need to use uppercase.

The ODBC .NET Data Provider scans SQL statements to retrieve database object
names and passes them to schema functions such as SQLPrimaryKeys and
SQLStatistics, which issue queries for these objects in the system catalog tables.
The database object references must match exactly how they are stored in the
system catalog tables, otherwise, an empty result set is returned.

DB2 for OS/390
DB2 for OS/400
DB2 for VM/VSE

Key information for
batched non-select SQL

statements

The ODBC .NET Data Provider is unable to retrieve any key information for a
batch statement that does not start with "SELECT".

DB2 for OS/390
DB2 for OS/400
DB2 for VM/VSE

252 Programming Client Applications

| Table 31. IBM ODBC .

NET Data Provider restrictions (continued)

| Class or feature

Restriction description

DB2 servers affected

LOB columns

The ODBC .NET Data Provider does not support LOB datatypes. Consequently,
whenever the DB2 server returns a SQL_CLOB (-99), SQL_BLOB (-98) or
SQL_DBCLOB (-350) the ODBC .NET Data Provider will throw the following
exception:

"Unknown SQL type - -98" (for Blob column)
"Unknown SQL type - -99" (for Clob column)
"Unknown SQL type - -350" (for DbClob column)

Any methods that directly or indirectly access LOB columns will fail.
Workaround:

Set the CLI/ODBC LongDataCompat keyword to 1. Doing so will force the DB2 CLI
driver to make the following data type mappings to data types the ODBC .NET
Data Provider will understand:

* SQL_CLOB to SQL_LONGVARCHAR

* SQL_BLOB to SQL_LONGVARBINARY

* SQL_DBCLOB to SQL_WLONGVARCHAR

To set the LongDataCompat keyword, run the following DB2 command from a DB2
command window on the client machine:

db2 update c1i cfg for section common using Tongdatacompat 1

You can also set this keyword in your application, using the connection string as
follows:
[C#]
O0dbcConnection con =
new OdbcConnection("DSN=SAMPLE;UID=uid;PWD=mypwd;LONGDATACOMPAT=1;");

For a list of all the CLI/ODBC keywords, see the following topic: UID CLI/ODBC
configuration keyword in the DB2 Universal Database CLI Guide and Reference.

All

| 0dbcCommand.Cancel

Executing statements after running 0dbcCommand.Cancel can lead to the following
exception:

"ERROR [24000] [Microsoft][0DBC Driver Manager] Invalid cursor state"

All

0dbcCommandBuilder

Case-sensitivity is important when using the OdbcCommandBuilder to automatically
generate UPDATE, DELETE, and INSERT statements. By default, DB2 stores
schema information (such as table names, and column names) in the system catalog
tables in upper case, unless they have been explicitly created with case-sensitivity
(by adding quotes around database objects during create-time). As such, your SQL
statements must match the case that is stored in the catalogs (which by default is
uppercase).

For example, if you created a table using the following statement:
"db2 create table mytable (cl int) "

then DB2 will store the table name "mytable” in the system catalog tables as
"MYTABLE".

The following code example demonstrates proper use the OdbcCommandBuilderclass:

[C#]

0dbcCommand cmd = odbcCon.CreateCommand();
cmd.CommandText = "SELECT = FROM MYTABLE";
OdbcDataAdapter da = new OdbcDataAdapter(cmd);
O0dbcCommandBuilder cb = new OdbcCommandBuilder(da);
O0dbcCommand updateCmd = cb.GetUpdateCommand();

In this example, if you do not refer to the table name in upper-case characters, then
you will get the following exception:
"Dynamic SQL generation for the UpdateCommand is not

supported against a SelectCommand that does not return
any key column information."

All

Chapter 13. ODBC .NET Data Provider

253

Table 31. IBM ODBC .

NET Data Provider restrictions (continued)

Class or feature

Restriction description

DB2 servers affected

OdbcCommandBuilder

The commands generated by the OdbcCommandBuilder are incorrect when the
SELECT statement contains the following column data types:
REAL

FLOAT or DOUBLE
TIMESTAMP

These data types cannot be used in the WHERE clause for SELECT statements.

DB2 for OS/390
DB2 for OS/400
DB2 for VM/VSE

OdbcCommandBuilder.
DeriveParameters

The DeriveParameters() method is mapped to SQLProcedureColumns and it uses the
CommandText property for the name of the stored procedure. Since CommandText does
not contain the name of the stored procedure (using full ODBC call syntax),
SQLProcedureColumns is called with the procedure name identified according to the
ODBC call syntax. For example:

"{ CALL myProc(?) }"

This which will result in an empty result set, where no columns are found for the
procedure).

All

OdbcCommandBuilder.
DeriveParameters

To use DeriveParameters(), specify the stored procedure name in the CommandText
(for example, cmd.CommandText = "MYPROC"). The procedure name must match the
case stored in the system catalog tables. DeriveParameters() will return all the
parameters for that procedure name it finds in the system catalog tables. Remember
to change the CommandText back to the full ODBC call syntax before executing the
statement.

All

OdbcCommandBuilder.
DeriveParameters

The ReturnValue parameter is not returned for the ODBC .NET Data Provider.

All

OdbcCommandBuilder.
DeriveParameters

DeriveParameters() does not support fully qualified stored procedure names. For
example, calling DeriveParameters() for CommandText = "MYSCHEMA.MYPROC" will
fail. Here, no parameters are returned.

All

OdbcCommandBuilder.
DeriveParameters

DeriveParameters() will not work for overloaded stored procedures. The
SQLProcedureColumns will return all the parameters for all versions of the stored
procedure.

All

OdbcConnection.
ChangeDatabase

The 0dbcConnection.ChangeDatabase() method is not supported.

All

O0dbcConnection.
ConnectionString

* The Server keyword is ignored.

* The Connect Timeout keyword is ignored. DB2 CLI does not support connection
timeouts, so setting this property will not affect the driver.

* Connection pooling keywords are ignored. Specifically, this affects the following
keywords: Pooling, Min Pool Size, Max Pool Size, Connection Lifetime and
Connection Reset.

All

OdbcDataReader.
GetSchemaTable

The ODBC .NET Data Provider is not able to retrieve extended describe
information from servers that do not return extended describe information.
Therefore, if you are connecting to a server that does not support extended describe
(the affected servers), the following columns in the metadata table returned from
IDataReader.GetSchemaTable() are invalid:

* IsReadOnly

* IsUnique

e IsAutoIncrement
* BaseSchemaName
e BaseCatalogName

DB2 for OS/390,
version 7 or lower
DB2 for OS/400
DB2 for VM/VSE

254

Programming Client Applications

Table 31. IBM ODBC .

NET Data Provider restrictions (continued)

Class or feature

Restriction description

DB2 servers affected

Stored procedures

To call a stored procedure, you need to specify the full ODBC call syntax.

For example, to call the stored procedure, MYPROC, that takes a VARCHAR(10) as a
parameter:

[C#]

O0dbcCommand cmd = odbcCon.CreateCommand();
cmd.CommandType = CommandType.Text;
cmd.CommandText = "{ CALL MYPROC(?) }"
OdbcParameter pl = cmd.CreateParameter();
pl.Value = "Joe";

pl.0dbcType = 0dbcType.NVarChar;

cmd. Parameters.Add(pl);

cmd. ExecuteNonQuery () ;

Note: Note that you must use the full ODBC call syntax even if you are using
CommandType.StoredProcedure. This is documented in MSDN, under the
OdbcCommand.CommandText Property.

All

Stored procedures: no

The DB2 for OS/390 version 6.1 server does not return column names for result

DB2 for OS/390

column names for sets returned from a stored procedure. The ODBC .NET Data Provider maps these | version 6.1
result sets unnamed columns to their ordinal position (for example, "1", "2" "3"). This is

contrary to the mapping documented in MSDN: "Columnl", "Column2", "Column3".
Unique index The ODBC .NET Data Provider promotes nullable unique indexes to primary keys. | All

promotion to primary

key

This is contrary to the MSDN documentation, which states that nullable unique
indexes should not be promoted to primary keys.

Chapter 13. ODBC .NET Data Provider 255

256 Programming Client Applications

Part 4. Java

© Copyright IBM Corp. 1997 - 2004 257

258 Programming Client Applications

Chapter 14. Introduction to Java application support

DB2® Universal Database provides driver support for client applications and
applets that are written in Java " using JDBC, and for embedded SQL for Java
(SQL).

JDBC is an application programming interface (API) that Java applications use to
access relational databases. DB2 Universal Database " support for JDBC lets you
write Java applications that access local DB2 data or remote relational data on a
server that supports DRDA®.

SQL]J provides support for embedded static SQL in Java applications. SQL] was
initially developed by IBM®, Oracle®, and Tandem to complement the dynamic
SQL JDBC model with a static SQL model.

In general, Java applications use JDBC for dynamic SQL and SQLJ for static SQL.
However, because SQL]J can inter-operate with JDBC, an application program can
use JDBC and SQL]J within the same unit of work.

This topic discusses the Java application development environment provided by
DB2 Universal Database.

According to the JDBC specification, there are four types of JDBC driver
architectures:

Type 1
Drivers that implement the JDBC API as a mapping to another data access API,
such as Open Database Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability. The JDBC-ODBC
Bridge driver is an example of a type 1 driver.

Type 2
Drivers that are written partly in the Java programming language and partly in
native code. The drivers use a native client library specific to the data source to
which they connect. Because of the native code, their portability is limited.

Type 3
Drivers that use a pure Java client and communicate with a server using a
database-independent protocol. The server then communicates the client’s
requests to the data source.

Type 4
Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

DB2 Version 8 supports a type 2 driver and a driver that combines type 2 and type
4 JDBC implementations. DB2 Version 8 also supports a type 3 driver, although
this driver is deprecated. The JDBC drivers in previous releases of DB2 UDB for
Linux, UNIX® and Windows® were built on DB2 CLI (Call Level Interface). The
DB2 Version 8 type 2 and type 3 drivers continue to use the DB2 CLI interface to
communicate with DB2 UDB servers. DB2 Version 8 adds a new DB2 Universal
JDBC Driver that is written completely in Java. The drivers that are supported in
DB2 Version 8 are:

© Copyright IBM Corp. 1997 - 2004 259

260

DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC type 2
driver) (deprecated as of DB2 V8.2):

The DB2 JDBC type 2 driver lets Java applications make calls to DB2 through
JDBC. Calls to the DB2 JDBC type 2 driver are translated to Java native methods.
The Java applications that use this driver must run on a DB2 client, through which
JDBC requests flow to the DB2 server. DB2 Connect™" Version 8 must be installed
before the DB2 JDBC application driver can be used to access DB2 UDB for
iSeries™" data sources or data sources in the DB2 for OS/390 or z/OS
environments.

The DB2 JDBC type 2 driver supports these JDBC and SQL]J functions:

* Most of the methods that are described in the JDBC 1.2 specification, and some
of the methods that are described in the JDBC 2.0 specification. See Comparison
of driver support for JDBC APIs.

* SQLJ statements that perform equivalent functions to all JDBC methods

* Connection pooling

* Distributed transactions

* Java user-defined functions and stored procedures

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows will not be supported
in future releases of DB2. You should therefore consider moving to the DB2
Universal JDBC Driver.

DB2 JDBC Type 3 Driver for Linux, UNIX and Windows (deprecated as of DB2
V8.1):

The DB2 JDBC type 3 driver, also known as the applet or net driver, consists of a
JDBC client and a JDBC server. The DB2 JDBC applet driver can be loaded by a
Web browser along with the applet, or the applet driver can be used in standalone
Java applications. When the applet requests a connection to a DB2 database server,
the applet driver opens a TCP/IP socket to the DB2 JDBC applet server on the
machine where the Web server is running. After a connection is set up, the applet
driver sends each of the subsequent database access requests from the applet to the
JDBC server through the TCP/IP connection. The JDBC server then makes
corresponding DB2 calls to perform the task. On completion, the JDBC server
sends the results back to the JDBC client through the connection. The JDBC server
process is db2jd.

The DB2 JDBC Type 3 Driver for Linux, UNIX and Windows will not be supported
in future releases of DB2. You should therefore consider moving to the DB2
Universal JDBC Driver.

DB2 Universal JDBC driver (type 2 and type 4):

The DB2 Universal JDBC Driver is a single driver that includes JDBC type 2 and
JDBC type 4 behavior, as well as SQLJ support. When an application loads the DB2
Universal JDBC Driver, a single driver instance is loaded for type 2 and type 4
implementations. The application can make type 2 and type 4 connections using
this single driver instance. The type 2 and type 4 connections can be made
concurrently. DB2 Universal JDBC Driver type 2 driver behavior is referred to as
DB2 Universal]DBC Driver type 2 connectivity. DB2 Universal JDBC Driver type 4
driver behavior is referred to as DB2 Universal [DBC Driver type 4 connectivity.

Programming Client Applications

The DB2 Universal JDBC Driver is an entirely new driver, rather than a follow-on
to any other DB2 JDBC drivers. Therefore, you can expect some differences in
behavior between this driver and other drivers.

The DB2 Universal JDBC Driver supports these JDBC and SQL] functions:

* Most of the methods that are described in the JDBC 1.2 and JDBC 2.0
specifications, and some of the methods that are described in the JDBC 3.0
specifications. See Comparison of driver support for JDBC APIs.

* SQLJ statements that perform equivalent functions to all JDBC methods.

* Connections that are enabled for connection pooling. WebSphere Application
Server or another application server does the connection pooling.

* Implementation of Java user-defined functions and stored procedures (Universal
Type 2 Connectivity only).

* Global transactions that run under WebSphere® Application Server Version 5.0
and above.

* Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java
Transaction API (JTA) specifications, which conform to the X/Open standard for
global transactions (Distributed Transaction Processing: The XA Specification,
available from www.opengroup.org) .

Related reference:
+ [“JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426|

* [“SQLJ differences between the DB2 Universal JDBC Driver and other DB2 JDBC]|
drivers” on page 432

+ [“Comparison of driver support for JDBC APIs” on page 376|

Chapter 14. Introduction to Java application support 261

262 Programming Client Applications

Chapter 15. JDBC application programming

The sections that follow contain information about writing JDBC applications.

Basic JDBC application programming concepts

The topics that follow contain basic information about writing JDBC applications.
Basic steps in writing a JDBC application

Writing a JDBC application has much in common with writing an SQL application
in any other language: In general, you need to do the following things:

* Access the Java' packages that contain JDBC methods.

* Declare variables for sending data to or retrieving data from DB2® tables.

* Connect to a data source.

e Execute SQL statements.

* Handle SQL errors and warnings.

* Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks is somewhat different.

[Figure 4 on page 264 is a simple program that demonstrates each task. This
program runs on the DB2 Universal JDBC Driver.

© Copyright IBM Corp. 1997 - 2004 263

import java.sql.x;
public class EzJava

public static void main(String[] args)
{
String urlPrefix = "jdbc:db2:";
String url;
String empNo; 2]
Connection con;
Statement stmt;
ResultSet rs;

System.out.printin ("#*xx Enter class EzJava");

// Check the that first argument has the correct form for the portion
// of the URL that follows jdbc:db2:, as described
// in the Connecting to a data source using the DriverManager
// interface with the DB2 Universal JDBC Driver topic.
// For example, for Universal Driver type 2 connectivity,
// args[0] might be MVS1DB2M. For Universal
// Driver type 4 connectivity, args[0] might
// be //stlmvs1:10110/MVS1DB2M.
if (args.length==0)
{
System.err.printin ("Invalid value. First argument appended to "+
"jdbc:db2: must specify a valid URL.");
System.exit(1);
1

url = urlPrefix + args[0];

try

{
// Load the DB2 Universal JDBC Driver
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.printin("#+*x Loaded the JDBC driver");

// Create the connection using the DB2 Universal JDBC Driver

con = DriverManager.getConnection (url);
// Commit changes manually

con.setAutoCommit(false);

System.out.printin("#+*x Created a JDBC connection to the data source");

// Create the Statement
stmt = con.createStatement(); [4a |
System.out.printin("#*+x Created JDBC Statement object");

// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); m
System.out.printin("+++* Creaed JDBC ResultSet object");

// Print all of the employee numbers to standard output device
while (rs.next()) {

empNo = rs.getString(1);

System.out.printin("Employee number = " + empNo);

}
System.out.printin("#++x Fetched all rows from JDBC ResultSet");

Figure 4. Simple JDBC application (Part 1 of 2)

264 Programming Client Applications

// Close the ResultSet
rs.close();
System.out.printin("+#+* Closed JDBC ResultSet");

// Close the Statement
stmt.close();
System.out.printin("*xxx Closed JDBC Statement");

// Connection must be on a unit-of-work boundary to allow close
con.commit();
System.out.printin ("#*%% Transaction committed");

// Close the connection

con.close(); 6|

System.out.printin("+++% Disconnected from data source");

System.out.printin("*xxx JDBC Exit from class EzJava - no errors");

}

catch (ClassNotFoundException e)

{

System.err.printin("Could not load JDBC driver");
System.out.printin("Exception: " + e);
e.printStackTrace();

}

catch(SQLException ex) B

System.err.printin("SQLException information");
while(ex!=null) {
System.err.printin ("Error msg: " + ex.getMessage());
System.err.printin ("SQLSTATE: " + ex.getSQLState());
System.err.printin ("Error code: " + ex.getErrorCode());
ex.printStackTrace();

ex

}
}

ex.getNextException(); // For drivers that support chained exceptions

} // End main
} // End EzJava

Figure 4. Simple JDBC application (Part 2 of 2)

Notes to [Figure 4 on page 264

2]
and

A and

This statement imports the java.sql package, which contains the JDBC core APIL
For information on other Java packages that you might need to access, see
Access Java packages for JDBC support.

String variable empNo performs the function of a host variable. That is, it is
used to hold data retrieved from an SQL query. See Declare variables in JDBC
applications for more information.

These two sets of statements demonstrate how to connect to a data source using
one of two available interfaces. See Connect to a data source using JDBC for
more details.

These two sets of statements demonstrate how to perform a SELECT in JDBC.
For information on how to perform other SQL operations, see Execute SQL in a
JDBC application.

This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see Handle an
SQLException under the DB2 Universal JDBC Driver. For information on
handling SQL warnings, see Handle SQL warnings in a JDBC application.

This statement disconnects the application from the data source. See Close the
connection to the data source.

Related concepts:

+ [“Java packages for JDBC support” on page 266|

Chapter 15. JDBC application programming 265

266

» [“Variables in JDBC applications” on page 266|

+ |/IDBC interfaces for executing SQL” on page 276|

+ ["How JDBC applications connect to a data source” on page 267

Related tasks:
+ “Handling an SQLException under the DB2 Universal JDBC Driver” on page 282|
+ “Handling an SQL.Warning under the DB2 Universal JDBC Driver” on page 287|

Java packages for JDBC support

Before you can invoke JDBC methods, you need to be able to access all or parts of
various Java' packages that contain those methods. You can do that either by
importing the packages or specific classes, or by using the fully-qualified class
names. You might need the following packages or classes for your JDBC program:

java.sql
Contains the core JDBC APIL

javax.naming
Contains classes and interfaces for Java Naming and Directory Interface
(JNDI), which is often used for implementing a DataSource.

javax.sql
Contains JDBC 2.0 standard extensions.

javax.transaction
Contains JDBC support for distributed transactions for the DB2® JDBC
Type 2 Driver for Linux, UNIX® and Windows® (DB2 JDBC Type 2 Driver).

com.ibm.db2.jcc
Contains the DB2-specific implementation of JDBC for the DB2 Universal
JDBC driver.

COM.ibm.db2.jdbc
Contains the DB2-specific implementation of the JDBC for the DB2 JDBC
Type 2 Driver.

Variables in JDBC applications

As in any other Java'" application, when you write JDBC applications, you declare
variables. In Java applications, those variables are known as Java identifiers. Some
of those identifiers have the same function as host variables in other languages:
they hold data that you pass to or retrieve from DB2® tables. Identifier empNo in the
sample program in Basic steps in writing a JDBC application is an example of a
Java String identifier that holds data that you retrieve from a CHAR column of a
DB?2 table.

Your choice of Java data types can affect performance because DB2 picks better
access paths when the data types of your Java variables map closely to the DB2
data types. Java, JDBC, and SQL data types shows the recommended mappings of
Java data types and JDBC data types to SQL data types.

Related concepts:

+ [“Basic steps in writing a JDBC application” on page 263|

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|

Programming Client Applications

How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must connect to
a database server. In J]DBC, a database server is known as a data source.

shows how a Java' application connects to a data source for a type 2
driver or DB2 Universal JDBC Driver type 2 connectivity.

Java application

DriverManager
or
DataSource

JDBC driver

Local database
or DB2
subsystem

Database
server

Figure 5. Java application flow for a type 2 driver or DB2 Universal JDBC Driver type 2
connectivity

[Figure 6 on page 268 shows how a Java application connects to a data source for
DB2 Universal JDBC Driver type 4 connectivity.

Chapter 15. JDBC application programming 267

268

Java application

DriverManager
or
DataSource
JDBC driver*
DRDA
Database
server

*Java byte code executed under JVM
Figure 6. Java application flow for DB2 Universal JDBC Driver type 4 connectivity

The way that you connect to a data source depends on the version of JDBC that
you use. Connecting using the DriverManager interface is available for all levels of
JDBC. Connecting using the DataSource interface is available with JDBC 2.0 and
above.

Related concepts:

+ ["How DB2 applications connect to a data source using the DriverManager]
interface with the DB2 JDBC Type 2 Driver” on page 268|

Related tasks:
* |“Connecting to a data source using the DataSource interface” on page 272|

+ |“Connecting to a data source using the DriverManager interface with the DB2]
Universal JDBC Driver” on page 270

How DB2 applications connect to a data source using the
DriverManager interface with the DB2 JDBC Type 2 Driver

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

The Java'" application first loads the JDBC driver by invoking the Class. forName
method. After the application loads the driver, it connects to a database server by
invoking the DriverManager.getConnection method.

For the DB2® JDBC Type 2 Driver for Linux, UNIX® and Windows® (DB2 JDBC
Type 2 Driver), you load the driver by invoking the Class.forName method with
the following argument:

COM.ibm.db2.jdbc.app.DB2Driver

The following code demonstrates loading the DB2 JDBC Type 2 Driver:

Programming Client Applications

try {
// Load the DB2 JDBC Type 2 Driver with DriverManager
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();
1

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the
DriverManager.getConnection method. You can use one of the following forms of
getConnection:

getConnection(String url);
getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

The url argument represents a data source.
For the DB2 JDBC Type 2 Driver, specify a URL of the following form:

Syntax for a URL for the DB2 JDBC Type 2 Driver:

»»>—jdbc:db2:database >«

The parts of the URL have the following meanings:

jdbc:db2:
jdbc:db2: indicates that the connection is to a DB2 UDB server.

database
A database alias. The alias refers to the DB2 database catalog entry on the DB2
client.

The info argument is an object of type java.util.Properties that contains a set of
driver properties for the connection. Specifying the info argument is an alternative
to specifying property=value strings in the URL.

Specifying a user 1D and password for a connection: There are several ways to specify a
user ID and password for a connection:

* Use the form of the getConnection method that specifies user and password.

* Use the form of the getConnection method that specifies info, after setting the
user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2:toronto";
// Set URL for data source
String user = "db2adm";
String password = "db2adm";
Connection con = DriverManager.getConnection(url, user, password);
// Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object
properties.put("user", "db2adm"); // Set user ID for connection
properties.put("password", "db2adm"); // Set password for connection
String url = "jdbc:db2:toronto";

Chapter 15. JDBC application programming 269

270

// Set URL for data source
Connection con = DriverManager.getConnection(url, properties);
// Create connection

Related concepts:
+ [“Security under the DB2 JDBC Type 2 Driver” on page 443|

Connecting to a data source using the DriverManager
interface with the DB2 Universal JDBC Driver

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

The Java" application first loads the JDBC driver by invoking the Class. forName
method. After the application loads the driver, it connects to a database server by
invoking the DriverManager.getConnection method.

For the DB2 Universal JDBC Driver, you load the driver by invoking the
Class.forName method with the following argument:

com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following argument
instead:

COM. ibm.db20s390.sq1j.jdbc.DB2SQLJDriver

The following code demonstrates loading the DB2 Universal JDBC Driver:

try {
// Load the DB2” Universal JDBC Driver with DriverManager
Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();
1

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the
DriverManager.getConnection method. You can use one of the following forms of
getConnection:

getConnection(String url);

getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

The url argument represents a data source, and indicates what type of JDBC
connectivity you are using.

For DB2 Universal JDBC Driver type 4 connectivity, specify a URL of the following
form:

Syntax for a URL for Universal Type 4 Connectivity:

Programming Client Applications

jdbc:db2:
jdbc:db2j

—_|—//server—|_—_|—/database
:net: :port L | JJ

:—~Yproperty—=—value—;

For DB2 Universal JDBC Driver type 2 connectivity, specify a URL of one of the
following forms:

Syntax for a URL for Universal Type 2 Connectivity:

jdbc:db2:database

jdbc:db20s390:database
jdbc:db20s390sqlj:database—| |

jdbc:default:connection

jdbc:db20s390: _|
jdbc:db20s390sql1j: |

A\
A

:—~Y property—=—value—;

Y property—=—value—;

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:
The meanings of the initial portion of the URL are:

jdbc:db2:
Indicates that the connection is to a server in the DB2 UDB family.

jdbc:db2j:net:
Indicates that the connection is to a remote IBM® Cloudscape™ server.

server
The domain name or IP address of the database server.

port
The TCP/IP server port number that is assigned to the database server. This is
an integer between 0 and 65535. The default is 446.

database
A name for the database server. This name depends on whether Universal
Type 4 Connectivity or Universal Type 2 Connectivity is used.

For Universal Type 4 Connectivity:

e If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in this value must be
uppercase characters. You can determine the location name by executing the
following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

e If the connection is to a DB2 UDB for Linux, UNIX and Windows server,

database is the database name that is defined during installation.

* If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

Chapter 15. JDBC application programming 271

For Universal Type 2 Connectivity:

* database is the database name that is defined during installation, if the value
of the serverName connection property is null. If the value of serverName
property is not null, database is a database alias.

property=value;
A property for the JDBC connection. For the definitions of these properties, see
Properties for the DB2 Universal JDBC Driver.

The info argument is an object of type java.util.Properties that contains a set of
driver properties for the connection. Specifying the info argument is an alternative
to specifying property=value strings in the URL. See Properties for the DB2
Universal JDBC Driver for the properties that you can specify.

Specifying a user 1D and password for a connection: There are several ways to specify a
user ID and password for a connection:

¢ Use the form of the getConnection method that specifies url with
property=value; clauses, and include the user and password properties in the
URL.

* Use the form of the getConnection method that specifies user and password.

* Use the form of the getConnection method that specifies info, after setting the
user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in a URL:

String url = "jdbc:db2://sysmvsl.stl.ibm.com:5021/san_jose:" +
"user=db2adm;password=db2adm;";
// Set URL for data source
Connection con = DriverManager.getConnection(url);
// Create connection

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021/san_jose";
// Set URL for data source
String user = "db2adm";
String password = "db2adm";
Connection con = DriverManager.getConnection(url, user, password);
// Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object
properties.put("user", "db2adm"); // Set user ID for connection
properties.put("password", "db2adm"); // Set password for connection
String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021/san_jose";

// Set URL for data source
Connection con = DriverManager.getConnection(url, properties);

// Create connection

Related concepts:
* [“Security under the DB2 Universal JDBC Driver” on page 444|

Related reference:
+ [“Properties for the DB2 Universal JDBC Driver” on page 370|

Connecting to a data source using the DataSource interface

Using DriverManager to connect to a data source reduces portability because the
application must identify a specific JDBC driver class name and driver URL. The

272 Programming Client Applications

driver class name and driver URL are specific to a JDBC vendor, driver
implementation, and data source. If your applications need to be portable among
data sources, you should use the DataSource interface.

When you connect to a data source using the DataSource interface, you use a
DataSource object. It is possible to create and use the DataSource object in the same
application, as you do with the DriverManager interface. shows an
example for the DB2 Universal JDBC Driver:

Figure 7. Creating and using a DataSource object in the same application

import java.sql.=; // JDBC base
import javax.sql.=*; // JDBC 2.0 standard extension APIs
import com.ibm.db2.jcc.*; // DB2® Universal JDBC Driver
// interfaces
DB2SimpleDataSource db2ds=new DB2SimpleDataSource();
db2ds.setDatabaseName("db21ocl"); 3
// Assign the Tocation name
db2ds.setDescription("Our Sample Database");
// Description for documentation
db2ds.setUser("john");
// Assign the user ID
db2ds.setPassword("db2");
// Assign the password
Connection con=db2ds.getConnection();
// Create a Connection object

Import the package that contains the implementation of the DataSource interface.
2] Creates a DB2DataSource object. DB2DataSource is one of the DB2 implementations
of the DataSource interface. See Create and deploy DataSource objects for

information on DB2’s DataSource implementations.

ﬂ The setDatabaseName, setDescription, setUser, and setPassword methods assign
attributes to the DB2DataSource object. See Properties for the DB2 Universal JDBC
Driver for information about the attributes that you can set for a DB2DataSource
object under the DB2 Universal JDBC Driver.

4] Establishes a connection to the data source that DB2DataSource object db2ds
represents.

However, a more flexible way to use a DataSource object is for your system
administrator to create and manage it separately, using WebSphere® or some other
tool. The program that creates and manages a DataSource object also uses the
Java' Naming and Directory Interface (JNDI) to assign a logical name to the
DataSource object. The JDBC application that uses the DataSource object can then
refer to the object by its logical name, and does not need any information about
the underlying data source. In addition, your system administrator can modify the
data source attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this
URL on the Web:

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see Create and deploy
DataSource objects.

You can use the DataSource interface and the DriverManager interface in the same

application, but for maximum portability, it is recommended that you use only the
DataSource interface to obtain connections.

Chapter 15. JDBC application programming 273

The remainder of this topic explains how to create a connection using a DataSource
object, given that the system administrator has already created the object and
assigned a logical name to it.

To obtain a connection using a DataSource object, you need to follow these steps:

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of
the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is
associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.
You can use one of the following forms of the getConnection method:

getConnection();
getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the
connection that are different from the ones that were specified when the
DataSource was deployed.

shows an example of the code that you need in your application program
to obtain a connection using a DataSource object, given that the logical name of the
data source that you need to connect to is jdbc/sampledb. The numbers to the right
of selected statements correspond to the previously-described steps.

Figure 8. Obtaining a connection using a DataSource object

import java.sql.*;
import javax.naming.=;
import javax.sql.=*;

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

Context ctx=new InitialContext();
Connection con=ds.getConnection();

Related tasks:
* [“Creating and deploying DataSource objects” on page 311]

Related reference:
+ [“Properties for the DB2 Universal JDBC Driver” on page 370|

Setting the isolation level for a JDBC transaction

To set the isolation level for a unit of work within a JDBC program, use the
Connection.setTransactionIsolation(int level) method. [Table 32| shows the
values of level that you can specify in the Connection.setTransactionIsolation
method and their DB2® equivalents.

Table 32. Equivalent JDBC and DB?2 isolation levels

JDBC value DB2 isolation level
TRANSACTION_SERIALIZABLE Repeatable read
TRANSACTION_REPEATABLE_READ Read stability
TRANSACTION_READ_COMMITTED Cursor stability

274 Programming Client Applications

Table 32. Equivalent JDBC and DB2 isolation levels (continued)
JDBC value DB2 isolation level
TRANSACTION_READ_UNCOMMITTED Uncommitted read

You can change the isolation level only at the beginning of a transaction.

Related concepts:

+ [“JDBC connection objects” on page 275|

JDBC connection objects

When you connect to a data source by either connection method, you create a
Connection object, which represents the connection to the data source. You use this
Connection object to do the following things:

* Create Statement, PreparedStatement, and CallableStatement objects for
executing SQL statements. These are discussed in Execute SQL in a JDBC
application.

* Gather information about the data source to which you are connected. This
process is discussed in Use DatabaseMetaData to learn about a data source.

* Commit or roll back transactions. You can commit transactions manually or
automatically. These operations are discussed in Commit or roll back a JDBC
transaction.

* Close the connection to the data source. This operation is discussed in Close a
connection to a JDBC data source.

Related concepts:

+ [“JDBC interfaces for executing SQL” on page 276|

Related tasks:

+ [“Closing a connection to a JDBC data source” on page 276|

* [“Committing or rolling back JDBC transactions” on page 275|

+ [“Using DatabaseMetaData to learn about a data source” on page 301

Committing or rolling back JDBC transactions

In JDBC, to commit or roll back transactions explicitly, use the conmit or rollback
methods. For example:

Connection con;
con.commit();

If autocommit mode is on, DB2® performs a commit operation after every SQL
statement completes. To determine whether autocommit mode is on, invoke the
Connection.getAutoCommit method. To set autocommit mode on, invoke the
Connection.setAutoCommit (true) method. To set autocommit mode off, invoke the
Connection.setAutoCommit(false) method.

Related concepts:

* [“Savepoints in JDBC applications” on page 294|

Related tasks:

Chapter 15. JDBC application programming 275

+ |“Making batch updates in JDBC applications” on page 304|

* |“Closing a connection to a JDBC data source” on page 276|

Closing a connection to a JDBC data source

When you have finished with a connection to a data source, it is essential that you
close the connection to the data source. Doing this releases the Connection object’s
DB2® and JDBC resources immediately. To close the connection to the data source,
use the close method. For example:

Connection con;
con.close();

If autocommit mode is not on, the connection needs to be on a unit-of-work
boundary before you close the connection.

Related concepts:

* ["How JDBC applications connect to a data source” on page 267

JDBC interfaces for executing SQL

You execute SQL statements in a traditional SQL program to insert, update, and
delete data in tables, retrieve data from the tables, or call stored procedures. To
perform the same functions in a JDBC program, you invoke methods that are
defined in the following interfaces:

* The Statement interface supports all SQL statement execution. The following
interfaces inherit methods from the Statement interface:

— The PreparedStatement interface supports any SQL statement containing
input parameter markers. Parameter markers represent input variables. The
PreparedStatement interface can also be used for SQL statements with no
parameter markers.

With the DB2 Universal JDBC Driver, the PreparedStatement interface can be
used to call stored procedures that have input parameters and no output
parameters, and that return no result sets.

— The CallableStatement interface supports the invocation of a stored
procedure.

The CallableStatement interface can be used to call stored procedures with
input parameters, output parameters, or input and output parameters, or no
parameters. With the DB2 Universal JDBC Driver, you can also use the
Statement interface to call stored procedures, but those stored procedures
must have no parameters.

* The ResultSet interface provides access to the results that a query generates.
The ResultSet interface has the same purpose as the cursor that is used in SQL
applications in other languages.

For a complete list of DB2® support for JDBC interfaces, see Comparison of driver
support for JDBC APIs.

Related tasks:

+ |“Using the PreparedStatement.executeQuery method to retrieve data from DB2”]

on page 280|

* [“Using the PreparedStatement.executeUpdate method to update data in DB2|
tables” on page 279

276 Programming Client Applications

+ |“Using the Statement.executeQuery method to retrieve data from DB2 tables” on|

page 27Z|

+ |“Using the Statement.executeUpdate method to create and modify DB2 objects”]

on page 27Z|

Related reference:

+ [“Comparison of driver support for JDBC APIs” on page 376|

Using the Statement.executeUpdate method to create and
modify DB2 objects

You can use the Statement.executeUpdate method to do the following things:

* Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,
REVOKE

e Execute INSERT, UPDATE and DELETE statements that do not contain
parameter markers

* With the DB2 Universal JDBC Driver, execute the CALL statement to call stored
procedures that have no parameters and that return no result sets.

To execute these SQL statements, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeUpdate method to perform the SQL operation.
3. Invoke the Statement.close method to close the Statement object.

For example, suppose that you want to execute this SQL statement:
UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010"

The following code creates Statement object stmt, executes the UPDATE statement,
and returns the number of rows that were updated in numUpd. The numbers to the
right of selected statements correspond to the previously-described steps.

Connection con;
Statement stmt;
int numUpd;

stmt = con.createStatement(); // Create a Statement object
numUpd = stmt.executeUpdate(
"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'"); ﬂ
// Perform the update
stmt.close(); // Close Statement object

Figure 9. Using Statement.executeUpdate

Related reference:

+ ["JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426|

» [“Comparison of driver support for JDBC APIs” on page 376

Using the Statement.executeQuery method to retrieve data
from DB2 tables

To retrieve data from a table using a SELECT statement with no parameter
markers, you can use the Statement.executeQuery method. This method returns a

Chapter 15. JDBC application programming 277

278

result table in a ResultSet object. After you obtain the result table, you need to use
ResultSet methods to move through the result table and obtain the individual
column values from each row.

With the DB2 Universal JDBC Driver, you can also use the Statement.executeQuery
method to retrieve a result set from a stored procedure call, if that stored
procedure returns only one result set. If the stored procedure returns multiple
result sets, you need to use the Statement.execute method. See Retrieve multiple
result sets from a stored procedure in a JDBC application for more information.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet
in which you can only move forward, one row at a time. The DB2 Universal JDBC
Driver also supports updatable and scrollable ResultSets. These are discussed in
Specify updatability, scrollability, and holdability for ResultSets in JDBC
applications.

To retrieve rows from a table using a SELECT statement with no parameter
markers, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeQuery method to obtain the result table from the
SELECT statement in a ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.
XXX represents a data type. See Comparison of driver support for JDBC APIs for
a list of supported getXXX and setXXX methods.

4. Invoke the ResultSet.close method to close the ResultSet object.

5. Invoke the Statement.close method to close the Statement object when you
have finished using that object.

For example, the following code demonstrates how to retrieve all rows from the
employee table. The numbers to the right of selected statements correspond to the
previously-described steps.

String empNo;
Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(); // Create a Statement object 1
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); 2
// Get the result table from the query

while (rs.next()) { // Position the cursor
empNo = rs.getString(1); // Retrieve only the first column value
System.out.printIn("Employee number = " + empNo);

// Print the column value

}
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement

Figure 10. Using Statement.executeQuery

Related tasks:
* |“Retrieving multiple result sets from a stored procedure in a JDBC application”]

on page 29Z|

* |“Specifying updatability, scrollability, and holdability for ResultSets in JDBC]|
applications” on page 309

Programming Client Applications

Related reference:

+ [“Comparison of driver support for JDBC APIs” on page 376|

Using the PreparedStatement.executeUpdate method to
update data in DB2 tables

The Statement.executeUpdate method works if you update DB2® tables with
constant values. However, updates often need to involve passing values in
variables to DB2 tables. To do that, you use the PreparedStatement.executeUpdate
method.

With the DB2 Universal JDBC Driver, you can also use
PreparedStatement.executeUpdate to call stored procedures that have input
parameters and no output parameters, and that return no result sets.

When you execute an SQL statement many times, you can get better performance
by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table
for only one phone number and one employee number:

UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'

Suppose that you want to generalize the operation to update the employee table
for any set of phone numbers and employee numbers. You need to replace the
constant phone number and employee number with variables:

UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers. To execute an SQL statement

with parameter markers, you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke the PreparedStatement.setXXX methods to pass values to the variables.

3. Invoke the PreparedStatement.executeUpdate method to update the table with
the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

The following code performs the previous steps to update the phone number to
'4657’ for the employee with employee number '000010’. The numbers to the right
of selected statements correspond to the previously-described steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object
2

pstmt.setString(1,"4657"); // Assign value to first parameter
pstmt.setString(2,"000010"); // Assign value to second parameter
numUpd = pstmt.executeUpdate(); // Perform the update

pstmt.close(); // Close the PreparedStatement object

Figure 11. Using PreparedStatement.executeUpdate for an SQL statement with parameter
markers

Chapter 15. JDBC application programming 279

280

You can also use the PreparedStatement.executeUpdate method for statements that
have no parameter markers. The steps for executing a PreparedStatement object
with no parameter markers are similar to executing a PreparedStatement object
with parameter markers, except you skip step [2| The following example
demonstrates these steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'");
// Create a PreparedStatement object [l
numUpd = pstmt.executeUpdate(); // Perform the update 3
pstmt.close(); // Close the PreparedStatement object i

Figure 12. Using PreparedStatement.executeUpdate for an SQL statement without parameter
markers

Related reference:

+ |“IDBC differences between the DB2 Universal JDBC Driver and other DB2 JDB(C]
drivers” on page 426|

+ [“Comparison of driver support for JDBC APIs” on page 376|

Using the PreparedStatement.executeQuery method to retrieve
data from DB2

To retrieve data from a table using a SELECT statement with parameter markers,
you use the PreparedStatement.executeQuery method. This method returns a result
table in a ResultSet object. After you obtain the result table, you need to use
ResultSet methods to move through the result table and obtain the individual
column values from each row.

With the DB2 Universal JDBC Driver, you can also use the
PreparedStatement.executeQuery method to retrieve a result set from a stored
procedure call, if that stored procedure returns only one result set and has only
input parameters. If the stored procedure returns multiple result sets, you need to
use the Statement.execute method. See Retrieve multiple result sets from a stored
procedure in a JDBC application for more information.

To retrieve rows from a table using a SELECT statement with parameter markers,

you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke PreparedStatement.setXXX methods to pass values to the input
parameters.

3. Invoke the PreparedStatement.executeQuery method to obtain the result table
from the SELECT statement in a ResultSet object.

4. In a loop, position the cursor using the ResultSet.next method, and retrieve
data from each column of the current row of the ResultSet object using getXXX
methods.

5. Invoke the ResultSet.close method to close the ResultSet object.

6. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Programming Client Applications

For example, the following code demonstrates how to retrieve rows from the
employee table for a specific employee. The numbers to the right of selected
statements correspond to the previously-described steps.

String empnum, phonenum;
Connection con;
PreparedStatement pstmt;
ResultSet rs;

pstmt = con.prepareStatement (
"SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");
// Create a PreparedStatement object
2

pstmt.setString(1,"000010"); // Assign value to input parameter
rs = pstmt.executeQuery(); // Get the result table from the query
while (rs.next()) { // Position the cursor 4
empnum = rs.getString(1); // Retrieve the first column value
phonenum = rs.getString(2); // Retrieve the first column value
System.out.printin("Employee number = " + empnum +

"Phone number = " + phonenum) ;

// Print the column values

1
rs.close(); // Close the ResultSet E
pstmt.close(); // Close the PreparedStatement

Figure 13. Using PreparedStatement.executeQuery

You can also use the PreparedStatement.executeQuery method for statements that
have no parameter markers. When you execute a query many times, you can get
better performance by creating the SQL statement as a PreparedStatement.

Related tasks:
* [“Retrieving multiple result sets from a stored procedure in a JDBC application”]

on page 292|

Related reference:

+ [“Comparison of driver support for JDBC APIs” on page 376

Using CallableStatement methods to call stored procedures

To call stored procedures, you invoke methods in the CallableStatement class. The

basic steps are:

1. Invoke the Connection.prepareCall method to create a CallableStatement
object.

2. Invoke the CallableStatement.setXXX methods to pass values to the input (IN)
parameters.

3. Invoke the CallableStatement.registerOutParameter method to indicate which
parameters are output-only (OUT) parameters, or input and output (INOUT)
parameters.

4. Invoke one of the following methods to call the stored procedure:
CallableStatement.executeUpdate

Invoke this method if the stored procedure does not return result sets.
CallableStatement.executeQuery

Invoke this method if the stored procedure returns one result set.
CallableStatement.execute

Invoke this method if the stored procedure returns multiple result sets.

5. If the stored procedure returns result sets, retrieve the result sets. See Retrieve
multiple result sets from a stored procedure in a JDBC application.

Chapter 15. JDBC application programming 281

282

6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT
parameters or INOUT parameters.

7. Invoke the CallableStatement.close method to close the CallableStatement
object when you have finished using that object.

The following code illustrates calling a stored procedure that has one input
parameter, four output parameters, and no returned ResultSets. The numbers to
the right of selected statements correspond to the previously-described steps.

int ifcaret;

int ifcareas;

int xsbytes;

String errbuff;
Connection con;
CallableStatement cstmt;
ResultSet rs;

cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,7,?,2,7)");
// Create a CallableStatement object
cstmt.setString (1, "DISPLAY THREAD(#*)");
// Set input parameter (DB2 command)
cstmt.registerOutParameter (2, Types.INTEGER);
// Register output parameters
cstmt.registerQutParameter (3, Types.INTEGER);
cstmt.registerQutParameter (4, Types.INTEGER);
cstmt.registerQutParameter (5, Types.VARCHAR);
cstmt.executeUpdate(); // Call the stored procedure E
ifcaret = cstmt.getInt(2); // Get the output parameter values
ifcareas = cstmt.getInt(3);
xsbhytes = cstmt.getInt(4);
errbuff = cstmt.getString(5);
cstmt.close();

Figure 14. Using CallableStatement methods for a stored procedure call with parameter
markers

Related tasks:
* [“Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 29Z|

Related reference:

+ ["JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426

+ [“Comparison of driver support for JDBC APIs” on page 376|

Handling an SQLException under the DB2 Universal JDBC

As in all Java" programs, error handling is done using try/catch blocks. Methods
throw exceptions when an error occurs, and the code in the catch block handles
those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods
throw an instance of SQLException when an error occurs during their execution.
According to the JDBC specification, an SQLException object contains the following
information:

e A String object that contains a description of the error, or null

e A String object that contains the SQLSTATE, or null

Programming Client Applications

* An int value that contains an error code
* A pointer to the next SQLException, or null

The DB2 Universal JDBC Driver provides a com.ibm.db2.jcc.DB2Diagnosable
interface that extends the SQLException class. The DB2Diagnosable interface gives
you more information about errors that occur when DB2® is accessed. If the JDBC
driver detects an error, DB2Diagnosable gives you the same information as the
standard SQLException class. However, if DB2 detects the error, DB2Diagnosable
adds the following methods, which give you additional information about the
error:

getSqlca
Returns an DB2Sqlca object with the following information:
* An SQL error code
* The SQLERRMC values
* The SQLERRP value
* The SQLERRD values
* The SQLWARN values
* The SQLSTATE

getThrowable
Returns a java.lang.Throwable object that caused the SQLException, or null, if
no such object exists.

printTrace
Prints diagnostic information.

The basic steps for handling an SQLException in a JDBC program that runs under
the DB2 Universal JDBC Driver are:

1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and
the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to
them, or you can import them:

import com.ibm.db2.jcc.DB2Diagnosable;
import com.ibm.db2.jcc.DB2Sqlca;

2. Put code that can generate an SQLException in a try block.
3. In the catch block, perform the following steps in a loop:
a. Test whether you have retrieved the last SQLException. If not, continue to
the next step.
b. Check whether any DB2-only information exists by testing for the existence
of a DB2Diagnosable object. If the object exists:

1) Optional: Invoke the DB2Diagnosable.printTrace method to write all
SQLException information to a java.io.PrintWriter object.

2) Invoke the DB2Diagnosable.getThrowable method to determine
whether an underlying java.lang.Throwable caused the SQLException.

3) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca
object.

4) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code
value.

5) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that
contains all SQLERRMC values, or invoke the
DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC
values in an array.

6) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP
value.

Chapter 15. JDBC application programming 283

7) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD
values in an array.

8) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN
values in an array.

9) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE
value.

10) Invoke the DB2Sqlca.getMessage method to retrieve error message text
from the database server.

c. Invoke the SQLException.getNextException method to retrieve the next
SQLException.

The following code demonstrates how to obtain information from the DB2 version
of an SQLException that is provided with the DB2 Universal JDBC Driver. The
numbers to the right of selected statements correspond to the previously-described
steps.

284 Programming Client Applications

import java.sql.=; // Import JDBC API package

import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 1
import com.ibm.db2.jcc.DB2Sqlca; // SQLException support
java.io.PrintWriter printWriter; // For dumping all SQLException

// information
try { 2]

// Code that could generate SQLExceptions

} catch(SQLException sqle) {

while(sqle != null) { // Check whether there are more [EfY
// SQLExceptions to process
//=====> Optional DB2-only error processing

if (sqle instanceof DB2Diagnosable) {
// Check if DB2-only information exists
com.ibm.db2.jcc.DB2Diagnosable diagnosable =
(com.ibm.db2.jcc.DB2Diagnosable)sqle;

diagnosable.printTrace (printWriter, "");
java.lang.Throwable throwable =
diagnosable.getThrowable(); EA

if (throwable != null) {
// Extract java.lang.Throwable information
// such as message or stack trace.

} ...

DB2Sqlca sqlca = diagnosable.getSqlca();
// Get DB2Sqlca object

if (sqlca !'= null) { // Check that DB2Sqlca is not null

int sqlCode = sqlca.getSqlCode(); // Get the SQL error code
String sqlErrmc = sqlca.getSqlErrmc();
// Get the entire SQLERRMC
String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();
// You can also retrieve the
// individual SQLERRMC tokens
String sqlErrp = sqlca.getSqlErrp(); 3b6 |
// Get the SQLERRP
int[] sqlErrd = sqlca.getSqlErrd();
// Get SQLERRD fields
char[] sqlWarn = sqlca.getSqlWarn(); 3b8 |
// Get SQLWARN fields
String sqlState = sqlca.getSqlState(); [3b9 |
// Get SQLSTATE
String errMessage = sqlca.getMessage(); 3b10
// Get error message

System.err.printin ("Server error message: " + errMessage);

System.err.printin ("--------------- SQLCA --------—--———- ")

System.err.printin ("Error code: " + sqlCode);

System.err.printin ("SQLERRMC: " + sqlErrmc);

for (int i=0; i< sqlErrmcTokens.length; i++) {
System.err.printin (" token " + i + ": " + sqlErrmcTokens[i]);

}

we

Figure 15. Processing an SQLException under the DB2 Universal JDBC Driver (Part 1 of 2)

Chapter 15. JDBC application programming

285

286

System.err.printin ("SQLERRP: " + sqlErrp);
System.err.printin (

"SQLERRD(1): " + sqlErrd[0] + "\n" +
"SQLERRD(2): " + sqlErrd[1] + "\n" +
"SQLERRD(3): " + sqlErrd[2] + "\n" +
"SQLERRD(4): " + sqlErrd[3] + "\n" +
"SQLERRD(5): " + sqlErrd[4] + "\n" +
"SQLERRD(6): " + sqlErrd[5]);
System.err.printin (
"SQLWARNL: " + sqlWarn[0] + "\n" +
"SQLWARN2: " + sqglWarn[1] + "\n" +
"SQLWARN3: " + sqlWarn[2] + "\n" +
"SQLWARN4: " + sqglWarn[3] + "\n" +
"SQLWARNS: " + sqlWarn[4] + "\n" +
"SQLWARN6: " + sqlWarn[5] + "\n" +
"SQLWARN7: " + sqlWarn[6] + "\n" +
"SQLWARN8: " + sqlWarn[7] + "\n" +
"SQLWARN9: " + sqglWarn[8] + "\n" +
"SQLWARNA: " + sqlWarn[9]);
System.err.printin ("SQLSTATE: " + sqlState);

// portion of SQLException

1
sqle=sqle.getNextException(); // Retrieve next SQLException

}

Figure 15. Processing an SQLException under the DB2 Universal JDBC Driver (Part 2 of 2)

Related reference:
* |“Error codes issued by the DB2 Universal JDBC Driver” on page 434|

Handling an SQLException under the DB2 JDBC Type 2 Driver

As in all Java" programs, error handling is done using try/catch blocks. Methods
throw exceptions when an error occurs, and the code in the catch block handles
those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods
throw an instance of SQLException when an error occurs during their execution.
According to the JDBC specification, an SQLException object contains the following
information:

* A String object that contains a description of the error, or null

* A String object that contains the SQLSTATE, or null

* An int value that contains an error code

* A pointer to the next SQLException, or null

The basic steps for handling an SQLException in a JDBC program that runs under
the DB2® JDBC Type 2 Driver for Linux, UNIX® and Windows® (DB2 JDBC Type 2
Driver) are:

1. Put code that can generate an SQLException in a try block.
2. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to
the next step.

Retrieve error information from the SQLException.

Invoke the SQLException.getNextException method to retrieve the next
SQLException.

Programming Client Applications

The following code illustrates a catch block that uses the DB2 version of
SQLException that is provided with the DB2 JDBC Type 2 Driver. The numbers to
the right of selected statements correspond to the previously-described steps.

import java.sql.=; // Import JDBC API package
try {
// Code that could generate SQLExceptions

} catch(SQLException sqle) {
while(sqle !'= null) { // Check whether there are more
System.out.printIn("Message: " + sqle.getMessage()); 2
System.out.printIn("SQLSTATE: " + sqle.getSQLState());
System.out.printIn("SQL error code: " + sqle.getErrorCode());
sqle=sqle.getNextException(); // Retrieve next SQLException ﬂ

Figure 16. Processing an SQLException under the DB2 Universal JDBC Driver

Related tasks:
* [“Handling an SQL.Warning under the DB2 Universal JDBC Driver” on page 287|

Handling an SQLWarning under the DB2 Universal JDBC
Driver

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.
Instead, the Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet classes contain getWarnings methods, which you need to invoke after
you execute SQL statements to determine whether any SQL warnings were
generated. Calling getWarnings retrieves an SQLWarning object. A generic
SQLWarning object contains the following information:

* A String object that contains a description of the warning, or null

e A String object that contains the SQLSTATE, or null

* An int value that contains an error code

* A pointer to the next SQLWarning, or null

Under the DB2 Universal JDBC Driver, like an SQLException object, an SQLWarning
object can also contain DB2®-specific information. The DB2-specific information for
an SQLWarning object is the same as the DB2-specific information for an
SQLException object.

The basic steps for retrieving SQL warning information are:

1. Immediately after invoking a method that executes an SQL statement, invoke
the getWarnings method to retrieve an SQLWarning object.

2. Perform the following steps in a loop:
a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning
description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE
value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code
value.

e. If you want DB2-specific warning information, perform the same steps that
you perform to get DB2-specific information for an SQLException.

Chapter 15. JDBC application programming 287

288

f. Invoke the SQLWarning.getNextWarning method to retrieve the next
SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The
numbers to the right of selected statements correspond to the previously-described
steps.

Connection con;
Statement stmt;
ResultSet rs;
SQLWarning sqlwarn;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT = FROM EMPLOYEE");
// Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated
while (sqlwarn != null) { // While there are warnings, get and
// print warning information
System.out.printin ("Warning description: " + sqlwarn.getMessage()); 2b
System.out.printin ("SQLSTATE: " + sqlwarn.getSQLState()); 2c
System.out.printin ("Error code: " + sqlwarn.getErrorCode()); 2d
sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning 2f

Figure 17. Processing an SQLWarning

Related tasks:
+ ["Handling an SQLException under the DB2 Universal JDBC Driver” on page 282

Handling an SQLWarning under the DB2 JDBC Type 2 Driver

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.
Instead, the Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet classes contain getWarnings methods, which you need to invoke after
you execute SQL statements to determine whether any SQL warnings were
generated. Calling getWarnings retrieves an SQLWarning object.

The DB2® JDBC Type 2 Driver for Linux, UNIX® and Windows® (DB2 JDBC Type
2 Driver) generates generic SQLWarning objects. A generic SQLWarning object
contains the following information:

* A String object that contains a description of the warning, or null

* A String object that contains the SQLSTATE, or null

* An int value that contains an error code

* A pointer to the next SQLWarning, or null

The basic steps for retrieving SQL warning information are:

1. Immediately after invoking a method that executes an SQL statement, invoke
the getWarnings method to retrieve an SQLWarning object.

2. Perform the following steps in a loop:
a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning
description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE
value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code
value.

Programming Client Applications

e. Invoke the SQLWarning.getNextWarning method to retrieve the next
SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The
numbers to the right of selected statements correspond to the previously-described
steps.

Connection con;
Statement stmt;
ResultSet rs;
SQLWarning sqlwarn;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT = FROM EMPLOYEE");
// Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated
while (sqlwarn != null) { // While there are warnings, get and
// print warning information
System.out.printin ("Warning description: " + sqlwarn.getMessage()); 2b
System.out.printin ("SQLSTATE: " + sqlwarn.getSQLState()); 2c
System.out.printin ("Error code: " + sqlwarn.getErrorCode()); 2d
sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning 2f

Figure 18. Processing an SQLWarning

Related tasks:
+ “Handling an SQLException under the DB2 JDBC Type 2 Driver” on page 286|

Advanced JDBC application programming concepts

The topics that follow contain more advanced information about writing JDBC
applications.

LOBs in JDBC applications with the DB2 Universal JDBC
Driver

The DB2 Universal JDBC Driver includes all of the LOB support in the JDBC 2.0
specification. This driver also includes support for LOBs in additional methods and
for additional data types.

CLOB data is always sent to the database server as a Unicode stream. The database
server converts the data to the target code page.

LOB locator support: The DB2 Universal JDBC Driver can use LOB locators to
retrieve data in LOB columns. To cause JDBC to use LOB locators to retrieve data
from LOB columns, you need to set the fullyMaterializelLobData property to
false. Properties are discussed in Properties for the DB2® Universal JDBC Driver.

fullyMaterializelobData has no effect on stored procedure parameters or LOBs
that are fetched using scrollable cursors. When you fetch data from a DB2 UDB
server in the 0OS/390%® or z/OS™ environment using scrollable cursors, JDBC
always uses LOB locators to retrieve data from LOB columns.

As in any other language, a LOB locator in a Java application is associated with

only one database. You cannot use a single LOB locator to move data between two
different databases. To move LOB data between two databases, you need to

Chapter 15. JDBC application programming 289

290

materialize the LOB data when you retrieve it from a table in the first database
and then insert that data into the table in the second database.

Additional methods supported by the DB2 Universal J]DBC Driver: In addition to
the methods in the JDBC specification, the DB2 Universal JDBC Driver includes
LOB support in the following methods:

* You can specify a BLOB column as an argument of the following ResultSet
methods to retrieve data from a BLOB column:
— getBinaryStream
— getBytes

* You can specify a CLOB column as an argument of the following ResultSet
methods to retrieve data from a CLOB column:

getAsciiStream

getCharacterStream

getString

getUnicodeStream

* You can use the following PreparedStatement methods to set the values for
parameters that correspond to BLOB columns:
— setBytes
— setBinaryStream

* You can use the following PreparedStatement methods to set the values for
parameters that correspond to CLOB columns:
— setString
— setAsciiStream
— setUnicodeStream
— setCharacterStream

* You can retrieve the value of a JDBC CLOB parameter using the following
CallableStatement method:
— getString

Restriction on using LOBs with the DB2 Universal JDBC Driver: If you are using
Universal Type 2 Connectivity, you cannot call a stored procedure that has
DBCLOB OUT or INOUT parameters.

Related reference:
+ [“Properties for the DB2 Universal JDBC Driver” on page 370|

+ ["JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426|

+ [“Comparison of driver support for JDBC APIs” on page 376

Java data types for retrieving or updating LOB column data in
JDBC applications

When the deferPrepares property is set to true, and the DB2 Universal JDBC
Driver processes a PreparedStatement.setXXX call, the driver might need to do
extra processing to determine data types. This extra processing can impact
performance.

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

Input parameters for BLOB columns:

Programming Client Applications

For input parameters for BLOB columns, or input/output parameters that are used

for input to BLOB columns, you can use one of the following techniques:

* Use a java.sql.Blob input variable, which is an exact match for a BLOB column:
cstmt.setBlob(parmIndex, blobData);

e Use a CallableStatement.setObject call that specifies that the target data type is
BLOB:

byte[] byteData = {(byte)0xla, (byte)0x2b, (byte)0x3c};
cstmt.setObject (parmInd, byteData, java.sql.Types.BLOB);

¢ Use an input parameter of type of java.io.ByteArrayInputStream with a
CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream
object is compatible with a BLOB data type. For this call, you need to specify the
exact length of the input data:
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;
cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

Output parameters for BLOB columns:

For output parameters for BLOB columns, or input/output parameters that are
used for output from BLOB columns, you can use the following technique:

* Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type BLOB. Then you can retrieve the parameter value into any
variable that has a data type that is compatible with a BLOB data type. For
example, the following code lets you retrieve a BLOB value into a byte][]
variable:

cstmt.registerQutParameter(parmIindex, java.sql.Types.BLOB);
cstmt.execute();
byte[] byteData = cstmt.getBytes(parmIndex);

Input parameters for CLOB columns:

For input parameters for CLOB columns, or input/output parameters that are used
for input to CLOB columns, you can use one of the following techniques:

* Use a java.sql.Clob input variable, which is an exact match for a CLOB column:
cstmt.setClob(parmIndex, clobData);

¢ Use a CallableStatement.setObject call that specifies that the target data type is
CLOB:

String charData = "CharacterString";
cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

* Use one of the following types of stream input parameters:

— A java.io.StringReader input parameter with a cstmt.setCharacterStream
call:

java.io.StringReader reader = new java.io.StringReader(charData);
cstmt.setCharacterStream(parmIindex, reader, charData.length);

— A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream
call, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);

For these calls, you need to specify the exact length of the input data.
* Use a String input parameter with a cstmt.setString call:
cstmt.setString(charData);

Chapter 15. JDBC application programming 291

292

If the length of the data is greater than 32KB, the JDBC driver assigns the CLOB
data type to the input data.

¢ Use a String input parameter with a cstmt.setObject call, and specify the target
data type as VARCHAR or LONGVARCHAR:

cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, the JDBC driver assigns the CLOB
data type to the input data.

Output parameters for CLOB columns:

For output parameters for CLOB columns, or input/output parameters that are
used for output from CLOB columns, you can use one of the following techniques:

e Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type CLOB. Then you can retrieve the parameter value into any
variable that has a data type that is compatible with a CLOB data type. For
example, the following code lets you retrieve a CLOB value into a String
variable:
cstmt.registerOutParameter(parmIndex, java.sql.Types.CLOB);
cstmt.execute();

String charData = cstmt.getString(parmIndex);

e Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type VARCHAR or LONGVARCHAR:
cstmt.registerQutParameter(parmIndex, java.sql.Types.VARCHAR);

cstmt.execute();
String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Related concepts:
+ [“LOBs in JDBC applications with the DB2 Universal JDBC Driver” on page 289|

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|

ROWIDs in JDBC with the DB2 Universal JDBC Driver

DB2® UDB for z/OS® and DB2 UDB for iSeries " support the ROWID data type for
a column in a DB2 table. A ROWID is a value that uniquely identifies a row in a
table.

You can use the following ResultSet methods to retrieve data from a ROWID
column:

e getBytes

* getObject

For getObject, the DB2 Universal JDBC Driver returns an instance of the DB2-only
class com.ibm.db2.jcc.DB2RowID.

You can use the following PreparedStatement methods to set a value for a
parameter that is associated with a ROWID column:

e setBytes

* setObject

Programming Client Applications

For setObject, use the DB2-only type com.ibm.db2.jcc.Types.ROWID or an instance
of the com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

Example: Using PreparedStatement.setObject with a com.ibm.db2.jcc. DB2Types. ROWID
target type: To set parameter 1, use this form of the SetObject method:

ps.setObject(1, bytes[], com.ibm.db2.jcc.DB2Types.ROWID);

Example: Using PreparedStatement.setObject with a com.ibm.db2.jcc. DB2RowlD target
type: Suppose that rwid is an instance of com.ibm.db2.jcc.DB2RowID. To set
parameter 1, use this form of the SetObject method:

ps.setObject (1, rwid);

To call a stored procedure that is defined with a ROWID output parameter, register
that parameter to be of the com.ibm.db2.jcc.DB2Types.ROWID type.

Example: Using CallableStatement.registerOutParameter with a

com.ibm.db2.jcc. DB2Types. ROWID parameter type: To register parameter 1 of a CALL
statement as a com.ibm.db2.jcc.DB2Types.ROWID data type, use this form of the
registerOutParameter method:

cs.registerQutParameter(1l, com.ibm.db2.jcc.DB2Types.ROWID)

Related reference:
* [“Java, JDBC, and SQL data types” on page 365|

Distinct types in JDBC applications

A distinct type is a user-defined data type that is internally represented as a
built-in SQL data type. You create a distinct type by executing the SQL statement
CREATE DISTINCT TYPE.

In a JDBC program, you can create a distinct type using the executeUpdate method
to execute the CREATE DISTINCT TYPE statement. You can also use
executeUpdate to create a table that includes a column of that type. When you
retrieve data from a column of that type, or update a column of that type, you use
Java' identifiers with data types that correspond to the built-in types on which the
distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and
retrieves the row from the table:

Chapter 15. JDBC application programming 293

294

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;

stmt = con.createStatement(); // Create a Statement object
stmt.executeUpdate(
"CREATE DISTINCT TYPE SHOESIZE AS INTEGER");
// Create distinct type
stmt.executeUpdate(
"CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");
// Create table with distinct type
stmt.executeUpdate("INSERT INTO EMP_SHOE " +
"VALUES ('000010', 6)"); // Insert a row
rs=stmt.executeQuery ("SELECT EMPNO, EMP_SHOE_SIZE FROM EMP_SHOE);
// Create ResultSet for query
while (rs.next()) {
empNumVar = rs.getString(1); // Get employee number
shoeSizeVar = rs.getInt(2); // Get shoe size (use int
// because underlying type
// of SHOESIZE is INTEGER)

System.out.printin("Employee number = " + empNumVar +
" Shoe size = " + shoeSizeVar);
1
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Figure 19. Creating and using a distinct type

Related reference:
* “CREATE DISTINCT TYPE statement” in the SQL Reference, Volume 2

Savepoints in JDBC applications

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. SQL statements exist to set a savepoint, release a
savepoint, and restore data and schemas to the state that the savepoint represents.

The DB2 Universal JDBC Driver supports the following methods for using
savepoints:

Connection.setSavepoint() or Connection.setSavepoint(String name)
Sets a savepoint. These methods return a Savepoint object that is used in later
releaseSavepoint or rollback operations.

When you execute either of these methods, DB2® executes the form of the
SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)
Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)
Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()
Indicates whether a data source supports savepoints.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Programming Client Applications

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;

con.setAutoCommit(false); // set autocommit OFF
stmt = con.createStatement(); // Create a Statement object
stmt.executeUpdate (

"CREATE DISTINCT TYPE SHOESIZE AS INTEGER");

// Create distinct type
con.commit(); // Commit the create
stmt.executeUpdate (

"CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");
// Create table with distinct type

con.commit(); // Commit the create
stmt.executeUpdate ("INSERT INTO EMP_SHOE " +

"VALUES ('000010', 6)"); // Insert a row
Savepoint savept = con.setSavepoint(); // Create a savepoint

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES ('000020', 10)"); // Insert another row
conn.rollback(savept); // Roll back work to the point
// after the first insert
con.releaseSavepoint(savept); // Release the savepoint
stmt.close(); // Close the Statement

Figure 20. Setting, rolling back to, and releasing a savepoint in a JDBC application

Related tasks:
* [“Committing or rolling back JDBC transactions” on page 275|

Related reference:

+ [“Comparison of driver support for JDBC APIs” on page 376

Retrieving identity column values in JDBC applications

An identity column is a DB2® table column that provides a way for DB2 to
automatically generate a numeric value for each row. You define an identity
column in a CREATE TABLE or ALTER TABLE statement by specifying the AS
IDENTITY clause when you define a column that has an exact numeric type with a
scale of 0 (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a
distinct type based on one of these types).

If you are using the DB2 Universal JDBC Driver, you can retrieve identity columns
from a DB2 table using JDBC 3.0 methods. In a JDBC program, identity columns
are known as automatically generated keys. To enable retrieval of automatically
generated keys from a table, you need to indicate when you insert rows that you
will want to retrieve automatically generated key values. You do that by setting a
flag in a Connection.prepareStatement, Statement.executeUpdate, or
Statement.execute method call. The statement that is executed must be an INSERT
statement or an INSERT within SELECT statement. Otherwise, the JDBC driver
ignores the parameter that sets the flag.

To retrieve automatically generated keys from a DB2 table, you need to perform

these steps:

1. Use one of the following methods to indicate that you want to return
automatically generated keys:

Chapter 15. JDBC application programming 295

296

* If you plan to use the PreparedStatement.executeUpdate method to insert
rows, invoke one of these forms of the Connection.prepareStatement method
to create a PreparedStatement object:

Use this form for a table on any database server that supports identity
columns:
Connection.prepareStatement (sql-statement,

Statement.RETURN_GENERATED KEYS);
Use this form only for a table on any database server that supports identity
columns and INSERT within SELECT:

Connection.prepareStatement (sql-statement, String [] columnNames);
* If you use the Statement.executeUpdate method to insert rows, invoke one
of these form of the Statement.executeUpdate method:

Use this form for a table on any database server that supports identity
columns:

Statement.executeUpdate(sql-statement, Statement.RETURN_GENERATED_KEYS);

Use this form only for a table on any database server that supports identity
columns and INSERT within SELECT:

Statement.executeUpdate(sql-statement, String [] columnNames);
* If you use the Statement.execute method to insert rows, invoke one of these
forms of the Statement.execute method:

Use this form for a table on any database server that supports identity
columns:

Statement.execute(sql-statement, Statement.RETURN_GENERATED KEYS);

Use this form only for a table on any database server that supports identity
columns and INSERT within SELECT:

Statement.execute(sql-statement, String [] columnNames);
2. Invoke the PreparedStatement.getGeneratedKeys method or the
Statement.getGeneratedKeys method to retrieve a ResultSet object that
contains the automatically generated key values.

The data type of the automatically generated keys in the ResultSet is
DECIMAL, regardless of the data type of the corresponding column.

The following code creates a table with an identity column, inserts rows into the
table, and retrieves automatically generated key values for the identity column.
The numbers to the right of selected statements correspond to the
previously-described steps.

Programming Client Applications

Connection con;

Statement stmt;

ResultSet rs;
java.math.BigDecimal iDColVar;

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

"IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE " +

rs

"VALUES ('000010', "5555")", // Insert a row
Statement.RETURN_GENERATED KEYS); // Indicate you want automatically

// generated keys

= stmt.getGeneratedKeys(); // Retrieve the automatically 2]
// generated key value in a ResultSet.
// Only one row is returned.
// Create ResultSet for query

while (rs.next()) {

idColVar = rs.getBigDecimal(1); // Get automatically generated key
// value
System.out.printin("automatically generated key value = " + idColVar);
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Figure 21. Retrieving automatically generated keys

Related concepts:

+ |“Identity Columns” on page 670|

Related tasks:

“Using the PreparedStatement.executeUpdate method to update data in DB2)|

tables” on page 279|

“Using the Statement.executeUpdate method to create and modify DB2 objects”]

on page 27Z|

Related reference:

+ [“Comparison of driver support for JDBC APIs” on page 376|

Retrieving multiple result sets from a stored procedure in a

JDBC application

If you call a stored procedure that returns result sets, you need to include code to
retrieve the result sets. The steps that you take depend on whether you know how
many result sets are returned, and whether you know the contents of those result
sets.

Retrieving a known number of result sets:

To retrieve result sets when you know the number of result sets and their contents,
follow these steps:
Invoke the Statement.execute method or PreparedStatement.execute method

1.

to call the stored procedure. Use PreparedStatement.execute if the stored
procedure has input parameters.

Invoke the getResultSet method to obtain the first result set, which is in a
ResultSet object.

Chapter 15. JDBC application programming

297

298

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.
4. If there are n result sets, repeat the following steps n-1 times:
a. Invoke the getMoreResults method to close the current result set and point
to the next result set.
b. Invoke the getResultSet method to obtain the next result set, which is in a
ResultSet object.
c. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX
methods.

The following code illustrates retrieving two result sets. The first result set contains
an INTEGER column, and the second result set contains a CHAR column. The
numbers to the right of selected statements correspond to the previously-described
steps.

CallableStatement cstmt;
ResultSet rs;

int i;
String s;
cstmt.execute(); // Call the stored procedure 1
rs = cstmt.getResultSet(); // Get the first result set 2
while (rs.next()) { // Position the cursor 3
i = rs.getInt(1); // Retrieve current result set value
System.out.printIn("Value from first result set = " + i);
// Print the value
}
cstmt.getMoreResults(); // Point to the second result set [EY
// and close the first result set
rs = cstmt.getResultSet(); // Get the second result set
while (rs.next()) { // Position the cursor
s = rs.getString(1); // Retrieve current result set value
System.out.printin("Value from second result set = " + s);
// Print the value
}
rs.close(); // Close the result set
cstmt.close(); // Close the statement

Figure 22. Retrieving known result sets from a stored procedure

Retrieving an unknown number of result sets:

To retrieve result sets when you do not know the number of result sets or their
contents, you need to retrieve ResultSets, until no more ResultSets are returned.
For each ResultSet, use ResultSetMetaData methods to determine its contents. See
Use ResultSetMetaData to learn about a ResultSet for more information on
determining the contents of a ResultSet.

After you call a stored procedure, follow these basic steps to retrieve the contents
of an unknown number of result sets.

1. Check the value that was returned from the execute statement that called the
stored procedure. If the returned value is true, there is at least one result set, so
you need to go to the next step.

2. Repeat the following steps in a loop:

a. Invoke the getResultSet method to obtain a result set, which is in a
ResultSet object. Invoking this method closes the previous result set.

Programming Client Applications

b. Process the ResultSet, as shown in Use ResultSetMetaData to learn about a
ResultSet.

c. Invoke the getMoreResults method to determine whether there is another
result set. If getMoreResults returns true, go to step to get
the next result set.

The following code illustrates retrieving result sets when you do not know the
number of result sets or their contents. The numbers to the right of selected
statements correspond to the previously-described steps.

CallableStatement cstmt;
ResultSet rs;

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure
while (resultsAvailable) { // Test for result sets
ResultSet rs = cstmt.getResultSet(); // Get a result set
// process ResultSet
resultsAvailable = cstmt.getMoreResults(); // Check for next result set Y
// (Also closes the
// previous result set)

Figure 23. Retrieving unknown result sets from a stored procedure

Keeping result sets open:

In invocation of getMoreResults() closes the ResultSet object that is
returned by the previous invocation of getResultSet. However, if you are using
the DB2 Universal JDBC Driver, you can invoke the JDBC 3 form of
getMoreResults, which has a parameter that determines whether the current
ResultSet or previously-opened ResultSets are closed. This form of
getMoreResults requires JDK 1.4 or later.

You can specify one of these constants:

Statement. KEEP_CURRENT_RESULT
Checks for the next ResultSet, but does not close the current ResultSet.

Statement. CLOSE_CURRENT_RESULT
Checks for the next ResultSet, and closes the current ResultSet.

Statement.CLOSE_ALL_RESULTS
Closes all ResultSets that were previously kept open.

For example, the code in [Figure 24 on page 300| keeps all ResultSets open until the
final ResultSet has been retrieved, and then closes all ResultSets.

Chapter 15. JDBC application programming 299

300

CallableStatement cstmt;
ResultSet rs;

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure
while (resultsAvailable) { // Test for result sets

}

ResultSet rs = cstmt.getResultSet(); // Get a result set

// process ResultSet

resultsAvailable = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

// Check for next result set
// but do not close
// previous result set

resultsAvailable = cstmt.getMoreResults(Statement.CLOSE_ALL RESULTS);

// Close the result sets

Figure 24. Keeping retrieved stored procedure result sets open

Related tasks:
+ [“Using ResultSetMetaData to learn about a ResultSet” on page 300|

Using ResultSetMetaData to learn about a ResultSet

Previous discussions of retrieving data from a table or stored procedure result set
assumed that you know the number of columns and data types of the columns in
the table or result set. This is not always the case, especially when you are
retrieving data from a remote data source. When you write programs that retrieve
unknown ResultSets, you need to use ResultSetMetaData methods to determine
the characteristics of the ResultSets before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:

The number of columns in a ResultSet

The qualifier for the underlying table of the ResultSet

Information about a column, such as the data type, length, precision, scale, and
nullability

Whether a column is read-only

After you invoke the executeQuery method to generate a ResultSet for a query on
a table, follow these basic steps to determine the contents of the ResultSet:

1.

Invoke the getMetaData method on the ResultSet object to create a
ResultSetMetaData object.

Invoke the getColumnCount method to determine how many columns are in the
ResultSet.

For each column in the ResultSet, execute ResultSetMetaData methods to
determine column characteristics.

The results of ResultSetMetaData.getColumnName for the same table definition
might differ, depending on the data source. However, the returned information
correctly reflects the column name information that is stored in the DB2®
catalog for that data source.

For example, the following code demonstrates how to determine the data types of
all the columns in the employee table. The numbers to the right of selected
statements correspond to the previously-described steps.

Programming Client Applications

String s;

Connection con;

Statement stmt;

ResultSet rs;
ResultSetMetaData rsmtadta;
int colCount

int mtadtaint;

int i;

String colName;

String colType;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");
// Get the ResultSet from the query

rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object

colCount = rsmtadta.getColumnCount(); 2
// Find number of columns in EMP

for (i=1; i<= colCount; i++) {

colName = rsmtadta.getColumnName(); // Get column name

colType = rsmtadta.getColumnTypeName();

// Get column data type
System.out.printIn("Column = " + colName +
" is data type " + colType);

// Print the column value

Figure 25. Using ResultSetMetaData methods to get information about a ResultSet

Related tasks:
* |“Using CallableStatement methods to call stored procedures” on page 281]

* [“Using the Statement.executeQuery method to retrieve data from DB2 tables” on|

page 277]
Using DatabaseMetaData to learn about a data source

The DatabaseMetaData interface contains methods that retrieve information about a
data source. These methods are useful when you write generic applications that
can access various data sources. In these types of applications, you need to test
whether a data source can handle various database operations before you execute
them. For example, you need to determine whether the driver at a data source is at
the JDBC 2.0 level before you invoke JDBC 2.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:

 Features that the data source supports, such as the ANSI SQL level

* Specific information about the data source, such as the driver level

e Limits, such as the maximum number of columns that an index can have

* Whether the data source supports data definition statements (CREATE, ALTER,
DROP, GRANT, REVOKE)

* Lists of objects at the data source, such as tables, indexes, or procedures

* Whether the data source supports various JDBC 2.0 functions, such as batch
updates or scrollable ResultSets

If your application connects to a DB2® UDB for z/OS™" or OS/390® server, a

number of stored procedures need to be installed on that server before you can

invoke some DatabaseMetaData methods that require DB2 catalog information. The

stored procedures are:

* SQLCOLPRIVILEGES

* SQLCOLUMNS

* SQLFOREIGNKEYS

Chapter 15. JDBC application programming 301

302

« SQLGETTYPEINFO

+ SQLPRIMARYKEYS

+ SQLPROCEDURECOLS
+ SQLPROCEDURES

+ SQLSPECIALCOLUMNS
« SQLSTATISTICS

« SQLTABLEPRIVILEGES
« SQLTABLES

« SQLUDTS

For DB2 UDB for OS/390 and z/0OS, Version 7 or DB2 UDB for OS/390, Version 6,
the stored procedures are shipped in PTFs. The PTFs are orderable through normal
service channels using the following PTF numbers:

Table 33. PTFs for DB2 Universal Database for z/0S and OS/390

DB2 Universal Database for z/OS and PTF number

0S/390 Version

Version 6 UQ72081 and UQ72082
Version 7 UQ72083

Ask your DB2 UDB for z/0OS system administrator whether these stored
procedures are installed.

To invoke DatabaseMetaData methods, you need to perform these basic steps:

1. Create a DatabaseMetaData object by invoking the getMetaData method on the
connection.

2. Invoke DatabaseMetaData methods to get information about the data source.
3. If the method returns a ResultSet:

a. In aloop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX
methods.

b. Invoke the close method to close the ResultSet object.

For example, the following code demonstrates how to use DatabaseMetaData
methods to determine the driver version and get a list of the stored procedures
that are available at the data source. The numbers to the right of selected
statements correspond to the previously-described steps.

Programming Client Applications

Connection con;
DatabaseMetaData dbmtadta;
ResultSet rs;

int mtadtaint;

String procSchema;

String procName;

dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object
mtadtaint = dmtadta.getDriverVersion(); 2
// Check the driver version
System.out.printIn("Driver version: " + mtadtaint);
rs = dbmtadta.getProcedures(null, null, "%");
// Get information for all procedures
while (rs.next()) { // Position the cursor
procSchema = rs.getString("PROCEDURE_SCHEM");
// Get procedure schema
procName = rs.getString("PROCEDURE_NAME");
// Get procedure name
System.out.printin(procSchema + "." + procName);
// Print the qualified procedure name
}

rs.close(); // Close the ResultSet [3b |

Figure 26. Using DatabaseMetaData methods to get information about a data source

Related reference:

+ [“JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426|

+ [“Comparison of driver support for JDBC APIs” on page 376|

Using ParameterMetaData to learn about parameters in a
PreparedStatement

The DB2 Universal JDBC Driver includes support for the ParameterMetaData
interface. The ParameterMetaData interface contains methods that retrieve
information about the parameter markers in a PreparedStatement object.

ParameterMetaData methods provide the following types of information:

* The data types of parameters, including the precision and scale of decimal
parameters.

e The parameters’ database-specific type names. For parameters that correspond to
table columns that are defined with distinct types, these names are the distinct
type names.

* Whether parameters are nullable.

* Whether parameters are input or output parameters.

* Whether the values of a numeric parameter can be signed.

* The fully-qualified Java™ class name that PreparedStatement.setObject uses
when it sets a parameter value.

To invoke ParameterMetaData methods, you need to perform these basic steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a
ParameterMetaData object.

3. Invoke ParameterMetaData.getParameterCount to determine the number of
parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

Chapter 15. JDBC application programming 303

304

For example, the following code demonstrates how to use ParameterMetaData
methods to determine the number and data types of parameters in an SQL
UPDATE statement. The numbers to the right of selected statements correspond to
the previously-described steps.

Connection con;
ParameterMetaData pmtadta;
int mtadtacnt;

int sqlType;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object [

pmtadta = pstmt.getParameterMetaData(); 2
// Create a ParameterMetaData object
mtadtacnt = pmtadta.getParameterCount();

// Determine the number of parameters
System.out.printIn("Number of statement parameters: " + mtadtacnt);
for (int i = 1; i <= mtadtacnt; i++) {
sq1Type = pmtadta.getParameterType(i); 4]
// Get SQL type for each parameter
System.out.printIn("SQL type of parameter " + i " is " + sqlType);
1

pstmt.close(); // Close the PreparedStatement

Figure 27. Using ParameterMetaData methods to get information about a PreparedStatement

Related reference:

+ [“Comparison of driver support for JDBC APIs” on page 376|

Making batch updates in JDBC applications

The JDBC drivers that support JDBC 2.0 and above support batch updates. With
batch updates, instead of updating rows of a DB2® table one at a time, you can
direct JDBC to execute a group of updates at the same time. Statements that can be
included in the same batch of updates are known as batchable statements.

If a statement has input parameters or host expressions, you can include that
statement only in a batch that has other instances of the same statement. This type
of batch is known as a homogeneous batch. If a statement has no input parameters,
you can include that statement in a batch only if the other statements in the batch
have no input parameters or host expressions. This type of batch is known as a
heterogeneous batch. Two statements that can be included in the same batch are
known as batch compatible.

Use the following Statement methods for creating, executing, and removing a
batch of SQL updates:

* addBatch

* executeBatch

e clearBatch

Use the following PreparedStatement and CallableStatement method for creating a
batch of parameters so that a single statement can be executed multiple times in a
batch, with a different set of parameters for each execution.

* addBatch

Programming Client Applications

To make batch updates using several statements with no input parameters, follow

these basic steps:

1. Disable AutoCommit for the Connection object.

2. Invoke the createStatement method to create a Statement object.

3. For each SQL statement that you want to execute in the batch, invoke the
addBatch method.

4. Invoke the executeBatch method to execute the batch of statements.

5. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the
array that the executeBatch invocation returns. This number does not
include rows that were affected by triggers or by referential integrity
enforcement.

b. Invoke the commit method to commit the changes.

To make batch updates using a single statement with several sets of input
parameters, follow these basic steps:

1. Disable AutoCommit for the Connection object.

2. Invoke the prepareStatement method to create a PreparedStatement object for
the SQL statement with input parameters.

3. For each set of input parameter values:
a. Execute setXXX methods to assign values to the input parameters.
b. Invoke the addBatch method to add the set of input parameters to the batch.

4. Invoke the executeBatch method to execute the statements with all sets of
parameters.

5. Check for errors. If no errors occurred:

a. Get the number of rows that were updated by each execution of the SQL
statement from the array that the executeBatch invocation returns.

b. Invoke the commit method to commit the changes.

Example of a batch update: In the following code fragment, two sets of parameters
are batched. An UPDATE statement that takes two input parameters is then
executed twice, once with each set of parameters. The numbers to the right of
selected statements correspond to the previously-described steps.

Chapter 15. JDBC application programming 305

try {

connection con.setAutoCommit(false);
PreparedStatement prepStmt = con.prepareStatement(

"UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?");
prepStmt.setString(1,mgrnuml);
prepStmt.setString(2,deptnuml);
prepStmt.addBatch();

E BB

prepStmt.setString(1,mgrnum2) ;
prepStmt.setString(2,deptnum2);
prepStmt.addBatch();
int [] numUpdates=prepStmt.executeBatch(); &
for (int i=0; i < numUpdates.length; i++) {
if (numUpdates[i] == -2)
System.out.printin("Execution " + i +
": unknown number of rows updated");

else
System.out.printIn("Execution " + i +
"successful: " numUpdates[i] + " rows updated");
}
con.commit(); (5b|

} catch(BatchUpdateException b) {
// process BatchUpdateException
}

Figure 28. Performing a batch update

Related tasks:
* [“Committing or rolling back JDBC transactions” on page 275|

Related reference:

+ ["JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426

Retrieving information from a BatchUpdateException

When an error occurs during execution of a statement in a batch, processing

continues. However, executeBatch throws a BatchUpdateException. A

BatchUpdateException object contains the following items:

* A String object that contains a description of the error, or null.

* A String object that contains the SQLSTATE for the failing SQL statement, or
null

* An integer value that contains the error code, or zero

* An integer array of update counts for SQL statements in the batch, or null

* A pointer to an SQLException object, or nulT

One BatchUpdateException is thrown for the entire batch. At least one
SQLException object is chained to the BatchUpdateException object. The
SQLException objects are chained in the same order as the corresponding
statements were added to the batch. To help you match SQLException objects to
statements in the batch, the error description field for each SQLException object
begins with this string:

Error for batch element #n:

n is the number of the statement in the batch.

To retrieve information from the BatchUpdateException, follow these steps:

306 Programming Client Applications

1. Use the BatchUpdateException.getUpdateCounts method to determine the
number of rows that each SQL statement updated. getUpdateCounts returns -2
if the number of updated rows cannot be determined, or -3 if an error occurred
during an update.

2. Use SQLException methods getMessage, getSQLState, and getErrorCode to
retrieve the description of the error, the SQLSTATE, and the error code for the
first error.

3. Use the BatchUpdateException.getNextException method to get a chained
SQLException.

4. In aloop, execute the getMessage, getSQLState, getErrorCode, and
getNextException method calls to obtain information about an SQLException
and get the next SQLException.

Example of obtaining information from a BatchUpdateException: The following
code fragment demonstrates how to obtain the fields of a BatchUpdateException
and the chained SQLException objects. The numbers to the right of selected
statements correspond to the previously-described steps.

try {
// Batch updates
} catch(BatchUpdateException buex) {
System.err.printin("Contents of BatchUpdateException:");
System.err.printin(" Update counts: ");

int [] updateCounts = buex.getUpdateCounts();
for (int i = 0; i < updateCounts.length; i++) {
System.err.printin(" Statement " + i + ":" + updateCounts[i]);

1

System.err.printin(" Message: " + buex.getMessage()); 2|

System.err.printin(" SQLSTATE: " + buex.getSQLState());

System.err.printin(" Error code: " + buex.getErrorCode());

SQLException ex = buex.getNextException(); 3

while (ex != null) { 4
System.err.printIn("SQL exception:");
System.err.printin(" Message: " + ex.getMessage());
System.err.printin(" SQLSTATE: " + ex.getSQLState());
System.err.printIn(" Error code: " + ex.getErrorCode());
ex = ex.getNextException();

Figure 29. Retrieving a BatchUpdateException fields

To obtain information about warnings, use the Statement.getWarnings method on
the object on which you ran the executeBatch method. You can then retrieve an
error description, SQLSTATE, and error code for each SQLWarning object.

Restrictions on executing statements in a batch:

* If you try to execute a SELECT statement in a batch, a BatchUpdateException is
thrown.

* ACallableStatement object that you execute in a batch can contain output
parameters. However, you cannot retrieve the values of the output parameters. If
you try to do so, a BatchUpdateException is thrown.

* You cannot retrieve ResultSet objects from a CallableStatement object that you
execute in a batch. A BatchUpdateException is not thrown, but the getResultSet
method invocation returns a null value.

Related tasks:

Chapter 15. JDBC application programming 307

+ |“Making batch updates in JDBC applications” on page 304|

Characteristics of a JDBC ResultSet under the DB2 Universal
JDBC Driver

In addition to moving forward, one row at a time, through a ResultSet, you might
want to do the following things:

* Move backward or go directly to a specific row
* Update or delete rows of a ResultSet
* Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability
Whether the cursor can move forward, backward, or to a specific row.

updatability
Whether the cursor can be used to update or delete rows. This characteristic
does not apply to a ResultSet that is returned from a stored procedure,
because a stored procedure ResultSet cannot be updated.

holdability
Whether the cursor stays open after a COMMIT.

A scrollable ResultSet in JDBC is equivalent to the result table of a DB2® cursor

that is declared as SCROLL. A scrollable cursor can be insensitive or sensitive.

Insensitive means that changes to the underlying table after the cursor is opened

are not visible to the cursor. Insensitive cursors are read-only. Sensitive means the

following things:

* Changes that the cursor makes to the underlying table are always visible to the
Cursor.

* Changes that are made by other means to the underlying table can be visible to
the cursor. In DB2, if the rows are fetched with FETCH INSENSITIVE, changes
that are made by other means are not visible to the cursor. If the rows are
fetched with FETCH SENSITIVE, changes that are made by other means are
visible to the cursor. In JDBC, calling the refreshRow method before calling
getXXX methods has the same effect as FETCH SENSITIVE.

A JDBC ResultSet can also be static or dynamic, if the database server supports
both attributes. You determine whether scrollable cursors in a program are static or
dynamic by setting the cursorSensitivity property. See Properties for the DB2
Universal JDBC Driver for more information about the cursorSensitivity property.

If a JDBC ResultSet is static, the size of the result table and the order of the rows
in the result table do not change after the cursor is opened. This means that you
cannot insert into a result table, and if you delete a row of a result table, a delete
hole occurs.You can test whether the current row is a delete hole by using the
rowDeleted method. See Comparison of driver support for JDBC APlIs for a
complete list of the methods that are supported for ResultSets.

Related tasks:

* |“Specifying updatability, scrollability, and holdability for ResultSets in JDBC|
applications” on page 309

308 Programming Client Applications

Specifying updatability, scrollability, and holdability for
ResultSets in JDBC applications

To specify scrollability, updatability, and holdability for a ResultSet, you need to
follow these steps:

1. If the SELECT statement that defines the ResultSet has no input parameters,
invoke the createStatement method to create a Statement object. Otherwise,
invoke the prepareStatement method to create a PreparedStatement object.

You need to specify forms of the createStatement or prepareStatement
methods that include the resultSetType, resultSetConcurrency, or
resultSetHoldability parameters.

The form of the createStatement method that supports scrollability and
updatability is:

createStatement (int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability,
updatability, and holdability is:

createStatement (int resultSetType, int resultSetConcurrency,
int resultSetHoldability);

The form of the prepareStatement method that supports scrollability and
updatability is:

prepareStatement (String sql, int resultSetType,
int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,
updatability, and holdability is:

prepareStatement (String sql, int resultSetType,
int resultSetConcurrency, int resultSetHoldability);

See [Table 34| for a list of valid values for resultSetType and resultSetConcurrency.

Table 34. Valid combinations of resultSetType and resultSetConcurrency for scrollable

ResultSets

resultSetType value resultSetConcurrency value
TYPE_FORWARD_ONLY CONCUR_READ_ONLY
TYPE_FORWARD_ONLY CONCUR_UPDATABLE
TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY
TYPE_SCROLL_SENSITIVE CONCUR_READ_ONLY
TYPE_SCROLL_SENSITIVE CONCUR_UPDATABLE

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and
CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any
valid combination of resultSetConcurrency and resultSetHoldability. The value that
you set overrides the default holdability for the connection.

Restriction: If the ResultSet is scrollable, and the ResultSet is used to select
columns from a table on a DB2 UDB for Linux, UNIX, and Windows server, the
SELECT statement that defines the ResultSet cannot select columns with the
following data types:

* LONG VARCHAR

* LONG VARGRAPHIC

* DATALINK

* BLOB

« CLOB

Chapter 15. JDBC application programming 309

310

A distinct type that is based on any of the previous data types in this list
¢ A structured type

If the SELECT statement has input parameters, invoke setXXX methods to pass
values to the input parameters.

Invoke the executeQuery method to obtain the result table from the SELECT
statement in a ResultSet object.

For each row that you want to access:
a. Position the cursor using one of the methods list in [Table 35

Table 35. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

first() On the first row of the ResultSet

last() On the last row of the ResultSet

next()? On the next row of the ResultSet

previous()? On the previous row of the ResultSet

absolute(int n)3 If n>0, on row n of the ResultSet. If n<0, and m is the

number of rows in the ResultSet, on row m+n+1 of
the ResultSet.

relative(int n

)45 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLast() After the last row in the ResultSet

beforeFirst() Before the first row in the ResultSet

Notes:

1. If the cursor is before the first row of the ResultSet, this method positions the cursor on
the first row.

2. 1If the cursor is after the last row of the ResultSet, this method positions the cursor on
the last row.

3. If the absolute value of n is greater than the number of rows in the result set, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. The cursor must be on a valid row of the ResultSet before you can use this method. If
the cursor is before the first row or after the last throw, the method throws an
SQLException.

5. Suppose that m is the number of rows in the ResultSet and x is the current row number

in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If
n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step

age 309} and you need to see the latest values of the current row, invoke
the refreshRow method.

Recommendation: Because refreshing the rows of a ResultSet can have a
detrimental effect on the performance of your applications, you should
invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:

* To retrieve data from each column of the current row of the ResultSet
object, use getXXX methods.

* To update the current row from the underlying table, use updateXXX
methods to assign column values to the current row of the ResultSet.

Programming Client Applications

Then use updateRow to update the corresponding row of the underlying
table. If you decide that you do not want to update the underlying table,
invoke the cancelRowUpdates method instead of the updateRow method.

The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use these methods.

* To delete the current row from the underlying table, use the deleteRow
method. Invoking deleteRow causes the driver to replace the current row
of the ResultSet with a hole.

The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use this method.

5. Invoke the close method to close the ResultSet object.
6. Invoke the close method to close the Statement or PreparedStatement object.

For example, the following code demonstrates how to retrieve all rows from the
employee table in reverse order, and update the phone number for employee
number "000010". The numbers to the right of selected statements correspond to
the previously-described steps.

String s;
Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(ResultSet.TYPE_SCROLL SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
// Create a Statement object
// for a scrollable, updatable
// ResultSet
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE FOR UPDATE OF PHONENO");
// Create the ResultSet

rs.afterLast(); // Position the cursor at the end of
// the ResultSet
while (rs.previous()) { // Position the cursor backward
s = rs.getString("EMPNO"); // Retrieve the employee number [X]
// (column 1 in the result
// table)
System.out.printin("Employee number = " + s);
// Print the column value
if (s.compareTo("000010") == 0) { // Look for employee 000010
updateString ("PHONENO","4657") ; // Update their phone number
updateRow(); // Update the row
1
1
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement E

Figure 30. Using a scrollable cursor
Creating and deploying DataSource objects

JDBC versions starting with version 2.0 provide the DataSource interface for
connecting to a data source. Using the DataSource interface is the preferred way to
connect to a data source. Using the DataSource interface involves two parts:

* Creating and deploying DataSource objects. This is usually done by a system
administrator, using a tool such as WebSphere® Application Server.

* Using the DataSource objects to create a connection. This is done in the
application program.

Chapter 15. JDBC application programming 311

312

This topic contains information that you need if you create and deploy the
DataSource objects yourself.

The DB2 Universal JDBC Driver provides the following DataSource
implementations:

e com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection
pooling. You can use this implementation with Universal Type 2 Connectivity or
Universal Type 4 Connectivity.

The DB2® JDBC Type 2 Driver provides the following DataSource implementations:

> COM.ibm.db2.jdbc.DB2DataSource, which has built-in support for connection
pooling. With this implementation, connection pooling is handled internally and
is transparent to the application.

e COM.ibm.db2.jdbc.DB2XADataSource, which does not have built-in support for
distributed transactions and connection pooling. With this implementation, you
must manage the distributed transactions and connection pooling yourself,
either by writing your own code or by using a tool such as WebSphere
Application Server.

When you create and deploy a DataSource object, you need to perform these tasks:
1. Create an instance of the appropriate DataSource implementation.
2. Set the properties of the DataSource object.

3. Register the object with the Java' Naming and Directory Interface (JNDI)
naming service.

The example in shows how to perform these tasks.

import java.sql.=*; // JDBC base
import javax.naming.=; // JINDI Naming Services
import javax.sql.=; // JDBC 2.0 standard extension APIs

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0
// standard extension APIs

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDatabaseName("db21ocl"); 2]
db2ds.setDescription("Our Sample Database");

db2ds.setUser("john");

db2ds.setPassword("db2");

Context ctx=new InitialContext(); 3
Ctx.bind("jdbc/sampledb",db2ds) ; 4

Figure 31. Example of creating and deploying a DataSource object

Creates an instance of the DB2SimpleDataSource class.

This statement and the next three statements set values for properties of this
DB2SimpleDataSource object.

Creates a context for use by JNDL

Associates DBSimple2DataSource object db2ds with the logical name
jdbc/sampledb. An application that uses this object can refer to it by the name
jdbc/sampledb.

oEm NE

Related reference:
* [“Properties for the DB2 Universal JDBC Driver” on page 370|

Programming Client Applications

DB2 Universal JDBC Driver client reroute support

Failover is the ability of a server to take over operations when another server fails.
DB2 Universal JDBC Driver client reroute support provides failover support in a
DB2® UDB for Linux, UNIX® and Windows® environment. It lets a DB2 UDB for
Linux, UNIX and Windows client recover from a communication failure when the
client is connected to a DB2 UDB for Linux, UNIX and Windows database. When a
communication failure occurs, DB2 Universal JDBC Driver client reroute support
causes the underlying connection to be rerouted to an alternate location where a
failover replica of the database resides. When a connection is preserved through a
client reroute, an exception is thrown to indicate to the user that a reroute has
occurred, and the transaction is rolled back.

DB2 Universal JDBC Driver client reroute support is available only for connections
that use the javax.sql.DataSource interface.

Connectivity information for the alternate location is provided to Java clients by
the activeServerListfNDIName property of the primary JDBC DataSource instance.
activeServerListfNDIName identifies a JNDI reference to a DB2ActiveServerlList
instance in a JNDI repository of alternate server information.

DB2ActiveServerList is a serializable Java bean with two properties:
alternateServerName and alternatePortNumber. getXXX and setXXX methods are
defined for each property. The Java bean looks like this:

package com.ibm.db2.jcc;

public class DB2ActiveServerList implements java.io.Serializable,
javax.naming.Referenceable

{
public String[] alternateServerName;
public synchronized void
setAlternateServerName(String[] alternateServer);
public String[] getAlternateServerName();
public int[] alternatePortNumber;
public synchronized void
setAlternatePortNumber(int[] alternatePortNumberList);
public int[] getAlternatePortNumber();
1

Alternates are propagated from the server to the client dynamically when the client
issues a CONNECT or CONNECT RESET. This dynamically propagated alternate
server information is stored in global driver memory, and is also updated in the
JNDI store of DB2 active servers. The DB2 Universal JDBC Driver attempts to
propagate the updated information to the alternate JNDI after failover.

A newly established failover connection is configured with the original DataSource
properties, except for the server name and port number. In addition, any DB2
special registers that were modified during the original connection are
reestablished in the failover connection.

When a communication failure occurs, the DB2 Universal JDBC Driver first
attempts recovery to the original server. Reconnection to the original server is
called failback. If failback fails, the driver attempts to connect to the alternate
location (failover). After a failover or failback connection is reestablished, the
driver throws a java.sql.SQLException to the application with SQLCODE -4498, to
indicate to the application that a failover or failback occurred and the transaction
failed. The application can then retry its transaction.

Chapter 15. JDBC application programming 313

Alternate server setup method: Use JNDI to set up the alternate server. This involves
these steps:

1. Set the environment for an initial context. You can do this by creating a
jndi.properties file and add its name to the CLASSPATH.
Example: A jndi.properties file:
java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:/tmp

2. Create an instance of DB2ActiveServerList, and bind that instance to the JNDI
registry.
Example: Code that creates an instance of DB2ActiveServerList and binds that
instance to the JNDI registry:
// Create a starting context for naming operations
InitialContext registry = new InitialContext();
// Create a DB2ActiveServerList object
DB2ActiveServerList address = new DB2ActiveServerList();
// Set the port number and server name for the alternate server
int[] a = {50000} ;
String[] s = {"mvs3.sj.ibm.com"};
address.setActivePortNumber(a);
address.setActiveServerName(s);
// Bind the DB2ActiveServerList instance to the JNDI registry
registry.rebind("jdbc/alternate", address);

3. Assign the logical name of the DB2ActiveServerList, object, which contains the
alternate server location information, to the activeServerListfNDIName property
of the original DataSource.

Example: Code that assigns the logical name of the DB2ActiveServerList object
to the activeServerListfNDIName property of the a DataSource instance named
datasource:

datasource.setActiveServerListIJNDIName("jdbc/alternate");

Related reference:
+ [“Properties for the DB2 Universal JDBC Driver” on page 370|
* |“Summary of DB2 Universal JDBC Driver extensions to JDBC” on page 414]

Providing extended client information to the DB2 server with
the DB2 Universal JDBC Driver

The DB2 Universal JDBC Driver provides DB2®-only methods that you can use to
provide extra information about the client to the server. This information can be
used for accounting or workload management. The information is sent to the DB2
server when the application performs an action that accesses the server, such as
executing SQL.

The methods are listed in [Table 36

Table 36. Methods that provide client information to the DB2 server

Method Information provided

setDB2ClientUser User name for a connection

setDB2ClientWorkstation Client workstation name for a connection

setDB2ClientApplicationInformation Name of the application that is working with a
connection

setDB2ClientAccountingInformation Accounting information

314 Programming Client Applications

To set the extended information:
1. Create a Connection.

2. Cast the java.sql.Connection object to a com.ibm.db2.jcc.DB2Connection.

3. Call any of the methods shown in [Table 36 on page 31

4. Execute an SQL statement to cause the information to be sent to the DB2 server.

The following code performs the previous steps to pass a user name and a
workstation name to the DB2 server. The numbers to the right of selected

statements correspond to the previously-described steps.

public class ClientInfoTest {
public static void main(String[] args) {
String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021/san_jose";
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection con = DriverManager.getConnection(url,
user, password);
if (conn instanceof DB2Connection) {
DB2Connection db2conn = (DB2Connection) conn;
db2conn.setDB2ClientUser("Michael L Thompson"); 3
db2conn.setDB2CTientWorkstation("sjwkstnl");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement ("SELECT * FROM SYSIBM.SYSDUMMY1"
+ "WHERE 0 = 1").executeQuery();
} catch (Throwable e) {
e.printStackTrace();
}

Figure 32. Example of passing extended client information to a DB2 server

Related reference:

+ [“Summary of DB2 Universal JDBC Driver extensions to JDBC” on page 414]

Chapter 15. JDBC application programming

315

316 Programming Client Applications

Chapter 16. SQLJ application programming

The sections that follow contain information about writing SQL]J applications.

Basic SQLJ application programming concepts

The topics that follow contain basic information about writing SQL]J applications.
Basic steps in writing an SQLJ application

Writing a SQLJ application has much in common with writing an SQL application
in any other language: In general, you need to do the following things:

+ Import the Java" packages that contain SQL] and JDBC methods.

* Declare variables for sending data to or retrieving data from DB2® tables.

* Connect to a data source.

e Execute SQL statements.

* Handle SQL errors and warnings.

* Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks, and the order in which you
execute those tasks, is somewhat different.

[Figure 33 on page 318]is a simple program that demonstrates each task.

© Copyright IBM Corp. 1997 - 2004 317

318

import sqlj.runtime.*;
import java.sql.x;

#sql context EzSqljCtx;

#sql iterator EzSqljNamelter (String LASTNAME);

public class EzSqlj {

public static void main(String args[])
throws SQLException
it
EzSq1jCtx ctx = null;
String URLprefix = "jdbc:db2:";
String url;
url = new String(URLprefix + args[0]);

String hvmgr="000010";
String hvdeptno="A00";

// Location name is an input parameter

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (Exception e)

{
throw new SQLException("Error in EzSqlj: Could not load the driver");

try

{
System.out.printIn("About to connect using url: " + url);
Connection con® = DriverManager.getConnection(url);

// Create a JDBC Connection

con0.setAutoCommit(false); // set autocommit OFF
ctx = new EzSqljCtx(con@);

try

{
EzSqljNamelter iter;
int count=0;

#sql [ctx] iter =
{SELECT LASTNAME FROM EMPLOYEE};

while (iter.next()) {

// Create result table of the SELECT

System.out.printin(iter.LASTNAME()); // Retrieve rows from result table

count++;

}

System.out.printIn("Retrieved " + count + " rows of data");

Programming Client Applications

Figure 33. Simple SQLJ application (Part 1 of 2)

catch(SQLException e) 5|
{
System.out.printin ("#*%x SELECT SQLException...");
while(e!=null) {
System.out.printin ("Error msg: " + e.getMessage());
System.out.printin ("SQLSTATE: " + e.getSQLState());
System.out.printin ("Error code: " + e.getErrorCode());
e = e.getNextException(); // Check for chained exceptions
1
}

catch(Exception e)

System.out.printin("*xxx NON-SQL exception =" + e);
e.printStackTrace();

}
try

#sql [ctx] 4d |
{UPDATE DEPARTMENT SET MGRNO=:hvmgr
WHERE DEPTNO=:hvdeptno};
// Update data for one department [
#sql [ctx] {COMMIT}; // Commit the update

}

catch(SQLException e)

{
System.out.printin ("xxxx UPDATE SQLException...");
System.out.printin ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

e.getSQLState() + " Error code=" + e.getErrorCode());

e.printStackTrace();

}

catch(Exception e)

{
System.out.printin("*xxx NON-SQL exception =" + e);
e.printStackTrace();
}
iter.close(); // Close the iterator
ctx.close();

1
catch(SQLException e)
{
System.out.printin ("xxxx SQLException ...");
System.out.printin ("Error msg: " + e.getMessage() + ". SQLSTATE=" +
e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();

catch(Exception e)

{
System.out.printin ("xxxx NON-SQL exception = " + e);
e.printStackTrace();

}

Figure 33. Simple SQLJ application (Part 2 of 2)

Notes to [Figure 33 on page 318t

These statements import the java.sql package, which contains the JDBC core
API, and the sqlj.runtime package, which contains the SQLJ APIL. For
information on other packages or classes that you might need to access, see
Access Java packages for SQL]J support.

2] String variables hvmgr and hvdeptno are host identifiers, which are equivalent
to DB2 host variables. See Declare variables in SQL]J applications for more
information.

m , , These statements demonstrate how to connect to a data source using one of the

,and three available techniques. See Connect to a data source using SQL]J for more

details.

Chapter 16. SQL]J application programming 319

These statements demonstrate how to execute SQL statements in SQLJ.

, m , Statement 4a demonstrates the SQL]J equivalent of declaring an SQL cursor.
Statements 4b and 4c show one way of doing the SQL]J equivalent of executing
SQL FETCHes. Statement 4d shows how to do the SQL]J equivalent of
performing an SQL UPDATE. For more information, see Execute SQL in an
SQLJ application.

This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see Handle errors
in an SQLJ application. For more information on handling SQL warnings, see
Handle SQL warnings in an SQLJ application.

This is an example of a comment. For rules on including comments in SQL]J
programs, see Include comments in an SQL]J application.

This statement closes the connection to the data source. See Close the
connection to the data source in an SQL]J application.

jov}
B8
Q.

Related concepts:

+ [“Java packages for SQLJ support” on page 320

+ [“Variables in SQLJ applications” on page 320|

* |“SQL statements in an SQL]J application” on page 330
pp pag

Related tasks:
+ [“Connecting to a data source using SQL]” on page 322|

Java packages for SQLJ support

Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ
program, you need to be able to access all or parts of various Java' packages that
contain support for those statements. You can do that either by importing the
packages or specific classes, or by using fully-qualified class names. You might
need the following packages or classes for your SQL]J program:

sqlj.runtime
Contains the SQLJ run-time APIL.

java.sql
Contains the core JDBC APIL

com.ibm.db2.jcc
Contains the DB2®—specific implementation of JDBC and SQLJ.

javax.naming
Contains classes and interfaces for Java Naming and Directory Interface
(JNDI), which is often used for implementing a DataSource.

javax.sql
Contains JDBC 2.0 standard extensions.

Related concepts:

* |“Basic steps in writing an SQLJ application” on page 317|

Variables in SQLJ applications

In DB2® programs in other languages, you use host variables to pass data between
the application program and DB2. In SQL] programs, you use host expressions. A

320 Programming Client Applications

. . ™
host expression can be a simple Java = identifier, or it can be a complex expression.
Every host expression must start with a colon when it is used in an SQL statement.
Host expressions are case sensitive.

For the DB2 Universal JDBC Driver, a Java identifier can have any of the data
types listed in the Java data type column of Java, JDBC, and SQL]J data types. Data
types that are specified in an iterator can be any of the types in the Java data type
column of Java, JDBC, and SQLJ data types.

A complex expression is an array element or Java expression that evaluates to a
single value. A complex expression in an SQLJ clause must be surrounded by
parentheses.

The following examples demonstrate how to use host expressions.
Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sq1 has the same function as a
SELECT statement in other languages. This statement assigns the last name of the
employee with employee number 000010 to Java identifier empname.
String empname;
#sql [ctxt]

{SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO='000010'};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sq1 has the same function as an
SQL CALL statement in other languages. This statement uses Java identifier empno
as an input parameter to stored procedure A. The value IN, which precedes empno,
specifies that empno is an input parameter. The qualifier that indicates how the
parameter is used (IN, OUT, or INOUT) must match the corresponding value in
the parameter definition that you specified in the CREATE PROCEDURE statement
for the stored procedure.

String empno = "0000010";

#sql [ctxt] {CALL A (:IN empno)};
Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host
expression.

#sql [ctxt] {UPDATE EMPLOYEE
SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQL]J performs the following actions when it processes a complex host expression:
* Evaluates the host expression from left to right before assigning its value to DB2.

 Evaluates side effects, such as operations with postfix operators, according to
normal Java rules. All host expressions are fully evaluated before any of their
values are passed to DB2.

* Uses Java rules for rounding and truncation.

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is
executed, the value that is assigned to column BONUS by the UPDATE statement
is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of
yearsEmployed is incremented.

Chapter 16. SQL]J application programming 321

322

Restrictions on variable names: Two strings have special meanings in SQLJ
programs. Observe the following restrictions when you use these strings in your
SQLJ programs:

* The string _ sJT_ is a reserved prefix for variable names that are generated by
SQLJ. Do not begin the following types of names with __ sJT_:
- Host expression names

— Java variable names that are declared in blocks that include executable SQL
statements

— Names of parameters for methods that contain executable SQL statements

— Names of fields in classes that contain executable SQL statements, or in
classes with subclasses or enclosed classes that contain executable SQL
statements

* The string _SJ is a reserved suffix for resource files and classes that are
generated by SQLJ. Avoid using the string _SJ in class names and input source
file names.

Related concepts:

* |“Basic steps in writing an SQLJ application” on page 317|

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|

Comments in an SQLJ application

To document your program, you need to include comments. To do that, use Java"
comments. Java comments are denoted by /* */ or //. You can include Java
comments outside SQL]J clauses, wherever the Java language permits them. Within
an SQLJ clause, you can use Java comments only within host expressions.

Related concepts:

» [“Basic steps in writing a JDBC application” on page 263|

Connecting to a data source using SQLJ

In an SQLJ application, as in any other DB2® application, you must be connected
to a database server before you can execute SQL statements. In SQLJ, as in JDBC, a
database server is called a data source.

You can use one of five techniques to connect to a data source:

* Explicitly create a connection using the JDBC DriverManager interface. There are
two techniques for doing this.

* Explicitly create a connection using the JDBC DataSource interface. There are
two techniques for doing this.

¢ Implicitly create a connection.

Connection technique 1: This technique uses the JDBC DriverManager as the
underlying means for creating the connection. Use it with any level of the JDBC
driver.

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

Programming Client Applications

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method:
 For the DB2 Universal JDBC Driver, invoke Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");
¢ For the DB2 JDBC Type 2 Driver, invoke Class. forName this way:
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

3. Invoke the constructor for the connection context class that you created in step
1 on page 322

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=
new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, String user,
String password, boolean autocommit);
connection-context-class connection-context-object=
new connection-context-class(String url, Properties info,
boolean autocommit);

The meanings of the parameters are:

url A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in Connect to
a data source using the DriverManager interface with the JDBC Universal
Driver. The form depends on which JDBC driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

info
Specifies an object of type java.util.Properties that contains a set of
driver properties for the connection. For the DB2 JDBC Type 2 Driver for
Linux, UNIX® and Windows® (DB2 JDBC Type 2 Driver), you should
specify only the user and password properties. For the DB2 Universal JDBC
Driver, you can specify any of the properties listed in Properties for the
DB2 Universal JDBC Driver.

autocommit
Specifies whether you want the database manager to issue a COMMIT after
every statement. Possible values are true or false. If you specify false,
you need to do explicit commit operations.

The following code uses connection technique 1 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

Chapter 16. SQL]J application programming 323

#sq1 context Ctx; // Create connection context class Ctx 1]

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); 2]

1

catch (ClassNotFoundException e) {
e.printStackTrace();

1

Ctx myConnCtx=
new Ctx("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object myConnCtx

// for the connection to NEWYORK
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 34. Using connection technique 1 to connect to a data source

Connection technique 2: This technique uses the JDBC DriverManager interface for
creating the connection. Use it with any level of the JDBC driver.

1. Execute an SQL]J connection declaration clause.
This is the same as step [L on page 322|in connection technique 1.
2. Load the driver.

This is the same as step in connection technique 1.

3. Invoke the JDBC DriverManager.getConnection method.

Doing this creates a JDBC connection object for the connection to the data
source. You can use any of the forms of getConnection that are specified in
Connect to a data source using the DriverManager interface with the JDBC
Universal Driver.

The meanings of the url, user, and password parameters are the same as the
meanings of the parameters in step of connection technique 1.
4. Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);
The JDBC-connection-object parameter is the Connection object that you created
in step El

The following code uses connection technique 2 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

324 Programming Client Applications

#sql context Ctx; // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); 2]

}

catch (ClassNotFoundException e) {

}

e.printStackTrace();

Connection jdbccon=

DriverManager.getConnection("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password);
// Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit
Ctx myConnCtx=new Ctx(jdbccon);

// Create connection context object myConnCtx
// for the connection to NEWYORK

#sq1 [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 35. Using connection technique 2 to connect to a data source

Connection technique 3: This technique uses the JDBC DataSource interface for
creating the connection.

1.

Execute an SQLJ connection declaration clause.

This is the same as step in connection technique 1.

If your system administrator created a DataSource object in a different program:
a. Obtain the logical name of the data source to which you need to connect.

b. Create a context to use in the next step.

c. In your application program, use the Java' Naming and Directory Interface
(JNDI) to get the DataSource object that is associated with the logical data
source name.

Otherwise, create a DataSource object and assign properties to it, as shown in
"Creating and using a data source in the same application” in Connect to a data
source using the DataSource interface.

Invoke the JDBC DataSource.getConnection method.

Doing this creates a JDBC connection object for the connection to the data
source. You can one of the following forms of getConnection:

getConnection();
getConnection(user, password);

The meanings of user and password parameters are the same as the meanings of
the parameters in step |3 on page 323| of connection technique 1.
If the default autocommit mode is not appropriate, invoke the JDBC

Connection.setAutoCommit method.

Doing this indicates whether you want the database manager to issue a
COMMIT after every statement. The form of this method is:

setAutoCommit (boolean autocommit);
Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:

Chapter 16. SQL]J application programming 325

326

connection-context-class connection-context-object=
new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step

The following code uses connection technique 3 to create a connection to a location
with logical name jdbc/sampledb. The numbers to the right of selected statements
correspond to the previously-described steps.

import java.sql.*;
import javax.naming.=;
import javax.sql.=*;

#sql context CtxSqlj; // Create connection context class CtxSqlj
Context ctx=new InitialContext();

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

Connection con=ds.getConnection();

String empname; // Declare a host variable

con.setAutoCommit(false); // Do not autocommit
CtxSqlj myConnCtx=new CtxSqlj(con);
// Create connection context object myConnCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 36. Using connection technique 3 to connect to a data source

Connection technique 4 (DB2 Universal J[DBC Driver only): This technique uses the
JDBC DataSource interface for creating the connection. This technique requires that
the DataSource is registered with JNDIL

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of
this form:

#sql public static context context-class-name
with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the
data source name that you obtained in step

3. Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=
new connection-context-class();

connection-context-class connection-context-object=
new connection-context-class (String user,
String password);

The meanings of the user and password parameters are the same as the
meanings of the parameters in step [3 on page 323|of connection technique 1.

Programming Client Applications

The following code uses connection technique 4 to create a connection to a location
with logical name jdbc/sampledb. The connection requires a user ID and password.

#sql public static context Ctx
with (dataSource="jdbc/sampledb");
// Create connection context class Ctx
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";

String empname; // Declare a host variable

Ctx myConnCtx=new Ctx(userid, password);
// Create connection context object myConnCtx
// for the connection to jdbc/sampledb
#sq1 [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 37. Using connection technique 4 to connect to a data source

Connection technique 5: This technique uses the default connection to connect to
the data source. You use the default connection by specifying your SQL statements
without a connection context object. When you use this technique, you do not need
to load a JDBC driver unless you explicitly use JDBC interfaces in your program.
For example:

#sql {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO='000010'}; // Use default connection for
// executing an SQL statement

To create a default connection context, SQLJ does a JNDI lookup for
jdbc/defaultDataSource. If nothing is registered, a null context exception is issued

when SQLJ attempts to access the context.

Related concepts:

+ [“How JDBC applications connect to a data source” on page 267

Related tasks:

+ |[“Connecting to a data source using the DriverManager interface with the DB2|
Universal JDBC Driver” on page 270|

* [“Connecting to a data source using the DataSource interface” on page 272|

Related reference:
+ [“Properties for the DB2 Universal JDBC Driver” on page 370|

Setting the isolation level for an SQLJ transaction

To set the isolation level for a unit of work within an SQLJ program, use the SET
TRANSACTION ISOLATION LEVEL clause. shows the values that you
can specify in the SET TRANSACTION ISOLATION LEVEL clause and their DB2®
equivalents.

Table 37. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB?2 isolation level
SERIALIZABLE Repeatable read
REPEATABLE READ Read stability

Chapter 16. SQL]J application programming 327

328

Table 37. Equivalent SQLJ and DB2 isolation levels (continued)

SET TRANSACTION value DB2 isolation level
READ COMMITTED Cursor stability
READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ
connection. You can change the isolation level only at the beginning of a
transaction.

Related concepts:
* “Isolation levels” in the SQL Reference, Volume 1

Committing or rolling back SQLJ transactions

If you disable autocommit for an SQL]J connection, you need to perform explicit
commit or rollback operations. You do this using execution clauses that contain the
SQL COMMIT or ROLLBACK statements:

#sql [myConnCtx] {COMMIT};
#sq1 [myConnCtx] {ROLLBACK};

Related concepts:

+ [“Savepoints in SQLJ applications” on page 32§|

Related tasks:
+ [“Connecting to a data source using SQL]” on page 322|

Savepoints in SQLJ applications

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. SQL statements exist to set a savepoint, release a
savepoint, and restore data and schemas to the state that the savepoint represents.

Under the DB2 Universal JDBC Driver, you can include any form of the SQL
SAVEPOINT statement in your SQLJ program.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Programming Client Applications

#sq1 context Ctx; // Create connection context class Ctx
String empNumVar;
int shoeSizeVar;

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver");
1
catch (ClassNotFoundException e) {
e.printStackTrace();
1
Connection jdbccon=
DriverManager.getConnection("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password)
// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx ctxt=new Ctx(jdbccon);
// Create connection context object myConnCtx
// for the connection to NEWYORK
#sql [ctxt] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};
// Create a distinct type
#sql [ctxt] {COMMIT};
// Commit the create
#sql [ctxt]
{CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE SIZE SHOESIZE)};
// Create table with distinct type
#sql [ctxt] {COMMIT};
// Commit the create
#sql [ctxt]
{INSERT INTO EMP_SHOE VALUES ('000010', 6)};
// Insert a row
#sql [ctxt]
{SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};
// Create a savepoint

#sql [ctxt]
{INSERT INTO EMP_SHOE VALUES ('000020', 10)};
// Insert another row
#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};
// Roll back work to the point
// after the first insert

#sql [ctxt] {RELEASE SAVEPOINT SVPT1};

// Release the savepoint
ctx.close(); // Close the connection context

Figure 38. Setting, rolling back to, and releasing a savepoint in an SQLJ application

Related tasks:
* [“Committing or rolling back SQL]J transactions” on page 328

Related reference:

* “ROLLBACK statement” in the SQL Reference, Volume 2

* “RELEASE SAVEPOINT statement” in the SQL Reference, Volume 2
* “SAVEPOINT statement” in the SQL Reference, Volume 2

Closing the connection to a data source in an SQLJ
application

When you have finished with a connection to a data source, you need to close the
connection to the data source. Doing so releases the connection context object’s
DB2® and SQLJ resources immediately.

Chapter 16. SQL]J application programming 329

330

To close the connection to the data source, use the ConnectionContext.close()
method. This closes the connection context, as well as the connection to the data
source. For example:

ctx = new EzSqljctx(con@); // Create a connection context object
// from JDBC connection con0

// Perform various SQL operations

EzSqljctx.close(); // Close the connection context and
// connection to the data source

Related tasks:
+ [“Connecting to a data source using SQL]” on page 322|

SQL statements in an SQLJ application

You execute SQL statements in a traditional SQL program to create tables, insert,
update, and delete data in tables, retrieve data from the tables, call stored
procedures, or commit or roll back transactions. In an SQL] program, you also
execute these statements, within SQL]J executable clauses. An executable clause can
have one of the following general forms:

#sq1 [connection-context] {sql-statement};

#sql [connection-context ,execution-context] {sql-statement};
#sql [execution-context] {sql-statement};

In an executable clause, you should always specify an explicit connection context,
with one exception: you do not specify an explicit connection context for a FETCH
statement. You include an execution context only for specific cases. See Control the
execution of SQL statements in SQL]J for information about when you need an
execution context.

Related concepts:

+ [“Comments in an SQLJ application” on page 322|

+ “Using SQLJ and JDBC in the same application” on page 345|
* [“LOBs in SQLJ applications with the DB2 Universal JDBC Driver” on page 348|
* [“Retrieving multiple result sets from a stored procedure in an SQLJ application”]

on page 354|

+ [“How an SQLJ application retrieves data from DB2 tables” on page 331]

Related tasks:
* [“Making batch updates in SQLJ applications” on page 355|

+ |“Calling stored procedures in an SQL] application” on page 343|

+ [“Committing or rolling back SQL]J transactions” on page 328

s [“Creating and modifying DB2 objects in an SQL]J application” on page 331

+ “Handling SQL errors in an SQL]J application” on page 343|

+ [“Setting the isolation level for an SQL]J transaction” on page 327

* |“Using a named iterator in an SQLJ application” on page 332|

+ ["Using a positioned iterator in an SQLJ application” on page 334|

+ |“Performing positioned UPDATE and DELETE operations in an SQLJ|
application” on page 336|

* |“Using scrollable iterators in an SQL]J application” on page 361

+ “Handling SQL warnings in an SQL]J application” on page 344|

+ [“Controlling the execution of SQL statements in SQL]” on page 353|

Programming Client Applications

Related reference:

* [“SQLJ executable-clause” on page 401]

Creating and modifying DB2 objects in an SQLJ application

Use SQLJ executable clauses to do the following things:
* Execute data definition statements (CREATE, ALTER, DROP, GRANT, REVOKE)
e Execute INSERT, searched UPDATE, and searched DELETE statements

For example, the following executable statements demonstrate an INSERT, a
searched UPDATE, and a searched DELETE:
#sq1 [myConnCtx] {INSERT INTO DEPARTMENT VALUES
("X00","Operations 2","000030","EQ1",NULL)};
#sq1 [myConnCtx] {UPDATE DEPARTMENT
SET MGRNO="000090" WHERE MGRNO="000030"};
#sq1 [myConnCtx] {DELETE FROM DEPARTMENT
WHERE DEPTNO="X00"};

For information on positioned UPDATEs and DELETEs, see Perform positioned
UPDATE and DELETE operations in an SQLJ application.

Related tasks:

+ [“Performing positioned UPDATE and DELETE operations in an SQLJ|
application” on page 336

How an SQLJ application retrieves data from DB2 tables

Just as in DB2® applications in other languages, if you want to retrieve a single
row from a DB2 table in an SQL]J application, you can write a SELECT INTO
statement with a WHERE clause that defines a result table that contains only that
row:

#sq1 [myConnCtx] {SELECT DEPTNO INTO :hvdeptno
FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain
many rows. In DB2 applications in other languages, you use a cursor to select the
individual rows from the result table. That cursor can be non-scrollable, which
means that when you use it to fetch rows, you move the cursor serially, from the
beginning of the result table to the end. Alternatively, the cursor can be scrollable,
which means that when you use it to fetch rows, you can move the cursor
forward, backward, or to any row in the result table.

The SQLJ equivalent of a cursor is a result set iterator. Like a cursor, a result set
iterator can be non-scrollable or scrollable. This topic discusses how to use
non-scrollable iterators. For information on using scrollable iterators, see Use
scrollable iterators in an SQL]J application.

A result set iterator is a Java " object that you use to retrieve rows from a result
table. Unlike a cursor, a result set iterator can be passed as a parameter to a
method.

The basic steps in using a result set iterator are:

1. Declare the iterator, which results in an iterator class

2. Define an instance of the iterator class.

3. Assign the result table of a SELECT to an instance of the iterator.
4. Retrieve rows.

Chapter 16. SQL]J application programming 331

332

5. Close the iterator.

There are two types of iterators: positioned iterators and named iterators. Postitioned
iterators extend the interface sqlj.runtime.PositionedIterator. Positioned
iterators identify the columns of a result table by their position in the result table.
Named iterators extend the interface sqlj.runtime.NamedIterator. Named iterators
identify the columns of the result table by result table column names.

Related tasks:
* |“Using a named iterator in an SQLJ application” on page 332|

+ [“Using a positioned iterator in an SQLJ application” on page 334|
* [“Performing positioned UPDATE and DELETE operations in an SQL]|
application” on page 336|

Related reference:

* |“SQLJ iterator-declaration-clause” on page 400|

Using a named iterator in an SQLJ application

The steps in using a named iterator are:
1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name as the iterator. For a
named iterator, the iterator declaration clause specifies the following
information:

* The name of the iterator
* Alist of column names and Java" data types

* Information for a Java class declaration, such as whether the iterator is
public or static

e A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

When you declare a named iterator for a query, you specify names for each of
the iterator columns. Those names must match the names of columns in the
result table for the query. An iterator column name and a result table column
name that differ only in case are considered to be matching names. The named
iterator class that results from the iterator declaration clause contains accessor
methods. There is one accessor method for each column of the iterator. Each
accessor method name is the same as the corresponding iterator column name.
You use the accessor methods to retrieve data from columns of the result table.

You need to specify Java data types in the iterators that closely match the
corresponding DB2® column data types. See Java, JDBC, and SQL data types
for a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:

e As publigc, in a source file by itself

Programming Client Applications

This method lets you use the iterator declaration in other code modules, and
provides an iterator that works for all SQLJ applications. In addition, there
are no concerns about having other top-level classes or public classes in the
same source file.

* As a top-level class in a source file that contains other top-level class
definitions

Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

e As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible to other code modules or
packages. However, when you reference the iterator from outside the nesting
class, you must fully-qualify the iterator name with the name of the nesting
class.

¢ As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See Use SQL] and JDBC in the same application for
more information on casting a ResultSet to a iterator.

2. Create an instance of the iterator class.

You declare an object of the named iterator class to retrieve rows from a result
table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a named iterator is:

#sql context-clause iterator-object={select-statement};
See SQLJ assignment-clause and SQL]J context-clause for more information.
4. Retrieve rows.

Do this by invoking accessor methods in a loop. Accessor methods have the
same names as the corresponding columns in the iterator, and have no
parameters. An accessor method returns the value from the corresponding
column of the current row in the result table. Use the NamedIterator.next()
method to move the cursor forward through the result table.

To test whether you have retrieved all rows, check the value that is returned
when you invoke the next method. next returns a boolean with a value of
false if there is no next row.

5. Close the iterator.
Use the NamedIterator.close method to do this.

The following code demonstrates how to declare and use a named iterator. The

numbers to the right of selected statements correspond to the previously-described
steps.

Chapter 16. SQLJ application programming 333

334

#sql iterator ByName(String LastName, Date HireDate);

{

}

// Declare named iterator ByName

ByName nameiter; // Declare object of ByName class A
#sql [ctxt]
nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

// Assign the result table of the SELECT
// to iterator object nameiter

while (nameiter.next()) // Move the iterator through the result |

{

}

// table and test whether all rows retrieved

System.out.printin(nameiter.LastName() + " was hired on "
+ nameiter.HireDate()); // Use accessor methods LastName and
// HireDate to retrieve column values

nameiter.close(); // Close the iterator B

Figure 39. Using a named iterator

Related concepts:

+ [“Using SQLJ and JDBC in the same application” on page 345|

Related tasks:
+ [“Using a positioned iterator in an SQL]J application” on page 334|

“Performing positioned UPDATE and DELETE operations in an SQL]|

application” on page 336|

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|
+ [“SQLJ assignment-clause” on page 405|

+ [“SQLJ context-clause” on page 402

Using a positioned iterator in an SQLJ application

The steps in using a positioned iterator are:
1.

Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name and attributes as the
iterator. For a positioned iterator, the iterator declaration clause specifies the
following information:

e The name of the iterator
+ Alist of Java'" data types

* Information for a Java class declaration, such as whether the iterator is
pubTic or static

e A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

The data type declarations represent columns in the result table and are
referred to as columns of the result set iterator. The columns of the result set
iterator correspond to the columns of the result table, in left-to-right order. For
example, if an iterator declaration clause has two data type declarations, the
first data type declaration corresponds to the first column in the result table,
and the second data type declaration corresponds to the second column in the
result table.

Programming Client Applications

You need to specify Java data types in the iterators that closely match the
corresponding DB2® column data types. SeeJava, JDBC, and SQL data types for
a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:

¢ As publigc, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets
you use the iterator declaration in other code modules, and provides an
iterator that works for all SQL]J applications. In addition, there are no
concerns about having other top-level classes or public classes in the same
source file.

¢ As a top-level class in a source file that contains other top-level class
definitions

Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

* As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible from other code modules
or packages. However, when you reference the iterator from outside the
nesting class, you must fully-qualify the iterator name with the name of the
nesting class.

¢ As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See Use SQL] and JDBC in the same application for
more information on casting a ResultSet to a iterator.

Create an instance of the iterator class.

You declare an object of the positioned iterator class to retrieve rows from a
result table.

Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a positioned iterator
is:

#sql context-clause iterator-object={select-statement};

Retrieve rows.

Do this by executing FETCH statements in executable clauses in a loop. The
FETCH statements looks the same as a FETCH statements in other languages.

To test whether you have retrieved all rows, invoke the
PositionedIterator.endFetch method after each FETCH. endFetch returns a
boolean with the value true if the FETCH failed because there are no rows to
retrieve.

Close the iterator.

Chapter 16. SQLJ application programming 335

336

Use the PositionedIterator.close method to do this.

The following code demonstrates how to declare and use a positioned iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos
{
ByPos positer; // Declare object of ByPos class ﬂ
String name = null; // Declare host variables
Date hrdate;
#sql [ctxt] positer =
{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate }; ﬂ
// Retrieve the first row
while (!positer.endFetch()) // Check whether the FETCH returned a row
{ System.out.printin(name + " was hired in " +
hrdate);

#sql {FETCH :positer INTO :name, :hrdate };
// Fetch the next row
}

positer.close(); // Close the iterator B

Figure 40. Using a positioned iterator

Related concepts:

* [“Using SQLJ and JDBC in the same application” on page 345|

 ["How an SQLJ application retrieves data from DB2 tables” on page 331

Related tasks:
+ ["Using a named iterator in an SQLJ application” on page 332|

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|

Performing positioned UPDATE and DELETE operations in an
SQLJ application

As in DB2® applications in other languages, performing positioned UPDATEs and
DELETEs is an extension of retrieving rows from a result table. The basic steps are:

1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE
operations, the iterator must be declared as updatable. To do this, the
declaration must include the following clauses:

implements sqlj.runtime.ForUpdate
This clause causes the generated iterator class to include methods for
using updatable iterators. This clause is required for programs with
positioned UPDATE or DELETE operations.

with (updateColumns="column-list")
This clause specifies a comma-separated list of the columns of the result
table that the iterator will update. This clause is optional.

Programming Client Applications

You need to declare the iterator as public, so you need to follow the for
declaring and using public iterators in the same file or different files.

If you declare the iterator in a file by itself, any SQL] source file that has
addressability to the iterator and imports the generated class can retrieve data
and execute positioned UPDATE or DELETE statements using the iterator. The
authorization ID under which a positioned UPDATE or DELETE statement
executes depends on whether the statement executes statically or dynamically.
If the statement executes statically, the authorization ID is the owner of the DB2
plan or package that includes the statement. If the statement executes
dynamically the authorization ID is determined by the DYNAMICRULES
behavior that is in effect. For the DB2 Universal JDBC Driver, the behavior is
always DYNAMICRULES BIND.

2. Disable autocommit mode for the connection.

If autocommit mode is enabled, a COMMIT operation occurs every time the
positioned UPDATE statement executes, which causes the iterator to be
destroyed unless the iterator has the with (holdability=true) attribute.
Therefore, you need to turn autocommit off to prevent COMMIT operations
until you have finished using the iterator. If you want a COMMIT to occur
after every update operation, an alternative way to keep the iterator from being
destroyed after each COMMIT operation is to declare the iterator with
(holdabiTlity=true).
3. Create an instance of the iterator class.
This is the same step as for a non-updatable iterator.
4. Assign the result table of a SELECT to an instance of the iterator.
This is the same step as for a non-updatable iterator. The SELECT statement
must not include a FOR UPDATE clause.
5. Retrieve and update rows.
For a positioned iterator, do this by performing the following actions in a loop:
a. Execute a FETCH statement in an executable clause to obtain the current
TOW.
b. Test whether the iterator is pointing to a row of the result table by invoking
the PositionedIterator.endFetch method.

c. If the iterator is pointing to a row of the result table, execute an SQL
UPDATE... WHERE CURRENT OF :iterator-object statement in an executable
clause to update the columns in the current row. Execute an SQL DELETE...
WHERE CURRENT OF :iterator-object statement in an executable clause to
delete the current row.

For a named iterator, do this by performing the following actions in a loop:

a. Invoke the next method to move the iterator forward.

b. Test whether the iterator is pointing to a row of the result table by checking
whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement
in an executable clause to update the columns in the current row. Execute
an SQL DELETE... WHERE CURRENT OF iterator-object statement in an
executable clause to delete the current row.

6. Close the iterator.

Use the close method to do this.
The following code shows how to declare a positioned iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

Chapter 16. SQL]J application programming 337

First, in one file, declare positioned iterator UpdByPos, specifying that you want to
use the iterator to update column SALARY:

import java.math.=*; // Import this class for BigDecimal data type
#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY") (String, BigDecimal);

Figure 41. Declaring a positioned iterator for a positioned UPDATE

Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the
following code fragment:

import sqlj.runtime.x; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.x*; // Import this class for BigDecimal data type
import UpdByPos; // Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

#sq1 context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {

Class.forName("com.ibm.db2.jcc.DB2Driver");

catch (ClassNotFoundException e) {
e.printStackTrace();
}

Connection HSjdbccon=
DriverManager.getConnection("jdbc:db2:SANJOSE");
// Create a JDBC connection object
HSjdbccon.setAutoCommit (false);
// Set autocommit off so automatic commits 2]
// do not destroy the cursor between updates
HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object
UpdByPos upditer; // Declare iterator object of UpdByPos class H
String enum; // Declares host variable to receive EMPNO
BigDecimal sal; // and SALARY column values
#sq1 [myConnCtx]
upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE
WHERE WORKDEPT='D11'};
// Assign result table to iterator object
#sql {FETCH :upditer INTO :enum,:sal};
// Move cursor to next row
while (lupditer.endFetch())
// Check if on a row
{

#sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY=*1.05
WHERE CURRENT OF :upditer}; m
// Perform positioned update
System.out.printin("Updating row for " + enum);
#sql {FETCH :upditer INTO :enum,:sal};
// Move cursor to next row
}

upditer.close(); // Close the iterator 6|
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

Figure 42. Performing a positioned UPDATE with a positioned iterator

338 Programming Client Applications

The following code shows how to declare a named iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

First, in one file, declare named iterator UpdByName, specifying that you want to use
the iterator to update column SALARY:

import java.math.x; // Import this class for BigDecimal data type
#sql public iterator UpdByName implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 43. Declaring a named iterator for a positioned UPDATE

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the
following code fragment:

Chapter 16. SQLJ application programming 339

340

import sqlj.runtime.x;
import java.sql.=;
import java.math.=*;
import UpdByName;

#sql context HSCtx;

// Import files for SQLJ and JDBC APIs

// Import this class for BigDecimal data type

// Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

// Create a connnection context class HSCtx

public static void main (String args[])

{
try {

Class.forName("com.ibm.db2.jcc.DB2Driver");

catch (ClassNotFoundException e) {

e.printStackTrace();
1

Connection HSjdbccon=

DriverManager.getConnection("jdbc:db2:SANJOSE");

// Create a JDBC connection object
HSjdbccon.setAutoCommit (false);

// Set autocommit off so automatic commits |H

// do not destroy the cursor between updates
HSCtx myConnCtx=new HSCtx(HSjdbccon);

// Create a connection context object

UpdByName upditer;

// Declare iterator object of UpdByName class

String enum;

#sq1 [myConnCtx]
upditer = {SELECT EMPNO,
WHERE WORKDEPT='D11'};

while (upditer.next())
{

enum = upditer.EmpNo();
#sql [myConnCtx]

// Declare host variable to receive EmpNo
// column values

SALARY FROM EMPLOYEE ﬂ
// Assign result table to iterator object

// Move cursor to next row and
// check ifon a row

// Get employee number from current row

{UPDATE EMPLOYEE SET SALARY=SALARY*1.05
WHERE CURRENT OF :upditer};

// Perform positioned update

System.out.printIn("Updating row for " + enum);

upditer.close();
#sql [myConnCtx] {COMMIT};

myConnCtx.close()

// Close the iterator 6|

// Commit the changes
// Close the connection context

Figure 44. Performing a positioned UPDATE with a named iterator

Related concepts:

+ [“How an SQLJ application retrieves data from DB2 tables” on page 331]

* |“Iterators as passed variables for positioned UPDATE or DELETE operations in|

an SQLJ application” on page 359

Related tasks:

* [“Connecting to a data source using SQL]” on page 322|

Programming Client Applications

Multiple open iterators for the same SQL statement in an
SQLJ application

If you are using the DB2 Universal JDBC Driver, and your application connects to
a DB2 UDB for z/0S® Version 8 server, or a DB2 UDB for Linux, UNIX®, and
Windows® server at the FixPak 4 level or later, you can have multiple concurrently
open iterators for a single SQL statement in an SQLJ application. With this
capability, you can perform one operation on a table using one iterator while you
perform a different operation on the same table using another iterator.

When you use concurrently open iterators in an application, you should close
iterators when you no longer need them to prevent excessive storage consumption
in the Java"" heap.

The following examples demonstrate how to perform the same operations on a
table without concurrently open iterators on a single SQL statement and with
concurrently open iterators on a single SQL statement. These examples use the
following iterator declaration:

import java.math.*;
#sql public iterator Multilter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL
statement, if you want to select employee and salary values for a specific employee
number, you need to define a different SQL statement for each employee number,

as shown in |[Figure 45

Multilter iterl = null; // Tterator instance for retrieving
// data for first employee
String EmpNol = "000100"; // Employee number for first employee

#sql [ctx] iter2 =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNol};
// Assign result table to first iterator

Multilter iter2 = null; // Tterator instance for retrieving
// data for second employee
String EmpNo2 = "000200"; // Employee number for second employee

#sql [ctx] iter2 =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};
// Assign result table to second iterator
// Process with iterl
// Process with iter2
iterl.close(); // Close the iterators
iter2.close();

Figure 45. Example of concurrent table operations using iterators with different SQL
statements

[Figure 46 on page 342 demonstrates how you can perform the same operations
when you have the capability for multiple, concurrently open iterators for a single
SQL statement.

Chapter 16. SQL]J application programming 341

342

Multilter iterl = openlter("000100"); // Invoke openlter to assign the result table
// (for employee 100) to the first iterator
Multilter iter2 = openlter("000200"); // Invoke openlter to assign the result
// table to the second iterator
// iterl stays open when iter2 is opened

// Process with iterl
// Process with iter2

iterl.close(); // Close the iterators
iter2.close();

public Multilter openlter(String EmpNo)
// Method to assign a result table
// to an iterator instance
{
Multilter iter;
#sql [ctxt] iter =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};
return iter; // Method returns an iterator instance

}

Figure 46. Example of concurrent table operations using iterators with the same SQL
statement

Related concepts:

+ ["How an SQLJ application retrieves data from DB2 tables” on page 331

Multiple open instances of an iterator in an SQLJ application

Multiple instances of an iterator can be open concurrently in a single SQL]J
application. One application for this ability is to open several instances of an
iterator that uses host expressions. Each instance can use a different set of host
expression values.

The following example shows an application with two concurrently open instances
of an iterator.

ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet

{
MyIter iter;
#sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};
return iter.getResultSet();

1

// An application can call this method to get a resultSet for each
// employee ID. The application can process each resultSet separately.

ResultSet rsl = myFunc("000100"); // Get employee record for employee ID 000100

ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 47. Example of opening more than one instance of an iterator in a single application

As with any other iterator, you need to remember to close this iterator after the last
time you use it to prevent excessive storage consumption.

Related concepts:

+ ["How an SQLJ application retrieves data from DB2 tables” on page 331

Programming Client Applications

Calling stored procedures in an SQLJ application

To call a stored procedure, you use an executable clause that contains an SQL
CALL statement. You can execute the CALL statement with host identifier
parameters. The basic steps in calling a stored procedure are:

1. Assign values to input (IN or INOUT) parameters.
2. Call the stored procedure.

3. Process output (OUT or INOUT) parameters.

4

If the stored procedure returns multiple result sets, retrieve those result sets.
See Retrieve multiple result sets from a stored procedure in an SQL]J
application.

The following code illustrates calling a stored procedure that has three input
parameters and three output parameters. The numbers to the right of selected
statements correspond to the previously-described steps.

String FirstName="TOM"; // Input parameters 1]
String LastName="NARISINST";

String Address="IBM";

int CustNo; // Output parameters

String Mark;

String MarkErrorText;

#sq1 [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, 2

:IN LastName,

:IN Address,

:0UT CustNo,

:0UT Mark,

:0UT MarkErrorText)};

// Call the stored procedure
System.out.printin("Output parameters from ADD_CUSTOMER call: ");
System.out.printIin("Customer number for " + LastName + ": " + CustNo);
System.out.printIn(Mark);
If (MarkErrorText != null)
System.out.printIn(" Error messages:" + MarkErrorText);

Figure 48. Calling a stored procedure in an SQLJ application

Related concepts:

* [“Retrieving multiple result sets from a stored procedure in an SQLJ application”

on page 354|
Handling SQL errors in an SQLJ application

SQLJ clauses use the JDBC class java.sql.SQLException for error handling. SQLJ
generates an SQLException under the following circumstances:

* When any SQL statement returns a negative SQL error code
* When a SELECT INTO SQL statement returns a +100 SQL error code

You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.

To handle SQL errors in your SQL]J application, import the java.sql.SQLException

class, and use the Java" error handling try/catch blocks to modify program flow
when an SQL error occurs. For example:

Chapter 16. SQL]J application programming 343

344

try {
#sql [ctxt] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO='000010'};
1

catch(SQLException e) {
System.out.printIn("Error code returned: " + e.getErrorCode());

}

With the DB2 Universal JDBC Driver, you can retrieve the SQLCA. For information
on writing code to retrieve the SQLCA with the DB2 Universal JDBC Driver, see
Handle an SQLException under the DB2 Universal JDBC Driver.

For the DB2 JDBC Type 2 Driver for Linux, UNIX® and Windows® (DB2 JDBC
Type 2 Driver), use the standard SQLException to retrieve SQL error information.

Related tasks:
+ “Handling an SQLException under the DB2 Universal JDBC Driver” on page 282|

Handling SQL warnings in an SQLJ application

Other than a +100 SQL error code on a SELECT INTO statement, DB2® warnings
do not throw SQLExceptions. To handle DB2 warnings, you need to give the
program access to the java.sql.SQLWarning class. If you want to retrieve
DB2-specific information about a warning, you also need to give the program
access to the com.ibm.db2.jcc.DB2Diagnosable interface and the
com.ibm.db2.jcc.DB2Sqlca class. To check for a DB2 warning, invoke the
getWarnings method after you execute an SQL]J clause. getWarnings returns the
first SQLWarning object that an SQL statement generates. Subsequent SQLWarning
objects are chained to the first one.

To retrieve DB2-specific information from the SQLWarning object with the DB2
Universal JDBC Driver, follow the instructions in Handle an SQLException under
the DB2 Universal JDBC Driver.

Before you can execute getWarnings for an SQL clause, you need to set up an
execution context for that SQL clause. See Control the execution of SQL statements
in SQL]J for information on how to set up an execution context. The following
example demonstrates how to retrieve an SQLWarning object for an SQL clause with
execution context execCtx:
ExecutionContext execCtx=myConnCtx.getExecutionContext();

// Get default execution context from

// connection context
SQLWarning sqlWarn;

#sq1 [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO='000010'};

if ((sqlWarn = execCtx.getWarnings()) != null)

System.out.printIn("SQLWarning " + sqlWarn);

Related tasks:
* [“Handling an SQLException under the DB2 Universal JDBC Driver” on page 282|
+ [“Controlling the execution of SQL statements in SQL]” on page 353|

+ “Handling SQL errors in an SQLJ application” on page 343|

Programming Client Applications

Advanced SQLJ application programming concepts

The topics that follow contain more advanced information about writing SQL]J
applications.

Using SQLJ and JDBC in the same application
You can combine SQLJ clauses and JDBC calls in a single program. To do this
effectively, you need to be able to do the following things:
* Use a JDBC Connection to build an SQL]J ConnectionContext, or obtain a JDBC
Connection from an SQLJ ConnectionContext.

¢ Use an SQL] iterator to retrieve data from a JDBC ResultSet or generate a JDBC
ResultSet from an SQL]J iterator.

Building an SQL] ConnectionContext from a JDBC Connection: To do that:

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the JDBC DriverManager.getConnection or DataSource.getConnection
method to obtain a JDBC Connection.

4. Invoke the ConnectionContext constructor with the Connection as its argument
to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQL] ConnectionContext: To do this,

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the ConnectionContext constructor with the URL of the driver and any
other necessary parameters as its arguments to create the ConnectionContext
object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC
Connection object.

See Connect to a data source using SQL]J for more information on SQLJ
connections.

Retrieving JDBC result sets using SQL] iterators: Use the iterator conversion
statement to manipulate a JDBC result set as an SQL] iterator. The general form of
an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must
conform to the following rules:

* The iterator must be declared as public.

* If the iterator is a positioned iterator, the number of columns in the result set
must match the number of columns in the iterator. In addition, the data type of
each column in the result set must match the data type of the corresponding
column in the iterator.

e If the iterator is a named iterator, the name of each accessor method must match
the name of a column in the result set. In addition, the data type of the object
that an accessor method returns must match the data type of the corresponding
column in the result set.

Chapter 16. SQL]J application programming 345

346

The code in builds and executes a query using a JDBC call, executes an
iterator conversion statement to convert the JDBC result set to an SQL] iterator,
and retrieves rows from the result table using the iterator.

#sq1 public iterator ByName(String LastName, Date HireDate);
public void HireDates(ConnectionContext connCtx, String whereClause)

{

ByName nameiter; // Declare object of ByName class
Connection conn=connCtx.getConnection();
// Create JDBC connection

Statement stmt = conn.createStatement(); 2|
String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";
query+=whereClause; // Build the query
ResultSet rs = stmt.executeQuery(query); E!
#sql [connCtx] nameiter = {CAST :rs};
while (nameiter.next())
{

System.out.printin(nameiter.LastName() + " was hired on "

+ nameiter.HireDate());

}
nameiter.close(); 5
stmt.close();

Figure 49. Converting a JDBC result set to an SQLJ iterator

Notes to

This SQLJ clause creates the named iterator class ByName, which has accessor

methods LastName() and HireDate() that return the data from result table columns

LASTNAME and HIREDATE.

2] This statement and the following two statements build and prepare a query for

dynamic execution using JDBC.

This JDBC statement executes the SELECT statement and assigns the result table

to result set rs.

4] This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator
nameiter, and the following statements use nameiter to retrieve values from the
result table.

B The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating JDBC ResultSets from SQL]J iterators: Use the getResultSet method to
generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a

getResultSet method. After you convert an iterator to a result set, you need to fetch

rows using only the result set.

The code in [Figure 50 on page 347] generates a positioned iterator for a query,

converts the iterator to a result set, and uses JDBC methods to fetch rows from the

table.

Programming Client Applications

#sql iterator EmpIter(String, java.sql.Date);

{

EmpIter iter=null;

#sql [connCtx] iter=

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; 1
ResultSet rs=iter.getResultSet(); 2
while (rs.next()) 3

{ System.out.printin(rs.getString(1) + " was hired in " +
rs.getDate(2));
}

rs.close(); 4]

Figure 50. Converting an SQLJ iterator to a JDBC ResultSet

Notes to

This SQLJ clause executes the SELECT statement, constructs an iterator object that

contains the result table for the SELECT statement, and assigns the iterator object
to variable iter.
The getResultSet() method converts iterator iter to ResultSet rs.

2]
The JDBC getString() and getDate() methods retrieve values from the ResultSet.

The next() method moves the cursor to the next row in the ResultSet.

4] The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQL] applications: When you
write SQL]J applications that include JDBC result sets, observe the following rules
and restrictions:

You cannot cast a ResultSet to an SQL]J iterator if the ResultSet and the iterator
have different holdability attributes.

A JDBC ResultSet or an SQL]J iterator can remain open after a COMMIT
operation. For a JDBC ResultSet, this characteristic is controlled by the DB2
Universal JDBC Driver property resultSetHoldability. For an SQLJ iterator, this
characteristic is controlled by the with holdability parameter of the iterator
declaration. Casting a ResultSet that has holdability to an SQLJ iterator that
does not, or casting a ResultSet that does not have holdability to an SQLJ
iterator that does, is not supported.

Close a generated ResultSet object or the underlying iterator at the end of the
program.

Closing the iterator object from which a ResultSet object is generated also closes
the ResultSet object. Closing the generated ResultSet object also closes the
iterator object. In general, it is best to close the object that is used last.

For the DB2 Universal JDBC Driver, which supports scrollable iterators and
scrollable and updatable ResultSets, the following restrictions apply:

— Scrollable iterators have the same restrictions as their underlying JDBC
ResultSets. For example, because scrollable ResultSets do not support
INSERTS, scrollable iterators do not support INSERTs.

— You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator
that is updatable.

Related tasks:

[‘Connecting to a data source using SQLJ” on page 322|

Chapter 16. SQL]J application programming 347

348

LOBs in SQLJ applications with the DB2 Universal JDBC

With the DB2 Universal JDBC Driver, you can retrieve LOB data into Clob or Blob
host expressions or update CLOB, BLOB, or DBCLOB columns from Clob or Blob
host expressions. You can also declare iterators with Clob or Blob data types to
retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare
an iterator that includes a data type of Blob or byte[]. To retrieve data from a
CLOB or DBCLOB column, declare an iterator in which the corresponding column
has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To
update data in a CLOB or DBCLOB column, use a host expression with data type
Clob.

LOB locator support: The DB2 Universal J]DBC Driver can use LOB locators to
retrieve data. To cause JDBC to use LOB locators to retrieve data from LOB
columns, you need to set the fullyMaterializelLobData property to false.
Properties are discussed in Properties for the DB2® Universal JDBC Driver.
fullyMaterializelLobData has no effect on stored procedure output parameters or
LOBs that are fetched using scrollable cursors. You cannot call a stored procedure
that has LOB locator parameters. When you fetch from scrollable cursors, JDBC
always uses LOB locators to retrieve data from LOB columns.

As in any other language, a LOB locator in a Java application is associated with
only one database. You cannot use a single LOB locator to move data between two
different databases. To move LOB data between two databases, you need to
materialize the LOB data when you retrieve it from a table in the first database
and then insert that data into the table in the second database.

Related reference:
* [“Properties for the DB2 Universal JDBC Driver” on page 370|
+ [“Java, JDBC, and SQL data types” on page 365|

Java data types for retrieving or updating LOB column data in
SQLJ applications

When the deferPrepares property is set to true, and the DB2 Universal JDBC
Driver processes an uncustomized SQL]J statement that includes host expressions,
the driver might need to do extra processing to determine data types. This extra
processing can impact performance.

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

When the JDBC driver cannot determine the data type of a parameter that is used
with a LOB column, you need to choose a parameter data type that is compatible

with the LOB data type.

Input parameters for BLOB columns:

Programming Client Applications

For input parameters for BLOB columns, you can use either of the following
techniques:

Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;
#sql {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a
java.sql.Blob object, and then populate that object. For example, if you are using
the DB2 Universal JDBC Driver, you can use the DB2-only method
com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob to create a java.sql.Blob
object and populate the object with byte[] data:
byte[] byteArray = {0, 1, 2, 3};
java.sql.Blob blobData =
com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);
Use an input parameter of type of sqlj.runtime.BinaryStream. A
sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For this
call, you need to specify the exact length of the input data:
java.io.ByteArrayInputStream byteStream =
new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
sqlj.runtime.BinaryStream binStream =

new sqlj.runtime.BinaryStream(byteStream, numBytes);
#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for input/output parameters.

Output parameters for BLOB columns:

For output or input/output parameters for BLOB columns, you can use the
following technique:

Declare the output parameter or input/output variable with a java.sql.Blob data
type:

java.sql.Blob blobData = null;

#sq1 CALL STORPROC (:0UT blobData)};

java.sql.Blob blobData = null;
#sql CALL STORPROC (:INOUT blobData)};

Input parameters for CLOB columns:

For input parameters for CLOB columns, you can use one of the following
techniques:

Use a java.sql.Clob input variable, which is an exact match for a CLOB column:
#sq1 CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a
java.sql.Clob object, and then populate that object. For example, if you are using
the DB2 Universal JDBC Driver, you can use the DB2-only method
com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob to create a java.sql.Clob
object and populate the object with String data:

String stringVal = "Some Data";

java.sql.Clob clobData =
com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

Use one of the following types of stream input parameters:
— Asqlj.runtime.CharacterStream input parameter:

Chapter 16. SQL]J application programming 349

350

java.lang.String charData;
java.io.StringReader reader = new java.io.StringReader(charData);
sqlj.runtime.CharacterStream charStream =

new sqlj.runtime.CharacterStream (reader, charData.length);
#sql {CALL STORPROC(:IN charStream)};

— Asqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:

byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(charDataBytes);
sqlj.runtime.UnicodeStream uniStream =

new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN uniStream)};

— Asqlj.runtime.AsciiStream parameter, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
sqlj.runtime.AsciiStream asciiStream =

new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);
#sq1 {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You
cannot use this technique for input/output parameters.
e Use a java.lang.String input parameter:

java.lang.String charData;
#sql {CALL STORPROC(:IN charData)};

Output parameters for CLOB columns:

For output our input/output parameters for CLOB columns, you can use one of
the following techniques:

* Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;
#sql CALL STORPROC(:0UT clobData)};

* Use a java.lang.String output variable:

java.lang.String charData = null;
#sq1 CALL STORPROC(:0UT charData)};

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Output parameters for DBCLOB columns:

DBCLOB output or input/output parameters for stored procedures are not
supported.

Related concepts:
* [“LOBs in SQLJ applications with the DB2 Universal JDBC Driver” on page 348|

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|

ROWIDs in SQLJ with the DB2 Universal JDBC Driver

DB2® UDB for z/OS® and DB2 UDB for iSeries " support the ROWID data type for
a column in a DB2 table. A ROWID is a value that uniquely identifies a row in a
table.

Programming Client Applications

If you use ROWIDs in SQL]J programs, you need to customize those programs.

The DB2 Universal JDBC Driver provides the DB2-only class
com.ibm.db2.jcc.DB2RowID that you can use in iterators and in CALL statement
parameters. For an iterator, you can also use the byte[] object type to retrieve
ROWID values.

shows an example of an iterator that is used to select values from a
ROWID column:

#sql iterator PosIter(int,String,com.ibm.db2.jcc.DB2Rowld);
// Declare positioned iterator
// for retrieving ITEM_ID (INTEGER),
// ITEM_FORMAT (VARCHAR), and ITEM ROWID (ROWID)
// values from table ROWIDTAB

PosIter positrowid; // Declare object of PosIter class
com.ibm.db2.jcc.DB2RowId rowid = null;
int id = 0;

String i_fmt = null;
// Declare host expressions
#sql [ctxt] positrowid =
{SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB
WHERE ITEM_ID=3};
// Assign the result table of the SELECT
// to iterator object positrowid
#sq1 {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the first row
while (!positrowid.endFetch())
// Check whether the FETCH returned a row
{System.out.printin("Item ID " + id + " Item format " +
i_fmt + " Item ROWID ");
printBytes(rowid.getBytes());
// Use the DB2-only method getBytes to
// convert the value to bytes for printing
#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the next row
1

positrowid.close(); // Close the iterator

}

Figure 51. Example of using an iterator to retrieve ROWID values

[Figure 52 on page 352 shows an example of calling a stored procedure that takes

three ROWID parameters: an IN parameter, an OUT parameter, and an INOUT
parameter.

Chapter 16. SQL]J application programming

351

352

com.ibm.db2.jcc.DB2RowId in_rowid = rowid;
com.ibm.db2.jcc.DB2RowId out_rowid = null;
com.ibm.db2.jcc.DB2RowId inout_rowid = rowid;
// Declare an input, output, and
// input/output ROWID parameter

#sq1 [myConnCtx] {CALL SP_ROWID(:IN in_rowid,
:0UT out_rowid,
:INOUT inout_rowid)};
// Call the stored procedure
System.out.printin("Parameter values from SP_ROWID call: ");
System.out.printIn("Output parameter value ");
printBytes(out_rowid.getBytes());
// Use the DB2-only method getBytes to
// convert the value to bytes for printing
System.out.printin("Input/output parameter value ");
printBytes(inout rowid.getBytes());

Figure 52. Example of calling a stored procedure with a ROWID parameter

Related reference:
+ [“Java, JDBC, and SQL data types” on page 365|

Distinct types in SQLJ applications

In DB2®, a distinct type is a user-defined data type that is internally represented as
a built-in SQL data type. You create a distinct type by executing the SQL statement
CREATE DISTINCT TYPE.

In an SQLJ program, you can create a distinct type using the CREATE DISTINCT
TYPE statement in an executable clause. You can also use CREATE TABLE in an
executable clause to create a table that includes a column of that type. When you
retrieve data from a column of that type, or update a column of that type, you use
Java'" identifiers with data types that correspond to the built-in types on which the
distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,
creates a table with a column of that type, inserts a row into the table, and
retrieves the row from the table:

Programming Client Applications

String empNumVar;
int shoeSizeVar;

#sql [myConnCtx] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};
// Create distinct type
#sq1 [myConnCtx] {COMMIT}; // Commit the create
#sq1 [myConnCtx] {CREATE TABLE EMP_SHOE
(EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};
// Create table using distinct type
#sql [myConnCtx] {COMMIT}; // Commit the create
#sq1 [myConnCtx] {INSERT INTO EMP_SHOE
VALUES('000010',6)}; // Insert a row in the table
#sql [myConnCtx] {COMMIT}; // Commit the INSERT
#sq1 [myConnCtx] {SELECT EMPNO, EMP_SHOE_SIZE
INTO :empNumVar, :shoeSizeVar
FROM EMP_SHOE}; // Retrieve the row
System.out.printIn("Employee number: " + empNumVar +
" Shoe size: " + shoeSizeVar);

Figure 53. Defining and using a distinct type

Related reference:
* “CREATE DISTINCT TYPE statement” in the SQL Reference, Volume 2

Controlling the execution of SQL statements in SQLJ

You can use selected methods of the SQLJ ExecutionContext class to control or
monitor the execution of SQL statements. Selected sqlj.runtime classes and
interfaces describes those methods.

To use ExecutionContext methods, follow these steps:
1. Acquire an execution context.
There are two ways to acquire an execution context:

¢ Acquire the default execution context from the connection context. For
example:
ExecutionContext execCtx = connCtx.getExecutionContext();

* Create a new execution context by invoking the contructor for
ExecutionContext. For example:

ExecutionContext execCtx=new ExecutionContext();
2. Associate the execution context with an SQL statement.

To do that, specify an execution context after the connection context in the
execution clause that contains the SQL statement. For example:
#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000} ;

3. Invoke ExecutionContext methods.
Some ExecutionContext methods are applicable before the associated SQL
statement is executed, and some are applicable only after their associated SQL
statement is executed.
For example, you can use method getUpdateCount to count the number of rows
that are deleted by a DELETE statement after you execute the DELETE
statement:

#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000} ;
System.out.printin("Deleted " + execCtx.getUpdateCount() + " rows");

Related reference:

* [“Selected sqlj.runtime classes and interfaces” on page 407

Chapter 16. SQLJ application programming 353

354

Retrieving multiple result sets from a stored procedure in an
SQLJ application

Some stored procedures return one or more result sets to the calling program. To
retrieve the rows from those result sets, you execute these steps:

1. Acquire an execution context for retrieving the result set from the stored
procedure.

2. Associate the execution context with the CALL statement for the stored
procedure.

Do not use this execution context for any other purpose until you have
retrieved and processed the last result set.

3. For each result set:

a. Use the ExecutionContext method getNextResultSet to retrieve the result
set.

b. If you do not know the contents of the result set, use ResultSetMetaData
methods to retrieve this information.

c. Use an SQL]J result set iterator or JDBC ResultSet to retrieve the rows from
the result set.

Result sets are returned to the calling program in the same order that their cursors
are opened in the stored procedure. When there are no more result sets to retrieve,
getNextResultSet returns a null value.

getNextResultSet has two forms:

getNextResultSet();
getNextResultSet (int current);

When you invoke the first form of getNextResultSet, SQLJ closes the
currently-open result set and advances to the next result set. When you invoke the
second form of getNextResultSet, the value of current indicates what SQL]J does
with the currently-open result set before it advances to the next result set:

java.sql.Statement. CLOSE_CURRENT_RESULT
Specifies that the current ResultSet object is closed when the next ResultSet
object is returned.

java.sql.Statement. KEEP_CURRENT_RESULT
Specifies that the current ResultSet object stays open when the next ResultSet
object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS
Specifies that all open ResultSet objects are closed when the next ResultSet
object is returned.

The second form of getNextResultSet requires JDK 1.4 or later.

The following code calls a stored procedure that returns multiple result sets. For
this example, it is assumed that the caller does not know the number of result sets
to be returned or the contents of those result sets. It is also assumed that
autoCommit is false. The numbers to the right of selected statements correspond to
the previously-described steps.

Programming Client Applications

ExecutionContext execCtx=myConnCtx.getExecutionContext();
#sq1 [myConnCtx, execCtx] {CALL MULTRSSP()};
// MULTRSSP returns multiple result sets
ResultSet rs;
while ((rs = execCtx.getNextResultSet()) != null)
{
ResultSetMetaData rsmeta=rs.getMetaData();
int numcols=rsmeta.getColumnCount();
while (rs.next())
{
for (int i=1; i<=numcols; i++)
{
String colval=rs.getString(i);
System.out.printIn("Column " + i + "value is " + colval);
1
}
1

[~

w ()
o =]

Figure 54. Retrieving result sets from a stored procedure

Making batch updates in SQLJ applications

The DB2 Universal JDBC Driver supports batch updates in SQL]J. With batch
updates, instead of updating rows of a DB2® table one at a time, you can direct
SQL]J to execute a group of updates at the same time. You can include the
following types of statements in a batch update:

e Searched INSERT, UPDATE, or DELETE statements

e CREATE, ALTER, DROP, GRANT, or REVOKE statements

¢ CALL statements with input parameters only

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with
input parameters or host expressions. You can therefore combine instances of the
same statement, different statements, statements with input parameters or host
expressions, and statements with no input parameters or host expressions in the
same SQL]J statement batch.

The basic steps for creating, executing, and deleting a batch of statements are:
1. Disable AutoCommit for the connection.
2. Acquire an execution context.
All statements that execute in a batch must use this execution context.
3. Invoke the ExecutionContext.setBatching(true) method to create a batch.

Subsequent batchable statements that are associated with the execution context
that you created in step IZl are added to the batch for later execution.

If you want to batch sets of statements that are not batch compatible in parallel,
you need to create an execution context for each set of batch compatible
statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.
These clauses must include the execution context that you created in step Iz

If an SQLJ executable clause has input parameters or host expressions, you can
include the statement in the batch multiple times with different values for the
input parameters or host expressions.

Chapter 16. SQLJ application programming 355

356

To determine whether a statement was added to an existing batch, was the first
statement in a new batch, or was executed inside or outside a batch, invoke the
ExecutionContext.getUpdateCount method. This method returns one of the
following values:

ExecutionContext.ADD_BATCH_COUNT
This is a constant that is returned if the statement was added to an existing
batch.

ExecutionContext.NEW_BATCH_COUNT
This is a constant that is returned if the statement was the first statement in
a new batch.

ExecutionContext.EXEC_BATCH_COUNT
This is a constant that is returned if the statement was part of a batch, and
the batch was executed.

Other integer
This value is the number of rows that were updated by the statement. This
value is returned if the statement was executed rather than added to a
batch.

Execute the batch explicitly or implicitly.

* Invoke the ExecutionContext.executeBatch method to execute the batch
explicitly.
executeBatch returns an integer array that contains the number of rows that
were updated by each statement in the batch. The order of the elements in

the array corresponds to the order in which you added statements to the
batch.

 Alternatively, a batch executes implicitly under the following circumstances:

- You include a batchable statement in your program that is not compatible
with statements that are already in the batch. In this case, SQL] executes
the statements that are already in the batch and creates a new batch that
includes the incompatible statement. SQL]J also executes the statement that
is not compatible with the statements in the batch.

- You include a statement in your program that is not batchable. In this
case, SQLJ executes the statements that are already in the batch. SQL]J also
executes the statement that is not batchable.

— After you invoke the ExecutionContext.setBatchLimit(n) method, you
add a statement to the batch that brings the number of statements in the
batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED BATCH
This constant indicates that implicit execution occurs only when SQLJ
encounters a statement that is batchable but incompatible, or not
batchable. Setting this value is the same as not invoking
setBatchLimit.

ExecutionContext.AUTO_BATCH
This constant indicates that implicit execution occurs when the
number of statements in the batch reaches a number that is set by

SQLJ.

Positive integer
When this number of statements have been added to the batch, SQLJ
executes the batch implicitly. However, the batch might be executed
before this many statements have been added if SQLJ encounters a
statement that is batchable but incompatible, or not batchable.

Programming Client Applications

To determine the number of rows that were updated by a batch that was
executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts
method. getBatchUpdateCounts returns an integer array that contains the
number of rows that were updated by each statement in the batch. The order
of the elements in the array corresponds to the order in which you added
statements to the batch. Each array element can be one of the following
values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

6. Optionally, when all statements have been added to the batch, disable batching.

Do this by invoking the ExecutionContext.setBatching(false) method. When
you disable batching, you can still execute the batch implicitly or explicitly, but
no more statements are added to the batch. Disabling batching is useful when a
batch already exists, and you want to execute a batch compatible statement,
rather than adding it to the batch.

If you want to clear a batch without executing it, invoke the
ExecutionContext.cancel method.

7. 1If batch execution was implicit, perform a final, explicit executeBatch to ensure
that all statements have been executed.

Example of a batch update: In the following code fragment, raises are given to all

managers by performing UPDATEs in a batch. The numbers to the right of selected
statements correspond to the previously-described steps.

Chapter 16. SQL]J application programming 357

#sql iterator GetMgr(String); // Declare positioned iterator

{
GetMgr deptiter; // Declare object of GetMgr class
String mgrnum = null; // Declare host variable for manager number
int raise = 400°; // Declare raise amount
int currentSalary; // Declare current salary

String url, username, password; // Declare url, user ID, password

TestContext cl = new TestContext (url, username, password, false); [
ExecutionContext ec = new ExecutionContext(); 2
ec.setBatching(true); 3

#sql [c1] deptiter =
{SELECT MGRNO FROM DEPARTMENT};
// Assign the result table of the SELECT
// to iterator object deptiter
#sql {FETCH :deptiter INTO :mgrnum};
// Retrieve the first manager number
while (!deptiter.endFetch()) { // Check whether the FETCH returned a row
#sql [cl1]
{SELECT SALARY INTO :currentSalary FROM EMPLOYEE
WHERE EMPNO=:mgrnum};
#sql [cl, ec] 4]
{UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)
WHERE EMPNO=:mgrnum} ;
#sql {FETCH :deptiter INTO :mgrnum };
// Fetch the next row
}

ec.executeBatch();
ec.setBatching(false);
#sql [c1] {COMMIT};

deptiter.close(); // Close the iterator
ec.close(); // Close the execution context
cl.close(); // Close the connection

Figure 55. Performing a batch update

When an error occurs during execution of a statement in a batch, the remaining
statements are executed, and a BatchUpdateException is thrown after all the
statements in the batch have executed. See Make batch updates in a JDBC
application for information on how to process a BatchUpdateException.

To obtain information about warnings, use the Statement.getWarnings method on
the object on which you ran the executeBatch method. You can then retrieve an
error description, SQLSTATE, and error code for each SQLWarning object.

When a batch is executed implicitly because the program contains a statement that
cannot be added to the batch, the batch is executed before the new statement is
processed. If an error occurs during execution of the batch, the statement that
caused the batch to execute does not execute.

Recommendation: Turn autocommit off when you do batch updates so that you
can control whether to commit changes to already-executed statements when an
error occurs during batch execution.

Related tasks:
+ |“Making batch updates in JDBC applications” on page 304|

* [“Connecting to a data source using SQL]” on page 322|

+ [“Controlling the execution of SQL statements in SQL]” on page 353]

358 Programming Client Applications

Related reference:

* [“Selected sglj.runtime classes and interfaces” on page 407

Iterators as passed variables for positioned UPDATE or
DELETE operations in an SQLJ application

SQLJ allows iterators to be passed between methods as variables. An iterator that
is used for a positioned UPDATE or DELETE can be identified only at runtime.
The same SQLJ positioned UPDATE or DELETE statement can be used with
different iterators at runtime. If you specify a value of YES for -staticpositioned
when you customize your SQL]J application as part of the program preparation
process, the SQL]J customizer prepares positioned UPDATE or DELETE statements
to execute statically. In this case, the customizer must determine which iterators
belong with which positioned UPDATE or DELETE statements. The SQL]J
customizer does this by matching iterator data types to data types in the UPDATE
or DELETE statements. However, if there is not a unique mapping of tables in
UPDATE or DELETE statements to iterator classes, the SQL] customizer cannot
determine exactly which iterators and UPDATE or DELETE statements go together.
The SQLJ customizer must arbitrarily pair iterators with UPDATE or DELETE
statements, which can sometimes result in SQL errors. The following code
fragments illustrate this point.

#sql iterator Generallter (String);

public static void main (String args[])

{

Generallter iterl
#sql [ctxt] iterl

null;
{ SELECT CHAR_COL1 FROM TABLE1 };

null;
{ SELECT CHAR_COL2 FROM TABLE2 };

Generallter iter2
#sql [ctxt] iter2

doUpdate (iterl);
}

public static void doUpdate (Generallter iter)

#sql [ctxt] { UPDATE TABLEl ... WHERE CURRENT OF :iter };
}

Figure 56. Static positioned UPDATE that succeeds

In this example, only one iterator is defined. Two instances of that iterator are
defined, and each is associated with a different SELECT statement that retrieves
data from a different table. Because the iterator is passed to method doUpdate as a
variable, it is impossible to know until run time which of the iterator instances is
used for the positioned UPDATE. The DB2® bind process uses the first iterator
instance, iterl, when it binds the DB2 plan. At run time, if iterl is passed to the
doUpdate method, as shown in the UPDATE succeeds because iterl and
the UPDATE statement both use TABLEL.

If the program is written in a slightly different way, as shown in [Figure 57 on page
the DB2 bind fails, even though the program appears to be valid.

Chapter 16. SQLJ application programming 359

360

#sql iterator Generallter (String);

public static void main (String args[])
{
Generallter iter2
#sql [ctxt] iter2
Generallter iterl
#sql [ctxt] iterl

null;
{ SELECT CHAR_COL2 FROM TABLE2 };
null;
{ SELECT CHAR_COL1 FROM TABLE1 };

doUpdate (iterl);
}

public static void doUpdate (Generallter iter)

#sql [ctxt] { UPDATE TABLEl ... WHERE CURRENT OF :iter };

Figure 57. Static positioned UPDATE that fails at bind time

In this case, the DB2 bind process associates iter2 with the positioned UPDATE
because iter2 comes first in the program. When DB2 binds the plan for the
program, the bind fails with SQLCODE -509 because iter2 uses TABLEZ and the
UPDATE uses TABLE1. However, if this program is allowed to bind successfully,
and you pass iterl to the doUpdate method, the program runs successfully.

You can avoid a bind time error for a program like the one inby
specifying the DB2 BIND option SQLERROR(CONTINUE). However, this
technique has the drawback that it causes DB2 to build a package, regardless of the
SQL errors that are in the program. A better technique is to write the program so
that there is a one-to-one mapping between tables in positioned UPDATE or
DELETE statements and iterator classes. [Figure 58 on page 361| shows an example
of how to do this.

Programming Client Applications

#sql iterator Table2Iter(String);
#sql iterator Tablellter(String);
public static void main (String args[])

{

Table2Iter iter2 = null;
#sql [ctxt] iter2 = { SELECT CHAR COL2 FROM TABLE2 };

Tablellter iterl = null;
#sql [ctxt] iterl = { SELECT CHAR COL1 FROM TABLE1 };

doUpdate(iterl);
}

public static void doUpdate (Tablellter iter)
{

#sql [ctxt] { UPDATE TABLEl ... WHERE CURRENT OF :iter };

}
public static void doUpdate (Table2Iter iter)

{

#sql [ctxt] { UPDATE TABLE2 ... WHERE CURRENT OF :iter };

}

Figure 58. Static positioned UPDATE that succeeds regardless of iterator order

With this method of coding, each iterator class is associated with only one table.
Therefore, the DB2 bind process can always associate the positioned UPDATE
statement with a valid iterator.

Related tasks:

* [“Performing positioned UPDATE and DELETE operations in an SQL]|
application” on page 336

Related reference:

* “db2sqgljcustomize - DB2 SQLJ Profile Customizer Command” in the Command
Reference

Using scrollable iterators in an SQLJ application

In addition to moving forward, one row at a time, through a result table, you
might want to move backward or go directly to a specific row. The DB2 Universal
JDBC Driver provides this capability.

An iterator in which you can move forward, backward, or to a specific row is
called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result
table of a DB2® cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator can be insensitive or sensitive. A
sensitive scrollable iterator can be static or dynamic. Insensitive means that changes
to the underlying table after the iterator is opened are not visible to the iterator.
Insensitive iterators are read-only. Sensitive means that changes that the iterator or
other processes make to the underlying table are visible to the iterator.

Chapter 16. SQL]J application programming 361

362

If a scrollable iterator is static, the size of the result table and the order of the rows
in the result table do not change after the iterator is opened. This means that you
cannot insert into result tables, and if you delete a row of a result table, a delete
hole occurs. If you update a row of the result table so that the row no longer
qualifies for the result table, an update hole occurs. Fetching from a hole results in
an SQLException.

If a scrollable iterator is dynamic, the size of the result table and the order of the
rows in the result table can change after the iterator is opened. Rows that are
inserted or deleted with INSERT and DELETE statements that are executed by the
same application process are immediately visible. Rows that are inserted or deleted
with INSERT and DELETE statements that are executed by other application
processes are visible after the changes are committed.

To create and use a scrollable iterator, you need to follow these steps:
1. Specify an iterator declaration clause that includes the following clauses:
* implements sqlj.runtime.Scrollable
This indicates that the iterator is scrollable.

« with (sensitivity=INSENSITIVE|SENSITIVE) or with
(sensitivity=SENSITIVE, dynamic=true|false)

sensitivity=INSENSITIVE|SENSITIVE indicates whether update or delete
operations on the underlying table can be visible to the iterator. The default
sensitivity is INSENSITIVE.

dynamic=true|false indicates whether the size of the result table or the order
of the rows in the result table can change after the iterator is opened. The
default value of dynamic is false.

The iterator can be a named or positioned iterator. For example, the following
iterator declaration clause declares a positioned, sensitive, dynamic, scrollable
iterator:

#sql public iterator ByPos

implements sqlj.runtime.Scrollable
with (sensitivity=SENSITIVE, dynamic=true) (String);

The following iterator declaration clause declares a named, insensitive,
scrollable iterator:
#sql public iterator ByName

implements sqlj.runtime.Scrollable

with (sensitivity=INSENSITIVE) (String EmpNo);
Restriction: You cannot use a scrollable iterator to select columns with the
following data types from a table on a DB2 UDB for Linux, UNIX, and
Windows server:
* LONG VARCHAR
* LONG VARGRAPHIC
 DATALINK
 BLOB
« CLOB
A distinct type that is based on any of the previous data types in this list
* A structured type

2. Create an iterator object, which is an instance of your iterator class.

3. If you want to give the SQL] runtime environment a hint about the initial fetch
direction, use the setFetchDirection(int direction) method. direction can be
FETCH_FORWARD or FETCH_REVERSE. If you do not invoke setFetchDirection, the
fetch direction is FETCH_FORWARD.

Programming Client Applications

4. For each row that you want to access:

* For a named iterator, perform the following steps:
a. Position the cursor using one of the methods listed in [Table 3§

Table 38. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor
first() On the first row of the result table
last() On the last row of the result table

previous()?

On the previous row of the result table

next()

On the next row of the result table

absolute(int n)?

If n>0, on row n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

relative(int n)?

If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLast() After the last row in the result table
beforeFirst() Before the first row in the result table
Notes:

1. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

2. If the absolute value of 1 is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

3. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.
If you need to know the current fetch direction, invoke the
getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.

d. If update or delete operations by the iterator or by other means are
visible in the result table, invoke the getWarnings method to check
whether the current row is a hole.

 For a positioned iterator, perform the following steps:

a. Use a FETCH statement with a fetch orientation clause to position the
hTable 3

iterator and retrieve the current row of the result table.

9| lists the

clauses that you can use to position the cursor.

Table 39. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRST On the first row of the result table

LAST On the last row of the result table

PRIOR" On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n)? If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1
of the result table.

Chapter 16. SQLJ application programming 363

Table 39. FETCH clauses for positioning a scrollable cursor (continued)

Method Positions the cursor

RELATIVE(n)® If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

AFTER* After the last row in the result table
BEFORE* Before the first row in the result table
Notes:

1. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

2. If the absolute value of 7 is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

3. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

4. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are
visible in the result table, invoke the getWarnings method to check
whether the current row is a hole.

5. Invoke the close method to close the iterator.

For example, the following code demonstrates how to use a named iterator to
retrieve the employee number and last name from all rows from the employee
table in reverse order. The numbers to the right of selected statements correspond
to the previously-described steps.

#sql iterator Scrolllter implements sqlj.runtime.Scrollable
(String EmpNo, String LastName);
{
Scrolllter scrliter; 2|
#sql [ctxt]
scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};
scrliter.afterLast();
while (scrliter.previous()) 4a |
{
System.out.printin(scrliter.EmpNo() + " " [4c]
+ scrliter.LastName());

scrliter.close();

Figure 59. Using scrollable iterators

Related concepts:

+ [“How an SQLJ application retrieves data from DB2 tables” on page 331]

Related tasks:
+ [“Using a named iterator in an SQLJ application” on page 332|

* |“Using a positioned iterator in an SQL]J application” on page 334|

364 Programming Client Applications

Chapter 17. JDBC and SQLJ reference

The sections that follow contain reference information about JDBC methods and

SQL]J clauses.

Java, JDBC, and SQL data types

The following tables summarize the mappings of Java data types to JDBC and SQL

data types for a DB2 UDB for Linux, UNIX and Windows system.

able 40| summarizes the mappings of Java data types to DB2 data types for
PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC programs,

and for input host expressions in SQL] programs. When more than one Java data

type is listed, the first data type is the recommended data type.

Table 40. Mappings of Java data types to DB2 data types for updating DB2 tables

Java data type

SQL data type

short, boolea, byt SMALLINT

int, java.lang.Integer INTEGER

long, java.lang.Long DECIMAL(l9,0’Z
long, java.lang.Long BIGINTE

float, java.lang.Float REAL

double, java.lang.Double DOUBLE
java.math.BigDecimal DECIMAL(p,s)@
java.lang.String CHAR(n’E
java.lang.String GRAPHIC(m)8
java.lang.String VARCHAR(n’ZI
java.lang String VARGRAPHIC(m)
java.lang.String CLOB(n}§I

byte[] CHAR(1) FOR BIT DATAB
bytel[] VARCHAR(1) FOR BIT DATAB
byte[] BLOB(n X

bytel[] ROWID

java.sql.Blob BLOB(n/@

java.sql.Clob CLOB(nj™

java.sql.Clob DBCLOB(mf™
java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP
java.io.ByteArrayInputStream BLOB(n@
java.io.StringReader CLOB(nfXd
java.io.ByteArrayInputStream CLOB(ny™@
com.ibm.db2.jcc. DB2RowID ROWID

© Copyright IBM Corp. 1997 - 2004

365

Table 40. Mappings of Java data types to DB2 data types for updating DB2 tables (continued)

Java data type SQL data type
java.net.URL DATALINKZ
Notes:

1.
2.

® N o o

11.
12.

DB2 has no exact equivalent for the Java boolean or byte data types, but the best fit is SMALLINT.
DB2 UDB in the OS/390 or z/OS environment has no exact equivalent for the Java long or java.lang.Long data

types, but the best fit is DECIMAL(19,0).

The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows.

p is the decimal precision and s is the scale of the DB2 column.

You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If
you know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a
java.math.BigDecimal variable results in better precision and performance than using other combinations of data

types.
n<=254.

m<=127.
n<=32672.
m<=16336.

This mapping is valid only if DB2 can determine the data type of the column.

n<=2147483647.
m<=1073741823.

The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

able 41 summarizes the mappings of DB2 data types to Java data types for
ResultSet.getXXX methods in JDBC programs, and for iterators in SQL]J programs.
This table does not list Java numeric wrapper object types, which are retrieved

using ResultSet.getObject.

Table 41. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables

Recommended Java data type or

SQL data type Java object type

Other supported Java data types

SMALLINT short

byte, int, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

INTEGER int

short, byte, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

BIGINTH long

int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

REAL float

long, int, short, byte, double,
java.math.BigDecimal, boolean,
java.lang.String

DOUBLE double

long, int, short, byte, float,
java.math.BigDecimal, boolean,
java.lang.String

CHAR(n) java.lang.String

long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

366

Programming Client Applications

Table 41. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables (continued)

Recommended Java data type or
SQL data type Java object type Other supported Java data types

VARCHAR(n) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

CHAR(n) FOR BIT DATA byte[] java.lang.String,
java.io.InputStream, java.io.Reader
VARCHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

GRAPHIC(m) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

VARGRAPHIC(m) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

CLOB(n) java.sql.Clob java.lang.String
BLOB(n) java.sql.Blob byte[ﬁ
DBCLOB(m) No exact equivalent. Use

java.sql.Clob.
ROWID com.ibm.db2.jcc. DB2RowID byte[]
DATE java.sql.Date java.sql.String, java.sql.Timestamp
TIME java.sql.Time java.sql.String, java.sql. Timestamp
TIMESTAMP java.sql.Timestamp java.sql.String, java.sql.Date,

java.sql.Time, java.sql.Timestamp

DATALINK javanet.URLH
Notes:

1. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows.

2. You should design financial applications so that DECIMAL columns map to java.math.BigDecimal columns. If you
know the precision and scale of a DECIMAL column, retrieving data from that column into a
java.math.BigDecimal variable results in better precision and performance than using other combinations of data
types.

3. This mapping is valid only if DB2 can determine the data type of the column.

4. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

[Table 42 on page 368 summarizes mappings of Java data types to JDBC data types
and DB2 data types for user-defined function and stored procedure parameters.
The mappings of Java data types to JDBC data types are for
CallableStatement.registerOutParameter methods in JDBC programs. The
mappings of Java data types to DB2 data types are for parameters in stored
procedure or user-defined function invocations.

If more than one Java data type is listed in [Table 42 on page 368} the first data type
is the recommended data type.

Chapter 17. JDBC and SQL] reference 367

Table 42. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type

JDBC data type

SQL data type

boolearl BIT SMALLINT
bytdl TINYINT SMALLINT
short, java.lang.Integer SMALLINT SMALLINT
int, java.lang.Integer INTEGER INTEGER
long BIGINT BIGINTE

float, java.lang.Float REAL REAL

float, java.lang.Float FLOAT REAL

double, java.lang.Double DOUBLE DOUBLE
java.math.BigDecimal NUMERIC DECIMAL
java.math.BigDecimal DECIMAL DECIMAL
java.lang.String CHAR CHAR
java.lang.String CHAR GRAPHIC
java.lang.String VARCHAR VARCHAR
java.lang.String VARCHAR VARGRAPHIC
java.lang.String LONGVARCHAR VARCHAR
java.lang.String VARCHAR CLOB(n)
java.lang.String LONGVARCHAR CLOB(n)
java.lang.String CLOB CLOB(n)
bytel[] BINARY CHAR FOR BIT DATA
byte[] VARBINARY VARCHAR FOR BIT DATA
bytel[] LONGVARBINARY VARCHAR FOR BIT DATA
byte[] VARBINARY BLOB(nf2
byte[] LONGVARBINARY BLOB(nf
java.sql.Date DATE DATE
java.sql.Time TIME TIME
java.sql.Timestamp TIMESTAMP TIMESTAMP
java.sql.Blob BLOB BLOB
java.sql.Clob CLOB CLOB
java.sql.Clob CLOB DBCLOB
java.io.ByteArrayInputStream None BLOB(n)
java.io.StringReader None CLOB(n)
java.io.ByteArrayInputStream None CLOB(n)
com.ibm.db2.jcc. DB2RowID com.ibm.db2.jec. DB2Types. ROWID ROWID
java.net.URL DATALINK DATALINKE

368 Programming Client Applications

Table 42. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined

functions (continued)

Java data type

JDBC data type

SQL data type

Notes:

1. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a

boolean or byte parameter. However, this is not recommended.

2. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows servers. For Java applications
that connect from a DB2 UDB Version 8.1 client to a DB2 UDB Version 7 server, when the
CallableStatement.getObject method is used to retrieve a BIGINT value, a java.math.BigDecimal object is

returned.

3. This mapping is valid only if DB2 can determine the data type of the column.

4. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

able 43| summarizes mappings of the SQL parameter data types in a CREATE

PROCEDURE or CREATE FUNCTION statement to the data types in the
corresponding Java stored procedure or user-defined function method.

For DB2 UDB for Linux, UNIX and Windows, if more than one Java data type is
listed for an SQL data type, only the first Java data type is valid.

For DB2 UDB in the OS/390 or z/OS environment, if more than one Java data

type is listed, and you use a data type other than the first data type as a method

parameter, you need to include a method signature in the EXTERNAL clause of

your CREATE PROCEDURE or CREATE FUNCTION statement that specifies the
Java data types of the method parameters.

Table 43. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in
the corresponding Java stored procedure or user-defined function program

SQL data type in CREATE PROCEDURE or CREATE

Data type in Java stored procedure or

FUNCTION user-defined function method
SMALLINT short, java.lang.Integer
INTEGER int, java.lang.Integer
BIGINT! long

REAL float, java.lang.Float
DOUBLE double, java.lang.Double
DECIMAL java.math.BigDecimal
CHAR java.lang.String
GRAPHIC java.lang.String
VARCHAR java.lang.String
VARGRAPHIC java.lang.String

CHAR FOR BIT DATA byte[]

VARCHAR FOR BIT DATA byte[]

DATE java.sql.Date

TIME java.sql.Time
TIMESTAMP java.sql.Timestamp
BLOB java.sql.Blob
CLOB java.sql.Clob
DBCLOB java.sql.Clob

Chapter 17. JDBC and SQL] reference

369

Table 43. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in
the corresponding Java stored procedure or user-defined function program (continued)

SQL data type in CREATE PROCEDURE or CREATE Data type in Java stored procedure or
FUNCTION user-defined function method
ROWID com.ibm.db2.jcc.DB2Types.ROWID
DATALINK java.net.URL?

Notes:

1. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows servers.
2. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Related reference:

+ ["JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC|
drivers” on page 426|

Properties for the DB2 Universal JDBC Driver

Properties define how the connection to a particular data source should be made.
Unless otherwise noted, properties can be set for a DataSource object or for a
Connection object. Properties can be set in one of the following ways:

* Using setXXX methods

Properties are applicable to the following DB2-specific implementations that
inherit from com.ibm.db2.jcc.DB2BaseDataSource:

— com.ibm.db2.jcc.DB2SimpleDataSource

— com.ibm.db2.jcc.DB2DataSource

— com.ibm.db2.jcc.DB2ConnectionPoolDataSource

— com.ibm.db2.jcc.DB2XADataSource

See Summary of DB2 Universal JDBC Driver extensions to JDBC for a summary
of the property names and data types.

* Ina java.util.Properties value in the info parameter of a
DriverManager.getConnection call, as shown in Connect to a data source using
the DriverManager interface with the DB2 Universal JDBC Driver.

* In a java.lang.String value in the url parameter of a
DriverManager.getConnection call, as shown in Connect to a data source using
the DriverManager interface with the DB2 Universal JDBC Driver.

The properties are:

activeServerListf NDIName
Identifies a JNDI reference to a DB2ActiveServerList instance in a JNDI
repository of alternate server information. If the value of
activeServerListfNDIName is not null, connections can failover to an alternate
server that is specified in the DB2ActiveServerlList instance that is referenced
by the value. If activeServerListfNDIName is null, connections do not failover
using alternate server information from a JNDI repository.

clientAccountingInformation
Specifies accounting information for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. For a DB2 UDB for Linux,
UNIX and Windows server, the maximum length is 255 bytes. A Java empty
string (") is valid for this value, but a Java null value is not valid.

370 Programming Client Applications

clientApplicationInformation
Specifies application information for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. For a DB2 UDB for Linux,
UNIX and Windows server, the maximum length is 255 bytes. A Java empty
string (") is valid for this value, but a Java null value is not valid.

clientUser
Specifies the current client user name for the connection. This information is
for client accounting purposes. Unlike the JDBC connection user name, this
value can change during a connection. For a DB2 UDB for Linux, UNIX and
Windows server, the maximum length is 255 bytes.

clientWorkstation
Specifies the workstation name for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. For a DB2 UDB for Linux,
UNIX and Windows server, the maximum length is 255 bytes. A Java empty
string (") is valid for this value, but a Java null value is not valid.

cliSchema
Specifies the schema of the DB2 shadow catalog tables or views that are
searched when an application invokes a DatabaseMetaData method.

currentFunctionPath
Specifies the SQL path that is used to resolve unqualified data type names and
function names in SQL statements that are in JDBC programs. The data type of
this property is String. For a DB2 UDB for Linux, UNIX and Windows server,
the maximum length is 254 bytes. The value is a comma-separated list of
schema names. Those names can be ordinary or delimited identifiers.

currentLockTimeout
Directs DB2 UDB for Linux, UNIX and Windows servers to wait indefinitely
for a lock or to wait for the specified number of seconds for a lock when the
lock cannot be obtained immediately. The data type of this property is int. A
value of zero means no wait. A value of -1 means to wait indefinitely. A
positive integer indicates the number of seconds to wait for a lock.

currentPackagePath
Specifies a comma-separated list of collections on the server. The DB2 server
searches these collections for the DB2 packages for the DB2 Universal JDBC
Driver.

The precedence rules for the currentPackagePath and currentPackageSet
properties follow the precedence rules for the DB2 CURRENT PACKAGESET
and CURRENT PACKAGE PATH special registers.

currentPackageSet
Specifies the collection ID to search for DB2 packages for the DB2 Universal
JDBC Driver. The data type of this property is String. The default is NULLID.
If currentPackageSet is set, its value overrides the value of jdbcCollection.

Multiple instances of the DB2 Universal JDBC Driver can be installed at a
database server by running the DB2binder utility multiple times. The
DB2binder utility includes a -collection option that lets the installer specify the
collection ID for each DB2 Universal JDBC Driver instance. To choose an
instance of the DB2 Universal JDBC Driver for a connection, you specify a
currentPackageSet value that matches the collection ID for one of the DB2
Universal JDBC Driver instances.

Chapter 17. JDBC and SQL] reference 371

372

The precedence rules for the currentPackagePath and currentPackageSet
properties follow the precedence rules for the DB2 CURRENT PACKAGESET
and CURRENT PACKAGE PATH special registers.

currentSchema

Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements. This value of this property
sets the value in the CURRENT SCHEMA special register on a server other
than a DB2 UDB for z/OS server. Do not set this property for a DB2 UDB for
z/0OS server.

currentSQLID

Specifies:
* The authorization ID that is used for authorization checking on dynamically
prepared CREATE, GRANT, and REVOKE SQL statements.

* The owner of a table space, database, storage group, or synonym that is
created by a dynamically issued CREATE statement.

* The implicit qualifier of all table, view, alias, and index names specified in
dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2
UDB for z/0S server. If the currentSQLID property is not set, the default
schema name is the value in the CURRENT SQLID special register.

cursorSensitivity

Specifies whether the java.sql.ResultSet.TYPE_SCROLL_SENSITIVE value for a
JDBC ResultSet maps to the SENSITIVE DYNAMIC attribute or the
SENSITIVE STATIC attribute for the underlying DB2 cursor. Possible values are
TYPE_SCROLL_SENSITIVE_STATIC and TYPE_SCROLL_SENSITIVE_DYNAMIC. The
default is TYPE_SCROLL_SENSITIVE_STATIC.

This property is ignored for database servers that do not support sensitive
dynamic scrollable cursors.

databaseName

Specifies the name for the database server. This name is used as the database
portion of the connection URL. The name depends on whether Universal Type
4 Connectivity or Universal Type 2 Connectivity is used.

For Universal Type 4 Connectivity:

e If the connection is to a DB2 for z/OS server, the databaseName value is the
DB2 location name that is defined during installation. All characters in this
value must be uppercase characters. You can determine the location name by
executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

e If the connection is to a DB2 UDB for Linux, UNIX and Windows server, the

databaseName value is the database name that is defined during installation.

* If the connection is to an IBM Cloudscape server, the databaseName value is
the fully-qualified name of the file that contains the database. This name
must be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

If this property is not set, connections are made to the local site.

For Universal Type 2 Connectivity:

Programming Client Applications

¢ The databaseName value is the database name that is defined during
installation, if the value of the serverName connection property is null. If the
value of serverName property is not null, the databaseName value is a
database alias.

deferPrepares
Specifies whether to defer prepare operations until run time. The data type of
this property is boolean. The default is true for Universal Type 4 Connectivity.
The property is not applicable to Universal Type 2 Connectivity.

Deferring prepare operations can reduce network delays. How